Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/kdebug.h>
22#include <linux/kgdb.h>
23#include <linux/kernel.h>
24#include <linux/export.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/string.h>
28#include <linux/delay.h>
29#include <linux/errno.h>
30#include <linux/kexec.h>
31#include <linux/sched.h>
32#include <linux/timer.h>
33#include <linux/init.h>
34#include <linux/bug.h>
35#include <linux/nmi.h>
36#include <linux/mm.h>
37#include <linux/smp.h>
38#include <linux/io.h>
39
40#ifdef CONFIG_EISA
41#include <linux/ioport.h>
42#include <linux/eisa.h>
43#endif
44
45#if defined(CONFIG_EDAC)
46#include <linux/edac.h>
47#endif
48
49#include <asm/kmemcheck.h>
50#include <asm/stacktrace.h>
51#include <asm/processor.h>
52#include <asm/debugreg.h>
53#include <linux/atomic.h>
54#include <asm/text-patching.h>
55#include <asm/ftrace.h>
56#include <asm/traps.h>
57#include <asm/desc.h>
58#include <asm/fpu/internal.h>
59#include <asm/mce.h>
60#include <asm/fixmap.h>
61#include <asm/mach_traps.h>
62#include <asm/alternative.h>
63#include <asm/fpu/xstate.h>
64#include <asm/trace/mpx.h>
65#include <asm/mpx.h>
66#include <asm/vm86.h>
67
68#ifdef CONFIG_X86_64
69#include <asm/x86_init.h>
70#include <asm/pgalloc.h>
71#include <asm/proto.h>
72
73/* No need to be aligned, but done to keep all IDTs defined the same way. */
74gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
75#else
76#include <asm/processor-flags.h>
77#include <asm/setup.h>
78#include <asm/proto.h>
79#endif
80
81/* Must be page-aligned because the real IDT is used in a fixmap. */
82gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
83
84DECLARE_BITMAP(used_vectors, NR_VECTORS);
85EXPORT_SYMBOL_GPL(used_vectors);
86
87static inline void cond_local_irq_enable(struct pt_regs *regs)
88{
89 if (regs->flags & X86_EFLAGS_IF)
90 local_irq_enable();
91}
92
93static inline void cond_local_irq_disable(struct pt_regs *regs)
94{
95 if (regs->flags & X86_EFLAGS_IF)
96 local_irq_disable();
97}
98
99/*
100 * In IST context, we explicitly disable preemption. This serves two
101 * purposes: it makes it much less likely that we would accidentally
102 * schedule in IST context and it will force a warning if we somehow
103 * manage to schedule by accident.
104 */
105void ist_enter(struct pt_regs *regs)
106{
107 if (user_mode(regs)) {
108 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
109 } else {
110 /*
111 * We might have interrupted pretty much anything. In
112 * fact, if we're a machine check, we can even interrupt
113 * NMI processing. We don't want in_nmi() to return true,
114 * but we need to notify RCU.
115 */
116 rcu_nmi_enter();
117 }
118
119 preempt_disable();
120
121 /* This code is a bit fragile. Test it. */
122 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
123}
124
125void ist_exit(struct pt_regs *regs)
126{
127 preempt_enable_no_resched();
128
129 if (!user_mode(regs))
130 rcu_nmi_exit();
131}
132
133/**
134 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
135 * @regs: regs passed to the IST exception handler
136 *
137 * IST exception handlers normally cannot schedule. As a special
138 * exception, if the exception interrupted userspace code (i.e.
139 * user_mode(regs) would return true) and the exception was not
140 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
141 * begins a non-atomic section within an ist_enter()/ist_exit() region.
142 * Callers are responsible for enabling interrupts themselves inside
143 * the non-atomic section, and callers must call ist_end_non_atomic()
144 * before ist_exit().
145 */
146void ist_begin_non_atomic(struct pt_regs *regs)
147{
148 BUG_ON(!user_mode(regs));
149
150 /*
151 * Sanity check: we need to be on the normal thread stack. This
152 * will catch asm bugs and any attempt to use ist_preempt_enable
153 * from double_fault.
154 */
155 BUG_ON((unsigned long)(current_top_of_stack() -
156 current_stack_pointer()) >= THREAD_SIZE);
157
158 preempt_enable_no_resched();
159}
160
161/**
162 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
163 *
164 * Ends a non-atomic section started with ist_begin_non_atomic().
165 */
166void ist_end_non_atomic(void)
167{
168 preempt_disable();
169}
170
171static nokprobe_inline int
172do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
173 struct pt_regs *regs, long error_code)
174{
175 if (v8086_mode(regs)) {
176 /*
177 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
178 * On nmi (interrupt 2), do_trap should not be called.
179 */
180 if (trapnr < X86_TRAP_UD) {
181 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
182 error_code, trapnr))
183 return 0;
184 }
185 return -1;
186 }
187
188 if (!user_mode(regs)) {
189 if (!fixup_exception(regs, trapnr)) {
190 tsk->thread.error_code = error_code;
191 tsk->thread.trap_nr = trapnr;
192 die(str, regs, error_code);
193 }
194 return 0;
195 }
196
197 return -1;
198}
199
200static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
201 siginfo_t *info)
202{
203 unsigned long siaddr;
204 int sicode;
205
206 switch (trapnr) {
207 default:
208 return SEND_SIG_PRIV;
209
210 case X86_TRAP_DE:
211 sicode = FPE_INTDIV;
212 siaddr = uprobe_get_trap_addr(regs);
213 break;
214 case X86_TRAP_UD:
215 sicode = ILL_ILLOPN;
216 siaddr = uprobe_get_trap_addr(regs);
217 break;
218 case X86_TRAP_AC:
219 sicode = BUS_ADRALN;
220 siaddr = 0;
221 break;
222 }
223
224 info->si_signo = signr;
225 info->si_errno = 0;
226 info->si_code = sicode;
227 info->si_addr = (void __user *)siaddr;
228 return info;
229}
230
231static void
232do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
233 long error_code, siginfo_t *info)
234{
235 struct task_struct *tsk = current;
236
237
238 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
239 return;
240 /*
241 * We want error_code and trap_nr set for userspace faults and
242 * kernelspace faults which result in die(), but not
243 * kernelspace faults which are fixed up. die() gives the
244 * process no chance to handle the signal and notice the
245 * kernel fault information, so that won't result in polluting
246 * the information about previously queued, but not yet
247 * delivered, faults. See also do_general_protection below.
248 */
249 tsk->thread.error_code = error_code;
250 tsk->thread.trap_nr = trapnr;
251
252 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
253 printk_ratelimit()) {
254 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
255 tsk->comm, tsk->pid, str,
256 regs->ip, regs->sp, error_code);
257 print_vma_addr(" in ", regs->ip);
258 pr_cont("\n");
259 }
260
261 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
262}
263NOKPROBE_SYMBOL(do_trap);
264
265static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
266 unsigned long trapnr, int signr)
267{
268 siginfo_t info;
269
270 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
271
272 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
273 NOTIFY_STOP) {
274 cond_local_irq_enable(regs);
275 do_trap(trapnr, signr, str, regs, error_code,
276 fill_trap_info(regs, signr, trapnr, &info));
277 }
278}
279
280#define DO_ERROR(trapnr, signr, str, name) \
281dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
282{ \
283 do_error_trap(regs, error_code, str, trapnr, signr); \
284}
285
286DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
287DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
288DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
289DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
290DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
291DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
292DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
293DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
294
295#ifdef CONFIG_VMAP_STACK
296__visible void __noreturn handle_stack_overflow(const char *message,
297 struct pt_regs *regs,
298 unsigned long fault_address)
299{
300 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
301 (void *)fault_address, current->stack,
302 (char *)current->stack + THREAD_SIZE - 1);
303 die(message, regs, 0);
304
305 /* Be absolutely certain we don't return. */
306 panic(message);
307}
308#endif
309
310#ifdef CONFIG_X86_64
311/* Runs on IST stack */
312dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
313{
314 static const char str[] = "double fault";
315 struct task_struct *tsk = current;
316#ifdef CONFIG_VMAP_STACK
317 unsigned long cr2;
318#endif
319
320#ifdef CONFIG_X86_ESPFIX64
321 extern unsigned char native_irq_return_iret[];
322
323 /*
324 * If IRET takes a non-IST fault on the espfix64 stack, then we
325 * end up promoting it to a doublefault. In that case, modify
326 * the stack to make it look like we just entered the #GP
327 * handler from user space, similar to bad_iret.
328 *
329 * No need for ist_enter here because we don't use RCU.
330 */
331 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
332 regs->cs == __KERNEL_CS &&
333 regs->ip == (unsigned long)native_irq_return_iret)
334 {
335 struct pt_regs *normal_regs = task_pt_regs(current);
336
337 /* Fake a #GP(0) from userspace. */
338 memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
339 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
340 regs->ip = (unsigned long)general_protection;
341 regs->sp = (unsigned long)&normal_regs->orig_ax;
342
343 return;
344 }
345#endif
346
347 ist_enter(regs);
348 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
349
350 tsk->thread.error_code = error_code;
351 tsk->thread.trap_nr = X86_TRAP_DF;
352
353#ifdef CONFIG_VMAP_STACK
354 /*
355 * If we overflow the stack into a guard page, the CPU will fail
356 * to deliver #PF and will send #DF instead. Similarly, if we
357 * take any non-IST exception while too close to the bottom of
358 * the stack, the processor will get a page fault while
359 * delivering the exception and will generate a double fault.
360 *
361 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
362 * Page-Fault Exception (#PF):
363 *
364 * Processors update CR2 whenever a page fault is detected. If a
365 * second page fault occurs while an earlier page fault is being
366 * deliv- ered, the faulting linear address of the second fault will
367 * overwrite the contents of CR2 (replacing the previous
368 * address). These updates to CR2 occur even if the page fault
369 * results in a double fault or occurs during the delivery of a
370 * double fault.
371 *
372 * The logic below has a small possibility of incorrectly diagnosing
373 * some errors as stack overflows. For example, if the IDT or GDT
374 * gets corrupted such that #GP delivery fails due to a bad descriptor
375 * causing #GP and we hit this condition while CR2 coincidentally
376 * points to the stack guard page, we'll think we overflowed the
377 * stack. Given that we're going to panic one way or another
378 * if this happens, this isn't necessarily worth fixing.
379 *
380 * If necessary, we could improve the test by only diagnosing
381 * a stack overflow if the saved RSP points within 47 bytes of
382 * the bottom of the stack: if RSP == tsk_stack + 48 and we
383 * take an exception, the stack is already aligned and there
384 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
385 * possible error code, so a stack overflow would *not* double
386 * fault. With any less space left, exception delivery could
387 * fail, and, as a practical matter, we've overflowed the
388 * stack even if the actual trigger for the double fault was
389 * something else.
390 */
391 cr2 = read_cr2();
392 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
393 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
394#endif
395
396#ifdef CONFIG_DOUBLEFAULT
397 df_debug(regs, error_code);
398#endif
399 /*
400 * This is always a kernel trap and never fixable (and thus must
401 * never return).
402 */
403 for (;;)
404 die(str, regs, error_code);
405}
406#endif
407
408dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
409{
410 const struct mpx_bndcsr *bndcsr;
411 siginfo_t *info;
412
413 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
414 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
415 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
416 return;
417 cond_local_irq_enable(regs);
418
419 if (!user_mode(regs))
420 die("bounds", regs, error_code);
421
422 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
423 /* The exception is not from Intel MPX */
424 goto exit_trap;
425 }
426
427 /*
428 * We need to look at BNDSTATUS to resolve this exception.
429 * A NULL here might mean that it is in its 'init state',
430 * which is all zeros which indicates MPX was not
431 * responsible for the exception.
432 */
433 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
434 if (!bndcsr)
435 goto exit_trap;
436
437 trace_bounds_exception_mpx(bndcsr);
438 /*
439 * The error code field of the BNDSTATUS register communicates status
440 * information of a bound range exception #BR or operation involving
441 * bound directory.
442 */
443 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
444 case 2: /* Bound directory has invalid entry. */
445 if (mpx_handle_bd_fault())
446 goto exit_trap;
447 break; /* Success, it was handled */
448 case 1: /* Bound violation. */
449 info = mpx_generate_siginfo(regs);
450 if (IS_ERR(info)) {
451 /*
452 * We failed to decode the MPX instruction. Act as if
453 * the exception was not caused by MPX.
454 */
455 goto exit_trap;
456 }
457 /*
458 * Success, we decoded the instruction and retrieved
459 * an 'info' containing the address being accessed
460 * which caused the exception. This information
461 * allows and application to possibly handle the
462 * #BR exception itself.
463 */
464 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
465 kfree(info);
466 break;
467 case 0: /* No exception caused by Intel MPX operations. */
468 goto exit_trap;
469 default:
470 die("bounds", regs, error_code);
471 }
472
473 return;
474
475exit_trap:
476 /*
477 * This path out is for all the cases where we could not
478 * handle the exception in some way (like allocating a
479 * table or telling userspace about it. We will also end
480 * up here if the kernel has MPX turned off at compile
481 * time..
482 */
483 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
484}
485
486dotraplinkage void
487do_general_protection(struct pt_regs *regs, long error_code)
488{
489 struct task_struct *tsk;
490
491 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
492 cond_local_irq_enable(regs);
493
494 if (v8086_mode(regs)) {
495 local_irq_enable();
496 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
497 return;
498 }
499
500 tsk = current;
501 if (!user_mode(regs)) {
502 if (fixup_exception(regs, X86_TRAP_GP))
503 return;
504
505 tsk->thread.error_code = error_code;
506 tsk->thread.trap_nr = X86_TRAP_GP;
507 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
508 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
509 die("general protection fault", regs, error_code);
510 return;
511 }
512
513 tsk->thread.error_code = error_code;
514 tsk->thread.trap_nr = X86_TRAP_GP;
515
516 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
517 printk_ratelimit()) {
518 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
519 tsk->comm, task_pid_nr(tsk),
520 regs->ip, regs->sp, error_code);
521 print_vma_addr(" in ", regs->ip);
522 pr_cont("\n");
523 }
524
525 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
526}
527NOKPROBE_SYMBOL(do_general_protection);
528
529/* May run on IST stack. */
530dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
531{
532#ifdef CONFIG_DYNAMIC_FTRACE
533 /*
534 * ftrace must be first, everything else may cause a recursive crash.
535 * See note by declaration of modifying_ftrace_code in ftrace.c
536 */
537 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
538 ftrace_int3_handler(regs))
539 return;
540#endif
541 if (poke_int3_handler(regs))
542 return;
543
544 ist_enter(regs);
545 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
546#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
547 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
548 SIGTRAP) == NOTIFY_STOP)
549 goto exit;
550#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
551
552#ifdef CONFIG_KPROBES
553 if (kprobe_int3_handler(regs))
554 goto exit;
555#endif
556
557 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
558 SIGTRAP) == NOTIFY_STOP)
559 goto exit;
560
561 /*
562 * Let others (NMI) know that the debug stack is in use
563 * as we may switch to the interrupt stack.
564 */
565 debug_stack_usage_inc();
566 preempt_disable();
567 cond_local_irq_enable(regs);
568 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
569 cond_local_irq_disable(regs);
570 preempt_enable_no_resched();
571 debug_stack_usage_dec();
572exit:
573 ist_exit(regs);
574}
575NOKPROBE_SYMBOL(do_int3);
576
577#ifdef CONFIG_X86_64
578/*
579 * Help handler running on IST stack to switch off the IST stack if the
580 * interrupted code was in user mode. The actual stack switch is done in
581 * entry_64.S
582 */
583asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
584{
585 struct pt_regs *regs = task_pt_regs(current);
586 *regs = *eregs;
587 return regs;
588}
589NOKPROBE_SYMBOL(sync_regs);
590
591struct bad_iret_stack {
592 void *error_entry_ret;
593 struct pt_regs regs;
594};
595
596asmlinkage __visible notrace
597struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
598{
599 /*
600 * This is called from entry_64.S early in handling a fault
601 * caused by a bad iret to user mode. To handle the fault
602 * correctly, we want move our stack frame to task_pt_regs
603 * and we want to pretend that the exception came from the
604 * iret target.
605 */
606 struct bad_iret_stack *new_stack =
607 container_of(task_pt_regs(current),
608 struct bad_iret_stack, regs);
609
610 /* Copy the IRET target to the new stack. */
611 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
612
613 /* Copy the remainder of the stack from the current stack. */
614 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
615
616 BUG_ON(!user_mode(&new_stack->regs));
617 return new_stack;
618}
619NOKPROBE_SYMBOL(fixup_bad_iret);
620#endif
621
622static bool is_sysenter_singlestep(struct pt_regs *regs)
623{
624 /*
625 * We don't try for precision here. If we're anywhere in the region of
626 * code that can be single-stepped in the SYSENTER entry path, then
627 * assume that this is a useless single-step trap due to SYSENTER
628 * being invoked with TF set. (We don't know in advance exactly
629 * which instructions will be hit because BTF could plausibly
630 * be set.)
631 */
632#ifdef CONFIG_X86_32
633 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
634 (unsigned long)__end_SYSENTER_singlestep_region -
635 (unsigned long)__begin_SYSENTER_singlestep_region;
636#elif defined(CONFIG_IA32_EMULATION)
637 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
638 (unsigned long)__end_entry_SYSENTER_compat -
639 (unsigned long)entry_SYSENTER_compat;
640#else
641 return false;
642#endif
643}
644
645/*
646 * Our handling of the processor debug registers is non-trivial.
647 * We do not clear them on entry and exit from the kernel. Therefore
648 * it is possible to get a watchpoint trap here from inside the kernel.
649 * However, the code in ./ptrace.c has ensured that the user can
650 * only set watchpoints on userspace addresses. Therefore the in-kernel
651 * watchpoint trap can only occur in code which is reading/writing
652 * from user space. Such code must not hold kernel locks (since it
653 * can equally take a page fault), therefore it is safe to call
654 * force_sig_info even though that claims and releases locks.
655 *
656 * Code in ./signal.c ensures that the debug control register
657 * is restored before we deliver any signal, and therefore that
658 * user code runs with the correct debug control register even though
659 * we clear it here.
660 *
661 * Being careful here means that we don't have to be as careful in a
662 * lot of more complicated places (task switching can be a bit lazy
663 * about restoring all the debug state, and ptrace doesn't have to
664 * find every occurrence of the TF bit that could be saved away even
665 * by user code)
666 *
667 * May run on IST stack.
668 */
669dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
670{
671 struct task_struct *tsk = current;
672 int user_icebp = 0;
673 unsigned long dr6;
674 int si_code;
675
676 ist_enter(regs);
677
678 get_debugreg(dr6, 6);
679 /*
680 * The Intel SDM says:
681 *
682 * Certain debug exceptions may clear bits 0-3. The remaining
683 * contents of the DR6 register are never cleared by the
684 * processor. To avoid confusion in identifying debug
685 * exceptions, debug handlers should clear the register before
686 * returning to the interrupted task.
687 *
688 * Keep it simple: clear DR6 immediately.
689 */
690 set_debugreg(0, 6);
691
692 /* Filter out all the reserved bits which are preset to 1 */
693 dr6 &= ~DR6_RESERVED;
694
695 /*
696 * The SDM says "The processor clears the BTF flag when it
697 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
698 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
699 */
700 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
701
702 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
703 is_sysenter_singlestep(regs))) {
704 dr6 &= ~DR_STEP;
705 if (!dr6)
706 goto exit;
707 /*
708 * else we might have gotten a single-step trap and hit a
709 * watchpoint at the same time, in which case we should fall
710 * through and handle the watchpoint.
711 */
712 }
713
714 /*
715 * If dr6 has no reason to give us about the origin of this trap,
716 * then it's very likely the result of an icebp/int01 trap.
717 * User wants a sigtrap for that.
718 */
719 if (!dr6 && user_mode(regs))
720 user_icebp = 1;
721
722 /* Catch kmemcheck conditions! */
723 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
724 goto exit;
725
726 /* Store the virtualized DR6 value */
727 tsk->thread.debugreg6 = dr6;
728
729#ifdef CONFIG_KPROBES
730 if (kprobe_debug_handler(regs))
731 goto exit;
732#endif
733
734 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
735 SIGTRAP) == NOTIFY_STOP)
736 goto exit;
737
738 /*
739 * Let others (NMI) know that the debug stack is in use
740 * as we may switch to the interrupt stack.
741 */
742 debug_stack_usage_inc();
743
744 /* It's safe to allow irq's after DR6 has been saved */
745 preempt_disable();
746 cond_local_irq_enable(regs);
747
748 if (v8086_mode(regs)) {
749 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
750 X86_TRAP_DB);
751 cond_local_irq_disable(regs);
752 preempt_enable_no_resched();
753 debug_stack_usage_dec();
754 goto exit;
755 }
756
757 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
758 /*
759 * Historical junk that used to handle SYSENTER single-stepping.
760 * This should be unreachable now. If we survive for a while
761 * without anyone hitting this warning, we'll turn this into
762 * an oops.
763 */
764 tsk->thread.debugreg6 &= ~DR_STEP;
765 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
766 regs->flags &= ~X86_EFLAGS_TF;
767 }
768 si_code = get_si_code(tsk->thread.debugreg6);
769 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
770 send_sigtrap(tsk, regs, error_code, si_code);
771 cond_local_irq_disable(regs);
772 preempt_enable_no_resched();
773 debug_stack_usage_dec();
774
775exit:
776#if defined(CONFIG_X86_32)
777 /*
778 * This is the most likely code path that involves non-trivial use
779 * of the SYSENTER stack. Check that we haven't overrun it.
780 */
781 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
782 "Overran or corrupted SYSENTER stack\n");
783#endif
784 ist_exit(regs);
785}
786NOKPROBE_SYMBOL(do_debug);
787
788/*
789 * Note that we play around with the 'TS' bit in an attempt to get
790 * the correct behaviour even in the presence of the asynchronous
791 * IRQ13 behaviour
792 */
793static void math_error(struct pt_regs *regs, int error_code, int trapnr)
794{
795 struct task_struct *task = current;
796 struct fpu *fpu = &task->thread.fpu;
797 siginfo_t info;
798 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
799 "simd exception";
800
801 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
802 return;
803 cond_local_irq_enable(regs);
804
805 if (!user_mode(regs)) {
806 if (!fixup_exception(regs, trapnr)) {
807 task->thread.error_code = error_code;
808 task->thread.trap_nr = trapnr;
809 die(str, regs, error_code);
810 }
811 return;
812 }
813
814 /*
815 * Save the info for the exception handler and clear the error.
816 */
817 fpu__save(fpu);
818
819 task->thread.trap_nr = trapnr;
820 task->thread.error_code = error_code;
821 info.si_signo = SIGFPE;
822 info.si_errno = 0;
823 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
824
825 info.si_code = fpu__exception_code(fpu, trapnr);
826
827 /* Retry when we get spurious exceptions: */
828 if (!info.si_code)
829 return;
830
831 force_sig_info(SIGFPE, &info, task);
832}
833
834dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
835{
836 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
837 math_error(regs, error_code, X86_TRAP_MF);
838}
839
840dotraplinkage void
841do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
842{
843 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
844 math_error(regs, error_code, X86_TRAP_XF);
845}
846
847dotraplinkage void
848do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
849{
850 cond_local_irq_enable(regs);
851}
852
853dotraplinkage void
854do_device_not_available(struct pt_regs *regs, long error_code)
855{
856 unsigned long cr0;
857
858 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
859
860#ifdef CONFIG_MATH_EMULATION
861 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
862 struct math_emu_info info = { };
863
864 cond_local_irq_enable(regs);
865
866 info.regs = regs;
867 math_emulate(&info);
868 return;
869 }
870#endif
871
872 /* This should not happen. */
873 cr0 = read_cr0();
874 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
875 /* Try to fix it up and carry on. */
876 write_cr0(cr0 & ~X86_CR0_TS);
877 } else {
878 /*
879 * Something terrible happened, and we're better off trying
880 * to kill the task than getting stuck in a never-ending
881 * loop of #NM faults.
882 */
883 die("unexpected #NM exception", regs, error_code);
884 }
885}
886NOKPROBE_SYMBOL(do_device_not_available);
887
888#ifdef CONFIG_X86_32
889dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
890{
891 siginfo_t info;
892
893 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
894 local_irq_enable();
895
896 info.si_signo = SIGILL;
897 info.si_errno = 0;
898 info.si_code = ILL_BADSTK;
899 info.si_addr = NULL;
900 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
901 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
902 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
903 &info);
904 }
905}
906#endif
907
908/* Set of traps needed for early debugging. */
909void __init early_trap_init(void)
910{
911 /*
912 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
913 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
914 * CPU runs at ring 0 so it is impossible to hit an invalid
915 * stack. Using the original stack works well enough at this
916 * early stage. DEBUG_STACK will be equipped after cpu_init() in
917 * trap_init().
918 *
919 * We don't need to set trace_idt_table like set_intr_gate(),
920 * since we don't have trace_debug and it will be reset to
921 * 'debug' in trap_init() by set_intr_gate_ist().
922 */
923 set_intr_gate_notrace(X86_TRAP_DB, debug);
924 /* int3 can be called from all */
925 set_system_intr_gate(X86_TRAP_BP, &int3);
926#ifdef CONFIG_X86_32
927 set_intr_gate(X86_TRAP_PF, page_fault);
928#endif
929 load_idt(&idt_descr);
930}
931
932void __init early_trap_pf_init(void)
933{
934#ifdef CONFIG_X86_64
935 set_intr_gate(X86_TRAP_PF, page_fault);
936#endif
937}
938
939void __init trap_init(void)
940{
941 int i;
942
943#ifdef CONFIG_EISA
944 void __iomem *p = early_ioremap(0x0FFFD9, 4);
945
946 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
947 EISA_bus = 1;
948 early_iounmap(p, 4);
949#endif
950
951 set_intr_gate(X86_TRAP_DE, divide_error);
952 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
953 /* int4 can be called from all */
954 set_system_intr_gate(X86_TRAP_OF, &overflow);
955 set_intr_gate(X86_TRAP_BR, bounds);
956 set_intr_gate(X86_TRAP_UD, invalid_op);
957 set_intr_gate(X86_TRAP_NM, device_not_available);
958#ifdef CONFIG_X86_32
959 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
960#else
961 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
962#endif
963 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
964 set_intr_gate(X86_TRAP_TS, invalid_TSS);
965 set_intr_gate(X86_TRAP_NP, segment_not_present);
966 set_intr_gate(X86_TRAP_SS, stack_segment);
967 set_intr_gate(X86_TRAP_GP, general_protection);
968 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
969 set_intr_gate(X86_TRAP_MF, coprocessor_error);
970 set_intr_gate(X86_TRAP_AC, alignment_check);
971#ifdef CONFIG_X86_MCE
972 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
973#endif
974 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
975
976 /* Reserve all the builtin and the syscall vector: */
977 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
978 set_bit(i, used_vectors);
979
980#ifdef CONFIG_IA32_EMULATION
981 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
982 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
983#endif
984
985#ifdef CONFIG_X86_32
986 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
987 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
988#endif
989
990 /*
991 * Set the IDT descriptor to a fixed read-only location, so that the
992 * "sidt" instruction will not leak the location of the kernel, and
993 * to defend the IDT against arbitrary memory write vulnerabilities.
994 * It will be reloaded in cpu_init() */
995 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
996 idt_descr.address = fix_to_virt(FIX_RO_IDT);
997
998 /*
999 * Should be a barrier for any external CPU state:
1000 */
1001 cpu_init();
1002
1003 /*
1004 * X86_TRAP_DB and X86_TRAP_BP have been set
1005 * in early_trap_init(). However, ITS works only after
1006 * cpu_init() loads TSS. See comments in early_trap_init().
1007 */
1008 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1009 /* int3 can be called from all */
1010 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1011
1012 x86_init.irqs.trap_init();
1013
1014#ifdef CONFIG_X86_64
1015 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1016 set_nmi_gate(X86_TRAP_DB, &debug);
1017 set_nmi_gate(X86_TRAP_BP, &int3);
1018#endif
1019}
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/kdebug.h>
22#include <linux/kgdb.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/string.h>
28#include <linux/delay.h>
29#include <linux/errno.h>
30#include <linux/kexec.h>
31#include <linux/sched.h>
32#include <linux/timer.h>
33#include <linux/init.h>
34#include <linux/bug.h>
35#include <linux/nmi.h>
36#include <linux/mm.h>
37#include <linux/smp.h>
38#include <linux/io.h>
39
40#ifdef CONFIG_EISA
41#include <linux/ioport.h>
42#include <linux/eisa.h>
43#endif
44
45#if defined(CONFIG_EDAC)
46#include <linux/edac.h>
47#endif
48
49#include <asm/kmemcheck.h>
50#include <asm/stacktrace.h>
51#include <asm/processor.h>
52#include <asm/debugreg.h>
53#include <linux/atomic.h>
54#include <asm/ftrace.h>
55#include <asm/traps.h>
56#include <asm/desc.h>
57#include <asm/fpu/internal.h>
58#include <asm/mce.h>
59#include <asm/fixmap.h>
60#include <asm/mach_traps.h>
61#include <asm/alternative.h>
62#include <asm/fpu/xstate.h>
63#include <asm/trace/mpx.h>
64#include <asm/mpx.h>
65#include <asm/vm86.h>
66
67#ifdef CONFIG_X86_64
68#include <asm/x86_init.h>
69#include <asm/pgalloc.h>
70#include <asm/proto.h>
71
72/* No need to be aligned, but done to keep all IDTs defined the same way. */
73gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
74#else
75#include <asm/processor-flags.h>
76#include <asm/setup.h>
77#include <asm/proto.h>
78#endif
79
80/* Must be page-aligned because the real IDT is used in a fixmap. */
81gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
82
83DECLARE_BITMAP(used_vectors, NR_VECTORS);
84EXPORT_SYMBOL_GPL(used_vectors);
85
86static inline void cond_local_irq_enable(struct pt_regs *regs)
87{
88 if (regs->flags & X86_EFLAGS_IF)
89 local_irq_enable();
90}
91
92static inline void cond_local_irq_disable(struct pt_regs *regs)
93{
94 if (regs->flags & X86_EFLAGS_IF)
95 local_irq_disable();
96}
97
98void ist_enter(struct pt_regs *regs)
99{
100 if (user_mode(regs)) {
101 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
102 } else {
103 /*
104 * We might have interrupted pretty much anything. In
105 * fact, if we're a machine check, we can even interrupt
106 * NMI processing. We don't want in_nmi() to return true,
107 * but we need to notify RCU.
108 */
109 rcu_nmi_enter();
110 }
111
112 /*
113 * We are atomic because we're on the IST stack; or we're on
114 * x86_32, in which case we still shouldn't schedule; or we're
115 * on x86_64 and entered from user mode, in which case we're
116 * still atomic unless ist_begin_non_atomic is called.
117 */
118 preempt_count_add(HARDIRQ_OFFSET);
119
120 /* This code is a bit fragile. Test it. */
121 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
122}
123
124void ist_exit(struct pt_regs *regs)
125{
126 preempt_count_sub(HARDIRQ_OFFSET);
127
128 if (!user_mode(regs))
129 rcu_nmi_exit();
130}
131
132/**
133 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
134 * @regs: regs passed to the IST exception handler
135 *
136 * IST exception handlers normally cannot schedule. As a special
137 * exception, if the exception interrupted userspace code (i.e.
138 * user_mode(regs) would return true) and the exception was not
139 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
140 * begins a non-atomic section within an ist_enter()/ist_exit() region.
141 * Callers are responsible for enabling interrupts themselves inside
142 * the non-atomic section, and callers must call ist_end_non_atomic()
143 * before ist_exit().
144 */
145void ist_begin_non_atomic(struct pt_regs *regs)
146{
147 BUG_ON(!user_mode(regs));
148
149 /*
150 * Sanity check: we need to be on the normal thread stack. This
151 * will catch asm bugs and any attempt to use ist_preempt_enable
152 * from double_fault.
153 */
154 BUG_ON((unsigned long)(current_top_of_stack() -
155 current_stack_pointer()) >= THREAD_SIZE);
156
157 preempt_count_sub(HARDIRQ_OFFSET);
158}
159
160/**
161 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
162 *
163 * Ends a non-atomic section started with ist_begin_non_atomic().
164 */
165void ist_end_non_atomic(void)
166{
167 preempt_count_add(HARDIRQ_OFFSET);
168}
169
170static nokprobe_inline int
171do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
172 struct pt_regs *regs, long error_code)
173{
174 if (v8086_mode(regs)) {
175 /*
176 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
177 * On nmi (interrupt 2), do_trap should not be called.
178 */
179 if (trapnr < X86_TRAP_UD) {
180 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
181 error_code, trapnr))
182 return 0;
183 }
184 return -1;
185 }
186
187 if (!user_mode(regs)) {
188 if (!fixup_exception(regs, trapnr)) {
189 tsk->thread.error_code = error_code;
190 tsk->thread.trap_nr = trapnr;
191 die(str, regs, error_code);
192 }
193 return 0;
194 }
195
196 return -1;
197}
198
199static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
200 siginfo_t *info)
201{
202 unsigned long siaddr;
203 int sicode;
204
205 switch (trapnr) {
206 default:
207 return SEND_SIG_PRIV;
208
209 case X86_TRAP_DE:
210 sicode = FPE_INTDIV;
211 siaddr = uprobe_get_trap_addr(regs);
212 break;
213 case X86_TRAP_UD:
214 sicode = ILL_ILLOPN;
215 siaddr = uprobe_get_trap_addr(regs);
216 break;
217 case X86_TRAP_AC:
218 sicode = BUS_ADRALN;
219 siaddr = 0;
220 break;
221 }
222
223 info->si_signo = signr;
224 info->si_errno = 0;
225 info->si_code = sicode;
226 info->si_addr = (void __user *)siaddr;
227 return info;
228}
229
230static void
231do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
232 long error_code, siginfo_t *info)
233{
234 struct task_struct *tsk = current;
235
236
237 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
238 return;
239 /*
240 * We want error_code and trap_nr set for userspace faults and
241 * kernelspace faults which result in die(), but not
242 * kernelspace faults which are fixed up. die() gives the
243 * process no chance to handle the signal and notice the
244 * kernel fault information, so that won't result in polluting
245 * the information about previously queued, but not yet
246 * delivered, faults. See also do_general_protection below.
247 */
248 tsk->thread.error_code = error_code;
249 tsk->thread.trap_nr = trapnr;
250
251 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
252 printk_ratelimit()) {
253 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
254 tsk->comm, tsk->pid, str,
255 regs->ip, regs->sp, error_code);
256 print_vma_addr(" in ", regs->ip);
257 pr_cont("\n");
258 }
259
260 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
261}
262NOKPROBE_SYMBOL(do_trap);
263
264static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
265 unsigned long trapnr, int signr)
266{
267 siginfo_t info;
268
269 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
270
271 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
272 NOTIFY_STOP) {
273 cond_local_irq_enable(regs);
274 do_trap(trapnr, signr, str, regs, error_code,
275 fill_trap_info(regs, signr, trapnr, &info));
276 }
277}
278
279#define DO_ERROR(trapnr, signr, str, name) \
280dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
281{ \
282 do_error_trap(regs, error_code, str, trapnr, signr); \
283}
284
285DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
286DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
287DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
288DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
289DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
290DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
291DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
292DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
293
294#ifdef CONFIG_X86_64
295/* Runs on IST stack */
296dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
297{
298 static const char str[] = "double fault";
299 struct task_struct *tsk = current;
300
301#ifdef CONFIG_X86_ESPFIX64
302 extern unsigned char native_irq_return_iret[];
303
304 /*
305 * If IRET takes a non-IST fault on the espfix64 stack, then we
306 * end up promoting it to a doublefault. In that case, modify
307 * the stack to make it look like we just entered the #GP
308 * handler from user space, similar to bad_iret.
309 *
310 * No need for ist_enter here because we don't use RCU.
311 */
312 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
313 regs->cs == __KERNEL_CS &&
314 regs->ip == (unsigned long)native_irq_return_iret)
315 {
316 struct pt_regs *normal_regs = task_pt_regs(current);
317
318 /* Fake a #GP(0) from userspace. */
319 memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
320 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
321 regs->ip = (unsigned long)general_protection;
322 regs->sp = (unsigned long)&normal_regs->orig_ax;
323
324 return;
325 }
326#endif
327
328 ist_enter(regs);
329 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
330
331 tsk->thread.error_code = error_code;
332 tsk->thread.trap_nr = X86_TRAP_DF;
333
334#ifdef CONFIG_DOUBLEFAULT
335 df_debug(regs, error_code);
336#endif
337 /*
338 * This is always a kernel trap and never fixable (and thus must
339 * never return).
340 */
341 for (;;)
342 die(str, regs, error_code);
343}
344#endif
345
346dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
347{
348 const struct mpx_bndcsr *bndcsr;
349 siginfo_t *info;
350
351 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
352 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
353 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
354 return;
355 cond_local_irq_enable(regs);
356
357 if (!user_mode(regs))
358 die("bounds", regs, error_code);
359
360 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
361 /* The exception is not from Intel MPX */
362 goto exit_trap;
363 }
364
365 /*
366 * We need to look at BNDSTATUS to resolve this exception.
367 * A NULL here might mean that it is in its 'init state',
368 * which is all zeros which indicates MPX was not
369 * responsible for the exception.
370 */
371 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
372 if (!bndcsr)
373 goto exit_trap;
374
375 trace_bounds_exception_mpx(bndcsr);
376 /*
377 * The error code field of the BNDSTATUS register communicates status
378 * information of a bound range exception #BR or operation involving
379 * bound directory.
380 */
381 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
382 case 2: /* Bound directory has invalid entry. */
383 if (mpx_handle_bd_fault())
384 goto exit_trap;
385 break; /* Success, it was handled */
386 case 1: /* Bound violation. */
387 info = mpx_generate_siginfo(regs);
388 if (IS_ERR(info)) {
389 /*
390 * We failed to decode the MPX instruction. Act as if
391 * the exception was not caused by MPX.
392 */
393 goto exit_trap;
394 }
395 /*
396 * Success, we decoded the instruction and retrieved
397 * an 'info' containing the address being accessed
398 * which caused the exception. This information
399 * allows and application to possibly handle the
400 * #BR exception itself.
401 */
402 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
403 kfree(info);
404 break;
405 case 0: /* No exception caused by Intel MPX operations. */
406 goto exit_trap;
407 default:
408 die("bounds", regs, error_code);
409 }
410
411 return;
412
413exit_trap:
414 /*
415 * This path out is for all the cases where we could not
416 * handle the exception in some way (like allocating a
417 * table or telling userspace about it. We will also end
418 * up here if the kernel has MPX turned off at compile
419 * time..
420 */
421 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
422}
423
424dotraplinkage void
425do_general_protection(struct pt_regs *regs, long error_code)
426{
427 struct task_struct *tsk;
428
429 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
430 cond_local_irq_enable(regs);
431
432 if (v8086_mode(regs)) {
433 local_irq_enable();
434 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
435 return;
436 }
437
438 tsk = current;
439 if (!user_mode(regs)) {
440 if (fixup_exception(regs, X86_TRAP_GP))
441 return;
442
443 tsk->thread.error_code = error_code;
444 tsk->thread.trap_nr = X86_TRAP_GP;
445 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
446 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
447 die("general protection fault", regs, error_code);
448 return;
449 }
450
451 tsk->thread.error_code = error_code;
452 tsk->thread.trap_nr = X86_TRAP_GP;
453
454 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
455 printk_ratelimit()) {
456 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
457 tsk->comm, task_pid_nr(tsk),
458 regs->ip, regs->sp, error_code);
459 print_vma_addr(" in ", regs->ip);
460 pr_cont("\n");
461 }
462
463 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
464}
465NOKPROBE_SYMBOL(do_general_protection);
466
467/* May run on IST stack. */
468dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
469{
470#ifdef CONFIG_DYNAMIC_FTRACE
471 /*
472 * ftrace must be first, everything else may cause a recursive crash.
473 * See note by declaration of modifying_ftrace_code in ftrace.c
474 */
475 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
476 ftrace_int3_handler(regs))
477 return;
478#endif
479 if (poke_int3_handler(regs))
480 return;
481
482 ist_enter(regs);
483 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
484#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
485 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
486 SIGTRAP) == NOTIFY_STOP)
487 goto exit;
488#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
489
490#ifdef CONFIG_KPROBES
491 if (kprobe_int3_handler(regs))
492 goto exit;
493#endif
494
495 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
496 SIGTRAP) == NOTIFY_STOP)
497 goto exit;
498
499 /*
500 * Let others (NMI) know that the debug stack is in use
501 * as we may switch to the interrupt stack.
502 */
503 debug_stack_usage_inc();
504 preempt_disable();
505 cond_local_irq_enable(regs);
506 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
507 cond_local_irq_disable(regs);
508 preempt_enable_no_resched();
509 debug_stack_usage_dec();
510exit:
511 ist_exit(regs);
512}
513NOKPROBE_SYMBOL(do_int3);
514
515#ifdef CONFIG_X86_64
516/*
517 * Help handler running on IST stack to switch off the IST stack if the
518 * interrupted code was in user mode. The actual stack switch is done in
519 * entry_64.S
520 */
521asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
522{
523 struct pt_regs *regs = task_pt_regs(current);
524 *regs = *eregs;
525 return regs;
526}
527NOKPROBE_SYMBOL(sync_regs);
528
529struct bad_iret_stack {
530 void *error_entry_ret;
531 struct pt_regs regs;
532};
533
534asmlinkage __visible notrace
535struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
536{
537 /*
538 * This is called from entry_64.S early in handling a fault
539 * caused by a bad iret to user mode. To handle the fault
540 * correctly, we want move our stack frame to task_pt_regs
541 * and we want to pretend that the exception came from the
542 * iret target.
543 */
544 struct bad_iret_stack *new_stack =
545 container_of(task_pt_regs(current),
546 struct bad_iret_stack, regs);
547
548 /* Copy the IRET target to the new stack. */
549 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
550
551 /* Copy the remainder of the stack from the current stack. */
552 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
553
554 BUG_ON(!user_mode(&new_stack->regs));
555 return new_stack;
556}
557NOKPROBE_SYMBOL(fixup_bad_iret);
558#endif
559
560static bool is_sysenter_singlestep(struct pt_regs *regs)
561{
562 /*
563 * We don't try for precision here. If we're anywhere in the region of
564 * code that can be single-stepped in the SYSENTER entry path, then
565 * assume that this is a useless single-step trap due to SYSENTER
566 * being invoked with TF set. (We don't know in advance exactly
567 * which instructions will be hit because BTF could plausibly
568 * be set.)
569 */
570#ifdef CONFIG_X86_32
571 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
572 (unsigned long)__end_SYSENTER_singlestep_region -
573 (unsigned long)__begin_SYSENTER_singlestep_region;
574#elif defined(CONFIG_IA32_EMULATION)
575 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
576 (unsigned long)__end_entry_SYSENTER_compat -
577 (unsigned long)entry_SYSENTER_compat;
578#else
579 return false;
580#endif
581}
582
583/*
584 * Our handling of the processor debug registers is non-trivial.
585 * We do not clear them on entry and exit from the kernel. Therefore
586 * it is possible to get a watchpoint trap here from inside the kernel.
587 * However, the code in ./ptrace.c has ensured that the user can
588 * only set watchpoints on userspace addresses. Therefore the in-kernel
589 * watchpoint trap can only occur in code which is reading/writing
590 * from user space. Such code must not hold kernel locks (since it
591 * can equally take a page fault), therefore it is safe to call
592 * force_sig_info even though that claims and releases locks.
593 *
594 * Code in ./signal.c ensures that the debug control register
595 * is restored before we deliver any signal, and therefore that
596 * user code runs with the correct debug control register even though
597 * we clear it here.
598 *
599 * Being careful here means that we don't have to be as careful in a
600 * lot of more complicated places (task switching can be a bit lazy
601 * about restoring all the debug state, and ptrace doesn't have to
602 * find every occurrence of the TF bit that could be saved away even
603 * by user code)
604 *
605 * May run on IST stack.
606 */
607dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
608{
609 struct task_struct *tsk = current;
610 int user_icebp = 0;
611 unsigned long dr6;
612 int si_code;
613
614 ist_enter(regs);
615
616 get_debugreg(dr6, 6);
617 /*
618 * The Intel SDM says:
619 *
620 * Certain debug exceptions may clear bits 0-3. The remaining
621 * contents of the DR6 register are never cleared by the
622 * processor. To avoid confusion in identifying debug
623 * exceptions, debug handlers should clear the register before
624 * returning to the interrupted task.
625 *
626 * Keep it simple: clear DR6 immediately.
627 */
628 set_debugreg(0, 6);
629
630 /* Filter out all the reserved bits which are preset to 1 */
631 dr6 &= ~DR6_RESERVED;
632
633 /*
634 * The SDM says "The processor clears the BTF flag when it
635 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
636 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
637 */
638 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
639
640 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
641 is_sysenter_singlestep(regs))) {
642 dr6 &= ~DR_STEP;
643 if (!dr6)
644 goto exit;
645 /*
646 * else we might have gotten a single-step trap and hit a
647 * watchpoint at the same time, in which case we should fall
648 * through and handle the watchpoint.
649 */
650 }
651
652 /*
653 * If dr6 has no reason to give us about the origin of this trap,
654 * then it's very likely the result of an icebp/int01 trap.
655 * User wants a sigtrap for that.
656 */
657 if (!dr6 && user_mode(regs))
658 user_icebp = 1;
659
660 /* Catch kmemcheck conditions! */
661 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
662 goto exit;
663
664 /* Store the virtualized DR6 value */
665 tsk->thread.debugreg6 = dr6;
666
667#ifdef CONFIG_KPROBES
668 if (kprobe_debug_handler(regs))
669 goto exit;
670#endif
671
672 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
673 SIGTRAP) == NOTIFY_STOP)
674 goto exit;
675
676 /*
677 * Let others (NMI) know that the debug stack is in use
678 * as we may switch to the interrupt stack.
679 */
680 debug_stack_usage_inc();
681
682 /* It's safe to allow irq's after DR6 has been saved */
683 preempt_disable();
684 cond_local_irq_enable(regs);
685
686 if (v8086_mode(regs)) {
687 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
688 X86_TRAP_DB);
689 cond_local_irq_disable(regs);
690 preempt_enable_no_resched();
691 debug_stack_usage_dec();
692 goto exit;
693 }
694
695 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
696 /*
697 * Historical junk that used to handle SYSENTER single-stepping.
698 * This should be unreachable now. If we survive for a while
699 * without anyone hitting this warning, we'll turn this into
700 * an oops.
701 */
702 tsk->thread.debugreg6 &= ~DR_STEP;
703 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
704 regs->flags &= ~X86_EFLAGS_TF;
705 }
706 si_code = get_si_code(tsk->thread.debugreg6);
707 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
708 send_sigtrap(tsk, regs, error_code, si_code);
709 cond_local_irq_disable(regs);
710 preempt_enable_no_resched();
711 debug_stack_usage_dec();
712
713exit:
714#if defined(CONFIG_X86_32)
715 /*
716 * This is the most likely code path that involves non-trivial use
717 * of the SYSENTER stack. Check that we haven't overrun it.
718 */
719 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
720 "Overran or corrupted SYSENTER stack\n");
721#endif
722 ist_exit(regs);
723}
724NOKPROBE_SYMBOL(do_debug);
725
726/*
727 * Note that we play around with the 'TS' bit in an attempt to get
728 * the correct behaviour even in the presence of the asynchronous
729 * IRQ13 behaviour
730 */
731static void math_error(struct pt_regs *regs, int error_code, int trapnr)
732{
733 struct task_struct *task = current;
734 struct fpu *fpu = &task->thread.fpu;
735 siginfo_t info;
736 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
737 "simd exception";
738
739 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
740 return;
741 cond_local_irq_enable(regs);
742
743 if (!user_mode(regs)) {
744 if (!fixup_exception(regs, trapnr)) {
745 task->thread.error_code = error_code;
746 task->thread.trap_nr = trapnr;
747 die(str, regs, error_code);
748 }
749 return;
750 }
751
752 /*
753 * Save the info for the exception handler and clear the error.
754 */
755 fpu__save(fpu);
756
757 task->thread.trap_nr = trapnr;
758 task->thread.error_code = error_code;
759 info.si_signo = SIGFPE;
760 info.si_errno = 0;
761 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
762
763 info.si_code = fpu__exception_code(fpu, trapnr);
764
765 /* Retry when we get spurious exceptions: */
766 if (!info.si_code)
767 return;
768
769 force_sig_info(SIGFPE, &info, task);
770}
771
772dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
773{
774 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
775 math_error(regs, error_code, X86_TRAP_MF);
776}
777
778dotraplinkage void
779do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
780{
781 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
782 math_error(regs, error_code, X86_TRAP_XF);
783}
784
785dotraplinkage void
786do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
787{
788 cond_local_irq_enable(regs);
789}
790
791dotraplinkage void
792do_device_not_available(struct pt_regs *regs, long error_code)
793{
794 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
795
796#ifdef CONFIG_MATH_EMULATION
797 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
798 struct math_emu_info info = { };
799
800 cond_local_irq_enable(regs);
801
802 info.regs = regs;
803 math_emulate(&info);
804 return;
805 }
806#endif
807 fpu__restore(¤t->thread.fpu); /* interrupts still off */
808#ifdef CONFIG_X86_32
809 cond_local_irq_enable(regs);
810#endif
811}
812NOKPROBE_SYMBOL(do_device_not_available);
813
814#ifdef CONFIG_X86_32
815dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
816{
817 siginfo_t info;
818
819 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
820 local_irq_enable();
821
822 info.si_signo = SIGILL;
823 info.si_errno = 0;
824 info.si_code = ILL_BADSTK;
825 info.si_addr = NULL;
826 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
827 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
828 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
829 &info);
830 }
831}
832#endif
833
834/* Set of traps needed for early debugging. */
835void __init early_trap_init(void)
836{
837 /*
838 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
839 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
840 * CPU runs at ring 0 so it is impossible to hit an invalid
841 * stack. Using the original stack works well enough at this
842 * early stage. DEBUG_STACK will be equipped after cpu_init() in
843 * trap_init().
844 *
845 * We don't need to set trace_idt_table like set_intr_gate(),
846 * since we don't have trace_debug and it will be reset to
847 * 'debug' in trap_init() by set_intr_gate_ist().
848 */
849 set_intr_gate_notrace(X86_TRAP_DB, debug);
850 /* int3 can be called from all */
851 set_system_intr_gate(X86_TRAP_BP, &int3);
852#ifdef CONFIG_X86_32
853 set_intr_gate(X86_TRAP_PF, page_fault);
854#endif
855 load_idt(&idt_descr);
856}
857
858void __init early_trap_pf_init(void)
859{
860#ifdef CONFIG_X86_64
861 set_intr_gate(X86_TRAP_PF, page_fault);
862#endif
863}
864
865void __init trap_init(void)
866{
867 int i;
868
869#ifdef CONFIG_EISA
870 void __iomem *p = early_ioremap(0x0FFFD9, 4);
871
872 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
873 EISA_bus = 1;
874 early_iounmap(p, 4);
875#endif
876
877 set_intr_gate(X86_TRAP_DE, divide_error);
878 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
879 /* int4 can be called from all */
880 set_system_intr_gate(X86_TRAP_OF, &overflow);
881 set_intr_gate(X86_TRAP_BR, bounds);
882 set_intr_gate(X86_TRAP_UD, invalid_op);
883 set_intr_gate(X86_TRAP_NM, device_not_available);
884#ifdef CONFIG_X86_32
885 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
886#else
887 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
888#endif
889 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
890 set_intr_gate(X86_TRAP_TS, invalid_TSS);
891 set_intr_gate(X86_TRAP_NP, segment_not_present);
892 set_intr_gate(X86_TRAP_SS, stack_segment);
893 set_intr_gate(X86_TRAP_GP, general_protection);
894 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
895 set_intr_gate(X86_TRAP_MF, coprocessor_error);
896 set_intr_gate(X86_TRAP_AC, alignment_check);
897#ifdef CONFIG_X86_MCE
898 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
899#endif
900 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
901
902 /* Reserve all the builtin and the syscall vector: */
903 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
904 set_bit(i, used_vectors);
905
906#ifdef CONFIG_IA32_EMULATION
907 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
908 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
909#endif
910
911#ifdef CONFIG_X86_32
912 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
913 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
914#endif
915
916 /*
917 * Set the IDT descriptor to a fixed read-only location, so that the
918 * "sidt" instruction will not leak the location of the kernel, and
919 * to defend the IDT against arbitrary memory write vulnerabilities.
920 * It will be reloaded in cpu_init() */
921 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
922 idt_descr.address = fix_to_virt(FIX_RO_IDT);
923
924 /*
925 * Should be a barrier for any external CPU state:
926 */
927 cpu_init();
928
929 /*
930 * X86_TRAP_DB and X86_TRAP_BP have been set
931 * in early_trap_init(). However, ITS works only after
932 * cpu_init() loads TSS. See comments in early_trap_init().
933 */
934 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
935 /* int3 can be called from all */
936 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
937
938 x86_init.irqs.trap_init();
939
940#ifdef CONFIG_X86_64
941 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
942 set_nmi_gate(X86_TRAP_DB, &debug);
943 set_nmi_gate(X86_TRAP_BP, &int3);
944#endif
945}