Loading...
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91#include <linux/sched.h>
92#include <linux/slab.h>
93#include <linux/buffer_head.h>
94#include <linux/mutex.h>
95#include <linux/genhd.h>
96#include <linux/blkdev.h>
97#include <linux/vmalloc.h>
98#include <linux/string.h>
99#include "ctree.h"
100#include "disk-io.h"
101#include "hash.h"
102#include "transaction.h"
103#include "extent_io.h"
104#include "volumes.h"
105#include "print-tree.h"
106#include "locking.h"
107#include "check-integrity.h"
108#include "rcu-string.h"
109#include "compression.h"
110
111#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
112#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
113#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
114#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
115#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
116#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
117#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
118#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
119 * excluding " [...]" */
120#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
121
122/*
123 * The definition of the bitmask fields for the print_mask.
124 * They are specified with the mount option check_integrity_print_mask.
125 */
126#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
127#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
128#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
129#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
130#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
131#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
132#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
133#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
134#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
135#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
136#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
137#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
138#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
139#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
140
141struct btrfsic_dev_state;
142struct btrfsic_state;
143
144struct btrfsic_block {
145 u32 magic_num; /* only used for debug purposes */
146 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
147 unsigned int is_superblock:1; /* if it is one of the superblocks */
148 unsigned int is_iodone:1; /* if is done by lower subsystem */
149 unsigned int iodone_w_error:1; /* error was indicated to endio */
150 unsigned int never_written:1; /* block was added because it was
151 * referenced, not because it was
152 * written */
153 unsigned int mirror_num; /* large enough to hold
154 * BTRFS_SUPER_MIRROR_MAX */
155 struct btrfsic_dev_state *dev_state;
156 u64 dev_bytenr; /* key, physical byte num on disk */
157 u64 logical_bytenr; /* logical byte num on disk */
158 u64 generation;
159 struct btrfs_disk_key disk_key; /* extra info to print in case of
160 * issues, will not always be correct */
161 struct list_head collision_resolving_node; /* list node */
162 struct list_head all_blocks_node; /* list node */
163
164 /* the following two lists contain block_link items */
165 struct list_head ref_to_list; /* list */
166 struct list_head ref_from_list; /* list */
167 struct btrfsic_block *next_in_same_bio;
168 void *orig_bio_bh_private;
169 union {
170 bio_end_io_t *bio;
171 bh_end_io_t *bh;
172 } orig_bio_bh_end_io;
173 int submit_bio_bh_rw;
174 u64 flush_gen; /* only valid if !never_written */
175};
176
177/*
178 * Elements of this type are allocated dynamically and required because
179 * each block object can refer to and can be ref from multiple blocks.
180 * The key to lookup them in the hashtable is the dev_bytenr of
181 * the block ref to plus the one from the block referred from.
182 * The fact that they are searchable via a hashtable and that a
183 * ref_cnt is maintained is not required for the btrfs integrity
184 * check algorithm itself, it is only used to make the output more
185 * beautiful in case that an error is detected (an error is defined
186 * as a write operation to a block while that block is still referenced).
187 */
188struct btrfsic_block_link {
189 u32 magic_num; /* only used for debug purposes */
190 u32 ref_cnt;
191 struct list_head node_ref_to; /* list node */
192 struct list_head node_ref_from; /* list node */
193 struct list_head collision_resolving_node; /* list node */
194 struct btrfsic_block *block_ref_to;
195 struct btrfsic_block *block_ref_from;
196 u64 parent_generation;
197};
198
199struct btrfsic_dev_state {
200 u32 magic_num; /* only used for debug purposes */
201 struct block_device *bdev;
202 struct btrfsic_state *state;
203 struct list_head collision_resolving_node; /* list node */
204 struct btrfsic_block dummy_block_for_bio_bh_flush;
205 u64 last_flush_gen;
206 char name[BDEVNAME_SIZE];
207};
208
209struct btrfsic_block_hashtable {
210 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
211};
212
213struct btrfsic_block_link_hashtable {
214 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
215};
216
217struct btrfsic_dev_state_hashtable {
218 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
219};
220
221struct btrfsic_block_data_ctx {
222 u64 start; /* virtual bytenr */
223 u64 dev_bytenr; /* physical bytenr on device */
224 u32 len;
225 struct btrfsic_dev_state *dev;
226 char **datav;
227 struct page **pagev;
228 void *mem_to_free;
229};
230
231/* This structure is used to implement recursion without occupying
232 * any stack space, refer to btrfsic_process_metablock() */
233struct btrfsic_stack_frame {
234 u32 magic;
235 u32 nr;
236 int error;
237 int i;
238 int limit_nesting;
239 int num_copies;
240 int mirror_num;
241 struct btrfsic_block *block;
242 struct btrfsic_block_data_ctx *block_ctx;
243 struct btrfsic_block *next_block;
244 struct btrfsic_block_data_ctx next_block_ctx;
245 struct btrfs_header *hdr;
246 struct btrfsic_stack_frame *prev;
247};
248
249/* Some state per mounted filesystem */
250struct btrfsic_state {
251 u32 print_mask;
252 int include_extent_data;
253 int csum_size;
254 struct list_head all_blocks_list;
255 struct btrfsic_block_hashtable block_hashtable;
256 struct btrfsic_block_link_hashtable block_link_hashtable;
257 struct btrfs_fs_info *fs_info;
258 u64 max_superblock_generation;
259 struct btrfsic_block *latest_superblock;
260 u32 metablock_size;
261 u32 datablock_size;
262};
263
264static void btrfsic_block_init(struct btrfsic_block *b);
265static struct btrfsic_block *btrfsic_block_alloc(void);
266static void btrfsic_block_free(struct btrfsic_block *b);
267static void btrfsic_block_link_init(struct btrfsic_block_link *n);
268static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
269static void btrfsic_block_link_free(struct btrfsic_block_link *n);
270static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
271static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
272static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
273static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
274static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
275 struct btrfsic_block_hashtable *h);
276static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
277static struct btrfsic_block *btrfsic_block_hashtable_lookup(
278 struct block_device *bdev,
279 u64 dev_bytenr,
280 struct btrfsic_block_hashtable *h);
281static void btrfsic_block_link_hashtable_init(
282 struct btrfsic_block_link_hashtable *h);
283static void btrfsic_block_link_hashtable_add(
284 struct btrfsic_block_link *l,
285 struct btrfsic_block_link_hashtable *h);
286static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
287static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
288 struct block_device *bdev_ref_to,
289 u64 dev_bytenr_ref_to,
290 struct block_device *bdev_ref_from,
291 u64 dev_bytenr_ref_from,
292 struct btrfsic_block_link_hashtable *h);
293static void btrfsic_dev_state_hashtable_init(
294 struct btrfsic_dev_state_hashtable *h);
295static void btrfsic_dev_state_hashtable_add(
296 struct btrfsic_dev_state *ds,
297 struct btrfsic_dev_state_hashtable *h);
298static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
299static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
300 struct block_device *bdev,
301 struct btrfsic_dev_state_hashtable *h);
302static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
303static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
304static int btrfsic_process_superblock(struct btrfsic_state *state,
305 struct btrfs_fs_devices *fs_devices);
306static int btrfsic_process_metablock(struct btrfsic_state *state,
307 struct btrfsic_block *block,
308 struct btrfsic_block_data_ctx *block_ctx,
309 int limit_nesting, int force_iodone_flag);
310static void btrfsic_read_from_block_data(
311 struct btrfsic_block_data_ctx *block_ctx,
312 void *dst, u32 offset, size_t len);
313static int btrfsic_create_link_to_next_block(
314 struct btrfsic_state *state,
315 struct btrfsic_block *block,
316 struct btrfsic_block_data_ctx
317 *block_ctx, u64 next_bytenr,
318 int limit_nesting,
319 struct btrfsic_block_data_ctx *next_block_ctx,
320 struct btrfsic_block **next_blockp,
321 int force_iodone_flag,
322 int *num_copiesp, int *mirror_nump,
323 struct btrfs_disk_key *disk_key,
324 u64 parent_generation);
325static int btrfsic_handle_extent_data(struct btrfsic_state *state,
326 struct btrfsic_block *block,
327 struct btrfsic_block_data_ctx *block_ctx,
328 u32 item_offset, int force_iodone_flag);
329static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
330 struct btrfsic_block_data_ctx *block_ctx_out,
331 int mirror_num);
332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335static void btrfsic_dump_database(struct btrfsic_state *state);
336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348static void btrfsic_bio_end_io(struct bio *bp);
349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362static void btrfsic_dump_tree(const struct btrfsic_state *state);
363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395static struct mutex btrfsic_mutex;
396static int btrfsic_is_initialized;
397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400static void btrfsic_block_init(struct btrfsic_block *b)
401{
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425}
426
427static struct btrfsic_block *btrfsic_block_alloc(void)
428{
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436}
437
438static void btrfsic_block_free(struct btrfsic_block *b)
439{
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442}
443
444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445{
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453}
454
455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456{
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464}
465
466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467{
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470}
471
472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473{
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483}
484
485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486{
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494}
495
496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497{
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501}
502
503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504{
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509}
510
511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513{
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520}
521
522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523{
524 list_del(&b->collision_resolving_node);
525}
526
527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531{
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct btrfsic_block *b;
537
538 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
540 return b;
541 }
542
543 return NULL;
544}
545
546static void btrfsic_block_link_hashtable_init(
547 struct btrfsic_block_link_hashtable *h)
548{
549 int i;
550
551 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
552 INIT_LIST_HEAD(h->table + i);
553}
554
555static void btrfsic_block_link_hashtable_add(
556 struct btrfsic_block_link *l,
557 struct btrfsic_block_link_hashtable *h)
558{
559 const unsigned int hashval =
560 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
561 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
562 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
563 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
564 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
565
566 BUG_ON(NULL == l->block_ref_to);
567 BUG_ON(NULL == l->block_ref_from);
568 list_add(&l->collision_resolving_node, h->table + hashval);
569}
570
571static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
572{
573 list_del(&l->collision_resolving_node);
574}
575
576static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
577 struct block_device *bdev_ref_to,
578 u64 dev_bytenr_ref_to,
579 struct block_device *bdev_ref_from,
580 u64 dev_bytenr_ref_from,
581 struct btrfsic_block_link_hashtable *h)
582{
583 const unsigned int hashval =
584 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
585 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
586 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
587 ((unsigned int)((uintptr_t)bdev_ref_from))) &
588 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589 struct btrfsic_block_link *l;
590
591 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 BUG_ON(NULL == l->block_ref_to);
593 BUG_ON(NULL == l->block_ref_from);
594 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
595 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
596 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
597 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
598 return l;
599 }
600
601 return NULL;
602}
603
604static void btrfsic_dev_state_hashtable_init(
605 struct btrfsic_dev_state_hashtable *h)
606{
607 int i;
608
609 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
610 INIT_LIST_HEAD(h->table + i);
611}
612
613static void btrfsic_dev_state_hashtable_add(
614 struct btrfsic_dev_state *ds,
615 struct btrfsic_dev_state_hashtable *h)
616{
617 const unsigned int hashval =
618 (((unsigned int)((uintptr_t)ds->bdev)) &
619 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
620
621 list_add(&ds->collision_resolving_node, h->table + hashval);
622}
623
624static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
625{
626 list_del(&ds->collision_resolving_node);
627}
628
629static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
630 struct block_device *bdev,
631 struct btrfsic_dev_state_hashtable *h)
632{
633 const unsigned int hashval =
634 (((unsigned int)((uintptr_t)bdev)) &
635 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636 struct btrfsic_dev_state *ds;
637
638 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 if (ds->bdev == bdev)
640 return ds;
641 }
642
643 return NULL;
644}
645
646static int btrfsic_process_superblock(struct btrfsic_state *state,
647 struct btrfs_fs_devices *fs_devices)
648{
649 struct btrfs_fs_info *fs_info = state->fs_info;
650 struct btrfs_super_block *selected_super;
651 struct list_head *dev_head = &fs_devices->devices;
652 struct btrfs_device *device;
653 struct btrfsic_dev_state *selected_dev_state = NULL;
654 int ret = 0;
655 int pass;
656
657 BUG_ON(NULL == state);
658 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
659 if (NULL == selected_super) {
660 pr_info("btrfsic: error, kmalloc failed!\n");
661 return -ENOMEM;
662 }
663
664 list_for_each_entry(device, dev_head, dev_list) {
665 int i;
666 struct btrfsic_dev_state *dev_state;
667
668 if (!device->bdev || !device->name)
669 continue;
670
671 dev_state = btrfsic_dev_state_lookup(device->bdev);
672 BUG_ON(NULL == dev_state);
673 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
674 ret = btrfsic_process_superblock_dev_mirror(
675 state, dev_state, device, i,
676 &selected_dev_state, selected_super);
677 if (0 != ret && 0 == i) {
678 kfree(selected_super);
679 return ret;
680 }
681 }
682 }
683
684 if (NULL == state->latest_superblock) {
685 pr_info("btrfsic: no superblock found!\n");
686 kfree(selected_super);
687 return -1;
688 }
689
690 state->csum_size = btrfs_super_csum_size(selected_super);
691
692 for (pass = 0; pass < 3; pass++) {
693 int num_copies;
694 int mirror_num;
695 u64 next_bytenr;
696
697 switch (pass) {
698 case 0:
699 next_bytenr = btrfs_super_root(selected_super);
700 if (state->print_mask &
701 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
702 pr_info("root@%llu\n", next_bytenr);
703 break;
704 case 1:
705 next_bytenr = btrfs_super_chunk_root(selected_super);
706 if (state->print_mask &
707 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
708 pr_info("chunk@%llu\n", next_bytenr);
709 break;
710 case 2:
711 next_bytenr = btrfs_super_log_root(selected_super);
712 if (0 == next_bytenr)
713 continue;
714 if (state->print_mask &
715 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
716 pr_info("log@%llu\n", next_bytenr);
717 break;
718 }
719
720 num_copies = btrfs_num_copies(fs_info, next_bytenr,
721 state->metablock_size);
722 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
723 pr_info("num_copies(log_bytenr=%llu) = %d\n",
724 next_bytenr, num_copies);
725
726 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
727 struct btrfsic_block *next_block;
728 struct btrfsic_block_data_ctx tmp_next_block_ctx;
729 struct btrfsic_block_link *l;
730
731 ret = btrfsic_map_block(state, next_bytenr,
732 state->metablock_size,
733 &tmp_next_block_ctx,
734 mirror_num);
735 if (ret) {
736 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
737 next_bytenr, mirror_num);
738 kfree(selected_super);
739 return -1;
740 }
741
742 next_block = btrfsic_block_hashtable_lookup(
743 tmp_next_block_ctx.dev->bdev,
744 tmp_next_block_ctx.dev_bytenr,
745 &state->block_hashtable);
746 BUG_ON(NULL == next_block);
747
748 l = btrfsic_block_link_hashtable_lookup(
749 tmp_next_block_ctx.dev->bdev,
750 tmp_next_block_ctx.dev_bytenr,
751 state->latest_superblock->dev_state->
752 bdev,
753 state->latest_superblock->dev_bytenr,
754 &state->block_link_hashtable);
755 BUG_ON(NULL == l);
756
757 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
758 if (ret < (int)PAGE_SIZE) {
759 pr_info("btrfsic: read @logical %llu failed!\n",
760 tmp_next_block_ctx.start);
761 btrfsic_release_block_ctx(&tmp_next_block_ctx);
762 kfree(selected_super);
763 return -1;
764 }
765
766 ret = btrfsic_process_metablock(state,
767 next_block,
768 &tmp_next_block_ctx,
769 BTRFS_MAX_LEVEL + 3, 1);
770 btrfsic_release_block_ctx(&tmp_next_block_ctx);
771 }
772 }
773
774 kfree(selected_super);
775 return ret;
776}
777
778static int btrfsic_process_superblock_dev_mirror(
779 struct btrfsic_state *state,
780 struct btrfsic_dev_state *dev_state,
781 struct btrfs_device *device,
782 int superblock_mirror_num,
783 struct btrfsic_dev_state **selected_dev_state,
784 struct btrfs_super_block *selected_super)
785{
786 struct btrfs_fs_info *fs_info = state->fs_info;
787 struct btrfs_super_block *super_tmp;
788 u64 dev_bytenr;
789 struct buffer_head *bh;
790 struct btrfsic_block *superblock_tmp;
791 int pass;
792 struct block_device *const superblock_bdev = device->bdev;
793
794 /* super block bytenr is always the unmapped device bytenr */
795 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
796 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
797 return -1;
798 bh = __bread(superblock_bdev, dev_bytenr / 4096,
799 BTRFS_SUPER_INFO_SIZE);
800 if (NULL == bh)
801 return -1;
802 super_tmp = (struct btrfs_super_block *)
803 (bh->b_data + (dev_bytenr & 4095));
804
805 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
806 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
807 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
808 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
809 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
810 brelse(bh);
811 return 0;
812 }
813
814 superblock_tmp =
815 btrfsic_block_hashtable_lookup(superblock_bdev,
816 dev_bytenr,
817 &state->block_hashtable);
818 if (NULL == superblock_tmp) {
819 superblock_tmp = btrfsic_block_alloc();
820 if (NULL == superblock_tmp) {
821 pr_info("btrfsic: error, kmalloc failed!\n");
822 brelse(bh);
823 return -1;
824 }
825 /* for superblock, only the dev_bytenr makes sense */
826 superblock_tmp->dev_bytenr = dev_bytenr;
827 superblock_tmp->dev_state = dev_state;
828 superblock_tmp->logical_bytenr = dev_bytenr;
829 superblock_tmp->generation = btrfs_super_generation(super_tmp);
830 superblock_tmp->is_metadata = 1;
831 superblock_tmp->is_superblock = 1;
832 superblock_tmp->is_iodone = 1;
833 superblock_tmp->never_written = 0;
834 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
835 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
836 btrfs_info_in_rcu(fs_info,
837 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
838 superblock_bdev,
839 rcu_str_deref(device->name), dev_bytenr,
840 dev_state->name, dev_bytenr,
841 superblock_mirror_num);
842 list_add(&superblock_tmp->all_blocks_node,
843 &state->all_blocks_list);
844 btrfsic_block_hashtable_add(superblock_tmp,
845 &state->block_hashtable);
846 }
847
848 /* select the one with the highest generation field */
849 if (btrfs_super_generation(super_tmp) >
850 state->max_superblock_generation ||
851 0 == state->max_superblock_generation) {
852 memcpy(selected_super, super_tmp, sizeof(*selected_super));
853 *selected_dev_state = dev_state;
854 state->max_superblock_generation =
855 btrfs_super_generation(super_tmp);
856 state->latest_superblock = superblock_tmp;
857 }
858
859 for (pass = 0; pass < 3; pass++) {
860 u64 next_bytenr;
861 int num_copies;
862 int mirror_num;
863 const char *additional_string = NULL;
864 struct btrfs_disk_key tmp_disk_key;
865
866 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
867 tmp_disk_key.offset = 0;
868 switch (pass) {
869 case 0:
870 btrfs_set_disk_key_objectid(&tmp_disk_key,
871 BTRFS_ROOT_TREE_OBJECTID);
872 additional_string = "initial root ";
873 next_bytenr = btrfs_super_root(super_tmp);
874 break;
875 case 1:
876 btrfs_set_disk_key_objectid(&tmp_disk_key,
877 BTRFS_CHUNK_TREE_OBJECTID);
878 additional_string = "initial chunk ";
879 next_bytenr = btrfs_super_chunk_root(super_tmp);
880 break;
881 case 2:
882 btrfs_set_disk_key_objectid(&tmp_disk_key,
883 BTRFS_TREE_LOG_OBJECTID);
884 additional_string = "initial log ";
885 next_bytenr = btrfs_super_log_root(super_tmp);
886 if (0 == next_bytenr)
887 continue;
888 break;
889 }
890
891 num_copies = btrfs_num_copies(fs_info, next_bytenr,
892 state->metablock_size);
893 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
894 pr_info("num_copies(log_bytenr=%llu) = %d\n",
895 next_bytenr, num_copies);
896 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
897 struct btrfsic_block *next_block;
898 struct btrfsic_block_data_ctx tmp_next_block_ctx;
899 struct btrfsic_block_link *l;
900
901 if (btrfsic_map_block(state, next_bytenr,
902 state->metablock_size,
903 &tmp_next_block_ctx,
904 mirror_num)) {
905 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
906 next_bytenr, mirror_num);
907 brelse(bh);
908 return -1;
909 }
910
911 next_block = btrfsic_block_lookup_or_add(
912 state, &tmp_next_block_ctx,
913 additional_string, 1, 1, 0,
914 mirror_num, NULL);
915 if (NULL == next_block) {
916 btrfsic_release_block_ctx(&tmp_next_block_ctx);
917 brelse(bh);
918 return -1;
919 }
920
921 next_block->disk_key = tmp_disk_key;
922 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
923 l = btrfsic_block_link_lookup_or_add(
924 state, &tmp_next_block_ctx,
925 next_block, superblock_tmp,
926 BTRFSIC_GENERATION_UNKNOWN);
927 btrfsic_release_block_ctx(&tmp_next_block_ctx);
928 if (NULL == l) {
929 brelse(bh);
930 return -1;
931 }
932 }
933 }
934 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
935 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
936
937 brelse(bh);
938 return 0;
939}
940
941static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
942{
943 struct btrfsic_stack_frame *sf;
944
945 sf = kzalloc(sizeof(*sf), GFP_NOFS);
946 if (NULL == sf)
947 pr_info("btrfsic: alloc memory failed!\n");
948 else
949 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
950 return sf;
951}
952
953static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
954{
955 BUG_ON(!(NULL == sf ||
956 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
957 kfree(sf);
958}
959
960static int btrfsic_process_metablock(
961 struct btrfsic_state *state,
962 struct btrfsic_block *const first_block,
963 struct btrfsic_block_data_ctx *const first_block_ctx,
964 int first_limit_nesting, int force_iodone_flag)
965{
966 struct btrfsic_stack_frame initial_stack_frame = { 0 };
967 struct btrfsic_stack_frame *sf;
968 struct btrfsic_stack_frame *next_stack;
969 struct btrfs_header *const first_hdr =
970 (struct btrfs_header *)first_block_ctx->datav[0];
971
972 BUG_ON(!first_hdr);
973 sf = &initial_stack_frame;
974 sf->error = 0;
975 sf->i = -1;
976 sf->limit_nesting = first_limit_nesting;
977 sf->block = first_block;
978 sf->block_ctx = first_block_ctx;
979 sf->next_block = NULL;
980 sf->hdr = first_hdr;
981 sf->prev = NULL;
982
983continue_with_new_stack_frame:
984 sf->block->generation = le64_to_cpu(sf->hdr->generation);
985 if (0 == sf->hdr->level) {
986 struct btrfs_leaf *const leafhdr =
987 (struct btrfs_leaf *)sf->hdr;
988
989 if (-1 == sf->i) {
990 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
991
992 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
993 pr_info("leaf %llu items %d generation %llu owner %llu\n",
994 sf->block_ctx->start, sf->nr,
995 btrfs_stack_header_generation(
996 &leafhdr->header),
997 btrfs_stack_header_owner(
998 &leafhdr->header));
999 }
1000
1001continue_with_current_leaf_stack_frame:
1002 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1003 sf->i++;
1004 sf->num_copies = 0;
1005 }
1006
1007 if (sf->i < sf->nr) {
1008 struct btrfs_item disk_item;
1009 u32 disk_item_offset =
1010 (uintptr_t)(leafhdr->items + sf->i) -
1011 (uintptr_t)leafhdr;
1012 struct btrfs_disk_key *disk_key;
1013 u8 type;
1014 u32 item_offset;
1015 u32 item_size;
1016
1017 if (disk_item_offset + sizeof(struct btrfs_item) >
1018 sf->block_ctx->len) {
1019leaf_item_out_of_bounce_error:
1020 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1021 sf->block_ctx->start,
1022 sf->block_ctx->dev->name);
1023 goto one_stack_frame_backwards;
1024 }
1025 btrfsic_read_from_block_data(sf->block_ctx,
1026 &disk_item,
1027 disk_item_offset,
1028 sizeof(struct btrfs_item));
1029 item_offset = btrfs_stack_item_offset(&disk_item);
1030 item_size = btrfs_stack_item_size(&disk_item);
1031 disk_key = &disk_item.key;
1032 type = btrfs_disk_key_type(disk_key);
1033
1034 if (BTRFS_ROOT_ITEM_KEY == type) {
1035 struct btrfs_root_item root_item;
1036 u32 root_item_offset;
1037 u64 next_bytenr;
1038
1039 root_item_offset = item_offset +
1040 offsetof(struct btrfs_leaf, items);
1041 if (root_item_offset + item_size >
1042 sf->block_ctx->len)
1043 goto leaf_item_out_of_bounce_error;
1044 btrfsic_read_from_block_data(
1045 sf->block_ctx, &root_item,
1046 root_item_offset,
1047 item_size);
1048 next_bytenr = btrfs_root_bytenr(&root_item);
1049
1050 sf->error =
1051 btrfsic_create_link_to_next_block(
1052 state,
1053 sf->block,
1054 sf->block_ctx,
1055 next_bytenr,
1056 sf->limit_nesting,
1057 &sf->next_block_ctx,
1058 &sf->next_block,
1059 force_iodone_flag,
1060 &sf->num_copies,
1061 &sf->mirror_num,
1062 disk_key,
1063 btrfs_root_generation(
1064 &root_item));
1065 if (sf->error)
1066 goto one_stack_frame_backwards;
1067
1068 if (NULL != sf->next_block) {
1069 struct btrfs_header *const next_hdr =
1070 (struct btrfs_header *)
1071 sf->next_block_ctx.datav[0];
1072
1073 next_stack =
1074 btrfsic_stack_frame_alloc();
1075 if (NULL == next_stack) {
1076 sf->error = -1;
1077 btrfsic_release_block_ctx(
1078 &sf->
1079 next_block_ctx);
1080 goto one_stack_frame_backwards;
1081 }
1082
1083 next_stack->i = -1;
1084 next_stack->block = sf->next_block;
1085 next_stack->block_ctx =
1086 &sf->next_block_ctx;
1087 next_stack->next_block = NULL;
1088 next_stack->hdr = next_hdr;
1089 next_stack->limit_nesting =
1090 sf->limit_nesting - 1;
1091 next_stack->prev = sf;
1092 sf = next_stack;
1093 goto continue_with_new_stack_frame;
1094 }
1095 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1096 state->include_extent_data) {
1097 sf->error = btrfsic_handle_extent_data(
1098 state,
1099 sf->block,
1100 sf->block_ctx,
1101 item_offset,
1102 force_iodone_flag);
1103 if (sf->error)
1104 goto one_stack_frame_backwards;
1105 }
1106
1107 goto continue_with_current_leaf_stack_frame;
1108 }
1109 } else {
1110 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1111
1112 if (-1 == sf->i) {
1113 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1114
1115 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1116 pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1117 sf->block_ctx->start,
1118 nodehdr->header.level, sf->nr,
1119 btrfs_stack_header_generation(
1120 &nodehdr->header),
1121 btrfs_stack_header_owner(
1122 &nodehdr->header));
1123 }
1124
1125continue_with_current_node_stack_frame:
1126 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1127 sf->i++;
1128 sf->num_copies = 0;
1129 }
1130
1131 if (sf->i < sf->nr) {
1132 struct btrfs_key_ptr key_ptr;
1133 u32 key_ptr_offset;
1134 u64 next_bytenr;
1135
1136 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1137 (uintptr_t)nodehdr;
1138 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1139 sf->block_ctx->len) {
1140 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1141 sf->block_ctx->start,
1142 sf->block_ctx->dev->name);
1143 goto one_stack_frame_backwards;
1144 }
1145 btrfsic_read_from_block_data(
1146 sf->block_ctx, &key_ptr, key_ptr_offset,
1147 sizeof(struct btrfs_key_ptr));
1148 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1149
1150 sf->error = btrfsic_create_link_to_next_block(
1151 state,
1152 sf->block,
1153 sf->block_ctx,
1154 next_bytenr,
1155 sf->limit_nesting,
1156 &sf->next_block_ctx,
1157 &sf->next_block,
1158 force_iodone_flag,
1159 &sf->num_copies,
1160 &sf->mirror_num,
1161 &key_ptr.key,
1162 btrfs_stack_key_generation(&key_ptr));
1163 if (sf->error)
1164 goto one_stack_frame_backwards;
1165
1166 if (NULL != sf->next_block) {
1167 struct btrfs_header *const next_hdr =
1168 (struct btrfs_header *)
1169 sf->next_block_ctx.datav[0];
1170
1171 next_stack = btrfsic_stack_frame_alloc();
1172 if (NULL == next_stack) {
1173 sf->error = -1;
1174 goto one_stack_frame_backwards;
1175 }
1176
1177 next_stack->i = -1;
1178 next_stack->block = sf->next_block;
1179 next_stack->block_ctx = &sf->next_block_ctx;
1180 next_stack->next_block = NULL;
1181 next_stack->hdr = next_hdr;
1182 next_stack->limit_nesting =
1183 sf->limit_nesting - 1;
1184 next_stack->prev = sf;
1185 sf = next_stack;
1186 goto continue_with_new_stack_frame;
1187 }
1188
1189 goto continue_with_current_node_stack_frame;
1190 }
1191 }
1192
1193one_stack_frame_backwards:
1194 if (NULL != sf->prev) {
1195 struct btrfsic_stack_frame *const prev = sf->prev;
1196
1197 /* the one for the initial block is freed in the caller */
1198 btrfsic_release_block_ctx(sf->block_ctx);
1199
1200 if (sf->error) {
1201 prev->error = sf->error;
1202 btrfsic_stack_frame_free(sf);
1203 sf = prev;
1204 goto one_stack_frame_backwards;
1205 }
1206
1207 btrfsic_stack_frame_free(sf);
1208 sf = prev;
1209 goto continue_with_new_stack_frame;
1210 } else {
1211 BUG_ON(&initial_stack_frame != sf);
1212 }
1213
1214 return sf->error;
1215}
1216
1217static void btrfsic_read_from_block_data(
1218 struct btrfsic_block_data_ctx *block_ctx,
1219 void *dstv, u32 offset, size_t len)
1220{
1221 size_t cur;
1222 size_t offset_in_page;
1223 char *kaddr;
1224 char *dst = (char *)dstv;
1225 size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1226 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1227
1228 WARN_ON(offset + len > block_ctx->len);
1229 offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1230
1231 while (len > 0) {
1232 cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1233 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1234 kaddr = block_ctx->datav[i];
1235 memcpy(dst, kaddr + offset_in_page, cur);
1236
1237 dst += cur;
1238 len -= cur;
1239 offset_in_page = 0;
1240 i++;
1241 }
1242}
1243
1244static int btrfsic_create_link_to_next_block(
1245 struct btrfsic_state *state,
1246 struct btrfsic_block *block,
1247 struct btrfsic_block_data_ctx *block_ctx,
1248 u64 next_bytenr,
1249 int limit_nesting,
1250 struct btrfsic_block_data_ctx *next_block_ctx,
1251 struct btrfsic_block **next_blockp,
1252 int force_iodone_flag,
1253 int *num_copiesp, int *mirror_nump,
1254 struct btrfs_disk_key *disk_key,
1255 u64 parent_generation)
1256{
1257 struct btrfs_fs_info *fs_info = state->fs_info;
1258 struct btrfsic_block *next_block = NULL;
1259 int ret;
1260 struct btrfsic_block_link *l;
1261 int did_alloc_block_link;
1262 int block_was_created;
1263
1264 *next_blockp = NULL;
1265 if (0 == *num_copiesp) {
1266 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1267 state->metablock_size);
1268 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1269 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1270 next_bytenr, *num_copiesp);
1271 *mirror_nump = 1;
1272 }
1273
1274 if (*mirror_nump > *num_copiesp)
1275 return 0;
1276
1277 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1278 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1279 *mirror_nump);
1280 ret = btrfsic_map_block(state, next_bytenr,
1281 state->metablock_size,
1282 next_block_ctx, *mirror_nump);
1283 if (ret) {
1284 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1285 next_bytenr, *mirror_nump);
1286 btrfsic_release_block_ctx(next_block_ctx);
1287 *next_blockp = NULL;
1288 return -1;
1289 }
1290
1291 next_block = btrfsic_block_lookup_or_add(state,
1292 next_block_ctx, "referenced ",
1293 1, force_iodone_flag,
1294 !force_iodone_flag,
1295 *mirror_nump,
1296 &block_was_created);
1297 if (NULL == next_block) {
1298 btrfsic_release_block_ctx(next_block_ctx);
1299 *next_blockp = NULL;
1300 return -1;
1301 }
1302 if (block_was_created) {
1303 l = NULL;
1304 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1305 } else {
1306 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1307 if (next_block->logical_bytenr != next_bytenr &&
1308 !(!next_block->is_metadata &&
1309 0 == next_block->logical_bytenr))
1310 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1311 next_bytenr, next_block_ctx->dev->name,
1312 next_block_ctx->dev_bytenr, *mirror_nump,
1313 btrfsic_get_block_type(state,
1314 next_block),
1315 next_block->logical_bytenr);
1316 else
1317 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1318 next_bytenr, next_block_ctx->dev->name,
1319 next_block_ctx->dev_bytenr, *mirror_nump,
1320 btrfsic_get_block_type(state,
1321 next_block));
1322 }
1323 next_block->logical_bytenr = next_bytenr;
1324
1325 next_block->mirror_num = *mirror_nump;
1326 l = btrfsic_block_link_hashtable_lookup(
1327 next_block_ctx->dev->bdev,
1328 next_block_ctx->dev_bytenr,
1329 block_ctx->dev->bdev,
1330 block_ctx->dev_bytenr,
1331 &state->block_link_hashtable);
1332 }
1333
1334 next_block->disk_key = *disk_key;
1335 if (NULL == l) {
1336 l = btrfsic_block_link_alloc();
1337 if (NULL == l) {
1338 pr_info("btrfsic: error, kmalloc failed!\n");
1339 btrfsic_release_block_ctx(next_block_ctx);
1340 *next_blockp = NULL;
1341 return -1;
1342 }
1343
1344 did_alloc_block_link = 1;
1345 l->block_ref_to = next_block;
1346 l->block_ref_from = block;
1347 l->ref_cnt = 1;
1348 l->parent_generation = parent_generation;
1349
1350 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1351 btrfsic_print_add_link(state, l);
1352
1353 list_add(&l->node_ref_to, &block->ref_to_list);
1354 list_add(&l->node_ref_from, &next_block->ref_from_list);
1355
1356 btrfsic_block_link_hashtable_add(l,
1357 &state->block_link_hashtable);
1358 } else {
1359 did_alloc_block_link = 0;
1360 if (0 == limit_nesting) {
1361 l->ref_cnt++;
1362 l->parent_generation = parent_generation;
1363 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1364 btrfsic_print_add_link(state, l);
1365 }
1366 }
1367
1368 if (limit_nesting > 0 && did_alloc_block_link) {
1369 ret = btrfsic_read_block(state, next_block_ctx);
1370 if (ret < (int)next_block_ctx->len) {
1371 pr_info("btrfsic: read block @logical %llu failed!\n",
1372 next_bytenr);
1373 btrfsic_release_block_ctx(next_block_ctx);
1374 *next_blockp = NULL;
1375 return -1;
1376 }
1377
1378 *next_blockp = next_block;
1379 } else {
1380 *next_blockp = NULL;
1381 }
1382 (*mirror_nump)++;
1383
1384 return 0;
1385}
1386
1387static int btrfsic_handle_extent_data(
1388 struct btrfsic_state *state,
1389 struct btrfsic_block *block,
1390 struct btrfsic_block_data_ctx *block_ctx,
1391 u32 item_offset, int force_iodone_flag)
1392{
1393 struct btrfs_fs_info *fs_info = state->fs_info;
1394 struct btrfs_file_extent_item file_extent_item;
1395 u64 file_extent_item_offset;
1396 u64 next_bytenr;
1397 u64 num_bytes;
1398 u64 generation;
1399 struct btrfsic_block_link *l;
1400 int ret;
1401
1402 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1403 item_offset;
1404 if (file_extent_item_offset +
1405 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1406 block_ctx->len) {
1407 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1408 block_ctx->start, block_ctx->dev->name);
1409 return -1;
1410 }
1411
1412 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1413 file_extent_item_offset,
1414 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1415 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1416 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1417 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1418 pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1419 file_extent_item.type,
1420 btrfs_stack_file_extent_disk_bytenr(
1421 &file_extent_item));
1422 return 0;
1423 }
1424
1425 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1426 block_ctx->len) {
1427 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1428 block_ctx->start, block_ctx->dev->name);
1429 return -1;
1430 }
1431 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1432 file_extent_item_offset,
1433 sizeof(struct btrfs_file_extent_item));
1434 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1435 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1436 BTRFS_COMPRESS_NONE) {
1437 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1438 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1439 } else {
1440 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1441 }
1442 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1443
1444 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1445 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1446 file_extent_item.type,
1447 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1448 btrfs_stack_file_extent_offset(&file_extent_item),
1449 num_bytes);
1450 while (num_bytes > 0) {
1451 u32 chunk_len;
1452 int num_copies;
1453 int mirror_num;
1454
1455 if (num_bytes > state->datablock_size)
1456 chunk_len = state->datablock_size;
1457 else
1458 chunk_len = num_bytes;
1459
1460 num_copies = btrfs_num_copies(fs_info, next_bytenr,
1461 state->datablock_size);
1462 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1463 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1464 next_bytenr, num_copies);
1465 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1466 struct btrfsic_block_data_ctx next_block_ctx;
1467 struct btrfsic_block *next_block;
1468 int block_was_created;
1469
1470 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1471 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1472 mirror_num);
1473 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1475 next_bytenr, chunk_len);
1476 ret = btrfsic_map_block(state, next_bytenr,
1477 chunk_len, &next_block_ctx,
1478 mirror_num);
1479 if (ret) {
1480 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1481 next_bytenr, mirror_num);
1482 return -1;
1483 }
1484
1485 next_block = btrfsic_block_lookup_or_add(
1486 state,
1487 &next_block_ctx,
1488 "referenced ",
1489 0,
1490 force_iodone_flag,
1491 !force_iodone_flag,
1492 mirror_num,
1493 &block_was_created);
1494 if (NULL == next_block) {
1495 pr_info("btrfsic: error, kmalloc failed!\n");
1496 btrfsic_release_block_ctx(&next_block_ctx);
1497 return -1;
1498 }
1499 if (!block_was_created) {
1500 if ((state->print_mask &
1501 BTRFSIC_PRINT_MASK_VERBOSE) &&
1502 next_block->logical_bytenr != next_bytenr &&
1503 !(!next_block->is_metadata &&
1504 0 == next_block->logical_bytenr)) {
1505 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1506 next_bytenr,
1507 next_block_ctx.dev->name,
1508 next_block_ctx.dev_bytenr,
1509 mirror_num,
1510 next_block->logical_bytenr);
1511 }
1512 next_block->logical_bytenr = next_bytenr;
1513 next_block->mirror_num = mirror_num;
1514 }
1515
1516 l = btrfsic_block_link_lookup_or_add(state,
1517 &next_block_ctx,
1518 next_block, block,
1519 generation);
1520 btrfsic_release_block_ctx(&next_block_ctx);
1521 if (NULL == l)
1522 return -1;
1523 }
1524
1525 next_bytenr += chunk_len;
1526 num_bytes -= chunk_len;
1527 }
1528
1529 return 0;
1530}
1531
1532static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1533 struct btrfsic_block_data_ctx *block_ctx_out,
1534 int mirror_num)
1535{
1536 struct btrfs_fs_info *fs_info = state->fs_info;
1537 int ret;
1538 u64 length;
1539 struct btrfs_bio *multi = NULL;
1540 struct btrfs_device *device;
1541
1542 length = len;
1543 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1544 bytenr, &length, &multi, mirror_num);
1545
1546 if (ret) {
1547 block_ctx_out->start = 0;
1548 block_ctx_out->dev_bytenr = 0;
1549 block_ctx_out->len = 0;
1550 block_ctx_out->dev = NULL;
1551 block_ctx_out->datav = NULL;
1552 block_ctx_out->pagev = NULL;
1553 block_ctx_out->mem_to_free = NULL;
1554
1555 return ret;
1556 }
1557
1558 device = multi->stripes[0].dev;
1559 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1560 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1561 block_ctx_out->start = bytenr;
1562 block_ctx_out->len = len;
1563 block_ctx_out->datav = NULL;
1564 block_ctx_out->pagev = NULL;
1565 block_ctx_out->mem_to_free = NULL;
1566
1567 kfree(multi);
1568 if (NULL == block_ctx_out->dev) {
1569 ret = -ENXIO;
1570 pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1571 }
1572
1573 return ret;
1574}
1575
1576static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1577{
1578 if (block_ctx->mem_to_free) {
1579 unsigned int num_pages;
1580
1581 BUG_ON(!block_ctx->datav);
1582 BUG_ON(!block_ctx->pagev);
1583 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1584 PAGE_SHIFT;
1585 while (num_pages > 0) {
1586 num_pages--;
1587 if (block_ctx->datav[num_pages]) {
1588 kunmap(block_ctx->pagev[num_pages]);
1589 block_ctx->datav[num_pages] = NULL;
1590 }
1591 if (block_ctx->pagev[num_pages]) {
1592 __free_page(block_ctx->pagev[num_pages]);
1593 block_ctx->pagev[num_pages] = NULL;
1594 }
1595 }
1596
1597 kfree(block_ctx->mem_to_free);
1598 block_ctx->mem_to_free = NULL;
1599 block_ctx->pagev = NULL;
1600 block_ctx->datav = NULL;
1601 }
1602}
1603
1604static int btrfsic_read_block(struct btrfsic_state *state,
1605 struct btrfsic_block_data_ctx *block_ctx)
1606{
1607 unsigned int num_pages;
1608 unsigned int i;
1609 u64 dev_bytenr;
1610 int ret;
1611
1612 BUG_ON(block_ctx->datav);
1613 BUG_ON(block_ctx->pagev);
1614 BUG_ON(block_ctx->mem_to_free);
1615 if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1616 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1617 block_ctx->dev_bytenr);
1618 return -1;
1619 }
1620
1621 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1622 PAGE_SHIFT;
1623 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1624 sizeof(*block_ctx->pagev)) *
1625 num_pages, GFP_NOFS);
1626 if (!block_ctx->mem_to_free)
1627 return -ENOMEM;
1628 block_ctx->datav = block_ctx->mem_to_free;
1629 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1630 for (i = 0; i < num_pages; i++) {
1631 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1632 if (!block_ctx->pagev[i])
1633 return -1;
1634 }
1635
1636 dev_bytenr = block_ctx->dev_bytenr;
1637 for (i = 0; i < num_pages;) {
1638 struct bio *bio;
1639 unsigned int j;
1640
1641 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1642 if (!bio) {
1643 pr_info("btrfsic: bio_alloc() for %u pages failed!\n",
1644 num_pages - i);
1645 return -1;
1646 }
1647 bio->bi_bdev = block_ctx->dev->bdev;
1648 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1649 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1650
1651 for (j = i; j < num_pages; j++) {
1652 ret = bio_add_page(bio, block_ctx->pagev[j],
1653 PAGE_SIZE, 0);
1654 if (PAGE_SIZE != ret)
1655 break;
1656 }
1657 if (j == i) {
1658 pr_info("btrfsic: error, failed to add a single page!\n");
1659 return -1;
1660 }
1661 if (submit_bio_wait(bio)) {
1662 pr_info("btrfsic: read error at logical %llu dev %s!\n",
1663 block_ctx->start, block_ctx->dev->name);
1664 bio_put(bio);
1665 return -1;
1666 }
1667 bio_put(bio);
1668 dev_bytenr += (j - i) * PAGE_SIZE;
1669 i = j;
1670 }
1671 for (i = 0; i < num_pages; i++) {
1672 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1673 if (!block_ctx->datav[i]) {
1674 pr_info("btrfsic: kmap() failed (dev %s)!\n",
1675 block_ctx->dev->name);
1676 return -1;
1677 }
1678 }
1679
1680 return block_ctx->len;
1681}
1682
1683static void btrfsic_dump_database(struct btrfsic_state *state)
1684{
1685 const struct btrfsic_block *b_all;
1686
1687 BUG_ON(NULL == state);
1688
1689 pr_info("all_blocks_list:\n");
1690 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1691 const struct btrfsic_block_link *l;
1692
1693 pr_info("%c-block @%llu (%s/%llu/%d)\n",
1694 btrfsic_get_block_type(state, b_all),
1695 b_all->logical_bytenr, b_all->dev_state->name,
1696 b_all->dev_bytenr, b_all->mirror_num);
1697
1698 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1699 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1700 btrfsic_get_block_type(state, b_all),
1701 b_all->logical_bytenr, b_all->dev_state->name,
1702 b_all->dev_bytenr, b_all->mirror_num,
1703 l->ref_cnt,
1704 btrfsic_get_block_type(state, l->block_ref_to),
1705 l->block_ref_to->logical_bytenr,
1706 l->block_ref_to->dev_state->name,
1707 l->block_ref_to->dev_bytenr,
1708 l->block_ref_to->mirror_num);
1709 }
1710
1711 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1712 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1713 btrfsic_get_block_type(state, b_all),
1714 b_all->logical_bytenr, b_all->dev_state->name,
1715 b_all->dev_bytenr, b_all->mirror_num,
1716 l->ref_cnt,
1717 btrfsic_get_block_type(state, l->block_ref_from),
1718 l->block_ref_from->logical_bytenr,
1719 l->block_ref_from->dev_state->name,
1720 l->block_ref_from->dev_bytenr,
1721 l->block_ref_from->mirror_num);
1722 }
1723
1724 pr_info("\n");
1725 }
1726}
1727
1728/*
1729 * Test whether the disk block contains a tree block (leaf or node)
1730 * (note that this test fails for the super block)
1731 */
1732static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1733 char **datav, unsigned int num_pages)
1734{
1735 struct btrfs_fs_info *fs_info = state->fs_info;
1736 struct btrfs_header *h;
1737 u8 csum[BTRFS_CSUM_SIZE];
1738 u32 crc = ~(u32)0;
1739 unsigned int i;
1740
1741 if (num_pages * PAGE_SIZE < state->metablock_size)
1742 return 1; /* not metadata */
1743 num_pages = state->metablock_size >> PAGE_SHIFT;
1744 h = (struct btrfs_header *)datav[0];
1745
1746 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1747 return 1;
1748
1749 for (i = 0; i < num_pages; i++) {
1750 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1751 size_t sublen = i ? PAGE_SIZE :
1752 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1753
1754 crc = btrfs_crc32c(crc, data, sublen);
1755 }
1756 btrfs_csum_final(crc, csum);
1757 if (memcmp(csum, h->csum, state->csum_size))
1758 return 1;
1759
1760 return 0; /* is metadata */
1761}
1762
1763static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1764 u64 dev_bytenr, char **mapped_datav,
1765 unsigned int num_pages,
1766 struct bio *bio, int *bio_is_patched,
1767 struct buffer_head *bh,
1768 int submit_bio_bh_rw)
1769{
1770 int is_metadata;
1771 struct btrfsic_block *block;
1772 struct btrfsic_block_data_ctx block_ctx;
1773 int ret;
1774 struct btrfsic_state *state = dev_state->state;
1775 struct block_device *bdev = dev_state->bdev;
1776 unsigned int processed_len;
1777
1778 if (NULL != bio_is_patched)
1779 *bio_is_patched = 0;
1780
1781again:
1782 if (num_pages == 0)
1783 return;
1784
1785 processed_len = 0;
1786 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1787 num_pages));
1788
1789 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1790 &state->block_hashtable);
1791 if (NULL != block) {
1792 u64 bytenr = 0;
1793 struct btrfsic_block_link *l, *tmp;
1794
1795 if (block->is_superblock) {
1796 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1797 mapped_datav[0]);
1798 if (num_pages * PAGE_SIZE <
1799 BTRFS_SUPER_INFO_SIZE) {
1800 pr_info("btrfsic: cannot work with too short bios!\n");
1801 return;
1802 }
1803 is_metadata = 1;
1804 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1805 processed_len = BTRFS_SUPER_INFO_SIZE;
1806 if (state->print_mask &
1807 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1808 pr_info("[before new superblock is written]:\n");
1809 btrfsic_dump_tree_sub(state, block, 0);
1810 }
1811 }
1812 if (is_metadata) {
1813 if (!block->is_superblock) {
1814 if (num_pages * PAGE_SIZE <
1815 state->metablock_size) {
1816 pr_info("btrfsic: cannot work with too short bios!\n");
1817 return;
1818 }
1819 processed_len = state->metablock_size;
1820 bytenr = btrfs_stack_header_bytenr(
1821 (struct btrfs_header *)
1822 mapped_datav[0]);
1823 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1824 dev_state,
1825 dev_bytenr);
1826 }
1827 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1828 if (block->logical_bytenr != bytenr &&
1829 !(!block->is_metadata &&
1830 block->logical_bytenr == 0))
1831 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1832 bytenr, dev_state->name,
1833 dev_bytenr,
1834 block->mirror_num,
1835 btrfsic_get_block_type(state,
1836 block),
1837 block->logical_bytenr);
1838 else
1839 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1840 bytenr, dev_state->name,
1841 dev_bytenr, block->mirror_num,
1842 btrfsic_get_block_type(state,
1843 block));
1844 }
1845 block->logical_bytenr = bytenr;
1846 } else {
1847 if (num_pages * PAGE_SIZE <
1848 state->datablock_size) {
1849 pr_info("btrfsic: cannot work with too short bios!\n");
1850 return;
1851 }
1852 processed_len = state->datablock_size;
1853 bytenr = block->logical_bytenr;
1854 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1855 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1856 bytenr, dev_state->name, dev_bytenr,
1857 block->mirror_num,
1858 btrfsic_get_block_type(state, block));
1859 }
1860
1861 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1862 pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1863 list_empty(&block->ref_to_list) ? ' ' : '!',
1864 list_empty(&block->ref_from_list) ? ' ' : '!');
1865 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1866 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1867 btrfsic_get_block_type(state, block), bytenr,
1868 dev_state->name, dev_bytenr, block->mirror_num,
1869 block->generation,
1870 btrfs_disk_key_objectid(&block->disk_key),
1871 block->disk_key.type,
1872 btrfs_disk_key_offset(&block->disk_key),
1873 btrfs_stack_header_generation(
1874 (struct btrfs_header *) mapped_datav[0]),
1875 state->max_superblock_generation);
1876 btrfsic_dump_tree(state);
1877 }
1878
1879 if (!block->is_iodone && !block->never_written) {
1880 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1881 btrfsic_get_block_type(state, block), bytenr,
1882 dev_state->name, dev_bytenr, block->mirror_num,
1883 block->generation,
1884 btrfs_stack_header_generation(
1885 (struct btrfs_header *)
1886 mapped_datav[0]));
1887 /* it would not be safe to go on */
1888 btrfsic_dump_tree(state);
1889 goto continue_loop;
1890 }
1891
1892 /*
1893 * Clear all references of this block. Do not free
1894 * the block itself even if is not referenced anymore
1895 * because it still carries valuable information
1896 * like whether it was ever written and IO completed.
1897 */
1898 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1899 node_ref_to) {
1900 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1901 btrfsic_print_rem_link(state, l);
1902 l->ref_cnt--;
1903 if (0 == l->ref_cnt) {
1904 list_del(&l->node_ref_to);
1905 list_del(&l->node_ref_from);
1906 btrfsic_block_link_hashtable_remove(l);
1907 btrfsic_block_link_free(l);
1908 }
1909 }
1910
1911 block_ctx.dev = dev_state;
1912 block_ctx.dev_bytenr = dev_bytenr;
1913 block_ctx.start = bytenr;
1914 block_ctx.len = processed_len;
1915 block_ctx.pagev = NULL;
1916 block_ctx.mem_to_free = NULL;
1917 block_ctx.datav = mapped_datav;
1918
1919 if (is_metadata || state->include_extent_data) {
1920 block->never_written = 0;
1921 block->iodone_w_error = 0;
1922 if (NULL != bio) {
1923 block->is_iodone = 0;
1924 BUG_ON(NULL == bio_is_patched);
1925 if (!*bio_is_patched) {
1926 block->orig_bio_bh_private =
1927 bio->bi_private;
1928 block->orig_bio_bh_end_io.bio =
1929 bio->bi_end_io;
1930 block->next_in_same_bio = NULL;
1931 bio->bi_private = block;
1932 bio->bi_end_io = btrfsic_bio_end_io;
1933 *bio_is_patched = 1;
1934 } else {
1935 struct btrfsic_block *chained_block =
1936 (struct btrfsic_block *)
1937 bio->bi_private;
1938
1939 BUG_ON(NULL == chained_block);
1940 block->orig_bio_bh_private =
1941 chained_block->orig_bio_bh_private;
1942 block->orig_bio_bh_end_io.bio =
1943 chained_block->orig_bio_bh_end_io.
1944 bio;
1945 block->next_in_same_bio = chained_block;
1946 bio->bi_private = block;
1947 }
1948 } else if (NULL != bh) {
1949 block->is_iodone = 0;
1950 block->orig_bio_bh_private = bh->b_private;
1951 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1952 block->next_in_same_bio = NULL;
1953 bh->b_private = block;
1954 bh->b_end_io = btrfsic_bh_end_io;
1955 } else {
1956 block->is_iodone = 1;
1957 block->orig_bio_bh_private = NULL;
1958 block->orig_bio_bh_end_io.bio = NULL;
1959 block->next_in_same_bio = NULL;
1960 }
1961 }
1962
1963 block->flush_gen = dev_state->last_flush_gen + 1;
1964 block->submit_bio_bh_rw = submit_bio_bh_rw;
1965 if (is_metadata) {
1966 block->logical_bytenr = bytenr;
1967 block->is_metadata = 1;
1968 if (block->is_superblock) {
1969 BUG_ON(PAGE_SIZE !=
1970 BTRFS_SUPER_INFO_SIZE);
1971 ret = btrfsic_process_written_superblock(
1972 state,
1973 block,
1974 (struct btrfs_super_block *)
1975 mapped_datav[0]);
1976 if (state->print_mask &
1977 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1978 pr_info("[after new superblock is written]:\n");
1979 btrfsic_dump_tree_sub(state, block, 0);
1980 }
1981 } else {
1982 block->mirror_num = 0; /* unknown */
1983 ret = btrfsic_process_metablock(
1984 state,
1985 block,
1986 &block_ctx,
1987 0, 0);
1988 }
1989 if (ret)
1990 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1991 dev_bytenr);
1992 } else {
1993 block->is_metadata = 0;
1994 block->mirror_num = 0; /* unknown */
1995 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1996 if (!state->include_extent_data
1997 && list_empty(&block->ref_from_list)) {
1998 /*
1999 * disk block is overwritten with extent
2000 * data (not meta data) and we are configured
2001 * to not include extent data: take the
2002 * chance and free the block's memory
2003 */
2004 btrfsic_block_hashtable_remove(block);
2005 list_del(&block->all_blocks_node);
2006 btrfsic_block_free(block);
2007 }
2008 }
2009 btrfsic_release_block_ctx(&block_ctx);
2010 } else {
2011 /* block has not been found in hash table */
2012 u64 bytenr;
2013
2014 if (!is_metadata) {
2015 processed_len = state->datablock_size;
2016 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2017 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
2018 dev_state->name, dev_bytenr);
2019 if (!state->include_extent_data) {
2020 /* ignore that written D block */
2021 goto continue_loop;
2022 }
2023
2024 /* this is getting ugly for the
2025 * include_extent_data case... */
2026 bytenr = 0; /* unknown */
2027 } else {
2028 processed_len = state->metablock_size;
2029 bytenr = btrfs_stack_header_bytenr(
2030 (struct btrfs_header *)
2031 mapped_datav[0]);
2032 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2033 dev_bytenr);
2034 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2035 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2036 bytenr, dev_state->name, dev_bytenr);
2037 }
2038
2039 block_ctx.dev = dev_state;
2040 block_ctx.dev_bytenr = dev_bytenr;
2041 block_ctx.start = bytenr;
2042 block_ctx.len = processed_len;
2043 block_ctx.pagev = NULL;
2044 block_ctx.mem_to_free = NULL;
2045 block_ctx.datav = mapped_datav;
2046
2047 block = btrfsic_block_alloc();
2048 if (NULL == block) {
2049 pr_info("btrfsic: error, kmalloc failed!\n");
2050 btrfsic_release_block_ctx(&block_ctx);
2051 goto continue_loop;
2052 }
2053 block->dev_state = dev_state;
2054 block->dev_bytenr = dev_bytenr;
2055 block->logical_bytenr = bytenr;
2056 block->is_metadata = is_metadata;
2057 block->never_written = 0;
2058 block->iodone_w_error = 0;
2059 block->mirror_num = 0; /* unknown */
2060 block->flush_gen = dev_state->last_flush_gen + 1;
2061 block->submit_bio_bh_rw = submit_bio_bh_rw;
2062 if (NULL != bio) {
2063 block->is_iodone = 0;
2064 BUG_ON(NULL == bio_is_patched);
2065 if (!*bio_is_patched) {
2066 block->orig_bio_bh_private = bio->bi_private;
2067 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2068 block->next_in_same_bio = NULL;
2069 bio->bi_private = block;
2070 bio->bi_end_io = btrfsic_bio_end_io;
2071 *bio_is_patched = 1;
2072 } else {
2073 struct btrfsic_block *chained_block =
2074 (struct btrfsic_block *)
2075 bio->bi_private;
2076
2077 BUG_ON(NULL == chained_block);
2078 block->orig_bio_bh_private =
2079 chained_block->orig_bio_bh_private;
2080 block->orig_bio_bh_end_io.bio =
2081 chained_block->orig_bio_bh_end_io.bio;
2082 block->next_in_same_bio = chained_block;
2083 bio->bi_private = block;
2084 }
2085 } else if (NULL != bh) {
2086 block->is_iodone = 0;
2087 block->orig_bio_bh_private = bh->b_private;
2088 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2089 block->next_in_same_bio = NULL;
2090 bh->b_private = block;
2091 bh->b_end_io = btrfsic_bh_end_io;
2092 } else {
2093 block->is_iodone = 1;
2094 block->orig_bio_bh_private = NULL;
2095 block->orig_bio_bh_end_io.bio = NULL;
2096 block->next_in_same_bio = NULL;
2097 }
2098 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2099 pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2100 is_metadata ? 'M' : 'D',
2101 block->logical_bytenr, block->dev_state->name,
2102 block->dev_bytenr, block->mirror_num);
2103 list_add(&block->all_blocks_node, &state->all_blocks_list);
2104 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2105
2106 if (is_metadata) {
2107 ret = btrfsic_process_metablock(state, block,
2108 &block_ctx, 0, 0);
2109 if (ret)
2110 pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2111 dev_bytenr);
2112 }
2113 btrfsic_release_block_ctx(&block_ctx);
2114 }
2115
2116continue_loop:
2117 BUG_ON(!processed_len);
2118 dev_bytenr += processed_len;
2119 mapped_datav += processed_len >> PAGE_SHIFT;
2120 num_pages -= processed_len >> PAGE_SHIFT;
2121 goto again;
2122}
2123
2124static void btrfsic_bio_end_io(struct bio *bp)
2125{
2126 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2127 int iodone_w_error;
2128
2129 /* mutex is not held! This is not save if IO is not yet completed
2130 * on umount */
2131 iodone_w_error = 0;
2132 if (bp->bi_error)
2133 iodone_w_error = 1;
2134
2135 BUG_ON(NULL == block);
2136 bp->bi_private = block->orig_bio_bh_private;
2137 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2138
2139 do {
2140 struct btrfsic_block *next_block;
2141 struct btrfsic_dev_state *const dev_state = block->dev_state;
2142
2143 if ((dev_state->state->print_mask &
2144 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2145 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2146 bp->bi_error,
2147 btrfsic_get_block_type(dev_state->state, block),
2148 block->logical_bytenr, dev_state->name,
2149 block->dev_bytenr, block->mirror_num);
2150 next_block = block->next_in_same_bio;
2151 block->iodone_w_error = iodone_w_error;
2152 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2153 dev_state->last_flush_gen++;
2154 if ((dev_state->state->print_mask &
2155 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2156 pr_info("bio_end_io() new %s flush_gen=%llu\n",
2157 dev_state->name,
2158 dev_state->last_flush_gen);
2159 }
2160 if (block->submit_bio_bh_rw & REQ_FUA)
2161 block->flush_gen = 0; /* FUA completed means block is
2162 * on disk */
2163 block->is_iodone = 1; /* for FLUSH, this releases the block */
2164 block = next_block;
2165 } while (NULL != block);
2166
2167 bp->bi_end_io(bp);
2168}
2169
2170static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2171{
2172 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2173 int iodone_w_error = !uptodate;
2174 struct btrfsic_dev_state *dev_state;
2175
2176 BUG_ON(NULL == block);
2177 dev_state = block->dev_state;
2178 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2179 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2180 iodone_w_error,
2181 btrfsic_get_block_type(dev_state->state, block),
2182 block->logical_bytenr, block->dev_state->name,
2183 block->dev_bytenr, block->mirror_num);
2184
2185 block->iodone_w_error = iodone_w_error;
2186 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2187 dev_state->last_flush_gen++;
2188 if ((dev_state->state->print_mask &
2189 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2190 pr_info("bh_end_io() new %s flush_gen=%llu\n",
2191 dev_state->name, dev_state->last_flush_gen);
2192 }
2193 if (block->submit_bio_bh_rw & REQ_FUA)
2194 block->flush_gen = 0; /* FUA completed means block is on disk */
2195
2196 bh->b_private = block->orig_bio_bh_private;
2197 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2198 block->is_iodone = 1; /* for FLUSH, this releases the block */
2199 bh->b_end_io(bh, uptodate);
2200}
2201
2202static int btrfsic_process_written_superblock(
2203 struct btrfsic_state *state,
2204 struct btrfsic_block *const superblock,
2205 struct btrfs_super_block *const super_hdr)
2206{
2207 struct btrfs_fs_info *fs_info = state->fs_info;
2208 int pass;
2209
2210 superblock->generation = btrfs_super_generation(super_hdr);
2211 if (!(superblock->generation > state->max_superblock_generation ||
2212 0 == state->max_superblock_generation)) {
2213 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2214 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2215 superblock->logical_bytenr,
2216 superblock->dev_state->name,
2217 superblock->dev_bytenr, superblock->mirror_num,
2218 btrfs_super_generation(super_hdr),
2219 state->max_superblock_generation);
2220 } else {
2221 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2222 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2223 superblock->logical_bytenr,
2224 superblock->dev_state->name,
2225 superblock->dev_bytenr, superblock->mirror_num,
2226 btrfs_super_generation(super_hdr),
2227 state->max_superblock_generation);
2228
2229 state->max_superblock_generation =
2230 btrfs_super_generation(super_hdr);
2231 state->latest_superblock = superblock;
2232 }
2233
2234 for (pass = 0; pass < 3; pass++) {
2235 int ret;
2236 u64 next_bytenr;
2237 struct btrfsic_block *next_block;
2238 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2239 struct btrfsic_block_link *l;
2240 int num_copies;
2241 int mirror_num;
2242 const char *additional_string = NULL;
2243 struct btrfs_disk_key tmp_disk_key = {0};
2244
2245 btrfs_set_disk_key_objectid(&tmp_disk_key,
2246 BTRFS_ROOT_ITEM_KEY);
2247 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2248
2249 switch (pass) {
2250 case 0:
2251 btrfs_set_disk_key_objectid(&tmp_disk_key,
2252 BTRFS_ROOT_TREE_OBJECTID);
2253 additional_string = "root ";
2254 next_bytenr = btrfs_super_root(super_hdr);
2255 if (state->print_mask &
2256 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2257 pr_info("root@%llu\n", next_bytenr);
2258 break;
2259 case 1:
2260 btrfs_set_disk_key_objectid(&tmp_disk_key,
2261 BTRFS_CHUNK_TREE_OBJECTID);
2262 additional_string = "chunk ";
2263 next_bytenr = btrfs_super_chunk_root(super_hdr);
2264 if (state->print_mask &
2265 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2266 pr_info("chunk@%llu\n", next_bytenr);
2267 break;
2268 case 2:
2269 btrfs_set_disk_key_objectid(&tmp_disk_key,
2270 BTRFS_TREE_LOG_OBJECTID);
2271 additional_string = "log ";
2272 next_bytenr = btrfs_super_log_root(super_hdr);
2273 if (0 == next_bytenr)
2274 continue;
2275 if (state->print_mask &
2276 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2277 pr_info("log@%llu\n", next_bytenr);
2278 break;
2279 }
2280
2281 num_copies = btrfs_num_copies(fs_info, next_bytenr,
2282 BTRFS_SUPER_INFO_SIZE);
2283 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2284 pr_info("num_copies(log_bytenr=%llu) = %d\n",
2285 next_bytenr, num_copies);
2286 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2287 int was_created;
2288
2289 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2290 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2291 ret = btrfsic_map_block(state, next_bytenr,
2292 BTRFS_SUPER_INFO_SIZE,
2293 &tmp_next_block_ctx,
2294 mirror_num);
2295 if (ret) {
2296 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2297 next_bytenr, mirror_num);
2298 return -1;
2299 }
2300
2301 next_block = btrfsic_block_lookup_or_add(
2302 state,
2303 &tmp_next_block_ctx,
2304 additional_string,
2305 1, 0, 1,
2306 mirror_num,
2307 &was_created);
2308 if (NULL == next_block) {
2309 pr_info("btrfsic: error, kmalloc failed!\n");
2310 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2311 return -1;
2312 }
2313
2314 next_block->disk_key = tmp_disk_key;
2315 if (was_created)
2316 next_block->generation =
2317 BTRFSIC_GENERATION_UNKNOWN;
2318 l = btrfsic_block_link_lookup_or_add(
2319 state,
2320 &tmp_next_block_ctx,
2321 next_block,
2322 superblock,
2323 BTRFSIC_GENERATION_UNKNOWN);
2324 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2325 if (NULL == l)
2326 return -1;
2327 }
2328 }
2329
2330 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2331 btrfsic_dump_tree(state);
2332
2333 return 0;
2334}
2335
2336static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2337 struct btrfsic_block *const block,
2338 int recursion_level)
2339{
2340 const struct btrfsic_block_link *l;
2341 int ret = 0;
2342
2343 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2344 /*
2345 * Note that this situation can happen and does not
2346 * indicate an error in regular cases. It happens
2347 * when disk blocks are freed and later reused.
2348 * The check-integrity module is not aware of any
2349 * block free operations, it just recognizes block
2350 * write operations. Therefore it keeps the linkage
2351 * information for a block until a block is
2352 * rewritten. This can temporarily cause incorrect
2353 * and even circular linkage informations. This
2354 * causes no harm unless such blocks are referenced
2355 * by the most recent super block.
2356 */
2357 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2358 pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2359
2360 return ret;
2361 }
2362
2363 /*
2364 * This algorithm is recursive because the amount of used stack
2365 * space is very small and the max recursion depth is limited.
2366 */
2367 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2368 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2369 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2370 recursion_level,
2371 btrfsic_get_block_type(state, block),
2372 block->logical_bytenr, block->dev_state->name,
2373 block->dev_bytenr, block->mirror_num,
2374 l->ref_cnt,
2375 btrfsic_get_block_type(state, l->block_ref_to),
2376 l->block_ref_to->logical_bytenr,
2377 l->block_ref_to->dev_state->name,
2378 l->block_ref_to->dev_bytenr,
2379 l->block_ref_to->mirror_num);
2380 if (l->block_ref_to->never_written) {
2381 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2382 btrfsic_get_block_type(state, l->block_ref_to),
2383 l->block_ref_to->logical_bytenr,
2384 l->block_ref_to->dev_state->name,
2385 l->block_ref_to->dev_bytenr,
2386 l->block_ref_to->mirror_num);
2387 ret = -1;
2388 } else if (!l->block_ref_to->is_iodone) {
2389 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2390 btrfsic_get_block_type(state, l->block_ref_to),
2391 l->block_ref_to->logical_bytenr,
2392 l->block_ref_to->dev_state->name,
2393 l->block_ref_to->dev_bytenr,
2394 l->block_ref_to->mirror_num);
2395 ret = -1;
2396 } else if (l->block_ref_to->iodone_w_error) {
2397 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2398 btrfsic_get_block_type(state, l->block_ref_to),
2399 l->block_ref_to->logical_bytenr,
2400 l->block_ref_to->dev_state->name,
2401 l->block_ref_to->dev_bytenr,
2402 l->block_ref_to->mirror_num);
2403 ret = -1;
2404 } else if (l->parent_generation !=
2405 l->block_ref_to->generation &&
2406 BTRFSIC_GENERATION_UNKNOWN !=
2407 l->parent_generation &&
2408 BTRFSIC_GENERATION_UNKNOWN !=
2409 l->block_ref_to->generation) {
2410 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2411 btrfsic_get_block_type(state, l->block_ref_to),
2412 l->block_ref_to->logical_bytenr,
2413 l->block_ref_to->dev_state->name,
2414 l->block_ref_to->dev_bytenr,
2415 l->block_ref_to->mirror_num,
2416 l->block_ref_to->generation,
2417 l->parent_generation);
2418 ret = -1;
2419 } else if (l->block_ref_to->flush_gen >
2420 l->block_ref_to->dev_state->last_flush_gen) {
2421 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2422 btrfsic_get_block_type(state, l->block_ref_to),
2423 l->block_ref_to->logical_bytenr,
2424 l->block_ref_to->dev_state->name,
2425 l->block_ref_to->dev_bytenr,
2426 l->block_ref_to->mirror_num, block->flush_gen,
2427 l->block_ref_to->dev_state->last_flush_gen);
2428 ret = -1;
2429 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2430 l->block_ref_to,
2431 recursion_level +
2432 1)) {
2433 ret = -1;
2434 }
2435 }
2436
2437 return ret;
2438}
2439
2440static int btrfsic_is_block_ref_by_superblock(
2441 const struct btrfsic_state *state,
2442 const struct btrfsic_block *block,
2443 int recursion_level)
2444{
2445 const struct btrfsic_block_link *l;
2446
2447 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2448 /* refer to comment at "abort cyclic linkage (case 1)" */
2449 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2450 pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2451
2452 return 0;
2453 }
2454
2455 /*
2456 * This algorithm is recursive because the amount of used stack space
2457 * is very small and the max recursion depth is limited.
2458 */
2459 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2460 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2461 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2462 recursion_level,
2463 btrfsic_get_block_type(state, block),
2464 block->logical_bytenr, block->dev_state->name,
2465 block->dev_bytenr, block->mirror_num,
2466 l->ref_cnt,
2467 btrfsic_get_block_type(state, l->block_ref_from),
2468 l->block_ref_from->logical_bytenr,
2469 l->block_ref_from->dev_state->name,
2470 l->block_ref_from->dev_bytenr,
2471 l->block_ref_from->mirror_num);
2472 if (l->block_ref_from->is_superblock &&
2473 state->latest_superblock->dev_bytenr ==
2474 l->block_ref_from->dev_bytenr &&
2475 state->latest_superblock->dev_state->bdev ==
2476 l->block_ref_from->dev_state->bdev)
2477 return 1;
2478 else if (btrfsic_is_block_ref_by_superblock(state,
2479 l->block_ref_from,
2480 recursion_level +
2481 1))
2482 return 1;
2483 }
2484
2485 return 0;
2486}
2487
2488static void btrfsic_print_add_link(const struct btrfsic_state *state,
2489 const struct btrfsic_block_link *l)
2490{
2491 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2492 l->ref_cnt,
2493 btrfsic_get_block_type(state, l->block_ref_from),
2494 l->block_ref_from->logical_bytenr,
2495 l->block_ref_from->dev_state->name,
2496 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2497 btrfsic_get_block_type(state, l->block_ref_to),
2498 l->block_ref_to->logical_bytenr,
2499 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2500 l->block_ref_to->mirror_num);
2501}
2502
2503static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2504 const struct btrfsic_block_link *l)
2505{
2506 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2507 l->ref_cnt,
2508 btrfsic_get_block_type(state, l->block_ref_from),
2509 l->block_ref_from->logical_bytenr,
2510 l->block_ref_from->dev_state->name,
2511 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2512 btrfsic_get_block_type(state, l->block_ref_to),
2513 l->block_ref_to->logical_bytenr,
2514 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2515 l->block_ref_to->mirror_num);
2516}
2517
2518static char btrfsic_get_block_type(const struct btrfsic_state *state,
2519 const struct btrfsic_block *block)
2520{
2521 if (block->is_superblock &&
2522 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2523 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2524 return 'S';
2525 else if (block->is_superblock)
2526 return 's';
2527 else if (block->is_metadata)
2528 return 'M';
2529 else
2530 return 'D';
2531}
2532
2533static void btrfsic_dump_tree(const struct btrfsic_state *state)
2534{
2535 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2536}
2537
2538static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2539 const struct btrfsic_block *block,
2540 int indent_level)
2541{
2542 const struct btrfsic_block_link *l;
2543 int indent_add;
2544 static char buf[80];
2545 int cursor_position;
2546
2547 /*
2548 * Should better fill an on-stack buffer with a complete line and
2549 * dump it at once when it is time to print a newline character.
2550 */
2551
2552 /*
2553 * This algorithm is recursive because the amount of used stack space
2554 * is very small and the max recursion depth is limited.
2555 */
2556 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2557 btrfsic_get_block_type(state, block),
2558 block->logical_bytenr, block->dev_state->name,
2559 block->dev_bytenr, block->mirror_num);
2560 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2561 printk("[...]\n");
2562 return;
2563 }
2564 printk(buf);
2565 indent_level += indent_add;
2566 if (list_empty(&block->ref_to_list)) {
2567 printk("\n");
2568 return;
2569 }
2570 if (block->mirror_num > 1 &&
2571 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2572 printk(" [...]\n");
2573 return;
2574 }
2575
2576 cursor_position = indent_level;
2577 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2578 while (cursor_position < indent_level) {
2579 printk(" ");
2580 cursor_position++;
2581 }
2582 if (l->ref_cnt > 1)
2583 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2584 else
2585 indent_add = sprintf(buf, " --> ");
2586 if (indent_level + indent_add >
2587 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2588 printk("[...]\n");
2589 cursor_position = 0;
2590 continue;
2591 }
2592
2593 printk(buf);
2594
2595 btrfsic_dump_tree_sub(state, l->block_ref_to,
2596 indent_level + indent_add);
2597 cursor_position = 0;
2598 }
2599}
2600
2601static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2602 struct btrfsic_state *state,
2603 struct btrfsic_block_data_ctx *next_block_ctx,
2604 struct btrfsic_block *next_block,
2605 struct btrfsic_block *from_block,
2606 u64 parent_generation)
2607{
2608 struct btrfsic_block_link *l;
2609
2610 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2611 next_block_ctx->dev_bytenr,
2612 from_block->dev_state->bdev,
2613 from_block->dev_bytenr,
2614 &state->block_link_hashtable);
2615 if (NULL == l) {
2616 l = btrfsic_block_link_alloc();
2617 if (NULL == l) {
2618 pr_info("btrfsic: error, kmalloc failed!\n");
2619 return NULL;
2620 }
2621
2622 l->block_ref_to = next_block;
2623 l->block_ref_from = from_block;
2624 l->ref_cnt = 1;
2625 l->parent_generation = parent_generation;
2626
2627 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2628 btrfsic_print_add_link(state, l);
2629
2630 list_add(&l->node_ref_to, &from_block->ref_to_list);
2631 list_add(&l->node_ref_from, &next_block->ref_from_list);
2632
2633 btrfsic_block_link_hashtable_add(l,
2634 &state->block_link_hashtable);
2635 } else {
2636 l->ref_cnt++;
2637 l->parent_generation = parent_generation;
2638 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2639 btrfsic_print_add_link(state, l);
2640 }
2641
2642 return l;
2643}
2644
2645static struct btrfsic_block *btrfsic_block_lookup_or_add(
2646 struct btrfsic_state *state,
2647 struct btrfsic_block_data_ctx *block_ctx,
2648 const char *additional_string,
2649 int is_metadata,
2650 int is_iodone,
2651 int never_written,
2652 int mirror_num,
2653 int *was_created)
2654{
2655 struct btrfsic_block *block;
2656
2657 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2658 block_ctx->dev_bytenr,
2659 &state->block_hashtable);
2660 if (NULL == block) {
2661 struct btrfsic_dev_state *dev_state;
2662
2663 block = btrfsic_block_alloc();
2664 if (NULL == block) {
2665 pr_info("btrfsic: error, kmalloc failed!\n");
2666 return NULL;
2667 }
2668 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2669 if (NULL == dev_state) {
2670 pr_info("btrfsic: error, lookup dev_state failed!\n");
2671 btrfsic_block_free(block);
2672 return NULL;
2673 }
2674 block->dev_state = dev_state;
2675 block->dev_bytenr = block_ctx->dev_bytenr;
2676 block->logical_bytenr = block_ctx->start;
2677 block->is_metadata = is_metadata;
2678 block->is_iodone = is_iodone;
2679 block->never_written = never_written;
2680 block->mirror_num = mirror_num;
2681 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2682 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2683 additional_string,
2684 btrfsic_get_block_type(state, block),
2685 block->logical_bytenr, dev_state->name,
2686 block->dev_bytenr, mirror_num);
2687 list_add(&block->all_blocks_node, &state->all_blocks_list);
2688 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2689 if (NULL != was_created)
2690 *was_created = 1;
2691 } else {
2692 if (NULL != was_created)
2693 *was_created = 0;
2694 }
2695
2696 return block;
2697}
2698
2699static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2700 u64 bytenr,
2701 struct btrfsic_dev_state *dev_state,
2702 u64 dev_bytenr)
2703{
2704 struct btrfs_fs_info *fs_info = state->fs_info;
2705 struct btrfsic_block_data_ctx block_ctx;
2706 int num_copies;
2707 int mirror_num;
2708 int match = 0;
2709 int ret;
2710
2711 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2712
2713 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2714 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2715 &block_ctx, mirror_num);
2716 if (ret) {
2717 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2718 bytenr, mirror_num);
2719 continue;
2720 }
2721
2722 if (dev_state->bdev == block_ctx.dev->bdev &&
2723 dev_bytenr == block_ctx.dev_bytenr) {
2724 match++;
2725 btrfsic_release_block_ctx(&block_ctx);
2726 break;
2727 }
2728 btrfsic_release_block_ctx(&block_ctx);
2729 }
2730
2731 if (WARN_ON(!match)) {
2732 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2733 bytenr, dev_state->name, dev_bytenr);
2734 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2735 ret = btrfsic_map_block(state, bytenr,
2736 state->metablock_size,
2737 &block_ctx, mirror_num);
2738 if (ret)
2739 continue;
2740
2741 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2742 bytenr, block_ctx.dev->name,
2743 block_ctx.dev_bytenr, mirror_num);
2744 }
2745 }
2746}
2747
2748static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2749 struct block_device *bdev)
2750{
2751 return btrfsic_dev_state_hashtable_lookup(bdev,
2752 &btrfsic_dev_state_hashtable);
2753}
2754
2755int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2756{
2757 struct btrfsic_dev_state *dev_state;
2758
2759 if (!btrfsic_is_initialized)
2760 return submit_bh(op, op_flags, bh);
2761
2762 mutex_lock(&btrfsic_mutex);
2763 /* since btrfsic_submit_bh() might also be called before
2764 * btrfsic_mount(), this might return NULL */
2765 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2766
2767 /* Only called to write the superblock (incl. FLUSH/FUA) */
2768 if (NULL != dev_state &&
2769 (op == REQ_OP_WRITE) && bh->b_size > 0) {
2770 u64 dev_bytenr;
2771
2772 dev_bytenr = 4096 * bh->b_blocknr;
2773 if (dev_state->state->print_mask &
2774 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2775 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2776 op, op_flags, (unsigned long long)bh->b_blocknr,
2777 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2778 btrfsic_process_written_block(dev_state, dev_bytenr,
2779 &bh->b_data, 1, NULL,
2780 NULL, bh, op_flags);
2781 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2782 if (dev_state->state->print_mask &
2783 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2784 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2785 op, op_flags, bh->b_bdev);
2786 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2787 if ((dev_state->state->print_mask &
2788 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2789 BTRFSIC_PRINT_MASK_VERBOSE)))
2790 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2791 dev_state->name);
2792 } else {
2793 struct btrfsic_block *const block =
2794 &dev_state->dummy_block_for_bio_bh_flush;
2795
2796 block->is_iodone = 0;
2797 block->never_written = 0;
2798 block->iodone_w_error = 0;
2799 block->flush_gen = dev_state->last_flush_gen + 1;
2800 block->submit_bio_bh_rw = op_flags;
2801 block->orig_bio_bh_private = bh->b_private;
2802 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2803 block->next_in_same_bio = NULL;
2804 bh->b_private = block;
2805 bh->b_end_io = btrfsic_bh_end_io;
2806 }
2807 }
2808 mutex_unlock(&btrfsic_mutex);
2809 return submit_bh(op, op_flags, bh);
2810}
2811
2812static void __btrfsic_submit_bio(struct bio *bio)
2813{
2814 struct btrfsic_dev_state *dev_state;
2815
2816 if (!btrfsic_is_initialized)
2817 return;
2818
2819 mutex_lock(&btrfsic_mutex);
2820 /* since btrfsic_submit_bio() is also called before
2821 * btrfsic_mount(), this might return NULL */
2822 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2823 if (NULL != dev_state &&
2824 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2825 unsigned int i;
2826 u64 dev_bytenr;
2827 u64 cur_bytenr;
2828 struct bio_vec *bvec;
2829 int bio_is_patched;
2830 char **mapped_datav;
2831
2832 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2833 bio_is_patched = 0;
2834 if (dev_state->state->print_mask &
2835 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2836 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2837 bio_op(bio), bio->bi_opf, bio->bi_vcnt,
2838 (unsigned long long)bio->bi_iter.bi_sector,
2839 dev_bytenr, bio->bi_bdev);
2840
2841 mapped_datav = kmalloc_array(bio->bi_vcnt,
2842 sizeof(*mapped_datav), GFP_NOFS);
2843 if (!mapped_datav)
2844 goto leave;
2845 cur_bytenr = dev_bytenr;
2846
2847 bio_for_each_segment_all(bvec, bio, i) {
2848 BUG_ON(bvec->bv_len != PAGE_SIZE);
2849 mapped_datav[i] = kmap(bvec->bv_page);
2850
2851 if (dev_state->state->print_mask &
2852 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2853 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2854 i, cur_bytenr, bvec->bv_len, bvec->bv_offset);
2855 cur_bytenr += bvec->bv_len;
2856 }
2857 btrfsic_process_written_block(dev_state, dev_bytenr,
2858 mapped_datav, bio->bi_vcnt,
2859 bio, &bio_is_patched,
2860 NULL, bio->bi_opf);
2861 bio_for_each_segment_all(bvec, bio, i)
2862 kunmap(bvec->bv_page);
2863 kfree(mapped_datav);
2864 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2865 if (dev_state->state->print_mask &
2866 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2867 pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2868 bio_op(bio), bio->bi_opf, bio->bi_bdev);
2869 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2870 if ((dev_state->state->print_mask &
2871 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2872 BTRFSIC_PRINT_MASK_VERBOSE)))
2873 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2874 dev_state->name);
2875 } else {
2876 struct btrfsic_block *const block =
2877 &dev_state->dummy_block_for_bio_bh_flush;
2878
2879 block->is_iodone = 0;
2880 block->never_written = 0;
2881 block->iodone_w_error = 0;
2882 block->flush_gen = dev_state->last_flush_gen + 1;
2883 block->submit_bio_bh_rw = bio->bi_opf;
2884 block->orig_bio_bh_private = bio->bi_private;
2885 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2886 block->next_in_same_bio = NULL;
2887 bio->bi_private = block;
2888 bio->bi_end_io = btrfsic_bio_end_io;
2889 }
2890 }
2891leave:
2892 mutex_unlock(&btrfsic_mutex);
2893}
2894
2895void btrfsic_submit_bio(struct bio *bio)
2896{
2897 __btrfsic_submit_bio(bio);
2898 submit_bio(bio);
2899}
2900
2901int btrfsic_submit_bio_wait(struct bio *bio)
2902{
2903 __btrfsic_submit_bio(bio);
2904 return submit_bio_wait(bio);
2905}
2906
2907int btrfsic_mount(struct btrfs_fs_info *fs_info,
2908 struct btrfs_fs_devices *fs_devices,
2909 int including_extent_data, u32 print_mask)
2910{
2911 int ret;
2912 struct btrfsic_state *state;
2913 struct list_head *dev_head = &fs_devices->devices;
2914 struct btrfs_device *device;
2915
2916 if (fs_info->nodesize & ((u64)PAGE_SIZE - 1)) {
2917 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2918 fs_info->nodesize, PAGE_SIZE);
2919 return -1;
2920 }
2921 if (fs_info->sectorsize & ((u64)PAGE_SIZE - 1)) {
2922 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2923 fs_info->sectorsize, PAGE_SIZE);
2924 return -1;
2925 }
2926 state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
2927 if (!state) {
2928 state = vzalloc(sizeof(*state));
2929 if (!state) {
2930 pr_info("btrfs check-integrity: vzalloc() failed!\n");
2931 return -1;
2932 }
2933 }
2934
2935 if (!btrfsic_is_initialized) {
2936 mutex_init(&btrfsic_mutex);
2937 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2938 btrfsic_is_initialized = 1;
2939 }
2940 mutex_lock(&btrfsic_mutex);
2941 state->fs_info = fs_info;
2942 state->print_mask = print_mask;
2943 state->include_extent_data = including_extent_data;
2944 state->csum_size = 0;
2945 state->metablock_size = fs_info->nodesize;
2946 state->datablock_size = fs_info->sectorsize;
2947 INIT_LIST_HEAD(&state->all_blocks_list);
2948 btrfsic_block_hashtable_init(&state->block_hashtable);
2949 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2950 state->max_superblock_generation = 0;
2951 state->latest_superblock = NULL;
2952
2953 list_for_each_entry(device, dev_head, dev_list) {
2954 struct btrfsic_dev_state *ds;
2955 const char *p;
2956
2957 if (!device->bdev || !device->name)
2958 continue;
2959
2960 ds = btrfsic_dev_state_alloc();
2961 if (NULL == ds) {
2962 pr_info("btrfs check-integrity: kmalloc() failed!\n");
2963 mutex_unlock(&btrfsic_mutex);
2964 return -1;
2965 }
2966 ds->bdev = device->bdev;
2967 ds->state = state;
2968 bdevname(ds->bdev, ds->name);
2969 ds->name[BDEVNAME_SIZE - 1] = '\0';
2970 p = kbasename(ds->name);
2971 strlcpy(ds->name, p, sizeof(ds->name));
2972 btrfsic_dev_state_hashtable_add(ds,
2973 &btrfsic_dev_state_hashtable);
2974 }
2975
2976 ret = btrfsic_process_superblock(state, fs_devices);
2977 if (0 != ret) {
2978 mutex_unlock(&btrfsic_mutex);
2979 btrfsic_unmount(fs_devices);
2980 return ret;
2981 }
2982
2983 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2984 btrfsic_dump_database(state);
2985 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2986 btrfsic_dump_tree(state);
2987
2988 mutex_unlock(&btrfsic_mutex);
2989 return 0;
2990}
2991
2992void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2993{
2994 struct btrfsic_block *b_all, *tmp_all;
2995 struct btrfsic_state *state;
2996 struct list_head *dev_head = &fs_devices->devices;
2997 struct btrfs_device *device;
2998
2999 if (!btrfsic_is_initialized)
3000 return;
3001
3002 mutex_lock(&btrfsic_mutex);
3003
3004 state = NULL;
3005 list_for_each_entry(device, dev_head, dev_list) {
3006 struct btrfsic_dev_state *ds;
3007
3008 if (!device->bdev || !device->name)
3009 continue;
3010
3011 ds = btrfsic_dev_state_hashtable_lookup(
3012 device->bdev,
3013 &btrfsic_dev_state_hashtable);
3014 if (NULL != ds) {
3015 state = ds->state;
3016 btrfsic_dev_state_hashtable_remove(ds);
3017 btrfsic_dev_state_free(ds);
3018 }
3019 }
3020
3021 if (NULL == state) {
3022 pr_info("btrfsic: error, cannot find state information on umount!\n");
3023 mutex_unlock(&btrfsic_mutex);
3024 return;
3025 }
3026
3027 /*
3028 * Don't care about keeping the lists' state up to date,
3029 * just free all memory that was allocated dynamically.
3030 * Free the blocks and the block_links.
3031 */
3032 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3033 all_blocks_node) {
3034 struct btrfsic_block_link *l, *tmp;
3035
3036 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3037 node_ref_to) {
3038 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3039 btrfsic_print_rem_link(state, l);
3040
3041 l->ref_cnt--;
3042 if (0 == l->ref_cnt)
3043 btrfsic_block_link_free(l);
3044 }
3045
3046 if (b_all->is_iodone || b_all->never_written)
3047 btrfsic_block_free(b_all);
3048 else
3049 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3050 btrfsic_get_block_type(state, b_all),
3051 b_all->logical_bytenr, b_all->dev_state->name,
3052 b_all->dev_bytenr, b_all->mirror_num);
3053 }
3054
3055 mutex_unlock(&btrfsic_mutex);
3056
3057 kvfree(state);
3058}
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91#include <linux/sched.h>
92#include <linux/slab.h>
93#include <linux/buffer_head.h>
94#include <linux/mutex.h>
95#include <linux/genhd.h>
96#include <linux/blkdev.h>
97#include "ctree.h"
98#include "disk-io.h"
99#include "hash.h"
100#include "transaction.h"
101#include "extent_io.h"
102#include "volumes.h"
103#include "print-tree.h"
104#include "locking.h"
105#include "check-integrity.h"
106#include "rcu-string.h"
107
108#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
116 * excluding " [...]" */
117#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118
119/*
120 * The definition of the bitmask fields for the print_mask.
121 * They are specified with the mount option check_integrity_print_mask.
122 */
123#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
124#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
125#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
126#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
127#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
128#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
129#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
130#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
131#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
132#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
133#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
134#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
135#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
136#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
137
138struct btrfsic_dev_state;
139struct btrfsic_state;
140
141struct btrfsic_block {
142 u32 magic_num; /* only used for debug purposes */
143 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
144 unsigned int is_superblock:1; /* if it is one of the superblocks */
145 unsigned int is_iodone:1; /* if is done by lower subsystem */
146 unsigned int iodone_w_error:1; /* error was indicated to endio */
147 unsigned int never_written:1; /* block was added because it was
148 * referenced, not because it was
149 * written */
150 unsigned int mirror_num; /* large enough to hold
151 * BTRFS_SUPER_MIRROR_MAX */
152 struct btrfsic_dev_state *dev_state;
153 u64 dev_bytenr; /* key, physical byte num on disk */
154 u64 logical_bytenr; /* logical byte num on disk */
155 u64 generation;
156 struct btrfs_disk_key disk_key; /* extra info to print in case of
157 * issues, will not always be correct */
158 struct list_head collision_resolving_node; /* list node */
159 struct list_head all_blocks_node; /* list node */
160
161 /* the following two lists contain block_link items */
162 struct list_head ref_to_list; /* list */
163 struct list_head ref_from_list; /* list */
164 struct btrfsic_block *next_in_same_bio;
165 void *orig_bio_bh_private;
166 union {
167 bio_end_io_t *bio;
168 bh_end_io_t *bh;
169 } orig_bio_bh_end_io;
170 int submit_bio_bh_rw;
171 u64 flush_gen; /* only valid if !never_written */
172};
173
174/*
175 * Elements of this type are allocated dynamically and required because
176 * each block object can refer to and can be ref from multiple blocks.
177 * The key to lookup them in the hashtable is the dev_bytenr of
178 * the block ref to plus the one from the block refered from.
179 * The fact that they are searchable via a hashtable and that a
180 * ref_cnt is maintained is not required for the btrfs integrity
181 * check algorithm itself, it is only used to make the output more
182 * beautiful in case that an error is detected (an error is defined
183 * as a write operation to a block while that block is still referenced).
184 */
185struct btrfsic_block_link {
186 u32 magic_num; /* only used for debug purposes */
187 u32 ref_cnt;
188 struct list_head node_ref_to; /* list node */
189 struct list_head node_ref_from; /* list node */
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block *block_ref_to;
192 struct btrfsic_block *block_ref_from;
193 u64 parent_generation;
194};
195
196struct btrfsic_dev_state {
197 u32 magic_num; /* only used for debug purposes */
198 struct block_device *bdev;
199 struct btrfsic_state *state;
200 struct list_head collision_resolving_node; /* list node */
201 struct btrfsic_block dummy_block_for_bio_bh_flush;
202 u64 last_flush_gen;
203 char name[BDEVNAME_SIZE];
204};
205
206struct btrfsic_block_hashtable {
207 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208};
209
210struct btrfsic_block_link_hashtable {
211 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212};
213
214struct btrfsic_dev_state_hashtable {
215 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216};
217
218struct btrfsic_block_data_ctx {
219 u64 start; /* virtual bytenr */
220 u64 dev_bytenr; /* physical bytenr on device */
221 u32 len;
222 struct btrfsic_dev_state *dev;
223 char **datav;
224 struct page **pagev;
225 void *mem_to_free;
226};
227
228/* This structure is used to implement recursion without occupying
229 * any stack space, refer to btrfsic_process_metablock() */
230struct btrfsic_stack_frame {
231 u32 magic;
232 u32 nr;
233 int error;
234 int i;
235 int limit_nesting;
236 int num_copies;
237 int mirror_num;
238 struct btrfsic_block *block;
239 struct btrfsic_block_data_ctx *block_ctx;
240 struct btrfsic_block *next_block;
241 struct btrfsic_block_data_ctx next_block_ctx;
242 struct btrfs_header *hdr;
243 struct btrfsic_stack_frame *prev;
244};
245
246/* Some state per mounted filesystem */
247struct btrfsic_state {
248 u32 print_mask;
249 int include_extent_data;
250 int csum_size;
251 struct list_head all_blocks_list;
252 struct btrfsic_block_hashtable block_hashtable;
253 struct btrfsic_block_link_hashtable block_link_hashtable;
254 struct btrfs_root *root;
255 u64 max_superblock_generation;
256 struct btrfsic_block *latest_superblock;
257 u32 metablock_size;
258 u32 datablock_size;
259};
260
261static void btrfsic_block_init(struct btrfsic_block *b);
262static struct btrfsic_block *btrfsic_block_alloc(void);
263static void btrfsic_block_free(struct btrfsic_block *b);
264static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 struct btrfsic_block_hashtable *h);
273static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 struct block_device *bdev,
276 u64 dev_bytenr,
277 struct btrfsic_block_hashtable *h);
278static void btrfsic_block_link_hashtable_init(
279 struct btrfsic_block_link_hashtable *h);
280static void btrfsic_block_link_hashtable_add(
281 struct btrfsic_block_link *l,
282 struct btrfsic_block_link_hashtable *h);
283static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 struct block_device *bdev_ref_to,
286 u64 dev_bytenr_ref_to,
287 struct block_device *bdev_ref_from,
288 u64 dev_bytenr_ref_from,
289 struct btrfsic_block_link_hashtable *h);
290static void btrfsic_dev_state_hashtable_init(
291 struct btrfsic_dev_state_hashtable *h);
292static void btrfsic_dev_state_hashtable_add(
293 struct btrfsic_dev_state *ds,
294 struct btrfsic_dev_state_hashtable *h);
295static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 struct block_device *bdev,
298 struct btrfsic_dev_state_hashtable *h);
299static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301static int btrfsic_process_superblock(struct btrfsic_state *state,
302 struct btrfs_fs_devices *fs_devices);
303static int btrfsic_process_metablock(struct btrfsic_state *state,
304 struct btrfsic_block *block,
305 struct btrfsic_block_data_ctx *block_ctx,
306 int limit_nesting, int force_iodone_flag);
307static void btrfsic_read_from_block_data(
308 struct btrfsic_block_data_ctx *block_ctx,
309 void *dst, u32 offset, size_t len);
310static int btrfsic_create_link_to_next_block(
311 struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx
314 *block_ctx, u64 next_bytenr,
315 int limit_nesting,
316 struct btrfsic_block_data_ctx *next_block_ctx,
317 struct btrfsic_block **next_blockp,
318 int force_iodone_flag,
319 int *num_copiesp, int *mirror_nump,
320 struct btrfs_disk_key *disk_key,
321 u64 parent_generation);
322static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 struct btrfsic_block *block,
324 struct btrfsic_block_data_ctx *block_ctx,
325 u32 item_offset, int force_iodone_flag);
326static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 struct btrfsic_block_data_ctx *block_ctx_out,
328 int mirror_num);
329static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 u32 len, struct block_device *bdev,
331 struct btrfsic_block_data_ctx *block_ctx_out);
332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335static void btrfsic_dump_database(struct btrfsic_state *state);
336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362static void btrfsic_dump_tree(const struct btrfsic_state *state);
363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395static struct mutex btrfsic_mutex;
396static int btrfsic_is_initialized;
397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400static void btrfsic_block_init(struct btrfsic_block *b)
401{
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425}
426
427static struct btrfsic_block *btrfsic_block_alloc(void)
428{
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436}
437
438static void btrfsic_block_free(struct btrfsic_block *b)
439{
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442}
443
444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445{
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453}
454
455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456{
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464}
465
466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467{
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470}
471
472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473{
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483}
484
485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486{
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494}
495
496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497{
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501}
502
503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504{
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509}
510
511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513{
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520}
521
522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523{
524 list_del(&b->collision_resolving_node);
525}
526
527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531{
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct list_head *elem;
537
538 list_for_each(elem, h->table + hashval) {
539 struct btrfsic_block *const b =
540 list_entry(elem, struct btrfsic_block,
541 collision_resolving_node);
542
543 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544 return b;
545 }
546
547 return NULL;
548}
549
550static void btrfsic_block_link_hashtable_init(
551 struct btrfsic_block_link_hashtable *h)
552{
553 int i;
554
555 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556 INIT_LIST_HEAD(h->table + i);
557}
558
559static void btrfsic_block_link_hashtable_add(
560 struct btrfsic_block_link *l,
561 struct btrfsic_block_link_hashtable *h)
562{
563 const unsigned int hashval =
564 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
569
570 BUG_ON(NULL == l->block_ref_to);
571 BUG_ON(NULL == l->block_ref_from);
572 list_add(&l->collision_resolving_node, h->table + hashval);
573}
574
575static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
576{
577 list_del(&l->collision_resolving_node);
578}
579
580static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581 struct block_device *bdev_ref_to,
582 u64 dev_bytenr_ref_to,
583 struct block_device *bdev_ref_from,
584 u64 dev_bytenr_ref_from,
585 struct btrfsic_block_link_hashtable *h)
586{
587 const unsigned int hashval =
588 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591 ((unsigned int)((uintptr_t)bdev_ref_from))) &
592 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593 struct list_head *elem;
594
595 list_for_each(elem, h->table + hashval) {
596 struct btrfsic_block_link *const l =
597 list_entry(elem, struct btrfsic_block_link,
598 collision_resolving_node);
599
600 BUG_ON(NULL == l->block_ref_to);
601 BUG_ON(NULL == l->block_ref_from);
602 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606 return l;
607 }
608
609 return NULL;
610}
611
612static void btrfsic_dev_state_hashtable_init(
613 struct btrfsic_dev_state_hashtable *h)
614{
615 int i;
616
617 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618 INIT_LIST_HEAD(h->table + i);
619}
620
621static void btrfsic_dev_state_hashtable_add(
622 struct btrfsic_dev_state *ds,
623 struct btrfsic_dev_state_hashtable *h)
624{
625 const unsigned int hashval =
626 (((unsigned int)((uintptr_t)ds->bdev)) &
627 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
628
629 list_add(&ds->collision_resolving_node, h->table + hashval);
630}
631
632static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
633{
634 list_del(&ds->collision_resolving_node);
635}
636
637static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638 struct block_device *bdev,
639 struct btrfsic_dev_state_hashtable *h)
640{
641 const unsigned int hashval =
642 (((unsigned int)((uintptr_t)bdev)) &
643 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644 struct list_head *elem;
645
646 list_for_each(elem, h->table + hashval) {
647 struct btrfsic_dev_state *const ds =
648 list_entry(elem, struct btrfsic_dev_state,
649 collision_resolving_node);
650
651 if (ds->bdev == bdev)
652 return ds;
653 }
654
655 return NULL;
656}
657
658static int btrfsic_process_superblock(struct btrfsic_state *state,
659 struct btrfs_fs_devices *fs_devices)
660{
661 int ret = 0;
662 struct btrfs_super_block *selected_super;
663 struct list_head *dev_head = &fs_devices->devices;
664 struct btrfs_device *device;
665 struct btrfsic_dev_state *selected_dev_state = NULL;
666 int pass;
667
668 BUG_ON(NULL == state);
669 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
670 if (NULL == selected_super) {
671 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672 return -1;
673 }
674
675 list_for_each_entry(device, dev_head, dev_list) {
676 int i;
677 struct btrfsic_dev_state *dev_state;
678
679 if (!device->bdev || !device->name)
680 continue;
681
682 dev_state = btrfsic_dev_state_lookup(device->bdev);
683 BUG_ON(NULL == dev_state);
684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685 ret = btrfsic_process_superblock_dev_mirror(
686 state, dev_state, device, i,
687 &selected_dev_state, selected_super);
688 if (0 != ret && 0 == i) {
689 kfree(selected_super);
690 return ret;
691 }
692 }
693 }
694
695 if (NULL == state->latest_superblock) {
696 printk(KERN_INFO "btrfsic: no superblock found!\n");
697 kfree(selected_super);
698 return -1;
699 }
700
701 state->csum_size = btrfs_super_csum_size(selected_super);
702
703 for (pass = 0; pass < 3; pass++) {
704 int num_copies;
705 int mirror_num;
706 u64 next_bytenr;
707
708 switch (pass) {
709 case 0:
710 next_bytenr = btrfs_super_root(selected_super);
711 if (state->print_mask &
712 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
713 printk(KERN_INFO "root@%llu\n", next_bytenr);
714 break;
715 case 1:
716 next_bytenr = btrfs_super_chunk_root(selected_super);
717 if (state->print_mask &
718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
719 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
720 break;
721 case 2:
722 next_bytenr = btrfs_super_log_root(selected_super);
723 if (0 == next_bytenr)
724 continue;
725 if (state->print_mask &
726 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
727 printk(KERN_INFO "log@%llu\n", next_bytenr);
728 break;
729 }
730
731 num_copies =
732 btrfs_num_copies(state->root->fs_info,
733 next_bytenr, state->metablock_size);
734 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
736 next_bytenr, num_copies);
737
738 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739 struct btrfsic_block *next_block;
740 struct btrfsic_block_data_ctx tmp_next_block_ctx;
741 struct btrfsic_block_link *l;
742
743 ret = btrfsic_map_block(state, next_bytenr,
744 state->metablock_size,
745 &tmp_next_block_ctx,
746 mirror_num);
747 if (ret) {
748 printk(KERN_INFO "btrfsic:"
749 " btrfsic_map_block(root @%llu,"
750 " mirror %d) failed!\n",
751 next_bytenr, mirror_num);
752 kfree(selected_super);
753 return -1;
754 }
755
756 next_block = btrfsic_block_hashtable_lookup(
757 tmp_next_block_ctx.dev->bdev,
758 tmp_next_block_ctx.dev_bytenr,
759 &state->block_hashtable);
760 BUG_ON(NULL == next_block);
761
762 l = btrfsic_block_link_hashtable_lookup(
763 tmp_next_block_ctx.dev->bdev,
764 tmp_next_block_ctx.dev_bytenr,
765 state->latest_superblock->dev_state->
766 bdev,
767 state->latest_superblock->dev_bytenr,
768 &state->block_link_hashtable);
769 BUG_ON(NULL == l);
770
771 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
772 if (ret < (int)PAGE_CACHE_SIZE) {
773 printk(KERN_INFO
774 "btrfsic: read @logical %llu failed!\n",
775 tmp_next_block_ctx.start);
776 btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 kfree(selected_super);
778 return -1;
779 }
780
781 ret = btrfsic_process_metablock(state,
782 next_block,
783 &tmp_next_block_ctx,
784 BTRFS_MAX_LEVEL + 3, 1);
785 btrfsic_release_block_ctx(&tmp_next_block_ctx);
786 }
787 }
788
789 kfree(selected_super);
790 return ret;
791}
792
793static int btrfsic_process_superblock_dev_mirror(
794 struct btrfsic_state *state,
795 struct btrfsic_dev_state *dev_state,
796 struct btrfs_device *device,
797 int superblock_mirror_num,
798 struct btrfsic_dev_state **selected_dev_state,
799 struct btrfs_super_block *selected_super)
800{
801 struct btrfs_super_block *super_tmp;
802 u64 dev_bytenr;
803 struct buffer_head *bh;
804 struct btrfsic_block *superblock_tmp;
805 int pass;
806 struct block_device *const superblock_bdev = device->bdev;
807
808 /* super block bytenr is always the unmapped device bytenr */
809 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
810 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811 return -1;
812 bh = __bread(superblock_bdev, dev_bytenr / 4096,
813 BTRFS_SUPER_INFO_SIZE);
814 if (NULL == bh)
815 return -1;
816 super_tmp = (struct btrfs_super_block *)
817 (bh->b_data + (dev_bytenr & 4095));
818
819 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
820 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
821 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
823 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
824 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
825 brelse(bh);
826 return 0;
827 }
828
829 superblock_tmp =
830 btrfsic_block_hashtable_lookup(superblock_bdev,
831 dev_bytenr,
832 &state->block_hashtable);
833 if (NULL == superblock_tmp) {
834 superblock_tmp = btrfsic_block_alloc();
835 if (NULL == superblock_tmp) {
836 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
837 brelse(bh);
838 return -1;
839 }
840 /* for superblock, only the dev_bytenr makes sense */
841 superblock_tmp->dev_bytenr = dev_bytenr;
842 superblock_tmp->dev_state = dev_state;
843 superblock_tmp->logical_bytenr = dev_bytenr;
844 superblock_tmp->generation = btrfs_super_generation(super_tmp);
845 superblock_tmp->is_metadata = 1;
846 superblock_tmp->is_superblock = 1;
847 superblock_tmp->is_iodone = 1;
848 superblock_tmp->never_written = 0;
849 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
850 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
851 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
852 " @%llu (%s/%llu/%d)\n",
853 superblock_bdev,
854 rcu_str_deref(device->name), dev_bytenr,
855 dev_state->name, dev_bytenr,
856 superblock_mirror_num);
857 list_add(&superblock_tmp->all_blocks_node,
858 &state->all_blocks_list);
859 btrfsic_block_hashtable_add(superblock_tmp,
860 &state->block_hashtable);
861 }
862
863 /* select the one with the highest generation field */
864 if (btrfs_super_generation(super_tmp) >
865 state->max_superblock_generation ||
866 0 == state->max_superblock_generation) {
867 memcpy(selected_super, super_tmp, sizeof(*selected_super));
868 *selected_dev_state = dev_state;
869 state->max_superblock_generation =
870 btrfs_super_generation(super_tmp);
871 state->latest_superblock = superblock_tmp;
872 }
873
874 for (pass = 0; pass < 3; pass++) {
875 u64 next_bytenr;
876 int num_copies;
877 int mirror_num;
878 const char *additional_string = NULL;
879 struct btrfs_disk_key tmp_disk_key;
880
881 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
882 tmp_disk_key.offset = 0;
883 switch (pass) {
884 case 0:
885 btrfs_set_disk_key_objectid(&tmp_disk_key,
886 BTRFS_ROOT_TREE_OBJECTID);
887 additional_string = "initial root ";
888 next_bytenr = btrfs_super_root(super_tmp);
889 break;
890 case 1:
891 btrfs_set_disk_key_objectid(&tmp_disk_key,
892 BTRFS_CHUNK_TREE_OBJECTID);
893 additional_string = "initial chunk ";
894 next_bytenr = btrfs_super_chunk_root(super_tmp);
895 break;
896 case 2:
897 btrfs_set_disk_key_objectid(&tmp_disk_key,
898 BTRFS_TREE_LOG_OBJECTID);
899 additional_string = "initial log ";
900 next_bytenr = btrfs_super_log_root(super_tmp);
901 if (0 == next_bytenr)
902 continue;
903 break;
904 }
905
906 num_copies =
907 btrfs_num_copies(state->root->fs_info,
908 next_bytenr, state->metablock_size);
909 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
910 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
911 next_bytenr, num_copies);
912 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
913 struct btrfsic_block *next_block;
914 struct btrfsic_block_data_ctx tmp_next_block_ctx;
915 struct btrfsic_block_link *l;
916
917 if (btrfsic_map_block(state, next_bytenr,
918 state->metablock_size,
919 &tmp_next_block_ctx,
920 mirror_num)) {
921 printk(KERN_INFO "btrfsic: btrfsic_map_block("
922 "bytenr @%llu, mirror %d) failed!\n",
923 next_bytenr, mirror_num);
924 brelse(bh);
925 return -1;
926 }
927
928 next_block = btrfsic_block_lookup_or_add(
929 state, &tmp_next_block_ctx,
930 additional_string, 1, 1, 0,
931 mirror_num, NULL);
932 if (NULL == next_block) {
933 btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 brelse(bh);
935 return -1;
936 }
937
938 next_block->disk_key = tmp_disk_key;
939 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940 l = btrfsic_block_link_lookup_or_add(
941 state, &tmp_next_block_ctx,
942 next_block, superblock_tmp,
943 BTRFSIC_GENERATION_UNKNOWN);
944 btrfsic_release_block_ctx(&tmp_next_block_ctx);
945 if (NULL == l) {
946 brelse(bh);
947 return -1;
948 }
949 }
950 }
951 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
953
954 brelse(bh);
955 return 0;
956}
957
958static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
959{
960 struct btrfsic_stack_frame *sf;
961
962 sf = kzalloc(sizeof(*sf), GFP_NOFS);
963 if (NULL == sf)
964 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965 else
966 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967 return sf;
968}
969
970static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
971{
972 BUG_ON(!(NULL == sf ||
973 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974 kfree(sf);
975}
976
977static int btrfsic_process_metablock(
978 struct btrfsic_state *state,
979 struct btrfsic_block *const first_block,
980 struct btrfsic_block_data_ctx *const first_block_ctx,
981 int first_limit_nesting, int force_iodone_flag)
982{
983 struct btrfsic_stack_frame initial_stack_frame = { 0 };
984 struct btrfsic_stack_frame *sf;
985 struct btrfsic_stack_frame *next_stack;
986 struct btrfs_header *const first_hdr =
987 (struct btrfs_header *)first_block_ctx->datav[0];
988
989 BUG_ON(!first_hdr);
990 sf = &initial_stack_frame;
991 sf->error = 0;
992 sf->i = -1;
993 sf->limit_nesting = first_limit_nesting;
994 sf->block = first_block;
995 sf->block_ctx = first_block_ctx;
996 sf->next_block = NULL;
997 sf->hdr = first_hdr;
998 sf->prev = NULL;
999
1000continue_with_new_stack_frame:
1001 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002 if (0 == sf->hdr->level) {
1003 struct btrfs_leaf *const leafhdr =
1004 (struct btrfs_leaf *)sf->hdr;
1005
1006 if (-1 == sf->i) {
1007 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1008
1009 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010 printk(KERN_INFO
1011 "leaf %llu items %d generation %llu"
1012 " owner %llu\n",
1013 sf->block_ctx->start, sf->nr,
1014 btrfs_stack_header_generation(
1015 &leafhdr->header),
1016 btrfs_stack_header_owner(
1017 &leafhdr->header));
1018 }
1019
1020continue_with_current_leaf_stack_frame:
1021 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1022 sf->i++;
1023 sf->num_copies = 0;
1024 }
1025
1026 if (sf->i < sf->nr) {
1027 struct btrfs_item disk_item;
1028 u32 disk_item_offset =
1029 (uintptr_t)(leafhdr->items + sf->i) -
1030 (uintptr_t)leafhdr;
1031 struct btrfs_disk_key *disk_key;
1032 u8 type;
1033 u32 item_offset;
1034 u32 item_size;
1035
1036 if (disk_item_offset + sizeof(struct btrfs_item) >
1037 sf->block_ctx->len) {
1038leaf_item_out_of_bounce_error:
1039 printk(KERN_INFO
1040 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1041 sf->block_ctx->start,
1042 sf->block_ctx->dev->name);
1043 goto one_stack_frame_backwards;
1044 }
1045 btrfsic_read_from_block_data(sf->block_ctx,
1046 &disk_item,
1047 disk_item_offset,
1048 sizeof(struct btrfs_item));
1049 item_offset = btrfs_stack_item_offset(&disk_item);
1050 item_size = btrfs_stack_item_size(&disk_item);
1051 disk_key = &disk_item.key;
1052 type = btrfs_disk_key_type(disk_key);
1053
1054 if (BTRFS_ROOT_ITEM_KEY == type) {
1055 struct btrfs_root_item root_item;
1056 u32 root_item_offset;
1057 u64 next_bytenr;
1058
1059 root_item_offset = item_offset +
1060 offsetof(struct btrfs_leaf, items);
1061 if (root_item_offset + item_size >
1062 sf->block_ctx->len)
1063 goto leaf_item_out_of_bounce_error;
1064 btrfsic_read_from_block_data(
1065 sf->block_ctx, &root_item,
1066 root_item_offset,
1067 item_size);
1068 next_bytenr = btrfs_root_bytenr(&root_item);
1069
1070 sf->error =
1071 btrfsic_create_link_to_next_block(
1072 state,
1073 sf->block,
1074 sf->block_ctx,
1075 next_bytenr,
1076 sf->limit_nesting,
1077 &sf->next_block_ctx,
1078 &sf->next_block,
1079 force_iodone_flag,
1080 &sf->num_copies,
1081 &sf->mirror_num,
1082 disk_key,
1083 btrfs_root_generation(
1084 &root_item));
1085 if (sf->error)
1086 goto one_stack_frame_backwards;
1087
1088 if (NULL != sf->next_block) {
1089 struct btrfs_header *const next_hdr =
1090 (struct btrfs_header *)
1091 sf->next_block_ctx.datav[0];
1092
1093 next_stack =
1094 btrfsic_stack_frame_alloc();
1095 if (NULL == next_stack) {
1096 btrfsic_release_block_ctx(
1097 &sf->
1098 next_block_ctx);
1099 goto one_stack_frame_backwards;
1100 }
1101
1102 next_stack->i = -1;
1103 next_stack->block = sf->next_block;
1104 next_stack->block_ctx =
1105 &sf->next_block_ctx;
1106 next_stack->next_block = NULL;
1107 next_stack->hdr = next_hdr;
1108 next_stack->limit_nesting =
1109 sf->limit_nesting - 1;
1110 next_stack->prev = sf;
1111 sf = next_stack;
1112 goto continue_with_new_stack_frame;
1113 }
1114 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1115 state->include_extent_data) {
1116 sf->error = btrfsic_handle_extent_data(
1117 state,
1118 sf->block,
1119 sf->block_ctx,
1120 item_offset,
1121 force_iodone_flag);
1122 if (sf->error)
1123 goto one_stack_frame_backwards;
1124 }
1125
1126 goto continue_with_current_leaf_stack_frame;
1127 }
1128 } else {
1129 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1130
1131 if (-1 == sf->i) {
1132 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1133
1134 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135 printk(KERN_INFO "node %llu level %d items %d"
1136 " generation %llu owner %llu\n",
1137 sf->block_ctx->start,
1138 nodehdr->header.level, sf->nr,
1139 btrfs_stack_header_generation(
1140 &nodehdr->header),
1141 btrfs_stack_header_owner(
1142 &nodehdr->header));
1143 }
1144
1145continue_with_current_node_stack_frame:
1146 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1147 sf->i++;
1148 sf->num_copies = 0;
1149 }
1150
1151 if (sf->i < sf->nr) {
1152 struct btrfs_key_ptr key_ptr;
1153 u32 key_ptr_offset;
1154 u64 next_bytenr;
1155
1156 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1157 (uintptr_t)nodehdr;
1158 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1159 sf->block_ctx->len) {
1160 printk(KERN_INFO
1161 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1162 sf->block_ctx->start,
1163 sf->block_ctx->dev->name);
1164 goto one_stack_frame_backwards;
1165 }
1166 btrfsic_read_from_block_data(
1167 sf->block_ctx, &key_ptr, key_ptr_offset,
1168 sizeof(struct btrfs_key_ptr));
1169 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1170
1171 sf->error = btrfsic_create_link_to_next_block(
1172 state,
1173 sf->block,
1174 sf->block_ctx,
1175 next_bytenr,
1176 sf->limit_nesting,
1177 &sf->next_block_ctx,
1178 &sf->next_block,
1179 force_iodone_flag,
1180 &sf->num_copies,
1181 &sf->mirror_num,
1182 &key_ptr.key,
1183 btrfs_stack_key_generation(&key_ptr));
1184 if (sf->error)
1185 goto one_stack_frame_backwards;
1186
1187 if (NULL != sf->next_block) {
1188 struct btrfs_header *const next_hdr =
1189 (struct btrfs_header *)
1190 sf->next_block_ctx.datav[0];
1191
1192 next_stack = btrfsic_stack_frame_alloc();
1193 if (NULL == next_stack)
1194 goto one_stack_frame_backwards;
1195
1196 next_stack->i = -1;
1197 next_stack->block = sf->next_block;
1198 next_stack->block_ctx = &sf->next_block_ctx;
1199 next_stack->next_block = NULL;
1200 next_stack->hdr = next_hdr;
1201 next_stack->limit_nesting =
1202 sf->limit_nesting - 1;
1203 next_stack->prev = sf;
1204 sf = next_stack;
1205 goto continue_with_new_stack_frame;
1206 }
1207
1208 goto continue_with_current_node_stack_frame;
1209 }
1210 }
1211
1212one_stack_frame_backwards:
1213 if (NULL != sf->prev) {
1214 struct btrfsic_stack_frame *const prev = sf->prev;
1215
1216 /* the one for the initial block is freed in the caller */
1217 btrfsic_release_block_ctx(sf->block_ctx);
1218
1219 if (sf->error) {
1220 prev->error = sf->error;
1221 btrfsic_stack_frame_free(sf);
1222 sf = prev;
1223 goto one_stack_frame_backwards;
1224 }
1225
1226 btrfsic_stack_frame_free(sf);
1227 sf = prev;
1228 goto continue_with_new_stack_frame;
1229 } else {
1230 BUG_ON(&initial_stack_frame != sf);
1231 }
1232
1233 return sf->error;
1234}
1235
1236static void btrfsic_read_from_block_data(
1237 struct btrfsic_block_data_ctx *block_ctx,
1238 void *dstv, u32 offset, size_t len)
1239{
1240 size_t cur;
1241 size_t offset_in_page;
1242 char *kaddr;
1243 char *dst = (char *)dstv;
1244 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1245 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1246
1247 WARN_ON(offset + len > block_ctx->len);
1248 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1249
1250 while (len > 0) {
1251 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1252 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1253 PAGE_CACHE_SHIFT);
1254 kaddr = block_ctx->datav[i];
1255 memcpy(dst, kaddr + offset_in_page, cur);
1256
1257 dst += cur;
1258 len -= cur;
1259 offset_in_page = 0;
1260 i++;
1261 }
1262}
1263
1264static int btrfsic_create_link_to_next_block(
1265 struct btrfsic_state *state,
1266 struct btrfsic_block *block,
1267 struct btrfsic_block_data_ctx *block_ctx,
1268 u64 next_bytenr,
1269 int limit_nesting,
1270 struct btrfsic_block_data_ctx *next_block_ctx,
1271 struct btrfsic_block **next_blockp,
1272 int force_iodone_flag,
1273 int *num_copiesp, int *mirror_nump,
1274 struct btrfs_disk_key *disk_key,
1275 u64 parent_generation)
1276{
1277 struct btrfsic_block *next_block = NULL;
1278 int ret;
1279 struct btrfsic_block_link *l;
1280 int did_alloc_block_link;
1281 int block_was_created;
1282
1283 *next_blockp = NULL;
1284 if (0 == *num_copiesp) {
1285 *num_copiesp =
1286 btrfs_num_copies(state->root->fs_info,
1287 next_bytenr, state->metablock_size);
1288 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1289 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1290 next_bytenr, *num_copiesp);
1291 *mirror_nump = 1;
1292 }
1293
1294 if (*mirror_nump > *num_copiesp)
1295 return 0;
1296
1297 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1298 printk(KERN_INFO
1299 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1300 *mirror_nump);
1301 ret = btrfsic_map_block(state, next_bytenr,
1302 state->metablock_size,
1303 next_block_ctx, *mirror_nump);
1304 if (ret) {
1305 printk(KERN_INFO
1306 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1307 next_bytenr, *mirror_nump);
1308 btrfsic_release_block_ctx(next_block_ctx);
1309 *next_blockp = NULL;
1310 return -1;
1311 }
1312
1313 next_block = btrfsic_block_lookup_or_add(state,
1314 next_block_ctx, "referenced ",
1315 1, force_iodone_flag,
1316 !force_iodone_flag,
1317 *mirror_nump,
1318 &block_was_created);
1319 if (NULL == next_block) {
1320 btrfsic_release_block_ctx(next_block_ctx);
1321 *next_blockp = NULL;
1322 return -1;
1323 }
1324 if (block_was_created) {
1325 l = NULL;
1326 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1327 } else {
1328 if (next_block->logical_bytenr != next_bytenr &&
1329 !(!next_block->is_metadata &&
1330 0 == next_block->logical_bytenr)) {
1331 printk(KERN_INFO
1332 "Referenced block @%llu (%s/%llu/%d)"
1333 " found in hash table, %c,"
1334 " bytenr mismatch (!= stored %llu).\n",
1335 next_bytenr, next_block_ctx->dev->name,
1336 next_block_ctx->dev_bytenr, *mirror_nump,
1337 btrfsic_get_block_type(state, next_block),
1338 next_block->logical_bytenr);
1339 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1340 printk(KERN_INFO
1341 "Referenced block @%llu (%s/%llu/%d)"
1342 " found in hash table, %c.\n",
1343 next_bytenr, next_block_ctx->dev->name,
1344 next_block_ctx->dev_bytenr, *mirror_nump,
1345 btrfsic_get_block_type(state, next_block));
1346 next_block->logical_bytenr = next_bytenr;
1347
1348 next_block->mirror_num = *mirror_nump;
1349 l = btrfsic_block_link_hashtable_lookup(
1350 next_block_ctx->dev->bdev,
1351 next_block_ctx->dev_bytenr,
1352 block_ctx->dev->bdev,
1353 block_ctx->dev_bytenr,
1354 &state->block_link_hashtable);
1355 }
1356
1357 next_block->disk_key = *disk_key;
1358 if (NULL == l) {
1359 l = btrfsic_block_link_alloc();
1360 if (NULL == l) {
1361 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1362 btrfsic_release_block_ctx(next_block_ctx);
1363 *next_blockp = NULL;
1364 return -1;
1365 }
1366
1367 did_alloc_block_link = 1;
1368 l->block_ref_to = next_block;
1369 l->block_ref_from = block;
1370 l->ref_cnt = 1;
1371 l->parent_generation = parent_generation;
1372
1373 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1374 btrfsic_print_add_link(state, l);
1375
1376 list_add(&l->node_ref_to, &block->ref_to_list);
1377 list_add(&l->node_ref_from, &next_block->ref_from_list);
1378
1379 btrfsic_block_link_hashtable_add(l,
1380 &state->block_link_hashtable);
1381 } else {
1382 did_alloc_block_link = 0;
1383 if (0 == limit_nesting) {
1384 l->ref_cnt++;
1385 l->parent_generation = parent_generation;
1386 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1387 btrfsic_print_add_link(state, l);
1388 }
1389 }
1390
1391 if (limit_nesting > 0 && did_alloc_block_link) {
1392 ret = btrfsic_read_block(state, next_block_ctx);
1393 if (ret < (int)next_block_ctx->len) {
1394 printk(KERN_INFO
1395 "btrfsic: read block @logical %llu failed!\n",
1396 next_bytenr);
1397 btrfsic_release_block_ctx(next_block_ctx);
1398 *next_blockp = NULL;
1399 return -1;
1400 }
1401
1402 *next_blockp = next_block;
1403 } else {
1404 *next_blockp = NULL;
1405 }
1406 (*mirror_nump)++;
1407
1408 return 0;
1409}
1410
1411static int btrfsic_handle_extent_data(
1412 struct btrfsic_state *state,
1413 struct btrfsic_block *block,
1414 struct btrfsic_block_data_ctx *block_ctx,
1415 u32 item_offset, int force_iodone_flag)
1416{
1417 int ret;
1418 struct btrfs_file_extent_item file_extent_item;
1419 u64 file_extent_item_offset;
1420 u64 next_bytenr;
1421 u64 num_bytes;
1422 u64 generation;
1423 struct btrfsic_block_link *l;
1424
1425 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1426 item_offset;
1427 if (file_extent_item_offset +
1428 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1429 block_ctx->len) {
1430 printk(KERN_INFO
1431 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1432 block_ctx->start, block_ctx->dev->name);
1433 return -1;
1434 }
1435
1436 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1437 file_extent_item_offset,
1438 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1439 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1440 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1442 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1443 file_extent_item.type,
1444 btrfs_stack_file_extent_disk_bytenr(
1445 &file_extent_item));
1446 return 0;
1447 }
1448
1449 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1450 block_ctx->len) {
1451 printk(KERN_INFO
1452 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1453 block_ctx->start, block_ctx->dev->name);
1454 return -1;
1455 }
1456 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1457 file_extent_item_offset,
1458 sizeof(struct btrfs_file_extent_item));
1459 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1460 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1461 BTRFS_COMPRESS_NONE) {
1462 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1463 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1464 } else {
1465 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1466 }
1467 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1468
1469 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1470 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1471 " offset = %llu, num_bytes = %llu\n",
1472 file_extent_item.type,
1473 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1474 btrfs_stack_file_extent_offset(&file_extent_item),
1475 num_bytes);
1476 while (num_bytes > 0) {
1477 u32 chunk_len;
1478 int num_copies;
1479 int mirror_num;
1480
1481 if (num_bytes > state->datablock_size)
1482 chunk_len = state->datablock_size;
1483 else
1484 chunk_len = num_bytes;
1485
1486 num_copies =
1487 btrfs_num_copies(state->root->fs_info,
1488 next_bytenr, state->datablock_size);
1489 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1490 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1491 next_bytenr, num_copies);
1492 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1493 struct btrfsic_block_data_ctx next_block_ctx;
1494 struct btrfsic_block *next_block;
1495 int block_was_created;
1496
1497 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1498 printk(KERN_INFO "btrfsic_handle_extent_data("
1499 "mirror_num=%d)\n", mirror_num);
1500 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1501 printk(KERN_INFO
1502 "\tdisk_bytenr = %llu, num_bytes %u\n",
1503 next_bytenr, chunk_len);
1504 ret = btrfsic_map_block(state, next_bytenr,
1505 chunk_len, &next_block_ctx,
1506 mirror_num);
1507 if (ret) {
1508 printk(KERN_INFO
1509 "btrfsic: btrfsic_map_block(@%llu,"
1510 " mirror=%d) failed!\n",
1511 next_bytenr, mirror_num);
1512 return -1;
1513 }
1514
1515 next_block = btrfsic_block_lookup_or_add(
1516 state,
1517 &next_block_ctx,
1518 "referenced ",
1519 0,
1520 force_iodone_flag,
1521 !force_iodone_flag,
1522 mirror_num,
1523 &block_was_created);
1524 if (NULL == next_block) {
1525 printk(KERN_INFO
1526 "btrfsic: error, kmalloc failed!\n");
1527 btrfsic_release_block_ctx(&next_block_ctx);
1528 return -1;
1529 }
1530 if (!block_was_created) {
1531 if (next_block->logical_bytenr != next_bytenr &&
1532 !(!next_block->is_metadata &&
1533 0 == next_block->logical_bytenr)) {
1534 printk(KERN_INFO
1535 "Referenced block"
1536 " @%llu (%s/%llu/%d)"
1537 " found in hash table, D,"
1538 " bytenr mismatch"
1539 " (!= stored %llu).\n",
1540 next_bytenr,
1541 next_block_ctx.dev->name,
1542 next_block_ctx.dev_bytenr,
1543 mirror_num,
1544 next_block->logical_bytenr);
1545 }
1546 next_block->logical_bytenr = next_bytenr;
1547 next_block->mirror_num = mirror_num;
1548 }
1549
1550 l = btrfsic_block_link_lookup_or_add(state,
1551 &next_block_ctx,
1552 next_block, block,
1553 generation);
1554 btrfsic_release_block_ctx(&next_block_ctx);
1555 if (NULL == l)
1556 return -1;
1557 }
1558
1559 next_bytenr += chunk_len;
1560 num_bytes -= chunk_len;
1561 }
1562
1563 return 0;
1564}
1565
1566static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1567 struct btrfsic_block_data_ctx *block_ctx_out,
1568 int mirror_num)
1569{
1570 int ret;
1571 u64 length;
1572 struct btrfs_bio *multi = NULL;
1573 struct btrfs_device *device;
1574
1575 length = len;
1576 ret = btrfs_map_block(state->root->fs_info, READ,
1577 bytenr, &length, &multi, mirror_num);
1578
1579 if (ret) {
1580 block_ctx_out->start = 0;
1581 block_ctx_out->dev_bytenr = 0;
1582 block_ctx_out->len = 0;
1583 block_ctx_out->dev = NULL;
1584 block_ctx_out->datav = NULL;
1585 block_ctx_out->pagev = NULL;
1586 block_ctx_out->mem_to_free = NULL;
1587
1588 return ret;
1589 }
1590
1591 device = multi->stripes[0].dev;
1592 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1593 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1594 block_ctx_out->start = bytenr;
1595 block_ctx_out->len = len;
1596 block_ctx_out->datav = NULL;
1597 block_ctx_out->pagev = NULL;
1598 block_ctx_out->mem_to_free = NULL;
1599
1600 kfree(multi);
1601 if (NULL == block_ctx_out->dev) {
1602 ret = -ENXIO;
1603 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1604 }
1605
1606 return ret;
1607}
1608
1609static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1610 u32 len, struct block_device *bdev,
1611 struct btrfsic_block_data_ctx *block_ctx_out)
1612{
1613 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1614 block_ctx_out->dev_bytenr = bytenr;
1615 block_ctx_out->start = bytenr;
1616 block_ctx_out->len = len;
1617 block_ctx_out->datav = NULL;
1618 block_ctx_out->pagev = NULL;
1619 block_ctx_out->mem_to_free = NULL;
1620 if (NULL != block_ctx_out->dev) {
1621 return 0;
1622 } else {
1623 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1624 return -ENXIO;
1625 }
1626}
1627
1628static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1629{
1630 if (block_ctx->mem_to_free) {
1631 unsigned int num_pages;
1632
1633 BUG_ON(!block_ctx->datav);
1634 BUG_ON(!block_ctx->pagev);
1635 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1636 PAGE_CACHE_SHIFT;
1637 while (num_pages > 0) {
1638 num_pages--;
1639 if (block_ctx->datav[num_pages]) {
1640 kunmap(block_ctx->pagev[num_pages]);
1641 block_ctx->datav[num_pages] = NULL;
1642 }
1643 if (block_ctx->pagev[num_pages]) {
1644 __free_page(block_ctx->pagev[num_pages]);
1645 block_ctx->pagev[num_pages] = NULL;
1646 }
1647 }
1648
1649 kfree(block_ctx->mem_to_free);
1650 block_ctx->mem_to_free = NULL;
1651 block_ctx->pagev = NULL;
1652 block_ctx->datav = NULL;
1653 }
1654}
1655
1656static int btrfsic_read_block(struct btrfsic_state *state,
1657 struct btrfsic_block_data_ctx *block_ctx)
1658{
1659 unsigned int num_pages;
1660 unsigned int i;
1661 u64 dev_bytenr;
1662 int ret;
1663
1664 BUG_ON(block_ctx->datav);
1665 BUG_ON(block_ctx->pagev);
1666 BUG_ON(block_ctx->mem_to_free);
1667 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1668 printk(KERN_INFO
1669 "btrfsic: read_block() with unaligned bytenr %llu\n",
1670 block_ctx->dev_bytenr);
1671 return -1;
1672 }
1673
1674 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1675 PAGE_CACHE_SHIFT;
1676 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1677 sizeof(*block_ctx->pagev)) *
1678 num_pages, GFP_NOFS);
1679 if (!block_ctx->mem_to_free)
1680 return -1;
1681 block_ctx->datav = block_ctx->mem_to_free;
1682 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1683 for (i = 0; i < num_pages; i++) {
1684 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1685 if (!block_ctx->pagev[i])
1686 return -1;
1687 }
1688
1689 dev_bytenr = block_ctx->dev_bytenr;
1690 for (i = 0; i < num_pages;) {
1691 struct bio *bio;
1692 unsigned int j;
1693
1694 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1695 if (!bio) {
1696 printk(KERN_INFO
1697 "btrfsic: bio_alloc() for %u pages failed!\n",
1698 num_pages - i);
1699 return -1;
1700 }
1701 bio->bi_bdev = block_ctx->dev->bdev;
1702 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1703
1704 for (j = i; j < num_pages; j++) {
1705 ret = bio_add_page(bio, block_ctx->pagev[j],
1706 PAGE_CACHE_SIZE, 0);
1707 if (PAGE_CACHE_SIZE != ret)
1708 break;
1709 }
1710 if (j == i) {
1711 printk(KERN_INFO
1712 "btrfsic: error, failed to add a single page!\n");
1713 return -1;
1714 }
1715 if (submit_bio_wait(READ, bio)) {
1716 printk(KERN_INFO
1717 "btrfsic: read error at logical %llu dev %s!\n",
1718 block_ctx->start, block_ctx->dev->name);
1719 bio_put(bio);
1720 return -1;
1721 }
1722 bio_put(bio);
1723 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1724 i = j;
1725 }
1726 for (i = 0; i < num_pages; i++) {
1727 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1728 if (!block_ctx->datav[i]) {
1729 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1730 block_ctx->dev->name);
1731 return -1;
1732 }
1733 }
1734
1735 return block_ctx->len;
1736}
1737
1738static void btrfsic_dump_database(struct btrfsic_state *state)
1739{
1740 struct list_head *elem_all;
1741
1742 BUG_ON(NULL == state);
1743
1744 printk(KERN_INFO "all_blocks_list:\n");
1745 list_for_each(elem_all, &state->all_blocks_list) {
1746 const struct btrfsic_block *const b_all =
1747 list_entry(elem_all, struct btrfsic_block,
1748 all_blocks_node);
1749 struct list_head *elem_ref_to;
1750 struct list_head *elem_ref_from;
1751
1752 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1753 btrfsic_get_block_type(state, b_all),
1754 b_all->logical_bytenr, b_all->dev_state->name,
1755 b_all->dev_bytenr, b_all->mirror_num);
1756
1757 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1758 const struct btrfsic_block_link *const l =
1759 list_entry(elem_ref_to,
1760 struct btrfsic_block_link,
1761 node_ref_to);
1762
1763 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1764 " refers %u* to"
1765 " %c @%llu (%s/%llu/%d)\n",
1766 btrfsic_get_block_type(state, b_all),
1767 b_all->logical_bytenr, b_all->dev_state->name,
1768 b_all->dev_bytenr, b_all->mirror_num,
1769 l->ref_cnt,
1770 btrfsic_get_block_type(state, l->block_ref_to),
1771 l->block_ref_to->logical_bytenr,
1772 l->block_ref_to->dev_state->name,
1773 l->block_ref_to->dev_bytenr,
1774 l->block_ref_to->mirror_num);
1775 }
1776
1777 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1778 const struct btrfsic_block_link *const l =
1779 list_entry(elem_ref_from,
1780 struct btrfsic_block_link,
1781 node_ref_from);
1782
1783 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1784 " is ref %u* from"
1785 " %c @%llu (%s/%llu/%d)\n",
1786 btrfsic_get_block_type(state, b_all),
1787 b_all->logical_bytenr, b_all->dev_state->name,
1788 b_all->dev_bytenr, b_all->mirror_num,
1789 l->ref_cnt,
1790 btrfsic_get_block_type(state, l->block_ref_from),
1791 l->block_ref_from->logical_bytenr,
1792 l->block_ref_from->dev_state->name,
1793 l->block_ref_from->dev_bytenr,
1794 l->block_ref_from->mirror_num);
1795 }
1796
1797 printk(KERN_INFO "\n");
1798 }
1799}
1800
1801/*
1802 * Test whether the disk block contains a tree block (leaf or node)
1803 * (note that this test fails for the super block)
1804 */
1805static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1806 char **datav, unsigned int num_pages)
1807{
1808 struct btrfs_header *h;
1809 u8 csum[BTRFS_CSUM_SIZE];
1810 u32 crc = ~(u32)0;
1811 unsigned int i;
1812
1813 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1814 return 1; /* not metadata */
1815 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1816 h = (struct btrfs_header *)datav[0];
1817
1818 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1819 return 1;
1820
1821 for (i = 0; i < num_pages; i++) {
1822 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1823 size_t sublen = i ? PAGE_CACHE_SIZE :
1824 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1825
1826 crc = btrfs_crc32c(crc, data, sublen);
1827 }
1828 btrfs_csum_final(crc, csum);
1829 if (memcmp(csum, h->csum, state->csum_size))
1830 return 1;
1831
1832 return 0; /* is metadata */
1833}
1834
1835static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1836 u64 dev_bytenr, char **mapped_datav,
1837 unsigned int num_pages,
1838 struct bio *bio, int *bio_is_patched,
1839 struct buffer_head *bh,
1840 int submit_bio_bh_rw)
1841{
1842 int is_metadata;
1843 struct btrfsic_block *block;
1844 struct btrfsic_block_data_ctx block_ctx;
1845 int ret;
1846 struct btrfsic_state *state = dev_state->state;
1847 struct block_device *bdev = dev_state->bdev;
1848 unsigned int processed_len;
1849
1850 if (NULL != bio_is_patched)
1851 *bio_is_patched = 0;
1852
1853again:
1854 if (num_pages == 0)
1855 return;
1856
1857 processed_len = 0;
1858 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1859 num_pages));
1860
1861 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1862 &state->block_hashtable);
1863 if (NULL != block) {
1864 u64 bytenr = 0;
1865 struct list_head *elem_ref_to;
1866 struct list_head *tmp_ref_to;
1867
1868 if (block->is_superblock) {
1869 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1870 mapped_datav[0]);
1871 if (num_pages * PAGE_CACHE_SIZE <
1872 BTRFS_SUPER_INFO_SIZE) {
1873 printk(KERN_INFO
1874 "btrfsic: cannot work with too short bios!\n");
1875 return;
1876 }
1877 is_metadata = 1;
1878 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1879 processed_len = BTRFS_SUPER_INFO_SIZE;
1880 if (state->print_mask &
1881 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1882 printk(KERN_INFO
1883 "[before new superblock is written]:\n");
1884 btrfsic_dump_tree_sub(state, block, 0);
1885 }
1886 }
1887 if (is_metadata) {
1888 if (!block->is_superblock) {
1889 if (num_pages * PAGE_CACHE_SIZE <
1890 state->metablock_size) {
1891 printk(KERN_INFO
1892 "btrfsic: cannot work with too short bios!\n");
1893 return;
1894 }
1895 processed_len = state->metablock_size;
1896 bytenr = btrfs_stack_header_bytenr(
1897 (struct btrfs_header *)
1898 mapped_datav[0]);
1899 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1900 dev_state,
1901 dev_bytenr);
1902 }
1903 if (block->logical_bytenr != bytenr &&
1904 !(!block->is_metadata &&
1905 block->logical_bytenr == 0))
1906 printk(KERN_INFO
1907 "Written block @%llu (%s/%llu/%d)"
1908 " found in hash table, %c,"
1909 " bytenr mismatch"
1910 " (!= stored %llu).\n",
1911 bytenr, dev_state->name, dev_bytenr,
1912 block->mirror_num,
1913 btrfsic_get_block_type(state, block),
1914 block->logical_bytenr);
1915 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1916 printk(KERN_INFO
1917 "Written block @%llu (%s/%llu/%d)"
1918 " found in hash table, %c.\n",
1919 bytenr, dev_state->name, dev_bytenr,
1920 block->mirror_num,
1921 btrfsic_get_block_type(state, block));
1922 block->logical_bytenr = bytenr;
1923 } else {
1924 if (num_pages * PAGE_CACHE_SIZE <
1925 state->datablock_size) {
1926 printk(KERN_INFO
1927 "btrfsic: cannot work with too short bios!\n");
1928 return;
1929 }
1930 processed_len = state->datablock_size;
1931 bytenr = block->logical_bytenr;
1932 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1933 printk(KERN_INFO
1934 "Written block @%llu (%s/%llu/%d)"
1935 " found in hash table, %c.\n",
1936 bytenr, dev_state->name, dev_bytenr,
1937 block->mirror_num,
1938 btrfsic_get_block_type(state, block));
1939 }
1940
1941 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1942 printk(KERN_INFO
1943 "ref_to_list: %cE, ref_from_list: %cE\n",
1944 list_empty(&block->ref_to_list) ? ' ' : '!',
1945 list_empty(&block->ref_from_list) ? ' ' : '!');
1946 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1947 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1948 " @%llu (%s/%llu/%d), old(gen=%llu,"
1949 " objectid=%llu, type=%d, offset=%llu),"
1950 " new(gen=%llu),"
1951 " which is referenced by most recent superblock"
1952 " (superblockgen=%llu)!\n",
1953 btrfsic_get_block_type(state, block), bytenr,
1954 dev_state->name, dev_bytenr, block->mirror_num,
1955 block->generation,
1956 btrfs_disk_key_objectid(&block->disk_key),
1957 block->disk_key.type,
1958 btrfs_disk_key_offset(&block->disk_key),
1959 btrfs_stack_header_generation(
1960 (struct btrfs_header *) mapped_datav[0]),
1961 state->max_superblock_generation);
1962 btrfsic_dump_tree(state);
1963 }
1964
1965 if (!block->is_iodone && !block->never_written) {
1966 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1967 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1968 " which is not yet iodone!\n",
1969 btrfsic_get_block_type(state, block), bytenr,
1970 dev_state->name, dev_bytenr, block->mirror_num,
1971 block->generation,
1972 btrfs_stack_header_generation(
1973 (struct btrfs_header *)
1974 mapped_datav[0]));
1975 /* it would not be safe to go on */
1976 btrfsic_dump_tree(state);
1977 goto continue_loop;
1978 }
1979
1980 /*
1981 * Clear all references of this block. Do not free
1982 * the block itself even if is not referenced anymore
1983 * because it still carries valueable information
1984 * like whether it was ever written and IO completed.
1985 */
1986 list_for_each_safe(elem_ref_to, tmp_ref_to,
1987 &block->ref_to_list) {
1988 struct btrfsic_block_link *const l =
1989 list_entry(elem_ref_to,
1990 struct btrfsic_block_link,
1991 node_ref_to);
1992
1993 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1994 btrfsic_print_rem_link(state, l);
1995 l->ref_cnt--;
1996 if (0 == l->ref_cnt) {
1997 list_del(&l->node_ref_to);
1998 list_del(&l->node_ref_from);
1999 btrfsic_block_link_hashtable_remove(l);
2000 btrfsic_block_link_free(l);
2001 }
2002 }
2003
2004 if (block->is_superblock)
2005 ret = btrfsic_map_superblock(state, bytenr,
2006 processed_len,
2007 bdev, &block_ctx);
2008 else
2009 ret = btrfsic_map_block(state, bytenr, processed_len,
2010 &block_ctx, 0);
2011 if (ret) {
2012 printk(KERN_INFO
2013 "btrfsic: btrfsic_map_block(root @%llu)"
2014 " failed!\n", bytenr);
2015 goto continue_loop;
2016 }
2017 block_ctx.datav = mapped_datav;
2018 /* the following is required in case of writes to mirrors,
2019 * use the same that was used for the lookup */
2020 block_ctx.dev = dev_state;
2021 block_ctx.dev_bytenr = dev_bytenr;
2022
2023 if (is_metadata || state->include_extent_data) {
2024 block->never_written = 0;
2025 block->iodone_w_error = 0;
2026 if (NULL != bio) {
2027 block->is_iodone = 0;
2028 BUG_ON(NULL == bio_is_patched);
2029 if (!*bio_is_patched) {
2030 block->orig_bio_bh_private =
2031 bio->bi_private;
2032 block->orig_bio_bh_end_io.bio =
2033 bio->bi_end_io;
2034 block->next_in_same_bio = NULL;
2035 bio->bi_private = block;
2036 bio->bi_end_io = btrfsic_bio_end_io;
2037 *bio_is_patched = 1;
2038 } else {
2039 struct btrfsic_block *chained_block =
2040 (struct btrfsic_block *)
2041 bio->bi_private;
2042
2043 BUG_ON(NULL == chained_block);
2044 block->orig_bio_bh_private =
2045 chained_block->orig_bio_bh_private;
2046 block->orig_bio_bh_end_io.bio =
2047 chained_block->orig_bio_bh_end_io.
2048 bio;
2049 block->next_in_same_bio = chained_block;
2050 bio->bi_private = block;
2051 }
2052 } else if (NULL != bh) {
2053 block->is_iodone = 0;
2054 block->orig_bio_bh_private = bh->b_private;
2055 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2056 block->next_in_same_bio = NULL;
2057 bh->b_private = block;
2058 bh->b_end_io = btrfsic_bh_end_io;
2059 } else {
2060 block->is_iodone = 1;
2061 block->orig_bio_bh_private = NULL;
2062 block->orig_bio_bh_end_io.bio = NULL;
2063 block->next_in_same_bio = NULL;
2064 }
2065 }
2066
2067 block->flush_gen = dev_state->last_flush_gen + 1;
2068 block->submit_bio_bh_rw = submit_bio_bh_rw;
2069 if (is_metadata) {
2070 block->logical_bytenr = bytenr;
2071 block->is_metadata = 1;
2072 if (block->is_superblock) {
2073 BUG_ON(PAGE_CACHE_SIZE !=
2074 BTRFS_SUPER_INFO_SIZE);
2075 ret = btrfsic_process_written_superblock(
2076 state,
2077 block,
2078 (struct btrfs_super_block *)
2079 mapped_datav[0]);
2080 if (state->print_mask &
2081 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2082 printk(KERN_INFO
2083 "[after new superblock is written]:\n");
2084 btrfsic_dump_tree_sub(state, block, 0);
2085 }
2086 } else {
2087 block->mirror_num = 0; /* unknown */
2088 ret = btrfsic_process_metablock(
2089 state,
2090 block,
2091 &block_ctx,
2092 0, 0);
2093 }
2094 if (ret)
2095 printk(KERN_INFO
2096 "btrfsic: btrfsic_process_metablock"
2097 "(root @%llu) failed!\n",
2098 dev_bytenr);
2099 } else {
2100 block->is_metadata = 0;
2101 block->mirror_num = 0; /* unknown */
2102 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2103 if (!state->include_extent_data
2104 && list_empty(&block->ref_from_list)) {
2105 /*
2106 * disk block is overwritten with extent
2107 * data (not meta data) and we are configured
2108 * to not include extent data: take the
2109 * chance and free the block's memory
2110 */
2111 btrfsic_block_hashtable_remove(block);
2112 list_del(&block->all_blocks_node);
2113 btrfsic_block_free(block);
2114 }
2115 }
2116 btrfsic_release_block_ctx(&block_ctx);
2117 } else {
2118 /* block has not been found in hash table */
2119 u64 bytenr;
2120
2121 if (!is_metadata) {
2122 processed_len = state->datablock_size;
2123 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2124 printk(KERN_INFO "Written block (%s/%llu/?)"
2125 " !found in hash table, D.\n",
2126 dev_state->name, dev_bytenr);
2127 if (!state->include_extent_data) {
2128 /* ignore that written D block */
2129 goto continue_loop;
2130 }
2131
2132 /* this is getting ugly for the
2133 * include_extent_data case... */
2134 bytenr = 0; /* unknown */
2135 block_ctx.start = bytenr;
2136 block_ctx.len = processed_len;
2137 block_ctx.mem_to_free = NULL;
2138 block_ctx.pagev = NULL;
2139 } else {
2140 processed_len = state->metablock_size;
2141 bytenr = btrfs_stack_header_bytenr(
2142 (struct btrfs_header *)
2143 mapped_datav[0]);
2144 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2145 dev_bytenr);
2146 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2147 printk(KERN_INFO
2148 "Written block @%llu (%s/%llu/?)"
2149 " !found in hash table, M.\n",
2150 bytenr, dev_state->name, dev_bytenr);
2151
2152 ret = btrfsic_map_block(state, bytenr, processed_len,
2153 &block_ctx, 0);
2154 if (ret) {
2155 printk(KERN_INFO
2156 "btrfsic: btrfsic_map_block(root @%llu)"
2157 " failed!\n",
2158 dev_bytenr);
2159 goto continue_loop;
2160 }
2161 }
2162 block_ctx.datav = mapped_datav;
2163 /* the following is required in case of writes to mirrors,
2164 * use the same that was used for the lookup */
2165 block_ctx.dev = dev_state;
2166 block_ctx.dev_bytenr = dev_bytenr;
2167
2168 block = btrfsic_block_alloc();
2169 if (NULL == block) {
2170 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2171 btrfsic_release_block_ctx(&block_ctx);
2172 goto continue_loop;
2173 }
2174 block->dev_state = dev_state;
2175 block->dev_bytenr = dev_bytenr;
2176 block->logical_bytenr = bytenr;
2177 block->is_metadata = is_metadata;
2178 block->never_written = 0;
2179 block->iodone_w_error = 0;
2180 block->mirror_num = 0; /* unknown */
2181 block->flush_gen = dev_state->last_flush_gen + 1;
2182 block->submit_bio_bh_rw = submit_bio_bh_rw;
2183 if (NULL != bio) {
2184 block->is_iodone = 0;
2185 BUG_ON(NULL == bio_is_patched);
2186 if (!*bio_is_patched) {
2187 block->orig_bio_bh_private = bio->bi_private;
2188 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2189 block->next_in_same_bio = NULL;
2190 bio->bi_private = block;
2191 bio->bi_end_io = btrfsic_bio_end_io;
2192 *bio_is_patched = 1;
2193 } else {
2194 struct btrfsic_block *chained_block =
2195 (struct btrfsic_block *)
2196 bio->bi_private;
2197
2198 BUG_ON(NULL == chained_block);
2199 block->orig_bio_bh_private =
2200 chained_block->orig_bio_bh_private;
2201 block->orig_bio_bh_end_io.bio =
2202 chained_block->orig_bio_bh_end_io.bio;
2203 block->next_in_same_bio = chained_block;
2204 bio->bi_private = block;
2205 }
2206 } else if (NULL != bh) {
2207 block->is_iodone = 0;
2208 block->orig_bio_bh_private = bh->b_private;
2209 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2210 block->next_in_same_bio = NULL;
2211 bh->b_private = block;
2212 bh->b_end_io = btrfsic_bh_end_io;
2213 } else {
2214 block->is_iodone = 1;
2215 block->orig_bio_bh_private = NULL;
2216 block->orig_bio_bh_end_io.bio = NULL;
2217 block->next_in_same_bio = NULL;
2218 }
2219 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2220 printk(KERN_INFO
2221 "New written %c-block @%llu (%s/%llu/%d)\n",
2222 is_metadata ? 'M' : 'D',
2223 block->logical_bytenr, block->dev_state->name,
2224 block->dev_bytenr, block->mirror_num);
2225 list_add(&block->all_blocks_node, &state->all_blocks_list);
2226 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2227
2228 if (is_metadata) {
2229 ret = btrfsic_process_metablock(state, block,
2230 &block_ctx, 0, 0);
2231 if (ret)
2232 printk(KERN_INFO
2233 "btrfsic: process_metablock(root @%llu)"
2234 " failed!\n",
2235 dev_bytenr);
2236 }
2237 btrfsic_release_block_ctx(&block_ctx);
2238 }
2239
2240continue_loop:
2241 BUG_ON(!processed_len);
2242 dev_bytenr += processed_len;
2243 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2244 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2245 goto again;
2246}
2247
2248static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2249{
2250 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2251 int iodone_w_error;
2252
2253 /* mutex is not held! This is not save if IO is not yet completed
2254 * on umount */
2255 iodone_w_error = 0;
2256 if (bio_error_status)
2257 iodone_w_error = 1;
2258
2259 BUG_ON(NULL == block);
2260 bp->bi_private = block->orig_bio_bh_private;
2261 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2262
2263 do {
2264 struct btrfsic_block *next_block;
2265 struct btrfsic_dev_state *const dev_state = block->dev_state;
2266
2267 if ((dev_state->state->print_mask &
2268 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2269 printk(KERN_INFO
2270 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2271 bio_error_status,
2272 btrfsic_get_block_type(dev_state->state, block),
2273 block->logical_bytenr, dev_state->name,
2274 block->dev_bytenr, block->mirror_num);
2275 next_block = block->next_in_same_bio;
2276 block->iodone_w_error = iodone_w_error;
2277 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2278 dev_state->last_flush_gen++;
2279 if ((dev_state->state->print_mask &
2280 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2281 printk(KERN_INFO
2282 "bio_end_io() new %s flush_gen=%llu\n",
2283 dev_state->name,
2284 dev_state->last_flush_gen);
2285 }
2286 if (block->submit_bio_bh_rw & REQ_FUA)
2287 block->flush_gen = 0; /* FUA completed means block is
2288 * on disk */
2289 block->is_iodone = 1; /* for FLUSH, this releases the block */
2290 block = next_block;
2291 } while (NULL != block);
2292
2293 bp->bi_end_io(bp, bio_error_status);
2294}
2295
2296static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2297{
2298 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2299 int iodone_w_error = !uptodate;
2300 struct btrfsic_dev_state *dev_state;
2301
2302 BUG_ON(NULL == block);
2303 dev_state = block->dev_state;
2304 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2305 printk(KERN_INFO
2306 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2307 iodone_w_error,
2308 btrfsic_get_block_type(dev_state->state, block),
2309 block->logical_bytenr, block->dev_state->name,
2310 block->dev_bytenr, block->mirror_num);
2311
2312 block->iodone_w_error = iodone_w_error;
2313 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2314 dev_state->last_flush_gen++;
2315 if ((dev_state->state->print_mask &
2316 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2317 printk(KERN_INFO
2318 "bh_end_io() new %s flush_gen=%llu\n",
2319 dev_state->name, dev_state->last_flush_gen);
2320 }
2321 if (block->submit_bio_bh_rw & REQ_FUA)
2322 block->flush_gen = 0; /* FUA completed means block is on disk */
2323
2324 bh->b_private = block->orig_bio_bh_private;
2325 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2326 block->is_iodone = 1; /* for FLUSH, this releases the block */
2327 bh->b_end_io(bh, uptodate);
2328}
2329
2330static int btrfsic_process_written_superblock(
2331 struct btrfsic_state *state,
2332 struct btrfsic_block *const superblock,
2333 struct btrfs_super_block *const super_hdr)
2334{
2335 int pass;
2336
2337 superblock->generation = btrfs_super_generation(super_hdr);
2338 if (!(superblock->generation > state->max_superblock_generation ||
2339 0 == state->max_superblock_generation)) {
2340 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2341 printk(KERN_INFO
2342 "btrfsic: superblock @%llu (%s/%llu/%d)"
2343 " with old gen %llu <= %llu\n",
2344 superblock->logical_bytenr,
2345 superblock->dev_state->name,
2346 superblock->dev_bytenr, superblock->mirror_num,
2347 btrfs_super_generation(super_hdr),
2348 state->max_superblock_generation);
2349 } else {
2350 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2351 printk(KERN_INFO
2352 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2353 " with new gen %llu > %llu\n",
2354 superblock->logical_bytenr,
2355 superblock->dev_state->name,
2356 superblock->dev_bytenr, superblock->mirror_num,
2357 btrfs_super_generation(super_hdr),
2358 state->max_superblock_generation);
2359
2360 state->max_superblock_generation =
2361 btrfs_super_generation(super_hdr);
2362 state->latest_superblock = superblock;
2363 }
2364
2365 for (pass = 0; pass < 3; pass++) {
2366 int ret;
2367 u64 next_bytenr;
2368 struct btrfsic_block *next_block;
2369 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2370 struct btrfsic_block_link *l;
2371 int num_copies;
2372 int mirror_num;
2373 const char *additional_string = NULL;
2374 struct btrfs_disk_key tmp_disk_key = {0};
2375
2376 btrfs_set_disk_key_objectid(&tmp_disk_key,
2377 BTRFS_ROOT_ITEM_KEY);
2378 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2379
2380 switch (pass) {
2381 case 0:
2382 btrfs_set_disk_key_objectid(&tmp_disk_key,
2383 BTRFS_ROOT_TREE_OBJECTID);
2384 additional_string = "root ";
2385 next_bytenr = btrfs_super_root(super_hdr);
2386 if (state->print_mask &
2387 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2388 printk(KERN_INFO "root@%llu\n", next_bytenr);
2389 break;
2390 case 1:
2391 btrfs_set_disk_key_objectid(&tmp_disk_key,
2392 BTRFS_CHUNK_TREE_OBJECTID);
2393 additional_string = "chunk ";
2394 next_bytenr = btrfs_super_chunk_root(super_hdr);
2395 if (state->print_mask &
2396 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2397 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2398 break;
2399 case 2:
2400 btrfs_set_disk_key_objectid(&tmp_disk_key,
2401 BTRFS_TREE_LOG_OBJECTID);
2402 additional_string = "log ";
2403 next_bytenr = btrfs_super_log_root(super_hdr);
2404 if (0 == next_bytenr)
2405 continue;
2406 if (state->print_mask &
2407 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2408 printk(KERN_INFO "log@%llu\n", next_bytenr);
2409 break;
2410 }
2411
2412 num_copies =
2413 btrfs_num_copies(state->root->fs_info,
2414 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2415 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2416 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2417 next_bytenr, num_copies);
2418 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2419 int was_created;
2420
2421 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2422 printk(KERN_INFO
2423 "btrfsic_process_written_superblock("
2424 "mirror_num=%d)\n", mirror_num);
2425 ret = btrfsic_map_block(state, next_bytenr,
2426 BTRFS_SUPER_INFO_SIZE,
2427 &tmp_next_block_ctx,
2428 mirror_num);
2429 if (ret) {
2430 printk(KERN_INFO
2431 "btrfsic: btrfsic_map_block(@%llu,"
2432 " mirror=%d) failed!\n",
2433 next_bytenr, mirror_num);
2434 return -1;
2435 }
2436
2437 next_block = btrfsic_block_lookup_or_add(
2438 state,
2439 &tmp_next_block_ctx,
2440 additional_string,
2441 1, 0, 1,
2442 mirror_num,
2443 &was_created);
2444 if (NULL == next_block) {
2445 printk(KERN_INFO
2446 "btrfsic: error, kmalloc failed!\n");
2447 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2448 return -1;
2449 }
2450
2451 next_block->disk_key = tmp_disk_key;
2452 if (was_created)
2453 next_block->generation =
2454 BTRFSIC_GENERATION_UNKNOWN;
2455 l = btrfsic_block_link_lookup_or_add(
2456 state,
2457 &tmp_next_block_ctx,
2458 next_block,
2459 superblock,
2460 BTRFSIC_GENERATION_UNKNOWN);
2461 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2462 if (NULL == l)
2463 return -1;
2464 }
2465 }
2466
2467 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2468 btrfsic_dump_tree(state);
2469
2470 return 0;
2471}
2472
2473static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2474 struct btrfsic_block *const block,
2475 int recursion_level)
2476{
2477 struct list_head *elem_ref_to;
2478 int ret = 0;
2479
2480 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2481 /*
2482 * Note that this situation can happen and does not
2483 * indicate an error in regular cases. It happens
2484 * when disk blocks are freed and later reused.
2485 * The check-integrity module is not aware of any
2486 * block free operations, it just recognizes block
2487 * write operations. Therefore it keeps the linkage
2488 * information for a block until a block is
2489 * rewritten. This can temporarily cause incorrect
2490 * and even circular linkage informations. This
2491 * causes no harm unless such blocks are referenced
2492 * by the most recent super block.
2493 */
2494 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2495 printk(KERN_INFO
2496 "btrfsic: abort cyclic linkage (case 1).\n");
2497
2498 return ret;
2499 }
2500
2501 /*
2502 * This algorithm is recursive because the amount of used stack
2503 * space is very small and the max recursion depth is limited.
2504 */
2505 list_for_each(elem_ref_to, &block->ref_to_list) {
2506 const struct btrfsic_block_link *const l =
2507 list_entry(elem_ref_to, struct btrfsic_block_link,
2508 node_ref_to);
2509
2510 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2511 printk(KERN_INFO
2512 "rl=%d, %c @%llu (%s/%llu/%d)"
2513 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2514 recursion_level,
2515 btrfsic_get_block_type(state, block),
2516 block->logical_bytenr, block->dev_state->name,
2517 block->dev_bytenr, block->mirror_num,
2518 l->ref_cnt,
2519 btrfsic_get_block_type(state, l->block_ref_to),
2520 l->block_ref_to->logical_bytenr,
2521 l->block_ref_to->dev_state->name,
2522 l->block_ref_to->dev_bytenr,
2523 l->block_ref_to->mirror_num);
2524 if (l->block_ref_to->never_written) {
2525 printk(KERN_INFO "btrfs: attempt to write superblock"
2526 " which references block %c @%llu (%s/%llu/%d)"
2527 " which is never written!\n",
2528 btrfsic_get_block_type(state, l->block_ref_to),
2529 l->block_ref_to->logical_bytenr,
2530 l->block_ref_to->dev_state->name,
2531 l->block_ref_to->dev_bytenr,
2532 l->block_ref_to->mirror_num);
2533 ret = -1;
2534 } else if (!l->block_ref_to->is_iodone) {
2535 printk(KERN_INFO "btrfs: attempt to write superblock"
2536 " which references block %c @%llu (%s/%llu/%d)"
2537 " which is not yet iodone!\n",
2538 btrfsic_get_block_type(state, l->block_ref_to),
2539 l->block_ref_to->logical_bytenr,
2540 l->block_ref_to->dev_state->name,
2541 l->block_ref_to->dev_bytenr,
2542 l->block_ref_to->mirror_num);
2543 ret = -1;
2544 } else if (l->block_ref_to->iodone_w_error) {
2545 printk(KERN_INFO "btrfs: attempt to write superblock"
2546 " which references block %c @%llu (%s/%llu/%d)"
2547 " which has write error!\n",
2548 btrfsic_get_block_type(state, l->block_ref_to),
2549 l->block_ref_to->logical_bytenr,
2550 l->block_ref_to->dev_state->name,
2551 l->block_ref_to->dev_bytenr,
2552 l->block_ref_to->mirror_num);
2553 ret = -1;
2554 } else if (l->parent_generation !=
2555 l->block_ref_to->generation &&
2556 BTRFSIC_GENERATION_UNKNOWN !=
2557 l->parent_generation &&
2558 BTRFSIC_GENERATION_UNKNOWN !=
2559 l->block_ref_to->generation) {
2560 printk(KERN_INFO "btrfs: attempt to write superblock"
2561 " which references block %c @%llu (%s/%llu/%d)"
2562 " with generation %llu !="
2563 " parent generation %llu!\n",
2564 btrfsic_get_block_type(state, l->block_ref_to),
2565 l->block_ref_to->logical_bytenr,
2566 l->block_ref_to->dev_state->name,
2567 l->block_ref_to->dev_bytenr,
2568 l->block_ref_to->mirror_num,
2569 l->block_ref_to->generation,
2570 l->parent_generation);
2571 ret = -1;
2572 } else if (l->block_ref_to->flush_gen >
2573 l->block_ref_to->dev_state->last_flush_gen) {
2574 printk(KERN_INFO "btrfs: attempt to write superblock"
2575 " which references block %c @%llu (%s/%llu/%d)"
2576 " which is not flushed out of disk's write cache"
2577 " (block flush_gen=%llu,"
2578 " dev->flush_gen=%llu)!\n",
2579 btrfsic_get_block_type(state, l->block_ref_to),
2580 l->block_ref_to->logical_bytenr,
2581 l->block_ref_to->dev_state->name,
2582 l->block_ref_to->dev_bytenr,
2583 l->block_ref_to->mirror_num, block->flush_gen,
2584 l->block_ref_to->dev_state->last_flush_gen);
2585 ret = -1;
2586 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2587 l->block_ref_to,
2588 recursion_level +
2589 1)) {
2590 ret = -1;
2591 }
2592 }
2593
2594 return ret;
2595}
2596
2597static int btrfsic_is_block_ref_by_superblock(
2598 const struct btrfsic_state *state,
2599 const struct btrfsic_block *block,
2600 int recursion_level)
2601{
2602 struct list_head *elem_ref_from;
2603
2604 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2605 /* refer to comment at "abort cyclic linkage (case 1)" */
2606 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2607 printk(KERN_INFO
2608 "btrfsic: abort cyclic linkage (case 2).\n");
2609
2610 return 0;
2611 }
2612
2613 /*
2614 * This algorithm is recursive because the amount of used stack space
2615 * is very small and the max recursion depth is limited.
2616 */
2617 list_for_each(elem_ref_from, &block->ref_from_list) {
2618 const struct btrfsic_block_link *const l =
2619 list_entry(elem_ref_from, struct btrfsic_block_link,
2620 node_ref_from);
2621
2622 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2623 printk(KERN_INFO
2624 "rl=%d, %c @%llu (%s/%llu/%d)"
2625 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2626 recursion_level,
2627 btrfsic_get_block_type(state, block),
2628 block->logical_bytenr, block->dev_state->name,
2629 block->dev_bytenr, block->mirror_num,
2630 l->ref_cnt,
2631 btrfsic_get_block_type(state, l->block_ref_from),
2632 l->block_ref_from->logical_bytenr,
2633 l->block_ref_from->dev_state->name,
2634 l->block_ref_from->dev_bytenr,
2635 l->block_ref_from->mirror_num);
2636 if (l->block_ref_from->is_superblock &&
2637 state->latest_superblock->dev_bytenr ==
2638 l->block_ref_from->dev_bytenr &&
2639 state->latest_superblock->dev_state->bdev ==
2640 l->block_ref_from->dev_state->bdev)
2641 return 1;
2642 else if (btrfsic_is_block_ref_by_superblock(state,
2643 l->block_ref_from,
2644 recursion_level +
2645 1))
2646 return 1;
2647 }
2648
2649 return 0;
2650}
2651
2652static void btrfsic_print_add_link(const struct btrfsic_state *state,
2653 const struct btrfsic_block_link *l)
2654{
2655 printk(KERN_INFO
2656 "Add %u* link from %c @%llu (%s/%llu/%d)"
2657 " to %c @%llu (%s/%llu/%d).\n",
2658 l->ref_cnt,
2659 btrfsic_get_block_type(state, l->block_ref_from),
2660 l->block_ref_from->logical_bytenr,
2661 l->block_ref_from->dev_state->name,
2662 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2663 btrfsic_get_block_type(state, l->block_ref_to),
2664 l->block_ref_to->logical_bytenr,
2665 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2666 l->block_ref_to->mirror_num);
2667}
2668
2669static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2670 const struct btrfsic_block_link *l)
2671{
2672 printk(KERN_INFO
2673 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2674 " to %c @%llu (%s/%llu/%d).\n",
2675 l->ref_cnt,
2676 btrfsic_get_block_type(state, l->block_ref_from),
2677 l->block_ref_from->logical_bytenr,
2678 l->block_ref_from->dev_state->name,
2679 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2680 btrfsic_get_block_type(state, l->block_ref_to),
2681 l->block_ref_to->logical_bytenr,
2682 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2683 l->block_ref_to->mirror_num);
2684}
2685
2686static char btrfsic_get_block_type(const struct btrfsic_state *state,
2687 const struct btrfsic_block *block)
2688{
2689 if (block->is_superblock &&
2690 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2691 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2692 return 'S';
2693 else if (block->is_superblock)
2694 return 's';
2695 else if (block->is_metadata)
2696 return 'M';
2697 else
2698 return 'D';
2699}
2700
2701static void btrfsic_dump_tree(const struct btrfsic_state *state)
2702{
2703 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2704}
2705
2706static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2707 const struct btrfsic_block *block,
2708 int indent_level)
2709{
2710 struct list_head *elem_ref_to;
2711 int indent_add;
2712 static char buf[80];
2713 int cursor_position;
2714
2715 /*
2716 * Should better fill an on-stack buffer with a complete line and
2717 * dump it at once when it is time to print a newline character.
2718 */
2719
2720 /*
2721 * This algorithm is recursive because the amount of used stack space
2722 * is very small and the max recursion depth is limited.
2723 */
2724 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2725 btrfsic_get_block_type(state, block),
2726 block->logical_bytenr, block->dev_state->name,
2727 block->dev_bytenr, block->mirror_num);
2728 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2729 printk("[...]\n");
2730 return;
2731 }
2732 printk(buf);
2733 indent_level += indent_add;
2734 if (list_empty(&block->ref_to_list)) {
2735 printk("\n");
2736 return;
2737 }
2738 if (block->mirror_num > 1 &&
2739 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2740 printk(" [...]\n");
2741 return;
2742 }
2743
2744 cursor_position = indent_level;
2745 list_for_each(elem_ref_to, &block->ref_to_list) {
2746 const struct btrfsic_block_link *const l =
2747 list_entry(elem_ref_to, struct btrfsic_block_link,
2748 node_ref_to);
2749
2750 while (cursor_position < indent_level) {
2751 printk(" ");
2752 cursor_position++;
2753 }
2754 if (l->ref_cnt > 1)
2755 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2756 else
2757 indent_add = sprintf(buf, " --> ");
2758 if (indent_level + indent_add >
2759 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2760 printk("[...]\n");
2761 cursor_position = 0;
2762 continue;
2763 }
2764
2765 printk(buf);
2766
2767 btrfsic_dump_tree_sub(state, l->block_ref_to,
2768 indent_level + indent_add);
2769 cursor_position = 0;
2770 }
2771}
2772
2773static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2774 struct btrfsic_state *state,
2775 struct btrfsic_block_data_ctx *next_block_ctx,
2776 struct btrfsic_block *next_block,
2777 struct btrfsic_block *from_block,
2778 u64 parent_generation)
2779{
2780 struct btrfsic_block_link *l;
2781
2782 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2783 next_block_ctx->dev_bytenr,
2784 from_block->dev_state->bdev,
2785 from_block->dev_bytenr,
2786 &state->block_link_hashtable);
2787 if (NULL == l) {
2788 l = btrfsic_block_link_alloc();
2789 if (NULL == l) {
2790 printk(KERN_INFO
2791 "btrfsic: error, kmalloc" " failed!\n");
2792 return NULL;
2793 }
2794
2795 l->block_ref_to = next_block;
2796 l->block_ref_from = from_block;
2797 l->ref_cnt = 1;
2798 l->parent_generation = parent_generation;
2799
2800 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2801 btrfsic_print_add_link(state, l);
2802
2803 list_add(&l->node_ref_to, &from_block->ref_to_list);
2804 list_add(&l->node_ref_from, &next_block->ref_from_list);
2805
2806 btrfsic_block_link_hashtable_add(l,
2807 &state->block_link_hashtable);
2808 } else {
2809 l->ref_cnt++;
2810 l->parent_generation = parent_generation;
2811 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2812 btrfsic_print_add_link(state, l);
2813 }
2814
2815 return l;
2816}
2817
2818static struct btrfsic_block *btrfsic_block_lookup_or_add(
2819 struct btrfsic_state *state,
2820 struct btrfsic_block_data_ctx *block_ctx,
2821 const char *additional_string,
2822 int is_metadata,
2823 int is_iodone,
2824 int never_written,
2825 int mirror_num,
2826 int *was_created)
2827{
2828 struct btrfsic_block *block;
2829
2830 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2831 block_ctx->dev_bytenr,
2832 &state->block_hashtable);
2833 if (NULL == block) {
2834 struct btrfsic_dev_state *dev_state;
2835
2836 block = btrfsic_block_alloc();
2837 if (NULL == block) {
2838 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2839 return NULL;
2840 }
2841 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2842 if (NULL == dev_state) {
2843 printk(KERN_INFO
2844 "btrfsic: error, lookup dev_state failed!\n");
2845 btrfsic_block_free(block);
2846 return NULL;
2847 }
2848 block->dev_state = dev_state;
2849 block->dev_bytenr = block_ctx->dev_bytenr;
2850 block->logical_bytenr = block_ctx->start;
2851 block->is_metadata = is_metadata;
2852 block->is_iodone = is_iodone;
2853 block->never_written = never_written;
2854 block->mirror_num = mirror_num;
2855 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2856 printk(KERN_INFO
2857 "New %s%c-block @%llu (%s/%llu/%d)\n",
2858 additional_string,
2859 btrfsic_get_block_type(state, block),
2860 block->logical_bytenr, dev_state->name,
2861 block->dev_bytenr, mirror_num);
2862 list_add(&block->all_blocks_node, &state->all_blocks_list);
2863 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2864 if (NULL != was_created)
2865 *was_created = 1;
2866 } else {
2867 if (NULL != was_created)
2868 *was_created = 0;
2869 }
2870
2871 return block;
2872}
2873
2874static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2875 u64 bytenr,
2876 struct btrfsic_dev_state *dev_state,
2877 u64 dev_bytenr)
2878{
2879 int num_copies;
2880 int mirror_num;
2881 int ret;
2882 struct btrfsic_block_data_ctx block_ctx;
2883 int match = 0;
2884
2885 num_copies = btrfs_num_copies(state->root->fs_info,
2886 bytenr, state->metablock_size);
2887
2888 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2889 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2890 &block_ctx, mirror_num);
2891 if (ret) {
2892 printk(KERN_INFO "btrfsic:"
2893 " btrfsic_map_block(logical @%llu,"
2894 " mirror %d) failed!\n",
2895 bytenr, mirror_num);
2896 continue;
2897 }
2898
2899 if (dev_state->bdev == block_ctx.dev->bdev &&
2900 dev_bytenr == block_ctx.dev_bytenr) {
2901 match++;
2902 btrfsic_release_block_ctx(&block_ctx);
2903 break;
2904 }
2905 btrfsic_release_block_ctx(&block_ctx);
2906 }
2907
2908 if (WARN_ON(!match)) {
2909 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2910 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2911 " phys_bytenr=%llu)!\n",
2912 bytenr, dev_state->name, dev_bytenr);
2913 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2914 ret = btrfsic_map_block(state, bytenr,
2915 state->metablock_size,
2916 &block_ctx, mirror_num);
2917 if (ret)
2918 continue;
2919
2920 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2921 " (%s/%llu/%d)\n",
2922 bytenr, block_ctx.dev->name,
2923 block_ctx.dev_bytenr, mirror_num);
2924 }
2925 }
2926}
2927
2928static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2929 struct block_device *bdev)
2930{
2931 struct btrfsic_dev_state *ds;
2932
2933 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2934 &btrfsic_dev_state_hashtable);
2935 return ds;
2936}
2937
2938int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2939{
2940 struct btrfsic_dev_state *dev_state;
2941
2942 if (!btrfsic_is_initialized)
2943 return submit_bh(rw, bh);
2944
2945 mutex_lock(&btrfsic_mutex);
2946 /* since btrfsic_submit_bh() might also be called before
2947 * btrfsic_mount(), this might return NULL */
2948 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2949
2950 /* Only called to write the superblock (incl. FLUSH/FUA) */
2951 if (NULL != dev_state &&
2952 (rw & WRITE) && bh->b_size > 0) {
2953 u64 dev_bytenr;
2954
2955 dev_bytenr = 4096 * bh->b_blocknr;
2956 if (dev_state->state->print_mask &
2957 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2958 printk(KERN_INFO
2959 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2960 " size=%zu, data=%p, bdev=%p)\n",
2961 rw, (unsigned long long)bh->b_blocknr,
2962 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2963 btrfsic_process_written_block(dev_state, dev_bytenr,
2964 &bh->b_data, 1, NULL,
2965 NULL, bh, rw);
2966 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2967 if (dev_state->state->print_mask &
2968 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2969 printk(KERN_INFO
2970 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2971 rw, bh->b_bdev);
2972 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2973 if ((dev_state->state->print_mask &
2974 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2975 BTRFSIC_PRINT_MASK_VERBOSE)))
2976 printk(KERN_INFO
2977 "btrfsic_submit_bh(%s) with FLUSH"
2978 " but dummy block already in use"
2979 " (ignored)!\n",
2980 dev_state->name);
2981 } else {
2982 struct btrfsic_block *const block =
2983 &dev_state->dummy_block_for_bio_bh_flush;
2984
2985 block->is_iodone = 0;
2986 block->never_written = 0;
2987 block->iodone_w_error = 0;
2988 block->flush_gen = dev_state->last_flush_gen + 1;
2989 block->submit_bio_bh_rw = rw;
2990 block->orig_bio_bh_private = bh->b_private;
2991 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2992 block->next_in_same_bio = NULL;
2993 bh->b_private = block;
2994 bh->b_end_io = btrfsic_bh_end_io;
2995 }
2996 }
2997 mutex_unlock(&btrfsic_mutex);
2998 return submit_bh(rw, bh);
2999}
3000
3001static void __btrfsic_submit_bio(int rw, struct bio *bio)
3002{
3003 struct btrfsic_dev_state *dev_state;
3004
3005 if (!btrfsic_is_initialized)
3006 return;
3007
3008 mutex_lock(&btrfsic_mutex);
3009 /* since btrfsic_submit_bio() is also called before
3010 * btrfsic_mount(), this might return NULL */
3011 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3012 if (NULL != dev_state &&
3013 (rw & WRITE) && NULL != bio->bi_io_vec) {
3014 unsigned int i;
3015 u64 dev_bytenr;
3016 u64 cur_bytenr;
3017 int bio_is_patched;
3018 char **mapped_datav;
3019
3020 dev_bytenr = 512 * bio->bi_iter.bi_sector;
3021 bio_is_patched = 0;
3022 if (dev_state->state->print_mask &
3023 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3024 printk(KERN_INFO
3025 "submit_bio(rw=0x%x, bi_vcnt=%u,"
3026 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3027 rw, bio->bi_vcnt,
3028 (unsigned long long)bio->bi_iter.bi_sector,
3029 dev_bytenr, bio->bi_bdev);
3030
3031 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3032 GFP_NOFS);
3033 if (!mapped_datav)
3034 goto leave;
3035 cur_bytenr = dev_bytenr;
3036 for (i = 0; i < bio->bi_vcnt; i++) {
3037 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3038 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3039 if (!mapped_datav[i]) {
3040 while (i > 0) {
3041 i--;
3042 kunmap(bio->bi_io_vec[i].bv_page);
3043 }
3044 kfree(mapped_datav);
3045 goto leave;
3046 }
3047 if (dev_state->state->print_mask &
3048 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3049 printk(KERN_INFO
3050 "#%u: bytenr=%llu, len=%u, offset=%u\n",
3051 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3052 bio->bi_io_vec[i].bv_offset);
3053 cur_bytenr += bio->bi_io_vec[i].bv_len;
3054 }
3055 btrfsic_process_written_block(dev_state, dev_bytenr,
3056 mapped_datav, bio->bi_vcnt,
3057 bio, &bio_is_patched,
3058 NULL, rw);
3059 while (i > 0) {
3060 i--;
3061 kunmap(bio->bi_io_vec[i].bv_page);
3062 }
3063 kfree(mapped_datav);
3064 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3065 if (dev_state->state->print_mask &
3066 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3067 printk(KERN_INFO
3068 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3069 rw, bio->bi_bdev);
3070 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3071 if ((dev_state->state->print_mask &
3072 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3073 BTRFSIC_PRINT_MASK_VERBOSE)))
3074 printk(KERN_INFO
3075 "btrfsic_submit_bio(%s) with FLUSH"
3076 " but dummy block already in use"
3077 " (ignored)!\n",
3078 dev_state->name);
3079 } else {
3080 struct btrfsic_block *const block =
3081 &dev_state->dummy_block_for_bio_bh_flush;
3082
3083 block->is_iodone = 0;
3084 block->never_written = 0;
3085 block->iodone_w_error = 0;
3086 block->flush_gen = dev_state->last_flush_gen + 1;
3087 block->submit_bio_bh_rw = rw;
3088 block->orig_bio_bh_private = bio->bi_private;
3089 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3090 block->next_in_same_bio = NULL;
3091 bio->bi_private = block;
3092 bio->bi_end_io = btrfsic_bio_end_io;
3093 }
3094 }
3095leave:
3096 mutex_unlock(&btrfsic_mutex);
3097}
3098
3099void btrfsic_submit_bio(int rw, struct bio *bio)
3100{
3101 __btrfsic_submit_bio(rw, bio);
3102 submit_bio(rw, bio);
3103}
3104
3105int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3106{
3107 __btrfsic_submit_bio(rw, bio);
3108 return submit_bio_wait(rw, bio);
3109}
3110
3111int btrfsic_mount(struct btrfs_root *root,
3112 struct btrfs_fs_devices *fs_devices,
3113 int including_extent_data, u32 print_mask)
3114{
3115 int ret;
3116 struct btrfsic_state *state;
3117 struct list_head *dev_head = &fs_devices->devices;
3118 struct btrfs_device *device;
3119
3120 if (root->nodesize != root->leafsize) {
3121 printk(KERN_INFO
3122 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3123 root->nodesize, root->leafsize);
3124 return -1;
3125 }
3126 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3127 printk(KERN_INFO
3128 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3129 root->nodesize, PAGE_CACHE_SIZE);
3130 return -1;
3131 }
3132 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3133 printk(KERN_INFO
3134 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3135 root->leafsize, PAGE_CACHE_SIZE);
3136 return -1;
3137 }
3138 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3139 printk(KERN_INFO
3140 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3141 root->sectorsize, PAGE_CACHE_SIZE);
3142 return -1;
3143 }
3144 state = kzalloc(sizeof(*state), GFP_NOFS);
3145 if (NULL == state) {
3146 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3147 return -1;
3148 }
3149
3150 if (!btrfsic_is_initialized) {
3151 mutex_init(&btrfsic_mutex);
3152 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3153 btrfsic_is_initialized = 1;
3154 }
3155 mutex_lock(&btrfsic_mutex);
3156 state->root = root;
3157 state->print_mask = print_mask;
3158 state->include_extent_data = including_extent_data;
3159 state->csum_size = 0;
3160 state->metablock_size = root->nodesize;
3161 state->datablock_size = root->sectorsize;
3162 INIT_LIST_HEAD(&state->all_blocks_list);
3163 btrfsic_block_hashtable_init(&state->block_hashtable);
3164 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3165 state->max_superblock_generation = 0;
3166 state->latest_superblock = NULL;
3167
3168 list_for_each_entry(device, dev_head, dev_list) {
3169 struct btrfsic_dev_state *ds;
3170 char *p;
3171
3172 if (!device->bdev || !device->name)
3173 continue;
3174
3175 ds = btrfsic_dev_state_alloc();
3176 if (NULL == ds) {
3177 printk(KERN_INFO
3178 "btrfs check-integrity: kmalloc() failed!\n");
3179 mutex_unlock(&btrfsic_mutex);
3180 return -1;
3181 }
3182 ds->bdev = device->bdev;
3183 ds->state = state;
3184 bdevname(ds->bdev, ds->name);
3185 ds->name[BDEVNAME_SIZE - 1] = '\0';
3186 for (p = ds->name; *p != '\0'; p++);
3187 while (p > ds->name && *p != '/')
3188 p--;
3189 if (*p == '/')
3190 p++;
3191 strlcpy(ds->name, p, sizeof(ds->name));
3192 btrfsic_dev_state_hashtable_add(ds,
3193 &btrfsic_dev_state_hashtable);
3194 }
3195
3196 ret = btrfsic_process_superblock(state, fs_devices);
3197 if (0 != ret) {
3198 mutex_unlock(&btrfsic_mutex);
3199 btrfsic_unmount(root, fs_devices);
3200 return ret;
3201 }
3202
3203 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3204 btrfsic_dump_database(state);
3205 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3206 btrfsic_dump_tree(state);
3207
3208 mutex_unlock(&btrfsic_mutex);
3209 return 0;
3210}
3211
3212void btrfsic_unmount(struct btrfs_root *root,
3213 struct btrfs_fs_devices *fs_devices)
3214{
3215 struct list_head *elem_all;
3216 struct list_head *tmp_all;
3217 struct btrfsic_state *state;
3218 struct list_head *dev_head = &fs_devices->devices;
3219 struct btrfs_device *device;
3220
3221 if (!btrfsic_is_initialized)
3222 return;
3223
3224 mutex_lock(&btrfsic_mutex);
3225
3226 state = NULL;
3227 list_for_each_entry(device, dev_head, dev_list) {
3228 struct btrfsic_dev_state *ds;
3229
3230 if (!device->bdev || !device->name)
3231 continue;
3232
3233 ds = btrfsic_dev_state_hashtable_lookup(
3234 device->bdev,
3235 &btrfsic_dev_state_hashtable);
3236 if (NULL != ds) {
3237 state = ds->state;
3238 btrfsic_dev_state_hashtable_remove(ds);
3239 btrfsic_dev_state_free(ds);
3240 }
3241 }
3242
3243 if (NULL == state) {
3244 printk(KERN_INFO
3245 "btrfsic: error, cannot find state information"
3246 " on umount!\n");
3247 mutex_unlock(&btrfsic_mutex);
3248 return;
3249 }
3250
3251 /*
3252 * Don't care about keeping the lists' state up to date,
3253 * just free all memory that was allocated dynamically.
3254 * Free the blocks and the block_links.
3255 */
3256 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3257 struct btrfsic_block *const b_all =
3258 list_entry(elem_all, struct btrfsic_block,
3259 all_blocks_node);
3260 struct list_head *elem_ref_to;
3261 struct list_head *tmp_ref_to;
3262
3263 list_for_each_safe(elem_ref_to, tmp_ref_to,
3264 &b_all->ref_to_list) {
3265 struct btrfsic_block_link *const l =
3266 list_entry(elem_ref_to,
3267 struct btrfsic_block_link,
3268 node_ref_to);
3269
3270 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3271 btrfsic_print_rem_link(state, l);
3272
3273 l->ref_cnt--;
3274 if (0 == l->ref_cnt)
3275 btrfsic_block_link_free(l);
3276 }
3277
3278 if (b_all->is_iodone || b_all->never_written)
3279 btrfsic_block_free(b_all);
3280 else
3281 printk(KERN_INFO "btrfs: attempt to free %c-block"
3282 " @%llu (%s/%llu/%d) on umount which is"
3283 " not yet iodone!\n",
3284 btrfsic_get_block_type(state, b_all),
3285 b_all->logical_bytenr, b_all->dev_state->name,
3286 b_all->dev_bytenr, b_all->mirror_num);
3287 }
3288
3289 mutex_unlock(&btrfsic_mutex);
3290
3291 kfree(state);
3292}