Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include "xfs_reflink.h"
35#include <linux/gfp.h>
36#include <linux/mpage.h>
37#include <linux/pagevec.h>
38#include <linux/writeback.h>
39
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
51void
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
59 *delalloc = *unwritten = 0;
60
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
70struct block_device *
71xfs_find_bdev_for_inode(
72 struct inode *inode)
73{
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
76
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
83/*
84 * We're now finished for good with this page. Update the page state via the
85 * associated buffer_heads, paying attention to the start and end offsets that
86 * we need to process on the page.
87 *
88 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
89 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
90 * the page at all, as we may be racing with memory reclaim and it can free both
91 * the bufferhead chain and the page as it will see the page as clean and
92 * unused.
93 */
94static void
95xfs_finish_page_writeback(
96 struct inode *inode,
97 struct bio_vec *bvec,
98 int error)
99{
100 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
101 struct buffer_head *head, *bh, *next;
102 unsigned int off = 0;
103 unsigned int bsize;
104
105 ASSERT(bvec->bv_offset < PAGE_SIZE);
106 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
107 ASSERT(end < PAGE_SIZE);
108 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
109
110 bh = head = page_buffers(bvec->bv_page);
111
112 bsize = bh->b_size;
113 do {
114 next = bh->b_this_page;
115 if (off < bvec->bv_offset)
116 goto next_bh;
117 if (off > end)
118 break;
119 bh->b_end_io(bh, !error);
120next_bh:
121 off += bsize;
122 } while ((bh = next) != head);
123}
124
125/*
126 * We're now finished for good with this ioend structure. Update the page
127 * state, release holds on bios, and finally free up memory. Do not use the
128 * ioend after this.
129 */
130STATIC void
131xfs_destroy_ioend(
132 struct xfs_ioend *ioend,
133 int error)
134{
135 struct inode *inode = ioend->io_inode;
136 struct bio *last = ioend->io_bio;
137 struct bio *bio, *next;
138
139 for (bio = &ioend->io_inline_bio; bio; bio = next) {
140 struct bio_vec *bvec;
141 int i;
142
143 /*
144 * For the last bio, bi_private points to the ioend, so we
145 * need to explicitly end the iteration here.
146 */
147 if (bio == last)
148 next = NULL;
149 else
150 next = bio->bi_private;
151
152 /* walk each page on bio, ending page IO on them */
153 bio_for_each_segment_all(bvec, bio, i)
154 xfs_finish_page_writeback(inode, bvec, error);
155
156 bio_put(bio);
157 }
158}
159
160/*
161 * Fast and loose check if this write could update the on-disk inode size.
162 */
163static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
164{
165 return ioend->io_offset + ioend->io_size >
166 XFS_I(ioend->io_inode)->i_d.di_size;
167}
168
169STATIC int
170xfs_setfilesize_trans_alloc(
171 struct xfs_ioend *ioend)
172{
173 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
174 struct xfs_trans *tp;
175 int error;
176
177 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
178 if (error)
179 return error;
180
181 ioend->io_append_trans = tp;
182
183 /*
184 * We may pass freeze protection with a transaction. So tell lockdep
185 * we released it.
186 */
187 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
188 /*
189 * We hand off the transaction to the completion thread now, so
190 * clear the flag here.
191 */
192 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
193 return 0;
194}
195
196/*
197 * Update on-disk file size now that data has been written to disk.
198 */
199STATIC int
200__xfs_setfilesize(
201 struct xfs_inode *ip,
202 struct xfs_trans *tp,
203 xfs_off_t offset,
204 size_t size)
205{
206 xfs_fsize_t isize;
207
208 xfs_ilock(ip, XFS_ILOCK_EXCL);
209 isize = xfs_new_eof(ip, offset + size);
210 if (!isize) {
211 xfs_iunlock(ip, XFS_ILOCK_EXCL);
212 xfs_trans_cancel(tp);
213 return 0;
214 }
215
216 trace_xfs_setfilesize(ip, offset, size);
217
218 ip->i_d.di_size = isize;
219 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221
222 return xfs_trans_commit(tp);
223}
224
225int
226xfs_setfilesize(
227 struct xfs_inode *ip,
228 xfs_off_t offset,
229 size_t size)
230{
231 struct xfs_mount *mp = ip->i_mount;
232 struct xfs_trans *tp;
233 int error;
234
235 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
236 if (error)
237 return error;
238
239 return __xfs_setfilesize(ip, tp, offset, size);
240}
241
242STATIC int
243xfs_setfilesize_ioend(
244 struct xfs_ioend *ioend,
245 int error)
246{
247 struct xfs_inode *ip = XFS_I(ioend->io_inode);
248 struct xfs_trans *tp = ioend->io_append_trans;
249
250 /*
251 * The transaction may have been allocated in the I/O submission thread,
252 * thus we need to mark ourselves as being in a transaction manually.
253 * Similarly for freeze protection.
254 */
255 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
256 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
257
258 /* we abort the update if there was an IO error */
259 if (error) {
260 xfs_trans_cancel(tp);
261 return error;
262 }
263
264 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
265}
266
267/*
268 * IO write completion.
269 */
270STATIC void
271xfs_end_io(
272 struct work_struct *work)
273{
274 struct xfs_ioend *ioend =
275 container_of(work, struct xfs_ioend, io_work);
276 struct xfs_inode *ip = XFS_I(ioend->io_inode);
277 xfs_off_t offset = ioend->io_offset;
278 size_t size = ioend->io_size;
279 int error = ioend->io_bio->bi_error;
280
281 /*
282 * Just clean up the in-memory strutures if the fs has been shut down.
283 */
284 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
285 error = -EIO;
286 goto done;
287 }
288
289 /*
290 * Clean up any COW blocks on an I/O error.
291 */
292 if (unlikely(error)) {
293 switch (ioend->io_type) {
294 case XFS_IO_COW:
295 xfs_reflink_cancel_cow_range(ip, offset, size, true);
296 break;
297 }
298
299 goto done;
300 }
301
302 /*
303 * Success: commit the COW or unwritten blocks if needed.
304 */
305 switch (ioend->io_type) {
306 case XFS_IO_COW:
307 error = xfs_reflink_end_cow(ip, offset, size);
308 break;
309 case XFS_IO_UNWRITTEN:
310 error = xfs_iomap_write_unwritten(ip, offset, size);
311 break;
312 default:
313 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
314 break;
315 }
316
317done:
318 if (ioend->io_append_trans)
319 error = xfs_setfilesize_ioend(ioend, error);
320 xfs_destroy_ioend(ioend, error);
321}
322
323STATIC void
324xfs_end_bio(
325 struct bio *bio)
326{
327 struct xfs_ioend *ioend = bio->bi_private;
328 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
329
330 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
331 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
332 else if (ioend->io_append_trans)
333 queue_work(mp->m_data_workqueue, &ioend->io_work);
334 else
335 xfs_destroy_ioend(ioend, bio->bi_error);
336}
337
338STATIC int
339xfs_map_blocks(
340 struct inode *inode,
341 loff_t offset,
342 struct xfs_bmbt_irec *imap,
343 int type)
344{
345 struct xfs_inode *ip = XFS_I(inode);
346 struct xfs_mount *mp = ip->i_mount;
347 ssize_t count = 1 << inode->i_blkbits;
348 xfs_fileoff_t offset_fsb, end_fsb;
349 int error = 0;
350 int bmapi_flags = XFS_BMAPI_ENTIRE;
351 int nimaps = 1;
352
353 if (XFS_FORCED_SHUTDOWN(mp))
354 return -EIO;
355
356 ASSERT(type != XFS_IO_COW);
357 if (type == XFS_IO_UNWRITTEN)
358 bmapi_flags |= XFS_BMAPI_IGSTATE;
359
360 xfs_ilock(ip, XFS_ILOCK_SHARED);
361 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
362 (ip->i_df.if_flags & XFS_IFEXTENTS));
363 ASSERT(offset <= mp->m_super->s_maxbytes);
364
365 if (offset + count > mp->m_super->s_maxbytes)
366 count = mp->m_super->s_maxbytes - offset;
367 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
368 offset_fsb = XFS_B_TO_FSBT(mp, offset);
369 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
370 imap, &nimaps, bmapi_flags);
371 /*
372 * Truncate an overwrite extent if there's a pending CoW
373 * reservation before the end of this extent. This forces us
374 * to come back to writepage to take care of the CoW.
375 */
376 if (nimaps && type == XFS_IO_OVERWRITE)
377 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
378 xfs_iunlock(ip, XFS_ILOCK_SHARED);
379
380 if (error)
381 return error;
382
383 if (type == XFS_IO_DELALLOC &&
384 (!nimaps || isnullstartblock(imap->br_startblock))) {
385 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
386 imap);
387 if (!error)
388 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
389 return error;
390 }
391
392#ifdef DEBUG
393 if (type == XFS_IO_UNWRITTEN) {
394 ASSERT(nimaps);
395 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
396 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
397 }
398#endif
399 if (nimaps)
400 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
401 return 0;
402}
403
404STATIC bool
405xfs_imap_valid(
406 struct inode *inode,
407 struct xfs_bmbt_irec *imap,
408 xfs_off_t offset)
409{
410 offset >>= inode->i_blkbits;
411
412 return offset >= imap->br_startoff &&
413 offset < imap->br_startoff + imap->br_blockcount;
414}
415
416STATIC void
417xfs_start_buffer_writeback(
418 struct buffer_head *bh)
419{
420 ASSERT(buffer_mapped(bh));
421 ASSERT(buffer_locked(bh));
422 ASSERT(!buffer_delay(bh));
423 ASSERT(!buffer_unwritten(bh));
424
425 mark_buffer_async_write(bh);
426 set_buffer_uptodate(bh);
427 clear_buffer_dirty(bh);
428}
429
430STATIC void
431xfs_start_page_writeback(
432 struct page *page,
433 int clear_dirty)
434{
435 ASSERT(PageLocked(page));
436 ASSERT(!PageWriteback(page));
437
438 /*
439 * if the page was not fully cleaned, we need to ensure that the higher
440 * layers come back to it correctly. That means we need to keep the page
441 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
442 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
443 * write this page in this writeback sweep will be made.
444 */
445 if (clear_dirty) {
446 clear_page_dirty_for_io(page);
447 set_page_writeback(page);
448 } else
449 set_page_writeback_keepwrite(page);
450
451 unlock_page(page);
452}
453
454static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
455{
456 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
457}
458
459/*
460 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
461 * it, and we submit that bio. The ioend may be used for multiple bio
462 * submissions, so we only want to allocate an append transaction for the ioend
463 * once. In the case of multiple bio submission, each bio will take an IO
464 * reference to the ioend to ensure that the ioend completion is only done once
465 * all bios have been submitted and the ioend is really done.
466 *
467 * If @fail is non-zero, it means that we have a situation where some part of
468 * the submission process has failed after we have marked paged for writeback
469 * and unlocked them. In this situation, we need to fail the bio and ioend
470 * rather than submit it to IO. This typically only happens on a filesystem
471 * shutdown.
472 */
473STATIC int
474xfs_submit_ioend(
475 struct writeback_control *wbc,
476 struct xfs_ioend *ioend,
477 int status)
478{
479 /* Convert CoW extents to regular */
480 if (!status && ioend->io_type == XFS_IO_COW) {
481 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
482 ioend->io_offset, ioend->io_size);
483 }
484
485 /* Reserve log space if we might write beyond the on-disk inode size. */
486 if (!status &&
487 ioend->io_type != XFS_IO_UNWRITTEN &&
488 xfs_ioend_is_append(ioend) &&
489 !ioend->io_append_trans)
490 status = xfs_setfilesize_trans_alloc(ioend);
491
492 ioend->io_bio->bi_private = ioend;
493 ioend->io_bio->bi_end_io = xfs_end_bio;
494 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
495
496 /*
497 * If we are failing the IO now, just mark the ioend with an
498 * error and finish it. This will run IO completion immediately
499 * as there is only one reference to the ioend at this point in
500 * time.
501 */
502 if (status) {
503 ioend->io_bio->bi_error = status;
504 bio_endio(ioend->io_bio);
505 return status;
506 }
507
508 submit_bio(ioend->io_bio);
509 return 0;
510}
511
512static void
513xfs_init_bio_from_bh(
514 struct bio *bio,
515 struct buffer_head *bh)
516{
517 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
518 bio->bi_bdev = bh->b_bdev;
519}
520
521static struct xfs_ioend *
522xfs_alloc_ioend(
523 struct inode *inode,
524 unsigned int type,
525 xfs_off_t offset,
526 struct buffer_head *bh)
527{
528 struct xfs_ioend *ioend;
529 struct bio *bio;
530
531 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
532 xfs_init_bio_from_bh(bio, bh);
533
534 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
535 INIT_LIST_HEAD(&ioend->io_list);
536 ioend->io_type = type;
537 ioend->io_inode = inode;
538 ioend->io_size = 0;
539 ioend->io_offset = offset;
540 INIT_WORK(&ioend->io_work, xfs_end_io);
541 ioend->io_append_trans = NULL;
542 ioend->io_bio = bio;
543 return ioend;
544}
545
546/*
547 * Allocate a new bio, and chain the old bio to the new one.
548 *
549 * Note that we have to do perform the chaining in this unintuitive order
550 * so that the bi_private linkage is set up in the right direction for the
551 * traversal in xfs_destroy_ioend().
552 */
553static void
554xfs_chain_bio(
555 struct xfs_ioend *ioend,
556 struct writeback_control *wbc,
557 struct buffer_head *bh)
558{
559 struct bio *new;
560
561 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
562 xfs_init_bio_from_bh(new, bh);
563
564 bio_chain(ioend->io_bio, new);
565 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
566 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
567 submit_bio(ioend->io_bio);
568 ioend->io_bio = new;
569}
570
571/*
572 * Test to see if we've been building up a completion structure for
573 * earlier buffers -- if so, we try to append to this ioend if we
574 * can, otherwise we finish off any current ioend and start another.
575 * Return the ioend we finished off so that the caller can submit it
576 * once it has finished processing the dirty page.
577 */
578STATIC void
579xfs_add_to_ioend(
580 struct inode *inode,
581 struct buffer_head *bh,
582 xfs_off_t offset,
583 struct xfs_writepage_ctx *wpc,
584 struct writeback_control *wbc,
585 struct list_head *iolist)
586{
587 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
588 bh->b_blocknr != wpc->last_block + 1 ||
589 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
590 if (wpc->ioend)
591 list_add(&wpc->ioend->io_list, iolist);
592 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
593 }
594
595 /*
596 * If the buffer doesn't fit into the bio we need to allocate a new
597 * one. This shouldn't happen more than once for a given buffer.
598 */
599 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
600 xfs_chain_bio(wpc->ioend, wbc, bh);
601
602 wpc->ioend->io_size += bh->b_size;
603 wpc->last_block = bh->b_blocknr;
604 xfs_start_buffer_writeback(bh);
605}
606
607STATIC void
608xfs_map_buffer(
609 struct inode *inode,
610 struct buffer_head *bh,
611 struct xfs_bmbt_irec *imap,
612 xfs_off_t offset)
613{
614 sector_t bn;
615 struct xfs_mount *m = XFS_I(inode)->i_mount;
616 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
617 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
618
619 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
620 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
621
622 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
623 ((offset - iomap_offset) >> inode->i_blkbits);
624
625 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
626
627 bh->b_blocknr = bn;
628 set_buffer_mapped(bh);
629}
630
631STATIC void
632xfs_map_at_offset(
633 struct inode *inode,
634 struct buffer_head *bh,
635 struct xfs_bmbt_irec *imap,
636 xfs_off_t offset)
637{
638 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
639 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
640
641 xfs_map_buffer(inode, bh, imap, offset);
642 set_buffer_mapped(bh);
643 clear_buffer_delay(bh);
644 clear_buffer_unwritten(bh);
645}
646
647/*
648 * Test if a given page contains at least one buffer of a given @type.
649 * If @check_all_buffers is true, then we walk all the buffers in the page to
650 * try to find one of the type passed in. If it is not set, then the caller only
651 * needs to check the first buffer on the page for a match.
652 */
653STATIC bool
654xfs_check_page_type(
655 struct page *page,
656 unsigned int type,
657 bool check_all_buffers)
658{
659 struct buffer_head *bh;
660 struct buffer_head *head;
661
662 if (PageWriteback(page))
663 return false;
664 if (!page->mapping)
665 return false;
666 if (!page_has_buffers(page))
667 return false;
668
669 bh = head = page_buffers(page);
670 do {
671 if (buffer_unwritten(bh)) {
672 if (type == XFS_IO_UNWRITTEN)
673 return true;
674 } else if (buffer_delay(bh)) {
675 if (type == XFS_IO_DELALLOC)
676 return true;
677 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
678 if (type == XFS_IO_OVERWRITE)
679 return true;
680 }
681
682 /* If we are only checking the first buffer, we are done now. */
683 if (!check_all_buffers)
684 break;
685 } while ((bh = bh->b_this_page) != head);
686
687 return false;
688}
689
690STATIC void
691xfs_vm_invalidatepage(
692 struct page *page,
693 unsigned int offset,
694 unsigned int length)
695{
696 trace_xfs_invalidatepage(page->mapping->host, page, offset,
697 length);
698 block_invalidatepage(page, offset, length);
699}
700
701/*
702 * If the page has delalloc buffers on it, we need to punch them out before we
703 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
704 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
705 * is done on that same region - the delalloc extent is returned when none is
706 * supposed to be there.
707 *
708 * We prevent this by truncating away the delalloc regions on the page before
709 * invalidating it. Because they are delalloc, we can do this without needing a
710 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
711 * truncation without a transaction as there is no space left for block
712 * reservation (typically why we see a ENOSPC in writeback).
713 *
714 * This is not a performance critical path, so for now just do the punching a
715 * buffer head at a time.
716 */
717STATIC void
718xfs_aops_discard_page(
719 struct page *page)
720{
721 struct inode *inode = page->mapping->host;
722 struct xfs_inode *ip = XFS_I(inode);
723 struct buffer_head *bh, *head;
724 loff_t offset = page_offset(page);
725
726 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
727 goto out_invalidate;
728
729 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
730 goto out_invalidate;
731
732 xfs_alert(ip->i_mount,
733 "page discard on page %p, inode 0x%llx, offset %llu.",
734 page, ip->i_ino, offset);
735
736 xfs_ilock(ip, XFS_ILOCK_EXCL);
737 bh = head = page_buffers(page);
738 do {
739 int error;
740 xfs_fileoff_t start_fsb;
741
742 if (!buffer_delay(bh))
743 goto next_buffer;
744
745 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
746 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
747 if (error) {
748 /* something screwed, just bail */
749 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
750 xfs_alert(ip->i_mount,
751 "page discard unable to remove delalloc mapping.");
752 }
753 break;
754 }
755next_buffer:
756 offset += 1 << inode->i_blkbits;
757
758 } while ((bh = bh->b_this_page) != head);
759
760 xfs_iunlock(ip, XFS_ILOCK_EXCL);
761out_invalidate:
762 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
763 return;
764}
765
766static int
767xfs_map_cow(
768 struct xfs_writepage_ctx *wpc,
769 struct inode *inode,
770 loff_t offset,
771 unsigned int *new_type)
772{
773 struct xfs_inode *ip = XFS_I(inode);
774 struct xfs_bmbt_irec imap;
775 bool is_cow = false;
776 int error;
777
778 /*
779 * If we already have a valid COW mapping keep using it.
780 */
781 if (wpc->io_type == XFS_IO_COW) {
782 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
783 if (wpc->imap_valid) {
784 *new_type = XFS_IO_COW;
785 return 0;
786 }
787 }
788
789 /*
790 * Else we need to check if there is a COW mapping at this offset.
791 */
792 xfs_ilock(ip, XFS_ILOCK_SHARED);
793 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
794 xfs_iunlock(ip, XFS_ILOCK_SHARED);
795
796 if (!is_cow)
797 return 0;
798
799 /*
800 * And if the COW mapping has a delayed extent here we need to
801 * allocate real space for it now.
802 */
803 if (isnullstartblock(imap.br_startblock)) {
804 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
805 &imap);
806 if (error)
807 return error;
808 }
809
810 wpc->io_type = *new_type = XFS_IO_COW;
811 wpc->imap_valid = true;
812 wpc->imap = imap;
813 return 0;
814}
815
816/*
817 * We implement an immediate ioend submission policy here to avoid needing to
818 * chain multiple ioends and hence nest mempool allocations which can violate
819 * forward progress guarantees we need to provide. The current ioend we are
820 * adding buffers to is cached on the writepage context, and if the new buffer
821 * does not append to the cached ioend it will create a new ioend and cache that
822 * instead.
823 *
824 * If a new ioend is created and cached, the old ioend is returned and queued
825 * locally for submission once the entire page is processed or an error has been
826 * detected. While ioends are submitted immediately after they are completed,
827 * batching optimisations are provided by higher level block plugging.
828 *
829 * At the end of a writeback pass, there will be a cached ioend remaining on the
830 * writepage context that the caller will need to submit.
831 */
832static int
833xfs_writepage_map(
834 struct xfs_writepage_ctx *wpc,
835 struct writeback_control *wbc,
836 struct inode *inode,
837 struct page *page,
838 loff_t offset,
839 __uint64_t end_offset)
840{
841 LIST_HEAD(submit_list);
842 struct xfs_ioend *ioend, *next;
843 struct buffer_head *bh, *head;
844 ssize_t len = 1 << inode->i_blkbits;
845 int error = 0;
846 int count = 0;
847 int uptodate = 1;
848 unsigned int new_type;
849
850 bh = head = page_buffers(page);
851 offset = page_offset(page);
852 do {
853 if (offset >= end_offset)
854 break;
855 if (!buffer_uptodate(bh))
856 uptodate = 0;
857
858 /*
859 * set_page_dirty dirties all buffers in a page, independent
860 * of their state. The dirty state however is entirely
861 * meaningless for holes (!mapped && uptodate), so skip
862 * buffers covering holes here.
863 */
864 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
865 wpc->imap_valid = false;
866 continue;
867 }
868
869 if (buffer_unwritten(bh))
870 new_type = XFS_IO_UNWRITTEN;
871 else if (buffer_delay(bh))
872 new_type = XFS_IO_DELALLOC;
873 else if (buffer_uptodate(bh))
874 new_type = XFS_IO_OVERWRITE;
875 else {
876 if (PageUptodate(page))
877 ASSERT(buffer_mapped(bh));
878 /*
879 * This buffer is not uptodate and will not be
880 * written to disk. Ensure that we will put any
881 * subsequent writeable buffers into a new
882 * ioend.
883 */
884 wpc->imap_valid = false;
885 continue;
886 }
887
888 if (xfs_is_reflink_inode(XFS_I(inode))) {
889 error = xfs_map_cow(wpc, inode, offset, &new_type);
890 if (error)
891 goto out;
892 }
893
894 if (wpc->io_type != new_type) {
895 wpc->io_type = new_type;
896 wpc->imap_valid = false;
897 }
898
899 if (wpc->imap_valid)
900 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
901 offset);
902 if (!wpc->imap_valid) {
903 error = xfs_map_blocks(inode, offset, &wpc->imap,
904 wpc->io_type);
905 if (error)
906 goto out;
907 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
908 offset);
909 }
910 if (wpc->imap_valid) {
911 lock_buffer(bh);
912 if (wpc->io_type != XFS_IO_OVERWRITE)
913 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
914 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
915 count++;
916 }
917
918 } while (offset += len, ((bh = bh->b_this_page) != head));
919
920 if (uptodate && bh == head)
921 SetPageUptodate(page);
922
923 ASSERT(wpc->ioend || list_empty(&submit_list));
924
925out:
926 /*
927 * On error, we have to fail the ioend here because we have locked
928 * buffers in the ioend. If we don't do this, we'll deadlock
929 * invalidating the page as that tries to lock the buffers on the page.
930 * Also, because we may have set pages under writeback, we have to make
931 * sure we run IO completion to mark the error state of the IO
932 * appropriately, so we can't cancel the ioend directly here. That means
933 * we have to mark this page as under writeback if we included any
934 * buffers from it in the ioend chain so that completion treats it
935 * correctly.
936 *
937 * If we didn't include the page in the ioend, the on error we can
938 * simply discard and unlock it as there are no other users of the page
939 * or it's buffers right now. The caller will still need to trigger
940 * submission of outstanding ioends on the writepage context so they are
941 * treated correctly on error.
942 */
943 if (count) {
944 xfs_start_page_writeback(page, !error);
945
946 /*
947 * Preserve the original error if there was one, otherwise catch
948 * submission errors here and propagate into subsequent ioend
949 * submissions.
950 */
951 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
952 int error2;
953
954 list_del_init(&ioend->io_list);
955 error2 = xfs_submit_ioend(wbc, ioend, error);
956 if (error2 && !error)
957 error = error2;
958 }
959 } else if (error) {
960 xfs_aops_discard_page(page);
961 ClearPageUptodate(page);
962 unlock_page(page);
963 } else {
964 /*
965 * We can end up here with no error and nothing to write if we
966 * race with a partial page truncate on a sub-page block sized
967 * filesystem. In that case we need to mark the page clean.
968 */
969 xfs_start_page_writeback(page, 1);
970 end_page_writeback(page);
971 }
972
973 mapping_set_error(page->mapping, error);
974 return error;
975}
976
977/*
978 * Write out a dirty page.
979 *
980 * For delalloc space on the page we need to allocate space and flush it.
981 * For unwritten space on the page we need to start the conversion to
982 * regular allocated space.
983 * For any other dirty buffer heads on the page we should flush them.
984 */
985STATIC int
986xfs_do_writepage(
987 struct page *page,
988 struct writeback_control *wbc,
989 void *data)
990{
991 struct xfs_writepage_ctx *wpc = data;
992 struct inode *inode = page->mapping->host;
993 loff_t offset;
994 __uint64_t end_offset;
995 pgoff_t end_index;
996
997 trace_xfs_writepage(inode, page, 0, 0);
998
999 ASSERT(page_has_buffers(page));
1000
1001 /*
1002 * Refuse to write the page out if we are called from reclaim context.
1003 *
1004 * This avoids stack overflows when called from deeply used stacks in
1005 * random callers for direct reclaim or memcg reclaim. We explicitly
1006 * allow reclaim from kswapd as the stack usage there is relatively low.
1007 *
1008 * This should never happen except in the case of a VM regression so
1009 * warn about it.
1010 */
1011 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1012 PF_MEMALLOC))
1013 goto redirty;
1014
1015 /*
1016 * Given that we do not allow direct reclaim to call us, we should
1017 * never be called while in a filesystem transaction.
1018 */
1019 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1020 goto redirty;
1021
1022 /*
1023 * Is this page beyond the end of the file?
1024 *
1025 * The page index is less than the end_index, adjust the end_offset
1026 * to the highest offset that this page should represent.
1027 * -----------------------------------------------------
1028 * | file mapping | <EOF> |
1029 * -----------------------------------------------------
1030 * | Page ... | Page N-2 | Page N-1 | Page N | |
1031 * ^--------------------------------^----------|--------
1032 * | desired writeback range | see else |
1033 * ---------------------------------^------------------|
1034 */
1035 offset = i_size_read(inode);
1036 end_index = offset >> PAGE_SHIFT;
1037 if (page->index < end_index)
1038 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1039 else {
1040 /*
1041 * Check whether the page to write out is beyond or straddles
1042 * i_size or not.
1043 * -------------------------------------------------------
1044 * | file mapping | <EOF> |
1045 * -------------------------------------------------------
1046 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1047 * ^--------------------------------^-----------|---------
1048 * | | Straddles |
1049 * ---------------------------------^-----------|--------|
1050 */
1051 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1052
1053 /*
1054 * Skip the page if it is fully outside i_size, e.g. due to a
1055 * truncate operation that is in progress. We must redirty the
1056 * page so that reclaim stops reclaiming it. Otherwise
1057 * xfs_vm_releasepage() is called on it and gets confused.
1058 *
1059 * Note that the end_index is unsigned long, it would overflow
1060 * if the given offset is greater than 16TB on 32-bit system
1061 * and if we do check the page is fully outside i_size or not
1062 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1063 * will be evaluated to 0. Hence this page will be redirtied
1064 * and be written out repeatedly which would result in an
1065 * infinite loop, the user program that perform this operation
1066 * will hang. Instead, we can verify this situation by checking
1067 * if the page to write is totally beyond the i_size or if it's
1068 * offset is just equal to the EOF.
1069 */
1070 if (page->index > end_index ||
1071 (page->index == end_index && offset_into_page == 0))
1072 goto redirty;
1073
1074 /*
1075 * The page straddles i_size. It must be zeroed out on each
1076 * and every writepage invocation because it may be mmapped.
1077 * "A file is mapped in multiples of the page size. For a file
1078 * that is not a multiple of the page size, the remaining
1079 * memory is zeroed when mapped, and writes to that region are
1080 * not written out to the file."
1081 */
1082 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1083
1084 /* Adjust the end_offset to the end of file */
1085 end_offset = offset;
1086 }
1087
1088 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1089
1090redirty:
1091 redirty_page_for_writepage(wbc, page);
1092 unlock_page(page);
1093 return 0;
1094}
1095
1096STATIC int
1097xfs_vm_writepage(
1098 struct page *page,
1099 struct writeback_control *wbc)
1100{
1101 struct xfs_writepage_ctx wpc = {
1102 .io_type = XFS_IO_INVALID,
1103 };
1104 int ret;
1105
1106 ret = xfs_do_writepage(page, wbc, &wpc);
1107 if (wpc.ioend)
1108 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1109 return ret;
1110}
1111
1112STATIC int
1113xfs_vm_writepages(
1114 struct address_space *mapping,
1115 struct writeback_control *wbc)
1116{
1117 struct xfs_writepage_ctx wpc = {
1118 .io_type = XFS_IO_INVALID,
1119 };
1120 int ret;
1121
1122 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1123 if (dax_mapping(mapping))
1124 return dax_writeback_mapping_range(mapping,
1125 xfs_find_bdev_for_inode(mapping->host), wbc);
1126
1127 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1128 if (wpc.ioend)
1129 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1130 return ret;
1131}
1132
1133/*
1134 * Called to move a page into cleanable state - and from there
1135 * to be released. The page should already be clean. We always
1136 * have buffer heads in this call.
1137 *
1138 * Returns 1 if the page is ok to release, 0 otherwise.
1139 */
1140STATIC int
1141xfs_vm_releasepage(
1142 struct page *page,
1143 gfp_t gfp_mask)
1144{
1145 int delalloc, unwritten;
1146
1147 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1148
1149 /*
1150 * mm accommodates an old ext3 case where clean pages might not have had
1151 * the dirty bit cleared. Thus, it can send actual dirty pages to
1152 * ->releasepage() via shrink_active_list(). Conversely,
1153 * block_invalidatepage() can send pages that are still marked dirty
1154 * but otherwise have invalidated buffers.
1155 *
1156 * We want to release the latter to avoid unnecessary buildup of the
1157 * LRU, skip the former and warn if we've left any lingering
1158 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1159 * or unwritten buffers and warn if the page is not dirty. Otherwise
1160 * try to release the buffers.
1161 */
1162 xfs_count_page_state(page, &delalloc, &unwritten);
1163
1164 if (delalloc) {
1165 WARN_ON_ONCE(!PageDirty(page));
1166 return 0;
1167 }
1168 if (unwritten) {
1169 WARN_ON_ONCE(!PageDirty(page));
1170 return 0;
1171 }
1172
1173 return try_to_free_buffers(page);
1174}
1175
1176/*
1177 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1178 * is, so that we can avoid repeated get_blocks calls.
1179 *
1180 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1181 * for blocks beyond EOF must be marked new so that sub block regions can be
1182 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1183 * was just allocated or is unwritten, otherwise the callers would overwrite
1184 * existing data with zeros. Hence we have to split the mapping into a range up
1185 * to and including EOF, and a second mapping for beyond EOF.
1186 */
1187static void
1188xfs_map_trim_size(
1189 struct inode *inode,
1190 sector_t iblock,
1191 struct buffer_head *bh_result,
1192 struct xfs_bmbt_irec *imap,
1193 xfs_off_t offset,
1194 ssize_t size)
1195{
1196 xfs_off_t mapping_size;
1197
1198 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1199 mapping_size <<= inode->i_blkbits;
1200
1201 ASSERT(mapping_size > 0);
1202 if (mapping_size > size)
1203 mapping_size = size;
1204 if (offset < i_size_read(inode) &&
1205 offset + mapping_size >= i_size_read(inode)) {
1206 /* limit mapping to block that spans EOF */
1207 mapping_size = roundup_64(i_size_read(inode) - offset,
1208 1 << inode->i_blkbits);
1209 }
1210 if (mapping_size > LONG_MAX)
1211 mapping_size = LONG_MAX;
1212
1213 bh_result->b_size = mapping_size;
1214}
1215
1216static int
1217xfs_get_blocks(
1218 struct inode *inode,
1219 sector_t iblock,
1220 struct buffer_head *bh_result,
1221 int create)
1222{
1223 struct xfs_inode *ip = XFS_I(inode);
1224 struct xfs_mount *mp = ip->i_mount;
1225 xfs_fileoff_t offset_fsb, end_fsb;
1226 int error = 0;
1227 int lockmode = 0;
1228 struct xfs_bmbt_irec imap;
1229 int nimaps = 1;
1230 xfs_off_t offset;
1231 ssize_t size;
1232
1233 BUG_ON(create);
1234
1235 if (XFS_FORCED_SHUTDOWN(mp))
1236 return -EIO;
1237
1238 offset = (xfs_off_t)iblock << inode->i_blkbits;
1239 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1240 size = bh_result->b_size;
1241
1242 if (offset >= i_size_read(inode))
1243 return 0;
1244
1245 /*
1246 * Direct I/O is usually done on preallocated files, so try getting
1247 * a block mapping without an exclusive lock first.
1248 */
1249 lockmode = xfs_ilock_data_map_shared(ip);
1250
1251 ASSERT(offset <= mp->m_super->s_maxbytes);
1252 if (offset + size > mp->m_super->s_maxbytes)
1253 size = mp->m_super->s_maxbytes - offset;
1254 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1255 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1256
1257 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1258 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1259 if (error)
1260 goto out_unlock;
1261
1262 if (nimaps) {
1263 trace_xfs_get_blocks_found(ip, offset, size,
1264 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1265 : XFS_IO_OVERWRITE, &imap);
1266 xfs_iunlock(ip, lockmode);
1267 } else {
1268 trace_xfs_get_blocks_notfound(ip, offset, size);
1269 goto out_unlock;
1270 }
1271
1272 /* trim mapping down to size requested */
1273 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1274
1275 /*
1276 * For unwritten extents do not report a disk address in the buffered
1277 * read case (treat as if we're reading into a hole).
1278 */
1279 if (imap.br_startblock != HOLESTARTBLOCK &&
1280 imap.br_startblock != DELAYSTARTBLOCK &&
1281 !ISUNWRITTEN(&imap))
1282 xfs_map_buffer(inode, bh_result, &imap, offset);
1283
1284 /*
1285 * If this is a realtime file, data may be on a different device.
1286 * to that pointed to from the buffer_head b_bdev currently.
1287 */
1288 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1289 return 0;
1290
1291out_unlock:
1292 xfs_iunlock(ip, lockmode);
1293 return error;
1294}
1295
1296STATIC ssize_t
1297xfs_vm_direct_IO(
1298 struct kiocb *iocb,
1299 struct iov_iter *iter)
1300{
1301 /*
1302 * We just need the method present so that open/fcntl allow direct I/O.
1303 */
1304 return -EINVAL;
1305}
1306
1307STATIC sector_t
1308xfs_vm_bmap(
1309 struct address_space *mapping,
1310 sector_t block)
1311{
1312 struct inode *inode = (struct inode *)mapping->host;
1313 struct xfs_inode *ip = XFS_I(inode);
1314
1315 trace_xfs_vm_bmap(XFS_I(inode));
1316
1317 /*
1318 * The swap code (ab-)uses ->bmap to get a block mapping and then
1319 * bypasseѕ the file system for actual I/O. We really can't allow
1320 * that on reflinks inodes, so we have to skip out here. And yes,
1321 * 0 is the magic code for a bmap error..
1322 */
1323 if (xfs_is_reflink_inode(ip))
1324 return 0;
1325
1326 filemap_write_and_wait(mapping);
1327 return generic_block_bmap(mapping, block, xfs_get_blocks);
1328}
1329
1330STATIC int
1331xfs_vm_readpage(
1332 struct file *unused,
1333 struct page *page)
1334{
1335 trace_xfs_vm_readpage(page->mapping->host, 1);
1336 return mpage_readpage(page, xfs_get_blocks);
1337}
1338
1339STATIC int
1340xfs_vm_readpages(
1341 struct file *unused,
1342 struct address_space *mapping,
1343 struct list_head *pages,
1344 unsigned nr_pages)
1345{
1346 trace_xfs_vm_readpages(mapping->host, nr_pages);
1347 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1348}
1349
1350/*
1351 * This is basically a copy of __set_page_dirty_buffers() with one
1352 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1353 * dirty, we'll never be able to clean them because we don't write buffers
1354 * beyond EOF, and that means we can't invalidate pages that span EOF
1355 * that have been marked dirty. Further, the dirty state can leak into
1356 * the file interior if the file is extended, resulting in all sorts of
1357 * bad things happening as the state does not match the underlying data.
1358 *
1359 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1360 * this only exist because of bufferheads and how the generic code manages them.
1361 */
1362STATIC int
1363xfs_vm_set_page_dirty(
1364 struct page *page)
1365{
1366 struct address_space *mapping = page->mapping;
1367 struct inode *inode = mapping->host;
1368 loff_t end_offset;
1369 loff_t offset;
1370 int newly_dirty;
1371
1372 if (unlikely(!mapping))
1373 return !TestSetPageDirty(page);
1374
1375 end_offset = i_size_read(inode);
1376 offset = page_offset(page);
1377
1378 spin_lock(&mapping->private_lock);
1379 if (page_has_buffers(page)) {
1380 struct buffer_head *head = page_buffers(page);
1381 struct buffer_head *bh = head;
1382
1383 do {
1384 if (offset < end_offset)
1385 set_buffer_dirty(bh);
1386 bh = bh->b_this_page;
1387 offset += 1 << inode->i_blkbits;
1388 } while (bh != head);
1389 }
1390 /*
1391 * Lock out page->mem_cgroup migration to keep PageDirty
1392 * synchronized with per-memcg dirty page counters.
1393 */
1394 lock_page_memcg(page);
1395 newly_dirty = !TestSetPageDirty(page);
1396 spin_unlock(&mapping->private_lock);
1397
1398 if (newly_dirty) {
1399 /* sigh - __set_page_dirty() is static, so copy it here, too */
1400 unsigned long flags;
1401
1402 spin_lock_irqsave(&mapping->tree_lock, flags);
1403 if (page->mapping) { /* Race with truncate? */
1404 WARN_ON_ONCE(!PageUptodate(page));
1405 account_page_dirtied(page, mapping);
1406 radix_tree_tag_set(&mapping->page_tree,
1407 page_index(page), PAGECACHE_TAG_DIRTY);
1408 }
1409 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1410 }
1411 unlock_page_memcg(page);
1412 if (newly_dirty)
1413 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1414 return newly_dirty;
1415}
1416
1417const struct address_space_operations xfs_address_space_operations = {
1418 .readpage = xfs_vm_readpage,
1419 .readpages = xfs_vm_readpages,
1420 .writepage = xfs_vm_writepage,
1421 .writepages = xfs_vm_writepages,
1422 .set_page_dirty = xfs_vm_set_page_dirty,
1423 .releasepage = xfs_vm_releasepage,
1424 .invalidatepage = xfs_vm_invalidatepage,
1425 .bmap = xfs_vm_bmap,
1426 .direct_IO = xfs_vm_direct_IO,
1427 .migratepage = buffer_migrate_page,
1428 .is_partially_uptodate = block_is_partially_uptodate,
1429 .error_remove_page = generic_error_remove_page,
1430};
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include "xfs_reflink.h"
35#include <linux/gfp.h>
36#include <linux/mpage.h>
37#include <linux/pagevec.h>
38#include <linux/writeback.h>
39
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
51void
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
59 *delalloc = *unwritten = 0;
60
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
70struct block_device *
71xfs_find_bdev_for_inode(
72 struct inode *inode)
73{
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
76
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
83struct dax_device *
84xfs_find_daxdev_for_inode(
85 struct inode *inode)
86{
87 struct xfs_inode *ip = XFS_I(inode);
88 struct xfs_mount *mp = ip->i_mount;
89
90 if (XFS_IS_REALTIME_INODE(ip))
91 return mp->m_rtdev_targp->bt_daxdev;
92 else
93 return mp->m_ddev_targp->bt_daxdev;
94}
95
96/*
97 * We're now finished for good with this page. Update the page state via the
98 * associated buffer_heads, paying attention to the start and end offsets that
99 * we need to process on the page.
100 *
101 * Note that we open code the action in end_buffer_async_write here so that we
102 * only have to iterate over the buffers attached to the page once. This is not
103 * only more efficient, but also ensures that we only calls end_page_writeback
104 * at the end of the iteration, and thus avoids the pitfall of having the page
105 * and buffers potentially freed after every call to end_buffer_async_write.
106 */
107static void
108xfs_finish_page_writeback(
109 struct inode *inode,
110 struct bio_vec *bvec,
111 int error)
112{
113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
114 bool busy = false;
115 unsigned int off = 0;
116 unsigned long flags;
117
118 ASSERT(bvec->bv_offset < PAGE_SIZE);
119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
122
123 local_irq_save(flags);
124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 do {
126 if (off >= bvec->bv_offset &&
127 off < bvec->bv_offset + bvec->bv_len) {
128 ASSERT(buffer_async_write(bh));
129 ASSERT(bh->b_end_io == NULL);
130
131 if (error) {
132 mark_buffer_write_io_error(bh);
133 clear_buffer_uptodate(bh);
134 SetPageError(bvec->bv_page);
135 } else {
136 set_buffer_uptodate(bh);
137 }
138 clear_buffer_async_write(bh);
139 unlock_buffer(bh);
140 } else if (buffer_async_write(bh)) {
141 ASSERT(buffer_locked(bh));
142 busy = true;
143 }
144 off += bh->b_size;
145 } while ((bh = bh->b_this_page) != head);
146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 local_irq_restore(flags);
148
149 if (!busy)
150 end_page_writeback(bvec->bv_page);
151}
152
153/*
154 * We're now finished for good with this ioend structure. Update the page
155 * state, release holds on bios, and finally free up memory. Do not use the
156 * ioend after this.
157 */
158STATIC void
159xfs_destroy_ioend(
160 struct xfs_ioend *ioend,
161 int error)
162{
163 struct inode *inode = ioend->io_inode;
164 struct bio *bio = &ioend->io_inline_bio;
165 struct bio *last = ioend->io_bio, *next;
166 u64 start = bio->bi_iter.bi_sector;
167 bool quiet = bio_flagged(bio, BIO_QUIET);
168
169 for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 struct bio_vec *bvec;
171 int i;
172
173 /*
174 * For the last bio, bi_private points to the ioend, so we
175 * need to explicitly end the iteration here.
176 */
177 if (bio == last)
178 next = NULL;
179 else
180 next = bio->bi_private;
181
182 /* walk each page on bio, ending page IO on them */
183 bio_for_each_segment_all(bvec, bio, i)
184 xfs_finish_page_writeback(inode, bvec, error);
185
186 bio_put(bio);
187 }
188
189 if (unlikely(error && !quiet)) {
190 xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 "writeback error on sector %llu", start);
192 }
193}
194
195/*
196 * Fast and loose check if this write could update the on-disk inode size.
197 */
198static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199{
200 return ioend->io_offset + ioend->io_size >
201 XFS_I(ioend->io_inode)->i_d.di_size;
202}
203
204STATIC int
205xfs_setfilesize_trans_alloc(
206 struct xfs_ioend *ioend)
207{
208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
209 struct xfs_trans *tp;
210 int error;
211
212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
213 XFS_TRANS_NOFS, &tp);
214 if (error)
215 return error;
216
217 ioend->io_append_trans = tp;
218
219 /*
220 * We may pass freeze protection with a transaction. So tell lockdep
221 * we released it.
222 */
223 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
224 /*
225 * We hand off the transaction to the completion thread now, so
226 * clear the flag here.
227 */
228 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
229 return 0;
230}
231
232/*
233 * Update on-disk file size now that data has been written to disk.
234 */
235STATIC int
236__xfs_setfilesize(
237 struct xfs_inode *ip,
238 struct xfs_trans *tp,
239 xfs_off_t offset,
240 size_t size)
241{
242 xfs_fsize_t isize;
243
244 xfs_ilock(ip, XFS_ILOCK_EXCL);
245 isize = xfs_new_eof(ip, offset + size);
246 if (!isize) {
247 xfs_iunlock(ip, XFS_ILOCK_EXCL);
248 xfs_trans_cancel(tp);
249 return 0;
250 }
251
252 trace_xfs_setfilesize(ip, offset, size);
253
254 ip->i_d.di_size = isize;
255 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
256 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
257
258 return xfs_trans_commit(tp);
259}
260
261int
262xfs_setfilesize(
263 struct xfs_inode *ip,
264 xfs_off_t offset,
265 size_t size)
266{
267 struct xfs_mount *mp = ip->i_mount;
268 struct xfs_trans *tp;
269 int error;
270
271 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
272 if (error)
273 return error;
274
275 return __xfs_setfilesize(ip, tp, offset, size);
276}
277
278STATIC int
279xfs_setfilesize_ioend(
280 struct xfs_ioend *ioend,
281 int error)
282{
283 struct xfs_inode *ip = XFS_I(ioend->io_inode);
284 struct xfs_trans *tp = ioend->io_append_trans;
285
286 /*
287 * The transaction may have been allocated in the I/O submission thread,
288 * thus we need to mark ourselves as being in a transaction manually.
289 * Similarly for freeze protection.
290 */
291 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
292 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
293
294 /* we abort the update if there was an IO error */
295 if (error) {
296 xfs_trans_cancel(tp);
297 return error;
298 }
299
300 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
301}
302
303/*
304 * IO write completion.
305 */
306STATIC void
307xfs_end_io(
308 struct work_struct *work)
309{
310 struct xfs_ioend *ioend =
311 container_of(work, struct xfs_ioend, io_work);
312 struct xfs_inode *ip = XFS_I(ioend->io_inode);
313 xfs_off_t offset = ioend->io_offset;
314 size_t size = ioend->io_size;
315 int error;
316
317 /*
318 * Just clean up the in-memory strutures if the fs has been shut down.
319 */
320 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
321 error = -EIO;
322 goto done;
323 }
324
325 /*
326 * Clean up any COW blocks on an I/O error.
327 */
328 error = blk_status_to_errno(ioend->io_bio->bi_status);
329 if (unlikely(error)) {
330 switch (ioend->io_type) {
331 case XFS_IO_COW:
332 xfs_reflink_cancel_cow_range(ip, offset, size, true);
333 break;
334 }
335
336 goto done;
337 }
338
339 /*
340 * Success: commit the COW or unwritten blocks if needed.
341 */
342 switch (ioend->io_type) {
343 case XFS_IO_COW:
344 error = xfs_reflink_end_cow(ip, offset, size);
345 break;
346 case XFS_IO_UNWRITTEN:
347 /* writeback should never update isize */
348 error = xfs_iomap_write_unwritten(ip, offset, size, false);
349 break;
350 default:
351 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
352 break;
353 }
354
355done:
356 if (ioend->io_append_trans)
357 error = xfs_setfilesize_ioend(ioend, error);
358 xfs_destroy_ioend(ioend, error);
359}
360
361STATIC void
362xfs_end_bio(
363 struct bio *bio)
364{
365 struct xfs_ioend *ioend = bio->bi_private;
366 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
367
368 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
369 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
370 else if (ioend->io_append_trans)
371 queue_work(mp->m_data_workqueue, &ioend->io_work);
372 else
373 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
374}
375
376STATIC int
377xfs_map_blocks(
378 struct inode *inode,
379 loff_t offset,
380 struct xfs_bmbt_irec *imap,
381 int type)
382{
383 struct xfs_inode *ip = XFS_I(inode);
384 struct xfs_mount *mp = ip->i_mount;
385 ssize_t count = i_blocksize(inode);
386 xfs_fileoff_t offset_fsb, end_fsb;
387 int error = 0;
388 int bmapi_flags = XFS_BMAPI_ENTIRE;
389 int nimaps = 1;
390
391 if (XFS_FORCED_SHUTDOWN(mp))
392 return -EIO;
393
394 /*
395 * Truncate can race with writeback since writeback doesn't take the
396 * iolock and truncate decreases the file size before it starts
397 * truncating the pages between new_size and old_size. Therefore, we
398 * can end up in the situation where writeback gets a CoW fork mapping
399 * but the truncate makes the mapping invalid and we end up in here
400 * trying to get a new mapping. Bail out here so that we simply never
401 * get a valid mapping and so we drop the write altogether. The page
402 * truncation will kill the contents anyway.
403 */
404 if (type == XFS_IO_COW && offset > i_size_read(inode))
405 return 0;
406
407 ASSERT(type != XFS_IO_COW);
408 if (type == XFS_IO_UNWRITTEN)
409 bmapi_flags |= XFS_BMAPI_IGSTATE;
410
411 xfs_ilock(ip, XFS_ILOCK_SHARED);
412 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
413 (ip->i_df.if_flags & XFS_IFEXTENTS));
414 ASSERT(offset <= mp->m_super->s_maxbytes);
415
416 if (offset > mp->m_super->s_maxbytes - count)
417 count = mp->m_super->s_maxbytes - offset;
418 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
419 offset_fsb = XFS_B_TO_FSBT(mp, offset);
420 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
421 imap, &nimaps, bmapi_flags);
422 /*
423 * Truncate an overwrite extent if there's a pending CoW
424 * reservation before the end of this extent. This forces us
425 * to come back to writepage to take care of the CoW.
426 */
427 if (nimaps && type == XFS_IO_OVERWRITE)
428 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
429 xfs_iunlock(ip, XFS_ILOCK_SHARED);
430
431 if (error)
432 return error;
433
434 if (type == XFS_IO_DELALLOC &&
435 (!nimaps || isnullstartblock(imap->br_startblock))) {
436 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
437 imap);
438 if (!error)
439 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
440 return error;
441 }
442
443#ifdef DEBUG
444 if (type == XFS_IO_UNWRITTEN) {
445 ASSERT(nimaps);
446 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
447 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
448 }
449#endif
450 if (nimaps)
451 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
452 return 0;
453}
454
455STATIC bool
456xfs_imap_valid(
457 struct inode *inode,
458 struct xfs_bmbt_irec *imap,
459 xfs_off_t offset)
460{
461 offset >>= inode->i_blkbits;
462
463 /*
464 * We have to make sure the cached mapping is within EOF to protect
465 * against eofblocks trimming on file release leaving us with a stale
466 * mapping. Otherwise, a page for a subsequent file extending buffered
467 * write could get picked up by this writeback cycle and written to the
468 * wrong blocks.
469 *
470 * Note that what we really want here is a generic mapping invalidation
471 * mechanism to protect us from arbitrary extent modifying contexts, not
472 * just eofblocks.
473 */
474 xfs_trim_extent_eof(imap, XFS_I(inode));
475
476 return offset >= imap->br_startoff &&
477 offset < imap->br_startoff + imap->br_blockcount;
478}
479
480STATIC void
481xfs_start_buffer_writeback(
482 struct buffer_head *bh)
483{
484 ASSERT(buffer_mapped(bh));
485 ASSERT(buffer_locked(bh));
486 ASSERT(!buffer_delay(bh));
487 ASSERT(!buffer_unwritten(bh));
488
489 bh->b_end_io = NULL;
490 set_buffer_async_write(bh);
491 set_buffer_uptodate(bh);
492 clear_buffer_dirty(bh);
493}
494
495STATIC void
496xfs_start_page_writeback(
497 struct page *page,
498 int clear_dirty)
499{
500 ASSERT(PageLocked(page));
501 ASSERT(!PageWriteback(page));
502
503 /*
504 * if the page was not fully cleaned, we need to ensure that the higher
505 * layers come back to it correctly. That means we need to keep the page
506 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
507 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
508 * write this page in this writeback sweep will be made.
509 */
510 if (clear_dirty) {
511 clear_page_dirty_for_io(page);
512 set_page_writeback(page);
513 } else
514 set_page_writeback_keepwrite(page);
515
516 unlock_page(page);
517}
518
519static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
520{
521 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
522}
523
524/*
525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
526 * it, and we submit that bio. The ioend may be used for multiple bio
527 * submissions, so we only want to allocate an append transaction for the ioend
528 * once. In the case of multiple bio submission, each bio will take an IO
529 * reference to the ioend to ensure that the ioend completion is only done once
530 * all bios have been submitted and the ioend is really done.
531 *
532 * If @fail is non-zero, it means that we have a situation where some part of
533 * the submission process has failed after we have marked paged for writeback
534 * and unlocked them. In this situation, we need to fail the bio and ioend
535 * rather than submit it to IO. This typically only happens on a filesystem
536 * shutdown.
537 */
538STATIC int
539xfs_submit_ioend(
540 struct writeback_control *wbc,
541 struct xfs_ioend *ioend,
542 int status)
543{
544 /* Convert CoW extents to regular */
545 if (!status && ioend->io_type == XFS_IO_COW) {
546 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
547 ioend->io_offset, ioend->io_size);
548 }
549
550 /* Reserve log space if we might write beyond the on-disk inode size. */
551 if (!status &&
552 ioend->io_type != XFS_IO_UNWRITTEN &&
553 xfs_ioend_is_append(ioend) &&
554 !ioend->io_append_trans)
555 status = xfs_setfilesize_trans_alloc(ioend);
556
557 ioend->io_bio->bi_private = ioend;
558 ioend->io_bio->bi_end_io = xfs_end_bio;
559 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
560
561 /*
562 * If we are failing the IO now, just mark the ioend with an
563 * error and finish it. This will run IO completion immediately
564 * as there is only one reference to the ioend at this point in
565 * time.
566 */
567 if (status) {
568 ioend->io_bio->bi_status = errno_to_blk_status(status);
569 bio_endio(ioend->io_bio);
570 return status;
571 }
572
573 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
574 submit_bio(ioend->io_bio);
575 return 0;
576}
577
578static void
579xfs_init_bio_from_bh(
580 struct bio *bio,
581 struct buffer_head *bh)
582{
583 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
584 bio_set_dev(bio, bh->b_bdev);
585}
586
587static struct xfs_ioend *
588xfs_alloc_ioend(
589 struct inode *inode,
590 unsigned int type,
591 xfs_off_t offset,
592 struct buffer_head *bh)
593{
594 struct xfs_ioend *ioend;
595 struct bio *bio;
596
597 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
598 xfs_init_bio_from_bh(bio, bh);
599
600 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
601 INIT_LIST_HEAD(&ioend->io_list);
602 ioend->io_type = type;
603 ioend->io_inode = inode;
604 ioend->io_size = 0;
605 ioend->io_offset = offset;
606 INIT_WORK(&ioend->io_work, xfs_end_io);
607 ioend->io_append_trans = NULL;
608 ioend->io_bio = bio;
609 return ioend;
610}
611
612/*
613 * Allocate a new bio, and chain the old bio to the new one.
614 *
615 * Note that we have to do perform the chaining in this unintuitive order
616 * so that the bi_private linkage is set up in the right direction for the
617 * traversal in xfs_destroy_ioend().
618 */
619static void
620xfs_chain_bio(
621 struct xfs_ioend *ioend,
622 struct writeback_control *wbc,
623 struct buffer_head *bh)
624{
625 struct bio *new;
626
627 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
628 xfs_init_bio_from_bh(new, bh);
629
630 bio_chain(ioend->io_bio, new);
631 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
632 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
633 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
634 submit_bio(ioend->io_bio);
635 ioend->io_bio = new;
636}
637
638/*
639 * Test to see if we've been building up a completion structure for
640 * earlier buffers -- if so, we try to append to this ioend if we
641 * can, otherwise we finish off any current ioend and start another.
642 * Return the ioend we finished off so that the caller can submit it
643 * once it has finished processing the dirty page.
644 */
645STATIC void
646xfs_add_to_ioend(
647 struct inode *inode,
648 struct buffer_head *bh,
649 xfs_off_t offset,
650 struct xfs_writepage_ctx *wpc,
651 struct writeback_control *wbc,
652 struct list_head *iolist)
653{
654 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
655 bh->b_blocknr != wpc->last_block + 1 ||
656 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
657 if (wpc->ioend)
658 list_add(&wpc->ioend->io_list, iolist);
659 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
660 }
661
662 /*
663 * If the buffer doesn't fit into the bio we need to allocate a new
664 * one. This shouldn't happen more than once for a given buffer.
665 */
666 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
667 xfs_chain_bio(wpc->ioend, wbc, bh);
668
669 wpc->ioend->io_size += bh->b_size;
670 wpc->last_block = bh->b_blocknr;
671 xfs_start_buffer_writeback(bh);
672}
673
674STATIC void
675xfs_map_buffer(
676 struct inode *inode,
677 struct buffer_head *bh,
678 struct xfs_bmbt_irec *imap,
679 xfs_off_t offset)
680{
681 sector_t bn;
682 struct xfs_mount *m = XFS_I(inode)->i_mount;
683 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
684 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
685
686 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
687 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
688
689 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
690 ((offset - iomap_offset) >> inode->i_blkbits);
691
692 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
693
694 bh->b_blocknr = bn;
695 set_buffer_mapped(bh);
696}
697
698STATIC void
699xfs_map_at_offset(
700 struct inode *inode,
701 struct buffer_head *bh,
702 struct xfs_bmbt_irec *imap,
703 xfs_off_t offset)
704{
705 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
706 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
707
708 xfs_map_buffer(inode, bh, imap, offset);
709 set_buffer_mapped(bh);
710 clear_buffer_delay(bh);
711 clear_buffer_unwritten(bh);
712}
713
714/*
715 * Test if a given page contains at least one buffer of a given @type.
716 * If @check_all_buffers is true, then we walk all the buffers in the page to
717 * try to find one of the type passed in. If it is not set, then the caller only
718 * needs to check the first buffer on the page for a match.
719 */
720STATIC bool
721xfs_check_page_type(
722 struct page *page,
723 unsigned int type,
724 bool check_all_buffers)
725{
726 struct buffer_head *bh;
727 struct buffer_head *head;
728
729 if (PageWriteback(page))
730 return false;
731 if (!page->mapping)
732 return false;
733 if (!page_has_buffers(page))
734 return false;
735
736 bh = head = page_buffers(page);
737 do {
738 if (buffer_unwritten(bh)) {
739 if (type == XFS_IO_UNWRITTEN)
740 return true;
741 } else if (buffer_delay(bh)) {
742 if (type == XFS_IO_DELALLOC)
743 return true;
744 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
745 if (type == XFS_IO_OVERWRITE)
746 return true;
747 }
748
749 /* If we are only checking the first buffer, we are done now. */
750 if (!check_all_buffers)
751 break;
752 } while ((bh = bh->b_this_page) != head);
753
754 return false;
755}
756
757STATIC void
758xfs_vm_invalidatepage(
759 struct page *page,
760 unsigned int offset,
761 unsigned int length)
762{
763 trace_xfs_invalidatepage(page->mapping->host, page, offset,
764 length);
765
766 /*
767 * If we are invalidating the entire page, clear the dirty state from it
768 * so that we can check for attempts to release dirty cached pages in
769 * xfs_vm_releasepage().
770 */
771 if (offset == 0 && length >= PAGE_SIZE)
772 cancel_dirty_page(page);
773 block_invalidatepage(page, offset, length);
774}
775
776/*
777 * If the page has delalloc buffers on it, we need to punch them out before we
778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
780 * is done on that same region - the delalloc extent is returned when none is
781 * supposed to be there.
782 *
783 * We prevent this by truncating away the delalloc regions on the page before
784 * invalidating it. Because they are delalloc, we can do this without needing a
785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
786 * truncation without a transaction as there is no space left for block
787 * reservation (typically why we see a ENOSPC in writeback).
788 *
789 * This is not a performance critical path, so for now just do the punching a
790 * buffer head at a time.
791 */
792STATIC void
793xfs_aops_discard_page(
794 struct page *page)
795{
796 struct inode *inode = page->mapping->host;
797 struct xfs_inode *ip = XFS_I(inode);
798 struct buffer_head *bh, *head;
799 loff_t offset = page_offset(page);
800
801 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
802 goto out_invalidate;
803
804 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 goto out_invalidate;
806
807 xfs_alert(ip->i_mount,
808 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
809 page, ip->i_ino, offset);
810
811 xfs_ilock(ip, XFS_ILOCK_EXCL);
812 bh = head = page_buffers(page);
813 do {
814 int error;
815 xfs_fileoff_t start_fsb;
816
817 if (!buffer_delay(bh))
818 goto next_buffer;
819
820 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
821 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
822 if (error) {
823 /* something screwed, just bail */
824 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
825 xfs_alert(ip->i_mount,
826 "page discard unable to remove delalloc mapping.");
827 }
828 break;
829 }
830next_buffer:
831 offset += i_blocksize(inode);
832
833 } while ((bh = bh->b_this_page) != head);
834
835 xfs_iunlock(ip, XFS_ILOCK_EXCL);
836out_invalidate:
837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
838 return;
839}
840
841static int
842xfs_map_cow(
843 struct xfs_writepage_ctx *wpc,
844 struct inode *inode,
845 loff_t offset,
846 unsigned int *new_type)
847{
848 struct xfs_inode *ip = XFS_I(inode);
849 struct xfs_bmbt_irec imap;
850 bool is_cow = false;
851 int error;
852
853 /*
854 * If we already have a valid COW mapping keep using it.
855 */
856 if (wpc->io_type == XFS_IO_COW) {
857 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
858 if (wpc->imap_valid) {
859 *new_type = XFS_IO_COW;
860 return 0;
861 }
862 }
863
864 /*
865 * Else we need to check if there is a COW mapping at this offset.
866 */
867 xfs_ilock(ip, XFS_ILOCK_SHARED);
868 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
869 xfs_iunlock(ip, XFS_ILOCK_SHARED);
870
871 if (!is_cow)
872 return 0;
873
874 /*
875 * And if the COW mapping has a delayed extent here we need to
876 * allocate real space for it now.
877 */
878 if (isnullstartblock(imap.br_startblock)) {
879 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
880 &imap);
881 if (error)
882 return error;
883 }
884
885 wpc->io_type = *new_type = XFS_IO_COW;
886 wpc->imap_valid = true;
887 wpc->imap = imap;
888 return 0;
889}
890
891/*
892 * We implement an immediate ioend submission policy here to avoid needing to
893 * chain multiple ioends and hence nest mempool allocations which can violate
894 * forward progress guarantees we need to provide. The current ioend we are
895 * adding buffers to is cached on the writepage context, and if the new buffer
896 * does not append to the cached ioend it will create a new ioend and cache that
897 * instead.
898 *
899 * If a new ioend is created and cached, the old ioend is returned and queued
900 * locally for submission once the entire page is processed or an error has been
901 * detected. While ioends are submitted immediately after they are completed,
902 * batching optimisations are provided by higher level block plugging.
903 *
904 * At the end of a writeback pass, there will be a cached ioend remaining on the
905 * writepage context that the caller will need to submit.
906 */
907static int
908xfs_writepage_map(
909 struct xfs_writepage_ctx *wpc,
910 struct writeback_control *wbc,
911 struct inode *inode,
912 struct page *page,
913 uint64_t end_offset)
914{
915 LIST_HEAD(submit_list);
916 struct xfs_ioend *ioend, *next;
917 struct buffer_head *bh, *head;
918 ssize_t len = i_blocksize(inode);
919 uint64_t offset;
920 int error = 0;
921 int count = 0;
922 int uptodate = 1;
923 unsigned int new_type;
924
925 bh = head = page_buffers(page);
926 offset = page_offset(page);
927 do {
928 if (offset >= end_offset)
929 break;
930 if (!buffer_uptodate(bh))
931 uptodate = 0;
932
933 /*
934 * set_page_dirty dirties all buffers in a page, independent
935 * of their state. The dirty state however is entirely
936 * meaningless for holes (!mapped && uptodate), so skip
937 * buffers covering holes here.
938 */
939 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
940 wpc->imap_valid = false;
941 continue;
942 }
943
944 if (buffer_unwritten(bh))
945 new_type = XFS_IO_UNWRITTEN;
946 else if (buffer_delay(bh))
947 new_type = XFS_IO_DELALLOC;
948 else if (buffer_uptodate(bh))
949 new_type = XFS_IO_OVERWRITE;
950 else {
951 if (PageUptodate(page))
952 ASSERT(buffer_mapped(bh));
953 /*
954 * This buffer is not uptodate and will not be
955 * written to disk. Ensure that we will put any
956 * subsequent writeable buffers into a new
957 * ioend.
958 */
959 wpc->imap_valid = false;
960 continue;
961 }
962
963 if (xfs_is_reflink_inode(XFS_I(inode))) {
964 error = xfs_map_cow(wpc, inode, offset, &new_type);
965 if (error)
966 goto out;
967 }
968
969 if (wpc->io_type != new_type) {
970 wpc->io_type = new_type;
971 wpc->imap_valid = false;
972 }
973
974 if (wpc->imap_valid)
975 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
976 offset);
977 if (!wpc->imap_valid) {
978 error = xfs_map_blocks(inode, offset, &wpc->imap,
979 wpc->io_type);
980 if (error)
981 goto out;
982 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
983 offset);
984 }
985 if (wpc->imap_valid) {
986 lock_buffer(bh);
987 if (wpc->io_type != XFS_IO_OVERWRITE)
988 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
989 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
990 count++;
991 }
992
993 } while (offset += len, ((bh = bh->b_this_page) != head));
994
995 if (uptodate && bh == head)
996 SetPageUptodate(page);
997
998 ASSERT(wpc->ioend || list_empty(&submit_list));
999
1000out:
1001 /*
1002 * On error, we have to fail the ioend here because we have locked
1003 * buffers in the ioend. If we don't do this, we'll deadlock
1004 * invalidating the page as that tries to lock the buffers on the page.
1005 * Also, because we may have set pages under writeback, we have to make
1006 * sure we run IO completion to mark the error state of the IO
1007 * appropriately, so we can't cancel the ioend directly here. That means
1008 * we have to mark this page as under writeback if we included any
1009 * buffers from it in the ioend chain so that completion treats it
1010 * correctly.
1011 *
1012 * If we didn't include the page in the ioend, the on error we can
1013 * simply discard and unlock it as there are no other users of the page
1014 * or it's buffers right now. The caller will still need to trigger
1015 * submission of outstanding ioends on the writepage context so they are
1016 * treated correctly on error.
1017 */
1018 if (count) {
1019 xfs_start_page_writeback(page, !error);
1020
1021 /*
1022 * Preserve the original error if there was one, otherwise catch
1023 * submission errors here and propagate into subsequent ioend
1024 * submissions.
1025 */
1026 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027 int error2;
1028
1029 list_del_init(&ioend->io_list);
1030 error2 = xfs_submit_ioend(wbc, ioend, error);
1031 if (error2 && !error)
1032 error = error2;
1033 }
1034 } else if (error) {
1035 xfs_aops_discard_page(page);
1036 ClearPageUptodate(page);
1037 unlock_page(page);
1038 } else {
1039 /*
1040 * We can end up here with no error and nothing to write if we
1041 * race with a partial page truncate on a sub-page block sized
1042 * filesystem. In that case we need to mark the page clean.
1043 */
1044 xfs_start_page_writeback(page, 1);
1045 end_page_writeback(page);
1046 }
1047
1048 mapping_set_error(page->mapping, error);
1049 return error;
1050}
1051
1052/*
1053 * Write out a dirty page.
1054 *
1055 * For delalloc space on the page we need to allocate space and flush it.
1056 * For unwritten space on the page we need to start the conversion to
1057 * regular allocated space.
1058 * For any other dirty buffer heads on the page we should flush them.
1059 */
1060STATIC int
1061xfs_do_writepage(
1062 struct page *page,
1063 struct writeback_control *wbc,
1064 void *data)
1065{
1066 struct xfs_writepage_ctx *wpc = data;
1067 struct inode *inode = page->mapping->host;
1068 loff_t offset;
1069 uint64_t end_offset;
1070 pgoff_t end_index;
1071
1072 trace_xfs_writepage(inode, page, 0, 0);
1073
1074 ASSERT(page_has_buffers(page));
1075
1076 /*
1077 * Refuse to write the page out if we are called from reclaim context.
1078 *
1079 * This avoids stack overflows when called from deeply used stacks in
1080 * random callers for direct reclaim or memcg reclaim. We explicitly
1081 * allow reclaim from kswapd as the stack usage there is relatively low.
1082 *
1083 * This should never happen except in the case of a VM regression so
1084 * warn about it.
1085 */
1086 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087 PF_MEMALLOC))
1088 goto redirty;
1089
1090 /*
1091 * Given that we do not allow direct reclaim to call us, we should
1092 * never be called while in a filesystem transaction.
1093 */
1094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1095 goto redirty;
1096
1097 /*
1098 * Is this page beyond the end of the file?
1099 *
1100 * The page index is less than the end_index, adjust the end_offset
1101 * to the highest offset that this page should represent.
1102 * -----------------------------------------------------
1103 * | file mapping | <EOF> |
1104 * -----------------------------------------------------
1105 * | Page ... | Page N-2 | Page N-1 | Page N | |
1106 * ^--------------------------------^----------|--------
1107 * | desired writeback range | see else |
1108 * ---------------------------------^------------------|
1109 */
1110 offset = i_size_read(inode);
1111 end_index = offset >> PAGE_SHIFT;
1112 if (page->index < end_index)
1113 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1114 else {
1115 /*
1116 * Check whether the page to write out is beyond or straddles
1117 * i_size or not.
1118 * -------------------------------------------------------
1119 * | file mapping | <EOF> |
1120 * -------------------------------------------------------
1121 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1122 * ^--------------------------------^-----------|---------
1123 * | | Straddles |
1124 * ---------------------------------^-----------|--------|
1125 */
1126 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1127
1128 /*
1129 * Skip the page if it is fully outside i_size, e.g. due to a
1130 * truncate operation that is in progress. We must redirty the
1131 * page so that reclaim stops reclaiming it. Otherwise
1132 * xfs_vm_releasepage() is called on it and gets confused.
1133 *
1134 * Note that the end_index is unsigned long, it would overflow
1135 * if the given offset is greater than 16TB on 32-bit system
1136 * and if we do check the page is fully outside i_size or not
1137 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138 * will be evaluated to 0. Hence this page will be redirtied
1139 * and be written out repeatedly which would result in an
1140 * infinite loop, the user program that perform this operation
1141 * will hang. Instead, we can verify this situation by checking
1142 * if the page to write is totally beyond the i_size or if it's
1143 * offset is just equal to the EOF.
1144 */
1145 if (page->index > end_index ||
1146 (page->index == end_index && offset_into_page == 0))
1147 goto redirty;
1148
1149 /*
1150 * The page straddles i_size. It must be zeroed out on each
1151 * and every writepage invocation because it may be mmapped.
1152 * "A file is mapped in multiples of the page size. For a file
1153 * that is not a multiple of the page size, the remaining
1154 * memory is zeroed when mapped, and writes to that region are
1155 * not written out to the file."
1156 */
1157 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158
1159 /* Adjust the end_offset to the end of file */
1160 end_offset = offset;
1161 }
1162
1163 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1164
1165redirty:
1166 redirty_page_for_writepage(wbc, page);
1167 unlock_page(page);
1168 return 0;
1169}
1170
1171STATIC int
1172xfs_vm_writepage(
1173 struct page *page,
1174 struct writeback_control *wbc)
1175{
1176 struct xfs_writepage_ctx wpc = {
1177 .io_type = XFS_IO_INVALID,
1178 };
1179 int ret;
1180
1181 ret = xfs_do_writepage(page, wbc, &wpc);
1182 if (wpc.ioend)
1183 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184 return ret;
1185}
1186
1187STATIC int
1188xfs_vm_writepages(
1189 struct address_space *mapping,
1190 struct writeback_control *wbc)
1191{
1192 struct xfs_writepage_ctx wpc = {
1193 .io_type = XFS_IO_INVALID,
1194 };
1195 int ret;
1196
1197 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1198 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1199 if (wpc.ioend)
1200 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201 return ret;
1202}
1203
1204STATIC int
1205xfs_dax_writepages(
1206 struct address_space *mapping,
1207 struct writeback_control *wbc)
1208{
1209 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210 return dax_writeback_mapping_range(mapping,
1211 xfs_find_bdev_for_inode(mapping->host), wbc);
1212}
1213
1214/*
1215 * Called to move a page into cleanable state - and from there
1216 * to be released. The page should already be clean. We always
1217 * have buffer heads in this call.
1218 *
1219 * Returns 1 if the page is ok to release, 0 otherwise.
1220 */
1221STATIC int
1222xfs_vm_releasepage(
1223 struct page *page,
1224 gfp_t gfp_mask)
1225{
1226 int delalloc, unwritten;
1227
1228 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1229
1230 /*
1231 * mm accommodates an old ext3 case where clean pages might not have had
1232 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233 * ->releasepage() via shrink_active_list(). Conversely,
1234 * block_invalidatepage() can send pages that are still marked dirty but
1235 * otherwise have invalidated buffers.
1236 *
1237 * We want to release the latter to avoid unnecessary buildup of the
1238 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239 * that are entirely invalidated and need to be released. Hence the
1240 * only time we should get dirty pages here is through
1241 * shrink_active_list() and so we can simply skip those now.
1242 *
1243 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244 * or invalidated pages we are about to release.
1245 */
1246 if (PageDirty(page))
1247 return 0;
1248
1249 xfs_count_page_state(page, &delalloc, &unwritten);
1250
1251 if (WARN_ON_ONCE(delalloc))
1252 return 0;
1253 if (WARN_ON_ONCE(unwritten))
1254 return 0;
1255
1256 return try_to_free_buffers(page);
1257}
1258
1259/*
1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261 * is, so that we can avoid repeated get_blocks calls.
1262 *
1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264 * for blocks beyond EOF must be marked new so that sub block regions can be
1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266 * was just allocated or is unwritten, otherwise the callers would overwrite
1267 * existing data with zeros. Hence we have to split the mapping into a range up
1268 * to and including EOF, and a second mapping for beyond EOF.
1269 */
1270static void
1271xfs_map_trim_size(
1272 struct inode *inode,
1273 sector_t iblock,
1274 struct buffer_head *bh_result,
1275 struct xfs_bmbt_irec *imap,
1276 xfs_off_t offset,
1277 ssize_t size)
1278{
1279 xfs_off_t mapping_size;
1280
1281 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282 mapping_size <<= inode->i_blkbits;
1283
1284 ASSERT(mapping_size > 0);
1285 if (mapping_size > size)
1286 mapping_size = size;
1287 if (offset < i_size_read(inode) &&
1288 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1289 /* limit mapping to block that spans EOF */
1290 mapping_size = roundup_64(i_size_read(inode) - offset,
1291 i_blocksize(inode));
1292 }
1293 if (mapping_size > LONG_MAX)
1294 mapping_size = LONG_MAX;
1295
1296 bh_result->b_size = mapping_size;
1297}
1298
1299static int
1300xfs_get_blocks(
1301 struct inode *inode,
1302 sector_t iblock,
1303 struct buffer_head *bh_result,
1304 int create)
1305{
1306 struct xfs_inode *ip = XFS_I(inode);
1307 struct xfs_mount *mp = ip->i_mount;
1308 xfs_fileoff_t offset_fsb, end_fsb;
1309 int error = 0;
1310 int lockmode = 0;
1311 struct xfs_bmbt_irec imap;
1312 int nimaps = 1;
1313 xfs_off_t offset;
1314 ssize_t size;
1315
1316 BUG_ON(create);
1317
1318 if (XFS_FORCED_SHUTDOWN(mp))
1319 return -EIO;
1320
1321 offset = (xfs_off_t)iblock << inode->i_blkbits;
1322 ASSERT(bh_result->b_size >= i_blocksize(inode));
1323 size = bh_result->b_size;
1324
1325 if (offset >= i_size_read(inode))
1326 return 0;
1327
1328 /*
1329 * Direct I/O is usually done on preallocated files, so try getting
1330 * a block mapping without an exclusive lock first.
1331 */
1332 lockmode = xfs_ilock_data_map_shared(ip);
1333
1334 ASSERT(offset <= mp->m_super->s_maxbytes);
1335 if (offset > mp->m_super->s_maxbytes - size)
1336 size = mp->m_super->s_maxbytes - offset;
1337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
1340 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341 &nimaps, 0);
1342 if (error)
1343 goto out_unlock;
1344 if (!nimaps) {
1345 trace_xfs_get_blocks_notfound(ip, offset, size);
1346 goto out_unlock;
1347 }
1348
1349 trace_xfs_get_blocks_found(ip, offset, size,
1350 imap.br_state == XFS_EXT_UNWRITTEN ?
1351 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352 xfs_iunlock(ip, lockmode);
1353
1354 /* trim mapping down to size requested */
1355 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1356
1357 /*
1358 * For unwritten extents do not report a disk address in the buffered
1359 * read case (treat as if we're reading into a hole).
1360 */
1361 if (xfs_bmap_is_real_extent(&imap))
1362 xfs_map_buffer(inode, bh_result, &imap, offset);
1363
1364 /*
1365 * If this is a realtime file, data may be on a different device.
1366 * to that pointed to from the buffer_head b_bdev currently.
1367 */
1368 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1369 return 0;
1370
1371out_unlock:
1372 xfs_iunlock(ip, lockmode);
1373 return error;
1374}
1375
1376STATIC sector_t
1377xfs_vm_bmap(
1378 struct address_space *mapping,
1379 sector_t block)
1380{
1381 struct inode *inode = (struct inode *)mapping->host;
1382 struct xfs_inode *ip = XFS_I(inode);
1383
1384 trace_xfs_vm_bmap(XFS_I(inode));
1385
1386 /*
1387 * The swap code (ab-)uses ->bmap to get a block mapping and then
1388 * bypasses the file system for actual I/O. We really can't allow
1389 * that on reflinks inodes, so we have to skip out here. And yes,
1390 * 0 is the magic code for a bmap error.
1391 *
1392 * Since we don't pass back blockdev info, we can't return bmap
1393 * information for rt files either.
1394 */
1395 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1396 return 0;
1397
1398 filemap_write_and_wait(mapping);
1399 return generic_block_bmap(mapping, block, xfs_get_blocks);
1400}
1401
1402STATIC int
1403xfs_vm_readpage(
1404 struct file *unused,
1405 struct page *page)
1406{
1407 trace_xfs_vm_readpage(page->mapping->host, 1);
1408 return mpage_readpage(page, xfs_get_blocks);
1409}
1410
1411STATIC int
1412xfs_vm_readpages(
1413 struct file *unused,
1414 struct address_space *mapping,
1415 struct list_head *pages,
1416 unsigned nr_pages)
1417{
1418 trace_xfs_vm_readpages(mapping->host, nr_pages);
1419 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1420}
1421
1422/*
1423 * This is basically a copy of __set_page_dirty_buffers() with one
1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1425 * dirty, we'll never be able to clean them because we don't write buffers
1426 * beyond EOF, and that means we can't invalidate pages that span EOF
1427 * that have been marked dirty. Further, the dirty state can leak into
1428 * the file interior if the file is extended, resulting in all sorts of
1429 * bad things happening as the state does not match the underlying data.
1430 *
1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1432 * this only exist because of bufferheads and how the generic code manages them.
1433 */
1434STATIC int
1435xfs_vm_set_page_dirty(
1436 struct page *page)
1437{
1438 struct address_space *mapping = page->mapping;
1439 struct inode *inode = mapping->host;
1440 loff_t end_offset;
1441 loff_t offset;
1442 int newly_dirty;
1443
1444 if (unlikely(!mapping))
1445 return !TestSetPageDirty(page);
1446
1447 end_offset = i_size_read(inode);
1448 offset = page_offset(page);
1449
1450 spin_lock(&mapping->private_lock);
1451 if (page_has_buffers(page)) {
1452 struct buffer_head *head = page_buffers(page);
1453 struct buffer_head *bh = head;
1454
1455 do {
1456 if (offset < end_offset)
1457 set_buffer_dirty(bh);
1458 bh = bh->b_this_page;
1459 offset += i_blocksize(inode);
1460 } while (bh != head);
1461 }
1462 /*
1463 * Lock out page->mem_cgroup migration to keep PageDirty
1464 * synchronized with per-memcg dirty page counters.
1465 */
1466 lock_page_memcg(page);
1467 newly_dirty = !TestSetPageDirty(page);
1468 spin_unlock(&mapping->private_lock);
1469
1470 if (newly_dirty)
1471 __set_page_dirty(page, mapping, 1);
1472 unlock_page_memcg(page);
1473 if (newly_dirty)
1474 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1475 return newly_dirty;
1476}
1477
1478const struct address_space_operations xfs_address_space_operations = {
1479 .readpage = xfs_vm_readpage,
1480 .readpages = xfs_vm_readpages,
1481 .writepage = xfs_vm_writepage,
1482 .writepages = xfs_vm_writepages,
1483 .set_page_dirty = xfs_vm_set_page_dirty,
1484 .releasepage = xfs_vm_releasepage,
1485 .invalidatepage = xfs_vm_invalidatepage,
1486 .bmap = xfs_vm_bmap,
1487 .direct_IO = noop_direct_IO,
1488 .migratepage = buffer_migrate_page,
1489 .is_partially_uptodate = block_is_partially_uptodate,
1490 .error_remove_page = generic_error_remove_page,
1491};
1492
1493const struct address_space_operations xfs_dax_aops = {
1494 .writepages = xfs_dax_writepages,
1495 .direct_IO = noop_direct_IO,
1496 .set_page_dirty = noop_set_page_dirty,
1497 .invalidatepage = noop_invalidatepage,
1498};