Loading...
1/*
2 * Driver for SanDisk SDDR-09 SmartMedia reader
3 *
4 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
5 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
6 * Developed with the assistance of:
7 * (c) 2002 Alan Stern <stern@rowland.org>
8 *
9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
10 * This chip is a programmable USB controller. In the SDDR-09, it has
11 * been programmed to obey a certain limited set of SCSI commands.
12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
13 * commands.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2, or (at your option) any
18 * later version.
19 *
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 */
29
30/*
31 * Known vendor commands: 12 bytes, first byte is opcode
32 *
33 * E7: read scatter gather
34 * E8: read
35 * E9: write
36 * EA: erase
37 * EB: reset
38 * EC: read status
39 * ED: read ID
40 * EE: write CIS (?)
41 * EF: compute checksum (?)
42 */
43
44#include <linux/errno.h>
45#include <linux/module.h>
46#include <linux/slab.h>
47
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_device.h>
51
52#include "usb.h"
53#include "transport.h"
54#include "protocol.h"
55#include "debug.h"
56#include "scsiglue.h"
57
58#define DRV_NAME "ums-sddr09"
59
60MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
61MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
62MODULE_LICENSE("GPL");
63
64static int usb_stor_sddr09_dpcm_init(struct us_data *us);
65static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
66static int usb_stor_sddr09_init(struct us_data *us);
67
68
69/*
70 * The table of devices
71 */
72#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
73 vendorName, productName, useProtocol, useTransport, \
74 initFunction, flags) \
75{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
76 .driver_info = (flags) }
77
78static struct usb_device_id sddr09_usb_ids[] = {
79# include "unusual_sddr09.h"
80 { } /* Terminating entry */
81};
82MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
83
84#undef UNUSUAL_DEV
85
86/*
87 * The flags table
88 */
89#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
90 vendor_name, product_name, use_protocol, use_transport, \
91 init_function, Flags) \
92{ \
93 .vendorName = vendor_name, \
94 .productName = product_name, \
95 .useProtocol = use_protocol, \
96 .useTransport = use_transport, \
97 .initFunction = init_function, \
98}
99
100static struct us_unusual_dev sddr09_unusual_dev_list[] = {
101# include "unusual_sddr09.h"
102 { } /* Terminating entry */
103};
104
105#undef UNUSUAL_DEV
106
107
108#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
109#define LSB_of(s) ((s)&0xFF)
110#define MSB_of(s) ((s)>>8)
111
112/*
113 * First some stuff that does not belong here:
114 * data on SmartMedia and other cards, completely
115 * unrelated to this driver.
116 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
117 */
118
119struct nand_flash_dev {
120 int model_id;
121 int chipshift; /* 1<<cs bytes total capacity */
122 char pageshift; /* 1<<ps bytes in a page */
123 char blockshift; /* 1<<bs pages in an erase block */
124 char zoneshift; /* 1<<zs blocks in a zone */
125 /* # of logical blocks is 125/128 of this */
126 char pageadrlen; /* length of an address in bytes - 1 */
127};
128
129/*
130 * NAND Flash Manufacturer ID Codes
131 */
132#define NAND_MFR_AMD 0x01
133#define NAND_MFR_NATSEMI 0x8f
134#define NAND_MFR_TOSHIBA 0x98
135#define NAND_MFR_SAMSUNG 0xec
136
137static inline char *nand_flash_manufacturer(int manuf_id) {
138 switch(manuf_id) {
139 case NAND_MFR_AMD:
140 return "AMD";
141 case NAND_MFR_NATSEMI:
142 return "NATSEMI";
143 case NAND_MFR_TOSHIBA:
144 return "Toshiba";
145 case NAND_MFR_SAMSUNG:
146 return "Samsung";
147 default:
148 return "unknown";
149 }
150}
151
152/*
153 * It looks like it is unnecessary to attach manufacturer to the
154 * remaining data: SSFDC prescribes manufacturer-independent id codes.
155 *
156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
157 */
158
159static struct nand_flash_dev nand_flash_ids[] = {
160 /* NAND flash */
161 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
164 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
166 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
169 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
170 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
171 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
172 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
173 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
174
175 /* MASK ROM */
176 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
177 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
178 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
179 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
180 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
181 { 0,}
182};
183
184static struct nand_flash_dev *
185nand_find_id(unsigned char id) {
186 int i;
187
188 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
189 if (nand_flash_ids[i].model_id == id)
190 return &(nand_flash_ids[i]);
191 return NULL;
192}
193
194/*
195 * ECC computation.
196 */
197static unsigned char parity[256];
198static unsigned char ecc2[256];
199
200static void nand_init_ecc(void) {
201 int i, j, a;
202
203 parity[0] = 0;
204 for (i = 1; i < 256; i++)
205 parity[i] = (parity[i&(i-1)] ^ 1);
206
207 for (i = 0; i < 256; i++) {
208 a = 0;
209 for (j = 0; j < 8; j++) {
210 if (i & (1<<j)) {
211 if ((j & 1) == 0)
212 a ^= 0x04;
213 if ((j & 2) == 0)
214 a ^= 0x10;
215 if ((j & 4) == 0)
216 a ^= 0x40;
217 }
218 }
219 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
220 }
221}
222
223/* compute 3-byte ecc on 256 bytes */
224static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
225 int i, j, a;
226 unsigned char par = 0, bit, bits[8] = {0};
227
228 /* collect 16 checksum bits */
229 for (i = 0; i < 256; i++) {
230 par ^= data[i];
231 bit = parity[data[i]];
232 for (j = 0; j < 8; j++)
233 if ((i & (1<<j)) == 0)
234 bits[j] ^= bit;
235 }
236
237 /* put 4+4+4 = 12 bits in the ecc */
238 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
239 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
240
241 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
242 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
243
244 ecc[2] = ecc2[par];
245}
246
247static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
248 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
249}
250
251static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
252 memcpy(data, ecc, 3);
253}
254
255/*
256 * The actual driver starts here.
257 */
258
259struct sddr09_card_info {
260 unsigned long capacity; /* Size of card in bytes */
261 int pagesize; /* Size of page in bytes */
262 int pageshift; /* log2 of pagesize */
263 int blocksize; /* Size of block in pages */
264 int blockshift; /* log2 of blocksize */
265 int blockmask; /* 2^blockshift - 1 */
266 int *lba_to_pba; /* logical to physical map */
267 int *pba_to_lba; /* physical to logical map */
268 int lbact; /* number of available pages */
269 int flags;
270#define SDDR09_WP 1 /* write protected */
271};
272
273/*
274 * On my 16MB card, control blocks have size 64 (16 real control bytes,
275 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
276 * so the reader makes up the remaining 48. Don't know whether these numbers
277 * depend on the card. For now a constant.
278 */
279#define CONTROL_SHIFT 6
280
281/*
282 * On my Combo CF/SM reader, the SM reader has LUN 1.
283 * (and things fail with LUN 0).
284 * It seems LUN is irrelevant for others.
285 */
286#define LUN 1
287#define LUNBITS (LUN << 5)
288
289/*
290 * LBA and PBA are unsigned ints. Special values.
291 */
292#define UNDEF 0xffffffff
293#define SPARE 0xfffffffe
294#define UNUSABLE 0xfffffffd
295
296static const int erase_bad_lba_entries = 0;
297
298/* send vendor interface command (0x41) */
299/* called for requests 0, 1, 8 */
300static int
301sddr09_send_command(struct us_data *us,
302 unsigned char request,
303 unsigned char direction,
304 unsigned char *xfer_data,
305 unsigned int xfer_len) {
306 unsigned int pipe;
307 unsigned char requesttype = (0x41 | direction);
308 int rc;
309
310 // Get the receive or send control pipe number
311
312 if (direction == USB_DIR_IN)
313 pipe = us->recv_ctrl_pipe;
314 else
315 pipe = us->send_ctrl_pipe;
316
317 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
318 0, 0, xfer_data, xfer_len);
319 switch (rc) {
320 case USB_STOR_XFER_GOOD: return 0;
321 case USB_STOR_XFER_STALLED: return -EPIPE;
322 default: return -EIO;
323 }
324}
325
326static int
327sddr09_send_scsi_command(struct us_data *us,
328 unsigned char *command,
329 unsigned int command_len) {
330 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
331}
332
333#if 0
334/*
335 * Test Unit Ready Command: 12 bytes.
336 * byte 0: opcode: 00
337 */
338static int
339sddr09_test_unit_ready(struct us_data *us) {
340 unsigned char *command = us->iobuf;
341 int result;
342
343 memset(command, 0, 6);
344 command[1] = LUNBITS;
345
346 result = sddr09_send_scsi_command(us, command, 6);
347
348 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
349
350 return result;
351}
352#endif
353
354/*
355 * Request Sense Command: 12 bytes.
356 * byte 0: opcode: 03
357 * byte 4: data length
358 */
359static int
360sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
361 unsigned char *command = us->iobuf;
362 int result;
363
364 memset(command, 0, 12);
365 command[0] = 0x03;
366 command[1] = LUNBITS;
367 command[4] = buflen;
368
369 result = sddr09_send_scsi_command(us, command, 12);
370 if (result)
371 return result;
372
373 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
374 sensebuf, buflen, NULL);
375 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
376}
377
378/*
379 * Read Command: 12 bytes.
380 * byte 0: opcode: E8
381 * byte 1: last two bits: 00: read data, 01: read blockwise control,
382 * 10: read both, 11: read pagewise control.
383 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
384 * bytes 2-5: address (interpretation depends on byte 1, see below)
385 * bytes 10-11: count (idem)
386 *
387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
388 * A read data command gets data in 512-byte pages.
389 * A read control command gets control in 64-byte chunks.
390 * A read both command gets data+control in 576-byte chunks.
391 *
392 * Blocks are groups of 32 pages, and read blockwise control jumps to the
393 * next block, while read pagewise control jumps to the next page after
394 * reading a group of 64 control bytes.
395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
396 *
397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
398 */
399
400static int
401sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
402 int nr_of_pages, int bulklen, unsigned char *buf,
403 int use_sg) {
404
405 unsigned char *command = us->iobuf;
406 int result;
407
408 command[0] = 0xE8;
409 command[1] = LUNBITS | x;
410 command[2] = MSB_of(fromaddress>>16);
411 command[3] = LSB_of(fromaddress>>16);
412 command[4] = MSB_of(fromaddress & 0xFFFF);
413 command[5] = LSB_of(fromaddress & 0xFFFF);
414 command[6] = 0;
415 command[7] = 0;
416 command[8] = 0;
417 command[9] = 0;
418 command[10] = MSB_of(nr_of_pages);
419 command[11] = LSB_of(nr_of_pages);
420
421 result = sddr09_send_scsi_command(us, command, 12);
422
423 if (result) {
424 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
425 x, result);
426 return result;
427 }
428
429 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
430 buf, bulklen, use_sg, NULL);
431
432 if (result != USB_STOR_XFER_GOOD) {
433 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
434 x, result);
435 return -EIO;
436 }
437 return 0;
438}
439
440/*
441 * Read Data
442 *
443 * fromaddress counts data shorts:
444 * increasing it by 256 shifts the bytestream by 512 bytes;
445 * the last 8 bits are ignored.
446 *
447 * nr_of_pages counts pages of size (1 << pageshift).
448 */
449static int
450sddr09_read20(struct us_data *us, unsigned long fromaddress,
451 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
452 int bulklen = nr_of_pages << pageshift;
453
454 /* The last 8 bits of fromaddress are ignored. */
455 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
456 buf, use_sg);
457}
458
459/*
460 * Read Blockwise Control
461 *
462 * fromaddress gives the starting position (as in read data;
463 * the last 8 bits are ignored); increasing it by 32*256 shifts
464 * the output stream by 64 bytes.
465 *
466 * count counts control groups of size (1 << controlshift).
467 * For me, controlshift = 6. Is this constant?
468 *
469 * After getting one control group, jump to the next block
470 * (fromaddress += 8192).
471 */
472static int
473sddr09_read21(struct us_data *us, unsigned long fromaddress,
474 int count, int controlshift, unsigned char *buf, int use_sg) {
475
476 int bulklen = (count << controlshift);
477 return sddr09_readX(us, 1, fromaddress, count, bulklen,
478 buf, use_sg);
479}
480
481/*
482 * Read both Data and Control
483 *
484 * fromaddress counts data shorts, ignoring control:
485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
486 * the last 8 bits are ignored.
487 *
488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
489 */
490static int
491sddr09_read22(struct us_data *us, unsigned long fromaddress,
492 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
493
494 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
495 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
496 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
497 buf, use_sg);
498}
499
500#if 0
501/*
502 * Read Pagewise Control
503 *
504 * fromaddress gives the starting position (as in read data;
505 * the last 8 bits are ignored); increasing it by 256 shifts
506 * the output stream by 64 bytes.
507 *
508 * count counts control groups of size (1 << controlshift).
509 * For me, controlshift = 6. Is this constant?
510 *
511 * After getting one control group, jump to the next page
512 * (fromaddress += 256).
513 */
514static int
515sddr09_read23(struct us_data *us, unsigned long fromaddress,
516 int count, int controlshift, unsigned char *buf, int use_sg) {
517
518 int bulklen = (count << controlshift);
519 return sddr09_readX(us, 3, fromaddress, count, bulklen,
520 buf, use_sg);
521}
522#endif
523
524/*
525 * Erase Command: 12 bytes.
526 * byte 0: opcode: EA
527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
528 *
529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
530 * The byte address being erased is 2*Eaddress.
531 * The CIS cannot be erased.
532 */
533static int
534sddr09_erase(struct us_data *us, unsigned long Eaddress) {
535 unsigned char *command = us->iobuf;
536 int result;
537
538 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
539
540 memset(command, 0, 12);
541 command[0] = 0xEA;
542 command[1] = LUNBITS;
543 command[6] = MSB_of(Eaddress>>16);
544 command[7] = LSB_of(Eaddress>>16);
545 command[8] = MSB_of(Eaddress & 0xFFFF);
546 command[9] = LSB_of(Eaddress & 0xFFFF);
547
548 result = sddr09_send_scsi_command(us, command, 12);
549
550 if (result)
551 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
552 result);
553
554 return result;
555}
556
557/*
558 * Write CIS Command: 12 bytes.
559 * byte 0: opcode: EE
560 * bytes 2-5: write address in shorts
561 * bytes 10-11: sector count
562 *
563 * This writes at the indicated address. Don't know how it differs
564 * from E9. Maybe it does not erase? However, it will also write to
565 * the CIS.
566 *
567 * When two such commands on the same page follow each other directly,
568 * the second one is not done.
569 */
570
571/*
572 * Write Command: 12 bytes.
573 * byte 0: opcode: E9
574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
577 *
578 * If write address equals erase address, the erase is done first,
579 * otherwise the write is done first. When erase address equals zero
580 * no erase is done?
581 */
582static int
583sddr09_writeX(struct us_data *us,
584 unsigned long Waddress, unsigned long Eaddress,
585 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
586
587 unsigned char *command = us->iobuf;
588 int result;
589
590 command[0] = 0xE9;
591 command[1] = LUNBITS;
592
593 command[2] = MSB_of(Waddress>>16);
594 command[3] = LSB_of(Waddress>>16);
595 command[4] = MSB_of(Waddress & 0xFFFF);
596 command[5] = LSB_of(Waddress & 0xFFFF);
597
598 command[6] = MSB_of(Eaddress>>16);
599 command[7] = LSB_of(Eaddress>>16);
600 command[8] = MSB_of(Eaddress & 0xFFFF);
601 command[9] = LSB_of(Eaddress & 0xFFFF);
602
603 command[10] = MSB_of(nr_of_pages);
604 command[11] = LSB_of(nr_of_pages);
605
606 result = sddr09_send_scsi_command(us, command, 12);
607
608 if (result) {
609 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
610 result);
611 return result;
612 }
613
614 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
615 buf, bulklen, use_sg, NULL);
616
617 if (result != USB_STOR_XFER_GOOD) {
618 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
619 result);
620 return -EIO;
621 }
622 return 0;
623}
624
625/* erase address, write same address */
626static int
627sddr09_write_inplace(struct us_data *us, unsigned long address,
628 int nr_of_pages, int pageshift, unsigned char *buf,
629 int use_sg) {
630 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
631 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
632 buf, use_sg);
633}
634
635#if 0
636/*
637 * Read Scatter Gather Command: 3+4n bytes.
638 * byte 0: opcode E7
639 * byte 2: n
640 * bytes 4i-1,4i,4i+1: page address
641 * byte 4i+2: page count
642 * (i=1..n)
643 *
644 * This reads several pages from the card to a single memory buffer.
645 * The last two bits of byte 1 have the same meaning as for E8.
646 */
647static int
648sddr09_read_sg_test_only(struct us_data *us) {
649 unsigned char *command = us->iobuf;
650 int result, bulklen, nsg, ct;
651 unsigned char *buf;
652 unsigned long address;
653
654 nsg = bulklen = 0;
655 command[0] = 0xE7;
656 command[1] = LUNBITS;
657 command[2] = 0;
658 address = 040000; ct = 1;
659 nsg++;
660 bulklen += (ct << 9);
661 command[4*nsg+2] = ct;
662 command[4*nsg+1] = ((address >> 9) & 0xFF);
663 command[4*nsg+0] = ((address >> 17) & 0xFF);
664 command[4*nsg-1] = ((address >> 25) & 0xFF);
665
666 address = 0340000; ct = 1;
667 nsg++;
668 bulklen += (ct << 9);
669 command[4*nsg+2] = ct;
670 command[4*nsg+1] = ((address >> 9) & 0xFF);
671 command[4*nsg+0] = ((address >> 17) & 0xFF);
672 command[4*nsg-1] = ((address >> 25) & 0xFF);
673
674 address = 01000000; ct = 2;
675 nsg++;
676 bulklen += (ct << 9);
677 command[4*nsg+2] = ct;
678 command[4*nsg+1] = ((address >> 9) & 0xFF);
679 command[4*nsg+0] = ((address >> 17) & 0xFF);
680 command[4*nsg-1] = ((address >> 25) & 0xFF);
681
682 command[2] = nsg;
683
684 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
685
686 if (result) {
687 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
688 result);
689 return result;
690 }
691
692 buf = kmalloc(bulklen, GFP_NOIO);
693 if (!buf)
694 return -ENOMEM;
695
696 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
697 buf, bulklen, NULL);
698 kfree(buf);
699 if (result != USB_STOR_XFER_GOOD) {
700 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
701 result);
702 return -EIO;
703 }
704
705 return 0;
706}
707#endif
708
709/*
710 * Read Status Command: 12 bytes.
711 * byte 0: opcode: EC
712 *
713 * Returns 64 bytes, all zero except for the first.
714 * bit 0: 1: Error
715 * bit 5: 1: Suspended
716 * bit 6: 1: Ready
717 * bit 7: 1: Not write-protected
718 */
719
720static int
721sddr09_read_status(struct us_data *us, unsigned char *status) {
722
723 unsigned char *command = us->iobuf;
724 unsigned char *data = us->iobuf;
725 int result;
726
727 usb_stor_dbg(us, "Reading status...\n");
728
729 memset(command, 0, 12);
730 command[0] = 0xEC;
731 command[1] = LUNBITS;
732
733 result = sddr09_send_scsi_command(us, command, 12);
734 if (result)
735 return result;
736
737 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
738 data, 64, NULL);
739 *status = data[0];
740 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
741}
742
743static int
744sddr09_read_data(struct us_data *us,
745 unsigned long address,
746 unsigned int sectors) {
747
748 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
749 unsigned char *buffer;
750 unsigned int lba, maxlba, pba;
751 unsigned int page, pages;
752 unsigned int len, offset;
753 struct scatterlist *sg;
754 int result;
755
756 // Figure out the initial LBA and page
757 lba = address >> info->blockshift;
758 page = (address & info->blockmask);
759 maxlba = info->capacity >> (info->pageshift + info->blockshift);
760 if (lba >= maxlba)
761 return -EIO;
762
763 // Since we only read in one block at a time, we have to create
764 // a bounce buffer and move the data a piece at a time between the
765 // bounce buffer and the actual transfer buffer.
766
767 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
768 buffer = kmalloc(len, GFP_NOIO);
769 if (!buffer)
770 return -ENOMEM;
771
772 // This could be made much more efficient by checking for
773 // contiguous LBA's. Another exercise left to the student.
774
775 result = 0;
776 offset = 0;
777 sg = NULL;
778
779 while (sectors > 0) {
780
781 /* Find number of pages we can read in this block */
782 pages = min(sectors, info->blocksize - page);
783 len = pages << info->pageshift;
784
785 /* Not overflowing capacity? */
786 if (lba >= maxlba) {
787 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
788 lba, maxlba);
789 result = -EIO;
790 break;
791 }
792
793 /* Find where this lba lives on disk */
794 pba = info->lba_to_pba[lba];
795
796 if (pba == UNDEF) { /* this lba was never written */
797
798 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
799 pages, lba, page);
800
801 /*
802 * This is not really an error. It just means
803 * that the block has never been written.
804 * Instead of returning an error
805 * it is better to return all zero data.
806 */
807
808 memset(buffer, 0, len);
809
810 } else {
811 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
812 pages, pba, lba, page);
813
814 address = ((pba << info->blockshift) + page) <<
815 info->pageshift;
816
817 result = sddr09_read20(us, address>>1,
818 pages, info->pageshift, buffer, 0);
819 if (result)
820 break;
821 }
822
823 // Store the data in the transfer buffer
824 usb_stor_access_xfer_buf(buffer, len, us->srb,
825 &sg, &offset, TO_XFER_BUF);
826
827 page = 0;
828 lba++;
829 sectors -= pages;
830 }
831
832 kfree(buffer);
833 return result;
834}
835
836static unsigned int
837sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
838 static unsigned int lastpba = 1;
839 int zonestart, end, i;
840
841 zonestart = (lba/1000) << 10;
842 end = info->capacity >> (info->blockshift + info->pageshift);
843 end -= zonestart;
844 if (end > 1024)
845 end = 1024;
846
847 for (i = lastpba+1; i < end; i++) {
848 if (info->pba_to_lba[zonestart+i] == UNDEF) {
849 lastpba = i;
850 return zonestart+i;
851 }
852 }
853 for (i = 0; i <= lastpba; i++) {
854 if (info->pba_to_lba[zonestart+i] == UNDEF) {
855 lastpba = i;
856 return zonestart+i;
857 }
858 }
859 return 0;
860}
861
862static int
863sddr09_write_lba(struct us_data *us, unsigned int lba,
864 unsigned int page, unsigned int pages,
865 unsigned char *ptr, unsigned char *blockbuffer) {
866
867 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
868 unsigned long address;
869 unsigned int pba, lbap;
870 unsigned int pagelen;
871 unsigned char *bptr, *cptr, *xptr;
872 unsigned char ecc[3];
873 int i, result, isnew;
874
875 lbap = ((lba % 1000) << 1) | 0x1000;
876 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
877 lbap ^= 1;
878 pba = info->lba_to_pba[lba];
879 isnew = 0;
880
881 if (pba == UNDEF) {
882 pba = sddr09_find_unused_pba(info, lba);
883 if (!pba) {
884 printk(KERN_WARNING
885 "sddr09_write_lba: Out of unused blocks\n");
886 return -ENOSPC;
887 }
888 info->pba_to_lba[pba] = lba;
889 info->lba_to_pba[lba] = pba;
890 isnew = 1;
891 }
892
893 if (pba == 1) {
894 /*
895 * Maybe it is impossible to write to PBA 1.
896 * Fake success, but don't do anything.
897 */
898 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
899 return 0;
900 }
901
902 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
903
904 /* read old contents */
905 address = (pba << (info->pageshift + info->blockshift));
906 result = sddr09_read22(us, address>>1, info->blocksize,
907 info->pageshift, blockbuffer, 0);
908 if (result)
909 return result;
910
911 /* check old contents and fill lba */
912 for (i = 0; i < info->blocksize; i++) {
913 bptr = blockbuffer + i*pagelen;
914 cptr = bptr + info->pagesize;
915 nand_compute_ecc(bptr, ecc);
916 if (!nand_compare_ecc(cptr+13, ecc)) {
917 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
918 i, pba);
919 nand_store_ecc(cptr+13, ecc);
920 }
921 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
922 if (!nand_compare_ecc(cptr+8, ecc)) {
923 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
924 i, pba);
925 nand_store_ecc(cptr+8, ecc);
926 }
927 cptr[6] = cptr[11] = MSB_of(lbap);
928 cptr[7] = cptr[12] = LSB_of(lbap);
929 }
930
931 /* copy in new stuff and compute ECC */
932 xptr = ptr;
933 for (i = page; i < page+pages; i++) {
934 bptr = blockbuffer + i*pagelen;
935 cptr = bptr + info->pagesize;
936 memcpy(bptr, xptr, info->pagesize);
937 xptr += info->pagesize;
938 nand_compute_ecc(bptr, ecc);
939 nand_store_ecc(cptr+13, ecc);
940 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
941 nand_store_ecc(cptr+8, ecc);
942 }
943
944 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
945
946 result = sddr09_write_inplace(us, address>>1, info->blocksize,
947 info->pageshift, blockbuffer, 0);
948
949 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
950
951#if 0
952 {
953 unsigned char status = 0;
954 int result2 = sddr09_read_status(us, &status);
955 if (result2)
956 usb_stor_dbg(us, "cannot read status\n");
957 else if (status != 0xc0)
958 usb_stor_dbg(us, "status after write: 0x%x\n", status);
959 }
960#endif
961
962#if 0
963 {
964 int result2 = sddr09_test_unit_ready(us);
965 }
966#endif
967
968 return result;
969}
970
971static int
972sddr09_write_data(struct us_data *us,
973 unsigned long address,
974 unsigned int sectors) {
975
976 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
977 unsigned int lba, maxlba, page, pages;
978 unsigned int pagelen, blocklen;
979 unsigned char *blockbuffer;
980 unsigned char *buffer;
981 unsigned int len, offset;
982 struct scatterlist *sg;
983 int result;
984
985 /* Figure out the initial LBA and page */
986 lba = address >> info->blockshift;
987 page = (address & info->blockmask);
988 maxlba = info->capacity >> (info->pageshift + info->blockshift);
989 if (lba >= maxlba)
990 return -EIO;
991
992 /*
993 * blockbuffer is used for reading in the old data, overwriting
994 * with the new data, and performing ECC calculations
995 */
996
997 /*
998 * TODO: instead of doing kmalloc/kfree for each write,
999 * add a bufferpointer to the info structure
1000 */
1001
1002 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1003 blocklen = (pagelen << info->blockshift);
1004 blockbuffer = kmalloc(blocklen, GFP_NOIO);
1005 if (!blockbuffer)
1006 return -ENOMEM;
1007
1008 /*
1009 * Since we don't write the user data directly to the device,
1010 * we have to create a bounce buffer and move the data a piece
1011 * at a time between the bounce buffer and the actual transfer buffer.
1012 */
1013
1014 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1015 buffer = kmalloc(len, GFP_NOIO);
1016 if (!buffer) {
1017 kfree(blockbuffer);
1018 return -ENOMEM;
1019 }
1020
1021 result = 0;
1022 offset = 0;
1023 sg = NULL;
1024
1025 while (sectors > 0) {
1026
1027 /* Write as many sectors as possible in this block */
1028
1029 pages = min(sectors, info->blocksize - page);
1030 len = (pages << info->pageshift);
1031
1032 /* Not overflowing capacity? */
1033 if (lba >= maxlba) {
1034 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1035 lba, maxlba);
1036 result = -EIO;
1037 break;
1038 }
1039
1040 /* Get the data from the transfer buffer */
1041 usb_stor_access_xfer_buf(buffer, len, us->srb,
1042 &sg, &offset, FROM_XFER_BUF);
1043
1044 result = sddr09_write_lba(us, lba, page, pages,
1045 buffer, blockbuffer);
1046 if (result)
1047 break;
1048
1049 page = 0;
1050 lba++;
1051 sectors -= pages;
1052 }
1053
1054 kfree(buffer);
1055 kfree(blockbuffer);
1056
1057 return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062 unsigned long address,
1063 unsigned int blocks,
1064 unsigned char *content,
1065 int use_sg) {
1066
1067 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1068 address, blocks);
1069
1070 return sddr09_read21(us, address, blocks,
1071 CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086 unsigned char *command = us->iobuf;
1087 unsigned char *content = us->iobuf;
1088 int result, i;
1089
1090 memset(command, 0, 12);
1091 command[0] = 0xED;
1092 command[1] = LUNBITS;
1093
1094 result = sddr09_send_scsi_command(us, command, 12);
1095 if (result)
1096 return result;
1097
1098 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099 content, 64, NULL);
1100
1101 for (i = 0; i < 4; i++)
1102 deviceID[i] = content[i];
1103
1104 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109 int result;
1110 unsigned char status;
1111 const char *wp_fmt;
1112
1113 result = sddr09_read_status(us, &status);
1114 if (result) {
1115 usb_stor_dbg(us, "read_status fails\n");
1116 return result;
1117 }
1118 if ((status & 0x80) == 0) {
1119 info->flags |= SDDR09_WP; /* write protected */
1120 wp_fmt = " WP";
1121 } else {
1122 wp_fmt = "";
1123 }
1124 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1125 status & 0x40 ? " Ready" : "",
1126 status & LUNBITS ? " Suspended" : "",
1127 status & 0x01 ? " Error" : "");
1128
1129 return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140 unsigned char *command = us->iobuf;
1141
1142 memset(command, 0, 12);
1143 command[0] = 0xEB;
1144 command[1] = LUNBITS;
1145
1146 return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152 struct nand_flash_dev *cardinfo;
1153 unsigned char deviceID[4];
1154 char blurbtxt[256];
1155 int result;
1156
1157 usb_stor_dbg(us, "Reading capacity...\n");
1158
1159 result = sddr09_read_deviceID(us, deviceID);
1160
1161 if (result) {
1162 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1163 printk(KERN_WARNING "sddr09: could not read card info\n");
1164 return NULL;
1165 }
1166
1167 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1168
1169 /* Byte 0 is the manufacturer */
1170 sprintf(blurbtxt + strlen(blurbtxt),
1171 ": Manuf. %s",
1172 nand_flash_manufacturer(deviceID[0]));
1173
1174 /* Byte 1 is the device type */
1175 cardinfo = nand_find_id(deviceID[1]);
1176 if (cardinfo) {
1177 /*
1178 * MB or MiB? It is neither. A 16 MB card has
1179 * 17301504 raw bytes, of which 16384000 are
1180 * usable for user data.
1181 */
1182 sprintf(blurbtxt + strlen(blurbtxt),
1183 ", %d MB", 1<<(cardinfo->chipshift - 20));
1184 } else {
1185 sprintf(blurbtxt + strlen(blurbtxt),
1186 ", type unrecognized");
1187 }
1188
1189 /* Byte 2 is code to signal availability of 128-bit ID */
1190 if (deviceID[2] == 0xa5) {
1191 sprintf(blurbtxt + strlen(blurbtxt),
1192 ", 128-bit ID");
1193 }
1194
1195 /* Byte 3 announces the availability of another read ID command */
1196 if (deviceID[3] == 0xc0) {
1197 sprintf(blurbtxt + strlen(blurbtxt),
1198 ", extra cmd");
1199 }
1200
1201 if (flags & SDDR09_WP)
1202 sprintf(blurbtxt + strlen(blurbtxt),
1203 ", WP");
1204
1205 printk(KERN_WARNING "%s\n", blurbtxt);
1206
1207 return cardinfo;
1208}
1209
1210static int
1211sddr09_read_map(struct us_data *us) {
1212
1213 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1214 int numblocks, alloc_len, alloc_blocks;
1215 int i, j, result;
1216 unsigned char *buffer, *buffer_end, *ptr;
1217 unsigned int lba, lbact;
1218
1219 if (!info->capacity)
1220 return -1;
1221
1222 /*
1223 * size of a block is 1 << (blockshift + pageshift) bytes
1224 * divide into the total capacity to get the number of blocks
1225 */
1226
1227 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1228
1229 /*
1230 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1231 * but only use a 64 KB buffer
1232 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1233 */
1234#define SDDR09_READ_MAP_BUFSZ 65536
1235
1236 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1237 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1238 buffer = kmalloc(alloc_len, GFP_NOIO);
1239 if (!buffer) {
1240 result = -1;
1241 goto done;
1242 }
1243 buffer_end = buffer + alloc_len;
1244
1245#undef SDDR09_READ_MAP_BUFSZ
1246
1247 kfree(info->lba_to_pba);
1248 kfree(info->pba_to_lba);
1249 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1250 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1251
1252 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1253 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1254 result = -1;
1255 goto done;
1256 }
1257
1258 for (i = 0; i < numblocks; i++)
1259 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1260
1261 /*
1262 * Define lba-pba translation table
1263 */
1264
1265 ptr = buffer_end;
1266 for (i = 0; i < numblocks; i++) {
1267 ptr += (1 << CONTROL_SHIFT);
1268 if (ptr >= buffer_end) {
1269 unsigned long address;
1270
1271 address = i << (info->pageshift + info->blockshift);
1272 result = sddr09_read_control(
1273 us, address>>1,
1274 min(alloc_blocks, numblocks - i),
1275 buffer, 0);
1276 if (result) {
1277 result = -1;
1278 goto done;
1279 }
1280 ptr = buffer;
1281 }
1282
1283 if (i == 0 || i == 1) {
1284 info->pba_to_lba[i] = UNUSABLE;
1285 continue;
1286 }
1287
1288 /* special PBAs have control field 0^16 */
1289 for (j = 0; j < 16; j++)
1290 if (ptr[j] != 0)
1291 goto nonz;
1292 info->pba_to_lba[i] = UNUSABLE;
1293 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1294 i);
1295 continue;
1296
1297 nonz:
1298 /* unwritten PBAs have control field FF^16 */
1299 for (j = 0; j < 16; j++)
1300 if (ptr[j] != 0xff)
1301 goto nonff;
1302 continue;
1303
1304 nonff:
1305 /* normal PBAs start with six FFs */
1306 if (j < 6) {
1307 printk(KERN_WARNING
1308 "sddr09: PBA %d has no logical mapping: "
1309 "reserved area = %02X%02X%02X%02X "
1310 "data status %02X block status %02X\n",
1311 i, ptr[0], ptr[1], ptr[2], ptr[3],
1312 ptr[4], ptr[5]);
1313 info->pba_to_lba[i] = UNUSABLE;
1314 continue;
1315 }
1316
1317 if ((ptr[6] >> 4) != 0x01) {
1318 printk(KERN_WARNING
1319 "sddr09: PBA %d has invalid address field "
1320 "%02X%02X/%02X%02X\n",
1321 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1322 info->pba_to_lba[i] = UNUSABLE;
1323 continue;
1324 }
1325
1326 /* check even parity */
1327 if (parity[ptr[6] ^ ptr[7]]) {
1328 printk(KERN_WARNING
1329 "sddr09: Bad parity in LBA for block %d"
1330 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1331 info->pba_to_lba[i] = UNUSABLE;
1332 continue;
1333 }
1334
1335 lba = short_pack(ptr[7], ptr[6]);
1336 lba = (lba & 0x07FF) >> 1;
1337
1338 /*
1339 * Every 1024 physical blocks ("zone"), the LBA numbers
1340 * go back to zero, but are within a higher block of LBA's.
1341 * Also, there is a maximum of 1000 LBA's per zone.
1342 * In other words, in PBA 1024-2047 you will find LBA 0-999
1343 * which are really LBA 1000-1999. This allows for 24 bad
1344 * or special physical blocks per zone.
1345 */
1346
1347 if (lba >= 1000) {
1348 printk(KERN_WARNING
1349 "sddr09: Bad low LBA %d for block %d\n",
1350 lba, i);
1351 goto possibly_erase;
1352 }
1353
1354 lba += 1000*(i/0x400);
1355
1356 if (info->lba_to_pba[lba] != UNDEF) {
1357 printk(KERN_WARNING
1358 "sddr09: LBA %d seen for PBA %d and %d\n",
1359 lba, info->lba_to_pba[lba], i);
1360 goto possibly_erase;
1361 }
1362
1363 info->pba_to_lba[i] = lba;
1364 info->lba_to_pba[lba] = i;
1365 continue;
1366
1367 possibly_erase:
1368 if (erase_bad_lba_entries) {
1369 unsigned long address;
1370
1371 address = (i << (info->pageshift + info->blockshift));
1372 sddr09_erase(us, address>>1);
1373 info->pba_to_lba[i] = UNDEF;
1374 } else
1375 info->pba_to_lba[i] = UNUSABLE;
1376 }
1377
1378 /*
1379 * Approximate capacity. This is not entirely correct yet,
1380 * since a zone with less than 1000 usable pages leads to
1381 * missing LBAs. Especially if it is the last zone, some
1382 * LBAs can be past capacity.
1383 */
1384 lbact = 0;
1385 for (i = 0; i < numblocks; i += 1024) {
1386 int ct = 0;
1387
1388 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1389 if (info->pba_to_lba[i+j] != UNUSABLE) {
1390 if (ct >= 1000)
1391 info->pba_to_lba[i+j] = SPARE;
1392 else
1393 ct++;
1394 }
1395 }
1396 lbact += ct;
1397 }
1398 info->lbact = lbact;
1399 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1400 result = 0;
1401
1402 done:
1403 if (result != 0) {
1404 kfree(info->lba_to_pba);
1405 kfree(info->pba_to_lba);
1406 info->lba_to_pba = NULL;
1407 info->pba_to_lba = NULL;
1408 }
1409 kfree(buffer);
1410 return result;
1411}
1412
1413static void
1414sddr09_card_info_destructor(void *extra) {
1415 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1416
1417 if (!info)
1418 return;
1419
1420 kfree(info->lba_to_pba);
1421 kfree(info->pba_to_lba);
1422}
1423
1424static int
1425sddr09_common_init(struct us_data *us) {
1426 int result;
1427
1428 /* set the configuration -- STALL is an acceptable response here */
1429 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1430 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1431 us->pusb_dev->actconfig->desc.bConfigurationValue);
1432 return -EINVAL;
1433 }
1434
1435 result = usb_reset_configuration(us->pusb_dev);
1436 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1437 if (result == -EPIPE) {
1438 usb_stor_dbg(us, "-- stall on control interface\n");
1439 } else if (result != 0) {
1440 /* it's not a stall, but another error -- time to bail */
1441 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1442 return -EINVAL;
1443 }
1444
1445 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1446 if (!us->extra)
1447 return -ENOMEM;
1448 us->extra_destructor = sddr09_card_info_destructor;
1449
1450 nand_init_ecc();
1451 return 0;
1452}
1453
1454
1455/*
1456 * This is needed at a very early stage. If this is not listed in the
1457 * unusual devices list but called from here then LUN 0 of the combo reader
1458 * is not recognized. But I do not know what precisely these calls do.
1459 */
1460static int
1461usb_stor_sddr09_dpcm_init(struct us_data *us) {
1462 int result;
1463 unsigned char *data = us->iobuf;
1464
1465 result = sddr09_common_init(us);
1466 if (result)
1467 return result;
1468
1469 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1470 if (result) {
1471 usb_stor_dbg(us, "send_command fails\n");
1472 return result;
1473 }
1474
1475 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1476 // get 07 02
1477
1478 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1479 if (result) {
1480 usb_stor_dbg(us, "2nd send_command fails\n");
1481 return result;
1482 }
1483
1484 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1485 // get 07 00
1486
1487 result = sddr09_request_sense(us, data, 18);
1488 if (result == 0 && data[2] != 0) {
1489 int j;
1490 for (j=0; j<18; j++)
1491 printk(" %02X", data[j]);
1492 printk("\n");
1493 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1494 // 70: current command
1495 // sense key 0, sense code 0, extd sense code 0
1496 // additional transfer length * = sizeof(data) - 7
1497 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1498 // sense key 06, sense code 28: unit attention,
1499 // not ready to ready transition
1500 }
1501
1502 // test unit ready
1503
1504 return 0; /* not result */
1505}
1506
1507/*
1508 * Transport for the Microtech DPCM-USB
1509 */
1510static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1511{
1512 int ret;
1513
1514 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1515
1516 switch (srb->device->lun) {
1517 case 0:
1518
1519 /*
1520 * LUN 0 corresponds to the CompactFlash card reader.
1521 */
1522 ret = usb_stor_CB_transport(srb, us);
1523 break;
1524
1525 case 1:
1526
1527 /*
1528 * LUN 1 corresponds to the SmartMedia card reader.
1529 */
1530
1531 /*
1532 * Set the LUN to 0 (just in case).
1533 */
1534 srb->device->lun = 0;
1535 ret = sddr09_transport(srb, us);
1536 srb->device->lun = 1;
1537 break;
1538
1539 default:
1540 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1541 ret = USB_STOR_TRANSPORT_ERROR;
1542 break;
1543 }
1544 return ret;
1545}
1546
1547
1548/*
1549 * Transport for the Sandisk SDDR-09
1550 */
1551static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1552{
1553 static unsigned char sensekey = 0, sensecode = 0;
1554 static unsigned char havefakesense = 0;
1555 int result, i;
1556 unsigned char *ptr = us->iobuf;
1557 unsigned long capacity;
1558 unsigned int page, pages;
1559
1560 struct sddr09_card_info *info;
1561
1562 static unsigned char inquiry_response[8] = {
1563 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1564 };
1565
1566 /* note: no block descriptor support */
1567 static unsigned char mode_page_01[19] = {
1568 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1569 0x01, 0x0A,
1570 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1571 };
1572
1573 info = (struct sddr09_card_info *)us->extra;
1574
1575 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1576 /* for a faked command, we have to follow with a faked sense */
1577 memset(ptr, 0, 18);
1578 ptr[0] = 0x70;
1579 ptr[2] = sensekey;
1580 ptr[7] = 11;
1581 ptr[12] = sensecode;
1582 usb_stor_set_xfer_buf(ptr, 18, srb);
1583 sensekey = sensecode = havefakesense = 0;
1584 return USB_STOR_TRANSPORT_GOOD;
1585 }
1586
1587 havefakesense = 1;
1588
1589 /*
1590 * Dummy up a response for INQUIRY since SDDR09 doesn't
1591 * respond to INQUIRY commands
1592 */
1593
1594 if (srb->cmnd[0] == INQUIRY) {
1595 memcpy(ptr, inquiry_response, 8);
1596 fill_inquiry_response(us, ptr, 36);
1597 return USB_STOR_TRANSPORT_GOOD;
1598 }
1599
1600 if (srb->cmnd[0] == READ_CAPACITY) {
1601 struct nand_flash_dev *cardinfo;
1602
1603 sddr09_get_wp(us, info); /* read WP bit */
1604
1605 cardinfo = sddr09_get_cardinfo(us, info->flags);
1606 if (!cardinfo) {
1607 /* probably no media */
1608 init_error:
1609 sensekey = 0x02; /* not ready */
1610 sensecode = 0x3a; /* medium not present */
1611 return USB_STOR_TRANSPORT_FAILED;
1612 }
1613
1614 info->capacity = (1 << cardinfo->chipshift);
1615 info->pageshift = cardinfo->pageshift;
1616 info->pagesize = (1 << info->pageshift);
1617 info->blockshift = cardinfo->blockshift;
1618 info->blocksize = (1 << info->blockshift);
1619 info->blockmask = info->blocksize - 1;
1620
1621 // map initialization, must follow get_cardinfo()
1622 if (sddr09_read_map(us)) {
1623 /* probably out of memory */
1624 goto init_error;
1625 }
1626
1627 // Report capacity
1628
1629 capacity = (info->lbact << info->blockshift) - 1;
1630
1631 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1632
1633 // Report page size
1634
1635 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1636 usb_stor_set_xfer_buf(ptr, 8, srb);
1637
1638 return USB_STOR_TRANSPORT_GOOD;
1639 }
1640
1641 if (srb->cmnd[0] == MODE_SENSE_10) {
1642 int modepage = (srb->cmnd[2] & 0x3F);
1643
1644 /*
1645 * They ask for the Read/Write error recovery page,
1646 * or for all pages.
1647 */
1648 /* %% We should check DBD %% */
1649 if (modepage == 0x01 || modepage == 0x3F) {
1650 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1651 modepage);
1652
1653 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1654 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1655 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1656 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1657 return USB_STOR_TRANSPORT_GOOD;
1658 }
1659
1660 sensekey = 0x05; /* illegal request */
1661 sensecode = 0x24; /* invalid field in CDB */
1662 return USB_STOR_TRANSPORT_FAILED;
1663 }
1664
1665 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1666 return USB_STOR_TRANSPORT_GOOD;
1667
1668 havefakesense = 0;
1669
1670 if (srb->cmnd[0] == READ_10) {
1671
1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673 page <<= 16;
1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1678 page, pages);
1679
1680 result = sddr09_read_data(us, page, pages);
1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682 USB_STOR_TRANSPORT_ERROR);
1683 }
1684
1685 if (srb->cmnd[0] == WRITE_10) {
1686
1687 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1688 page <<= 16;
1689 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1690 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1691
1692 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1693 page, pages);
1694
1695 result = sddr09_write_data(us, page, pages);
1696 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1697 USB_STOR_TRANSPORT_ERROR);
1698 }
1699
1700 /*
1701 * catch-all for all other commands, except
1702 * pass TEST_UNIT_READY and REQUEST_SENSE through
1703 */
1704 if (srb->cmnd[0] != TEST_UNIT_READY &&
1705 srb->cmnd[0] != REQUEST_SENSE) {
1706 sensekey = 0x05; /* illegal request */
1707 sensecode = 0x20; /* invalid command */
1708 havefakesense = 1;
1709 return USB_STOR_TRANSPORT_FAILED;
1710 }
1711
1712 for (; srb->cmd_len<12; srb->cmd_len++)
1713 srb->cmnd[srb->cmd_len] = 0;
1714
1715 srb->cmnd[1] = LUNBITS;
1716
1717 ptr[0] = 0;
1718 for (i=0; i<12; i++)
1719 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1720
1721 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1722
1723 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1724 if (result) {
1725 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1726 result);
1727 return USB_STOR_TRANSPORT_ERROR;
1728 }
1729
1730 if (scsi_bufflen(srb) == 0)
1731 return USB_STOR_TRANSPORT_GOOD;
1732
1733 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1734 srb->sc_data_direction == DMA_FROM_DEVICE) {
1735 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1736 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1737
1738 usb_stor_dbg(us, "%s %d bytes\n",
1739 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1740 "sending" : "receiving",
1741 scsi_bufflen(srb));
1742
1743 result = usb_stor_bulk_srb(us, pipe, srb);
1744
1745 return (result == USB_STOR_XFER_GOOD ?
1746 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1747 }
1748
1749 return USB_STOR_TRANSPORT_GOOD;
1750}
1751
1752/*
1753 * Initialization routine for the sddr09 subdriver
1754 */
1755static int
1756usb_stor_sddr09_init(struct us_data *us) {
1757 return sddr09_common_init(us);
1758}
1759
1760static struct scsi_host_template sddr09_host_template;
1761
1762static int sddr09_probe(struct usb_interface *intf,
1763 const struct usb_device_id *id)
1764{
1765 struct us_data *us;
1766 int result;
1767
1768 result = usb_stor_probe1(&us, intf, id,
1769 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1770 &sddr09_host_template);
1771 if (result)
1772 return result;
1773
1774 if (us->protocol == USB_PR_DPCM_USB) {
1775 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1776 us->transport = dpcm_transport;
1777 us->transport_reset = usb_stor_CB_reset;
1778 us->max_lun = 1;
1779 } else {
1780 us->transport_name = "EUSB/SDDR09";
1781 us->transport = sddr09_transport;
1782 us->transport_reset = usb_stor_CB_reset;
1783 us->max_lun = 0;
1784 }
1785
1786 result = usb_stor_probe2(us);
1787 return result;
1788}
1789
1790static struct usb_driver sddr09_driver = {
1791 .name = DRV_NAME,
1792 .probe = sddr09_probe,
1793 .disconnect = usb_stor_disconnect,
1794 .suspend = usb_stor_suspend,
1795 .resume = usb_stor_resume,
1796 .reset_resume = usb_stor_reset_resume,
1797 .pre_reset = usb_stor_pre_reset,
1798 .post_reset = usb_stor_post_reset,
1799 .id_table = sddr09_usb_ids,
1800 .soft_unbind = 1,
1801 .no_dynamic_id = 1,
1802};
1803
1804module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
1/* Driver for SanDisk SDDR-09 SmartMedia reader
2 *
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
7 *
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12 * commands.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
17 * later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
27 */
28
29/*
30 * Known vendor commands: 12 bytes, first byte is opcode
31 *
32 * E7: read scatter gather
33 * E8: read
34 * E9: write
35 * EA: erase
36 * EB: reset
37 * EC: read status
38 * ED: read ID
39 * EE: write CIS (?)
40 * EF: compute checksum (?)
41 */
42
43#include <linux/errno.h>
44#include <linux/module.h>
45#include <linux/slab.h>
46
47#include <scsi/scsi.h>
48#include <scsi/scsi_cmnd.h>
49#include <scsi/scsi_device.h>
50
51#include "usb.h"
52#include "transport.h"
53#include "protocol.h"
54#include "debug.h"
55#include "scsiglue.h"
56
57#define DRV_NAME "ums-sddr09"
58
59MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
60MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
61MODULE_LICENSE("GPL");
62
63static int usb_stor_sddr09_dpcm_init(struct us_data *us);
64static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
65static int usb_stor_sddr09_init(struct us_data *us);
66
67
68/*
69 * The table of devices
70 */
71#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
72 vendorName, productName, useProtocol, useTransport, \
73 initFunction, flags) \
74{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
75 .driver_info = (flags) }
76
77static struct usb_device_id sddr09_usb_ids[] = {
78# include "unusual_sddr09.h"
79 { } /* Terminating entry */
80};
81MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
82
83#undef UNUSUAL_DEV
84
85/*
86 * The flags table
87 */
88#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
89 vendor_name, product_name, use_protocol, use_transport, \
90 init_function, Flags) \
91{ \
92 .vendorName = vendor_name, \
93 .productName = product_name, \
94 .useProtocol = use_protocol, \
95 .useTransport = use_transport, \
96 .initFunction = init_function, \
97}
98
99static struct us_unusual_dev sddr09_unusual_dev_list[] = {
100# include "unusual_sddr09.h"
101 { } /* Terminating entry */
102};
103
104#undef UNUSUAL_DEV
105
106
107#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
108#define LSB_of(s) ((s)&0xFF)
109#define MSB_of(s) ((s)>>8)
110
111/*
112 * First some stuff that does not belong here:
113 * data on SmartMedia and other cards, completely
114 * unrelated to this driver.
115 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
116 */
117
118struct nand_flash_dev {
119 int model_id;
120 int chipshift; /* 1<<cs bytes total capacity */
121 char pageshift; /* 1<<ps bytes in a page */
122 char blockshift; /* 1<<bs pages in an erase block */
123 char zoneshift; /* 1<<zs blocks in a zone */
124 /* # of logical blocks is 125/128 of this */
125 char pageadrlen; /* length of an address in bytes - 1 */
126};
127
128/*
129 * NAND Flash Manufacturer ID Codes
130 */
131#define NAND_MFR_AMD 0x01
132#define NAND_MFR_NATSEMI 0x8f
133#define NAND_MFR_TOSHIBA 0x98
134#define NAND_MFR_SAMSUNG 0xec
135
136static inline char *nand_flash_manufacturer(int manuf_id) {
137 switch(manuf_id) {
138 case NAND_MFR_AMD:
139 return "AMD";
140 case NAND_MFR_NATSEMI:
141 return "NATSEMI";
142 case NAND_MFR_TOSHIBA:
143 return "Toshiba";
144 case NAND_MFR_SAMSUNG:
145 return "Samsung";
146 default:
147 return "unknown";
148 }
149}
150
151/*
152 * It looks like it is unnecessary to attach manufacturer to the
153 * remaining data: SSFDC prescribes manufacturer-independent id codes.
154 *
155 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
156 */
157
158static struct nand_flash_dev nand_flash_ids[] = {
159 /* NAND flash */
160 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
161 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
164 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
169 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
170 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
171 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
172 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
173
174 /* MASK ROM */
175 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
176 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
177 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
178 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
179 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
180 { 0,}
181};
182
183static struct nand_flash_dev *
184nand_find_id(unsigned char id) {
185 int i;
186
187 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
188 if (nand_flash_ids[i].model_id == id)
189 return &(nand_flash_ids[i]);
190 return NULL;
191}
192
193/*
194 * ECC computation.
195 */
196static unsigned char parity[256];
197static unsigned char ecc2[256];
198
199static void nand_init_ecc(void) {
200 int i, j, a;
201
202 parity[0] = 0;
203 for (i = 1; i < 256; i++)
204 parity[i] = (parity[i&(i-1)] ^ 1);
205
206 for (i = 0; i < 256; i++) {
207 a = 0;
208 for (j = 0; j < 8; j++) {
209 if (i & (1<<j)) {
210 if ((j & 1) == 0)
211 a ^= 0x04;
212 if ((j & 2) == 0)
213 a ^= 0x10;
214 if ((j & 4) == 0)
215 a ^= 0x40;
216 }
217 }
218 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
219 }
220}
221
222/* compute 3-byte ecc on 256 bytes */
223static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
224 int i, j, a;
225 unsigned char par = 0, bit, bits[8] = {0};
226
227 /* collect 16 checksum bits */
228 for (i = 0; i < 256; i++) {
229 par ^= data[i];
230 bit = parity[data[i]];
231 for (j = 0; j < 8; j++)
232 if ((i & (1<<j)) == 0)
233 bits[j] ^= bit;
234 }
235
236 /* put 4+4+4 = 12 bits in the ecc */
237 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
238 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
239
240 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
241 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
242
243 ecc[2] = ecc2[par];
244}
245
246static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
247 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
248}
249
250static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
251 memcpy(data, ecc, 3);
252}
253
254/*
255 * The actual driver starts here.
256 */
257
258struct sddr09_card_info {
259 unsigned long capacity; /* Size of card in bytes */
260 int pagesize; /* Size of page in bytes */
261 int pageshift; /* log2 of pagesize */
262 int blocksize; /* Size of block in pages */
263 int blockshift; /* log2 of blocksize */
264 int blockmask; /* 2^blockshift - 1 */
265 int *lba_to_pba; /* logical to physical map */
266 int *pba_to_lba; /* physical to logical map */
267 int lbact; /* number of available pages */
268 int flags;
269#define SDDR09_WP 1 /* write protected */
270};
271
272/*
273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
275 * so the reader makes up the remaining 48. Don't know whether these numbers
276 * depend on the card. For now a constant.
277 */
278#define CONTROL_SHIFT 6
279
280/*
281 * On my Combo CF/SM reader, the SM reader has LUN 1.
282 * (and things fail with LUN 0).
283 * It seems LUN is irrelevant for others.
284 */
285#define LUN 1
286#define LUNBITS (LUN << 5)
287
288/*
289 * LBA and PBA are unsigned ints. Special values.
290 */
291#define UNDEF 0xffffffff
292#define SPARE 0xfffffffe
293#define UNUSABLE 0xfffffffd
294
295static const int erase_bad_lba_entries = 0;
296
297/* send vendor interface command (0x41) */
298/* called for requests 0, 1, 8 */
299static int
300sddr09_send_command(struct us_data *us,
301 unsigned char request,
302 unsigned char direction,
303 unsigned char *xfer_data,
304 unsigned int xfer_len) {
305 unsigned int pipe;
306 unsigned char requesttype = (0x41 | direction);
307 int rc;
308
309 // Get the receive or send control pipe number
310
311 if (direction == USB_DIR_IN)
312 pipe = us->recv_ctrl_pipe;
313 else
314 pipe = us->send_ctrl_pipe;
315
316 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
317 0, 0, xfer_data, xfer_len);
318 switch (rc) {
319 case USB_STOR_XFER_GOOD: return 0;
320 case USB_STOR_XFER_STALLED: return -EPIPE;
321 default: return -EIO;
322 }
323}
324
325static int
326sddr09_send_scsi_command(struct us_data *us,
327 unsigned char *command,
328 unsigned int command_len) {
329 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
330}
331
332#if 0
333/*
334 * Test Unit Ready Command: 12 bytes.
335 * byte 0: opcode: 00
336 */
337static int
338sddr09_test_unit_ready(struct us_data *us) {
339 unsigned char *command = us->iobuf;
340 int result;
341
342 memset(command, 0, 6);
343 command[1] = LUNBITS;
344
345 result = sddr09_send_scsi_command(us, command, 6);
346
347 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
348
349 return result;
350}
351#endif
352
353/*
354 * Request Sense Command: 12 bytes.
355 * byte 0: opcode: 03
356 * byte 4: data length
357 */
358static int
359sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
360 unsigned char *command = us->iobuf;
361 int result;
362
363 memset(command, 0, 12);
364 command[0] = 0x03;
365 command[1] = LUNBITS;
366 command[4] = buflen;
367
368 result = sddr09_send_scsi_command(us, command, 12);
369 if (result)
370 return result;
371
372 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
373 sensebuf, buflen, NULL);
374 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
375}
376
377/*
378 * Read Command: 12 bytes.
379 * byte 0: opcode: E8
380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
381 * 10: read both, 11: read pagewise control.
382 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
383 * bytes 2-5: address (interpretation depends on byte 1, see below)
384 * bytes 10-11: count (idem)
385 *
386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
387 * A read data command gets data in 512-byte pages.
388 * A read control command gets control in 64-byte chunks.
389 * A read both command gets data+control in 576-byte chunks.
390 *
391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
392 * next block, while read pagewise control jumps to the next page after
393 * reading a group of 64 control bytes.
394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
395 *
396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
397 */
398
399static int
400sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
401 int nr_of_pages, int bulklen, unsigned char *buf,
402 int use_sg) {
403
404 unsigned char *command = us->iobuf;
405 int result;
406
407 command[0] = 0xE8;
408 command[1] = LUNBITS | x;
409 command[2] = MSB_of(fromaddress>>16);
410 command[3] = LSB_of(fromaddress>>16);
411 command[4] = MSB_of(fromaddress & 0xFFFF);
412 command[5] = LSB_of(fromaddress & 0xFFFF);
413 command[6] = 0;
414 command[7] = 0;
415 command[8] = 0;
416 command[9] = 0;
417 command[10] = MSB_of(nr_of_pages);
418 command[11] = LSB_of(nr_of_pages);
419
420 result = sddr09_send_scsi_command(us, command, 12);
421
422 if (result) {
423 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
424 x, result);
425 return result;
426 }
427
428 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
429 buf, bulklen, use_sg, NULL);
430
431 if (result != USB_STOR_XFER_GOOD) {
432 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
433 x, result);
434 return -EIO;
435 }
436 return 0;
437}
438
439/*
440 * Read Data
441 *
442 * fromaddress counts data shorts:
443 * increasing it by 256 shifts the bytestream by 512 bytes;
444 * the last 8 bits are ignored.
445 *
446 * nr_of_pages counts pages of size (1 << pageshift).
447 */
448static int
449sddr09_read20(struct us_data *us, unsigned long fromaddress,
450 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
451 int bulklen = nr_of_pages << pageshift;
452
453 /* The last 8 bits of fromaddress are ignored. */
454 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
455 buf, use_sg);
456}
457
458/*
459 * Read Blockwise Control
460 *
461 * fromaddress gives the starting position (as in read data;
462 * the last 8 bits are ignored); increasing it by 32*256 shifts
463 * the output stream by 64 bytes.
464 *
465 * count counts control groups of size (1 << controlshift).
466 * For me, controlshift = 6. Is this constant?
467 *
468 * After getting one control group, jump to the next block
469 * (fromaddress += 8192).
470 */
471static int
472sddr09_read21(struct us_data *us, unsigned long fromaddress,
473 int count, int controlshift, unsigned char *buf, int use_sg) {
474
475 int bulklen = (count << controlshift);
476 return sddr09_readX(us, 1, fromaddress, count, bulklen,
477 buf, use_sg);
478}
479
480/*
481 * Read both Data and Control
482 *
483 * fromaddress counts data shorts, ignoring control:
484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
485 * the last 8 bits are ignored.
486 *
487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
488 */
489static int
490sddr09_read22(struct us_data *us, unsigned long fromaddress,
491 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
492
493 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
494 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
495 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
496 buf, use_sg);
497}
498
499#if 0
500/*
501 * Read Pagewise Control
502 *
503 * fromaddress gives the starting position (as in read data;
504 * the last 8 bits are ignored); increasing it by 256 shifts
505 * the output stream by 64 bytes.
506 *
507 * count counts control groups of size (1 << controlshift).
508 * For me, controlshift = 6. Is this constant?
509 *
510 * After getting one control group, jump to the next page
511 * (fromaddress += 256).
512 */
513static int
514sddr09_read23(struct us_data *us, unsigned long fromaddress,
515 int count, int controlshift, unsigned char *buf, int use_sg) {
516
517 int bulklen = (count << controlshift);
518 return sddr09_readX(us, 3, fromaddress, count, bulklen,
519 buf, use_sg);
520}
521#endif
522
523/*
524 * Erase Command: 12 bytes.
525 * byte 0: opcode: EA
526 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
527 *
528 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
529 * The byte address being erased is 2*Eaddress.
530 * The CIS cannot be erased.
531 */
532static int
533sddr09_erase(struct us_data *us, unsigned long Eaddress) {
534 unsigned char *command = us->iobuf;
535 int result;
536
537 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
538
539 memset(command, 0, 12);
540 command[0] = 0xEA;
541 command[1] = LUNBITS;
542 command[6] = MSB_of(Eaddress>>16);
543 command[7] = LSB_of(Eaddress>>16);
544 command[8] = MSB_of(Eaddress & 0xFFFF);
545 command[9] = LSB_of(Eaddress & 0xFFFF);
546
547 result = sddr09_send_scsi_command(us, command, 12);
548
549 if (result)
550 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
551 result);
552
553 return result;
554}
555
556/*
557 * Write CIS Command: 12 bytes.
558 * byte 0: opcode: EE
559 * bytes 2-5: write address in shorts
560 * bytes 10-11: sector count
561 *
562 * This writes at the indicated address. Don't know how it differs
563 * from E9. Maybe it does not erase? However, it will also write to
564 * the CIS.
565 *
566 * When two such commands on the same page follow each other directly,
567 * the second one is not done.
568 */
569
570/*
571 * Write Command: 12 bytes.
572 * byte 0: opcode: E9
573 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
574 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
575 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
576 *
577 * If write address equals erase address, the erase is done first,
578 * otherwise the write is done first. When erase address equals zero
579 * no erase is done?
580 */
581static int
582sddr09_writeX(struct us_data *us,
583 unsigned long Waddress, unsigned long Eaddress,
584 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
585
586 unsigned char *command = us->iobuf;
587 int result;
588
589 command[0] = 0xE9;
590 command[1] = LUNBITS;
591
592 command[2] = MSB_of(Waddress>>16);
593 command[3] = LSB_of(Waddress>>16);
594 command[4] = MSB_of(Waddress & 0xFFFF);
595 command[5] = LSB_of(Waddress & 0xFFFF);
596
597 command[6] = MSB_of(Eaddress>>16);
598 command[7] = LSB_of(Eaddress>>16);
599 command[8] = MSB_of(Eaddress & 0xFFFF);
600 command[9] = LSB_of(Eaddress & 0xFFFF);
601
602 command[10] = MSB_of(nr_of_pages);
603 command[11] = LSB_of(nr_of_pages);
604
605 result = sddr09_send_scsi_command(us, command, 12);
606
607 if (result) {
608 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
609 result);
610 return result;
611 }
612
613 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
614 buf, bulklen, use_sg, NULL);
615
616 if (result != USB_STOR_XFER_GOOD) {
617 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
618 result);
619 return -EIO;
620 }
621 return 0;
622}
623
624/* erase address, write same address */
625static int
626sddr09_write_inplace(struct us_data *us, unsigned long address,
627 int nr_of_pages, int pageshift, unsigned char *buf,
628 int use_sg) {
629 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
630 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
631 buf, use_sg);
632}
633
634#if 0
635/*
636 * Read Scatter Gather Command: 3+4n bytes.
637 * byte 0: opcode E7
638 * byte 2: n
639 * bytes 4i-1,4i,4i+1: page address
640 * byte 4i+2: page count
641 * (i=1..n)
642 *
643 * This reads several pages from the card to a single memory buffer.
644 * The last two bits of byte 1 have the same meaning as for E8.
645 */
646static int
647sddr09_read_sg_test_only(struct us_data *us) {
648 unsigned char *command = us->iobuf;
649 int result, bulklen, nsg, ct;
650 unsigned char *buf;
651 unsigned long address;
652
653 nsg = bulklen = 0;
654 command[0] = 0xE7;
655 command[1] = LUNBITS;
656 command[2] = 0;
657 address = 040000; ct = 1;
658 nsg++;
659 bulklen += (ct << 9);
660 command[4*nsg+2] = ct;
661 command[4*nsg+1] = ((address >> 9) & 0xFF);
662 command[4*nsg+0] = ((address >> 17) & 0xFF);
663 command[4*nsg-1] = ((address >> 25) & 0xFF);
664
665 address = 0340000; ct = 1;
666 nsg++;
667 bulklen += (ct << 9);
668 command[4*nsg+2] = ct;
669 command[4*nsg+1] = ((address >> 9) & 0xFF);
670 command[4*nsg+0] = ((address >> 17) & 0xFF);
671 command[4*nsg-1] = ((address >> 25) & 0xFF);
672
673 address = 01000000; ct = 2;
674 nsg++;
675 bulklen += (ct << 9);
676 command[4*nsg+2] = ct;
677 command[4*nsg+1] = ((address >> 9) & 0xFF);
678 command[4*nsg+0] = ((address >> 17) & 0xFF);
679 command[4*nsg-1] = ((address >> 25) & 0xFF);
680
681 command[2] = nsg;
682
683 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
684
685 if (result) {
686 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
687 result);
688 return result;
689 }
690
691 buf = kmalloc(bulklen, GFP_NOIO);
692 if (!buf)
693 return -ENOMEM;
694
695 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
696 buf, bulklen, NULL);
697 kfree(buf);
698 if (result != USB_STOR_XFER_GOOD) {
699 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
700 result);
701 return -EIO;
702 }
703
704 return 0;
705}
706#endif
707
708/*
709 * Read Status Command: 12 bytes.
710 * byte 0: opcode: EC
711 *
712 * Returns 64 bytes, all zero except for the first.
713 * bit 0: 1: Error
714 * bit 5: 1: Suspended
715 * bit 6: 1: Ready
716 * bit 7: 1: Not write-protected
717 */
718
719static int
720sddr09_read_status(struct us_data *us, unsigned char *status) {
721
722 unsigned char *command = us->iobuf;
723 unsigned char *data = us->iobuf;
724 int result;
725
726 usb_stor_dbg(us, "Reading status...\n");
727
728 memset(command, 0, 12);
729 command[0] = 0xEC;
730 command[1] = LUNBITS;
731
732 result = sddr09_send_scsi_command(us, command, 12);
733 if (result)
734 return result;
735
736 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
737 data, 64, NULL);
738 *status = data[0];
739 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
740}
741
742static int
743sddr09_read_data(struct us_data *us,
744 unsigned long address,
745 unsigned int sectors) {
746
747 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
748 unsigned char *buffer;
749 unsigned int lba, maxlba, pba;
750 unsigned int page, pages;
751 unsigned int len, offset;
752 struct scatterlist *sg;
753 int result;
754
755 // Figure out the initial LBA and page
756 lba = address >> info->blockshift;
757 page = (address & info->blockmask);
758 maxlba = info->capacity >> (info->pageshift + info->blockshift);
759 if (lba >= maxlba)
760 return -EIO;
761
762 // Since we only read in one block at a time, we have to create
763 // a bounce buffer and move the data a piece at a time between the
764 // bounce buffer and the actual transfer buffer.
765
766 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
767 buffer = kmalloc(len, GFP_NOIO);
768 if (buffer == NULL) {
769 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
770 return -ENOMEM;
771 }
772
773 // This could be made much more efficient by checking for
774 // contiguous LBA's. Another exercise left to the student.
775
776 result = 0;
777 offset = 0;
778 sg = NULL;
779
780 while (sectors > 0) {
781
782 /* Find number of pages we can read in this block */
783 pages = min(sectors, info->blocksize - page);
784 len = pages << info->pageshift;
785
786 /* Not overflowing capacity? */
787 if (lba >= maxlba) {
788 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
789 lba, maxlba);
790 result = -EIO;
791 break;
792 }
793
794 /* Find where this lba lives on disk */
795 pba = info->lba_to_pba[lba];
796
797 if (pba == UNDEF) { /* this lba was never written */
798
799 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
800 pages, lba, page);
801
802 /* This is not really an error. It just means
803 that the block has never been written.
804 Instead of returning an error
805 it is better to return all zero data. */
806
807 memset(buffer, 0, len);
808
809 } else {
810 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
811 pages, pba, lba, page);
812
813 address = ((pba << info->blockshift) + page) <<
814 info->pageshift;
815
816 result = sddr09_read20(us, address>>1,
817 pages, info->pageshift, buffer, 0);
818 if (result)
819 break;
820 }
821
822 // Store the data in the transfer buffer
823 usb_stor_access_xfer_buf(buffer, len, us->srb,
824 &sg, &offset, TO_XFER_BUF);
825
826 page = 0;
827 lba++;
828 sectors -= pages;
829 }
830
831 kfree(buffer);
832 return result;
833}
834
835static unsigned int
836sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
837 static unsigned int lastpba = 1;
838 int zonestart, end, i;
839
840 zonestart = (lba/1000) << 10;
841 end = info->capacity >> (info->blockshift + info->pageshift);
842 end -= zonestart;
843 if (end > 1024)
844 end = 1024;
845
846 for (i = lastpba+1; i < end; i++) {
847 if (info->pba_to_lba[zonestart+i] == UNDEF) {
848 lastpba = i;
849 return zonestart+i;
850 }
851 }
852 for (i = 0; i <= lastpba; i++) {
853 if (info->pba_to_lba[zonestart+i] == UNDEF) {
854 lastpba = i;
855 return zonestart+i;
856 }
857 }
858 return 0;
859}
860
861static int
862sddr09_write_lba(struct us_data *us, unsigned int lba,
863 unsigned int page, unsigned int pages,
864 unsigned char *ptr, unsigned char *blockbuffer) {
865
866 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
867 unsigned long address;
868 unsigned int pba, lbap;
869 unsigned int pagelen;
870 unsigned char *bptr, *cptr, *xptr;
871 unsigned char ecc[3];
872 int i, result, isnew;
873
874 lbap = ((lba % 1000) << 1) | 0x1000;
875 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
876 lbap ^= 1;
877 pba = info->lba_to_pba[lba];
878 isnew = 0;
879
880 if (pba == UNDEF) {
881 pba = sddr09_find_unused_pba(info, lba);
882 if (!pba) {
883 printk(KERN_WARNING
884 "sddr09_write_lba: Out of unused blocks\n");
885 return -ENOSPC;
886 }
887 info->pba_to_lba[pba] = lba;
888 info->lba_to_pba[lba] = pba;
889 isnew = 1;
890 }
891
892 if (pba == 1) {
893 /* Maybe it is impossible to write to PBA 1.
894 Fake success, but don't do anything. */
895 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
896 return 0;
897 }
898
899 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
900
901 /* read old contents */
902 address = (pba << (info->pageshift + info->blockshift));
903 result = sddr09_read22(us, address>>1, info->blocksize,
904 info->pageshift, blockbuffer, 0);
905 if (result)
906 return result;
907
908 /* check old contents and fill lba */
909 for (i = 0; i < info->blocksize; i++) {
910 bptr = blockbuffer + i*pagelen;
911 cptr = bptr + info->pagesize;
912 nand_compute_ecc(bptr, ecc);
913 if (!nand_compare_ecc(cptr+13, ecc)) {
914 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
915 i, pba);
916 nand_store_ecc(cptr+13, ecc);
917 }
918 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
919 if (!nand_compare_ecc(cptr+8, ecc)) {
920 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
921 i, pba);
922 nand_store_ecc(cptr+8, ecc);
923 }
924 cptr[6] = cptr[11] = MSB_of(lbap);
925 cptr[7] = cptr[12] = LSB_of(lbap);
926 }
927
928 /* copy in new stuff and compute ECC */
929 xptr = ptr;
930 for (i = page; i < page+pages; i++) {
931 bptr = blockbuffer + i*pagelen;
932 cptr = bptr + info->pagesize;
933 memcpy(bptr, xptr, info->pagesize);
934 xptr += info->pagesize;
935 nand_compute_ecc(bptr, ecc);
936 nand_store_ecc(cptr+13, ecc);
937 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
938 nand_store_ecc(cptr+8, ecc);
939 }
940
941 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
942
943 result = sddr09_write_inplace(us, address>>1, info->blocksize,
944 info->pageshift, blockbuffer, 0);
945
946 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
947
948#if 0
949 {
950 unsigned char status = 0;
951 int result2 = sddr09_read_status(us, &status);
952 if (result2)
953 usb_stor_dbg(us, "cannot read status\n");
954 else if (status != 0xc0)
955 usb_stor_dbg(us, "status after write: 0x%x\n", status);
956 }
957#endif
958
959#if 0
960 {
961 int result2 = sddr09_test_unit_ready(us);
962 }
963#endif
964
965 return result;
966}
967
968static int
969sddr09_write_data(struct us_data *us,
970 unsigned long address,
971 unsigned int sectors) {
972
973 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
974 unsigned int lba, maxlba, page, pages;
975 unsigned int pagelen, blocklen;
976 unsigned char *blockbuffer;
977 unsigned char *buffer;
978 unsigned int len, offset;
979 struct scatterlist *sg;
980 int result;
981
982 // Figure out the initial LBA and page
983 lba = address >> info->blockshift;
984 page = (address & info->blockmask);
985 maxlba = info->capacity >> (info->pageshift + info->blockshift);
986 if (lba >= maxlba)
987 return -EIO;
988
989 // blockbuffer is used for reading in the old data, overwriting
990 // with the new data, and performing ECC calculations
991
992 /* TODO: instead of doing kmalloc/kfree for each write,
993 add a bufferpointer to the info structure */
994
995 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
996 blocklen = (pagelen << info->blockshift);
997 blockbuffer = kmalloc(blocklen, GFP_NOIO);
998 if (!blockbuffer) {
999 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1000 return -ENOMEM;
1001 }
1002
1003 // Since we don't write the user data directly to the device,
1004 // we have to create a bounce buffer and move the data a piece
1005 // at a time between the bounce buffer and the actual transfer buffer.
1006
1007 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1008 buffer = kmalloc(len, GFP_NOIO);
1009 if (buffer == NULL) {
1010 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1011 kfree(blockbuffer);
1012 return -ENOMEM;
1013 }
1014
1015 result = 0;
1016 offset = 0;
1017 sg = NULL;
1018
1019 while (sectors > 0) {
1020
1021 // Write as many sectors as possible in this block
1022
1023 pages = min(sectors, info->blocksize - page);
1024 len = (pages << info->pageshift);
1025
1026 /* Not overflowing capacity? */
1027 if (lba >= maxlba) {
1028 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1029 lba, maxlba);
1030 result = -EIO;
1031 break;
1032 }
1033
1034 // Get the data from the transfer buffer
1035 usb_stor_access_xfer_buf(buffer, len, us->srb,
1036 &sg, &offset, FROM_XFER_BUF);
1037
1038 result = sddr09_write_lba(us, lba, page, pages,
1039 buffer, blockbuffer);
1040 if (result)
1041 break;
1042
1043 page = 0;
1044 lba++;
1045 sectors -= pages;
1046 }
1047
1048 kfree(buffer);
1049 kfree(blockbuffer);
1050
1051 return result;
1052}
1053
1054static int
1055sddr09_read_control(struct us_data *us,
1056 unsigned long address,
1057 unsigned int blocks,
1058 unsigned char *content,
1059 int use_sg) {
1060
1061 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1062 address, blocks);
1063
1064 return sddr09_read21(us, address, blocks,
1065 CONTROL_SHIFT, content, use_sg);
1066}
1067
1068/*
1069 * Read Device ID Command: 12 bytes.
1070 * byte 0: opcode: ED
1071 *
1072 * Returns 2 bytes: Manufacturer ID and Device ID.
1073 * On more recent cards 3 bytes: the third byte is an option code A5
1074 * signifying that the secret command to read an 128-bit ID is available.
1075 * On still more recent cards 4 bytes: the fourth byte C0 means that
1076 * a second read ID cmd is available.
1077 */
1078static int
1079sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1080 unsigned char *command = us->iobuf;
1081 unsigned char *content = us->iobuf;
1082 int result, i;
1083
1084 memset(command, 0, 12);
1085 command[0] = 0xED;
1086 command[1] = LUNBITS;
1087
1088 result = sddr09_send_scsi_command(us, command, 12);
1089 if (result)
1090 return result;
1091
1092 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1093 content, 64, NULL);
1094
1095 for (i = 0; i < 4; i++)
1096 deviceID[i] = content[i];
1097
1098 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1099}
1100
1101static int
1102sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1103 int result;
1104 unsigned char status;
1105 const char *wp_fmt;
1106
1107 result = sddr09_read_status(us, &status);
1108 if (result) {
1109 usb_stor_dbg(us, "read_status fails\n");
1110 return result;
1111 }
1112 if ((status & 0x80) == 0) {
1113 info->flags |= SDDR09_WP; /* write protected */
1114 wp_fmt = " WP";
1115 } else {
1116 wp_fmt = "";
1117 }
1118 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1119 status & 0x40 ? " Ready" : "",
1120 status & LUNBITS ? " Suspended" : "",
1121 status & 0x01 ? " Error" : "");
1122
1123 return 0;
1124}
1125
1126#if 0
1127/*
1128 * Reset Command: 12 bytes.
1129 * byte 0: opcode: EB
1130 */
1131static int
1132sddr09_reset(struct us_data *us) {
1133
1134 unsigned char *command = us->iobuf;
1135
1136 memset(command, 0, 12);
1137 command[0] = 0xEB;
1138 command[1] = LUNBITS;
1139
1140 return sddr09_send_scsi_command(us, command, 12);
1141}
1142#endif
1143
1144static struct nand_flash_dev *
1145sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1146 struct nand_flash_dev *cardinfo;
1147 unsigned char deviceID[4];
1148 char blurbtxt[256];
1149 int result;
1150
1151 usb_stor_dbg(us, "Reading capacity...\n");
1152
1153 result = sddr09_read_deviceID(us, deviceID);
1154
1155 if (result) {
1156 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1157 printk(KERN_WARNING "sddr09: could not read card info\n");
1158 return NULL;
1159 }
1160
1161 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1162
1163 /* Byte 0 is the manufacturer */
1164 sprintf(blurbtxt + strlen(blurbtxt),
1165 ": Manuf. %s",
1166 nand_flash_manufacturer(deviceID[0]));
1167
1168 /* Byte 1 is the device type */
1169 cardinfo = nand_find_id(deviceID[1]);
1170 if (cardinfo) {
1171 /* MB or MiB? It is neither. A 16 MB card has
1172 17301504 raw bytes, of which 16384000 are
1173 usable for user data. */
1174 sprintf(blurbtxt + strlen(blurbtxt),
1175 ", %d MB", 1<<(cardinfo->chipshift - 20));
1176 } else {
1177 sprintf(blurbtxt + strlen(blurbtxt),
1178 ", type unrecognized");
1179 }
1180
1181 /* Byte 2 is code to signal availability of 128-bit ID */
1182 if (deviceID[2] == 0xa5) {
1183 sprintf(blurbtxt + strlen(blurbtxt),
1184 ", 128-bit ID");
1185 }
1186
1187 /* Byte 3 announces the availability of another read ID command */
1188 if (deviceID[3] == 0xc0) {
1189 sprintf(blurbtxt + strlen(blurbtxt),
1190 ", extra cmd");
1191 }
1192
1193 if (flags & SDDR09_WP)
1194 sprintf(blurbtxt + strlen(blurbtxt),
1195 ", WP");
1196
1197 printk(KERN_WARNING "%s\n", blurbtxt);
1198
1199 return cardinfo;
1200}
1201
1202static int
1203sddr09_read_map(struct us_data *us) {
1204
1205 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1206 int numblocks, alloc_len, alloc_blocks;
1207 int i, j, result;
1208 unsigned char *buffer, *buffer_end, *ptr;
1209 unsigned int lba, lbact;
1210
1211 if (!info->capacity)
1212 return -1;
1213
1214 // size of a block is 1 << (blockshift + pageshift) bytes
1215 // divide into the total capacity to get the number of blocks
1216
1217 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1218
1219 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1220 // but only use a 64 KB buffer
1221 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1222#define SDDR09_READ_MAP_BUFSZ 65536
1223
1224 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1225 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1226 buffer = kmalloc(alloc_len, GFP_NOIO);
1227 if (buffer == NULL) {
1228 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1229 result = -1;
1230 goto done;
1231 }
1232 buffer_end = buffer + alloc_len;
1233
1234#undef SDDR09_READ_MAP_BUFSZ
1235
1236 kfree(info->lba_to_pba);
1237 kfree(info->pba_to_lba);
1238 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1239 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1240
1241 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1242 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1243 result = -1;
1244 goto done;
1245 }
1246
1247 for (i = 0; i < numblocks; i++)
1248 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1249
1250 /*
1251 * Define lba-pba translation table
1252 */
1253
1254 ptr = buffer_end;
1255 for (i = 0; i < numblocks; i++) {
1256 ptr += (1 << CONTROL_SHIFT);
1257 if (ptr >= buffer_end) {
1258 unsigned long address;
1259
1260 address = i << (info->pageshift + info->blockshift);
1261 result = sddr09_read_control(
1262 us, address>>1,
1263 min(alloc_blocks, numblocks - i),
1264 buffer, 0);
1265 if (result) {
1266 result = -1;
1267 goto done;
1268 }
1269 ptr = buffer;
1270 }
1271
1272 if (i == 0 || i == 1) {
1273 info->pba_to_lba[i] = UNUSABLE;
1274 continue;
1275 }
1276
1277 /* special PBAs have control field 0^16 */
1278 for (j = 0; j < 16; j++)
1279 if (ptr[j] != 0)
1280 goto nonz;
1281 info->pba_to_lba[i] = UNUSABLE;
1282 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1283 i);
1284 continue;
1285
1286 nonz:
1287 /* unwritten PBAs have control field FF^16 */
1288 for (j = 0; j < 16; j++)
1289 if (ptr[j] != 0xff)
1290 goto nonff;
1291 continue;
1292
1293 nonff:
1294 /* normal PBAs start with six FFs */
1295 if (j < 6) {
1296 printk(KERN_WARNING
1297 "sddr09: PBA %d has no logical mapping: "
1298 "reserved area = %02X%02X%02X%02X "
1299 "data status %02X block status %02X\n",
1300 i, ptr[0], ptr[1], ptr[2], ptr[3],
1301 ptr[4], ptr[5]);
1302 info->pba_to_lba[i] = UNUSABLE;
1303 continue;
1304 }
1305
1306 if ((ptr[6] >> 4) != 0x01) {
1307 printk(KERN_WARNING
1308 "sddr09: PBA %d has invalid address field "
1309 "%02X%02X/%02X%02X\n",
1310 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1311 info->pba_to_lba[i] = UNUSABLE;
1312 continue;
1313 }
1314
1315 /* check even parity */
1316 if (parity[ptr[6] ^ ptr[7]]) {
1317 printk(KERN_WARNING
1318 "sddr09: Bad parity in LBA for block %d"
1319 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1320 info->pba_to_lba[i] = UNUSABLE;
1321 continue;
1322 }
1323
1324 lba = short_pack(ptr[7], ptr[6]);
1325 lba = (lba & 0x07FF) >> 1;
1326
1327 /*
1328 * Every 1024 physical blocks ("zone"), the LBA numbers
1329 * go back to zero, but are within a higher block of LBA's.
1330 * Also, there is a maximum of 1000 LBA's per zone.
1331 * In other words, in PBA 1024-2047 you will find LBA 0-999
1332 * which are really LBA 1000-1999. This allows for 24 bad
1333 * or special physical blocks per zone.
1334 */
1335
1336 if (lba >= 1000) {
1337 printk(KERN_WARNING
1338 "sddr09: Bad low LBA %d for block %d\n",
1339 lba, i);
1340 goto possibly_erase;
1341 }
1342
1343 lba += 1000*(i/0x400);
1344
1345 if (info->lba_to_pba[lba] != UNDEF) {
1346 printk(KERN_WARNING
1347 "sddr09: LBA %d seen for PBA %d and %d\n",
1348 lba, info->lba_to_pba[lba], i);
1349 goto possibly_erase;
1350 }
1351
1352 info->pba_to_lba[i] = lba;
1353 info->lba_to_pba[lba] = i;
1354 continue;
1355
1356 possibly_erase:
1357 if (erase_bad_lba_entries) {
1358 unsigned long address;
1359
1360 address = (i << (info->pageshift + info->blockshift));
1361 sddr09_erase(us, address>>1);
1362 info->pba_to_lba[i] = UNDEF;
1363 } else
1364 info->pba_to_lba[i] = UNUSABLE;
1365 }
1366
1367 /*
1368 * Approximate capacity. This is not entirely correct yet,
1369 * since a zone with less than 1000 usable pages leads to
1370 * missing LBAs. Especially if it is the last zone, some
1371 * LBAs can be past capacity.
1372 */
1373 lbact = 0;
1374 for (i = 0; i < numblocks; i += 1024) {
1375 int ct = 0;
1376
1377 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1378 if (info->pba_to_lba[i+j] != UNUSABLE) {
1379 if (ct >= 1000)
1380 info->pba_to_lba[i+j] = SPARE;
1381 else
1382 ct++;
1383 }
1384 }
1385 lbact += ct;
1386 }
1387 info->lbact = lbact;
1388 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1389 result = 0;
1390
1391 done:
1392 if (result != 0) {
1393 kfree(info->lba_to_pba);
1394 kfree(info->pba_to_lba);
1395 info->lba_to_pba = NULL;
1396 info->pba_to_lba = NULL;
1397 }
1398 kfree(buffer);
1399 return result;
1400}
1401
1402static void
1403sddr09_card_info_destructor(void *extra) {
1404 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1405
1406 if (!info)
1407 return;
1408
1409 kfree(info->lba_to_pba);
1410 kfree(info->pba_to_lba);
1411}
1412
1413static int
1414sddr09_common_init(struct us_data *us) {
1415 int result;
1416
1417 /* set the configuration -- STALL is an acceptable response here */
1418 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1419 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1420 us->pusb_dev->actconfig->desc.bConfigurationValue);
1421 return -EINVAL;
1422 }
1423
1424 result = usb_reset_configuration(us->pusb_dev);
1425 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1426 if (result == -EPIPE) {
1427 usb_stor_dbg(us, "-- stall on control interface\n");
1428 } else if (result != 0) {
1429 /* it's not a stall, but another error -- time to bail */
1430 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1431 return -EINVAL;
1432 }
1433
1434 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1435 if (!us->extra)
1436 return -ENOMEM;
1437 us->extra_destructor = sddr09_card_info_destructor;
1438
1439 nand_init_ecc();
1440 return 0;
1441}
1442
1443
1444/*
1445 * This is needed at a very early stage. If this is not listed in the
1446 * unusual devices list but called from here then LUN 0 of the combo reader
1447 * is not recognized. But I do not know what precisely these calls do.
1448 */
1449static int
1450usb_stor_sddr09_dpcm_init(struct us_data *us) {
1451 int result;
1452 unsigned char *data = us->iobuf;
1453
1454 result = sddr09_common_init(us);
1455 if (result)
1456 return result;
1457
1458 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1459 if (result) {
1460 usb_stor_dbg(us, "send_command fails\n");
1461 return result;
1462 }
1463
1464 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1465 // get 07 02
1466
1467 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1468 if (result) {
1469 usb_stor_dbg(us, "2nd send_command fails\n");
1470 return result;
1471 }
1472
1473 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1474 // get 07 00
1475
1476 result = sddr09_request_sense(us, data, 18);
1477 if (result == 0 && data[2] != 0) {
1478 int j;
1479 for (j=0; j<18; j++)
1480 printk(" %02X", data[j]);
1481 printk("\n");
1482 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1483 // 70: current command
1484 // sense key 0, sense code 0, extd sense code 0
1485 // additional transfer length * = sizeof(data) - 7
1486 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1487 // sense key 06, sense code 28: unit attention,
1488 // not ready to ready transition
1489 }
1490
1491 // test unit ready
1492
1493 return 0; /* not result */
1494}
1495
1496/*
1497 * Transport for the Microtech DPCM-USB
1498 */
1499static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1500{
1501 int ret;
1502
1503 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1504
1505 switch (srb->device->lun) {
1506 case 0:
1507
1508 /*
1509 * LUN 0 corresponds to the CompactFlash card reader.
1510 */
1511 ret = usb_stor_CB_transport(srb, us);
1512 break;
1513
1514 case 1:
1515
1516 /*
1517 * LUN 1 corresponds to the SmartMedia card reader.
1518 */
1519
1520 /*
1521 * Set the LUN to 0 (just in case).
1522 */
1523 srb->device->lun = 0;
1524 ret = sddr09_transport(srb, us);
1525 srb->device->lun = 1;
1526 break;
1527
1528 default:
1529 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1530 ret = USB_STOR_TRANSPORT_ERROR;
1531 break;
1532 }
1533 return ret;
1534}
1535
1536
1537/*
1538 * Transport for the Sandisk SDDR-09
1539 */
1540static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1541{
1542 static unsigned char sensekey = 0, sensecode = 0;
1543 static unsigned char havefakesense = 0;
1544 int result, i;
1545 unsigned char *ptr = us->iobuf;
1546 unsigned long capacity;
1547 unsigned int page, pages;
1548
1549 struct sddr09_card_info *info;
1550
1551 static unsigned char inquiry_response[8] = {
1552 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1553 };
1554
1555 /* note: no block descriptor support */
1556 static unsigned char mode_page_01[19] = {
1557 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1558 0x01, 0x0A,
1559 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1560 };
1561
1562 info = (struct sddr09_card_info *)us->extra;
1563
1564 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1565 /* for a faked command, we have to follow with a faked sense */
1566 memset(ptr, 0, 18);
1567 ptr[0] = 0x70;
1568 ptr[2] = sensekey;
1569 ptr[7] = 11;
1570 ptr[12] = sensecode;
1571 usb_stor_set_xfer_buf(ptr, 18, srb);
1572 sensekey = sensecode = havefakesense = 0;
1573 return USB_STOR_TRANSPORT_GOOD;
1574 }
1575
1576 havefakesense = 1;
1577
1578 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1579 respond to INQUIRY commands */
1580
1581 if (srb->cmnd[0] == INQUIRY) {
1582 memcpy(ptr, inquiry_response, 8);
1583 fill_inquiry_response(us, ptr, 36);
1584 return USB_STOR_TRANSPORT_GOOD;
1585 }
1586
1587 if (srb->cmnd[0] == READ_CAPACITY) {
1588 struct nand_flash_dev *cardinfo;
1589
1590 sddr09_get_wp(us, info); /* read WP bit */
1591
1592 cardinfo = sddr09_get_cardinfo(us, info->flags);
1593 if (!cardinfo) {
1594 /* probably no media */
1595 init_error:
1596 sensekey = 0x02; /* not ready */
1597 sensecode = 0x3a; /* medium not present */
1598 return USB_STOR_TRANSPORT_FAILED;
1599 }
1600
1601 info->capacity = (1 << cardinfo->chipshift);
1602 info->pageshift = cardinfo->pageshift;
1603 info->pagesize = (1 << info->pageshift);
1604 info->blockshift = cardinfo->blockshift;
1605 info->blocksize = (1 << info->blockshift);
1606 info->blockmask = info->blocksize - 1;
1607
1608 // map initialization, must follow get_cardinfo()
1609 if (sddr09_read_map(us)) {
1610 /* probably out of memory */
1611 goto init_error;
1612 }
1613
1614 // Report capacity
1615
1616 capacity = (info->lbact << info->blockshift) - 1;
1617
1618 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1619
1620 // Report page size
1621
1622 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1623 usb_stor_set_xfer_buf(ptr, 8, srb);
1624
1625 return USB_STOR_TRANSPORT_GOOD;
1626 }
1627
1628 if (srb->cmnd[0] == MODE_SENSE_10) {
1629 int modepage = (srb->cmnd[2] & 0x3F);
1630
1631 /* They ask for the Read/Write error recovery page,
1632 or for all pages. */
1633 /* %% We should check DBD %% */
1634 if (modepage == 0x01 || modepage == 0x3F) {
1635 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636 modepage);
1637
1638 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642 return USB_STOR_TRANSPORT_GOOD;
1643 }
1644
1645 sensekey = 0x05; /* illegal request */
1646 sensecode = 0x24; /* invalid field in CDB */
1647 return USB_STOR_TRANSPORT_FAILED;
1648 }
1649
1650 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651 return USB_STOR_TRANSPORT_GOOD;
1652
1653 havefakesense = 0;
1654
1655 if (srb->cmnd[0] == READ_10) {
1656
1657 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658 page <<= 16;
1659 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663 page, pages);
1664
1665 result = sddr09_read_data(us, page, pages);
1666 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667 USB_STOR_TRANSPORT_ERROR);
1668 }
1669
1670 if (srb->cmnd[0] == WRITE_10) {
1671
1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673 page <<= 16;
1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678 page, pages);
1679
1680 result = sddr09_write_data(us, page, pages);
1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682 USB_STOR_TRANSPORT_ERROR);
1683 }
1684
1685 /* catch-all for all other commands, except
1686 * pass TEST_UNIT_READY and REQUEST_SENSE through
1687 */
1688 if (srb->cmnd[0] != TEST_UNIT_READY &&
1689 srb->cmnd[0] != REQUEST_SENSE) {
1690 sensekey = 0x05; /* illegal request */
1691 sensecode = 0x20; /* invalid command */
1692 havefakesense = 1;
1693 return USB_STOR_TRANSPORT_FAILED;
1694 }
1695
1696 for (; srb->cmd_len<12; srb->cmd_len++)
1697 srb->cmnd[srb->cmd_len] = 0;
1698
1699 srb->cmnd[1] = LUNBITS;
1700
1701 ptr[0] = 0;
1702 for (i=0; i<12; i++)
1703 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1704
1705 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1706
1707 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1708 if (result) {
1709 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1710 result);
1711 return USB_STOR_TRANSPORT_ERROR;
1712 }
1713
1714 if (scsi_bufflen(srb) == 0)
1715 return USB_STOR_TRANSPORT_GOOD;
1716
1717 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1718 srb->sc_data_direction == DMA_FROM_DEVICE) {
1719 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1720 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1721
1722 usb_stor_dbg(us, "%s %d bytes\n",
1723 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1724 "sending" : "receiving",
1725 scsi_bufflen(srb));
1726
1727 result = usb_stor_bulk_srb(us, pipe, srb);
1728
1729 return (result == USB_STOR_XFER_GOOD ?
1730 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1731 }
1732
1733 return USB_STOR_TRANSPORT_GOOD;
1734}
1735
1736/*
1737 * Initialization routine for the sddr09 subdriver
1738 */
1739static int
1740usb_stor_sddr09_init(struct us_data *us) {
1741 return sddr09_common_init(us);
1742}
1743
1744static struct scsi_host_template sddr09_host_template;
1745
1746static int sddr09_probe(struct usb_interface *intf,
1747 const struct usb_device_id *id)
1748{
1749 struct us_data *us;
1750 int result;
1751
1752 result = usb_stor_probe1(&us, intf, id,
1753 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1754 &sddr09_host_template);
1755 if (result)
1756 return result;
1757
1758 if (us->protocol == USB_PR_DPCM_USB) {
1759 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1760 us->transport = dpcm_transport;
1761 us->transport_reset = usb_stor_CB_reset;
1762 us->max_lun = 1;
1763 } else {
1764 us->transport_name = "EUSB/SDDR09";
1765 us->transport = sddr09_transport;
1766 us->transport_reset = usb_stor_CB_reset;
1767 us->max_lun = 0;
1768 }
1769
1770 result = usb_stor_probe2(us);
1771 return result;
1772}
1773
1774static struct usb_driver sddr09_driver = {
1775 .name = DRV_NAME,
1776 .probe = sddr09_probe,
1777 .disconnect = usb_stor_disconnect,
1778 .suspend = usb_stor_suspend,
1779 .resume = usb_stor_resume,
1780 .reset_resume = usb_stor_reset_resume,
1781 .pre_reset = usb_stor_pre_reset,
1782 .post_reset = usb_stor_post_reset,
1783 .id_table = sddr09_usb_ids,
1784 .soft_unbind = 1,
1785 .no_dynamic_id = 1,
1786};
1787
1788module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);