Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/timer.h>
  33#include <linux/init.h>
  34#include <linux/bug.h>
  35#include <linux/nmi.h>
  36#include <linux/mm.h>
  37#include <linux/smp.h>
  38#include <linux/io.h>
  39
  40#ifdef CONFIG_EISA
  41#include <linux/ioport.h>
  42#include <linux/eisa.h>
  43#endif
  44
 
 
 
 
  45#if defined(CONFIG_EDAC)
  46#include <linux/edac.h>
  47#endif
  48
  49#include <asm/kmemcheck.h>
  50#include <asm/stacktrace.h>
  51#include <asm/processor.h>
  52#include <asm/debugreg.h>
  53#include <linux/atomic.h>
  54#include <asm/text-patching.h>
  55#include <asm/ftrace.h>
  56#include <asm/traps.h>
  57#include <asm/desc.h>
  58#include <asm/fpu/internal.h>
  59#include <asm/mce.h>
  60#include <asm/fixmap.h>
  61#include <asm/mach_traps.h>
  62#include <asm/alternative.h>
  63#include <asm/fpu/xstate.h>
  64#include <asm/trace/mpx.h>
  65#include <asm/mpx.h>
  66#include <asm/vm86.h>
  67
  68#ifdef CONFIG_X86_64
  69#include <asm/x86_init.h>
  70#include <asm/pgalloc.h>
  71#include <asm/proto.h>
  72
  73/* No need to be aligned, but done to keep all IDTs defined the same way. */
  74gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
  75#else
  76#include <asm/processor-flags.h>
  77#include <asm/setup.h>
  78#include <asm/proto.h>
  79#endif
  80
  81/* Must be page-aligned because the real IDT is used in a fixmap. */
  82gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
 
 
 
 
 
 
 
 
 
  83
  84DECLARE_BITMAP(used_vectors, NR_VECTORS);
  85EXPORT_SYMBOL_GPL(used_vectors);
  86
  87static inline void cond_local_irq_enable(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
  88{
  89	if (regs->flags & X86_EFLAGS_IF)
  90		local_irq_enable();
  91}
  92
  93static inline void cond_local_irq_disable(struct pt_regs *regs)
  94{
 
  95	if (regs->flags & X86_EFLAGS_IF)
  96		local_irq_disable();
  97}
  98
  99/*
 100 * In IST context, we explicitly disable preemption.  This serves two
 101 * purposes: it makes it much less likely that we would accidentally
 102 * schedule in IST context and it will force a warning if we somehow
 103 * manage to schedule by accident.
 104 */
 105void ist_enter(struct pt_regs *regs)
 106{
 107	if (user_mode(regs)) {
 108		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 109	} else {
 110		/*
 111		 * We might have interrupted pretty much anything.  In
 112		 * fact, if we're a machine check, we can even interrupt
 113		 * NMI processing.  We don't want in_nmi() to return true,
 114		 * but we need to notify RCU.
 115		 */
 116		rcu_nmi_enter();
 117	}
 118
 119	preempt_disable();
 120
 121	/* This code is a bit fragile.  Test it. */
 122	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
 123}
 124
 125void ist_exit(struct pt_regs *regs)
 126{
 127	preempt_enable_no_resched();
 128
 129	if (!user_mode(regs))
 130		rcu_nmi_exit();
 131}
 132
 133/**
 134 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
 135 * @regs:	regs passed to the IST exception handler
 136 *
 137 * IST exception handlers normally cannot schedule.  As a special
 138 * exception, if the exception interrupted userspace code (i.e.
 139 * user_mode(regs) would return true) and the exception was not
 140 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
 141 * begins a non-atomic section within an ist_enter()/ist_exit() region.
 142 * Callers are responsible for enabling interrupts themselves inside
 143 * the non-atomic section, and callers must call ist_end_non_atomic()
 144 * before ist_exit().
 145 */
 146void ist_begin_non_atomic(struct pt_regs *regs)
 147{
 148	BUG_ON(!user_mode(regs));
 149
 150	/*
 151	 * Sanity check: we need to be on the normal thread stack.  This
 152	 * will catch asm bugs and any attempt to use ist_preempt_enable
 153	 * from double_fault.
 154	 */
 155	BUG_ON((unsigned long)(current_top_of_stack() -
 156			       current_stack_pointer()) >= THREAD_SIZE);
 157
 158	preempt_enable_no_resched();
 159}
 160
 161/**
 162 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
 163 *
 164 * Ends a non-atomic section started with ist_begin_non_atomic().
 165 */
 166void ist_end_non_atomic(void)
 167{
 168	preempt_disable();
 169}
 170
 171static nokprobe_inline int
 172do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
 173		  struct pt_regs *regs,	long error_code)
 174{
 175	if (v8086_mode(regs)) {
 176		/*
 177		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 178		 * On nmi (interrupt 2), do_trap should not be called.
 179		 */
 180		if (trapnr < X86_TRAP_UD) {
 181			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 182						error_code, trapnr))
 183				return 0;
 184		}
 185		return -1;
 186	}
 
 187
 188	if (!user_mode(regs)) {
 189		if (!fixup_exception(regs, trapnr)) {
 190			tsk->thread.error_code = error_code;
 191			tsk->thread.trap_nr = trapnr;
 192			die(str, regs, error_code);
 193		}
 194		return 0;
 195	}
 196
 197	return -1;
 198}
 199
 200static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
 201				siginfo_t *info)
 202{
 203	unsigned long siaddr;
 204	int sicode;
 205
 206	switch (trapnr) {
 207	default:
 208		return SEND_SIG_PRIV;
 209
 210	case X86_TRAP_DE:
 211		sicode = FPE_INTDIV;
 212		siaddr = uprobe_get_trap_addr(regs);
 213		break;
 214	case X86_TRAP_UD:
 215		sicode = ILL_ILLOPN;
 216		siaddr = uprobe_get_trap_addr(regs);
 217		break;
 218	case X86_TRAP_AC:
 219		sicode = BUS_ADRALN;
 220		siaddr = 0;
 221		break;
 222	}
 223
 224	info->si_signo = signr;
 225	info->si_errno = 0;
 226	info->si_code = sicode;
 227	info->si_addr = (void __user *)siaddr;
 228	return info;
 229}
 230
 231static void
 232do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 233	long error_code, siginfo_t *info)
 234{
 235	struct task_struct *tsk = current;
 236
 237
 238	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 239		return;
 
 240	/*
 241	 * We want error_code and trap_nr set for userspace faults and
 242	 * kernelspace faults which result in die(), but not
 243	 * kernelspace faults which are fixed up.  die() gives the
 244	 * process no chance to handle the signal and notice the
 245	 * kernel fault information, so that won't result in polluting
 246	 * the information about previously queued, but not yet
 247	 * delivered, faults.  See also do_general_protection below.
 248	 */
 249	tsk->thread.error_code = error_code;
 250	tsk->thread.trap_nr = trapnr;
 251
 
 252	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 253	    printk_ratelimit()) {
 254		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
 255			tsk->comm, tsk->pid, str,
 256			regs->ip, regs->sp, error_code);
 
 257		print_vma_addr(" in ", regs->ip);
 258		pr_cont("\n");
 259	}
 
 260
 261	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
 262}
 263NOKPROBE_SYMBOL(do_trap);
 264
 265static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 266			  unsigned long trapnr, int signr)
 267{
 268	siginfo_t info;
 269
 270	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 271
 272	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 273			NOTIFY_STOP) {
 274		cond_local_irq_enable(regs);
 275		do_trap(trapnr, signr, str, regs, error_code,
 276			fill_trap_info(regs, signr, trapnr, &info));
 277	}
 
 
 
 
 
 
 
 
 
 278}
 279
 280#define DO_ERROR(trapnr, signr, str, name)				\
 281dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
 282{									\
 283	do_error_trap(regs, error_code, str, trapnr, signr);		\
 
 
 
 
 284}
 285
 286DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
 287DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
 288DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
 289DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
 290DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
 291DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
 292DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
 293DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
 294
 295#ifdef CONFIG_VMAP_STACK
 296__visible void __noreturn handle_stack_overflow(const char *message,
 297						struct pt_regs *regs,
 298						unsigned long fault_address)
 299{
 300	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 301		 (void *)fault_address, current->stack,
 302		 (char *)current->stack + THREAD_SIZE - 1);
 303	die(message, regs, 0);
 304
 305	/* Be absolutely certain we don't return. */
 306	panic(message);
 307}
 
 
 308#endif
 
 309
 310#ifdef CONFIG_X86_64
 311/* Runs on IST stack */
 
 
 
 
 
 
 
 
 
 
 312dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 313{
 314	static const char str[] = "double fault";
 315	struct task_struct *tsk = current;
 316#ifdef CONFIG_VMAP_STACK
 317	unsigned long cr2;
 318#endif
 319
 320#ifdef CONFIG_X86_ESPFIX64
 321	extern unsigned char native_irq_return_iret[];
 322
 323	/*
 324	 * If IRET takes a non-IST fault on the espfix64 stack, then we
 325	 * end up promoting it to a doublefault.  In that case, modify
 326	 * the stack to make it look like we just entered the #GP
 327	 * handler from user space, similar to bad_iret.
 328	 *
 329	 * No need for ist_enter here because we don't use RCU.
 330	 */
 331	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
 332		regs->cs == __KERNEL_CS &&
 333		regs->ip == (unsigned long)native_irq_return_iret)
 334	{
 335		struct pt_regs *normal_regs = task_pt_regs(current);
 336
 337		/* Fake a #GP(0) from userspace. */
 338		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
 339		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
 340		regs->ip = (unsigned long)general_protection;
 341		regs->sp = (unsigned long)&normal_regs->orig_ax;
 342
 343		return;
 344	}
 345#endif
 346
 347	ist_enter(regs);
 348	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 349
 350	tsk->thread.error_code = error_code;
 351	tsk->thread.trap_nr = X86_TRAP_DF;
 352
 353#ifdef CONFIG_VMAP_STACK
 354	/*
 355	 * If we overflow the stack into a guard page, the CPU will fail
 356	 * to deliver #PF and will send #DF instead.  Similarly, if we
 357	 * take any non-IST exception while too close to the bottom of
 358	 * the stack, the processor will get a page fault while
 359	 * delivering the exception and will generate a double fault.
 360	 *
 361	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 362	 * Page-Fault Exception (#PF):
 363	 *
 364	 *   Processors update CR2 whenever a page fault is detected. If a
 365	 *   second page fault occurs while an earlier page fault is being
 366	 *   deliv- ered, the faulting linear address of the second fault will
 367	 *   overwrite the contents of CR2 (replacing the previous
 368	 *   address). These updates to CR2 occur even if the page fault
 369	 *   results in a double fault or occurs during the delivery of a
 370	 *   double fault.
 371	 *
 372	 * The logic below has a small possibility of incorrectly diagnosing
 373	 * some errors as stack overflows.  For example, if the IDT or GDT
 374	 * gets corrupted such that #GP delivery fails due to a bad descriptor
 375	 * causing #GP and we hit this condition while CR2 coincidentally
 376	 * points to the stack guard page, we'll think we overflowed the
 377	 * stack.  Given that we're going to panic one way or another
 378	 * if this happens, this isn't necessarily worth fixing.
 379	 *
 380	 * If necessary, we could improve the test by only diagnosing
 381	 * a stack overflow if the saved RSP points within 47 bytes of
 382	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
 383	 * take an exception, the stack is already aligned and there
 384	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 385	 * possible error code, so a stack overflow would *not* double
 386	 * fault.  With any less space left, exception delivery could
 387	 * fail, and, as a practical matter, we've overflowed the
 388	 * stack even if the actual trigger for the double fault was
 389	 * something else.
 390	 */
 391	cr2 = read_cr2();
 392	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
 393		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
 394#endif
 395
 396#ifdef CONFIG_DOUBLEFAULT
 397	df_debug(regs, error_code);
 398#endif
 399	/*
 400	 * This is always a kernel trap and never fixable (and thus must
 401	 * never return).
 402	 */
 403	for (;;)
 404		die(str, regs, error_code);
 405}
 406#endif
 407
 408dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
 
 409{
 410	const struct mpx_bndcsr *bndcsr;
 411	siginfo_t *info;
 412
 413	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 414	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
 415			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 416		return;
 417	cond_local_irq_enable(regs);
 418
 419	if (!user_mode(regs))
 420		die("bounds", regs, error_code);
 
 
 421
 422	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
 423		/* The exception is not from Intel MPX */
 424		goto exit_trap;
 425	}
 426
 427	/*
 428	 * We need to look at BNDSTATUS to resolve this exception.
 429	 * A NULL here might mean that it is in its 'init state',
 430	 * which is all zeros which indicates MPX was not
 431	 * responsible for the exception.
 432	 */
 433	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 434	if (!bndcsr)
 435		goto exit_trap;
 436
 437	trace_bounds_exception_mpx(bndcsr);
 438	/*
 439	 * The error code field of the BNDSTATUS register communicates status
 440	 * information of a bound range exception #BR or operation involving
 441	 * bound directory.
 442	 */
 443	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
 444	case 2:	/* Bound directory has invalid entry. */
 445		if (mpx_handle_bd_fault())
 446			goto exit_trap;
 447		break; /* Success, it was handled */
 448	case 1: /* Bound violation. */
 449		info = mpx_generate_siginfo(regs);
 450		if (IS_ERR(info)) {
 451			/*
 452			 * We failed to decode the MPX instruction.  Act as if
 453			 * the exception was not caused by MPX.
 454			 */
 455			goto exit_trap;
 456		}
 457		/*
 458		 * Success, we decoded the instruction and retrieved
 459		 * an 'info' containing the address being accessed
 460		 * which caused the exception.  This information
 461		 * allows and application to possibly handle the
 462		 * #BR exception itself.
 463		 */
 464		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
 465		kfree(info);
 466		break;
 467	case 0: /* No exception caused by Intel MPX operations. */
 468		goto exit_trap;
 469	default:
 470		die("bounds", regs, error_code);
 471	}
 472
 
 473	return;
 474
 475exit_trap:
 476	/*
 477	 * This path out is for all the cases where we could not
 478	 * handle the exception in some way (like allocating a
 479	 * table or telling userspace about it.  We will also end
 480	 * up here if the kernel has MPX turned off at compile
 481	 * time..
 482	 */
 483	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
 
 
 
 
 
 
 
 
 484}
 485
 486dotraplinkage void
 487do_general_protection(struct pt_regs *regs, long error_code)
 488{
 489	struct task_struct *tsk;
 
 
 
 490
 491	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 492	cond_local_irq_enable(regs);
 
 
 
 493
 494	if (v8086_mode(regs)) {
 495		local_irq_enable();
 496		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 
 
 
 
 497		return;
 498	}
 
 499
 500	tsk = current;
 501	if (!user_mode(regs)) {
 502		if (fixup_exception(regs, X86_TRAP_GP))
 503			return;
 504
 505		tsk->thread.error_code = error_code;
 506		tsk->thread.trap_nr = X86_TRAP_GP;
 507		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
 508			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
 509			die("general protection fault", regs, error_code);
 510		return;
 511	}
 512
 513	tsk->thread.error_code = error_code;
 514	tsk->thread.trap_nr = X86_TRAP_GP;
 
 
 515
 516	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
 517			printk_ratelimit()) {
 518		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
 519			tsk->comm, task_pid_nr(tsk),
 520			regs->ip, regs->sp, error_code);
 521		print_vma_addr(" in ", regs->ip);
 522		pr_cont("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523	}
 524
 525	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 
 526}
 527NOKPROBE_SYMBOL(do_general_protection);
 528
 529/* May run on IST stack. */
 530dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
 531{
 532#ifdef CONFIG_DYNAMIC_FTRACE
 
 
 
 533	/*
 534	 * ftrace must be first, everything else may cause a recursive crash.
 535	 * See note by declaration of modifying_ftrace_code in ftrace.c
 536	 */
 537	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
 538	    ftrace_int3_handler(regs))
 539		return;
 
 540#endif
 541	if (poke_int3_handler(regs))
 542		return;
 543
 544	ist_enter(regs);
 545	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 546#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 547	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 548				SIGTRAP) == NOTIFY_STOP)
 549		goto exit;
 550#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 551
 552#ifdef CONFIG_KPROBES
 553	if (kprobe_int3_handler(regs))
 554		goto exit;
 555#endif
 556
 557	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 558			SIGTRAP) == NOTIFY_STOP)
 559		goto exit;
 560
 561	/*
 562	 * Let others (NMI) know that the debug stack is in use
 563	 * as we may switch to the interrupt stack.
 
 564	 */
 565	debug_stack_usage_inc();
 566	preempt_disable();
 567	cond_local_irq_enable(regs);
 568	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
 569	cond_local_irq_disable(regs);
 570	preempt_enable_no_resched();
 571	debug_stack_usage_dec();
 572exit:
 573	ist_exit(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574}
 575NOKPROBE_SYMBOL(do_int3);
 576
 577#ifdef CONFIG_X86_64
 578/*
 579 * Help handler running on IST stack to switch off the IST stack if the
 580 * interrupted code was in user mode. The actual stack switch is done in
 581 * entry_64.S
 582 */
 583asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
 584{
 585	struct pt_regs *regs = task_pt_regs(current);
 586	*regs = *eregs;
 587	return regs;
 588}
 589NOKPROBE_SYMBOL(sync_regs);
 590
 591struct bad_iret_stack {
 592	void *error_entry_ret;
 593	struct pt_regs regs;
 594};
 595
 596asmlinkage __visible notrace
 597struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 598{
 599	/*
 600	 * This is called from entry_64.S early in handling a fault
 601	 * caused by a bad iret to user mode.  To handle the fault
 602	 * correctly, we want move our stack frame to task_pt_regs
 603	 * and we want to pretend that the exception came from the
 604	 * iret target.
 605	 */
 606	struct bad_iret_stack *new_stack =
 607		container_of(task_pt_regs(current),
 608			     struct bad_iret_stack, regs);
 609
 610	/* Copy the IRET target to the new stack. */
 611	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
 612
 613	/* Copy the remainder of the stack from the current stack. */
 614	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 
 
 615
 616	BUG_ON(!user_mode(&new_stack->regs));
 617	return new_stack;
 
 618}
 619NOKPROBE_SYMBOL(fixup_bad_iret);
 620#endif
 621
 622static bool is_sysenter_singlestep(struct pt_regs *regs)
 
 623{
 624	/*
 625	 * We don't try for precision here.  If we're anywhere in the region of
 626	 * code that can be single-stepped in the SYSENTER entry path, then
 627	 * assume that this is a useless single-step trap due to SYSENTER
 628	 * being invoked with TF set.  (We don't know in advance exactly
 629	 * which instructions will be hit because BTF could plausibly
 630	 * be set.)
 631	 */
 632#ifdef CONFIG_X86_32
 633	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 634		(unsigned long)__end_SYSENTER_singlestep_region -
 635		(unsigned long)__begin_SYSENTER_singlestep_region;
 636#elif defined(CONFIG_IA32_EMULATION)
 637	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 638		(unsigned long)__end_entry_SYSENTER_compat -
 639		(unsigned long)entry_SYSENTER_compat;
 640#else
 641	return false;
 
 
 642#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 
 644
 645/*
 646 * Our handling of the processor debug registers is non-trivial.
 647 * We do not clear them on entry and exit from the kernel. Therefore
 648 * it is possible to get a watchpoint trap here from inside the kernel.
 649 * However, the code in ./ptrace.c has ensured that the user can
 650 * only set watchpoints on userspace addresses. Therefore the in-kernel
 651 * watchpoint trap can only occur in code which is reading/writing
 652 * from user space. Such code must not hold kernel locks (since it
 653 * can equally take a page fault), therefore it is safe to call
 654 * force_sig_info even though that claims and releases locks.
 655 *
 656 * Code in ./signal.c ensures that the debug control register
 657 * is restored before we deliver any signal, and therefore that
 658 * user code runs with the correct debug control register even though
 659 * we clear it here.
 660 *
 661 * Being careful here means that we don't have to be as careful in a
 662 * lot of more complicated places (task switching can be a bit lazy
 663 * about restoring all the debug state, and ptrace doesn't have to
 664 * find every occurrence of the TF bit that could be saved away even
 665 * by user code)
 666 *
 667 * May run on IST stack.
 668 */
 669dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
 670{
 671	struct task_struct *tsk = current;
 672	int user_icebp = 0;
 673	unsigned long dr6;
 674	int si_code;
 675
 676	ist_enter(regs);
 677
 678	get_debugreg(dr6, 6);
 679	/*
 680	 * The Intel SDM says:
 681	 *
 682	 *   Certain debug exceptions may clear bits 0-3. The remaining
 683	 *   contents of the DR6 register are never cleared by the
 684	 *   processor. To avoid confusion in identifying debug
 685	 *   exceptions, debug handlers should clear the register before
 686	 *   returning to the interrupted task.
 687	 *
 688	 * Keep it simple: clear DR6 immediately.
 689	 */
 690	set_debugreg(0, 6);
 691
 692	/* Filter out all the reserved bits which are preset to 1 */
 693	dr6 &= ~DR6_RESERVED;
 694
 695	/*
 696	 * The SDM says "The processor clears the BTF flag when it
 697	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 698	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 699	 */
 700	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
 701
 702	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
 703		     is_sysenter_singlestep(regs))) {
 704		dr6 &= ~DR_STEP;
 705		if (!dr6)
 706			goto exit;
 707		/*
 708		 * else we might have gotten a single-step trap and hit a
 709		 * watchpoint at the same time, in which case we should fall
 710		 * through and handle the watchpoint.
 711		 */
 712	}
 713
 714	/*
 715	 * If dr6 has no reason to give us about the origin of this trap,
 716	 * then it's very likely the result of an icebp/int01 trap.
 717	 * User wants a sigtrap for that.
 718	 */
 719	if (!dr6 && user_mode(regs))
 720		user_icebp = 1;
 721
 722	/* Catch kmemcheck conditions! */
 723	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
 724		goto exit;
 
 
 
 
 
 
 
 
 725
 726	/* Store the virtualized DR6 value */
 727	tsk->thread.debugreg6 = dr6;
 728
 729#ifdef CONFIG_KPROBES
 730	if (kprobe_debug_handler(regs))
 731		goto exit;
 732#endif
 733
 734	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
 735							SIGTRAP) == NOTIFY_STOP)
 736		goto exit;
 737
 738	/*
 739	 * Let others (NMI) know that the debug stack is in use
 740	 * as we may switch to the interrupt stack.
 741	 */
 742	debug_stack_usage_inc();
 743
 744	/* It's safe to allow irq's after DR6 has been saved */
 745	preempt_disable();
 746	cond_local_irq_enable(regs);
 747
 748	if (v8086_mode(regs)) {
 749		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
 750					X86_TRAP_DB);
 751		cond_local_irq_disable(regs);
 752		preempt_enable_no_resched();
 753		debug_stack_usage_dec();
 754		goto exit;
 755	}
 756
 757	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
 758		/*
 759		 * Historical junk that used to handle SYSENTER single-stepping.
 760		 * This should be unreachable now.  If we survive for a while
 761		 * without anyone hitting this warning, we'll turn this into
 762		 * an oops.
 763		 */
 
 764		tsk->thread.debugreg6 &= ~DR_STEP;
 765		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 766		regs->flags &= ~X86_EFLAGS_TF;
 767	}
 768	si_code = get_si_code(tsk->thread.debugreg6);
 769	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 770		send_sigtrap(tsk, regs, error_code, si_code);
 771	cond_local_irq_disable(regs);
 772	preempt_enable_no_resched();
 773	debug_stack_usage_dec();
 774
 775exit:
 776#if defined(CONFIG_X86_32)
 777	/*
 778	 * This is the most likely code path that involves non-trivial use
 779	 * of the SYSENTER stack.  Check that we haven't overrun it.
 780	 */
 781	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
 782	     "Overran or corrupted SYSENTER stack\n");
 783#endif
 784	ist_exit(regs);
 785}
 786NOKPROBE_SYMBOL(do_debug);
 787
 788/*
 789 * Note that we play around with the 'TS' bit in an attempt to get
 790 * the correct behaviour even in the presence of the asynchronous
 791 * IRQ13 behaviour
 792 */
 793static void math_error(struct pt_regs *regs, int error_code, int trapnr)
 794{
 795	struct task_struct *task = current;
 796	struct fpu *fpu = &task->thread.fpu;
 797	siginfo_t info;
 798	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 799						"simd exception";
 800
 801	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
 802		return;
 803	cond_local_irq_enable(regs);
 804
 805	if (!user_mode(regs)) {
 806		if (!fixup_exception(regs, trapnr)) {
 
 807			task->thread.error_code = error_code;
 808			task->thread.trap_nr = trapnr;
 809			die(str, regs, error_code);
 810		}
 811		return;
 812	}
 813
 814	/*
 815	 * Save the info for the exception handler and clear the error.
 816	 */
 817	fpu__save(fpu);
 818
 819	task->thread.trap_nr	= trapnr;
 820	task->thread.error_code = error_code;
 821	info.si_signo		= SIGFPE;
 822	info.si_errno		= 0;
 823	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
 824
 825	info.si_code = fpu__exception_code(fpu, trapnr);
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	/* Retry when we get spurious exceptions: */
 828	if (!info.si_code)
 829		return;
 
 
 
 
 
 
 
 
 830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831	force_sig_info(SIGFPE, &info, task);
 832}
 833
 834dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
 835{
 836	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 837	math_error(regs, error_code, X86_TRAP_MF);
 
 
 
 838}
 839
 840dotraplinkage void
 841do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
 842{
 843	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 844	math_error(regs, error_code, X86_TRAP_XF);
 845}
 846
 847dotraplinkage void
 848do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
 849{
 850	cond_local_irq_enable(regs);
 
 
 
 
 851}
 852
 853dotraplinkage void
 854do_device_not_available(struct pt_regs *regs, long error_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855{
 856	unsigned long cr0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 859
 
 
 
 
 
 
 
 860#ifdef CONFIG_MATH_EMULATION
 861	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
 862		struct math_emu_info info = { };
 863
 864		cond_local_irq_enable(regs);
 865
 866		info.regs = regs;
 867		math_emulate(&info);
 868		return;
 869	}
 870#endif
 871
 872	/* This should not happen. */
 873	cr0 = read_cr0();
 874	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
 875		/* Try to fix it up and carry on. */
 876		write_cr0(cr0 & ~X86_CR0_TS);
 877	} else {
 878		/*
 879		 * Something terrible happened, and we're better off trying
 880		 * to kill the task than getting stuck in a never-ending
 881		 * loop of #NM faults.
 882		 */
 883		die("unexpected #NM exception", regs, error_code);
 884	}
 885}
 886NOKPROBE_SYMBOL(do_device_not_available);
 887
 888#ifdef CONFIG_X86_32
 889dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 890{
 891	siginfo_t info;
 892
 893	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 894	local_irq_enable();
 895
 896	info.si_signo = SIGILL;
 897	info.si_errno = 0;
 898	info.si_code = ILL_BADSTK;
 899	info.si_addr = NULL;
 900	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
 901			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
 902		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
 903			&info);
 904	}
 905}
 906#endif
 907
 908/* Set of traps needed for early debugging. */
 909void __init early_trap_init(void)
 910{
 911	/*
 912	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
 913	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
 914	 * CPU runs at ring 0 so it is impossible to hit an invalid
 915	 * stack.  Using the original stack works well enough at this
 916	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
 917	 * trap_init().
 918	 *
 919	 * We don't need to set trace_idt_table like set_intr_gate(),
 920	 * since we don't have trace_debug and it will be reset to
 921	 * 'debug' in trap_init() by set_intr_gate_ist().
 922	 */
 923	set_intr_gate_notrace(X86_TRAP_DB, debug);
 924	/* int3 can be called from all */
 925	set_system_intr_gate(X86_TRAP_BP, &int3);
 926#ifdef CONFIG_X86_32
 927	set_intr_gate(X86_TRAP_PF, page_fault);
 928#endif
 929	load_idt(&idt_descr);
 930}
 931
 932void __init early_trap_pf_init(void)
 933{
 934#ifdef CONFIG_X86_64
 935	set_intr_gate(X86_TRAP_PF, page_fault);
 936#endif
 937}
 938
 939void __init trap_init(void)
 940{
 941	int i;
 942
 943#ifdef CONFIG_EISA
 944	void __iomem *p = early_ioremap(0x0FFFD9, 4);
 945
 946	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
 947		EISA_bus = 1;
 948	early_iounmap(p, 4);
 949#endif
 950
 951	set_intr_gate(X86_TRAP_DE, divide_error);
 952	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
 953	/* int4 can be called from all */
 954	set_system_intr_gate(X86_TRAP_OF, &overflow);
 955	set_intr_gate(X86_TRAP_BR, bounds);
 956	set_intr_gate(X86_TRAP_UD, invalid_op);
 957	set_intr_gate(X86_TRAP_NM, device_not_available);
 958#ifdef CONFIG_X86_32
 959	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
 960#else
 961	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
 962#endif
 963	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
 964	set_intr_gate(X86_TRAP_TS, invalid_TSS);
 965	set_intr_gate(X86_TRAP_NP, segment_not_present);
 966	set_intr_gate(X86_TRAP_SS, stack_segment);
 967	set_intr_gate(X86_TRAP_GP, general_protection);
 968	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
 969	set_intr_gate(X86_TRAP_MF, coprocessor_error);
 970	set_intr_gate(X86_TRAP_AC, alignment_check);
 971#ifdef CONFIG_X86_MCE
 972	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
 973#endif
 974	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
 975
 976	/* Reserve all the builtin and the syscall vector: */
 977	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
 978		set_bit(i, used_vectors);
 979
 980#ifdef CONFIG_IA32_EMULATION
 981	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
 982	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
 983#endif
 984
 985#ifdef CONFIG_X86_32
 986	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
 987	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
 988#endif
 989
 990	/*
 991	 * Set the IDT descriptor to a fixed read-only location, so that the
 992	 * "sidt" instruction will not leak the location of the kernel, and
 993	 * to defend the IDT against arbitrary memory write vulnerabilities.
 994	 * It will be reloaded in cpu_init() */
 995	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
 996	idt_descr.address = fix_to_virt(FIX_RO_IDT);
 997
 998	/*
 999	 * Should be a barrier for any external CPU state:
1000	 */
1001	cpu_init();
1002
1003	/*
1004	 * X86_TRAP_DB and X86_TRAP_BP have been set
1005	 * in early_trap_init(). However, ITS works only after
1006	 * cpu_init() loads TSS. See comments in early_trap_init().
1007	 */
1008	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1009	/* int3 can be called from all */
1010	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1011
1012	x86_init.irqs.trap_init();
1013
1014#ifdef CONFIG_X86_64
1015	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1016	set_nmi_gate(X86_TRAP_DB, &debug);
1017	set_nmi_gate(X86_TRAP_BP, &int3);
1018#endif
1019}
v3.1
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 
 
 
 
 12#include <linux/interrupt.h>
 13#include <linux/kallsyms.h>
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/uaccess.h>
 17#include <linux/kdebug.h>
 18#include <linux/kgdb.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/ptrace.h>
 
 22#include <linux/string.h>
 23#include <linux/delay.h>
 24#include <linux/errno.h>
 25#include <linux/kexec.h>
 26#include <linux/sched.h>
 27#include <linux/timer.h>
 28#include <linux/init.h>
 29#include <linux/bug.h>
 30#include <linux/nmi.h>
 31#include <linux/mm.h>
 32#include <linux/smp.h>
 33#include <linux/io.h>
 34
 35#ifdef CONFIG_EISA
 36#include <linux/ioport.h>
 37#include <linux/eisa.h>
 38#endif
 39
 40#ifdef CONFIG_MCA
 41#include <linux/mca.h>
 42#endif
 43
 44#if defined(CONFIG_EDAC)
 45#include <linux/edac.h>
 46#endif
 47
 48#include <asm/kmemcheck.h>
 49#include <asm/stacktrace.h>
 50#include <asm/processor.h>
 51#include <asm/debugreg.h>
 52#include <linux/atomic.h>
 53#include <asm/system.h>
 
 54#include <asm/traps.h>
 55#include <asm/desc.h>
 56#include <asm/i387.h>
 57#include <asm/mce.h>
 58
 59#include <asm/mach_traps.h>
 
 
 
 
 
 60
 61#ifdef CONFIG_X86_64
 62#include <asm/x86_init.h>
 63#include <asm/pgalloc.h>
 64#include <asm/proto.h>
 
 
 
 65#else
 66#include <asm/processor-flags.h>
 67#include <asm/setup.h>
 
 
 68
 69asmlinkage int system_call(void);
 70
 71/* Do we ignore FPU interrupts ? */
 72char ignore_fpu_irq;
 73
 74/*
 75 * The IDT has to be page-aligned to simplify the Pentium
 76 * F0 0F bug workaround.
 77 */
 78gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
 79#endif
 80
 81DECLARE_BITMAP(used_vectors, NR_VECTORS);
 82EXPORT_SYMBOL_GPL(used_vectors);
 83
 84static int ignore_nmis;
 85
 86int unknown_nmi_panic;
 87/*
 88 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 89 * only be used in NMI handler.
 90 */
 91static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 92
 93static inline void conditional_sti(struct pt_regs *regs)
 94{
 95	if (regs->flags & X86_EFLAGS_IF)
 96		local_irq_enable();
 97}
 98
 99static inline void preempt_conditional_sti(struct pt_regs *regs)
100{
101	inc_preempt_count();
102	if (regs->flags & X86_EFLAGS_IF)
103		local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104}
105
106static inline void conditional_cli(struct pt_regs *regs)
107{
108	if (regs->flags & X86_EFLAGS_IF)
109		local_irq_disable();
 
 
110}
111
112static inline void preempt_conditional_cli(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
113{
114	if (regs->flags & X86_EFLAGS_IF)
115		local_irq_disable();
116	dec_preempt_count();
 
 
 
 
 
 
 
 
117}
118
119static void __kprobes
120do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
121	long error_code, siginfo_t *info)
 
 
 
122{
123	struct task_struct *tsk = current;
 
124
125#ifdef CONFIG_X86_32
126	if (regs->flags & X86_VM_MASK) {
 
 
 
127		/*
128		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
129		 * On nmi (interrupt 2), do_trap should not be called.
130		 */
131		if (trapnr < 6)
132			goto vm86_trap;
133		goto trap_signal;
 
 
 
134	}
135#endif
136
137	if (!user_mode(regs))
138		goto kernel_trap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
140#ifdef CONFIG_X86_32
141trap_signal:
142#endif
143	/*
144	 * We want error_code and trap_no set for userspace faults and
145	 * kernelspace faults which result in die(), but not
146	 * kernelspace faults which are fixed up.  die() gives the
147	 * process no chance to handle the signal and notice the
148	 * kernel fault information, so that won't result in polluting
149	 * the information about previously queued, but not yet
150	 * delivered, faults.  See also do_general_protection below.
151	 */
152	tsk->thread.error_code = error_code;
153	tsk->thread.trap_no = trapnr;
154
155#ifdef CONFIG_X86_64
156	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
157	    printk_ratelimit()) {
158		printk(KERN_INFO
159		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
160		       tsk->comm, tsk->pid, str,
161		       regs->ip, regs->sp, error_code);
162		print_vma_addr(" in ", regs->ip);
163		printk("\n");
164	}
165#endif
166
167	if (info)
168		force_sig_info(signr, info, tsk);
169	else
170		force_sig(signr, tsk);
171	return;
 
 
 
 
 
172
173kernel_trap:
174	if (!fixup_exception(regs)) {
175		tsk->thread.error_code = error_code;
176		tsk->thread.trap_no = trapnr;
177		die(str, regs, error_code);
178	}
179	return;
180
181#ifdef CONFIG_X86_32
182vm86_trap:
183	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
184						error_code, trapnr))
185		goto trap_signal;
186	return;
187#endif
188}
189
190#define DO_ERROR(trapnr, signr, str, name)				\
191dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
192{									\
193	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
194							== NOTIFY_STOP)	\
195		return;							\
196	conditional_sti(regs);						\
197	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
198}
199
200#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
201dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
202{									\
203	siginfo_t info;							\
204	info.si_signo = signr;						\
205	info.si_errno = 0;						\
206	info.si_code = sicode;						\
207	info.si_addr = (void __user *)siaddr;				\
208	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
209							== NOTIFY_STOP)	\
210		return;							\
211	conditional_sti(regs);						\
212	do_trap(trapnr, signr, str, regs, error_code, &info);		\
213}
214
215DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
216DO_ERROR(4, SIGSEGV, "overflow", overflow)
217DO_ERROR(5, SIGSEGV, "bounds", bounds)
218DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
219DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
220DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
221DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
222#ifdef CONFIG_X86_32
223DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
224#endif
225DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
226
227#ifdef CONFIG_X86_64
228/* Runs on IST stack */
229dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
230{
231	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
232			12, SIGBUS) == NOTIFY_STOP)
233		return;
234	preempt_conditional_sti(regs);
235	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
236	preempt_conditional_cli(regs);
237}
238
239dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
240{
241	static const char str[] = "double fault";
242	struct task_struct *tsk = current;
 
 
 
243
244	/* Return not checked because double check cannot be ignored */
245	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
247	tsk->thread.error_code = error_code;
248	tsk->thread.trap_no = 8;
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250	/*
251	 * This is always a kernel trap and never fixable (and thus must
252	 * never return).
253	 */
254	for (;;)
255		die(str, regs, error_code);
256}
257#endif
258
259dotraplinkage void __kprobes
260do_general_protection(struct pt_regs *regs, long error_code)
261{
262	struct task_struct *tsk;
 
263
264	conditional_sti(regs);
 
 
 
 
265
266#ifdef CONFIG_X86_32
267	if (regs->flags & X86_VM_MASK)
268		goto gp_in_vm86;
269#endif
270
271	tsk = current;
272	if (!user_mode(regs))
273		goto gp_in_kernel;
 
274
275	tsk->thread.error_code = error_code;
276	tsk->thread.trap_no = 13;
 
 
 
 
 
 
 
277
278	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
279			printk_ratelimit()) {
280		printk(KERN_INFO
281			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
282			tsk->comm, task_pid_nr(tsk),
283			regs->ip, regs->sp, error_code);
284		print_vma_addr(" in ", regs->ip);
285		printk("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286	}
287
288	force_sig(SIGSEGV, tsk);
289	return;
290
291#ifdef CONFIG_X86_32
292gp_in_vm86:
293	local_irq_enable();
294	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
295	return;
296#endif
297
298gp_in_kernel:
299	if (fixup_exception(regs))
300		return;
301
302	tsk->thread.error_code = error_code;
303	tsk->thread.trap_no = 13;
304	if (notify_die(DIE_GPF, "general protection fault", regs,
305				error_code, 13, SIGSEGV) == NOTIFY_STOP)
306		return;
307	die("general protection fault", regs, error_code);
308}
309
310static int __init setup_unknown_nmi_panic(char *str)
 
311{
312	unknown_nmi_panic = 1;
313	return 1;
314}
315__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
316
317static notrace __kprobes void
318pci_serr_error(unsigned char reason, struct pt_regs *regs)
319{
320	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
321		 reason, smp_processor_id());
322
323	/*
324	 * On some machines, PCI SERR line is used to report memory
325	 * errors. EDAC makes use of it.
326	 */
327#if defined(CONFIG_EDAC)
328	if (edac_handler_set()) {
329		edac_atomic_assert_error();
330		return;
331	}
332#endif
333
334	if (panic_on_unrecovered_nmi)
335		panic("NMI: Not continuing");
 
 
336
337	pr_emerg("Dazed and confused, but trying to continue\n");
 
 
 
 
 
 
338
339	/* Clear and disable the PCI SERR error line. */
340	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
341	outb(reason, NMI_REASON_PORT);
342}
343
344static notrace __kprobes void
345io_check_error(unsigned char reason, struct pt_regs *regs)
346{
347	unsigned long i;
348
349	pr_emerg(
350	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
351		 reason, smp_processor_id());
352	show_registers(regs);
353
354	if (panic_on_io_nmi)
355		panic("NMI IOCK error: Not continuing");
356
357	/* Re-enable the IOCK line, wait for a few seconds */
358	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
359	outb(reason, NMI_REASON_PORT);
360
361	i = 20000;
362	while (--i) {
363		touch_nmi_watchdog();
364		udelay(100);
365	}
366
367	reason &= ~NMI_REASON_CLEAR_IOCHK;
368	outb(reason, NMI_REASON_PORT);
369}
 
370
371static notrace __kprobes void
372unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
373{
374	if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
375			NOTIFY_STOP)
376		return;
377#ifdef CONFIG_MCA
378	/*
379	 * Might actually be able to figure out what the guilty party
380	 * is:
381	 */
382	if (MCA_bus) {
383		mca_handle_nmi();
384		return;
385	}
386#endif
387	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
388		 reason, smp_processor_id());
389
390	pr_emerg("Do you have a strange power saving mode enabled?\n");
391	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
392		panic("NMI: Not continuing");
 
 
 
 
393
394	pr_emerg("Dazed and confused, but trying to continue\n");
395}
 
 
396
397static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
398{
399	unsigned char reason = 0;
400
401	/*
402	 * CPU-specific NMI must be processed before non-CPU-specific
403	 * NMI, otherwise we may lose it, because the CPU-specific
404	 * NMI can not be detected/processed on other CPUs.
405	 */
406	if (notify_die(DIE_NMI, "nmi", regs, 0, 2, SIGINT) == NOTIFY_STOP)
407		return;
408
409	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
410	raw_spin_lock(&nmi_reason_lock);
411	reason = get_nmi_reason();
412
413	if (reason & NMI_REASON_MASK) {
414		if (reason & NMI_REASON_SERR)
415			pci_serr_error(reason, regs);
416		else if (reason & NMI_REASON_IOCHK)
417			io_check_error(reason, regs);
418#ifdef CONFIG_X86_32
419		/*
420		 * Reassert NMI in case it became active
421		 * meanwhile as it's edge-triggered:
422		 */
423		reassert_nmi();
424#endif
425		raw_spin_unlock(&nmi_reason_lock);
426		return;
427	}
428	raw_spin_unlock(&nmi_reason_lock);
429
430	unknown_nmi_error(reason, regs);
431}
 
432
433dotraplinkage notrace __kprobes void
434do_nmi(struct pt_regs *regs, long error_code)
 
 
 
 
 
435{
436	nmi_enter();
 
 
 
 
437
438	inc_irq_stat(__nmi_count);
 
 
 
439
440	if (!ignore_nmis)
441		default_do_nmi(regs);
 
 
 
 
 
 
 
 
 
 
 
442
443	nmi_exit();
444}
445
446void stop_nmi(void)
447{
448	ignore_nmis++;
449}
450
451void restart_nmi(void)
452{
453	ignore_nmis--;
454}
 
 
455
456/* May run on IST stack. */
457dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
458{
459#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
460	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
461			== NOTIFY_STOP)
462		return;
463#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
464#ifdef CONFIG_KPROBES
465	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
466			== NOTIFY_STOP)
467		return;
 
 
 
 
 
 
 
468#else
469	if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
470			== NOTIFY_STOP)
471		return;
472#endif
473
474	preempt_conditional_sti(regs);
475	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
476	preempt_conditional_cli(regs);
477}
478
479#ifdef CONFIG_X86_64
480/*
481 * Help handler running on IST stack to switch back to user stack
482 * for scheduling or signal handling. The actual stack switch is done in
483 * entry.S
484 */
485asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
486{
487	struct pt_regs *regs = eregs;
488	/* Did already sync */
489	if (eregs == (struct pt_regs *)eregs->sp)
490		;
491	/* Exception from user space */
492	else if (user_mode(eregs))
493		regs = task_pt_regs(current);
494	/*
495	 * Exception from kernel and interrupts are enabled. Move to
496	 * kernel process stack.
497	 */
498	else if (eregs->flags & X86_EFLAGS_IF)
499		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
500	if (eregs != regs)
501		*regs = *eregs;
502	return regs;
503}
504#endif
505
506/*
507 * Our handling of the processor debug registers is non-trivial.
508 * We do not clear them on entry and exit from the kernel. Therefore
509 * it is possible to get a watchpoint trap here from inside the kernel.
510 * However, the code in ./ptrace.c has ensured that the user can
511 * only set watchpoints on userspace addresses. Therefore the in-kernel
512 * watchpoint trap can only occur in code which is reading/writing
513 * from user space. Such code must not hold kernel locks (since it
514 * can equally take a page fault), therefore it is safe to call
515 * force_sig_info even though that claims and releases locks.
516 *
517 * Code in ./signal.c ensures that the debug control register
518 * is restored before we deliver any signal, and therefore that
519 * user code runs with the correct debug control register even though
520 * we clear it here.
521 *
522 * Being careful here means that we don't have to be as careful in a
523 * lot of more complicated places (task switching can be a bit lazy
524 * about restoring all the debug state, and ptrace doesn't have to
525 * find every occurrence of the TF bit that could be saved away even
526 * by user code)
527 *
528 * May run on IST stack.
529 */
530dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
531{
532	struct task_struct *tsk = current;
533	int user_icebp = 0;
534	unsigned long dr6;
535	int si_code;
536
 
 
537	get_debugreg(dr6, 6);
 
 
 
 
 
 
 
 
 
 
 
 
538
539	/* Filter out all the reserved bits which are preset to 1 */
540	dr6 &= ~DR6_RESERVED;
541
542	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543	 * If dr6 has no reason to give us about the origin of this trap,
544	 * then it's very likely the result of an icebp/int01 trap.
545	 * User wants a sigtrap for that.
546	 */
547	if (!dr6 && user_mode(regs))
548		user_icebp = 1;
549
550	/* Catch kmemcheck conditions first of all! */
551	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
552		return;
553
554	/* DR6 may or may not be cleared by the CPU */
555	set_debugreg(0, 6);
556
557	/*
558	 * The processor cleared BTF, so don't mark that we need it set.
559	 */
560	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
561
562	/* Store the virtualized DR6 value */
563	tsk->thread.debugreg6 = dr6;
564
565	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
 
 
 
 
 
566							SIGTRAP) == NOTIFY_STOP)
567		return;
 
 
 
 
 
 
568
569	/* It's safe to allow irq's after DR6 has been saved */
570	preempt_conditional_sti(regs);
 
571
572	if (regs->flags & X86_VM_MASK) {
573		handle_vm86_trap((struct kernel_vm86_regs *) regs,
574				error_code, 1);
575		preempt_conditional_cli(regs);
576		return;
 
 
577	}
578
579	/*
580	 * Single-stepping through system calls: ignore any exceptions in
581	 * kernel space, but re-enable TF when returning to user mode.
582	 *
583	 * We already checked v86 mode above, so we can check for kernel mode
584	 * by just checking the CPL of CS.
585	 */
586	if ((dr6 & DR_STEP) && !user_mode(regs)) {
587		tsk->thread.debugreg6 &= ~DR_STEP;
588		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
589		regs->flags &= ~X86_EFLAGS_TF;
590	}
591	si_code = get_si_code(tsk->thread.debugreg6);
592	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
593		send_sigtrap(tsk, regs, error_code, si_code);
594	preempt_conditional_cli(regs);
 
 
595
596	return;
 
 
 
 
 
 
 
 
 
597}
 
598
599/*
600 * Note that we play around with the 'TS' bit in an attempt to get
601 * the correct behaviour even in the presence of the asynchronous
602 * IRQ13 behaviour
603 */
604void math_error(struct pt_regs *regs, int error_code, int trapnr)
605{
606	struct task_struct *task = current;
 
607	siginfo_t info;
608	unsigned short err;
609	char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
610
611	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
612		return;
613	conditional_sti(regs);
614
615	if (!user_mode_vm(regs))
616	{
617		if (!fixup_exception(regs)) {
618			task->thread.error_code = error_code;
619			task->thread.trap_no = trapnr;
620			die(str, regs, error_code);
621		}
622		return;
623	}
624
625	/*
626	 * Save the info for the exception handler and clear the error.
627	 */
628	save_init_fpu(task);
629	task->thread.trap_no = trapnr;
 
630	task->thread.error_code = error_code;
631	info.si_signo = SIGFPE;
632	info.si_errno = 0;
633	info.si_addr = (void __user *)regs->ip;
634	if (trapnr == 16) {
635		unsigned short cwd, swd;
636		/*
637		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
638		 * status.  0x3f is the exception bits in these regs, 0x200 is the
639		 * C1 reg you need in case of a stack fault, 0x040 is the stack
640		 * fault bit.  We should only be taking one exception at a time,
641		 * so if this combination doesn't produce any single exception,
642		 * then we have a bad program that isn't synchronizing its FPU usage
643		 * and it will suffer the consequences since we won't be able to
644		 * fully reproduce the context of the exception
645		 */
646		cwd = get_fpu_cwd(task);
647		swd = get_fpu_swd(task);
648
649		err = swd & ~cwd;
650	} else {
651		/*
652		 * The SIMD FPU exceptions are handled a little differently, as there
653		 * is only a single status/control register.  Thus, to determine which
654		 * unmasked exception was caught we must mask the exception mask bits
655		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
656		 */
657		unsigned short mxcsr = get_fpu_mxcsr(task);
658		err = ~(mxcsr >> 7) & mxcsr;
659	}
660
661	if (err & 0x001) {	/* Invalid op */
662		/*
663		 * swd & 0x240 == 0x040: Stack Underflow
664		 * swd & 0x240 == 0x240: Stack Overflow
665		 * User must clear the SF bit (0x40) if set
666		 */
667		info.si_code = FPE_FLTINV;
668	} else if (err & 0x004) { /* Divide by Zero */
669		info.si_code = FPE_FLTDIV;
670	} else if (err & 0x008) { /* Overflow */
671		info.si_code = FPE_FLTOVF;
672	} else if (err & 0x012) { /* Denormal, Underflow */
673		info.si_code = FPE_FLTUND;
674	} else if (err & 0x020) { /* Precision */
675		info.si_code = FPE_FLTRES;
676	} else {
677		/*
678		 * If we're using IRQ 13, or supposedly even some trap 16
679		 * implementations, it's possible we get a spurious trap...
680		 */
681		return;		/* Spurious trap, no error */
682	}
683	force_sig_info(SIGFPE, &info, task);
684}
685
686dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
687{
688#ifdef CONFIG_X86_32
689	ignore_fpu_irq = 1;
690#endif
691
692	math_error(regs, error_code, 16);
693}
694
695dotraplinkage void
696do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
697{
698	math_error(regs, error_code, 19);
 
699}
700
701dotraplinkage void
702do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
703{
704	conditional_sti(regs);
705#if 0
706	/* No need to warn about this any longer. */
707	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
708#endif
709}
710
711asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
712{
713}
714
715asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
716{
717}
718
719/*
720 * __math_state_restore assumes that cr0.TS is already clear and the
721 * fpu state is all ready for use.  Used during context switch.
722 */
723void __math_state_restore(void)
724{
725	struct thread_info *thread = current_thread_info();
726	struct task_struct *tsk = thread->task;
727
728	/*
729	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
730	 */
731	if (unlikely(restore_fpu_checking(tsk))) {
732		stts();
733		force_sig(SIGSEGV, tsk);
734		return;
735	}
736
737	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */
738	tsk->fpu_counter++;
739}
740
741/*
742 * 'math_state_restore()' saves the current math information in the
743 * old math state array, and gets the new ones from the current task
744 *
745 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
746 * Don't touch unless you *really* know how it works.
747 *
748 * Must be called with kernel preemption disabled (in this case,
749 * local interrupts are disabled at the call-site in entry.S).
750 */
751asmlinkage void math_state_restore(void)
752{
753	struct thread_info *thread = current_thread_info();
754	struct task_struct *tsk = thread->task;
755
756	if (!tsk_used_math(tsk)) {
757		local_irq_enable();
758		/*
759		 * does a slab alloc which can sleep
760		 */
761		if (init_fpu(tsk)) {
762			/*
763			 * ran out of memory!
764			 */
765			do_group_exit(SIGKILL);
766			return;
767		}
768		local_irq_disable();
769	}
770
771	clts();				/* Allow maths ops (or we recurse) */
772
773	__math_state_restore();
774}
775EXPORT_SYMBOL_GPL(math_state_restore);
776
777dotraplinkage void __kprobes
778do_device_not_available(struct pt_regs *regs, long error_code)
779{
780#ifdef CONFIG_MATH_EMULATION
781	if (read_cr0() & X86_CR0_EM) {
782		struct math_emu_info info = { };
783
784		conditional_sti(regs);
785
786		info.regs = regs;
787		math_emulate(&info);
788		return;
789	}
790#endif
791	math_state_restore(); /* interrupts still off */
792#ifdef CONFIG_X86_32
793	conditional_sti(regs);
794#endif
 
 
 
 
 
 
 
 
 
 
795}
 
796
797#ifdef CONFIG_X86_32
798dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
799{
800	siginfo_t info;
 
 
801	local_irq_enable();
802
803	info.si_signo = SIGILL;
804	info.si_errno = 0;
805	info.si_code = ILL_BADSTK;
806	info.si_addr = NULL;
807	if (notify_die(DIE_TRAP, "iret exception",
808			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
809		return;
810	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
 
811}
812#endif
813
814/* Set of traps needed for early debugging. */
815void __init early_trap_init(void)
816{
817	set_intr_gate_ist(1, &debug, DEBUG_STACK);
 
 
 
 
 
 
 
 
 
 
 
 
818	/* int3 can be called from all */
819	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
820	set_intr_gate(14, &page_fault);
 
 
821	load_idt(&idt_descr);
822}
823
 
 
 
 
 
 
 
824void __init trap_init(void)
825{
826	int i;
827
828#ifdef CONFIG_EISA
829	void __iomem *p = early_ioremap(0x0FFFD9, 4);
830
831	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
832		EISA_bus = 1;
833	early_iounmap(p, 4);
834#endif
835
836	set_intr_gate(0, &divide_error);
837	set_intr_gate_ist(2, &nmi, NMI_STACK);
838	/* int4 can be called from all */
839	set_system_intr_gate(4, &overflow);
840	set_intr_gate(5, &bounds);
841	set_intr_gate(6, &invalid_op);
842	set_intr_gate(7, &device_not_available);
843#ifdef CONFIG_X86_32
844	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
845#else
846	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
847#endif
848	set_intr_gate(9, &coprocessor_segment_overrun);
849	set_intr_gate(10, &invalid_TSS);
850	set_intr_gate(11, &segment_not_present);
851	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
852	set_intr_gate(13, &general_protection);
853	set_intr_gate(15, &spurious_interrupt_bug);
854	set_intr_gate(16, &coprocessor_error);
855	set_intr_gate(17, &alignment_check);
856#ifdef CONFIG_X86_MCE
857	set_intr_gate_ist(18, &machine_check, MCE_STACK);
858#endif
859	set_intr_gate(19, &simd_coprocessor_error);
860
861	/* Reserve all the builtin and the syscall vector: */
862	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
863		set_bit(i, used_vectors);
864
865#ifdef CONFIG_IA32_EMULATION
866	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
867	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
868#endif
869
870#ifdef CONFIG_X86_32
871	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
872	set_bit(SYSCALL_VECTOR, used_vectors);
873#endif
874
875	/*
 
 
 
 
 
 
 
 
876	 * Should be a barrier for any external CPU state:
877	 */
878	cpu_init();
879
 
 
 
 
 
 
 
 
 
880	x86_init.irqs.trap_init();
 
 
 
 
 
 
881}