Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 
 
 
 
 10#include <linux/init.h>
 11#include <linux/export.h>
 12#include <linux/pm.h>
 13#include <linux/tick.h>
 14#include <linux/random.h>
 15#include <linux/user-return-notifier.h>
 16#include <linux/dmi.h>
 17#include <linux/utsname.h>
 18#include <linux/stackprotector.h>
 19#include <linux/tick.h>
 20#include <linux/cpuidle.h>
 
 
 21#include <trace/events/power.h>
 22#include <linux/hw_breakpoint.h>
 23#include <asm/cpu.h>
 24#include <asm/apic.h>
 25#include <asm/syscalls.h>
 26#include <linux/uaccess.h>
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 34#include <asm/switch_to.h>
 
 
 
 
 
 
 
 
 35
 36/*
 37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 39 * so they are allowed to end up in the .data..cacheline_aligned
 40 * section. Since TSS's are completely CPU-local, we want them
 41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 42 */
 43__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 44	.x86_tss = {
 45		.sp0 = TOP_OF_INIT_STACK,
 
 
 
 
 
 
 
 46#ifdef CONFIG_X86_32
 
 
 47		.ss0 = __KERNEL_DS,
 48		.ss1 = __KERNEL_CS,
 49		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 50#endif
 
 51	 },
 52#ifdef CONFIG_X86_32
 53	 /*
 54	  * Note that the .io_bitmap member must be extra-big. This is because
 55	  * the CPU will access an additional byte beyond the end of the IO
 56	  * permission bitmap. The extra byte must be all 1 bits, and must
 57	  * be within the limit.
 58	  */
 59	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 60#endif
 61#ifdef CONFIG_X86_32
 62	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 63#endif
 64};
 65EXPORT_PER_CPU_SYMBOL(cpu_tss);
 
 
 
 66
 67/*
 68 * this gets called so that we can store lazy state into memory and copy the
 69 * current task into the new thread.
 70 */
 71int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 72{
 73	memcpy(dst, src, arch_task_struct_size);
 74#ifdef CONFIG_VM86
 75	dst->thread.vm86 = NULL;
 76#endif
 77
 78	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 79}
 80
 81/*
 82 * Free current thread data structures etc..
 83 */
 84void exit_thread(struct task_struct *tsk)
 85{
 86	struct thread_struct *t = &tsk->thread;
 87	unsigned long *bp = t->io_bitmap_ptr;
 88	struct fpu *fpu = &t->fpu;
 89
 90	if (bp) {
 91		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92
 93		t->io_bitmap_ptr = NULL;
 94		clear_thread_flag(TIF_IO_BITMAP);
 95		/*
 96		 * Careful, clear this in the TSS too:
 
 
 
 
 
 
 
 97		 */
 98		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 99		t->io_bitmap_max = 0;
100		put_cpu();
101		kfree(bp);
102	}
103
104	free_vm86(t);
 
 
105
106	fpu__drop(fpu);
 
 
 
 
 
 
 
 
 
 
 
 
107}
108
109void flush_thread(void)
110{
111	struct task_struct *tsk = current;
112
113	flush_ptrace_hw_breakpoint(tsk);
114	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115
116	fpu__clear(&tsk->thread.fpu);
117}
118
119static void hard_disable_TSC(void)
120{
121	cr4_set_bits(X86_CR4_TSD);
122}
123
124void disable_TSC(void)
125{
126	preempt_disable();
127	if (!test_and_set_thread_flag(TIF_NOTSC))
128		/*
129		 * Must flip the CPU state synchronously with
130		 * TIF_NOTSC in the current running context.
131		 */
132		hard_disable_TSC();
133	preempt_enable();
134}
135
136static void hard_enable_TSC(void)
137{
138	cr4_clear_bits(X86_CR4_TSD);
139}
140
141static void enable_TSC(void)
142{
143	preempt_disable();
144	if (test_and_clear_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_enable_TSC();
150	preempt_enable();
151}
152
153int get_tsc_mode(unsigned long adr)
154{
155	unsigned int val;
156
157	if (test_thread_flag(TIF_NOTSC))
158		val = PR_TSC_SIGSEGV;
159	else
160		val = PR_TSC_ENABLE;
161
162	return put_user(val, (unsigned int __user *)adr);
163}
164
165int set_tsc_mode(unsigned int val)
166{
167	if (val == PR_TSC_SIGSEGV)
168		disable_TSC();
169	else if (val == PR_TSC_ENABLE)
170		enable_TSC();
171	else
172		return -EINVAL;
173
174	return 0;
175}
176
177void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
 
 
179{
180	struct thread_struct *prev, *next;
 
 
 
 
 
 
 
 
 
181
182	prev = &prev_p->thread;
183	next = &next_p->thread;
 
 
 
 
 
 
 
 
 
 
184
185	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187		unsigned long debugctl = get_debugctlmsr();
 
188
189		debugctl &= ~DEBUGCTLMSR_BTF;
190		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191			debugctl |= DEBUGCTLMSR_BTF;
 
 
 
 
 
 
 
 
 
192
193		update_debugctlmsr(debugctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194	}
 
195
196	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198		/* prev and next are different */
199		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200			hard_disable_TSC();
201		else
202			hard_enable_TSC();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203	}
204
205	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
 
206		/*
207		 * Copy the relevant range of the IO bitmap.
208		 * Normally this is 128 bytes or less:
209		 */
210		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211		       max(prev->io_bitmap_max, next->io_bitmap_max));
212	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213		/*
214		 * Clear any possible leftover bits:
 
215		 */
216		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219}
220
221/*
222 * Idle related variables and functions
223 */
224unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225EXPORT_SYMBOL(boot_option_idle_override);
226
227static void (*x86_idle)(void);
228
229#ifndef CONFIG_SMP
230static inline void play_dead(void)
231{
232	BUG();
233}
234#endif
235
236void arch_cpu_idle_enter(void)
237{
238	tsc_verify_tsc_adjust(false);
239	local_touch_nmi();
240}
241
242void arch_cpu_idle_dead(void)
243{
244	play_dead();
245}
246
247/*
248 * Called from the generic idle code.
249 */
250void arch_cpu_idle(void)
251{
252	x86_idle();
253}
254
255/*
256 * We use this if we don't have any better idle routine..
257 */
258void __cpuidle default_idle(void)
259{
260	trace_cpu_idle_rcuidle(1, smp_processor_id());
261	safe_halt();
262	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
263}
264#ifdef CONFIG_APM_MODULE
265EXPORT_SYMBOL(default_idle);
266#endif
267
268#ifdef CONFIG_XEN
269bool xen_set_default_idle(void)
270{
271	bool ret = !!x86_idle;
272
273	x86_idle = default_idle;
274
275	return ret;
276}
277#endif
 
278void stop_this_cpu(void *dummy)
279{
280	local_irq_disable();
281	/*
282	 * Remove this CPU:
283	 */
284	set_cpu_online(smp_processor_id(), false);
285	disable_local_APIC();
286	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
287
288	for (;;)
289		halt();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290}
291
292/*
293 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
294 * states (local apic timer and TSC stop).
 
 
295 */
296static void amd_e400_idle(void)
297{
298	/*
299	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
300	 * gets set after static_cpu_has() places have been converted via
301	 * alternatives.
302	 */
303	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
304		default_idle();
305		return;
306	}
307
308	tick_broadcast_enter();
309
310	default_idle();
311
312	/*
313	 * The switch back from broadcast mode needs to be called with
314	 * interrupts disabled.
315	 */
316	local_irq_disable();
317	tick_broadcast_exit();
318	local_irq_enable();
319}
320
321/*
322 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
323 * We can't rely on cpuidle installing MWAIT, because it will not load
324 * on systems that support only C1 -- so the boot default must be MWAIT.
325 *
326 * Some AMD machines are the opposite, they depend on using HALT.
327 *
328 * So for default C1, which is used during boot until cpuidle loads,
329 * use MWAIT-C1 on Intel HW that has it, else use HALT.
330 */
331static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
332{
333	if (c->x86_vendor != X86_VENDOR_INTEL)
334		return 0;
335
336	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
337		return 0;
338
339	return 1;
340}
341
342/*
343 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
344 * with interrupts enabled and no flags, which is backwards compatible with the
345 * original MWAIT implementation.
346 */
347static __cpuidle void mwait_idle(void)
348{
349	if (!current_set_polling_and_test()) {
350		trace_cpu_idle_rcuidle(1, smp_processor_id());
351		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
352			mb(); /* quirk */
353			clflush((void *)&current_thread_info()->flags);
354			mb(); /* quirk */
355		}
356
357		__monitor((void *)&current_thread_info()->flags, 0, 0);
358		if (!need_resched())
359			__sti_mwait(0, 0);
360		else
361			local_irq_enable();
362		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
363	} else {
364		local_irq_enable();
365	}
366	__current_clr_polling();
367}
368
369void select_idle_routine(const struct cpuinfo_x86 *c)
370{
371#ifdef CONFIG_SMP
372	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
373		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
374#endif
375	if (x86_idle || boot_option_idle_override == IDLE_POLL)
376		return;
377
378	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
379		pr_info("using AMD E400 aware idle routine\n");
380		x86_idle = amd_e400_idle;
381	} else if (prefer_mwait_c1_over_halt(c)) {
382		pr_info("using mwait in idle threads\n");
383		x86_idle = mwait_idle;
384	} else
385		x86_idle = default_idle;
386}
387
388void amd_e400_c1e_apic_setup(void)
389{
390	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
391		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
392		local_irq_disable();
393		tick_broadcast_force();
394		local_irq_enable();
395	}
396}
397
398void __init arch_post_acpi_subsys_init(void)
399{
400	u32 lo, hi;
401
402	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
403		return;
404
405	/*
406	 * AMD E400 detection needs to happen after ACPI has been enabled. If
407	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
408	 * MSR_K8_INT_PENDING_MSG.
409	 */
410	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
411	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
412		return;
413
414	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
415
416	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
417		mark_tsc_unstable("TSC halt in AMD C1E");
418	pr_info("System has AMD C1E enabled\n");
419}
420
421static int __init idle_setup(char *str)
422{
423	if (!str)
424		return -EINVAL;
425
426	if (!strcmp(str, "poll")) {
427		pr_info("using polling idle threads\n");
428		boot_option_idle_override = IDLE_POLL;
429		cpu_idle_poll_ctrl(true);
430	} else if (!strcmp(str, "halt")) {
431		/*
432		 * When the boot option of idle=halt is added, halt is
433		 * forced to be used for CPU idle. In such case CPU C2/C3
434		 * won't be used again.
435		 * To continue to load the CPU idle driver, don't touch
436		 * the boot_option_idle_override.
437		 */
438		x86_idle = default_idle;
439		boot_option_idle_override = IDLE_HALT;
440	} else if (!strcmp(str, "nomwait")) {
441		/*
442		 * If the boot option of "idle=nomwait" is added,
443		 * it means that mwait will be disabled for CPU C2/C3
444		 * states. In such case it won't touch the variable
445		 * of boot_option_idle_override.
446		 */
447		boot_option_idle_override = IDLE_NOMWAIT;
448	} else
449		return -1;
450
451	return 0;
452}
453early_param("idle", idle_setup);
454
455unsigned long arch_align_stack(unsigned long sp)
456{
457	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458		sp -= get_random_int() % 8192;
459	return sp & ~0xf;
460}
461
462unsigned long arch_randomize_brk(struct mm_struct *mm)
463{
464	return randomize_page(mm->brk, 0x02000000);
465}
466
467/*
468 * Return saved PC of a blocked thread.
469 * What is this good for? it will be always the scheduler or ret_from_fork.
470 */
471unsigned long thread_saved_pc(struct task_struct *tsk)
472{
473	struct inactive_task_frame *frame =
474		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475	return READ_ONCE_NOCHECK(frame->ret_addr);
476}
477
478/*
479 * Called from fs/proc with a reference on @p to find the function
480 * which called into schedule(). This needs to be done carefully
481 * because the task might wake up and we might look at a stack
482 * changing under us.
483 */
484unsigned long get_wchan(struct task_struct *p)
485{
486	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
487	int count = 0;
488
489	if (!p || p == current || p->state == TASK_RUNNING)
490		return 0;
491
492	if (!try_get_task_stack(p))
493		return 0;
494
495	start = (unsigned long)task_stack_page(p);
496	if (!start)
497		goto out;
498
499	/*
500	 * Layout of the stack page:
501	 *
502	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503	 * PADDING
504	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505	 * stack
506	 * ----------- bottom = start
507	 *
508	 * The tasks stack pointer points at the location where the
509	 * framepointer is stored. The data on the stack is:
510	 * ... IP FP ... IP FP
511	 *
512	 * We need to read FP and IP, so we need to adjust the upper
513	 * bound by another unsigned long.
514	 */
515	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516	top -= 2 * sizeof(unsigned long);
517	bottom = start;
518
519	sp = READ_ONCE(p->thread.sp);
520	if (sp < bottom || sp > top)
521		goto out;
522
523	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
524	do {
525		if (fp < bottom || fp > top)
526			goto out;
527		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
528		if (!in_sched_functions(ip)) {
529			ret = ip;
530			goto out;
531		}
532		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
533	} while (count++ < 16 && p->state != TASK_RUNNING);
534
535out:
536	put_task_stack(p);
537	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
538}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/prctl.h>
   9#include <linux/slab.h>
  10#include <linux/sched.h>
  11#include <linux/sched/idle.h>
  12#include <linux/sched/debug.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/pm.h>
  18#include <linux/tick.h>
  19#include <linux/random.h>
  20#include <linux/user-return-notifier.h>
  21#include <linux/dmi.h>
  22#include <linux/utsname.h>
  23#include <linux/stackprotector.h>
 
  24#include <linux/cpuidle.h>
  25#include <linux/acpi.h>
  26#include <linux/elf-randomize.h>
  27#include <trace/events/power.h>
  28#include <linux/hw_breakpoint.h>
  29#include <asm/cpu.h>
  30#include <asm/apic.h>
 
  31#include <linux/uaccess.h>
  32#include <asm/mwait.h>
  33#include <asm/fpu/internal.h>
  34#include <asm/debugreg.h>
  35#include <asm/nmi.h>
  36#include <asm/tlbflush.h>
  37#include <asm/mce.h>
  38#include <asm/vm86.h>
  39#include <asm/switch_to.h>
  40#include <asm/desc.h>
  41#include <asm/prctl.h>
  42#include <asm/spec-ctrl.h>
  43#include <asm/io_bitmap.h>
  44#include <asm/proto.h>
  45#include <asm/frame.h>
  46
  47#include "process.h"
  48
  49/*
  50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  52 * so they are allowed to end up in the .data..cacheline_aligned
  53 * section. Since TSS's are completely CPU-local, we want them
  54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  55 */
  56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  57	.x86_tss = {
  58		/*
  59		 * .sp0 is only used when entering ring 0 from a lower
  60		 * privilege level.  Since the init task never runs anything
  61		 * but ring 0 code, there is no need for a valid value here.
  62		 * Poison it.
  63		 */
  64		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  65
  66#ifdef CONFIG_X86_32
  67		.sp1 = TOP_OF_INIT_STACK,
  68
  69		.ss0 = __KERNEL_DS,
  70		.ss1 = __KERNEL_CS,
 
  71#endif
  72		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  73	 },
 
 
 
 
 
 
 
 
 
 
 
 
  74};
  75EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  76
  77DEFINE_PER_CPU(bool, __tss_limit_invalid);
  78EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  79
  80/*
  81 * this gets called so that we can store lazy state into memory and copy the
  82 * current task into the new thread.
  83 */
  84int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  85{
  86	memcpy(dst, src, arch_task_struct_size);
  87#ifdef CONFIG_VM86
  88	dst->thread.vm86 = NULL;
  89#endif
  90	return fpu_clone(dst);
 
  91}
  92
  93/*
  94 * Free thread data structures etc..
  95 */
  96void exit_thread(struct task_struct *tsk)
  97{
  98	struct thread_struct *t = &tsk->thread;
 
  99	struct fpu *fpu = &t->fpu;
 100
 101	if (test_thread_flag(TIF_IO_BITMAP))
 102		io_bitmap_exit(tsk);
 103
 104	free_vm86(t);
 105
 106	fpu__drop(fpu);
 107}
 108
 109static int set_new_tls(struct task_struct *p, unsigned long tls)
 110{
 111	struct user_desc __user *utls = (struct user_desc __user *)tls;
 112
 113	if (in_ia32_syscall())
 114		return do_set_thread_area(p, -1, utls, 0);
 115	else
 116		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 117}
 118
 119int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
 120		struct task_struct *p, unsigned long tls)
 121{
 122	struct inactive_task_frame *frame;
 123	struct fork_frame *fork_frame;
 124	struct pt_regs *childregs;
 125	int ret = 0;
 126
 127	childregs = task_pt_regs(p);
 128	fork_frame = container_of(childregs, struct fork_frame, regs);
 129	frame = &fork_frame->frame;
 130
 131	frame->bp = encode_frame_pointer(childregs);
 132	frame->ret_addr = (unsigned long) ret_from_fork;
 133	p->thread.sp = (unsigned long) fork_frame;
 134	p->thread.io_bitmap = NULL;
 135	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 136
 137#ifdef CONFIG_X86_64
 138	current_save_fsgs();
 139	p->thread.fsindex = current->thread.fsindex;
 140	p->thread.fsbase = current->thread.fsbase;
 141	p->thread.gsindex = current->thread.gsindex;
 142	p->thread.gsbase = current->thread.gsbase;
 143
 144	savesegment(es, p->thread.es);
 145	savesegment(ds, p->thread.ds);
 146#else
 147	p->thread.sp0 = (unsigned long) (childregs + 1);
 148	/*
 149	 * Clear all status flags including IF and set fixed bit. 64bit
 150	 * does not have this initialization as the frame does not contain
 151	 * flags. The flags consistency (especially vs. AC) is there
 152	 * ensured via objtool, which lacks 32bit support.
 153	 */
 154	frame->flags = X86_EFLAGS_FIXED;
 155#endif
 156
 157	/* Kernel thread ? */
 158	if (unlikely(p->flags & PF_KTHREAD)) {
 159		p->thread.pkru = pkru_get_init_value();
 160		memset(childregs, 0, sizeof(struct pt_regs));
 161		kthread_frame_init(frame, sp, arg);
 162		return 0;
 163	}
 164
 165	/*
 166	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 167	 * is only valid when scheduled out.
 168	 */
 169	p->thread.pkru = read_pkru();
 170
 171	frame->bx = 0;
 172	*childregs = *current_pt_regs();
 173	childregs->ax = 0;
 174	if (sp)
 175		childregs->sp = sp;
 176
 177#ifdef CONFIG_X86_32
 178	task_user_gs(p) = get_user_gs(current_pt_regs());
 179#endif
 180
 181	if (unlikely(p->flags & PF_IO_WORKER)) {
 
 182		/*
 183		 * An IO thread is a user space thread, but it doesn't
 184		 * return to ret_after_fork().
 185		 *
 186		 * In order to indicate that to tools like gdb,
 187		 * we reset the stack and instruction pointers.
 188		 *
 189		 * It does the same kernel frame setup to return to a kernel
 190		 * function that a kernel thread does.
 191		 */
 192		childregs->sp = 0;
 193		childregs->ip = 0;
 194		kthread_frame_init(frame, sp, arg);
 195		return 0;
 196	}
 197
 198	/* Set a new TLS for the child thread? */
 199	if (clone_flags & CLONE_SETTLS)
 200		ret = set_new_tls(p, tls);
 201
 202	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 203		io_bitmap_share(p);
 204
 205	return ret;
 206}
 207
 208static void pkru_flush_thread(void)
 209{
 210	/*
 211	 * If PKRU is enabled the default PKRU value has to be loaded into
 212	 * the hardware right here (similar to context switch).
 213	 */
 214	pkru_write_default();
 215}
 216
 217void flush_thread(void)
 218{
 219	struct task_struct *tsk = current;
 220
 221	flush_ptrace_hw_breakpoint(tsk);
 222	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 223
 224	fpu_flush_thread();
 225	pkru_flush_thread();
 
 
 
 
 226}
 227
 228void disable_TSC(void)
 229{
 230	preempt_disable();
 231	if (!test_and_set_thread_flag(TIF_NOTSC))
 232		/*
 233		 * Must flip the CPU state synchronously with
 234		 * TIF_NOTSC in the current running context.
 235		 */
 236		cr4_set_bits(X86_CR4_TSD);
 237	preempt_enable();
 238}
 239
 
 
 
 
 
 240static void enable_TSC(void)
 241{
 242	preempt_disable();
 243	if (test_and_clear_thread_flag(TIF_NOTSC))
 244		/*
 245		 * Must flip the CPU state synchronously with
 246		 * TIF_NOTSC in the current running context.
 247		 */
 248		cr4_clear_bits(X86_CR4_TSD);
 249	preempt_enable();
 250}
 251
 252int get_tsc_mode(unsigned long adr)
 253{
 254	unsigned int val;
 255
 256	if (test_thread_flag(TIF_NOTSC))
 257		val = PR_TSC_SIGSEGV;
 258	else
 259		val = PR_TSC_ENABLE;
 260
 261	return put_user(val, (unsigned int __user *)adr);
 262}
 263
 264int set_tsc_mode(unsigned int val)
 265{
 266	if (val == PR_TSC_SIGSEGV)
 267		disable_TSC();
 268	else if (val == PR_TSC_ENABLE)
 269		enable_TSC();
 270	else
 271		return -EINVAL;
 272
 273	return 0;
 274}
 275
 276DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 277
 278static void set_cpuid_faulting(bool on)
 279{
 280	u64 msrval;
 281
 282	msrval = this_cpu_read(msr_misc_features_shadow);
 283	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 284	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 285	this_cpu_write(msr_misc_features_shadow, msrval);
 286	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 287}
 288
 289static void disable_cpuid(void)
 290{
 291	preempt_disable();
 292	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 293		/*
 294		 * Must flip the CPU state synchronously with
 295		 * TIF_NOCPUID in the current running context.
 296		 */
 297		set_cpuid_faulting(true);
 298	}
 299	preempt_enable();
 300}
 301
 302static void enable_cpuid(void)
 303{
 304	preempt_disable();
 305	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 306		/*
 307		 * Must flip the CPU state synchronously with
 308		 * TIF_NOCPUID in the current running context.
 309		 */
 310		set_cpuid_faulting(false);
 311	}
 312	preempt_enable();
 313}
 314
 315static int get_cpuid_mode(void)
 316{
 317	return !test_thread_flag(TIF_NOCPUID);
 318}
 319
 320static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
 321{
 322	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 323		return -ENODEV;
 324
 325	if (cpuid_enabled)
 326		enable_cpuid();
 327	else
 328		disable_cpuid();
 329
 330	return 0;
 331}
 332
 333/*
 334 * Called immediately after a successful exec.
 335 */
 336void arch_setup_new_exec(void)
 337{
 338	/* If cpuid was previously disabled for this task, re-enable it. */
 339	if (test_thread_flag(TIF_NOCPUID))
 340		enable_cpuid();
 341
 342	/*
 343	 * Don't inherit TIF_SSBD across exec boundary when
 344	 * PR_SPEC_DISABLE_NOEXEC is used.
 345	 */
 346	if (test_thread_flag(TIF_SSBD) &&
 347	    task_spec_ssb_noexec(current)) {
 348		clear_thread_flag(TIF_SSBD);
 349		task_clear_spec_ssb_disable(current);
 350		task_clear_spec_ssb_noexec(current);
 351		speculation_ctrl_update(task_thread_info(current)->flags);
 352	}
 353}
 354
 355#ifdef CONFIG_X86_IOPL_IOPERM
 356static inline void switch_to_bitmap(unsigned long tifp)
 357{
 358	/*
 359	 * Invalidate I/O bitmap if the previous task used it. This prevents
 360	 * any possible leakage of an active I/O bitmap.
 361	 *
 362	 * If the next task has an I/O bitmap it will handle it on exit to
 363	 * user mode.
 364	 */
 365	if (tifp & _TIF_IO_BITMAP)
 366		tss_invalidate_io_bitmap();
 367}
 368
 369static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 370{
 371	/*
 372	 * Copy at least the byte range of the incoming tasks bitmap which
 373	 * covers the permitted I/O ports.
 374	 *
 375	 * If the previous task which used an I/O bitmap had more bits
 376	 * permitted, then the copy needs to cover those as well so they
 377	 * get turned off.
 378	 */
 379	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 380	       max(tss->io_bitmap.prev_max, iobm->max));
 381
 382	/*
 383	 * Store the new max and the sequence number of this bitmap
 384	 * and a pointer to the bitmap itself.
 385	 */
 386	tss->io_bitmap.prev_max = iobm->max;
 387	tss->io_bitmap.prev_sequence = iobm->sequence;
 388}
 389
 390/**
 391 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
 392 */
 393void native_tss_update_io_bitmap(void)
 394{
 395	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 396	struct thread_struct *t = &current->thread;
 397	u16 *base = &tss->x86_tss.io_bitmap_base;
 398
 399	if (!test_thread_flag(TIF_IO_BITMAP)) {
 400		native_tss_invalidate_io_bitmap();
 401		return;
 402	}
 403
 404	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 405		*base = IO_BITMAP_OFFSET_VALID_ALL;
 406	} else {
 407		struct io_bitmap *iobm = t->io_bitmap;
 408
 409		/*
 410		 * Only copy bitmap data when the sequence number differs. The
 411		 * update time is accounted to the incoming task.
 412		 */
 413		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 414			tss_copy_io_bitmap(tss, iobm);
 415
 416		/* Enable the bitmap */
 417		*base = IO_BITMAP_OFFSET_VALID_MAP;
 418	}
 419
 420	/*
 421	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 422	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 423	 * access from user space to trigger a #GP because tbe bitmap is outside
 424	 * the TSS limit.
 425	 */
 426	refresh_tss_limit();
 427}
 428#else /* CONFIG_X86_IOPL_IOPERM */
 429static inline void switch_to_bitmap(unsigned long tifp) { }
 430#endif
 431
 432#ifdef CONFIG_SMP
 433
 434struct ssb_state {
 435	struct ssb_state	*shared_state;
 436	raw_spinlock_t		lock;
 437	unsigned int		disable_state;
 438	unsigned long		local_state;
 439};
 440
 441#define LSTATE_SSB	0
 442
 443static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 444
 445void speculative_store_bypass_ht_init(void)
 446{
 447	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 448	unsigned int this_cpu = smp_processor_id();
 449	unsigned int cpu;
 450
 451	st->local_state = 0;
 452
 453	/*
 454	 * Shared state setup happens once on the first bringup
 455	 * of the CPU. It's not destroyed on CPU hotunplug.
 456	 */
 457	if (st->shared_state)
 458		return;
 459
 460	raw_spin_lock_init(&st->lock);
 461
 462	/*
 463	 * Go over HT siblings and check whether one of them has set up the
 464	 * shared state pointer already.
 465	 */
 466	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 467		if (cpu == this_cpu)
 468			continue;
 469
 470		if (!per_cpu(ssb_state, cpu).shared_state)
 471			continue;
 472
 473		/* Link it to the state of the sibling: */
 474		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 475		return;
 476	}
 477
 478	/*
 479	 * First HT sibling to come up on the core.  Link shared state of
 480	 * the first HT sibling to itself. The siblings on the same core
 481	 * which come up later will see the shared state pointer and link
 482	 * themselves to the state of this CPU.
 483	 */
 484	st->shared_state = st;
 485}
 486
 487/*
 488 * Logic is: First HT sibling enables SSBD for both siblings in the core
 489 * and last sibling to disable it, disables it for the whole core. This how
 490 * MSR_SPEC_CTRL works in "hardware":
 491 *
 492 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 493 */
 494static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 495{
 496	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 497	u64 msr = x86_amd_ls_cfg_base;
 498
 499	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 500		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 501		wrmsrl(MSR_AMD64_LS_CFG, msr);
 502		return;
 503	}
 504
 505	if (tifn & _TIF_SSBD) {
 506		/*
 507		 * Since this can race with prctl(), block reentry on the
 508		 * same CPU.
 509		 */
 510		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 511			return;
 512
 513		msr |= x86_amd_ls_cfg_ssbd_mask;
 514
 515		raw_spin_lock(&st->shared_state->lock);
 516		/* First sibling enables SSBD: */
 517		if (!st->shared_state->disable_state)
 518			wrmsrl(MSR_AMD64_LS_CFG, msr);
 519		st->shared_state->disable_state++;
 520		raw_spin_unlock(&st->shared_state->lock);
 521	} else {
 522		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 523			return;
 524
 525		raw_spin_lock(&st->shared_state->lock);
 526		st->shared_state->disable_state--;
 527		if (!st->shared_state->disable_state)
 528			wrmsrl(MSR_AMD64_LS_CFG, msr);
 529		raw_spin_unlock(&st->shared_state->lock);
 530	}
 531}
 532#else
 533static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 534{
 535	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 536
 537	wrmsrl(MSR_AMD64_LS_CFG, msr);
 538}
 539#endif
 540
 541static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 542{
 543	/*
 544	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 545	 * so ssbd_tif_to_spec_ctrl() just works.
 546	 */
 547	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 548}
 549
 550/*
 551 * Update the MSRs managing speculation control, during context switch.
 552 *
 553 * tifp: Previous task's thread flags
 554 * tifn: Next task's thread flags
 555 */
 556static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 557						      unsigned long tifn)
 558{
 559	unsigned long tif_diff = tifp ^ tifn;
 560	u64 msr = x86_spec_ctrl_base;
 561	bool updmsr = false;
 562
 563	lockdep_assert_irqs_disabled();
 564
 565	/* Handle change of TIF_SSBD depending on the mitigation method. */
 566	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 567		if (tif_diff & _TIF_SSBD)
 568			amd_set_ssb_virt_state(tifn);
 569	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 570		if (tif_diff & _TIF_SSBD)
 571			amd_set_core_ssb_state(tifn);
 572	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 573		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 574		updmsr |= !!(tif_diff & _TIF_SSBD);
 575		msr |= ssbd_tif_to_spec_ctrl(tifn);
 576	}
 577
 578	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 579	if (IS_ENABLED(CONFIG_SMP) &&
 580	    static_branch_unlikely(&switch_to_cond_stibp)) {
 581		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 582		msr |= stibp_tif_to_spec_ctrl(tifn);
 583	}
 584
 585	if (updmsr)
 586		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 587}
 588
 589static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 590{
 591	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 592		if (task_spec_ssb_disable(tsk))
 593			set_tsk_thread_flag(tsk, TIF_SSBD);
 594		else
 595			clear_tsk_thread_flag(tsk, TIF_SSBD);
 596
 597		if (task_spec_ib_disable(tsk))
 598			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 599		else
 600			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 601	}
 602	/* Return the updated threadinfo flags*/
 603	return task_thread_info(tsk)->flags;
 604}
 605
 606void speculation_ctrl_update(unsigned long tif)
 607{
 608	unsigned long flags;
 609
 610	/* Forced update. Make sure all relevant TIF flags are different */
 611	local_irq_save(flags);
 612	__speculation_ctrl_update(~tif, tif);
 613	local_irq_restore(flags);
 614}
 615
 616/* Called from seccomp/prctl update */
 617void speculation_ctrl_update_current(void)
 618{
 619	preempt_disable();
 620	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 621	preempt_enable();
 622}
 623
 624static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 625{
 626	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 627
 628	newval = cr4 ^ mask;
 629	if (newval != cr4) {
 630		this_cpu_write(cpu_tlbstate.cr4, newval);
 631		__write_cr4(newval);
 632	}
 633}
 634
 635void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 636{
 637	unsigned long tifp, tifn;
 638
 639	tifn = READ_ONCE(task_thread_info(next_p)->flags);
 640	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
 641
 642	switch_to_bitmap(tifp);
 643
 644	propagate_user_return_notify(prev_p, next_p);
 645
 646	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 647	    arch_has_block_step()) {
 648		unsigned long debugctl, msk;
 649
 650		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 651		debugctl &= ~DEBUGCTLMSR_BTF;
 652		msk = tifn & _TIF_BLOCKSTEP;
 653		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 654		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 655	}
 656
 657	if ((tifp ^ tifn) & _TIF_NOTSC)
 658		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 659
 660	if ((tifp ^ tifn) & _TIF_NOCPUID)
 661		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 662
 663	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 664		__speculation_ctrl_update(tifp, tifn);
 665	} else {
 666		speculation_ctrl_update_tif(prev_p);
 667		tifn = speculation_ctrl_update_tif(next_p);
 668
 669		/* Enforce MSR update to ensure consistent state */
 670		__speculation_ctrl_update(~tifn, tifn);
 671	}
 672
 673	if ((tifp ^ tifn) & _TIF_SLD)
 674		switch_to_sld(tifn);
 675}
 676
 677/*
 678 * Idle related variables and functions
 679 */
 680unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 681EXPORT_SYMBOL(boot_option_idle_override);
 682
 683static void (*x86_idle)(void);
 684
 685#ifndef CONFIG_SMP
 686static inline void play_dead(void)
 687{
 688	BUG();
 689}
 690#endif
 691
 692void arch_cpu_idle_enter(void)
 693{
 694	tsc_verify_tsc_adjust(false);
 695	local_touch_nmi();
 696}
 697
 698void arch_cpu_idle_dead(void)
 699{
 700	play_dead();
 701}
 702
 703/*
 704 * Called from the generic idle code.
 705 */
 706void arch_cpu_idle(void)
 707{
 708	x86_idle();
 709}
 710
 711/*
 712 * We use this if we don't have any better idle routine..
 713 */
 714void __cpuidle default_idle(void)
 715{
 716	raw_safe_halt();
 
 
 717}
 718#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 719EXPORT_SYMBOL(default_idle);
 720#endif
 721
 722#ifdef CONFIG_XEN
 723bool xen_set_default_idle(void)
 724{
 725	bool ret = !!x86_idle;
 726
 727	x86_idle = default_idle;
 728
 729	return ret;
 730}
 731#endif
 732
 733void stop_this_cpu(void *dummy)
 734{
 735	local_irq_disable();
 736	/*
 737	 * Remove this CPU:
 738	 */
 739	set_cpu_online(smp_processor_id(), false);
 740	disable_local_APIC();
 741	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 742
 743	/*
 744	 * Use wbinvd on processors that support SME. This provides support
 745	 * for performing a successful kexec when going from SME inactive
 746	 * to SME active (or vice-versa). The cache must be cleared so that
 747	 * if there are entries with the same physical address, both with and
 748	 * without the encryption bit, they don't race each other when flushed
 749	 * and potentially end up with the wrong entry being committed to
 750	 * memory.
 751	 */
 752	if (boot_cpu_has(X86_FEATURE_SME))
 753		native_wbinvd();
 754	for (;;) {
 755		/*
 756		 * Use native_halt() so that memory contents don't change
 757		 * (stack usage and variables) after possibly issuing the
 758		 * native_wbinvd() above.
 759		 */
 760		native_halt();
 761	}
 762}
 763
 764/*
 765 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 766 * states (local apic timer and TSC stop).
 767 *
 768 * XXX this function is completely buggered vs RCU and tracing.
 769 */
 770static void amd_e400_idle(void)
 771{
 772	/*
 773	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 774	 * gets set after static_cpu_has() places have been converted via
 775	 * alternatives.
 776	 */
 777	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 778		default_idle();
 779		return;
 780	}
 781
 782	tick_broadcast_enter();
 783
 784	default_idle();
 785
 786	/*
 787	 * The switch back from broadcast mode needs to be called with
 788	 * interrupts disabled.
 789	 */
 790	raw_local_irq_disable();
 791	tick_broadcast_exit();
 792	raw_local_irq_enable();
 793}
 794
 795/*
 796 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 797 * We can't rely on cpuidle installing MWAIT, because it will not load
 798 * on systems that support only C1 -- so the boot default must be MWAIT.
 799 *
 800 * Some AMD machines are the opposite, they depend on using HALT.
 801 *
 802 * So for default C1, which is used during boot until cpuidle loads,
 803 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 804 */
 805static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 806{
 807	if (c->x86_vendor != X86_VENDOR_INTEL)
 808		return 0;
 809
 810	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
 811		return 0;
 812
 813	return 1;
 814}
 815
 816/*
 817 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 818 * with interrupts enabled and no flags, which is backwards compatible with the
 819 * original MWAIT implementation.
 820 */
 821static __cpuidle void mwait_idle(void)
 822{
 823	if (!current_set_polling_and_test()) {
 
 824		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 825			mb(); /* quirk */
 826			clflush((void *)&current_thread_info()->flags);
 827			mb(); /* quirk */
 828		}
 829
 830		__monitor((void *)&current_thread_info()->flags, 0, 0);
 831		if (!need_resched())
 832			__sti_mwait(0, 0);
 833		else
 834			raw_local_irq_enable();
 
 835	} else {
 836		raw_local_irq_enable();
 837	}
 838	__current_clr_polling();
 839}
 840
 841void select_idle_routine(const struct cpuinfo_x86 *c)
 842{
 843#ifdef CONFIG_SMP
 844	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 845		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 846#endif
 847	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 848		return;
 849
 850	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 851		pr_info("using AMD E400 aware idle routine\n");
 852		x86_idle = amd_e400_idle;
 853	} else if (prefer_mwait_c1_over_halt(c)) {
 854		pr_info("using mwait in idle threads\n");
 855		x86_idle = mwait_idle;
 856	} else
 857		x86_idle = default_idle;
 858}
 859
 860void amd_e400_c1e_apic_setup(void)
 861{
 862	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 863		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 864		local_irq_disable();
 865		tick_broadcast_force();
 866		local_irq_enable();
 867	}
 868}
 869
 870void __init arch_post_acpi_subsys_init(void)
 871{
 872	u32 lo, hi;
 873
 874	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 875		return;
 876
 877	/*
 878	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 879	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 880	 * MSR_K8_INT_PENDING_MSG.
 881	 */
 882	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 883	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 884		return;
 885
 886	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 887
 888	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 889		mark_tsc_unstable("TSC halt in AMD C1E");
 890	pr_info("System has AMD C1E enabled\n");
 891}
 892
 893static int __init idle_setup(char *str)
 894{
 895	if (!str)
 896		return -EINVAL;
 897
 898	if (!strcmp(str, "poll")) {
 899		pr_info("using polling idle threads\n");
 900		boot_option_idle_override = IDLE_POLL;
 901		cpu_idle_poll_ctrl(true);
 902	} else if (!strcmp(str, "halt")) {
 903		/*
 904		 * When the boot option of idle=halt is added, halt is
 905		 * forced to be used for CPU idle. In such case CPU C2/C3
 906		 * won't be used again.
 907		 * To continue to load the CPU idle driver, don't touch
 908		 * the boot_option_idle_override.
 909		 */
 910		x86_idle = default_idle;
 911		boot_option_idle_override = IDLE_HALT;
 912	} else if (!strcmp(str, "nomwait")) {
 913		/*
 914		 * If the boot option of "idle=nomwait" is added,
 915		 * it means that mwait will be disabled for CPU C2/C3
 916		 * states. In such case it won't touch the variable
 917		 * of boot_option_idle_override.
 918		 */
 919		boot_option_idle_override = IDLE_NOMWAIT;
 920	} else
 921		return -1;
 922
 923	return 0;
 924}
 925early_param("idle", idle_setup);
 926
 927unsigned long arch_align_stack(unsigned long sp)
 928{
 929	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 930		sp -= get_random_int() % 8192;
 931	return sp & ~0xf;
 932}
 933
 934unsigned long arch_randomize_brk(struct mm_struct *mm)
 935{
 936	return randomize_page(mm->brk, 0x02000000);
 937}
 938
 939/*
 
 
 
 
 
 
 
 
 
 
 
 940 * Called from fs/proc with a reference on @p to find the function
 941 * which called into schedule(). This needs to be done carefully
 942 * because the task might wake up and we might look at a stack
 943 * changing under us.
 944 */
 945unsigned long get_wchan(struct task_struct *p)
 946{
 947	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
 948	int count = 0;
 949
 950	if (p == current || task_is_running(p))
 951		return 0;
 952
 953	if (!try_get_task_stack(p))
 954		return 0;
 955
 956	start = (unsigned long)task_stack_page(p);
 957	if (!start)
 958		goto out;
 959
 960	/*
 961	 * Layout of the stack page:
 962	 *
 963	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 964	 * PADDING
 965	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 966	 * stack
 967	 * ----------- bottom = start
 968	 *
 969	 * The tasks stack pointer points at the location where the
 970	 * framepointer is stored. The data on the stack is:
 971	 * ... IP FP ... IP FP
 972	 *
 973	 * We need to read FP and IP, so we need to adjust the upper
 974	 * bound by another unsigned long.
 975	 */
 976	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 977	top -= 2 * sizeof(unsigned long);
 978	bottom = start;
 979
 980	sp = READ_ONCE(p->thread.sp);
 981	if (sp < bottom || sp > top)
 982		goto out;
 983
 984	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
 985	do {
 986		if (fp < bottom || fp > top)
 987			goto out;
 988		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 989		if (!in_sched_functions(ip)) {
 990			ret = ip;
 991			goto out;
 992		}
 993		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 994	} while (count++ < 16 && !task_is_running(p));
 995
 996out:
 997	put_task_stack(p);
 998	return ret;
 999}
1000
1001long do_arch_prctl_common(struct task_struct *task, int option,
1002			  unsigned long cpuid_enabled)
1003{
1004	switch (option) {
1005	case ARCH_GET_CPUID:
1006		return get_cpuid_mode();
1007	case ARCH_SET_CPUID:
1008		return set_cpuid_mode(task, cpuid_enabled);
1009	}
1010
1011	return -EINVAL;
1012}