Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
 
 
 
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
 
  44
  45struct compressed_bio {
  46	/* number of bios pending for this compressed extent */
  47	atomic_t pending_bios;
  48
  49	/* the pages with the compressed data on them */
  50	struct page **compressed_pages;
  51
  52	/* inode that owns this data */
  53	struct inode *inode;
 
 
 
 
 
 
 
 
 
  54
  55	/* starting offset in the inode for our pages */
  56	u64 start;
  57
  58	/* number of bytes in the inode we're working on */
  59	unsigned long len;
 
  60
  61	/* number of bytes on disk */
  62	unsigned long compressed_len;
  63
  64	/* the compression algorithm for this bio */
  65	int compress_type;
  66
  67	/* number of compressed pages in the array */
  68	unsigned long nr_pages;
 
 
 
  69
  70	/* IO errors */
  71	int errors;
  72	int mirror_num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74	/* for reads, this is the bio we are copying the data into */
  75	struct bio *orig_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76
  77	/*
  78	 * the start of a variable length array of checksums only
  79	 * used by reads
  80	 */
  81	u32 sums;
  82};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83
  84static int btrfs_decompress_bio(int type, struct page **pages_in,
  85				   u64 disk_start, struct bio *orig_bio,
  86				   size_t srclen);
  87
  88static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
  89				      unsigned long disk_size)
  90{
  91	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  92
  93	return sizeof(struct compressed_bio) +
  94		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
  95}
  96
  97static struct bio *compressed_bio_alloc(struct block_device *bdev,
  98					u64 first_byte, gfp_t gfp_flags)
  99{
 100	return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
 101}
 102
 103static int check_compressed_csum(struct inode *inode,
 104				 struct compressed_bio *cb,
 105				 u64 disk_start)
 106{
 107	int ret;
 
 
 
 108	struct page *page;
 109	unsigned long i;
 110	char *kaddr;
 111	u32 csum;
 112	u32 *cb_sum = &cb->sums;
 
 113
 114	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 115		return 0;
 116
 
 
 117	for (i = 0; i < cb->nr_pages; i++) {
 
 
 118		page = cb->compressed_pages[i];
 119		csum = ~(u32)0;
 120
 121		kaddr = kmap_atomic(page);
 122		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
 123		btrfs_csum_final(csum, (u8 *)&csum);
 124		kunmap_atomic(kaddr);
 125
 126		if (csum != *cb_sum) {
 127			btrfs_info(BTRFS_I(inode)->root->fs_info,
 128			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
 129			   btrfs_ino(inode), disk_start, csum, *cb_sum,
 130			   cb->mirror_num);
 131			ret = -EIO;
 132			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133		}
 134		cb_sum++;
 135
 136	}
 137	ret = 0;
 138fail:
 139	return ret;
 140}
 141
 142/* when we finish reading compressed pages from the disk, we
 143 * decompress them and then run the bio end_io routines on the
 144 * decompressed pages (in the inode address space).
 145 *
 146 * This allows the checksumming and other IO error handling routines
 147 * to work normally
 148 *
 149 * The compressed pages are freed here, and it must be run
 150 * in process context
 151 */
 152static void end_compressed_bio_read(struct bio *bio)
 153{
 154	struct compressed_bio *cb = bio->bi_private;
 155	struct inode *inode;
 156	struct page *page;
 157	unsigned long index;
 158	int ret;
 
 159
 160	if (bio->bi_error)
 161		cb->errors = 1;
 162
 163	/* if there are more bios still pending for this compressed
 164	 * extent, just exit
 165	 */
 166	if (!atomic_dec_and_test(&cb->pending_bios))
 167		goto out;
 168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169	inode = cb->inode;
 170	ret = check_compressed_csum(inode, cb,
 171				    (u64)bio->bi_iter.bi_sector << 9);
 172	if (ret)
 173		goto csum_failed;
 174
 175	/* ok, we're the last bio for this extent, lets start
 176	 * the decompression.
 177	 */
 178	ret = btrfs_decompress_bio(cb->compress_type,
 179				      cb->compressed_pages,
 180				      cb->start,
 181				      cb->orig_bio,
 182				      cb->compressed_len);
 183csum_failed:
 184	if (ret)
 185		cb->errors = 1;
 186
 187	/* release the compressed pages */
 188	index = 0;
 189	for (index = 0; index < cb->nr_pages; index++) {
 190		page = cb->compressed_pages[index];
 191		page->mapping = NULL;
 192		put_page(page);
 193	}
 194
 195	/* do io completion on the original bio */
 196	if (cb->errors) {
 197		bio_io_error(cb->orig_bio);
 198	} else {
 199		int i;
 200		struct bio_vec *bvec;
 
 201
 202		/*
 203		 * we have verified the checksum already, set page
 204		 * checked so the end_io handlers know about it
 205		 */
 206		bio_for_each_segment_all(bvec, cb->orig_bio, i)
 
 207			SetPageChecked(bvec->bv_page);
 208
 209		bio_endio(cb->orig_bio);
 210	}
 211
 212	/* finally free the cb struct */
 213	kfree(cb->compressed_pages);
 214	kfree(cb);
 215out:
 216	bio_put(bio);
 217}
 218
 219/*
 220 * Clear the writeback bits on all of the file
 221 * pages for a compressed write
 222 */
 223static noinline void end_compressed_writeback(struct inode *inode,
 224					      const struct compressed_bio *cb)
 225{
 226	unsigned long index = cb->start >> PAGE_SHIFT;
 227	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 228	struct page *pages[16];
 229	unsigned long nr_pages = end_index - index + 1;
 230	int i;
 231	int ret;
 232
 233	if (cb->errors)
 234		mapping_set_error(inode->i_mapping, -EIO);
 235
 236	while (nr_pages > 0) {
 237		ret = find_get_pages_contig(inode->i_mapping, index,
 238				     min_t(unsigned long,
 239				     nr_pages, ARRAY_SIZE(pages)), pages);
 240		if (ret == 0) {
 241			nr_pages -= 1;
 242			index += 1;
 243			continue;
 244		}
 245		for (i = 0; i < ret; i++) {
 246			if (cb->errors)
 247				SetPageError(pages[i]);
 248			end_page_writeback(pages[i]);
 249			put_page(pages[i]);
 250		}
 251		nr_pages -= ret;
 252		index += ret;
 253	}
 254	/* the inode may be gone now */
 255}
 256
 257/*
 258 * do the cleanup once all the compressed pages hit the disk.
 259 * This will clear writeback on the file pages and free the compressed
 260 * pages.
 261 *
 262 * This also calls the writeback end hooks for the file pages so that
 263 * metadata and checksums can be updated in the file.
 264 */
 265static void end_compressed_bio_write(struct bio *bio)
 266{
 267	struct extent_io_tree *tree;
 268	struct compressed_bio *cb = bio->bi_private;
 269	struct inode *inode;
 270	struct page *page;
 271	unsigned long index;
 272
 273	if (bio->bi_error)
 274		cb->errors = 1;
 275
 276	/* if there are more bios still pending for this compressed
 277	 * extent, just exit
 278	 */
 279	if (!atomic_dec_and_test(&cb->pending_bios))
 280		goto out;
 281
 282	/* ok, we're the last bio for this extent, step one is to
 283	 * call back into the FS and do all the end_io operations
 284	 */
 285	inode = cb->inode;
 286	tree = &BTRFS_I(inode)->io_tree;
 287	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 288	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 289					 cb->start,
 290					 cb->start + cb->len - 1,
 291					 NULL,
 292					 bio->bi_error ? 0 : 1);
 293	cb->compressed_pages[0]->mapping = NULL;
 294
 295	end_compressed_writeback(inode, cb);
 296	/* note, our inode could be gone now */
 297
 298	/*
 299	 * release the compressed pages, these came from alloc_page and
 300	 * are not attached to the inode at all
 301	 */
 302	index = 0;
 303	for (index = 0; index < cb->nr_pages; index++) {
 304		page = cb->compressed_pages[index];
 305		page->mapping = NULL;
 306		put_page(page);
 307	}
 308
 309	/* finally free the cb struct */
 310	kfree(cb->compressed_pages);
 311	kfree(cb);
 312out:
 313	bio_put(bio);
 314}
 315
 316/*
 317 * worker function to build and submit bios for previously compressed pages.
 318 * The corresponding pages in the inode should be marked for writeback
 319 * and the compressed pages should have a reference on them for dropping
 320 * when the IO is complete.
 321 *
 322 * This also checksums the file bytes and gets things ready for
 323 * the end io hooks.
 324 */
 325int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 326				 unsigned long len, u64 disk_start,
 327				 unsigned long compressed_len,
 328				 struct page **compressed_pages,
 329				 unsigned long nr_pages)
 
 
 330{
 331	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 332	struct bio *bio = NULL;
 333	struct compressed_bio *cb;
 334	unsigned long bytes_left;
 335	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 336	int pg_index = 0;
 337	struct page *page;
 338	u64 first_byte = disk_start;
 339	struct block_device *bdev;
 340	int ret;
 341	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 
 342
 343	WARN_ON(start & ((u64)PAGE_SIZE - 1));
 344	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 345	if (!cb)
 346		return -ENOMEM;
 347	atomic_set(&cb->pending_bios, 0);
 348	cb->errors = 0;
 349	cb->inode = inode;
 350	cb->start = start;
 351	cb->len = len;
 352	cb->mirror_num = 0;
 353	cb->compressed_pages = compressed_pages;
 354	cb->compressed_len = compressed_len;
 355	cb->orig_bio = NULL;
 356	cb->nr_pages = nr_pages;
 357
 358	bdev = fs_info->fs_devices->latest_bdev;
 359
 360	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 361	if (!bio) {
 362		kfree(cb);
 363		return -ENOMEM;
 364	}
 365	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 366	bio->bi_private = cb;
 367	bio->bi_end_io = end_compressed_bio_write;
 368	atomic_inc(&cb->pending_bios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369
 370	/* create and submit bios for the compressed pages */
 371	bytes_left = compressed_len;
 372	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 
 
 
 373		page = compressed_pages[pg_index];
 374		page->mapping = inode->i_mapping;
 375		if (bio->bi_iter.bi_size)
 376			ret = io_tree->ops->merge_bio_hook(page, 0,
 377							   PAGE_SIZE,
 378							   bio, 0);
 379		else
 380			ret = 0;
 381
 382		page->mapping = NULL;
 383		if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
 384		    PAGE_SIZE) {
 385			bio_get(bio);
 
 
 
 
 
 
 
 386
 
 
 387			/*
 388			 * inc the count before we submit the bio so
 389			 * we know the end IO handler won't happen before
 390			 * we inc the count.  Otherwise, the cb might get
 391			 * freed before we're done setting it up
 392			 */
 393			atomic_inc(&cb->pending_bios);
 394			ret = btrfs_bio_wq_end_io(fs_info, bio,
 395						  BTRFS_WQ_ENDIO_DATA);
 396			BUG_ON(ret); /* -ENOMEM */
 397
 398			if (!skip_sum) {
 399				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 400				BUG_ON(ret); /* -ENOMEM */
 401			}
 402
 403			ret = btrfs_map_bio(fs_info, bio, 0, 1);
 404			if (ret) {
 405				bio->bi_error = ret;
 406				bio_endio(bio);
 407			}
 408
 409			bio_put(bio);
 410
 411			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 412			BUG_ON(!bio);
 413			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 414			bio->bi_private = cb;
 415			bio->bi_end_io = end_compressed_bio_write;
 
 
 
 
 
 
 416			bio_add_page(bio, page, PAGE_SIZE, 0);
 417		}
 418		if (bytes_left < PAGE_SIZE) {
 419			btrfs_info(fs_info,
 420					"bytes left %lu compress len %lu nr %lu",
 421			       bytes_left, cb->compressed_len, cb->nr_pages);
 422		}
 423		bytes_left -= PAGE_SIZE;
 424		first_byte += PAGE_SIZE;
 425		cond_resched();
 426	}
 427	bio_get(bio);
 428
 429	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 430	BUG_ON(ret); /* -ENOMEM */
 431
 432	if (!skip_sum) {
 433		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 434		BUG_ON(ret); /* -ENOMEM */
 435	}
 436
 437	ret = btrfs_map_bio(fs_info, bio, 0, 1);
 438	if (ret) {
 439		bio->bi_error = ret;
 440		bio_endio(bio);
 441	}
 442
 443	bio_put(bio);
 
 
 444	return 0;
 445}
 446
 447static u64 bio_end_offset(struct bio *bio)
 448{
 449	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
 450
 451	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 452}
 453
 454static noinline int add_ra_bio_pages(struct inode *inode,
 455				     u64 compressed_end,
 456				     struct compressed_bio *cb)
 457{
 458	unsigned long end_index;
 459	unsigned long pg_index;
 460	u64 last_offset;
 461	u64 isize = i_size_read(inode);
 462	int ret;
 463	struct page *page;
 464	unsigned long nr_pages = 0;
 465	struct extent_map *em;
 466	struct address_space *mapping = inode->i_mapping;
 467	struct extent_map_tree *em_tree;
 468	struct extent_io_tree *tree;
 469	u64 end;
 470	int misses = 0;
 471
 472	last_offset = bio_end_offset(cb->orig_bio);
 473	em_tree = &BTRFS_I(inode)->extent_tree;
 474	tree = &BTRFS_I(inode)->io_tree;
 475
 476	if (isize == 0)
 477		return 0;
 478
 479	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 480
 481	while (last_offset < compressed_end) {
 482		pg_index = last_offset >> PAGE_SHIFT;
 483
 484		if (pg_index > end_index)
 485			break;
 486
 487		rcu_read_lock();
 488		page = radix_tree_lookup(&mapping->page_tree, pg_index);
 489		rcu_read_unlock();
 490		if (page && !radix_tree_exceptional_entry(page)) {
 491			misses++;
 492			if (misses > 4)
 493				break;
 494			goto next;
 495		}
 496
 497		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 498								 ~__GFP_FS));
 499		if (!page)
 500			break;
 501
 502		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 503			put_page(page);
 504			goto next;
 505		}
 506
 507		end = last_offset + PAGE_SIZE - 1;
 508		/*
 509		 * at this point, we have a locked page in the page cache
 510		 * for these bytes in the file.  But, we have to make
 511		 * sure they map to this compressed extent on disk.
 512		 */
 513		set_page_extent_mapped(page);
 
 
 
 
 
 
 
 514		lock_extent(tree, last_offset, end);
 515		read_lock(&em_tree->lock);
 516		em = lookup_extent_mapping(em_tree, last_offset,
 517					   PAGE_SIZE);
 518		read_unlock(&em_tree->lock);
 519
 520		if (!em || last_offset < em->start ||
 521		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 522		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 523			free_extent_map(em);
 524			unlock_extent(tree, last_offset, end);
 525			unlock_page(page);
 526			put_page(page);
 527			break;
 528		}
 529		free_extent_map(em);
 530
 531		if (page->index == end_index) {
 532			char *userpage;
 533			size_t zero_offset = isize & (PAGE_SIZE - 1);
 534
 535			if (zero_offset) {
 536				int zeros;
 537				zeros = PAGE_SIZE - zero_offset;
 538				userpage = kmap_atomic(page);
 539				memset(userpage + zero_offset, 0, zeros);
 540				flush_dcache_page(page);
 541				kunmap_atomic(userpage);
 542			}
 543		}
 544
 545		ret = bio_add_page(cb->orig_bio, page,
 546				   PAGE_SIZE, 0);
 547
 548		if (ret == PAGE_SIZE) {
 549			nr_pages++;
 550			put_page(page);
 551		} else {
 552			unlock_extent(tree, last_offset, end);
 553			unlock_page(page);
 554			put_page(page);
 555			break;
 556		}
 557next:
 558		last_offset += PAGE_SIZE;
 559	}
 560	return 0;
 561}
 562
 563/*
 564 * for a compressed read, the bio we get passed has all the inode pages
 565 * in it.  We don't actually do IO on those pages but allocate new ones
 566 * to hold the compressed pages on disk.
 567 *
 568 * bio->bi_iter.bi_sector points to the compressed extent on disk
 569 * bio->bi_io_vec points to all of the inode pages
 570 *
 571 * After the compressed pages are read, we copy the bytes into the
 572 * bio we were passed and then call the bio end_io calls
 573 */
 574int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 575				 int mirror_num, unsigned long bio_flags)
 576{
 577	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 578	struct extent_io_tree *tree;
 579	struct extent_map_tree *em_tree;
 580	struct compressed_bio *cb;
 581	unsigned long compressed_len;
 582	unsigned long nr_pages;
 583	unsigned long pg_index;
 584	struct page *page;
 585	struct block_device *bdev;
 586	struct bio *comp_bio;
 587	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 588	u64 em_len;
 589	u64 em_start;
 590	struct extent_map *em;
 591	int ret = -ENOMEM;
 592	int faili = 0;
 593	u32 *sums;
 594
 595	tree = &BTRFS_I(inode)->io_tree;
 596	em_tree = &BTRFS_I(inode)->extent_tree;
 597
 598	/* we need the actual starting offset of this extent in the file */
 599	read_lock(&em_tree->lock);
 600	em = lookup_extent_mapping(em_tree,
 601				   page_offset(bio->bi_io_vec->bv_page),
 602				   PAGE_SIZE);
 603	read_unlock(&em_tree->lock);
 604	if (!em)
 605		return -EIO;
 606
 607	compressed_len = em->block_len;
 608	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 609	if (!cb)
 610		goto out;
 611
 612	atomic_set(&cb->pending_bios, 0);
 613	cb->errors = 0;
 614	cb->inode = inode;
 615	cb->mirror_num = mirror_num;
 616	sums = &cb->sums;
 617
 618	cb->start = em->orig_start;
 619	em_len = em->len;
 620	em_start = em->start;
 621
 622	free_extent_map(em);
 623	em = NULL;
 624
 625	cb->len = bio->bi_iter.bi_size;
 626	cb->compressed_len = compressed_len;
 627	cb->compress_type = extent_compress_type(bio_flags);
 628	cb->orig_bio = bio;
 629
 630	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 631	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 632				       GFP_NOFS);
 633	if (!cb->compressed_pages)
 634		goto fail1;
 635
 636	bdev = fs_info->fs_devices->latest_bdev;
 637
 638	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 639		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 640							      __GFP_HIGHMEM);
 641		if (!cb->compressed_pages[pg_index]) {
 642			faili = pg_index - 1;
 643			ret = -ENOMEM;
 644			goto fail2;
 645		}
 646	}
 647	faili = nr_pages - 1;
 648	cb->nr_pages = nr_pages;
 649
 650	add_ra_bio_pages(inode, em_start + em_len, cb);
 651
 652	/* include any pages we added in add_ra-bio_pages */
 653	cb->len = bio->bi_iter.bi_size;
 654
 655	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 656	if (!comp_bio)
 657		goto fail2;
 658	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
 659	comp_bio->bi_private = cb;
 660	comp_bio->bi_end_io = end_compressed_bio_read;
 661	atomic_inc(&cb->pending_bios);
 662
 663	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664		page = cb->compressed_pages[pg_index];
 665		page->mapping = inode->i_mapping;
 666		page->index = em_start >> PAGE_SHIFT;
 667
 668		if (comp_bio->bi_iter.bi_size)
 669			ret = tree->ops->merge_bio_hook(page, 0,
 670							PAGE_SIZE,
 671							comp_bio, 0);
 672		else
 673			ret = 0;
 674
 675		page->mapping = NULL;
 676		if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 677		    PAGE_SIZE) {
 678			bio_get(comp_bio);
 679
 680			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 681						  BTRFS_WQ_ENDIO_DATA);
 682			BUG_ON(ret); /* -ENOMEM */
 683
 684			/*
 685			 * inc the count before we submit the bio so
 686			 * we know the end IO handler won't happen before
 687			 * we inc the count.  Otherwise, the cb might get
 688			 * freed before we're done setting it up
 689			 */
 690			atomic_inc(&cb->pending_bios);
 691
 692			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 693				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 694							    sums);
 695				BUG_ON(ret); /* -ENOMEM */
 696			}
 697			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 698					     fs_info->sectorsize);
 699
 700			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 701			if (ret) {
 702				comp_bio->bi_error = ret;
 703				bio_endio(comp_bio);
 704			}
 705
 706			bio_put(comp_bio);
 707
 708			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 709							GFP_NOFS);
 710			BUG_ON(!comp_bio);
 711			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
 712			comp_bio->bi_private = cb;
 713			comp_bio->bi_end_io = end_compressed_bio_read;
 714
 715			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 716		}
 717		cur_disk_byte += PAGE_SIZE;
 718	}
 719	bio_get(comp_bio);
 720
 721	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 722	BUG_ON(ret); /* -ENOMEM */
 723
 724	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 725		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 726		BUG_ON(ret); /* -ENOMEM */
 727	}
 728
 729	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 730	if (ret) {
 731		comp_bio->bi_error = ret;
 732		bio_endio(comp_bio);
 733	}
 734
 735	bio_put(comp_bio);
 736	return 0;
 737
 738fail2:
 739	while (faili >= 0) {
 740		__free_page(cb->compressed_pages[faili]);
 741		faili--;
 742	}
 743
 744	kfree(cb->compressed_pages);
 745fail1:
 746	kfree(cb);
 747out:
 748	free_extent_map(em);
 749	return ret;
 750}
 751
 752static struct {
 753	struct list_head idle_ws;
 754	spinlock_t ws_lock;
 755	/* Number of free workspaces */
 756	int free_ws;
 757	/* Total number of allocated workspaces */
 758	atomic_t total_ws;
 759	/* Waiters for a free workspace */
 760	wait_queue_head_t ws_wait;
 761} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762
 763static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 
 
 764	&btrfs_zlib_compress,
 765	&btrfs_lzo_compress,
 
 766};
 767
 768void __init btrfs_init_compress(void)
 769{
 770	int i;
 771
 772	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 773		struct list_head *workspace;
 774
 775		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 776		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 777		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
 778		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 
 
 
 
 779
 
 
 
 
 
 
 
 
 780		/*
 781		 * Preallocate one workspace for each compression type so
 782		 * we can guarantee forward progress in the worst case
 783		 */
 784		workspace = btrfs_compress_op[i]->alloc_workspace();
 785		if (IS_ERR(workspace)) {
 786			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
 787		} else {
 788			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
 789			btrfs_comp_ws[i].free_ws = 1;
 790			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
 791		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792	}
 793}
 794
 795/*
 796 * This finds an available workspace or allocates a new one.
 797 * If it's not possible to allocate a new one, waits until there's one.
 798 * Preallocation makes a forward progress guarantees and we do not return
 799 * errors.
 800 */
 801static struct list_head *find_workspace(int type)
 802{
 
 803	struct list_head *workspace;
 804	int cpus = num_online_cpus();
 805	int idx = type - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
 808	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
 809	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
 810	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
 811	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
 812again:
 813	spin_lock(ws_lock);
 814	if (!list_empty(idle_ws)) {
 815		workspace = idle_ws->next;
 816		list_del(workspace);
 817		(*free_ws)--;
 818		spin_unlock(ws_lock);
 819		return workspace;
 820
 821	}
 822	if (atomic_read(total_ws) > cpus) {
 823		DEFINE_WAIT(wait);
 824
 825		spin_unlock(ws_lock);
 826		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 827		if (atomic_read(total_ws) > cpus && !*free_ws)
 828			schedule();
 829		finish_wait(ws_wait, &wait);
 830		goto again;
 831	}
 832	atomic_inc(total_ws);
 833	spin_unlock(ws_lock);
 834
 835	workspace = btrfs_compress_op[idx]->alloc_workspace();
 
 
 
 
 
 
 
 
 836	if (IS_ERR(workspace)) {
 837		atomic_dec(total_ws);
 838		wake_up(ws_wait);
 839
 840		/*
 841		 * Do not return the error but go back to waiting. There's a
 842		 * workspace preallocated for each type and the compression
 843		 * time is bounded so we get to a workspace eventually. This
 844		 * makes our caller's life easier.
 845		 *
 846		 * To prevent silent and low-probability deadlocks (when the
 847		 * initial preallocation fails), check if there are any
 848		 * workspaces at all.
 849		 */
 850		if (atomic_read(total_ws) == 0) {
 851			static DEFINE_RATELIMIT_STATE(_rs,
 852					/* once per minute */ 60 * HZ,
 853					/* no burst */ 1);
 854
 855			if (__ratelimit(&_rs)) {
 856				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 857			}
 858		}
 859		goto again;
 860	}
 861	return workspace;
 862}
 863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864/*
 865 * put a workspace struct back on the list or free it if we have enough
 866 * idle ones sitting around
 867 */
 868static void free_workspace(int type, struct list_head *workspace)
 869{
 870	int idx = type - 1;
 871	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
 872	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
 873	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
 874	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
 875	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
 
 
 
 
 
 
 
 876
 877	spin_lock(ws_lock);
 878	if (*free_ws < num_online_cpus()) {
 879		list_add(workspace, idle_ws);
 880		(*free_ws)++;
 881		spin_unlock(ws_lock);
 882		goto wake;
 883	}
 884	spin_unlock(ws_lock);
 885
 886	btrfs_compress_op[idx]->free_workspace(workspace);
 887	atomic_dec(total_ws);
 888wake:
 889	/*
 890	 * Make sure counter is updated before we wake up waiters.
 891	 */
 892	smp_mb();
 893	if (waitqueue_active(ws_wait))
 894		wake_up(ws_wait);
 
 
 
 
 
 
 
 
 
 
 
 895}
 896
 897/*
 898 * cleanup function for module exit
 
 899 */
 900static void free_workspaces(void)
 901{
 902	struct list_head *workspace;
 903	int i;
 904
 905	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 906		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
 907			workspace = btrfs_comp_ws[i].idle_ws.next;
 908			list_del(workspace);
 909			btrfs_compress_op[i]->free_workspace(workspace);
 910			atomic_dec(&btrfs_comp_ws[i].total_ws);
 911		}
 912	}
 913}
 914
 915/*
 916 * given an address space and start/len, compress the bytes.
 
 917 *
 918 * pages are allocated to hold the compressed result and stored
 919 * in 'pages'
 
 
 920 *
 921 * out_pages is used to return the number of pages allocated.  There
 922 * may be pages allocated even if we return an error
 923 *
 924 * total_in is used to return the number of bytes actually read.  It
 925 * may be smaller then len if we had to exit early because we
 926 * ran out of room in the pages array or because we cross the
 927 * max_out threshold.
 928 *
 929 * total_out is used to return the total number of compressed bytes
 930 *
 931 * max_out tells us the max number of bytes that we're allowed to
 932 * stuff into pages
 933 */
 934int btrfs_compress_pages(int type, struct address_space *mapping,
 935			 u64 start, unsigned long len,
 936			 struct page **pages,
 937			 unsigned long nr_dest_pages,
 938			 unsigned long *out_pages,
 939			 unsigned long *total_in,
 940			 unsigned long *total_out,
 941			 unsigned long max_out)
 942{
 
 
 943	struct list_head *workspace;
 944	int ret;
 945
 946	workspace = find_workspace(type);
 947
 948	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 949						      start, len, pages,
 950						      nr_dest_pages, out_pages,
 951						      total_in, total_out,
 952						      max_out);
 953	free_workspace(type, workspace);
 954	return ret;
 955}
 956
 957/*
 958 * pages_in is an array of pages with compressed data.
 959 *
 960 * disk_start is the starting logical offset of this array in the file
 961 *
 962 * orig_bio contains the pages from the file that we want to decompress into
 963 *
 964 * srclen is the number of bytes in pages_in
 965 *
 966 * The basic idea is that we have a bio that was created by readpages.
 967 * The pages in the bio are for the uncompressed data, and they may not
 968 * be contiguous.  They all correspond to the range of bytes covered by
 969 * the compressed extent.
 970 */
 971static int btrfs_decompress_bio(int type, struct page **pages_in,
 972				   u64 disk_start, struct bio *orig_bio,
 973				   size_t srclen)
 974{
 975	struct list_head *workspace;
 976	int ret;
 
 977
 978	workspace = find_workspace(type);
 
 
 979
 980	ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
 981							 disk_start, orig_bio,
 982							 srclen);
 983	free_workspace(type, workspace);
 984	return ret;
 985}
 986
 987/*
 988 * a less complex decompression routine.  Our compressed data fits in a
 989 * single page, and we want to read a single page out of it.
 990 * start_byte tells us the offset into the compressed data we're interested in
 991 */
 992int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 993		     unsigned long start_byte, size_t srclen, size_t destlen)
 994{
 995	struct list_head *workspace;
 996	int ret;
 997
 998	workspace = find_workspace(type);
 
 
 
 999
1000	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1001						  dest_page, start_byte,
1002						  srclen, destlen);
1003
1004	free_workspace(type, workspace);
1005	return ret;
1006}
1007
1008void btrfs_exit_compress(void)
1009{
1010	free_workspaces();
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013/*
1014 * Copy uncompressed data from working buffer to pages.
1015 *
1016 * buf_start is the byte offset we're of the start of our workspace buffer.
1017 *
1018 * total_out is the last byte of the buffer
1019 */
1020int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1021			      unsigned long total_out, u64 disk_start,
1022			      struct bio *bio)
1023{
1024	unsigned long buf_offset;
1025	unsigned long current_buf_start;
1026	unsigned long start_byte;
1027	unsigned long prev_start_byte;
1028	unsigned long working_bytes = total_out - buf_start;
1029	unsigned long bytes;
1030	char *kaddr;
1031	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1032
1033	/*
1034	 * start byte is the first byte of the page we're currently
1035	 * copying into relative to the start of the compressed data.
1036	 */
1037	start_byte = page_offset(bvec.bv_page) - disk_start;
1038
1039	/* we haven't yet hit data corresponding to this page */
1040	if (total_out <= start_byte)
1041		return 1;
1042
1043	/*
1044	 * the start of the data we care about is offset into
1045	 * the middle of our working buffer
1046	 */
1047	if (total_out > start_byte && buf_start < start_byte) {
1048		buf_offset = start_byte - buf_start;
1049		working_bytes -= buf_offset;
1050	} else {
1051		buf_offset = 0;
1052	}
1053	current_buf_start = buf_start;
1054
1055	/* copy bytes from the working buffer into the pages */
1056	while (working_bytes > 0) {
1057		bytes = min_t(unsigned long, bvec.bv_len,
1058				PAGE_SIZE - buf_offset);
1059		bytes = min(bytes, working_bytes);
1060
1061		kaddr = kmap_atomic(bvec.bv_page);
1062		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1063		kunmap_atomic(kaddr);
1064		flush_dcache_page(bvec.bv_page);
1065
1066		buf_offset += bytes;
1067		working_bytes -= bytes;
1068		current_buf_start += bytes;
1069
1070		/* check if we need to pick another page */
1071		bio_advance(bio, bytes);
1072		if (!bio->bi_iter.bi_size)
1073			return 0;
1074		bvec = bio_iter_iovec(bio, bio->bi_iter);
1075		prev_start_byte = start_byte;
1076		start_byte = page_offset(bvec.bv_page) - disk_start;
1077
1078		/*
1079		 * We need to make sure we're only adjusting
1080		 * our offset into compression working buffer when
1081		 * we're switching pages.  Otherwise we can incorrectly
1082		 * keep copying when we were actually done.
1083		 */
1084		if (start_byte != prev_start_byte) {
1085			/*
1086			 * make sure our new page is covered by this
1087			 * working buffer
1088			 */
1089			if (total_out <= start_byte)
1090				return 1;
1091
1092			/*
1093			 * the next page in the biovec might not be adjacent
1094			 * to the last page, but it might still be found
1095			 * inside this working buffer. bump our offset pointer
1096			 */
1097			if (total_out > start_byte &&
1098			    current_buf_start < start_byte) {
1099				buf_offset = start_byte - buf_start;
1100				working_bytes = total_out - start_byte;
1101				current_buf_start = buf_start + buf_offset;
1102			}
1103		}
1104	}
1105
1106	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
 
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/highmem.h>
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
 
 
  16#include <linux/writeback.h>
 
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
  31#include "zoned.h"
  32
  33static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
 
 
 
 
 
  34
  35const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  36{
  37	switch (type) {
  38	case BTRFS_COMPRESS_ZLIB:
  39	case BTRFS_COMPRESS_LZO:
  40	case BTRFS_COMPRESS_ZSTD:
  41	case BTRFS_COMPRESS_NONE:
  42		return btrfs_compress_types[type];
  43	default:
  44		break;
  45	}
  46
  47	return NULL;
  48}
  49
  50bool btrfs_compress_is_valid_type(const char *str, size_t len)
  51{
  52	int i;
  53
  54	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  55		size_t comp_len = strlen(btrfs_compress_types[i]);
  56
  57		if (len < comp_len)
  58			continue;
  59
  60		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  61			return true;
  62	}
  63	return false;
  64}
  65
  66static int compression_compress_pages(int type, struct list_head *ws,
  67               struct address_space *mapping, u64 start, struct page **pages,
  68               unsigned long *out_pages, unsigned long *total_in,
  69               unsigned long *total_out)
  70{
  71	switch (type) {
  72	case BTRFS_COMPRESS_ZLIB:
  73		return zlib_compress_pages(ws, mapping, start, pages,
  74				out_pages, total_in, total_out);
  75	case BTRFS_COMPRESS_LZO:
  76		return lzo_compress_pages(ws, mapping, start, pages,
  77				out_pages, total_in, total_out);
  78	case BTRFS_COMPRESS_ZSTD:
  79		return zstd_compress_pages(ws, mapping, start, pages,
  80				out_pages, total_in, total_out);
  81	case BTRFS_COMPRESS_NONE:
  82	default:
  83		/*
  84		 * This can happen when compression races with remount setting
  85		 * it to 'no compress', while caller doesn't call
  86		 * inode_need_compress() to check if we really need to
  87		 * compress.
  88		 *
  89		 * Not a big deal, just need to inform caller that we
  90		 * haven't allocated any pages yet.
  91		 */
  92		*out_pages = 0;
  93		return -E2BIG;
  94	}
  95}
  96
  97static int compression_decompress_bio(int type, struct list_head *ws,
  98		struct compressed_bio *cb)
  99{
 100	switch (type) {
 101	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 102	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 103	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 104	case BTRFS_COMPRESS_NONE:
 105	default:
 106		/*
 107		 * This can't happen, the type is validated several times
 108		 * before we get here.
 109		 */
 110		BUG();
 111	}
 112}
 113
 114static int compression_decompress(int type, struct list_head *ws,
 115               unsigned char *data_in, struct page *dest_page,
 116               unsigned long start_byte, size_t srclen, size_t destlen)
 117{
 118	switch (type) {
 119	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 120						start_byte, srclen, destlen);
 121	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 122						start_byte, srclen, destlen);
 123	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 124						start_byte, srclen, destlen);
 125	case BTRFS_COMPRESS_NONE:
 126	default:
 127		/*
 128		 * This can't happen, the type is validated several times
 129		 * before we get here.
 130		 */
 131		BUG();
 132	}
 133}
 134
 135static int btrfs_decompress_bio(struct compressed_bio *cb);
 
 
 136
 137static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 138				      unsigned long disk_size)
 139{
 
 
 140	return sizeof(struct compressed_bio) +
 141		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
 142}
 143
 144static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
 
 
 
 
 
 
 
 145				 u64 disk_start)
 146{
 147	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 148	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 149	const u32 csum_size = fs_info->csum_size;
 150	const u32 sectorsize = fs_info->sectorsize;
 151	struct page *page;
 152	unsigned int i;
 153	char *kaddr;
 154	u8 csum[BTRFS_CSUM_SIZE];
 155	struct compressed_bio *cb = bio->bi_private;
 156	u8 *cb_sum = cb->sums;
 157
 158	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
 159		return 0;
 160
 161	shash->tfm = fs_info->csum_shash;
 162
 163	for (i = 0; i < cb->nr_pages; i++) {
 164		u32 pg_offset;
 165		u32 bytes_left = PAGE_SIZE;
 166		page = cb->compressed_pages[i];
 
 
 
 
 
 
 167
 168		/* Determine the remaining bytes inside the page first */
 169		if (i == cb->nr_pages - 1)
 170			bytes_left = cb->compressed_len - i * PAGE_SIZE;
 171
 172		/* Hash through the page sector by sector */
 173		for (pg_offset = 0; pg_offset < bytes_left;
 174		     pg_offset += sectorsize) {
 175			kaddr = kmap_atomic(page);
 176			crypto_shash_digest(shash, kaddr + pg_offset,
 177					    sectorsize, csum);
 178			kunmap_atomic(kaddr);
 179
 180			if (memcmp(&csum, cb_sum, csum_size) != 0) {
 181				btrfs_print_data_csum_error(inode, disk_start,
 182						csum, cb_sum, cb->mirror_num);
 183				if (btrfs_io_bio(bio)->device)
 184					btrfs_dev_stat_inc_and_print(
 185						btrfs_io_bio(bio)->device,
 186						BTRFS_DEV_STAT_CORRUPTION_ERRS);
 187				return -EIO;
 188			}
 189			cb_sum += csum_size;
 190			disk_start += sectorsize;
 191		}
 
 
 192	}
 193	return 0;
 
 
 194}
 195
 196/* when we finish reading compressed pages from the disk, we
 197 * decompress them and then run the bio end_io routines on the
 198 * decompressed pages (in the inode address space).
 199 *
 200 * This allows the checksumming and other IO error handling routines
 201 * to work normally
 202 *
 203 * The compressed pages are freed here, and it must be run
 204 * in process context
 205 */
 206static void end_compressed_bio_read(struct bio *bio)
 207{
 208	struct compressed_bio *cb = bio->bi_private;
 209	struct inode *inode;
 210	struct page *page;
 211	unsigned int index;
 212	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 213	int ret = 0;
 214
 215	if (bio->bi_status)
 216		cb->errors = 1;
 217
 218	/* if there are more bios still pending for this compressed
 219	 * extent, just exit
 220	 */
 221	if (!refcount_dec_and_test(&cb->pending_bios))
 222		goto out;
 223
 224	/*
 225	 * Record the correct mirror_num in cb->orig_bio so that
 226	 * read-repair can work properly.
 227	 */
 228	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 229	cb->mirror_num = mirror;
 230
 231	/*
 232	 * Some IO in this cb have failed, just skip checksum as there
 233	 * is no way it could be correct.
 234	 */
 235	if (cb->errors == 1)
 236		goto csum_failed;
 237
 238	inode = cb->inode;
 239	ret = check_compressed_csum(BTRFS_I(inode), bio,
 240				    bio->bi_iter.bi_sector << 9);
 241	if (ret)
 242		goto csum_failed;
 243
 244	/* ok, we're the last bio for this extent, lets start
 245	 * the decompression.
 246	 */
 247	ret = btrfs_decompress_bio(cb);
 248
 
 
 
 249csum_failed:
 250	if (ret)
 251		cb->errors = 1;
 252
 253	/* release the compressed pages */
 254	index = 0;
 255	for (index = 0; index < cb->nr_pages; index++) {
 256		page = cb->compressed_pages[index];
 257		page->mapping = NULL;
 258		put_page(page);
 259	}
 260
 261	/* do io completion on the original bio */
 262	if (cb->errors) {
 263		bio_io_error(cb->orig_bio);
 264	} else {
 
 265		struct bio_vec *bvec;
 266		struct bvec_iter_all iter_all;
 267
 268		/*
 269		 * we have verified the checksum already, set page
 270		 * checked so the end_io handlers know about it
 271		 */
 272		ASSERT(!bio_flagged(bio, BIO_CLONED));
 273		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 274			SetPageChecked(bvec->bv_page);
 275
 276		bio_endio(cb->orig_bio);
 277	}
 278
 279	/* finally free the cb struct */
 280	kfree(cb->compressed_pages);
 281	kfree(cb);
 282out:
 283	bio_put(bio);
 284}
 285
 286/*
 287 * Clear the writeback bits on all of the file
 288 * pages for a compressed write
 289 */
 290static noinline void end_compressed_writeback(struct inode *inode,
 291					      const struct compressed_bio *cb)
 292{
 293	unsigned long index = cb->start >> PAGE_SHIFT;
 294	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 295	struct page *pages[16];
 296	unsigned long nr_pages = end_index - index + 1;
 297	int i;
 298	int ret;
 299
 300	if (cb->errors)
 301		mapping_set_error(inode->i_mapping, -EIO);
 302
 303	while (nr_pages > 0) {
 304		ret = find_get_pages_contig(inode->i_mapping, index,
 305				     min_t(unsigned long,
 306				     nr_pages, ARRAY_SIZE(pages)), pages);
 307		if (ret == 0) {
 308			nr_pages -= 1;
 309			index += 1;
 310			continue;
 311		}
 312		for (i = 0; i < ret; i++) {
 313			if (cb->errors)
 314				SetPageError(pages[i]);
 315			end_page_writeback(pages[i]);
 316			put_page(pages[i]);
 317		}
 318		nr_pages -= ret;
 319		index += ret;
 320	}
 321	/* the inode may be gone now */
 322}
 323
 324/*
 325 * do the cleanup once all the compressed pages hit the disk.
 326 * This will clear writeback on the file pages and free the compressed
 327 * pages.
 328 *
 329 * This also calls the writeback end hooks for the file pages so that
 330 * metadata and checksums can be updated in the file.
 331 */
 332static void end_compressed_bio_write(struct bio *bio)
 333{
 
 334	struct compressed_bio *cb = bio->bi_private;
 335	struct inode *inode;
 336	struct page *page;
 337	unsigned int index;
 338
 339	if (bio->bi_status)
 340		cb->errors = 1;
 341
 342	/* if there are more bios still pending for this compressed
 343	 * extent, just exit
 344	 */
 345	if (!refcount_dec_and_test(&cb->pending_bios))
 346		goto out;
 347
 348	/* ok, we're the last bio for this extent, step one is to
 349	 * call back into the FS and do all the end_io operations
 350	 */
 351	inode = cb->inode;
 352	btrfs_record_physical_zoned(inode, cb->start, bio);
 353	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
 354			cb->start, cb->start + cb->len - 1,
 355			!cb->errors);
 
 
 
 
 356
 357	end_compressed_writeback(inode, cb);
 358	/* note, our inode could be gone now */
 359
 360	/*
 361	 * release the compressed pages, these came from alloc_page and
 362	 * are not attached to the inode at all
 363	 */
 364	index = 0;
 365	for (index = 0; index < cb->nr_pages; index++) {
 366		page = cb->compressed_pages[index];
 367		page->mapping = NULL;
 368		put_page(page);
 369	}
 370
 371	/* finally free the cb struct */
 372	kfree(cb->compressed_pages);
 373	kfree(cb);
 374out:
 375	bio_put(bio);
 376}
 377
 378/*
 379 * worker function to build and submit bios for previously compressed pages.
 380 * The corresponding pages in the inode should be marked for writeback
 381 * and the compressed pages should have a reference on them for dropping
 382 * when the IO is complete.
 383 *
 384 * This also checksums the file bytes and gets things ready for
 385 * the end io hooks.
 386 */
 387blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 388				 unsigned int len, u64 disk_start,
 389				 unsigned int compressed_len,
 390				 struct page **compressed_pages,
 391				 unsigned int nr_pages,
 392				 unsigned int write_flags,
 393				 struct cgroup_subsys_state *blkcg_css)
 394{
 395	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 396	struct bio *bio = NULL;
 397	struct compressed_bio *cb;
 398	unsigned long bytes_left;
 
 399	int pg_index = 0;
 400	struct page *page;
 401	u64 first_byte = disk_start;
 402	blk_status_t ret;
 403	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 404	const bool use_append = btrfs_use_zone_append(inode, disk_start);
 405	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
 406
 407	WARN_ON(!PAGE_ALIGNED(start));
 408	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 409	if (!cb)
 410		return BLK_STS_RESOURCE;
 411	refcount_set(&cb->pending_bios, 0);
 412	cb->errors = 0;
 413	cb->inode = &inode->vfs_inode;
 414	cb->start = start;
 415	cb->len = len;
 416	cb->mirror_num = 0;
 417	cb->compressed_pages = compressed_pages;
 418	cb->compressed_len = compressed_len;
 419	cb->orig_bio = NULL;
 420	cb->nr_pages = nr_pages;
 421
 422	bio = btrfs_bio_alloc(first_byte);
 423	bio->bi_opf = bio_op | write_flags;
 
 
 
 
 
 
 424	bio->bi_private = cb;
 425	bio->bi_end_io = end_compressed_bio_write;
 426
 427	if (use_append) {
 428		struct btrfs_device *device;
 429
 430		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
 431		if (IS_ERR(device)) {
 432			kfree(cb);
 433			bio_put(bio);
 434			return BLK_STS_NOTSUPP;
 435		}
 436
 437		bio_set_dev(bio, device->bdev);
 438	}
 439
 440	if (blkcg_css) {
 441		bio->bi_opf |= REQ_CGROUP_PUNT;
 442		kthread_associate_blkcg(blkcg_css);
 443	}
 444	refcount_set(&cb->pending_bios, 1);
 445
 446	/* create and submit bios for the compressed pages */
 447	bytes_left = compressed_len;
 448	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 449		int submit = 0;
 450		int len = 0;
 451
 452		page = compressed_pages[pg_index];
 453		page->mapping = inode->vfs_inode.i_mapping;
 454		if (bio->bi_iter.bi_size)
 455			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 456							  0);
 
 
 
 457
 458		/*
 459		 * Page can only be added to bio if the current bio fits in
 460		 * stripe.
 461		 */
 462		if (!submit) {
 463			if (pg_index == 0 && use_append)
 464				len = bio_add_zone_append_page(bio, page,
 465							       PAGE_SIZE, 0);
 466			else
 467				len = bio_add_page(bio, page, PAGE_SIZE, 0);
 468		}
 469
 470		page->mapping = NULL;
 471		if (submit || len < PAGE_SIZE) {
 472			/*
 473			 * inc the count before we submit the bio so
 474			 * we know the end IO handler won't happen before
 475			 * we inc the count.  Otherwise, the cb might get
 476			 * freed before we're done setting it up
 477			 */
 478			refcount_inc(&cb->pending_bios);
 479			ret = btrfs_bio_wq_end_io(fs_info, bio,
 480						  BTRFS_WQ_ENDIO_DATA);
 481			BUG_ON(ret); /* -ENOMEM */
 482
 483			if (!skip_sum) {
 484				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 485				BUG_ON(ret); /* -ENOMEM */
 486			}
 487
 488			ret = btrfs_map_bio(fs_info, bio, 0);
 489			if (ret) {
 490				bio->bi_status = ret;
 491				bio_endio(bio);
 492			}
 493
 494			bio = btrfs_bio_alloc(first_byte);
 495			bio->bi_opf = bio_op | write_flags;
 
 
 
 496			bio->bi_private = cb;
 497			bio->bi_end_io = end_compressed_bio_write;
 498			if (blkcg_css)
 499				bio->bi_opf |= REQ_CGROUP_PUNT;
 500			/*
 501			 * Use bio_add_page() to ensure the bio has at least one
 502			 * page.
 503			 */
 504			bio_add_page(bio, page, PAGE_SIZE, 0);
 505		}
 506		if (bytes_left < PAGE_SIZE) {
 507			btrfs_info(fs_info,
 508					"bytes left %lu compress len %u nr %u",
 509			       bytes_left, cb->compressed_len, cb->nr_pages);
 510		}
 511		bytes_left -= PAGE_SIZE;
 512		first_byte += PAGE_SIZE;
 513		cond_resched();
 514	}
 
 515
 516	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 517	BUG_ON(ret); /* -ENOMEM */
 518
 519	if (!skip_sum) {
 520		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 521		BUG_ON(ret); /* -ENOMEM */
 522	}
 523
 524	ret = btrfs_map_bio(fs_info, bio, 0);
 525	if (ret) {
 526		bio->bi_status = ret;
 527		bio_endio(bio);
 528	}
 529
 530	if (blkcg_css)
 531		kthread_associate_blkcg(NULL);
 532
 533	return 0;
 534}
 535
 536static u64 bio_end_offset(struct bio *bio)
 537{
 538	struct bio_vec *last = bio_last_bvec_all(bio);
 539
 540	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 541}
 542
 543static noinline int add_ra_bio_pages(struct inode *inode,
 544				     u64 compressed_end,
 545				     struct compressed_bio *cb)
 546{
 547	unsigned long end_index;
 548	unsigned long pg_index;
 549	u64 last_offset;
 550	u64 isize = i_size_read(inode);
 551	int ret;
 552	struct page *page;
 553	unsigned long nr_pages = 0;
 554	struct extent_map *em;
 555	struct address_space *mapping = inode->i_mapping;
 556	struct extent_map_tree *em_tree;
 557	struct extent_io_tree *tree;
 558	u64 end;
 559	int misses = 0;
 560
 561	last_offset = bio_end_offset(cb->orig_bio);
 562	em_tree = &BTRFS_I(inode)->extent_tree;
 563	tree = &BTRFS_I(inode)->io_tree;
 564
 565	if (isize == 0)
 566		return 0;
 567
 568	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 569
 570	while (last_offset < compressed_end) {
 571		pg_index = last_offset >> PAGE_SHIFT;
 572
 573		if (pg_index > end_index)
 574			break;
 575
 576		page = xa_load(&mapping->i_pages, pg_index);
 577		if (page && !xa_is_value(page)) {
 
 
 578			misses++;
 579			if (misses > 4)
 580				break;
 581			goto next;
 582		}
 583
 584		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 585								 ~__GFP_FS));
 586		if (!page)
 587			break;
 588
 589		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 590			put_page(page);
 591			goto next;
 592		}
 593
 
 594		/*
 595		 * at this point, we have a locked page in the page cache
 596		 * for these bytes in the file.  But, we have to make
 597		 * sure they map to this compressed extent on disk.
 598		 */
 599		ret = set_page_extent_mapped(page);
 600		if (ret < 0) {
 601			unlock_page(page);
 602			put_page(page);
 603			break;
 604		}
 605
 606		end = last_offset + PAGE_SIZE - 1;
 607		lock_extent(tree, last_offset, end);
 608		read_lock(&em_tree->lock);
 609		em = lookup_extent_mapping(em_tree, last_offset,
 610					   PAGE_SIZE);
 611		read_unlock(&em_tree->lock);
 612
 613		if (!em || last_offset < em->start ||
 614		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 615		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 616			free_extent_map(em);
 617			unlock_extent(tree, last_offset, end);
 618			unlock_page(page);
 619			put_page(page);
 620			break;
 621		}
 622		free_extent_map(em);
 623
 624		if (page->index == end_index) {
 625			size_t zero_offset = offset_in_page(isize);
 
 626
 627			if (zero_offset) {
 628				int zeros;
 629				zeros = PAGE_SIZE - zero_offset;
 630				memzero_page(page, zero_offset, zeros);
 
 631				flush_dcache_page(page);
 
 632			}
 633		}
 634
 635		ret = bio_add_page(cb->orig_bio, page,
 636				   PAGE_SIZE, 0);
 637
 638		if (ret == PAGE_SIZE) {
 639			nr_pages++;
 640			put_page(page);
 641		} else {
 642			unlock_extent(tree, last_offset, end);
 643			unlock_page(page);
 644			put_page(page);
 645			break;
 646		}
 647next:
 648		last_offset += PAGE_SIZE;
 649	}
 650	return 0;
 651}
 652
 653/*
 654 * for a compressed read, the bio we get passed has all the inode pages
 655 * in it.  We don't actually do IO on those pages but allocate new ones
 656 * to hold the compressed pages on disk.
 657 *
 658 * bio->bi_iter.bi_sector points to the compressed extent on disk
 659 * bio->bi_io_vec points to all of the inode pages
 660 *
 661 * After the compressed pages are read, we copy the bytes into the
 662 * bio we were passed and then call the bio end_io calls
 663 */
 664blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 665				 int mirror_num, unsigned long bio_flags)
 666{
 667	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
 668	struct extent_map_tree *em_tree;
 669	struct compressed_bio *cb;
 670	unsigned int compressed_len;
 671	unsigned int nr_pages;
 672	unsigned int pg_index;
 673	struct page *page;
 
 674	struct bio *comp_bio;
 675	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
 676	u64 em_len;
 677	u64 em_start;
 678	struct extent_map *em;
 679	blk_status_t ret = BLK_STS_RESOURCE;
 680	int faili = 0;
 681	u8 *sums;
 682
 
 683	em_tree = &BTRFS_I(inode)->extent_tree;
 684
 685	/* we need the actual starting offset of this extent in the file */
 686	read_lock(&em_tree->lock);
 687	em = lookup_extent_mapping(em_tree,
 688				   page_offset(bio_first_page_all(bio)),
 689				   fs_info->sectorsize);
 690	read_unlock(&em_tree->lock);
 691	if (!em)
 692		return BLK_STS_IOERR;
 693
 694	compressed_len = em->block_len;
 695	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 696	if (!cb)
 697		goto out;
 698
 699	refcount_set(&cb->pending_bios, 0);
 700	cb->errors = 0;
 701	cb->inode = inode;
 702	cb->mirror_num = mirror_num;
 703	sums = cb->sums;
 704
 705	cb->start = em->orig_start;
 706	em_len = em->len;
 707	em_start = em->start;
 708
 709	free_extent_map(em);
 710	em = NULL;
 711
 712	cb->len = bio->bi_iter.bi_size;
 713	cb->compressed_len = compressed_len;
 714	cb->compress_type = extent_compress_type(bio_flags);
 715	cb->orig_bio = bio;
 716
 717	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 718	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 719				       GFP_NOFS);
 720	if (!cb->compressed_pages)
 721		goto fail1;
 722
 
 
 723	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 724		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 725							      __GFP_HIGHMEM);
 726		if (!cb->compressed_pages[pg_index]) {
 727			faili = pg_index - 1;
 728			ret = BLK_STS_RESOURCE;
 729			goto fail2;
 730		}
 731	}
 732	faili = nr_pages - 1;
 733	cb->nr_pages = nr_pages;
 734
 735	add_ra_bio_pages(inode, em_start + em_len, cb);
 736
 737	/* include any pages we added in add_ra-bio_pages */
 738	cb->len = bio->bi_iter.bi_size;
 739
 740	comp_bio = btrfs_bio_alloc(cur_disk_byte);
 741	comp_bio->bi_opf = REQ_OP_READ;
 
 
 742	comp_bio->bi_private = cb;
 743	comp_bio->bi_end_io = end_compressed_bio_read;
 744	refcount_set(&cb->pending_bios, 1);
 745
 746	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 747		u32 pg_len = PAGE_SIZE;
 748		int submit = 0;
 749
 750		/*
 751		 * To handle subpage case, we need to make sure the bio only
 752		 * covers the range we need.
 753		 *
 754		 * If we're at the last page, truncate the length to only cover
 755		 * the remaining part.
 756		 */
 757		if (pg_index == nr_pages - 1)
 758			pg_len = min_t(u32, PAGE_SIZE,
 759					compressed_len - pg_index * PAGE_SIZE);
 760
 761		page = cb->compressed_pages[pg_index];
 762		page->mapping = inode->i_mapping;
 763		page->index = em_start >> PAGE_SHIFT;
 764
 765		if (comp_bio->bi_iter.bi_size)
 766			submit = btrfs_bio_fits_in_stripe(page, pg_len,
 767							  comp_bio, 0);
 
 
 
 768
 769		page->mapping = NULL;
 770		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
 771			unsigned int nr_sectors;
 
 772
 773			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 774						  BTRFS_WQ_ENDIO_DATA);
 775			BUG_ON(ret); /* -ENOMEM */
 776
 777			/*
 778			 * inc the count before we submit the bio so
 779			 * we know the end IO handler won't happen before
 780			 * we inc the count.  Otherwise, the cb might get
 781			 * freed before we're done setting it up
 782			 */
 783			refcount_inc(&cb->pending_bios);
 784
 785			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 786			BUG_ON(ret); /* -ENOMEM */
 787
 788			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 789						  fs_info->sectorsize);
 790			sums += fs_info->csum_size * nr_sectors;
 
 791
 792			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 793			if (ret) {
 794				comp_bio->bi_status = ret;
 795				bio_endio(comp_bio);
 796			}
 797
 798			comp_bio = btrfs_bio_alloc(cur_disk_byte);
 799			comp_bio->bi_opf = REQ_OP_READ;
 
 
 
 
 800			comp_bio->bi_private = cb;
 801			comp_bio->bi_end_io = end_compressed_bio_read;
 802
 803			bio_add_page(comp_bio, page, pg_len, 0);
 804		}
 805		cur_disk_byte += pg_len;
 806	}
 
 807
 808	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 809	BUG_ON(ret); /* -ENOMEM */
 810
 811	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 812	BUG_ON(ret); /* -ENOMEM */
 
 
 813
 814	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 815	if (ret) {
 816		comp_bio->bi_status = ret;
 817		bio_endio(comp_bio);
 818	}
 819
 
 820	return 0;
 821
 822fail2:
 823	while (faili >= 0) {
 824		__free_page(cb->compressed_pages[faili]);
 825		faili--;
 826	}
 827
 828	kfree(cb->compressed_pages);
 829fail1:
 830	kfree(cb);
 831out:
 832	free_extent_map(em);
 833	return ret;
 834}
 835
 836/*
 837 * Heuristic uses systematic sampling to collect data from the input data
 838 * range, the logic can be tuned by the following constants:
 839 *
 840 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 841 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 842 */
 843#define SAMPLING_READ_SIZE	(16)
 844#define SAMPLING_INTERVAL	(256)
 845
 846/*
 847 * For statistical analysis of the input data we consider bytes that form a
 848 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 849 * many times the object appeared in the sample.
 850 */
 851#define BUCKET_SIZE		(256)
 852
 853/*
 854 * The size of the sample is based on a statistical sampling rule of thumb.
 855 * The common way is to perform sampling tests as long as the number of
 856 * elements in each cell is at least 5.
 857 *
 858 * Instead of 5, we choose 32 to obtain more accurate results.
 859 * If the data contain the maximum number of symbols, which is 256, we obtain a
 860 * sample size bound by 8192.
 861 *
 862 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 863 * from up to 512 locations.
 864 */
 865#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 866				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 867
 868struct bucket_item {
 869	u32 count;
 870};
 871
 872struct heuristic_ws {
 873	/* Partial copy of input data */
 874	u8 *sample;
 875	u32 sample_size;
 876	/* Buckets store counters for each byte value */
 877	struct bucket_item *bucket;
 878	/* Sorting buffer */
 879	struct bucket_item *bucket_b;
 880	struct list_head list;
 881};
 882
 883static struct workspace_manager heuristic_wsm;
 884
 885static void free_heuristic_ws(struct list_head *ws)
 886{
 887	struct heuristic_ws *workspace;
 888
 889	workspace = list_entry(ws, struct heuristic_ws, list);
 890
 891	kvfree(workspace->sample);
 892	kfree(workspace->bucket);
 893	kfree(workspace->bucket_b);
 894	kfree(workspace);
 895}
 896
 897static struct list_head *alloc_heuristic_ws(unsigned int level)
 898{
 899	struct heuristic_ws *ws;
 900
 901	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 902	if (!ws)
 903		return ERR_PTR(-ENOMEM);
 904
 905	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 906	if (!ws->sample)
 907		goto fail;
 908
 909	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 910	if (!ws->bucket)
 911		goto fail;
 912
 913	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 914	if (!ws->bucket_b)
 915		goto fail;
 916
 917	INIT_LIST_HEAD(&ws->list);
 918	return &ws->list;
 919fail:
 920	free_heuristic_ws(&ws->list);
 921	return ERR_PTR(-ENOMEM);
 922}
 923
 924const struct btrfs_compress_op btrfs_heuristic_compress = {
 925	.workspace_manager = &heuristic_wsm,
 926};
 927
 928static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 929	/* The heuristic is represented as compression type 0 */
 930	&btrfs_heuristic_compress,
 931	&btrfs_zlib_compress,
 932	&btrfs_lzo_compress,
 933	&btrfs_zstd_compress,
 934};
 935
 936static struct list_head *alloc_workspace(int type, unsigned int level)
 937{
 938	switch (type) {
 939	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 940	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 941	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 942	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 943	default:
 944		/*
 945		 * This can't happen, the type is validated several times
 946		 * before we get here.
 947		 */
 948		BUG();
 949	}
 950}
 951
 952static void free_workspace(int type, struct list_head *ws)
 953{
 954	switch (type) {
 955	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 956	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 957	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 958	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 959	default:
 960		/*
 961		 * This can't happen, the type is validated several times
 962		 * before we get here.
 963		 */
 964		BUG();
 965	}
 966}
 967
 968static void btrfs_init_workspace_manager(int type)
 969{
 970	struct workspace_manager *wsm;
 971	struct list_head *workspace;
 972
 973	wsm = btrfs_compress_op[type]->workspace_manager;
 974	INIT_LIST_HEAD(&wsm->idle_ws);
 975	spin_lock_init(&wsm->ws_lock);
 976	atomic_set(&wsm->total_ws, 0);
 977	init_waitqueue_head(&wsm->ws_wait);
 978
 979	/*
 980	 * Preallocate one workspace for each compression type so we can
 981	 * guarantee forward progress in the worst case
 982	 */
 983	workspace = alloc_workspace(type, 0);
 984	if (IS_ERR(workspace)) {
 985		pr_warn(
 986	"BTRFS: cannot preallocate compression workspace, will try later\n");
 987	} else {
 988		atomic_set(&wsm->total_ws, 1);
 989		wsm->free_ws = 1;
 990		list_add(workspace, &wsm->idle_ws);
 991	}
 992}
 993
 994static void btrfs_cleanup_workspace_manager(int type)
 995{
 996	struct workspace_manager *wsman;
 997	struct list_head *ws;
 998
 999	wsman = btrfs_compress_op[type]->workspace_manager;
1000	while (!list_empty(&wsman->idle_ws)) {
1001		ws = wsman->idle_ws.next;
1002		list_del(ws);
1003		free_workspace(type, ws);
1004		atomic_dec(&wsman->total_ws);
1005	}
1006}
1007
1008/*
1009 * This finds an available workspace or allocates a new one.
1010 * If it's not possible to allocate a new one, waits until there's one.
1011 * Preallocation makes a forward progress guarantees and we do not return
1012 * errors.
1013 */
1014struct list_head *btrfs_get_workspace(int type, unsigned int level)
1015{
1016	struct workspace_manager *wsm;
1017	struct list_head *workspace;
1018	int cpus = num_online_cpus();
1019	unsigned nofs_flag;
1020	struct list_head *idle_ws;
1021	spinlock_t *ws_lock;
1022	atomic_t *total_ws;
1023	wait_queue_head_t *ws_wait;
1024	int *free_ws;
1025
1026	wsm = btrfs_compress_op[type]->workspace_manager;
1027	idle_ws	 = &wsm->idle_ws;
1028	ws_lock	 = &wsm->ws_lock;
1029	total_ws = &wsm->total_ws;
1030	ws_wait	 = &wsm->ws_wait;
1031	free_ws	 = &wsm->free_ws;
1032
 
 
 
 
 
1033again:
1034	spin_lock(ws_lock);
1035	if (!list_empty(idle_ws)) {
1036		workspace = idle_ws->next;
1037		list_del(workspace);
1038		(*free_ws)--;
1039		spin_unlock(ws_lock);
1040		return workspace;
1041
1042	}
1043	if (atomic_read(total_ws) > cpus) {
1044		DEFINE_WAIT(wait);
1045
1046		spin_unlock(ws_lock);
1047		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1048		if (atomic_read(total_ws) > cpus && !*free_ws)
1049			schedule();
1050		finish_wait(ws_wait, &wait);
1051		goto again;
1052	}
1053	atomic_inc(total_ws);
1054	spin_unlock(ws_lock);
1055
1056	/*
1057	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1058	 * to turn it off here because we might get called from the restricted
1059	 * context of btrfs_compress_bio/btrfs_compress_pages
1060	 */
1061	nofs_flag = memalloc_nofs_save();
1062	workspace = alloc_workspace(type, level);
1063	memalloc_nofs_restore(nofs_flag);
1064
1065	if (IS_ERR(workspace)) {
1066		atomic_dec(total_ws);
1067		wake_up(ws_wait);
1068
1069		/*
1070		 * Do not return the error but go back to waiting. There's a
1071		 * workspace preallocated for each type and the compression
1072		 * time is bounded so we get to a workspace eventually. This
1073		 * makes our caller's life easier.
1074		 *
1075		 * To prevent silent and low-probability deadlocks (when the
1076		 * initial preallocation fails), check if there are any
1077		 * workspaces at all.
1078		 */
1079		if (atomic_read(total_ws) == 0) {
1080			static DEFINE_RATELIMIT_STATE(_rs,
1081					/* once per minute */ 60 * HZ,
1082					/* no burst */ 1);
1083
1084			if (__ratelimit(&_rs)) {
1085				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1086			}
1087		}
1088		goto again;
1089	}
1090	return workspace;
1091}
1092
1093static struct list_head *get_workspace(int type, int level)
1094{
1095	switch (type) {
1096	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1097	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1098	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1099	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1100	default:
1101		/*
1102		 * This can't happen, the type is validated several times
1103		 * before we get here.
1104		 */
1105		BUG();
1106	}
1107}
1108
1109/*
1110 * put a workspace struct back on the list or free it if we have enough
1111 * idle ones sitting around
1112 */
1113void btrfs_put_workspace(int type, struct list_head *ws)
1114{
1115	struct workspace_manager *wsm;
1116	struct list_head *idle_ws;
1117	spinlock_t *ws_lock;
1118	atomic_t *total_ws;
1119	wait_queue_head_t *ws_wait;
1120	int *free_ws;
1121
1122	wsm = btrfs_compress_op[type]->workspace_manager;
1123	idle_ws	 = &wsm->idle_ws;
1124	ws_lock	 = &wsm->ws_lock;
1125	total_ws = &wsm->total_ws;
1126	ws_wait	 = &wsm->ws_wait;
1127	free_ws	 = &wsm->free_ws;
1128
1129	spin_lock(ws_lock);
1130	if (*free_ws <= num_online_cpus()) {
1131		list_add(ws, idle_ws);
1132		(*free_ws)++;
1133		spin_unlock(ws_lock);
1134		goto wake;
1135	}
1136	spin_unlock(ws_lock);
1137
1138	free_workspace(type, ws);
1139	atomic_dec(total_ws);
1140wake:
1141	cond_wake_up(ws_wait);
1142}
1143
1144static void put_workspace(int type, struct list_head *ws)
1145{
1146	switch (type) {
1147	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1148	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1149	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1150	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1151	default:
1152		/*
1153		 * This can't happen, the type is validated several times
1154		 * before we get here.
1155		 */
1156		BUG();
1157	}
1158}
1159
1160/*
1161 * Adjust @level according to the limits of the compression algorithm or
1162 * fallback to default
1163 */
1164static unsigned int btrfs_compress_set_level(int type, unsigned level)
1165{
1166	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
 
1167
1168	if (level == 0)
1169		level = ops->default_level;
1170	else
1171		level = min(level, ops->max_level);
1172
1173	return level;
 
 
1174}
1175
1176/*
1177 * Given an address space and start and length, compress the bytes into @pages
1178 * that are allocated on demand.
1179 *
1180 * @type_level is encoded algorithm and level, where level 0 means whatever
1181 * default the algorithm chooses and is opaque here;
1182 * - compression algo are 0-3
1183 * - the level are bits 4-7
1184 *
1185 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1186 * and returns number of actually allocated pages
1187 *
1188 * @total_in is used to return the number of bytes actually read.  It
1189 * may be smaller than the input length if we had to exit early because we
1190 * ran out of room in the pages array or because we cross the
1191 * max_out threshold.
1192 *
1193 * @total_out is an in/out parameter, must be set to the input length and will
1194 * be also used to return the total number of compressed bytes
 
 
1195 */
1196int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1197			 u64 start, struct page **pages,
 
 
1198			 unsigned long *out_pages,
1199			 unsigned long *total_in,
1200			 unsigned long *total_out)
 
1201{
1202	int type = btrfs_compress_type(type_level);
1203	int level = btrfs_compress_level(type_level);
1204	struct list_head *workspace;
1205	int ret;
1206
1207	level = btrfs_compress_set_level(type, level);
1208	workspace = get_workspace(type, level);
1209	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1210					 out_pages, total_in, total_out);
1211	put_workspace(type, workspace);
 
 
 
1212	return ret;
1213}
1214
1215static int btrfs_decompress_bio(struct compressed_bio *cb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216{
1217	struct list_head *workspace;
1218	int ret;
1219	int type = cb->compress_type;
1220
1221	workspace = get_workspace(type, 0);
1222	ret = compression_decompress_bio(type, workspace, cb);
1223	put_workspace(type, workspace);
1224
 
 
 
 
1225	return ret;
1226}
1227
1228/*
1229 * a less complex decompression routine.  Our compressed data fits in a
1230 * single page, and we want to read a single page out of it.
1231 * start_byte tells us the offset into the compressed data we're interested in
1232 */
1233int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1234		     unsigned long start_byte, size_t srclen, size_t destlen)
1235{
1236	struct list_head *workspace;
1237	int ret;
1238
1239	workspace = get_workspace(type, 0);
1240	ret = compression_decompress(type, workspace, data_in, dest_page,
1241				     start_byte, srclen, destlen);
1242	put_workspace(type, workspace);
1243
 
 
 
 
 
1244	return ret;
1245}
1246
1247void __init btrfs_init_compress(void)
1248{
1249	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1250	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1251	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1252	zstd_init_workspace_manager();
1253}
1254
1255void __cold btrfs_exit_compress(void)
1256{
1257	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1258	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1259	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1260	zstd_cleanup_workspace_manager();
1261}
1262
1263/*
1264 * Copy uncompressed data from working buffer to pages.
1265 *
1266 * buf_start is the byte offset we're of the start of our workspace buffer.
1267 *
1268 * total_out is the last byte of the buffer
1269 */
1270int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1271			      unsigned long total_out, u64 disk_start,
1272			      struct bio *bio)
1273{
1274	unsigned long buf_offset;
1275	unsigned long current_buf_start;
1276	unsigned long start_byte;
1277	unsigned long prev_start_byte;
1278	unsigned long working_bytes = total_out - buf_start;
1279	unsigned long bytes;
 
1280	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1281
1282	/*
1283	 * start byte is the first byte of the page we're currently
1284	 * copying into relative to the start of the compressed data.
1285	 */
1286	start_byte = page_offset(bvec.bv_page) - disk_start;
1287
1288	/* we haven't yet hit data corresponding to this page */
1289	if (total_out <= start_byte)
1290		return 1;
1291
1292	/*
1293	 * the start of the data we care about is offset into
1294	 * the middle of our working buffer
1295	 */
1296	if (total_out > start_byte && buf_start < start_byte) {
1297		buf_offset = start_byte - buf_start;
1298		working_bytes -= buf_offset;
1299	} else {
1300		buf_offset = 0;
1301	}
1302	current_buf_start = buf_start;
1303
1304	/* copy bytes from the working buffer into the pages */
1305	while (working_bytes > 0) {
1306		bytes = min_t(unsigned long, bvec.bv_len,
1307				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1308		bytes = min(bytes, working_bytes);
1309
1310		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1311			       bytes);
 
1312		flush_dcache_page(bvec.bv_page);
1313
1314		buf_offset += bytes;
1315		working_bytes -= bytes;
1316		current_buf_start += bytes;
1317
1318		/* check if we need to pick another page */
1319		bio_advance(bio, bytes);
1320		if (!bio->bi_iter.bi_size)
1321			return 0;
1322		bvec = bio_iter_iovec(bio, bio->bi_iter);
1323		prev_start_byte = start_byte;
1324		start_byte = page_offset(bvec.bv_page) - disk_start;
1325
1326		/*
1327		 * We need to make sure we're only adjusting
1328		 * our offset into compression working buffer when
1329		 * we're switching pages.  Otherwise we can incorrectly
1330		 * keep copying when we were actually done.
1331		 */
1332		if (start_byte != prev_start_byte) {
1333			/*
1334			 * make sure our new page is covered by this
1335			 * working buffer
1336			 */
1337			if (total_out <= start_byte)
1338				return 1;
1339
1340			/*
1341			 * the next page in the biovec might not be adjacent
1342			 * to the last page, but it might still be found
1343			 * inside this working buffer. bump our offset pointer
1344			 */
1345			if (total_out > start_byte &&
1346			    current_buf_start < start_byte) {
1347				buf_offset = start_byte - buf_start;
1348				working_bytes = total_out - start_byte;
1349				current_buf_start = buf_start + buf_offset;
1350			}
1351		}
1352	}
1353
1354	return 1;
1355}
1356
1357/*
1358 * Shannon Entropy calculation
1359 *
1360 * Pure byte distribution analysis fails to determine compressibility of data.
1361 * Try calculating entropy to estimate the average minimum number of bits
1362 * needed to encode the sampled data.
1363 *
1364 * For convenience, return the percentage of needed bits, instead of amount of
1365 * bits directly.
1366 *
1367 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1368 *			    and can be compressible with high probability
1369 *
1370 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1371 *
1372 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1373 */
1374#define ENTROPY_LVL_ACEPTABLE		(65)
1375#define ENTROPY_LVL_HIGH		(80)
1376
1377/*
1378 * For increasead precision in shannon_entropy calculation,
1379 * let's do pow(n, M) to save more digits after comma:
1380 *
1381 * - maximum int bit length is 64
1382 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1383 * - 13 * 4 = 52 < 64		-> M = 4
1384 *
1385 * So use pow(n, 4).
1386 */
1387static inline u32 ilog2_w(u64 n)
1388{
1389	return ilog2(n * n * n * n);
1390}
1391
1392static u32 shannon_entropy(struct heuristic_ws *ws)
1393{
1394	const u32 entropy_max = 8 * ilog2_w(2);
1395	u32 entropy_sum = 0;
1396	u32 p, p_base, sz_base;
1397	u32 i;
1398
1399	sz_base = ilog2_w(ws->sample_size);
1400	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1401		p = ws->bucket[i].count;
1402		p_base = ilog2_w(p);
1403		entropy_sum += p * (sz_base - p_base);
1404	}
1405
1406	entropy_sum /= ws->sample_size;
1407	return entropy_sum * 100 / entropy_max;
1408}
1409
1410#define RADIX_BASE		4U
1411#define COUNTERS_SIZE		(1U << RADIX_BASE)
1412
1413static u8 get4bits(u64 num, int shift) {
1414	u8 low4bits;
1415
1416	num >>= shift;
1417	/* Reverse order */
1418	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1419	return low4bits;
1420}
1421
1422/*
1423 * Use 4 bits as radix base
1424 * Use 16 u32 counters for calculating new position in buf array
1425 *
1426 * @array     - array that will be sorted
1427 * @array_buf - buffer array to store sorting results
1428 *              must be equal in size to @array
1429 * @num       - array size
1430 */
1431static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1432		       int num)
1433{
1434	u64 max_num;
1435	u64 buf_num;
1436	u32 counters[COUNTERS_SIZE];
1437	u32 new_addr;
1438	u32 addr;
1439	int bitlen;
1440	int shift;
1441	int i;
1442
1443	/*
1444	 * Try avoid useless loop iterations for small numbers stored in big
1445	 * counters.  Example: 48 33 4 ... in 64bit array
1446	 */
1447	max_num = array[0].count;
1448	for (i = 1; i < num; i++) {
1449		buf_num = array[i].count;
1450		if (buf_num > max_num)
1451			max_num = buf_num;
1452	}
1453
1454	buf_num = ilog2(max_num);
1455	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1456
1457	shift = 0;
1458	while (shift < bitlen) {
1459		memset(counters, 0, sizeof(counters));
1460
1461		for (i = 0; i < num; i++) {
1462			buf_num = array[i].count;
1463			addr = get4bits(buf_num, shift);
1464			counters[addr]++;
1465		}
1466
1467		for (i = 1; i < COUNTERS_SIZE; i++)
1468			counters[i] += counters[i - 1];
1469
1470		for (i = num - 1; i >= 0; i--) {
1471			buf_num = array[i].count;
1472			addr = get4bits(buf_num, shift);
1473			counters[addr]--;
1474			new_addr = counters[addr];
1475			array_buf[new_addr] = array[i];
1476		}
1477
1478		shift += RADIX_BASE;
1479
1480		/*
1481		 * Normal radix expects to move data from a temporary array, to
1482		 * the main one.  But that requires some CPU time. Avoid that
1483		 * by doing another sort iteration to original array instead of
1484		 * memcpy()
1485		 */
1486		memset(counters, 0, sizeof(counters));
1487
1488		for (i = 0; i < num; i ++) {
1489			buf_num = array_buf[i].count;
1490			addr = get4bits(buf_num, shift);
1491			counters[addr]++;
1492		}
1493
1494		for (i = 1; i < COUNTERS_SIZE; i++)
1495			counters[i] += counters[i - 1];
1496
1497		for (i = num - 1; i >= 0; i--) {
1498			buf_num = array_buf[i].count;
1499			addr = get4bits(buf_num, shift);
1500			counters[addr]--;
1501			new_addr = counters[addr];
1502			array[new_addr] = array_buf[i];
1503		}
1504
1505		shift += RADIX_BASE;
1506	}
1507}
1508
1509/*
1510 * Size of the core byte set - how many bytes cover 90% of the sample
1511 *
1512 * There are several types of structured binary data that use nearly all byte
1513 * values. The distribution can be uniform and counts in all buckets will be
1514 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1515 *
1516 * Other possibility is normal (Gaussian) distribution, where the data could
1517 * be potentially compressible, but we have to take a few more steps to decide
1518 * how much.
1519 *
1520 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1521 *                       compression algo can easy fix that
1522 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1523 *                       probability is not compressible
1524 */
1525#define BYTE_CORE_SET_LOW		(64)
1526#define BYTE_CORE_SET_HIGH		(200)
1527
1528static int byte_core_set_size(struct heuristic_ws *ws)
1529{
1530	u32 i;
1531	u32 coreset_sum = 0;
1532	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1533	struct bucket_item *bucket = ws->bucket;
1534
1535	/* Sort in reverse order */
1536	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1537
1538	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1539		coreset_sum += bucket[i].count;
1540
1541	if (coreset_sum > core_set_threshold)
1542		return i;
1543
1544	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1545		coreset_sum += bucket[i].count;
1546		if (coreset_sum > core_set_threshold)
1547			break;
1548	}
1549
1550	return i;
1551}
1552
1553/*
1554 * Count byte values in buckets.
1555 * This heuristic can detect textual data (configs, xml, json, html, etc).
1556 * Because in most text-like data byte set is restricted to limited number of
1557 * possible characters, and that restriction in most cases makes data easy to
1558 * compress.
1559 *
1560 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1561 *	less - compressible
1562 *	more - need additional analysis
1563 */
1564#define BYTE_SET_THRESHOLD		(64)
1565
1566static u32 byte_set_size(const struct heuristic_ws *ws)
1567{
1568	u32 i;
1569	u32 byte_set_size = 0;
1570
1571	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1572		if (ws->bucket[i].count > 0)
1573			byte_set_size++;
1574	}
1575
1576	/*
1577	 * Continue collecting count of byte values in buckets.  If the byte
1578	 * set size is bigger then the threshold, it's pointless to continue,
1579	 * the detection technique would fail for this type of data.
1580	 */
1581	for (; i < BUCKET_SIZE; i++) {
1582		if (ws->bucket[i].count > 0) {
1583			byte_set_size++;
1584			if (byte_set_size > BYTE_SET_THRESHOLD)
1585				return byte_set_size;
1586		}
1587	}
1588
1589	return byte_set_size;
1590}
1591
1592static bool sample_repeated_patterns(struct heuristic_ws *ws)
1593{
1594	const u32 half_of_sample = ws->sample_size / 2;
1595	const u8 *data = ws->sample;
1596
1597	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1598}
1599
1600static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1601				     struct heuristic_ws *ws)
1602{
1603	struct page *page;
1604	u64 index, index_end;
1605	u32 i, curr_sample_pos;
1606	u8 *in_data;
1607
1608	/*
1609	 * Compression handles the input data by chunks of 128KiB
1610	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1611	 *
1612	 * We do the same for the heuristic and loop over the whole range.
1613	 *
1614	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1615	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1616	 */
1617	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1618		end = start + BTRFS_MAX_UNCOMPRESSED;
1619
1620	index = start >> PAGE_SHIFT;
1621	index_end = end >> PAGE_SHIFT;
1622
1623	/* Don't miss unaligned end */
1624	if (!IS_ALIGNED(end, PAGE_SIZE))
1625		index_end++;
1626
1627	curr_sample_pos = 0;
1628	while (index < index_end) {
1629		page = find_get_page(inode->i_mapping, index);
1630		in_data = kmap_local_page(page);
1631		/* Handle case where the start is not aligned to PAGE_SIZE */
1632		i = start % PAGE_SIZE;
1633		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1634			/* Don't sample any garbage from the last page */
1635			if (start > end - SAMPLING_READ_SIZE)
1636				break;
1637			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1638					SAMPLING_READ_SIZE);
1639			i += SAMPLING_INTERVAL;
1640			start += SAMPLING_INTERVAL;
1641			curr_sample_pos += SAMPLING_READ_SIZE;
1642		}
1643		kunmap_local(in_data);
1644		put_page(page);
1645
1646		index++;
1647	}
1648
1649	ws->sample_size = curr_sample_pos;
1650}
1651
1652/*
1653 * Compression heuristic.
1654 *
1655 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1656 * quickly (compared to direct compression) detect data characteristics
1657 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1658 * data.
1659 *
1660 * The following types of analysis can be performed:
1661 * - detect mostly zero data
1662 * - detect data with low "byte set" size (text, etc)
1663 * - detect data with low/high "core byte" set
1664 *
1665 * Return non-zero if the compression should be done, 0 otherwise.
1666 */
1667int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1668{
1669	struct list_head *ws_list = get_workspace(0, 0);
1670	struct heuristic_ws *ws;
1671	u32 i;
1672	u8 byte;
1673	int ret = 0;
1674
1675	ws = list_entry(ws_list, struct heuristic_ws, list);
1676
1677	heuristic_collect_sample(inode, start, end, ws);
1678
1679	if (sample_repeated_patterns(ws)) {
1680		ret = 1;
1681		goto out;
1682	}
1683
1684	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1685
1686	for (i = 0; i < ws->sample_size; i++) {
1687		byte = ws->sample[i];
1688		ws->bucket[byte].count++;
1689	}
1690
1691	i = byte_set_size(ws);
1692	if (i < BYTE_SET_THRESHOLD) {
1693		ret = 2;
1694		goto out;
1695	}
1696
1697	i = byte_core_set_size(ws);
1698	if (i <= BYTE_CORE_SET_LOW) {
1699		ret = 3;
1700		goto out;
1701	}
1702
1703	if (i >= BYTE_CORE_SET_HIGH) {
1704		ret = 0;
1705		goto out;
1706	}
1707
1708	i = shannon_entropy(ws);
1709	if (i <= ENTROPY_LVL_ACEPTABLE) {
1710		ret = 4;
1711		goto out;
1712	}
1713
1714	/*
1715	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1716	 * needed to give green light to compression.
1717	 *
1718	 * For now just assume that compression at that level is not worth the
1719	 * resources because:
1720	 *
1721	 * 1. it is possible to defrag the data later
1722	 *
1723	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1724	 * values, every bucket has counter at level ~54. The heuristic would
1725	 * be confused. This can happen when data have some internal repeated
1726	 * patterns like "abbacbbc...". This can be detected by analyzing
1727	 * pairs of bytes, which is too costly.
1728	 */
1729	if (i < ENTROPY_LVL_HIGH) {
1730		ret = 5;
1731		goto out;
1732	} else {
1733		ret = 0;
1734		goto out;
1735	}
1736
1737out:
1738	put_workspace(0, ws_list);
1739	return ret;
1740}
1741
1742/*
1743 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1744 * level, unrecognized string will set the default level
1745 */
1746unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1747{
1748	unsigned int level = 0;
1749	int ret;
1750
1751	if (!type)
1752		return 0;
1753
1754	if (str[0] == ':') {
1755		ret = kstrtouint(str + 1, 10, &level);
1756		if (ret)
1757			level = 0;
1758	}
1759
1760	level = btrfs_compress_set_level(type, level);
1761
1762	return level;
1763}