Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Wireless utility functions
   3 *
   4 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2013-2014  Intel Mobile Communications GmbH
   6 */
   7#include <linux/export.h>
   8#include <linux/bitops.h>
   9#include <linux/etherdevice.h>
  10#include <linux/slab.h>
  11#include <net/cfg80211.h>
  12#include <net/ip.h>
  13#include <net/dsfield.h>
  14#include <linux/if_vlan.h>
  15#include <linux/mpls.h>
  16#include <linux/gcd.h>
  17#include "core.h"
  18#include "rdev-ops.h"
  19
  20
  21struct ieee80211_rate *
  22ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  23			    u32 basic_rates, int bitrate)
  24{
  25	struct ieee80211_rate *result = &sband->bitrates[0];
  26	int i;
  27
  28	for (i = 0; i < sband->n_bitrates; i++) {
  29		if (!(basic_rates & BIT(i)))
  30			continue;
  31		if (sband->bitrates[i].bitrate > bitrate)
  32			continue;
  33		result = &sband->bitrates[i];
  34	}
  35
  36	return result;
  37}
  38EXPORT_SYMBOL(ieee80211_get_response_rate);
  39
  40u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  41			      enum nl80211_bss_scan_width scan_width)
  42{
  43	struct ieee80211_rate *bitrates;
  44	u32 mandatory_rates = 0;
  45	enum ieee80211_rate_flags mandatory_flag;
  46	int i;
  47
  48	if (WARN_ON(!sband))
  49		return 1;
  50
  51	if (sband->band == NL80211_BAND_2GHZ) {
  52		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  53		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  54			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  55		else
  56			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  57	} else {
  58		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  59	}
  60
  61	bitrates = sband->bitrates;
  62	for (i = 0; i < sband->n_bitrates; i++)
  63		if (bitrates[i].flags & mandatory_flag)
  64			mandatory_rates |= BIT(i);
  65	return mandatory_rates;
  66}
  67EXPORT_SYMBOL(ieee80211_mandatory_rates);
  68
  69int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  70{
  71	/* see 802.11 17.3.8.3.2 and Annex J
  72	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  73	if (chan <= 0)
  74		return 0; /* not supported */
  75	switch (band) {
  76	case NL80211_BAND_2GHZ:
  77		if (chan == 14)
  78			return 2484;
  79		else if (chan < 14)
  80			return 2407 + chan * 5;
  81		break;
  82	case NL80211_BAND_5GHZ:
  83		if (chan >= 182 && chan <= 196)
  84			return 4000 + chan * 5;
  85		else
  86			return 5000 + chan * 5;
  87		break;
  88	case NL80211_BAND_60GHZ:
  89		if (chan < 5)
  90			return 56160 + chan * 2160;
  91		break;
  92	default:
  93		;
  94	}
  95	return 0; /* not supported */
  96}
  97EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  98
  99int ieee80211_frequency_to_channel(int freq)
 100{
 101	/* see 802.11 17.3.8.3.2 and Annex J */
 102	if (freq == 2484)
 103		return 14;
 104	else if (freq < 2484)
 105		return (freq - 2407) / 5;
 106	else if (freq >= 4910 && freq <= 4980)
 107		return (freq - 4000) / 5;
 108	else if (freq <= 45000) /* DMG band lower limit */
 109		return (freq - 5000) / 5;
 110	else if (freq >= 58320 && freq <= 64800)
 111		return (freq - 56160) / 2160;
 112	else
 113		return 0;
 114}
 115EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 116
 117struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
 118						  int freq)
 119{
 120	enum nl80211_band band;
 121	struct ieee80211_supported_band *sband;
 122	int i;
 123
 124	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 125		sband = wiphy->bands[band];
 126
 127		if (!sband)
 128			continue;
 129
 130		for (i = 0; i < sband->n_channels; i++) {
 131			if (sband->channels[i].center_freq == freq)
 132				return &sband->channels[i];
 133		}
 134	}
 135
 136	return NULL;
 137}
 138EXPORT_SYMBOL(__ieee80211_get_channel);
 139
 140static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
 141				     enum nl80211_band band)
 142{
 143	int i, want;
 144
 145	switch (band) {
 146	case NL80211_BAND_5GHZ:
 147		want = 3;
 148		for (i = 0; i < sband->n_bitrates; i++) {
 149			if (sband->bitrates[i].bitrate == 60 ||
 150			    sband->bitrates[i].bitrate == 120 ||
 151			    sband->bitrates[i].bitrate == 240) {
 152				sband->bitrates[i].flags |=
 153					IEEE80211_RATE_MANDATORY_A;
 154				want--;
 155			}
 156		}
 157		WARN_ON(want);
 158		break;
 159	case NL80211_BAND_2GHZ:
 160		want = 7;
 161		for (i = 0; i < sband->n_bitrates; i++) {
 162			if (sband->bitrates[i].bitrate == 10) {
 163				sband->bitrates[i].flags |=
 164					IEEE80211_RATE_MANDATORY_B |
 165					IEEE80211_RATE_MANDATORY_G;
 166				want--;
 167			}
 168
 169			if (sband->bitrates[i].bitrate == 20 ||
 170			    sband->bitrates[i].bitrate == 55 ||
 171			    sband->bitrates[i].bitrate == 110 ||
 172			    sband->bitrates[i].bitrate == 60 ||
 173			    sband->bitrates[i].bitrate == 120 ||
 174			    sband->bitrates[i].bitrate == 240) {
 175				sband->bitrates[i].flags |=
 176					IEEE80211_RATE_MANDATORY_G;
 177				want--;
 178			}
 179
 180			if (sband->bitrates[i].bitrate != 10 &&
 181			    sband->bitrates[i].bitrate != 20 &&
 182			    sband->bitrates[i].bitrate != 55 &&
 183			    sband->bitrates[i].bitrate != 110)
 184				sband->bitrates[i].flags |=
 185					IEEE80211_RATE_ERP_G;
 186		}
 187		WARN_ON(want != 0 && want != 3 && want != 6);
 188		break;
 189	case NL80211_BAND_60GHZ:
 190		/* check for mandatory HT MCS 1..4 */
 191		WARN_ON(!sband->ht_cap.ht_supported);
 192		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 193		break;
 194	case NUM_NL80211_BANDS:
 195		WARN_ON(1);
 196		break;
 197	}
 198}
 199
 200void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 201{
 202	enum nl80211_band band;
 203
 204	for (band = 0; band < NUM_NL80211_BANDS; band++)
 205		if (wiphy->bands[band])
 206			set_mandatory_flags_band(wiphy->bands[band], band);
 207}
 208
 209bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 210{
 211	int i;
 212	for (i = 0; i < wiphy->n_cipher_suites; i++)
 213		if (cipher == wiphy->cipher_suites[i])
 214			return true;
 215	return false;
 216}
 217
 218int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 219				   struct key_params *params, int key_idx,
 220				   bool pairwise, const u8 *mac_addr)
 221{
 222	if (key_idx < 0 || key_idx > 5)
 223		return -EINVAL;
 224
 225	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 226		return -EINVAL;
 227
 228	if (pairwise && !mac_addr)
 229		return -EINVAL;
 230
 231	switch (params->cipher) {
 232	case WLAN_CIPHER_SUITE_TKIP:
 233	case WLAN_CIPHER_SUITE_CCMP:
 234	case WLAN_CIPHER_SUITE_CCMP_256:
 235	case WLAN_CIPHER_SUITE_GCMP:
 236	case WLAN_CIPHER_SUITE_GCMP_256:
 237		/* Disallow pairwise keys with non-zero index unless it's WEP
 238		 * or a vendor specific cipher (because current deployments use
 239		 * pairwise WEP keys with non-zero indices and for vendor
 240		 * specific ciphers this should be validated in the driver or
 241		 * hardware level - but 802.11i clearly specifies to use zero)
 242		 */
 243		if (pairwise && key_idx)
 244			return -EINVAL;
 245		break;
 246	case WLAN_CIPHER_SUITE_AES_CMAC:
 247	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 248	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 249	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 250		/* Disallow BIP (group-only) cipher as pairwise cipher */
 251		if (pairwise)
 252			return -EINVAL;
 253		if (key_idx < 4)
 254			return -EINVAL;
 255		break;
 256	case WLAN_CIPHER_SUITE_WEP40:
 257	case WLAN_CIPHER_SUITE_WEP104:
 258		if (key_idx > 3)
 259			return -EINVAL;
 260	default:
 261		break;
 262	}
 263
 264	switch (params->cipher) {
 265	case WLAN_CIPHER_SUITE_WEP40:
 266		if (params->key_len != WLAN_KEY_LEN_WEP40)
 267			return -EINVAL;
 268		break;
 269	case WLAN_CIPHER_SUITE_TKIP:
 270		if (params->key_len != WLAN_KEY_LEN_TKIP)
 271			return -EINVAL;
 272		break;
 273	case WLAN_CIPHER_SUITE_CCMP:
 274		if (params->key_len != WLAN_KEY_LEN_CCMP)
 275			return -EINVAL;
 276		break;
 277	case WLAN_CIPHER_SUITE_CCMP_256:
 278		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 279			return -EINVAL;
 280		break;
 281	case WLAN_CIPHER_SUITE_GCMP:
 282		if (params->key_len != WLAN_KEY_LEN_GCMP)
 283			return -EINVAL;
 284		break;
 285	case WLAN_CIPHER_SUITE_GCMP_256:
 286		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 287			return -EINVAL;
 288		break;
 289	case WLAN_CIPHER_SUITE_WEP104:
 290		if (params->key_len != WLAN_KEY_LEN_WEP104)
 291			return -EINVAL;
 292		break;
 293	case WLAN_CIPHER_SUITE_AES_CMAC:
 294		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 295			return -EINVAL;
 296		break;
 297	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 298		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 299			return -EINVAL;
 300		break;
 301	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 302		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 303			return -EINVAL;
 304		break;
 305	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 306		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 307			return -EINVAL;
 308		break;
 309	default:
 310		/*
 311		 * We don't know anything about this algorithm,
 312		 * allow using it -- but the driver must check
 313		 * all parameters! We still check below whether
 314		 * or not the driver supports this algorithm,
 315		 * of course.
 316		 */
 317		break;
 318	}
 319
 320	if (params->seq) {
 321		switch (params->cipher) {
 322		case WLAN_CIPHER_SUITE_WEP40:
 323		case WLAN_CIPHER_SUITE_WEP104:
 324			/* These ciphers do not use key sequence */
 325			return -EINVAL;
 326		case WLAN_CIPHER_SUITE_TKIP:
 327		case WLAN_CIPHER_SUITE_CCMP:
 328		case WLAN_CIPHER_SUITE_CCMP_256:
 329		case WLAN_CIPHER_SUITE_GCMP:
 330		case WLAN_CIPHER_SUITE_GCMP_256:
 331		case WLAN_CIPHER_SUITE_AES_CMAC:
 332		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 333		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 334		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 335			if (params->seq_len != 6)
 336				return -EINVAL;
 337			break;
 338		}
 339	}
 340
 341	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 342		return -EINVAL;
 343
 344	return 0;
 345}
 346
 347unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 348{
 349	unsigned int hdrlen = 24;
 350
 351	if (ieee80211_is_data(fc)) {
 352		if (ieee80211_has_a4(fc))
 353			hdrlen = 30;
 354		if (ieee80211_is_data_qos(fc)) {
 355			hdrlen += IEEE80211_QOS_CTL_LEN;
 356			if (ieee80211_has_order(fc))
 357				hdrlen += IEEE80211_HT_CTL_LEN;
 358		}
 359		goto out;
 360	}
 361
 362	if (ieee80211_is_mgmt(fc)) {
 363		if (ieee80211_has_order(fc))
 364			hdrlen += IEEE80211_HT_CTL_LEN;
 365		goto out;
 366	}
 367
 368	if (ieee80211_is_ctl(fc)) {
 369		/*
 370		 * ACK and CTS are 10 bytes, all others 16. To see how
 371		 * to get this condition consider
 372		 *   subtype mask:   0b0000000011110000 (0x00F0)
 373		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 374		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 375		 *   bits that matter:         ^^^      (0x00E0)
 376		 *   value of those: 0b0000000011000000 (0x00C0)
 377		 */
 378		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 379			hdrlen = 10;
 380		else
 381			hdrlen = 16;
 382	}
 383out:
 384	return hdrlen;
 385}
 386EXPORT_SYMBOL(ieee80211_hdrlen);
 387
 388unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 389{
 390	const struct ieee80211_hdr *hdr =
 391			(const struct ieee80211_hdr *)skb->data;
 392	unsigned int hdrlen;
 393
 394	if (unlikely(skb->len < 10))
 395		return 0;
 396	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 397	if (unlikely(hdrlen > skb->len))
 398		return 0;
 399	return hdrlen;
 400}
 401EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 402
 403static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 404{
 405	int ae = flags & MESH_FLAGS_AE;
 406	/* 802.11-2012, 8.2.4.7.3 */
 407	switch (ae) {
 408	default:
 409	case 0:
 410		return 6;
 411	case MESH_FLAGS_AE_A4:
 412		return 12;
 413	case MESH_FLAGS_AE_A5_A6:
 414		return 18;
 415	}
 416}
 417
 418unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 419{
 420	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 421}
 422EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 423
 424int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 425				  const u8 *addr, enum nl80211_iftype iftype)
 426{
 427	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 428	struct {
 429		u8 hdr[ETH_ALEN] __aligned(2);
 430		__be16 proto;
 431	} payload;
 432	struct ethhdr tmp;
 433	u16 hdrlen;
 434	u8 mesh_flags = 0;
 435
 436	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 437		return -1;
 438
 439	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 440	if (skb->len < hdrlen + 8)
 441		return -1;
 442
 443	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 444	 * header
 445	 * IEEE 802.11 address fields:
 446	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 447	 *   0     0   DA    SA    BSSID n/a
 448	 *   0     1   DA    BSSID SA    n/a
 449	 *   1     0   BSSID SA    DA    n/a
 450	 *   1     1   RA    TA    DA    SA
 451	 */
 452	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 453	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 454
 455	if (iftype == NL80211_IFTYPE_MESH_POINT)
 456		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 457
 458	switch (hdr->frame_control &
 459		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 460	case cpu_to_le16(IEEE80211_FCTL_TODS):
 461		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 462			     iftype != NL80211_IFTYPE_AP_VLAN &&
 463			     iftype != NL80211_IFTYPE_P2P_GO))
 464			return -1;
 465		break;
 466	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 467		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 468			     iftype != NL80211_IFTYPE_MESH_POINT &&
 469			     iftype != NL80211_IFTYPE_AP_VLAN &&
 470			     iftype != NL80211_IFTYPE_STATION))
 471			return -1;
 472		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 473			if (mesh_flags & MESH_FLAGS_AE_A4)
 474				return -1;
 475			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
 476				skb_copy_bits(skb, hdrlen +
 477					offsetof(struct ieee80211s_hdr, eaddr1),
 478					tmp.h_dest, 2 * ETH_ALEN);
 479			}
 480			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 481		}
 482		break;
 483	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 484		if ((iftype != NL80211_IFTYPE_STATION &&
 485		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 486		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 487		    (is_multicast_ether_addr(tmp.h_dest) &&
 488		     ether_addr_equal(tmp.h_source, addr)))
 489			return -1;
 490		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 491			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
 492				return -1;
 493			if (mesh_flags & MESH_FLAGS_AE_A4)
 494				skb_copy_bits(skb, hdrlen +
 495					offsetof(struct ieee80211s_hdr, eaddr1),
 496					tmp.h_source, ETH_ALEN);
 497			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 498		}
 499		break;
 500	case cpu_to_le16(0):
 501		if (iftype != NL80211_IFTYPE_ADHOC &&
 502		    iftype != NL80211_IFTYPE_STATION &&
 503		    iftype != NL80211_IFTYPE_OCB)
 504				return -1;
 505		break;
 506	}
 507
 508	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 509	tmp.h_proto = payload.proto;
 510
 511	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 512		    tmp.h_proto != htons(ETH_P_AARP) &&
 513		    tmp.h_proto != htons(ETH_P_IPX)) ||
 514		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 515		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 516		 * replace EtherType */
 517		hdrlen += ETH_ALEN + 2;
 518	else
 519		tmp.h_proto = htons(skb->len - hdrlen);
 520
 521	pskb_pull(skb, hdrlen);
 522
 523	if (!ehdr)
 524		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 525	memcpy(ehdr, &tmp, sizeof(tmp));
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 
 
 
 
 
 
 530
 531int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
 532			     enum nl80211_iftype iftype,
 533			     const u8 *bssid, bool qos)
 534{
 535	struct ieee80211_hdr hdr;
 536	u16 hdrlen, ethertype;
 537	__le16 fc;
 538	const u8 *encaps_data;
 539	int encaps_len, skip_header_bytes;
 540	int nh_pos, h_pos;
 541	int head_need;
 542
 543	if (unlikely(skb->len < ETH_HLEN))
 544		return -EINVAL;
 545
 546	nh_pos = skb_network_header(skb) - skb->data;
 547	h_pos = skb_transport_header(skb) - skb->data;
 548
 549	/* convert Ethernet header to proper 802.11 header (based on
 550	 * operation mode) */
 551	ethertype = (skb->data[12] << 8) | skb->data[13];
 552	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
 553
 554	switch (iftype) {
 555	case NL80211_IFTYPE_AP:
 556	case NL80211_IFTYPE_AP_VLAN:
 557	case NL80211_IFTYPE_P2P_GO:
 558		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
 559		/* DA BSSID SA */
 560		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 561		memcpy(hdr.addr2, addr, ETH_ALEN);
 562		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
 563		hdrlen = 24;
 564		break;
 565	case NL80211_IFTYPE_STATION:
 566	case NL80211_IFTYPE_P2P_CLIENT:
 567		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
 568		/* BSSID SA DA */
 569		memcpy(hdr.addr1, bssid, ETH_ALEN);
 570		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 571		memcpy(hdr.addr3, skb->data, ETH_ALEN);
 572		hdrlen = 24;
 573		break;
 574	case NL80211_IFTYPE_OCB:
 575	case NL80211_IFTYPE_ADHOC:
 576		/* DA SA BSSID */
 577		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 578		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 579		memcpy(hdr.addr3, bssid, ETH_ALEN);
 580		hdrlen = 24;
 581		break;
 582	default:
 583		return -EOPNOTSUPP;
 584	}
 585
 586	if (qos) {
 587		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
 588		hdrlen += 2;
 589	}
 590
 591	hdr.frame_control = fc;
 592	hdr.duration_id = 0;
 593	hdr.seq_ctrl = 0;
 594
 595	skip_header_bytes = ETH_HLEN;
 596	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
 597		encaps_data = bridge_tunnel_header;
 598		encaps_len = sizeof(bridge_tunnel_header);
 599		skip_header_bytes -= 2;
 600	} else if (ethertype >= ETH_P_802_3_MIN) {
 601		encaps_data = rfc1042_header;
 602		encaps_len = sizeof(rfc1042_header);
 603		skip_header_bytes -= 2;
 604	} else {
 605		encaps_data = NULL;
 606		encaps_len = 0;
 607	}
 608
 609	skb_pull(skb, skip_header_bytes);
 610	nh_pos -= skip_header_bytes;
 611	h_pos -= skip_header_bytes;
 612
 613	head_need = hdrlen + encaps_len - skb_headroom(skb);
 614
 615	if (head_need > 0 || skb_cloned(skb)) {
 616		head_need = max(head_need, 0);
 617		if (head_need)
 618			skb_orphan(skb);
 619
 620		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
 621			return -ENOMEM;
 622
 623		skb->truesize += head_need;
 624	}
 625
 626	if (encaps_data) {
 627		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
 628		nh_pos += encaps_len;
 629		h_pos += encaps_len;
 630	}
 631
 632	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
 633
 634	nh_pos += hdrlen;
 635	h_pos += hdrlen;
 636
 637	/* Update skb pointers to various headers since this modified frame
 638	 * is going to go through Linux networking code that may potentially
 639	 * need things like pointer to IP header. */
 640	skb_reset_mac_header(skb);
 641	skb_set_network_header(skb, nh_pos);
 642	skb_set_transport_header(skb, h_pos);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL(ieee80211_data_from_8023);
 647
 648static void
 649__frame_add_frag(struct sk_buff *skb, struct page *page,
 650		 void *ptr, int len, int size)
 651{
 652	struct skb_shared_info *sh = skb_shinfo(skb);
 653	int page_offset;
 654
 655	page_ref_inc(page);
 656	page_offset = ptr - page_address(page);
 657	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 658}
 659
 660static void
 661__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 662			    int offset, int len)
 663{
 664	struct skb_shared_info *sh = skb_shinfo(skb);
 665	const skb_frag_t *frag = &sh->frags[-1];
 666	struct page *frag_page;
 667	void *frag_ptr;
 668	int frag_len, frag_size;
 669	int head_size = skb->len - skb->data_len;
 670	int cur_len;
 671
 672	frag_page = virt_to_head_page(skb->head);
 673	frag_ptr = skb->data;
 674	frag_size = head_size;
 675
 676	while (offset >= frag_size) {
 677		offset -= frag_size;
 678		frag++;
 679		frag_page = skb_frag_page(frag);
 680		frag_ptr = skb_frag_address(frag);
 681		frag_size = skb_frag_size(frag);
 682	}
 683
 684	frag_ptr += offset;
 685	frag_len = frag_size - offset;
 686
 687	cur_len = min(len, frag_len);
 688
 689	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 690	len -= cur_len;
 691
 692	while (len > 0) {
 693		frag++;
 694		frag_len = skb_frag_size(frag);
 695		cur_len = min(len, frag_len);
 696		__frame_add_frag(frame, skb_frag_page(frag),
 697				 skb_frag_address(frag), cur_len, frag_len);
 698		len -= cur_len;
 699	}
 700}
 701
 702static struct sk_buff *
 703__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 704		       int offset, int len, bool reuse_frag)
 705{
 706	struct sk_buff *frame;
 707	int cur_len = len;
 708
 709	if (skb->len - offset < len)
 710		return NULL;
 711
 712	/*
 713	 * When reusing framents, copy some data to the head to simplify
 714	 * ethernet header handling and speed up protocol header processing
 715	 * in the stack later.
 716	 */
 717	if (reuse_frag)
 718		cur_len = min_t(int, len, 32);
 719
 720	/*
 721	 * Allocate and reserve two bytes more for payload
 722	 * alignment since sizeof(struct ethhdr) is 14.
 723	 */
 724	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 725	if (!frame)
 726		return NULL;
 727
 728	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 729	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 730
 731	len -= cur_len;
 732	if (!len)
 733		return frame;
 734
 735	offset += cur_len;
 736	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 737
 738	return frame;
 739}
 740
 741void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 742			      const u8 *addr, enum nl80211_iftype iftype,
 743			      const unsigned int extra_headroom,
 744			      const u8 *check_da, const u8 *check_sa)
 745{
 746	unsigned int hlen = ALIGN(extra_headroom, 4);
 747	struct sk_buff *frame = NULL;
 748	u16 ethertype;
 749	u8 *payload;
 750	int offset = 0, remaining;
 751	struct ethhdr eth;
 752	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 753	bool reuse_skb = false;
 754	bool last = false;
 755
 
 
 
 
 
 
 756	while (!last) {
 757		unsigned int subframe_len;
 758		int len;
 759		u8 padding;
 760
 761		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 762		len = ntohs(eth.h_proto);
 763		subframe_len = sizeof(struct ethhdr) + len;
 764		padding = (4 - subframe_len) & 0x3;
 765
 766		/* the last MSDU has no padding */
 767		remaining = skb->len - offset;
 768		if (subframe_len > remaining)
 769			goto purge;
 770
 771		offset += sizeof(struct ethhdr);
 772		last = remaining <= subframe_len + padding;
 773
 774		/* FIXME: should we really accept multicast DA? */
 775		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 776		     !ether_addr_equal(check_da, eth.h_dest)) ||
 777		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 778			offset += len + padding;
 779			continue;
 780		}
 781
 782		/* reuse skb for the last subframe */
 
 783		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 784			skb_pull(skb, offset);
 785			frame = skb;
 786			reuse_skb = true;
 787		} else {
 788			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 789						       reuse_frag);
 790			if (!frame)
 791				goto purge;
 792
 793			offset += len + padding;
 794		}
 795
 796		skb_reset_network_header(frame);
 797		frame->dev = skb->dev;
 798		frame->priority = skb->priority;
 799
 800		payload = frame->data;
 801		ethertype = (payload[6] << 8) | payload[7];
 802		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 803			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 804			   ether_addr_equal(payload, bridge_tunnel_header))) {
 805			eth.h_proto = htons(ethertype);
 806			skb_pull(frame, ETH_ALEN + 2);
 807		}
 808
 809		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 810		__skb_queue_tail(list, frame);
 811	}
 812
 813	if (!reuse_skb)
 814		dev_kfree_skb(skb);
 815
 816	return;
 817
 818 purge:
 819	__skb_queue_purge(list);
 
 820	dev_kfree_skb(skb);
 821}
 822EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 823
 824/* Given a data frame determine the 802.1p/1d tag to use. */
 825unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 826				    struct cfg80211_qos_map *qos_map)
 827{
 828	unsigned int dscp;
 829	unsigned char vlan_priority;
 830
 831	/* skb->priority values from 256->263 are magic values to
 832	 * directly indicate a specific 802.1d priority.  This is used
 833	 * to allow 802.1d priority to be passed directly in from VLAN
 834	 * tags, etc.
 835	 */
 836	if (skb->priority >= 256 && skb->priority <= 263)
 837		return skb->priority - 256;
 838
 839	if (skb_vlan_tag_present(skb)) {
 840		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 841			>> VLAN_PRIO_SHIFT;
 842		if (vlan_priority > 0)
 843			return vlan_priority;
 844	}
 845
 846	switch (skb->protocol) {
 847	case htons(ETH_P_IP):
 848		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 849		break;
 850	case htons(ETH_P_IPV6):
 851		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 852		break;
 853	case htons(ETH_P_MPLS_UC):
 854	case htons(ETH_P_MPLS_MC): {
 855		struct mpls_label mpls_tmp, *mpls;
 856
 857		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 858					  sizeof(*mpls), &mpls_tmp);
 859		if (!mpls)
 860			return 0;
 861
 862		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 863			>> MPLS_LS_TC_SHIFT;
 864	}
 865	case htons(ETH_P_80221):
 866		/* 802.21 is always network control traffic */
 867		return 7;
 868	default:
 869		return 0;
 870	}
 871
 872	if (qos_map) {
 873		unsigned int i, tmp_dscp = dscp >> 2;
 874
 875		for (i = 0; i < qos_map->num_des; i++) {
 876			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
 877				return qos_map->dscp_exception[i].up;
 878		}
 879
 880		for (i = 0; i < 8; i++) {
 881			if (tmp_dscp >= qos_map->up[i].low &&
 882			    tmp_dscp <= qos_map->up[i].high)
 883				return i;
 884		}
 885	}
 886
 887	return dscp >> 5;
 888}
 889EXPORT_SYMBOL(cfg80211_classify8021d);
 890
 891const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
 892{
 893	const struct cfg80211_bss_ies *ies;
 894
 895	ies = rcu_dereference(bss->ies);
 896	if (!ies)
 897		return NULL;
 898
 899	return cfg80211_find_ie(ie, ies->data, ies->len);
 900}
 901EXPORT_SYMBOL(ieee80211_bss_get_ie);
 902
 903void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 904{
 905	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 906	struct net_device *dev = wdev->netdev;
 907	int i;
 908
 909	if (!wdev->connect_keys)
 910		return;
 911
 912	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 913		if (!wdev->connect_keys->params[i].cipher)
 914			continue;
 915		if (rdev_add_key(rdev, dev, i, false, NULL,
 916				 &wdev->connect_keys->params[i])) {
 917			netdev_err(dev, "failed to set key %d\n", i);
 918			continue;
 919		}
 920		if (wdev->connect_keys->def == i)
 921			if (rdev_set_default_key(rdev, dev, i, true, true)) {
 922				netdev_err(dev, "failed to set defkey %d\n", i);
 923				continue;
 924			}
 
 
 
 925	}
 926
 927	kzfree(wdev->connect_keys);
 928	wdev->connect_keys = NULL;
 929}
 930
 931void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 932{
 933	struct cfg80211_event *ev;
 934	unsigned long flags;
 935	const u8 *bssid = NULL;
 936
 937	spin_lock_irqsave(&wdev->event_lock, flags);
 938	while (!list_empty(&wdev->event_list)) {
 939		ev = list_first_entry(&wdev->event_list,
 940				      struct cfg80211_event, list);
 941		list_del(&ev->list);
 942		spin_unlock_irqrestore(&wdev->event_lock, flags);
 943
 944		wdev_lock(wdev);
 945		switch (ev->type) {
 946		case EVENT_CONNECT_RESULT:
 947			if (!is_zero_ether_addr(ev->cr.bssid))
 948				bssid = ev->cr.bssid;
 949			__cfg80211_connect_result(
 950				wdev->netdev, bssid,
 951				ev->cr.req_ie, ev->cr.req_ie_len,
 952				ev->cr.resp_ie, ev->cr.resp_ie_len,
 953				ev->cr.status,
 954				ev->cr.status == WLAN_STATUS_SUCCESS,
 955				ev->cr.bss);
 956			break;
 957		case EVENT_ROAMED:
 958			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
 959					  ev->rm.req_ie_len, ev->rm.resp_ie,
 960					  ev->rm.resp_ie_len);
 961			break;
 962		case EVENT_DISCONNECTED:
 963			__cfg80211_disconnected(wdev->netdev,
 964						ev->dc.ie, ev->dc.ie_len,
 965						ev->dc.reason,
 966						!ev->dc.locally_generated);
 967			break;
 968		case EVENT_IBSS_JOINED:
 969			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 970					       ev->ij.channel);
 971			break;
 972		case EVENT_STOPPED:
 973			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 974			break;
 975		}
 976		wdev_unlock(wdev);
 977
 978		kfree(ev);
 979
 980		spin_lock_irqsave(&wdev->event_lock, flags);
 981	}
 982	spin_unlock_irqrestore(&wdev->event_lock, flags);
 983}
 984
 985void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 986{
 987	struct wireless_dev *wdev;
 988
 989	ASSERT_RTNL();
 990
 991	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 992		cfg80211_process_wdev_events(wdev);
 993}
 994
 995int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 996			  struct net_device *dev, enum nl80211_iftype ntype,
 997			  u32 *flags, struct vif_params *params)
 998{
 999	int err;
1000	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001
1002	ASSERT_RTNL();
1003
1004	/* don't support changing VLANs, you just re-create them */
1005	if (otype == NL80211_IFTYPE_AP_VLAN)
1006		return -EOPNOTSUPP;
1007
1008	/* cannot change into P2P device or NAN */
1009	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1010	    ntype == NL80211_IFTYPE_NAN)
1011		return -EOPNOTSUPP;
1012
1013	if (!rdev->ops->change_virtual_intf ||
1014	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1015		return -EOPNOTSUPP;
1016
1017	/* if it's part of a bridge, reject changing type to station/ibss */
1018	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1019	    (ntype == NL80211_IFTYPE_ADHOC ||
1020	     ntype == NL80211_IFTYPE_STATION ||
1021	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1022		return -EBUSY;
1023
1024	if (ntype != otype) {
1025		dev->ieee80211_ptr->use_4addr = false;
1026		dev->ieee80211_ptr->mesh_id_up_len = 0;
1027		wdev_lock(dev->ieee80211_ptr);
1028		rdev_set_qos_map(rdev, dev, NULL);
1029		wdev_unlock(dev->ieee80211_ptr);
1030
1031		switch (otype) {
1032		case NL80211_IFTYPE_AP:
1033			cfg80211_stop_ap(rdev, dev, true);
1034			break;
1035		case NL80211_IFTYPE_ADHOC:
1036			cfg80211_leave_ibss(rdev, dev, false);
1037			break;
1038		case NL80211_IFTYPE_STATION:
1039		case NL80211_IFTYPE_P2P_CLIENT:
1040			wdev_lock(dev->ieee80211_ptr);
1041			cfg80211_disconnect(rdev, dev,
1042					    WLAN_REASON_DEAUTH_LEAVING, true);
1043			wdev_unlock(dev->ieee80211_ptr);
1044			break;
1045		case NL80211_IFTYPE_MESH_POINT:
1046			/* mesh should be handled? */
1047			break;
1048		default:
1049			break;
1050		}
1051
1052		cfg80211_process_rdev_events(rdev);
1053	}
1054
1055	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1056
1057	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1058
1059	if (!err && params && params->use_4addr != -1)
1060		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1061
1062	if (!err) {
1063		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1064		switch (ntype) {
1065		case NL80211_IFTYPE_STATION:
1066			if (dev->ieee80211_ptr->use_4addr)
1067				break;
1068			/* fall through */
1069		case NL80211_IFTYPE_OCB:
1070		case NL80211_IFTYPE_P2P_CLIENT:
1071		case NL80211_IFTYPE_ADHOC:
1072			dev->priv_flags |= IFF_DONT_BRIDGE;
1073			break;
1074		case NL80211_IFTYPE_P2P_GO:
1075		case NL80211_IFTYPE_AP:
1076		case NL80211_IFTYPE_AP_VLAN:
1077		case NL80211_IFTYPE_WDS:
1078		case NL80211_IFTYPE_MESH_POINT:
1079			/* bridging OK */
1080			break;
1081		case NL80211_IFTYPE_MONITOR:
1082			/* monitor can't bridge anyway */
1083			break;
1084		case NL80211_IFTYPE_UNSPECIFIED:
1085		case NUM_NL80211_IFTYPES:
1086			/* not happening */
1087			break;
1088		case NL80211_IFTYPE_P2P_DEVICE:
1089		case NL80211_IFTYPE_NAN:
1090			WARN_ON(1);
1091			break;
1092		}
1093	}
1094
1095	if (!err && ntype != otype && netif_running(dev)) {
1096		cfg80211_update_iface_num(rdev, ntype, 1);
1097		cfg80211_update_iface_num(rdev, otype, -1);
1098	}
1099
1100	return err;
1101}
1102
1103static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1104{
1105	static const u32 __mcs2bitrate[] = {
1106		/* control PHY */
1107		[0] =   275,
1108		/* SC PHY */
1109		[1] =  3850,
1110		[2] =  7700,
1111		[3] =  9625,
1112		[4] = 11550,
1113		[5] = 12512, /* 1251.25 mbps */
1114		[6] = 15400,
1115		[7] = 19250,
1116		[8] = 23100,
1117		[9] = 25025,
1118		[10] = 30800,
1119		[11] = 38500,
1120		[12] = 46200,
1121		/* OFDM PHY */
1122		[13] =  6930,
1123		[14] =  8662, /* 866.25 mbps */
1124		[15] = 13860,
1125		[16] = 17325,
1126		[17] = 20790,
1127		[18] = 27720,
1128		[19] = 34650,
1129		[20] = 41580,
1130		[21] = 45045,
1131		[22] = 51975,
1132		[23] = 62370,
1133		[24] = 67568, /* 6756.75 mbps */
1134		/* LP-SC PHY */
1135		[25] =  6260,
1136		[26] =  8340,
1137		[27] = 11120,
1138		[28] = 12510,
1139		[29] = 16680,
1140		[30] = 22240,
1141		[31] = 25030,
1142	};
1143
1144	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1145		return 0;
1146
1147	return __mcs2bitrate[rate->mcs];
1148}
1149
1150static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1151{
1152	static const u32 base[4][10] = {
1153		{   6500000,
1154		   13000000,
1155		   19500000,
1156		   26000000,
1157		   39000000,
1158		   52000000,
1159		   58500000,
1160		   65000000,
1161		   78000000,
1162		/* not in the spec, but some devices use this: */
1163		   86500000,
1164		},
1165		{  13500000,
1166		   27000000,
1167		   40500000,
1168		   54000000,
1169		   81000000,
1170		  108000000,
1171		  121500000,
1172		  135000000,
1173		  162000000,
1174		  180000000,
1175		},
1176		{  29300000,
1177		   58500000,
1178		   87800000,
1179		  117000000,
1180		  175500000,
1181		  234000000,
1182		  263300000,
1183		  292500000,
1184		  351000000,
1185		  390000000,
1186		},
1187		{  58500000,
1188		  117000000,
1189		  175500000,
1190		  234000000,
1191		  351000000,
1192		  468000000,
1193		  526500000,
1194		  585000000,
1195		  702000000,
1196		  780000000,
1197		},
1198	};
1199	u32 bitrate;
1200	int idx;
1201
1202	if (WARN_ON_ONCE(rate->mcs > 9))
1203		return 0;
1204
1205	switch (rate->bw) {
1206	case RATE_INFO_BW_160:
1207		idx = 3;
1208		break;
1209	case RATE_INFO_BW_80:
1210		idx = 2;
1211		break;
1212	case RATE_INFO_BW_40:
1213		idx = 1;
1214		break;
1215	case RATE_INFO_BW_5:
1216	case RATE_INFO_BW_10:
1217	default:
1218		WARN_ON(1);
1219		/* fall through */
1220	case RATE_INFO_BW_20:
1221		idx = 0;
1222	}
1223
1224	bitrate = base[idx][rate->mcs];
1225	bitrate *= rate->nss;
1226
1227	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1228		bitrate = (bitrate / 9) * 10;
1229
1230	/* do NOT round down here */
1231	return (bitrate + 50000) / 100000;
1232}
1233
1234u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1235{
1236	int modulation, streams, bitrate;
1237
1238	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1239	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1240		return rate->legacy;
1241	if (rate->flags & RATE_INFO_FLAGS_60G)
1242		return cfg80211_calculate_bitrate_60g(rate);
1243	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1244		return cfg80211_calculate_bitrate_vht(rate);
1245
1246	/* the formula below does only work for MCS values smaller than 32 */
1247	if (WARN_ON_ONCE(rate->mcs >= 32))
1248		return 0;
1249
1250	modulation = rate->mcs & 7;
1251	streams = (rate->mcs >> 3) + 1;
1252
1253	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1254
1255	if (modulation < 4)
1256		bitrate *= (modulation + 1);
1257	else if (modulation == 4)
1258		bitrate *= (modulation + 2);
1259	else
1260		bitrate *= (modulation + 3);
1261
1262	bitrate *= streams;
1263
1264	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1265		bitrate = (bitrate / 9) * 10;
1266
1267	/* do NOT round down here */
1268	return (bitrate + 50000) / 100000;
1269}
1270EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271
1272int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273			  enum ieee80211_p2p_attr_id attr,
1274			  u8 *buf, unsigned int bufsize)
1275{
1276	u8 *out = buf;
1277	u16 attr_remaining = 0;
1278	bool desired_attr = false;
1279	u16 desired_len = 0;
1280
1281	while (len > 0) {
1282		unsigned int iedatalen;
1283		unsigned int copy;
1284		const u8 *iedata;
1285
1286		if (len < 2)
1287			return -EILSEQ;
1288		iedatalen = ies[1];
1289		if (iedatalen + 2 > len)
1290			return -EILSEQ;
1291
1292		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293			goto cont;
1294
1295		if (iedatalen < 4)
1296			goto cont;
1297
1298		iedata = ies + 2;
1299
1300		/* check WFA OUI, P2P subtype */
1301		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302		    iedata[2] != 0x9a || iedata[3] != 0x09)
1303			goto cont;
1304
1305		iedatalen -= 4;
1306		iedata += 4;
1307
1308		/* check attribute continuation into this IE */
1309		copy = min_t(unsigned int, attr_remaining, iedatalen);
1310		if (copy && desired_attr) {
1311			desired_len += copy;
1312			if (out) {
1313				memcpy(out, iedata, min(bufsize, copy));
1314				out += min(bufsize, copy);
1315				bufsize -= min(bufsize, copy);
1316			}
1317
1318
1319			if (copy == attr_remaining)
1320				return desired_len;
1321		}
1322
1323		attr_remaining -= copy;
1324		if (attr_remaining)
1325			goto cont;
1326
1327		iedatalen -= copy;
1328		iedata += copy;
1329
1330		while (iedatalen > 0) {
1331			u16 attr_len;
1332
1333			/* P2P attribute ID & size must fit */
1334			if (iedatalen < 3)
1335				return -EILSEQ;
1336			desired_attr = iedata[0] == attr;
1337			attr_len = get_unaligned_le16(iedata + 1);
1338			iedatalen -= 3;
1339			iedata += 3;
1340
1341			copy = min_t(unsigned int, attr_len, iedatalen);
1342
1343			if (desired_attr) {
1344				desired_len += copy;
1345				if (out) {
1346					memcpy(out, iedata, min(bufsize, copy));
1347					out += min(bufsize, copy);
1348					bufsize -= min(bufsize, copy);
1349				}
1350
1351				if (copy == attr_len)
1352					return desired_len;
1353			}
1354
1355			iedata += copy;
1356			iedatalen -= copy;
1357			attr_remaining = attr_len - copy;
1358		}
1359
1360 cont:
1361		len -= ies[1] + 2;
1362		ies += ies[1] + 2;
1363	}
1364
1365	if (attr_remaining && desired_attr)
1366		return -EILSEQ;
1367
1368	return -ENOENT;
1369}
1370EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371
1372static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1373{
1374	int i;
1375
1376	for (i = 0; i < n_ids; i++)
1377		if (ids[i] == id)
1378			return true;
1379	return false;
1380}
1381
1382static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1383{
1384	/* we assume a validly formed IEs buffer */
1385	u8 len = ies[pos + 1];
1386
1387	pos += 2 + len;
1388
1389	/* the IE itself must have 255 bytes for fragments to follow */
1390	if (len < 255)
1391		return pos;
1392
1393	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1394		len = ies[pos + 1];
1395		pos += 2 + len;
1396	}
1397
1398	return pos;
1399}
1400
1401size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1402			      const u8 *ids, int n_ids,
1403			      const u8 *after_ric, int n_after_ric,
1404			      size_t offset)
1405{
1406	size_t pos = offset;
1407
1408	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1409		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1410			pos = skip_ie(ies, ielen, pos);
1411
1412			while (pos < ielen &&
1413			       !ieee80211_id_in_list(after_ric, n_after_ric,
1414						     ies[pos]))
1415				pos = skip_ie(ies, ielen, pos);
1416		} else {
1417			pos = skip_ie(ies, ielen, pos);
1418		}
1419	}
1420
1421	return pos;
1422}
1423EXPORT_SYMBOL(ieee80211_ie_split_ric);
1424
1425bool ieee80211_operating_class_to_band(u8 operating_class,
1426				       enum nl80211_band *band)
1427{
1428	switch (operating_class) {
1429	case 112:
1430	case 115 ... 127:
1431	case 128 ... 130:
1432		*band = NL80211_BAND_5GHZ;
1433		return true;
1434	case 81:
1435	case 82:
1436	case 83:
1437	case 84:
1438		*band = NL80211_BAND_2GHZ;
1439		return true;
1440	case 180:
1441		*band = NL80211_BAND_60GHZ;
1442		return true;
1443	}
1444
1445	return false;
1446}
1447EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1448
1449bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1450					  u8 *op_class)
1451{
1452	u8 vht_opclass;
1453	u16 freq = chandef->center_freq1;
1454
1455	if (freq >= 2412 && freq <= 2472) {
1456		if (chandef->width > NL80211_CHAN_WIDTH_40)
1457			return false;
1458
1459		/* 2.407 GHz, channels 1..13 */
1460		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1461			if (freq > chandef->chan->center_freq)
1462				*op_class = 83; /* HT40+ */
1463			else
1464				*op_class = 84; /* HT40- */
1465		} else {
1466			*op_class = 81;
1467		}
1468
1469		return true;
1470	}
1471
1472	if (freq == 2484) {
1473		if (chandef->width > NL80211_CHAN_WIDTH_40)
1474			return false;
1475
1476		*op_class = 82; /* channel 14 */
1477		return true;
1478	}
1479
1480	switch (chandef->width) {
1481	case NL80211_CHAN_WIDTH_80:
1482		vht_opclass = 128;
1483		break;
1484	case NL80211_CHAN_WIDTH_160:
1485		vht_opclass = 129;
1486		break;
1487	case NL80211_CHAN_WIDTH_80P80:
1488		vht_opclass = 130;
1489		break;
1490	case NL80211_CHAN_WIDTH_10:
1491	case NL80211_CHAN_WIDTH_5:
1492		return false; /* unsupported for now */
1493	default:
1494		vht_opclass = 0;
1495		break;
1496	}
1497
1498	/* 5 GHz, channels 36..48 */
1499	if (freq >= 5180 && freq <= 5240) {
1500		if (vht_opclass) {
1501			*op_class = vht_opclass;
1502		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1503			if (freq > chandef->chan->center_freq)
1504				*op_class = 116;
1505			else
1506				*op_class = 117;
1507		} else {
1508			*op_class = 115;
1509		}
1510
1511		return true;
1512	}
1513
1514	/* 5 GHz, channels 52..64 */
1515	if (freq >= 5260 && freq <= 5320) {
1516		if (vht_opclass) {
1517			*op_class = vht_opclass;
1518		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1519			if (freq > chandef->chan->center_freq)
1520				*op_class = 119;
1521			else
1522				*op_class = 120;
1523		} else {
1524			*op_class = 118;
1525		}
1526
1527		return true;
1528	}
1529
1530	/* 5 GHz, channels 100..144 */
1531	if (freq >= 5500 && freq <= 5720) {
1532		if (vht_opclass) {
1533			*op_class = vht_opclass;
1534		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1535			if (freq > chandef->chan->center_freq)
1536				*op_class = 122;
1537			else
1538				*op_class = 123;
1539		} else {
1540			*op_class = 121;
1541		}
1542
1543		return true;
1544	}
1545
1546	/* 5 GHz, channels 149..169 */
1547	if (freq >= 5745 && freq <= 5845) {
1548		if (vht_opclass) {
1549			*op_class = vht_opclass;
1550		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1551			if (freq > chandef->chan->center_freq)
1552				*op_class = 126;
1553			else
1554				*op_class = 127;
1555		} else if (freq <= 5805) {
1556			*op_class = 124;
1557		} else {
1558			*op_class = 125;
1559		}
1560
1561		return true;
1562	}
1563
1564	/* 56.16 GHz, channel 1..4 */
1565	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1566		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1567			return false;
1568
1569		*op_class = 180;
1570		return true;
1571	}
1572
1573	/* not supported yet */
1574	return false;
1575}
1576EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1577
1578static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1579				       u32 *beacon_int_gcd,
1580				       bool *beacon_int_different)
1581{
1582	struct wireless_dev *wdev;
 
1583
1584	*beacon_int_gcd = 0;
1585	*beacon_int_different = false;
1586
1587	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1588		if (!wdev->beacon_interval)
1589			continue;
1590
1591		if (!*beacon_int_gcd) {
1592			*beacon_int_gcd = wdev->beacon_interval;
1593			continue;
1594		}
1595
1596		if (wdev->beacon_interval == *beacon_int_gcd)
1597			continue;
1598
1599		*beacon_int_different = true;
1600		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1601	}
1602
1603	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1604		if (*beacon_int_gcd)
1605			*beacon_int_different = true;
1606		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1607	}
1608}
1609
1610int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1611				 enum nl80211_iftype iftype, u32 beacon_int)
1612{
1613	/*
1614	 * This is just a basic pre-condition check; if interface combinations
1615	 * are possible the driver must already be checking those with a call
1616	 * to cfg80211_check_combinations(), in which case we'll validate more
1617	 * through the cfg80211_calculate_bi_data() call and code in
1618	 * cfg80211_iter_combinations().
1619	 */
1620
1621	if (beacon_int < 10 || beacon_int > 10000)
1622		return -EINVAL;
1623
1624	return 0;
1625}
1626
1627int cfg80211_iter_combinations(struct wiphy *wiphy,
1628			       struct iface_combination_params *params,
 
 
1629			       void (*iter)(const struct ieee80211_iface_combination *c,
1630					    void *data),
1631			       void *data)
1632{
1633	const struct ieee80211_regdomain *regdom;
1634	enum nl80211_dfs_regions region = 0;
1635	int i, j, iftype;
1636	int num_interfaces = 0;
1637	u32 used_iftypes = 0;
1638	u32 beacon_int_gcd;
1639	bool beacon_int_different;
1640
1641	/*
1642	 * This is a bit strange, since the iteration used to rely only on
1643	 * the data given by the driver, but here it now relies on context,
1644	 * in form of the currently operating interfaces.
1645	 * This is OK for all current users, and saves us from having to
1646	 * push the GCD calculations into all the drivers.
1647	 * In the future, this should probably rely more on data that's in
1648	 * cfg80211 already - the only thing not would appear to be any new
1649	 * interfaces (while being brought up) and channel/radar data.
1650	 */
1651	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1652				   &beacon_int_gcd, &beacon_int_different);
1653
1654	if (params->radar_detect) {
1655		rcu_read_lock();
1656		regdom = rcu_dereference(cfg80211_regdomain);
1657		if (regdom)
1658			region = regdom->dfs_region;
1659		rcu_read_unlock();
1660	}
1661
1662	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1663		num_interfaces += params->iftype_num[iftype];
1664		if (params->iftype_num[iftype] > 0 &&
1665		    !(wiphy->software_iftypes & BIT(iftype)))
1666			used_iftypes |= BIT(iftype);
1667	}
1668
1669	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1670		const struct ieee80211_iface_combination *c;
1671		struct ieee80211_iface_limit *limits;
1672		u32 all_iftypes = 0;
1673
1674		c = &wiphy->iface_combinations[i];
1675
1676		if (num_interfaces > c->max_interfaces)
1677			continue;
1678		if (params->num_different_channels > c->num_different_channels)
1679			continue;
1680
1681		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1682				 GFP_KERNEL);
1683		if (!limits)
1684			return -ENOMEM;
1685
1686		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1687			if (wiphy->software_iftypes & BIT(iftype))
1688				continue;
1689			for (j = 0; j < c->n_limits; j++) {
1690				all_iftypes |= limits[j].types;
1691				if (!(limits[j].types & BIT(iftype)))
1692					continue;
1693				if (limits[j].max < params->iftype_num[iftype])
1694					goto cont;
1695				limits[j].max -= params->iftype_num[iftype];
1696			}
1697		}
1698
1699		if (params->radar_detect !=
1700			(c->radar_detect_widths & params->radar_detect))
1701			goto cont;
1702
1703		if (params->radar_detect && c->radar_detect_regions &&
1704		    !(c->radar_detect_regions & BIT(region)))
1705			goto cont;
1706
1707		/* Finally check that all iftypes that we're currently
1708		 * using are actually part of this combination. If they
1709		 * aren't then we can't use this combination and have
1710		 * to continue to the next.
1711		 */
1712		if ((all_iftypes & used_iftypes) != used_iftypes)
1713			goto cont;
1714
1715		if (beacon_int_gcd) {
1716			if (c->beacon_int_min_gcd &&
1717			    beacon_int_gcd < c->beacon_int_min_gcd)
1718				goto cont;
1719			if (!c->beacon_int_min_gcd && beacon_int_different)
1720				goto cont;
1721		}
1722
1723		/* This combination covered all interface types and
1724		 * supported the requested numbers, so we're good.
1725		 */
1726
1727		(*iter)(c, data);
1728 cont:
1729		kfree(limits);
1730	}
1731
1732	return 0;
1733}
1734EXPORT_SYMBOL(cfg80211_iter_combinations);
1735
1736static void
1737cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1738			  void *data)
1739{
1740	int *num = data;
1741	(*num)++;
1742}
1743
1744int cfg80211_check_combinations(struct wiphy *wiphy,
1745				struct iface_combination_params *params)
 
 
1746{
1747	int err, num = 0;
1748
1749	err = cfg80211_iter_combinations(wiphy, params,
 
1750					 cfg80211_iter_sum_ifcombs, &num);
1751	if (err)
1752		return err;
1753	if (num == 0)
1754		return -EBUSY;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(cfg80211_check_combinations);
1759
1760int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1761			   const u8 *rates, unsigned int n_rates,
1762			   u32 *mask)
1763{
1764	int i, j;
1765
1766	if (!sband)
1767		return -EINVAL;
1768
1769	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1770		return -EINVAL;
1771
1772	*mask = 0;
1773
1774	for (i = 0; i < n_rates; i++) {
1775		int rate = (rates[i] & 0x7f) * 5;
1776		bool found = false;
1777
1778		for (j = 0; j < sband->n_bitrates; j++) {
1779			if (sband->bitrates[j].bitrate == rate) {
1780				found = true;
1781				*mask |= BIT(j);
1782				break;
1783			}
1784		}
1785		if (!found)
1786			return -EINVAL;
1787	}
1788
1789	/*
1790	 * mask must have at least one bit set here since we
1791	 * didn't accept a 0-length rates array nor allowed
1792	 * entries in the array that didn't exist
1793	 */
1794
1795	return 0;
1796}
1797
1798unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1799{
1800	enum nl80211_band band;
1801	unsigned int n_channels = 0;
1802
1803	for (band = 0; band < NUM_NL80211_BANDS; band++)
1804		if (wiphy->bands[band])
1805			n_channels += wiphy->bands[band]->n_channels;
1806
1807	return n_channels;
1808}
1809EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1810
1811int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1812			 struct station_info *sinfo)
1813{
1814	struct cfg80211_registered_device *rdev;
1815	struct wireless_dev *wdev;
1816
1817	wdev = dev->ieee80211_ptr;
1818	if (!wdev)
1819		return -EOPNOTSUPP;
1820
1821	rdev = wiphy_to_rdev(wdev->wiphy);
1822	if (!rdev->ops->get_station)
1823		return -EOPNOTSUPP;
1824
1825	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1826}
1827EXPORT_SYMBOL(cfg80211_get_station);
1828
1829void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1830{
1831	int i;
1832
1833	if (!f)
1834		return;
1835
1836	kfree(f->serv_spec_info);
1837	kfree(f->srf_bf);
1838	kfree(f->srf_macs);
1839	for (i = 0; i < f->num_rx_filters; i++)
1840		kfree(f->rx_filters[i].filter);
1841
1842	for (i = 0; i < f->num_tx_filters; i++)
1843		kfree(f->tx_filters[i].filter);
1844
1845	kfree(f->rx_filters);
1846	kfree(f->tx_filters);
1847	kfree(f);
1848}
1849EXPORT_SYMBOL(cfg80211_free_nan_func);
1850
1851/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1852/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1853const unsigned char rfc1042_header[] __aligned(2) =
1854	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1855EXPORT_SYMBOL(rfc1042_header);
1856
1857/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1858const unsigned char bridge_tunnel_header[] __aligned(2) =
1859	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1860EXPORT_SYMBOL(bridge_tunnel_header);
v4.6
   1/*
   2 * Wireless utility functions
   3 *
   4 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2013-2014  Intel Mobile Communications GmbH
   6 */
   7#include <linux/export.h>
   8#include <linux/bitops.h>
   9#include <linux/etherdevice.h>
  10#include <linux/slab.h>
  11#include <net/cfg80211.h>
  12#include <net/ip.h>
  13#include <net/dsfield.h>
  14#include <linux/if_vlan.h>
  15#include <linux/mpls.h>
 
  16#include "core.h"
  17#include "rdev-ops.h"
  18
  19
  20struct ieee80211_rate *
  21ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  22			    u32 basic_rates, int bitrate)
  23{
  24	struct ieee80211_rate *result = &sband->bitrates[0];
  25	int i;
  26
  27	for (i = 0; i < sband->n_bitrates; i++) {
  28		if (!(basic_rates & BIT(i)))
  29			continue;
  30		if (sband->bitrates[i].bitrate > bitrate)
  31			continue;
  32		result = &sband->bitrates[i];
  33	}
  34
  35	return result;
  36}
  37EXPORT_SYMBOL(ieee80211_get_response_rate);
  38
  39u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  40			      enum nl80211_bss_scan_width scan_width)
  41{
  42	struct ieee80211_rate *bitrates;
  43	u32 mandatory_rates = 0;
  44	enum ieee80211_rate_flags mandatory_flag;
  45	int i;
  46
  47	if (WARN_ON(!sband))
  48		return 1;
  49
  50	if (sband->band == IEEE80211_BAND_2GHZ) {
  51		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  52		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  53			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  54		else
  55			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  56	} else {
  57		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  58	}
  59
  60	bitrates = sband->bitrates;
  61	for (i = 0; i < sband->n_bitrates; i++)
  62		if (bitrates[i].flags & mandatory_flag)
  63			mandatory_rates |= BIT(i);
  64	return mandatory_rates;
  65}
  66EXPORT_SYMBOL(ieee80211_mandatory_rates);
  67
  68int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
  69{
  70	/* see 802.11 17.3.8.3.2 and Annex J
  71	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  72	if (chan <= 0)
  73		return 0; /* not supported */
  74	switch (band) {
  75	case IEEE80211_BAND_2GHZ:
  76		if (chan == 14)
  77			return 2484;
  78		else if (chan < 14)
  79			return 2407 + chan * 5;
  80		break;
  81	case IEEE80211_BAND_5GHZ:
  82		if (chan >= 182 && chan <= 196)
  83			return 4000 + chan * 5;
  84		else
  85			return 5000 + chan * 5;
  86		break;
  87	case IEEE80211_BAND_60GHZ:
  88		if (chan < 5)
  89			return 56160 + chan * 2160;
  90		break;
  91	default:
  92		;
  93	}
  94	return 0; /* not supported */
  95}
  96EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  97
  98int ieee80211_frequency_to_channel(int freq)
  99{
 100	/* see 802.11 17.3.8.3.2 and Annex J */
 101	if (freq == 2484)
 102		return 14;
 103	else if (freq < 2484)
 104		return (freq - 2407) / 5;
 105	else if (freq >= 4910 && freq <= 4980)
 106		return (freq - 4000) / 5;
 107	else if (freq <= 45000) /* DMG band lower limit */
 108		return (freq - 5000) / 5;
 109	else if (freq >= 58320 && freq <= 64800)
 110		return (freq - 56160) / 2160;
 111	else
 112		return 0;
 113}
 114EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 115
 116struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
 117						  int freq)
 118{
 119	enum ieee80211_band band;
 120	struct ieee80211_supported_band *sband;
 121	int i;
 122
 123	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
 124		sband = wiphy->bands[band];
 125
 126		if (!sband)
 127			continue;
 128
 129		for (i = 0; i < sband->n_channels; i++) {
 130			if (sband->channels[i].center_freq == freq)
 131				return &sband->channels[i];
 132		}
 133	}
 134
 135	return NULL;
 136}
 137EXPORT_SYMBOL(__ieee80211_get_channel);
 138
 139static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
 140				     enum ieee80211_band band)
 141{
 142	int i, want;
 143
 144	switch (band) {
 145	case IEEE80211_BAND_5GHZ:
 146		want = 3;
 147		for (i = 0; i < sband->n_bitrates; i++) {
 148			if (sband->bitrates[i].bitrate == 60 ||
 149			    sband->bitrates[i].bitrate == 120 ||
 150			    sband->bitrates[i].bitrate == 240) {
 151				sband->bitrates[i].flags |=
 152					IEEE80211_RATE_MANDATORY_A;
 153				want--;
 154			}
 155		}
 156		WARN_ON(want);
 157		break;
 158	case IEEE80211_BAND_2GHZ:
 159		want = 7;
 160		for (i = 0; i < sband->n_bitrates; i++) {
 161			if (sband->bitrates[i].bitrate == 10) {
 162				sband->bitrates[i].flags |=
 163					IEEE80211_RATE_MANDATORY_B |
 164					IEEE80211_RATE_MANDATORY_G;
 165				want--;
 166			}
 167
 168			if (sband->bitrates[i].bitrate == 20 ||
 169			    sband->bitrates[i].bitrate == 55 ||
 170			    sband->bitrates[i].bitrate == 110 ||
 171			    sband->bitrates[i].bitrate == 60 ||
 172			    sband->bitrates[i].bitrate == 120 ||
 173			    sband->bitrates[i].bitrate == 240) {
 174				sband->bitrates[i].flags |=
 175					IEEE80211_RATE_MANDATORY_G;
 176				want--;
 177			}
 178
 179			if (sband->bitrates[i].bitrate != 10 &&
 180			    sband->bitrates[i].bitrate != 20 &&
 181			    sband->bitrates[i].bitrate != 55 &&
 182			    sband->bitrates[i].bitrate != 110)
 183				sband->bitrates[i].flags |=
 184					IEEE80211_RATE_ERP_G;
 185		}
 186		WARN_ON(want != 0 && want != 3 && want != 6);
 187		break;
 188	case IEEE80211_BAND_60GHZ:
 189		/* check for mandatory HT MCS 1..4 */
 190		WARN_ON(!sband->ht_cap.ht_supported);
 191		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 192		break;
 193	case IEEE80211_NUM_BANDS:
 194		WARN_ON(1);
 195		break;
 196	}
 197}
 198
 199void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 200{
 201	enum ieee80211_band band;
 202
 203	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
 204		if (wiphy->bands[band])
 205			set_mandatory_flags_band(wiphy->bands[band], band);
 206}
 207
 208bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 209{
 210	int i;
 211	for (i = 0; i < wiphy->n_cipher_suites; i++)
 212		if (cipher == wiphy->cipher_suites[i])
 213			return true;
 214	return false;
 215}
 216
 217int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 218				   struct key_params *params, int key_idx,
 219				   bool pairwise, const u8 *mac_addr)
 220{
 221	if (key_idx > 5)
 222		return -EINVAL;
 223
 224	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 225		return -EINVAL;
 226
 227	if (pairwise && !mac_addr)
 228		return -EINVAL;
 229
 230	switch (params->cipher) {
 231	case WLAN_CIPHER_SUITE_TKIP:
 232	case WLAN_CIPHER_SUITE_CCMP:
 233	case WLAN_CIPHER_SUITE_CCMP_256:
 234	case WLAN_CIPHER_SUITE_GCMP:
 235	case WLAN_CIPHER_SUITE_GCMP_256:
 236		/* Disallow pairwise keys with non-zero index unless it's WEP
 237		 * or a vendor specific cipher (because current deployments use
 238		 * pairwise WEP keys with non-zero indices and for vendor
 239		 * specific ciphers this should be validated in the driver or
 240		 * hardware level - but 802.11i clearly specifies to use zero)
 241		 */
 242		if (pairwise && key_idx)
 243			return -EINVAL;
 244		break;
 245	case WLAN_CIPHER_SUITE_AES_CMAC:
 246	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 247	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 248	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 249		/* Disallow BIP (group-only) cipher as pairwise cipher */
 250		if (pairwise)
 251			return -EINVAL;
 
 
 252		break;
 
 
 
 
 253	default:
 254		break;
 255	}
 256
 257	switch (params->cipher) {
 258	case WLAN_CIPHER_SUITE_WEP40:
 259		if (params->key_len != WLAN_KEY_LEN_WEP40)
 260			return -EINVAL;
 261		break;
 262	case WLAN_CIPHER_SUITE_TKIP:
 263		if (params->key_len != WLAN_KEY_LEN_TKIP)
 264			return -EINVAL;
 265		break;
 266	case WLAN_CIPHER_SUITE_CCMP:
 267		if (params->key_len != WLAN_KEY_LEN_CCMP)
 268			return -EINVAL;
 269		break;
 270	case WLAN_CIPHER_SUITE_CCMP_256:
 271		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 272			return -EINVAL;
 273		break;
 274	case WLAN_CIPHER_SUITE_GCMP:
 275		if (params->key_len != WLAN_KEY_LEN_GCMP)
 276			return -EINVAL;
 277		break;
 278	case WLAN_CIPHER_SUITE_GCMP_256:
 279		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 280			return -EINVAL;
 281		break;
 282	case WLAN_CIPHER_SUITE_WEP104:
 283		if (params->key_len != WLAN_KEY_LEN_WEP104)
 284			return -EINVAL;
 285		break;
 286	case WLAN_CIPHER_SUITE_AES_CMAC:
 287		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 288			return -EINVAL;
 289		break;
 290	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 291		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 292			return -EINVAL;
 293		break;
 294	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 295		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 296			return -EINVAL;
 297		break;
 298	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 299		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 300			return -EINVAL;
 301		break;
 302	default:
 303		/*
 304		 * We don't know anything about this algorithm,
 305		 * allow using it -- but the driver must check
 306		 * all parameters! We still check below whether
 307		 * or not the driver supports this algorithm,
 308		 * of course.
 309		 */
 310		break;
 311	}
 312
 313	if (params->seq) {
 314		switch (params->cipher) {
 315		case WLAN_CIPHER_SUITE_WEP40:
 316		case WLAN_CIPHER_SUITE_WEP104:
 317			/* These ciphers do not use key sequence */
 318			return -EINVAL;
 319		case WLAN_CIPHER_SUITE_TKIP:
 320		case WLAN_CIPHER_SUITE_CCMP:
 321		case WLAN_CIPHER_SUITE_CCMP_256:
 322		case WLAN_CIPHER_SUITE_GCMP:
 323		case WLAN_CIPHER_SUITE_GCMP_256:
 324		case WLAN_CIPHER_SUITE_AES_CMAC:
 325		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 326		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 327		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 328			if (params->seq_len != 6)
 329				return -EINVAL;
 330			break;
 331		}
 332	}
 333
 334	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 335		return -EINVAL;
 336
 337	return 0;
 338}
 339
 340unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 341{
 342	unsigned int hdrlen = 24;
 343
 344	if (ieee80211_is_data(fc)) {
 345		if (ieee80211_has_a4(fc))
 346			hdrlen = 30;
 347		if (ieee80211_is_data_qos(fc)) {
 348			hdrlen += IEEE80211_QOS_CTL_LEN;
 349			if (ieee80211_has_order(fc))
 350				hdrlen += IEEE80211_HT_CTL_LEN;
 351		}
 352		goto out;
 353	}
 354
 355	if (ieee80211_is_mgmt(fc)) {
 356		if (ieee80211_has_order(fc))
 357			hdrlen += IEEE80211_HT_CTL_LEN;
 358		goto out;
 359	}
 360
 361	if (ieee80211_is_ctl(fc)) {
 362		/*
 363		 * ACK and CTS are 10 bytes, all others 16. To see how
 364		 * to get this condition consider
 365		 *   subtype mask:   0b0000000011110000 (0x00F0)
 366		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 367		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 368		 *   bits that matter:         ^^^      (0x00E0)
 369		 *   value of those: 0b0000000011000000 (0x00C0)
 370		 */
 371		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 372			hdrlen = 10;
 373		else
 374			hdrlen = 16;
 375	}
 376out:
 377	return hdrlen;
 378}
 379EXPORT_SYMBOL(ieee80211_hdrlen);
 380
 381unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 382{
 383	const struct ieee80211_hdr *hdr =
 384			(const struct ieee80211_hdr *)skb->data;
 385	unsigned int hdrlen;
 386
 387	if (unlikely(skb->len < 10))
 388		return 0;
 389	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 390	if (unlikely(hdrlen > skb->len))
 391		return 0;
 392	return hdrlen;
 393}
 394EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 395
 396static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 397{
 398	int ae = flags & MESH_FLAGS_AE;
 399	/* 802.11-2012, 8.2.4.7.3 */
 400	switch (ae) {
 401	default:
 402	case 0:
 403		return 6;
 404	case MESH_FLAGS_AE_A4:
 405		return 12;
 406	case MESH_FLAGS_AE_A5_A6:
 407		return 18;
 408	}
 409}
 410
 411unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 412{
 413	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 414}
 415EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 416
 417static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
 418				    const u8 *addr, enum nl80211_iftype iftype)
 419{
 420	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 421	struct {
 422		u8 hdr[ETH_ALEN] __aligned(2);
 423		__be16 proto;
 424	} payload;
 425	struct ethhdr tmp;
 426	u16 hdrlen;
 427	u8 mesh_flags = 0;
 428
 429	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 430		return -1;
 431
 432	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 433	if (skb->len < hdrlen + 8)
 434		return -1;
 435
 436	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 437	 * header
 438	 * IEEE 802.11 address fields:
 439	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 440	 *   0     0   DA    SA    BSSID n/a
 441	 *   0     1   DA    BSSID SA    n/a
 442	 *   1     0   BSSID SA    DA    n/a
 443	 *   1     1   RA    TA    DA    SA
 444	 */
 445	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 446	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 447
 448	if (iftype == NL80211_IFTYPE_MESH_POINT)
 449		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 450
 451	switch (hdr->frame_control &
 452		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 453	case cpu_to_le16(IEEE80211_FCTL_TODS):
 454		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 455			     iftype != NL80211_IFTYPE_AP_VLAN &&
 456			     iftype != NL80211_IFTYPE_P2P_GO))
 457			return -1;
 458		break;
 459	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 460		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 461			     iftype != NL80211_IFTYPE_MESH_POINT &&
 462			     iftype != NL80211_IFTYPE_AP_VLAN &&
 463			     iftype != NL80211_IFTYPE_STATION))
 464			return -1;
 465		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 466			if (mesh_flags & MESH_FLAGS_AE_A4)
 467				return -1;
 468			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
 469				skb_copy_bits(skb, hdrlen +
 470					offsetof(struct ieee80211s_hdr, eaddr1),
 471					tmp.h_dest, 2 * ETH_ALEN);
 472			}
 473			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 474		}
 475		break;
 476	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 477		if ((iftype != NL80211_IFTYPE_STATION &&
 478		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 479		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 480		    (is_multicast_ether_addr(tmp.h_dest) &&
 481		     ether_addr_equal(tmp.h_source, addr)))
 482			return -1;
 483		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 484			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
 485				return -1;
 486			if (mesh_flags & MESH_FLAGS_AE_A4)
 487				skb_copy_bits(skb, hdrlen +
 488					offsetof(struct ieee80211s_hdr, eaddr1),
 489					tmp.h_source, ETH_ALEN);
 490			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 491		}
 492		break;
 493	case cpu_to_le16(0):
 494		if (iftype != NL80211_IFTYPE_ADHOC &&
 495		    iftype != NL80211_IFTYPE_STATION &&
 496		    iftype != NL80211_IFTYPE_OCB)
 497				return -1;
 498		break;
 499	}
 500
 501	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 502	tmp.h_proto = payload.proto;
 503
 504	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 505		    tmp.h_proto != htons(ETH_P_AARP) &&
 506		    tmp.h_proto != htons(ETH_P_IPX)) ||
 507		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 508		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 509		 * replace EtherType */
 510		hdrlen += ETH_ALEN + 2;
 511	else
 512		tmp.h_proto = htons(skb->len);
 513
 514	pskb_pull(skb, hdrlen);
 515
 516	if (!ehdr)
 517		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 518	memcpy(ehdr, &tmp, sizeof(tmp));
 519
 520	return 0;
 521}
 522
 523int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
 524			   enum nl80211_iftype iftype)
 525{
 526	return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
 527}
 528EXPORT_SYMBOL(ieee80211_data_to_8023);
 529
 530int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
 531			     enum nl80211_iftype iftype,
 532			     const u8 *bssid, bool qos)
 533{
 534	struct ieee80211_hdr hdr;
 535	u16 hdrlen, ethertype;
 536	__le16 fc;
 537	const u8 *encaps_data;
 538	int encaps_len, skip_header_bytes;
 539	int nh_pos, h_pos;
 540	int head_need;
 541
 542	if (unlikely(skb->len < ETH_HLEN))
 543		return -EINVAL;
 544
 545	nh_pos = skb_network_header(skb) - skb->data;
 546	h_pos = skb_transport_header(skb) - skb->data;
 547
 548	/* convert Ethernet header to proper 802.11 header (based on
 549	 * operation mode) */
 550	ethertype = (skb->data[12] << 8) | skb->data[13];
 551	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
 552
 553	switch (iftype) {
 554	case NL80211_IFTYPE_AP:
 555	case NL80211_IFTYPE_AP_VLAN:
 556	case NL80211_IFTYPE_P2P_GO:
 557		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
 558		/* DA BSSID SA */
 559		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 560		memcpy(hdr.addr2, addr, ETH_ALEN);
 561		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
 562		hdrlen = 24;
 563		break;
 564	case NL80211_IFTYPE_STATION:
 565	case NL80211_IFTYPE_P2P_CLIENT:
 566		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
 567		/* BSSID SA DA */
 568		memcpy(hdr.addr1, bssid, ETH_ALEN);
 569		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 570		memcpy(hdr.addr3, skb->data, ETH_ALEN);
 571		hdrlen = 24;
 572		break;
 573	case NL80211_IFTYPE_OCB:
 574	case NL80211_IFTYPE_ADHOC:
 575		/* DA SA BSSID */
 576		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 577		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 578		memcpy(hdr.addr3, bssid, ETH_ALEN);
 579		hdrlen = 24;
 580		break;
 581	default:
 582		return -EOPNOTSUPP;
 583	}
 584
 585	if (qos) {
 586		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
 587		hdrlen += 2;
 588	}
 589
 590	hdr.frame_control = fc;
 591	hdr.duration_id = 0;
 592	hdr.seq_ctrl = 0;
 593
 594	skip_header_bytes = ETH_HLEN;
 595	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
 596		encaps_data = bridge_tunnel_header;
 597		encaps_len = sizeof(bridge_tunnel_header);
 598		skip_header_bytes -= 2;
 599	} else if (ethertype >= ETH_P_802_3_MIN) {
 600		encaps_data = rfc1042_header;
 601		encaps_len = sizeof(rfc1042_header);
 602		skip_header_bytes -= 2;
 603	} else {
 604		encaps_data = NULL;
 605		encaps_len = 0;
 606	}
 607
 608	skb_pull(skb, skip_header_bytes);
 609	nh_pos -= skip_header_bytes;
 610	h_pos -= skip_header_bytes;
 611
 612	head_need = hdrlen + encaps_len - skb_headroom(skb);
 613
 614	if (head_need > 0 || skb_cloned(skb)) {
 615		head_need = max(head_need, 0);
 616		if (head_need)
 617			skb_orphan(skb);
 618
 619		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
 620			return -ENOMEM;
 621
 622		skb->truesize += head_need;
 623	}
 624
 625	if (encaps_data) {
 626		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
 627		nh_pos += encaps_len;
 628		h_pos += encaps_len;
 629	}
 630
 631	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
 632
 633	nh_pos += hdrlen;
 634	h_pos += hdrlen;
 635
 636	/* Update skb pointers to various headers since this modified frame
 637	 * is going to go through Linux networking code that may potentially
 638	 * need things like pointer to IP header. */
 639	skb_reset_mac_header(skb);
 640	skb_set_network_header(skb, nh_pos);
 641	skb_set_transport_header(skb, h_pos);
 642
 643	return 0;
 644}
 645EXPORT_SYMBOL(ieee80211_data_from_8023);
 646
 647static void
 648__frame_add_frag(struct sk_buff *skb, struct page *page,
 649		 void *ptr, int len, int size)
 650{
 651	struct skb_shared_info *sh = skb_shinfo(skb);
 652	int page_offset;
 653
 654	atomic_inc(&page->_count);
 655	page_offset = ptr - page_address(page);
 656	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 657}
 658
 659static void
 660__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 661			    int offset, int len)
 662{
 663	struct skb_shared_info *sh = skb_shinfo(skb);
 664	const skb_frag_t *frag = &sh->frags[-1];
 665	struct page *frag_page;
 666	void *frag_ptr;
 667	int frag_len, frag_size;
 668	int head_size = skb->len - skb->data_len;
 669	int cur_len;
 670
 671	frag_page = virt_to_head_page(skb->head);
 672	frag_ptr = skb->data;
 673	frag_size = head_size;
 674
 675	while (offset >= frag_size) {
 676		offset -= frag_size;
 677		frag++;
 678		frag_page = skb_frag_page(frag);
 679		frag_ptr = skb_frag_address(frag);
 680		frag_size = skb_frag_size(frag);
 681	}
 682
 683	frag_ptr += offset;
 684	frag_len = frag_size - offset;
 685
 686	cur_len = min(len, frag_len);
 687
 688	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 689	len -= cur_len;
 690
 691	while (len > 0) {
 692		frag++;
 693		frag_len = skb_frag_size(frag);
 694		cur_len = min(len, frag_len);
 695		__frame_add_frag(frame, skb_frag_page(frag),
 696				 skb_frag_address(frag), cur_len, frag_len);
 697		len -= cur_len;
 698	}
 699}
 700
 701static struct sk_buff *
 702__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 703		       int offset, int len, bool reuse_frag)
 704{
 705	struct sk_buff *frame;
 706	int cur_len = len;
 707
 708	if (skb->len - offset < len)
 709		return NULL;
 710
 711	/*
 712	 * When reusing framents, copy some data to the head to simplify
 713	 * ethernet header handling and speed up protocol header processing
 714	 * in the stack later.
 715	 */
 716	if (reuse_frag)
 717		cur_len = min_t(int, len, 32);
 718
 719	/*
 720	 * Allocate and reserve two bytes more for payload
 721	 * alignment since sizeof(struct ethhdr) is 14.
 722	 */
 723	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 
 
 724
 725	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 726	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 727
 728	len -= cur_len;
 729	if (!len)
 730		return frame;
 731
 732	offset += cur_len;
 733	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 734
 735	return frame;
 736}
 737
 738void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 739			      const u8 *addr, enum nl80211_iftype iftype,
 740			      const unsigned int extra_headroom,
 741			      bool has_80211_header)
 742{
 743	unsigned int hlen = ALIGN(extra_headroom, 4);
 744	struct sk_buff *frame = NULL;
 745	u16 ethertype;
 746	u8 *payload;
 747	int offset = 0, remaining, err;
 748	struct ethhdr eth;
 749	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 750	bool reuse_skb = false;
 751	bool last = false;
 752
 753	if (has_80211_header) {
 754		err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
 755		if (err)
 756			goto out;
 757	}
 758
 759	while (!last) {
 760		unsigned int subframe_len;
 761		int len;
 762		u8 padding;
 763
 764		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 765		len = ntohs(eth.h_proto);
 766		subframe_len = sizeof(struct ethhdr) + len;
 767		padding = (4 - subframe_len) & 0x3;
 768
 769		/* the last MSDU has no padding */
 770		remaining = skb->len - offset;
 771		if (subframe_len > remaining)
 772			goto purge;
 773
 774		offset += sizeof(struct ethhdr);
 
 
 
 
 
 
 
 
 
 
 775		/* reuse skb for the last subframe */
 776		last = remaining <= subframe_len + padding;
 777		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 778			skb_pull(skb, offset);
 779			frame = skb;
 780			reuse_skb = true;
 781		} else {
 782			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 783						       reuse_frag);
 784			if (!frame)
 785				goto purge;
 786
 787			offset += len + padding;
 788		}
 789
 790		skb_reset_network_header(frame);
 791		frame->dev = skb->dev;
 792		frame->priority = skb->priority;
 793
 794		payload = frame->data;
 795		ethertype = (payload[6] << 8) | payload[7];
 796		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 797			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 798			   ether_addr_equal(payload, bridge_tunnel_header))) {
 799			eth.h_proto = htons(ethertype);
 800			skb_pull(frame, ETH_ALEN + 2);
 801		}
 802
 803		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 804		__skb_queue_tail(list, frame);
 805	}
 806
 807	if (!reuse_skb)
 808		dev_kfree_skb(skb);
 809
 810	return;
 811
 812 purge:
 813	__skb_queue_purge(list);
 814 out:
 815	dev_kfree_skb(skb);
 816}
 817EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 818
 819/* Given a data frame determine the 802.1p/1d tag to use. */
 820unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 821				    struct cfg80211_qos_map *qos_map)
 822{
 823	unsigned int dscp;
 824	unsigned char vlan_priority;
 825
 826	/* skb->priority values from 256->263 are magic values to
 827	 * directly indicate a specific 802.1d priority.  This is used
 828	 * to allow 802.1d priority to be passed directly in from VLAN
 829	 * tags, etc.
 830	 */
 831	if (skb->priority >= 256 && skb->priority <= 263)
 832		return skb->priority - 256;
 833
 834	if (skb_vlan_tag_present(skb)) {
 835		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 836			>> VLAN_PRIO_SHIFT;
 837		if (vlan_priority > 0)
 838			return vlan_priority;
 839	}
 840
 841	switch (skb->protocol) {
 842	case htons(ETH_P_IP):
 843		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 844		break;
 845	case htons(ETH_P_IPV6):
 846		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 847		break;
 848	case htons(ETH_P_MPLS_UC):
 849	case htons(ETH_P_MPLS_MC): {
 850		struct mpls_label mpls_tmp, *mpls;
 851
 852		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 853					  sizeof(*mpls), &mpls_tmp);
 854		if (!mpls)
 855			return 0;
 856
 857		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 858			>> MPLS_LS_TC_SHIFT;
 859	}
 860	case htons(ETH_P_80221):
 861		/* 802.21 is always network control traffic */
 862		return 7;
 863	default:
 864		return 0;
 865	}
 866
 867	if (qos_map) {
 868		unsigned int i, tmp_dscp = dscp >> 2;
 869
 870		for (i = 0; i < qos_map->num_des; i++) {
 871			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
 872				return qos_map->dscp_exception[i].up;
 873		}
 874
 875		for (i = 0; i < 8; i++) {
 876			if (tmp_dscp >= qos_map->up[i].low &&
 877			    tmp_dscp <= qos_map->up[i].high)
 878				return i;
 879		}
 880	}
 881
 882	return dscp >> 5;
 883}
 884EXPORT_SYMBOL(cfg80211_classify8021d);
 885
 886const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
 887{
 888	const struct cfg80211_bss_ies *ies;
 889
 890	ies = rcu_dereference(bss->ies);
 891	if (!ies)
 892		return NULL;
 893
 894	return cfg80211_find_ie(ie, ies->data, ies->len);
 895}
 896EXPORT_SYMBOL(ieee80211_bss_get_ie);
 897
 898void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 899{
 900	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 901	struct net_device *dev = wdev->netdev;
 902	int i;
 903
 904	if (!wdev->connect_keys)
 905		return;
 906
 907	for (i = 0; i < 6; i++) {
 908		if (!wdev->connect_keys->params[i].cipher)
 909			continue;
 910		if (rdev_add_key(rdev, dev, i, false, NULL,
 911				 &wdev->connect_keys->params[i])) {
 912			netdev_err(dev, "failed to set key %d\n", i);
 913			continue;
 914		}
 915		if (wdev->connect_keys->def == i)
 916			if (rdev_set_default_key(rdev, dev, i, true, true)) {
 917				netdev_err(dev, "failed to set defkey %d\n", i);
 918				continue;
 919			}
 920		if (wdev->connect_keys->defmgmt == i)
 921			if (rdev_set_default_mgmt_key(rdev, dev, i))
 922				netdev_err(dev, "failed to set mgtdef %d\n", i);
 923	}
 924
 925	kzfree(wdev->connect_keys);
 926	wdev->connect_keys = NULL;
 927}
 928
 929void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 930{
 931	struct cfg80211_event *ev;
 932	unsigned long flags;
 933	const u8 *bssid = NULL;
 934
 935	spin_lock_irqsave(&wdev->event_lock, flags);
 936	while (!list_empty(&wdev->event_list)) {
 937		ev = list_first_entry(&wdev->event_list,
 938				      struct cfg80211_event, list);
 939		list_del(&ev->list);
 940		spin_unlock_irqrestore(&wdev->event_lock, flags);
 941
 942		wdev_lock(wdev);
 943		switch (ev->type) {
 944		case EVENT_CONNECT_RESULT:
 945			if (!is_zero_ether_addr(ev->cr.bssid))
 946				bssid = ev->cr.bssid;
 947			__cfg80211_connect_result(
 948				wdev->netdev, bssid,
 949				ev->cr.req_ie, ev->cr.req_ie_len,
 950				ev->cr.resp_ie, ev->cr.resp_ie_len,
 951				ev->cr.status,
 952				ev->cr.status == WLAN_STATUS_SUCCESS,
 953				NULL);
 954			break;
 955		case EVENT_ROAMED:
 956			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
 957					  ev->rm.req_ie_len, ev->rm.resp_ie,
 958					  ev->rm.resp_ie_len);
 959			break;
 960		case EVENT_DISCONNECTED:
 961			__cfg80211_disconnected(wdev->netdev,
 962						ev->dc.ie, ev->dc.ie_len,
 963						ev->dc.reason,
 964						!ev->dc.locally_generated);
 965			break;
 966		case EVENT_IBSS_JOINED:
 967			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 968					       ev->ij.channel);
 969			break;
 970		case EVENT_STOPPED:
 971			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 972			break;
 973		}
 974		wdev_unlock(wdev);
 975
 976		kfree(ev);
 977
 978		spin_lock_irqsave(&wdev->event_lock, flags);
 979	}
 980	spin_unlock_irqrestore(&wdev->event_lock, flags);
 981}
 982
 983void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 984{
 985	struct wireless_dev *wdev;
 986
 987	ASSERT_RTNL();
 988
 989	list_for_each_entry(wdev, &rdev->wdev_list, list)
 990		cfg80211_process_wdev_events(wdev);
 991}
 992
 993int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 994			  struct net_device *dev, enum nl80211_iftype ntype,
 995			  u32 *flags, struct vif_params *params)
 996{
 997	int err;
 998	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 999
1000	ASSERT_RTNL();
1001
1002	/* don't support changing VLANs, you just re-create them */
1003	if (otype == NL80211_IFTYPE_AP_VLAN)
1004		return -EOPNOTSUPP;
1005
1006	/* cannot change into P2P device type */
1007	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
 
1008		return -EOPNOTSUPP;
1009
1010	if (!rdev->ops->change_virtual_intf ||
1011	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1012		return -EOPNOTSUPP;
1013
1014	/* if it's part of a bridge, reject changing type to station/ibss */
1015	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1016	    (ntype == NL80211_IFTYPE_ADHOC ||
1017	     ntype == NL80211_IFTYPE_STATION ||
1018	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1019		return -EBUSY;
1020
1021	if (ntype != otype) {
1022		dev->ieee80211_ptr->use_4addr = false;
1023		dev->ieee80211_ptr->mesh_id_up_len = 0;
1024		wdev_lock(dev->ieee80211_ptr);
1025		rdev_set_qos_map(rdev, dev, NULL);
1026		wdev_unlock(dev->ieee80211_ptr);
1027
1028		switch (otype) {
1029		case NL80211_IFTYPE_AP:
1030			cfg80211_stop_ap(rdev, dev, true);
1031			break;
1032		case NL80211_IFTYPE_ADHOC:
1033			cfg80211_leave_ibss(rdev, dev, false);
1034			break;
1035		case NL80211_IFTYPE_STATION:
1036		case NL80211_IFTYPE_P2P_CLIENT:
1037			wdev_lock(dev->ieee80211_ptr);
1038			cfg80211_disconnect(rdev, dev,
1039					    WLAN_REASON_DEAUTH_LEAVING, true);
1040			wdev_unlock(dev->ieee80211_ptr);
1041			break;
1042		case NL80211_IFTYPE_MESH_POINT:
1043			/* mesh should be handled? */
1044			break;
1045		default:
1046			break;
1047		}
1048
1049		cfg80211_process_rdev_events(rdev);
1050	}
1051
1052	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1053
1054	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1055
1056	if (!err && params && params->use_4addr != -1)
1057		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1058
1059	if (!err) {
1060		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1061		switch (ntype) {
1062		case NL80211_IFTYPE_STATION:
1063			if (dev->ieee80211_ptr->use_4addr)
1064				break;
1065			/* fall through */
1066		case NL80211_IFTYPE_OCB:
1067		case NL80211_IFTYPE_P2P_CLIENT:
1068		case NL80211_IFTYPE_ADHOC:
1069			dev->priv_flags |= IFF_DONT_BRIDGE;
1070			break;
1071		case NL80211_IFTYPE_P2P_GO:
1072		case NL80211_IFTYPE_AP:
1073		case NL80211_IFTYPE_AP_VLAN:
1074		case NL80211_IFTYPE_WDS:
1075		case NL80211_IFTYPE_MESH_POINT:
1076			/* bridging OK */
1077			break;
1078		case NL80211_IFTYPE_MONITOR:
1079			/* monitor can't bridge anyway */
1080			break;
1081		case NL80211_IFTYPE_UNSPECIFIED:
1082		case NUM_NL80211_IFTYPES:
1083			/* not happening */
1084			break;
1085		case NL80211_IFTYPE_P2P_DEVICE:
 
1086			WARN_ON(1);
1087			break;
1088		}
1089	}
1090
1091	if (!err && ntype != otype && netif_running(dev)) {
1092		cfg80211_update_iface_num(rdev, ntype, 1);
1093		cfg80211_update_iface_num(rdev, otype, -1);
1094	}
1095
1096	return err;
1097}
1098
1099static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1100{
1101	static const u32 __mcs2bitrate[] = {
1102		/* control PHY */
1103		[0] =   275,
1104		/* SC PHY */
1105		[1] =  3850,
1106		[2] =  7700,
1107		[3] =  9625,
1108		[4] = 11550,
1109		[5] = 12512, /* 1251.25 mbps */
1110		[6] = 15400,
1111		[7] = 19250,
1112		[8] = 23100,
1113		[9] = 25025,
1114		[10] = 30800,
1115		[11] = 38500,
1116		[12] = 46200,
1117		/* OFDM PHY */
1118		[13] =  6930,
1119		[14] =  8662, /* 866.25 mbps */
1120		[15] = 13860,
1121		[16] = 17325,
1122		[17] = 20790,
1123		[18] = 27720,
1124		[19] = 34650,
1125		[20] = 41580,
1126		[21] = 45045,
1127		[22] = 51975,
1128		[23] = 62370,
1129		[24] = 67568, /* 6756.75 mbps */
1130		/* LP-SC PHY */
1131		[25] =  6260,
1132		[26] =  8340,
1133		[27] = 11120,
1134		[28] = 12510,
1135		[29] = 16680,
1136		[30] = 22240,
1137		[31] = 25030,
1138	};
1139
1140	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1141		return 0;
1142
1143	return __mcs2bitrate[rate->mcs];
1144}
1145
1146static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1147{
1148	static const u32 base[4][10] = {
1149		{   6500000,
1150		   13000000,
1151		   19500000,
1152		   26000000,
1153		   39000000,
1154		   52000000,
1155		   58500000,
1156		   65000000,
1157		   78000000,
1158		   0,
 
1159		},
1160		{  13500000,
1161		   27000000,
1162		   40500000,
1163		   54000000,
1164		   81000000,
1165		  108000000,
1166		  121500000,
1167		  135000000,
1168		  162000000,
1169		  180000000,
1170		},
1171		{  29300000,
1172		   58500000,
1173		   87800000,
1174		  117000000,
1175		  175500000,
1176		  234000000,
1177		  263300000,
1178		  292500000,
1179		  351000000,
1180		  390000000,
1181		},
1182		{  58500000,
1183		  117000000,
1184		  175500000,
1185		  234000000,
1186		  351000000,
1187		  468000000,
1188		  526500000,
1189		  585000000,
1190		  702000000,
1191		  780000000,
1192		},
1193	};
1194	u32 bitrate;
1195	int idx;
1196
1197	if (WARN_ON_ONCE(rate->mcs > 9))
1198		return 0;
1199
1200	switch (rate->bw) {
1201	case RATE_INFO_BW_160:
1202		idx = 3;
1203		break;
1204	case RATE_INFO_BW_80:
1205		idx = 2;
1206		break;
1207	case RATE_INFO_BW_40:
1208		idx = 1;
1209		break;
1210	case RATE_INFO_BW_5:
1211	case RATE_INFO_BW_10:
1212	default:
1213		WARN_ON(1);
1214		/* fall through */
1215	case RATE_INFO_BW_20:
1216		idx = 0;
1217	}
1218
1219	bitrate = base[idx][rate->mcs];
1220	bitrate *= rate->nss;
1221
1222	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1223		bitrate = (bitrate / 9) * 10;
1224
1225	/* do NOT round down here */
1226	return (bitrate + 50000) / 100000;
1227}
1228
1229u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1230{
1231	int modulation, streams, bitrate;
1232
1233	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1234	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1235		return rate->legacy;
1236	if (rate->flags & RATE_INFO_FLAGS_60G)
1237		return cfg80211_calculate_bitrate_60g(rate);
1238	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1239		return cfg80211_calculate_bitrate_vht(rate);
1240
1241	/* the formula below does only work for MCS values smaller than 32 */
1242	if (WARN_ON_ONCE(rate->mcs >= 32))
1243		return 0;
1244
1245	modulation = rate->mcs & 7;
1246	streams = (rate->mcs >> 3) + 1;
1247
1248	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1249
1250	if (modulation < 4)
1251		bitrate *= (modulation + 1);
1252	else if (modulation == 4)
1253		bitrate *= (modulation + 2);
1254	else
1255		bitrate *= (modulation + 3);
1256
1257	bitrate *= streams;
1258
1259	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1260		bitrate = (bitrate / 9) * 10;
1261
1262	/* do NOT round down here */
1263	return (bitrate + 50000) / 100000;
1264}
1265EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1266
1267int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1268			  enum ieee80211_p2p_attr_id attr,
1269			  u8 *buf, unsigned int bufsize)
1270{
1271	u8 *out = buf;
1272	u16 attr_remaining = 0;
1273	bool desired_attr = false;
1274	u16 desired_len = 0;
1275
1276	while (len > 0) {
1277		unsigned int iedatalen;
1278		unsigned int copy;
1279		const u8 *iedata;
1280
1281		if (len < 2)
1282			return -EILSEQ;
1283		iedatalen = ies[1];
1284		if (iedatalen + 2 > len)
1285			return -EILSEQ;
1286
1287		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1288			goto cont;
1289
1290		if (iedatalen < 4)
1291			goto cont;
1292
1293		iedata = ies + 2;
1294
1295		/* check WFA OUI, P2P subtype */
1296		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1297		    iedata[2] != 0x9a || iedata[3] != 0x09)
1298			goto cont;
1299
1300		iedatalen -= 4;
1301		iedata += 4;
1302
1303		/* check attribute continuation into this IE */
1304		copy = min_t(unsigned int, attr_remaining, iedatalen);
1305		if (copy && desired_attr) {
1306			desired_len += copy;
1307			if (out) {
1308				memcpy(out, iedata, min(bufsize, copy));
1309				out += min(bufsize, copy);
1310				bufsize -= min(bufsize, copy);
1311			}
1312
1313
1314			if (copy == attr_remaining)
1315				return desired_len;
1316		}
1317
1318		attr_remaining -= copy;
1319		if (attr_remaining)
1320			goto cont;
1321
1322		iedatalen -= copy;
1323		iedata += copy;
1324
1325		while (iedatalen > 0) {
1326			u16 attr_len;
1327
1328			/* P2P attribute ID & size must fit */
1329			if (iedatalen < 3)
1330				return -EILSEQ;
1331			desired_attr = iedata[0] == attr;
1332			attr_len = get_unaligned_le16(iedata + 1);
1333			iedatalen -= 3;
1334			iedata += 3;
1335
1336			copy = min_t(unsigned int, attr_len, iedatalen);
1337
1338			if (desired_attr) {
1339				desired_len += copy;
1340				if (out) {
1341					memcpy(out, iedata, min(bufsize, copy));
1342					out += min(bufsize, copy);
1343					bufsize -= min(bufsize, copy);
1344				}
1345
1346				if (copy == attr_len)
1347					return desired_len;
1348			}
1349
1350			iedata += copy;
1351			iedatalen -= copy;
1352			attr_remaining = attr_len - copy;
1353		}
1354
1355 cont:
1356		len -= ies[1] + 2;
1357		ies += ies[1] + 2;
1358	}
1359
1360	if (attr_remaining && desired_attr)
1361		return -EILSEQ;
1362
1363	return -ENOENT;
1364}
1365EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1366
1367static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1368{
1369	int i;
1370
1371	for (i = 0; i < n_ids; i++)
1372		if (ids[i] == id)
1373			return true;
1374	return false;
1375}
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1378			      const u8 *ids, int n_ids,
1379			      const u8 *after_ric, int n_after_ric,
1380			      size_t offset)
1381{
1382	size_t pos = offset;
1383
1384	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1385		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1386			pos += 2 + ies[pos + 1];
1387
1388			while (pos < ielen &&
1389			       !ieee80211_id_in_list(after_ric, n_after_ric,
1390						     ies[pos]))
1391				pos += 2 + ies[pos + 1];
1392		} else {
1393			pos += 2 + ies[pos + 1];
1394		}
1395	}
1396
1397	return pos;
1398}
1399EXPORT_SYMBOL(ieee80211_ie_split_ric);
1400
1401bool ieee80211_operating_class_to_band(u8 operating_class,
1402				       enum ieee80211_band *band)
1403{
1404	switch (operating_class) {
1405	case 112:
1406	case 115 ... 127:
1407	case 128 ... 130:
1408		*band = IEEE80211_BAND_5GHZ;
1409		return true;
1410	case 81:
1411	case 82:
1412	case 83:
1413	case 84:
1414		*band = IEEE80211_BAND_2GHZ;
1415		return true;
1416	case 180:
1417		*band = IEEE80211_BAND_60GHZ;
1418		return true;
1419	}
1420
1421	return false;
1422}
1423EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1424
1425bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1426					  u8 *op_class)
1427{
1428	u8 vht_opclass;
1429	u16 freq = chandef->center_freq1;
1430
1431	if (freq >= 2412 && freq <= 2472) {
1432		if (chandef->width > NL80211_CHAN_WIDTH_40)
1433			return false;
1434
1435		/* 2.407 GHz, channels 1..13 */
1436		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1437			if (freq > chandef->chan->center_freq)
1438				*op_class = 83; /* HT40+ */
1439			else
1440				*op_class = 84; /* HT40- */
1441		} else {
1442			*op_class = 81;
1443		}
1444
1445		return true;
1446	}
1447
1448	if (freq == 2484) {
1449		if (chandef->width > NL80211_CHAN_WIDTH_40)
1450			return false;
1451
1452		*op_class = 82; /* channel 14 */
1453		return true;
1454	}
1455
1456	switch (chandef->width) {
1457	case NL80211_CHAN_WIDTH_80:
1458		vht_opclass = 128;
1459		break;
1460	case NL80211_CHAN_WIDTH_160:
1461		vht_opclass = 129;
1462		break;
1463	case NL80211_CHAN_WIDTH_80P80:
1464		vht_opclass = 130;
1465		break;
1466	case NL80211_CHAN_WIDTH_10:
1467	case NL80211_CHAN_WIDTH_5:
1468		return false; /* unsupported for now */
1469	default:
1470		vht_opclass = 0;
1471		break;
1472	}
1473
1474	/* 5 GHz, channels 36..48 */
1475	if (freq >= 5180 && freq <= 5240) {
1476		if (vht_opclass) {
1477			*op_class = vht_opclass;
1478		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1479			if (freq > chandef->chan->center_freq)
1480				*op_class = 116;
1481			else
1482				*op_class = 117;
1483		} else {
1484			*op_class = 115;
1485		}
1486
1487		return true;
1488	}
1489
1490	/* 5 GHz, channels 52..64 */
1491	if (freq >= 5260 && freq <= 5320) {
1492		if (vht_opclass) {
1493			*op_class = vht_opclass;
1494		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1495			if (freq > chandef->chan->center_freq)
1496				*op_class = 119;
1497			else
1498				*op_class = 120;
1499		} else {
1500			*op_class = 118;
1501		}
1502
1503		return true;
1504	}
1505
1506	/* 5 GHz, channels 100..144 */
1507	if (freq >= 5500 && freq <= 5720) {
1508		if (vht_opclass) {
1509			*op_class = vht_opclass;
1510		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1511			if (freq > chandef->chan->center_freq)
1512				*op_class = 122;
1513			else
1514				*op_class = 123;
1515		} else {
1516			*op_class = 121;
1517		}
1518
1519		return true;
1520	}
1521
1522	/* 5 GHz, channels 149..169 */
1523	if (freq >= 5745 && freq <= 5845) {
1524		if (vht_opclass) {
1525			*op_class = vht_opclass;
1526		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1527			if (freq > chandef->chan->center_freq)
1528				*op_class = 126;
1529			else
1530				*op_class = 127;
1531		} else if (freq <= 5805) {
1532			*op_class = 124;
1533		} else {
1534			*op_class = 125;
1535		}
1536
1537		return true;
1538	}
1539
1540	/* 56.16 GHz, channel 1..4 */
1541	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1542		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1543			return false;
1544
1545		*op_class = 180;
1546		return true;
1547	}
1548
1549	/* not supported yet */
1550	return false;
1551}
1552EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1553
1554int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1555				 u32 beacon_int)
 
1556{
1557	struct wireless_dev *wdev;
1558	int res = 0;
1559
1560	if (!beacon_int)
1561		return -EINVAL;
1562
1563	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1564		if (!wdev->beacon_interval)
1565			continue;
1566		if (wdev->beacon_interval != beacon_int) {
1567			res = -EINVAL;
1568			break;
 
1569		}
 
 
 
 
 
 
 
 
 
 
 
 
1570	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571
1572	return res;
1573}
1574
1575int cfg80211_iter_combinations(struct wiphy *wiphy,
1576			       const int num_different_channels,
1577			       const u8 radar_detect,
1578			       const int iftype_num[NUM_NL80211_IFTYPES],
1579			       void (*iter)(const struct ieee80211_iface_combination *c,
1580					    void *data),
1581			       void *data)
1582{
1583	const struct ieee80211_regdomain *regdom;
1584	enum nl80211_dfs_regions region = 0;
1585	int i, j, iftype;
1586	int num_interfaces = 0;
1587	u32 used_iftypes = 0;
 
 
1588
1589	if (radar_detect) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1590		rcu_read_lock();
1591		regdom = rcu_dereference(cfg80211_regdomain);
1592		if (regdom)
1593			region = regdom->dfs_region;
1594		rcu_read_unlock();
1595	}
1596
1597	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1598		num_interfaces += iftype_num[iftype];
1599		if (iftype_num[iftype] > 0 &&
1600		    !(wiphy->software_iftypes & BIT(iftype)))
1601			used_iftypes |= BIT(iftype);
1602	}
1603
1604	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1605		const struct ieee80211_iface_combination *c;
1606		struct ieee80211_iface_limit *limits;
1607		u32 all_iftypes = 0;
1608
1609		c = &wiphy->iface_combinations[i];
1610
1611		if (num_interfaces > c->max_interfaces)
1612			continue;
1613		if (num_different_channels > c->num_different_channels)
1614			continue;
1615
1616		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1617				 GFP_KERNEL);
1618		if (!limits)
1619			return -ENOMEM;
1620
1621		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1622			if (wiphy->software_iftypes & BIT(iftype))
1623				continue;
1624			for (j = 0; j < c->n_limits; j++) {
1625				all_iftypes |= limits[j].types;
1626				if (!(limits[j].types & BIT(iftype)))
1627					continue;
1628				if (limits[j].max < iftype_num[iftype])
1629					goto cont;
1630				limits[j].max -= iftype_num[iftype];
1631			}
1632		}
1633
1634		if (radar_detect != (c->radar_detect_widths & radar_detect))
 
1635			goto cont;
1636
1637		if (radar_detect && c->radar_detect_regions &&
1638		    !(c->radar_detect_regions & BIT(region)))
1639			goto cont;
1640
1641		/* Finally check that all iftypes that we're currently
1642		 * using are actually part of this combination. If they
1643		 * aren't then we can't use this combination and have
1644		 * to continue to the next.
1645		 */
1646		if ((all_iftypes & used_iftypes) != used_iftypes)
1647			goto cont;
1648
 
 
 
 
 
 
 
 
1649		/* This combination covered all interface types and
1650		 * supported the requested numbers, so we're good.
1651		 */
1652
1653		(*iter)(c, data);
1654 cont:
1655		kfree(limits);
1656	}
1657
1658	return 0;
1659}
1660EXPORT_SYMBOL(cfg80211_iter_combinations);
1661
1662static void
1663cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1664			  void *data)
1665{
1666	int *num = data;
1667	(*num)++;
1668}
1669
1670int cfg80211_check_combinations(struct wiphy *wiphy,
1671				const int num_different_channels,
1672				const u8 radar_detect,
1673				const int iftype_num[NUM_NL80211_IFTYPES])
1674{
1675	int err, num = 0;
1676
1677	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1678					 radar_detect, iftype_num,
1679					 cfg80211_iter_sum_ifcombs, &num);
1680	if (err)
1681		return err;
1682	if (num == 0)
1683		return -EBUSY;
1684
1685	return 0;
1686}
1687EXPORT_SYMBOL(cfg80211_check_combinations);
1688
1689int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1690			   const u8 *rates, unsigned int n_rates,
1691			   u32 *mask)
1692{
1693	int i, j;
1694
1695	if (!sband)
1696		return -EINVAL;
1697
1698	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1699		return -EINVAL;
1700
1701	*mask = 0;
1702
1703	for (i = 0; i < n_rates; i++) {
1704		int rate = (rates[i] & 0x7f) * 5;
1705		bool found = false;
1706
1707		for (j = 0; j < sband->n_bitrates; j++) {
1708			if (sband->bitrates[j].bitrate == rate) {
1709				found = true;
1710				*mask |= BIT(j);
1711				break;
1712			}
1713		}
1714		if (!found)
1715			return -EINVAL;
1716	}
1717
1718	/*
1719	 * mask must have at least one bit set here since we
1720	 * didn't accept a 0-length rates array nor allowed
1721	 * entries in the array that didn't exist
1722	 */
1723
1724	return 0;
1725}
1726
1727unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1728{
1729	enum ieee80211_band band;
1730	unsigned int n_channels = 0;
1731
1732	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1733		if (wiphy->bands[band])
1734			n_channels += wiphy->bands[band]->n_channels;
1735
1736	return n_channels;
1737}
1738EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1739
1740int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1741			 struct station_info *sinfo)
1742{
1743	struct cfg80211_registered_device *rdev;
1744	struct wireless_dev *wdev;
1745
1746	wdev = dev->ieee80211_ptr;
1747	if (!wdev)
1748		return -EOPNOTSUPP;
1749
1750	rdev = wiphy_to_rdev(wdev->wiphy);
1751	if (!rdev->ops->get_station)
1752		return -EOPNOTSUPP;
1753
1754	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1755}
1756EXPORT_SYMBOL(cfg80211_get_station);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757
1758/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1759/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1760const unsigned char rfc1042_header[] __aligned(2) =
1761	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1762EXPORT_SYMBOL(rfc1042_header);
1763
1764/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1765const unsigned char bridge_tunnel_header[] __aligned(2) =
1766	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1767EXPORT_SYMBOL(bridge_tunnel_header);