Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) STRATO AG 2011.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19/*
  20 * This module can be used to catch cases when the btrfs kernel
  21 * code executes write requests to the disk that bring the file
  22 * system in an inconsistent state. In such a state, a power-loss
  23 * or kernel panic event would cause that the data on disk is
  24 * lost or at least damaged.
  25 *
  26 * Code is added that examines all block write requests during
  27 * runtime (including writes of the super block). Three rules
  28 * are verified and an error is printed on violation of the
  29 * rules:
  30 * 1. It is not allowed to write a disk block which is
  31 *    currently referenced by the super block (either directly
  32 *    or indirectly).
  33 * 2. When a super block is written, it is verified that all
  34 *    referenced (directly or indirectly) blocks fulfill the
  35 *    following requirements:
  36 *    2a. All referenced blocks have either been present when
  37 *        the file system was mounted, (i.e., they have been
  38 *        referenced by the super block) or they have been
  39 *        written since then and the write completion callback
  40 *        was called and no write error was indicated and a
  41 *        FLUSH request to the device where these blocks are
  42 *        located was received and completed.
  43 *    2b. All referenced blocks need to have a generation
  44 *        number which is equal to the parent's number.
  45 *
  46 * One issue that was found using this module was that the log
  47 * tree on disk became temporarily corrupted because disk blocks
  48 * that had been in use for the log tree had been freed and
  49 * reused too early, while being referenced by the written super
  50 * block.
  51 *
  52 * The search term in the kernel log that can be used to filter
  53 * on the existence of detected integrity issues is
  54 * "btrfs: attempt".
  55 *
  56 * The integrity check is enabled via mount options. These
  57 * mount options are only supported if the integrity check
  58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
  59 *
  60 * Example #1, apply integrity checks to all metadata:
  61 * mount /dev/sdb1 /mnt -o check_int
  62 *
  63 * Example #2, apply integrity checks to all metadata and
  64 * to data extents:
  65 * mount /dev/sdb1 /mnt -o check_int_data
  66 *
  67 * Example #3, apply integrity checks to all metadata and dump
  68 * the tree that the super block references to kernel messages
  69 * each time after a super block was written:
  70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
  71 *
  72 * If the integrity check tool is included and activated in
  73 * the mount options, plenty of kernel memory is used, and
  74 * plenty of additional CPU cycles are spent. Enabling this
  75 * functionality is not intended for normal use. In most
  76 * cases, unless you are a btrfs developer who needs to verify
  77 * the integrity of (super)-block write requests, do not
  78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
  79 * include and compile the integrity check tool.
  80 *
  81 * Expect millions of lines of information in the kernel log with an
  82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
  83 * kernel config to at least 26 (which is 64MB). Usually the value is
  84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
  85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
  86 * config LOG_BUF_SHIFT
  87 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
  88 *       range 12 30
  89 */
  90
  91#include <linux/sched.h>
  92#include <linux/slab.h>
  93#include <linux/buffer_head.h>
  94#include <linux/mutex.h>
  95#include <linux/genhd.h>
  96#include <linux/blkdev.h>
  97#include <linux/vmalloc.h>
  98#include <linux/string.h>
 
  99#include "ctree.h"
 100#include "disk-io.h"
 101#include "hash.h"
 102#include "transaction.h"
 103#include "extent_io.h"
 104#include "volumes.h"
 105#include "print-tree.h"
 106#include "locking.h"
 107#include "check-integrity.h"
 108#include "rcu-string.h"
 109#include "compression.h"
 110
 111#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
 112#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
 113#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
 114#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
 115#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
 116#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
 117#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
 118#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
 119							 * excluding " [...]" */
 120#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
 121
 122/*
 123 * The definition of the bitmask fields for the print_mask.
 124 * They are specified with the mount option check_integrity_print_mask.
 125 */
 126#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
 127#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
 128#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
 129#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
 130#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
 131#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
 132#define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
 133#define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
 134#define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
 135#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
 136#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
 137#define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
 138#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
 139#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
 140
 141struct btrfsic_dev_state;
 142struct btrfsic_state;
 143
 144struct btrfsic_block {
 145	u32 magic_num;		/* only used for debug purposes */
 146	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
 147	unsigned int is_superblock:1;	/* if it is one of the superblocks */
 148	unsigned int is_iodone:1;	/* if is done by lower subsystem */
 149	unsigned int iodone_w_error:1;	/* error was indicated to endio */
 150	unsigned int never_written:1;	/* block was added because it was
 151					 * referenced, not because it was
 152					 * written */
 153	unsigned int mirror_num;	/* large enough to hold
 154					 * BTRFS_SUPER_MIRROR_MAX */
 155	struct btrfsic_dev_state *dev_state;
 156	u64 dev_bytenr;		/* key, physical byte num on disk */
 157	u64 logical_bytenr;	/* logical byte num on disk */
 158	u64 generation;
 159	struct btrfs_disk_key disk_key;	/* extra info to print in case of
 160					 * issues, will not always be correct */
 161	struct list_head collision_resolving_node;	/* list node */
 162	struct list_head all_blocks_node;	/* list node */
 163
 164	/* the following two lists contain block_link items */
 165	struct list_head ref_to_list;	/* list */
 166	struct list_head ref_from_list;	/* list */
 167	struct btrfsic_block *next_in_same_bio;
 168	void *orig_bio_bh_private;
 169	union {
 170		bio_end_io_t *bio;
 171		bh_end_io_t *bh;
 172	} orig_bio_bh_end_io;
 173	int submit_bio_bh_rw;
 174	u64 flush_gen; /* only valid if !never_written */
 175};
 176
 177/*
 178 * Elements of this type are allocated dynamically and required because
 179 * each block object can refer to and can be ref from multiple blocks.
 180 * The key to lookup them in the hashtable is the dev_bytenr of
 181 * the block ref to plus the one from the block referred from.
 182 * The fact that they are searchable via a hashtable and that a
 183 * ref_cnt is maintained is not required for the btrfs integrity
 184 * check algorithm itself, it is only used to make the output more
 185 * beautiful in case that an error is detected (an error is defined
 186 * as a write operation to a block while that block is still referenced).
 187 */
 188struct btrfsic_block_link {
 189	u32 magic_num;		/* only used for debug purposes */
 190	u32 ref_cnt;
 191	struct list_head node_ref_to;	/* list node */
 192	struct list_head node_ref_from;	/* list node */
 193	struct list_head collision_resolving_node;	/* list node */
 194	struct btrfsic_block *block_ref_to;
 195	struct btrfsic_block *block_ref_from;
 196	u64 parent_generation;
 197};
 198
 199struct btrfsic_dev_state {
 200	u32 magic_num;		/* only used for debug purposes */
 201	struct block_device *bdev;
 202	struct btrfsic_state *state;
 203	struct list_head collision_resolving_node;	/* list node */
 204	struct btrfsic_block dummy_block_for_bio_bh_flush;
 205	u64 last_flush_gen;
 206	char name[BDEVNAME_SIZE];
 207};
 208
 209struct btrfsic_block_hashtable {
 210	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
 211};
 212
 213struct btrfsic_block_link_hashtable {
 214	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
 215};
 216
 217struct btrfsic_dev_state_hashtable {
 218	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
 219};
 220
 221struct btrfsic_block_data_ctx {
 222	u64 start;		/* virtual bytenr */
 223	u64 dev_bytenr;		/* physical bytenr on device */
 224	u32 len;
 225	struct btrfsic_dev_state *dev;
 226	char **datav;
 227	struct page **pagev;
 228	void *mem_to_free;
 229};
 230
 231/* This structure is used to implement recursion without occupying
 232 * any stack space, refer to btrfsic_process_metablock() */
 233struct btrfsic_stack_frame {
 234	u32 magic;
 235	u32 nr;
 236	int error;
 237	int i;
 238	int limit_nesting;
 239	int num_copies;
 240	int mirror_num;
 241	struct btrfsic_block *block;
 242	struct btrfsic_block_data_ctx *block_ctx;
 243	struct btrfsic_block *next_block;
 244	struct btrfsic_block_data_ctx next_block_ctx;
 245	struct btrfs_header *hdr;
 246	struct btrfsic_stack_frame *prev;
 247};
 248
 249/* Some state per mounted filesystem */
 250struct btrfsic_state {
 251	u32 print_mask;
 252	int include_extent_data;
 253	int csum_size;
 254	struct list_head all_blocks_list;
 255	struct btrfsic_block_hashtable block_hashtable;
 256	struct btrfsic_block_link_hashtable block_link_hashtable;
 257	struct btrfs_fs_info *fs_info;
 258	u64 max_superblock_generation;
 259	struct btrfsic_block *latest_superblock;
 260	u32 metablock_size;
 261	u32 datablock_size;
 262};
 263
 264static void btrfsic_block_init(struct btrfsic_block *b);
 265static struct btrfsic_block *btrfsic_block_alloc(void);
 266static void btrfsic_block_free(struct btrfsic_block *b);
 267static void btrfsic_block_link_init(struct btrfsic_block_link *n);
 268static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
 269static void btrfsic_block_link_free(struct btrfsic_block_link *n);
 270static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
 271static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
 272static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
 273static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
 274static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 275					struct btrfsic_block_hashtable *h);
 276static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
 277static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 278		struct block_device *bdev,
 279		u64 dev_bytenr,
 280		struct btrfsic_block_hashtable *h);
 281static void btrfsic_block_link_hashtable_init(
 282		struct btrfsic_block_link_hashtable *h);
 283static void btrfsic_block_link_hashtable_add(
 284		struct btrfsic_block_link *l,
 285		struct btrfsic_block_link_hashtable *h);
 286static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
 287static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 288		struct block_device *bdev_ref_to,
 289		u64 dev_bytenr_ref_to,
 290		struct block_device *bdev_ref_from,
 291		u64 dev_bytenr_ref_from,
 292		struct btrfsic_block_link_hashtable *h);
 293static void btrfsic_dev_state_hashtable_init(
 294		struct btrfsic_dev_state_hashtable *h);
 295static void btrfsic_dev_state_hashtable_add(
 296		struct btrfsic_dev_state *ds,
 297		struct btrfsic_dev_state_hashtable *h);
 298static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
 299static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 300		struct block_device *bdev,
 301		struct btrfsic_dev_state_hashtable *h);
 302static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
 303static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
 304static int btrfsic_process_superblock(struct btrfsic_state *state,
 305				      struct btrfs_fs_devices *fs_devices);
 306static int btrfsic_process_metablock(struct btrfsic_state *state,
 307				     struct btrfsic_block *block,
 308				     struct btrfsic_block_data_ctx *block_ctx,
 309				     int limit_nesting, int force_iodone_flag);
 310static void btrfsic_read_from_block_data(
 311	struct btrfsic_block_data_ctx *block_ctx,
 312	void *dst, u32 offset, size_t len);
 313static int btrfsic_create_link_to_next_block(
 314		struct btrfsic_state *state,
 315		struct btrfsic_block *block,
 316		struct btrfsic_block_data_ctx
 317		*block_ctx, u64 next_bytenr,
 318		int limit_nesting,
 319		struct btrfsic_block_data_ctx *next_block_ctx,
 320		struct btrfsic_block **next_blockp,
 321		int force_iodone_flag,
 322		int *num_copiesp, int *mirror_nump,
 323		struct btrfs_disk_key *disk_key,
 324		u64 parent_generation);
 325static int btrfsic_handle_extent_data(struct btrfsic_state *state,
 326				      struct btrfsic_block *block,
 327				      struct btrfsic_block_data_ctx *block_ctx,
 328				      u32 item_offset, int force_iodone_flag);
 329static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
 330			     struct btrfsic_block_data_ctx *block_ctx_out,
 331			     int mirror_num);
 332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
 333static int btrfsic_read_block(struct btrfsic_state *state,
 334			      struct btrfsic_block_data_ctx *block_ctx);
 335static void btrfsic_dump_database(struct btrfsic_state *state);
 336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
 337				     char **datav, unsigned int num_pages);
 338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
 339					  u64 dev_bytenr, char **mapped_datav,
 340					  unsigned int num_pages,
 341					  struct bio *bio, int *bio_is_patched,
 342					  struct buffer_head *bh,
 343					  int submit_bio_bh_rw);
 344static int btrfsic_process_written_superblock(
 345		struct btrfsic_state *state,
 346		struct btrfsic_block *const block,
 347		struct btrfs_super_block *const super_hdr);
 348static void btrfsic_bio_end_io(struct bio *bp);
 349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
 350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
 351					      const struct btrfsic_block *block,
 352					      int recursion_level);
 353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
 354					struct btrfsic_block *const block,
 355					int recursion_level);
 356static void btrfsic_print_add_link(const struct btrfsic_state *state,
 357				   const struct btrfsic_block_link *l);
 358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
 359				   const struct btrfsic_block_link *l);
 360static char btrfsic_get_block_type(const struct btrfsic_state *state,
 361				   const struct btrfsic_block *block);
 362static void btrfsic_dump_tree(const struct btrfsic_state *state);
 363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
 364				  const struct btrfsic_block *block,
 365				  int indent_level);
 366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
 367		struct btrfsic_state *state,
 368		struct btrfsic_block_data_ctx *next_block_ctx,
 369		struct btrfsic_block *next_block,
 370		struct btrfsic_block *from_block,
 371		u64 parent_generation);
 372static struct btrfsic_block *btrfsic_block_lookup_or_add(
 373		struct btrfsic_state *state,
 374		struct btrfsic_block_data_ctx *block_ctx,
 375		const char *additional_string,
 376		int is_metadata,
 377		int is_iodone,
 378		int never_written,
 379		int mirror_num,
 380		int *was_created);
 381static int btrfsic_process_superblock_dev_mirror(
 382		struct btrfsic_state *state,
 383		struct btrfsic_dev_state *dev_state,
 384		struct btrfs_device *device,
 385		int superblock_mirror_num,
 386		struct btrfsic_dev_state **selected_dev_state,
 387		struct btrfs_super_block *selected_super);
 388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
 389		struct block_device *bdev);
 390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
 391					   u64 bytenr,
 392					   struct btrfsic_dev_state *dev_state,
 393					   u64 dev_bytenr);
 394
 395static struct mutex btrfsic_mutex;
 396static int btrfsic_is_initialized;
 397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
 398
 399
 400static void btrfsic_block_init(struct btrfsic_block *b)
 401{
 402	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
 403	b->dev_state = NULL;
 404	b->dev_bytenr = 0;
 405	b->logical_bytenr = 0;
 406	b->generation = BTRFSIC_GENERATION_UNKNOWN;
 407	b->disk_key.objectid = 0;
 408	b->disk_key.type = 0;
 409	b->disk_key.offset = 0;
 410	b->is_metadata = 0;
 411	b->is_superblock = 0;
 412	b->is_iodone = 0;
 413	b->iodone_w_error = 0;
 414	b->never_written = 0;
 415	b->mirror_num = 0;
 416	b->next_in_same_bio = NULL;
 417	b->orig_bio_bh_private = NULL;
 418	b->orig_bio_bh_end_io.bio = NULL;
 419	INIT_LIST_HEAD(&b->collision_resolving_node);
 420	INIT_LIST_HEAD(&b->all_blocks_node);
 421	INIT_LIST_HEAD(&b->ref_to_list);
 422	INIT_LIST_HEAD(&b->ref_from_list);
 423	b->submit_bio_bh_rw = 0;
 424	b->flush_gen = 0;
 425}
 426
 427static struct btrfsic_block *btrfsic_block_alloc(void)
 428{
 429	struct btrfsic_block *b;
 430
 431	b = kzalloc(sizeof(*b), GFP_NOFS);
 432	if (NULL != b)
 433		btrfsic_block_init(b);
 434
 435	return b;
 436}
 437
 438static void btrfsic_block_free(struct btrfsic_block *b)
 439{
 440	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
 441	kfree(b);
 442}
 443
 444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
 445{
 446	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
 447	l->ref_cnt = 1;
 448	INIT_LIST_HEAD(&l->node_ref_to);
 449	INIT_LIST_HEAD(&l->node_ref_from);
 450	INIT_LIST_HEAD(&l->collision_resolving_node);
 451	l->block_ref_to = NULL;
 452	l->block_ref_from = NULL;
 453}
 454
 455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
 456{
 457	struct btrfsic_block_link *l;
 458
 459	l = kzalloc(sizeof(*l), GFP_NOFS);
 460	if (NULL != l)
 461		btrfsic_block_link_init(l);
 462
 463	return l;
 464}
 465
 466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
 467{
 468	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
 469	kfree(l);
 470}
 471
 472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
 473{
 474	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
 475	ds->bdev = NULL;
 476	ds->state = NULL;
 477	ds->name[0] = '\0';
 478	INIT_LIST_HEAD(&ds->collision_resolving_node);
 479	ds->last_flush_gen = 0;
 480	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
 481	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
 482	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
 483}
 484
 485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
 486{
 487	struct btrfsic_dev_state *ds;
 488
 489	ds = kzalloc(sizeof(*ds), GFP_NOFS);
 490	if (NULL != ds)
 491		btrfsic_dev_state_init(ds);
 492
 493	return ds;
 494}
 495
 496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
 497{
 498	BUG_ON(!(NULL == ds ||
 499		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
 500	kfree(ds);
 501}
 502
 503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
 504{
 505	int i;
 506
 507	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
 508		INIT_LIST_HEAD(h->table + i);
 509}
 510
 511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 512					struct btrfsic_block_hashtable *h)
 513{
 514	const unsigned int hashval =
 515	    (((unsigned int)(b->dev_bytenr >> 16)) ^
 516	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
 517	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 518
 519	list_add(&b->collision_resolving_node, h->table + hashval);
 520}
 521
 522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
 523{
 524	list_del(&b->collision_resolving_node);
 525}
 526
 527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 528		struct block_device *bdev,
 529		u64 dev_bytenr,
 530		struct btrfsic_block_hashtable *h)
 531{
 532	const unsigned int hashval =
 533	    (((unsigned int)(dev_bytenr >> 16)) ^
 534	     ((unsigned int)((uintptr_t)bdev))) &
 535	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 536	struct btrfsic_block *b;
 537
 538	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
 539		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
 540			return b;
 541	}
 542
 543	return NULL;
 544}
 545
 546static void btrfsic_block_link_hashtable_init(
 547		struct btrfsic_block_link_hashtable *h)
 548{
 549	int i;
 550
 551	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
 552		INIT_LIST_HEAD(h->table + i);
 553}
 554
 555static void btrfsic_block_link_hashtable_add(
 556		struct btrfsic_block_link *l,
 557		struct btrfsic_block_link_hashtable *h)
 558{
 559	const unsigned int hashval =
 560	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
 561	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
 562	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
 563	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
 564	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 565
 566	BUG_ON(NULL == l->block_ref_to);
 567	BUG_ON(NULL == l->block_ref_from);
 568	list_add(&l->collision_resolving_node, h->table + hashval);
 569}
 570
 571static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
 572{
 573	list_del(&l->collision_resolving_node);
 574}
 575
 576static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 577		struct block_device *bdev_ref_to,
 578		u64 dev_bytenr_ref_to,
 579		struct block_device *bdev_ref_from,
 580		u64 dev_bytenr_ref_from,
 581		struct btrfsic_block_link_hashtable *h)
 582{
 583	const unsigned int hashval =
 584	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
 585	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
 586	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
 587	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
 588	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 589	struct btrfsic_block_link *l;
 590
 591	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
 592		BUG_ON(NULL == l->block_ref_to);
 593		BUG_ON(NULL == l->block_ref_from);
 594		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
 595		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
 596		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
 597		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
 598			return l;
 599	}
 600
 601	return NULL;
 602}
 603
 604static void btrfsic_dev_state_hashtable_init(
 605		struct btrfsic_dev_state_hashtable *h)
 606{
 607	int i;
 608
 609	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
 610		INIT_LIST_HEAD(h->table + i);
 611}
 612
 613static void btrfsic_dev_state_hashtable_add(
 614		struct btrfsic_dev_state *ds,
 615		struct btrfsic_dev_state_hashtable *h)
 616{
 617	const unsigned int hashval =
 618	    (((unsigned int)((uintptr_t)ds->bdev)) &
 619	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 620
 621	list_add(&ds->collision_resolving_node, h->table + hashval);
 622}
 623
 624static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
 625{
 626	list_del(&ds->collision_resolving_node);
 627}
 628
 629static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 630		struct block_device *bdev,
 631		struct btrfsic_dev_state_hashtable *h)
 632{
 633	const unsigned int hashval =
 634	    (((unsigned int)((uintptr_t)bdev)) &
 635	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 636	struct btrfsic_dev_state *ds;
 637
 638	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
 639		if (ds->bdev == bdev)
 640			return ds;
 641	}
 642
 643	return NULL;
 644}
 645
 646static int btrfsic_process_superblock(struct btrfsic_state *state,
 647				      struct btrfs_fs_devices *fs_devices)
 648{
 649	struct btrfs_fs_info *fs_info = state->fs_info;
 650	struct btrfs_super_block *selected_super;
 651	struct list_head *dev_head = &fs_devices->devices;
 652	struct btrfs_device *device;
 653	struct btrfsic_dev_state *selected_dev_state = NULL;
 654	int ret = 0;
 655	int pass;
 656
 657	BUG_ON(NULL == state);
 658	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
 659	if (NULL == selected_super) {
 660		pr_info("btrfsic: error, kmalloc failed!\n");
 661		return -ENOMEM;
 662	}
 663
 664	list_for_each_entry(device, dev_head, dev_list) {
 665		int i;
 666		struct btrfsic_dev_state *dev_state;
 667
 668		if (!device->bdev || !device->name)
 669			continue;
 670
 671		dev_state = btrfsic_dev_state_lookup(device->bdev);
 672		BUG_ON(NULL == dev_state);
 673		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 674			ret = btrfsic_process_superblock_dev_mirror(
 675					state, dev_state, device, i,
 676					&selected_dev_state, selected_super);
 677			if (0 != ret && 0 == i) {
 678				kfree(selected_super);
 679				return ret;
 680			}
 681		}
 682	}
 683
 684	if (NULL == state->latest_superblock) {
 685		pr_info("btrfsic: no superblock found!\n");
 686		kfree(selected_super);
 687		return -1;
 688	}
 689
 690	state->csum_size = btrfs_super_csum_size(selected_super);
 691
 692	for (pass = 0; pass < 3; pass++) {
 693		int num_copies;
 694		int mirror_num;
 695		u64 next_bytenr;
 696
 697		switch (pass) {
 698		case 0:
 699			next_bytenr = btrfs_super_root(selected_super);
 700			if (state->print_mask &
 701			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 702				pr_info("root@%llu\n", next_bytenr);
 703			break;
 704		case 1:
 705			next_bytenr = btrfs_super_chunk_root(selected_super);
 706			if (state->print_mask &
 707			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 708				pr_info("chunk@%llu\n", next_bytenr);
 709			break;
 710		case 2:
 711			next_bytenr = btrfs_super_log_root(selected_super);
 712			if (0 == next_bytenr)
 713				continue;
 714			if (state->print_mask &
 715			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 716				pr_info("log@%llu\n", next_bytenr);
 717			break;
 718		}
 719
 720		num_copies = btrfs_num_copies(fs_info, next_bytenr,
 721					      state->metablock_size);
 722		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 723			pr_info("num_copies(log_bytenr=%llu) = %d\n",
 724			       next_bytenr, num_copies);
 725
 726		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 727			struct btrfsic_block *next_block;
 728			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 729			struct btrfsic_block_link *l;
 730
 731			ret = btrfsic_map_block(state, next_bytenr,
 732						state->metablock_size,
 733						&tmp_next_block_ctx,
 734						mirror_num);
 735			if (ret) {
 736				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
 737				       next_bytenr, mirror_num);
 738				kfree(selected_super);
 739				return -1;
 740			}
 741
 742			next_block = btrfsic_block_hashtable_lookup(
 743					tmp_next_block_ctx.dev->bdev,
 744					tmp_next_block_ctx.dev_bytenr,
 745					&state->block_hashtable);
 746			BUG_ON(NULL == next_block);
 747
 748			l = btrfsic_block_link_hashtable_lookup(
 749					tmp_next_block_ctx.dev->bdev,
 750					tmp_next_block_ctx.dev_bytenr,
 751					state->latest_superblock->dev_state->
 752					bdev,
 753					state->latest_superblock->dev_bytenr,
 754					&state->block_link_hashtable);
 755			BUG_ON(NULL == l);
 756
 757			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
 758			if (ret < (int)PAGE_SIZE) {
 759				pr_info("btrfsic: read @logical %llu failed!\n",
 760				       tmp_next_block_ctx.start);
 761				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 762				kfree(selected_super);
 763				return -1;
 764			}
 765
 766			ret = btrfsic_process_metablock(state,
 767							next_block,
 768							&tmp_next_block_ctx,
 769							BTRFS_MAX_LEVEL + 3, 1);
 770			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 771		}
 772	}
 773
 774	kfree(selected_super);
 775	return ret;
 776}
 777
 778static int btrfsic_process_superblock_dev_mirror(
 779		struct btrfsic_state *state,
 780		struct btrfsic_dev_state *dev_state,
 781		struct btrfs_device *device,
 782		int superblock_mirror_num,
 783		struct btrfsic_dev_state **selected_dev_state,
 784		struct btrfs_super_block *selected_super)
 785{
 786	struct btrfs_fs_info *fs_info = state->fs_info;
 787	struct btrfs_super_block *super_tmp;
 788	u64 dev_bytenr;
 789	struct buffer_head *bh;
 790	struct btrfsic_block *superblock_tmp;
 791	int pass;
 792	struct block_device *const superblock_bdev = device->bdev;
 
 
 
 793
 794	/* super block bytenr is always the unmapped device bytenr */
 795	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
 796	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
 797		return -1;
 798	bh = __bread(superblock_bdev, dev_bytenr / 4096,
 799		     BTRFS_SUPER_INFO_SIZE);
 800	if (NULL == bh)
 801		return -1;
 802	super_tmp = (struct btrfs_super_block *)
 803	    (bh->b_data + (dev_bytenr & 4095));
 804
 805	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
 806	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
 807	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
 808	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
 809	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
 810		brelse(bh);
 811		return 0;
 812	}
 813
 814	superblock_tmp =
 815	    btrfsic_block_hashtable_lookup(superblock_bdev,
 816					   dev_bytenr,
 817					   &state->block_hashtable);
 818	if (NULL == superblock_tmp) {
 819		superblock_tmp = btrfsic_block_alloc();
 820		if (NULL == superblock_tmp) {
 821			pr_info("btrfsic: error, kmalloc failed!\n");
 822			brelse(bh);
 823			return -1;
 824		}
 825		/* for superblock, only the dev_bytenr makes sense */
 826		superblock_tmp->dev_bytenr = dev_bytenr;
 827		superblock_tmp->dev_state = dev_state;
 828		superblock_tmp->logical_bytenr = dev_bytenr;
 829		superblock_tmp->generation = btrfs_super_generation(super_tmp);
 830		superblock_tmp->is_metadata = 1;
 831		superblock_tmp->is_superblock = 1;
 832		superblock_tmp->is_iodone = 1;
 833		superblock_tmp->never_written = 0;
 834		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
 835		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
 836			btrfs_info_in_rcu(fs_info,
 837				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
 838				     superblock_bdev,
 839				     rcu_str_deref(device->name), dev_bytenr,
 840				     dev_state->name, dev_bytenr,
 841				     superblock_mirror_num);
 842		list_add(&superblock_tmp->all_blocks_node,
 843			 &state->all_blocks_list);
 844		btrfsic_block_hashtable_add(superblock_tmp,
 845					    &state->block_hashtable);
 846	}
 847
 848	/* select the one with the highest generation field */
 849	if (btrfs_super_generation(super_tmp) >
 850	    state->max_superblock_generation ||
 851	    0 == state->max_superblock_generation) {
 852		memcpy(selected_super, super_tmp, sizeof(*selected_super));
 853		*selected_dev_state = dev_state;
 854		state->max_superblock_generation =
 855		    btrfs_super_generation(super_tmp);
 856		state->latest_superblock = superblock_tmp;
 857	}
 858
 859	for (pass = 0; pass < 3; pass++) {
 860		u64 next_bytenr;
 861		int num_copies;
 862		int mirror_num;
 863		const char *additional_string = NULL;
 864		struct btrfs_disk_key tmp_disk_key;
 865
 866		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
 867		tmp_disk_key.offset = 0;
 868		switch (pass) {
 869		case 0:
 870			btrfs_set_disk_key_objectid(&tmp_disk_key,
 871						    BTRFS_ROOT_TREE_OBJECTID);
 872			additional_string = "initial root ";
 873			next_bytenr = btrfs_super_root(super_tmp);
 874			break;
 875		case 1:
 876			btrfs_set_disk_key_objectid(&tmp_disk_key,
 877						    BTRFS_CHUNK_TREE_OBJECTID);
 878			additional_string = "initial chunk ";
 879			next_bytenr = btrfs_super_chunk_root(super_tmp);
 880			break;
 881		case 2:
 882			btrfs_set_disk_key_objectid(&tmp_disk_key,
 883						    BTRFS_TREE_LOG_OBJECTID);
 884			additional_string = "initial log ";
 885			next_bytenr = btrfs_super_log_root(super_tmp);
 886			if (0 == next_bytenr)
 887				continue;
 888			break;
 889		}
 890
 891		num_copies = btrfs_num_copies(fs_info, next_bytenr,
 892					      state->metablock_size);
 893		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 894			pr_info("num_copies(log_bytenr=%llu) = %d\n",
 895			       next_bytenr, num_copies);
 896		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 897			struct btrfsic_block *next_block;
 898			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 899			struct btrfsic_block_link *l;
 900
 901			if (btrfsic_map_block(state, next_bytenr,
 902					      state->metablock_size,
 903					      &tmp_next_block_ctx,
 904					      mirror_num)) {
 905				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
 906				       next_bytenr, mirror_num);
 907				brelse(bh);
 908				return -1;
 909			}
 910
 911			next_block = btrfsic_block_lookup_or_add(
 912					state, &tmp_next_block_ctx,
 913					additional_string, 1, 1, 0,
 914					mirror_num, NULL);
 915			if (NULL == next_block) {
 916				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 917				brelse(bh);
 918				return -1;
 919			}
 920
 921			next_block->disk_key = tmp_disk_key;
 922			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
 923			l = btrfsic_block_link_lookup_or_add(
 924					state, &tmp_next_block_ctx,
 925					next_block, superblock_tmp,
 926					BTRFSIC_GENERATION_UNKNOWN);
 927			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 928			if (NULL == l) {
 929				brelse(bh);
 930				return -1;
 931			}
 932		}
 933	}
 934	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
 935		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
 936
 937	brelse(bh);
 938	return 0;
 
 939}
 940
 941static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
 942{
 943	struct btrfsic_stack_frame *sf;
 944
 945	sf = kzalloc(sizeof(*sf), GFP_NOFS);
 946	if (NULL == sf)
 947		pr_info("btrfsic: alloc memory failed!\n");
 948	else
 949		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
 950	return sf;
 951}
 952
 953static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
 954{
 955	BUG_ON(!(NULL == sf ||
 956		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
 957	kfree(sf);
 958}
 959
 960static int btrfsic_process_metablock(
 961		struct btrfsic_state *state,
 962		struct btrfsic_block *const first_block,
 963		struct btrfsic_block_data_ctx *const first_block_ctx,
 964		int first_limit_nesting, int force_iodone_flag)
 965{
 966	struct btrfsic_stack_frame initial_stack_frame = { 0 };
 967	struct btrfsic_stack_frame *sf;
 968	struct btrfsic_stack_frame *next_stack;
 969	struct btrfs_header *const first_hdr =
 970		(struct btrfs_header *)first_block_ctx->datav[0];
 971
 972	BUG_ON(!first_hdr);
 973	sf = &initial_stack_frame;
 974	sf->error = 0;
 975	sf->i = -1;
 976	sf->limit_nesting = first_limit_nesting;
 977	sf->block = first_block;
 978	sf->block_ctx = first_block_ctx;
 979	sf->next_block = NULL;
 980	sf->hdr = first_hdr;
 981	sf->prev = NULL;
 982
 983continue_with_new_stack_frame:
 984	sf->block->generation = le64_to_cpu(sf->hdr->generation);
 985	if (0 == sf->hdr->level) {
 986		struct btrfs_leaf *const leafhdr =
 987		    (struct btrfs_leaf *)sf->hdr;
 988
 989		if (-1 == sf->i) {
 990			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
 991
 992			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
 993				pr_info("leaf %llu items %d generation %llu owner %llu\n",
 994				       sf->block_ctx->start, sf->nr,
 995				       btrfs_stack_header_generation(
 996					       &leafhdr->header),
 997				       btrfs_stack_header_owner(
 998					       &leafhdr->header));
 999		}
1000
1001continue_with_current_leaf_stack_frame:
1002		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1003			sf->i++;
1004			sf->num_copies = 0;
1005		}
1006
1007		if (sf->i < sf->nr) {
1008			struct btrfs_item disk_item;
1009			u32 disk_item_offset =
1010				(uintptr_t)(leafhdr->items + sf->i) -
1011				(uintptr_t)leafhdr;
1012			struct btrfs_disk_key *disk_key;
1013			u8 type;
1014			u32 item_offset;
1015			u32 item_size;
1016
1017			if (disk_item_offset + sizeof(struct btrfs_item) >
1018			    sf->block_ctx->len) {
1019leaf_item_out_of_bounce_error:
1020				pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1021				       sf->block_ctx->start,
1022				       sf->block_ctx->dev->name);
1023				goto one_stack_frame_backwards;
1024			}
1025			btrfsic_read_from_block_data(sf->block_ctx,
1026						     &disk_item,
1027						     disk_item_offset,
1028						     sizeof(struct btrfs_item));
1029			item_offset = btrfs_stack_item_offset(&disk_item);
1030			item_size = btrfs_stack_item_size(&disk_item);
1031			disk_key = &disk_item.key;
1032			type = btrfs_disk_key_type(disk_key);
1033
1034			if (BTRFS_ROOT_ITEM_KEY == type) {
1035				struct btrfs_root_item root_item;
1036				u32 root_item_offset;
1037				u64 next_bytenr;
1038
1039				root_item_offset = item_offset +
1040					offsetof(struct btrfs_leaf, items);
1041				if (root_item_offset + item_size >
1042				    sf->block_ctx->len)
1043					goto leaf_item_out_of_bounce_error;
1044				btrfsic_read_from_block_data(
1045					sf->block_ctx, &root_item,
1046					root_item_offset,
1047					item_size);
1048				next_bytenr = btrfs_root_bytenr(&root_item);
1049
1050				sf->error =
1051				    btrfsic_create_link_to_next_block(
1052						state,
1053						sf->block,
1054						sf->block_ctx,
1055						next_bytenr,
1056						sf->limit_nesting,
1057						&sf->next_block_ctx,
1058						&sf->next_block,
1059						force_iodone_flag,
1060						&sf->num_copies,
1061						&sf->mirror_num,
1062						disk_key,
1063						btrfs_root_generation(
1064						&root_item));
1065				if (sf->error)
1066					goto one_stack_frame_backwards;
1067
1068				if (NULL != sf->next_block) {
1069					struct btrfs_header *const next_hdr =
1070					    (struct btrfs_header *)
1071					    sf->next_block_ctx.datav[0];
1072
1073					next_stack =
1074					    btrfsic_stack_frame_alloc();
1075					if (NULL == next_stack) {
1076						sf->error = -1;
1077						btrfsic_release_block_ctx(
1078								&sf->
1079								next_block_ctx);
1080						goto one_stack_frame_backwards;
1081					}
1082
1083					next_stack->i = -1;
1084					next_stack->block = sf->next_block;
1085					next_stack->block_ctx =
1086					    &sf->next_block_ctx;
1087					next_stack->next_block = NULL;
1088					next_stack->hdr = next_hdr;
1089					next_stack->limit_nesting =
1090					    sf->limit_nesting - 1;
1091					next_stack->prev = sf;
1092					sf = next_stack;
1093					goto continue_with_new_stack_frame;
1094				}
1095			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1096				   state->include_extent_data) {
1097				sf->error = btrfsic_handle_extent_data(
1098						state,
1099						sf->block,
1100						sf->block_ctx,
1101						item_offset,
1102						force_iodone_flag);
1103				if (sf->error)
1104					goto one_stack_frame_backwards;
1105			}
1106
1107			goto continue_with_current_leaf_stack_frame;
1108		}
1109	} else {
1110		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1111
1112		if (-1 == sf->i) {
1113			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1114
1115			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1116				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1117				       sf->block_ctx->start,
1118				       nodehdr->header.level, sf->nr,
1119				       btrfs_stack_header_generation(
1120				       &nodehdr->header),
1121				       btrfs_stack_header_owner(
1122				       &nodehdr->header));
1123		}
1124
1125continue_with_current_node_stack_frame:
1126		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1127			sf->i++;
1128			sf->num_copies = 0;
1129		}
1130
1131		if (sf->i < sf->nr) {
1132			struct btrfs_key_ptr key_ptr;
1133			u32 key_ptr_offset;
1134			u64 next_bytenr;
1135
1136			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1137					  (uintptr_t)nodehdr;
1138			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1139			    sf->block_ctx->len) {
1140				pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1141				       sf->block_ctx->start,
1142				       sf->block_ctx->dev->name);
1143				goto one_stack_frame_backwards;
1144			}
1145			btrfsic_read_from_block_data(
1146				sf->block_ctx, &key_ptr, key_ptr_offset,
1147				sizeof(struct btrfs_key_ptr));
1148			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1149
1150			sf->error = btrfsic_create_link_to_next_block(
1151					state,
1152					sf->block,
1153					sf->block_ctx,
1154					next_bytenr,
1155					sf->limit_nesting,
1156					&sf->next_block_ctx,
1157					&sf->next_block,
1158					force_iodone_flag,
1159					&sf->num_copies,
1160					&sf->mirror_num,
1161					&key_ptr.key,
1162					btrfs_stack_key_generation(&key_ptr));
1163			if (sf->error)
1164				goto one_stack_frame_backwards;
1165
1166			if (NULL != sf->next_block) {
1167				struct btrfs_header *const next_hdr =
1168				    (struct btrfs_header *)
1169				    sf->next_block_ctx.datav[0];
1170
1171				next_stack = btrfsic_stack_frame_alloc();
1172				if (NULL == next_stack) {
1173					sf->error = -1;
1174					goto one_stack_frame_backwards;
1175				}
1176
1177				next_stack->i = -1;
1178				next_stack->block = sf->next_block;
1179				next_stack->block_ctx = &sf->next_block_ctx;
1180				next_stack->next_block = NULL;
1181				next_stack->hdr = next_hdr;
1182				next_stack->limit_nesting =
1183				    sf->limit_nesting - 1;
1184				next_stack->prev = sf;
1185				sf = next_stack;
1186				goto continue_with_new_stack_frame;
1187			}
1188
1189			goto continue_with_current_node_stack_frame;
1190		}
1191	}
1192
1193one_stack_frame_backwards:
1194	if (NULL != sf->prev) {
1195		struct btrfsic_stack_frame *const prev = sf->prev;
1196
1197		/* the one for the initial block is freed in the caller */
1198		btrfsic_release_block_ctx(sf->block_ctx);
1199
1200		if (sf->error) {
1201			prev->error = sf->error;
1202			btrfsic_stack_frame_free(sf);
1203			sf = prev;
1204			goto one_stack_frame_backwards;
1205		}
1206
1207		btrfsic_stack_frame_free(sf);
1208		sf = prev;
1209		goto continue_with_new_stack_frame;
1210	} else {
1211		BUG_ON(&initial_stack_frame != sf);
1212	}
1213
1214	return sf->error;
1215}
1216
1217static void btrfsic_read_from_block_data(
1218	struct btrfsic_block_data_ctx *block_ctx,
1219	void *dstv, u32 offset, size_t len)
1220{
1221	size_t cur;
1222	size_t offset_in_page;
1223	char *kaddr;
1224	char *dst = (char *)dstv;
1225	size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1226	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1227
1228	WARN_ON(offset + len > block_ctx->len);
1229	offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1230
1231	while (len > 0) {
1232		cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1233		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1234		kaddr = block_ctx->datav[i];
1235		memcpy(dst, kaddr + offset_in_page, cur);
1236
1237		dst += cur;
1238		len -= cur;
1239		offset_in_page = 0;
1240		i++;
1241	}
1242}
1243
1244static int btrfsic_create_link_to_next_block(
1245		struct btrfsic_state *state,
1246		struct btrfsic_block *block,
1247		struct btrfsic_block_data_ctx *block_ctx,
1248		u64 next_bytenr,
1249		int limit_nesting,
1250		struct btrfsic_block_data_ctx *next_block_ctx,
1251		struct btrfsic_block **next_blockp,
1252		int force_iodone_flag,
1253		int *num_copiesp, int *mirror_nump,
1254		struct btrfs_disk_key *disk_key,
1255		u64 parent_generation)
1256{
1257	struct btrfs_fs_info *fs_info = state->fs_info;
1258	struct btrfsic_block *next_block = NULL;
1259	int ret;
1260	struct btrfsic_block_link *l;
1261	int did_alloc_block_link;
1262	int block_was_created;
1263
1264	*next_blockp = NULL;
1265	if (0 == *num_copiesp) {
1266		*num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1267						state->metablock_size);
1268		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1269			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1270			       next_bytenr, *num_copiesp);
1271		*mirror_nump = 1;
1272	}
1273
1274	if (*mirror_nump > *num_copiesp)
1275		return 0;
1276
1277	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1278		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1279		       *mirror_nump);
1280	ret = btrfsic_map_block(state, next_bytenr,
1281				state->metablock_size,
1282				next_block_ctx, *mirror_nump);
1283	if (ret) {
1284		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1285		       next_bytenr, *mirror_nump);
1286		btrfsic_release_block_ctx(next_block_ctx);
1287		*next_blockp = NULL;
1288		return -1;
1289	}
1290
1291	next_block = btrfsic_block_lookup_or_add(state,
1292						 next_block_ctx, "referenced ",
1293						 1, force_iodone_flag,
1294						 !force_iodone_flag,
1295						 *mirror_nump,
1296						 &block_was_created);
1297	if (NULL == next_block) {
1298		btrfsic_release_block_ctx(next_block_ctx);
1299		*next_blockp = NULL;
1300		return -1;
1301	}
1302	if (block_was_created) {
1303		l = NULL;
1304		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1305	} else {
1306		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1307			if (next_block->logical_bytenr != next_bytenr &&
1308			    !(!next_block->is_metadata &&
1309			      0 == next_block->logical_bytenr))
1310				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1311				       next_bytenr, next_block_ctx->dev->name,
1312				       next_block_ctx->dev_bytenr, *mirror_nump,
1313				       btrfsic_get_block_type(state,
1314							      next_block),
1315				       next_block->logical_bytenr);
1316			else
1317				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1318				       next_bytenr, next_block_ctx->dev->name,
1319				       next_block_ctx->dev_bytenr, *mirror_nump,
1320				       btrfsic_get_block_type(state,
1321							      next_block));
1322		}
1323		next_block->logical_bytenr = next_bytenr;
1324
1325		next_block->mirror_num = *mirror_nump;
1326		l = btrfsic_block_link_hashtable_lookup(
1327				next_block_ctx->dev->bdev,
1328				next_block_ctx->dev_bytenr,
1329				block_ctx->dev->bdev,
1330				block_ctx->dev_bytenr,
1331				&state->block_link_hashtable);
1332	}
1333
1334	next_block->disk_key = *disk_key;
1335	if (NULL == l) {
1336		l = btrfsic_block_link_alloc();
1337		if (NULL == l) {
1338			pr_info("btrfsic: error, kmalloc failed!\n");
1339			btrfsic_release_block_ctx(next_block_ctx);
1340			*next_blockp = NULL;
1341			return -1;
1342		}
1343
1344		did_alloc_block_link = 1;
1345		l->block_ref_to = next_block;
1346		l->block_ref_from = block;
1347		l->ref_cnt = 1;
1348		l->parent_generation = parent_generation;
1349
1350		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1351			btrfsic_print_add_link(state, l);
1352
1353		list_add(&l->node_ref_to, &block->ref_to_list);
1354		list_add(&l->node_ref_from, &next_block->ref_from_list);
1355
1356		btrfsic_block_link_hashtable_add(l,
1357						 &state->block_link_hashtable);
1358	} else {
1359		did_alloc_block_link = 0;
1360		if (0 == limit_nesting) {
1361			l->ref_cnt++;
1362			l->parent_generation = parent_generation;
1363			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1364				btrfsic_print_add_link(state, l);
1365		}
1366	}
1367
1368	if (limit_nesting > 0 && did_alloc_block_link) {
1369		ret = btrfsic_read_block(state, next_block_ctx);
1370		if (ret < (int)next_block_ctx->len) {
1371			pr_info("btrfsic: read block @logical %llu failed!\n",
1372			       next_bytenr);
1373			btrfsic_release_block_ctx(next_block_ctx);
1374			*next_blockp = NULL;
1375			return -1;
1376		}
1377
1378		*next_blockp = next_block;
1379	} else {
1380		*next_blockp = NULL;
1381	}
1382	(*mirror_nump)++;
1383
1384	return 0;
1385}
1386
1387static int btrfsic_handle_extent_data(
1388		struct btrfsic_state *state,
1389		struct btrfsic_block *block,
1390		struct btrfsic_block_data_ctx *block_ctx,
1391		u32 item_offset, int force_iodone_flag)
1392{
1393	struct btrfs_fs_info *fs_info = state->fs_info;
1394	struct btrfs_file_extent_item file_extent_item;
1395	u64 file_extent_item_offset;
1396	u64 next_bytenr;
1397	u64 num_bytes;
1398	u64 generation;
1399	struct btrfsic_block_link *l;
1400	int ret;
1401
1402	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1403				  item_offset;
1404	if (file_extent_item_offset +
1405	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1406	    block_ctx->len) {
1407		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1408		       block_ctx->start, block_ctx->dev->name);
1409		return -1;
1410	}
1411
1412	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1413		file_extent_item_offset,
1414		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1415	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1416	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1417		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1418			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1419			       file_extent_item.type,
1420			       btrfs_stack_file_extent_disk_bytenr(
1421			       &file_extent_item));
1422		return 0;
1423	}
1424
1425	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1426	    block_ctx->len) {
1427		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1428		       block_ctx->start, block_ctx->dev->name);
1429		return -1;
1430	}
1431	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1432				     file_extent_item_offset,
1433				     sizeof(struct btrfs_file_extent_item));
1434	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1435	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1436	    BTRFS_COMPRESS_NONE) {
1437		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1438		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1439	} else {
1440		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1441	}
1442	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1443
1444	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1445		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1446		       file_extent_item.type,
1447		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1448		       btrfs_stack_file_extent_offset(&file_extent_item),
1449		       num_bytes);
1450	while (num_bytes > 0) {
1451		u32 chunk_len;
1452		int num_copies;
1453		int mirror_num;
1454
1455		if (num_bytes > state->datablock_size)
1456			chunk_len = state->datablock_size;
1457		else
1458			chunk_len = num_bytes;
1459
1460		num_copies = btrfs_num_copies(fs_info, next_bytenr,
1461					      state->datablock_size);
1462		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1463			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1464			       next_bytenr, num_copies);
1465		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1466			struct btrfsic_block_data_ctx next_block_ctx;
1467			struct btrfsic_block *next_block;
1468			int block_was_created;
1469
1470			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1471				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1472					mirror_num);
1473			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1475				       next_bytenr, chunk_len);
1476			ret = btrfsic_map_block(state, next_bytenr,
1477						chunk_len, &next_block_ctx,
1478						mirror_num);
1479			if (ret) {
1480				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1481				       next_bytenr, mirror_num);
1482				return -1;
1483			}
1484
1485			next_block = btrfsic_block_lookup_or_add(
1486					state,
1487					&next_block_ctx,
1488					"referenced ",
1489					0,
1490					force_iodone_flag,
1491					!force_iodone_flag,
1492					mirror_num,
1493					&block_was_created);
1494			if (NULL == next_block) {
1495				pr_info("btrfsic: error, kmalloc failed!\n");
1496				btrfsic_release_block_ctx(&next_block_ctx);
1497				return -1;
1498			}
1499			if (!block_was_created) {
1500				if ((state->print_mask &
1501				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1502				    next_block->logical_bytenr != next_bytenr &&
1503				    !(!next_block->is_metadata &&
1504				      0 == next_block->logical_bytenr)) {
1505					pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1506					       next_bytenr,
1507					       next_block_ctx.dev->name,
1508					       next_block_ctx.dev_bytenr,
1509					       mirror_num,
1510					       next_block->logical_bytenr);
1511				}
1512				next_block->logical_bytenr = next_bytenr;
1513				next_block->mirror_num = mirror_num;
1514			}
1515
1516			l = btrfsic_block_link_lookup_or_add(state,
1517							     &next_block_ctx,
1518							     next_block, block,
1519							     generation);
1520			btrfsic_release_block_ctx(&next_block_ctx);
1521			if (NULL == l)
1522				return -1;
1523		}
1524
1525		next_bytenr += chunk_len;
1526		num_bytes -= chunk_len;
1527	}
1528
1529	return 0;
1530}
1531
1532static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1533			     struct btrfsic_block_data_ctx *block_ctx_out,
1534			     int mirror_num)
1535{
1536	struct btrfs_fs_info *fs_info = state->fs_info;
1537	int ret;
1538	u64 length;
1539	struct btrfs_bio *multi = NULL;
1540	struct btrfs_device *device;
1541
1542	length = len;
1543	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1544			      bytenr, &length, &multi, mirror_num);
1545
1546	if (ret) {
1547		block_ctx_out->start = 0;
1548		block_ctx_out->dev_bytenr = 0;
1549		block_ctx_out->len = 0;
1550		block_ctx_out->dev = NULL;
1551		block_ctx_out->datav = NULL;
1552		block_ctx_out->pagev = NULL;
1553		block_ctx_out->mem_to_free = NULL;
1554
1555		return ret;
1556	}
1557
1558	device = multi->stripes[0].dev;
1559	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
 
 
 
 
 
1560	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1561	block_ctx_out->start = bytenr;
1562	block_ctx_out->len = len;
1563	block_ctx_out->datav = NULL;
1564	block_ctx_out->pagev = NULL;
1565	block_ctx_out->mem_to_free = NULL;
1566
1567	kfree(multi);
1568	if (NULL == block_ctx_out->dev) {
1569		ret = -ENXIO;
1570		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1571	}
1572
1573	return ret;
1574}
1575
1576static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1577{
1578	if (block_ctx->mem_to_free) {
1579		unsigned int num_pages;
1580
1581		BUG_ON(!block_ctx->datav);
1582		BUG_ON(!block_ctx->pagev);
1583		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1584			    PAGE_SHIFT;
 
1585		while (num_pages > 0) {
1586			num_pages--;
1587			if (block_ctx->datav[num_pages]) {
1588				kunmap(block_ctx->pagev[num_pages]);
1589				block_ctx->datav[num_pages] = NULL;
1590			}
1591			if (block_ctx->pagev[num_pages]) {
1592				__free_page(block_ctx->pagev[num_pages]);
1593				block_ctx->pagev[num_pages] = NULL;
1594			}
1595		}
1596
1597		kfree(block_ctx->mem_to_free);
1598		block_ctx->mem_to_free = NULL;
1599		block_ctx->pagev = NULL;
1600		block_ctx->datav = NULL;
1601	}
1602}
1603
1604static int btrfsic_read_block(struct btrfsic_state *state,
1605			      struct btrfsic_block_data_ctx *block_ctx)
1606{
1607	unsigned int num_pages;
1608	unsigned int i;
 
1609	u64 dev_bytenr;
1610	int ret;
1611
1612	BUG_ON(block_ctx->datav);
1613	BUG_ON(block_ctx->pagev);
1614	BUG_ON(block_ctx->mem_to_free);
1615	if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1616		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1617		       block_ctx->dev_bytenr);
1618		return -1;
1619	}
1620
1621	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1622		    PAGE_SHIFT;
1623	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1624					  sizeof(*block_ctx->pagev)) *
1625					 num_pages, GFP_NOFS);
1626	if (!block_ctx->mem_to_free)
1627		return -ENOMEM;
1628	block_ctx->datav = block_ctx->mem_to_free;
1629	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1630	for (i = 0; i < num_pages; i++) {
1631		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1632		if (!block_ctx->pagev[i])
1633			return -1;
1634	}
1635
1636	dev_bytenr = block_ctx->dev_bytenr;
1637	for (i = 0; i < num_pages;) {
1638		struct bio *bio;
1639		unsigned int j;
1640
1641		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1642		if (!bio) {
1643			pr_info("btrfsic: bio_alloc() for %u pages failed!\n",
1644			       num_pages - i);
1645			return -1;
1646		}
1647		bio->bi_bdev = block_ctx->dev->bdev;
1648		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1649		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1650
1651		for (j = i; j < num_pages; j++) {
1652			ret = bio_add_page(bio, block_ctx->pagev[j],
1653					   PAGE_SIZE, 0);
1654			if (PAGE_SIZE != ret)
1655				break;
1656		}
1657		if (j == i) {
1658			pr_info("btrfsic: error, failed to add a single page!\n");
1659			return -1;
1660		}
1661		if (submit_bio_wait(bio)) {
1662			pr_info("btrfsic: read error at logical %llu dev %s!\n",
1663			       block_ctx->start, block_ctx->dev->name);
1664			bio_put(bio);
1665			return -1;
1666		}
1667		bio_put(bio);
1668		dev_bytenr += (j - i) * PAGE_SIZE;
1669		i = j;
1670	}
1671	for (i = 0; i < num_pages; i++) {
1672		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1673		if (!block_ctx->datav[i]) {
1674			pr_info("btrfsic: kmap() failed (dev %s)!\n",
1675			       block_ctx->dev->name);
1676			return -1;
1677		}
1678	}
1679
1680	return block_ctx->len;
1681}
1682
1683static void btrfsic_dump_database(struct btrfsic_state *state)
1684{
1685	const struct btrfsic_block *b_all;
1686
1687	BUG_ON(NULL == state);
1688
1689	pr_info("all_blocks_list:\n");
1690	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1691		const struct btrfsic_block_link *l;
1692
1693		pr_info("%c-block @%llu (%s/%llu/%d)\n",
1694		       btrfsic_get_block_type(state, b_all),
1695		       b_all->logical_bytenr, b_all->dev_state->name,
1696		       b_all->dev_bytenr, b_all->mirror_num);
1697
1698		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1699			pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1700			       btrfsic_get_block_type(state, b_all),
1701			       b_all->logical_bytenr, b_all->dev_state->name,
1702			       b_all->dev_bytenr, b_all->mirror_num,
1703			       l->ref_cnt,
1704			       btrfsic_get_block_type(state, l->block_ref_to),
1705			       l->block_ref_to->logical_bytenr,
1706			       l->block_ref_to->dev_state->name,
1707			       l->block_ref_to->dev_bytenr,
1708			       l->block_ref_to->mirror_num);
1709		}
1710
1711		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1712			pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1713			       btrfsic_get_block_type(state, b_all),
1714			       b_all->logical_bytenr, b_all->dev_state->name,
1715			       b_all->dev_bytenr, b_all->mirror_num,
1716			       l->ref_cnt,
1717			       btrfsic_get_block_type(state, l->block_ref_from),
1718			       l->block_ref_from->logical_bytenr,
1719			       l->block_ref_from->dev_state->name,
1720			       l->block_ref_from->dev_bytenr,
1721			       l->block_ref_from->mirror_num);
1722		}
1723
1724		pr_info("\n");
1725	}
1726}
1727
1728/*
1729 * Test whether the disk block contains a tree block (leaf or node)
1730 * (note that this test fails for the super block)
1731 */
1732static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1733				     char **datav, unsigned int num_pages)
 
1734{
1735	struct btrfs_fs_info *fs_info = state->fs_info;
 
1736	struct btrfs_header *h;
1737	u8 csum[BTRFS_CSUM_SIZE];
1738	u32 crc = ~(u32)0;
1739	unsigned int i;
1740
1741	if (num_pages * PAGE_SIZE < state->metablock_size)
1742		return 1; /* not metadata */
1743	num_pages = state->metablock_size >> PAGE_SHIFT;
1744	h = (struct btrfs_header *)datav[0];
1745
1746	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1747		return 1;
1748
 
 
 
1749	for (i = 0; i < num_pages; i++) {
1750		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1751		size_t sublen = i ? PAGE_SIZE :
1752				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1753
1754		crc = btrfs_crc32c(crc, data, sublen);
1755	}
1756	btrfs_csum_final(crc, csum);
1757	if (memcmp(csum, h->csum, state->csum_size))
1758		return 1;
1759
1760	return 0; /* is metadata */
1761}
1762
1763static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1764					  u64 dev_bytenr, char **mapped_datav,
1765					  unsigned int num_pages,
1766					  struct bio *bio, int *bio_is_patched,
1767					  struct buffer_head *bh,
1768					  int submit_bio_bh_rw)
1769{
1770	int is_metadata;
1771	struct btrfsic_block *block;
1772	struct btrfsic_block_data_ctx block_ctx;
1773	int ret;
1774	struct btrfsic_state *state = dev_state->state;
1775	struct block_device *bdev = dev_state->bdev;
1776	unsigned int processed_len;
1777
1778	if (NULL != bio_is_patched)
1779		*bio_is_patched = 0;
1780
1781again:
1782	if (num_pages == 0)
1783		return;
1784
1785	processed_len = 0;
1786	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1787						      num_pages));
1788
1789	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1790					       &state->block_hashtable);
1791	if (NULL != block) {
1792		u64 bytenr = 0;
1793		struct btrfsic_block_link *l, *tmp;
1794
1795		if (block->is_superblock) {
1796			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1797						    mapped_datav[0]);
1798			if (num_pages * PAGE_SIZE <
1799			    BTRFS_SUPER_INFO_SIZE) {
1800				pr_info("btrfsic: cannot work with too short bios!\n");
1801				return;
1802			}
1803			is_metadata = 1;
1804			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1805			processed_len = BTRFS_SUPER_INFO_SIZE;
1806			if (state->print_mask &
1807			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1808				pr_info("[before new superblock is written]:\n");
1809				btrfsic_dump_tree_sub(state, block, 0);
1810			}
1811		}
1812		if (is_metadata) {
1813			if (!block->is_superblock) {
1814				if (num_pages * PAGE_SIZE <
1815				    state->metablock_size) {
1816					pr_info("btrfsic: cannot work with too short bios!\n");
1817					return;
1818				}
1819				processed_len = state->metablock_size;
1820				bytenr = btrfs_stack_header_bytenr(
1821						(struct btrfs_header *)
1822						mapped_datav[0]);
1823				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1824							       dev_state,
1825							       dev_bytenr);
1826			}
1827			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1828				if (block->logical_bytenr != bytenr &&
1829				    !(!block->is_metadata &&
1830				      block->logical_bytenr == 0))
1831					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1832					       bytenr, dev_state->name,
1833					       dev_bytenr,
1834					       block->mirror_num,
1835					       btrfsic_get_block_type(state,
1836								      block),
1837					       block->logical_bytenr);
1838				else
1839					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1840					       bytenr, dev_state->name,
1841					       dev_bytenr, block->mirror_num,
1842					       btrfsic_get_block_type(state,
1843								      block));
1844			}
1845			block->logical_bytenr = bytenr;
1846		} else {
1847			if (num_pages * PAGE_SIZE <
1848			    state->datablock_size) {
1849				pr_info("btrfsic: cannot work with too short bios!\n");
1850				return;
1851			}
1852			processed_len = state->datablock_size;
1853			bytenr = block->logical_bytenr;
1854			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1855				pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1856				       bytenr, dev_state->name, dev_bytenr,
1857				       block->mirror_num,
1858				       btrfsic_get_block_type(state, block));
1859		}
1860
1861		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1862			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1863			       list_empty(&block->ref_to_list) ? ' ' : '!',
1864			       list_empty(&block->ref_from_list) ? ' ' : '!');
1865		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1866			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1867			       btrfsic_get_block_type(state, block), bytenr,
1868			       dev_state->name, dev_bytenr, block->mirror_num,
1869			       block->generation,
1870			       btrfs_disk_key_objectid(&block->disk_key),
1871			       block->disk_key.type,
1872			       btrfs_disk_key_offset(&block->disk_key),
1873			       btrfs_stack_header_generation(
1874				       (struct btrfs_header *) mapped_datav[0]),
1875			       state->max_superblock_generation);
1876			btrfsic_dump_tree(state);
1877		}
1878
1879		if (!block->is_iodone && !block->never_written) {
1880			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1881			       btrfsic_get_block_type(state, block), bytenr,
1882			       dev_state->name, dev_bytenr, block->mirror_num,
1883			       block->generation,
1884			       btrfs_stack_header_generation(
1885				       (struct btrfs_header *)
1886				       mapped_datav[0]));
1887			/* it would not be safe to go on */
1888			btrfsic_dump_tree(state);
1889			goto continue_loop;
1890		}
1891
1892		/*
1893		 * Clear all references of this block. Do not free
1894		 * the block itself even if is not referenced anymore
1895		 * because it still carries valuable information
1896		 * like whether it was ever written and IO completed.
1897		 */
1898		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1899					 node_ref_to) {
1900			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1901				btrfsic_print_rem_link(state, l);
1902			l->ref_cnt--;
1903			if (0 == l->ref_cnt) {
1904				list_del(&l->node_ref_to);
1905				list_del(&l->node_ref_from);
1906				btrfsic_block_link_hashtable_remove(l);
1907				btrfsic_block_link_free(l);
1908			}
1909		}
1910
1911		block_ctx.dev = dev_state;
1912		block_ctx.dev_bytenr = dev_bytenr;
1913		block_ctx.start = bytenr;
1914		block_ctx.len = processed_len;
1915		block_ctx.pagev = NULL;
1916		block_ctx.mem_to_free = NULL;
1917		block_ctx.datav = mapped_datav;
1918
1919		if (is_metadata || state->include_extent_data) {
1920			block->never_written = 0;
1921			block->iodone_w_error = 0;
1922			if (NULL != bio) {
1923				block->is_iodone = 0;
1924				BUG_ON(NULL == bio_is_patched);
1925				if (!*bio_is_patched) {
1926					block->orig_bio_bh_private =
1927					    bio->bi_private;
1928					block->orig_bio_bh_end_io.bio =
1929					    bio->bi_end_io;
1930					block->next_in_same_bio = NULL;
1931					bio->bi_private = block;
1932					bio->bi_end_io = btrfsic_bio_end_io;
1933					*bio_is_patched = 1;
1934				} else {
1935					struct btrfsic_block *chained_block =
1936					    (struct btrfsic_block *)
1937					    bio->bi_private;
1938
1939					BUG_ON(NULL == chained_block);
1940					block->orig_bio_bh_private =
1941					    chained_block->orig_bio_bh_private;
1942					block->orig_bio_bh_end_io.bio =
1943					    chained_block->orig_bio_bh_end_io.
1944					    bio;
1945					block->next_in_same_bio = chained_block;
1946					bio->bi_private = block;
1947				}
1948			} else if (NULL != bh) {
1949				block->is_iodone = 0;
1950				block->orig_bio_bh_private = bh->b_private;
1951				block->orig_bio_bh_end_io.bh = bh->b_end_io;
1952				block->next_in_same_bio = NULL;
1953				bh->b_private = block;
1954				bh->b_end_io = btrfsic_bh_end_io;
1955			} else {
1956				block->is_iodone = 1;
1957				block->orig_bio_bh_private = NULL;
1958				block->orig_bio_bh_end_io.bio = NULL;
1959				block->next_in_same_bio = NULL;
1960			}
1961		}
1962
1963		block->flush_gen = dev_state->last_flush_gen + 1;
1964		block->submit_bio_bh_rw = submit_bio_bh_rw;
1965		if (is_metadata) {
1966			block->logical_bytenr = bytenr;
1967			block->is_metadata = 1;
1968			if (block->is_superblock) {
1969				BUG_ON(PAGE_SIZE !=
1970				       BTRFS_SUPER_INFO_SIZE);
1971				ret = btrfsic_process_written_superblock(
1972						state,
1973						block,
1974						(struct btrfs_super_block *)
1975						mapped_datav[0]);
1976				if (state->print_mask &
1977				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1978					pr_info("[after new superblock is written]:\n");
1979					btrfsic_dump_tree_sub(state, block, 0);
1980				}
1981			} else {
1982				block->mirror_num = 0;	/* unknown */
1983				ret = btrfsic_process_metablock(
1984						state,
1985						block,
1986						&block_ctx,
1987						0, 0);
1988			}
1989			if (ret)
1990				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1991				       dev_bytenr);
1992		} else {
1993			block->is_metadata = 0;
1994			block->mirror_num = 0;	/* unknown */
1995			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1996			if (!state->include_extent_data
1997			    && list_empty(&block->ref_from_list)) {
1998				/*
1999				 * disk block is overwritten with extent
2000				 * data (not meta data) and we are configured
2001				 * to not include extent data: take the
2002				 * chance and free the block's memory
2003				 */
2004				btrfsic_block_hashtable_remove(block);
2005				list_del(&block->all_blocks_node);
2006				btrfsic_block_free(block);
2007			}
2008		}
2009		btrfsic_release_block_ctx(&block_ctx);
2010	} else {
2011		/* block has not been found in hash table */
2012		u64 bytenr;
2013
2014		if (!is_metadata) {
2015			processed_len = state->datablock_size;
2016			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2017				pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
2018				       dev_state->name, dev_bytenr);
2019			if (!state->include_extent_data) {
2020				/* ignore that written D block */
2021				goto continue_loop;
2022			}
2023
2024			/* this is getting ugly for the
2025			 * include_extent_data case... */
2026			bytenr = 0;	/* unknown */
2027		} else {
2028			processed_len = state->metablock_size;
2029			bytenr = btrfs_stack_header_bytenr(
2030					(struct btrfs_header *)
2031					mapped_datav[0]);
2032			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2033						       dev_bytenr);
2034			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2035				pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2036				       bytenr, dev_state->name, dev_bytenr);
2037		}
2038
2039		block_ctx.dev = dev_state;
2040		block_ctx.dev_bytenr = dev_bytenr;
2041		block_ctx.start = bytenr;
2042		block_ctx.len = processed_len;
2043		block_ctx.pagev = NULL;
2044		block_ctx.mem_to_free = NULL;
2045		block_ctx.datav = mapped_datav;
2046
2047		block = btrfsic_block_alloc();
2048		if (NULL == block) {
2049			pr_info("btrfsic: error, kmalloc failed!\n");
2050			btrfsic_release_block_ctx(&block_ctx);
2051			goto continue_loop;
2052		}
2053		block->dev_state = dev_state;
2054		block->dev_bytenr = dev_bytenr;
2055		block->logical_bytenr = bytenr;
2056		block->is_metadata = is_metadata;
2057		block->never_written = 0;
2058		block->iodone_w_error = 0;
2059		block->mirror_num = 0;	/* unknown */
2060		block->flush_gen = dev_state->last_flush_gen + 1;
2061		block->submit_bio_bh_rw = submit_bio_bh_rw;
2062		if (NULL != bio) {
2063			block->is_iodone = 0;
2064			BUG_ON(NULL == bio_is_patched);
2065			if (!*bio_is_patched) {
2066				block->orig_bio_bh_private = bio->bi_private;
2067				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2068				block->next_in_same_bio = NULL;
2069				bio->bi_private = block;
2070				bio->bi_end_io = btrfsic_bio_end_io;
2071				*bio_is_patched = 1;
2072			} else {
2073				struct btrfsic_block *chained_block =
2074				    (struct btrfsic_block *)
2075				    bio->bi_private;
2076
2077				BUG_ON(NULL == chained_block);
2078				block->orig_bio_bh_private =
2079				    chained_block->orig_bio_bh_private;
2080				block->orig_bio_bh_end_io.bio =
2081				    chained_block->orig_bio_bh_end_io.bio;
2082				block->next_in_same_bio = chained_block;
2083				bio->bi_private = block;
2084			}
2085		} else if (NULL != bh) {
2086			block->is_iodone = 0;
2087			block->orig_bio_bh_private = bh->b_private;
2088			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2089			block->next_in_same_bio = NULL;
2090			bh->b_private = block;
2091			bh->b_end_io = btrfsic_bh_end_io;
2092		} else {
2093			block->is_iodone = 1;
2094			block->orig_bio_bh_private = NULL;
2095			block->orig_bio_bh_end_io.bio = NULL;
2096			block->next_in_same_bio = NULL;
2097		}
2098		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2099			pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2100			       is_metadata ? 'M' : 'D',
2101			       block->logical_bytenr, block->dev_state->name,
2102			       block->dev_bytenr, block->mirror_num);
2103		list_add(&block->all_blocks_node, &state->all_blocks_list);
2104		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2105
2106		if (is_metadata) {
2107			ret = btrfsic_process_metablock(state, block,
2108							&block_ctx, 0, 0);
2109			if (ret)
2110				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2111				       dev_bytenr);
2112		}
2113		btrfsic_release_block_ctx(&block_ctx);
2114	}
2115
2116continue_loop:
2117	BUG_ON(!processed_len);
2118	dev_bytenr += processed_len;
2119	mapped_datav += processed_len >> PAGE_SHIFT;
2120	num_pages -= processed_len >> PAGE_SHIFT;
2121	goto again;
2122}
2123
2124static void btrfsic_bio_end_io(struct bio *bp)
2125{
2126	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2127	int iodone_w_error;
2128
2129	/* mutex is not held! This is not save if IO is not yet completed
2130	 * on umount */
2131	iodone_w_error = 0;
2132	if (bp->bi_error)
2133		iodone_w_error = 1;
2134
2135	BUG_ON(NULL == block);
2136	bp->bi_private = block->orig_bio_bh_private;
2137	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2138
2139	do {
2140		struct btrfsic_block *next_block;
2141		struct btrfsic_dev_state *const dev_state = block->dev_state;
2142
2143		if ((dev_state->state->print_mask &
2144		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2145			pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2146			       bp->bi_error,
2147			       btrfsic_get_block_type(dev_state->state, block),
2148			       block->logical_bytenr, dev_state->name,
2149			       block->dev_bytenr, block->mirror_num);
2150		next_block = block->next_in_same_bio;
2151		block->iodone_w_error = iodone_w_error;
2152		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2153			dev_state->last_flush_gen++;
2154			if ((dev_state->state->print_mask &
2155			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2156				pr_info("bio_end_io() new %s flush_gen=%llu\n",
2157				       dev_state->name,
2158				       dev_state->last_flush_gen);
2159		}
2160		if (block->submit_bio_bh_rw & REQ_FUA)
2161			block->flush_gen = 0; /* FUA completed means block is
2162					       * on disk */
2163		block->is_iodone = 1; /* for FLUSH, this releases the block */
2164		block = next_block;
2165	} while (NULL != block);
2166
2167	bp->bi_end_io(bp);
2168}
2169
2170static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2171{
2172	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2173	int iodone_w_error = !uptodate;
2174	struct btrfsic_dev_state *dev_state;
2175
2176	BUG_ON(NULL == block);
2177	dev_state = block->dev_state;
2178	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2179		pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2180		       iodone_w_error,
2181		       btrfsic_get_block_type(dev_state->state, block),
2182		       block->logical_bytenr, block->dev_state->name,
2183		       block->dev_bytenr, block->mirror_num);
2184
2185	block->iodone_w_error = iodone_w_error;
2186	if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2187		dev_state->last_flush_gen++;
2188		if ((dev_state->state->print_mask &
2189		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2190			pr_info("bh_end_io() new %s flush_gen=%llu\n",
2191			       dev_state->name, dev_state->last_flush_gen);
2192	}
2193	if (block->submit_bio_bh_rw & REQ_FUA)
2194		block->flush_gen = 0; /* FUA completed means block is on disk */
2195
2196	bh->b_private = block->orig_bio_bh_private;
2197	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2198	block->is_iodone = 1; /* for FLUSH, this releases the block */
2199	bh->b_end_io(bh, uptodate);
2200}
2201
2202static int btrfsic_process_written_superblock(
2203		struct btrfsic_state *state,
2204		struct btrfsic_block *const superblock,
2205		struct btrfs_super_block *const super_hdr)
2206{
2207	struct btrfs_fs_info *fs_info = state->fs_info;
2208	int pass;
2209
2210	superblock->generation = btrfs_super_generation(super_hdr);
2211	if (!(superblock->generation > state->max_superblock_generation ||
2212	      0 == state->max_superblock_generation)) {
2213		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2214			pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2215			       superblock->logical_bytenr,
2216			       superblock->dev_state->name,
2217			       superblock->dev_bytenr, superblock->mirror_num,
2218			       btrfs_super_generation(super_hdr),
2219			       state->max_superblock_generation);
2220	} else {
2221		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2222			pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2223			       superblock->logical_bytenr,
2224			       superblock->dev_state->name,
2225			       superblock->dev_bytenr, superblock->mirror_num,
2226			       btrfs_super_generation(super_hdr),
2227			       state->max_superblock_generation);
2228
2229		state->max_superblock_generation =
2230		    btrfs_super_generation(super_hdr);
2231		state->latest_superblock = superblock;
2232	}
2233
2234	for (pass = 0; pass < 3; pass++) {
2235		int ret;
2236		u64 next_bytenr;
2237		struct btrfsic_block *next_block;
2238		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2239		struct btrfsic_block_link *l;
2240		int num_copies;
2241		int mirror_num;
2242		const char *additional_string = NULL;
2243		struct btrfs_disk_key tmp_disk_key = {0};
2244
2245		btrfs_set_disk_key_objectid(&tmp_disk_key,
2246					    BTRFS_ROOT_ITEM_KEY);
2247		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2248
2249		switch (pass) {
2250		case 0:
2251			btrfs_set_disk_key_objectid(&tmp_disk_key,
2252						    BTRFS_ROOT_TREE_OBJECTID);
2253			additional_string = "root ";
2254			next_bytenr = btrfs_super_root(super_hdr);
2255			if (state->print_mask &
2256			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2257				pr_info("root@%llu\n", next_bytenr);
2258			break;
2259		case 1:
2260			btrfs_set_disk_key_objectid(&tmp_disk_key,
2261						    BTRFS_CHUNK_TREE_OBJECTID);
2262			additional_string = "chunk ";
2263			next_bytenr = btrfs_super_chunk_root(super_hdr);
2264			if (state->print_mask &
2265			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2266				pr_info("chunk@%llu\n", next_bytenr);
2267			break;
2268		case 2:
2269			btrfs_set_disk_key_objectid(&tmp_disk_key,
2270						    BTRFS_TREE_LOG_OBJECTID);
2271			additional_string = "log ";
2272			next_bytenr = btrfs_super_log_root(super_hdr);
2273			if (0 == next_bytenr)
2274				continue;
2275			if (state->print_mask &
2276			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2277				pr_info("log@%llu\n", next_bytenr);
2278			break;
2279		}
2280
2281		num_copies = btrfs_num_copies(fs_info, next_bytenr,
2282					      BTRFS_SUPER_INFO_SIZE);
2283		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2284			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2285			       next_bytenr, num_copies);
2286		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2287			int was_created;
2288
2289			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2290				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2291			ret = btrfsic_map_block(state, next_bytenr,
2292						BTRFS_SUPER_INFO_SIZE,
2293						&tmp_next_block_ctx,
2294						mirror_num);
2295			if (ret) {
2296				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2297				       next_bytenr, mirror_num);
2298				return -1;
2299			}
2300
2301			next_block = btrfsic_block_lookup_or_add(
2302					state,
2303					&tmp_next_block_ctx,
2304					additional_string,
2305					1, 0, 1,
2306					mirror_num,
2307					&was_created);
2308			if (NULL == next_block) {
2309				pr_info("btrfsic: error, kmalloc failed!\n");
2310				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2311				return -1;
2312			}
2313
2314			next_block->disk_key = tmp_disk_key;
2315			if (was_created)
2316				next_block->generation =
2317				    BTRFSIC_GENERATION_UNKNOWN;
2318			l = btrfsic_block_link_lookup_or_add(
2319					state,
2320					&tmp_next_block_ctx,
2321					next_block,
2322					superblock,
2323					BTRFSIC_GENERATION_UNKNOWN);
2324			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2325			if (NULL == l)
2326				return -1;
2327		}
2328	}
2329
2330	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2331		btrfsic_dump_tree(state);
2332
2333	return 0;
2334}
2335
2336static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2337					struct btrfsic_block *const block,
2338					int recursion_level)
2339{
2340	const struct btrfsic_block_link *l;
2341	int ret = 0;
2342
2343	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2344		/*
2345		 * Note that this situation can happen and does not
2346		 * indicate an error in regular cases. It happens
2347		 * when disk blocks are freed and later reused.
2348		 * The check-integrity module is not aware of any
2349		 * block free operations, it just recognizes block
2350		 * write operations. Therefore it keeps the linkage
2351		 * information for a block until a block is
2352		 * rewritten. This can temporarily cause incorrect
2353		 * and even circular linkage informations. This
2354		 * causes no harm unless such blocks are referenced
2355		 * by the most recent super block.
2356		 */
2357		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2358			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2359
2360		return ret;
2361	}
2362
2363	/*
2364	 * This algorithm is recursive because the amount of used stack
2365	 * space is very small and the max recursion depth is limited.
2366	 */
2367	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2368		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2369			pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2370			       recursion_level,
2371			       btrfsic_get_block_type(state, block),
2372			       block->logical_bytenr, block->dev_state->name,
2373			       block->dev_bytenr, block->mirror_num,
2374			       l->ref_cnt,
2375			       btrfsic_get_block_type(state, l->block_ref_to),
2376			       l->block_ref_to->logical_bytenr,
2377			       l->block_ref_to->dev_state->name,
2378			       l->block_ref_to->dev_bytenr,
2379			       l->block_ref_to->mirror_num);
2380		if (l->block_ref_to->never_written) {
2381			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2382			       btrfsic_get_block_type(state, l->block_ref_to),
2383			       l->block_ref_to->logical_bytenr,
2384			       l->block_ref_to->dev_state->name,
2385			       l->block_ref_to->dev_bytenr,
2386			       l->block_ref_to->mirror_num);
2387			ret = -1;
2388		} else if (!l->block_ref_to->is_iodone) {
2389			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2390			       btrfsic_get_block_type(state, l->block_ref_to),
2391			       l->block_ref_to->logical_bytenr,
2392			       l->block_ref_to->dev_state->name,
2393			       l->block_ref_to->dev_bytenr,
2394			       l->block_ref_to->mirror_num);
2395			ret = -1;
2396		} else if (l->block_ref_to->iodone_w_error) {
2397			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2398			       btrfsic_get_block_type(state, l->block_ref_to),
2399			       l->block_ref_to->logical_bytenr,
2400			       l->block_ref_to->dev_state->name,
2401			       l->block_ref_to->dev_bytenr,
2402			       l->block_ref_to->mirror_num);
2403			ret = -1;
2404		} else if (l->parent_generation !=
2405			   l->block_ref_to->generation &&
2406			   BTRFSIC_GENERATION_UNKNOWN !=
2407			   l->parent_generation &&
2408			   BTRFSIC_GENERATION_UNKNOWN !=
2409			   l->block_ref_to->generation) {
2410			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2411			       btrfsic_get_block_type(state, l->block_ref_to),
2412			       l->block_ref_to->logical_bytenr,
2413			       l->block_ref_to->dev_state->name,
2414			       l->block_ref_to->dev_bytenr,
2415			       l->block_ref_to->mirror_num,
2416			       l->block_ref_to->generation,
2417			       l->parent_generation);
2418			ret = -1;
2419		} else if (l->block_ref_to->flush_gen >
2420			   l->block_ref_to->dev_state->last_flush_gen) {
2421			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2422			       btrfsic_get_block_type(state, l->block_ref_to),
2423			       l->block_ref_to->logical_bytenr,
2424			       l->block_ref_to->dev_state->name,
2425			       l->block_ref_to->dev_bytenr,
2426			       l->block_ref_to->mirror_num, block->flush_gen,
2427			       l->block_ref_to->dev_state->last_flush_gen);
2428			ret = -1;
2429		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2430							      l->block_ref_to,
2431							      recursion_level +
2432							      1)) {
2433			ret = -1;
2434		}
2435	}
2436
2437	return ret;
2438}
2439
2440static int btrfsic_is_block_ref_by_superblock(
2441		const struct btrfsic_state *state,
2442		const struct btrfsic_block *block,
2443		int recursion_level)
2444{
2445	const struct btrfsic_block_link *l;
2446
2447	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2448		/* refer to comment at "abort cyclic linkage (case 1)" */
2449		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2450			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2451
2452		return 0;
2453	}
2454
2455	/*
2456	 * This algorithm is recursive because the amount of used stack space
2457	 * is very small and the max recursion depth is limited.
2458	 */
2459	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2460		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2461			pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2462			       recursion_level,
2463			       btrfsic_get_block_type(state, block),
2464			       block->logical_bytenr, block->dev_state->name,
2465			       block->dev_bytenr, block->mirror_num,
2466			       l->ref_cnt,
2467			       btrfsic_get_block_type(state, l->block_ref_from),
2468			       l->block_ref_from->logical_bytenr,
2469			       l->block_ref_from->dev_state->name,
2470			       l->block_ref_from->dev_bytenr,
2471			       l->block_ref_from->mirror_num);
2472		if (l->block_ref_from->is_superblock &&
2473		    state->latest_superblock->dev_bytenr ==
2474		    l->block_ref_from->dev_bytenr &&
2475		    state->latest_superblock->dev_state->bdev ==
2476		    l->block_ref_from->dev_state->bdev)
2477			return 1;
2478		else if (btrfsic_is_block_ref_by_superblock(state,
2479							    l->block_ref_from,
2480							    recursion_level +
2481							    1))
2482			return 1;
2483	}
2484
2485	return 0;
2486}
2487
2488static void btrfsic_print_add_link(const struct btrfsic_state *state,
2489				   const struct btrfsic_block_link *l)
2490{
2491	pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2492	       l->ref_cnt,
2493	       btrfsic_get_block_type(state, l->block_ref_from),
2494	       l->block_ref_from->logical_bytenr,
2495	       l->block_ref_from->dev_state->name,
2496	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2497	       btrfsic_get_block_type(state, l->block_ref_to),
2498	       l->block_ref_to->logical_bytenr,
2499	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2500	       l->block_ref_to->mirror_num);
2501}
2502
2503static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2504				   const struct btrfsic_block_link *l)
2505{
2506	pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2507	       l->ref_cnt,
2508	       btrfsic_get_block_type(state, l->block_ref_from),
2509	       l->block_ref_from->logical_bytenr,
2510	       l->block_ref_from->dev_state->name,
2511	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2512	       btrfsic_get_block_type(state, l->block_ref_to),
2513	       l->block_ref_to->logical_bytenr,
2514	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2515	       l->block_ref_to->mirror_num);
2516}
2517
2518static char btrfsic_get_block_type(const struct btrfsic_state *state,
2519				   const struct btrfsic_block *block)
2520{
2521	if (block->is_superblock &&
2522	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2523	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2524		return 'S';
2525	else if (block->is_superblock)
2526		return 's';
2527	else if (block->is_metadata)
2528		return 'M';
2529	else
2530		return 'D';
2531}
2532
2533static void btrfsic_dump_tree(const struct btrfsic_state *state)
2534{
2535	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2536}
2537
2538static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2539				  const struct btrfsic_block *block,
2540				  int indent_level)
2541{
2542	const struct btrfsic_block_link *l;
2543	int indent_add;
2544	static char buf[80];
2545	int cursor_position;
2546
2547	/*
2548	 * Should better fill an on-stack buffer with a complete line and
2549	 * dump it at once when it is time to print a newline character.
2550	 */
2551
2552	/*
2553	 * This algorithm is recursive because the amount of used stack space
2554	 * is very small and the max recursion depth is limited.
2555	 */
2556	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2557			     btrfsic_get_block_type(state, block),
2558			     block->logical_bytenr, block->dev_state->name,
2559			     block->dev_bytenr, block->mirror_num);
2560	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2561		printk("[...]\n");
2562		return;
2563	}
2564	printk(buf);
2565	indent_level += indent_add;
2566	if (list_empty(&block->ref_to_list)) {
2567		printk("\n");
2568		return;
2569	}
2570	if (block->mirror_num > 1 &&
2571	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2572		printk(" [...]\n");
2573		return;
2574	}
2575
2576	cursor_position = indent_level;
2577	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2578		while (cursor_position < indent_level) {
2579			printk(" ");
2580			cursor_position++;
2581		}
2582		if (l->ref_cnt > 1)
2583			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2584		else
2585			indent_add = sprintf(buf, " --> ");
2586		if (indent_level + indent_add >
2587		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2588			printk("[...]\n");
2589			cursor_position = 0;
2590			continue;
2591		}
2592
2593		printk(buf);
2594
2595		btrfsic_dump_tree_sub(state, l->block_ref_to,
2596				      indent_level + indent_add);
2597		cursor_position = 0;
2598	}
2599}
2600
2601static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2602		struct btrfsic_state *state,
2603		struct btrfsic_block_data_ctx *next_block_ctx,
2604		struct btrfsic_block *next_block,
2605		struct btrfsic_block *from_block,
2606		u64 parent_generation)
2607{
2608	struct btrfsic_block_link *l;
2609
2610	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2611						next_block_ctx->dev_bytenr,
2612						from_block->dev_state->bdev,
2613						from_block->dev_bytenr,
2614						&state->block_link_hashtable);
2615	if (NULL == l) {
2616		l = btrfsic_block_link_alloc();
2617		if (NULL == l) {
2618			pr_info("btrfsic: error, kmalloc failed!\n");
2619			return NULL;
2620		}
2621
2622		l->block_ref_to = next_block;
2623		l->block_ref_from = from_block;
2624		l->ref_cnt = 1;
2625		l->parent_generation = parent_generation;
2626
2627		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2628			btrfsic_print_add_link(state, l);
2629
2630		list_add(&l->node_ref_to, &from_block->ref_to_list);
2631		list_add(&l->node_ref_from, &next_block->ref_from_list);
2632
2633		btrfsic_block_link_hashtable_add(l,
2634						 &state->block_link_hashtable);
2635	} else {
2636		l->ref_cnt++;
2637		l->parent_generation = parent_generation;
2638		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2639			btrfsic_print_add_link(state, l);
2640	}
2641
2642	return l;
2643}
2644
2645static struct btrfsic_block *btrfsic_block_lookup_or_add(
2646		struct btrfsic_state *state,
2647		struct btrfsic_block_data_ctx *block_ctx,
2648		const char *additional_string,
2649		int is_metadata,
2650		int is_iodone,
2651		int never_written,
2652		int mirror_num,
2653		int *was_created)
2654{
2655	struct btrfsic_block *block;
2656
2657	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2658					       block_ctx->dev_bytenr,
2659					       &state->block_hashtable);
2660	if (NULL == block) {
2661		struct btrfsic_dev_state *dev_state;
2662
2663		block = btrfsic_block_alloc();
2664		if (NULL == block) {
2665			pr_info("btrfsic: error, kmalloc failed!\n");
2666			return NULL;
2667		}
2668		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2669		if (NULL == dev_state) {
2670			pr_info("btrfsic: error, lookup dev_state failed!\n");
2671			btrfsic_block_free(block);
2672			return NULL;
2673		}
2674		block->dev_state = dev_state;
2675		block->dev_bytenr = block_ctx->dev_bytenr;
2676		block->logical_bytenr = block_ctx->start;
2677		block->is_metadata = is_metadata;
2678		block->is_iodone = is_iodone;
2679		block->never_written = never_written;
2680		block->mirror_num = mirror_num;
2681		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2682			pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2683			       additional_string,
2684			       btrfsic_get_block_type(state, block),
2685			       block->logical_bytenr, dev_state->name,
2686			       block->dev_bytenr, mirror_num);
2687		list_add(&block->all_blocks_node, &state->all_blocks_list);
2688		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2689		if (NULL != was_created)
2690			*was_created = 1;
2691	} else {
2692		if (NULL != was_created)
2693			*was_created = 0;
2694	}
2695
2696	return block;
2697}
2698
2699static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2700					   u64 bytenr,
2701					   struct btrfsic_dev_state *dev_state,
2702					   u64 dev_bytenr)
2703{
2704	struct btrfs_fs_info *fs_info = state->fs_info;
2705	struct btrfsic_block_data_ctx block_ctx;
2706	int num_copies;
2707	int mirror_num;
2708	int match = 0;
2709	int ret;
2710
2711	num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2712
2713	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2714		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2715					&block_ctx, mirror_num);
2716		if (ret) {
2717			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2718			       bytenr, mirror_num);
2719			continue;
2720		}
2721
2722		if (dev_state->bdev == block_ctx.dev->bdev &&
2723		    dev_bytenr == block_ctx.dev_bytenr) {
2724			match++;
2725			btrfsic_release_block_ctx(&block_ctx);
2726			break;
2727		}
2728		btrfsic_release_block_ctx(&block_ctx);
2729	}
2730
2731	if (WARN_ON(!match)) {
2732		pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2733		       bytenr, dev_state->name, dev_bytenr);
2734		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2735			ret = btrfsic_map_block(state, bytenr,
2736						state->metablock_size,
2737						&block_ctx, mirror_num);
2738			if (ret)
2739				continue;
2740
2741			pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2742			       bytenr, block_ctx.dev->name,
2743			       block_ctx.dev_bytenr, mirror_num);
2744		}
2745	}
2746}
2747
2748static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2749		struct block_device *bdev)
2750{
2751	return btrfsic_dev_state_hashtable_lookup(bdev,
2752						  &btrfsic_dev_state_hashtable);
2753}
2754
2755int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2756{
2757	struct btrfsic_dev_state *dev_state;
2758
2759	if (!btrfsic_is_initialized)
2760		return submit_bh(op, op_flags, bh);
2761
2762	mutex_lock(&btrfsic_mutex);
2763	/* since btrfsic_submit_bh() might also be called before
2764	 * btrfsic_mount(), this might return NULL */
2765	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2766
2767	/* Only called to write the superblock (incl. FLUSH/FUA) */
2768	if (NULL != dev_state &&
2769	    (op == REQ_OP_WRITE) && bh->b_size > 0) {
2770		u64 dev_bytenr;
2771
2772		dev_bytenr = 4096 * bh->b_blocknr;
2773		if (dev_state->state->print_mask &
2774		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2775			pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2776			       op, op_flags, (unsigned long long)bh->b_blocknr,
2777			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2778		btrfsic_process_written_block(dev_state, dev_bytenr,
2779					      &bh->b_data, 1, NULL,
2780					      NULL, bh, op_flags);
2781	} else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2782		if (dev_state->state->print_mask &
2783		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2784			pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2785			       op, op_flags, bh->b_bdev);
2786		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2787			if ((dev_state->state->print_mask &
2788			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2789			      BTRFSIC_PRINT_MASK_VERBOSE)))
2790				pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2791				       dev_state->name);
2792		} else {
2793			struct btrfsic_block *const block =
2794				&dev_state->dummy_block_for_bio_bh_flush;
2795
2796			block->is_iodone = 0;
2797			block->never_written = 0;
2798			block->iodone_w_error = 0;
2799			block->flush_gen = dev_state->last_flush_gen + 1;
2800			block->submit_bio_bh_rw = op_flags;
2801			block->orig_bio_bh_private = bh->b_private;
2802			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2803			block->next_in_same_bio = NULL;
2804			bh->b_private = block;
2805			bh->b_end_io = btrfsic_bh_end_io;
2806		}
2807	}
2808	mutex_unlock(&btrfsic_mutex);
2809	return submit_bh(op, op_flags, bh);
2810}
2811
2812static void __btrfsic_submit_bio(struct bio *bio)
2813{
2814	struct btrfsic_dev_state *dev_state;
2815
2816	if (!btrfsic_is_initialized)
2817		return;
2818
2819	mutex_lock(&btrfsic_mutex);
2820	/* since btrfsic_submit_bio() is also called before
2821	 * btrfsic_mount(), this might return NULL */
2822	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2823	if (NULL != dev_state &&
2824	    (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2825		unsigned int i;
2826		u64 dev_bytenr;
2827		u64 cur_bytenr;
2828		struct bio_vec *bvec;
 
2829		int bio_is_patched;
2830		char **mapped_datav;
 
2831
2832		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2833		bio_is_patched = 0;
2834		if (dev_state->state->print_mask &
2835		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2836			pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2837			       bio_op(bio), bio->bi_opf, bio->bi_vcnt,
2838			       (unsigned long long)bio->bi_iter.bi_sector,
2839			       dev_bytenr, bio->bi_bdev);
2840
2841		mapped_datav = kmalloc_array(bio->bi_vcnt,
2842					     sizeof(*mapped_datav), GFP_NOFS);
2843		if (!mapped_datav)
2844			goto leave;
2845		cur_bytenr = dev_bytenr;
2846
2847		bio_for_each_segment_all(bvec, bio, i) {
2848			BUG_ON(bvec->bv_len != PAGE_SIZE);
2849			mapped_datav[i] = kmap(bvec->bv_page);
 
2850
2851			if (dev_state->state->print_mask &
2852			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2853				pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2854				       i, cur_bytenr, bvec->bv_len, bvec->bv_offset);
2855			cur_bytenr += bvec->bv_len;
2856		}
2857		btrfsic_process_written_block(dev_state, dev_bytenr,
2858					      mapped_datav, bio->bi_vcnt,
2859					      bio, &bio_is_patched,
2860					      NULL, bio->bi_opf);
2861		bio_for_each_segment_all(bvec, bio, i)
2862			kunmap(bvec->bv_page);
 
2863		kfree(mapped_datav);
2864	} else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2865		if (dev_state->state->print_mask &
2866		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2867			pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2868			       bio_op(bio), bio->bi_opf, bio->bi_bdev);
2869		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2870			if ((dev_state->state->print_mask &
2871			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2872			      BTRFSIC_PRINT_MASK_VERBOSE)))
2873				pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2874				       dev_state->name);
2875		} else {
2876			struct btrfsic_block *const block =
2877				&dev_state->dummy_block_for_bio_bh_flush;
2878
2879			block->is_iodone = 0;
2880			block->never_written = 0;
2881			block->iodone_w_error = 0;
2882			block->flush_gen = dev_state->last_flush_gen + 1;
2883			block->submit_bio_bh_rw = bio->bi_opf;
2884			block->orig_bio_bh_private = bio->bi_private;
2885			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2886			block->next_in_same_bio = NULL;
2887			bio->bi_private = block;
2888			bio->bi_end_io = btrfsic_bio_end_io;
2889		}
2890	}
2891leave:
2892	mutex_unlock(&btrfsic_mutex);
2893}
2894
2895void btrfsic_submit_bio(struct bio *bio)
2896{
2897	__btrfsic_submit_bio(bio);
2898	submit_bio(bio);
2899}
2900
2901int btrfsic_submit_bio_wait(struct bio *bio)
2902{
2903	__btrfsic_submit_bio(bio);
2904	return submit_bio_wait(bio);
2905}
2906
2907int btrfsic_mount(struct btrfs_fs_info *fs_info,
2908		  struct btrfs_fs_devices *fs_devices,
2909		  int including_extent_data, u32 print_mask)
2910{
2911	int ret;
2912	struct btrfsic_state *state;
2913	struct list_head *dev_head = &fs_devices->devices;
2914	struct btrfs_device *device;
2915
2916	if (fs_info->nodesize & ((u64)PAGE_SIZE - 1)) {
2917		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2918		       fs_info->nodesize, PAGE_SIZE);
2919		return -1;
2920	}
2921	if (fs_info->sectorsize & ((u64)PAGE_SIZE - 1)) {
2922		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2923		       fs_info->sectorsize, PAGE_SIZE);
2924		return -1;
2925	}
2926	state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
2927	if (!state) {
2928		state = vzalloc(sizeof(*state));
2929		if (!state) {
2930			pr_info("btrfs check-integrity: vzalloc() failed!\n");
2931			return -1;
2932		}
2933	}
2934
2935	if (!btrfsic_is_initialized) {
2936		mutex_init(&btrfsic_mutex);
2937		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2938		btrfsic_is_initialized = 1;
2939	}
2940	mutex_lock(&btrfsic_mutex);
2941	state->fs_info = fs_info;
2942	state->print_mask = print_mask;
2943	state->include_extent_data = including_extent_data;
2944	state->csum_size = 0;
2945	state->metablock_size = fs_info->nodesize;
2946	state->datablock_size = fs_info->sectorsize;
2947	INIT_LIST_HEAD(&state->all_blocks_list);
2948	btrfsic_block_hashtable_init(&state->block_hashtable);
2949	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2950	state->max_superblock_generation = 0;
2951	state->latest_superblock = NULL;
2952
2953	list_for_each_entry(device, dev_head, dev_list) {
2954		struct btrfsic_dev_state *ds;
2955		const char *p;
2956
2957		if (!device->bdev || !device->name)
2958			continue;
2959
2960		ds = btrfsic_dev_state_alloc();
2961		if (NULL == ds) {
2962			pr_info("btrfs check-integrity: kmalloc() failed!\n");
2963			mutex_unlock(&btrfsic_mutex);
2964			return -1;
2965		}
2966		ds->bdev = device->bdev;
2967		ds->state = state;
2968		bdevname(ds->bdev, ds->name);
2969		ds->name[BDEVNAME_SIZE - 1] = '\0';
2970		p = kbasename(ds->name);
2971		strlcpy(ds->name, p, sizeof(ds->name));
2972		btrfsic_dev_state_hashtable_add(ds,
2973						&btrfsic_dev_state_hashtable);
2974	}
2975
2976	ret = btrfsic_process_superblock(state, fs_devices);
2977	if (0 != ret) {
2978		mutex_unlock(&btrfsic_mutex);
2979		btrfsic_unmount(fs_devices);
2980		return ret;
2981	}
2982
2983	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2984		btrfsic_dump_database(state);
2985	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2986		btrfsic_dump_tree(state);
2987
2988	mutex_unlock(&btrfsic_mutex);
2989	return 0;
2990}
2991
2992void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2993{
2994	struct btrfsic_block *b_all, *tmp_all;
2995	struct btrfsic_state *state;
2996	struct list_head *dev_head = &fs_devices->devices;
2997	struct btrfs_device *device;
2998
2999	if (!btrfsic_is_initialized)
3000		return;
3001
3002	mutex_lock(&btrfsic_mutex);
3003
3004	state = NULL;
3005	list_for_each_entry(device, dev_head, dev_list) {
3006		struct btrfsic_dev_state *ds;
3007
3008		if (!device->bdev || !device->name)
3009			continue;
3010
3011		ds = btrfsic_dev_state_hashtable_lookup(
3012				device->bdev,
3013				&btrfsic_dev_state_hashtable);
3014		if (NULL != ds) {
3015			state = ds->state;
3016			btrfsic_dev_state_hashtable_remove(ds);
3017			btrfsic_dev_state_free(ds);
3018		}
3019	}
3020
3021	if (NULL == state) {
3022		pr_info("btrfsic: error, cannot find state information on umount!\n");
3023		mutex_unlock(&btrfsic_mutex);
3024		return;
3025	}
3026
3027	/*
3028	 * Don't care about keeping the lists' state up to date,
3029	 * just free all memory that was allocated dynamically.
3030	 * Free the blocks and the block_links.
3031	 */
3032	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3033				 all_blocks_node) {
3034		struct btrfsic_block_link *l, *tmp;
3035
3036		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3037					 node_ref_to) {
3038			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3039				btrfsic_print_rem_link(state, l);
3040
3041			l->ref_cnt--;
3042			if (0 == l->ref_cnt)
3043				btrfsic_block_link_free(l);
3044		}
3045
3046		if (b_all->is_iodone || b_all->never_written)
3047			btrfsic_block_free(b_all);
3048		else
3049			pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3050			       btrfsic_get_block_type(state, b_all),
3051			       b_all->logical_bytenr, b_all->dev_state->name,
3052			       b_all->dev_bytenr, b_all->mirror_num);
3053	}
3054
3055	mutex_unlock(&btrfsic_mutex);
3056
3057	kvfree(state);
3058}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) STRATO AG 2011.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6/*
   7 * This module can be used to catch cases when the btrfs kernel
   8 * code executes write requests to the disk that bring the file
   9 * system in an inconsistent state. In such a state, a power-loss
  10 * or kernel panic event would cause that the data on disk is
  11 * lost or at least damaged.
  12 *
  13 * Code is added that examines all block write requests during
  14 * runtime (including writes of the super block). Three rules
  15 * are verified and an error is printed on violation of the
  16 * rules:
  17 * 1. It is not allowed to write a disk block which is
  18 *    currently referenced by the super block (either directly
  19 *    or indirectly).
  20 * 2. When a super block is written, it is verified that all
  21 *    referenced (directly or indirectly) blocks fulfill the
  22 *    following requirements:
  23 *    2a. All referenced blocks have either been present when
  24 *        the file system was mounted, (i.e., they have been
  25 *        referenced by the super block) or they have been
  26 *        written since then and the write completion callback
  27 *        was called and no write error was indicated and a
  28 *        FLUSH request to the device where these blocks are
  29 *        located was received and completed.
  30 *    2b. All referenced blocks need to have a generation
  31 *        number which is equal to the parent's number.
  32 *
  33 * One issue that was found using this module was that the log
  34 * tree on disk became temporarily corrupted because disk blocks
  35 * that had been in use for the log tree had been freed and
  36 * reused too early, while being referenced by the written super
  37 * block.
  38 *
  39 * The search term in the kernel log that can be used to filter
  40 * on the existence of detected integrity issues is
  41 * "btrfs: attempt".
  42 *
  43 * The integrity check is enabled via mount options. These
  44 * mount options are only supported if the integrity check
  45 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
  46 *
  47 * Example #1, apply integrity checks to all metadata:
  48 * mount /dev/sdb1 /mnt -o check_int
  49 *
  50 * Example #2, apply integrity checks to all metadata and
  51 * to data extents:
  52 * mount /dev/sdb1 /mnt -o check_int_data
  53 *
  54 * Example #3, apply integrity checks to all metadata and dump
  55 * the tree that the super block references to kernel messages
  56 * each time after a super block was written:
  57 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
  58 *
  59 * If the integrity check tool is included and activated in
  60 * the mount options, plenty of kernel memory is used, and
  61 * plenty of additional CPU cycles are spent. Enabling this
  62 * functionality is not intended for normal use. In most
  63 * cases, unless you are a btrfs developer who needs to verify
  64 * the integrity of (super)-block write requests, do not
  65 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
  66 * include and compile the integrity check tool.
  67 *
  68 * Expect millions of lines of information in the kernel log with an
  69 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
  70 * kernel config to at least 26 (which is 64MB). Usually the value is
  71 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
  72 * changed like this before LOG_BUF_SHIFT can be set to a high value:
  73 * config LOG_BUF_SHIFT
  74 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
  75 *       range 12 30
  76 */
  77
  78#include <linux/sched.h>
  79#include <linux/slab.h>
 
  80#include <linux/mutex.h>
  81#include <linux/genhd.h>
  82#include <linux/blkdev.h>
  83#include <linux/mm.h>
  84#include <linux/string.h>
  85#include <crypto/hash.h>
  86#include "ctree.h"
  87#include "disk-io.h"
 
  88#include "transaction.h"
  89#include "extent_io.h"
  90#include "volumes.h"
  91#include "print-tree.h"
  92#include "locking.h"
  93#include "check-integrity.h"
  94#include "rcu-string.h"
  95#include "compression.h"
  96
  97#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
  98#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
  99#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
 100#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
 101#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
 102#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
 103#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
 104#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
 105							 * excluding " [...]" */
 106#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
 107
 108/*
 109 * The definition of the bitmask fields for the print_mask.
 110 * They are specified with the mount option check_integrity_print_mask.
 111 */
 112#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
 113#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
 114#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
 115#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
 116#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
 117#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
 118#define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
 119#define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
 120#define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
 121#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
 122#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
 123#define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
 124#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
 125#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
 126
 127struct btrfsic_dev_state;
 128struct btrfsic_state;
 129
 130struct btrfsic_block {
 131	u32 magic_num;		/* only used for debug purposes */
 132	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
 133	unsigned int is_superblock:1;	/* if it is one of the superblocks */
 134	unsigned int is_iodone:1;	/* if is done by lower subsystem */
 135	unsigned int iodone_w_error:1;	/* error was indicated to endio */
 136	unsigned int never_written:1;	/* block was added because it was
 137					 * referenced, not because it was
 138					 * written */
 139	unsigned int mirror_num;	/* large enough to hold
 140					 * BTRFS_SUPER_MIRROR_MAX */
 141	struct btrfsic_dev_state *dev_state;
 142	u64 dev_bytenr;		/* key, physical byte num on disk */
 143	u64 logical_bytenr;	/* logical byte num on disk */
 144	u64 generation;
 145	struct btrfs_disk_key disk_key;	/* extra info to print in case of
 146					 * issues, will not always be correct */
 147	struct list_head collision_resolving_node;	/* list node */
 148	struct list_head all_blocks_node;	/* list node */
 149
 150	/* the following two lists contain block_link items */
 151	struct list_head ref_to_list;	/* list */
 152	struct list_head ref_from_list;	/* list */
 153	struct btrfsic_block *next_in_same_bio;
 154	void *orig_bio_private;
 155	bio_end_io_t *orig_bio_end_io;
 
 
 
 156	int submit_bio_bh_rw;
 157	u64 flush_gen; /* only valid if !never_written */
 158};
 159
 160/*
 161 * Elements of this type are allocated dynamically and required because
 162 * each block object can refer to and can be ref from multiple blocks.
 163 * The key to lookup them in the hashtable is the dev_bytenr of
 164 * the block ref to plus the one from the block referred from.
 165 * The fact that they are searchable via a hashtable and that a
 166 * ref_cnt is maintained is not required for the btrfs integrity
 167 * check algorithm itself, it is only used to make the output more
 168 * beautiful in case that an error is detected (an error is defined
 169 * as a write operation to a block while that block is still referenced).
 170 */
 171struct btrfsic_block_link {
 172	u32 magic_num;		/* only used for debug purposes */
 173	u32 ref_cnt;
 174	struct list_head node_ref_to;	/* list node */
 175	struct list_head node_ref_from;	/* list node */
 176	struct list_head collision_resolving_node;	/* list node */
 177	struct btrfsic_block *block_ref_to;
 178	struct btrfsic_block *block_ref_from;
 179	u64 parent_generation;
 180};
 181
 182struct btrfsic_dev_state {
 183	u32 magic_num;		/* only used for debug purposes */
 184	struct block_device *bdev;
 185	struct btrfsic_state *state;
 186	struct list_head collision_resolving_node;	/* list node */
 187	struct btrfsic_block dummy_block_for_bio_bh_flush;
 188	u64 last_flush_gen;
 189	char name[BDEVNAME_SIZE];
 190};
 191
 192struct btrfsic_block_hashtable {
 193	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
 194};
 195
 196struct btrfsic_block_link_hashtable {
 197	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
 198};
 199
 200struct btrfsic_dev_state_hashtable {
 201	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
 202};
 203
 204struct btrfsic_block_data_ctx {
 205	u64 start;		/* virtual bytenr */
 206	u64 dev_bytenr;		/* physical bytenr on device */
 207	u32 len;
 208	struct btrfsic_dev_state *dev;
 209	char **datav;
 210	struct page **pagev;
 211	void *mem_to_free;
 212};
 213
 214/* This structure is used to implement recursion without occupying
 215 * any stack space, refer to btrfsic_process_metablock() */
 216struct btrfsic_stack_frame {
 217	u32 magic;
 218	u32 nr;
 219	int error;
 220	int i;
 221	int limit_nesting;
 222	int num_copies;
 223	int mirror_num;
 224	struct btrfsic_block *block;
 225	struct btrfsic_block_data_ctx *block_ctx;
 226	struct btrfsic_block *next_block;
 227	struct btrfsic_block_data_ctx next_block_ctx;
 228	struct btrfs_header *hdr;
 229	struct btrfsic_stack_frame *prev;
 230};
 231
 232/* Some state per mounted filesystem */
 233struct btrfsic_state {
 234	u32 print_mask;
 235	int include_extent_data;
 
 236	struct list_head all_blocks_list;
 237	struct btrfsic_block_hashtable block_hashtable;
 238	struct btrfsic_block_link_hashtable block_link_hashtable;
 239	struct btrfs_fs_info *fs_info;
 240	u64 max_superblock_generation;
 241	struct btrfsic_block *latest_superblock;
 242	u32 metablock_size;
 243	u32 datablock_size;
 244};
 245
 246static void btrfsic_block_init(struct btrfsic_block *b);
 247static struct btrfsic_block *btrfsic_block_alloc(void);
 248static void btrfsic_block_free(struct btrfsic_block *b);
 249static void btrfsic_block_link_init(struct btrfsic_block_link *n);
 250static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
 251static void btrfsic_block_link_free(struct btrfsic_block_link *n);
 252static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
 253static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
 254static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
 255static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
 256static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 257					struct btrfsic_block_hashtable *h);
 258static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
 259static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 260		struct block_device *bdev,
 261		u64 dev_bytenr,
 262		struct btrfsic_block_hashtable *h);
 263static void btrfsic_block_link_hashtable_init(
 264		struct btrfsic_block_link_hashtable *h);
 265static void btrfsic_block_link_hashtable_add(
 266		struct btrfsic_block_link *l,
 267		struct btrfsic_block_link_hashtable *h);
 268static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
 269static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 270		struct block_device *bdev_ref_to,
 271		u64 dev_bytenr_ref_to,
 272		struct block_device *bdev_ref_from,
 273		u64 dev_bytenr_ref_from,
 274		struct btrfsic_block_link_hashtable *h);
 275static void btrfsic_dev_state_hashtable_init(
 276		struct btrfsic_dev_state_hashtable *h);
 277static void btrfsic_dev_state_hashtable_add(
 278		struct btrfsic_dev_state *ds,
 279		struct btrfsic_dev_state_hashtable *h);
 280static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
 281static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
 
 282		struct btrfsic_dev_state_hashtable *h);
 283static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
 284static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
 285static int btrfsic_process_superblock(struct btrfsic_state *state,
 286				      struct btrfs_fs_devices *fs_devices);
 287static int btrfsic_process_metablock(struct btrfsic_state *state,
 288				     struct btrfsic_block *block,
 289				     struct btrfsic_block_data_ctx *block_ctx,
 290				     int limit_nesting, int force_iodone_flag);
 291static void btrfsic_read_from_block_data(
 292	struct btrfsic_block_data_ctx *block_ctx,
 293	void *dst, u32 offset, size_t len);
 294static int btrfsic_create_link_to_next_block(
 295		struct btrfsic_state *state,
 296		struct btrfsic_block *block,
 297		struct btrfsic_block_data_ctx
 298		*block_ctx, u64 next_bytenr,
 299		int limit_nesting,
 300		struct btrfsic_block_data_ctx *next_block_ctx,
 301		struct btrfsic_block **next_blockp,
 302		int force_iodone_flag,
 303		int *num_copiesp, int *mirror_nump,
 304		struct btrfs_disk_key *disk_key,
 305		u64 parent_generation);
 306static int btrfsic_handle_extent_data(struct btrfsic_state *state,
 307				      struct btrfsic_block *block,
 308				      struct btrfsic_block_data_ctx *block_ctx,
 309				      u32 item_offset, int force_iodone_flag);
 310static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
 311			     struct btrfsic_block_data_ctx *block_ctx_out,
 312			     int mirror_num);
 313static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
 314static int btrfsic_read_block(struct btrfsic_state *state,
 315			      struct btrfsic_block_data_ctx *block_ctx);
 316static void btrfsic_dump_database(struct btrfsic_state *state);
 317static int btrfsic_test_for_metadata(struct btrfsic_state *state,
 318				     char **datav, unsigned int num_pages);
 319static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
 320					  u64 dev_bytenr, char **mapped_datav,
 321					  unsigned int num_pages,
 322					  struct bio *bio, int *bio_is_patched,
 
 323					  int submit_bio_bh_rw);
 324static int btrfsic_process_written_superblock(
 325		struct btrfsic_state *state,
 326		struct btrfsic_block *const block,
 327		struct btrfs_super_block *const super_hdr);
 328static void btrfsic_bio_end_io(struct bio *bp);
 
 329static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
 330					      const struct btrfsic_block *block,
 331					      int recursion_level);
 332static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
 333					struct btrfsic_block *const block,
 334					int recursion_level);
 335static void btrfsic_print_add_link(const struct btrfsic_state *state,
 336				   const struct btrfsic_block_link *l);
 337static void btrfsic_print_rem_link(const struct btrfsic_state *state,
 338				   const struct btrfsic_block_link *l);
 339static char btrfsic_get_block_type(const struct btrfsic_state *state,
 340				   const struct btrfsic_block *block);
 341static void btrfsic_dump_tree(const struct btrfsic_state *state);
 342static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
 343				  const struct btrfsic_block *block,
 344				  int indent_level);
 345static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
 346		struct btrfsic_state *state,
 347		struct btrfsic_block_data_ctx *next_block_ctx,
 348		struct btrfsic_block *next_block,
 349		struct btrfsic_block *from_block,
 350		u64 parent_generation);
 351static struct btrfsic_block *btrfsic_block_lookup_or_add(
 352		struct btrfsic_state *state,
 353		struct btrfsic_block_data_ctx *block_ctx,
 354		const char *additional_string,
 355		int is_metadata,
 356		int is_iodone,
 357		int never_written,
 358		int mirror_num,
 359		int *was_created);
 360static int btrfsic_process_superblock_dev_mirror(
 361		struct btrfsic_state *state,
 362		struct btrfsic_dev_state *dev_state,
 363		struct btrfs_device *device,
 364		int superblock_mirror_num,
 365		struct btrfsic_dev_state **selected_dev_state,
 366		struct btrfs_super_block *selected_super);
 367static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
 
 368static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
 369					   u64 bytenr,
 370					   struct btrfsic_dev_state *dev_state,
 371					   u64 dev_bytenr);
 372
 373static struct mutex btrfsic_mutex;
 374static int btrfsic_is_initialized;
 375static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
 376
 377
 378static void btrfsic_block_init(struct btrfsic_block *b)
 379{
 380	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
 381	b->dev_state = NULL;
 382	b->dev_bytenr = 0;
 383	b->logical_bytenr = 0;
 384	b->generation = BTRFSIC_GENERATION_UNKNOWN;
 385	b->disk_key.objectid = 0;
 386	b->disk_key.type = 0;
 387	b->disk_key.offset = 0;
 388	b->is_metadata = 0;
 389	b->is_superblock = 0;
 390	b->is_iodone = 0;
 391	b->iodone_w_error = 0;
 392	b->never_written = 0;
 393	b->mirror_num = 0;
 394	b->next_in_same_bio = NULL;
 395	b->orig_bio_private = NULL;
 396	b->orig_bio_end_io = NULL;
 397	INIT_LIST_HEAD(&b->collision_resolving_node);
 398	INIT_LIST_HEAD(&b->all_blocks_node);
 399	INIT_LIST_HEAD(&b->ref_to_list);
 400	INIT_LIST_HEAD(&b->ref_from_list);
 401	b->submit_bio_bh_rw = 0;
 402	b->flush_gen = 0;
 403}
 404
 405static struct btrfsic_block *btrfsic_block_alloc(void)
 406{
 407	struct btrfsic_block *b;
 408
 409	b = kzalloc(sizeof(*b), GFP_NOFS);
 410	if (NULL != b)
 411		btrfsic_block_init(b);
 412
 413	return b;
 414}
 415
 416static void btrfsic_block_free(struct btrfsic_block *b)
 417{
 418	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
 419	kfree(b);
 420}
 421
 422static void btrfsic_block_link_init(struct btrfsic_block_link *l)
 423{
 424	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
 425	l->ref_cnt = 1;
 426	INIT_LIST_HEAD(&l->node_ref_to);
 427	INIT_LIST_HEAD(&l->node_ref_from);
 428	INIT_LIST_HEAD(&l->collision_resolving_node);
 429	l->block_ref_to = NULL;
 430	l->block_ref_from = NULL;
 431}
 432
 433static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
 434{
 435	struct btrfsic_block_link *l;
 436
 437	l = kzalloc(sizeof(*l), GFP_NOFS);
 438	if (NULL != l)
 439		btrfsic_block_link_init(l);
 440
 441	return l;
 442}
 443
 444static void btrfsic_block_link_free(struct btrfsic_block_link *l)
 445{
 446	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
 447	kfree(l);
 448}
 449
 450static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
 451{
 452	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
 453	ds->bdev = NULL;
 454	ds->state = NULL;
 455	ds->name[0] = '\0';
 456	INIT_LIST_HEAD(&ds->collision_resolving_node);
 457	ds->last_flush_gen = 0;
 458	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
 459	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
 460	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
 461}
 462
 463static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
 464{
 465	struct btrfsic_dev_state *ds;
 466
 467	ds = kzalloc(sizeof(*ds), GFP_NOFS);
 468	if (NULL != ds)
 469		btrfsic_dev_state_init(ds);
 470
 471	return ds;
 472}
 473
 474static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
 475{
 476	BUG_ON(!(NULL == ds ||
 477		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
 478	kfree(ds);
 479}
 480
 481static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
 482{
 483	int i;
 484
 485	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
 486		INIT_LIST_HEAD(h->table + i);
 487}
 488
 489static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 490					struct btrfsic_block_hashtable *h)
 491{
 492	const unsigned int hashval =
 493	    (((unsigned int)(b->dev_bytenr >> 16)) ^
 494	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
 495	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 496
 497	list_add(&b->collision_resolving_node, h->table + hashval);
 498}
 499
 500static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
 501{
 502	list_del(&b->collision_resolving_node);
 503}
 504
 505static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 506		struct block_device *bdev,
 507		u64 dev_bytenr,
 508		struct btrfsic_block_hashtable *h)
 509{
 510	const unsigned int hashval =
 511	    (((unsigned int)(dev_bytenr >> 16)) ^
 512	     ((unsigned int)((uintptr_t)bdev))) &
 513	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 514	struct btrfsic_block *b;
 515
 516	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
 517		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
 518			return b;
 519	}
 520
 521	return NULL;
 522}
 523
 524static void btrfsic_block_link_hashtable_init(
 525		struct btrfsic_block_link_hashtable *h)
 526{
 527	int i;
 528
 529	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
 530		INIT_LIST_HEAD(h->table + i);
 531}
 532
 533static void btrfsic_block_link_hashtable_add(
 534		struct btrfsic_block_link *l,
 535		struct btrfsic_block_link_hashtable *h)
 536{
 537	const unsigned int hashval =
 538	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
 539	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
 540	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
 541	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
 542	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 543
 544	BUG_ON(NULL == l->block_ref_to);
 545	BUG_ON(NULL == l->block_ref_from);
 546	list_add(&l->collision_resolving_node, h->table + hashval);
 547}
 548
 549static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
 550{
 551	list_del(&l->collision_resolving_node);
 552}
 553
 554static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 555		struct block_device *bdev_ref_to,
 556		u64 dev_bytenr_ref_to,
 557		struct block_device *bdev_ref_from,
 558		u64 dev_bytenr_ref_from,
 559		struct btrfsic_block_link_hashtable *h)
 560{
 561	const unsigned int hashval =
 562	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
 563	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
 564	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
 565	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
 566	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 567	struct btrfsic_block_link *l;
 568
 569	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
 570		BUG_ON(NULL == l->block_ref_to);
 571		BUG_ON(NULL == l->block_ref_from);
 572		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
 573		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
 574		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
 575		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
 576			return l;
 577	}
 578
 579	return NULL;
 580}
 581
 582static void btrfsic_dev_state_hashtable_init(
 583		struct btrfsic_dev_state_hashtable *h)
 584{
 585	int i;
 586
 587	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
 588		INIT_LIST_HEAD(h->table + i);
 589}
 590
 591static void btrfsic_dev_state_hashtable_add(
 592		struct btrfsic_dev_state *ds,
 593		struct btrfsic_dev_state_hashtable *h)
 594{
 595	const unsigned int hashval =
 596	    (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
 597	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 598
 599	list_add(&ds->collision_resolving_node, h->table + hashval);
 600}
 601
 602static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
 603{
 604	list_del(&ds->collision_resolving_node);
 605}
 606
 607static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
 
 608		struct btrfsic_dev_state_hashtable *h)
 609{
 610	const unsigned int hashval =
 611		dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
 
 612	struct btrfsic_dev_state *ds;
 613
 614	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
 615		if (ds->bdev->bd_dev == dev)
 616			return ds;
 617	}
 618
 619	return NULL;
 620}
 621
 622static int btrfsic_process_superblock(struct btrfsic_state *state,
 623				      struct btrfs_fs_devices *fs_devices)
 624{
 
 625	struct btrfs_super_block *selected_super;
 626	struct list_head *dev_head = &fs_devices->devices;
 627	struct btrfs_device *device;
 628	struct btrfsic_dev_state *selected_dev_state = NULL;
 629	int ret = 0;
 630	int pass;
 631
 
 632	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
 633	if (!selected_super)
 
 634		return -ENOMEM;
 
 635
 636	list_for_each_entry(device, dev_head, dev_list) {
 637		int i;
 638		struct btrfsic_dev_state *dev_state;
 639
 640		if (!device->bdev || !device->name)
 641			continue;
 642
 643		dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
 644		BUG_ON(NULL == dev_state);
 645		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 646			ret = btrfsic_process_superblock_dev_mirror(
 647					state, dev_state, device, i,
 648					&selected_dev_state, selected_super);
 649			if (0 != ret && 0 == i) {
 650				kfree(selected_super);
 651				return ret;
 652			}
 653		}
 654	}
 655
 656	if (NULL == state->latest_superblock) {
 657		pr_info("btrfsic: no superblock found!\n");
 658		kfree(selected_super);
 659		return -1;
 660	}
 661
 
 
 662	for (pass = 0; pass < 3; pass++) {
 663		int num_copies;
 664		int mirror_num;
 665		u64 next_bytenr;
 666
 667		switch (pass) {
 668		case 0:
 669			next_bytenr = btrfs_super_root(selected_super);
 670			if (state->print_mask &
 671			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 672				pr_info("root@%llu\n", next_bytenr);
 673			break;
 674		case 1:
 675			next_bytenr = btrfs_super_chunk_root(selected_super);
 676			if (state->print_mask &
 677			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 678				pr_info("chunk@%llu\n", next_bytenr);
 679			break;
 680		case 2:
 681			next_bytenr = btrfs_super_log_root(selected_super);
 682			if (0 == next_bytenr)
 683				continue;
 684			if (state->print_mask &
 685			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 686				pr_info("log@%llu\n", next_bytenr);
 687			break;
 688		}
 689
 690		num_copies = btrfs_num_copies(state->fs_info, next_bytenr,
 691					      state->metablock_size);
 692		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 693			pr_info("num_copies(log_bytenr=%llu) = %d\n",
 694			       next_bytenr, num_copies);
 695
 696		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 697			struct btrfsic_block *next_block;
 698			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 699			struct btrfsic_block_link *l;
 700
 701			ret = btrfsic_map_block(state, next_bytenr,
 702						state->metablock_size,
 703						&tmp_next_block_ctx,
 704						mirror_num);
 705			if (ret) {
 706				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
 707				       next_bytenr, mirror_num);
 708				kfree(selected_super);
 709				return -1;
 710			}
 711
 712			next_block = btrfsic_block_hashtable_lookup(
 713					tmp_next_block_ctx.dev->bdev,
 714					tmp_next_block_ctx.dev_bytenr,
 715					&state->block_hashtable);
 716			BUG_ON(NULL == next_block);
 717
 718			l = btrfsic_block_link_hashtable_lookup(
 719					tmp_next_block_ctx.dev->bdev,
 720					tmp_next_block_ctx.dev_bytenr,
 721					state->latest_superblock->dev_state->
 722					bdev,
 723					state->latest_superblock->dev_bytenr,
 724					&state->block_link_hashtable);
 725			BUG_ON(NULL == l);
 726
 727			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
 728			if (ret < (int)PAGE_SIZE) {
 729				pr_info("btrfsic: read @logical %llu failed!\n",
 730				       tmp_next_block_ctx.start);
 731				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 732				kfree(selected_super);
 733				return -1;
 734			}
 735
 736			ret = btrfsic_process_metablock(state,
 737							next_block,
 738							&tmp_next_block_ctx,
 739							BTRFS_MAX_LEVEL + 3, 1);
 740			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 741		}
 742	}
 743
 744	kfree(selected_super);
 745	return ret;
 746}
 747
 748static int btrfsic_process_superblock_dev_mirror(
 749		struct btrfsic_state *state,
 750		struct btrfsic_dev_state *dev_state,
 751		struct btrfs_device *device,
 752		int superblock_mirror_num,
 753		struct btrfsic_dev_state **selected_dev_state,
 754		struct btrfs_super_block *selected_super)
 755{
 756	struct btrfs_fs_info *fs_info = state->fs_info;
 757	struct btrfs_super_block *super_tmp;
 758	u64 dev_bytenr;
 
 759	struct btrfsic_block *superblock_tmp;
 760	int pass;
 761	struct block_device *const superblock_bdev = device->bdev;
 762	struct page *page;
 763	struct address_space *mapping = superblock_bdev->bd_inode->i_mapping;
 764	int ret = 0;
 765
 766	/* super block bytenr is always the unmapped device bytenr */
 767	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
 768	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
 769		return -1;
 770
 771	page = read_cache_page_gfp(mapping, dev_bytenr >> PAGE_SHIFT, GFP_NOFS);
 772	if (IS_ERR(page))
 773		return -1;
 774
 775	super_tmp = page_address(page);
 776
 777	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
 778	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
 779	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
 780	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
 781	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
 782		ret = 0;
 783		goto out;
 784	}
 785
 786	superblock_tmp =
 787	    btrfsic_block_hashtable_lookup(superblock_bdev,
 788					   dev_bytenr,
 789					   &state->block_hashtable);
 790	if (NULL == superblock_tmp) {
 791		superblock_tmp = btrfsic_block_alloc();
 792		if (NULL == superblock_tmp) {
 793			ret = -1;
 794			goto out;
 
 795		}
 796		/* for superblock, only the dev_bytenr makes sense */
 797		superblock_tmp->dev_bytenr = dev_bytenr;
 798		superblock_tmp->dev_state = dev_state;
 799		superblock_tmp->logical_bytenr = dev_bytenr;
 800		superblock_tmp->generation = btrfs_super_generation(super_tmp);
 801		superblock_tmp->is_metadata = 1;
 802		superblock_tmp->is_superblock = 1;
 803		superblock_tmp->is_iodone = 1;
 804		superblock_tmp->never_written = 0;
 805		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
 806		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
 807			btrfs_info_in_rcu(fs_info,
 808				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
 809				     superblock_bdev,
 810				     rcu_str_deref(device->name), dev_bytenr,
 811				     dev_state->name, dev_bytenr,
 812				     superblock_mirror_num);
 813		list_add(&superblock_tmp->all_blocks_node,
 814			 &state->all_blocks_list);
 815		btrfsic_block_hashtable_add(superblock_tmp,
 816					    &state->block_hashtable);
 817	}
 818
 819	/* select the one with the highest generation field */
 820	if (btrfs_super_generation(super_tmp) >
 821	    state->max_superblock_generation ||
 822	    0 == state->max_superblock_generation) {
 823		memcpy(selected_super, super_tmp, sizeof(*selected_super));
 824		*selected_dev_state = dev_state;
 825		state->max_superblock_generation =
 826		    btrfs_super_generation(super_tmp);
 827		state->latest_superblock = superblock_tmp;
 828	}
 829
 830	for (pass = 0; pass < 3; pass++) {
 831		u64 next_bytenr;
 832		int num_copies;
 833		int mirror_num;
 834		const char *additional_string = NULL;
 835		struct btrfs_disk_key tmp_disk_key;
 836
 837		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
 838		tmp_disk_key.offset = 0;
 839		switch (pass) {
 840		case 0:
 841			btrfs_set_disk_key_objectid(&tmp_disk_key,
 842						    BTRFS_ROOT_TREE_OBJECTID);
 843			additional_string = "initial root ";
 844			next_bytenr = btrfs_super_root(super_tmp);
 845			break;
 846		case 1:
 847			btrfs_set_disk_key_objectid(&tmp_disk_key,
 848						    BTRFS_CHUNK_TREE_OBJECTID);
 849			additional_string = "initial chunk ";
 850			next_bytenr = btrfs_super_chunk_root(super_tmp);
 851			break;
 852		case 2:
 853			btrfs_set_disk_key_objectid(&tmp_disk_key,
 854						    BTRFS_TREE_LOG_OBJECTID);
 855			additional_string = "initial log ";
 856			next_bytenr = btrfs_super_log_root(super_tmp);
 857			if (0 == next_bytenr)
 858				continue;
 859			break;
 860		}
 861
 862		num_copies = btrfs_num_copies(fs_info, next_bytenr,
 863					      state->metablock_size);
 864		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 865			pr_info("num_copies(log_bytenr=%llu) = %d\n",
 866			       next_bytenr, num_copies);
 867		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 868			struct btrfsic_block *next_block;
 869			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 870			struct btrfsic_block_link *l;
 871
 872			if (btrfsic_map_block(state, next_bytenr,
 873					      state->metablock_size,
 874					      &tmp_next_block_ctx,
 875					      mirror_num)) {
 876				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
 877				       next_bytenr, mirror_num);
 878				ret = -1;
 879				goto out;
 880			}
 881
 882			next_block = btrfsic_block_lookup_or_add(
 883					state, &tmp_next_block_ctx,
 884					additional_string, 1, 1, 0,
 885					mirror_num, NULL);
 886			if (NULL == next_block) {
 887				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 888				ret = -1;
 889				goto out;
 890			}
 891
 892			next_block->disk_key = tmp_disk_key;
 893			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
 894			l = btrfsic_block_link_lookup_or_add(
 895					state, &tmp_next_block_ctx,
 896					next_block, superblock_tmp,
 897					BTRFSIC_GENERATION_UNKNOWN);
 898			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 899			if (NULL == l) {
 900				ret = -1;
 901				goto out;
 902			}
 903		}
 904	}
 905	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
 906		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
 907
 908out:
 909	put_page(page);
 910	return ret;
 911}
 912
 913static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
 914{
 915	struct btrfsic_stack_frame *sf;
 916
 917	sf = kzalloc(sizeof(*sf), GFP_NOFS);
 918	if (sf)
 
 
 919		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
 920	return sf;
 921}
 922
 923static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
 924{
 925	BUG_ON(!(NULL == sf ||
 926		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
 927	kfree(sf);
 928}
 929
 930static noinline_for_stack int btrfsic_process_metablock(
 931		struct btrfsic_state *state,
 932		struct btrfsic_block *const first_block,
 933		struct btrfsic_block_data_ctx *const first_block_ctx,
 934		int first_limit_nesting, int force_iodone_flag)
 935{
 936	struct btrfsic_stack_frame initial_stack_frame = { 0 };
 937	struct btrfsic_stack_frame *sf;
 938	struct btrfsic_stack_frame *next_stack;
 939	struct btrfs_header *const first_hdr =
 940		(struct btrfs_header *)first_block_ctx->datav[0];
 941
 942	BUG_ON(!first_hdr);
 943	sf = &initial_stack_frame;
 944	sf->error = 0;
 945	sf->i = -1;
 946	sf->limit_nesting = first_limit_nesting;
 947	sf->block = first_block;
 948	sf->block_ctx = first_block_ctx;
 949	sf->next_block = NULL;
 950	sf->hdr = first_hdr;
 951	sf->prev = NULL;
 952
 953continue_with_new_stack_frame:
 954	sf->block->generation = btrfs_stack_header_generation(sf->hdr);
 955	if (0 == sf->hdr->level) {
 956		struct btrfs_leaf *const leafhdr =
 957		    (struct btrfs_leaf *)sf->hdr;
 958
 959		if (-1 == sf->i) {
 960			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
 961
 962			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
 963				pr_info("leaf %llu items %d generation %llu owner %llu\n",
 964				       sf->block_ctx->start, sf->nr,
 965				       btrfs_stack_header_generation(
 966					       &leafhdr->header),
 967				       btrfs_stack_header_owner(
 968					       &leafhdr->header));
 969		}
 970
 971continue_with_current_leaf_stack_frame:
 972		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
 973			sf->i++;
 974			sf->num_copies = 0;
 975		}
 976
 977		if (sf->i < sf->nr) {
 978			struct btrfs_item disk_item;
 979			u32 disk_item_offset =
 980				(uintptr_t)(leafhdr->items + sf->i) -
 981				(uintptr_t)leafhdr;
 982			struct btrfs_disk_key *disk_key;
 983			u8 type;
 984			u32 item_offset;
 985			u32 item_size;
 986
 987			if (disk_item_offset + sizeof(struct btrfs_item) >
 988			    sf->block_ctx->len) {
 989leaf_item_out_of_bounce_error:
 990				pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
 991				       sf->block_ctx->start,
 992				       sf->block_ctx->dev->name);
 993				goto one_stack_frame_backwards;
 994			}
 995			btrfsic_read_from_block_data(sf->block_ctx,
 996						     &disk_item,
 997						     disk_item_offset,
 998						     sizeof(struct btrfs_item));
 999			item_offset = btrfs_stack_item_offset(&disk_item);
1000			item_size = btrfs_stack_item_size(&disk_item);
1001			disk_key = &disk_item.key;
1002			type = btrfs_disk_key_type(disk_key);
1003
1004			if (BTRFS_ROOT_ITEM_KEY == type) {
1005				struct btrfs_root_item root_item;
1006				u32 root_item_offset;
1007				u64 next_bytenr;
1008
1009				root_item_offset = item_offset +
1010					offsetof(struct btrfs_leaf, items);
1011				if (root_item_offset + item_size >
1012				    sf->block_ctx->len)
1013					goto leaf_item_out_of_bounce_error;
1014				btrfsic_read_from_block_data(
1015					sf->block_ctx, &root_item,
1016					root_item_offset,
1017					item_size);
1018				next_bytenr = btrfs_root_bytenr(&root_item);
1019
1020				sf->error =
1021				    btrfsic_create_link_to_next_block(
1022						state,
1023						sf->block,
1024						sf->block_ctx,
1025						next_bytenr,
1026						sf->limit_nesting,
1027						&sf->next_block_ctx,
1028						&sf->next_block,
1029						force_iodone_flag,
1030						&sf->num_copies,
1031						&sf->mirror_num,
1032						disk_key,
1033						btrfs_root_generation(
1034						&root_item));
1035				if (sf->error)
1036					goto one_stack_frame_backwards;
1037
1038				if (NULL != sf->next_block) {
1039					struct btrfs_header *const next_hdr =
1040					    (struct btrfs_header *)
1041					    sf->next_block_ctx.datav[0];
1042
1043					next_stack =
1044					    btrfsic_stack_frame_alloc();
1045					if (NULL == next_stack) {
1046						sf->error = -1;
1047						btrfsic_release_block_ctx(
1048								&sf->
1049								next_block_ctx);
1050						goto one_stack_frame_backwards;
1051					}
1052
1053					next_stack->i = -1;
1054					next_stack->block = sf->next_block;
1055					next_stack->block_ctx =
1056					    &sf->next_block_ctx;
1057					next_stack->next_block = NULL;
1058					next_stack->hdr = next_hdr;
1059					next_stack->limit_nesting =
1060					    sf->limit_nesting - 1;
1061					next_stack->prev = sf;
1062					sf = next_stack;
1063					goto continue_with_new_stack_frame;
1064				}
1065			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1066				   state->include_extent_data) {
1067				sf->error = btrfsic_handle_extent_data(
1068						state,
1069						sf->block,
1070						sf->block_ctx,
1071						item_offset,
1072						force_iodone_flag);
1073				if (sf->error)
1074					goto one_stack_frame_backwards;
1075			}
1076
1077			goto continue_with_current_leaf_stack_frame;
1078		}
1079	} else {
1080		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1081
1082		if (-1 == sf->i) {
1083			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1084
1085			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1086				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1087				       sf->block_ctx->start,
1088				       nodehdr->header.level, sf->nr,
1089				       btrfs_stack_header_generation(
1090				       &nodehdr->header),
1091				       btrfs_stack_header_owner(
1092				       &nodehdr->header));
1093		}
1094
1095continue_with_current_node_stack_frame:
1096		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1097			sf->i++;
1098			sf->num_copies = 0;
1099		}
1100
1101		if (sf->i < sf->nr) {
1102			struct btrfs_key_ptr key_ptr;
1103			u32 key_ptr_offset;
1104			u64 next_bytenr;
1105
1106			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1107					  (uintptr_t)nodehdr;
1108			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1109			    sf->block_ctx->len) {
1110				pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1111				       sf->block_ctx->start,
1112				       sf->block_ctx->dev->name);
1113				goto one_stack_frame_backwards;
1114			}
1115			btrfsic_read_from_block_data(
1116				sf->block_ctx, &key_ptr, key_ptr_offset,
1117				sizeof(struct btrfs_key_ptr));
1118			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1119
1120			sf->error = btrfsic_create_link_to_next_block(
1121					state,
1122					sf->block,
1123					sf->block_ctx,
1124					next_bytenr,
1125					sf->limit_nesting,
1126					&sf->next_block_ctx,
1127					&sf->next_block,
1128					force_iodone_flag,
1129					&sf->num_copies,
1130					&sf->mirror_num,
1131					&key_ptr.key,
1132					btrfs_stack_key_generation(&key_ptr));
1133			if (sf->error)
1134				goto one_stack_frame_backwards;
1135
1136			if (NULL != sf->next_block) {
1137				struct btrfs_header *const next_hdr =
1138				    (struct btrfs_header *)
1139				    sf->next_block_ctx.datav[0];
1140
1141				next_stack = btrfsic_stack_frame_alloc();
1142				if (NULL == next_stack) {
1143					sf->error = -1;
1144					goto one_stack_frame_backwards;
1145				}
1146
1147				next_stack->i = -1;
1148				next_stack->block = sf->next_block;
1149				next_stack->block_ctx = &sf->next_block_ctx;
1150				next_stack->next_block = NULL;
1151				next_stack->hdr = next_hdr;
1152				next_stack->limit_nesting =
1153				    sf->limit_nesting - 1;
1154				next_stack->prev = sf;
1155				sf = next_stack;
1156				goto continue_with_new_stack_frame;
1157			}
1158
1159			goto continue_with_current_node_stack_frame;
1160		}
1161	}
1162
1163one_stack_frame_backwards:
1164	if (NULL != sf->prev) {
1165		struct btrfsic_stack_frame *const prev = sf->prev;
1166
1167		/* the one for the initial block is freed in the caller */
1168		btrfsic_release_block_ctx(sf->block_ctx);
1169
1170		if (sf->error) {
1171			prev->error = sf->error;
1172			btrfsic_stack_frame_free(sf);
1173			sf = prev;
1174			goto one_stack_frame_backwards;
1175		}
1176
1177		btrfsic_stack_frame_free(sf);
1178		sf = prev;
1179		goto continue_with_new_stack_frame;
1180	} else {
1181		BUG_ON(&initial_stack_frame != sf);
1182	}
1183
1184	return sf->error;
1185}
1186
1187static void btrfsic_read_from_block_data(
1188	struct btrfsic_block_data_ctx *block_ctx,
1189	void *dstv, u32 offset, size_t len)
1190{
1191	size_t cur;
1192	size_t pgoff;
1193	char *kaddr;
1194	char *dst = (char *)dstv;
1195	size_t start_offset = offset_in_page(block_ctx->start);
1196	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1197
1198	WARN_ON(offset + len > block_ctx->len);
1199	pgoff = offset_in_page(start_offset + offset);
1200
1201	while (len > 0) {
1202		cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1203		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1204		kaddr = block_ctx->datav[i];
1205		memcpy(dst, kaddr + pgoff, cur);
1206
1207		dst += cur;
1208		len -= cur;
1209		pgoff = 0;
1210		i++;
1211	}
1212}
1213
1214static int btrfsic_create_link_to_next_block(
1215		struct btrfsic_state *state,
1216		struct btrfsic_block *block,
1217		struct btrfsic_block_data_ctx *block_ctx,
1218		u64 next_bytenr,
1219		int limit_nesting,
1220		struct btrfsic_block_data_ctx *next_block_ctx,
1221		struct btrfsic_block **next_blockp,
1222		int force_iodone_flag,
1223		int *num_copiesp, int *mirror_nump,
1224		struct btrfs_disk_key *disk_key,
1225		u64 parent_generation)
1226{
1227	struct btrfs_fs_info *fs_info = state->fs_info;
1228	struct btrfsic_block *next_block = NULL;
1229	int ret;
1230	struct btrfsic_block_link *l;
1231	int did_alloc_block_link;
1232	int block_was_created;
1233
1234	*next_blockp = NULL;
1235	if (0 == *num_copiesp) {
1236		*num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1237						state->metablock_size);
1238		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1239			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1240			       next_bytenr, *num_copiesp);
1241		*mirror_nump = 1;
1242	}
1243
1244	if (*mirror_nump > *num_copiesp)
1245		return 0;
1246
1247	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1248		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1249		       *mirror_nump);
1250	ret = btrfsic_map_block(state, next_bytenr,
1251				state->metablock_size,
1252				next_block_ctx, *mirror_nump);
1253	if (ret) {
1254		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1255		       next_bytenr, *mirror_nump);
1256		btrfsic_release_block_ctx(next_block_ctx);
1257		*next_blockp = NULL;
1258		return -1;
1259	}
1260
1261	next_block = btrfsic_block_lookup_or_add(state,
1262						 next_block_ctx, "referenced ",
1263						 1, force_iodone_flag,
1264						 !force_iodone_flag,
1265						 *mirror_nump,
1266						 &block_was_created);
1267	if (NULL == next_block) {
1268		btrfsic_release_block_ctx(next_block_ctx);
1269		*next_blockp = NULL;
1270		return -1;
1271	}
1272	if (block_was_created) {
1273		l = NULL;
1274		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1275	} else {
1276		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1277			if (next_block->logical_bytenr != next_bytenr &&
1278			    !(!next_block->is_metadata &&
1279			      0 == next_block->logical_bytenr))
1280				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1281				       next_bytenr, next_block_ctx->dev->name,
1282				       next_block_ctx->dev_bytenr, *mirror_nump,
1283				       btrfsic_get_block_type(state,
1284							      next_block),
1285				       next_block->logical_bytenr);
1286			else
1287				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1288				       next_bytenr, next_block_ctx->dev->name,
1289				       next_block_ctx->dev_bytenr, *mirror_nump,
1290				       btrfsic_get_block_type(state,
1291							      next_block));
1292		}
1293		next_block->logical_bytenr = next_bytenr;
1294
1295		next_block->mirror_num = *mirror_nump;
1296		l = btrfsic_block_link_hashtable_lookup(
1297				next_block_ctx->dev->bdev,
1298				next_block_ctx->dev_bytenr,
1299				block_ctx->dev->bdev,
1300				block_ctx->dev_bytenr,
1301				&state->block_link_hashtable);
1302	}
1303
1304	next_block->disk_key = *disk_key;
1305	if (NULL == l) {
1306		l = btrfsic_block_link_alloc();
1307		if (NULL == l) {
 
1308			btrfsic_release_block_ctx(next_block_ctx);
1309			*next_blockp = NULL;
1310			return -1;
1311		}
1312
1313		did_alloc_block_link = 1;
1314		l->block_ref_to = next_block;
1315		l->block_ref_from = block;
1316		l->ref_cnt = 1;
1317		l->parent_generation = parent_generation;
1318
1319		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1320			btrfsic_print_add_link(state, l);
1321
1322		list_add(&l->node_ref_to, &block->ref_to_list);
1323		list_add(&l->node_ref_from, &next_block->ref_from_list);
1324
1325		btrfsic_block_link_hashtable_add(l,
1326						 &state->block_link_hashtable);
1327	} else {
1328		did_alloc_block_link = 0;
1329		if (0 == limit_nesting) {
1330			l->ref_cnt++;
1331			l->parent_generation = parent_generation;
1332			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1333				btrfsic_print_add_link(state, l);
1334		}
1335	}
1336
1337	if (limit_nesting > 0 && did_alloc_block_link) {
1338		ret = btrfsic_read_block(state, next_block_ctx);
1339		if (ret < (int)next_block_ctx->len) {
1340			pr_info("btrfsic: read block @logical %llu failed!\n",
1341			       next_bytenr);
1342			btrfsic_release_block_ctx(next_block_ctx);
1343			*next_blockp = NULL;
1344			return -1;
1345		}
1346
1347		*next_blockp = next_block;
1348	} else {
1349		*next_blockp = NULL;
1350	}
1351	(*mirror_nump)++;
1352
1353	return 0;
1354}
1355
1356static int btrfsic_handle_extent_data(
1357		struct btrfsic_state *state,
1358		struct btrfsic_block *block,
1359		struct btrfsic_block_data_ctx *block_ctx,
1360		u32 item_offset, int force_iodone_flag)
1361{
1362	struct btrfs_fs_info *fs_info = state->fs_info;
1363	struct btrfs_file_extent_item file_extent_item;
1364	u64 file_extent_item_offset;
1365	u64 next_bytenr;
1366	u64 num_bytes;
1367	u64 generation;
1368	struct btrfsic_block_link *l;
1369	int ret;
1370
1371	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1372				  item_offset;
1373	if (file_extent_item_offset +
1374	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1375	    block_ctx->len) {
1376		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1377		       block_ctx->start, block_ctx->dev->name);
1378		return -1;
1379	}
1380
1381	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1382		file_extent_item_offset,
1383		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1384	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1385	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1386		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1387			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1388			       file_extent_item.type,
1389			       btrfs_stack_file_extent_disk_bytenr(
1390			       &file_extent_item));
1391		return 0;
1392	}
1393
1394	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1395	    block_ctx->len) {
1396		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1397		       block_ctx->start, block_ctx->dev->name);
1398		return -1;
1399	}
1400	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1401				     file_extent_item_offset,
1402				     sizeof(struct btrfs_file_extent_item));
1403	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1404	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1405	    BTRFS_COMPRESS_NONE) {
1406		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1407		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1408	} else {
1409		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1410	}
1411	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1412
1413	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1414		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1415		       file_extent_item.type,
1416		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1417		       btrfs_stack_file_extent_offset(&file_extent_item),
1418		       num_bytes);
1419	while (num_bytes > 0) {
1420		u32 chunk_len;
1421		int num_copies;
1422		int mirror_num;
1423
1424		if (num_bytes > state->datablock_size)
1425			chunk_len = state->datablock_size;
1426		else
1427			chunk_len = num_bytes;
1428
1429		num_copies = btrfs_num_copies(fs_info, next_bytenr,
1430					      state->datablock_size);
1431		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1432			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1433			       next_bytenr, num_copies);
1434		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1435			struct btrfsic_block_data_ctx next_block_ctx;
1436			struct btrfsic_block *next_block;
1437			int block_was_created;
1438
1439			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1440				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1441					mirror_num);
1442			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1443				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1444				       next_bytenr, chunk_len);
1445			ret = btrfsic_map_block(state, next_bytenr,
1446						chunk_len, &next_block_ctx,
1447						mirror_num);
1448			if (ret) {
1449				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1450				       next_bytenr, mirror_num);
1451				return -1;
1452			}
1453
1454			next_block = btrfsic_block_lookup_or_add(
1455					state,
1456					&next_block_ctx,
1457					"referenced ",
1458					0,
1459					force_iodone_flag,
1460					!force_iodone_flag,
1461					mirror_num,
1462					&block_was_created);
1463			if (NULL == next_block) {
 
1464				btrfsic_release_block_ctx(&next_block_ctx);
1465				return -1;
1466			}
1467			if (!block_was_created) {
1468				if ((state->print_mask &
1469				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1470				    next_block->logical_bytenr != next_bytenr &&
1471				    !(!next_block->is_metadata &&
1472				      0 == next_block->logical_bytenr)) {
1473					pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1474					       next_bytenr,
1475					       next_block_ctx.dev->name,
1476					       next_block_ctx.dev_bytenr,
1477					       mirror_num,
1478					       next_block->logical_bytenr);
1479				}
1480				next_block->logical_bytenr = next_bytenr;
1481				next_block->mirror_num = mirror_num;
1482			}
1483
1484			l = btrfsic_block_link_lookup_or_add(state,
1485							     &next_block_ctx,
1486							     next_block, block,
1487							     generation);
1488			btrfsic_release_block_ctx(&next_block_ctx);
1489			if (NULL == l)
1490				return -1;
1491		}
1492
1493		next_bytenr += chunk_len;
1494		num_bytes -= chunk_len;
1495	}
1496
1497	return 0;
1498}
1499
1500static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1501			     struct btrfsic_block_data_ctx *block_ctx_out,
1502			     int mirror_num)
1503{
1504	struct btrfs_fs_info *fs_info = state->fs_info;
1505	int ret;
1506	u64 length;
1507	struct btrfs_bio *multi = NULL;
1508	struct btrfs_device *device;
1509
1510	length = len;
1511	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1512			      bytenr, &length, &multi, mirror_num);
1513
1514	if (ret) {
1515		block_ctx_out->start = 0;
1516		block_ctx_out->dev_bytenr = 0;
1517		block_ctx_out->len = 0;
1518		block_ctx_out->dev = NULL;
1519		block_ctx_out->datav = NULL;
1520		block_ctx_out->pagev = NULL;
1521		block_ctx_out->mem_to_free = NULL;
1522
1523		return ret;
1524	}
1525
1526	device = multi->stripes[0].dev;
1527	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1528	    !device->bdev || !device->name)
1529		block_ctx_out->dev = NULL;
1530	else
1531		block_ctx_out->dev = btrfsic_dev_state_lookup(
1532							device->bdev->bd_dev);
1533	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1534	block_ctx_out->start = bytenr;
1535	block_ctx_out->len = len;
1536	block_ctx_out->datav = NULL;
1537	block_ctx_out->pagev = NULL;
1538	block_ctx_out->mem_to_free = NULL;
1539
1540	kfree(multi);
1541	if (NULL == block_ctx_out->dev) {
1542		ret = -ENXIO;
1543		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1544	}
1545
1546	return ret;
1547}
1548
1549static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1550{
1551	if (block_ctx->mem_to_free) {
1552		unsigned int num_pages;
1553
1554		BUG_ON(!block_ctx->datav);
1555		BUG_ON(!block_ctx->pagev);
1556		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1557			    PAGE_SHIFT;
1558		/* Pages must be unmapped in reverse order */
1559		while (num_pages > 0) {
1560			num_pages--;
1561			if (block_ctx->datav[num_pages]) {
1562				kunmap_local(block_ctx->datav[num_pages]);
1563				block_ctx->datav[num_pages] = NULL;
1564			}
1565			if (block_ctx->pagev[num_pages]) {
1566				__free_page(block_ctx->pagev[num_pages]);
1567				block_ctx->pagev[num_pages] = NULL;
1568			}
1569		}
1570
1571		kfree(block_ctx->mem_to_free);
1572		block_ctx->mem_to_free = NULL;
1573		block_ctx->pagev = NULL;
1574		block_ctx->datav = NULL;
1575	}
1576}
1577
1578static int btrfsic_read_block(struct btrfsic_state *state,
1579			      struct btrfsic_block_data_ctx *block_ctx)
1580{
1581	unsigned int num_pages;
1582	unsigned int i;
1583	size_t size;
1584	u64 dev_bytenr;
1585	int ret;
1586
1587	BUG_ON(block_ctx->datav);
1588	BUG_ON(block_ctx->pagev);
1589	BUG_ON(block_ctx->mem_to_free);
1590	if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1591		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1592		       block_ctx->dev_bytenr);
1593		return -1;
1594	}
1595
1596	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1597		    PAGE_SHIFT;
1598	size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1599	block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
 
1600	if (!block_ctx->mem_to_free)
1601		return -ENOMEM;
1602	block_ctx->datav = block_ctx->mem_to_free;
1603	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1604	for (i = 0; i < num_pages; i++) {
1605		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1606		if (!block_ctx->pagev[i])
1607			return -1;
1608	}
1609
1610	dev_bytenr = block_ctx->dev_bytenr;
1611	for (i = 0; i < num_pages;) {
1612		struct bio *bio;
1613		unsigned int j;
1614
1615		bio = btrfs_io_bio_alloc(num_pages - i);
1616		bio_set_dev(bio, block_ctx->dev->bdev);
 
 
 
 
 
1617		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1618		bio->bi_opf = REQ_OP_READ;
1619
1620		for (j = i; j < num_pages; j++) {
1621			ret = bio_add_page(bio, block_ctx->pagev[j],
1622					   PAGE_SIZE, 0);
1623			if (PAGE_SIZE != ret)
1624				break;
1625		}
1626		if (j == i) {
1627			pr_info("btrfsic: error, failed to add a single page!\n");
1628			return -1;
1629		}
1630		if (submit_bio_wait(bio)) {
1631			pr_info("btrfsic: read error at logical %llu dev %s!\n",
1632			       block_ctx->start, block_ctx->dev->name);
1633			bio_put(bio);
1634			return -1;
1635		}
1636		bio_put(bio);
1637		dev_bytenr += (j - i) * PAGE_SIZE;
1638		i = j;
1639	}
1640	for (i = 0; i < num_pages; i++)
1641		block_ctx->datav[i] = kmap_local_page(block_ctx->pagev[i]);
 
 
 
 
 
 
1642
1643	return block_ctx->len;
1644}
1645
1646static void btrfsic_dump_database(struct btrfsic_state *state)
1647{
1648	const struct btrfsic_block *b_all;
1649
1650	BUG_ON(NULL == state);
1651
1652	pr_info("all_blocks_list:\n");
1653	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1654		const struct btrfsic_block_link *l;
1655
1656		pr_info("%c-block @%llu (%s/%llu/%d)\n",
1657		       btrfsic_get_block_type(state, b_all),
1658		       b_all->logical_bytenr, b_all->dev_state->name,
1659		       b_all->dev_bytenr, b_all->mirror_num);
1660
1661		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1662			pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1663			       btrfsic_get_block_type(state, b_all),
1664			       b_all->logical_bytenr, b_all->dev_state->name,
1665			       b_all->dev_bytenr, b_all->mirror_num,
1666			       l->ref_cnt,
1667			       btrfsic_get_block_type(state, l->block_ref_to),
1668			       l->block_ref_to->logical_bytenr,
1669			       l->block_ref_to->dev_state->name,
1670			       l->block_ref_to->dev_bytenr,
1671			       l->block_ref_to->mirror_num);
1672		}
1673
1674		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1675			pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1676			       btrfsic_get_block_type(state, b_all),
1677			       b_all->logical_bytenr, b_all->dev_state->name,
1678			       b_all->dev_bytenr, b_all->mirror_num,
1679			       l->ref_cnt,
1680			       btrfsic_get_block_type(state, l->block_ref_from),
1681			       l->block_ref_from->logical_bytenr,
1682			       l->block_ref_from->dev_state->name,
1683			       l->block_ref_from->dev_bytenr,
1684			       l->block_ref_from->mirror_num);
1685		}
1686
1687		pr_info("\n");
1688	}
1689}
1690
1691/*
1692 * Test whether the disk block contains a tree block (leaf or node)
1693 * (note that this test fails for the super block)
1694 */
1695static noinline_for_stack int btrfsic_test_for_metadata(
1696		struct btrfsic_state *state,
1697		char **datav, unsigned int num_pages)
1698{
1699	struct btrfs_fs_info *fs_info = state->fs_info;
1700	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1701	struct btrfs_header *h;
1702	u8 csum[BTRFS_CSUM_SIZE];
 
1703	unsigned int i;
1704
1705	if (num_pages * PAGE_SIZE < state->metablock_size)
1706		return 1; /* not metadata */
1707	num_pages = state->metablock_size >> PAGE_SHIFT;
1708	h = (struct btrfs_header *)datav[0];
1709
1710	if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1711		return 1;
1712
1713	shash->tfm = fs_info->csum_shash;
1714	crypto_shash_init(shash);
1715
1716	for (i = 0; i < num_pages; i++) {
1717		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1718		size_t sublen = i ? PAGE_SIZE :
1719				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1720
1721		crypto_shash_update(shash, data, sublen);
1722	}
1723	crypto_shash_final(shash, csum);
1724	if (memcmp(csum, h->csum, fs_info->csum_size))
1725		return 1;
1726
1727	return 0; /* is metadata */
1728}
1729
1730static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1731					  u64 dev_bytenr, char **mapped_datav,
1732					  unsigned int num_pages,
1733					  struct bio *bio, int *bio_is_patched,
 
1734					  int submit_bio_bh_rw)
1735{
1736	int is_metadata;
1737	struct btrfsic_block *block;
1738	struct btrfsic_block_data_ctx block_ctx;
1739	int ret;
1740	struct btrfsic_state *state = dev_state->state;
1741	struct block_device *bdev = dev_state->bdev;
1742	unsigned int processed_len;
1743
1744	if (NULL != bio_is_patched)
1745		*bio_is_patched = 0;
1746
1747again:
1748	if (num_pages == 0)
1749		return;
1750
1751	processed_len = 0;
1752	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1753						      num_pages));
1754
1755	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1756					       &state->block_hashtable);
1757	if (NULL != block) {
1758		u64 bytenr = 0;
1759		struct btrfsic_block_link *l, *tmp;
1760
1761		if (block->is_superblock) {
1762			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1763						    mapped_datav[0]);
1764			if (num_pages * PAGE_SIZE <
1765			    BTRFS_SUPER_INFO_SIZE) {
1766				pr_info("btrfsic: cannot work with too short bios!\n");
1767				return;
1768			}
1769			is_metadata = 1;
1770			BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1771			processed_len = BTRFS_SUPER_INFO_SIZE;
1772			if (state->print_mask &
1773			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1774				pr_info("[before new superblock is written]:\n");
1775				btrfsic_dump_tree_sub(state, block, 0);
1776			}
1777		}
1778		if (is_metadata) {
1779			if (!block->is_superblock) {
1780				if (num_pages * PAGE_SIZE <
1781				    state->metablock_size) {
1782					pr_info("btrfsic: cannot work with too short bios!\n");
1783					return;
1784				}
1785				processed_len = state->metablock_size;
1786				bytenr = btrfs_stack_header_bytenr(
1787						(struct btrfs_header *)
1788						mapped_datav[0]);
1789				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1790							       dev_state,
1791							       dev_bytenr);
1792			}
1793			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1794				if (block->logical_bytenr != bytenr &&
1795				    !(!block->is_metadata &&
1796				      block->logical_bytenr == 0))
1797					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1798					       bytenr, dev_state->name,
1799					       dev_bytenr,
1800					       block->mirror_num,
1801					       btrfsic_get_block_type(state,
1802								      block),
1803					       block->logical_bytenr);
1804				else
1805					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1806					       bytenr, dev_state->name,
1807					       dev_bytenr, block->mirror_num,
1808					       btrfsic_get_block_type(state,
1809								      block));
1810			}
1811			block->logical_bytenr = bytenr;
1812		} else {
1813			if (num_pages * PAGE_SIZE <
1814			    state->datablock_size) {
1815				pr_info("btrfsic: cannot work with too short bios!\n");
1816				return;
1817			}
1818			processed_len = state->datablock_size;
1819			bytenr = block->logical_bytenr;
1820			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1821				pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1822				       bytenr, dev_state->name, dev_bytenr,
1823				       block->mirror_num,
1824				       btrfsic_get_block_type(state, block));
1825		}
1826
1827		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1828			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1829			       list_empty(&block->ref_to_list) ? ' ' : '!',
1830			       list_empty(&block->ref_from_list) ? ' ' : '!');
1831		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1832			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1833			       btrfsic_get_block_type(state, block), bytenr,
1834			       dev_state->name, dev_bytenr, block->mirror_num,
1835			       block->generation,
1836			       btrfs_disk_key_objectid(&block->disk_key),
1837			       block->disk_key.type,
1838			       btrfs_disk_key_offset(&block->disk_key),
1839			       btrfs_stack_header_generation(
1840				       (struct btrfs_header *) mapped_datav[0]),
1841			       state->max_superblock_generation);
1842			btrfsic_dump_tree(state);
1843		}
1844
1845		if (!block->is_iodone && !block->never_written) {
1846			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1847			       btrfsic_get_block_type(state, block), bytenr,
1848			       dev_state->name, dev_bytenr, block->mirror_num,
1849			       block->generation,
1850			       btrfs_stack_header_generation(
1851				       (struct btrfs_header *)
1852				       mapped_datav[0]));
1853			/* it would not be safe to go on */
1854			btrfsic_dump_tree(state);
1855			goto continue_loop;
1856		}
1857
1858		/*
1859		 * Clear all references of this block. Do not free
1860		 * the block itself even if is not referenced anymore
1861		 * because it still carries valuable information
1862		 * like whether it was ever written and IO completed.
1863		 */
1864		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1865					 node_ref_to) {
1866			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1867				btrfsic_print_rem_link(state, l);
1868			l->ref_cnt--;
1869			if (0 == l->ref_cnt) {
1870				list_del(&l->node_ref_to);
1871				list_del(&l->node_ref_from);
1872				btrfsic_block_link_hashtable_remove(l);
1873				btrfsic_block_link_free(l);
1874			}
1875		}
1876
1877		block_ctx.dev = dev_state;
1878		block_ctx.dev_bytenr = dev_bytenr;
1879		block_ctx.start = bytenr;
1880		block_ctx.len = processed_len;
1881		block_ctx.pagev = NULL;
1882		block_ctx.mem_to_free = NULL;
1883		block_ctx.datav = mapped_datav;
1884
1885		if (is_metadata || state->include_extent_data) {
1886			block->never_written = 0;
1887			block->iodone_w_error = 0;
1888			if (NULL != bio) {
1889				block->is_iodone = 0;
1890				BUG_ON(NULL == bio_is_patched);
1891				if (!*bio_is_patched) {
1892					block->orig_bio_private =
1893					    bio->bi_private;
1894					block->orig_bio_end_io =
1895					    bio->bi_end_io;
1896					block->next_in_same_bio = NULL;
1897					bio->bi_private = block;
1898					bio->bi_end_io = btrfsic_bio_end_io;
1899					*bio_is_patched = 1;
1900				} else {
1901					struct btrfsic_block *chained_block =
1902					    (struct btrfsic_block *)
1903					    bio->bi_private;
1904
1905					BUG_ON(NULL == chained_block);
1906					block->orig_bio_private =
1907					    chained_block->orig_bio_private;
1908					block->orig_bio_end_io =
1909					    chained_block->orig_bio_end_io;
 
1910					block->next_in_same_bio = chained_block;
1911					bio->bi_private = block;
1912				}
 
 
 
 
 
 
 
1913			} else {
1914				block->is_iodone = 1;
1915				block->orig_bio_private = NULL;
1916				block->orig_bio_end_io = NULL;
1917				block->next_in_same_bio = NULL;
1918			}
1919		}
1920
1921		block->flush_gen = dev_state->last_flush_gen + 1;
1922		block->submit_bio_bh_rw = submit_bio_bh_rw;
1923		if (is_metadata) {
1924			block->logical_bytenr = bytenr;
1925			block->is_metadata = 1;
1926			if (block->is_superblock) {
1927				BUG_ON(PAGE_SIZE !=
1928				       BTRFS_SUPER_INFO_SIZE);
1929				ret = btrfsic_process_written_superblock(
1930						state,
1931						block,
1932						(struct btrfs_super_block *)
1933						mapped_datav[0]);
1934				if (state->print_mask &
1935				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1936					pr_info("[after new superblock is written]:\n");
1937					btrfsic_dump_tree_sub(state, block, 0);
1938				}
1939			} else {
1940				block->mirror_num = 0;	/* unknown */
1941				ret = btrfsic_process_metablock(
1942						state,
1943						block,
1944						&block_ctx,
1945						0, 0);
1946			}
1947			if (ret)
1948				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1949				       dev_bytenr);
1950		} else {
1951			block->is_metadata = 0;
1952			block->mirror_num = 0;	/* unknown */
1953			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1954			if (!state->include_extent_data
1955			    && list_empty(&block->ref_from_list)) {
1956				/*
1957				 * disk block is overwritten with extent
1958				 * data (not meta data) and we are configured
1959				 * to not include extent data: take the
1960				 * chance and free the block's memory
1961				 */
1962				btrfsic_block_hashtable_remove(block);
1963				list_del(&block->all_blocks_node);
1964				btrfsic_block_free(block);
1965			}
1966		}
1967		btrfsic_release_block_ctx(&block_ctx);
1968	} else {
1969		/* block has not been found in hash table */
1970		u64 bytenr;
1971
1972		if (!is_metadata) {
1973			processed_len = state->datablock_size;
1974			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1975				pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
1976				       dev_state->name, dev_bytenr);
1977			if (!state->include_extent_data) {
1978				/* ignore that written D block */
1979				goto continue_loop;
1980			}
1981
1982			/* this is getting ugly for the
1983			 * include_extent_data case... */
1984			bytenr = 0;	/* unknown */
1985		} else {
1986			processed_len = state->metablock_size;
1987			bytenr = btrfs_stack_header_bytenr(
1988					(struct btrfs_header *)
1989					mapped_datav[0]);
1990			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
1991						       dev_bytenr);
1992			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1993				pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
1994				       bytenr, dev_state->name, dev_bytenr);
1995		}
1996
1997		block_ctx.dev = dev_state;
1998		block_ctx.dev_bytenr = dev_bytenr;
1999		block_ctx.start = bytenr;
2000		block_ctx.len = processed_len;
2001		block_ctx.pagev = NULL;
2002		block_ctx.mem_to_free = NULL;
2003		block_ctx.datav = mapped_datav;
2004
2005		block = btrfsic_block_alloc();
2006		if (NULL == block) {
 
2007			btrfsic_release_block_ctx(&block_ctx);
2008			goto continue_loop;
2009		}
2010		block->dev_state = dev_state;
2011		block->dev_bytenr = dev_bytenr;
2012		block->logical_bytenr = bytenr;
2013		block->is_metadata = is_metadata;
2014		block->never_written = 0;
2015		block->iodone_w_error = 0;
2016		block->mirror_num = 0;	/* unknown */
2017		block->flush_gen = dev_state->last_flush_gen + 1;
2018		block->submit_bio_bh_rw = submit_bio_bh_rw;
2019		if (NULL != bio) {
2020			block->is_iodone = 0;
2021			BUG_ON(NULL == bio_is_patched);
2022			if (!*bio_is_patched) {
2023				block->orig_bio_private = bio->bi_private;
2024				block->orig_bio_end_io = bio->bi_end_io;
2025				block->next_in_same_bio = NULL;
2026				bio->bi_private = block;
2027				bio->bi_end_io = btrfsic_bio_end_io;
2028				*bio_is_patched = 1;
2029			} else {
2030				struct btrfsic_block *chained_block =
2031				    (struct btrfsic_block *)
2032				    bio->bi_private;
2033
2034				BUG_ON(NULL == chained_block);
2035				block->orig_bio_private =
2036				    chained_block->orig_bio_private;
2037				block->orig_bio_end_io =
2038				    chained_block->orig_bio_end_io;
2039				block->next_in_same_bio = chained_block;
2040				bio->bi_private = block;
2041			}
 
 
 
 
 
 
 
2042		} else {
2043			block->is_iodone = 1;
2044			block->orig_bio_private = NULL;
2045			block->orig_bio_end_io = NULL;
2046			block->next_in_same_bio = NULL;
2047		}
2048		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2049			pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2050			       is_metadata ? 'M' : 'D',
2051			       block->logical_bytenr, block->dev_state->name,
2052			       block->dev_bytenr, block->mirror_num);
2053		list_add(&block->all_blocks_node, &state->all_blocks_list);
2054		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2055
2056		if (is_metadata) {
2057			ret = btrfsic_process_metablock(state, block,
2058							&block_ctx, 0, 0);
2059			if (ret)
2060				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2061				       dev_bytenr);
2062		}
2063		btrfsic_release_block_ctx(&block_ctx);
2064	}
2065
2066continue_loop:
2067	BUG_ON(!processed_len);
2068	dev_bytenr += processed_len;
2069	mapped_datav += processed_len >> PAGE_SHIFT;
2070	num_pages -= processed_len >> PAGE_SHIFT;
2071	goto again;
2072}
2073
2074static void btrfsic_bio_end_io(struct bio *bp)
2075{
2076	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2077	int iodone_w_error;
2078
2079	/* mutex is not held! This is not save if IO is not yet completed
2080	 * on umount */
2081	iodone_w_error = 0;
2082	if (bp->bi_status)
2083		iodone_w_error = 1;
2084
2085	BUG_ON(NULL == block);
2086	bp->bi_private = block->orig_bio_private;
2087	bp->bi_end_io = block->orig_bio_end_io;
2088
2089	do {
2090		struct btrfsic_block *next_block;
2091		struct btrfsic_dev_state *const dev_state = block->dev_state;
2092
2093		if ((dev_state->state->print_mask &
2094		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2095			pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2096			       bp->bi_status,
2097			       btrfsic_get_block_type(dev_state->state, block),
2098			       block->logical_bytenr, dev_state->name,
2099			       block->dev_bytenr, block->mirror_num);
2100		next_block = block->next_in_same_bio;
2101		block->iodone_w_error = iodone_w_error;
2102		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2103			dev_state->last_flush_gen++;
2104			if ((dev_state->state->print_mask &
2105			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2106				pr_info("bio_end_io() new %s flush_gen=%llu\n",
2107				       dev_state->name,
2108				       dev_state->last_flush_gen);
2109		}
2110		if (block->submit_bio_bh_rw & REQ_FUA)
2111			block->flush_gen = 0; /* FUA completed means block is
2112					       * on disk */
2113		block->is_iodone = 1; /* for FLUSH, this releases the block */
2114		block = next_block;
2115	} while (NULL != block);
2116
2117	bp->bi_end_io(bp);
2118}
2119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2120static int btrfsic_process_written_superblock(
2121		struct btrfsic_state *state,
2122		struct btrfsic_block *const superblock,
2123		struct btrfs_super_block *const super_hdr)
2124{
2125	struct btrfs_fs_info *fs_info = state->fs_info;
2126	int pass;
2127
2128	superblock->generation = btrfs_super_generation(super_hdr);
2129	if (!(superblock->generation > state->max_superblock_generation ||
2130	      0 == state->max_superblock_generation)) {
2131		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2132			pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2133			       superblock->logical_bytenr,
2134			       superblock->dev_state->name,
2135			       superblock->dev_bytenr, superblock->mirror_num,
2136			       btrfs_super_generation(super_hdr),
2137			       state->max_superblock_generation);
2138	} else {
2139		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2140			pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2141			       superblock->logical_bytenr,
2142			       superblock->dev_state->name,
2143			       superblock->dev_bytenr, superblock->mirror_num,
2144			       btrfs_super_generation(super_hdr),
2145			       state->max_superblock_generation);
2146
2147		state->max_superblock_generation =
2148		    btrfs_super_generation(super_hdr);
2149		state->latest_superblock = superblock;
2150	}
2151
2152	for (pass = 0; pass < 3; pass++) {
2153		int ret;
2154		u64 next_bytenr;
2155		struct btrfsic_block *next_block;
2156		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2157		struct btrfsic_block_link *l;
2158		int num_copies;
2159		int mirror_num;
2160		const char *additional_string = NULL;
2161		struct btrfs_disk_key tmp_disk_key = {0};
2162
2163		btrfs_set_disk_key_objectid(&tmp_disk_key,
2164					    BTRFS_ROOT_ITEM_KEY);
2165		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2166
2167		switch (pass) {
2168		case 0:
2169			btrfs_set_disk_key_objectid(&tmp_disk_key,
2170						    BTRFS_ROOT_TREE_OBJECTID);
2171			additional_string = "root ";
2172			next_bytenr = btrfs_super_root(super_hdr);
2173			if (state->print_mask &
2174			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2175				pr_info("root@%llu\n", next_bytenr);
2176			break;
2177		case 1:
2178			btrfs_set_disk_key_objectid(&tmp_disk_key,
2179						    BTRFS_CHUNK_TREE_OBJECTID);
2180			additional_string = "chunk ";
2181			next_bytenr = btrfs_super_chunk_root(super_hdr);
2182			if (state->print_mask &
2183			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2184				pr_info("chunk@%llu\n", next_bytenr);
2185			break;
2186		case 2:
2187			btrfs_set_disk_key_objectid(&tmp_disk_key,
2188						    BTRFS_TREE_LOG_OBJECTID);
2189			additional_string = "log ";
2190			next_bytenr = btrfs_super_log_root(super_hdr);
2191			if (0 == next_bytenr)
2192				continue;
2193			if (state->print_mask &
2194			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2195				pr_info("log@%llu\n", next_bytenr);
2196			break;
2197		}
2198
2199		num_copies = btrfs_num_copies(fs_info, next_bytenr,
2200					      BTRFS_SUPER_INFO_SIZE);
2201		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2202			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2203			       next_bytenr, num_copies);
2204		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2205			int was_created;
2206
2207			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2208				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2209			ret = btrfsic_map_block(state, next_bytenr,
2210						BTRFS_SUPER_INFO_SIZE,
2211						&tmp_next_block_ctx,
2212						mirror_num);
2213			if (ret) {
2214				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2215				       next_bytenr, mirror_num);
2216				return -1;
2217			}
2218
2219			next_block = btrfsic_block_lookup_or_add(
2220					state,
2221					&tmp_next_block_ctx,
2222					additional_string,
2223					1, 0, 1,
2224					mirror_num,
2225					&was_created);
2226			if (NULL == next_block) {
 
2227				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2228				return -1;
2229			}
2230
2231			next_block->disk_key = tmp_disk_key;
2232			if (was_created)
2233				next_block->generation =
2234				    BTRFSIC_GENERATION_UNKNOWN;
2235			l = btrfsic_block_link_lookup_or_add(
2236					state,
2237					&tmp_next_block_ctx,
2238					next_block,
2239					superblock,
2240					BTRFSIC_GENERATION_UNKNOWN);
2241			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2242			if (NULL == l)
2243				return -1;
2244		}
2245	}
2246
2247	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2248		btrfsic_dump_tree(state);
2249
2250	return 0;
2251}
2252
2253static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2254					struct btrfsic_block *const block,
2255					int recursion_level)
2256{
2257	const struct btrfsic_block_link *l;
2258	int ret = 0;
2259
2260	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2261		/*
2262		 * Note that this situation can happen and does not
2263		 * indicate an error in regular cases. It happens
2264		 * when disk blocks are freed and later reused.
2265		 * The check-integrity module is not aware of any
2266		 * block free operations, it just recognizes block
2267		 * write operations. Therefore it keeps the linkage
2268		 * information for a block until a block is
2269		 * rewritten. This can temporarily cause incorrect
2270		 * and even circular linkage information. This
2271		 * causes no harm unless such blocks are referenced
2272		 * by the most recent super block.
2273		 */
2274		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2275			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2276
2277		return ret;
2278	}
2279
2280	/*
2281	 * This algorithm is recursive because the amount of used stack
2282	 * space is very small and the max recursion depth is limited.
2283	 */
2284	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2285		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2286			pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2287			       recursion_level,
2288			       btrfsic_get_block_type(state, block),
2289			       block->logical_bytenr, block->dev_state->name,
2290			       block->dev_bytenr, block->mirror_num,
2291			       l->ref_cnt,
2292			       btrfsic_get_block_type(state, l->block_ref_to),
2293			       l->block_ref_to->logical_bytenr,
2294			       l->block_ref_to->dev_state->name,
2295			       l->block_ref_to->dev_bytenr,
2296			       l->block_ref_to->mirror_num);
2297		if (l->block_ref_to->never_written) {
2298			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2299			       btrfsic_get_block_type(state, l->block_ref_to),
2300			       l->block_ref_to->logical_bytenr,
2301			       l->block_ref_to->dev_state->name,
2302			       l->block_ref_to->dev_bytenr,
2303			       l->block_ref_to->mirror_num);
2304			ret = -1;
2305		} else if (!l->block_ref_to->is_iodone) {
2306			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2307			       btrfsic_get_block_type(state, l->block_ref_to),
2308			       l->block_ref_to->logical_bytenr,
2309			       l->block_ref_to->dev_state->name,
2310			       l->block_ref_to->dev_bytenr,
2311			       l->block_ref_to->mirror_num);
2312			ret = -1;
2313		} else if (l->block_ref_to->iodone_w_error) {
2314			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2315			       btrfsic_get_block_type(state, l->block_ref_to),
2316			       l->block_ref_to->logical_bytenr,
2317			       l->block_ref_to->dev_state->name,
2318			       l->block_ref_to->dev_bytenr,
2319			       l->block_ref_to->mirror_num);
2320			ret = -1;
2321		} else if (l->parent_generation !=
2322			   l->block_ref_to->generation &&
2323			   BTRFSIC_GENERATION_UNKNOWN !=
2324			   l->parent_generation &&
2325			   BTRFSIC_GENERATION_UNKNOWN !=
2326			   l->block_ref_to->generation) {
2327			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2328			       btrfsic_get_block_type(state, l->block_ref_to),
2329			       l->block_ref_to->logical_bytenr,
2330			       l->block_ref_to->dev_state->name,
2331			       l->block_ref_to->dev_bytenr,
2332			       l->block_ref_to->mirror_num,
2333			       l->block_ref_to->generation,
2334			       l->parent_generation);
2335			ret = -1;
2336		} else if (l->block_ref_to->flush_gen >
2337			   l->block_ref_to->dev_state->last_flush_gen) {
2338			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2339			       btrfsic_get_block_type(state, l->block_ref_to),
2340			       l->block_ref_to->logical_bytenr,
2341			       l->block_ref_to->dev_state->name,
2342			       l->block_ref_to->dev_bytenr,
2343			       l->block_ref_to->mirror_num, block->flush_gen,
2344			       l->block_ref_to->dev_state->last_flush_gen);
2345			ret = -1;
2346		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2347							      l->block_ref_to,
2348							      recursion_level +
2349							      1)) {
2350			ret = -1;
2351		}
2352	}
2353
2354	return ret;
2355}
2356
2357static int btrfsic_is_block_ref_by_superblock(
2358		const struct btrfsic_state *state,
2359		const struct btrfsic_block *block,
2360		int recursion_level)
2361{
2362	const struct btrfsic_block_link *l;
2363
2364	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2365		/* refer to comment at "abort cyclic linkage (case 1)" */
2366		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2367			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2368
2369		return 0;
2370	}
2371
2372	/*
2373	 * This algorithm is recursive because the amount of used stack space
2374	 * is very small and the max recursion depth is limited.
2375	 */
2376	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2377		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2378			pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2379			       recursion_level,
2380			       btrfsic_get_block_type(state, block),
2381			       block->logical_bytenr, block->dev_state->name,
2382			       block->dev_bytenr, block->mirror_num,
2383			       l->ref_cnt,
2384			       btrfsic_get_block_type(state, l->block_ref_from),
2385			       l->block_ref_from->logical_bytenr,
2386			       l->block_ref_from->dev_state->name,
2387			       l->block_ref_from->dev_bytenr,
2388			       l->block_ref_from->mirror_num);
2389		if (l->block_ref_from->is_superblock &&
2390		    state->latest_superblock->dev_bytenr ==
2391		    l->block_ref_from->dev_bytenr &&
2392		    state->latest_superblock->dev_state->bdev ==
2393		    l->block_ref_from->dev_state->bdev)
2394			return 1;
2395		else if (btrfsic_is_block_ref_by_superblock(state,
2396							    l->block_ref_from,
2397							    recursion_level +
2398							    1))
2399			return 1;
2400	}
2401
2402	return 0;
2403}
2404
2405static void btrfsic_print_add_link(const struct btrfsic_state *state,
2406				   const struct btrfsic_block_link *l)
2407{
2408	pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2409	       l->ref_cnt,
2410	       btrfsic_get_block_type(state, l->block_ref_from),
2411	       l->block_ref_from->logical_bytenr,
2412	       l->block_ref_from->dev_state->name,
2413	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2414	       btrfsic_get_block_type(state, l->block_ref_to),
2415	       l->block_ref_to->logical_bytenr,
2416	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2417	       l->block_ref_to->mirror_num);
2418}
2419
2420static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2421				   const struct btrfsic_block_link *l)
2422{
2423	pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2424	       l->ref_cnt,
2425	       btrfsic_get_block_type(state, l->block_ref_from),
2426	       l->block_ref_from->logical_bytenr,
2427	       l->block_ref_from->dev_state->name,
2428	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2429	       btrfsic_get_block_type(state, l->block_ref_to),
2430	       l->block_ref_to->logical_bytenr,
2431	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2432	       l->block_ref_to->mirror_num);
2433}
2434
2435static char btrfsic_get_block_type(const struct btrfsic_state *state,
2436				   const struct btrfsic_block *block)
2437{
2438	if (block->is_superblock &&
2439	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2440	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2441		return 'S';
2442	else if (block->is_superblock)
2443		return 's';
2444	else if (block->is_metadata)
2445		return 'M';
2446	else
2447		return 'D';
2448}
2449
2450static void btrfsic_dump_tree(const struct btrfsic_state *state)
2451{
2452	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2453}
2454
2455static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2456				  const struct btrfsic_block *block,
2457				  int indent_level)
2458{
2459	const struct btrfsic_block_link *l;
2460	int indent_add;
2461	static char buf[80];
2462	int cursor_position;
2463
2464	/*
2465	 * Should better fill an on-stack buffer with a complete line and
2466	 * dump it at once when it is time to print a newline character.
2467	 */
2468
2469	/*
2470	 * This algorithm is recursive because the amount of used stack space
2471	 * is very small and the max recursion depth is limited.
2472	 */
2473	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2474			     btrfsic_get_block_type(state, block),
2475			     block->logical_bytenr, block->dev_state->name,
2476			     block->dev_bytenr, block->mirror_num);
2477	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2478		printk("[...]\n");
2479		return;
2480	}
2481	printk(buf);
2482	indent_level += indent_add;
2483	if (list_empty(&block->ref_to_list)) {
2484		printk("\n");
2485		return;
2486	}
2487	if (block->mirror_num > 1 &&
2488	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2489		printk(" [...]\n");
2490		return;
2491	}
2492
2493	cursor_position = indent_level;
2494	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2495		while (cursor_position < indent_level) {
2496			printk(" ");
2497			cursor_position++;
2498		}
2499		if (l->ref_cnt > 1)
2500			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2501		else
2502			indent_add = sprintf(buf, " --> ");
2503		if (indent_level + indent_add >
2504		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2505			printk("[...]\n");
2506			cursor_position = 0;
2507			continue;
2508		}
2509
2510		printk(buf);
2511
2512		btrfsic_dump_tree_sub(state, l->block_ref_to,
2513				      indent_level + indent_add);
2514		cursor_position = 0;
2515	}
2516}
2517
2518static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2519		struct btrfsic_state *state,
2520		struct btrfsic_block_data_ctx *next_block_ctx,
2521		struct btrfsic_block *next_block,
2522		struct btrfsic_block *from_block,
2523		u64 parent_generation)
2524{
2525	struct btrfsic_block_link *l;
2526
2527	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2528						next_block_ctx->dev_bytenr,
2529						from_block->dev_state->bdev,
2530						from_block->dev_bytenr,
2531						&state->block_link_hashtable);
2532	if (NULL == l) {
2533		l = btrfsic_block_link_alloc();
2534		if (!l)
 
2535			return NULL;
 
2536
2537		l->block_ref_to = next_block;
2538		l->block_ref_from = from_block;
2539		l->ref_cnt = 1;
2540		l->parent_generation = parent_generation;
2541
2542		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2543			btrfsic_print_add_link(state, l);
2544
2545		list_add(&l->node_ref_to, &from_block->ref_to_list);
2546		list_add(&l->node_ref_from, &next_block->ref_from_list);
2547
2548		btrfsic_block_link_hashtable_add(l,
2549						 &state->block_link_hashtable);
2550	} else {
2551		l->ref_cnt++;
2552		l->parent_generation = parent_generation;
2553		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2554			btrfsic_print_add_link(state, l);
2555	}
2556
2557	return l;
2558}
2559
2560static struct btrfsic_block *btrfsic_block_lookup_or_add(
2561		struct btrfsic_state *state,
2562		struct btrfsic_block_data_ctx *block_ctx,
2563		const char *additional_string,
2564		int is_metadata,
2565		int is_iodone,
2566		int never_written,
2567		int mirror_num,
2568		int *was_created)
2569{
2570	struct btrfsic_block *block;
2571
2572	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2573					       block_ctx->dev_bytenr,
2574					       &state->block_hashtable);
2575	if (NULL == block) {
2576		struct btrfsic_dev_state *dev_state;
2577
2578		block = btrfsic_block_alloc();
2579		if (!block)
 
2580			return NULL;
2581
2582		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2583		if (NULL == dev_state) {
2584			pr_info("btrfsic: error, lookup dev_state failed!\n");
2585			btrfsic_block_free(block);
2586			return NULL;
2587		}
2588		block->dev_state = dev_state;
2589		block->dev_bytenr = block_ctx->dev_bytenr;
2590		block->logical_bytenr = block_ctx->start;
2591		block->is_metadata = is_metadata;
2592		block->is_iodone = is_iodone;
2593		block->never_written = never_written;
2594		block->mirror_num = mirror_num;
2595		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2596			pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2597			       additional_string,
2598			       btrfsic_get_block_type(state, block),
2599			       block->logical_bytenr, dev_state->name,
2600			       block->dev_bytenr, mirror_num);
2601		list_add(&block->all_blocks_node, &state->all_blocks_list);
2602		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2603		if (NULL != was_created)
2604			*was_created = 1;
2605	} else {
2606		if (NULL != was_created)
2607			*was_created = 0;
2608	}
2609
2610	return block;
2611}
2612
2613static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2614					   u64 bytenr,
2615					   struct btrfsic_dev_state *dev_state,
2616					   u64 dev_bytenr)
2617{
2618	struct btrfs_fs_info *fs_info = state->fs_info;
2619	struct btrfsic_block_data_ctx block_ctx;
2620	int num_copies;
2621	int mirror_num;
2622	int match = 0;
2623	int ret;
2624
2625	num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2626
2627	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2628		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2629					&block_ctx, mirror_num);
2630		if (ret) {
2631			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2632			       bytenr, mirror_num);
2633			continue;
2634		}
2635
2636		if (dev_state->bdev == block_ctx.dev->bdev &&
2637		    dev_bytenr == block_ctx.dev_bytenr) {
2638			match++;
2639			btrfsic_release_block_ctx(&block_ctx);
2640			break;
2641		}
2642		btrfsic_release_block_ctx(&block_ctx);
2643	}
2644
2645	if (WARN_ON(!match)) {
2646		pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2647		       bytenr, dev_state->name, dev_bytenr);
2648		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2649			ret = btrfsic_map_block(state, bytenr,
2650						state->metablock_size,
2651						&block_ctx, mirror_num);
2652			if (ret)
2653				continue;
2654
2655			pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2656			       bytenr, block_ctx.dev->name,
2657			       block_ctx.dev_bytenr, mirror_num);
2658		}
2659	}
2660}
2661
2662static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
 
2663{
2664	return btrfsic_dev_state_hashtable_lookup(dev,
2665						  &btrfsic_dev_state_hashtable);
2666}
2667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2668static void __btrfsic_submit_bio(struct bio *bio)
2669{
2670	struct btrfsic_dev_state *dev_state;
2671
2672	if (!btrfsic_is_initialized)
2673		return;
2674
2675	mutex_lock(&btrfsic_mutex);
2676	/* since btrfsic_submit_bio() is also called before
2677	 * btrfsic_mount(), this might return NULL */
2678	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev->bd_dev);
2679	if (NULL != dev_state &&
2680	    (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2681		int i = 0;
2682		u64 dev_bytenr;
2683		u64 cur_bytenr;
2684		struct bio_vec bvec;
2685		struct bvec_iter iter;
2686		int bio_is_patched;
2687		char **mapped_datav;
2688		unsigned int segs = bio_segments(bio);
2689
2690		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2691		bio_is_patched = 0;
2692		if (dev_state->state->print_mask &
2693		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2694			pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2695			       bio_op(bio), bio->bi_opf, segs,
2696			       bio->bi_iter.bi_sector, dev_bytenr, bio->bi_bdev);
 
2697
2698		mapped_datav = kmalloc_array(segs,
2699					     sizeof(*mapped_datav), GFP_NOFS);
2700		if (!mapped_datav)
2701			goto leave;
2702		cur_bytenr = dev_bytenr;
2703
2704		bio_for_each_segment(bvec, bio, iter) {
2705			BUG_ON(bvec.bv_len != PAGE_SIZE);
2706			mapped_datav[i] = kmap_local_page(bvec.bv_page);
2707			i++;
2708
2709			if (dev_state->state->print_mask &
2710			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2711				pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2712				       i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2713			cur_bytenr += bvec.bv_len;
2714		}
2715		btrfsic_process_written_block(dev_state, dev_bytenr,
2716					      mapped_datav, segs,
2717					      bio, &bio_is_patched,
2718					      bio->bi_opf);
2719		/* Unmap in reverse order */
2720		for (--i; i >= 0; i--)
2721			kunmap_local(mapped_datav[i]);
2722		kfree(mapped_datav);
2723	} else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2724		if (dev_state->state->print_mask &
2725		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2726			pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2727			       bio_op(bio), bio->bi_opf, bio->bi_bdev);
2728		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2729			if ((dev_state->state->print_mask &
2730			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2731			      BTRFSIC_PRINT_MASK_VERBOSE)))
2732				pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2733				       dev_state->name);
2734		} else {
2735			struct btrfsic_block *const block =
2736				&dev_state->dummy_block_for_bio_bh_flush;
2737
2738			block->is_iodone = 0;
2739			block->never_written = 0;
2740			block->iodone_w_error = 0;
2741			block->flush_gen = dev_state->last_flush_gen + 1;
2742			block->submit_bio_bh_rw = bio->bi_opf;
2743			block->orig_bio_private = bio->bi_private;
2744			block->orig_bio_end_io = bio->bi_end_io;
2745			block->next_in_same_bio = NULL;
2746			bio->bi_private = block;
2747			bio->bi_end_io = btrfsic_bio_end_io;
2748		}
2749	}
2750leave:
2751	mutex_unlock(&btrfsic_mutex);
2752}
2753
2754void btrfsic_submit_bio(struct bio *bio)
2755{
2756	__btrfsic_submit_bio(bio);
2757	submit_bio(bio);
2758}
2759
2760int btrfsic_submit_bio_wait(struct bio *bio)
2761{
2762	__btrfsic_submit_bio(bio);
2763	return submit_bio_wait(bio);
2764}
2765
2766int btrfsic_mount(struct btrfs_fs_info *fs_info,
2767		  struct btrfs_fs_devices *fs_devices,
2768		  int including_extent_data, u32 print_mask)
2769{
2770	int ret;
2771	struct btrfsic_state *state;
2772	struct list_head *dev_head = &fs_devices->devices;
2773	struct btrfs_device *device;
2774
2775	if (!PAGE_ALIGNED(fs_info->nodesize)) {
2776		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2777		       fs_info->nodesize, PAGE_SIZE);
2778		return -1;
2779	}
2780	if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2781		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2782		       fs_info->sectorsize, PAGE_SIZE);
2783		return -1;
2784	}
2785	state = kvzalloc(sizeof(*state), GFP_KERNEL);
2786	if (!state)
2787		return -ENOMEM;
 
 
 
 
 
2788
2789	if (!btrfsic_is_initialized) {
2790		mutex_init(&btrfsic_mutex);
2791		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2792		btrfsic_is_initialized = 1;
2793	}
2794	mutex_lock(&btrfsic_mutex);
2795	state->fs_info = fs_info;
2796	state->print_mask = print_mask;
2797	state->include_extent_data = including_extent_data;
 
2798	state->metablock_size = fs_info->nodesize;
2799	state->datablock_size = fs_info->sectorsize;
2800	INIT_LIST_HEAD(&state->all_blocks_list);
2801	btrfsic_block_hashtable_init(&state->block_hashtable);
2802	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2803	state->max_superblock_generation = 0;
2804	state->latest_superblock = NULL;
2805
2806	list_for_each_entry(device, dev_head, dev_list) {
2807		struct btrfsic_dev_state *ds;
2808		const char *p;
2809
2810		if (!device->bdev || !device->name)
2811			continue;
2812
2813		ds = btrfsic_dev_state_alloc();
2814		if (NULL == ds) {
 
2815			mutex_unlock(&btrfsic_mutex);
2816			return -ENOMEM;
2817		}
2818		ds->bdev = device->bdev;
2819		ds->state = state;
2820		bdevname(ds->bdev, ds->name);
2821		ds->name[BDEVNAME_SIZE - 1] = '\0';
2822		p = kbasename(ds->name);
2823		strlcpy(ds->name, p, sizeof(ds->name));
2824		btrfsic_dev_state_hashtable_add(ds,
2825						&btrfsic_dev_state_hashtable);
2826	}
2827
2828	ret = btrfsic_process_superblock(state, fs_devices);
2829	if (0 != ret) {
2830		mutex_unlock(&btrfsic_mutex);
2831		btrfsic_unmount(fs_devices);
2832		return ret;
2833	}
2834
2835	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2836		btrfsic_dump_database(state);
2837	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2838		btrfsic_dump_tree(state);
2839
2840	mutex_unlock(&btrfsic_mutex);
2841	return 0;
2842}
2843
2844void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2845{
2846	struct btrfsic_block *b_all, *tmp_all;
2847	struct btrfsic_state *state;
2848	struct list_head *dev_head = &fs_devices->devices;
2849	struct btrfs_device *device;
2850
2851	if (!btrfsic_is_initialized)
2852		return;
2853
2854	mutex_lock(&btrfsic_mutex);
2855
2856	state = NULL;
2857	list_for_each_entry(device, dev_head, dev_list) {
2858		struct btrfsic_dev_state *ds;
2859
2860		if (!device->bdev || !device->name)
2861			continue;
2862
2863		ds = btrfsic_dev_state_hashtable_lookup(
2864				device->bdev->bd_dev,
2865				&btrfsic_dev_state_hashtable);
2866		if (NULL != ds) {
2867			state = ds->state;
2868			btrfsic_dev_state_hashtable_remove(ds);
2869			btrfsic_dev_state_free(ds);
2870		}
2871	}
2872
2873	if (NULL == state) {
2874		pr_info("btrfsic: error, cannot find state information on umount!\n");
2875		mutex_unlock(&btrfsic_mutex);
2876		return;
2877	}
2878
2879	/*
2880	 * Don't care about keeping the lists' state up to date,
2881	 * just free all memory that was allocated dynamically.
2882	 * Free the blocks and the block_links.
2883	 */
2884	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
2885				 all_blocks_node) {
2886		struct btrfsic_block_link *l, *tmp;
2887
2888		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
2889					 node_ref_to) {
2890			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2891				btrfsic_print_rem_link(state, l);
2892
2893			l->ref_cnt--;
2894			if (0 == l->ref_cnt)
2895				btrfsic_block_link_free(l);
2896		}
2897
2898		if (b_all->is_iodone || b_all->never_written)
2899			btrfsic_block_free(b_all);
2900		else
2901			pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
2902			       btrfsic_get_block_type(state, b_all),
2903			       b_all->logical_bytenr, b_all->dev_state->name,
2904			       b_all->dev_bytenr, b_all->mirror_num);
2905	}
2906
2907	mutex_unlock(&btrfsic_mutex);
2908
2909	kvfree(state);
2910}