Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_shared.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
 
 
  23#include "xfs_mount.h"
  24#include "xfs_inode.h"
  25#include "xfs_trans.h"
  26#include "xfs_inode_item.h"
  27#include "xfs_alloc.h"
  28#include "xfs_error.h"
  29#include "xfs_iomap.h"
  30#include "xfs_trace.h"
  31#include "xfs_bmap.h"
  32#include "xfs_bmap_util.h"
  33#include "xfs_bmap_btree.h"
  34#include "xfs_reflink.h"
 
  35#include <linux/gfp.h>
  36#include <linux/mpage.h>
  37#include <linux/pagevec.h>
  38#include <linux/writeback.h>
  39
  40/*
  41 * structure owned by writepages passed to individual writepage calls
  42 */
  43struct xfs_writepage_ctx {
  44	struct xfs_bmbt_irec    imap;
  45	bool			imap_valid;
  46	unsigned int		io_type;
  47	struct xfs_ioend	*ioend;
  48	sector_t		last_block;
  49};
  50
  51void
  52xfs_count_page_state(
  53	struct page		*page,
  54	int			*delalloc,
  55	int			*unwritten)
  56{
  57	struct buffer_head	*bh, *head;
  58
  59	*delalloc = *unwritten = 0;
  60
  61	bh = head = page_buffers(page);
  62	do {
  63		if (buffer_unwritten(bh))
  64			(*unwritten) = 1;
  65		else if (buffer_delay(bh))
  66			(*delalloc) = 1;
  67	} while ((bh = bh->b_this_page) != head);
  68}
  69
  70struct block_device *
  71xfs_find_bdev_for_inode(
  72	struct inode		*inode)
  73{
  74	struct xfs_inode	*ip = XFS_I(inode);
  75	struct xfs_mount	*mp = ip->i_mount;
  76
  77	if (XFS_IS_REALTIME_INODE(ip))
  78		return mp->m_rtdev_targp->bt_bdev;
  79	else
  80		return mp->m_ddev_targp->bt_bdev;
  81}
  82
  83/*
  84 * We're now finished for good with this page.  Update the page state via the
  85 * associated buffer_heads, paying attention to the start and end offsets that
  86 * we need to process on the page.
  87 *
  88 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
  89 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
  90 * the page at all, as we may be racing with memory reclaim and it can free both
  91 * the bufferhead chain and the page as it will see the page as clean and
  92 * unused.
  93 */
  94static void
  95xfs_finish_page_writeback(
  96	struct inode		*inode,
  97	struct bio_vec		*bvec,
  98	int			error)
  99{
 100	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
 101	struct buffer_head	*head, *bh, *next;
 102	unsigned int		off = 0;
 103	unsigned int		bsize;
 104
 105	ASSERT(bvec->bv_offset < PAGE_SIZE);
 106	ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
 107	ASSERT(end < PAGE_SIZE);
 108	ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
 109
 110	bh = head = page_buffers(bvec->bv_page);
 111
 112	bsize = bh->b_size;
 113	do {
 114		next = bh->b_this_page;
 115		if (off < bvec->bv_offset)
 116			goto next_bh;
 117		if (off > end)
 118			break;
 119		bh->b_end_io(bh, !error);
 120next_bh:
 121		off += bsize;
 122	} while ((bh = next) != head);
 123}
 124
 125/*
 126 * We're now finished for good with this ioend structure.  Update the page
 127 * state, release holds on bios, and finally free up memory.  Do not use the
 128 * ioend after this.
 129 */
 130STATIC void
 131xfs_destroy_ioend(
 132	struct xfs_ioend	*ioend,
 133	int			error)
 134{
 135	struct inode		*inode = ioend->io_inode;
 136	struct bio		*last = ioend->io_bio;
 137	struct bio		*bio, *next;
 138
 139	for (bio = &ioend->io_inline_bio; bio; bio = next) {
 140		struct bio_vec	*bvec;
 141		int		i;
 142
 143		/*
 144		 * For the last bio, bi_private points to the ioend, so we
 145		 * need to explicitly end the iteration here.
 146		 */
 147		if (bio == last)
 148			next = NULL;
 149		else
 150			next = bio->bi_private;
 151
 152		/* walk each page on bio, ending page IO on them */
 153		bio_for_each_segment_all(bvec, bio, i)
 154			xfs_finish_page_writeback(inode, bvec, error);
 155
 156		bio_put(bio);
 
 
 157	}
 
 
 158}
 159
 160/*
 161 * Fast and loose check if this write could update the on-disk inode size.
 162 */
 163static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 164{
 165	return ioend->io_offset + ioend->io_size >
 166		XFS_I(ioend->io_inode)->i_d.di_size;
 167}
 168
 169STATIC int
 170xfs_setfilesize_trans_alloc(
 171	struct xfs_ioend	*ioend)
 172{
 173	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 174	struct xfs_trans	*tp;
 175	int			error;
 176
 177	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 178	if (error)
 
 
 
 179		return error;
 
 180
 181	ioend->io_append_trans = tp;
 182
 183	/*
 184	 * We may pass freeze protection with a transaction.  So tell lockdep
 185	 * we released it.
 186	 */
 187	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 
 188	/*
 189	 * We hand off the transaction to the completion thread now, so
 190	 * clear the flag here.
 191	 */
 192	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 193	return 0;
 194}
 195
 196/*
 197 * Update on-disk file size now that data has been written to disk.
 198 */
 199STATIC int
 200__xfs_setfilesize(
 201	struct xfs_inode	*ip,
 202	struct xfs_trans	*tp,
 203	xfs_off_t		offset,
 204	size_t			size)
 205{
 
 
 206	xfs_fsize_t		isize;
 207
 
 
 
 
 
 
 
 
 
 208	xfs_ilock(ip, XFS_ILOCK_EXCL);
 209	isize = xfs_new_eof(ip, offset + size);
 210	if (!isize) {
 211		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 212		xfs_trans_cancel(tp);
 213		return 0;
 214	}
 215
 216	trace_xfs_setfilesize(ip, offset, size);
 217
 218	ip->i_d.di_size = isize;
 219	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 220	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 221
 222	return xfs_trans_commit(tp);
 223}
 224
 225int
 226xfs_setfilesize(
 227	struct xfs_inode	*ip,
 228	xfs_off_t		offset,
 229	size_t			size)
 230{
 231	struct xfs_mount	*mp = ip->i_mount;
 232	struct xfs_trans	*tp;
 233	int			error;
 234
 235	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 236	if (error)
 237		return error;
 238
 239	return __xfs_setfilesize(ip, tp, offset, size);
 240}
 241
 242STATIC int
 243xfs_setfilesize_ioend(
 244	struct xfs_ioend	*ioend,
 245	int			error)
 246{
 247	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 248	struct xfs_trans	*tp = ioend->io_append_trans;
 249
 250	/*
 251	 * The transaction may have been allocated in the I/O submission thread,
 252	 * thus we need to mark ourselves as being in a transaction manually.
 253	 * Similarly for freeze protection.
 254	 */
 255	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 256	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 257
 258	/* we abort the update if there was an IO error */
 259	if (error) {
 260		xfs_trans_cancel(tp);
 261		return error;
 
 
 
 262	}
 263
 264	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 265}
 266
 267/*
 268 * IO write completion.
 269 */
 270STATIC void
 271xfs_end_io(
 272	struct work_struct *work)
 273{
 274	struct xfs_ioend	*ioend =
 275		container_of(work, struct xfs_ioend, io_work);
 276	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 277	xfs_off_t		offset = ioend->io_offset;
 278	size_t			size = ioend->io_size;
 279	int			error = ioend->io_bio->bi_error;
 280
 281	/*
 282	 * Just clean up the in-memory strutures if the fs has been shut down.
 283	 */
 284	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 285		error = -EIO;
 286		goto done;
 287	}
 288
 289	/*
 290	 * Clean up any COW blocks on an I/O error.
 291	 */
 292	if (unlikely(error)) {
 293		switch (ioend->io_type) {
 294		case XFS_IO_COW:
 295			xfs_reflink_cancel_cow_range(ip, offset, size, true);
 296			break;
 297		}
 298
 299		goto done;
 300	}
 301
 302	/*
 303	 * Success:  commit the COW or unwritten blocks if needed.
 
 304	 */
 305	switch (ioend->io_type) {
 306	case XFS_IO_COW:
 307		error = xfs_reflink_end_cow(ip, offset, size);
 308		break;
 309	case XFS_IO_UNWRITTEN:
 310		error = xfs_iomap_write_unwritten(ip, offset, size);
 311		break;
 312	default:
 313		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
 314		break;
 
 
 
 
 
 
 
 
 
 
 
 315	}
 316
 317done:
 318	if (ioend->io_append_trans)
 319		error = xfs_setfilesize_ioend(ioend, error);
 320	xfs_destroy_ioend(ioend, error);
 321}
 322
 
 
 
 323STATIC void
 324xfs_end_bio(
 325	struct bio		*bio)
 326{
 327	struct xfs_ioend	*ioend = bio->bi_private;
 328	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 
 329
 330	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
 331		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 332	else if (ioend->io_append_trans)
 333		queue_work(mp->m_data_workqueue, &ioend->io_work);
 334	else
 335		xfs_destroy_ioend(ioend, bio->bi_error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336}
 337
 338STATIC int
 339xfs_map_blocks(
 340	struct inode		*inode,
 341	loff_t			offset,
 342	struct xfs_bmbt_irec	*imap,
 343	int			type)
 
 344{
 345	struct xfs_inode	*ip = XFS_I(inode);
 346	struct xfs_mount	*mp = ip->i_mount;
 347	ssize_t			count = 1 << inode->i_blkbits;
 348	xfs_fileoff_t		offset_fsb, end_fsb;
 349	int			error = 0;
 350	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 351	int			nimaps = 1;
 352
 353	if (XFS_FORCED_SHUTDOWN(mp))
 354		return -EIO;
 355
 356	ASSERT(type != XFS_IO_COW);
 357	if (type == XFS_IO_UNWRITTEN)
 358		bmapi_flags |= XFS_BMAPI_IGSTATE;
 359
 360	xfs_ilock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 361	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 362	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 363	ASSERT(offset <= mp->m_super->s_maxbytes);
 364
 365	if (offset + count > mp->m_super->s_maxbytes)
 366		count = mp->m_super->s_maxbytes - offset;
 367	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 368	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 369	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 370				imap, &nimaps, bmapi_flags);
 371	/*
 372	 * Truncate an overwrite extent if there's a pending CoW
 373	 * reservation before the end of this extent.  This forces us
 374	 * to come back to writepage to take care of the CoW.
 375	 */
 376	if (nimaps && type == XFS_IO_OVERWRITE)
 377		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
 378	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 379
 380	if (error)
 381		return error;
 382
 383	if (type == XFS_IO_DELALLOC &&
 384	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 385		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
 386				imap);
 387		if (!error)
 388			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 389		return error;
 390	}
 391
 392#ifdef DEBUG
 393	if (type == XFS_IO_UNWRITTEN) {
 394		ASSERT(nimaps);
 395		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 396		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 397	}
 398#endif
 399	if (nimaps)
 400		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 401	return 0;
 402}
 403
 404STATIC bool
 405xfs_imap_valid(
 406	struct inode		*inode,
 407	struct xfs_bmbt_irec	*imap,
 408	xfs_off_t		offset)
 409{
 410	offset >>= inode->i_blkbits;
 411
 412	return offset >= imap->br_startoff &&
 413		offset < imap->br_startoff + imap->br_blockcount;
 414}
 415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416STATIC void
 417xfs_start_buffer_writeback(
 418	struct buffer_head	*bh)
 419{
 420	ASSERT(buffer_mapped(bh));
 421	ASSERT(buffer_locked(bh));
 422	ASSERT(!buffer_delay(bh));
 423	ASSERT(!buffer_unwritten(bh));
 424
 425	mark_buffer_async_write(bh);
 426	set_buffer_uptodate(bh);
 427	clear_buffer_dirty(bh);
 428}
 429
 430STATIC void
 431xfs_start_page_writeback(
 432	struct page		*page,
 433	int			clear_dirty)
 
 434{
 435	ASSERT(PageLocked(page));
 436	ASSERT(!PageWriteback(page));
 437
 438	/*
 439	 * if the page was not fully cleaned, we need to ensure that the higher
 440	 * layers come back to it correctly. That means we need to keep the page
 441	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
 442	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
 443	 * write this page in this writeback sweep will be made.
 444	 */
 445	if (clear_dirty) {
 446		clear_page_dirty_for_io(page);
 447		set_page_writeback(page);
 448	} else
 449		set_page_writeback_keepwrite(page);
 450
 451	unlock_page(page);
 
 
 
 452}
 453
 454static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 455{
 456	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 457}
 458
 459/*
 460 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 461 * it, and we submit that bio. The ioend may be used for multiple bio
 462 * submissions, so we only want to allocate an append transaction for the ioend
 463 * once. In the case of multiple bio submission, each bio will take an IO
 464 * reference to the ioend to ensure that the ioend completion is only done once
 465 * all bios have been submitted and the ioend is really done.
 
 
 
 
 
 
 
 
 
 466 *
 467 * If @fail is non-zero, it means that we have a situation where some part of
 468 * the submission process has failed after we have marked paged for writeback
 469 * and unlocked them. In this situation, we need to fail the bio and ioend
 470 * rather than submit it to IO. This typically only happens on a filesystem
 471 * shutdown.
 472 */
 473STATIC int
 474xfs_submit_ioend(
 475	struct writeback_control *wbc,
 476	struct xfs_ioend	*ioend,
 477	int			status)
 478{
 479	/* Convert CoW extents to regular */
 480	if (!status && ioend->io_type == XFS_IO_COW) {
 481		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
 482				ioend->io_offset, ioend->io_size);
 483	}
 484
 485	/* Reserve log space if we might write beyond the on-disk inode size. */
 486	if (!status &&
 487	    ioend->io_type != XFS_IO_UNWRITTEN &&
 488	    xfs_ioend_is_append(ioend) &&
 489	    !ioend->io_append_trans)
 490		status = xfs_setfilesize_trans_alloc(ioend);
 491
 492	ioend->io_bio->bi_private = ioend;
 493	ioend->io_bio->bi_end_io = xfs_end_bio;
 494	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 495
 496	/*
 497	 * If we are failing the IO now, just mark the ioend with an
 498	 * error and finish it. This will run IO completion immediately
 499	 * as there is only one reference to the ioend at this point in
 500	 * time.
 501	 */
 502	if (status) {
 503		ioend->io_bio->bi_error = status;
 504		bio_endio(ioend->io_bio);
 505		return status;
 506	}
 507
 508	submit_bio(ioend->io_bio);
 509	return 0;
 510}
 
 
 511
 512static void
 513xfs_init_bio_from_bh(
 514	struct bio		*bio,
 515	struct buffer_head	*bh)
 516{
 517	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 518	bio->bi_bdev = bh->b_bdev;
 519}
 
 
 
 520
 521static struct xfs_ioend *
 522xfs_alloc_ioend(
 523	struct inode		*inode,
 524	unsigned int		type,
 525	xfs_off_t		offset,
 526	struct buffer_head	*bh)
 527{
 528	struct xfs_ioend	*ioend;
 529	struct bio		*bio;
 530
 531	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
 532	xfs_init_bio_from_bh(bio, bh);
 
 
 
 
 
 533
 534	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
 535	INIT_LIST_HEAD(&ioend->io_list);
 536	ioend->io_type = type;
 537	ioend->io_inode = inode;
 538	ioend->io_size = 0;
 539	ioend->io_offset = offset;
 540	INIT_WORK(&ioend->io_work, xfs_end_io);
 541	ioend->io_append_trans = NULL;
 542	ioend->io_bio = bio;
 543	return ioend;
 
 544}
 545
 546/*
 547 * Allocate a new bio, and chain the old bio to the new one.
 548 *
 549 * Note that we have to do perform the chaining in this unintuitive order
 550 * so that the bi_private linkage is set up in the right direction for the
 551 * traversal in xfs_destroy_ioend().
 552 */
 553static void
 554xfs_chain_bio(
 555	struct xfs_ioend	*ioend,
 556	struct writeback_control *wbc,
 557	struct buffer_head	*bh)
 558{
 559	struct bio *new;
 
 560
 561	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
 562	xfs_init_bio_from_bh(new, bh);
 
 
 
 
 
 
 563
 564	bio_chain(ioend->io_bio, new);
 565	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
 566	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 567	submit_bio(ioend->io_bio);
 568	ioend->io_bio = new;
 569}
 570
 571/*
 572 * Test to see if we've been building up a completion structure for
 573 * earlier buffers -- if so, we try to append to this ioend if we
 574 * can, otherwise we finish off any current ioend and start another.
 575 * Return the ioend we finished off so that the caller can submit it
 576 * once it has finished processing the dirty page.
 577 */
 578STATIC void
 579xfs_add_to_ioend(
 580	struct inode		*inode,
 581	struct buffer_head	*bh,
 582	xfs_off_t		offset,
 583	struct xfs_writepage_ctx *wpc,
 584	struct writeback_control *wbc,
 585	struct list_head	*iolist)
 586{
 587	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
 588	    bh->b_blocknr != wpc->last_block + 1 ||
 589	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 590		if (wpc->ioend)
 591			list_add(&wpc->ioend->io_list, iolist);
 592		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
 593	}
 594
 595	/*
 596	 * If the buffer doesn't fit into the bio we need to allocate a new
 597	 * one.  This shouldn't happen more than once for a given buffer.
 598	 */
 599	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
 600		xfs_chain_bio(wpc->ioend, wbc, bh);
 601
 602	wpc->ioend->io_size += bh->b_size;
 603	wpc->last_block = bh->b_blocknr;
 604	xfs_start_buffer_writeback(bh);
 
 
 
 
 
 
 
 
 
 
 
 605}
 606
 607STATIC void
 608xfs_map_buffer(
 609	struct inode		*inode,
 610	struct buffer_head	*bh,
 611	struct xfs_bmbt_irec	*imap,
 612	xfs_off_t		offset)
 613{
 614	sector_t		bn;
 615	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 616	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 617	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 618
 619	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 620	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 621
 622	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 623	      ((offset - iomap_offset) >> inode->i_blkbits);
 624
 625	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 626
 627	bh->b_blocknr = bn;
 628	set_buffer_mapped(bh);
 629}
 630
 631STATIC void
 632xfs_map_at_offset(
 633	struct inode		*inode,
 634	struct buffer_head	*bh,
 635	struct xfs_bmbt_irec	*imap,
 636	xfs_off_t		offset)
 637{
 638	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 639	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 640
 641	xfs_map_buffer(inode, bh, imap, offset);
 642	set_buffer_mapped(bh);
 643	clear_buffer_delay(bh);
 644	clear_buffer_unwritten(bh);
 645}
 646
 647/*
 648 * Test if a given page contains at least one buffer of a given @type.
 649 * If @check_all_buffers is true, then we walk all the buffers in the page to
 650 * try to find one of the type passed in. If it is not set, then the caller only
 651 * needs to check the first buffer on the page for a match.
 652 */
 653STATIC bool
 654xfs_check_page_type(
 655	struct page		*page,
 656	unsigned int		type,
 657	bool			check_all_buffers)
 658{
 659	struct buffer_head	*bh;
 660	struct buffer_head	*head;
 661
 662	if (PageWriteback(page))
 663		return false;
 664	if (!page->mapping)
 665		return false;
 666	if (!page_has_buffers(page))
 667		return false;
 668
 669	bh = head = page_buffers(page);
 670	do {
 671		if (buffer_unwritten(bh)) {
 672			if (type == XFS_IO_UNWRITTEN)
 673				return true;
 674		} else if (buffer_delay(bh)) {
 675			if (type == XFS_IO_DELALLOC)
 676				return true;
 677		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 678			if (type == XFS_IO_OVERWRITE)
 679				return true;
 680		}
 681
 682		/* If we are only checking the first buffer, we are done now. */
 683		if (!check_all_buffers)
 684			break;
 685	} while ((bh = bh->b_this_page) != head);
 686
 687	return false;
 688}
 689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690STATIC void
 691xfs_vm_invalidatepage(
 692	struct page		*page,
 693	unsigned int		offset,
 694	unsigned int		length)
 695{
 696	trace_xfs_invalidatepage(page->mapping->host, page, offset,
 697				 length);
 698	block_invalidatepage(page, offset, length);
 699}
 700
 701/*
 702 * If the page has delalloc buffers on it, we need to punch them out before we
 703 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 704 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 705 * is done on that same region - the delalloc extent is returned when none is
 706 * supposed to be there.
 707 *
 708 * We prevent this by truncating away the delalloc regions on the page before
 709 * invalidating it. Because they are delalloc, we can do this without needing a
 710 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 711 * truncation without a transaction as there is no space left for block
 712 * reservation (typically why we see a ENOSPC in writeback).
 713 *
 714 * This is not a performance critical path, so for now just do the punching a
 715 * buffer head at a time.
 716 */
 717STATIC void
 718xfs_aops_discard_page(
 719	struct page		*page)
 720{
 721	struct inode		*inode = page->mapping->host;
 722	struct xfs_inode	*ip = XFS_I(inode);
 723	struct buffer_head	*bh, *head;
 724	loff_t			offset = page_offset(page);
 725
 726	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 727		goto out_invalidate;
 728
 729	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 730		goto out_invalidate;
 731
 732	xfs_alert(ip->i_mount,
 733		"page discard on page %p, inode 0x%llx, offset %llu.",
 734			page, ip->i_ino, offset);
 735
 736	xfs_ilock(ip, XFS_ILOCK_EXCL);
 737	bh = head = page_buffers(page);
 738	do {
 739		int		error;
 740		xfs_fileoff_t	start_fsb;
 741
 742		if (!buffer_delay(bh))
 743			goto next_buffer;
 744
 745		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 746		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 747		if (error) {
 748			/* something screwed, just bail */
 749			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 750				xfs_alert(ip->i_mount,
 751			"page discard unable to remove delalloc mapping.");
 752			}
 753			break;
 754		}
 755next_buffer:
 756		offset += 1 << inode->i_blkbits;
 757
 758	} while ((bh = bh->b_this_page) != head);
 759
 760	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 761out_invalidate:
 762	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 763	return;
 764}
 765
 766static int
 767xfs_map_cow(
 768	struct xfs_writepage_ctx *wpc,
 769	struct inode		*inode,
 770	loff_t			offset,
 771	unsigned int		*new_type)
 
 
 
 
 
 
 772{
 773	struct xfs_inode	*ip = XFS_I(inode);
 
 774	struct xfs_bmbt_irec	imap;
 775	bool			is_cow = false;
 776	int			error;
 
 
 
 
 
 
 
 
 
 
 
 777
 778	/*
 779	 * If we already have a valid COW mapping keep using it.
 
 
 
 
 
 
 
 780	 */
 781	if (wpc->io_type == XFS_IO_COW) {
 782		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
 783		if (wpc->imap_valid) {
 784			*new_type = XFS_IO_COW;
 785			return 0;
 786		}
 787	}
 788
 789	/*
 790	 * Else we need to check if there is a COW mapping at this offset.
 
 791	 */
 792	xfs_ilock(ip, XFS_ILOCK_SHARED);
 793	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
 794	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 795
 796	if (!is_cow)
 797		return 0;
 
 
 
 
 798
 799	/*
 800	 * And if the COW mapping has a delayed extent here we need to
 801	 * allocate real space for it now.
 802	 */
 803	if (isnullstartblock(imap.br_startblock)) {
 804		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
 805				&imap);
 806		if (error)
 807			return error;
 808	}
 809
 810	wpc->io_type = *new_type = XFS_IO_COW;
 811	wpc->imap_valid = true;
 812	wpc->imap = imap;
 813	return 0;
 814}
 
 
 
 
 
 815
 816/*
 817 * We implement an immediate ioend submission policy here to avoid needing to
 818 * chain multiple ioends and hence nest mempool allocations which can violate
 819 * forward progress guarantees we need to provide. The current ioend we are
 820 * adding buffers to is cached on the writepage context, and if the new buffer
 821 * does not append to the cached ioend it will create a new ioend and cache that
 822 * instead.
 823 *
 824 * If a new ioend is created and cached, the old ioend is returned and queued
 825 * locally for submission once the entire page is processed or an error has been
 826 * detected.  While ioends are submitted immediately after they are completed,
 827 * batching optimisations are provided by higher level block plugging.
 828 *
 829 * At the end of a writeback pass, there will be a cached ioend remaining on the
 830 * writepage context that the caller will need to submit.
 831 */
 832static int
 833xfs_writepage_map(
 834	struct xfs_writepage_ctx *wpc,
 835	struct writeback_control *wbc,
 836	struct inode		*inode,
 837	struct page		*page,
 838	loff_t			offset,
 839	__uint64_t              end_offset)
 840{
 841	LIST_HEAD(submit_list);
 842	struct xfs_ioend	*ioend, *next;
 843	struct buffer_head	*bh, *head;
 844	ssize_t			len = 1 << inode->i_blkbits;
 845	int			error = 0;
 846	int			count = 0;
 847	int			uptodate = 1;
 848	unsigned int		new_type;
 849
 850	bh = head = page_buffers(page);
 851	offset = page_offset(page);
 
 
 
 
 
 852	do {
 
 
 853		if (offset >= end_offset)
 854			break;
 855		if (!buffer_uptodate(bh))
 856			uptodate = 0;
 857
 858		/*
 859		 * set_page_dirty dirties all buffers in a page, independent
 860		 * of their state.  The dirty state however is entirely
 861		 * meaningless for holes (!mapped && uptodate), so skip
 862		 * buffers covering holes here.
 863		 */
 864		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 865			wpc->imap_valid = false;
 866			continue;
 867		}
 868
 869		if (buffer_unwritten(bh))
 870			new_type = XFS_IO_UNWRITTEN;
 871		else if (buffer_delay(bh))
 872			new_type = XFS_IO_DELALLOC;
 873		else if (buffer_uptodate(bh))
 874			new_type = XFS_IO_OVERWRITE;
 875		else {
 
 
 
 
 
 
 
 
 
 876			if (PageUptodate(page))
 877				ASSERT(buffer_mapped(bh));
 878			/*
 879			 * This buffer is not uptodate and will not be
 880			 * written to disk.  Ensure that we will put any
 881			 * subsequent writeable buffers into a new
 882			 * ioend.
 883			 */
 884			wpc->imap_valid = false;
 885			continue;
 886		}
 887
 888		if (xfs_is_reflink_inode(XFS_I(inode))) {
 889			error = xfs_map_cow(wpc, inode, offset, &new_type);
 890			if (error)
 891				goto out;
 892		}
 893
 894		if (wpc->io_type != new_type) {
 895			wpc->io_type = new_type;
 896			wpc->imap_valid = false;
 897		}
 898
 899		if (wpc->imap_valid)
 900			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 901							 offset);
 902		if (!wpc->imap_valid) {
 903			error = xfs_map_blocks(inode, offset, &wpc->imap,
 904					     wpc->io_type);
 905			if (error)
 906				goto out;
 907			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 908							 offset);
 909		}
 910		if (wpc->imap_valid) {
 911			lock_buffer(bh);
 912			if (wpc->io_type != XFS_IO_OVERWRITE)
 913				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
 914			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
 
 915			count++;
 916		}
 917
 
 
 
 918	} while (offset += len, ((bh = bh->b_this_page) != head));
 919
 920	if (uptodate && bh == head)
 921		SetPageUptodate(page);
 922
 923	ASSERT(wpc->ioend || list_empty(&submit_list));
 
 
 
 
 
 
 924
 925out:
 926	/*
 927	 * On error, we have to fail the ioend here because we have locked
 928	 * buffers in the ioend. If we don't do this, we'll deadlock
 929	 * invalidating the page as that tries to lock the buffers on the page.
 930	 * Also, because we may have set pages under writeback, we have to make
 931	 * sure we run IO completion to mark the error state of the IO
 932	 * appropriately, so we can't cancel the ioend directly here. That means
 933	 * we have to mark this page as under writeback if we included any
 934	 * buffers from it in the ioend chain so that completion treats it
 935	 * correctly.
 936	 *
 937	 * If we didn't include the page in the ioend, the on error we can
 938	 * simply discard and unlock it as there are no other users of the page
 939	 * or it's buffers right now. The caller will still need to trigger
 940	 * submission of outstanding ioends on the writepage context so they are
 941	 * treated correctly on error.
 942	 */
 943	if (count) {
 944		xfs_start_page_writeback(page, !error);
 945
 946		/*
 947		 * Preserve the original error if there was one, otherwise catch
 948		 * submission errors here and propagate into subsequent ioend
 949		 * submissions.
 950		 */
 951		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
 952			int error2;
 953
 954			list_del_init(&ioend->io_list);
 955			error2 = xfs_submit_ioend(wbc, ioend, error);
 956			if (error2 && !error)
 957				error = error2;
 958		}
 959	} else if (error) {
 960		xfs_aops_discard_page(page);
 961		ClearPageUptodate(page);
 962		unlock_page(page);
 963	} else {
 964		/*
 965		 * We can end up here with no error and nothing to write if we
 966		 * race with a partial page truncate on a sub-page block sized
 967		 * filesystem. In that case we need to mark the page clean.
 968		 */
 969		xfs_start_page_writeback(page, 1);
 970		end_page_writeback(page);
 971	}
 972
 973	mapping_set_error(page->mapping, error);
 974	return error;
 975}
 976
 977/*
 978 * Write out a dirty page.
 979 *
 980 * For delalloc space on the page we need to allocate space and flush it.
 981 * For unwritten space on the page we need to start the conversion to
 982 * regular allocated space.
 983 * For any other dirty buffer heads on the page we should flush them.
 984 */
 985STATIC int
 986xfs_do_writepage(
 987	struct page		*page,
 988	struct writeback_control *wbc,
 989	void			*data)
 990{
 991	struct xfs_writepage_ctx *wpc = data;
 992	struct inode		*inode = page->mapping->host;
 993	loff_t			offset;
 994	__uint64_t              end_offset;
 995	pgoff_t                 end_index;
 996
 997	trace_xfs_writepage(inode, page, 0, 0);
 
 
 998
 999	ASSERT(page_has_buffers(page));
1000
1001	/*
1002	 * Refuse to write the page out if we are called from reclaim context.
1003	 *
1004	 * This avoids stack overflows when called from deeply used stacks in
1005	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1006	 * allow reclaim from kswapd as the stack usage there is relatively low.
1007	 *
1008	 * This should never happen except in the case of a VM regression so
1009	 * warn about it.
1010	 */
1011	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1012			PF_MEMALLOC))
1013		goto redirty;
1014
1015	/*
1016	 * Given that we do not allow direct reclaim to call us, we should
1017	 * never be called while in a filesystem transaction.
1018	 */
1019	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1020		goto redirty;
1021
1022	/*
1023	 * Is this page beyond the end of the file?
1024	 *
1025	 * The page index is less than the end_index, adjust the end_offset
1026	 * to the highest offset that this page should represent.
1027	 * -----------------------------------------------------
1028	 * |			file mapping	       | <EOF> |
1029	 * -----------------------------------------------------
1030	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1031	 * ^--------------------------------^----------|--------
1032	 * |     desired writeback range    |      see else    |
1033	 * ---------------------------------^------------------|
1034	 */
1035	offset = i_size_read(inode);
1036	end_index = offset >> PAGE_SHIFT;
1037	if (page->index < end_index)
1038		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1039	else {
1040		/*
1041		 * Check whether the page to write out is beyond or straddles
1042		 * i_size or not.
1043		 * -------------------------------------------------------
1044		 * |		file mapping		        | <EOF>  |
1045		 * -------------------------------------------------------
1046		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1047		 * ^--------------------------------^-----------|---------
1048		 * |				    |      Straddles     |
1049		 * ---------------------------------^-----------|--------|
1050		 */
1051		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1052
1053		/*
1054		 * Skip the page if it is fully outside i_size, e.g. due to a
1055		 * truncate operation that is in progress. We must redirty the
1056		 * page so that reclaim stops reclaiming it. Otherwise
1057		 * xfs_vm_releasepage() is called on it and gets confused.
1058		 *
1059		 * Note that the end_index is unsigned long, it would overflow
1060		 * if the given offset is greater than 16TB on 32-bit system
1061		 * and if we do check the page is fully outside i_size or not
1062		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1063		 * will be evaluated to 0.  Hence this page will be redirtied
1064		 * and be written out repeatedly which would result in an
1065		 * infinite loop, the user program that perform this operation
1066		 * will hang.  Instead, we can verify this situation by checking
1067		 * if the page to write is totally beyond the i_size or if it's
1068		 * offset is just equal to the EOF.
1069		 */
1070		if (page->index > end_index ||
1071		    (page->index == end_index && offset_into_page == 0))
1072			goto redirty;
1073
1074		/*
1075		 * The page straddles i_size.  It must be zeroed out on each
1076		 * and every writepage invocation because it may be mmapped.
1077		 * "A file is mapped in multiples of the page size.  For a file
1078		 * that is not a multiple of the page size, the remaining
1079		 * memory is zeroed when mapped, and writes to that region are
1080		 * not written out to the file."
1081		 */
1082		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1083
1084		/* Adjust the end_offset to the end of file */
1085		end_offset = offset;
1086	}
1087
1088	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
 
 
 
1089
1090redirty:
1091	redirty_page_for_writepage(wbc, page);
1092	unlock_page(page);
1093	return 0;
1094}
1095
1096STATIC int
1097xfs_vm_writepage(
1098	struct page		*page,
1099	struct writeback_control *wbc)
1100{
1101	struct xfs_writepage_ctx wpc = {
1102		.io_type = XFS_IO_INVALID,
1103	};
1104	int			ret;
1105
1106	ret = xfs_do_writepage(page, wbc, &wpc);
1107	if (wpc.ioend)
1108		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1109	return ret;
1110}
1111
1112STATIC int
1113xfs_vm_writepages(
1114	struct address_space	*mapping,
1115	struct writeback_control *wbc)
1116{
1117	struct xfs_writepage_ctx wpc = {
1118		.io_type = XFS_IO_INVALID,
1119	};
1120	int			ret;
1121
1122	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1123	if (dax_mapping(mapping))
1124		return dax_writeback_mapping_range(mapping,
1125				xfs_find_bdev_for_inode(mapping->host), wbc);
1126
1127	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1128	if (wpc.ioend)
1129		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1130	return ret;
1131}
1132
1133/*
1134 * Called to move a page into cleanable state - and from there
1135 * to be released. The page should already be clean. We always
1136 * have buffer heads in this call.
1137 *
1138 * Returns 1 if the page is ok to release, 0 otherwise.
1139 */
1140STATIC int
1141xfs_vm_releasepage(
1142	struct page		*page,
1143	gfp_t			gfp_mask)
1144{
1145	int			delalloc, unwritten;
1146
1147	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1148
1149	/*
1150	 * mm accommodates an old ext3 case where clean pages might not have had
1151	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1152	 * ->releasepage() via shrink_active_list(). Conversely,
1153	 * block_invalidatepage() can send pages that are still marked dirty
1154	 * but otherwise have invalidated buffers.
1155	 *
1156	 * We want to release the latter to avoid unnecessary buildup of the
1157	 * LRU, skip the former and warn if we've left any lingering
1158	 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1159	 * or unwritten buffers and warn if the page is not dirty. Otherwise
1160	 * try to release the buffers.
1161	 */
1162	xfs_count_page_state(page, &delalloc, &unwritten);
1163
1164	if (delalloc) {
1165		WARN_ON_ONCE(!PageDirty(page));
1166		return 0;
1167	}
1168	if (unwritten) {
1169		WARN_ON_ONCE(!PageDirty(page));
1170		return 0;
1171	}
1172
1173	return try_to_free_buffers(page);
1174}
1175
1176/*
1177 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1178 * is, so that we can avoid repeated get_blocks calls.
1179 *
1180 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1181 * for blocks beyond EOF must be marked new so that sub block regions can be
1182 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1183 * was just allocated or is unwritten, otherwise the callers would overwrite
1184 * existing data with zeros. Hence we have to split the mapping into a range up
1185 * to and including EOF, and a second mapping for beyond EOF.
1186 */
1187static void
1188xfs_map_trim_size(
1189	struct inode		*inode,
1190	sector_t		iblock,
1191	struct buffer_head	*bh_result,
1192	struct xfs_bmbt_irec	*imap,
1193	xfs_off_t		offset,
1194	ssize_t			size)
1195{
1196	xfs_off_t		mapping_size;
1197
1198	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1199	mapping_size <<= inode->i_blkbits;
1200
1201	ASSERT(mapping_size > 0);
1202	if (mapping_size > size)
1203		mapping_size = size;
1204	if (offset < i_size_read(inode) &&
1205	    offset + mapping_size >= i_size_read(inode)) {
1206		/* limit mapping to block that spans EOF */
1207		mapping_size = roundup_64(i_size_read(inode) - offset,
1208					  1 << inode->i_blkbits);
1209	}
1210	if (mapping_size > LONG_MAX)
1211		mapping_size = LONG_MAX;
1212
1213	bh_result->b_size = mapping_size;
1214}
1215
1216static int
1217xfs_get_blocks(
1218	struct inode		*inode,
1219	sector_t		iblock,
1220	struct buffer_head	*bh_result,
1221	int			create)
 
1222{
1223	struct xfs_inode	*ip = XFS_I(inode);
1224	struct xfs_mount	*mp = ip->i_mount;
1225	xfs_fileoff_t		offset_fsb, end_fsb;
1226	int			error = 0;
1227	int			lockmode = 0;
1228	struct xfs_bmbt_irec	imap;
1229	int			nimaps = 1;
1230	xfs_off_t		offset;
1231	ssize_t			size;
1232
1233	BUG_ON(create);
1234
1235	if (XFS_FORCED_SHUTDOWN(mp))
1236		return -EIO;
1237
1238	offset = (xfs_off_t)iblock << inode->i_blkbits;
1239	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1240	size = bh_result->b_size;
1241
1242	if (offset >= i_size_read(inode))
1243		return 0;
1244
1245	/*
1246	 * Direct I/O is usually done on preallocated files, so try getting
1247	 * a block mapping without an exclusive lock first.
1248	 */
1249	lockmode = xfs_ilock_data_map_shared(ip);
 
 
 
 
 
 
 
 
1250
1251	ASSERT(offset <= mp->m_super->s_maxbytes);
1252	if (offset + size > mp->m_super->s_maxbytes)
1253		size = mp->m_super->s_maxbytes - offset;
1254	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1255	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1256
1257	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1258				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1259	if (error)
1260		goto out_unlock;
1261
1262	if (nimaps) {
1263		trace_xfs_get_blocks_found(ip, offset, size,
1264				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1265						   : XFS_IO_OVERWRITE, &imap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266		xfs_iunlock(ip, lockmode);
1267	} else {
1268		trace_xfs_get_blocks_notfound(ip, offset, size);
1269		goto out_unlock;
1270	}
1271
1272	/* trim mapping down to size requested */
1273	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1274
1275	/*
1276	 * For unwritten extents do not report a disk address in the buffered
1277	 * read case (treat as if we're reading into a hole).
1278	 */
1279	if (imap.br_startblock != HOLESTARTBLOCK &&
1280	    imap.br_startblock != DELAYSTARTBLOCK &&
1281	    !ISUNWRITTEN(&imap))
1282		xfs_map_buffer(inode, bh_result, &imap, offset);
 
 
 
 
 
 
 
 
 
 
 
 
1283
1284	/*
1285	 * If this is a realtime file, data may be on a different device.
1286	 * to that pointed to from the buffer_head b_bdev currently.
1287	 */
1288	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289	return 0;
1290
1291out_unlock:
1292	xfs_iunlock(ip, lockmode);
1293	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294}
1295
1296STATIC ssize_t
1297xfs_vm_direct_IO(
 
1298	struct kiocb		*iocb,
1299	struct iov_iter		*iter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301	/*
1302	 * We just need the method present so that open/fcntl allow direct I/O.
1303	 */
1304	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305}
1306
1307STATIC sector_t
1308xfs_vm_bmap(
1309	struct address_space	*mapping,
1310	sector_t		block)
1311{
1312	struct inode		*inode = (struct inode *)mapping->host;
1313	struct xfs_inode	*ip = XFS_I(inode);
1314
1315	trace_xfs_vm_bmap(XFS_I(inode));
1316
1317	/*
1318	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1319	 * bypasseѕ the file system for actual I/O.  We really can't allow
1320	 * that on reflinks inodes, so we have to skip out here.  And yes,
1321	 * 0 is the magic code for a bmap error..
1322	 */
1323	if (xfs_is_reflink_inode(ip))
1324		return 0;
1325
1326	filemap_write_and_wait(mapping);
 
1327	return generic_block_bmap(mapping, block, xfs_get_blocks);
1328}
1329
1330STATIC int
1331xfs_vm_readpage(
1332	struct file		*unused,
1333	struct page		*page)
1334{
1335	trace_xfs_vm_readpage(page->mapping->host, 1);
1336	return mpage_readpage(page, xfs_get_blocks);
1337}
1338
1339STATIC int
1340xfs_vm_readpages(
1341	struct file		*unused,
1342	struct address_space	*mapping,
1343	struct list_head	*pages,
1344	unsigned		nr_pages)
1345{
1346	trace_xfs_vm_readpages(mapping->host, nr_pages);
1347	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1348}
1349
1350/*
1351 * This is basically a copy of __set_page_dirty_buffers() with one
1352 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1353 * dirty, we'll never be able to clean them because we don't write buffers
1354 * beyond EOF, and that means we can't invalidate pages that span EOF
1355 * that have been marked dirty. Further, the dirty state can leak into
1356 * the file interior if the file is extended, resulting in all sorts of
1357 * bad things happening as the state does not match the underlying data.
1358 *
1359 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1360 * this only exist because of bufferheads and how the generic code manages them.
1361 */
1362STATIC int
1363xfs_vm_set_page_dirty(
1364	struct page		*page)
1365{
1366	struct address_space	*mapping = page->mapping;
1367	struct inode		*inode = mapping->host;
1368	loff_t			end_offset;
1369	loff_t			offset;
1370	int			newly_dirty;
1371
1372	if (unlikely(!mapping))
1373		return !TestSetPageDirty(page);
1374
1375	end_offset = i_size_read(inode);
1376	offset = page_offset(page);
1377
1378	spin_lock(&mapping->private_lock);
1379	if (page_has_buffers(page)) {
1380		struct buffer_head *head = page_buffers(page);
1381		struct buffer_head *bh = head;
1382
1383		do {
1384			if (offset < end_offset)
1385				set_buffer_dirty(bh);
1386			bh = bh->b_this_page;
1387			offset += 1 << inode->i_blkbits;
1388		} while (bh != head);
1389	}
1390	/*
1391	 * Lock out page->mem_cgroup migration to keep PageDirty
1392	 * synchronized with per-memcg dirty page counters.
1393	 */
1394	lock_page_memcg(page);
1395	newly_dirty = !TestSetPageDirty(page);
1396	spin_unlock(&mapping->private_lock);
1397
1398	if (newly_dirty) {
1399		/* sigh - __set_page_dirty() is static, so copy it here, too */
1400		unsigned long flags;
1401
1402		spin_lock_irqsave(&mapping->tree_lock, flags);
1403		if (page->mapping) {	/* Race with truncate? */
1404			WARN_ON_ONCE(!PageUptodate(page));
1405			account_page_dirtied(page, mapping);
1406			radix_tree_tag_set(&mapping->page_tree,
1407					page_index(page), PAGECACHE_TAG_DIRTY);
1408		}
1409		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1410	}
1411	unlock_page_memcg(page);
1412	if (newly_dirty)
1413		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1414	return newly_dirty;
1415}
1416
1417const struct address_space_operations xfs_address_space_operations = {
1418	.readpage		= xfs_vm_readpage,
1419	.readpages		= xfs_vm_readpages,
1420	.writepage		= xfs_vm_writepage,
1421	.writepages		= xfs_vm_writepages,
1422	.set_page_dirty		= xfs_vm_set_page_dirty,
1423	.releasepage		= xfs_vm_releasepage,
1424	.invalidatepage		= xfs_vm_invalidatepage,
 
 
1425	.bmap			= xfs_vm_bmap,
1426	.direct_IO		= xfs_vm_direct_IO,
1427	.migratepage		= buffer_migrate_page,
1428	.is_partially_uptodate  = block_is_partially_uptodate,
1429	.error_remove_page	= generic_error_remove_page,
1430};
v3.15
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_shared.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_mount.h"
  26#include "xfs_inode.h"
  27#include "xfs_trans.h"
  28#include "xfs_inode_item.h"
  29#include "xfs_alloc.h"
  30#include "xfs_error.h"
  31#include "xfs_iomap.h"
  32#include "xfs_trace.h"
  33#include "xfs_bmap.h"
  34#include "xfs_bmap_util.h"
  35#include "xfs_bmap_btree.h"
  36#include "xfs_dinode.h"
  37#include <linux/aio.h>
  38#include <linux/gfp.h>
  39#include <linux/mpage.h>
  40#include <linux/pagevec.h>
  41#include <linux/writeback.h>
  42
 
 
 
 
 
 
 
 
 
 
 
  43void
  44xfs_count_page_state(
  45	struct page		*page,
  46	int			*delalloc,
  47	int			*unwritten)
  48{
  49	struct buffer_head	*bh, *head;
  50
  51	*delalloc = *unwritten = 0;
  52
  53	bh = head = page_buffers(page);
  54	do {
  55		if (buffer_unwritten(bh))
  56			(*unwritten) = 1;
  57		else if (buffer_delay(bh))
  58			(*delalloc) = 1;
  59	} while ((bh = bh->b_this_page) != head);
  60}
  61
  62STATIC struct block_device *
  63xfs_find_bdev_for_inode(
  64	struct inode		*inode)
  65{
  66	struct xfs_inode	*ip = XFS_I(inode);
  67	struct xfs_mount	*mp = ip->i_mount;
  68
  69	if (XFS_IS_REALTIME_INODE(ip))
  70		return mp->m_rtdev_targp->bt_bdev;
  71	else
  72		return mp->m_ddev_targp->bt_bdev;
  73}
  74
  75/*
  76 * We're now finished for good with this ioend structure.
  77 * Update the page state via the associated buffer_heads,
  78 * release holds on the inode and bio, and finally free
  79 * up memory.  Do not use the ioend after this.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80 */
  81STATIC void
  82xfs_destroy_ioend(
  83	xfs_ioend_t		*ioend)
 
  84{
  85	struct buffer_head	*bh, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87	for (bh = ioend->io_buffer_head; bh; bh = next) {
  88		next = bh->b_private;
  89		bh->b_end_io(bh, !ioend->io_error);
  90	}
  91
  92	mempool_free(ioend, xfs_ioend_pool);
  93}
  94
  95/*
  96 * Fast and loose check if this write could update the on-disk inode size.
  97 */
  98static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
  99{
 100	return ioend->io_offset + ioend->io_size >
 101		XFS_I(ioend->io_inode)->i_d.di_size;
 102}
 103
 104STATIC int
 105xfs_setfilesize_trans_alloc(
 106	struct xfs_ioend	*ioend)
 107{
 108	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 109	struct xfs_trans	*tp;
 110	int			error;
 111
 112	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 113
 114	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
 115	if (error) {
 116		xfs_trans_cancel(tp, 0);
 117		return error;
 118	}
 119
 120	ioend->io_append_trans = tp;
 121
 122	/*
 123	 * We may pass freeze protection with a transaction.  So tell lockdep
 124	 * we released it.
 125	 */
 126	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
 127		      1, _THIS_IP_);
 128	/*
 129	 * We hand off the transaction to the completion thread now, so
 130	 * clear the flag here.
 131	 */
 132	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 133	return 0;
 134}
 135
 136/*
 137 * Update on-disk file size now that data has been written to disk.
 138 */
 139STATIC int
 140xfs_setfilesize(
 141	struct xfs_ioend	*ioend)
 
 
 
 142{
 143	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 144	struct xfs_trans	*tp = ioend->io_append_trans;
 145	xfs_fsize_t		isize;
 146
 147	/*
 148	 * The transaction may have been allocated in the I/O submission thread,
 149	 * thus we need to mark ourselves as beeing in a transaction manually.
 150	 * Similarly for freeze protection.
 151	 */
 152	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 153	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
 154			   0, 1, _THIS_IP_);
 155
 156	xfs_ilock(ip, XFS_ILOCK_EXCL);
 157	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
 158	if (!isize) {
 159		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 160		xfs_trans_cancel(tp, 0);
 161		return 0;
 162	}
 163
 164	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
 165
 166	ip->i_d.di_size = isize;
 167	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 168	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 169
 170	return xfs_trans_commit(tp, 0);
 171}
 172
 173/*
 174 * Schedule IO completion handling on the final put of an ioend.
 175 *
 176 * If there is no work to do we might as well call it a day and free the
 177 * ioend right now.
 178 */
 179STATIC void
 180xfs_finish_ioend(
 181	struct xfs_ioend	*ioend)
 
 
 
 
 
 
 
 
 
 
 
 
 182{
 183	if (atomic_dec_and_test(&ioend->io_remaining)) {
 184		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 
 
 
 
 
 
 
 
 185
 186		if (ioend->io_type == XFS_IO_UNWRITTEN)
 187			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 188		else if (ioend->io_append_trans ||
 189			 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
 190			queue_work(mp->m_data_workqueue, &ioend->io_work);
 191		else
 192			xfs_destroy_ioend(ioend);
 193	}
 
 
 194}
 195
 196/*
 197 * IO write completion.
 198 */
 199STATIC void
 200xfs_end_io(
 201	struct work_struct *work)
 202{
 203	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
 204	struct xfs_inode *ip = XFS_I(ioend->io_inode);
 205	int		error = 0;
 
 
 
 206
 
 
 
 207	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 208		ioend->io_error = -EIO;
 209		goto done;
 210	}
 211	if (ioend->io_error)
 
 
 
 
 
 
 
 
 
 
 212		goto done;
 
 213
 214	/*
 215	 * For unwritten extents we need to issue transactions to convert a
 216	 * range to normal written extens after the data I/O has finished.
 217	 */
 218	if (ioend->io_type == XFS_IO_UNWRITTEN) {
 219		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 220						  ioend->io_size);
 221	} else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
 222		/*
 223		 * For direct I/O we do not know if we need to allocate blocks
 224		 * or not so we can't preallocate an append transaction as that
 225		 * results in nested reservations and log space deadlocks. Hence
 226		 * allocate the transaction here. While this is sub-optimal and
 227		 * can block IO completion for some time, we're stuck with doing
 228		 * it this way until we can pass the ioend to the direct IO
 229		 * allocation callbacks and avoid nesting that way.
 230		 */
 231		error = xfs_setfilesize_trans_alloc(ioend);
 232		if (error)
 233			goto done;
 234		error = xfs_setfilesize(ioend);
 235	} else if (ioend->io_append_trans) {
 236		error = xfs_setfilesize(ioend);
 237	} else {
 238		ASSERT(!xfs_ioend_is_append(ioend));
 239	}
 240
 241done:
 242	if (error)
 243		ioend->io_error = -error;
 244	xfs_destroy_ioend(ioend);
 245}
 246
 247/*
 248 * Call IO completion handling in caller context on the final put of an ioend.
 249 */
 250STATIC void
 251xfs_finish_ioend_sync(
 252	struct xfs_ioend	*ioend)
 253{
 254	if (atomic_dec_and_test(&ioend->io_remaining))
 255		xfs_end_io(&ioend->io_work);
 256}
 257
 258/*
 259 * Allocate and initialise an IO completion structure.
 260 * We need to track unwritten extent write completion here initially.
 261 * We'll need to extend this for updating the ondisk inode size later
 262 * (vs. incore size).
 263 */
 264STATIC xfs_ioend_t *
 265xfs_alloc_ioend(
 266	struct inode		*inode,
 267	unsigned int		type)
 268{
 269	xfs_ioend_t		*ioend;
 270
 271	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 272
 273	/*
 274	 * Set the count to 1 initially, which will prevent an I/O
 275	 * completion callback from happening before we have started
 276	 * all the I/O from calling the completion routine too early.
 277	 */
 278	atomic_set(&ioend->io_remaining, 1);
 279	ioend->io_isdirect = 0;
 280	ioend->io_error = 0;
 281	ioend->io_list = NULL;
 282	ioend->io_type = type;
 283	ioend->io_inode = inode;
 284	ioend->io_buffer_head = NULL;
 285	ioend->io_buffer_tail = NULL;
 286	ioend->io_offset = 0;
 287	ioend->io_size = 0;
 288	ioend->io_append_trans = NULL;
 289
 290	INIT_WORK(&ioend->io_work, xfs_end_io);
 291	return ioend;
 292}
 293
 294STATIC int
 295xfs_map_blocks(
 296	struct inode		*inode,
 297	loff_t			offset,
 298	struct xfs_bmbt_irec	*imap,
 299	int			type,
 300	int			nonblocking)
 301{
 302	struct xfs_inode	*ip = XFS_I(inode);
 303	struct xfs_mount	*mp = ip->i_mount;
 304	ssize_t			count = 1 << inode->i_blkbits;
 305	xfs_fileoff_t		offset_fsb, end_fsb;
 306	int			error = 0;
 307	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 308	int			nimaps = 1;
 309
 310	if (XFS_FORCED_SHUTDOWN(mp))
 311		return -XFS_ERROR(EIO);
 312
 
 313	if (type == XFS_IO_UNWRITTEN)
 314		bmapi_flags |= XFS_BMAPI_IGSTATE;
 315
 316	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 317		if (nonblocking)
 318			return -XFS_ERROR(EAGAIN);
 319		xfs_ilock(ip, XFS_ILOCK_SHARED);
 320	}
 321
 322	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 323	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 324	ASSERT(offset <= mp->m_super->s_maxbytes);
 325
 326	if (offset + count > mp->m_super->s_maxbytes)
 327		count = mp->m_super->s_maxbytes - offset;
 328	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 329	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 330	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 331				imap, &nimaps, bmapi_flags);
 
 
 
 
 
 
 
 332	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 333
 334	if (error)
 335		return -XFS_ERROR(error);
 336
 337	if (type == XFS_IO_DELALLOC &&
 338	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 339		error = xfs_iomap_write_allocate(ip, offset, imap);
 
 340		if (!error)
 341			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 342		return -XFS_ERROR(error);
 343	}
 344
 345#ifdef DEBUG
 346	if (type == XFS_IO_UNWRITTEN) {
 347		ASSERT(nimaps);
 348		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 349		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 350	}
 351#endif
 352	if (nimaps)
 353		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 354	return 0;
 355}
 356
 357STATIC int
 358xfs_imap_valid(
 359	struct inode		*inode,
 360	struct xfs_bmbt_irec	*imap,
 361	xfs_off_t		offset)
 362{
 363	offset >>= inode->i_blkbits;
 364
 365	return offset >= imap->br_startoff &&
 366		offset < imap->br_startoff + imap->br_blockcount;
 367}
 368
 369/*
 370 * BIO completion handler for buffered IO.
 371 */
 372STATIC void
 373xfs_end_bio(
 374	struct bio		*bio,
 375	int			error)
 376{
 377	xfs_ioend_t		*ioend = bio->bi_private;
 378
 379	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 380	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 381
 382	/* Toss bio and pass work off to an xfsdatad thread */
 383	bio->bi_private = NULL;
 384	bio->bi_end_io = NULL;
 385	bio_put(bio);
 386
 387	xfs_finish_ioend(ioend);
 388}
 389
 390STATIC void
 391xfs_submit_ioend_bio(
 392	struct writeback_control *wbc,
 393	xfs_ioend_t		*ioend,
 394	struct bio		*bio)
 395{
 396	atomic_inc(&ioend->io_remaining);
 397	bio->bi_private = ioend;
 398	bio->bi_end_io = xfs_end_bio;
 399	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 400}
 401
 402STATIC struct bio *
 403xfs_alloc_ioend_bio(
 404	struct buffer_head	*bh)
 405{
 406	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
 407	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
 408
 409	ASSERT(bio->bi_private == NULL);
 410	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 411	bio->bi_bdev = bh->b_bdev;
 412	return bio;
 413}
 414
 415STATIC void
 416xfs_start_buffer_writeback(
 417	struct buffer_head	*bh)
 418{
 419	ASSERT(buffer_mapped(bh));
 420	ASSERT(buffer_locked(bh));
 421	ASSERT(!buffer_delay(bh));
 422	ASSERT(!buffer_unwritten(bh));
 423
 424	mark_buffer_async_write(bh);
 425	set_buffer_uptodate(bh);
 426	clear_buffer_dirty(bh);
 427}
 428
 429STATIC void
 430xfs_start_page_writeback(
 431	struct page		*page,
 432	int			clear_dirty,
 433	int			buffers)
 434{
 435	ASSERT(PageLocked(page));
 436	ASSERT(!PageWriteback(page));
 437	if (clear_dirty)
 
 
 
 
 
 
 
 
 438		clear_page_dirty_for_io(page);
 439	set_page_writeback(page);
 
 
 
 440	unlock_page(page);
 441	/* If no buffers on the page are to be written, finish it here */
 442	if (!buffers)
 443		end_page_writeback(page);
 444}
 445
 446static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 447{
 448	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 449}
 450
 451/*
 452 * Submit all of the bios for all of the ioends we have saved up, covering the
 453 * initial writepage page and also any probed pages.
 454 *
 455 * Because we may have multiple ioends spanning a page, we need to start
 456 * writeback on all the buffers before we submit them for I/O. If we mark the
 457 * buffers as we got, then we can end up with a page that only has buffers
 458 * marked async write and I/O complete on can occur before we mark the other
 459 * buffers async write.
 460 *
 461 * The end result of this is that we trip a bug in end_page_writeback() because
 462 * we call it twice for the one page as the code in end_buffer_async_write()
 463 * assumes that all buffers on the page are started at the same time.
 464 *
 465 * The fix is two passes across the ioend list - one to start writeback on the
 466 * buffer_heads, and then submit them for I/O on the second pass.
 467 *
 468 * If @fail is non-zero, it means that we have a situation where some part of
 469 * the submission process has failed after we have marked paged for writeback
 470 * and unlocked them. In this situation, we need to fail the ioend chain rather
 471 * than submit it to IO. This typically only happens on a filesystem shutdown.
 
 472 */
 473STATIC void
 474xfs_submit_ioend(
 475	struct writeback_control *wbc,
 476	xfs_ioend_t		*ioend,
 477	int			fail)
 478{
 479	xfs_ioend_t		*head = ioend;
 480	xfs_ioend_t		*next;
 481	struct buffer_head	*bh;
 482	struct bio		*bio;
 483	sector_t		lastblock = 0;
 
 
 
 
 
 
 
 
 
 
 
 484
 485	/* Pass 1 - start writeback */
 486	do {
 487		next = ioend->io_list;
 488		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 489			xfs_start_buffer_writeback(bh);
 490	} while ((ioend = next) != NULL);
 
 
 
 
 
 491
 492	/* Pass 2 - submit I/O */
 493	ioend = head;
 494	do {
 495		next = ioend->io_list;
 496		bio = NULL;
 497
 498		/*
 499		 * If we are failing the IO now, just mark the ioend with an
 500		 * error and finish it. This will run IO completion immediately
 501		 * as there is only one reference to the ioend at this point in
 502		 * time.
 503		 */
 504		if (fail) {
 505			ioend->io_error = -fail;
 506			xfs_finish_ioend(ioend);
 507			continue;
 508		}
 509
 510		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 
 
 
 
 
 
 
 
 511
 512			if (!bio) {
 513 retry:
 514				bio = xfs_alloc_ioend_bio(bh);
 515			} else if (bh->b_blocknr != lastblock + 1) {
 516				xfs_submit_ioend_bio(wbc, ioend, bio);
 517				goto retry;
 518			}
 519
 520			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
 521				xfs_submit_ioend_bio(wbc, ioend, bio);
 522				goto retry;
 523			}
 524
 525			lastblock = bh->b_blocknr;
 526		}
 527		if (bio)
 528			xfs_submit_ioend_bio(wbc, ioend, bio);
 529		xfs_finish_ioend(ioend);
 530	} while ((ioend = next) != NULL);
 531}
 532
 533/*
 534 * Cancel submission of all buffer_heads so far in this endio.
 535 * Toss the endio too.  Only ever called for the initial page
 536 * in a writepage request, so only ever one page.
 537 */
 538STATIC void
 539xfs_cancel_ioend(
 540	xfs_ioend_t		*ioend)
 
 
 
 
 541{
 542	xfs_ioend_t		*next;
 543	struct buffer_head	*bh, *next_bh;
 544
 545	do {
 546		next = ioend->io_list;
 547		bh = ioend->io_buffer_head;
 548		do {
 549			next_bh = bh->b_private;
 550			clear_buffer_async_write(bh);
 551			unlock_buffer(bh);
 552		} while ((bh = next_bh) != NULL);
 553
 554		mempool_free(ioend, xfs_ioend_pool);
 555	} while ((ioend = next) != NULL);
 
 
 
 556}
 557
 558/*
 559 * Test to see if we've been building up a completion structure for
 560 * earlier buffers -- if so, we try to append to this ioend if we
 561 * can, otherwise we finish off any current ioend and start another.
 562 * Return true if we've finished the given ioend.
 
 563 */
 564STATIC void
 565xfs_add_to_ioend(
 566	struct inode		*inode,
 567	struct buffer_head	*bh,
 568	xfs_off_t		offset,
 569	unsigned int		type,
 570	xfs_ioend_t		**result,
 571	int			need_ioend)
 572{
 573	xfs_ioend_t		*ioend = *result;
 
 
 
 
 
 
 574
 575	if (!ioend || need_ioend || type != ioend->io_type) {
 576		xfs_ioend_t	*previous = *result;
 
 
 
 
 577
 578		ioend = xfs_alloc_ioend(inode, type);
 579		ioend->io_offset = offset;
 580		ioend->io_buffer_head = bh;
 581		ioend->io_buffer_tail = bh;
 582		if (previous)
 583			previous->io_list = ioend;
 584		*result = ioend;
 585	} else {
 586		ioend->io_buffer_tail->b_private = bh;
 587		ioend->io_buffer_tail = bh;
 588	}
 589
 590	bh->b_private = NULL;
 591	ioend->io_size += bh->b_size;
 592}
 593
 594STATIC void
 595xfs_map_buffer(
 596	struct inode		*inode,
 597	struct buffer_head	*bh,
 598	struct xfs_bmbt_irec	*imap,
 599	xfs_off_t		offset)
 600{
 601	sector_t		bn;
 602	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 603	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 604	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 605
 606	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 607	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 608
 609	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 610	      ((offset - iomap_offset) >> inode->i_blkbits);
 611
 612	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 613
 614	bh->b_blocknr = bn;
 615	set_buffer_mapped(bh);
 616}
 617
 618STATIC void
 619xfs_map_at_offset(
 620	struct inode		*inode,
 621	struct buffer_head	*bh,
 622	struct xfs_bmbt_irec	*imap,
 623	xfs_off_t		offset)
 624{
 625	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 626	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 627
 628	xfs_map_buffer(inode, bh, imap, offset);
 629	set_buffer_mapped(bh);
 630	clear_buffer_delay(bh);
 631	clear_buffer_unwritten(bh);
 632}
 633
 634/*
 635 * Test if a given page contains at least one buffer of a given @type.
 636 * If @check_all_buffers is true, then we walk all the buffers in the page to
 637 * try to find one of the type passed in. If it is not set, then the caller only
 638 * needs to check the first buffer on the page for a match.
 639 */
 640STATIC bool
 641xfs_check_page_type(
 642	struct page		*page,
 643	unsigned int		type,
 644	bool			check_all_buffers)
 645{
 646	struct buffer_head	*bh;
 647	struct buffer_head	*head;
 648
 649	if (PageWriteback(page))
 650		return false;
 651	if (!page->mapping)
 652		return false;
 653	if (!page_has_buffers(page))
 654		return false;
 655
 656	bh = head = page_buffers(page);
 657	do {
 658		if (buffer_unwritten(bh)) {
 659			if (type == XFS_IO_UNWRITTEN)
 660				return true;
 661		} else if (buffer_delay(bh)) {
 662			if (type == XFS_IO_DELALLOC)
 663				return true;
 664		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 665			if (type == XFS_IO_OVERWRITE)
 666				return true;
 667		}
 668
 669		/* If we are only checking the first buffer, we are done now. */
 670		if (!check_all_buffers)
 671			break;
 672	} while ((bh = bh->b_this_page) != head);
 673
 674	return false;
 675}
 676
 677/*
 678 * Allocate & map buffers for page given the extent map. Write it out.
 679 * except for the original page of a writepage, this is called on
 680 * delalloc/unwritten pages only, for the original page it is possible
 681 * that the page has no mapping at all.
 682 */
 683STATIC int
 684xfs_convert_page(
 685	struct inode		*inode,
 686	struct page		*page,
 687	loff_t			tindex,
 688	struct xfs_bmbt_irec	*imap,
 689	xfs_ioend_t		**ioendp,
 690	struct writeback_control *wbc)
 691{
 692	struct buffer_head	*bh, *head;
 693	xfs_off_t		end_offset;
 694	unsigned long		p_offset;
 695	unsigned int		type;
 696	int			len, page_dirty;
 697	int			count = 0, done = 0, uptodate = 1;
 698 	xfs_off_t		offset = page_offset(page);
 699
 700	if (page->index != tindex)
 701		goto fail;
 702	if (!trylock_page(page))
 703		goto fail;
 704	if (PageWriteback(page))
 705		goto fail_unlock_page;
 706	if (page->mapping != inode->i_mapping)
 707		goto fail_unlock_page;
 708	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
 709		goto fail_unlock_page;
 710
 711	/*
 712	 * page_dirty is initially a count of buffers on the page before
 713	 * EOF and is decremented as we move each into a cleanable state.
 714	 *
 715	 * Derivation:
 716	 *
 717	 * End offset is the highest offset that this page should represent.
 718	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 719	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 720	 * hence give us the correct page_dirty count. On any other page,
 721	 * it will be zero and in that case we need page_dirty to be the
 722	 * count of buffers on the page.
 723	 */
 724	end_offset = min_t(unsigned long long,
 725			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 726			i_size_read(inode));
 727
 728	/*
 729	 * If the current map does not span the entire page we are about to try
 730	 * to write, then give up. The only way we can write a page that spans
 731	 * multiple mappings in a single writeback iteration is via the
 732	 * xfs_vm_writepage() function. Data integrity writeback requires the
 733	 * entire page to be written in a single attempt, otherwise the part of
 734	 * the page we don't write here doesn't get written as part of the data
 735	 * integrity sync.
 736	 *
 737	 * For normal writeback, we also don't attempt to write partial pages
 738	 * here as it simply means that write_cache_pages() will see it under
 739	 * writeback and ignore the page until some point in the future, at
 740	 * which time this will be the only page in the file that needs
 741	 * writeback.  Hence for more optimal IO patterns, we should always
 742	 * avoid partial page writeback due to multiple mappings on a page here.
 743	 */
 744	if (!xfs_imap_valid(inode, imap, end_offset))
 745		goto fail_unlock_page;
 746
 747	len = 1 << inode->i_blkbits;
 748	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 749					PAGE_CACHE_SIZE);
 750	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 751	page_dirty = p_offset / len;
 752
 753	/*
 754	 * The moment we find a buffer that doesn't match our current type
 755	 * specification or can't be written, abort the loop and start
 756	 * writeback. As per the above xfs_imap_valid() check, only
 757	 * xfs_vm_writepage() can handle partial page writeback fully - we are
 758	 * limited here to the buffers that are contiguous with the current
 759	 * ioend, and hence a buffer we can't write breaks that contiguity and
 760	 * we have to defer the rest of the IO to xfs_vm_writepage().
 761	 */
 762	bh = head = page_buffers(page);
 763	do {
 764		if (offset >= end_offset)
 765			break;
 766		if (!buffer_uptodate(bh))
 767			uptodate = 0;
 768		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 769			done = 1;
 770			break;
 771		}
 772
 773		if (buffer_unwritten(bh) || buffer_delay(bh) ||
 774		    buffer_mapped(bh)) {
 775			if (buffer_unwritten(bh))
 776				type = XFS_IO_UNWRITTEN;
 777			else if (buffer_delay(bh))
 778				type = XFS_IO_DELALLOC;
 779			else
 780				type = XFS_IO_OVERWRITE;
 781
 782			/*
 783			 * imap should always be valid because of the above
 784			 * partial page end_offset check on the imap.
 785			 */
 786			ASSERT(xfs_imap_valid(inode, imap, offset));
 787
 788			lock_buffer(bh);
 789			if (type != XFS_IO_OVERWRITE)
 790				xfs_map_at_offset(inode, bh, imap, offset);
 791			xfs_add_to_ioend(inode, bh, offset, type,
 792					 ioendp, done);
 793
 794			page_dirty--;
 795			count++;
 796		} else {
 797			done = 1;
 798			break;
 799		}
 800	} while (offset += len, (bh = bh->b_this_page) != head);
 801
 802	if (uptodate && bh == head)
 803		SetPageUptodate(page);
 804
 805	if (count) {
 806		if (--wbc->nr_to_write <= 0 &&
 807		    wbc->sync_mode == WB_SYNC_NONE)
 808			done = 1;
 809	}
 810	xfs_start_page_writeback(page, !page_dirty, count);
 811
 812	return done;
 813 fail_unlock_page:
 814	unlock_page(page);
 815 fail:
 816	return 1;
 817}
 818
 819/*
 820 * Convert & write out a cluster of pages in the same extent as defined
 821 * by mp and following the start page.
 822 */
 823STATIC void
 824xfs_cluster_write(
 825	struct inode		*inode,
 826	pgoff_t			tindex,
 827	struct xfs_bmbt_irec	*imap,
 828	xfs_ioend_t		**ioendp,
 829	struct writeback_control *wbc,
 830	pgoff_t			tlast)
 831{
 832	struct pagevec		pvec;
 833	int			done = 0, i;
 834
 835	pagevec_init(&pvec, 0);
 836	while (!done && tindex <= tlast) {
 837		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 838
 839		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 840			break;
 841
 842		for (i = 0; i < pagevec_count(&pvec); i++) {
 843			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 844					imap, ioendp, wbc);
 845			if (done)
 846				break;
 847		}
 848
 849		pagevec_release(&pvec);
 850		cond_resched();
 851	}
 852}
 853
 854STATIC void
 855xfs_vm_invalidatepage(
 856	struct page		*page,
 857	unsigned int		offset,
 858	unsigned int		length)
 859{
 860	trace_xfs_invalidatepage(page->mapping->host, page, offset,
 861				 length);
 862	block_invalidatepage(page, offset, length);
 863}
 864
 865/*
 866 * If the page has delalloc buffers on it, we need to punch them out before we
 867 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 868 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 869 * is done on that same region - the delalloc extent is returned when none is
 870 * supposed to be there.
 871 *
 872 * We prevent this by truncating away the delalloc regions on the page before
 873 * invalidating it. Because they are delalloc, we can do this without needing a
 874 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 875 * truncation without a transaction as there is no space left for block
 876 * reservation (typically why we see a ENOSPC in writeback).
 877 *
 878 * This is not a performance critical path, so for now just do the punching a
 879 * buffer head at a time.
 880 */
 881STATIC void
 882xfs_aops_discard_page(
 883	struct page		*page)
 884{
 885	struct inode		*inode = page->mapping->host;
 886	struct xfs_inode	*ip = XFS_I(inode);
 887	struct buffer_head	*bh, *head;
 888	loff_t			offset = page_offset(page);
 889
 890	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 891		goto out_invalidate;
 892
 893	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 894		goto out_invalidate;
 895
 896	xfs_alert(ip->i_mount,
 897		"page discard on page %p, inode 0x%llx, offset %llu.",
 898			page, ip->i_ino, offset);
 899
 900	xfs_ilock(ip, XFS_ILOCK_EXCL);
 901	bh = head = page_buffers(page);
 902	do {
 903		int		error;
 904		xfs_fileoff_t	start_fsb;
 905
 906		if (!buffer_delay(bh))
 907			goto next_buffer;
 908
 909		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 910		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 911		if (error) {
 912			/* something screwed, just bail */
 913			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 914				xfs_alert(ip->i_mount,
 915			"page discard unable to remove delalloc mapping.");
 916			}
 917			break;
 918		}
 919next_buffer:
 920		offset += 1 << inode->i_blkbits;
 921
 922	} while ((bh = bh->b_this_page) != head);
 923
 924	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 925out_invalidate:
 926	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
 927	return;
 928}
 929
 930/*
 931 * Write out a dirty page.
 932 *
 933 * For delalloc space on the page we need to allocate space and flush it.
 934 * For unwritten space on the page we need to start the conversion to
 935 * regular allocated space.
 936 * For any other dirty buffer heads on the page we should flush them.
 937 */
 938STATIC int
 939xfs_vm_writepage(
 940	struct page		*page,
 941	struct writeback_control *wbc)
 942{
 943	struct inode		*inode = page->mapping->host;
 944	struct buffer_head	*bh, *head;
 945	struct xfs_bmbt_irec	imap;
 946	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
 947	loff_t			offset;
 948	unsigned int		type;
 949	__uint64_t              end_offset;
 950	pgoff_t                 end_index, last_index;
 951	ssize_t			len;
 952	int			err, imap_valid = 0, uptodate = 1;
 953	int			count = 0;
 954	int			nonblocking = 0;
 955
 956	trace_xfs_writepage(inode, page, 0, 0);
 957
 958	ASSERT(page_has_buffers(page));
 959
 960	/*
 961	 * Refuse to write the page out if we are called from reclaim context.
 962	 *
 963	 * This avoids stack overflows when called from deeply used stacks in
 964	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 965	 * allow reclaim from kswapd as the stack usage there is relatively low.
 966	 *
 967	 * This should never happen except in the case of a VM regression so
 968	 * warn about it.
 969	 */
 970	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
 971			PF_MEMALLOC))
 972		goto redirty;
 
 
 
 
 973
 974	/*
 975	 * Given that we do not allow direct reclaim to call us, we should
 976	 * never be called while in a filesystem transaction.
 977	 */
 978	if (WARN_ON(current->flags & PF_FSTRANS))
 979		goto redirty;
 
 980
 981	/* Is this page beyond the end of the file? */
 982	offset = i_size_read(inode);
 983	end_index = offset >> PAGE_CACHE_SHIFT;
 984	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 985	if (page->index >= end_index) {
 986		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
 987
 988		/*
 989		 * Skip the page if it is fully outside i_size, e.g. due to a
 990		 * truncate operation that is in progress. We must redirty the
 991		 * page so that reclaim stops reclaiming it. Otherwise
 992		 * xfs_vm_releasepage() is called on it and gets confused.
 993		 */
 994		if (page->index >= end_index + 1 || offset_into_page == 0)
 995			goto redirty;
 
 
 996
 997		/*
 998		 * The page straddles i_size.  It must be zeroed out on each
 999		 * and every writepage invocation because it may be mmapped.
1000		 * "A file is mapped in multiples of the page size.  For a file
1001		 * that is not a multiple of the  page size, the remaining
1002		 * memory is zeroed when mapped, and writes to that region are
1003		 * not written out to the file."
1004		 */
1005		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1006	}
1007
1008	end_offset = min_t(unsigned long long,
1009			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1010			offset);
1011	len = 1 << inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013	bh = head = page_buffers(page);
1014	offset = page_offset(page);
1015	type = XFS_IO_OVERWRITE;
1016
1017	if (wbc->sync_mode == WB_SYNC_NONE)
1018		nonblocking = 1;
1019
1020	do {
1021		int new_ioend = 0;
1022
1023		if (offset >= end_offset)
1024			break;
1025		if (!buffer_uptodate(bh))
1026			uptodate = 0;
1027
1028		/*
1029		 * set_page_dirty dirties all buffers in a page, independent
1030		 * of their state.  The dirty state however is entirely
1031		 * meaningless for holes (!mapped && uptodate), so skip
1032		 * buffers covering holes here.
1033		 */
1034		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1035			imap_valid = 0;
1036			continue;
1037		}
1038
1039		if (buffer_unwritten(bh)) {
1040			if (type != XFS_IO_UNWRITTEN) {
1041				type = XFS_IO_UNWRITTEN;
1042				imap_valid = 0;
1043			}
1044		} else if (buffer_delay(bh)) {
1045			if (type != XFS_IO_DELALLOC) {
1046				type = XFS_IO_DELALLOC;
1047				imap_valid = 0;
1048			}
1049		} else if (buffer_uptodate(bh)) {
1050			if (type != XFS_IO_OVERWRITE) {
1051				type = XFS_IO_OVERWRITE;
1052				imap_valid = 0;
1053			}
1054		} else {
1055			if (PageUptodate(page))
1056				ASSERT(buffer_mapped(bh));
1057			/*
1058			 * This buffer is not uptodate and will not be
1059			 * written to disk.  Ensure that we will put any
1060			 * subsequent writeable buffers into a new
1061			 * ioend.
1062			 */
1063			imap_valid = 0;
1064			continue;
1065		}
1066
1067		if (imap_valid)
1068			imap_valid = xfs_imap_valid(inode, &imap, offset);
1069		if (!imap_valid) {
1070			/*
1071			 * If we didn't have a valid mapping then we need to
1072			 * put the new mapping into a separate ioend structure.
1073			 * This ensures non-contiguous extents always have
1074			 * separate ioends, which is particularly important
1075			 * for unwritten extent conversion at I/O completion
1076			 * time.
1077			 */
1078			new_ioend = 1;
1079			err = xfs_map_blocks(inode, offset, &imap, type,
1080					     nonblocking);
1081			if (err)
1082				goto error;
1083			imap_valid = xfs_imap_valid(inode, &imap, offset);
 
 
 
 
1084		}
1085		if (imap_valid) {
1086			lock_buffer(bh);
1087			if (type != XFS_IO_OVERWRITE)
1088				xfs_map_at_offset(inode, bh, &imap, offset);
1089			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1090					 new_ioend);
1091			count++;
1092		}
1093
1094		if (!iohead)
1095			iohead = ioend;
1096
1097	} while (offset += len, ((bh = bh->b_this_page) != head));
1098
1099	if (uptodate && bh == head)
1100		SetPageUptodate(page);
1101
1102	xfs_start_page_writeback(page, 1, count);
1103
1104	/* if there is no IO to be submitted for this page, we are done */
1105	if (!ioend)
1106		return 0;
1107
1108	ASSERT(iohead);
1109
 
1110	/*
1111	 * Any errors from this point onwards need tobe reported through the IO
1112	 * completion path as we have marked the initial page as under writeback
1113	 * and unlocked it.
 
 
 
 
 
 
 
 
 
 
 
 
1114	 */
1115	if (imap_valid) {
1116		xfs_off_t		end_index;
1117
1118		end_index = imap.br_startoff + imap.br_blockcount;
 
 
 
 
 
 
1119
1120		/* to bytes */
1121		end_index <<= inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122
1123		/* to pages */
1124		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
 
1125
1126		/* check against file size */
1127		if (end_index > last_index)
1128			end_index = last_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129
1130		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1131				  wbc, end_index);
1132	}
1133
 
1134
1135	/*
1136	 * Reserve log space if we might write beyond the on-disk inode size.
 
 
 
 
 
 
 
1137	 */
1138	err = 0;
1139	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1140		err = xfs_setfilesize_trans_alloc(ioend);
1141
1142	xfs_submit_ioend(wbc, iohead, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143
1144	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146error:
1147	if (iohead)
1148		xfs_cancel_ioend(iohead);
 
 
 
 
 
 
1149
1150	if (err == -EAGAIN)
1151		goto redirty;
 
1152
1153	xfs_aops_discard_page(page);
1154	ClearPageUptodate(page);
1155	unlock_page(page);
1156	return err;
1157
1158redirty:
1159	redirty_page_for_writepage(wbc, page);
1160	unlock_page(page);
1161	return 0;
1162}
1163
1164STATIC int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165xfs_vm_writepages(
1166	struct address_space	*mapping,
1167	struct writeback_control *wbc)
1168{
 
 
 
 
 
1169	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1170	return generic_writepages(mapping, wbc);
 
 
 
 
 
 
 
1171}
1172
1173/*
1174 * Called to move a page into cleanable state - and from there
1175 * to be released. The page should already be clean. We always
1176 * have buffer heads in this call.
1177 *
1178 * Returns 1 if the page is ok to release, 0 otherwise.
1179 */
1180STATIC int
1181xfs_vm_releasepage(
1182	struct page		*page,
1183	gfp_t			gfp_mask)
1184{
1185	int			delalloc, unwritten;
1186
1187	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1188
 
 
 
 
 
 
 
 
 
 
 
 
 
1189	xfs_count_page_state(page, &delalloc, &unwritten);
1190
1191	if (WARN_ON(delalloc))
 
1192		return 0;
1193	if (WARN_ON(unwritten))
 
 
1194		return 0;
 
1195
1196	return try_to_free_buffers(page);
1197}
1198
1199STATIC int
1200__xfs_get_blocks(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201	struct inode		*inode,
1202	sector_t		iblock,
1203	struct buffer_head	*bh_result,
1204	int			create,
1205	int			direct)
1206{
1207	struct xfs_inode	*ip = XFS_I(inode);
1208	struct xfs_mount	*mp = ip->i_mount;
1209	xfs_fileoff_t		offset_fsb, end_fsb;
1210	int			error = 0;
1211	int			lockmode = 0;
1212	struct xfs_bmbt_irec	imap;
1213	int			nimaps = 1;
1214	xfs_off_t		offset;
1215	ssize_t			size;
1216	int			new = 0;
 
1217
1218	if (XFS_FORCED_SHUTDOWN(mp))
1219		return -XFS_ERROR(EIO);
1220
1221	offset = (xfs_off_t)iblock << inode->i_blkbits;
1222	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1223	size = bh_result->b_size;
1224
1225	if (!create && direct && offset >= i_size_read(inode))
1226		return 0;
1227
1228	/*
1229	 * Direct I/O is usually done on preallocated files, so try getting
1230	 * a block mapping without an exclusive lock first.  For buffered
1231	 * writes we already have the exclusive iolock anyway, so avoiding
1232	 * a lock roundtrip here by taking the ilock exclusive from the
1233	 * beginning is a useful micro optimization.
1234	 */
1235	if (create && !direct) {
1236		lockmode = XFS_ILOCK_EXCL;
1237		xfs_ilock(ip, lockmode);
1238	} else {
1239		lockmode = xfs_ilock_data_map_shared(ip);
1240	}
1241
1242	ASSERT(offset <= mp->m_super->s_maxbytes);
1243	if (offset + size > mp->m_super->s_maxbytes)
1244		size = mp->m_super->s_maxbytes - offset;
1245	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1246	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1247
1248	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1249				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1250	if (error)
1251		goto out_unlock;
1252
1253	if (create &&
1254	    (!nimaps ||
1255	     (imap.br_startblock == HOLESTARTBLOCK ||
1256	      imap.br_startblock == DELAYSTARTBLOCK))) {
1257		if (direct || xfs_get_extsz_hint(ip)) {
1258			/*
1259			 * Drop the ilock in preparation for starting the block
1260			 * allocation transaction.  It will be retaken
1261			 * exclusively inside xfs_iomap_write_direct for the
1262			 * actual allocation.
1263			 */
1264			xfs_iunlock(ip, lockmode);
1265			error = xfs_iomap_write_direct(ip, offset, size,
1266						       &imap, nimaps);
1267			if (error)
1268				return -error;
1269			new = 1;
1270		} else {
1271			/*
1272			 * Delalloc reservations do not require a transaction,
1273			 * we can go on without dropping the lock here. If we
1274			 * are allocating a new delalloc block, make sure that
1275			 * we set the new flag so that we mark the buffer new so
1276			 * that we know that it is newly allocated if the write
1277			 * fails.
1278			 */
1279			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1280				new = 1;
1281			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1282			if (error)
1283				goto out_unlock;
1284
1285			xfs_iunlock(ip, lockmode);
1286		}
1287
1288		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1289	} else if (nimaps) {
1290		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1291		xfs_iunlock(ip, lockmode);
1292	} else {
1293		trace_xfs_get_blocks_notfound(ip, offset, size);
1294		goto out_unlock;
1295	}
1296
 
 
 
 
 
 
 
1297	if (imap.br_startblock != HOLESTARTBLOCK &&
1298	    imap.br_startblock != DELAYSTARTBLOCK) {
1299		/*
1300		 * For unwritten extents do not report a disk address on
1301		 * the read case (treat as if we're reading into a hole).
1302		 */
1303		if (create || !ISUNWRITTEN(&imap))
1304			xfs_map_buffer(inode, bh_result, &imap, offset);
1305		if (create && ISUNWRITTEN(&imap)) {
1306			if (direct) {
1307				bh_result->b_private = inode;
1308				set_buffer_defer_completion(bh_result);
1309			}
1310			set_buffer_unwritten(bh_result);
1311		}
1312	}
1313
1314	/*
1315	 * If this is a realtime file, data may be on a different device.
1316	 * to that pointed to from the buffer_head b_bdev currently.
1317	 */
1318	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1319
1320	/*
1321	 * If we previously allocated a block out beyond eof and we are now
1322	 * coming back to use it then we will need to flag it as new even if it
1323	 * has a disk address.
1324	 *
1325	 * With sub-block writes into unwritten extents we also need to mark
1326	 * the buffer as new so that the unwritten parts of the buffer gets
1327	 * correctly zeroed.
1328	 */
1329	if (create &&
1330	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1331	     (offset >= i_size_read(inode)) ||
1332	     (new || ISUNWRITTEN(&imap))))
1333		set_buffer_new(bh_result);
1334
1335	if (imap.br_startblock == DELAYSTARTBLOCK) {
1336		BUG_ON(direct);
1337		if (create) {
1338			set_buffer_uptodate(bh_result);
1339			set_buffer_mapped(bh_result);
1340			set_buffer_delay(bh_result);
1341		}
1342	}
1343
1344	/*
1345	 * If this is O_DIRECT or the mpage code calling tell them how large
1346	 * the mapping is, so that we can avoid repeated get_blocks calls.
1347	 *
1348	 * If the mapping spans EOF, then we have to break the mapping up as the
1349	 * mapping for blocks beyond EOF must be marked new so that sub block
1350	 * regions can be correctly zeroed. We can't do this for mappings within
1351	 * EOF unless the mapping was just allocated or is unwritten, otherwise
1352	 * the callers would overwrite existing data with zeros. Hence we have
1353	 * to split the mapping into a range up to and including EOF, and a
1354	 * second mapping for beyond EOF.
1355	 */
1356	if (direct || size > (1 << inode->i_blkbits)) {
1357		xfs_off_t		mapping_size;
1358
1359		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1360		mapping_size <<= inode->i_blkbits;
1361
1362		ASSERT(mapping_size > 0);
1363		if (mapping_size > size)
1364			mapping_size = size;
1365		if (offset < i_size_read(inode) &&
1366		    offset + mapping_size >= i_size_read(inode)) {
1367			/* limit mapping to block that spans EOF */
1368			mapping_size = roundup_64(i_size_read(inode) - offset,
1369						  1 << inode->i_blkbits);
1370		}
1371		if (mapping_size > LONG_MAX)
1372			mapping_size = LONG_MAX;
1373
1374		bh_result->b_size = mapping_size;
1375	}
1376
1377	return 0;
1378
1379out_unlock:
1380	xfs_iunlock(ip, lockmode);
1381	return -error;
1382}
1383
1384int
1385xfs_get_blocks(
1386	struct inode		*inode,
1387	sector_t		iblock,
1388	struct buffer_head	*bh_result,
1389	int			create)
1390{
1391	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1392}
1393
1394STATIC int
1395xfs_get_blocks_direct(
1396	struct inode		*inode,
1397	sector_t		iblock,
1398	struct buffer_head	*bh_result,
1399	int			create)
1400{
1401	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1402}
1403
1404/*
1405 * Complete a direct I/O write request.
1406 *
1407 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1408 * need to issue a transaction to convert the range from unwritten to written
1409 * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1410 * to do this and we are done.  But in case this was a successful AIO
1411 * request this handler is called from interrupt context, from which we
1412 * can't start transactions.  In that case offload the I/O completion to
1413 * the workqueues we also use for buffered I/O completion.
1414 */
1415STATIC void
1416xfs_end_io_direct_write(
1417	struct kiocb		*iocb,
1418	loff_t			offset,
1419	ssize_t			size,
1420	void			*private)
1421{
1422	struct xfs_ioend	*ioend = iocb->private;
1423
1424	/*
1425	 * While the generic direct I/O code updates the inode size, it does
1426	 * so only after the end_io handler is called, which means our
1427	 * end_io handler thinks the on-disk size is outside the in-core
1428	 * size.  To prevent this just update it a little bit earlier here.
1429	 */
1430	if (offset + size > i_size_read(ioend->io_inode))
1431		i_size_write(ioend->io_inode, offset + size);
1432
1433	/*
1434	 * blockdev_direct_IO can return an error even after the I/O
1435	 * completion handler was called.  Thus we need to protect
1436	 * against double-freeing.
1437	 */
1438	iocb->private = NULL;
1439
1440	ioend->io_offset = offset;
1441	ioend->io_size = size;
1442	if (private && size > 0)
1443		ioend->io_type = XFS_IO_UNWRITTEN;
1444
1445	xfs_finish_ioend_sync(ioend);
1446}
1447
1448STATIC ssize_t
1449xfs_vm_direct_IO(
1450	int			rw,
1451	struct kiocb		*iocb,
1452	const struct iovec	*iov,
1453	loff_t			offset,
1454	unsigned long		nr_segs)
1455{
1456	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1457	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1458	struct xfs_ioend	*ioend = NULL;
1459	ssize_t			ret;
1460
1461	if (rw & WRITE) {
1462		size_t size = iov_length(iov, nr_segs);
1463
1464		/*
1465		 * We cannot preallocate a size update transaction here as we
1466		 * don't know whether allocation is necessary or not. Hence we
1467		 * can only tell IO completion that one is necessary if we are
1468		 * not doing unwritten extent conversion.
1469		 */
1470		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1471		if (offset + size > XFS_I(inode)->i_d.di_size)
1472			ioend->io_isdirect = 1;
1473
1474		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1475					    offset, nr_segs,
1476					    xfs_get_blocks_direct,
1477					    xfs_end_io_direct_write, NULL,
1478					    DIO_ASYNC_EXTEND);
1479		if (ret != -EIOCBQUEUED && iocb->private)
1480			goto out_destroy_ioend;
1481	} else {
1482		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1483					    offset, nr_segs,
1484					    xfs_get_blocks_direct,
1485					    NULL, NULL, 0);
1486	}
1487
1488	return ret;
1489
1490out_destroy_ioend:
1491	xfs_destroy_ioend(ioend);
1492	return ret;
1493}
1494
1495/*
1496 * Punch out the delalloc blocks we have already allocated.
1497 *
1498 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1499 * as the page is still locked at this point.
1500 */
1501STATIC void
1502xfs_vm_kill_delalloc_range(
1503	struct inode		*inode,
1504	loff_t			start,
1505	loff_t			end)
1506{
1507	struct xfs_inode	*ip = XFS_I(inode);
1508	xfs_fileoff_t		start_fsb;
1509	xfs_fileoff_t		end_fsb;
1510	int			error;
1511
1512	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1513	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1514	if (end_fsb <= start_fsb)
1515		return;
1516
1517	xfs_ilock(ip, XFS_ILOCK_EXCL);
1518	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1519						end_fsb - start_fsb);
1520	if (error) {
1521		/* something screwed, just bail */
1522		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1523			xfs_alert(ip->i_mount,
1524		"xfs_vm_write_failed: unable to clean up ino %lld",
1525					ip->i_ino);
1526		}
1527	}
1528	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1529}
1530
1531STATIC void
1532xfs_vm_write_failed(
1533	struct inode		*inode,
1534	struct page		*page,
1535	loff_t			pos,
1536	unsigned		len)
1537{
1538	loff_t			block_offset;
1539	loff_t			block_start;
1540	loff_t			block_end;
1541	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1542	loff_t			to = from + len;
1543	struct buffer_head	*bh, *head;
1544
1545	/*
1546	 * The request pos offset might be 32 or 64 bit, this is all fine
1547	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1548	 * platform, the high 32-bit will be masked off if we evaluate the
1549	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1550	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1551	 * which could cause the following ASSERT failed in most cases.
1552	 * In order to avoid this, we can evaluate the block_offset of the
1553	 * start of the page by using shifts rather than masks the mismatch
1554	 * problem.
1555	 */
1556	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1557
1558	ASSERT(block_offset + from == pos);
1559
1560	head = page_buffers(page);
1561	block_start = 0;
1562	for (bh = head; bh != head || !block_start;
1563	     bh = bh->b_this_page, block_start = block_end,
1564				   block_offset += bh->b_size) {
1565		block_end = block_start + bh->b_size;
1566
1567		/* skip buffers before the write */
1568		if (block_end <= from)
1569			continue;
1570
1571		/* if the buffer is after the write, we're done */
1572		if (block_start >= to)
1573			break;
1574
1575		if (!buffer_delay(bh))
1576			continue;
1577
1578		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1579			continue;
1580
1581		xfs_vm_kill_delalloc_range(inode, block_offset,
1582					   block_offset + bh->b_size);
1583
1584		/*
1585		 * This buffer does not contain data anymore. make sure anyone
1586		 * who finds it knows that for certain.
1587		 */
1588		clear_buffer_delay(bh);
1589		clear_buffer_uptodate(bh);
1590		clear_buffer_mapped(bh);
1591		clear_buffer_new(bh);
1592		clear_buffer_dirty(bh);
1593	}
1594
1595}
1596
1597/*
1598 * This used to call block_write_begin(), but it unlocks and releases the page
1599 * on error, and we need that page to be able to punch stale delalloc blocks out
1600 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1601 * the appropriate point.
1602 */
1603STATIC int
1604xfs_vm_write_begin(
1605	struct file		*file,
1606	struct address_space	*mapping,
1607	loff_t			pos,
1608	unsigned		len,
1609	unsigned		flags,
1610	struct page		**pagep,
1611	void			**fsdata)
1612{
1613	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1614	struct page		*page;
1615	int			status;
1616
1617	ASSERT(len <= PAGE_CACHE_SIZE);
1618
1619	page = grab_cache_page_write_begin(mapping, index, flags);
1620	if (!page)
1621		return -ENOMEM;
1622
1623	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1624	if (unlikely(status)) {
1625		struct inode	*inode = mapping->host;
1626		size_t		isize = i_size_read(inode);
1627
1628		xfs_vm_write_failed(inode, page, pos, len);
1629		unlock_page(page);
1630
1631		/*
1632		 * If the write is beyond EOF, we only want to kill blocks
1633		 * allocated in this write, not blocks that were previously
1634		 * written successfully.
1635		 */
1636		if (pos + len > isize) {
1637			ssize_t start = max_t(ssize_t, pos, isize);
1638
1639			truncate_pagecache_range(inode, start, pos + len);
1640		}
1641
1642		page_cache_release(page);
1643		page = NULL;
1644	}
1645
1646	*pagep = page;
1647	return status;
1648}
1649
1650/*
1651 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1652 * this specific write because they will never be written. Previous writes
1653 * beyond EOF where block allocation succeeded do not need to be trashed, so
1654 * only new blocks from this write should be trashed. For blocks within
1655 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1656 * written with all the other valid data.
1657 */
1658STATIC int
1659xfs_vm_write_end(
1660	struct file		*file,
1661	struct address_space	*mapping,
1662	loff_t			pos,
1663	unsigned		len,
1664	unsigned		copied,
1665	struct page		*page,
1666	void			*fsdata)
1667{
1668	int			ret;
1669
1670	ASSERT(len <= PAGE_CACHE_SIZE);
1671
1672	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1673	if (unlikely(ret < len)) {
1674		struct inode	*inode = mapping->host;
1675		size_t		isize = i_size_read(inode);
1676		loff_t		to = pos + len;
1677
1678		if (to > isize) {
1679			/* only kill blocks in this write beyond EOF */
1680			if (pos > isize)
1681				isize = pos;
1682			xfs_vm_kill_delalloc_range(inode, isize, to);
1683			truncate_pagecache_range(inode, isize, to);
1684		}
1685	}
1686	return ret;
1687}
1688
1689STATIC sector_t
1690xfs_vm_bmap(
1691	struct address_space	*mapping,
1692	sector_t		block)
1693{
1694	struct inode		*inode = (struct inode *)mapping->host;
1695	struct xfs_inode	*ip = XFS_I(inode);
1696
1697	trace_xfs_vm_bmap(XFS_I(inode));
1698	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 
 
 
 
1699	filemap_write_and_wait(mapping);
1700	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1701	return generic_block_bmap(mapping, block, xfs_get_blocks);
1702}
1703
1704STATIC int
1705xfs_vm_readpage(
1706	struct file		*unused,
1707	struct page		*page)
1708{
 
1709	return mpage_readpage(page, xfs_get_blocks);
1710}
1711
1712STATIC int
1713xfs_vm_readpages(
1714	struct file		*unused,
1715	struct address_space	*mapping,
1716	struct list_head	*pages,
1717	unsigned		nr_pages)
1718{
 
1719	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1720}
1721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722const struct address_space_operations xfs_address_space_operations = {
1723	.readpage		= xfs_vm_readpage,
1724	.readpages		= xfs_vm_readpages,
1725	.writepage		= xfs_vm_writepage,
1726	.writepages		= xfs_vm_writepages,
 
1727	.releasepage		= xfs_vm_releasepage,
1728	.invalidatepage		= xfs_vm_invalidatepage,
1729	.write_begin		= xfs_vm_write_begin,
1730	.write_end		= xfs_vm_write_end,
1731	.bmap			= xfs_vm_bmap,
1732	.direct_IO		= xfs_vm_direct_IO,
1733	.migratepage		= buffer_migrate_page,
1734	.is_partially_uptodate  = block_is_partially_uptodate,
1735	.error_remove_page	= generic_error_remove_page,
1736};