Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
  44
  45struct compressed_bio {
  46	/* number of bios pending for this compressed extent */
  47	atomic_t pending_bios;
  48
  49	/* the pages with the compressed data on them */
  50	struct page **compressed_pages;
  51
  52	/* inode that owns this data */
  53	struct inode *inode;
  54
  55	/* starting offset in the inode for our pages */
  56	u64 start;
  57
  58	/* number of bytes in the inode we're working on */
  59	unsigned long len;
  60
  61	/* number of bytes on disk */
  62	unsigned long compressed_len;
  63
  64	/* the compression algorithm for this bio */
  65	int compress_type;
  66
  67	/* number of compressed pages in the array */
  68	unsigned long nr_pages;
  69
  70	/* IO errors */
  71	int errors;
  72	int mirror_num;
  73
  74	/* for reads, this is the bio we are copying the data into */
  75	struct bio *orig_bio;
  76
  77	/*
  78	 * the start of a variable length array of checksums only
  79	 * used by reads
  80	 */
  81	u32 sums;
  82};
  83
  84static int btrfs_decompress_bio(int type, struct page **pages_in,
  85				   u64 disk_start, struct bio *orig_bio,
  86				   size_t srclen);
  87
  88static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
  89				      unsigned long disk_size)
  90{
  91	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  92
  93	return sizeof(struct compressed_bio) +
  94		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
 
  95}
  96
  97static struct bio *compressed_bio_alloc(struct block_device *bdev,
  98					u64 first_byte, gfp_t gfp_flags)
  99{
 100	return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
 
 
 
 101}
 102
 103static int check_compressed_csum(struct inode *inode,
 104				 struct compressed_bio *cb,
 105				 u64 disk_start)
 106{
 107	int ret;
 
 108	struct page *page;
 109	unsigned long i;
 110	char *kaddr;
 111	u32 csum;
 112	u32 *cb_sum = &cb->sums;
 113
 114	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 115		return 0;
 116
 117	for (i = 0; i < cb->nr_pages; i++) {
 118		page = cb->compressed_pages[i];
 119		csum = ~(u32)0;
 120
 121		kaddr = kmap_atomic(page);
 122		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
 123		btrfs_csum_final(csum, (u8 *)&csum);
 124		kunmap_atomic(kaddr);
 125
 126		if (csum != *cb_sum) {
 127			btrfs_info(BTRFS_I(inode)->root->fs_info,
 128			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
 129			   btrfs_ino(inode), disk_start, csum, *cb_sum,
 130			   cb->mirror_num);
 
 
 131			ret = -EIO;
 132			goto fail;
 133		}
 134		cb_sum++;
 135
 136	}
 137	ret = 0;
 138fail:
 139	return ret;
 140}
 141
 142/* when we finish reading compressed pages from the disk, we
 143 * decompress them and then run the bio end_io routines on the
 144 * decompressed pages (in the inode address space).
 145 *
 146 * This allows the checksumming and other IO error handling routines
 147 * to work normally
 148 *
 149 * The compressed pages are freed here, and it must be run
 150 * in process context
 151 */
 152static void end_compressed_bio_read(struct bio *bio)
 153{
 154	struct compressed_bio *cb = bio->bi_private;
 155	struct inode *inode;
 156	struct page *page;
 157	unsigned long index;
 158	int ret;
 159
 160	if (bio->bi_error)
 161		cb->errors = 1;
 162
 163	/* if there are more bios still pending for this compressed
 164	 * extent, just exit
 165	 */
 166	if (!atomic_dec_and_test(&cb->pending_bios))
 167		goto out;
 168
 169	inode = cb->inode;
 170	ret = check_compressed_csum(inode, cb,
 171				    (u64)bio->bi_iter.bi_sector << 9);
 172	if (ret)
 173		goto csum_failed;
 174
 175	/* ok, we're the last bio for this extent, lets start
 176	 * the decompression.
 177	 */
 178	ret = btrfs_decompress_bio(cb->compress_type,
 179				      cb->compressed_pages,
 180				      cb->start,
 181				      cb->orig_bio,
 
 182				      cb->compressed_len);
 183csum_failed:
 184	if (ret)
 185		cb->errors = 1;
 186
 187	/* release the compressed pages */
 188	index = 0;
 189	for (index = 0; index < cb->nr_pages; index++) {
 190		page = cb->compressed_pages[index];
 191		page->mapping = NULL;
 192		put_page(page);
 193	}
 194
 195	/* do io completion on the original bio */
 196	if (cb->errors) {
 197		bio_io_error(cb->orig_bio);
 198	} else {
 199		int i;
 200		struct bio_vec *bvec;
 201
 202		/*
 203		 * we have verified the checksum already, set page
 204		 * checked so the end_io handlers know about it
 205		 */
 206		bio_for_each_segment_all(bvec, cb->orig_bio, i)
 207			SetPageChecked(bvec->bv_page);
 208
 209		bio_endio(cb->orig_bio);
 
 
 210	}
 211
 212	/* finally free the cb struct */
 213	kfree(cb->compressed_pages);
 214	kfree(cb);
 215out:
 216	bio_put(bio);
 217}
 218
 219/*
 220 * Clear the writeback bits on all of the file
 221 * pages for a compressed write
 222 */
 223static noinline void end_compressed_writeback(struct inode *inode,
 224					      const struct compressed_bio *cb)
 225{
 226	unsigned long index = cb->start >> PAGE_SHIFT;
 227	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 228	struct page *pages[16];
 229	unsigned long nr_pages = end_index - index + 1;
 230	int i;
 231	int ret;
 232
 233	if (cb->errors)
 234		mapping_set_error(inode->i_mapping, -EIO);
 235
 236	while (nr_pages > 0) {
 237		ret = find_get_pages_contig(inode->i_mapping, index,
 238				     min_t(unsigned long,
 239				     nr_pages, ARRAY_SIZE(pages)), pages);
 240		if (ret == 0) {
 241			nr_pages -= 1;
 242			index += 1;
 243			continue;
 244		}
 245		for (i = 0; i < ret; i++) {
 246			if (cb->errors)
 247				SetPageError(pages[i]);
 248			end_page_writeback(pages[i]);
 249			put_page(pages[i]);
 250		}
 251		nr_pages -= ret;
 252		index += ret;
 253	}
 254	/* the inode may be gone now */
 255}
 256
 257/*
 258 * do the cleanup once all the compressed pages hit the disk.
 259 * This will clear writeback on the file pages and free the compressed
 260 * pages.
 261 *
 262 * This also calls the writeback end hooks for the file pages so that
 263 * metadata and checksums can be updated in the file.
 264 */
 265static void end_compressed_bio_write(struct bio *bio)
 266{
 267	struct extent_io_tree *tree;
 268	struct compressed_bio *cb = bio->bi_private;
 269	struct inode *inode;
 270	struct page *page;
 271	unsigned long index;
 272
 273	if (bio->bi_error)
 274		cb->errors = 1;
 275
 276	/* if there are more bios still pending for this compressed
 277	 * extent, just exit
 278	 */
 279	if (!atomic_dec_and_test(&cb->pending_bios))
 280		goto out;
 281
 282	/* ok, we're the last bio for this extent, step one is to
 283	 * call back into the FS and do all the end_io operations
 284	 */
 285	inode = cb->inode;
 286	tree = &BTRFS_I(inode)->io_tree;
 287	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 288	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 289					 cb->start,
 290					 cb->start + cb->len - 1,
 291					 NULL,
 292					 bio->bi_error ? 0 : 1);
 293	cb->compressed_pages[0]->mapping = NULL;
 294
 295	end_compressed_writeback(inode, cb);
 296	/* note, our inode could be gone now */
 297
 298	/*
 299	 * release the compressed pages, these came from alloc_page and
 300	 * are not attached to the inode at all
 301	 */
 302	index = 0;
 303	for (index = 0; index < cb->nr_pages; index++) {
 304		page = cb->compressed_pages[index];
 305		page->mapping = NULL;
 306		put_page(page);
 307	}
 308
 309	/* finally free the cb struct */
 310	kfree(cb->compressed_pages);
 311	kfree(cb);
 312out:
 313	bio_put(bio);
 314}
 315
 316/*
 317 * worker function to build and submit bios for previously compressed pages.
 318 * The corresponding pages in the inode should be marked for writeback
 319 * and the compressed pages should have a reference on them for dropping
 320 * when the IO is complete.
 321 *
 322 * This also checksums the file bytes and gets things ready for
 323 * the end io hooks.
 324 */
 325int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 326				 unsigned long len, u64 disk_start,
 327				 unsigned long compressed_len,
 328				 struct page **compressed_pages,
 329				 unsigned long nr_pages)
 330{
 331	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 332	struct bio *bio = NULL;
 
 333	struct compressed_bio *cb;
 334	unsigned long bytes_left;
 335	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 336	int pg_index = 0;
 337	struct page *page;
 338	u64 first_byte = disk_start;
 339	struct block_device *bdev;
 340	int ret;
 341	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 342
 343	WARN_ON(start & ((u64)PAGE_SIZE - 1));
 344	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 345	if (!cb)
 346		return -ENOMEM;
 347	atomic_set(&cb->pending_bios, 0);
 348	cb->errors = 0;
 349	cb->inode = inode;
 350	cb->start = start;
 351	cb->len = len;
 352	cb->mirror_num = 0;
 353	cb->compressed_pages = compressed_pages;
 354	cb->compressed_len = compressed_len;
 355	cb->orig_bio = NULL;
 356	cb->nr_pages = nr_pages;
 357
 358	bdev = fs_info->fs_devices->latest_bdev;
 359
 360	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 361	if (!bio) {
 362		kfree(cb);
 363		return -ENOMEM;
 364	}
 365	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 366	bio->bi_private = cb;
 367	bio->bi_end_io = end_compressed_bio_write;
 368	atomic_inc(&cb->pending_bios);
 369
 370	/* create and submit bios for the compressed pages */
 371	bytes_left = compressed_len;
 372	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 373		page = compressed_pages[pg_index];
 374		page->mapping = inode->i_mapping;
 375		if (bio->bi_iter.bi_size)
 376			ret = io_tree->ops->merge_bio_hook(page, 0,
 377							   PAGE_SIZE,
 378							   bio, 0);
 379		else
 380			ret = 0;
 381
 382		page->mapping = NULL;
 383		if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
 384		    PAGE_SIZE) {
 385			bio_get(bio);
 386
 387			/*
 388			 * inc the count before we submit the bio so
 389			 * we know the end IO handler won't happen before
 390			 * we inc the count.  Otherwise, the cb might get
 391			 * freed before we're done setting it up
 392			 */
 393			atomic_inc(&cb->pending_bios);
 394			ret = btrfs_bio_wq_end_io(fs_info, bio,
 395						  BTRFS_WQ_ENDIO_DATA);
 396			BUG_ON(ret); /* -ENOMEM */
 397
 398			if (!skip_sum) {
 399				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 
 400				BUG_ON(ret); /* -ENOMEM */
 401			}
 402
 403			ret = btrfs_map_bio(fs_info, bio, 0, 1);
 404			if (ret) {
 405				bio->bi_error = ret;
 406				bio_endio(bio);
 407			}
 408
 409			bio_put(bio);
 410
 411			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 412			BUG_ON(!bio);
 413			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 414			bio->bi_private = cb;
 415			bio->bi_end_io = end_compressed_bio_write;
 416			bio_add_page(bio, page, PAGE_SIZE, 0);
 417		}
 418		if (bytes_left < PAGE_SIZE) {
 419			btrfs_info(fs_info,
 420					"bytes left %lu compress len %lu nr %lu",
 421			       bytes_left, cb->compressed_len, cb->nr_pages);
 422		}
 423		bytes_left -= PAGE_SIZE;
 424		first_byte += PAGE_SIZE;
 425		cond_resched();
 426	}
 427	bio_get(bio);
 428
 429	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 430	BUG_ON(ret); /* -ENOMEM */
 431
 432	if (!skip_sum) {
 433		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 434		BUG_ON(ret); /* -ENOMEM */
 435	}
 436
 437	ret = btrfs_map_bio(fs_info, bio, 0, 1);
 438	if (ret) {
 439		bio->bi_error = ret;
 440		bio_endio(bio);
 441	}
 442
 443	bio_put(bio);
 444	return 0;
 445}
 446
 447static u64 bio_end_offset(struct bio *bio)
 448{
 449	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
 450
 451	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 452}
 453
 454static noinline int add_ra_bio_pages(struct inode *inode,
 455				     u64 compressed_end,
 456				     struct compressed_bio *cb)
 457{
 458	unsigned long end_index;
 459	unsigned long pg_index;
 460	u64 last_offset;
 461	u64 isize = i_size_read(inode);
 462	int ret;
 463	struct page *page;
 464	unsigned long nr_pages = 0;
 465	struct extent_map *em;
 466	struct address_space *mapping = inode->i_mapping;
 467	struct extent_map_tree *em_tree;
 468	struct extent_io_tree *tree;
 469	u64 end;
 470	int misses = 0;
 471
 472	last_offset = bio_end_offset(cb->orig_bio);
 
 473	em_tree = &BTRFS_I(inode)->extent_tree;
 474	tree = &BTRFS_I(inode)->io_tree;
 475
 476	if (isize == 0)
 477		return 0;
 478
 479	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 480
 481	while (last_offset < compressed_end) {
 482		pg_index = last_offset >> PAGE_SHIFT;
 483
 484		if (pg_index > end_index)
 485			break;
 486
 487		rcu_read_lock();
 488		page = radix_tree_lookup(&mapping->page_tree, pg_index);
 489		rcu_read_unlock();
 490		if (page && !radix_tree_exceptional_entry(page)) {
 491			misses++;
 492			if (misses > 4)
 493				break;
 494			goto next;
 495		}
 496
 497		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 498								 ~__GFP_FS));
 499		if (!page)
 500			break;
 501
 502		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 503			put_page(page);
 
 504			goto next;
 505		}
 506
 507		end = last_offset + PAGE_SIZE - 1;
 508		/*
 509		 * at this point, we have a locked page in the page cache
 510		 * for these bytes in the file.  But, we have to make
 511		 * sure they map to this compressed extent on disk.
 512		 */
 513		set_page_extent_mapped(page);
 514		lock_extent(tree, last_offset, end);
 515		read_lock(&em_tree->lock);
 516		em = lookup_extent_mapping(em_tree, last_offset,
 517					   PAGE_SIZE);
 518		read_unlock(&em_tree->lock);
 519
 520		if (!em || last_offset < em->start ||
 521		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 522		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 523			free_extent_map(em);
 524			unlock_extent(tree, last_offset, end);
 525			unlock_page(page);
 526			put_page(page);
 527			break;
 528		}
 529		free_extent_map(em);
 530
 531		if (page->index == end_index) {
 532			char *userpage;
 533			size_t zero_offset = isize & (PAGE_SIZE - 1);
 534
 535			if (zero_offset) {
 536				int zeros;
 537				zeros = PAGE_SIZE - zero_offset;
 538				userpage = kmap_atomic(page);
 539				memset(userpage + zero_offset, 0, zeros);
 540				flush_dcache_page(page);
 541				kunmap_atomic(userpage);
 542			}
 543		}
 544
 545		ret = bio_add_page(cb->orig_bio, page,
 546				   PAGE_SIZE, 0);
 547
 548		if (ret == PAGE_SIZE) {
 549			nr_pages++;
 550			put_page(page);
 551		} else {
 552			unlock_extent(tree, last_offset, end);
 553			unlock_page(page);
 554			put_page(page);
 555			break;
 556		}
 557next:
 558		last_offset += PAGE_SIZE;
 559	}
 560	return 0;
 561}
 562
 563/*
 564 * for a compressed read, the bio we get passed has all the inode pages
 565 * in it.  We don't actually do IO on those pages but allocate new ones
 566 * to hold the compressed pages on disk.
 567 *
 568 * bio->bi_iter.bi_sector points to the compressed extent on disk
 569 * bio->bi_io_vec points to all of the inode pages
 
 570 *
 571 * After the compressed pages are read, we copy the bytes into the
 572 * bio we were passed and then call the bio end_io calls
 573 */
 574int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 575				 int mirror_num, unsigned long bio_flags)
 576{
 577	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 578	struct extent_io_tree *tree;
 579	struct extent_map_tree *em_tree;
 580	struct compressed_bio *cb;
 
 
 581	unsigned long compressed_len;
 582	unsigned long nr_pages;
 583	unsigned long pg_index;
 584	struct page *page;
 585	struct block_device *bdev;
 586	struct bio *comp_bio;
 587	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 588	u64 em_len;
 589	u64 em_start;
 590	struct extent_map *em;
 591	int ret = -ENOMEM;
 592	int faili = 0;
 593	u32 *sums;
 594
 595	tree = &BTRFS_I(inode)->io_tree;
 596	em_tree = &BTRFS_I(inode)->extent_tree;
 597
 598	/* we need the actual starting offset of this extent in the file */
 599	read_lock(&em_tree->lock);
 600	em = lookup_extent_mapping(em_tree,
 601				   page_offset(bio->bi_io_vec->bv_page),
 602				   PAGE_SIZE);
 603	read_unlock(&em_tree->lock);
 604	if (!em)
 605		return -EIO;
 606
 607	compressed_len = em->block_len;
 608	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 609	if (!cb)
 610		goto out;
 611
 612	atomic_set(&cb->pending_bios, 0);
 613	cb->errors = 0;
 614	cb->inode = inode;
 615	cb->mirror_num = mirror_num;
 616	sums = &cb->sums;
 617
 618	cb->start = em->orig_start;
 619	em_len = em->len;
 620	em_start = em->start;
 621
 622	free_extent_map(em);
 623	em = NULL;
 624
 625	cb->len = bio->bi_iter.bi_size;
 626	cb->compressed_len = compressed_len;
 627	cb->compress_type = extent_compress_type(bio_flags);
 628	cb->orig_bio = bio;
 629
 630	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 631	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 
 632				       GFP_NOFS);
 633	if (!cb->compressed_pages)
 634		goto fail1;
 635
 636	bdev = fs_info->fs_devices->latest_bdev;
 637
 638	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 639		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 640							      __GFP_HIGHMEM);
 641		if (!cb->compressed_pages[pg_index]) {
 642			faili = pg_index - 1;
 643			ret = -ENOMEM;
 644			goto fail2;
 645		}
 646	}
 647	faili = nr_pages - 1;
 648	cb->nr_pages = nr_pages;
 649
 650	add_ra_bio_pages(inode, em_start + em_len, cb);
 651
 652	/* include any pages we added in add_ra-bio_pages */
 653	cb->len = bio->bi_iter.bi_size;
 
 654
 655	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 656	if (!comp_bio)
 657		goto fail2;
 658	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
 659	comp_bio->bi_private = cb;
 660	comp_bio->bi_end_io = end_compressed_bio_read;
 661	atomic_inc(&cb->pending_bios);
 662
 663	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 664		page = cb->compressed_pages[pg_index];
 665		page->mapping = inode->i_mapping;
 666		page->index = em_start >> PAGE_SHIFT;
 667
 668		if (comp_bio->bi_iter.bi_size)
 669			ret = tree->ops->merge_bio_hook(page, 0,
 670							PAGE_SIZE,
 671							comp_bio, 0);
 672		else
 673			ret = 0;
 674
 675		page->mapping = NULL;
 676		if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 677		    PAGE_SIZE) {
 678			bio_get(comp_bio);
 679
 680			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 681						  BTRFS_WQ_ENDIO_DATA);
 682			BUG_ON(ret); /* -ENOMEM */
 683
 684			/*
 685			 * inc the count before we submit the bio so
 686			 * we know the end IO handler won't happen before
 687			 * we inc the count.  Otherwise, the cb might get
 688			 * freed before we're done setting it up
 689			 */
 690			atomic_inc(&cb->pending_bios);
 691
 692			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 693				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 694							    sums);
 695				BUG_ON(ret); /* -ENOMEM */
 696			}
 697			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 698					     fs_info->sectorsize);
 699
 700			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 701			if (ret) {
 702				comp_bio->bi_error = ret;
 703				bio_endio(comp_bio);
 704			}
 705
 706			bio_put(comp_bio);
 707
 708			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 709							GFP_NOFS);
 710			BUG_ON(!comp_bio);
 711			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
 712			comp_bio->bi_private = cb;
 713			comp_bio->bi_end_io = end_compressed_bio_read;
 714
 715			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 716		}
 717		cur_disk_byte += PAGE_SIZE;
 718	}
 719	bio_get(comp_bio);
 720
 721	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 722	BUG_ON(ret); /* -ENOMEM */
 723
 724	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 725		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 726		BUG_ON(ret); /* -ENOMEM */
 727	}
 728
 729	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 730	if (ret) {
 731		comp_bio->bi_error = ret;
 732		bio_endio(comp_bio);
 733	}
 734
 735	bio_put(comp_bio);
 736	return 0;
 737
 738fail2:
 739	while (faili >= 0) {
 740		__free_page(cb->compressed_pages[faili]);
 741		faili--;
 742	}
 743
 744	kfree(cb->compressed_pages);
 745fail1:
 746	kfree(cb);
 747out:
 748	free_extent_map(em);
 749	return ret;
 750}
 751
 752static struct {
 753	struct list_head idle_ws;
 754	spinlock_t ws_lock;
 755	/* Number of free workspaces */
 756	int free_ws;
 757	/* Total number of allocated workspaces */
 758	atomic_t total_ws;
 759	/* Waiters for a free workspace */
 760	wait_queue_head_t ws_wait;
 761} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 762
 763static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 764	&btrfs_zlib_compress,
 765	&btrfs_lzo_compress,
 766};
 767
 768void __init btrfs_init_compress(void)
 769{
 770	int i;
 771
 772	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 773		struct list_head *workspace;
 774
 775		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 776		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 777		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
 778		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 779
 780		/*
 781		 * Preallocate one workspace for each compression type so
 782		 * we can guarantee forward progress in the worst case
 783		 */
 784		workspace = btrfs_compress_op[i]->alloc_workspace();
 785		if (IS_ERR(workspace)) {
 786			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
 787		} else {
 788			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
 789			btrfs_comp_ws[i].free_ws = 1;
 790			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
 791		}
 792	}
 793}
 794
 795/*
 796 * This finds an available workspace or allocates a new one.
 797 * If it's not possible to allocate a new one, waits until there's one.
 798 * Preallocation makes a forward progress guarantees and we do not return
 799 * errors.
 800 */
 801static struct list_head *find_workspace(int type)
 802{
 803	struct list_head *workspace;
 804	int cpus = num_online_cpus();
 805	int idx = type - 1;
 806
 807	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
 808	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
 809	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
 810	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
 811	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
 812again:
 813	spin_lock(ws_lock);
 814	if (!list_empty(idle_ws)) {
 815		workspace = idle_ws->next;
 816		list_del(workspace);
 817		(*free_ws)--;
 818		spin_unlock(ws_lock);
 819		return workspace;
 820
 821	}
 822	if (atomic_read(total_ws) > cpus) {
 823		DEFINE_WAIT(wait);
 824
 825		spin_unlock(ws_lock);
 826		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 827		if (atomic_read(total_ws) > cpus && !*free_ws)
 828			schedule();
 829		finish_wait(ws_wait, &wait);
 830		goto again;
 831	}
 832	atomic_inc(total_ws);
 833	spin_unlock(ws_lock);
 834
 835	workspace = btrfs_compress_op[idx]->alloc_workspace();
 836	if (IS_ERR(workspace)) {
 837		atomic_dec(total_ws);
 838		wake_up(ws_wait);
 839
 840		/*
 841		 * Do not return the error but go back to waiting. There's a
 842		 * workspace preallocated for each type and the compression
 843		 * time is bounded so we get to a workspace eventually. This
 844		 * makes our caller's life easier.
 845		 *
 846		 * To prevent silent and low-probability deadlocks (when the
 847		 * initial preallocation fails), check if there are any
 848		 * workspaces at all.
 849		 */
 850		if (atomic_read(total_ws) == 0) {
 851			static DEFINE_RATELIMIT_STATE(_rs,
 852					/* once per minute */ 60 * HZ,
 853					/* no burst */ 1);
 854
 855			if (__ratelimit(&_rs)) {
 856				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 857			}
 858		}
 859		goto again;
 860	}
 861	return workspace;
 862}
 863
 864/*
 865 * put a workspace struct back on the list or free it if we have enough
 866 * idle ones sitting around
 867 */
 868static void free_workspace(int type, struct list_head *workspace)
 869{
 870	int idx = type - 1;
 871	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
 872	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
 873	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
 874	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
 875	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
 876
 877	spin_lock(ws_lock);
 878	if (*free_ws < num_online_cpus()) {
 879		list_add(workspace, idle_ws);
 880		(*free_ws)++;
 881		spin_unlock(ws_lock);
 882		goto wake;
 883	}
 884	spin_unlock(ws_lock);
 885
 886	btrfs_compress_op[idx]->free_workspace(workspace);
 887	atomic_dec(total_ws);
 888wake:
 889	/*
 890	 * Make sure counter is updated before we wake up waiters.
 891	 */
 892	smp_mb();
 893	if (waitqueue_active(ws_wait))
 894		wake_up(ws_wait);
 895}
 896
 897/*
 898 * cleanup function for module exit
 899 */
 900static void free_workspaces(void)
 901{
 902	struct list_head *workspace;
 903	int i;
 904
 905	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 906		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
 907			workspace = btrfs_comp_ws[i].idle_ws.next;
 908			list_del(workspace);
 909			btrfs_compress_op[i]->free_workspace(workspace);
 910			atomic_dec(&btrfs_comp_ws[i].total_ws);
 911		}
 912	}
 913}
 914
 915/*
 916 * given an address space and start/len, compress the bytes.
 917 *
 918 * pages are allocated to hold the compressed result and stored
 919 * in 'pages'
 920 *
 921 * out_pages is used to return the number of pages allocated.  There
 922 * may be pages allocated even if we return an error
 923 *
 924 * total_in is used to return the number of bytes actually read.  It
 925 * may be smaller then len if we had to exit early because we
 926 * ran out of room in the pages array or because we cross the
 927 * max_out threshold.
 928 *
 929 * total_out is used to return the total number of compressed bytes
 930 *
 931 * max_out tells us the max number of bytes that we're allowed to
 932 * stuff into pages
 933 */
 934int btrfs_compress_pages(int type, struct address_space *mapping,
 935			 u64 start, unsigned long len,
 936			 struct page **pages,
 937			 unsigned long nr_dest_pages,
 938			 unsigned long *out_pages,
 939			 unsigned long *total_in,
 940			 unsigned long *total_out,
 941			 unsigned long max_out)
 942{
 943	struct list_head *workspace;
 944	int ret;
 945
 946	workspace = find_workspace(type);
 
 
 947
 948	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 949						      start, len, pages,
 950						      nr_dest_pages, out_pages,
 951						      total_in, total_out,
 952						      max_out);
 953	free_workspace(type, workspace);
 954	return ret;
 955}
 956
 957/*
 958 * pages_in is an array of pages with compressed data.
 959 *
 960 * disk_start is the starting logical offset of this array in the file
 961 *
 962 * orig_bio contains the pages from the file that we want to decompress into
 
 
 963 *
 964 * srclen is the number of bytes in pages_in
 965 *
 966 * The basic idea is that we have a bio that was created by readpages.
 967 * The pages in the bio are for the uncompressed data, and they may not
 968 * be contiguous.  They all correspond to the range of bytes covered by
 969 * the compressed extent.
 970 */
 971static int btrfs_decompress_bio(int type, struct page **pages_in,
 972				   u64 disk_start, struct bio *orig_bio,
 973				   size_t srclen)
 974{
 975	struct list_head *workspace;
 976	int ret;
 977
 978	workspace = find_workspace(type);
 
 
 979
 980	ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
 981							 disk_start, orig_bio,
 982							 srclen);
 983	free_workspace(type, workspace);
 984	return ret;
 985}
 986
 987/*
 988 * a less complex decompression routine.  Our compressed data fits in a
 989 * single page, and we want to read a single page out of it.
 990 * start_byte tells us the offset into the compressed data we're interested in
 991 */
 992int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 993		     unsigned long start_byte, size_t srclen, size_t destlen)
 994{
 995	struct list_head *workspace;
 996	int ret;
 997
 998	workspace = find_workspace(type);
 
 
 999
1000	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1001						  dest_page, start_byte,
1002						  srclen, destlen);
1003
1004	free_workspace(type, workspace);
1005	return ret;
1006}
1007
1008void btrfs_exit_compress(void)
1009{
1010	free_workspaces();
1011}
1012
1013/*
1014 * Copy uncompressed data from working buffer to pages.
1015 *
1016 * buf_start is the byte offset we're of the start of our workspace buffer.
1017 *
1018 * total_out is the last byte of the buffer
1019 */
1020int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1021			      unsigned long total_out, u64 disk_start,
1022			      struct bio *bio)
 
 
1023{
1024	unsigned long buf_offset;
1025	unsigned long current_buf_start;
1026	unsigned long start_byte;
1027	unsigned long prev_start_byte;
1028	unsigned long working_bytes = total_out - buf_start;
1029	unsigned long bytes;
1030	char *kaddr;
1031	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1032
1033	/*
1034	 * start byte is the first byte of the page we're currently
1035	 * copying into relative to the start of the compressed data.
1036	 */
1037	start_byte = page_offset(bvec.bv_page) - disk_start;
1038
1039	/* we haven't yet hit data corresponding to this page */
1040	if (total_out <= start_byte)
1041		return 1;
1042
1043	/*
1044	 * the start of the data we care about is offset into
1045	 * the middle of our working buffer
1046	 */
1047	if (total_out > start_byte && buf_start < start_byte) {
1048		buf_offset = start_byte - buf_start;
1049		working_bytes -= buf_offset;
1050	} else {
1051		buf_offset = 0;
1052	}
1053	current_buf_start = buf_start;
1054
1055	/* copy bytes from the working buffer into the pages */
1056	while (working_bytes > 0) {
1057		bytes = min_t(unsigned long, bvec.bv_len,
1058				PAGE_SIZE - buf_offset);
1059		bytes = min(bytes, working_bytes);
1060
1061		kaddr = kmap_atomic(bvec.bv_page);
1062		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1063		kunmap_atomic(kaddr);
1064		flush_dcache_page(bvec.bv_page);
1065
 
1066		buf_offset += bytes;
1067		working_bytes -= bytes;
1068		current_buf_start += bytes;
1069
1070		/* check if we need to pick another page */
1071		bio_advance(bio, bytes);
1072		if (!bio->bi_iter.bi_size)
1073			return 0;
1074		bvec = bio_iter_iovec(bio, bio->bi_iter);
1075		prev_start_byte = start_byte;
1076		start_byte = page_offset(bvec.bv_page) - disk_start;
 
 
1077
1078		/*
1079		 * We need to make sure we're only adjusting
1080		 * our offset into compression working buffer when
1081		 * we're switching pages.  Otherwise we can incorrectly
1082		 * keep copying when we were actually done.
1083		 */
1084		if (start_byte != prev_start_byte) {
1085			/*
1086			 * make sure our new page is covered by this
1087			 * working buffer
1088			 */
1089			if (total_out <= start_byte)
1090				return 1;
1091
1092			/*
1093			 * the next page in the biovec might not be adjacent
1094			 * to the last page, but it might still be found
1095			 * inside this working buffer. bump our offset pointer
1096			 */
1097			if (total_out > start_byte &&
1098			    current_buf_start < start_byte) {
1099				buf_offset = start_byte - buf_start;
1100				working_bytes = total_out - start_byte;
1101				current_buf_start = buf_start + buf_offset;
1102			}
1103		}
1104	}
1105
1106	return 1;
1107}
v3.5.6
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "compat.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "ordered-data.h"
  42#include "compression.h"
  43#include "extent_io.h"
  44#include "extent_map.h"
  45
  46struct compressed_bio {
  47	/* number of bios pending for this compressed extent */
  48	atomic_t pending_bios;
  49
  50	/* the pages with the compressed data on them */
  51	struct page **compressed_pages;
  52
  53	/* inode that owns this data */
  54	struct inode *inode;
  55
  56	/* starting offset in the inode for our pages */
  57	u64 start;
  58
  59	/* number of bytes in the inode we're working on */
  60	unsigned long len;
  61
  62	/* number of bytes on disk */
  63	unsigned long compressed_len;
  64
  65	/* the compression algorithm for this bio */
  66	int compress_type;
  67
  68	/* number of compressed pages in the array */
  69	unsigned long nr_pages;
  70
  71	/* IO errors */
  72	int errors;
  73	int mirror_num;
  74
  75	/* for reads, this is the bio we are copying the data into */
  76	struct bio *orig_bio;
  77
  78	/*
  79	 * the start of a variable length array of checksums only
  80	 * used by reads
  81	 */
  82	u32 sums;
  83};
  84
  85static inline int compressed_bio_size(struct btrfs_root *root,
 
 
 
 
  86				      unsigned long disk_size)
  87{
  88	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  89
  90	return sizeof(struct compressed_bio) +
  91		((disk_size + root->sectorsize - 1) / root->sectorsize) *
  92		csum_size;
  93}
  94
  95static struct bio *compressed_bio_alloc(struct block_device *bdev,
  96					u64 first_byte, gfp_t gfp_flags)
  97{
  98	int nr_vecs;
  99
 100	nr_vecs = bio_get_nr_vecs(bdev);
 101	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 102}
 103
 104static int check_compressed_csum(struct inode *inode,
 105				 struct compressed_bio *cb,
 106				 u64 disk_start)
 107{
 108	int ret;
 109	struct btrfs_root *root = BTRFS_I(inode)->root;
 110	struct page *page;
 111	unsigned long i;
 112	char *kaddr;
 113	u32 csum;
 114	u32 *cb_sum = &cb->sums;
 115
 116	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 117		return 0;
 118
 119	for (i = 0; i < cb->nr_pages; i++) {
 120		page = cb->compressed_pages[i];
 121		csum = ~(u32)0;
 122
 123		kaddr = kmap_atomic(page);
 124		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
 125		btrfs_csum_final(csum, (char *)&csum);
 126		kunmap_atomic(kaddr);
 127
 128		if (csum != *cb_sum) {
 129			printk(KERN_INFO "btrfs csum failed ino %llu "
 130			       "extent %llu csum %u "
 131			       "wanted %u mirror %d\n",
 132			       (unsigned long long)btrfs_ino(inode),
 133			       (unsigned long long)disk_start,
 134			       csum, *cb_sum, cb->mirror_num);
 135			ret = -EIO;
 136			goto fail;
 137		}
 138		cb_sum++;
 139
 140	}
 141	ret = 0;
 142fail:
 143	return ret;
 144}
 145
 146/* when we finish reading compressed pages from the disk, we
 147 * decompress them and then run the bio end_io routines on the
 148 * decompressed pages (in the inode address space).
 149 *
 150 * This allows the checksumming and other IO error handling routines
 151 * to work normally
 152 *
 153 * The compressed pages are freed here, and it must be run
 154 * in process context
 155 */
 156static void end_compressed_bio_read(struct bio *bio, int err)
 157{
 158	struct compressed_bio *cb = bio->bi_private;
 159	struct inode *inode;
 160	struct page *page;
 161	unsigned long index;
 162	int ret;
 163
 164	if (err)
 165		cb->errors = 1;
 166
 167	/* if there are more bios still pending for this compressed
 168	 * extent, just exit
 169	 */
 170	if (!atomic_dec_and_test(&cb->pending_bios))
 171		goto out;
 172
 173	inode = cb->inode;
 174	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
 
 175	if (ret)
 176		goto csum_failed;
 177
 178	/* ok, we're the last bio for this extent, lets start
 179	 * the decompression.
 180	 */
 181	ret = btrfs_decompress_biovec(cb->compress_type,
 182				      cb->compressed_pages,
 183				      cb->start,
 184				      cb->orig_bio->bi_io_vec,
 185				      cb->orig_bio->bi_vcnt,
 186				      cb->compressed_len);
 187csum_failed:
 188	if (ret)
 189		cb->errors = 1;
 190
 191	/* release the compressed pages */
 192	index = 0;
 193	for (index = 0; index < cb->nr_pages; index++) {
 194		page = cb->compressed_pages[index];
 195		page->mapping = NULL;
 196		page_cache_release(page);
 197	}
 198
 199	/* do io completion on the original bio */
 200	if (cb->errors) {
 201		bio_io_error(cb->orig_bio);
 202	} else {
 203		int bio_index = 0;
 204		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
 205
 206		/*
 207		 * we have verified the checksum already, set page
 208		 * checked so the end_io handlers know about it
 209		 */
 210		while (bio_index < cb->orig_bio->bi_vcnt) {
 211			SetPageChecked(bvec->bv_page);
 212			bvec++;
 213			bio_index++;
 214		}
 215		bio_endio(cb->orig_bio, 0);
 216	}
 217
 218	/* finally free the cb struct */
 219	kfree(cb->compressed_pages);
 220	kfree(cb);
 221out:
 222	bio_put(bio);
 223}
 224
 225/*
 226 * Clear the writeback bits on all of the file
 227 * pages for a compressed write
 228 */
 229static noinline void end_compressed_writeback(struct inode *inode, u64 start,
 230					      unsigned long ram_size)
 231{
 232	unsigned long index = start >> PAGE_CACHE_SHIFT;
 233	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 234	struct page *pages[16];
 235	unsigned long nr_pages = end_index - index + 1;
 236	int i;
 237	int ret;
 238
 
 
 
 239	while (nr_pages > 0) {
 240		ret = find_get_pages_contig(inode->i_mapping, index,
 241				     min_t(unsigned long,
 242				     nr_pages, ARRAY_SIZE(pages)), pages);
 243		if (ret == 0) {
 244			nr_pages -= 1;
 245			index += 1;
 246			continue;
 247		}
 248		for (i = 0; i < ret; i++) {
 
 
 249			end_page_writeback(pages[i]);
 250			page_cache_release(pages[i]);
 251		}
 252		nr_pages -= ret;
 253		index += ret;
 254	}
 255	/* the inode may be gone now */
 256}
 257
 258/*
 259 * do the cleanup once all the compressed pages hit the disk.
 260 * This will clear writeback on the file pages and free the compressed
 261 * pages.
 262 *
 263 * This also calls the writeback end hooks for the file pages so that
 264 * metadata and checksums can be updated in the file.
 265 */
 266static void end_compressed_bio_write(struct bio *bio, int err)
 267{
 268	struct extent_io_tree *tree;
 269	struct compressed_bio *cb = bio->bi_private;
 270	struct inode *inode;
 271	struct page *page;
 272	unsigned long index;
 273
 274	if (err)
 275		cb->errors = 1;
 276
 277	/* if there are more bios still pending for this compressed
 278	 * extent, just exit
 279	 */
 280	if (!atomic_dec_and_test(&cb->pending_bios))
 281		goto out;
 282
 283	/* ok, we're the last bio for this extent, step one is to
 284	 * call back into the FS and do all the end_io operations
 285	 */
 286	inode = cb->inode;
 287	tree = &BTRFS_I(inode)->io_tree;
 288	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 289	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 290					 cb->start,
 291					 cb->start + cb->len - 1,
 292					 NULL, 1);
 
 293	cb->compressed_pages[0]->mapping = NULL;
 294
 295	end_compressed_writeback(inode, cb->start, cb->len);
 296	/* note, our inode could be gone now */
 297
 298	/*
 299	 * release the compressed pages, these came from alloc_page and
 300	 * are not attached to the inode at all
 301	 */
 302	index = 0;
 303	for (index = 0; index < cb->nr_pages; index++) {
 304		page = cb->compressed_pages[index];
 305		page->mapping = NULL;
 306		page_cache_release(page);
 307	}
 308
 309	/* finally free the cb struct */
 310	kfree(cb->compressed_pages);
 311	kfree(cb);
 312out:
 313	bio_put(bio);
 314}
 315
 316/*
 317 * worker function to build and submit bios for previously compressed pages.
 318 * The corresponding pages in the inode should be marked for writeback
 319 * and the compressed pages should have a reference on them for dropping
 320 * when the IO is complete.
 321 *
 322 * This also checksums the file bytes and gets things ready for
 323 * the end io hooks.
 324 */
 325int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 326				 unsigned long len, u64 disk_start,
 327				 unsigned long compressed_len,
 328				 struct page **compressed_pages,
 329				 unsigned long nr_pages)
 330{
 
 331	struct bio *bio = NULL;
 332	struct btrfs_root *root = BTRFS_I(inode)->root;
 333	struct compressed_bio *cb;
 334	unsigned long bytes_left;
 335	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 336	int pg_index = 0;
 337	struct page *page;
 338	u64 first_byte = disk_start;
 339	struct block_device *bdev;
 340	int ret;
 341	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 342
 343	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 344	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 345	if (!cb)
 346		return -ENOMEM;
 347	atomic_set(&cb->pending_bios, 0);
 348	cb->errors = 0;
 349	cb->inode = inode;
 350	cb->start = start;
 351	cb->len = len;
 352	cb->mirror_num = 0;
 353	cb->compressed_pages = compressed_pages;
 354	cb->compressed_len = compressed_len;
 355	cb->orig_bio = NULL;
 356	cb->nr_pages = nr_pages;
 357
 358	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 359
 360	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 361	if(!bio) {
 362		kfree(cb);
 363		return -ENOMEM;
 364	}
 
 365	bio->bi_private = cb;
 366	bio->bi_end_io = end_compressed_bio_write;
 367	atomic_inc(&cb->pending_bios);
 368
 369	/* create and submit bios for the compressed pages */
 370	bytes_left = compressed_len;
 371	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 372		page = compressed_pages[pg_index];
 373		page->mapping = inode->i_mapping;
 374		if (bio->bi_size)
 375			ret = io_tree->ops->merge_bio_hook(page, 0,
 376							   PAGE_CACHE_SIZE,
 377							   bio, 0);
 378		else
 379			ret = 0;
 380
 381		page->mapping = NULL;
 382		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 383		    PAGE_CACHE_SIZE) {
 384			bio_get(bio);
 385
 386			/*
 387			 * inc the count before we submit the bio so
 388			 * we know the end IO handler won't happen before
 389			 * we inc the count.  Otherwise, the cb might get
 390			 * freed before we're done setting it up
 391			 */
 392			atomic_inc(&cb->pending_bios);
 393			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 
 394			BUG_ON(ret); /* -ENOMEM */
 395
 396			if (!skip_sum) {
 397				ret = btrfs_csum_one_bio(root, inode, bio,
 398							 start, 1);
 399				BUG_ON(ret); /* -ENOMEM */
 400			}
 401
 402			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 403			BUG_ON(ret); /* -ENOMEM */
 
 
 
 404
 405			bio_put(bio);
 406
 407			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 408			BUG_ON(!bio);
 
 409			bio->bi_private = cb;
 410			bio->bi_end_io = end_compressed_bio_write;
 411			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 412		}
 413		if (bytes_left < PAGE_CACHE_SIZE) {
 414			printk("bytes left %lu compress len %lu nr %lu\n",
 
 415			       bytes_left, cb->compressed_len, cb->nr_pages);
 416		}
 417		bytes_left -= PAGE_CACHE_SIZE;
 418		first_byte += PAGE_CACHE_SIZE;
 419		cond_resched();
 420	}
 421	bio_get(bio);
 422
 423	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 424	BUG_ON(ret); /* -ENOMEM */
 425
 426	if (!skip_sum) {
 427		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 428		BUG_ON(ret); /* -ENOMEM */
 429	}
 430
 431	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 432	BUG_ON(ret); /* -ENOMEM */
 
 
 
 433
 434	bio_put(bio);
 435	return 0;
 436}
 437
 
 
 
 
 
 
 
 438static noinline int add_ra_bio_pages(struct inode *inode,
 439				     u64 compressed_end,
 440				     struct compressed_bio *cb)
 441{
 442	unsigned long end_index;
 443	unsigned long pg_index;
 444	u64 last_offset;
 445	u64 isize = i_size_read(inode);
 446	int ret;
 447	struct page *page;
 448	unsigned long nr_pages = 0;
 449	struct extent_map *em;
 450	struct address_space *mapping = inode->i_mapping;
 451	struct extent_map_tree *em_tree;
 452	struct extent_io_tree *tree;
 453	u64 end;
 454	int misses = 0;
 455
 456	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 457	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 458	em_tree = &BTRFS_I(inode)->extent_tree;
 459	tree = &BTRFS_I(inode)->io_tree;
 460
 461	if (isize == 0)
 462		return 0;
 463
 464	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 465
 466	while (last_offset < compressed_end) {
 467		pg_index = last_offset >> PAGE_CACHE_SHIFT;
 468
 469		if (pg_index > end_index)
 470			break;
 471
 472		rcu_read_lock();
 473		page = radix_tree_lookup(&mapping->page_tree, pg_index);
 474		rcu_read_unlock();
 475		if (page) {
 476			misses++;
 477			if (misses > 4)
 478				break;
 479			goto next;
 480		}
 481
 482		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 483								~__GFP_FS);
 484		if (!page)
 485			break;
 486
 487		if (add_to_page_cache_lru(page, mapping, pg_index,
 488								GFP_NOFS)) {
 489			page_cache_release(page);
 490			goto next;
 491		}
 492
 493		end = last_offset + PAGE_CACHE_SIZE - 1;
 494		/*
 495		 * at this point, we have a locked page in the page cache
 496		 * for these bytes in the file.  But, we have to make
 497		 * sure they map to this compressed extent on disk.
 498		 */
 499		set_page_extent_mapped(page);
 500		lock_extent(tree, last_offset, end);
 501		read_lock(&em_tree->lock);
 502		em = lookup_extent_mapping(em_tree, last_offset,
 503					   PAGE_CACHE_SIZE);
 504		read_unlock(&em_tree->lock);
 505
 506		if (!em || last_offset < em->start ||
 507		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 508		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
 509			free_extent_map(em);
 510			unlock_extent(tree, last_offset, end);
 511			unlock_page(page);
 512			page_cache_release(page);
 513			break;
 514		}
 515		free_extent_map(em);
 516
 517		if (page->index == end_index) {
 518			char *userpage;
 519			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 520
 521			if (zero_offset) {
 522				int zeros;
 523				zeros = PAGE_CACHE_SIZE - zero_offset;
 524				userpage = kmap_atomic(page);
 525				memset(userpage + zero_offset, 0, zeros);
 526				flush_dcache_page(page);
 527				kunmap_atomic(userpage);
 528			}
 529		}
 530
 531		ret = bio_add_page(cb->orig_bio, page,
 532				   PAGE_CACHE_SIZE, 0);
 533
 534		if (ret == PAGE_CACHE_SIZE) {
 535			nr_pages++;
 536			page_cache_release(page);
 537		} else {
 538			unlock_extent(tree, last_offset, end);
 539			unlock_page(page);
 540			page_cache_release(page);
 541			break;
 542		}
 543next:
 544		last_offset += PAGE_CACHE_SIZE;
 545	}
 546	return 0;
 547}
 548
 549/*
 550 * for a compressed read, the bio we get passed has all the inode pages
 551 * in it.  We don't actually do IO on those pages but allocate new ones
 552 * to hold the compressed pages on disk.
 553 *
 554 * bio->bi_sector points to the compressed extent on disk
 555 * bio->bi_io_vec points to all of the inode pages
 556 * bio->bi_vcnt is a count of pages
 557 *
 558 * After the compressed pages are read, we copy the bytes into the
 559 * bio we were passed and then call the bio end_io calls
 560 */
 561int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 562				 int mirror_num, unsigned long bio_flags)
 563{
 
 564	struct extent_io_tree *tree;
 565	struct extent_map_tree *em_tree;
 566	struct compressed_bio *cb;
 567	struct btrfs_root *root = BTRFS_I(inode)->root;
 568	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 569	unsigned long compressed_len;
 570	unsigned long nr_pages;
 571	unsigned long pg_index;
 572	struct page *page;
 573	struct block_device *bdev;
 574	struct bio *comp_bio;
 575	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
 576	u64 em_len;
 577	u64 em_start;
 578	struct extent_map *em;
 579	int ret = -ENOMEM;
 
 580	u32 *sums;
 581
 582	tree = &BTRFS_I(inode)->io_tree;
 583	em_tree = &BTRFS_I(inode)->extent_tree;
 584
 585	/* we need the actual starting offset of this extent in the file */
 586	read_lock(&em_tree->lock);
 587	em = lookup_extent_mapping(em_tree,
 588				   page_offset(bio->bi_io_vec->bv_page),
 589				   PAGE_CACHE_SIZE);
 590	read_unlock(&em_tree->lock);
 591	if (!em)
 592		return -EIO;
 593
 594	compressed_len = em->block_len;
 595	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 596	if (!cb)
 597		goto out;
 598
 599	atomic_set(&cb->pending_bios, 0);
 600	cb->errors = 0;
 601	cb->inode = inode;
 602	cb->mirror_num = mirror_num;
 603	sums = &cb->sums;
 604
 605	cb->start = em->orig_start;
 606	em_len = em->len;
 607	em_start = em->start;
 608
 609	free_extent_map(em);
 610	em = NULL;
 611
 612	cb->len = uncompressed_len;
 613	cb->compressed_len = compressed_len;
 614	cb->compress_type = extent_compress_type(bio_flags);
 615	cb->orig_bio = bio;
 616
 617	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 618				 PAGE_CACHE_SIZE;
 619	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 620				       GFP_NOFS);
 621	if (!cb->compressed_pages)
 622		goto fail1;
 623
 624	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 625
 626	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 627		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 628							      __GFP_HIGHMEM);
 629		if (!cb->compressed_pages[pg_index])
 
 
 630			goto fail2;
 
 631	}
 
 632	cb->nr_pages = nr_pages;
 633
 634	add_ra_bio_pages(inode, em_start + em_len, cb);
 635
 636	/* include any pages we added in add_ra-bio_pages */
 637	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 638	cb->len = uncompressed_len;
 639
 640	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 641	if (!comp_bio)
 642		goto fail2;
 
 643	comp_bio->bi_private = cb;
 644	comp_bio->bi_end_io = end_compressed_bio_read;
 645	atomic_inc(&cb->pending_bios);
 646
 647	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 648		page = cb->compressed_pages[pg_index];
 649		page->mapping = inode->i_mapping;
 650		page->index = em_start >> PAGE_CACHE_SHIFT;
 651
 652		if (comp_bio->bi_size)
 653			ret = tree->ops->merge_bio_hook(page, 0,
 654							PAGE_CACHE_SIZE,
 655							comp_bio, 0);
 656		else
 657			ret = 0;
 658
 659		page->mapping = NULL;
 660		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 661		    PAGE_CACHE_SIZE) {
 662			bio_get(comp_bio);
 663
 664			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 
 665			BUG_ON(ret); /* -ENOMEM */
 666
 667			/*
 668			 * inc the count before we submit the bio so
 669			 * we know the end IO handler won't happen before
 670			 * we inc the count.  Otherwise, the cb might get
 671			 * freed before we're done setting it up
 672			 */
 673			atomic_inc(&cb->pending_bios);
 674
 675			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 676				ret = btrfs_lookup_bio_sums(root, inode,
 677							comp_bio, sums);
 678				BUG_ON(ret); /* -ENOMEM */
 679			}
 680			sums += (comp_bio->bi_size + root->sectorsize - 1) /
 681				root->sectorsize;
 682
 683			ret = btrfs_map_bio(root, READ, comp_bio,
 684					    mirror_num, 0);
 685			BUG_ON(ret); /* -ENOMEM */
 
 
 686
 687			bio_put(comp_bio);
 688
 689			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 690							GFP_NOFS);
 691			BUG_ON(!comp_bio);
 
 692			comp_bio->bi_private = cb;
 693			comp_bio->bi_end_io = end_compressed_bio_read;
 694
 695			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 696		}
 697		cur_disk_byte += PAGE_CACHE_SIZE;
 698	}
 699	bio_get(comp_bio);
 700
 701	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 702	BUG_ON(ret); /* -ENOMEM */
 703
 704	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 705		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 706		BUG_ON(ret); /* -ENOMEM */
 707	}
 708
 709	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 710	BUG_ON(ret); /* -ENOMEM */
 
 
 
 711
 712	bio_put(comp_bio);
 713	return 0;
 714
 715fail2:
 716	for (pg_index = 0; pg_index < nr_pages; pg_index++)
 717		free_page((unsigned long)cb->compressed_pages[pg_index]);
 
 
 718
 719	kfree(cb->compressed_pages);
 720fail1:
 721	kfree(cb);
 722out:
 723	free_extent_map(em);
 724	return ret;
 725}
 726
 727static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 728static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 729static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 730static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 731static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 
 
 
 
 
 732
 733struct btrfs_compress_op *btrfs_compress_op[] = {
 734	&btrfs_zlib_compress,
 735	&btrfs_lzo_compress,
 736};
 737
 738void __init btrfs_init_compress(void)
 739{
 740	int i;
 741
 742	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 743		INIT_LIST_HEAD(&comp_idle_workspace[i]);
 744		spin_lock_init(&comp_workspace_lock[i]);
 745		atomic_set(&comp_alloc_workspace[i], 0);
 746		init_waitqueue_head(&comp_workspace_wait[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	}
 748}
 749
 750/*
 751 * this finds an available workspace or allocates a new one
 752 * ERR_PTR is returned if things go bad.
 
 
 753 */
 754static struct list_head *find_workspace(int type)
 755{
 756	struct list_head *workspace;
 757	int cpus = num_online_cpus();
 758	int idx = type - 1;
 759
 760	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 761	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 762	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 763	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 764	int *num_workspace			= &comp_num_workspace[idx];
 765again:
 766	spin_lock(workspace_lock);
 767	if (!list_empty(idle_workspace)) {
 768		workspace = idle_workspace->next;
 769		list_del(workspace);
 770		(*num_workspace)--;
 771		spin_unlock(workspace_lock);
 772		return workspace;
 773
 774	}
 775	if (atomic_read(alloc_workspace) > cpus) {
 776		DEFINE_WAIT(wait);
 777
 778		spin_unlock(workspace_lock);
 779		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 780		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 781			schedule();
 782		finish_wait(workspace_wait, &wait);
 783		goto again;
 784	}
 785	atomic_inc(alloc_workspace);
 786	spin_unlock(workspace_lock);
 787
 788	workspace = btrfs_compress_op[idx]->alloc_workspace();
 789	if (IS_ERR(workspace)) {
 790		atomic_dec(alloc_workspace);
 791		wake_up(workspace_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792	}
 793	return workspace;
 794}
 795
 796/*
 797 * put a workspace struct back on the list or free it if we have enough
 798 * idle ones sitting around
 799 */
 800static void free_workspace(int type, struct list_head *workspace)
 801{
 802	int idx = type - 1;
 803	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 804	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 805	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 806	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 807	int *num_workspace			= &comp_num_workspace[idx];
 808
 809	spin_lock(workspace_lock);
 810	if (*num_workspace < num_online_cpus()) {
 811		list_add_tail(workspace, idle_workspace);
 812		(*num_workspace)++;
 813		spin_unlock(workspace_lock);
 814		goto wake;
 815	}
 816	spin_unlock(workspace_lock);
 817
 818	btrfs_compress_op[idx]->free_workspace(workspace);
 819	atomic_dec(alloc_workspace);
 820wake:
 821	if (waitqueue_active(workspace_wait))
 822		wake_up(workspace_wait);
 
 
 
 
 823}
 824
 825/*
 826 * cleanup function for module exit
 827 */
 828static void free_workspaces(void)
 829{
 830	struct list_head *workspace;
 831	int i;
 832
 833	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 834		while (!list_empty(&comp_idle_workspace[i])) {
 835			workspace = comp_idle_workspace[i].next;
 836			list_del(workspace);
 837			btrfs_compress_op[i]->free_workspace(workspace);
 838			atomic_dec(&comp_alloc_workspace[i]);
 839		}
 840	}
 841}
 842
 843/*
 844 * given an address space and start/len, compress the bytes.
 845 *
 846 * pages are allocated to hold the compressed result and stored
 847 * in 'pages'
 848 *
 849 * out_pages is used to return the number of pages allocated.  There
 850 * may be pages allocated even if we return an error
 851 *
 852 * total_in is used to return the number of bytes actually read.  It
 853 * may be smaller then len if we had to exit early because we
 854 * ran out of room in the pages array or because we cross the
 855 * max_out threshold.
 856 *
 857 * total_out is used to return the total number of compressed bytes
 858 *
 859 * max_out tells us the max number of bytes that we're allowed to
 860 * stuff into pages
 861 */
 862int btrfs_compress_pages(int type, struct address_space *mapping,
 863			 u64 start, unsigned long len,
 864			 struct page **pages,
 865			 unsigned long nr_dest_pages,
 866			 unsigned long *out_pages,
 867			 unsigned long *total_in,
 868			 unsigned long *total_out,
 869			 unsigned long max_out)
 870{
 871	struct list_head *workspace;
 872	int ret;
 873
 874	workspace = find_workspace(type);
 875	if (IS_ERR(workspace))
 876		return -1;
 877
 878	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 879						      start, len, pages,
 880						      nr_dest_pages, out_pages,
 881						      total_in, total_out,
 882						      max_out);
 883	free_workspace(type, workspace);
 884	return ret;
 885}
 886
 887/*
 888 * pages_in is an array of pages with compressed data.
 889 *
 890 * disk_start is the starting logical offset of this array in the file
 891 *
 892 * bvec is a bio_vec of pages from the file that we want to decompress into
 893 *
 894 * vcnt is the count of pages in the biovec
 895 *
 896 * srclen is the number of bytes in pages_in
 897 *
 898 * The basic idea is that we have a bio that was created by readpages.
 899 * The pages in the bio are for the uncompressed data, and they may not
 900 * be contiguous.  They all correspond to the range of bytes covered by
 901 * the compressed extent.
 902 */
 903int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
 904			    struct bio_vec *bvec, int vcnt, size_t srclen)
 
 905{
 906	struct list_head *workspace;
 907	int ret;
 908
 909	workspace = find_workspace(type);
 910	if (IS_ERR(workspace))
 911		return -ENOMEM;
 912
 913	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 914							 disk_start,
 915							 bvec, vcnt, srclen);
 916	free_workspace(type, workspace);
 917	return ret;
 918}
 919
 920/*
 921 * a less complex decompression routine.  Our compressed data fits in a
 922 * single page, and we want to read a single page out of it.
 923 * start_byte tells us the offset into the compressed data we're interested in
 924 */
 925int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 926		     unsigned long start_byte, size_t srclen, size_t destlen)
 927{
 928	struct list_head *workspace;
 929	int ret;
 930
 931	workspace = find_workspace(type);
 932	if (IS_ERR(workspace))
 933		return -ENOMEM;
 934
 935	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 936						  dest_page, start_byte,
 937						  srclen, destlen);
 938
 939	free_workspace(type, workspace);
 940	return ret;
 941}
 942
 943void btrfs_exit_compress(void)
 944{
 945	free_workspaces();
 946}
 947
 948/*
 949 * Copy uncompressed data from working buffer to pages.
 950 *
 951 * buf_start is the byte offset we're of the start of our workspace buffer.
 952 *
 953 * total_out is the last byte of the buffer
 954 */
 955int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 956			      unsigned long total_out, u64 disk_start,
 957			      struct bio_vec *bvec, int vcnt,
 958			      unsigned long *pg_index,
 959			      unsigned long *pg_offset)
 960{
 961	unsigned long buf_offset;
 962	unsigned long current_buf_start;
 963	unsigned long start_byte;
 
 964	unsigned long working_bytes = total_out - buf_start;
 965	unsigned long bytes;
 966	char *kaddr;
 967	struct page *page_out = bvec[*pg_index].bv_page;
 968
 969	/*
 970	 * start byte is the first byte of the page we're currently
 971	 * copying into relative to the start of the compressed data.
 972	 */
 973	start_byte = page_offset(page_out) - disk_start;
 974
 975	/* we haven't yet hit data corresponding to this page */
 976	if (total_out <= start_byte)
 977		return 1;
 978
 979	/*
 980	 * the start of the data we care about is offset into
 981	 * the middle of our working buffer
 982	 */
 983	if (total_out > start_byte && buf_start < start_byte) {
 984		buf_offset = start_byte - buf_start;
 985		working_bytes -= buf_offset;
 986	} else {
 987		buf_offset = 0;
 988	}
 989	current_buf_start = buf_start;
 990
 991	/* copy bytes from the working buffer into the pages */
 992	while (working_bytes > 0) {
 993		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
 994			    PAGE_CACHE_SIZE - buf_offset);
 995		bytes = min(bytes, working_bytes);
 996		kaddr = kmap_atomic(page_out);
 997		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
 
 998		kunmap_atomic(kaddr);
 999		flush_dcache_page(page_out);
1000
1001		*pg_offset += bytes;
1002		buf_offset += bytes;
1003		working_bytes -= bytes;
1004		current_buf_start += bytes;
1005
1006		/* check if we need to pick another page */
1007		if (*pg_offset == PAGE_CACHE_SIZE) {
1008			(*pg_index)++;
1009			if (*pg_index >= vcnt)
1010				return 0;
1011
1012			page_out = bvec[*pg_index].bv_page;
1013			*pg_offset = 0;
1014			start_byte = page_offset(page_out) - disk_start;
1015
 
 
 
 
 
 
 
1016			/*
1017			 * make sure our new page is covered by this
1018			 * working buffer
1019			 */
1020			if (total_out <= start_byte)
1021				return 1;
1022
1023			/*
1024			 * the next page in the biovec might not be adjacent
1025			 * to the last page, but it might still be found
1026			 * inside this working buffer. bump our offset pointer
1027			 */
1028			if (total_out > start_byte &&
1029			    current_buf_start < start_byte) {
1030				buf_offset = start_byte - buf_start;
1031				working_bytes = total_out - start_byte;
1032				current_buf_start = buf_start + buf_offset;
1033			}
1034		}
1035	}
1036
1037	return 1;
1038}