Linux Audio

Check our new training course

Loading...
v4.10.11
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 10#include <linux/init.h>
 11#include <linux/export.h>
 12#include <linux/pm.h>
 13#include <linux/tick.h>
 14#include <linux/random.h>
 15#include <linux/user-return-notifier.h>
 16#include <linux/dmi.h>
 17#include <linux/utsname.h>
 18#include <linux/stackprotector.h>
 19#include <linux/tick.h>
 20#include <linux/cpuidle.h>
 21#include <trace/events/power.h>
 22#include <linux/hw_breakpoint.h>
 23#include <asm/cpu.h>
 24#include <asm/apic.h>
 25#include <asm/syscalls.h>
 26#include <linux/uaccess.h>
 
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 34#include <asm/switch_to.h>
 35
 36/*
 37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 39 * so they are allowed to end up in the .data..cacheline_aligned
 40 * section. Since TSS's are completely CPU-local, we want them
 41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 42 */
 43__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 44	.x86_tss = {
 45		.sp0 = TOP_OF_INIT_STACK,
 46#ifdef CONFIG_X86_32
 47		.ss0 = __KERNEL_DS,
 48		.ss1 = __KERNEL_CS,
 49		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 50#endif
 51	 },
 52#ifdef CONFIG_X86_32
 53	 /*
 54	  * Note that the .io_bitmap member must be extra-big. This is because
 55	  * the CPU will access an additional byte beyond the end of the IO
 56	  * permission bitmap. The extra byte must be all 1 bits, and must
 57	  * be within the limit.
 58	  */
 59	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 60#endif
 61#ifdef CONFIG_X86_32
 62	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 63#endif
 64};
 65EXPORT_PER_CPU_SYMBOL(cpu_tss);
 66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67/*
 68 * this gets called so that we can store lazy state into memory and copy the
 69 * current task into the new thread.
 70 */
 71int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 72{
 73	memcpy(dst, src, arch_task_struct_size);
 74#ifdef CONFIG_VM86
 75	dst->thread.vm86 = NULL;
 76#endif
 77
 78	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 79}
 80
 81/*
 82 * Free current thread data structures etc..
 83 */
 84void exit_thread(struct task_struct *tsk)
 85{
 86	struct thread_struct *t = &tsk->thread;
 
 87	unsigned long *bp = t->io_bitmap_ptr;
 88	struct fpu *fpu = &t->fpu;
 89
 90	if (bp) {
 91		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 92
 93		t->io_bitmap_ptr = NULL;
 94		clear_thread_flag(TIF_IO_BITMAP);
 95		/*
 96		 * Careful, clear this in the TSS too:
 97		 */
 98		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 99		t->io_bitmap_max = 0;
100		put_cpu();
101		kfree(bp);
102	}
103
104	free_vm86(t);
105
106	fpu__drop(fpu);
107}
108
109void flush_thread(void)
110{
111	struct task_struct *tsk = current;
112
113	flush_ptrace_hw_breakpoint(tsk);
114	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115
116	fpu__clear(&tsk->thread.fpu);
117}
118
119static void hard_disable_TSC(void)
120{
121	cr4_set_bits(X86_CR4_TSD);
122}
123
124void disable_TSC(void)
125{
126	preempt_disable();
127	if (!test_and_set_thread_flag(TIF_NOTSC))
128		/*
129		 * Must flip the CPU state synchronously with
130		 * TIF_NOTSC in the current running context.
131		 */
132		hard_disable_TSC();
133	preempt_enable();
134}
135
136static void hard_enable_TSC(void)
137{
138	cr4_clear_bits(X86_CR4_TSD);
139}
140
141static void enable_TSC(void)
142{
143	preempt_disable();
144	if (test_and_clear_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_enable_TSC();
150	preempt_enable();
151}
152
153int get_tsc_mode(unsigned long adr)
154{
155	unsigned int val;
156
157	if (test_thread_flag(TIF_NOTSC))
158		val = PR_TSC_SIGSEGV;
159	else
160		val = PR_TSC_ENABLE;
161
162	return put_user(val, (unsigned int __user *)adr);
163}
164
165int set_tsc_mode(unsigned int val)
166{
167	if (val == PR_TSC_SIGSEGV)
168		disable_TSC();
169	else if (val == PR_TSC_ENABLE)
170		enable_TSC();
171	else
172		return -EINVAL;
173
174	return 0;
175}
176
177void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178		      struct tss_struct *tss)
179{
180	struct thread_struct *prev, *next;
181
182	prev = &prev_p->thread;
183	next = &next_p->thread;
184
185	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187		unsigned long debugctl = get_debugctlmsr();
188
189		debugctl &= ~DEBUGCTLMSR_BTF;
190		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191			debugctl |= DEBUGCTLMSR_BTF;
192
193		update_debugctlmsr(debugctl);
194	}
195
196	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198		/* prev and next are different */
199		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200			hard_disable_TSC();
201		else
202			hard_enable_TSC();
203	}
204
205	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
206		/*
207		 * Copy the relevant range of the IO bitmap.
208		 * Normally this is 128 bytes or less:
209		 */
210		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211		       max(prev->io_bitmap_max, next->io_bitmap_max));
212	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
213		/*
214		 * Clear any possible leftover bits:
215		 */
216		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
217	}
218	propagate_user_return_notify(prev_p, next_p);
219}
220
221/*
222 * Idle related variables and functions
223 */
224unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225EXPORT_SYMBOL(boot_option_idle_override);
226
227static void (*x86_idle)(void);
228
229#ifndef CONFIG_SMP
230static inline void play_dead(void)
231{
232	BUG();
233}
234#endif
235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236void arch_cpu_idle_enter(void)
237{
238	tsc_verify_tsc_adjust(false);
239	local_touch_nmi();
 
 
 
 
 
 
240}
241
242void arch_cpu_idle_dead(void)
243{
244	play_dead();
245}
246
247/*
248 * Called from the generic idle code.
249 */
250void arch_cpu_idle(void)
251{
252	x86_idle();
253}
254
255/*
256 * We use this if we don't have any better idle routine..
257 */
258void __cpuidle default_idle(void)
259{
260	trace_cpu_idle_rcuidle(1, smp_processor_id());
261	safe_halt();
262	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
263}
264#ifdef CONFIG_APM_MODULE
265EXPORT_SYMBOL(default_idle);
266#endif
267
268#ifdef CONFIG_XEN
269bool xen_set_default_idle(void)
270{
271	bool ret = !!x86_idle;
272
273	x86_idle = default_idle;
274
275	return ret;
276}
277#endif
278void stop_this_cpu(void *dummy)
279{
280	local_irq_disable();
281	/*
282	 * Remove this CPU:
283	 */
284	set_cpu_online(smp_processor_id(), false);
285	disable_local_APIC();
286	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
287
288	for (;;)
289		halt();
290}
291
 
 
 
 
 
 
 
 
 
 
 
292/*
293 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
294 * states (local apic timer and TSC stop).
 
295 */
296static void amd_e400_idle(void)
297{
298	/*
299	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
300	 * gets set after static_cpu_has() places have been converted via
301	 * alternatives.
302	 */
303	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
304		default_idle();
305		return;
 
 
 
306	}
307
308	tick_broadcast_enter();
 
309
310	default_idle();
 
 
 
 
 
 
311
312	/*
313	 * The switch back from broadcast mode needs to be called with
314	 * interrupts disabled.
315	 */
316	local_irq_disable();
317	tick_broadcast_exit();
318	local_irq_enable();
 
 
 
 
319}
320
321/*
322 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
323 * We can't rely on cpuidle installing MWAIT, because it will not load
324 * on systems that support only C1 -- so the boot default must be MWAIT.
325 *
326 * Some AMD machines are the opposite, they depend on using HALT.
327 *
328 * So for default C1, which is used during boot until cpuidle loads,
329 * use MWAIT-C1 on Intel HW that has it, else use HALT.
330 */
331static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
332{
333	if (c->x86_vendor != X86_VENDOR_INTEL)
334		return 0;
335
336	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
337		return 0;
338
339	return 1;
340}
341
342/*
343 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
344 * with interrupts enabled and no flags, which is backwards compatible with the
345 * original MWAIT implementation.
346 */
347static __cpuidle void mwait_idle(void)
348{
349	if (!current_set_polling_and_test()) {
350		trace_cpu_idle_rcuidle(1, smp_processor_id());
351		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
352			mb(); /* quirk */
353			clflush((void *)&current_thread_info()->flags);
354			mb(); /* quirk */
355		}
356
357		__monitor((void *)&current_thread_info()->flags, 0, 0);
358		if (!need_resched())
359			__sti_mwait(0, 0);
360		else
361			local_irq_enable();
362		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
363	} else {
364		local_irq_enable();
365	}
366	__current_clr_polling();
367}
368
369void select_idle_routine(const struct cpuinfo_x86 *c)
370{
371#ifdef CONFIG_SMP
372	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
373		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
374#endif
375	if (x86_idle || boot_option_idle_override == IDLE_POLL)
376		return;
377
378	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 
379		pr_info("using AMD E400 aware idle routine\n");
380		x86_idle = amd_e400_idle;
381	} else if (prefer_mwait_c1_over_halt(c)) {
382		pr_info("using mwait in idle threads\n");
383		x86_idle = mwait_idle;
384	} else
385		x86_idle = default_idle;
386}
387
388void amd_e400_c1e_apic_setup(void)
389{
390	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
391		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
392		local_irq_disable();
393		tick_broadcast_force();
394		local_irq_enable();
395	}
396}
397
398void __init arch_post_acpi_subsys_init(void)
399{
400	u32 lo, hi;
401
402	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
403		return;
404
405	/*
406	 * AMD E400 detection needs to happen after ACPI has been enabled. If
407	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
408	 * MSR_K8_INT_PENDING_MSG.
409	 */
410	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
411	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
412		return;
413
414	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
415
416	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
417		mark_tsc_unstable("TSC halt in AMD C1E");
418	pr_info("System has AMD C1E enabled\n");
419}
420
421static int __init idle_setup(char *str)
422{
423	if (!str)
424		return -EINVAL;
425
426	if (!strcmp(str, "poll")) {
427		pr_info("using polling idle threads\n");
428		boot_option_idle_override = IDLE_POLL;
429		cpu_idle_poll_ctrl(true);
430	} else if (!strcmp(str, "halt")) {
431		/*
432		 * When the boot option of idle=halt is added, halt is
433		 * forced to be used for CPU idle. In such case CPU C2/C3
434		 * won't be used again.
435		 * To continue to load the CPU idle driver, don't touch
436		 * the boot_option_idle_override.
437		 */
438		x86_idle = default_idle;
439		boot_option_idle_override = IDLE_HALT;
440	} else if (!strcmp(str, "nomwait")) {
441		/*
442		 * If the boot option of "idle=nomwait" is added,
443		 * it means that mwait will be disabled for CPU C2/C3
444		 * states. In such case it won't touch the variable
445		 * of boot_option_idle_override.
446		 */
447		boot_option_idle_override = IDLE_NOMWAIT;
448	} else
449		return -1;
450
451	return 0;
452}
453early_param("idle", idle_setup);
454
455unsigned long arch_align_stack(unsigned long sp)
456{
457	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458		sp -= get_random_int() % 8192;
459	return sp & ~0xf;
460}
461
462unsigned long arch_randomize_brk(struct mm_struct *mm)
463{
464	return randomize_page(mm->brk, 0x02000000);
465}
466
467/*
468 * Return saved PC of a blocked thread.
469 * What is this good for? it will be always the scheduler or ret_from_fork.
470 */
471unsigned long thread_saved_pc(struct task_struct *tsk)
472{
473	struct inactive_task_frame *frame =
474		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475	return READ_ONCE_NOCHECK(frame->ret_addr);
476}
477
478/*
479 * Called from fs/proc with a reference on @p to find the function
480 * which called into schedule(). This needs to be done carefully
481 * because the task might wake up and we might look at a stack
482 * changing under us.
483 */
484unsigned long get_wchan(struct task_struct *p)
485{
486	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
487	int count = 0;
488
489	if (!p || p == current || p->state == TASK_RUNNING)
490		return 0;
491
492	if (!try_get_task_stack(p))
493		return 0;
494
495	start = (unsigned long)task_stack_page(p);
496	if (!start)
497		goto out;
498
499	/*
500	 * Layout of the stack page:
501	 *
502	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503	 * PADDING
504	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505	 * stack
506	 * ----------- bottom = start
 
 
507	 *
508	 * The tasks stack pointer points at the location where the
509	 * framepointer is stored. The data on the stack is:
510	 * ... IP FP ... IP FP
511	 *
512	 * We need to read FP and IP, so we need to adjust the upper
513	 * bound by another unsigned long.
514	 */
515	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516	top -= 2 * sizeof(unsigned long);
517	bottom = start;
518
519	sp = READ_ONCE(p->thread.sp);
520	if (sp < bottom || sp > top)
521		goto out;
522
523	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
524	do {
525		if (fp < bottom || fp > top)
526			goto out;
527		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
528		if (!in_sched_functions(ip)) {
529			ret = ip;
530			goto out;
531		}
532		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
533	} while (count++ < 16 && p->state != TASK_RUNNING);
534
535out:
536	put_task_stack(p);
537	return ret;
538}
v4.6
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 10#include <linux/module.h>
 
 11#include <linux/pm.h>
 12#include <linux/tick.h>
 13#include <linux/random.h>
 14#include <linux/user-return-notifier.h>
 15#include <linux/dmi.h>
 16#include <linux/utsname.h>
 17#include <linux/stackprotector.h>
 18#include <linux/tick.h>
 19#include <linux/cpuidle.h>
 20#include <trace/events/power.h>
 21#include <linux/hw_breakpoint.h>
 22#include <asm/cpu.h>
 23#include <asm/apic.h>
 24#include <asm/syscalls.h>
 25#include <asm/idle.h>
 26#include <asm/uaccess.h>
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 
 34
 35/*
 36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 38 * so they are allowed to end up in the .data..cacheline_aligned
 39 * section. Since TSS's are completely CPU-local, we want them
 40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 41 */
 42__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 43	.x86_tss = {
 44		.sp0 = TOP_OF_INIT_STACK,
 45#ifdef CONFIG_X86_32
 46		.ss0 = __KERNEL_DS,
 47		.ss1 = __KERNEL_CS,
 48		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 49#endif
 50	 },
 51#ifdef CONFIG_X86_32
 52	 /*
 53	  * Note that the .io_bitmap member must be extra-big. This is because
 54	  * the CPU will access an additional byte beyond the end of the IO
 55	  * permission bitmap. The extra byte must be all 1 bits, and must
 56	  * be within the limit.
 57	  */
 58	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 59#endif
 60#ifdef CONFIG_X86_32
 61	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 62#endif
 63};
 64EXPORT_PER_CPU_SYMBOL(cpu_tss);
 65
 66#ifdef CONFIG_X86_64
 67static DEFINE_PER_CPU(unsigned char, is_idle);
 68static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 69
 70void idle_notifier_register(struct notifier_block *n)
 71{
 72	atomic_notifier_chain_register(&idle_notifier, n);
 73}
 74EXPORT_SYMBOL_GPL(idle_notifier_register);
 75
 76void idle_notifier_unregister(struct notifier_block *n)
 77{
 78	atomic_notifier_chain_unregister(&idle_notifier, n);
 79}
 80EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 81#endif
 82
 83/*
 84 * this gets called so that we can store lazy state into memory and copy the
 85 * current task into the new thread.
 86 */
 87int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 88{
 89	memcpy(dst, src, arch_task_struct_size);
 90#ifdef CONFIG_VM86
 91	dst->thread.vm86 = NULL;
 92#endif
 93
 94	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 95}
 96
 97/*
 98 * Free current thread data structures etc..
 99 */
100void exit_thread(void)
101{
102	struct task_struct *me = current;
103	struct thread_struct *t = &me->thread;
104	unsigned long *bp = t->io_bitmap_ptr;
105	struct fpu *fpu = &t->fpu;
106
107	if (bp) {
108		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
109
110		t->io_bitmap_ptr = NULL;
111		clear_thread_flag(TIF_IO_BITMAP);
112		/*
113		 * Careful, clear this in the TSS too:
114		 */
115		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116		t->io_bitmap_max = 0;
117		put_cpu();
118		kfree(bp);
119	}
120
121	free_vm86(t);
122
123	fpu__drop(fpu);
124}
125
126void flush_thread(void)
127{
128	struct task_struct *tsk = current;
129
130	flush_ptrace_hw_breakpoint(tsk);
131	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132
133	fpu__clear(&tsk->thread.fpu);
134}
135
136static void hard_disable_TSC(void)
137{
138	cr4_set_bits(X86_CR4_TSD);
139}
140
141void disable_TSC(void)
142{
143	preempt_disable();
144	if (!test_and_set_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_disable_TSC();
150	preempt_enable();
151}
152
153static void hard_enable_TSC(void)
154{
155	cr4_clear_bits(X86_CR4_TSD);
156}
157
158static void enable_TSC(void)
159{
160	preempt_disable();
161	if (test_and_clear_thread_flag(TIF_NOTSC))
162		/*
163		 * Must flip the CPU state synchronously with
164		 * TIF_NOTSC in the current running context.
165		 */
166		hard_enable_TSC();
167	preempt_enable();
168}
169
170int get_tsc_mode(unsigned long adr)
171{
172	unsigned int val;
173
174	if (test_thread_flag(TIF_NOTSC))
175		val = PR_TSC_SIGSEGV;
176	else
177		val = PR_TSC_ENABLE;
178
179	return put_user(val, (unsigned int __user *)adr);
180}
181
182int set_tsc_mode(unsigned int val)
183{
184	if (val == PR_TSC_SIGSEGV)
185		disable_TSC();
186	else if (val == PR_TSC_ENABLE)
187		enable_TSC();
188	else
189		return -EINVAL;
190
191	return 0;
192}
193
194void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195		      struct tss_struct *tss)
196{
197	struct thread_struct *prev, *next;
198
199	prev = &prev_p->thread;
200	next = &next_p->thread;
201
202	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204		unsigned long debugctl = get_debugctlmsr();
205
206		debugctl &= ~DEBUGCTLMSR_BTF;
207		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208			debugctl |= DEBUGCTLMSR_BTF;
209
210		update_debugctlmsr(debugctl);
211	}
212
213	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215		/* prev and next are different */
216		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217			hard_disable_TSC();
218		else
219			hard_enable_TSC();
220	}
221
222	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
223		/*
224		 * Copy the relevant range of the IO bitmap.
225		 * Normally this is 128 bytes or less:
226		 */
227		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228		       max(prev->io_bitmap_max, next->io_bitmap_max));
229	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
230		/*
231		 * Clear any possible leftover bits:
232		 */
233		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
234	}
235	propagate_user_return_notify(prev_p, next_p);
236}
237
238/*
239 * Idle related variables and functions
240 */
241unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
242EXPORT_SYMBOL(boot_option_idle_override);
243
244static void (*x86_idle)(void);
245
246#ifndef CONFIG_SMP
247static inline void play_dead(void)
248{
249	BUG();
250}
251#endif
252
253#ifdef CONFIG_X86_64
254void enter_idle(void)
255{
256	this_cpu_write(is_idle, 1);
257	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
258}
259
260static void __exit_idle(void)
261{
262	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
263		return;
264	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
265}
266
267/* Called from interrupts to signify idle end */
268void exit_idle(void)
269{
270	/* idle loop has pid 0 */
271	if (current->pid)
272		return;
273	__exit_idle();
274}
275#endif
276
277void arch_cpu_idle_enter(void)
278{
 
279	local_touch_nmi();
280	enter_idle();
281}
282
283void arch_cpu_idle_exit(void)
284{
285	__exit_idle();
286}
287
288void arch_cpu_idle_dead(void)
289{
290	play_dead();
291}
292
293/*
294 * Called from the generic idle code.
295 */
296void arch_cpu_idle(void)
297{
298	x86_idle();
299}
300
301/*
302 * We use this if we don't have any better idle routine..
303 */
304void default_idle(void)
305{
306	trace_cpu_idle_rcuidle(1, smp_processor_id());
307	safe_halt();
308	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
309}
310#ifdef CONFIG_APM_MODULE
311EXPORT_SYMBOL(default_idle);
312#endif
313
314#ifdef CONFIG_XEN
315bool xen_set_default_idle(void)
316{
317	bool ret = !!x86_idle;
318
319	x86_idle = default_idle;
320
321	return ret;
322}
323#endif
324void stop_this_cpu(void *dummy)
325{
326	local_irq_disable();
327	/*
328	 * Remove this CPU:
329	 */
330	set_cpu_online(smp_processor_id(), false);
331	disable_local_APIC();
332	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
333
334	for (;;)
335		halt();
336}
337
338bool amd_e400_c1e_detected;
339EXPORT_SYMBOL(amd_e400_c1e_detected);
340
341static cpumask_var_t amd_e400_c1e_mask;
342
343void amd_e400_remove_cpu(int cpu)
344{
345	if (amd_e400_c1e_mask != NULL)
346		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
347}
348
349/*
350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351 * pending message MSR. If we detect C1E, then we handle it the same
352 * way as C3 power states (local apic timer and TSC stop)
353 */
354static void amd_e400_idle(void)
355{
356	if (!amd_e400_c1e_detected) {
357		u32 lo, hi;
358
359		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
360
361		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
362			amd_e400_c1e_detected = true;
363			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
364				mark_tsc_unstable("TSC halt in AMD C1E");
365			pr_info("System has AMD C1E enabled\n");
366		}
367	}
368
369	if (amd_e400_c1e_detected) {
370		int cpu = smp_processor_id();
371
372		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
373			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
374			/* Force broadcast so ACPI can not interfere. */
375			tick_broadcast_force();
376			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
377		}
378		tick_broadcast_enter();
379
380		default_idle();
381
382		/*
383		 * The switch back from broadcast mode needs to be
384		 * called with interrupts disabled.
385		 */
386		local_irq_disable();
387		tick_broadcast_exit();
388		local_irq_enable();
389	} else
390		default_idle();
391}
392
393/*
394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395 * We can't rely on cpuidle installing MWAIT, because it will not load
396 * on systems that support only C1 -- so the boot default must be MWAIT.
397 *
398 * Some AMD machines are the opposite, they depend on using HALT.
399 *
400 * So for default C1, which is used during boot until cpuidle loads,
401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
402 */
403static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
404{
405	if (c->x86_vendor != X86_VENDOR_INTEL)
406		return 0;
407
408	if (!cpu_has(c, X86_FEATURE_MWAIT))
409		return 0;
410
411	return 1;
412}
413
414/*
415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416 * with interrupts enabled and no flags, which is backwards compatible with the
417 * original MWAIT implementation.
418 */
419static void mwait_idle(void)
420{
421	if (!current_set_polling_and_test()) {
422		trace_cpu_idle_rcuidle(1, smp_processor_id());
423		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
424			mb(); /* quirk */
425			clflush((void *)&current_thread_info()->flags);
426			mb(); /* quirk */
427		}
428
429		__monitor((void *)&current_thread_info()->flags, 0, 0);
430		if (!need_resched())
431			__sti_mwait(0, 0);
432		else
433			local_irq_enable();
434		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
435	} else {
436		local_irq_enable();
437	}
438	__current_clr_polling();
439}
440
441void select_idle_routine(const struct cpuinfo_x86 *c)
442{
443#ifdef CONFIG_SMP
444	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
445		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
446#endif
447	if (x86_idle || boot_option_idle_override == IDLE_POLL)
448		return;
449
450	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
451		/* E400: APIC timer interrupt does not wake up CPU from C1e */
452		pr_info("using AMD E400 aware idle routine\n");
453		x86_idle = amd_e400_idle;
454	} else if (prefer_mwait_c1_over_halt(c)) {
455		pr_info("using mwait in idle threads\n");
456		x86_idle = mwait_idle;
457	} else
458		x86_idle = default_idle;
459}
460
461void __init init_amd_e400_c1e_mask(void)
462{
463	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464	if (x86_idle == amd_e400_idle)
465		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466}
467
468static int __init idle_setup(char *str)
469{
470	if (!str)
471		return -EINVAL;
472
473	if (!strcmp(str, "poll")) {
474		pr_info("using polling idle threads\n");
475		boot_option_idle_override = IDLE_POLL;
476		cpu_idle_poll_ctrl(true);
477	} else if (!strcmp(str, "halt")) {
478		/*
479		 * When the boot option of idle=halt is added, halt is
480		 * forced to be used for CPU idle. In such case CPU C2/C3
481		 * won't be used again.
482		 * To continue to load the CPU idle driver, don't touch
483		 * the boot_option_idle_override.
484		 */
485		x86_idle = default_idle;
486		boot_option_idle_override = IDLE_HALT;
487	} else if (!strcmp(str, "nomwait")) {
488		/*
489		 * If the boot option of "idle=nomwait" is added,
490		 * it means that mwait will be disabled for CPU C2/C3
491		 * states. In such case it won't touch the variable
492		 * of boot_option_idle_override.
493		 */
494		boot_option_idle_override = IDLE_NOMWAIT;
495	} else
496		return -1;
497
498	return 0;
499}
500early_param("idle", idle_setup);
501
502unsigned long arch_align_stack(unsigned long sp)
503{
504	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
505		sp -= get_random_int() % 8192;
506	return sp & ~0xf;
507}
508
509unsigned long arch_randomize_brk(struct mm_struct *mm)
510{
511	unsigned long range_end = mm->brk + 0x02000000;
512	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 
 
 
 
 
 
 
 
 
 
513}
514
515/*
516 * Called from fs/proc with a reference on @p to find the function
517 * which called into schedule(). This needs to be done carefully
518 * because the task might wake up and we might look at a stack
519 * changing under us.
520 */
521unsigned long get_wchan(struct task_struct *p)
522{
523	unsigned long start, bottom, top, sp, fp, ip;
524	int count = 0;
525
526	if (!p || p == current || p->state == TASK_RUNNING)
527		return 0;
528
 
 
 
529	start = (unsigned long)task_stack_page(p);
530	if (!start)
531		return 0;
532
533	/*
534	 * Layout of the stack page:
535	 *
536	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
537	 * PADDING
538	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
539	 * stack
540	 * ----------- bottom = start + sizeof(thread_info)
541	 * thread_info
542	 * ----------- start
543	 *
544	 * The tasks stack pointer points at the location where the
545	 * framepointer is stored. The data on the stack is:
546	 * ... IP FP ... IP FP
547	 *
548	 * We need to read FP and IP, so we need to adjust the upper
549	 * bound by another unsigned long.
550	 */
551	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
552	top -= 2 * sizeof(unsigned long);
553	bottom = start + sizeof(struct thread_info);
554
555	sp = READ_ONCE(p->thread.sp);
556	if (sp < bottom || sp > top)
557		return 0;
558
559	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
560	do {
561		if (fp < bottom || fp > top)
562			return 0;
563		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
564		if (!in_sched_functions(ip))
565			return ip;
 
 
566		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
567	} while (count++ < 16 && p->state != TASK_RUNNING);
568	return 0;
 
 
 
569}