Loading...
1/*
2 * Driver for SanDisk SDDR-09 SmartMedia reader
3 *
4 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
5 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
6 * Developed with the assistance of:
7 * (c) 2002 Alan Stern <stern@rowland.org>
8 *
9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
10 * This chip is a programmable USB controller. In the SDDR-09, it has
11 * been programmed to obey a certain limited set of SCSI commands.
12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
13 * commands.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2, or (at your option) any
18 * later version.
19 *
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 */
29
30/*
31 * Known vendor commands: 12 bytes, first byte is opcode
32 *
33 * E7: read scatter gather
34 * E8: read
35 * E9: write
36 * EA: erase
37 * EB: reset
38 * EC: read status
39 * ED: read ID
40 * EE: write CIS (?)
41 * EF: compute checksum (?)
42 */
43
44#include <linux/errno.h>
45#include <linux/module.h>
46#include <linux/slab.h>
47
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_device.h>
51
52#include "usb.h"
53#include "transport.h"
54#include "protocol.h"
55#include "debug.h"
56#include "scsiglue.h"
57
58#define DRV_NAME "ums-sddr09"
59
60MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
61MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
62MODULE_LICENSE("GPL");
63
64static int usb_stor_sddr09_dpcm_init(struct us_data *us);
65static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
66static int usb_stor_sddr09_init(struct us_data *us);
67
68
69/*
70 * The table of devices
71 */
72#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
73 vendorName, productName, useProtocol, useTransport, \
74 initFunction, flags) \
75{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
76 .driver_info = (flags) }
77
78static struct usb_device_id sddr09_usb_ids[] = {
79# include "unusual_sddr09.h"
80 { } /* Terminating entry */
81};
82MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
83
84#undef UNUSUAL_DEV
85
86/*
87 * The flags table
88 */
89#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
90 vendor_name, product_name, use_protocol, use_transport, \
91 init_function, Flags) \
92{ \
93 .vendorName = vendor_name, \
94 .productName = product_name, \
95 .useProtocol = use_protocol, \
96 .useTransport = use_transport, \
97 .initFunction = init_function, \
98}
99
100static struct us_unusual_dev sddr09_unusual_dev_list[] = {
101# include "unusual_sddr09.h"
102 { } /* Terminating entry */
103};
104
105#undef UNUSUAL_DEV
106
107
108#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
109#define LSB_of(s) ((s)&0xFF)
110#define MSB_of(s) ((s)>>8)
111
112/*
113 * First some stuff that does not belong here:
114 * data on SmartMedia and other cards, completely
115 * unrelated to this driver.
116 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
117 */
118
119struct nand_flash_dev {
120 int model_id;
121 int chipshift; /* 1<<cs bytes total capacity */
122 char pageshift; /* 1<<ps bytes in a page */
123 char blockshift; /* 1<<bs pages in an erase block */
124 char zoneshift; /* 1<<zs blocks in a zone */
125 /* # of logical blocks is 125/128 of this */
126 char pageadrlen; /* length of an address in bytes - 1 */
127};
128
129/*
130 * NAND Flash Manufacturer ID Codes
131 */
132#define NAND_MFR_AMD 0x01
133#define NAND_MFR_NATSEMI 0x8f
134#define NAND_MFR_TOSHIBA 0x98
135#define NAND_MFR_SAMSUNG 0xec
136
137static inline char *nand_flash_manufacturer(int manuf_id) {
138 switch(manuf_id) {
139 case NAND_MFR_AMD:
140 return "AMD";
141 case NAND_MFR_NATSEMI:
142 return "NATSEMI";
143 case NAND_MFR_TOSHIBA:
144 return "Toshiba";
145 case NAND_MFR_SAMSUNG:
146 return "Samsung";
147 default:
148 return "unknown";
149 }
150}
151
152/*
153 * It looks like it is unnecessary to attach manufacturer to the
154 * remaining data: SSFDC prescribes manufacturer-independent id codes.
155 *
156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
157 */
158
159static struct nand_flash_dev nand_flash_ids[] = {
160 /* NAND flash */
161 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
164 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
166 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
169 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
170 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
171 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
172 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
173 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
174
175 /* MASK ROM */
176 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
177 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
178 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
179 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
180 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
181 { 0,}
182};
183
184static struct nand_flash_dev *
185nand_find_id(unsigned char id) {
186 int i;
187
188 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
189 if (nand_flash_ids[i].model_id == id)
190 return &(nand_flash_ids[i]);
191 return NULL;
192}
193
194/*
195 * ECC computation.
196 */
197static unsigned char parity[256];
198static unsigned char ecc2[256];
199
200static void nand_init_ecc(void) {
201 int i, j, a;
202
203 parity[0] = 0;
204 for (i = 1; i < 256; i++)
205 parity[i] = (parity[i&(i-1)] ^ 1);
206
207 for (i = 0; i < 256; i++) {
208 a = 0;
209 for (j = 0; j < 8; j++) {
210 if (i & (1<<j)) {
211 if ((j & 1) == 0)
212 a ^= 0x04;
213 if ((j & 2) == 0)
214 a ^= 0x10;
215 if ((j & 4) == 0)
216 a ^= 0x40;
217 }
218 }
219 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
220 }
221}
222
223/* compute 3-byte ecc on 256 bytes */
224static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
225 int i, j, a;
226 unsigned char par = 0, bit, bits[8] = {0};
227
228 /* collect 16 checksum bits */
229 for (i = 0; i < 256; i++) {
230 par ^= data[i];
231 bit = parity[data[i]];
232 for (j = 0; j < 8; j++)
233 if ((i & (1<<j)) == 0)
234 bits[j] ^= bit;
235 }
236
237 /* put 4+4+4 = 12 bits in the ecc */
238 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
239 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
240
241 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
242 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
243
244 ecc[2] = ecc2[par];
245}
246
247static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
248 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
249}
250
251static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
252 memcpy(data, ecc, 3);
253}
254
255/*
256 * The actual driver starts here.
257 */
258
259struct sddr09_card_info {
260 unsigned long capacity; /* Size of card in bytes */
261 int pagesize; /* Size of page in bytes */
262 int pageshift; /* log2 of pagesize */
263 int blocksize; /* Size of block in pages */
264 int blockshift; /* log2 of blocksize */
265 int blockmask; /* 2^blockshift - 1 */
266 int *lba_to_pba; /* logical to physical map */
267 int *pba_to_lba; /* physical to logical map */
268 int lbact; /* number of available pages */
269 int flags;
270#define SDDR09_WP 1 /* write protected */
271};
272
273/*
274 * On my 16MB card, control blocks have size 64 (16 real control bytes,
275 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
276 * so the reader makes up the remaining 48. Don't know whether these numbers
277 * depend on the card. For now a constant.
278 */
279#define CONTROL_SHIFT 6
280
281/*
282 * On my Combo CF/SM reader, the SM reader has LUN 1.
283 * (and things fail with LUN 0).
284 * It seems LUN is irrelevant for others.
285 */
286#define LUN 1
287#define LUNBITS (LUN << 5)
288
289/*
290 * LBA and PBA are unsigned ints. Special values.
291 */
292#define UNDEF 0xffffffff
293#define SPARE 0xfffffffe
294#define UNUSABLE 0xfffffffd
295
296static const int erase_bad_lba_entries = 0;
297
298/* send vendor interface command (0x41) */
299/* called for requests 0, 1, 8 */
300static int
301sddr09_send_command(struct us_data *us,
302 unsigned char request,
303 unsigned char direction,
304 unsigned char *xfer_data,
305 unsigned int xfer_len) {
306 unsigned int pipe;
307 unsigned char requesttype = (0x41 | direction);
308 int rc;
309
310 // Get the receive or send control pipe number
311
312 if (direction == USB_DIR_IN)
313 pipe = us->recv_ctrl_pipe;
314 else
315 pipe = us->send_ctrl_pipe;
316
317 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
318 0, 0, xfer_data, xfer_len);
319 switch (rc) {
320 case USB_STOR_XFER_GOOD: return 0;
321 case USB_STOR_XFER_STALLED: return -EPIPE;
322 default: return -EIO;
323 }
324}
325
326static int
327sddr09_send_scsi_command(struct us_data *us,
328 unsigned char *command,
329 unsigned int command_len) {
330 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
331}
332
333#if 0
334/*
335 * Test Unit Ready Command: 12 bytes.
336 * byte 0: opcode: 00
337 */
338static int
339sddr09_test_unit_ready(struct us_data *us) {
340 unsigned char *command = us->iobuf;
341 int result;
342
343 memset(command, 0, 6);
344 command[1] = LUNBITS;
345
346 result = sddr09_send_scsi_command(us, command, 6);
347
348 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
349
350 return result;
351}
352#endif
353
354/*
355 * Request Sense Command: 12 bytes.
356 * byte 0: opcode: 03
357 * byte 4: data length
358 */
359static int
360sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
361 unsigned char *command = us->iobuf;
362 int result;
363
364 memset(command, 0, 12);
365 command[0] = 0x03;
366 command[1] = LUNBITS;
367 command[4] = buflen;
368
369 result = sddr09_send_scsi_command(us, command, 12);
370 if (result)
371 return result;
372
373 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
374 sensebuf, buflen, NULL);
375 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
376}
377
378/*
379 * Read Command: 12 bytes.
380 * byte 0: opcode: E8
381 * byte 1: last two bits: 00: read data, 01: read blockwise control,
382 * 10: read both, 11: read pagewise control.
383 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
384 * bytes 2-5: address (interpretation depends on byte 1, see below)
385 * bytes 10-11: count (idem)
386 *
387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
388 * A read data command gets data in 512-byte pages.
389 * A read control command gets control in 64-byte chunks.
390 * A read both command gets data+control in 576-byte chunks.
391 *
392 * Blocks are groups of 32 pages, and read blockwise control jumps to the
393 * next block, while read pagewise control jumps to the next page after
394 * reading a group of 64 control bytes.
395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
396 *
397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
398 */
399
400static int
401sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
402 int nr_of_pages, int bulklen, unsigned char *buf,
403 int use_sg) {
404
405 unsigned char *command = us->iobuf;
406 int result;
407
408 command[0] = 0xE8;
409 command[1] = LUNBITS | x;
410 command[2] = MSB_of(fromaddress>>16);
411 command[3] = LSB_of(fromaddress>>16);
412 command[4] = MSB_of(fromaddress & 0xFFFF);
413 command[5] = LSB_of(fromaddress & 0xFFFF);
414 command[6] = 0;
415 command[7] = 0;
416 command[8] = 0;
417 command[9] = 0;
418 command[10] = MSB_of(nr_of_pages);
419 command[11] = LSB_of(nr_of_pages);
420
421 result = sddr09_send_scsi_command(us, command, 12);
422
423 if (result) {
424 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
425 x, result);
426 return result;
427 }
428
429 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
430 buf, bulklen, use_sg, NULL);
431
432 if (result != USB_STOR_XFER_GOOD) {
433 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
434 x, result);
435 return -EIO;
436 }
437 return 0;
438}
439
440/*
441 * Read Data
442 *
443 * fromaddress counts data shorts:
444 * increasing it by 256 shifts the bytestream by 512 bytes;
445 * the last 8 bits are ignored.
446 *
447 * nr_of_pages counts pages of size (1 << pageshift).
448 */
449static int
450sddr09_read20(struct us_data *us, unsigned long fromaddress,
451 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
452 int bulklen = nr_of_pages << pageshift;
453
454 /* The last 8 bits of fromaddress are ignored. */
455 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
456 buf, use_sg);
457}
458
459/*
460 * Read Blockwise Control
461 *
462 * fromaddress gives the starting position (as in read data;
463 * the last 8 bits are ignored); increasing it by 32*256 shifts
464 * the output stream by 64 bytes.
465 *
466 * count counts control groups of size (1 << controlshift).
467 * For me, controlshift = 6. Is this constant?
468 *
469 * After getting one control group, jump to the next block
470 * (fromaddress += 8192).
471 */
472static int
473sddr09_read21(struct us_data *us, unsigned long fromaddress,
474 int count, int controlshift, unsigned char *buf, int use_sg) {
475
476 int bulklen = (count << controlshift);
477 return sddr09_readX(us, 1, fromaddress, count, bulklen,
478 buf, use_sg);
479}
480
481/*
482 * Read both Data and Control
483 *
484 * fromaddress counts data shorts, ignoring control:
485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
486 * the last 8 bits are ignored.
487 *
488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
489 */
490static int
491sddr09_read22(struct us_data *us, unsigned long fromaddress,
492 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
493
494 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
495 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
496 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
497 buf, use_sg);
498}
499
500#if 0
501/*
502 * Read Pagewise Control
503 *
504 * fromaddress gives the starting position (as in read data;
505 * the last 8 bits are ignored); increasing it by 256 shifts
506 * the output stream by 64 bytes.
507 *
508 * count counts control groups of size (1 << controlshift).
509 * For me, controlshift = 6. Is this constant?
510 *
511 * After getting one control group, jump to the next page
512 * (fromaddress += 256).
513 */
514static int
515sddr09_read23(struct us_data *us, unsigned long fromaddress,
516 int count, int controlshift, unsigned char *buf, int use_sg) {
517
518 int bulklen = (count << controlshift);
519 return sddr09_readX(us, 3, fromaddress, count, bulklen,
520 buf, use_sg);
521}
522#endif
523
524/*
525 * Erase Command: 12 bytes.
526 * byte 0: opcode: EA
527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
528 *
529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
530 * The byte address being erased is 2*Eaddress.
531 * The CIS cannot be erased.
532 */
533static int
534sddr09_erase(struct us_data *us, unsigned long Eaddress) {
535 unsigned char *command = us->iobuf;
536 int result;
537
538 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
539
540 memset(command, 0, 12);
541 command[0] = 0xEA;
542 command[1] = LUNBITS;
543 command[6] = MSB_of(Eaddress>>16);
544 command[7] = LSB_of(Eaddress>>16);
545 command[8] = MSB_of(Eaddress & 0xFFFF);
546 command[9] = LSB_of(Eaddress & 0xFFFF);
547
548 result = sddr09_send_scsi_command(us, command, 12);
549
550 if (result)
551 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
552 result);
553
554 return result;
555}
556
557/*
558 * Write CIS Command: 12 bytes.
559 * byte 0: opcode: EE
560 * bytes 2-5: write address in shorts
561 * bytes 10-11: sector count
562 *
563 * This writes at the indicated address. Don't know how it differs
564 * from E9. Maybe it does not erase? However, it will also write to
565 * the CIS.
566 *
567 * When two such commands on the same page follow each other directly,
568 * the second one is not done.
569 */
570
571/*
572 * Write Command: 12 bytes.
573 * byte 0: opcode: E9
574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
577 *
578 * If write address equals erase address, the erase is done first,
579 * otherwise the write is done first. When erase address equals zero
580 * no erase is done?
581 */
582static int
583sddr09_writeX(struct us_data *us,
584 unsigned long Waddress, unsigned long Eaddress,
585 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
586
587 unsigned char *command = us->iobuf;
588 int result;
589
590 command[0] = 0xE9;
591 command[1] = LUNBITS;
592
593 command[2] = MSB_of(Waddress>>16);
594 command[3] = LSB_of(Waddress>>16);
595 command[4] = MSB_of(Waddress & 0xFFFF);
596 command[5] = LSB_of(Waddress & 0xFFFF);
597
598 command[6] = MSB_of(Eaddress>>16);
599 command[7] = LSB_of(Eaddress>>16);
600 command[8] = MSB_of(Eaddress & 0xFFFF);
601 command[9] = LSB_of(Eaddress & 0xFFFF);
602
603 command[10] = MSB_of(nr_of_pages);
604 command[11] = LSB_of(nr_of_pages);
605
606 result = sddr09_send_scsi_command(us, command, 12);
607
608 if (result) {
609 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
610 result);
611 return result;
612 }
613
614 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
615 buf, bulklen, use_sg, NULL);
616
617 if (result != USB_STOR_XFER_GOOD) {
618 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
619 result);
620 return -EIO;
621 }
622 return 0;
623}
624
625/* erase address, write same address */
626static int
627sddr09_write_inplace(struct us_data *us, unsigned long address,
628 int nr_of_pages, int pageshift, unsigned char *buf,
629 int use_sg) {
630 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
631 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
632 buf, use_sg);
633}
634
635#if 0
636/*
637 * Read Scatter Gather Command: 3+4n bytes.
638 * byte 0: opcode E7
639 * byte 2: n
640 * bytes 4i-1,4i,4i+1: page address
641 * byte 4i+2: page count
642 * (i=1..n)
643 *
644 * This reads several pages from the card to a single memory buffer.
645 * The last two bits of byte 1 have the same meaning as for E8.
646 */
647static int
648sddr09_read_sg_test_only(struct us_data *us) {
649 unsigned char *command = us->iobuf;
650 int result, bulklen, nsg, ct;
651 unsigned char *buf;
652 unsigned long address;
653
654 nsg = bulklen = 0;
655 command[0] = 0xE7;
656 command[1] = LUNBITS;
657 command[2] = 0;
658 address = 040000; ct = 1;
659 nsg++;
660 bulklen += (ct << 9);
661 command[4*nsg+2] = ct;
662 command[4*nsg+1] = ((address >> 9) & 0xFF);
663 command[4*nsg+0] = ((address >> 17) & 0xFF);
664 command[4*nsg-1] = ((address >> 25) & 0xFF);
665
666 address = 0340000; ct = 1;
667 nsg++;
668 bulklen += (ct << 9);
669 command[4*nsg+2] = ct;
670 command[4*nsg+1] = ((address >> 9) & 0xFF);
671 command[4*nsg+0] = ((address >> 17) & 0xFF);
672 command[4*nsg-1] = ((address >> 25) & 0xFF);
673
674 address = 01000000; ct = 2;
675 nsg++;
676 bulklen += (ct << 9);
677 command[4*nsg+2] = ct;
678 command[4*nsg+1] = ((address >> 9) & 0xFF);
679 command[4*nsg+0] = ((address >> 17) & 0xFF);
680 command[4*nsg-1] = ((address >> 25) & 0xFF);
681
682 command[2] = nsg;
683
684 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
685
686 if (result) {
687 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
688 result);
689 return result;
690 }
691
692 buf = kmalloc(bulklen, GFP_NOIO);
693 if (!buf)
694 return -ENOMEM;
695
696 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
697 buf, bulklen, NULL);
698 kfree(buf);
699 if (result != USB_STOR_XFER_GOOD) {
700 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
701 result);
702 return -EIO;
703 }
704
705 return 0;
706}
707#endif
708
709/*
710 * Read Status Command: 12 bytes.
711 * byte 0: opcode: EC
712 *
713 * Returns 64 bytes, all zero except for the first.
714 * bit 0: 1: Error
715 * bit 5: 1: Suspended
716 * bit 6: 1: Ready
717 * bit 7: 1: Not write-protected
718 */
719
720static int
721sddr09_read_status(struct us_data *us, unsigned char *status) {
722
723 unsigned char *command = us->iobuf;
724 unsigned char *data = us->iobuf;
725 int result;
726
727 usb_stor_dbg(us, "Reading status...\n");
728
729 memset(command, 0, 12);
730 command[0] = 0xEC;
731 command[1] = LUNBITS;
732
733 result = sddr09_send_scsi_command(us, command, 12);
734 if (result)
735 return result;
736
737 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
738 data, 64, NULL);
739 *status = data[0];
740 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
741}
742
743static int
744sddr09_read_data(struct us_data *us,
745 unsigned long address,
746 unsigned int sectors) {
747
748 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
749 unsigned char *buffer;
750 unsigned int lba, maxlba, pba;
751 unsigned int page, pages;
752 unsigned int len, offset;
753 struct scatterlist *sg;
754 int result;
755
756 // Figure out the initial LBA and page
757 lba = address >> info->blockshift;
758 page = (address & info->blockmask);
759 maxlba = info->capacity >> (info->pageshift + info->blockshift);
760 if (lba >= maxlba)
761 return -EIO;
762
763 // Since we only read in one block at a time, we have to create
764 // a bounce buffer and move the data a piece at a time between the
765 // bounce buffer and the actual transfer buffer.
766
767 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
768 buffer = kmalloc(len, GFP_NOIO);
769 if (!buffer)
770 return -ENOMEM;
771
772 // This could be made much more efficient by checking for
773 // contiguous LBA's. Another exercise left to the student.
774
775 result = 0;
776 offset = 0;
777 sg = NULL;
778
779 while (sectors > 0) {
780
781 /* Find number of pages we can read in this block */
782 pages = min(sectors, info->blocksize - page);
783 len = pages << info->pageshift;
784
785 /* Not overflowing capacity? */
786 if (lba >= maxlba) {
787 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
788 lba, maxlba);
789 result = -EIO;
790 break;
791 }
792
793 /* Find where this lba lives on disk */
794 pba = info->lba_to_pba[lba];
795
796 if (pba == UNDEF) { /* this lba was never written */
797
798 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
799 pages, lba, page);
800
801 /*
802 * This is not really an error. It just means
803 * that the block has never been written.
804 * Instead of returning an error
805 * it is better to return all zero data.
806 */
807
808 memset(buffer, 0, len);
809
810 } else {
811 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
812 pages, pba, lba, page);
813
814 address = ((pba << info->blockshift) + page) <<
815 info->pageshift;
816
817 result = sddr09_read20(us, address>>1,
818 pages, info->pageshift, buffer, 0);
819 if (result)
820 break;
821 }
822
823 // Store the data in the transfer buffer
824 usb_stor_access_xfer_buf(buffer, len, us->srb,
825 &sg, &offset, TO_XFER_BUF);
826
827 page = 0;
828 lba++;
829 sectors -= pages;
830 }
831
832 kfree(buffer);
833 return result;
834}
835
836static unsigned int
837sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
838 static unsigned int lastpba = 1;
839 int zonestart, end, i;
840
841 zonestart = (lba/1000) << 10;
842 end = info->capacity >> (info->blockshift + info->pageshift);
843 end -= zonestart;
844 if (end > 1024)
845 end = 1024;
846
847 for (i = lastpba+1; i < end; i++) {
848 if (info->pba_to_lba[zonestart+i] == UNDEF) {
849 lastpba = i;
850 return zonestart+i;
851 }
852 }
853 for (i = 0; i <= lastpba; i++) {
854 if (info->pba_to_lba[zonestart+i] == UNDEF) {
855 lastpba = i;
856 return zonestart+i;
857 }
858 }
859 return 0;
860}
861
862static int
863sddr09_write_lba(struct us_data *us, unsigned int lba,
864 unsigned int page, unsigned int pages,
865 unsigned char *ptr, unsigned char *blockbuffer) {
866
867 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
868 unsigned long address;
869 unsigned int pba, lbap;
870 unsigned int pagelen;
871 unsigned char *bptr, *cptr, *xptr;
872 unsigned char ecc[3];
873 int i, result, isnew;
874
875 lbap = ((lba % 1000) << 1) | 0x1000;
876 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
877 lbap ^= 1;
878 pba = info->lba_to_pba[lba];
879 isnew = 0;
880
881 if (pba == UNDEF) {
882 pba = sddr09_find_unused_pba(info, lba);
883 if (!pba) {
884 printk(KERN_WARNING
885 "sddr09_write_lba: Out of unused blocks\n");
886 return -ENOSPC;
887 }
888 info->pba_to_lba[pba] = lba;
889 info->lba_to_pba[lba] = pba;
890 isnew = 1;
891 }
892
893 if (pba == 1) {
894 /*
895 * Maybe it is impossible to write to PBA 1.
896 * Fake success, but don't do anything.
897 */
898 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
899 return 0;
900 }
901
902 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
903
904 /* read old contents */
905 address = (pba << (info->pageshift + info->blockshift));
906 result = sddr09_read22(us, address>>1, info->blocksize,
907 info->pageshift, blockbuffer, 0);
908 if (result)
909 return result;
910
911 /* check old contents and fill lba */
912 for (i = 0; i < info->blocksize; i++) {
913 bptr = blockbuffer + i*pagelen;
914 cptr = bptr + info->pagesize;
915 nand_compute_ecc(bptr, ecc);
916 if (!nand_compare_ecc(cptr+13, ecc)) {
917 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
918 i, pba);
919 nand_store_ecc(cptr+13, ecc);
920 }
921 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
922 if (!nand_compare_ecc(cptr+8, ecc)) {
923 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
924 i, pba);
925 nand_store_ecc(cptr+8, ecc);
926 }
927 cptr[6] = cptr[11] = MSB_of(lbap);
928 cptr[7] = cptr[12] = LSB_of(lbap);
929 }
930
931 /* copy in new stuff and compute ECC */
932 xptr = ptr;
933 for (i = page; i < page+pages; i++) {
934 bptr = blockbuffer + i*pagelen;
935 cptr = bptr + info->pagesize;
936 memcpy(bptr, xptr, info->pagesize);
937 xptr += info->pagesize;
938 nand_compute_ecc(bptr, ecc);
939 nand_store_ecc(cptr+13, ecc);
940 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
941 nand_store_ecc(cptr+8, ecc);
942 }
943
944 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
945
946 result = sddr09_write_inplace(us, address>>1, info->blocksize,
947 info->pageshift, blockbuffer, 0);
948
949 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
950
951#if 0
952 {
953 unsigned char status = 0;
954 int result2 = sddr09_read_status(us, &status);
955 if (result2)
956 usb_stor_dbg(us, "cannot read status\n");
957 else if (status != 0xc0)
958 usb_stor_dbg(us, "status after write: 0x%x\n", status);
959 }
960#endif
961
962#if 0
963 {
964 int result2 = sddr09_test_unit_ready(us);
965 }
966#endif
967
968 return result;
969}
970
971static int
972sddr09_write_data(struct us_data *us,
973 unsigned long address,
974 unsigned int sectors) {
975
976 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
977 unsigned int lba, maxlba, page, pages;
978 unsigned int pagelen, blocklen;
979 unsigned char *blockbuffer;
980 unsigned char *buffer;
981 unsigned int len, offset;
982 struct scatterlist *sg;
983 int result;
984
985 /* Figure out the initial LBA and page */
986 lba = address >> info->blockshift;
987 page = (address & info->blockmask);
988 maxlba = info->capacity >> (info->pageshift + info->blockshift);
989 if (lba >= maxlba)
990 return -EIO;
991
992 /*
993 * blockbuffer is used for reading in the old data, overwriting
994 * with the new data, and performing ECC calculations
995 */
996
997 /*
998 * TODO: instead of doing kmalloc/kfree for each write,
999 * add a bufferpointer to the info structure
1000 */
1001
1002 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1003 blocklen = (pagelen << info->blockshift);
1004 blockbuffer = kmalloc(blocklen, GFP_NOIO);
1005 if (!blockbuffer)
1006 return -ENOMEM;
1007
1008 /*
1009 * Since we don't write the user data directly to the device,
1010 * we have to create a bounce buffer and move the data a piece
1011 * at a time between the bounce buffer and the actual transfer buffer.
1012 */
1013
1014 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1015 buffer = kmalloc(len, GFP_NOIO);
1016 if (!buffer) {
1017 kfree(blockbuffer);
1018 return -ENOMEM;
1019 }
1020
1021 result = 0;
1022 offset = 0;
1023 sg = NULL;
1024
1025 while (sectors > 0) {
1026
1027 /* Write as many sectors as possible in this block */
1028
1029 pages = min(sectors, info->blocksize - page);
1030 len = (pages << info->pageshift);
1031
1032 /* Not overflowing capacity? */
1033 if (lba >= maxlba) {
1034 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1035 lba, maxlba);
1036 result = -EIO;
1037 break;
1038 }
1039
1040 /* Get the data from the transfer buffer */
1041 usb_stor_access_xfer_buf(buffer, len, us->srb,
1042 &sg, &offset, FROM_XFER_BUF);
1043
1044 result = sddr09_write_lba(us, lba, page, pages,
1045 buffer, blockbuffer);
1046 if (result)
1047 break;
1048
1049 page = 0;
1050 lba++;
1051 sectors -= pages;
1052 }
1053
1054 kfree(buffer);
1055 kfree(blockbuffer);
1056
1057 return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062 unsigned long address,
1063 unsigned int blocks,
1064 unsigned char *content,
1065 int use_sg) {
1066
1067 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1068 address, blocks);
1069
1070 return sddr09_read21(us, address, blocks,
1071 CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086 unsigned char *command = us->iobuf;
1087 unsigned char *content = us->iobuf;
1088 int result, i;
1089
1090 memset(command, 0, 12);
1091 command[0] = 0xED;
1092 command[1] = LUNBITS;
1093
1094 result = sddr09_send_scsi_command(us, command, 12);
1095 if (result)
1096 return result;
1097
1098 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099 content, 64, NULL);
1100
1101 for (i = 0; i < 4; i++)
1102 deviceID[i] = content[i];
1103
1104 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109 int result;
1110 unsigned char status;
1111 const char *wp_fmt;
1112
1113 result = sddr09_read_status(us, &status);
1114 if (result) {
1115 usb_stor_dbg(us, "read_status fails\n");
1116 return result;
1117 }
1118 if ((status & 0x80) == 0) {
1119 info->flags |= SDDR09_WP; /* write protected */
1120 wp_fmt = " WP";
1121 } else {
1122 wp_fmt = "";
1123 }
1124 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1125 status & 0x40 ? " Ready" : "",
1126 status & LUNBITS ? " Suspended" : "",
1127 status & 0x01 ? " Error" : "");
1128
1129 return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140 unsigned char *command = us->iobuf;
1141
1142 memset(command, 0, 12);
1143 command[0] = 0xEB;
1144 command[1] = LUNBITS;
1145
1146 return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152 struct nand_flash_dev *cardinfo;
1153 unsigned char deviceID[4];
1154 char blurbtxt[256];
1155 int result;
1156
1157 usb_stor_dbg(us, "Reading capacity...\n");
1158
1159 result = sddr09_read_deviceID(us, deviceID);
1160
1161 if (result) {
1162 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1163 printk(KERN_WARNING "sddr09: could not read card info\n");
1164 return NULL;
1165 }
1166
1167 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1168
1169 /* Byte 0 is the manufacturer */
1170 sprintf(blurbtxt + strlen(blurbtxt),
1171 ": Manuf. %s",
1172 nand_flash_manufacturer(deviceID[0]));
1173
1174 /* Byte 1 is the device type */
1175 cardinfo = nand_find_id(deviceID[1]);
1176 if (cardinfo) {
1177 /*
1178 * MB or MiB? It is neither. A 16 MB card has
1179 * 17301504 raw bytes, of which 16384000 are
1180 * usable for user data.
1181 */
1182 sprintf(blurbtxt + strlen(blurbtxt),
1183 ", %d MB", 1<<(cardinfo->chipshift - 20));
1184 } else {
1185 sprintf(blurbtxt + strlen(blurbtxt),
1186 ", type unrecognized");
1187 }
1188
1189 /* Byte 2 is code to signal availability of 128-bit ID */
1190 if (deviceID[2] == 0xa5) {
1191 sprintf(blurbtxt + strlen(blurbtxt),
1192 ", 128-bit ID");
1193 }
1194
1195 /* Byte 3 announces the availability of another read ID command */
1196 if (deviceID[3] == 0xc0) {
1197 sprintf(blurbtxt + strlen(blurbtxt),
1198 ", extra cmd");
1199 }
1200
1201 if (flags & SDDR09_WP)
1202 sprintf(blurbtxt + strlen(blurbtxt),
1203 ", WP");
1204
1205 printk(KERN_WARNING "%s\n", blurbtxt);
1206
1207 return cardinfo;
1208}
1209
1210static int
1211sddr09_read_map(struct us_data *us) {
1212
1213 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1214 int numblocks, alloc_len, alloc_blocks;
1215 int i, j, result;
1216 unsigned char *buffer, *buffer_end, *ptr;
1217 unsigned int lba, lbact;
1218
1219 if (!info->capacity)
1220 return -1;
1221
1222 /*
1223 * size of a block is 1 << (blockshift + pageshift) bytes
1224 * divide into the total capacity to get the number of blocks
1225 */
1226
1227 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1228
1229 /*
1230 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1231 * but only use a 64 KB buffer
1232 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1233 */
1234#define SDDR09_READ_MAP_BUFSZ 65536
1235
1236 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1237 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1238 buffer = kmalloc(alloc_len, GFP_NOIO);
1239 if (!buffer) {
1240 result = -1;
1241 goto done;
1242 }
1243 buffer_end = buffer + alloc_len;
1244
1245#undef SDDR09_READ_MAP_BUFSZ
1246
1247 kfree(info->lba_to_pba);
1248 kfree(info->pba_to_lba);
1249 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1250 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1251
1252 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1253 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1254 result = -1;
1255 goto done;
1256 }
1257
1258 for (i = 0; i < numblocks; i++)
1259 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1260
1261 /*
1262 * Define lba-pba translation table
1263 */
1264
1265 ptr = buffer_end;
1266 for (i = 0; i < numblocks; i++) {
1267 ptr += (1 << CONTROL_SHIFT);
1268 if (ptr >= buffer_end) {
1269 unsigned long address;
1270
1271 address = i << (info->pageshift + info->blockshift);
1272 result = sddr09_read_control(
1273 us, address>>1,
1274 min(alloc_blocks, numblocks - i),
1275 buffer, 0);
1276 if (result) {
1277 result = -1;
1278 goto done;
1279 }
1280 ptr = buffer;
1281 }
1282
1283 if (i == 0 || i == 1) {
1284 info->pba_to_lba[i] = UNUSABLE;
1285 continue;
1286 }
1287
1288 /* special PBAs have control field 0^16 */
1289 for (j = 0; j < 16; j++)
1290 if (ptr[j] != 0)
1291 goto nonz;
1292 info->pba_to_lba[i] = UNUSABLE;
1293 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1294 i);
1295 continue;
1296
1297 nonz:
1298 /* unwritten PBAs have control field FF^16 */
1299 for (j = 0; j < 16; j++)
1300 if (ptr[j] != 0xff)
1301 goto nonff;
1302 continue;
1303
1304 nonff:
1305 /* normal PBAs start with six FFs */
1306 if (j < 6) {
1307 printk(KERN_WARNING
1308 "sddr09: PBA %d has no logical mapping: "
1309 "reserved area = %02X%02X%02X%02X "
1310 "data status %02X block status %02X\n",
1311 i, ptr[0], ptr[1], ptr[2], ptr[3],
1312 ptr[4], ptr[5]);
1313 info->pba_to_lba[i] = UNUSABLE;
1314 continue;
1315 }
1316
1317 if ((ptr[6] >> 4) != 0x01) {
1318 printk(KERN_WARNING
1319 "sddr09: PBA %d has invalid address field "
1320 "%02X%02X/%02X%02X\n",
1321 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1322 info->pba_to_lba[i] = UNUSABLE;
1323 continue;
1324 }
1325
1326 /* check even parity */
1327 if (parity[ptr[6] ^ ptr[7]]) {
1328 printk(KERN_WARNING
1329 "sddr09: Bad parity in LBA for block %d"
1330 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1331 info->pba_to_lba[i] = UNUSABLE;
1332 continue;
1333 }
1334
1335 lba = short_pack(ptr[7], ptr[6]);
1336 lba = (lba & 0x07FF) >> 1;
1337
1338 /*
1339 * Every 1024 physical blocks ("zone"), the LBA numbers
1340 * go back to zero, but are within a higher block of LBA's.
1341 * Also, there is a maximum of 1000 LBA's per zone.
1342 * In other words, in PBA 1024-2047 you will find LBA 0-999
1343 * which are really LBA 1000-1999. This allows for 24 bad
1344 * or special physical blocks per zone.
1345 */
1346
1347 if (lba >= 1000) {
1348 printk(KERN_WARNING
1349 "sddr09: Bad low LBA %d for block %d\n",
1350 lba, i);
1351 goto possibly_erase;
1352 }
1353
1354 lba += 1000*(i/0x400);
1355
1356 if (info->lba_to_pba[lba] != UNDEF) {
1357 printk(KERN_WARNING
1358 "sddr09: LBA %d seen for PBA %d and %d\n",
1359 lba, info->lba_to_pba[lba], i);
1360 goto possibly_erase;
1361 }
1362
1363 info->pba_to_lba[i] = lba;
1364 info->lba_to_pba[lba] = i;
1365 continue;
1366
1367 possibly_erase:
1368 if (erase_bad_lba_entries) {
1369 unsigned long address;
1370
1371 address = (i << (info->pageshift + info->blockshift));
1372 sddr09_erase(us, address>>1);
1373 info->pba_to_lba[i] = UNDEF;
1374 } else
1375 info->pba_to_lba[i] = UNUSABLE;
1376 }
1377
1378 /*
1379 * Approximate capacity. This is not entirely correct yet,
1380 * since a zone with less than 1000 usable pages leads to
1381 * missing LBAs. Especially if it is the last zone, some
1382 * LBAs can be past capacity.
1383 */
1384 lbact = 0;
1385 for (i = 0; i < numblocks; i += 1024) {
1386 int ct = 0;
1387
1388 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1389 if (info->pba_to_lba[i+j] != UNUSABLE) {
1390 if (ct >= 1000)
1391 info->pba_to_lba[i+j] = SPARE;
1392 else
1393 ct++;
1394 }
1395 }
1396 lbact += ct;
1397 }
1398 info->lbact = lbact;
1399 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1400 result = 0;
1401
1402 done:
1403 if (result != 0) {
1404 kfree(info->lba_to_pba);
1405 kfree(info->pba_to_lba);
1406 info->lba_to_pba = NULL;
1407 info->pba_to_lba = NULL;
1408 }
1409 kfree(buffer);
1410 return result;
1411}
1412
1413static void
1414sddr09_card_info_destructor(void *extra) {
1415 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1416
1417 if (!info)
1418 return;
1419
1420 kfree(info->lba_to_pba);
1421 kfree(info->pba_to_lba);
1422}
1423
1424static int
1425sddr09_common_init(struct us_data *us) {
1426 int result;
1427
1428 /* set the configuration -- STALL is an acceptable response here */
1429 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1430 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1431 us->pusb_dev->actconfig->desc.bConfigurationValue);
1432 return -EINVAL;
1433 }
1434
1435 result = usb_reset_configuration(us->pusb_dev);
1436 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1437 if (result == -EPIPE) {
1438 usb_stor_dbg(us, "-- stall on control interface\n");
1439 } else if (result != 0) {
1440 /* it's not a stall, but another error -- time to bail */
1441 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1442 return -EINVAL;
1443 }
1444
1445 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1446 if (!us->extra)
1447 return -ENOMEM;
1448 us->extra_destructor = sddr09_card_info_destructor;
1449
1450 nand_init_ecc();
1451 return 0;
1452}
1453
1454
1455/*
1456 * This is needed at a very early stage. If this is not listed in the
1457 * unusual devices list but called from here then LUN 0 of the combo reader
1458 * is not recognized. But I do not know what precisely these calls do.
1459 */
1460static int
1461usb_stor_sddr09_dpcm_init(struct us_data *us) {
1462 int result;
1463 unsigned char *data = us->iobuf;
1464
1465 result = sddr09_common_init(us);
1466 if (result)
1467 return result;
1468
1469 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1470 if (result) {
1471 usb_stor_dbg(us, "send_command fails\n");
1472 return result;
1473 }
1474
1475 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1476 // get 07 02
1477
1478 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1479 if (result) {
1480 usb_stor_dbg(us, "2nd send_command fails\n");
1481 return result;
1482 }
1483
1484 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1485 // get 07 00
1486
1487 result = sddr09_request_sense(us, data, 18);
1488 if (result == 0 && data[2] != 0) {
1489 int j;
1490 for (j=0; j<18; j++)
1491 printk(" %02X", data[j]);
1492 printk("\n");
1493 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1494 // 70: current command
1495 // sense key 0, sense code 0, extd sense code 0
1496 // additional transfer length * = sizeof(data) - 7
1497 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1498 // sense key 06, sense code 28: unit attention,
1499 // not ready to ready transition
1500 }
1501
1502 // test unit ready
1503
1504 return 0; /* not result */
1505}
1506
1507/*
1508 * Transport for the Microtech DPCM-USB
1509 */
1510static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1511{
1512 int ret;
1513
1514 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1515
1516 switch (srb->device->lun) {
1517 case 0:
1518
1519 /*
1520 * LUN 0 corresponds to the CompactFlash card reader.
1521 */
1522 ret = usb_stor_CB_transport(srb, us);
1523 break;
1524
1525 case 1:
1526
1527 /*
1528 * LUN 1 corresponds to the SmartMedia card reader.
1529 */
1530
1531 /*
1532 * Set the LUN to 0 (just in case).
1533 */
1534 srb->device->lun = 0;
1535 ret = sddr09_transport(srb, us);
1536 srb->device->lun = 1;
1537 break;
1538
1539 default:
1540 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1541 ret = USB_STOR_TRANSPORT_ERROR;
1542 break;
1543 }
1544 return ret;
1545}
1546
1547
1548/*
1549 * Transport for the Sandisk SDDR-09
1550 */
1551static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1552{
1553 static unsigned char sensekey = 0, sensecode = 0;
1554 static unsigned char havefakesense = 0;
1555 int result, i;
1556 unsigned char *ptr = us->iobuf;
1557 unsigned long capacity;
1558 unsigned int page, pages;
1559
1560 struct sddr09_card_info *info;
1561
1562 static unsigned char inquiry_response[8] = {
1563 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1564 };
1565
1566 /* note: no block descriptor support */
1567 static unsigned char mode_page_01[19] = {
1568 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1569 0x01, 0x0A,
1570 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1571 };
1572
1573 info = (struct sddr09_card_info *)us->extra;
1574
1575 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1576 /* for a faked command, we have to follow with a faked sense */
1577 memset(ptr, 0, 18);
1578 ptr[0] = 0x70;
1579 ptr[2] = sensekey;
1580 ptr[7] = 11;
1581 ptr[12] = sensecode;
1582 usb_stor_set_xfer_buf(ptr, 18, srb);
1583 sensekey = sensecode = havefakesense = 0;
1584 return USB_STOR_TRANSPORT_GOOD;
1585 }
1586
1587 havefakesense = 1;
1588
1589 /*
1590 * Dummy up a response for INQUIRY since SDDR09 doesn't
1591 * respond to INQUIRY commands
1592 */
1593
1594 if (srb->cmnd[0] == INQUIRY) {
1595 memcpy(ptr, inquiry_response, 8);
1596 fill_inquiry_response(us, ptr, 36);
1597 return USB_STOR_TRANSPORT_GOOD;
1598 }
1599
1600 if (srb->cmnd[0] == READ_CAPACITY) {
1601 struct nand_flash_dev *cardinfo;
1602
1603 sddr09_get_wp(us, info); /* read WP bit */
1604
1605 cardinfo = sddr09_get_cardinfo(us, info->flags);
1606 if (!cardinfo) {
1607 /* probably no media */
1608 init_error:
1609 sensekey = 0x02; /* not ready */
1610 sensecode = 0x3a; /* medium not present */
1611 return USB_STOR_TRANSPORT_FAILED;
1612 }
1613
1614 info->capacity = (1 << cardinfo->chipshift);
1615 info->pageshift = cardinfo->pageshift;
1616 info->pagesize = (1 << info->pageshift);
1617 info->blockshift = cardinfo->blockshift;
1618 info->blocksize = (1 << info->blockshift);
1619 info->blockmask = info->blocksize - 1;
1620
1621 // map initialization, must follow get_cardinfo()
1622 if (sddr09_read_map(us)) {
1623 /* probably out of memory */
1624 goto init_error;
1625 }
1626
1627 // Report capacity
1628
1629 capacity = (info->lbact << info->blockshift) - 1;
1630
1631 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1632
1633 // Report page size
1634
1635 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1636 usb_stor_set_xfer_buf(ptr, 8, srb);
1637
1638 return USB_STOR_TRANSPORT_GOOD;
1639 }
1640
1641 if (srb->cmnd[0] == MODE_SENSE_10) {
1642 int modepage = (srb->cmnd[2] & 0x3F);
1643
1644 /*
1645 * They ask for the Read/Write error recovery page,
1646 * or for all pages.
1647 */
1648 /* %% We should check DBD %% */
1649 if (modepage == 0x01 || modepage == 0x3F) {
1650 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1651 modepage);
1652
1653 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1654 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1655 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1656 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1657 return USB_STOR_TRANSPORT_GOOD;
1658 }
1659
1660 sensekey = 0x05; /* illegal request */
1661 sensecode = 0x24; /* invalid field in CDB */
1662 return USB_STOR_TRANSPORT_FAILED;
1663 }
1664
1665 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1666 return USB_STOR_TRANSPORT_GOOD;
1667
1668 havefakesense = 0;
1669
1670 if (srb->cmnd[0] == READ_10) {
1671
1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673 page <<= 16;
1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1678 page, pages);
1679
1680 result = sddr09_read_data(us, page, pages);
1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682 USB_STOR_TRANSPORT_ERROR);
1683 }
1684
1685 if (srb->cmnd[0] == WRITE_10) {
1686
1687 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1688 page <<= 16;
1689 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1690 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1691
1692 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1693 page, pages);
1694
1695 result = sddr09_write_data(us, page, pages);
1696 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1697 USB_STOR_TRANSPORT_ERROR);
1698 }
1699
1700 /*
1701 * catch-all for all other commands, except
1702 * pass TEST_UNIT_READY and REQUEST_SENSE through
1703 */
1704 if (srb->cmnd[0] != TEST_UNIT_READY &&
1705 srb->cmnd[0] != REQUEST_SENSE) {
1706 sensekey = 0x05; /* illegal request */
1707 sensecode = 0x20; /* invalid command */
1708 havefakesense = 1;
1709 return USB_STOR_TRANSPORT_FAILED;
1710 }
1711
1712 for (; srb->cmd_len<12; srb->cmd_len++)
1713 srb->cmnd[srb->cmd_len] = 0;
1714
1715 srb->cmnd[1] = LUNBITS;
1716
1717 ptr[0] = 0;
1718 for (i=0; i<12; i++)
1719 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1720
1721 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1722
1723 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1724 if (result) {
1725 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1726 result);
1727 return USB_STOR_TRANSPORT_ERROR;
1728 }
1729
1730 if (scsi_bufflen(srb) == 0)
1731 return USB_STOR_TRANSPORT_GOOD;
1732
1733 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1734 srb->sc_data_direction == DMA_FROM_DEVICE) {
1735 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1736 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1737
1738 usb_stor_dbg(us, "%s %d bytes\n",
1739 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1740 "sending" : "receiving",
1741 scsi_bufflen(srb));
1742
1743 result = usb_stor_bulk_srb(us, pipe, srb);
1744
1745 return (result == USB_STOR_XFER_GOOD ?
1746 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1747 }
1748
1749 return USB_STOR_TRANSPORT_GOOD;
1750}
1751
1752/*
1753 * Initialization routine for the sddr09 subdriver
1754 */
1755static int
1756usb_stor_sddr09_init(struct us_data *us) {
1757 return sddr09_common_init(us);
1758}
1759
1760static struct scsi_host_template sddr09_host_template;
1761
1762static int sddr09_probe(struct usb_interface *intf,
1763 const struct usb_device_id *id)
1764{
1765 struct us_data *us;
1766 int result;
1767
1768 result = usb_stor_probe1(&us, intf, id,
1769 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1770 &sddr09_host_template);
1771 if (result)
1772 return result;
1773
1774 if (us->protocol == USB_PR_DPCM_USB) {
1775 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1776 us->transport = dpcm_transport;
1777 us->transport_reset = usb_stor_CB_reset;
1778 us->max_lun = 1;
1779 } else {
1780 us->transport_name = "EUSB/SDDR09";
1781 us->transport = sddr09_transport;
1782 us->transport_reset = usb_stor_CB_reset;
1783 us->max_lun = 0;
1784 }
1785
1786 result = usb_stor_probe2(us);
1787 return result;
1788}
1789
1790static struct usb_driver sddr09_driver = {
1791 .name = DRV_NAME,
1792 .probe = sddr09_probe,
1793 .disconnect = usb_stor_disconnect,
1794 .suspend = usb_stor_suspend,
1795 .resume = usb_stor_resume,
1796 .reset_resume = usb_stor_reset_resume,
1797 .pre_reset = usb_stor_pre_reset,
1798 .post_reset = usb_stor_post_reset,
1799 .id_table = sddr09_usb_ids,
1800 .soft_unbind = 1,
1801 .no_dynamic_id = 1,
1802};
1803
1804module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for SanDisk SDDR-09 SmartMedia reader
4 *
5 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
6 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
7 * Developed with the assistance of:
8 * (c) 2002 Alan Stern <stern@rowland.org>
9 *
10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
11 * This chip is a programmable USB controller. In the SDDR-09, it has
12 * been programmed to obey a certain limited set of SCSI commands.
13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
14 * commands.
15 */
16
17/*
18 * Known vendor commands: 12 bytes, first byte is opcode
19 *
20 * E7: read scatter gather
21 * E8: read
22 * E9: write
23 * EA: erase
24 * EB: reset
25 * EC: read status
26 * ED: read ID
27 * EE: write CIS (?)
28 * EF: compute checksum (?)
29 */
30
31#include <linux/errno.h>
32#include <linux/module.h>
33#include <linux/slab.h>
34
35#include <scsi/scsi.h>
36#include <scsi/scsi_cmnd.h>
37#include <scsi/scsi_device.h>
38
39#include "usb.h"
40#include "transport.h"
41#include "protocol.h"
42#include "debug.h"
43#include "scsiglue.h"
44
45#define DRV_NAME "ums-sddr09"
46
47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
49MODULE_LICENSE("GPL");
50
51static int usb_stor_sddr09_dpcm_init(struct us_data *us);
52static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
53static int usb_stor_sddr09_init(struct us_data *us);
54
55
56/*
57 * The table of devices
58 */
59#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
60 vendorName, productName, useProtocol, useTransport, \
61 initFunction, flags) \
62{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
63 .driver_info = (flags) }
64
65static struct usb_device_id sddr09_usb_ids[] = {
66# include "unusual_sddr09.h"
67 { } /* Terminating entry */
68};
69MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
70
71#undef UNUSUAL_DEV
72
73/*
74 * The flags table
75 */
76#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
77 vendor_name, product_name, use_protocol, use_transport, \
78 init_function, Flags) \
79{ \
80 .vendorName = vendor_name, \
81 .productName = product_name, \
82 .useProtocol = use_protocol, \
83 .useTransport = use_transport, \
84 .initFunction = init_function, \
85}
86
87static struct us_unusual_dev sddr09_unusual_dev_list[] = {
88# include "unusual_sddr09.h"
89 { } /* Terminating entry */
90};
91
92#undef UNUSUAL_DEV
93
94
95#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
96#define LSB_of(s) ((s)&0xFF)
97#define MSB_of(s) ((s)>>8)
98
99/*
100 * First some stuff that does not belong here:
101 * data on SmartMedia and other cards, completely
102 * unrelated to this driver.
103 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
104 */
105
106struct nand_flash_dev {
107 int model_id;
108 int chipshift; /* 1<<cs bytes total capacity */
109 char pageshift; /* 1<<ps bytes in a page */
110 char blockshift; /* 1<<bs pages in an erase block */
111 char zoneshift; /* 1<<zs blocks in a zone */
112 /* # of logical blocks is 125/128 of this */
113 char pageadrlen; /* length of an address in bytes - 1 */
114};
115
116/*
117 * NAND Flash Manufacturer ID Codes
118 */
119#define NAND_MFR_AMD 0x01
120#define NAND_MFR_NATSEMI 0x8f
121#define NAND_MFR_TOSHIBA 0x98
122#define NAND_MFR_SAMSUNG 0xec
123
124static inline char *nand_flash_manufacturer(int manuf_id) {
125 switch(manuf_id) {
126 case NAND_MFR_AMD:
127 return "AMD";
128 case NAND_MFR_NATSEMI:
129 return "NATSEMI";
130 case NAND_MFR_TOSHIBA:
131 return "Toshiba";
132 case NAND_MFR_SAMSUNG:
133 return "Samsung";
134 default:
135 return "unknown";
136 }
137}
138
139/*
140 * It looks like it is unnecessary to attach manufacturer to the
141 * remaining data: SSFDC prescribes manufacturer-independent id codes.
142 *
143 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
144 */
145
146static struct nand_flash_dev nand_flash_ids[] = {
147 /* NAND flash */
148 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
149 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
150 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
151 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
152 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
153 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
154 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
155 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
156 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
157 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
158 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
159 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
160 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
161
162 /* MASK ROM */
163 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
164 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
165 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
166 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
167 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
168 { 0,}
169};
170
171static struct nand_flash_dev *
172nand_find_id(unsigned char id) {
173 int i;
174
175 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
176 if (nand_flash_ids[i].model_id == id)
177 return &(nand_flash_ids[i]);
178 return NULL;
179}
180
181/*
182 * ECC computation.
183 */
184static unsigned char parity[256];
185static unsigned char ecc2[256];
186
187static void nand_init_ecc(void) {
188 int i, j, a;
189
190 parity[0] = 0;
191 for (i = 1; i < 256; i++)
192 parity[i] = (parity[i&(i-1)] ^ 1);
193
194 for (i = 0; i < 256; i++) {
195 a = 0;
196 for (j = 0; j < 8; j++) {
197 if (i & (1<<j)) {
198 if ((j & 1) == 0)
199 a ^= 0x04;
200 if ((j & 2) == 0)
201 a ^= 0x10;
202 if ((j & 4) == 0)
203 a ^= 0x40;
204 }
205 }
206 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
207 }
208}
209
210/* compute 3-byte ecc on 256 bytes */
211static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
212 int i, j, a;
213 unsigned char par = 0, bit, bits[8] = {0};
214
215 /* collect 16 checksum bits */
216 for (i = 0; i < 256; i++) {
217 par ^= data[i];
218 bit = parity[data[i]];
219 for (j = 0; j < 8; j++)
220 if ((i & (1<<j)) == 0)
221 bits[j] ^= bit;
222 }
223
224 /* put 4+4+4 = 12 bits in the ecc */
225 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
226 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
227
228 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
229 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
230
231 ecc[2] = ecc2[par];
232}
233
234static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
235 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
236}
237
238static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
239 memcpy(data, ecc, 3);
240}
241
242/*
243 * The actual driver starts here.
244 */
245
246struct sddr09_card_info {
247 unsigned long capacity; /* Size of card in bytes */
248 int pagesize; /* Size of page in bytes */
249 int pageshift; /* log2 of pagesize */
250 int blocksize; /* Size of block in pages */
251 int blockshift; /* log2 of blocksize */
252 int blockmask; /* 2^blockshift - 1 */
253 int *lba_to_pba; /* logical to physical map */
254 int *pba_to_lba; /* physical to logical map */
255 int lbact; /* number of available pages */
256 int flags;
257#define SDDR09_WP 1 /* write protected */
258};
259
260/*
261 * On my 16MB card, control blocks have size 64 (16 real control bytes,
262 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
263 * so the reader makes up the remaining 48. Don't know whether these numbers
264 * depend on the card. For now a constant.
265 */
266#define CONTROL_SHIFT 6
267
268/*
269 * On my Combo CF/SM reader, the SM reader has LUN 1.
270 * (and things fail with LUN 0).
271 * It seems LUN is irrelevant for others.
272 */
273#define LUN 1
274#define LUNBITS (LUN << 5)
275
276/*
277 * LBA and PBA are unsigned ints. Special values.
278 */
279#define UNDEF 0xffffffff
280#define SPARE 0xfffffffe
281#define UNUSABLE 0xfffffffd
282
283static const int erase_bad_lba_entries = 0;
284
285/* send vendor interface command (0x41) */
286/* called for requests 0, 1, 8 */
287static int
288sddr09_send_command(struct us_data *us,
289 unsigned char request,
290 unsigned char direction,
291 unsigned char *xfer_data,
292 unsigned int xfer_len) {
293 unsigned int pipe;
294 unsigned char requesttype = (0x41 | direction);
295 int rc;
296
297 // Get the receive or send control pipe number
298
299 if (direction == USB_DIR_IN)
300 pipe = us->recv_ctrl_pipe;
301 else
302 pipe = us->send_ctrl_pipe;
303
304 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
305 0, 0, xfer_data, xfer_len);
306 switch (rc) {
307 case USB_STOR_XFER_GOOD: return 0;
308 case USB_STOR_XFER_STALLED: return -EPIPE;
309 default: return -EIO;
310 }
311}
312
313static int
314sddr09_send_scsi_command(struct us_data *us,
315 unsigned char *command,
316 unsigned int command_len) {
317 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
318}
319
320#if 0
321/*
322 * Test Unit Ready Command: 12 bytes.
323 * byte 0: opcode: 00
324 */
325static int
326sddr09_test_unit_ready(struct us_data *us) {
327 unsigned char *command = us->iobuf;
328 int result;
329
330 memset(command, 0, 6);
331 command[1] = LUNBITS;
332
333 result = sddr09_send_scsi_command(us, command, 6);
334
335 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
336
337 return result;
338}
339#endif
340
341/*
342 * Request Sense Command: 12 bytes.
343 * byte 0: opcode: 03
344 * byte 4: data length
345 */
346static int
347sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
348 unsigned char *command = us->iobuf;
349 int result;
350
351 memset(command, 0, 12);
352 command[0] = 0x03;
353 command[1] = LUNBITS;
354 command[4] = buflen;
355
356 result = sddr09_send_scsi_command(us, command, 12);
357 if (result)
358 return result;
359
360 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
361 sensebuf, buflen, NULL);
362 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
363}
364
365/*
366 * Read Command: 12 bytes.
367 * byte 0: opcode: E8
368 * byte 1: last two bits: 00: read data, 01: read blockwise control,
369 * 10: read both, 11: read pagewise control.
370 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
371 * bytes 2-5: address (interpretation depends on byte 1, see below)
372 * bytes 10-11: count (idem)
373 *
374 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
375 * A read data command gets data in 512-byte pages.
376 * A read control command gets control in 64-byte chunks.
377 * A read both command gets data+control in 576-byte chunks.
378 *
379 * Blocks are groups of 32 pages, and read blockwise control jumps to the
380 * next block, while read pagewise control jumps to the next page after
381 * reading a group of 64 control bytes.
382 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
383 *
384 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
385 */
386
387static int
388sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
389 int nr_of_pages, int bulklen, unsigned char *buf,
390 int use_sg) {
391
392 unsigned char *command = us->iobuf;
393 int result;
394
395 command[0] = 0xE8;
396 command[1] = LUNBITS | x;
397 command[2] = MSB_of(fromaddress>>16);
398 command[3] = LSB_of(fromaddress>>16);
399 command[4] = MSB_of(fromaddress & 0xFFFF);
400 command[5] = LSB_of(fromaddress & 0xFFFF);
401 command[6] = 0;
402 command[7] = 0;
403 command[8] = 0;
404 command[9] = 0;
405 command[10] = MSB_of(nr_of_pages);
406 command[11] = LSB_of(nr_of_pages);
407
408 result = sddr09_send_scsi_command(us, command, 12);
409
410 if (result) {
411 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
412 x, result);
413 return result;
414 }
415
416 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
417 buf, bulklen, use_sg, NULL);
418
419 if (result != USB_STOR_XFER_GOOD) {
420 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
421 x, result);
422 return -EIO;
423 }
424 return 0;
425}
426
427/*
428 * Read Data
429 *
430 * fromaddress counts data shorts:
431 * increasing it by 256 shifts the bytestream by 512 bytes;
432 * the last 8 bits are ignored.
433 *
434 * nr_of_pages counts pages of size (1 << pageshift).
435 */
436static int
437sddr09_read20(struct us_data *us, unsigned long fromaddress,
438 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
439 int bulklen = nr_of_pages << pageshift;
440
441 /* The last 8 bits of fromaddress are ignored. */
442 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
443 buf, use_sg);
444}
445
446/*
447 * Read Blockwise Control
448 *
449 * fromaddress gives the starting position (as in read data;
450 * the last 8 bits are ignored); increasing it by 32*256 shifts
451 * the output stream by 64 bytes.
452 *
453 * count counts control groups of size (1 << controlshift).
454 * For me, controlshift = 6. Is this constant?
455 *
456 * After getting one control group, jump to the next block
457 * (fromaddress += 8192).
458 */
459static int
460sddr09_read21(struct us_data *us, unsigned long fromaddress,
461 int count, int controlshift, unsigned char *buf, int use_sg) {
462
463 int bulklen = (count << controlshift);
464 return sddr09_readX(us, 1, fromaddress, count, bulklen,
465 buf, use_sg);
466}
467
468/*
469 * Read both Data and Control
470 *
471 * fromaddress counts data shorts, ignoring control:
472 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
473 * the last 8 bits are ignored.
474 *
475 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
476 */
477static int
478sddr09_read22(struct us_data *us, unsigned long fromaddress,
479 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
480
481 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
482 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
483 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
484 buf, use_sg);
485}
486
487#if 0
488/*
489 * Read Pagewise Control
490 *
491 * fromaddress gives the starting position (as in read data;
492 * the last 8 bits are ignored); increasing it by 256 shifts
493 * the output stream by 64 bytes.
494 *
495 * count counts control groups of size (1 << controlshift).
496 * For me, controlshift = 6. Is this constant?
497 *
498 * After getting one control group, jump to the next page
499 * (fromaddress += 256).
500 */
501static int
502sddr09_read23(struct us_data *us, unsigned long fromaddress,
503 int count, int controlshift, unsigned char *buf, int use_sg) {
504
505 int bulklen = (count << controlshift);
506 return sddr09_readX(us, 3, fromaddress, count, bulklen,
507 buf, use_sg);
508}
509#endif
510
511/*
512 * Erase Command: 12 bytes.
513 * byte 0: opcode: EA
514 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
515 *
516 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
517 * The byte address being erased is 2*Eaddress.
518 * The CIS cannot be erased.
519 */
520static int
521sddr09_erase(struct us_data *us, unsigned long Eaddress) {
522 unsigned char *command = us->iobuf;
523 int result;
524
525 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
526
527 memset(command, 0, 12);
528 command[0] = 0xEA;
529 command[1] = LUNBITS;
530 command[6] = MSB_of(Eaddress>>16);
531 command[7] = LSB_of(Eaddress>>16);
532 command[8] = MSB_of(Eaddress & 0xFFFF);
533 command[9] = LSB_of(Eaddress & 0xFFFF);
534
535 result = sddr09_send_scsi_command(us, command, 12);
536
537 if (result)
538 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
539 result);
540
541 return result;
542}
543
544/*
545 * Write CIS Command: 12 bytes.
546 * byte 0: opcode: EE
547 * bytes 2-5: write address in shorts
548 * bytes 10-11: sector count
549 *
550 * This writes at the indicated address. Don't know how it differs
551 * from E9. Maybe it does not erase? However, it will also write to
552 * the CIS.
553 *
554 * When two such commands on the same page follow each other directly,
555 * the second one is not done.
556 */
557
558/*
559 * Write Command: 12 bytes.
560 * byte 0: opcode: E9
561 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
562 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
563 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
564 *
565 * If write address equals erase address, the erase is done first,
566 * otherwise the write is done first. When erase address equals zero
567 * no erase is done?
568 */
569static int
570sddr09_writeX(struct us_data *us,
571 unsigned long Waddress, unsigned long Eaddress,
572 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
573
574 unsigned char *command = us->iobuf;
575 int result;
576
577 command[0] = 0xE9;
578 command[1] = LUNBITS;
579
580 command[2] = MSB_of(Waddress>>16);
581 command[3] = LSB_of(Waddress>>16);
582 command[4] = MSB_of(Waddress & 0xFFFF);
583 command[5] = LSB_of(Waddress & 0xFFFF);
584
585 command[6] = MSB_of(Eaddress>>16);
586 command[7] = LSB_of(Eaddress>>16);
587 command[8] = MSB_of(Eaddress & 0xFFFF);
588 command[9] = LSB_of(Eaddress & 0xFFFF);
589
590 command[10] = MSB_of(nr_of_pages);
591 command[11] = LSB_of(nr_of_pages);
592
593 result = sddr09_send_scsi_command(us, command, 12);
594
595 if (result) {
596 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
597 result);
598 return result;
599 }
600
601 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
602 buf, bulklen, use_sg, NULL);
603
604 if (result != USB_STOR_XFER_GOOD) {
605 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
606 result);
607 return -EIO;
608 }
609 return 0;
610}
611
612/* erase address, write same address */
613static int
614sddr09_write_inplace(struct us_data *us, unsigned long address,
615 int nr_of_pages, int pageshift, unsigned char *buf,
616 int use_sg) {
617 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
618 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
619 buf, use_sg);
620}
621
622#if 0
623/*
624 * Read Scatter Gather Command: 3+4n bytes.
625 * byte 0: opcode E7
626 * byte 2: n
627 * bytes 4i-1,4i,4i+1: page address
628 * byte 4i+2: page count
629 * (i=1..n)
630 *
631 * This reads several pages from the card to a single memory buffer.
632 * The last two bits of byte 1 have the same meaning as for E8.
633 */
634static int
635sddr09_read_sg_test_only(struct us_data *us) {
636 unsigned char *command = us->iobuf;
637 int result, bulklen, nsg, ct;
638 unsigned char *buf;
639 unsigned long address;
640
641 nsg = bulklen = 0;
642 command[0] = 0xE7;
643 command[1] = LUNBITS;
644 command[2] = 0;
645 address = 040000; ct = 1;
646 nsg++;
647 bulklen += (ct << 9);
648 command[4*nsg+2] = ct;
649 command[4*nsg+1] = ((address >> 9) & 0xFF);
650 command[4*nsg+0] = ((address >> 17) & 0xFF);
651 command[4*nsg-1] = ((address >> 25) & 0xFF);
652
653 address = 0340000; ct = 1;
654 nsg++;
655 bulklen += (ct << 9);
656 command[4*nsg+2] = ct;
657 command[4*nsg+1] = ((address >> 9) & 0xFF);
658 command[4*nsg+0] = ((address >> 17) & 0xFF);
659 command[4*nsg-1] = ((address >> 25) & 0xFF);
660
661 address = 01000000; ct = 2;
662 nsg++;
663 bulklen += (ct << 9);
664 command[4*nsg+2] = ct;
665 command[4*nsg+1] = ((address >> 9) & 0xFF);
666 command[4*nsg+0] = ((address >> 17) & 0xFF);
667 command[4*nsg-1] = ((address >> 25) & 0xFF);
668
669 command[2] = nsg;
670
671 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
672
673 if (result) {
674 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
675 result);
676 return result;
677 }
678
679 buf = kmalloc(bulklen, GFP_NOIO);
680 if (!buf)
681 return -ENOMEM;
682
683 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
684 buf, bulklen, NULL);
685 kfree(buf);
686 if (result != USB_STOR_XFER_GOOD) {
687 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
688 result);
689 return -EIO;
690 }
691
692 return 0;
693}
694#endif
695
696/*
697 * Read Status Command: 12 bytes.
698 * byte 0: opcode: EC
699 *
700 * Returns 64 bytes, all zero except for the first.
701 * bit 0: 1: Error
702 * bit 5: 1: Suspended
703 * bit 6: 1: Ready
704 * bit 7: 1: Not write-protected
705 */
706
707static int
708sddr09_read_status(struct us_data *us, unsigned char *status) {
709
710 unsigned char *command = us->iobuf;
711 unsigned char *data = us->iobuf;
712 int result;
713
714 usb_stor_dbg(us, "Reading status...\n");
715
716 memset(command, 0, 12);
717 command[0] = 0xEC;
718 command[1] = LUNBITS;
719
720 result = sddr09_send_scsi_command(us, command, 12);
721 if (result)
722 return result;
723
724 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
725 data, 64, NULL);
726 *status = data[0];
727 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
728}
729
730static int
731sddr09_read_data(struct us_data *us,
732 unsigned long address,
733 unsigned int sectors) {
734
735 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
736 unsigned char *buffer;
737 unsigned int lba, maxlba, pba;
738 unsigned int page, pages;
739 unsigned int len, offset;
740 struct scatterlist *sg;
741 int result;
742
743 // Figure out the initial LBA and page
744 lba = address >> info->blockshift;
745 page = (address & info->blockmask);
746 maxlba = info->capacity >> (info->pageshift + info->blockshift);
747 if (lba >= maxlba)
748 return -EIO;
749
750 // Since we only read in one block at a time, we have to create
751 // a bounce buffer and move the data a piece at a time between the
752 // bounce buffer and the actual transfer buffer.
753
754 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
755 buffer = kmalloc(len, GFP_NOIO);
756 if (!buffer)
757 return -ENOMEM;
758
759 // This could be made much more efficient by checking for
760 // contiguous LBA's. Another exercise left to the student.
761
762 result = 0;
763 offset = 0;
764 sg = NULL;
765
766 while (sectors > 0) {
767
768 /* Find number of pages we can read in this block */
769 pages = min(sectors, info->blocksize - page);
770 len = pages << info->pageshift;
771
772 /* Not overflowing capacity? */
773 if (lba >= maxlba) {
774 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
775 lba, maxlba);
776 result = -EIO;
777 break;
778 }
779
780 /* Find where this lba lives on disk */
781 pba = info->lba_to_pba[lba];
782
783 if (pba == UNDEF) { /* this lba was never written */
784
785 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
786 pages, lba, page);
787
788 /*
789 * This is not really an error. It just means
790 * that the block has never been written.
791 * Instead of returning an error
792 * it is better to return all zero data.
793 */
794
795 memset(buffer, 0, len);
796
797 } else {
798 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
799 pages, pba, lba, page);
800
801 address = ((pba << info->blockshift) + page) <<
802 info->pageshift;
803
804 result = sddr09_read20(us, address>>1,
805 pages, info->pageshift, buffer, 0);
806 if (result)
807 break;
808 }
809
810 // Store the data in the transfer buffer
811 usb_stor_access_xfer_buf(buffer, len, us->srb,
812 &sg, &offset, TO_XFER_BUF);
813
814 page = 0;
815 lba++;
816 sectors -= pages;
817 }
818
819 kfree(buffer);
820 return result;
821}
822
823static unsigned int
824sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
825 static unsigned int lastpba = 1;
826 int zonestart, end, i;
827
828 zonestart = (lba/1000) << 10;
829 end = info->capacity >> (info->blockshift + info->pageshift);
830 end -= zonestart;
831 if (end > 1024)
832 end = 1024;
833
834 for (i = lastpba+1; i < end; i++) {
835 if (info->pba_to_lba[zonestart+i] == UNDEF) {
836 lastpba = i;
837 return zonestart+i;
838 }
839 }
840 for (i = 0; i <= lastpba; i++) {
841 if (info->pba_to_lba[zonestart+i] == UNDEF) {
842 lastpba = i;
843 return zonestart+i;
844 }
845 }
846 return 0;
847}
848
849static int
850sddr09_write_lba(struct us_data *us, unsigned int lba,
851 unsigned int page, unsigned int pages,
852 unsigned char *ptr, unsigned char *blockbuffer) {
853
854 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
855 unsigned long address;
856 unsigned int pba, lbap;
857 unsigned int pagelen;
858 unsigned char *bptr, *cptr, *xptr;
859 unsigned char ecc[3];
860 int i, result;
861
862 lbap = ((lba % 1000) << 1) | 0x1000;
863 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
864 lbap ^= 1;
865 pba = info->lba_to_pba[lba];
866
867 if (pba == UNDEF) {
868 pba = sddr09_find_unused_pba(info, lba);
869 if (!pba) {
870 printk(KERN_WARNING
871 "sddr09_write_lba: Out of unused blocks\n");
872 return -ENOSPC;
873 }
874 info->pba_to_lba[pba] = lba;
875 info->lba_to_pba[lba] = pba;
876 }
877
878 if (pba == 1) {
879 /*
880 * Maybe it is impossible to write to PBA 1.
881 * Fake success, but don't do anything.
882 */
883 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
884 return 0;
885 }
886
887 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
888
889 /* read old contents */
890 address = (pba << (info->pageshift + info->blockshift));
891 result = sddr09_read22(us, address>>1, info->blocksize,
892 info->pageshift, blockbuffer, 0);
893 if (result)
894 return result;
895
896 /* check old contents and fill lba */
897 for (i = 0; i < info->blocksize; i++) {
898 bptr = blockbuffer + i*pagelen;
899 cptr = bptr + info->pagesize;
900 nand_compute_ecc(bptr, ecc);
901 if (!nand_compare_ecc(cptr+13, ecc)) {
902 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
903 i, pba);
904 nand_store_ecc(cptr+13, ecc);
905 }
906 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
907 if (!nand_compare_ecc(cptr+8, ecc)) {
908 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
909 i, pba);
910 nand_store_ecc(cptr+8, ecc);
911 }
912 cptr[6] = cptr[11] = MSB_of(lbap);
913 cptr[7] = cptr[12] = LSB_of(lbap);
914 }
915
916 /* copy in new stuff and compute ECC */
917 xptr = ptr;
918 for (i = page; i < page+pages; i++) {
919 bptr = blockbuffer + i*pagelen;
920 cptr = bptr + info->pagesize;
921 memcpy(bptr, xptr, info->pagesize);
922 xptr += info->pagesize;
923 nand_compute_ecc(bptr, ecc);
924 nand_store_ecc(cptr+13, ecc);
925 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
926 nand_store_ecc(cptr+8, ecc);
927 }
928
929 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
930
931 result = sddr09_write_inplace(us, address>>1, info->blocksize,
932 info->pageshift, blockbuffer, 0);
933
934 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
935
936#if 0
937 {
938 unsigned char status = 0;
939 int result2 = sddr09_read_status(us, &status);
940 if (result2)
941 usb_stor_dbg(us, "cannot read status\n");
942 else if (status != 0xc0)
943 usb_stor_dbg(us, "status after write: 0x%x\n", status);
944 }
945#endif
946
947#if 0
948 {
949 int result2 = sddr09_test_unit_ready(us);
950 }
951#endif
952
953 return result;
954}
955
956static int
957sddr09_write_data(struct us_data *us,
958 unsigned long address,
959 unsigned int sectors) {
960
961 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
962 unsigned int lba, maxlba, page, pages;
963 unsigned int pagelen, blocklen;
964 unsigned char *blockbuffer;
965 unsigned char *buffer;
966 unsigned int len, offset;
967 struct scatterlist *sg;
968 int result;
969
970 /* Figure out the initial LBA and page */
971 lba = address >> info->blockshift;
972 page = (address & info->blockmask);
973 maxlba = info->capacity >> (info->pageshift + info->blockshift);
974 if (lba >= maxlba)
975 return -EIO;
976
977 /*
978 * blockbuffer is used for reading in the old data, overwriting
979 * with the new data, and performing ECC calculations
980 */
981
982 /*
983 * TODO: instead of doing kmalloc/kfree for each write,
984 * add a bufferpointer to the info structure
985 */
986
987 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
988 blocklen = (pagelen << info->blockshift);
989 blockbuffer = kmalloc(blocklen, GFP_NOIO);
990 if (!blockbuffer)
991 return -ENOMEM;
992
993 /*
994 * Since we don't write the user data directly to the device,
995 * we have to create a bounce buffer and move the data a piece
996 * at a time between the bounce buffer and the actual transfer buffer.
997 */
998
999 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1000 buffer = kmalloc(len, GFP_NOIO);
1001 if (!buffer) {
1002 kfree(blockbuffer);
1003 return -ENOMEM;
1004 }
1005
1006 result = 0;
1007 offset = 0;
1008 sg = NULL;
1009
1010 while (sectors > 0) {
1011
1012 /* Write as many sectors as possible in this block */
1013
1014 pages = min(sectors, info->blocksize - page);
1015 len = (pages << info->pageshift);
1016
1017 /* Not overflowing capacity? */
1018 if (lba >= maxlba) {
1019 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1020 lba, maxlba);
1021 result = -EIO;
1022 break;
1023 }
1024
1025 /* Get the data from the transfer buffer */
1026 usb_stor_access_xfer_buf(buffer, len, us->srb,
1027 &sg, &offset, FROM_XFER_BUF);
1028
1029 result = sddr09_write_lba(us, lba, page, pages,
1030 buffer, blockbuffer);
1031 if (result)
1032 break;
1033
1034 page = 0;
1035 lba++;
1036 sectors -= pages;
1037 }
1038
1039 kfree(buffer);
1040 kfree(blockbuffer);
1041
1042 return result;
1043}
1044
1045static int
1046sddr09_read_control(struct us_data *us,
1047 unsigned long address,
1048 unsigned int blocks,
1049 unsigned char *content,
1050 int use_sg) {
1051
1052 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1053 address, blocks);
1054
1055 return sddr09_read21(us, address, blocks,
1056 CONTROL_SHIFT, content, use_sg);
1057}
1058
1059/*
1060 * Read Device ID Command: 12 bytes.
1061 * byte 0: opcode: ED
1062 *
1063 * Returns 2 bytes: Manufacturer ID and Device ID.
1064 * On more recent cards 3 bytes: the third byte is an option code A5
1065 * signifying that the secret command to read an 128-bit ID is available.
1066 * On still more recent cards 4 bytes: the fourth byte C0 means that
1067 * a second read ID cmd is available.
1068 */
1069static int
1070sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1071 unsigned char *command = us->iobuf;
1072 unsigned char *content = us->iobuf;
1073 int result, i;
1074
1075 memset(command, 0, 12);
1076 command[0] = 0xED;
1077 command[1] = LUNBITS;
1078
1079 result = sddr09_send_scsi_command(us, command, 12);
1080 if (result)
1081 return result;
1082
1083 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1084 content, 64, NULL);
1085
1086 for (i = 0; i < 4; i++)
1087 deviceID[i] = content[i];
1088
1089 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1090}
1091
1092static int
1093sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1094 int result;
1095 unsigned char status;
1096 const char *wp_fmt;
1097
1098 result = sddr09_read_status(us, &status);
1099 if (result) {
1100 usb_stor_dbg(us, "read_status fails\n");
1101 return result;
1102 }
1103 if ((status & 0x80) == 0) {
1104 info->flags |= SDDR09_WP; /* write protected */
1105 wp_fmt = " WP";
1106 } else {
1107 wp_fmt = "";
1108 }
1109 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1110 status & 0x40 ? " Ready" : "",
1111 status & LUNBITS ? " Suspended" : "",
1112 status & 0x01 ? " Error" : "");
1113
1114 return 0;
1115}
1116
1117#if 0
1118/*
1119 * Reset Command: 12 bytes.
1120 * byte 0: opcode: EB
1121 */
1122static int
1123sddr09_reset(struct us_data *us) {
1124
1125 unsigned char *command = us->iobuf;
1126
1127 memset(command, 0, 12);
1128 command[0] = 0xEB;
1129 command[1] = LUNBITS;
1130
1131 return sddr09_send_scsi_command(us, command, 12);
1132}
1133#endif
1134
1135static struct nand_flash_dev *
1136sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1137 struct nand_flash_dev *cardinfo;
1138 unsigned char deviceID[4];
1139 char blurbtxt[256];
1140 int result;
1141
1142 usb_stor_dbg(us, "Reading capacity...\n");
1143
1144 result = sddr09_read_deviceID(us, deviceID);
1145
1146 if (result) {
1147 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1148 printk(KERN_WARNING "sddr09: could not read card info\n");
1149 return NULL;
1150 }
1151
1152 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1153
1154 /* Byte 0 is the manufacturer */
1155 sprintf(blurbtxt + strlen(blurbtxt),
1156 ": Manuf. %s",
1157 nand_flash_manufacturer(deviceID[0]));
1158
1159 /* Byte 1 is the device type */
1160 cardinfo = nand_find_id(deviceID[1]);
1161 if (cardinfo) {
1162 /*
1163 * MB or MiB? It is neither. A 16 MB card has
1164 * 17301504 raw bytes, of which 16384000 are
1165 * usable for user data.
1166 */
1167 sprintf(blurbtxt + strlen(blurbtxt),
1168 ", %d MB", 1<<(cardinfo->chipshift - 20));
1169 } else {
1170 sprintf(blurbtxt + strlen(blurbtxt),
1171 ", type unrecognized");
1172 }
1173
1174 /* Byte 2 is code to signal availability of 128-bit ID */
1175 if (deviceID[2] == 0xa5) {
1176 sprintf(blurbtxt + strlen(blurbtxt),
1177 ", 128-bit ID");
1178 }
1179
1180 /* Byte 3 announces the availability of another read ID command */
1181 if (deviceID[3] == 0xc0) {
1182 sprintf(blurbtxt + strlen(blurbtxt),
1183 ", extra cmd");
1184 }
1185
1186 if (flags & SDDR09_WP)
1187 sprintf(blurbtxt + strlen(blurbtxt),
1188 ", WP");
1189
1190 printk(KERN_WARNING "%s\n", blurbtxt);
1191
1192 return cardinfo;
1193}
1194
1195static int
1196sddr09_read_map(struct us_data *us) {
1197
1198 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1199 int numblocks, alloc_len, alloc_blocks;
1200 int i, j, result;
1201 unsigned char *buffer, *buffer_end, *ptr;
1202 unsigned int lba, lbact;
1203
1204 if (!info->capacity)
1205 return -1;
1206
1207 /*
1208 * size of a block is 1 << (blockshift + pageshift) bytes
1209 * divide into the total capacity to get the number of blocks
1210 */
1211
1212 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1213
1214 /*
1215 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1216 * but only use a 64 KB buffer
1217 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1218 */
1219#define SDDR09_READ_MAP_BUFSZ 65536
1220
1221 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1222 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1223 buffer = kmalloc(alloc_len, GFP_NOIO);
1224 if (!buffer) {
1225 result = -1;
1226 goto done;
1227 }
1228 buffer_end = buffer + alloc_len;
1229
1230#undef SDDR09_READ_MAP_BUFSZ
1231
1232 kfree(info->lba_to_pba);
1233 kfree(info->pba_to_lba);
1234 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1235 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1236
1237 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1238 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1239 result = -1;
1240 goto done;
1241 }
1242
1243 for (i = 0; i < numblocks; i++)
1244 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1245
1246 /*
1247 * Define lba-pba translation table
1248 */
1249
1250 ptr = buffer_end;
1251 for (i = 0; i < numblocks; i++) {
1252 ptr += (1 << CONTROL_SHIFT);
1253 if (ptr >= buffer_end) {
1254 unsigned long address;
1255
1256 address = i << (info->pageshift + info->blockshift);
1257 result = sddr09_read_control(
1258 us, address>>1,
1259 min(alloc_blocks, numblocks - i),
1260 buffer, 0);
1261 if (result) {
1262 result = -1;
1263 goto done;
1264 }
1265 ptr = buffer;
1266 }
1267
1268 if (i == 0 || i == 1) {
1269 info->pba_to_lba[i] = UNUSABLE;
1270 continue;
1271 }
1272
1273 /* special PBAs have control field 0^16 */
1274 for (j = 0; j < 16; j++)
1275 if (ptr[j] != 0)
1276 goto nonz;
1277 info->pba_to_lba[i] = UNUSABLE;
1278 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1279 i);
1280 continue;
1281
1282 nonz:
1283 /* unwritten PBAs have control field FF^16 */
1284 for (j = 0; j < 16; j++)
1285 if (ptr[j] != 0xff)
1286 goto nonff;
1287 continue;
1288
1289 nonff:
1290 /* normal PBAs start with six FFs */
1291 if (j < 6) {
1292 printk(KERN_WARNING
1293 "sddr09: PBA %d has no logical mapping: "
1294 "reserved area = %02X%02X%02X%02X "
1295 "data status %02X block status %02X\n",
1296 i, ptr[0], ptr[1], ptr[2], ptr[3],
1297 ptr[4], ptr[5]);
1298 info->pba_to_lba[i] = UNUSABLE;
1299 continue;
1300 }
1301
1302 if ((ptr[6] >> 4) != 0x01) {
1303 printk(KERN_WARNING
1304 "sddr09: PBA %d has invalid address field "
1305 "%02X%02X/%02X%02X\n",
1306 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1307 info->pba_to_lba[i] = UNUSABLE;
1308 continue;
1309 }
1310
1311 /* check even parity */
1312 if (parity[ptr[6] ^ ptr[7]]) {
1313 printk(KERN_WARNING
1314 "sddr09: Bad parity in LBA for block %d"
1315 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1316 info->pba_to_lba[i] = UNUSABLE;
1317 continue;
1318 }
1319
1320 lba = short_pack(ptr[7], ptr[6]);
1321 lba = (lba & 0x07FF) >> 1;
1322
1323 /*
1324 * Every 1024 physical blocks ("zone"), the LBA numbers
1325 * go back to zero, but are within a higher block of LBA's.
1326 * Also, there is a maximum of 1000 LBA's per zone.
1327 * In other words, in PBA 1024-2047 you will find LBA 0-999
1328 * which are really LBA 1000-1999. This allows for 24 bad
1329 * or special physical blocks per zone.
1330 */
1331
1332 if (lba >= 1000) {
1333 printk(KERN_WARNING
1334 "sddr09: Bad low LBA %d for block %d\n",
1335 lba, i);
1336 goto possibly_erase;
1337 }
1338
1339 lba += 1000*(i/0x400);
1340
1341 if (info->lba_to_pba[lba] != UNDEF) {
1342 printk(KERN_WARNING
1343 "sddr09: LBA %d seen for PBA %d and %d\n",
1344 lba, info->lba_to_pba[lba], i);
1345 goto possibly_erase;
1346 }
1347
1348 info->pba_to_lba[i] = lba;
1349 info->lba_to_pba[lba] = i;
1350 continue;
1351
1352 possibly_erase:
1353 if (erase_bad_lba_entries) {
1354 unsigned long address;
1355
1356 address = (i << (info->pageshift + info->blockshift));
1357 sddr09_erase(us, address>>1);
1358 info->pba_to_lba[i] = UNDEF;
1359 } else
1360 info->pba_to_lba[i] = UNUSABLE;
1361 }
1362
1363 /*
1364 * Approximate capacity. This is not entirely correct yet,
1365 * since a zone with less than 1000 usable pages leads to
1366 * missing LBAs. Especially if it is the last zone, some
1367 * LBAs can be past capacity.
1368 */
1369 lbact = 0;
1370 for (i = 0; i < numblocks; i += 1024) {
1371 int ct = 0;
1372
1373 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1374 if (info->pba_to_lba[i+j] != UNUSABLE) {
1375 if (ct >= 1000)
1376 info->pba_to_lba[i+j] = SPARE;
1377 else
1378 ct++;
1379 }
1380 }
1381 lbact += ct;
1382 }
1383 info->lbact = lbact;
1384 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1385 result = 0;
1386
1387 done:
1388 if (result != 0) {
1389 kfree(info->lba_to_pba);
1390 kfree(info->pba_to_lba);
1391 info->lba_to_pba = NULL;
1392 info->pba_to_lba = NULL;
1393 }
1394 kfree(buffer);
1395 return result;
1396}
1397
1398static void
1399sddr09_card_info_destructor(void *extra) {
1400 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1401
1402 if (!info)
1403 return;
1404
1405 kfree(info->lba_to_pba);
1406 kfree(info->pba_to_lba);
1407}
1408
1409static int
1410sddr09_common_init(struct us_data *us) {
1411 int result;
1412
1413 /* set the configuration -- STALL is an acceptable response here */
1414 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1415 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1416 us->pusb_dev->actconfig->desc.bConfigurationValue);
1417 return -EINVAL;
1418 }
1419
1420 result = usb_reset_configuration(us->pusb_dev);
1421 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1422 if (result == -EPIPE) {
1423 usb_stor_dbg(us, "-- stall on control interface\n");
1424 } else if (result != 0) {
1425 /* it's not a stall, but another error -- time to bail */
1426 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1427 return -EINVAL;
1428 }
1429
1430 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1431 if (!us->extra)
1432 return -ENOMEM;
1433 us->extra_destructor = sddr09_card_info_destructor;
1434
1435 nand_init_ecc();
1436 return 0;
1437}
1438
1439
1440/*
1441 * This is needed at a very early stage. If this is not listed in the
1442 * unusual devices list but called from here then LUN 0 of the combo reader
1443 * is not recognized. But I do not know what precisely these calls do.
1444 */
1445static int
1446usb_stor_sddr09_dpcm_init(struct us_data *us) {
1447 int result;
1448 unsigned char *data = us->iobuf;
1449
1450 result = sddr09_common_init(us);
1451 if (result)
1452 return result;
1453
1454 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1455 if (result) {
1456 usb_stor_dbg(us, "send_command fails\n");
1457 return result;
1458 }
1459
1460 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1461 // get 07 02
1462
1463 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1464 if (result) {
1465 usb_stor_dbg(us, "2nd send_command fails\n");
1466 return result;
1467 }
1468
1469 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1470 // get 07 00
1471
1472 result = sddr09_request_sense(us, data, 18);
1473 if (result == 0 && data[2] != 0) {
1474 int j;
1475 for (j=0; j<18; j++)
1476 printk(" %02X", data[j]);
1477 printk("\n");
1478 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1479 // 70: current command
1480 // sense key 0, sense code 0, extd sense code 0
1481 // additional transfer length * = sizeof(data) - 7
1482 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1483 // sense key 06, sense code 28: unit attention,
1484 // not ready to ready transition
1485 }
1486
1487 // test unit ready
1488
1489 return 0; /* not result */
1490}
1491
1492/*
1493 * Transport for the Microtech DPCM-USB
1494 */
1495static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1496{
1497 int ret;
1498
1499 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1500
1501 switch (srb->device->lun) {
1502 case 0:
1503
1504 /*
1505 * LUN 0 corresponds to the CompactFlash card reader.
1506 */
1507 ret = usb_stor_CB_transport(srb, us);
1508 break;
1509
1510 case 1:
1511
1512 /*
1513 * LUN 1 corresponds to the SmartMedia card reader.
1514 */
1515
1516 /*
1517 * Set the LUN to 0 (just in case).
1518 */
1519 srb->device->lun = 0;
1520 ret = sddr09_transport(srb, us);
1521 srb->device->lun = 1;
1522 break;
1523
1524 default:
1525 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1526 ret = USB_STOR_TRANSPORT_ERROR;
1527 break;
1528 }
1529 return ret;
1530}
1531
1532
1533/*
1534 * Transport for the Sandisk SDDR-09
1535 */
1536static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1537{
1538 static unsigned char sensekey = 0, sensecode = 0;
1539 static unsigned char havefakesense = 0;
1540 int result, i;
1541 unsigned char *ptr = us->iobuf;
1542 unsigned long capacity;
1543 unsigned int page, pages;
1544
1545 struct sddr09_card_info *info;
1546
1547 static unsigned char inquiry_response[8] = {
1548 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1549 };
1550
1551 /* note: no block descriptor support */
1552 static unsigned char mode_page_01[19] = {
1553 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1554 0x01, 0x0A,
1555 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1556 };
1557
1558 info = (struct sddr09_card_info *)us->extra;
1559
1560 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1561 /* for a faked command, we have to follow with a faked sense */
1562 memset(ptr, 0, 18);
1563 ptr[0] = 0x70;
1564 ptr[2] = sensekey;
1565 ptr[7] = 11;
1566 ptr[12] = sensecode;
1567 usb_stor_set_xfer_buf(ptr, 18, srb);
1568 sensekey = sensecode = havefakesense = 0;
1569 return USB_STOR_TRANSPORT_GOOD;
1570 }
1571
1572 havefakesense = 1;
1573
1574 /*
1575 * Dummy up a response for INQUIRY since SDDR09 doesn't
1576 * respond to INQUIRY commands
1577 */
1578
1579 if (srb->cmnd[0] == INQUIRY) {
1580 memcpy(ptr, inquiry_response, 8);
1581 fill_inquiry_response(us, ptr, 36);
1582 return USB_STOR_TRANSPORT_GOOD;
1583 }
1584
1585 if (srb->cmnd[0] == READ_CAPACITY) {
1586 struct nand_flash_dev *cardinfo;
1587
1588 sddr09_get_wp(us, info); /* read WP bit */
1589
1590 cardinfo = sddr09_get_cardinfo(us, info->flags);
1591 if (!cardinfo) {
1592 /* probably no media */
1593 init_error:
1594 sensekey = 0x02; /* not ready */
1595 sensecode = 0x3a; /* medium not present */
1596 return USB_STOR_TRANSPORT_FAILED;
1597 }
1598
1599 info->capacity = (1 << cardinfo->chipshift);
1600 info->pageshift = cardinfo->pageshift;
1601 info->pagesize = (1 << info->pageshift);
1602 info->blockshift = cardinfo->blockshift;
1603 info->blocksize = (1 << info->blockshift);
1604 info->blockmask = info->blocksize - 1;
1605
1606 // map initialization, must follow get_cardinfo()
1607 if (sddr09_read_map(us)) {
1608 /* probably out of memory */
1609 goto init_error;
1610 }
1611
1612 // Report capacity
1613
1614 capacity = (info->lbact << info->blockshift) - 1;
1615
1616 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1617
1618 // Report page size
1619
1620 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1621 usb_stor_set_xfer_buf(ptr, 8, srb);
1622
1623 return USB_STOR_TRANSPORT_GOOD;
1624 }
1625
1626 if (srb->cmnd[0] == MODE_SENSE_10) {
1627 int modepage = (srb->cmnd[2] & 0x3F);
1628
1629 /*
1630 * They ask for the Read/Write error recovery page,
1631 * or for all pages.
1632 */
1633 /* %% We should check DBD %% */
1634 if (modepage == 0x01 || modepage == 0x3F) {
1635 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636 modepage);
1637
1638 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642 return USB_STOR_TRANSPORT_GOOD;
1643 }
1644
1645 sensekey = 0x05; /* illegal request */
1646 sensecode = 0x24; /* invalid field in CDB */
1647 return USB_STOR_TRANSPORT_FAILED;
1648 }
1649
1650 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651 return USB_STOR_TRANSPORT_GOOD;
1652
1653 havefakesense = 0;
1654
1655 if (srb->cmnd[0] == READ_10) {
1656
1657 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658 page <<= 16;
1659 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663 page, pages);
1664
1665 result = sddr09_read_data(us, page, pages);
1666 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667 USB_STOR_TRANSPORT_ERROR);
1668 }
1669
1670 if (srb->cmnd[0] == WRITE_10) {
1671
1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673 page <<= 16;
1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678 page, pages);
1679
1680 result = sddr09_write_data(us, page, pages);
1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682 USB_STOR_TRANSPORT_ERROR);
1683 }
1684
1685 /*
1686 * catch-all for all other commands, except
1687 * pass TEST_UNIT_READY and REQUEST_SENSE through
1688 */
1689 if (srb->cmnd[0] != TEST_UNIT_READY &&
1690 srb->cmnd[0] != REQUEST_SENSE) {
1691 sensekey = 0x05; /* illegal request */
1692 sensecode = 0x20; /* invalid command */
1693 havefakesense = 1;
1694 return USB_STOR_TRANSPORT_FAILED;
1695 }
1696
1697 for (; srb->cmd_len<12; srb->cmd_len++)
1698 srb->cmnd[srb->cmd_len] = 0;
1699
1700 srb->cmnd[1] = LUNBITS;
1701
1702 ptr[0] = 0;
1703 for (i=0; i<12; i++)
1704 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1705
1706 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1707
1708 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1709 if (result) {
1710 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1711 result);
1712 return USB_STOR_TRANSPORT_ERROR;
1713 }
1714
1715 if (scsi_bufflen(srb) == 0)
1716 return USB_STOR_TRANSPORT_GOOD;
1717
1718 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1719 srb->sc_data_direction == DMA_FROM_DEVICE) {
1720 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1721 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1722
1723 usb_stor_dbg(us, "%s %d bytes\n",
1724 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1725 "sending" : "receiving",
1726 scsi_bufflen(srb));
1727
1728 result = usb_stor_bulk_srb(us, pipe, srb);
1729
1730 return (result == USB_STOR_XFER_GOOD ?
1731 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1732 }
1733
1734 return USB_STOR_TRANSPORT_GOOD;
1735}
1736
1737/*
1738 * Initialization routine for the sddr09 subdriver
1739 */
1740static int
1741usb_stor_sddr09_init(struct us_data *us) {
1742 return sddr09_common_init(us);
1743}
1744
1745static struct scsi_host_template sddr09_host_template;
1746
1747static int sddr09_probe(struct usb_interface *intf,
1748 const struct usb_device_id *id)
1749{
1750 struct us_data *us;
1751 int result;
1752
1753 result = usb_stor_probe1(&us, intf, id,
1754 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1755 &sddr09_host_template);
1756 if (result)
1757 return result;
1758
1759 if (us->protocol == USB_PR_DPCM_USB) {
1760 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1761 us->transport = dpcm_transport;
1762 us->transport_reset = usb_stor_CB_reset;
1763 us->max_lun = 1;
1764 } else {
1765 us->transport_name = "EUSB/SDDR09";
1766 us->transport = sddr09_transport;
1767 us->transport_reset = usb_stor_CB_reset;
1768 us->max_lun = 0;
1769 }
1770
1771 result = usb_stor_probe2(us);
1772 return result;
1773}
1774
1775static struct usb_driver sddr09_driver = {
1776 .name = DRV_NAME,
1777 .probe = sddr09_probe,
1778 .disconnect = usb_stor_disconnect,
1779 .suspend = usb_stor_suspend,
1780 .resume = usb_stor_resume,
1781 .reset_resume = usb_stor_reset_resume,
1782 .pre_reset = usb_stor_pre_reset,
1783 .post_reset = usb_stor_post_reset,
1784 .id_table = sddr09_usb_ids,
1785 .soft_unbind = 1,
1786 .no_dynamic_id = 1,
1787};
1788
1789module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);