Loading...
1/*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
9#include <linux/module.h>
10
11#include "md.h"
12#include "raid1.h"
13#include "raid5.h"
14#include "raid10.h"
15#include "bitmap.h"
16
17#include <linux/device-mapper.h>
18
19#define DM_MSG_PREFIX "raid"
20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22/*
23 * Minimum sectors of free reshape space per raid device
24 */
25#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27static bool devices_handle_discard_safely = false;
28
29/*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33#define FirstUse 10 /* rdev flag */
34
35struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51};
52
53/*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71/* New for v1.9.0 */
72#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
73#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76/*
77 * Flags for rs->ctr_flags field.
78 */
79#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95/*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100/* Define all any sync flags */
101#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103/* Define flags for options without argument (e.g. 'nosync') */
104#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107/* Define flags for options with one argument (e.g. 'delta_disks +2') */
108#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121/* Valid options definitions per raid level... */
122
123/* "raid0" does only accept data offset */
124#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DELTA_DISKS | \
136 CTR_FLAG_DATA_OFFSET)
137
138/* "raid10" does not accept any raid1 or stripe cache options */
139#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
140 CTR_FLAG_REBUILD | \
141 CTR_FLAG_DAEMON_SLEEP | \
142 CTR_FLAG_MIN_RECOVERY_RATE | \
143 CTR_FLAG_MAX_RECOVERY_RATE | \
144 CTR_FLAG_REGION_SIZE | \
145 CTR_FLAG_RAID10_COPIES | \
146 CTR_FLAG_RAID10_FORMAT | \
147 CTR_FLAG_DELTA_DISKS | \
148 CTR_FLAG_DATA_OFFSET | \
149 CTR_FLAG_RAID10_USE_NEAR_SETS)
150
151/*
152 * "raid4/5/6" do not accept any raid1 or raid10 specific options
153 *
154 * "raid6" does not accept "nosync", because it is not guaranteed
155 * that both parity and q-syndrome are being written properly with
156 * any writes
157 */
158#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
159 CTR_FLAG_REBUILD | \
160 CTR_FLAG_DAEMON_SLEEP | \
161 CTR_FLAG_MIN_RECOVERY_RATE | \
162 CTR_FLAG_MAX_RECOVERY_RATE | \
163 CTR_FLAG_STRIPE_CACHE | \
164 CTR_FLAG_REGION_SIZE | \
165 CTR_FLAG_DELTA_DISKS | \
166 CTR_FLAG_DATA_OFFSET)
167
168#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
169 CTR_FLAG_REBUILD | \
170 CTR_FLAG_DAEMON_SLEEP | \
171 CTR_FLAG_MIN_RECOVERY_RATE | \
172 CTR_FLAG_MAX_RECOVERY_RATE | \
173 CTR_FLAG_STRIPE_CACHE | \
174 CTR_FLAG_REGION_SIZE | \
175 CTR_FLAG_DELTA_DISKS | \
176 CTR_FLAG_DATA_OFFSET)
177/* ...valid options definitions per raid level */
178
179/*
180 * Flags for rs->runtime_flags field
181 * (RT_FLAG prefix meaning "runtime flag")
182 *
183 * These are all internal and used to define runtime state,
184 * e.g. to prevent another resume from preresume processing
185 * the raid set all over again.
186 */
187#define RT_FLAG_RS_PRERESUMED 0
188#define RT_FLAG_RS_RESUMED 1
189#define RT_FLAG_RS_BITMAP_LOADED 2
190#define RT_FLAG_UPDATE_SBS 3
191#define RT_FLAG_RESHAPE_RS 4
192
193/* Array elements of 64 bit needed for rebuild/failed disk bits */
194#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
195
196/*
197 * raid set level, layout and chunk sectors backup/restore
198 */
199struct rs_layout {
200 int new_level;
201 int new_layout;
202 int new_chunk_sectors;
203};
204
205struct raid_set {
206 struct dm_target *ti;
207
208 uint32_t bitmap_loaded;
209 uint32_t stripe_cache_entries;
210 unsigned long ctr_flags;
211 unsigned long runtime_flags;
212
213 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
214
215 int raid_disks;
216 int delta_disks;
217 int data_offset;
218 int raid10_copies;
219 int requested_bitmap_chunk_sectors;
220
221 struct mddev md;
222 struct raid_type *raid_type;
223 struct dm_target_callbacks callbacks;
224
225 struct raid_dev dev[0];
226};
227
228static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
229{
230 struct mddev *mddev = &rs->md;
231
232 l->new_level = mddev->new_level;
233 l->new_layout = mddev->new_layout;
234 l->new_chunk_sectors = mddev->new_chunk_sectors;
235}
236
237static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
238{
239 struct mddev *mddev = &rs->md;
240
241 mddev->new_level = l->new_level;
242 mddev->new_layout = l->new_layout;
243 mddev->new_chunk_sectors = l->new_chunk_sectors;
244}
245
246/* raid10 algorithms (i.e. formats) */
247#define ALGORITHM_RAID10_DEFAULT 0
248#define ALGORITHM_RAID10_NEAR 1
249#define ALGORITHM_RAID10_OFFSET 2
250#define ALGORITHM_RAID10_FAR 3
251
252/* Supported raid types and properties. */
253static struct raid_type {
254 const char *name; /* RAID algorithm. */
255 const char *descr; /* Descriptor text for logging. */
256 const unsigned int parity_devs; /* # of parity devices. */
257 const unsigned int minimal_devs;/* minimal # of devices in set. */
258 const unsigned int level; /* RAID level. */
259 const unsigned int algorithm; /* RAID algorithm. */
260} raid_types[] = {
261 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
262 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
263 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
264 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
265 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
266 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
267 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
268 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
269 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
270 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
271 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
272 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
273 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
274 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
275 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
276 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
277 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
278 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
279 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
280 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
281};
282
283/* True, if @v is in inclusive range [@min, @max] */
284static bool __within_range(long v, long min, long max)
285{
286 return v >= min && v <= max;
287}
288
289/* All table line arguments are defined here */
290static struct arg_name_flag {
291 const unsigned long flag;
292 const char *name;
293} __arg_name_flags[] = {
294 { CTR_FLAG_SYNC, "sync"},
295 { CTR_FLAG_NOSYNC, "nosync"},
296 { CTR_FLAG_REBUILD, "rebuild"},
297 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
298 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
299 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
300 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
301 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
302 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
303 { CTR_FLAG_REGION_SIZE, "region_size"},
304 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
305 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
306 { CTR_FLAG_DATA_OFFSET, "data_offset"},
307 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
308 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
309};
310
311/* Return argument name string for given @flag */
312static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
313{
314 if (hweight32(flag) == 1) {
315 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
316
317 while (anf-- > __arg_name_flags)
318 if (flag & anf->flag)
319 return anf->name;
320
321 } else
322 DMERR("%s called with more than one flag!", __func__);
323
324 return NULL;
325}
326
327/*
328 * Bool helpers to test for various raid levels of a raid set.
329 * It's level as reported by the superblock rather than
330 * the requested raid_type passed to the constructor.
331 */
332/* Return true, if raid set in @rs is raid0 */
333static bool rs_is_raid0(struct raid_set *rs)
334{
335 return !rs->md.level;
336}
337
338/* Return true, if raid set in @rs is raid1 */
339static bool rs_is_raid1(struct raid_set *rs)
340{
341 return rs->md.level == 1;
342}
343
344/* Return true, if raid set in @rs is raid10 */
345static bool rs_is_raid10(struct raid_set *rs)
346{
347 return rs->md.level == 10;
348}
349
350/* Return true, if raid set in @rs is level 6 */
351static bool rs_is_raid6(struct raid_set *rs)
352{
353 return rs->md.level == 6;
354}
355
356/* Return true, if raid set in @rs is level 4, 5 or 6 */
357static bool rs_is_raid456(struct raid_set *rs)
358{
359 return __within_range(rs->md.level, 4, 6);
360}
361
362/* Return true, if raid set in @rs is reshapable */
363static bool __is_raid10_far(int layout);
364static bool rs_is_reshapable(struct raid_set *rs)
365{
366 return rs_is_raid456(rs) ||
367 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
368}
369
370/* Return true, if raid set in @rs is recovering */
371static bool rs_is_recovering(struct raid_set *rs)
372{
373 return rs->md.recovery_cp < rs->dev[0].rdev.sectors;
374}
375
376/* Return true, if raid set in @rs is reshaping */
377static bool rs_is_reshaping(struct raid_set *rs)
378{
379 return rs->md.reshape_position != MaxSector;
380}
381
382/*
383 * bool helpers to test for various raid levels of a raid type @rt
384 */
385
386/* Return true, if raid type in @rt is raid0 */
387static bool rt_is_raid0(struct raid_type *rt)
388{
389 return !rt->level;
390}
391
392/* Return true, if raid type in @rt is raid1 */
393static bool rt_is_raid1(struct raid_type *rt)
394{
395 return rt->level == 1;
396}
397
398/* Return true, if raid type in @rt is raid10 */
399static bool rt_is_raid10(struct raid_type *rt)
400{
401 return rt->level == 10;
402}
403
404/* Return true, if raid type in @rt is raid4/5 */
405static bool rt_is_raid45(struct raid_type *rt)
406{
407 return __within_range(rt->level, 4, 5);
408}
409
410/* Return true, if raid type in @rt is raid6 */
411static bool rt_is_raid6(struct raid_type *rt)
412{
413 return rt->level == 6;
414}
415
416/* Return true, if raid type in @rt is raid4/5/6 */
417static bool rt_is_raid456(struct raid_type *rt)
418{
419 return __within_range(rt->level, 4, 6);
420}
421/* END: raid level bools */
422
423/* Return valid ctr flags for the raid level of @rs */
424static unsigned long __valid_flags(struct raid_set *rs)
425{
426 if (rt_is_raid0(rs->raid_type))
427 return RAID0_VALID_FLAGS;
428 else if (rt_is_raid1(rs->raid_type))
429 return RAID1_VALID_FLAGS;
430 else if (rt_is_raid10(rs->raid_type))
431 return RAID10_VALID_FLAGS;
432 else if (rt_is_raid45(rs->raid_type))
433 return RAID45_VALID_FLAGS;
434 else if (rt_is_raid6(rs->raid_type))
435 return RAID6_VALID_FLAGS;
436
437 return 0;
438}
439
440/*
441 * Check for valid flags set on @rs
442 *
443 * Has to be called after parsing of the ctr flags!
444 */
445static int rs_check_for_valid_flags(struct raid_set *rs)
446{
447 if (rs->ctr_flags & ~__valid_flags(rs)) {
448 rs->ti->error = "Invalid flags combination";
449 return -EINVAL;
450 }
451
452 return 0;
453}
454
455/* MD raid10 bit definitions and helpers */
456#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
457#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
458#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
459#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
460
461/* Return md raid10 near copies for @layout */
462static unsigned int __raid10_near_copies(int layout)
463{
464 return layout & 0xFF;
465}
466
467/* Return md raid10 far copies for @layout */
468static unsigned int __raid10_far_copies(int layout)
469{
470 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
471}
472
473/* Return true if md raid10 offset for @layout */
474static bool __is_raid10_offset(int layout)
475{
476 return !!(layout & RAID10_OFFSET);
477}
478
479/* Return true if md raid10 near for @layout */
480static bool __is_raid10_near(int layout)
481{
482 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
483}
484
485/* Return true if md raid10 far for @layout */
486static bool __is_raid10_far(int layout)
487{
488 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
489}
490
491/* Return md raid10 layout string for @layout */
492static const char *raid10_md_layout_to_format(int layout)
493{
494 /*
495 * Bit 16 stands for "offset"
496 * (i.e. adjacent stripes hold copies)
497 *
498 * Refer to MD's raid10.c for details
499 */
500 if (__is_raid10_offset(layout))
501 return "offset";
502
503 if (__raid10_near_copies(layout) > 1)
504 return "near";
505
506 WARN_ON(__raid10_far_copies(layout) < 2);
507
508 return "far";
509}
510
511/* Return md raid10 algorithm for @name */
512static int raid10_name_to_format(const char *name)
513{
514 if (!strcasecmp(name, "near"))
515 return ALGORITHM_RAID10_NEAR;
516 else if (!strcasecmp(name, "offset"))
517 return ALGORITHM_RAID10_OFFSET;
518 else if (!strcasecmp(name, "far"))
519 return ALGORITHM_RAID10_FAR;
520
521 return -EINVAL;
522}
523
524/* Return md raid10 copies for @layout */
525static unsigned int raid10_md_layout_to_copies(int layout)
526{
527 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
528}
529
530/* Return md raid10 format id for @format string */
531static int raid10_format_to_md_layout(struct raid_set *rs,
532 unsigned int algorithm,
533 unsigned int copies)
534{
535 unsigned int n = 1, f = 1, r = 0;
536
537 /*
538 * MD resilienece flaw:
539 *
540 * enabling use_far_sets for far/offset formats causes copies
541 * to be colocated on the same devs together with their origins!
542 *
543 * -> disable it for now in the definition above
544 */
545 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
546 algorithm == ALGORITHM_RAID10_NEAR)
547 n = copies;
548
549 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
550 f = copies;
551 r = RAID10_OFFSET;
552 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
553 r |= RAID10_USE_FAR_SETS;
554
555 } else if (algorithm == ALGORITHM_RAID10_FAR) {
556 f = copies;
557 r = !RAID10_OFFSET;
558 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
559 r |= RAID10_USE_FAR_SETS;
560
561 } else
562 return -EINVAL;
563
564 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
565}
566/* END: MD raid10 bit definitions and helpers */
567
568/* Check for any of the raid10 algorithms */
569static bool __got_raid10(struct raid_type *rtp, const int layout)
570{
571 if (rtp->level == 10) {
572 switch (rtp->algorithm) {
573 case ALGORITHM_RAID10_DEFAULT:
574 case ALGORITHM_RAID10_NEAR:
575 return __is_raid10_near(layout);
576 case ALGORITHM_RAID10_OFFSET:
577 return __is_raid10_offset(layout);
578 case ALGORITHM_RAID10_FAR:
579 return __is_raid10_far(layout);
580 default:
581 break;
582 }
583 }
584
585 return false;
586}
587
588/* Return raid_type for @name */
589static struct raid_type *get_raid_type(const char *name)
590{
591 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
592
593 while (rtp-- > raid_types)
594 if (!strcasecmp(rtp->name, name))
595 return rtp;
596
597 return NULL;
598}
599
600/* Return raid_type for @name based derived from @level and @layout */
601static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
602{
603 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
604
605 while (rtp-- > raid_types) {
606 /* RAID10 special checks based on @layout flags/properties */
607 if (rtp->level == level &&
608 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
609 return rtp;
610 }
611
612 return NULL;
613}
614
615/*
616 * Conditionally change bdev capacity of @rs
617 * in case of a disk add/remove reshape
618 */
619static void rs_set_capacity(struct raid_set *rs)
620{
621 struct mddev *mddev = &rs->md;
622 struct md_rdev *rdev;
623 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
624
625 /*
626 * raid10 sets rdev->sector to the device size, which
627 * is unintended in case of out-of-place reshaping
628 */
629 rdev_for_each(rdev, mddev)
630 rdev->sectors = mddev->dev_sectors;
631
632 set_capacity(gendisk, mddev->array_sectors);
633 revalidate_disk(gendisk);
634}
635
636/*
637 * Set the mddev properties in @rs to the current
638 * ones retrieved from the freshest superblock
639 */
640static void rs_set_cur(struct raid_set *rs)
641{
642 struct mddev *mddev = &rs->md;
643
644 mddev->new_level = mddev->level;
645 mddev->new_layout = mddev->layout;
646 mddev->new_chunk_sectors = mddev->chunk_sectors;
647}
648
649/*
650 * Set the mddev properties in @rs to the new
651 * ones requested by the ctr
652 */
653static void rs_set_new(struct raid_set *rs)
654{
655 struct mddev *mddev = &rs->md;
656
657 mddev->level = mddev->new_level;
658 mddev->layout = mddev->new_layout;
659 mddev->chunk_sectors = mddev->new_chunk_sectors;
660 mddev->raid_disks = rs->raid_disks;
661 mddev->delta_disks = 0;
662}
663
664static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
665 unsigned int raid_devs)
666{
667 unsigned int i;
668 struct raid_set *rs;
669
670 if (raid_devs <= raid_type->parity_devs) {
671 ti->error = "Insufficient number of devices";
672 return ERR_PTR(-EINVAL);
673 }
674
675 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
676 if (!rs) {
677 ti->error = "Cannot allocate raid context";
678 return ERR_PTR(-ENOMEM);
679 }
680
681 mddev_init(&rs->md);
682
683 rs->raid_disks = raid_devs;
684 rs->delta_disks = 0;
685
686 rs->ti = ti;
687 rs->raid_type = raid_type;
688 rs->stripe_cache_entries = 256;
689 rs->md.raid_disks = raid_devs;
690 rs->md.level = raid_type->level;
691 rs->md.new_level = rs->md.level;
692 rs->md.layout = raid_type->algorithm;
693 rs->md.new_layout = rs->md.layout;
694 rs->md.delta_disks = 0;
695 rs->md.recovery_cp = MaxSector;
696
697 for (i = 0; i < raid_devs; i++)
698 md_rdev_init(&rs->dev[i].rdev);
699
700 /*
701 * Remaining items to be initialized by further RAID params:
702 * rs->md.persistent
703 * rs->md.external
704 * rs->md.chunk_sectors
705 * rs->md.new_chunk_sectors
706 * rs->md.dev_sectors
707 */
708
709 return rs;
710}
711
712static void raid_set_free(struct raid_set *rs)
713{
714 int i;
715
716 for (i = 0; i < rs->raid_disks; i++) {
717 if (rs->dev[i].meta_dev)
718 dm_put_device(rs->ti, rs->dev[i].meta_dev);
719 md_rdev_clear(&rs->dev[i].rdev);
720 if (rs->dev[i].data_dev)
721 dm_put_device(rs->ti, rs->dev[i].data_dev);
722 }
723
724 kfree(rs);
725}
726
727/*
728 * For every device we have two words
729 * <meta_dev>: meta device name or '-' if missing
730 * <data_dev>: data device name or '-' if missing
731 *
732 * The following are permitted:
733 * - -
734 * - <data_dev>
735 * <meta_dev> <data_dev>
736 *
737 * The following is not allowed:
738 * <meta_dev> -
739 *
740 * This code parses those words. If there is a failure,
741 * the caller must use raid_set_free() to unwind the operations.
742 */
743static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
744{
745 int i;
746 int rebuild = 0;
747 int metadata_available = 0;
748 int r = 0;
749 const char *arg;
750
751 /* Put off the number of raid devices argument to get to dev pairs */
752 arg = dm_shift_arg(as);
753 if (!arg)
754 return -EINVAL;
755
756 for (i = 0; i < rs->raid_disks; i++) {
757 rs->dev[i].rdev.raid_disk = i;
758
759 rs->dev[i].meta_dev = NULL;
760 rs->dev[i].data_dev = NULL;
761
762 /*
763 * There are no offsets, since there is a separate device
764 * for data and metadata.
765 */
766 rs->dev[i].rdev.data_offset = 0;
767 rs->dev[i].rdev.mddev = &rs->md;
768
769 arg = dm_shift_arg(as);
770 if (!arg)
771 return -EINVAL;
772
773 if (strcmp(arg, "-")) {
774 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
775 &rs->dev[i].meta_dev);
776 if (r) {
777 rs->ti->error = "RAID metadata device lookup failure";
778 return r;
779 }
780
781 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
782 if (!rs->dev[i].rdev.sb_page) {
783 rs->ti->error = "Failed to allocate superblock page";
784 return -ENOMEM;
785 }
786 }
787
788 arg = dm_shift_arg(as);
789 if (!arg)
790 return -EINVAL;
791
792 if (!strcmp(arg, "-")) {
793 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
794 (!rs->dev[i].rdev.recovery_offset)) {
795 rs->ti->error = "Drive designated for rebuild not specified";
796 return -EINVAL;
797 }
798
799 if (rs->dev[i].meta_dev) {
800 rs->ti->error = "No data device supplied with metadata device";
801 return -EINVAL;
802 }
803
804 continue;
805 }
806
807 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
808 &rs->dev[i].data_dev);
809 if (r) {
810 rs->ti->error = "RAID device lookup failure";
811 return r;
812 }
813
814 if (rs->dev[i].meta_dev) {
815 metadata_available = 1;
816 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
817 }
818 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
819 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
820 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
821 rebuild++;
822 }
823
824 if (metadata_available) {
825 rs->md.external = 0;
826 rs->md.persistent = 1;
827 rs->md.major_version = 2;
828 } else if (rebuild && !rs->md.recovery_cp) {
829 /*
830 * Without metadata, we will not be able to tell if the array
831 * is in-sync or not - we must assume it is not. Therefore,
832 * it is impossible to rebuild a drive.
833 *
834 * Even if there is metadata, the on-disk information may
835 * indicate that the array is not in-sync and it will then
836 * fail at that time.
837 *
838 * User could specify 'nosync' option if desperate.
839 */
840 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
841 return -EINVAL;
842 }
843
844 return 0;
845}
846
847/*
848 * validate_region_size
849 * @rs
850 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
851 *
852 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
853 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
854 *
855 * Returns: 0 on success, -EINVAL on failure.
856 */
857static int validate_region_size(struct raid_set *rs, unsigned long region_size)
858{
859 unsigned long min_region_size = rs->ti->len / (1 << 21);
860
861 if (rs_is_raid0(rs))
862 return 0;
863
864 if (!region_size) {
865 /*
866 * Choose a reasonable default. All figures in sectors.
867 */
868 if (min_region_size > (1 << 13)) {
869 /* If not a power of 2, make it the next power of 2 */
870 region_size = roundup_pow_of_two(min_region_size);
871 DMINFO("Choosing default region size of %lu sectors",
872 region_size);
873 } else {
874 DMINFO("Choosing default region size of 4MiB");
875 region_size = 1 << 13; /* sectors */
876 }
877 } else {
878 /*
879 * Validate user-supplied value.
880 */
881 if (region_size > rs->ti->len) {
882 rs->ti->error = "Supplied region size is too large";
883 return -EINVAL;
884 }
885
886 if (region_size < min_region_size) {
887 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
888 region_size, min_region_size);
889 rs->ti->error = "Supplied region size is too small";
890 return -EINVAL;
891 }
892
893 if (!is_power_of_2(region_size)) {
894 rs->ti->error = "Region size is not a power of 2";
895 return -EINVAL;
896 }
897
898 if (region_size < rs->md.chunk_sectors) {
899 rs->ti->error = "Region size is smaller than the chunk size";
900 return -EINVAL;
901 }
902 }
903
904 /*
905 * Convert sectors to bytes.
906 */
907 rs->md.bitmap_info.chunksize = to_bytes(region_size);
908
909 return 0;
910}
911
912/*
913 * validate_raid_redundancy
914 * @rs
915 *
916 * Determine if there are enough devices in the array that haven't
917 * failed (or are being rebuilt) to form a usable array.
918 *
919 * Returns: 0 on success, -EINVAL on failure.
920 */
921static int validate_raid_redundancy(struct raid_set *rs)
922{
923 unsigned int i, rebuild_cnt = 0;
924 unsigned int rebuilds_per_group = 0, copies;
925 unsigned int group_size, last_group_start;
926
927 for (i = 0; i < rs->md.raid_disks; i++)
928 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
929 !rs->dev[i].rdev.sb_page)
930 rebuild_cnt++;
931
932 switch (rs->raid_type->level) {
933 case 0:
934 break;
935 case 1:
936 if (rebuild_cnt >= rs->md.raid_disks)
937 goto too_many;
938 break;
939 case 4:
940 case 5:
941 case 6:
942 if (rebuild_cnt > rs->raid_type->parity_devs)
943 goto too_many;
944 break;
945 case 10:
946 copies = raid10_md_layout_to_copies(rs->md.new_layout);
947 if (rebuild_cnt < copies)
948 break;
949
950 /*
951 * It is possible to have a higher rebuild count for RAID10,
952 * as long as the failed devices occur in different mirror
953 * groups (i.e. different stripes).
954 *
955 * When checking "near" format, make sure no adjacent devices
956 * have failed beyond what can be handled. In addition to the
957 * simple case where the number of devices is a multiple of the
958 * number of copies, we must also handle cases where the number
959 * of devices is not a multiple of the number of copies.
960 * E.g. dev1 dev2 dev3 dev4 dev5
961 * A A B B C
962 * C D D E E
963 */
964 if (__is_raid10_near(rs->md.new_layout)) {
965 for (i = 0; i < rs->md.raid_disks; i++) {
966 if (!(i % copies))
967 rebuilds_per_group = 0;
968 if ((!rs->dev[i].rdev.sb_page ||
969 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
970 (++rebuilds_per_group >= copies))
971 goto too_many;
972 }
973 break;
974 }
975
976 /*
977 * When checking "far" and "offset" formats, we need to ensure
978 * that the device that holds its copy is not also dead or
979 * being rebuilt. (Note that "far" and "offset" formats only
980 * support two copies right now. These formats also only ever
981 * use the 'use_far_sets' variant.)
982 *
983 * This check is somewhat complicated by the need to account
984 * for arrays that are not a multiple of (far) copies. This
985 * results in the need to treat the last (potentially larger)
986 * set differently.
987 */
988 group_size = (rs->md.raid_disks / copies);
989 last_group_start = (rs->md.raid_disks / group_size) - 1;
990 last_group_start *= group_size;
991 for (i = 0; i < rs->md.raid_disks; i++) {
992 if (!(i % copies) && !(i > last_group_start))
993 rebuilds_per_group = 0;
994 if ((!rs->dev[i].rdev.sb_page ||
995 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
996 (++rebuilds_per_group >= copies))
997 goto too_many;
998 }
999 break;
1000 default:
1001 if (rebuild_cnt)
1002 return -EINVAL;
1003 }
1004
1005 return 0;
1006
1007too_many:
1008 return -EINVAL;
1009}
1010
1011/*
1012 * Possible arguments are...
1013 * <chunk_size> [optional_args]
1014 *
1015 * Argument definitions
1016 * <chunk_size> The number of sectors per disk that
1017 * will form the "stripe"
1018 * [[no]sync] Force or prevent recovery of the
1019 * entire array
1020 * [rebuild <idx>] Rebuild the drive indicated by the index
1021 * [daemon_sleep <ms>] Time between bitmap daemon work to
1022 * clear bits
1023 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1024 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1025 * [write_mostly <idx>] Indicate a write mostly drive via index
1026 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1027 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1028 * [region_size <sectors>] Defines granularity of bitmap
1029 *
1030 * RAID10-only options:
1031 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1032 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1033 */
1034static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1035 unsigned int num_raid_params)
1036{
1037 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1038 unsigned int raid10_copies = 2;
1039 unsigned int i, write_mostly = 0;
1040 unsigned int region_size = 0;
1041 sector_t max_io_len;
1042 const char *arg, *key;
1043 struct raid_dev *rd;
1044 struct raid_type *rt = rs->raid_type;
1045
1046 arg = dm_shift_arg(as);
1047 num_raid_params--; /* Account for chunk_size argument */
1048
1049 if (kstrtoint(arg, 10, &value) < 0) {
1050 rs->ti->error = "Bad numerical argument given for chunk_size";
1051 return -EINVAL;
1052 }
1053
1054 /*
1055 * First, parse the in-order required arguments
1056 * "chunk_size" is the only argument of this type.
1057 */
1058 if (rt_is_raid1(rt)) {
1059 if (value)
1060 DMERR("Ignoring chunk size parameter for RAID 1");
1061 value = 0;
1062 } else if (!is_power_of_2(value)) {
1063 rs->ti->error = "Chunk size must be a power of 2";
1064 return -EINVAL;
1065 } else if (value < 8) {
1066 rs->ti->error = "Chunk size value is too small";
1067 return -EINVAL;
1068 }
1069
1070 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1071
1072 /*
1073 * We set each individual device as In_sync with a completed
1074 * 'recovery_offset'. If there has been a device failure or
1075 * replacement then one of the following cases applies:
1076 *
1077 * 1) User specifies 'rebuild'.
1078 * - Device is reset when param is read.
1079 * 2) A new device is supplied.
1080 * - No matching superblock found, resets device.
1081 * 3) Device failure was transient and returns on reload.
1082 * - Failure noticed, resets device for bitmap replay.
1083 * 4) Device hadn't completed recovery after previous failure.
1084 * - Superblock is read and overrides recovery_offset.
1085 *
1086 * What is found in the superblocks of the devices is always
1087 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1088 */
1089 for (i = 0; i < rs->raid_disks; i++) {
1090 set_bit(In_sync, &rs->dev[i].rdev.flags);
1091 rs->dev[i].rdev.recovery_offset = MaxSector;
1092 }
1093
1094 /*
1095 * Second, parse the unordered optional arguments
1096 */
1097 for (i = 0; i < num_raid_params; i++) {
1098 key = dm_shift_arg(as);
1099 if (!key) {
1100 rs->ti->error = "Not enough raid parameters given";
1101 return -EINVAL;
1102 }
1103
1104 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1105 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1106 rs->ti->error = "Only one 'nosync' argument allowed";
1107 return -EINVAL;
1108 }
1109 continue;
1110 }
1111 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1112 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1113 rs->ti->error = "Only one 'sync' argument allowed";
1114 return -EINVAL;
1115 }
1116 continue;
1117 }
1118 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1119 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1120 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1121 return -EINVAL;
1122 }
1123 continue;
1124 }
1125
1126 arg = dm_shift_arg(as);
1127 i++; /* Account for the argument pairs */
1128 if (!arg) {
1129 rs->ti->error = "Wrong number of raid parameters given";
1130 return -EINVAL;
1131 }
1132
1133 /*
1134 * Parameters that take a string value are checked here.
1135 */
1136
1137 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1138 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1139 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1140 return -EINVAL;
1141 }
1142 if (!rt_is_raid10(rt)) {
1143 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1144 return -EINVAL;
1145 }
1146 raid10_format = raid10_name_to_format(arg);
1147 if (raid10_format < 0) {
1148 rs->ti->error = "Invalid 'raid10_format' value given";
1149 return raid10_format;
1150 }
1151 continue;
1152 }
1153
1154 if (kstrtoint(arg, 10, &value) < 0) {
1155 rs->ti->error = "Bad numerical argument given in raid params";
1156 return -EINVAL;
1157 }
1158
1159 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1160 /*
1161 * "rebuild" is being passed in by userspace to provide
1162 * indexes of replaced devices and to set up additional
1163 * devices on raid level takeover.
1164 */
1165 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1166 rs->ti->error = "Invalid rebuild index given";
1167 return -EINVAL;
1168 }
1169
1170 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1171 rs->ti->error = "rebuild for this index already given";
1172 return -EINVAL;
1173 }
1174
1175 rd = rs->dev + value;
1176 clear_bit(In_sync, &rd->rdev.flags);
1177 clear_bit(Faulty, &rd->rdev.flags);
1178 rd->rdev.recovery_offset = 0;
1179 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1180 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1181 if (!rt_is_raid1(rt)) {
1182 rs->ti->error = "write_mostly option is only valid for RAID1";
1183 return -EINVAL;
1184 }
1185
1186 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1187 rs->ti->error = "Invalid write_mostly index given";
1188 return -EINVAL;
1189 }
1190
1191 write_mostly++;
1192 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1193 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1194 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1195 if (!rt_is_raid1(rt)) {
1196 rs->ti->error = "max_write_behind option is only valid for RAID1";
1197 return -EINVAL;
1198 }
1199
1200 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1201 rs->ti->error = "Only one max_write_behind argument pair allowed";
1202 return -EINVAL;
1203 }
1204
1205 /*
1206 * In device-mapper, we specify things in sectors, but
1207 * MD records this value in kB
1208 */
1209 value /= 2;
1210 if (value > COUNTER_MAX) {
1211 rs->ti->error = "Max write-behind limit out of range";
1212 return -EINVAL;
1213 }
1214
1215 rs->md.bitmap_info.max_write_behind = value;
1216 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1217 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1218 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1219 return -EINVAL;
1220 }
1221 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1222 rs->ti->error = "daemon sleep period out of range";
1223 return -EINVAL;
1224 }
1225 rs->md.bitmap_info.daemon_sleep = value;
1226 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1227 /* Userspace passes new data_offset after having extended the the data image LV */
1228 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1229 rs->ti->error = "Only one data_offset argument pair allowed";
1230 return -EINVAL;
1231 }
1232 /* Ensure sensible data offset */
1233 if (value < 0 ||
1234 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1235 rs->ti->error = "Bogus data_offset value";
1236 return -EINVAL;
1237 }
1238 rs->data_offset = value;
1239 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1240 /* Define the +/-# of disks to add to/remove from the given raid set */
1241 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1242 rs->ti->error = "Only one delta_disks argument pair allowed";
1243 return -EINVAL;
1244 }
1245 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1246 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1247 rs->ti->error = "Too many delta_disk requested";
1248 return -EINVAL;
1249 }
1250
1251 rs->delta_disks = value;
1252 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1253 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1254 rs->ti->error = "Only one stripe_cache argument pair allowed";
1255 return -EINVAL;
1256 }
1257
1258 if (!rt_is_raid456(rt)) {
1259 rs->ti->error = "Inappropriate argument: stripe_cache";
1260 return -EINVAL;
1261 }
1262
1263 rs->stripe_cache_entries = value;
1264 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1265 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1266 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1267 return -EINVAL;
1268 }
1269 if (value > INT_MAX) {
1270 rs->ti->error = "min_recovery_rate out of range";
1271 return -EINVAL;
1272 }
1273 rs->md.sync_speed_min = (int)value;
1274 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1275 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1276 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1277 return -EINVAL;
1278 }
1279 if (value > INT_MAX) {
1280 rs->ti->error = "max_recovery_rate out of range";
1281 return -EINVAL;
1282 }
1283 rs->md.sync_speed_max = (int)value;
1284 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1285 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1286 rs->ti->error = "Only one region_size argument pair allowed";
1287 return -EINVAL;
1288 }
1289
1290 region_size = value;
1291 rs->requested_bitmap_chunk_sectors = value;
1292 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1293 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1294 rs->ti->error = "Only one raid10_copies argument pair allowed";
1295 return -EINVAL;
1296 }
1297
1298 if (!__within_range(value, 2, rs->md.raid_disks)) {
1299 rs->ti->error = "Bad value for 'raid10_copies'";
1300 return -EINVAL;
1301 }
1302
1303 raid10_copies = value;
1304 } else {
1305 DMERR("Unable to parse RAID parameter: %s", key);
1306 rs->ti->error = "Unable to parse RAID parameter";
1307 return -EINVAL;
1308 }
1309 }
1310
1311 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1312 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1313 rs->ti->error = "sync and nosync are mutually exclusive";
1314 return -EINVAL;
1315 }
1316
1317 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1318 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1319 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1320 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1321 return -EINVAL;
1322 }
1323
1324 if (write_mostly >= rs->md.raid_disks) {
1325 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1326 return -EINVAL;
1327 }
1328
1329 if (validate_region_size(rs, region_size))
1330 return -EINVAL;
1331
1332 if (rs->md.chunk_sectors)
1333 max_io_len = rs->md.chunk_sectors;
1334 else
1335 max_io_len = region_size;
1336
1337 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1338 return -EINVAL;
1339
1340 if (rt_is_raid10(rt)) {
1341 if (raid10_copies > rs->md.raid_disks) {
1342 rs->ti->error = "Not enough devices to satisfy specification";
1343 return -EINVAL;
1344 }
1345
1346 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1347 if (rs->md.new_layout < 0) {
1348 rs->ti->error = "Error getting raid10 format";
1349 return rs->md.new_layout;
1350 }
1351
1352 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1353 if (!rt) {
1354 rs->ti->error = "Failed to recognize new raid10 layout";
1355 return -EINVAL;
1356 }
1357
1358 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1359 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1360 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1361 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1362 return -EINVAL;
1363 }
1364 }
1365
1366 rs->raid10_copies = raid10_copies;
1367
1368 /* Assume there are no metadata devices until the drives are parsed */
1369 rs->md.persistent = 0;
1370 rs->md.external = 1;
1371
1372 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1373 return rs_check_for_valid_flags(rs);
1374}
1375
1376/* Set raid4/5/6 cache size */
1377static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1378{
1379 int r;
1380 struct r5conf *conf;
1381 struct mddev *mddev = &rs->md;
1382 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1383 uint32_t nr_stripes = rs->stripe_cache_entries;
1384
1385 if (!rt_is_raid456(rs->raid_type)) {
1386 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1387 return -EINVAL;
1388 }
1389
1390 if (nr_stripes < min_stripes) {
1391 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1392 nr_stripes, min_stripes);
1393 nr_stripes = min_stripes;
1394 }
1395
1396 conf = mddev->private;
1397 if (!conf) {
1398 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1399 return -EINVAL;
1400 }
1401
1402 /* Try setting number of stripes in raid456 stripe cache */
1403 if (conf->min_nr_stripes != nr_stripes) {
1404 r = raid5_set_cache_size(mddev, nr_stripes);
1405 if (r) {
1406 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1407 return r;
1408 }
1409
1410 DMINFO("%u stripe cache entries", nr_stripes);
1411 }
1412
1413 return 0;
1414}
1415
1416/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1417static unsigned int mddev_data_stripes(struct raid_set *rs)
1418{
1419 return rs->md.raid_disks - rs->raid_type->parity_devs;
1420}
1421
1422/* Return # of data stripes of @rs (i.e. as of ctr) */
1423static unsigned int rs_data_stripes(struct raid_set *rs)
1424{
1425 return rs->raid_disks - rs->raid_type->parity_devs;
1426}
1427
1428/* Calculate the sectors per device and per array used for @rs */
1429static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1430{
1431 int delta_disks;
1432 unsigned int data_stripes;
1433 struct mddev *mddev = &rs->md;
1434 struct md_rdev *rdev;
1435 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1436
1437 if (use_mddev) {
1438 delta_disks = mddev->delta_disks;
1439 data_stripes = mddev_data_stripes(rs);
1440 } else {
1441 delta_disks = rs->delta_disks;
1442 data_stripes = rs_data_stripes(rs);
1443 }
1444
1445 /* Special raid1 case w/o delta_disks support (yet) */
1446 if (rt_is_raid1(rs->raid_type))
1447 ;
1448 else if (rt_is_raid10(rs->raid_type)) {
1449 if (rs->raid10_copies < 2 ||
1450 delta_disks < 0) {
1451 rs->ti->error = "Bogus raid10 data copies or delta disks";
1452 return -EINVAL;
1453 }
1454
1455 dev_sectors *= rs->raid10_copies;
1456 if (sector_div(dev_sectors, data_stripes))
1457 goto bad;
1458
1459 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1460 if (sector_div(array_sectors, rs->raid10_copies))
1461 goto bad;
1462
1463 } else if (sector_div(dev_sectors, data_stripes))
1464 goto bad;
1465
1466 else
1467 /* Striped layouts */
1468 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1469
1470 rdev_for_each(rdev, mddev)
1471 rdev->sectors = dev_sectors;
1472
1473 mddev->array_sectors = array_sectors;
1474 mddev->dev_sectors = dev_sectors;
1475
1476 return 0;
1477bad:
1478 rs->ti->error = "Target length not divisible by number of data devices";
1479 return -EINVAL;
1480}
1481
1482/* Setup recovery on @rs */
1483static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1484{
1485 /* raid0 does not recover */
1486 if (rs_is_raid0(rs))
1487 rs->md.recovery_cp = MaxSector;
1488 /*
1489 * A raid6 set has to be recovered either
1490 * completely or for the grown part to
1491 * ensure proper parity and Q-Syndrome
1492 */
1493 else if (rs_is_raid6(rs))
1494 rs->md.recovery_cp = dev_sectors;
1495 /*
1496 * Other raid set types may skip recovery
1497 * depending on the 'nosync' flag.
1498 */
1499 else
1500 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1501 ? MaxSector : dev_sectors;
1502}
1503
1504/* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1505static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1506{
1507 if (!dev_sectors)
1508 /* New raid set or 'sync' flag provided */
1509 __rs_setup_recovery(rs, 0);
1510 else if (dev_sectors == MaxSector)
1511 /* Prevent recovery */
1512 __rs_setup_recovery(rs, MaxSector);
1513 else if (rs->dev[0].rdev.sectors < dev_sectors)
1514 /* Grown raid set */
1515 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1516 else
1517 __rs_setup_recovery(rs, MaxSector);
1518}
1519
1520static void do_table_event(struct work_struct *ws)
1521{
1522 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1523
1524 smp_rmb(); /* Make sure we access most actual mddev properties */
1525 if (!rs_is_reshaping(rs))
1526 rs_set_capacity(rs);
1527 dm_table_event(rs->ti->table);
1528}
1529
1530static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1531{
1532 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1533
1534 return mddev_congested(&rs->md, bits);
1535}
1536
1537/*
1538 * Make sure a valid takover (level switch) is being requested on @rs
1539 *
1540 * Conversions of raid sets from one MD personality to another
1541 * have to conform to restrictions which are enforced here.
1542 */
1543static int rs_check_takeover(struct raid_set *rs)
1544{
1545 struct mddev *mddev = &rs->md;
1546 unsigned int near_copies;
1547
1548 if (rs->md.degraded) {
1549 rs->ti->error = "Can't takeover degraded raid set";
1550 return -EPERM;
1551 }
1552
1553 if (rs_is_reshaping(rs)) {
1554 rs->ti->error = "Can't takeover reshaping raid set";
1555 return -EPERM;
1556 }
1557
1558 switch (mddev->level) {
1559 case 0:
1560 /* raid0 -> raid1/5 with one disk */
1561 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1562 mddev->raid_disks == 1)
1563 return 0;
1564
1565 /* raid0 -> raid10 */
1566 if (mddev->new_level == 10 &&
1567 !(rs->raid_disks % mddev->raid_disks))
1568 return 0;
1569
1570 /* raid0 with multiple disks -> raid4/5/6 */
1571 if (__within_range(mddev->new_level, 4, 6) &&
1572 mddev->new_layout == ALGORITHM_PARITY_N &&
1573 mddev->raid_disks > 1)
1574 return 0;
1575
1576 break;
1577
1578 case 10:
1579 /* Can't takeover raid10_offset! */
1580 if (__is_raid10_offset(mddev->layout))
1581 break;
1582
1583 near_copies = __raid10_near_copies(mddev->layout);
1584
1585 /* raid10* -> raid0 */
1586 if (mddev->new_level == 0) {
1587 /* Can takeover raid10_near with raid disks divisable by data copies! */
1588 if (near_copies > 1 &&
1589 !(mddev->raid_disks % near_copies)) {
1590 mddev->raid_disks /= near_copies;
1591 mddev->delta_disks = mddev->raid_disks;
1592 return 0;
1593 }
1594
1595 /* Can takeover raid10_far */
1596 if (near_copies == 1 &&
1597 __raid10_far_copies(mddev->layout) > 1)
1598 return 0;
1599
1600 break;
1601 }
1602
1603 /* raid10_{near,far} -> raid1 */
1604 if (mddev->new_level == 1 &&
1605 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1606 return 0;
1607
1608 /* raid10_{near,far} with 2 disks -> raid4/5 */
1609 if (__within_range(mddev->new_level, 4, 5) &&
1610 mddev->raid_disks == 2)
1611 return 0;
1612 break;
1613
1614 case 1:
1615 /* raid1 with 2 disks -> raid4/5 */
1616 if (__within_range(mddev->new_level, 4, 5) &&
1617 mddev->raid_disks == 2) {
1618 mddev->degraded = 1;
1619 return 0;
1620 }
1621
1622 /* raid1 -> raid0 */
1623 if (mddev->new_level == 0 &&
1624 mddev->raid_disks == 1)
1625 return 0;
1626
1627 /* raid1 -> raid10 */
1628 if (mddev->new_level == 10)
1629 return 0;
1630 break;
1631
1632 case 4:
1633 /* raid4 -> raid0 */
1634 if (mddev->new_level == 0)
1635 return 0;
1636
1637 /* raid4 -> raid1/5 with 2 disks */
1638 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1639 mddev->raid_disks == 2)
1640 return 0;
1641
1642 /* raid4 -> raid5/6 with parity N */
1643 if (__within_range(mddev->new_level, 5, 6) &&
1644 mddev->layout == ALGORITHM_PARITY_N)
1645 return 0;
1646 break;
1647
1648 case 5:
1649 /* raid5 with parity N -> raid0 */
1650 if (mddev->new_level == 0 &&
1651 mddev->layout == ALGORITHM_PARITY_N)
1652 return 0;
1653
1654 /* raid5 with parity N -> raid4 */
1655 if (mddev->new_level == 4 &&
1656 mddev->layout == ALGORITHM_PARITY_N)
1657 return 0;
1658
1659 /* raid5 with 2 disks -> raid1/4/10 */
1660 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1661 mddev->raid_disks == 2)
1662 return 0;
1663
1664 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1665 if (mddev->new_level == 6 &&
1666 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1667 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1668 return 0;
1669 break;
1670
1671 case 6:
1672 /* raid6 with parity N -> raid0 */
1673 if (mddev->new_level == 0 &&
1674 mddev->layout == ALGORITHM_PARITY_N)
1675 return 0;
1676
1677 /* raid6 with parity N -> raid4 */
1678 if (mddev->new_level == 4 &&
1679 mddev->layout == ALGORITHM_PARITY_N)
1680 return 0;
1681
1682 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1683 if (mddev->new_level == 5 &&
1684 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1685 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1686 return 0;
1687
1688 default:
1689 break;
1690 }
1691
1692 rs->ti->error = "takeover not possible";
1693 return -EINVAL;
1694}
1695
1696/* True if @rs requested to be taken over */
1697static bool rs_takeover_requested(struct raid_set *rs)
1698{
1699 return rs->md.new_level != rs->md.level;
1700}
1701
1702/* True if @rs is requested to reshape by ctr */
1703static bool rs_reshape_requested(struct raid_set *rs)
1704{
1705 bool change;
1706 struct mddev *mddev = &rs->md;
1707
1708 if (rs_takeover_requested(rs))
1709 return false;
1710
1711 if (!mddev->level)
1712 return false;
1713
1714 change = mddev->new_layout != mddev->layout ||
1715 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1716 rs->delta_disks;
1717
1718 /* Historical case to support raid1 reshape without delta disks */
1719 if (mddev->level == 1) {
1720 if (rs->delta_disks)
1721 return !!rs->delta_disks;
1722
1723 return !change &&
1724 mddev->raid_disks != rs->raid_disks;
1725 }
1726
1727 if (mddev->level == 10)
1728 return change &&
1729 !__is_raid10_far(mddev->new_layout) &&
1730 rs->delta_disks >= 0;
1731
1732 return change;
1733}
1734
1735/* Features */
1736#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1737
1738/* State flags for sb->flags */
1739#define SB_FLAG_RESHAPE_ACTIVE 0x1
1740#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1741
1742/*
1743 * This structure is never routinely used by userspace, unlike md superblocks.
1744 * Devices with this superblock should only ever be accessed via device-mapper.
1745 */
1746#define DM_RAID_MAGIC 0x64526D44
1747struct dm_raid_superblock {
1748 __le32 magic; /* "DmRd" */
1749 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1750
1751 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1752 __le32 array_position; /* The position of this drive in the raid set */
1753
1754 __le64 events; /* Incremented by md when superblock updated */
1755 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1756 /* indicate failures (see extension below) */
1757
1758 /*
1759 * This offset tracks the progress of the repair or replacement of
1760 * an individual drive.
1761 */
1762 __le64 disk_recovery_offset;
1763
1764 /*
1765 * This offset tracks the progress of the initial raid set
1766 * synchronisation/parity calculation.
1767 */
1768 __le64 array_resync_offset;
1769
1770 /*
1771 * raid characteristics
1772 */
1773 __le32 level;
1774 __le32 layout;
1775 __le32 stripe_sectors;
1776
1777 /********************************************************************
1778 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1779 *
1780 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1781 */
1782
1783 __le32 flags; /* Flags defining array states for reshaping */
1784
1785 /*
1786 * This offset tracks the progress of a raid
1787 * set reshape in order to be able to restart it
1788 */
1789 __le64 reshape_position;
1790
1791 /*
1792 * These define the properties of the array in case of an interrupted reshape
1793 */
1794 __le32 new_level;
1795 __le32 new_layout;
1796 __le32 new_stripe_sectors;
1797 __le32 delta_disks;
1798
1799 __le64 array_sectors; /* Array size in sectors */
1800
1801 /*
1802 * Sector offsets to data on devices (reshaping).
1803 * Needed to support out of place reshaping, thus
1804 * not writing over any stripes whilst converting
1805 * them from old to new layout
1806 */
1807 __le64 data_offset;
1808 __le64 new_data_offset;
1809
1810 __le64 sectors; /* Used device size in sectors */
1811
1812 /*
1813 * Additonal Bit field of devices indicating failures to support
1814 * up to 256 devices with the 1.9.0 on-disk metadata format
1815 */
1816 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1817
1818 __le32 incompat_features; /* Used to indicate any incompatible features */
1819
1820 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1821} __packed;
1822
1823/*
1824 * Check for reshape constraints on raid set @rs:
1825 *
1826 * - reshape function non-existent
1827 * - degraded set
1828 * - ongoing recovery
1829 * - ongoing reshape
1830 *
1831 * Returns 0 if none or -EPERM if given constraint
1832 * and error message reference in @errmsg
1833 */
1834static int rs_check_reshape(struct raid_set *rs)
1835{
1836 struct mddev *mddev = &rs->md;
1837
1838 if (!mddev->pers || !mddev->pers->check_reshape)
1839 rs->ti->error = "Reshape not supported";
1840 else if (mddev->degraded)
1841 rs->ti->error = "Can't reshape degraded raid set";
1842 else if (rs_is_recovering(rs))
1843 rs->ti->error = "Convert request on recovering raid set prohibited";
1844 else if (rs_is_reshaping(rs))
1845 rs->ti->error = "raid set already reshaping!";
1846 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1847 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1848 else
1849 return 0;
1850
1851 return -EPERM;
1852}
1853
1854static int read_disk_sb(struct md_rdev *rdev, int size)
1855{
1856 BUG_ON(!rdev->sb_page);
1857
1858 if (rdev->sb_loaded)
1859 return 0;
1860
1861 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1862 DMERR("Failed to read superblock of device at position %d",
1863 rdev->raid_disk);
1864 md_error(rdev->mddev, rdev);
1865 return -EINVAL;
1866 }
1867
1868 rdev->sb_loaded = 1;
1869
1870 return 0;
1871}
1872
1873static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1874{
1875 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1876 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1877
1878 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1879 int i = ARRAY_SIZE(sb->extended_failed_devices);
1880
1881 while (i--)
1882 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1883 }
1884}
1885
1886static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1887{
1888 int i = ARRAY_SIZE(sb->extended_failed_devices);
1889
1890 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1891 while (i--)
1892 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1893}
1894
1895/*
1896 * Synchronize the superblock members with the raid set properties
1897 *
1898 * All superblock data is little endian.
1899 */
1900static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1901{
1902 bool update_failed_devices = false;
1903 unsigned int i;
1904 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1905 struct dm_raid_superblock *sb;
1906 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1907
1908 /* No metadata device, no superblock */
1909 if (!rdev->meta_bdev)
1910 return;
1911
1912 BUG_ON(!rdev->sb_page);
1913
1914 sb = page_address(rdev->sb_page);
1915
1916 sb_retrieve_failed_devices(sb, failed_devices);
1917
1918 for (i = 0; i < rs->raid_disks; i++)
1919 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1920 update_failed_devices = true;
1921 set_bit(i, (void *) failed_devices);
1922 }
1923
1924 if (update_failed_devices)
1925 sb_update_failed_devices(sb, failed_devices);
1926
1927 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1928 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1929
1930 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1931 sb->array_position = cpu_to_le32(rdev->raid_disk);
1932
1933 sb->events = cpu_to_le64(mddev->events);
1934
1935 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1936 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1937
1938 sb->level = cpu_to_le32(mddev->level);
1939 sb->layout = cpu_to_le32(mddev->layout);
1940 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1941
1942 sb->new_level = cpu_to_le32(mddev->new_level);
1943 sb->new_layout = cpu_to_le32(mddev->new_layout);
1944 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1945
1946 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1947
1948 smp_rmb(); /* Make sure we access most recent reshape position */
1949 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1950 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1951 /* Flag ongoing reshape */
1952 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1953
1954 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1955 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1956 } else {
1957 /* Clear reshape flags */
1958 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1959 }
1960
1961 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1962 sb->data_offset = cpu_to_le64(rdev->data_offset);
1963 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1964 sb->sectors = cpu_to_le64(rdev->sectors);
1965 sb->incompat_features = cpu_to_le32(0);
1966
1967 /* Zero out the rest of the payload after the size of the superblock */
1968 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1969}
1970
1971/*
1972 * super_load
1973 *
1974 * This function creates a superblock if one is not found on the device
1975 * and will decide which superblock to use if there's a choice.
1976 *
1977 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1978 */
1979static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1980{
1981 int r;
1982 struct dm_raid_superblock *sb;
1983 struct dm_raid_superblock *refsb;
1984 uint64_t events_sb, events_refsb;
1985
1986 rdev->sb_start = 0;
1987 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1988 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1989 DMERR("superblock size of a logical block is no longer valid");
1990 return -EINVAL;
1991 }
1992
1993 r = read_disk_sb(rdev, rdev->sb_size);
1994 if (r)
1995 return r;
1996
1997 sb = page_address(rdev->sb_page);
1998
1999 /*
2000 * Two cases that we want to write new superblocks and rebuild:
2001 * 1) New device (no matching magic number)
2002 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2003 */
2004 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2005 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2006 super_sync(rdev->mddev, rdev);
2007
2008 set_bit(FirstUse, &rdev->flags);
2009 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2010
2011 /* Force writing of superblocks to disk */
2012 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2013
2014 /* Any superblock is better than none, choose that if given */
2015 return refdev ? 0 : 1;
2016 }
2017
2018 if (!refdev)
2019 return 1;
2020
2021 events_sb = le64_to_cpu(sb->events);
2022
2023 refsb = page_address(refdev->sb_page);
2024 events_refsb = le64_to_cpu(refsb->events);
2025
2026 return (events_sb > events_refsb) ? 1 : 0;
2027}
2028
2029static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2030{
2031 int role;
2032 unsigned int d;
2033 struct mddev *mddev = &rs->md;
2034 uint64_t events_sb;
2035 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2036 struct dm_raid_superblock *sb;
2037 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2038 struct md_rdev *r;
2039 struct dm_raid_superblock *sb2;
2040
2041 sb = page_address(rdev->sb_page);
2042 events_sb = le64_to_cpu(sb->events);
2043
2044 /*
2045 * Initialise to 1 if this is a new superblock.
2046 */
2047 mddev->events = events_sb ? : 1;
2048
2049 mddev->reshape_position = MaxSector;
2050
2051 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2052 mddev->level = le32_to_cpu(sb->level);
2053 mddev->layout = le32_to_cpu(sb->layout);
2054 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2055
2056 /*
2057 * Reshaping is supported, e.g. reshape_position is valid
2058 * in superblock and superblock content is authoritative.
2059 */
2060 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2061 /* Superblock is authoritative wrt given raid set layout! */
2062 mddev->new_level = le32_to_cpu(sb->new_level);
2063 mddev->new_layout = le32_to_cpu(sb->new_layout);
2064 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2065 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2066 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2067
2068 /* raid was reshaping and got interrupted */
2069 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2070 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2071 DMERR("Reshape requested but raid set is still reshaping");
2072 return -EINVAL;
2073 }
2074
2075 if (mddev->delta_disks < 0 ||
2076 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2077 mddev->reshape_backwards = 1;
2078 else
2079 mddev->reshape_backwards = 0;
2080
2081 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2082 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2083 }
2084
2085 } else {
2086 /*
2087 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2088 */
2089 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2090 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2091
2092 if (rs_takeover_requested(rs)) {
2093 if (rt_cur && rt_new)
2094 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2095 rt_cur->name, rt_new->name);
2096 else
2097 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2098 return -EINVAL;
2099 } else if (rs_reshape_requested(rs)) {
2100 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2101 if (mddev->layout != mddev->new_layout) {
2102 if (rt_cur && rt_new)
2103 DMERR(" current layout %s vs new layout %s",
2104 rt_cur->name, rt_new->name);
2105 else
2106 DMERR(" current layout 0x%X vs new layout 0x%X",
2107 le32_to_cpu(sb->layout), mddev->new_layout);
2108 }
2109 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2110 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2111 mddev->chunk_sectors, mddev->new_chunk_sectors);
2112 if (rs->delta_disks)
2113 DMERR(" current %u disks vs new %u disks",
2114 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2115 if (rs_is_raid10(rs)) {
2116 DMERR(" Old layout: %s w/ %u copies",
2117 raid10_md_layout_to_format(mddev->layout),
2118 raid10_md_layout_to_copies(mddev->layout));
2119 DMERR(" New layout: %s w/ %u copies",
2120 raid10_md_layout_to_format(mddev->new_layout),
2121 raid10_md_layout_to_copies(mddev->new_layout));
2122 }
2123 return -EINVAL;
2124 }
2125
2126 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2127 }
2128
2129 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2130 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2131
2132 /*
2133 * During load, we set FirstUse if a new superblock was written.
2134 * There are two reasons we might not have a superblock:
2135 * 1) The raid set is brand new - in which case, all of the
2136 * devices must have their In_sync bit set. Also,
2137 * recovery_cp must be 0, unless forced.
2138 * 2) This is a new device being added to an old raid set
2139 * and the new device needs to be rebuilt - in which
2140 * case the In_sync bit will /not/ be set and
2141 * recovery_cp must be MaxSector.
2142 * 3) This is/are a new device(s) being added to an old
2143 * raid set during takeover to a higher raid level
2144 * to provide capacity for redundancy or during reshape
2145 * to add capacity to grow the raid set.
2146 */
2147 d = 0;
2148 rdev_for_each(r, mddev) {
2149 if (test_bit(FirstUse, &r->flags))
2150 new_devs++;
2151
2152 if (!test_bit(In_sync, &r->flags)) {
2153 DMINFO("Device %d specified for rebuild; clearing superblock",
2154 r->raid_disk);
2155 rebuilds++;
2156
2157 if (test_bit(FirstUse, &r->flags))
2158 rebuild_and_new++;
2159 }
2160
2161 d++;
2162 }
2163
2164 if (new_devs == rs->raid_disks || !rebuilds) {
2165 /* Replace a broken device */
2166 if (new_devs == 1 && !rs->delta_disks)
2167 ;
2168 if (new_devs == rs->raid_disks) {
2169 DMINFO("Superblocks created for new raid set");
2170 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2171 } else if (new_devs != rebuilds &&
2172 new_devs != rs->delta_disks) {
2173 DMERR("New device injected into existing raid set without "
2174 "'delta_disks' or 'rebuild' parameter specified");
2175 return -EINVAL;
2176 }
2177 } else if (new_devs && new_devs != rebuilds) {
2178 DMERR("%u 'rebuild' devices cannot be injected into"
2179 " a raid set with %u other first-time devices",
2180 rebuilds, new_devs);
2181 return -EINVAL;
2182 } else if (rebuilds) {
2183 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2184 DMERR("new device%s provided without 'rebuild'",
2185 new_devs > 1 ? "s" : "");
2186 return -EINVAL;
2187 } else if (rs_is_recovering(rs)) {
2188 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2189 (unsigned long long) mddev->recovery_cp);
2190 return -EINVAL;
2191 } else if (rs_is_reshaping(rs)) {
2192 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2193 (unsigned long long) mddev->reshape_position);
2194 return -EINVAL;
2195 }
2196 }
2197
2198 /*
2199 * Now we set the Faulty bit for those devices that are
2200 * recorded in the superblock as failed.
2201 */
2202 sb_retrieve_failed_devices(sb, failed_devices);
2203 rdev_for_each(r, mddev) {
2204 if (!r->sb_page)
2205 continue;
2206 sb2 = page_address(r->sb_page);
2207 sb2->failed_devices = 0;
2208 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2209
2210 /*
2211 * Check for any device re-ordering.
2212 */
2213 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2214 role = le32_to_cpu(sb2->array_position);
2215 if (role < 0)
2216 continue;
2217
2218 if (role != r->raid_disk) {
2219 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2220 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2221 rs->raid_disks % rs->raid10_copies) {
2222 rs->ti->error =
2223 "Cannot change raid10 near set to odd # of devices!";
2224 return -EINVAL;
2225 }
2226
2227 sb2->array_position = cpu_to_le32(r->raid_disk);
2228
2229 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2230 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2231 !rt_is_raid1(rs->raid_type)) {
2232 rs->ti->error = "Cannot change device positions in raid set";
2233 return -EINVAL;
2234 }
2235
2236 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2237 }
2238
2239 /*
2240 * Partial recovery is performed on
2241 * returning failed devices.
2242 */
2243 if (test_bit(role, (void *) failed_devices))
2244 set_bit(Faulty, &r->flags);
2245 }
2246 }
2247
2248 return 0;
2249}
2250
2251static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2252{
2253 struct mddev *mddev = &rs->md;
2254 struct dm_raid_superblock *sb;
2255
2256 if (rs_is_raid0(rs) || !rdev->sb_page)
2257 return 0;
2258
2259 sb = page_address(rdev->sb_page);
2260
2261 /*
2262 * If mddev->events is not set, we know we have not yet initialized
2263 * the array.
2264 */
2265 if (!mddev->events && super_init_validation(rs, rdev))
2266 return -EINVAL;
2267
2268 if (le32_to_cpu(sb->compat_features) &&
2269 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2270 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2271 return -EINVAL;
2272 }
2273
2274 if (sb->incompat_features) {
2275 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2276 return -EINVAL;
2277 }
2278
2279 /* Enable bitmap creation for RAID levels != 0 */
2280 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2281 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2282
2283 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2284 /* Retrieve device size stored in superblock to be prepared for shrink */
2285 rdev->sectors = le64_to_cpu(sb->sectors);
2286 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2287 if (rdev->recovery_offset == MaxSector)
2288 set_bit(In_sync, &rdev->flags);
2289 /*
2290 * If no reshape in progress -> we're recovering single
2291 * disk(s) and have to set the device(s) to out-of-sync
2292 */
2293 else if (!rs_is_reshaping(rs))
2294 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2295 }
2296
2297 /*
2298 * If a device comes back, set it as not In_sync and no longer faulty.
2299 */
2300 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2301 rdev->recovery_offset = 0;
2302 clear_bit(In_sync, &rdev->flags);
2303 rdev->saved_raid_disk = rdev->raid_disk;
2304 }
2305
2306 /* Reshape support -> restore repective data offsets */
2307 rdev->data_offset = le64_to_cpu(sb->data_offset);
2308 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2309
2310 return 0;
2311}
2312
2313/*
2314 * Analyse superblocks and select the freshest.
2315 */
2316static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2317{
2318 int r;
2319 struct raid_dev *dev;
2320 struct md_rdev *rdev, *tmp, *freshest;
2321 struct mddev *mddev = &rs->md;
2322
2323 freshest = NULL;
2324 rdev_for_each_safe(rdev, tmp, mddev) {
2325 /*
2326 * Skipping super_load due to CTR_FLAG_SYNC will cause
2327 * the array to undergo initialization again as
2328 * though it were new. This is the intended effect
2329 * of the "sync" directive.
2330 *
2331 * When reshaping capability is added, we must ensure
2332 * that the "sync" directive is disallowed during the
2333 * reshape.
2334 */
2335 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2336 continue;
2337
2338 if (!rdev->meta_bdev)
2339 continue;
2340
2341 r = super_load(rdev, freshest);
2342
2343 switch (r) {
2344 case 1:
2345 freshest = rdev;
2346 break;
2347 case 0:
2348 break;
2349 default:
2350 /*
2351 * We have to keep any raid0 data/metadata device pairs or
2352 * the MD raid0 personality will fail to start the array.
2353 */
2354 if (rs_is_raid0(rs))
2355 continue;
2356
2357 dev = container_of(rdev, struct raid_dev, rdev);
2358 if (dev->meta_dev)
2359 dm_put_device(ti, dev->meta_dev);
2360
2361 dev->meta_dev = NULL;
2362 rdev->meta_bdev = NULL;
2363
2364 if (rdev->sb_page)
2365 put_page(rdev->sb_page);
2366
2367 rdev->sb_page = NULL;
2368
2369 rdev->sb_loaded = 0;
2370
2371 /*
2372 * We might be able to salvage the data device
2373 * even though the meta device has failed. For
2374 * now, we behave as though '- -' had been
2375 * set for this device in the table.
2376 */
2377 if (dev->data_dev)
2378 dm_put_device(ti, dev->data_dev);
2379
2380 dev->data_dev = NULL;
2381 rdev->bdev = NULL;
2382
2383 list_del(&rdev->same_set);
2384 }
2385 }
2386
2387 if (!freshest)
2388 return 0;
2389
2390 if (validate_raid_redundancy(rs)) {
2391 rs->ti->error = "Insufficient redundancy to activate array";
2392 return -EINVAL;
2393 }
2394
2395 /*
2396 * Validation of the freshest device provides the source of
2397 * validation for the remaining devices.
2398 */
2399 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2400 if (super_validate(rs, freshest))
2401 return -EINVAL;
2402
2403 rdev_for_each(rdev, mddev)
2404 if ((rdev != freshest) && super_validate(rs, rdev))
2405 return -EINVAL;
2406 return 0;
2407}
2408
2409/*
2410 * Adjust data_offset and new_data_offset on all disk members of @rs
2411 * for out of place reshaping if requested by contructor
2412 *
2413 * We need free space at the beginning of each raid disk for forward
2414 * and at the end for backward reshapes which userspace has to provide
2415 * via remapping/reordering of space.
2416 */
2417static int rs_adjust_data_offsets(struct raid_set *rs)
2418{
2419 sector_t data_offset = 0, new_data_offset = 0;
2420 struct md_rdev *rdev;
2421
2422 /* Constructor did not request data offset change */
2423 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2424 if (!rs_is_reshapable(rs))
2425 goto out;
2426
2427 return 0;
2428 }
2429
2430 /* HM FIXME: get InSync raid_dev? */
2431 rdev = &rs->dev[0].rdev;
2432
2433 if (rs->delta_disks < 0) {
2434 /*
2435 * Removing disks (reshaping backwards):
2436 *
2437 * - before reshape: data is at offset 0 and free space
2438 * is at end of each component LV
2439 *
2440 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2441 */
2442 data_offset = 0;
2443 new_data_offset = rs->data_offset;
2444
2445 } else if (rs->delta_disks > 0) {
2446 /*
2447 * Adding disks (reshaping forwards):
2448 *
2449 * - before reshape: data is at offset rs->data_offset != 0 and
2450 * free space is at begin of each component LV
2451 *
2452 * - after reshape: data is at offset 0 on each component LV
2453 */
2454 data_offset = rs->data_offset;
2455 new_data_offset = 0;
2456
2457 } else {
2458 /*
2459 * User space passes in 0 for data offset after having removed reshape space
2460 *
2461 * - or - (data offset != 0)
2462 *
2463 * Changing RAID layout or chunk size -> toggle offsets
2464 *
2465 * - before reshape: data is at offset rs->data_offset 0 and
2466 * free space is at end of each component LV
2467 * -or-
2468 * data is at offset rs->data_offset != 0 and
2469 * free space is at begin of each component LV
2470 *
2471 * - after reshape: data is at offset 0 if it was at offset != 0
2472 * or at offset != 0 if it was at offset 0
2473 * on each component LV
2474 *
2475 */
2476 data_offset = rs->data_offset ? rdev->data_offset : 0;
2477 new_data_offset = data_offset ? 0 : rs->data_offset;
2478 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2479 }
2480
2481 /*
2482 * Make sure we got a minimum amount of free sectors per device
2483 */
2484 if (rs->data_offset &&
2485 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2486 rs->ti->error = data_offset ? "No space for forward reshape" :
2487 "No space for backward reshape";
2488 return -ENOSPC;
2489 }
2490out:
2491 /* Adjust data offsets on all rdevs */
2492 rdev_for_each(rdev, &rs->md) {
2493 rdev->data_offset = data_offset;
2494 rdev->new_data_offset = new_data_offset;
2495 }
2496
2497 return 0;
2498}
2499
2500/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2501static void __reorder_raid_disk_indexes(struct raid_set *rs)
2502{
2503 int i = 0;
2504 struct md_rdev *rdev;
2505
2506 rdev_for_each(rdev, &rs->md) {
2507 rdev->raid_disk = i++;
2508 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2509 }
2510}
2511
2512/*
2513 * Setup @rs for takeover by a different raid level
2514 */
2515static int rs_setup_takeover(struct raid_set *rs)
2516{
2517 struct mddev *mddev = &rs->md;
2518 struct md_rdev *rdev;
2519 unsigned int d = mddev->raid_disks = rs->raid_disks;
2520 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2521
2522 if (rt_is_raid10(rs->raid_type)) {
2523 if (mddev->level == 0) {
2524 /* Userpace reordered disks -> adjust raid_disk indexes */
2525 __reorder_raid_disk_indexes(rs);
2526
2527 /* raid0 -> raid10_far layout */
2528 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2529 rs->raid10_copies);
2530 } else if (mddev->level == 1)
2531 /* raid1 -> raid10_near layout */
2532 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2533 rs->raid_disks);
2534 else
2535 return -EINVAL;
2536
2537 }
2538
2539 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2540 mddev->recovery_cp = MaxSector;
2541
2542 while (d--) {
2543 rdev = &rs->dev[d].rdev;
2544
2545 if (test_bit(d, (void *) rs->rebuild_disks)) {
2546 clear_bit(In_sync, &rdev->flags);
2547 clear_bit(Faulty, &rdev->flags);
2548 mddev->recovery_cp = rdev->recovery_offset = 0;
2549 /* Bitmap has to be created when we do an "up" takeover */
2550 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2551 }
2552
2553 rdev->new_data_offset = new_data_offset;
2554 }
2555
2556 return 0;
2557}
2558
2559/* Prepare @rs for reshape */
2560static int rs_prepare_reshape(struct raid_set *rs)
2561{
2562 bool reshape;
2563 struct mddev *mddev = &rs->md;
2564
2565 if (rs_is_raid10(rs)) {
2566 if (rs->raid_disks != mddev->raid_disks &&
2567 __is_raid10_near(mddev->layout) &&
2568 rs->raid10_copies &&
2569 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2570 /*
2571 * raid disk have to be multiple of data copies to allow this conversion,
2572 *
2573 * This is actually not a reshape it is a
2574 * rebuild of any additional mirrors per group
2575 */
2576 if (rs->raid_disks % rs->raid10_copies) {
2577 rs->ti->error = "Can't reshape raid10 mirror groups";
2578 return -EINVAL;
2579 }
2580
2581 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2582 __reorder_raid_disk_indexes(rs);
2583 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2584 rs->raid10_copies);
2585 mddev->new_layout = mddev->layout;
2586 reshape = false;
2587 } else
2588 reshape = true;
2589
2590 } else if (rs_is_raid456(rs))
2591 reshape = true;
2592
2593 else if (rs_is_raid1(rs)) {
2594 if (rs->delta_disks) {
2595 /* Process raid1 via delta_disks */
2596 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2597 reshape = true;
2598 } else {
2599 /* Process raid1 without delta_disks */
2600 mddev->raid_disks = rs->raid_disks;
2601 reshape = false;
2602 }
2603 } else {
2604 rs->ti->error = "Called with bogus raid type";
2605 return -EINVAL;
2606 }
2607
2608 if (reshape) {
2609 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2610 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2611 } else if (mddev->raid_disks < rs->raid_disks)
2612 /* Create new superblocks and bitmaps, if any new disks */
2613 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2614
2615 return 0;
2616}
2617
2618/*
2619 *
2620 * - change raid layout
2621 * - change chunk size
2622 * - add disks
2623 * - remove disks
2624 */
2625static int rs_setup_reshape(struct raid_set *rs)
2626{
2627 int r = 0;
2628 unsigned int cur_raid_devs, d;
2629 struct mddev *mddev = &rs->md;
2630 struct md_rdev *rdev;
2631
2632 mddev->delta_disks = rs->delta_disks;
2633 cur_raid_devs = mddev->raid_disks;
2634
2635 /* Ignore impossible layout change whilst adding/removing disks */
2636 if (mddev->delta_disks &&
2637 mddev->layout != mddev->new_layout) {
2638 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2639 mddev->new_layout = mddev->layout;
2640 }
2641
2642 /*
2643 * Adjust array size:
2644 *
2645 * - in case of adding disks, array size has
2646 * to grow after the disk adding reshape,
2647 * which'll hapen in the event handler;
2648 * reshape will happen forward, so space has to
2649 * be available at the beginning of each disk
2650 *
2651 * - in case of removing disks, array size
2652 * has to shrink before starting the reshape,
2653 * which'll happen here;
2654 * reshape will happen backward, so space has to
2655 * be available at the end of each disk
2656 *
2657 * - data_offset and new_data_offset are
2658 * adjusted for aforementioned out of place
2659 * reshaping based on userspace passing in
2660 * the "data_offset <sectors>" key/value
2661 * pair via the constructor
2662 */
2663
2664 /* Add disk(s) */
2665 if (rs->delta_disks > 0) {
2666 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2667 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2668 rdev = &rs->dev[d].rdev;
2669 clear_bit(In_sync, &rdev->flags);
2670
2671 /*
2672 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2673 * by md, which'll store that erroneously in the superblock on reshape
2674 */
2675 rdev->saved_raid_disk = -1;
2676 rdev->raid_disk = d;
2677
2678 rdev->sectors = mddev->dev_sectors;
2679 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2680 }
2681
2682 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2683
2684 /* Remove disk(s) */
2685 } else if (rs->delta_disks < 0) {
2686 r = rs_set_dev_and_array_sectors(rs, true);
2687 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2688
2689 /* Change layout and/or chunk size */
2690 } else {
2691 /*
2692 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2693 *
2694 * keeping number of disks and do layout change ->
2695 *
2696 * toggle reshape_backward depending on data_offset:
2697 *
2698 * - free space upfront -> reshape forward
2699 *
2700 * - free space at the end -> reshape backward
2701 *
2702 *
2703 * This utilizes free reshape space avoiding the need
2704 * for userspace to move (parts of) LV segments in
2705 * case of layout/chunksize change (for disk
2706 * adding/removing reshape space has to be at
2707 * the proper address (see above with delta_disks):
2708 *
2709 * add disk(s) -> begin
2710 * remove disk(s)-> end
2711 */
2712 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2713 }
2714
2715 return r;
2716}
2717
2718/*
2719 * Enable/disable discard support on RAID set depending on
2720 * RAID level and discard properties of underlying RAID members.
2721 */
2722static void configure_discard_support(struct raid_set *rs)
2723{
2724 int i;
2725 bool raid456;
2726 struct dm_target *ti = rs->ti;
2727
2728 /* Assume discards not supported until after checks below. */
2729 ti->discards_supported = false;
2730
2731 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2732 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2733
2734 for (i = 0; i < rs->raid_disks; i++) {
2735 struct request_queue *q;
2736
2737 if (!rs->dev[i].rdev.bdev)
2738 continue;
2739
2740 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2741 if (!q || !blk_queue_discard(q))
2742 return;
2743
2744 if (raid456) {
2745 if (!q->limits.discard_zeroes_data)
2746 return;
2747 if (!devices_handle_discard_safely) {
2748 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2749 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2750 return;
2751 }
2752 }
2753 }
2754
2755 /* All RAID members properly support discards */
2756 ti->discards_supported = true;
2757
2758 /*
2759 * RAID1 and RAID10 personalities require bio splitting,
2760 * RAID0/4/5/6 don't and process large discard bios properly.
2761 */
2762 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2763 ti->num_discard_bios = 1;
2764}
2765
2766/*
2767 * Construct a RAID0/1/10/4/5/6 mapping:
2768 * Args:
2769 * <raid_type> <#raid_params> <raid_params>{0,} \
2770 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2771 *
2772 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2773 * details on possible <raid_params>.
2774 *
2775 * Userspace is free to initialize the metadata devices, hence the superblocks to
2776 * enforce recreation based on the passed in table parameters.
2777 *
2778 */
2779static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2780{
2781 int r;
2782 bool resize;
2783 struct raid_type *rt;
2784 unsigned int num_raid_params, num_raid_devs;
2785 sector_t calculated_dev_sectors;
2786 struct raid_set *rs = NULL;
2787 const char *arg;
2788 struct rs_layout rs_layout;
2789 struct dm_arg_set as = { argc, argv }, as_nrd;
2790 struct dm_arg _args[] = {
2791 { 0, as.argc, "Cannot understand number of raid parameters" },
2792 { 1, 254, "Cannot understand number of raid devices parameters" }
2793 };
2794
2795 /* Must have <raid_type> */
2796 arg = dm_shift_arg(&as);
2797 if (!arg) {
2798 ti->error = "No arguments";
2799 return -EINVAL;
2800 }
2801
2802 rt = get_raid_type(arg);
2803 if (!rt) {
2804 ti->error = "Unrecognised raid_type";
2805 return -EINVAL;
2806 }
2807
2808 /* Must have <#raid_params> */
2809 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2810 return -EINVAL;
2811
2812 /* number of raid device tupples <meta_dev data_dev> */
2813 as_nrd = as;
2814 dm_consume_args(&as_nrd, num_raid_params);
2815 _args[1].max = (as_nrd.argc - 1) / 2;
2816 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2817 return -EINVAL;
2818
2819 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2820 ti->error = "Invalid number of supplied raid devices";
2821 return -EINVAL;
2822 }
2823
2824 rs = raid_set_alloc(ti, rt, num_raid_devs);
2825 if (IS_ERR(rs))
2826 return PTR_ERR(rs);
2827
2828 r = parse_raid_params(rs, &as, num_raid_params);
2829 if (r)
2830 goto bad;
2831
2832 r = parse_dev_params(rs, &as);
2833 if (r)
2834 goto bad;
2835
2836 rs->md.sync_super = super_sync;
2837
2838 /*
2839 * Calculate ctr requested array and device sizes to allow
2840 * for superblock analysis needing device sizes defined.
2841 *
2842 * Any existing superblock will overwrite the array and device sizes
2843 */
2844 r = rs_set_dev_and_array_sectors(rs, false);
2845 if (r)
2846 goto bad;
2847
2848 calculated_dev_sectors = rs->dev[0].rdev.sectors;
2849
2850 /*
2851 * Backup any new raid set level, layout, ...
2852 * requested to be able to compare to superblock
2853 * members for conversion decisions.
2854 */
2855 rs_config_backup(rs, &rs_layout);
2856
2857 r = analyse_superblocks(ti, rs);
2858 if (r)
2859 goto bad;
2860
2861 resize = calculated_dev_sectors != rs->dev[0].rdev.sectors;
2862
2863 INIT_WORK(&rs->md.event_work, do_table_event);
2864 ti->private = rs;
2865 ti->num_flush_bios = 1;
2866
2867 /* Restore any requested new layout for conversion decision */
2868 rs_config_restore(rs, &rs_layout);
2869
2870 /*
2871 * Now that we have any superblock metadata available,
2872 * check for new, recovering, reshaping, to be taken over,
2873 * to be reshaped or an existing, unchanged raid set to
2874 * run in sequence.
2875 */
2876 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2877 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2878 if (rs_is_raid6(rs) &&
2879 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2880 ti->error = "'nosync' not allowed for new raid6 set";
2881 r = -EINVAL;
2882 goto bad;
2883 }
2884 rs_setup_recovery(rs, 0);
2885 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2886 rs_set_new(rs);
2887 } else if (rs_is_recovering(rs)) {
2888 /* A recovering raid set may be resized */
2889 ; /* skip setup rs */
2890 } else if (rs_is_reshaping(rs)) {
2891 /* Have to reject size change request during reshape */
2892 if (resize) {
2893 ti->error = "Can't resize a reshaping raid set";
2894 r = -EPERM;
2895 goto bad;
2896 }
2897 /* skip setup rs */
2898 } else if (rs_takeover_requested(rs)) {
2899 if (rs_is_reshaping(rs)) {
2900 ti->error = "Can't takeover a reshaping raid set";
2901 r = -EPERM;
2902 goto bad;
2903 }
2904
2905 /*
2906 * If a takeover is needed, userspace sets any additional
2907 * devices to rebuild and we can check for a valid request here.
2908 *
2909 * If acceptible, set the level to the new requested
2910 * one, prohibit requesting recovery, allow the raid
2911 * set to run and store superblocks during resume.
2912 */
2913 r = rs_check_takeover(rs);
2914 if (r)
2915 goto bad;
2916
2917 r = rs_setup_takeover(rs);
2918 if (r)
2919 goto bad;
2920
2921 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2922 /* Takeover ain't recovery, so disable recovery */
2923 rs_setup_recovery(rs, MaxSector);
2924 rs_set_new(rs);
2925 } else if (rs_reshape_requested(rs)) {
2926 /*
2927 * We can only prepare for a reshape here, because the
2928 * raid set needs to run to provide the repective reshape
2929 * check functions via its MD personality instance.
2930 *
2931 * So do the reshape check after md_run() succeeded.
2932 */
2933 r = rs_prepare_reshape(rs);
2934 if (r)
2935 return r;
2936
2937 /* Reshaping ain't recovery, so disable recovery */
2938 rs_setup_recovery(rs, MaxSector);
2939 rs_set_cur(rs);
2940 } else {
2941 /* May not set recovery when a device rebuild is requested */
2942 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
2943 rs_setup_recovery(rs, MaxSector);
2944 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2945 } else
2946 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2947 0 : (resize ? calculated_dev_sectors : MaxSector));
2948 rs_set_cur(rs);
2949 }
2950
2951 /* If constructor requested it, change data and new_data offsets */
2952 r = rs_adjust_data_offsets(rs);
2953 if (r)
2954 goto bad;
2955
2956 /* Start raid set read-only and assumed clean to change in raid_resume() */
2957 rs->md.ro = 1;
2958 rs->md.in_sync = 1;
2959 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2960
2961 /* Has to be held on running the array */
2962 mddev_lock_nointr(&rs->md);
2963 r = md_run(&rs->md);
2964 rs->md.in_sync = 0; /* Assume already marked dirty */
2965
2966 if (r) {
2967 ti->error = "Failed to run raid array";
2968 mddev_unlock(&rs->md);
2969 goto bad;
2970 }
2971
2972 rs->callbacks.congested_fn = raid_is_congested;
2973 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2974
2975 mddev_suspend(&rs->md);
2976
2977 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2978 if (rs_is_raid456(rs)) {
2979 r = rs_set_raid456_stripe_cache(rs);
2980 if (r)
2981 goto bad_stripe_cache;
2982 }
2983
2984 /* Now do an early reshape check */
2985 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2986 r = rs_check_reshape(rs);
2987 if (r)
2988 goto bad_check_reshape;
2989
2990 /* Restore new, ctr requested layout to perform check */
2991 rs_config_restore(rs, &rs_layout);
2992
2993 if (rs->md.pers->start_reshape) {
2994 r = rs->md.pers->check_reshape(&rs->md);
2995 if (r) {
2996 ti->error = "Reshape check failed";
2997 goto bad_check_reshape;
2998 }
2999 }
3000 }
3001
3002 /* Disable/enable discard support on raid set. */
3003 configure_discard_support(rs);
3004
3005 mddev_unlock(&rs->md);
3006 return 0;
3007
3008bad_stripe_cache:
3009bad_check_reshape:
3010 md_stop(&rs->md);
3011bad:
3012 raid_set_free(rs);
3013
3014 return r;
3015}
3016
3017static void raid_dtr(struct dm_target *ti)
3018{
3019 struct raid_set *rs = ti->private;
3020
3021 list_del_init(&rs->callbacks.list);
3022 md_stop(&rs->md);
3023 raid_set_free(rs);
3024}
3025
3026static int raid_map(struct dm_target *ti, struct bio *bio)
3027{
3028 struct raid_set *rs = ti->private;
3029 struct mddev *mddev = &rs->md;
3030
3031 /*
3032 * If we're reshaping to add disk(s)), ti->len and
3033 * mddev->array_sectors will differ during the process
3034 * (ti->len > mddev->array_sectors), so we have to requeue
3035 * bios with addresses > mddev->array_sectors here or
3036 * there will occur accesses past EOD of the component
3037 * data images thus erroring the raid set.
3038 */
3039 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3040 return DM_MAPIO_REQUEUE;
3041
3042 mddev->pers->make_request(mddev, bio);
3043
3044 return DM_MAPIO_SUBMITTED;
3045}
3046
3047/* Return string describing the current sync action of @mddev */
3048static const char *decipher_sync_action(struct mddev *mddev)
3049{
3050 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3051 return "frozen";
3052
3053 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3054 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3055 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3056 return "reshape";
3057
3058 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3059 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3060 return "resync";
3061 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3062 return "check";
3063 return "repair";
3064 }
3065
3066 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3067 return "recover";
3068 }
3069
3070 return "idle";
3071}
3072
3073/*
3074 * Return status string @rdev
3075 *
3076 * Status characters:
3077 *
3078 * 'D' = Dead/Failed device
3079 * 'a' = Alive but not in-sync
3080 * 'A' = Alive and in-sync
3081 */
3082static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3083{
3084 if (test_bit(Faulty, &rdev->flags))
3085 return "D";
3086 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3087 return "a";
3088 else
3089 return "A";
3090}
3091
3092/* Helper to return resync/reshape progress for @rs and @array_in_sync */
3093static sector_t rs_get_progress(struct raid_set *rs,
3094 sector_t resync_max_sectors, bool *array_in_sync)
3095{
3096 sector_t r, recovery_cp, curr_resync_completed;
3097 struct mddev *mddev = &rs->md;
3098
3099 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3100 recovery_cp = mddev->recovery_cp;
3101 *array_in_sync = false;
3102
3103 if (rs_is_raid0(rs)) {
3104 r = resync_max_sectors;
3105 *array_in_sync = true;
3106
3107 } else {
3108 r = mddev->reshape_position;
3109
3110 /* Reshape is relative to the array size */
3111 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3112 r != MaxSector) {
3113 if (r == MaxSector) {
3114 *array_in_sync = true;
3115 r = resync_max_sectors;
3116 } else {
3117 /* Got to reverse on backward reshape */
3118 if (mddev->reshape_backwards)
3119 r = mddev->array_sectors - r;
3120
3121 /* Devide by # of data stripes */
3122 sector_div(r, mddev_data_stripes(rs));
3123 }
3124
3125 /* Sync is relative to the component device size */
3126 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3127 r = curr_resync_completed;
3128 else
3129 r = recovery_cp;
3130
3131 if (r == MaxSector) {
3132 /*
3133 * Sync complete.
3134 */
3135 *array_in_sync = true;
3136 r = resync_max_sectors;
3137 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3138 /*
3139 * If "check" or "repair" is occurring, the raid set has
3140 * undergone an initial sync and the health characters
3141 * should not be 'a' anymore.
3142 */
3143 *array_in_sync = true;
3144 } else {
3145 struct md_rdev *rdev;
3146
3147 /*
3148 * The raid set may be doing an initial sync, or it may
3149 * be rebuilding individual components. If all the
3150 * devices are In_sync, then it is the raid set that is
3151 * being initialized.
3152 */
3153 rdev_for_each(rdev, mddev)
3154 if (!test_bit(In_sync, &rdev->flags))
3155 *array_in_sync = true;
3156#if 0
3157 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3158#endif
3159 }
3160 }
3161
3162 return r;
3163}
3164
3165/* Helper to return @dev name or "-" if !@dev */
3166static const char *__get_dev_name(struct dm_dev *dev)
3167{
3168 return dev ? dev->name : "-";
3169}
3170
3171static void raid_status(struct dm_target *ti, status_type_t type,
3172 unsigned int status_flags, char *result, unsigned int maxlen)
3173{
3174 struct raid_set *rs = ti->private;
3175 struct mddev *mddev = &rs->md;
3176 struct r5conf *conf = mddev->private;
3177 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3178 bool array_in_sync;
3179 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3180 unsigned int sz = 0;
3181 unsigned int rebuild_disks;
3182 unsigned int write_mostly_params = 0;
3183 sector_t progress, resync_max_sectors, resync_mismatches;
3184 const char *sync_action;
3185 struct raid_type *rt;
3186 struct md_rdev *rdev;
3187
3188 switch (type) {
3189 case STATUSTYPE_INFO:
3190 /* *Should* always succeed */
3191 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3192 if (!rt)
3193 return;
3194
3195 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3196
3197 /* Access most recent mddev properties for status output */
3198 smp_rmb();
3199 /* Get sensible max sectors even if raid set not yet started */
3200 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3201 mddev->resync_max_sectors : mddev->dev_sectors;
3202 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3203 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3204 atomic64_read(&mddev->resync_mismatches) : 0;
3205 sync_action = decipher_sync_action(&rs->md);
3206
3207 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3208 rdev_for_each(rdev, mddev)
3209 DMEMIT(__raid_dev_status(rdev, array_in_sync));
3210
3211 /*
3212 * In-sync/Reshape ratio:
3213 * The in-sync ratio shows the progress of:
3214 * - Initializing the raid set
3215 * - Rebuilding a subset of devices of the raid set
3216 * The user can distinguish between the two by referring
3217 * to the status characters.
3218 *
3219 * The reshape ratio shows the progress of
3220 * changing the raid layout or the number of
3221 * disks of a raid set
3222 */
3223 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3224 (unsigned long long) resync_max_sectors);
3225
3226 /*
3227 * v1.5.0+:
3228 *
3229 * Sync action:
3230 * See Documentation/device-mapper/dm-raid.txt for
3231 * information on each of these states.
3232 */
3233 DMEMIT(" %s", sync_action);
3234
3235 /*
3236 * v1.5.0+:
3237 *
3238 * resync_mismatches/mismatch_cnt
3239 * This field shows the number of discrepancies found when
3240 * performing a "check" of the raid set.
3241 */
3242 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3243
3244 /*
3245 * v1.9.0+:
3246 *
3247 * data_offset (needed for out of space reshaping)
3248 * This field shows the data offset into the data
3249 * image LV where the first stripes data starts.
3250 *
3251 * We keep data_offset equal on all raid disks of the set,
3252 * so retrieving it from the first raid disk is sufficient.
3253 */
3254 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3255 break;
3256
3257 case STATUSTYPE_TABLE:
3258 /* Report the table line string you would use to construct this raid set */
3259
3260 /* Calculate raid parameter count */
3261 for (i = 0; i < rs->raid_disks; i++)
3262 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3263 write_mostly_params += 2;
3264 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3265 raid_param_cnt += rebuild_disks * 2 +
3266 write_mostly_params +
3267 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3268 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3269 /* Emit table line */
3270 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3271 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3272 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3273 raid10_md_layout_to_format(mddev->layout));
3274 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3275 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3276 raid10_md_layout_to_copies(mddev->layout));
3277 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3278 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3279 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3280 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3281 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3282 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3283 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3284 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3285 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3286 (unsigned long long) rs->data_offset);
3287 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3288 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3289 mddev->bitmap_info.daemon_sleep);
3290 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3291 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3292 max(rs->delta_disks, mddev->delta_disks));
3293 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3294 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3295 max_nr_stripes);
3296 if (rebuild_disks)
3297 for (i = 0; i < rs->raid_disks; i++)
3298 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3299 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3300 rs->dev[i].rdev.raid_disk);
3301 if (write_mostly_params)
3302 for (i = 0; i < rs->raid_disks; i++)
3303 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3304 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3305 rs->dev[i].rdev.raid_disk);
3306 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3307 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3308 mddev->bitmap_info.max_write_behind);
3309 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3310 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3311 mddev->sync_speed_max);
3312 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3313 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3314 mddev->sync_speed_min);
3315 DMEMIT(" %d", rs->raid_disks);
3316 for (i = 0; i < rs->raid_disks; i++)
3317 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3318 __get_dev_name(rs->dev[i].data_dev));
3319 }
3320}
3321
3322static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3323{
3324 struct raid_set *rs = ti->private;
3325 struct mddev *mddev = &rs->md;
3326
3327 if (!mddev->pers || !mddev->pers->sync_request)
3328 return -EINVAL;
3329
3330 if (!strcasecmp(argv[0], "frozen"))
3331 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3332 else
3333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3334
3335 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3336 if (mddev->sync_thread) {
3337 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3338 md_reap_sync_thread(mddev);
3339 }
3340 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3341 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3342 return -EBUSY;
3343 else if (!strcasecmp(argv[0], "resync"))
3344 ; /* MD_RECOVERY_NEEDED set below */
3345 else if (!strcasecmp(argv[0], "recover"))
3346 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3347 else {
3348 if (!strcasecmp(argv[0], "check"))
3349 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3350 else if (!!strcasecmp(argv[0], "repair"))
3351 return -EINVAL;
3352 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3353 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3354 }
3355 if (mddev->ro == 2) {
3356 /* A write to sync_action is enough to justify
3357 * canceling read-auto mode
3358 */
3359 mddev->ro = 0;
3360 if (!mddev->suspended && mddev->sync_thread)
3361 md_wakeup_thread(mddev->sync_thread);
3362 }
3363 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3364 if (!mddev->suspended && mddev->thread)
3365 md_wakeup_thread(mddev->thread);
3366
3367 return 0;
3368}
3369
3370static int raid_iterate_devices(struct dm_target *ti,
3371 iterate_devices_callout_fn fn, void *data)
3372{
3373 struct raid_set *rs = ti->private;
3374 unsigned int i;
3375 int r = 0;
3376
3377 for (i = 0; !r && i < rs->md.raid_disks; i++)
3378 if (rs->dev[i].data_dev)
3379 r = fn(ti,
3380 rs->dev[i].data_dev,
3381 0, /* No offset on data devs */
3382 rs->md.dev_sectors,
3383 data);
3384
3385 return r;
3386}
3387
3388static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3389{
3390 struct raid_set *rs = ti->private;
3391 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3392
3393 blk_limits_io_min(limits, chunk_size);
3394 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3395}
3396
3397static void raid_presuspend(struct dm_target *ti)
3398{
3399 struct raid_set *rs = ti->private;
3400
3401 md_stop_writes(&rs->md);
3402}
3403
3404static void raid_postsuspend(struct dm_target *ti)
3405{
3406 struct raid_set *rs = ti->private;
3407
3408 if (!rs->md.suspended)
3409 mddev_suspend(&rs->md);
3410
3411 rs->md.ro = 1;
3412}
3413
3414static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3415{
3416 int i;
3417 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3418 unsigned long flags;
3419 bool cleared = false;
3420 struct dm_raid_superblock *sb;
3421 struct mddev *mddev = &rs->md;
3422 struct md_rdev *r;
3423
3424 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3425 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3426 return;
3427
3428 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3429
3430 for (i = 0; i < rs->md.raid_disks; i++) {
3431 r = &rs->dev[i].rdev;
3432 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3433 sync_page_io(r, 0, r->sb_size, r->sb_page,
3434 REQ_OP_READ, 0, true)) {
3435 DMINFO("Faulty %s device #%d has readable super block."
3436 " Attempting to revive it.",
3437 rs->raid_type->name, i);
3438
3439 /*
3440 * Faulty bit may be set, but sometimes the array can
3441 * be suspended before the personalities can respond
3442 * by removing the device from the array (i.e. calling
3443 * 'hot_remove_disk'). If they haven't yet removed
3444 * the failed device, its 'raid_disk' number will be
3445 * '>= 0' - meaning we must call this function
3446 * ourselves.
3447 */
3448 if ((r->raid_disk >= 0) &&
3449 (mddev->pers->hot_remove_disk(mddev, r) != 0))
3450 /* Failed to revive this device, try next */
3451 continue;
3452
3453 r->raid_disk = i;
3454 r->saved_raid_disk = i;
3455 flags = r->flags;
3456 clear_bit(Faulty, &r->flags);
3457 clear_bit(WriteErrorSeen, &r->flags);
3458 clear_bit(In_sync, &r->flags);
3459 if (mddev->pers->hot_add_disk(mddev, r)) {
3460 r->raid_disk = -1;
3461 r->saved_raid_disk = -1;
3462 r->flags = flags;
3463 } else {
3464 r->recovery_offset = 0;
3465 set_bit(i, (void *) cleared_failed_devices);
3466 cleared = true;
3467 }
3468 }
3469 }
3470
3471 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3472 if (cleared) {
3473 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3474
3475 rdev_for_each(r, &rs->md) {
3476 sb = page_address(r->sb_page);
3477 sb_retrieve_failed_devices(sb, failed_devices);
3478
3479 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3480 failed_devices[i] &= ~cleared_failed_devices[i];
3481
3482 sb_update_failed_devices(sb, failed_devices);
3483 }
3484 }
3485}
3486
3487static int __load_dirty_region_bitmap(struct raid_set *rs)
3488{
3489 int r = 0;
3490
3491 /* Try loading the bitmap unless "raid0", which does not have one */
3492 if (!rs_is_raid0(rs) &&
3493 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3494 r = bitmap_load(&rs->md);
3495 if (r)
3496 DMERR("Failed to load bitmap");
3497 }
3498
3499 return r;
3500}
3501
3502/* Enforce updating all superblocks */
3503static void rs_update_sbs(struct raid_set *rs)
3504{
3505 struct mddev *mddev = &rs->md;
3506 int ro = mddev->ro;
3507
3508 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3509 mddev->ro = 0;
3510 md_update_sb(mddev, 1);
3511 mddev->ro = ro;
3512}
3513
3514/*
3515 * Reshape changes raid algorithm of @rs to new one within personality
3516 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3517 * disks from a raid set thus growing/shrinking it or resizes the set
3518 *
3519 * Call mddev_lock_nointr() before!
3520 */
3521static int rs_start_reshape(struct raid_set *rs)
3522{
3523 int r;
3524 struct mddev *mddev = &rs->md;
3525 struct md_personality *pers = mddev->pers;
3526
3527 r = rs_setup_reshape(rs);
3528 if (r)
3529 return r;
3530
3531 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3532 if (mddev->suspended)
3533 mddev_resume(mddev);
3534
3535 /*
3536 * Check any reshape constraints enforced by the personalility
3537 *
3538 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3539 */
3540 r = pers->check_reshape(mddev);
3541 if (r) {
3542 rs->ti->error = "pers->check_reshape() failed";
3543 return r;
3544 }
3545
3546 /*
3547 * Personality may not provide start reshape method in which
3548 * case check_reshape above has already covered everything
3549 */
3550 if (pers->start_reshape) {
3551 r = pers->start_reshape(mddev);
3552 if (r) {
3553 rs->ti->error = "pers->start_reshape() failed";
3554 return r;
3555 }
3556 }
3557
3558 /* Suspend because a resume will happen in raid_resume() */
3559 if (!mddev->suspended)
3560 mddev_suspend(mddev);
3561
3562 /*
3563 * Now reshape got set up, update superblocks to
3564 * reflect the fact so that a table reload will
3565 * access proper superblock content in the ctr.
3566 */
3567 rs_update_sbs(rs);
3568
3569 return 0;
3570}
3571
3572static int raid_preresume(struct dm_target *ti)
3573{
3574 int r;
3575 struct raid_set *rs = ti->private;
3576 struct mddev *mddev = &rs->md;
3577
3578 /* This is a resume after a suspend of the set -> it's already started */
3579 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3580 return 0;
3581
3582 /*
3583 * The superblocks need to be updated on disk if the
3584 * array is new or new devices got added (thus zeroed
3585 * out by userspace) or __load_dirty_region_bitmap
3586 * will overwrite them in core with old data or fail.
3587 */
3588 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3589 rs_update_sbs(rs);
3590
3591 /* Load the bitmap from disk unless raid0 */
3592 r = __load_dirty_region_bitmap(rs);
3593 if (r)
3594 return r;
3595
3596 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3597 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3598 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3599 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3600 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3601 if (r)
3602 DMERR("Failed to resize bitmap");
3603 }
3604
3605 /* Check for any resize/reshape on @rs and adjust/initiate */
3606 /* Be prepared for mddev_resume() in raid_resume() */
3607 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3608 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3609 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3610 mddev->resync_min = mddev->recovery_cp;
3611 }
3612
3613 rs_set_capacity(rs);
3614
3615 /* Check for any reshape request unless new raid set */
3616 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3617 /* Initiate a reshape. */
3618 mddev_lock_nointr(mddev);
3619 r = rs_start_reshape(rs);
3620 mddev_unlock(mddev);
3621 if (r)
3622 DMWARN("Failed to check/start reshape, continuing without change");
3623 r = 0;
3624 }
3625
3626 return r;
3627}
3628
3629#define RESUME_STAY_FROZEN_FLAGS (CTR_FLAG_DELTA_DISKS | CTR_FLAG_DATA_OFFSET)
3630
3631static void raid_resume(struct dm_target *ti)
3632{
3633 struct raid_set *rs = ti->private;
3634 struct mddev *mddev = &rs->md;
3635
3636 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3637 /*
3638 * A secondary resume while the device is active.
3639 * Take this opportunity to check whether any failed
3640 * devices are reachable again.
3641 */
3642 attempt_restore_of_faulty_devices(rs);
3643 }
3644
3645 mddev->ro = 0;
3646 mddev->in_sync = 0;
3647
3648 /*
3649 * Keep the RAID set frozen if reshape/rebuild flags are set.
3650 * The RAID set is unfrozen once the next table load/resume,
3651 * which clears the reshape/rebuild flags, occurs.
3652 * This ensures that the constructor for the inactive table
3653 * retrieves an up-to-date reshape_position.
3654 */
3655 if (!(rs->ctr_flags & RESUME_STAY_FROZEN_FLAGS))
3656 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3657
3658 if (mddev->suspended)
3659 mddev_resume(mddev);
3660}
3661
3662static struct target_type raid_target = {
3663 .name = "raid",
3664 .version = {1, 9, 1},
3665 .module = THIS_MODULE,
3666 .ctr = raid_ctr,
3667 .dtr = raid_dtr,
3668 .map = raid_map,
3669 .status = raid_status,
3670 .message = raid_message,
3671 .iterate_devices = raid_iterate_devices,
3672 .io_hints = raid_io_hints,
3673 .presuspend = raid_presuspend,
3674 .postsuspend = raid_postsuspend,
3675 .preresume = raid_preresume,
3676 .resume = raid_resume,
3677};
3678
3679static int __init dm_raid_init(void)
3680{
3681 DMINFO("Loading target version %u.%u.%u",
3682 raid_target.version[0],
3683 raid_target.version[1],
3684 raid_target.version[2]);
3685 return dm_register_target(&raid_target);
3686}
3687
3688static void __exit dm_raid_exit(void)
3689{
3690 dm_unregister_target(&raid_target);
3691}
3692
3693module_init(dm_raid_init);
3694module_exit(dm_raid_exit);
3695
3696module_param(devices_handle_discard_safely, bool, 0644);
3697MODULE_PARM_DESC(devices_handle_discard_safely,
3698 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3699
3700MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3701MODULE_ALIAS("dm-raid0");
3702MODULE_ALIAS("dm-raid1");
3703MODULE_ALIAS("dm-raid10");
3704MODULE_ALIAS("dm-raid4");
3705MODULE_ALIAS("dm-raid5");
3706MODULE_ALIAS("dm-raid6");
3707MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3708MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3709MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
9#include <linux/module.h>
10
11#include "md.h"
12#include "raid1.h"
13#include "raid5.h"
14#include "raid10.h"
15#include "md-bitmap.h"
16
17#include <linux/device-mapper.h>
18
19#define DM_MSG_PREFIX "raid"
20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22/*
23 * Minimum sectors of free reshape space per raid device
24 */
25#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27/*
28 * Minimum journal space 4 MiB in sectors.
29 */
30#define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32/* Global list of all raid sets */
33static LIST_HEAD(raid_sets);
34
35static bool devices_handle_discard_safely = false;
36
37/*
38 * The following flags are used by dm-raid.c to set up the array state.
39 * They must be cleared before md_run is called.
40 */
41#define FirstUse 10 /* rdev flag */
42
43struct raid_dev {
44 /*
45 * Two DM devices, one to hold metadata and one to hold the
46 * actual data/parity. The reason for this is to not confuse
47 * ti->len and give more flexibility in altering size and
48 * characteristics.
49 *
50 * While it is possible for this device to be associated
51 * with a different physical device than the data_dev, it
52 * is intended for it to be the same.
53 * |--------- Physical Device ---------|
54 * |- meta_dev -|------ data_dev ------|
55 */
56 struct dm_dev *meta_dev;
57 struct dm_dev *data_dev;
58 struct md_rdev rdev;
59};
60
61/*
62 * Bits for establishing rs->ctr_flags
63 *
64 * 1 = no flag value
65 * 2 = flag with value
66 */
67#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
68#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
69#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
70#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
71#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
72#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
73#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
74#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
75#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
76#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
77#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
78#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
79/* New for v1.9.0 */
80#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
81#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
82#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
83
84/* New for v1.10.0 */
85#define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
86
87/* New for v1.11.1 */
88#define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
89
90/*
91 * Flags for rs->ctr_flags field.
92 */
93#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
94#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
95#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
96#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
97#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
98#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
99#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
100#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
101#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
102#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
103#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
104#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
105#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
106#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
107#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
108#define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
109#define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
110
111/*
112 * Definitions of various constructor flags to
113 * be used in checks of valid / invalid flags
114 * per raid level.
115 */
116/* Define all any sync flags */
117#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
118
119/* Define flags for options without argument (e.g. 'nosync') */
120#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
121 CTR_FLAG_RAID10_USE_NEAR_SETS)
122
123/* Define flags for options with one argument (e.g. 'delta_disks +2') */
124#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
125 CTR_FLAG_WRITE_MOSTLY | \
126 CTR_FLAG_DAEMON_SLEEP | \
127 CTR_FLAG_MIN_RECOVERY_RATE | \
128 CTR_FLAG_MAX_RECOVERY_RATE | \
129 CTR_FLAG_MAX_WRITE_BEHIND | \
130 CTR_FLAG_STRIPE_CACHE | \
131 CTR_FLAG_REGION_SIZE | \
132 CTR_FLAG_RAID10_COPIES | \
133 CTR_FLAG_RAID10_FORMAT | \
134 CTR_FLAG_DELTA_DISKS | \
135 CTR_FLAG_DATA_OFFSET)
136
137/* Valid options definitions per raid level... */
138
139/* "raid0" does only accept data offset */
140#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
141
142/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
144 CTR_FLAG_REBUILD | \
145 CTR_FLAG_WRITE_MOSTLY | \
146 CTR_FLAG_DAEMON_SLEEP | \
147 CTR_FLAG_MIN_RECOVERY_RATE | \
148 CTR_FLAG_MAX_RECOVERY_RATE | \
149 CTR_FLAG_MAX_WRITE_BEHIND | \
150 CTR_FLAG_REGION_SIZE | \
151 CTR_FLAG_DELTA_DISKS | \
152 CTR_FLAG_DATA_OFFSET)
153
154/* "raid10" does not accept any raid1 or stripe cache options */
155#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
156 CTR_FLAG_REBUILD | \
157 CTR_FLAG_DAEMON_SLEEP | \
158 CTR_FLAG_MIN_RECOVERY_RATE | \
159 CTR_FLAG_MAX_RECOVERY_RATE | \
160 CTR_FLAG_REGION_SIZE | \
161 CTR_FLAG_RAID10_COPIES | \
162 CTR_FLAG_RAID10_FORMAT | \
163 CTR_FLAG_DELTA_DISKS | \
164 CTR_FLAG_DATA_OFFSET | \
165 CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167/*
168 * "raid4/5/6" do not accept any raid1 or raid10 specific options
169 *
170 * "raid6" does not accept "nosync", because it is not guaranteed
171 * that both parity and q-syndrome are being written properly with
172 * any writes
173 */
174#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
175 CTR_FLAG_REBUILD | \
176 CTR_FLAG_DAEMON_SLEEP | \
177 CTR_FLAG_MIN_RECOVERY_RATE | \
178 CTR_FLAG_MAX_RECOVERY_RATE | \
179 CTR_FLAG_STRIPE_CACHE | \
180 CTR_FLAG_REGION_SIZE | \
181 CTR_FLAG_DELTA_DISKS | \
182 CTR_FLAG_DATA_OFFSET | \
183 CTR_FLAG_JOURNAL_DEV | \
184 CTR_FLAG_JOURNAL_MODE)
185
186#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
187 CTR_FLAG_REBUILD | \
188 CTR_FLAG_DAEMON_SLEEP | \
189 CTR_FLAG_MIN_RECOVERY_RATE | \
190 CTR_FLAG_MAX_RECOVERY_RATE | \
191 CTR_FLAG_STRIPE_CACHE | \
192 CTR_FLAG_REGION_SIZE | \
193 CTR_FLAG_DELTA_DISKS | \
194 CTR_FLAG_DATA_OFFSET | \
195 CTR_FLAG_JOURNAL_DEV | \
196 CTR_FLAG_JOURNAL_MODE)
197/* ...valid options definitions per raid level */
198
199/*
200 * Flags for rs->runtime_flags field
201 * (RT_FLAG prefix meaning "runtime flag")
202 *
203 * These are all internal and used to define runtime state,
204 * e.g. to prevent another resume from preresume processing
205 * the raid set all over again.
206 */
207#define RT_FLAG_RS_PRERESUMED 0
208#define RT_FLAG_RS_RESUMED 1
209#define RT_FLAG_RS_BITMAP_LOADED 2
210#define RT_FLAG_UPDATE_SBS 3
211#define RT_FLAG_RESHAPE_RS 4
212#define RT_FLAG_RS_SUSPENDED 5
213#define RT_FLAG_RS_IN_SYNC 6
214#define RT_FLAG_RS_RESYNCING 7
215
216/* Array elements of 64 bit needed for rebuild/failed disk bits */
217#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
218
219/*
220 * raid set level, layout and chunk sectors backup/restore
221 */
222struct rs_layout {
223 int new_level;
224 int new_layout;
225 int new_chunk_sectors;
226};
227
228struct raid_set {
229 struct dm_target *ti;
230 struct list_head list;
231
232 uint32_t stripe_cache_entries;
233 unsigned long ctr_flags;
234 unsigned long runtime_flags;
235
236 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
237
238 int raid_disks;
239 int delta_disks;
240 int data_offset;
241 int raid10_copies;
242 int requested_bitmap_chunk_sectors;
243
244 struct mddev md;
245 struct raid_type *raid_type;
246 struct dm_target_callbacks callbacks;
247
248 /* Optional raid4/5/6 journal device */
249 struct journal_dev {
250 struct dm_dev *dev;
251 struct md_rdev rdev;
252 int mode;
253 } journal_dev;
254
255 struct raid_dev dev[0];
256};
257
258static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
259{
260 struct mddev *mddev = &rs->md;
261
262 l->new_level = mddev->new_level;
263 l->new_layout = mddev->new_layout;
264 l->new_chunk_sectors = mddev->new_chunk_sectors;
265}
266
267static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
268{
269 struct mddev *mddev = &rs->md;
270
271 mddev->new_level = l->new_level;
272 mddev->new_layout = l->new_layout;
273 mddev->new_chunk_sectors = l->new_chunk_sectors;
274}
275
276/* Find any raid_set in active slot for @rs on global list */
277static struct raid_set *rs_find_active(struct raid_set *rs)
278{
279 struct raid_set *r;
280 struct mapped_device *md = dm_table_get_md(rs->ti->table);
281
282 list_for_each_entry(r, &raid_sets, list)
283 if (r != rs && dm_table_get_md(r->ti->table) == md)
284 return r;
285
286 return NULL;
287}
288
289/* raid10 algorithms (i.e. formats) */
290#define ALGORITHM_RAID10_DEFAULT 0
291#define ALGORITHM_RAID10_NEAR 1
292#define ALGORITHM_RAID10_OFFSET 2
293#define ALGORITHM_RAID10_FAR 3
294
295/* Supported raid types and properties. */
296static struct raid_type {
297 const char *name; /* RAID algorithm. */
298 const char *descr; /* Descriptor text for logging. */
299 const unsigned int parity_devs; /* # of parity devices. */
300 const unsigned int minimal_devs;/* minimal # of devices in set. */
301 const unsigned int level; /* RAID level. */
302 const unsigned int algorithm; /* RAID algorithm. */
303} raid_types[] = {
304 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
305 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
306 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
307 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
308 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
309 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
310 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
311 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
312 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
313 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
314 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
315 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
316 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
317 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
318 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
319 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
320 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
321 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
322 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
323 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
324};
325
326/* True, if @v is in inclusive range [@min, @max] */
327static bool __within_range(long v, long min, long max)
328{
329 return v >= min && v <= max;
330}
331
332/* All table line arguments are defined here */
333static struct arg_name_flag {
334 const unsigned long flag;
335 const char *name;
336} __arg_name_flags[] = {
337 { CTR_FLAG_SYNC, "sync"},
338 { CTR_FLAG_NOSYNC, "nosync"},
339 { CTR_FLAG_REBUILD, "rebuild"},
340 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
341 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
342 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
343 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
344 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
345 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
346 { CTR_FLAG_REGION_SIZE, "region_size"},
347 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
348 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
349 { CTR_FLAG_DATA_OFFSET, "data_offset"},
350 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
351 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
352 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
353 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
354};
355
356/* Return argument name string for given @flag */
357static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
358{
359 if (hweight32(flag) == 1) {
360 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
361
362 while (anf-- > __arg_name_flags)
363 if (flag & anf->flag)
364 return anf->name;
365
366 } else
367 DMERR("%s called with more than one flag!", __func__);
368
369 return NULL;
370}
371
372/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
373static struct {
374 const int mode;
375 const char *param;
376} _raid456_journal_mode[] = {
377 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
378 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" }
379};
380
381/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
382static int dm_raid_journal_mode_to_md(const char *mode)
383{
384 int m = ARRAY_SIZE(_raid456_journal_mode);
385
386 while (m--)
387 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
388 return _raid456_journal_mode[m].mode;
389
390 return -EINVAL;
391}
392
393/* Return dm-raid raid4/5/6 journal mode string for @mode */
394static const char *md_journal_mode_to_dm_raid(const int mode)
395{
396 int m = ARRAY_SIZE(_raid456_journal_mode);
397
398 while (m--)
399 if (mode == _raid456_journal_mode[m].mode)
400 return _raid456_journal_mode[m].param;
401
402 return "unknown";
403}
404
405/*
406 * Bool helpers to test for various raid levels of a raid set.
407 * It's level as reported by the superblock rather than
408 * the requested raid_type passed to the constructor.
409 */
410/* Return true, if raid set in @rs is raid0 */
411static bool rs_is_raid0(struct raid_set *rs)
412{
413 return !rs->md.level;
414}
415
416/* Return true, if raid set in @rs is raid1 */
417static bool rs_is_raid1(struct raid_set *rs)
418{
419 return rs->md.level == 1;
420}
421
422/* Return true, if raid set in @rs is raid10 */
423static bool rs_is_raid10(struct raid_set *rs)
424{
425 return rs->md.level == 10;
426}
427
428/* Return true, if raid set in @rs is level 6 */
429static bool rs_is_raid6(struct raid_set *rs)
430{
431 return rs->md.level == 6;
432}
433
434/* Return true, if raid set in @rs is level 4, 5 or 6 */
435static bool rs_is_raid456(struct raid_set *rs)
436{
437 return __within_range(rs->md.level, 4, 6);
438}
439
440/* Return true, if raid set in @rs is reshapable */
441static bool __is_raid10_far(int layout);
442static bool rs_is_reshapable(struct raid_set *rs)
443{
444 return rs_is_raid456(rs) ||
445 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
446}
447
448/* Return true, if raid set in @rs is recovering */
449static bool rs_is_recovering(struct raid_set *rs)
450{
451 return rs->md.recovery_cp < rs->md.dev_sectors;
452}
453
454/* Return true, if raid set in @rs is reshaping */
455static bool rs_is_reshaping(struct raid_set *rs)
456{
457 return rs->md.reshape_position != MaxSector;
458}
459
460/*
461 * bool helpers to test for various raid levels of a raid type @rt
462 */
463
464/* Return true, if raid type in @rt is raid0 */
465static bool rt_is_raid0(struct raid_type *rt)
466{
467 return !rt->level;
468}
469
470/* Return true, if raid type in @rt is raid1 */
471static bool rt_is_raid1(struct raid_type *rt)
472{
473 return rt->level == 1;
474}
475
476/* Return true, if raid type in @rt is raid10 */
477static bool rt_is_raid10(struct raid_type *rt)
478{
479 return rt->level == 10;
480}
481
482/* Return true, if raid type in @rt is raid4/5 */
483static bool rt_is_raid45(struct raid_type *rt)
484{
485 return __within_range(rt->level, 4, 5);
486}
487
488/* Return true, if raid type in @rt is raid6 */
489static bool rt_is_raid6(struct raid_type *rt)
490{
491 return rt->level == 6;
492}
493
494/* Return true, if raid type in @rt is raid4/5/6 */
495static bool rt_is_raid456(struct raid_type *rt)
496{
497 return __within_range(rt->level, 4, 6);
498}
499/* END: raid level bools */
500
501/* Return valid ctr flags for the raid level of @rs */
502static unsigned long __valid_flags(struct raid_set *rs)
503{
504 if (rt_is_raid0(rs->raid_type))
505 return RAID0_VALID_FLAGS;
506 else if (rt_is_raid1(rs->raid_type))
507 return RAID1_VALID_FLAGS;
508 else if (rt_is_raid10(rs->raid_type))
509 return RAID10_VALID_FLAGS;
510 else if (rt_is_raid45(rs->raid_type))
511 return RAID45_VALID_FLAGS;
512 else if (rt_is_raid6(rs->raid_type))
513 return RAID6_VALID_FLAGS;
514
515 return 0;
516}
517
518/*
519 * Check for valid flags set on @rs
520 *
521 * Has to be called after parsing of the ctr flags!
522 */
523static int rs_check_for_valid_flags(struct raid_set *rs)
524{
525 if (rs->ctr_flags & ~__valid_flags(rs)) {
526 rs->ti->error = "Invalid flags combination";
527 return -EINVAL;
528 }
529
530 return 0;
531}
532
533/* MD raid10 bit definitions and helpers */
534#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
535#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
536#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
537#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
538
539/* Return md raid10 near copies for @layout */
540static unsigned int __raid10_near_copies(int layout)
541{
542 return layout & 0xFF;
543}
544
545/* Return md raid10 far copies for @layout */
546static unsigned int __raid10_far_copies(int layout)
547{
548 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
549}
550
551/* Return true if md raid10 offset for @layout */
552static bool __is_raid10_offset(int layout)
553{
554 return !!(layout & RAID10_OFFSET);
555}
556
557/* Return true if md raid10 near for @layout */
558static bool __is_raid10_near(int layout)
559{
560 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
561}
562
563/* Return true if md raid10 far for @layout */
564static bool __is_raid10_far(int layout)
565{
566 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
567}
568
569/* Return md raid10 layout string for @layout */
570static const char *raid10_md_layout_to_format(int layout)
571{
572 /*
573 * Bit 16 stands for "offset"
574 * (i.e. adjacent stripes hold copies)
575 *
576 * Refer to MD's raid10.c for details
577 */
578 if (__is_raid10_offset(layout))
579 return "offset";
580
581 if (__raid10_near_copies(layout) > 1)
582 return "near";
583
584 if (__raid10_far_copies(layout) > 1)
585 return "far";
586
587 return "unknown";
588}
589
590/* Return md raid10 algorithm for @name */
591static const int raid10_name_to_format(const char *name)
592{
593 if (!strcasecmp(name, "near"))
594 return ALGORITHM_RAID10_NEAR;
595 else if (!strcasecmp(name, "offset"))
596 return ALGORITHM_RAID10_OFFSET;
597 else if (!strcasecmp(name, "far"))
598 return ALGORITHM_RAID10_FAR;
599
600 return -EINVAL;
601}
602
603/* Return md raid10 copies for @layout */
604static unsigned int raid10_md_layout_to_copies(int layout)
605{
606 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
607}
608
609/* Return md raid10 format id for @format string */
610static int raid10_format_to_md_layout(struct raid_set *rs,
611 unsigned int algorithm,
612 unsigned int copies)
613{
614 unsigned int n = 1, f = 1, r = 0;
615
616 /*
617 * MD resilienece flaw:
618 *
619 * enabling use_far_sets for far/offset formats causes copies
620 * to be colocated on the same devs together with their origins!
621 *
622 * -> disable it for now in the definition above
623 */
624 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
625 algorithm == ALGORITHM_RAID10_NEAR)
626 n = copies;
627
628 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
629 f = copies;
630 r = RAID10_OFFSET;
631 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
632 r |= RAID10_USE_FAR_SETS;
633
634 } else if (algorithm == ALGORITHM_RAID10_FAR) {
635 f = copies;
636 r = !RAID10_OFFSET;
637 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
638 r |= RAID10_USE_FAR_SETS;
639
640 } else
641 return -EINVAL;
642
643 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
644}
645/* END: MD raid10 bit definitions and helpers */
646
647/* Check for any of the raid10 algorithms */
648static bool __got_raid10(struct raid_type *rtp, const int layout)
649{
650 if (rtp->level == 10) {
651 switch (rtp->algorithm) {
652 case ALGORITHM_RAID10_DEFAULT:
653 case ALGORITHM_RAID10_NEAR:
654 return __is_raid10_near(layout);
655 case ALGORITHM_RAID10_OFFSET:
656 return __is_raid10_offset(layout);
657 case ALGORITHM_RAID10_FAR:
658 return __is_raid10_far(layout);
659 default:
660 break;
661 }
662 }
663
664 return false;
665}
666
667/* Return raid_type for @name */
668static struct raid_type *get_raid_type(const char *name)
669{
670 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671
672 while (rtp-- > raid_types)
673 if (!strcasecmp(rtp->name, name))
674 return rtp;
675
676 return NULL;
677}
678
679/* Return raid_type for @name based derived from @level and @layout */
680static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
681{
682 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
683
684 while (rtp-- > raid_types) {
685 /* RAID10 special checks based on @layout flags/properties */
686 if (rtp->level == level &&
687 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
688 return rtp;
689 }
690
691 return NULL;
692}
693
694/* Adjust rdev sectors */
695static void rs_set_rdev_sectors(struct raid_set *rs)
696{
697 struct mddev *mddev = &rs->md;
698 struct md_rdev *rdev;
699
700 /*
701 * raid10 sets rdev->sector to the device size, which
702 * is unintended in case of out-of-place reshaping
703 */
704 rdev_for_each(rdev, mddev)
705 if (!test_bit(Journal, &rdev->flags))
706 rdev->sectors = mddev->dev_sectors;
707}
708
709/*
710 * Change bdev capacity of @rs in case of a disk add/remove reshape
711 */
712static void rs_set_capacity(struct raid_set *rs)
713{
714 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
715
716 set_capacity(gendisk, rs->md.array_sectors);
717 revalidate_disk(gendisk);
718}
719
720/*
721 * Set the mddev properties in @rs to the current
722 * ones retrieved from the freshest superblock
723 */
724static void rs_set_cur(struct raid_set *rs)
725{
726 struct mddev *mddev = &rs->md;
727
728 mddev->new_level = mddev->level;
729 mddev->new_layout = mddev->layout;
730 mddev->new_chunk_sectors = mddev->chunk_sectors;
731}
732
733/*
734 * Set the mddev properties in @rs to the new
735 * ones requested by the ctr
736 */
737static void rs_set_new(struct raid_set *rs)
738{
739 struct mddev *mddev = &rs->md;
740
741 mddev->level = mddev->new_level;
742 mddev->layout = mddev->new_layout;
743 mddev->chunk_sectors = mddev->new_chunk_sectors;
744 mddev->raid_disks = rs->raid_disks;
745 mddev->delta_disks = 0;
746}
747
748static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
749 unsigned int raid_devs)
750{
751 unsigned int i;
752 struct raid_set *rs;
753
754 if (raid_devs <= raid_type->parity_devs) {
755 ti->error = "Insufficient number of devices";
756 return ERR_PTR(-EINVAL);
757 }
758
759 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
760 if (!rs) {
761 ti->error = "Cannot allocate raid context";
762 return ERR_PTR(-ENOMEM);
763 }
764
765 mddev_init(&rs->md);
766
767 INIT_LIST_HEAD(&rs->list);
768 rs->raid_disks = raid_devs;
769 rs->delta_disks = 0;
770
771 rs->ti = ti;
772 rs->raid_type = raid_type;
773 rs->stripe_cache_entries = 256;
774 rs->md.raid_disks = raid_devs;
775 rs->md.level = raid_type->level;
776 rs->md.new_level = rs->md.level;
777 rs->md.layout = raid_type->algorithm;
778 rs->md.new_layout = rs->md.layout;
779 rs->md.delta_disks = 0;
780 rs->md.recovery_cp = MaxSector;
781
782 for (i = 0; i < raid_devs; i++)
783 md_rdev_init(&rs->dev[i].rdev);
784
785 /* Add @rs to global list. */
786 list_add(&rs->list, &raid_sets);
787
788 /*
789 * Remaining items to be initialized by further RAID params:
790 * rs->md.persistent
791 * rs->md.external
792 * rs->md.chunk_sectors
793 * rs->md.new_chunk_sectors
794 * rs->md.dev_sectors
795 */
796
797 return rs;
798}
799
800/* Free all @rs allocations and remove it from global list. */
801static void raid_set_free(struct raid_set *rs)
802{
803 int i;
804
805 if (rs->journal_dev.dev) {
806 md_rdev_clear(&rs->journal_dev.rdev);
807 dm_put_device(rs->ti, rs->journal_dev.dev);
808 }
809
810 for (i = 0; i < rs->raid_disks; i++) {
811 if (rs->dev[i].meta_dev)
812 dm_put_device(rs->ti, rs->dev[i].meta_dev);
813 md_rdev_clear(&rs->dev[i].rdev);
814 if (rs->dev[i].data_dev)
815 dm_put_device(rs->ti, rs->dev[i].data_dev);
816 }
817
818 list_del(&rs->list);
819
820 kfree(rs);
821}
822
823/*
824 * For every device we have two words
825 * <meta_dev>: meta device name or '-' if missing
826 * <data_dev>: data device name or '-' if missing
827 *
828 * The following are permitted:
829 * - -
830 * - <data_dev>
831 * <meta_dev> <data_dev>
832 *
833 * The following is not allowed:
834 * <meta_dev> -
835 *
836 * This code parses those words. If there is a failure,
837 * the caller must use raid_set_free() to unwind the operations.
838 */
839static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
840{
841 int i;
842 int rebuild = 0;
843 int metadata_available = 0;
844 int r = 0;
845 const char *arg;
846
847 /* Put off the number of raid devices argument to get to dev pairs */
848 arg = dm_shift_arg(as);
849 if (!arg)
850 return -EINVAL;
851
852 for (i = 0; i < rs->raid_disks; i++) {
853 rs->dev[i].rdev.raid_disk = i;
854
855 rs->dev[i].meta_dev = NULL;
856 rs->dev[i].data_dev = NULL;
857
858 /*
859 * There are no offsets initially.
860 * Out of place reshape will set them accordingly.
861 */
862 rs->dev[i].rdev.data_offset = 0;
863 rs->dev[i].rdev.new_data_offset = 0;
864 rs->dev[i].rdev.mddev = &rs->md;
865
866 arg = dm_shift_arg(as);
867 if (!arg)
868 return -EINVAL;
869
870 if (strcmp(arg, "-")) {
871 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
872 &rs->dev[i].meta_dev);
873 if (r) {
874 rs->ti->error = "RAID metadata device lookup failure";
875 return r;
876 }
877
878 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
879 if (!rs->dev[i].rdev.sb_page) {
880 rs->ti->error = "Failed to allocate superblock page";
881 return -ENOMEM;
882 }
883 }
884
885 arg = dm_shift_arg(as);
886 if (!arg)
887 return -EINVAL;
888
889 if (!strcmp(arg, "-")) {
890 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
891 (!rs->dev[i].rdev.recovery_offset)) {
892 rs->ti->error = "Drive designated for rebuild not specified";
893 return -EINVAL;
894 }
895
896 if (rs->dev[i].meta_dev) {
897 rs->ti->error = "No data device supplied with metadata device";
898 return -EINVAL;
899 }
900
901 continue;
902 }
903
904 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
905 &rs->dev[i].data_dev);
906 if (r) {
907 rs->ti->error = "RAID device lookup failure";
908 return r;
909 }
910
911 if (rs->dev[i].meta_dev) {
912 metadata_available = 1;
913 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
914 }
915 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
916 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
917 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
918 rebuild++;
919 }
920
921 if (rs->journal_dev.dev)
922 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
923
924 if (metadata_available) {
925 rs->md.external = 0;
926 rs->md.persistent = 1;
927 rs->md.major_version = 2;
928 } else if (rebuild && !rs->md.recovery_cp) {
929 /*
930 * Without metadata, we will not be able to tell if the array
931 * is in-sync or not - we must assume it is not. Therefore,
932 * it is impossible to rebuild a drive.
933 *
934 * Even if there is metadata, the on-disk information may
935 * indicate that the array is not in-sync and it will then
936 * fail at that time.
937 *
938 * User could specify 'nosync' option if desperate.
939 */
940 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
941 return -EINVAL;
942 }
943
944 return 0;
945}
946
947/*
948 * validate_region_size
949 * @rs
950 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
951 *
952 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
953 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
954 *
955 * Returns: 0 on success, -EINVAL on failure.
956 */
957static int validate_region_size(struct raid_set *rs, unsigned long region_size)
958{
959 unsigned long min_region_size = rs->ti->len / (1 << 21);
960
961 if (rs_is_raid0(rs))
962 return 0;
963
964 if (!region_size) {
965 /*
966 * Choose a reasonable default. All figures in sectors.
967 */
968 if (min_region_size > (1 << 13)) {
969 /* If not a power of 2, make it the next power of 2 */
970 region_size = roundup_pow_of_two(min_region_size);
971 DMINFO("Choosing default region size of %lu sectors",
972 region_size);
973 } else {
974 DMINFO("Choosing default region size of 4MiB");
975 region_size = 1 << 13; /* sectors */
976 }
977 } else {
978 /*
979 * Validate user-supplied value.
980 */
981 if (region_size > rs->ti->len) {
982 rs->ti->error = "Supplied region size is too large";
983 return -EINVAL;
984 }
985
986 if (region_size < min_region_size) {
987 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
988 region_size, min_region_size);
989 rs->ti->error = "Supplied region size is too small";
990 return -EINVAL;
991 }
992
993 if (!is_power_of_2(region_size)) {
994 rs->ti->error = "Region size is not a power of 2";
995 return -EINVAL;
996 }
997
998 if (region_size < rs->md.chunk_sectors) {
999 rs->ti->error = "Region size is smaller than the chunk size";
1000 return -EINVAL;
1001 }
1002 }
1003
1004 /*
1005 * Convert sectors to bytes.
1006 */
1007 rs->md.bitmap_info.chunksize = to_bytes(region_size);
1008
1009 return 0;
1010}
1011
1012/*
1013 * validate_raid_redundancy
1014 * @rs
1015 *
1016 * Determine if there are enough devices in the array that haven't
1017 * failed (or are being rebuilt) to form a usable array.
1018 *
1019 * Returns: 0 on success, -EINVAL on failure.
1020 */
1021static int validate_raid_redundancy(struct raid_set *rs)
1022{
1023 unsigned int i, rebuild_cnt = 0;
1024 unsigned int rebuilds_per_group = 0, copies;
1025 unsigned int group_size, last_group_start;
1026
1027 for (i = 0; i < rs->md.raid_disks; i++)
1028 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1029 !rs->dev[i].rdev.sb_page)
1030 rebuild_cnt++;
1031
1032 switch (rs->md.level) {
1033 case 0:
1034 break;
1035 case 1:
1036 if (rebuild_cnt >= rs->md.raid_disks)
1037 goto too_many;
1038 break;
1039 case 4:
1040 case 5:
1041 case 6:
1042 if (rebuild_cnt > rs->raid_type->parity_devs)
1043 goto too_many;
1044 break;
1045 case 10:
1046 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1047 if (copies < 2) {
1048 DMERR("Bogus raid10 data copies < 2!");
1049 return -EINVAL;
1050 }
1051
1052 if (rebuild_cnt < copies)
1053 break;
1054
1055 /*
1056 * It is possible to have a higher rebuild count for RAID10,
1057 * as long as the failed devices occur in different mirror
1058 * groups (i.e. different stripes).
1059 *
1060 * When checking "near" format, make sure no adjacent devices
1061 * have failed beyond what can be handled. In addition to the
1062 * simple case where the number of devices is a multiple of the
1063 * number of copies, we must also handle cases where the number
1064 * of devices is not a multiple of the number of copies.
1065 * E.g. dev1 dev2 dev3 dev4 dev5
1066 * A A B B C
1067 * C D D E E
1068 */
1069 if (__is_raid10_near(rs->md.new_layout)) {
1070 for (i = 0; i < rs->md.raid_disks; i++) {
1071 if (!(i % copies))
1072 rebuilds_per_group = 0;
1073 if ((!rs->dev[i].rdev.sb_page ||
1074 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1075 (++rebuilds_per_group >= copies))
1076 goto too_many;
1077 }
1078 break;
1079 }
1080
1081 /*
1082 * When checking "far" and "offset" formats, we need to ensure
1083 * that the device that holds its copy is not also dead or
1084 * being rebuilt. (Note that "far" and "offset" formats only
1085 * support two copies right now. These formats also only ever
1086 * use the 'use_far_sets' variant.)
1087 *
1088 * This check is somewhat complicated by the need to account
1089 * for arrays that are not a multiple of (far) copies. This
1090 * results in the need to treat the last (potentially larger)
1091 * set differently.
1092 */
1093 group_size = (rs->md.raid_disks / copies);
1094 last_group_start = (rs->md.raid_disks / group_size) - 1;
1095 last_group_start *= group_size;
1096 for (i = 0; i < rs->md.raid_disks; i++) {
1097 if (!(i % copies) && !(i > last_group_start))
1098 rebuilds_per_group = 0;
1099 if ((!rs->dev[i].rdev.sb_page ||
1100 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1101 (++rebuilds_per_group >= copies))
1102 goto too_many;
1103 }
1104 break;
1105 default:
1106 if (rebuild_cnt)
1107 return -EINVAL;
1108 }
1109
1110 return 0;
1111
1112too_many:
1113 return -EINVAL;
1114}
1115
1116/*
1117 * Possible arguments are...
1118 * <chunk_size> [optional_args]
1119 *
1120 * Argument definitions
1121 * <chunk_size> The number of sectors per disk that
1122 * will form the "stripe"
1123 * [[no]sync] Force or prevent recovery of the
1124 * entire array
1125 * [rebuild <idx>] Rebuild the drive indicated by the index
1126 * [daemon_sleep <ms>] Time between bitmap daemon work to
1127 * clear bits
1128 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1129 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1130 * [write_mostly <idx>] Indicate a write mostly drive via index
1131 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1132 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1133 * [region_size <sectors>] Defines granularity of bitmap
1134 * [journal_dev <dev>] raid4/5/6 journaling deviice
1135 * (i.e. write hole closing log)
1136 *
1137 * RAID10-only options:
1138 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1139 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1140 */
1141static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1142 unsigned int num_raid_params)
1143{
1144 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1145 unsigned int raid10_copies = 2;
1146 unsigned int i, write_mostly = 0;
1147 unsigned int region_size = 0;
1148 sector_t max_io_len;
1149 const char *arg, *key;
1150 struct raid_dev *rd;
1151 struct raid_type *rt = rs->raid_type;
1152
1153 arg = dm_shift_arg(as);
1154 num_raid_params--; /* Account for chunk_size argument */
1155
1156 if (kstrtoint(arg, 10, &value) < 0) {
1157 rs->ti->error = "Bad numerical argument given for chunk_size";
1158 return -EINVAL;
1159 }
1160
1161 /*
1162 * First, parse the in-order required arguments
1163 * "chunk_size" is the only argument of this type.
1164 */
1165 if (rt_is_raid1(rt)) {
1166 if (value)
1167 DMERR("Ignoring chunk size parameter for RAID 1");
1168 value = 0;
1169 } else if (!is_power_of_2(value)) {
1170 rs->ti->error = "Chunk size must be a power of 2";
1171 return -EINVAL;
1172 } else if (value < 8) {
1173 rs->ti->error = "Chunk size value is too small";
1174 return -EINVAL;
1175 }
1176
1177 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1178
1179 /*
1180 * We set each individual device as In_sync with a completed
1181 * 'recovery_offset'. If there has been a device failure or
1182 * replacement then one of the following cases applies:
1183 *
1184 * 1) User specifies 'rebuild'.
1185 * - Device is reset when param is read.
1186 * 2) A new device is supplied.
1187 * - No matching superblock found, resets device.
1188 * 3) Device failure was transient and returns on reload.
1189 * - Failure noticed, resets device for bitmap replay.
1190 * 4) Device hadn't completed recovery after previous failure.
1191 * - Superblock is read and overrides recovery_offset.
1192 *
1193 * What is found in the superblocks of the devices is always
1194 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1195 */
1196 for (i = 0; i < rs->raid_disks; i++) {
1197 set_bit(In_sync, &rs->dev[i].rdev.flags);
1198 rs->dev[i].rdev.recovery_offset = MaxSector;
1199 }
1200
1201 /*
1202 * Second, parse the unordered optional arguments
1203 */
1204 for (i = 0; i < num_raid_params; i++) {
1205 key = dm_shift_arg(as);
1206 if (!key) {
1207 rs->ti->error = "Not enough raid parameters given";
1208 return -EINVAL;
1209 }
1210
1211 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1212 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1213 rs->ti->error = "Only one 'nosync' argument allowed";
1214 return -EINVAL;
1215 }
1216 continue;
1217 }
1218 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1219 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1220 rs->ti->error = "Only one 'sync' argument allowed";
1221 return -EINVAL;
1222 }
1223 continue;
1224 }
1225 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1226 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1227 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1228 return -EINVAL;
1229 }
1230 continue;
1231 }
1232
1233 arg = dm_shift_arg(as);
1234 i++; /* Account for the argument pairs */
1235 if (!arg) {
1236 rs->ti->error = "Wrong number of raid parameters given";
1237 return -EINVAL;
1238 }
1239
1240 /*
1241 * Parameters that take a string value are checked here.
1242 */
1243 /* "raid10_format {near|offset|far} */
1244 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1245 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1246 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1247 return -EINVAL;
1248 }
1249 if (!rt_is_raid10(rt)) {
1250 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1251 return -EINVAL;
1252 }
1253 raid10_format = raid10_name_to_format(arg);
1254 if (raid10_format < 0) {
1255 rs->ti->error = "Invalid 'raid10_format' value given";
1256 return raid10_format;
1257 }
1258 continue;
1259 }
1260
1261 /* "journal_dev <dev>" */
1262 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1263 int r;
1264 struct md_rdev *jdev;
1265
1266 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1267 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1268 return -EINVAL;
1269 }
1270 if (!rt_is_raid456(rt)) {
1271 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1272 return -EINVAL;
1273 }
1274 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1275 &rs->journal_dev.dev);
1276 if (r) {
1277 rs->ti->error = "raid4/5/6 journal device lookup failure";
1278 return r;
1279 }
1280 jdev = &rs->journal_dev.rdev;
1281 md_rdev_init(jdev);
1282 jdev->mddev = &rs->md;
1283 jdev->bdev = rs->journal_dev.dev->bdev;
1284 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1285 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1286 rs->ti->error = "No space for raid4/5/6 journal";
1287 return -ENOSPC;
1288 }
1289 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1290 set_bit(Journal, &jdev->flags);
1291 continue;
1292 }
1293
1294 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1295 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1296 int r;
1297
1298 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1299 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1300 return -EINVAL;
1301 }
1302 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1303 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1304 return -EINVAL;
1305 }
1306 r = dm_raid_journal_mode_to_md(arg);
1307 if (r < 0) {
1308 rs->ti->error = "Invalid 'journal_mode' argument";
1309 return r;
1310 }
1311 rs->journal_dev.mode = r;
1312 continue;
1313 }
1314
1315 /*
1316 * Parameters with number values from here on.
1317 */
1318 if (kstrtoint(arg, 10, &value) < 0) {
1319 rs->ti->error = "Bad numerical argument given in raid params";
1320 return -EINVAL;
1321 }
1322
1323 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1324 /*
1325 * "rebuild" is being passed in by userspace to provide
1326 * indexes of replaced devices and to set up additional
1327 * devices on raid level takeover.
1328 */
1329 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1330 rs->ti->error = "Invalid rebuild index given";
1331 return -EINVAL;
1332 }
1333
1334 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1335 rs->ti->error = "rebuild for this index already given";
1336 return -EINVAL;
1337 }
1338
1339 rd = rs->dev + value;
1340 clear_bit(In_sync, &rd->rdev.flags);
1341 clear_bit(Faulty, &rd->rdev.flags);
1342 rd->rdev.recovery_offset = 0;
1343 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1344 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1345 if (!rt_is_raid1(rt)) {
1346 rs->ti->error = "write_mostly option is only valid for RAID1";
1347 return -EINVAL;
1348 }
1349
1350 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1351 rs->ti->error = "Invalid write_mostly index given";
1352 return -EINVAL;
1353 }
1354
1355 write_mostly++;
1356 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1357 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1358 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1359 if (!rt_is_raid1(rt)) {
1360 rs->ti->error = "max_write_behind option is only valid for RAID1";
1361 return -EINVAL;
1362 }
1363
1364 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1365 rs->ti->error = "Only one max_write_behind argument pair allowed";
1366 return -EINVAL;
1367 }
1368
1369 /*
1370 * In device-mapper, we specify things in sectors, but
1371 * MD records this value in kB
1372 */
1373 if (value < 0 || value / 2 > COUNTER_MAX) {
1374 rs->ti->error = "Max write-behind limit out of range";
1375 return -EINVAL;
1376 }
1377
1378 rs->md.bitmap_info.max_write_behind = value / 2;
1379 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1380 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1381 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1382 return -EINVAL;
1383 }
1384 if (value < 0) {
1385 rs->ti->error = "daemon sleep period out of range";
1386 return -EINVAL;
1387 }
1388 rs->md.bitmap_info.daemon_sleep = value;
1389 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1390 /* Userspace passes new data_offset after having extended the the data image LV */
1391 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1392 rs->ti->error = "Only one data_offset argument pair allowed";
1393 return -EINVAL;
1394 }
1395 /* Ensure sensible data offset */
1396 if (value < 0 ||
1397 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1398 rs->ti->error = "Bogus data_offset value";
1399 return -EINVAL;
1400 }
1401 rs->data_offset = value;
1402 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1403 /* Define the +/-# of disks to add to/remove from the given raid set */
1404 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1405 rs->ti->error = "Only one delta_disks argument pair allowed";
1406 return -EINVAL;
1407 }
1408 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1409 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1410 rs->ti->error = "Too many delta_disk requested";
1411 return -EINVAL;
1412 }
1413
1414 rs->delta_disks = value;
1415 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1416 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1417 rs->ti->error = "Only one stripe_cache argument pair allowed";
1418 return -EINVAL;
1419 }
1420
1421 if (!rt_is_raid456(rt)) {
1422 rs->ti->error = "Inappropriate argument: stripe_cache";
1423 return -EINVAL;
1424 }
1425
1426 if (value < 0) {
1427 rs->ti->error = "Bogus stripe cache entries value";
1428 return -EINVAL;
1429 }
1430 rs->stripe_cache_entries = value;
1431 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1432 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1433 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1434 return -EINVAL;
1435 }
1436
1437 if (value < 0) {
1438 rs->ti->error = "min_recovery_rate out of range";
1439 return -EINVAL;
1440 }
1441 rs->md.sync_speed_min = value;
1442 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1443 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1444 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1445 return -EINVAL;
1446 }
1447
1448 if (value < 0) {
1449 rs->ti->error = "max_recovery_rate out of range";
1450 return -EINVAL;
1451 }
1452 rs->md.sync_speed_max = value;
1453 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1454 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1455 rs->ti->error = "Only one region_size argument pair allowed";
1456 return -EINVAL;
1457 }
1458
1459 region_size = value;
1460 rs->requested_bitmap_chunk_sectors = value;
1461 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1462 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1463 rs->ti->error = "Only one raid10_copies argument pair allowed";
1464 return -EINVAL;
1465 }
1466
1467 if (!__within_range(value, 2, rs->md.raid_disks)) {
1468 rs->ti->error = "Bad value for 'raid10_copies'";
1469 return -EINVAL;
1470 }
1471
1472 raid10_copies = value;
1473 } else {
1474 DMERR("Unable to parse RAID parameter: %s", key);
1475 rs->ti->error = "Unable to parse RAID parameter";
1476 return -EINVAL;
1477 }
1478 }
1479
1480 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1481 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1482 rs->ti->error = "sync and nosync are mutually exclusive";
1483 return -EINVAL;
1484 }
1485
1486 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1487 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1488 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1489 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1490 return -EINVAL;
1491 }
1492
1493 if (write_mostly >= rs->md.raid_disks) {
1494 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1495 return -EINVAL;
1496 }
1497
1498 if (rs->md.sync_speed_max &&
1499 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1500 rs->ti->error = "Bogus recovery rates";
1501 return -EINVAL;
1502 }
1503
1504 if (validate_region_size(rs, region_size))
1505 return -EINVAL;
1506
1507 if (rs->md.chunk_sectors)
1508 max_io_len = rs->md.chunk_sectors;
1509 else
1510 max_io_len = region_size;
1511
1512 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1513 return -EINVAL;
1514
1515 if (rt_is_raid10(rt)) {
1516 if (raid10_copies > rs->md.raid_disks) {
1517 rs->ti->error = "Not enough devices to satisfy specification";
1518 return -EINVAL;
1519 }
1520
1521 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1522 if (rs->md.new_layout < 0) {
1523 rs->ti->error = "Error getting raid10 format";
1524 return rs->md.new_layout;
1525 }
1526
1527 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1528 if (!rt) {
1529 rs->ti->error = "Failed to recognize new raid10 layout";
1530 return -EINVAL;
1531 }
1532
1533 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1534 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1535 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1536 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1537 return -EINVAL;
1538 }
1539 }
1540
1541 rs->raid10_copies = raid10_copies;
1542
1543 /* Assume there are no metadata devices until the drives are parsed */
1544 rs->md.persistent = 0;
1545 rs->md.external = 1;
1546
1547 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1548 return rs_check_for_valid_flags(rs);
1549}
1550
1551/* Set raid4/5/6 cache size */
1552static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1553{
1554 int r;
1555 struct r5conf *conf;
1556 struct mddev *mddev = &rs->md;
1557 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1558 uint32_t nr_stripes = rs->stripe_cache_entries;
1559
1560 if (!rt_is_raid456(rs->raid_type)) {
1561 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1562 return -EINVAL;
1563 }
1564
1565 if (nr_stripes < min_stripes) {
1566 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1567 nr_stripes, min_stripes);
1568 nr_stripes = min_stripes;
1569 }
1570
1571 conf = mddev->private;
1572 if (!conf) {
1573 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1574 return -EINVAL;
1575 }
1576
1577 /* Try setting number of stripes in raid456 stripe cache */
1578 if (conf->min_nr_stripes != nr_stripes) {
1579 r = raid5_set_cache_size(mddev, nr_stripes);
1580 if (r) {
1581 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1582 return r;
1583 }
1584
1585 DMINFO("%u stripe cache entries", nr_stripes);
1586 }
1587
1588 return 0;
1589}
1590
1591/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1592static unsigned int mddev_data_stripes(struct raid_set *rs)
1593{
1594 return rs->md.raid_disks - rs->raid_type->parity_devs;
1595}
1596
1597/* Return # of data stripes of @rs (i.e. as of ctr) */
1598static unsigned int rs_data_stripes(struct raid_set *rs)
1599{
1600 return rs->raid_disks - rs->raid_type->parity_devs;
1601}
1602
1603/*
1604 * Retrieve rdev->sectors from any valid raid device of @rs
1605 * to allow userpace to pass in arbitray "- -" device tupples.
1606 */
1607static sector_t __rdev_sectors(struct raid_set *rs)
1608{
1609 int i;
1610
1611 for (i = 0; i < rs->md.raid_disks; i++) {
1612 struct md_rdev *rdev = &rs->dev[i].rdev;
1613
1614 if (!test_bit(Journal, &rdev->flags) &&
1615 rdev->bdev && rdev->sectors)
1616 return rdev->sectors;
1617 }
1618
1619 return 0;
1620}
1621
1622/* Check that calculated dev_sectors fits all component devices. */
1623static int _check_data_dev_sectors(struct raid_set *rs)
1624{
1625 sector_t ds = ~0;
1626 struct md_rdev *rdev;
1627
1628 rdev_for_each(rdev, &rs->md)
1629 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1630 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1631 if (ds < rs->md.dev_sectors) {
1632 rs->ti->error = "Component device(s) too small";
1633 return -EINVAL;
1634 }
1635 }
1636
1637 return 0;
1638}
1639
1640/* Calculate the sectors per device and per array used for @rs */
1641static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1642{
1643 int delta_disks;
1644 unsigned int data_stripes;
1645 struct mddev *mddev = &rs->md;
1646 struct md_rdev *rdev;
1647 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1648
1649 if (use_mddev) {
1650 delta_disks = mddev->delta_disks;
1651 data_stripes = mddev_data_stripes(rs);
1652 } else {
1653 delta_disks = rs->delta_disks;
1654 data_stripes = rs_data_stripes(rs);
1655 }
1656
1657 /* Special raid1 case w/o delta_disks support (yet) */
1658 if (rt_is_raid1(rs->raid_type))
1659 ;
1660 else if (rt_is_raid10(rs->raid_type)) {
1661 if (rs->raid10_copies < 2 ||
1662 delta_disks < 0) {
1663 rs->ti->error = "Bogus raid10 data copies or delta disks";
1664 return -EINVAL;
1665 }
1666
1667 dev_sectors *= rs->raid10_copies;
1668 if (sector_div(dev_sectors, data_stripes))
1669 goto bad;
1670
1671 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1672 if (sector_div(array_sectors, rs->raid10_copies))
1673 goto bad;
1674
1675 } else if (sector_div(dev_sectors, data_stripes))
1676 goto bad;
1677
1678 else
1679 /* Striped layouts */
1680 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1681
1682 rdev_for_each(rdev, mddev)
1683 if (!test_bit(Journal, &rdev->flags))
1684 rdev->sectors = dev_sectors;
1685
1686 mddev->array_sectors = array_sectors;
1687 mddev->dev_sectors = dev_sectors;
1688
1689 return _check_data_dev_sectors(rs);
1690bad:
1691 rs->ti->error = "Target length not divisible by number of data devices";
1692 return -EINVAL;
1693}
1694
1695/* Setup recovery on @rs */
1696static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1697{
1698 /* raid0 does not recover */
1699 if (rs_is_raid0(rs))
1700 rs->md.recovery_cp = MaxSector;
1701 /*
1702 * A raid6 set has to be recovered either
1703 * completely or for the grown part to
1704 * ensure proper parity and Q-Syndrome
1705 */
1706 else if (rs_is_raid6(rs))
1707 rs->md.recovery_cp = dev_sectors;
1708 /*
1709 * Other raid set types may skip recovery
1710 * depending on the 'nosync' flag.
1711 */
1712 else
1713 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1714 ? MaxSector : dev_sectors;
1715}
1716
1717/* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1718static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1719{
1720 if (!dev_sectors)
1721 /* New raid set or 'sync' flag provided */
1722 __rs_setup_recovery(rs, 0);
1723 else if (dev_sectors == MaxSector)
1724 /* Prevent recovery */
1725 __rs_setup_recovery(rs, MaxSector);
1726 else if (__rdev_sectors(rs) < dev_sectors)
1727 /* Grown raid set */
1728 __rs_setup_recovery(rs, __rdev_sectors(rs));
1729 else
1730 __rs_setup_recovery(rs, MaxSector);
1731}
1732
1733static void do_table_event(struct work_struct *ws)
1734{
1735 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1736
1737 smp_rmb(); /* Make sure we access most actual mddev properties */
1738 if (!rs_is_reshaping(rs)) {
1739 if (rs_is_raid10(rs))
1740 rs_set_rdev_sectors(rs);
1741 rs_set_capacity(rs);
1742 }
1743 dm_table_event(rs->ti->table);
1744}
1745
1746static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1747{
1748 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1749
1750 return mddev_congested(&rs->md, bits);
1751}
1752
1753/*
1754 * Make sure a valid takover (level switch) is being requested on @rs
1755 *
1756 * Conversions of raid sets from one MD personality to another
1757 * have to conform to restrictions which are enforced here.
1758 */
1759static int rs_check_takeover(struct raid_set *rs)
1760{
1761 struct mddev *mddev = &rs->md;
1762 unsigned int near_copies;
1763
1764 if (rs->md.degraded) {
1765 rs->ti->error = "Can't takeover degraded raid set";
1766 return -EPERM;
1767 }
1768
1769 if (rs_is_reshaping(rs)) {
1770 rs->ti->error = "Can't takeover reshaping raid set";
1771 return -EPERM;
1772 }
1773
1774 switch (mddev->level) {
1775 case 0:
1776 /* raid0 -> raid1/5 with one disk */
1777 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1778 mddev->raid_disks == 1)
1779 return 0;
1780
1781 /* raid0 -> raid10 */
1782 if (mddev->new_level == 10 &&
1783 !(rs->raid_disks % mddev->raid_disks))
1784 return 0;
1785
1786 /* raid0 with multiple disks -> raid4/5/6 */
1787 if (__within_range(mddev->new_level, 4, 6) &&
1788 mddev->new_layout == ALGORITHM_PARITY_N &&
1789 mddev->raid_disks > 1)
1790 return 0;
1791
1792 break;
1793
1794 case 10:
1795 /* Can't takeover raid10_offset! */
1796 if (__is_raid10_offset(mddev->layout))
1797 break;
1798
1799 near_copies = __raid10_near_copies(mddev->layout);
1800
1801 /* raid10* -> raid0 */
1802 if (mddev->new_level == 0) {
1803 /* Can takeover raid10_near with raid disks divisable by data copies! */
1804 if (near_copies > 1 &&
1805 !(mddev->raid_disks % near_copies)) {
1806 mddev->raid_disks /= near_copies;
1807 mddev->delta_disks = mddev->raid_disks;
1808 return 0;
1809 }
1810
1811 /* Can takeover raid10_far */
1812 if (near_copies == 1 &&
1813 __raid10_far_copies(mddev->layout) > 1)
1814 return 0;
1815
1816 break;
1817 }
1818
1819 /* raid10_{near,far} -> raid1 */
1820 if (mddev->new_level == 1 &&
1821 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1822 return 0;
1823
1824 /* raid10_{near,far} with 2 disks -> raid4/5 */
1825 if (__within_range(mddev->new_level, 4, 5) &&
1826 mddev->raid_disks == 2)
1827 return 0;
1828 break;
1829
1830 case 1:
1831 /* raid1 with 2 disks -> raid4/5 */
1832 if (__within_range(mddev->new_level, 4, 5) &&
1833 mddev->raid_disks == 2) {
1834 mddev->degraded = 1;
1835 return 0;
1836 }
1837
1838 /* raid1 -> raid0 */
1839 if (mddev->new_level == 0 &&
1840 mddev->raid_disks == 1)
1841 return 0;
1842
1843 /* raid1 -> raid10 */
1844 if (mddev->new_level == 10)
1845 return 0;
1846 break;
1847
1848 case 4:
1849 /* raid4 -> raid0 */
1850 if (mddev->new_level == 0)
1851 return 0;
1852
1853 /* raid4 -> raid1/5 with 2 disks */
1854 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1855 mddev->raid_disks == 2)
1856 return 0;
1857
1858 /* raid4 -> raid5/6 with parity N */
1859 if (__within_range(mddev->new_level, 5, 6) &&
1860 mddev->layout == ALGORITHM_PARITY_N)
1861 return 0;
1862 break;
1863
1864 case 5:
1865 /* raid5 with parity N -> raid0 */
1866 if (mddev->new_level == 0 &&
1867 mddev->layout == ALGORITHM_PARITY_N)
1868 return 0;
1869
1870 /* raid5 with parity N -> raid4 */
1871 if (mddev->new_level == 4 &&
1872 mddev->layout == ALGORITHM_PARITY_N)
1873 return 0;
1874
1875 /* raid5 with 2 disks -> raid1/4/10 */
1876 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1877 mddev->raid_disks == 2)
1878 return 0;
1879
1880 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1881 if (mddev->new_level == 6 &&
1882 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1883 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1884 return 0;
1885 break;
1886
1887 case 6:
1888 /* raid6 with parity N -> raid0 */
1889 if (mddev->new_level == 0 &&
1890 mddev->layout == ALGORITHM_PARITY_N)
1891 return 0;
1892
1893 /* raid6 with parity N -> raid4 */
1894 if (mddev->new_level == 4 &&
1895 mddev->layout == ALGORITHM_PARITY_N)
1896 return 0;
1897
1898 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1899 if (mddev->new_level == 5 &&
1900 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1901 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1902 return 0;
1903
1904 default:
1905 break;
1906 }
1907
1908 rs->ti->error = "takeover not possible";
1909 return -EINVAL;
1910}
1911
1912/* True if @rs requested to be taken over */
1913static bool rs_takeover_requested(struct raid_set *rs)
1914{
1915 return rs->md.new_level != rs->md.level;
1916}
1917
1918/* True if @rs is requested to reshape by ctr */
1919static bool rs_reshape_requested(struct raid_set *rs)
1920{
1921 bool change;
1922 struct mddev *mddev = &rs->md;
1923
1924 if (rs_takeover_requested(rs))
1925 return false;
1926
1927 if (rs_is_raid0(rs))
1928 return false;
1929
1930 change = mddev->new_layout != mddev->layout ||
1931 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1932 rs->delta_disks;
1933
1934 /* Historical case to support raid1 reshape without delta disks */
1935 if (rs_is_raid1(rs)) {
1936 if (rs->delta_disks)
1937 return !!rs->delta_disks;
1938
1939 return !change &&
1940 mddev->raid_disks != rs->raid_disks;
1941 }
1942
1943 if (rs_is_raid10(rs))
1944 return change &&
1945 !__is_raid10_far(mddev->new_layout) &&
1946 rs->delta_disks >= 0;
1947
1948 return change;
1949}
1950
1951/* Features */
1952#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1953
1954/* State flags for sb->flags */
1955#define SB_FLAG_RESHAPE_ACTIVE 0x1
1956#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1957
1958/*
1959 * This structure is never routinely used by userspace, unlike md superblocks.
1960 * Devices with this superblock should only ever be accessed via device-mapper.
1961 */
1962#define DM_RAID_MAGIC 0x64526D44
1963struct dm_raid_superblock {
1964 __le32 magic; /* "DmRd" */
1965 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1966
1967 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1968 __le32 array_position; /* The position of this drive in the raid set */
1969
1970 __le64 events; /* Incremented by md when superblock updated */
1971 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1972 /* indicate failures (see extension below) */
1973
1974 /*
1975 * This offset tracks the progress of the repair or replacement of
1976 * an individual drive.
1977 */
1978 __le64 disk_recovery_offset;
1979
1980 /*
1981 * This offset tracks the progress of the initial raid set
1982 * synchronisation/parity calculation.
1983 */
1984 __le64 array_resync_offset;
1985
1986 /*
1987 * raid characteristics
1988 */
1989 __le32 level;
1990 __le32 layout;
1991 __le32 stripe_sectors;
1992
1993 /********************************************************************
1994 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1995 *
1996 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1997 */
1998
1999 __le32 flags; /* Flags defining array states for reshaping */
2000
2001 /*
2002 * This offset tracks the progress of a raid
2003 * set reshape in order to be able to restart it
2004 */
2005 __le64 reshape_position;
2006
2007 /*
2008 * These define the properties of the array in case of an interrupted reshape
2009 */
2010 __le32 new_level;
2011 __le32 new_layout;
2012 __le32 new_stripe_sectors;
2013 __le32 delta_disks;
2014
2015 __le64 array_sectors; /* Array size in sectors */
2016
2017 /*
2018 * Sector offsets to data on devices (reshaping).
2019 * Needed to support out of place reshaping, thus
2020 * not writing over any stripes whilst converting
2021 * them from old to new layout
2022 */
2023 __le64 data_offset;
2024 __le64 new_data_offset;
2025
2026 __le64 sectors; /* Used device size in sectors */
2027
2028 /*
2029 * Additonal Bit field of devices indicating failures to support
2030 * up to 256 devices with the 1.9.0 on-disk metadata format
2031 */
2032 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2033
2034 __le32 incompat_features; /* Used to indicate any incompatible features */
2035
2036 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2037} __packed;
2038
2039/*
2040 * Check for reshape constraints on raid set @rs:
2041 *
2042 * - reshape function non-existent
2043 * - degraded set
2044 * - ongoing recovery
2045 * - ongoing reshape
2046 *
2047 * Returns 0 if none or -EPERM if given constraint
2048 * and error message reference in @errmsg
2049 */
2050static int rs_check_reshape(struct raid_set *rs)
2051{
2052 struct mddev *mddev = &rs->md;
2053
2054 if (!mddev->pers || !mddev->pers->check_reshape)
2055 rs->ti->error = "Reshape not supported";
2056 else if (mddev->degraded)
2057 rs->ti->error = "Can't reshape degraded raid set";
2058 else if (rs_is_recovering(rs))
2059 rs->ti->error = "Convert request on recovering raid set prohibited";
2060 else if (rs_is_reshaping(rs))
2061 rs->ti->error = "raid set already reshaping!";
2062 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2063 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2064 else
2065 return 0;
2066
2067 return -EPERM;
2068}
2069
2070static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2071{
2072 BUG_ON(!rdev->sb_page);
2073
2074 if (rdev->sb_loaded && !force_reload)
2075 return 0;
2076
2077 rdev->sb_loaded = 0;
2078
2079 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2080 DMERR("Failed to read superblock of device at position %d",
2081 rdev->raid_disk);
2082 md_error(rdev->mddev, rdev);
2083 set_bit(Faulty, &rdev->flags);
2084 return -EIO;
2085 }
2086
2087 rdev->sb_loaded = 1;
2088
2089 return 0;
2090}
2091
2092static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2093{
2094 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2095 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2096
2097 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2098 int i = ARRAY_SIZE(sb->extended_failed_devices);
2099
2100 while (i--)
2101 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2102 }
2103}
2104
2105static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2106{
2107 int i = ARRAY_SIZE(sb->extended_failed_devices);
2108
2109 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2110 while (i--)
2111 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2112}
2113
2114/*
2115 * Synchronize the superblock members with the raid set properties
2116 *
2117 * All superblock data is little endian.
2118 */
2119static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2120{
2121 bool update_failed_devices = false;
2122 unsigned int i;
2123 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2124 struct dm_raid_superblock *sb;
2125 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2126
2127 /* No metadata device, no superblock */
2128 if (!rdev->meta_bdev)
2129 return;
2130
2131 BUG_ON(!rdev->sb_page);
2132
2133 sb = page_address(rdev->sb_page);
2134
2135 sb_retrieve_failed_devices(sb, failed_devices);
2136
2137 for (i = 0; i < rs->raid_disks; i++)
2138 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2139 update_failed_devices = true;
2140 set_bit(i, (void *) failed_devices);
2141 }
2142
2143 if (update_failed_devices)
2144 sb_update_failed_devices(sb, failed_devices);
2145
2146 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2147 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2148
2149 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2150 sb->array_position = cpu_to_le32(rdev->raid_disk);
2151
2152 sb->events = cpu_to_le64(mddev->events);
2153
2154 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2155 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2156
2157 sb->level = cpu_to_le32(mddev->level);
2158 sb->layout = cpu_to_le32(mddev->layout);
2159 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2160
2161 /********************************************************************
2162 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2163 *
2164 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2165 */
2166 sb->new_level = cpu_to_le32(mddev->new_level);
2167 sb->new_layout = cpu_to_le32(mddev->new_layout);
2168 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2169
2170 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2171
2172 smp_rmb(); /* Make sure we access most recent reshape position */
2173 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2174 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2175 /* Flag ongoing reshape */
2176 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2177
2178 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2179 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2180 } else {
2181 /* Clear reshape flags */
2182 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2183 }
2184
2185 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2186 sb->data_offset = cpu_to_le64(rdev->data_offset);
2187 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2188 sb->sectors = cpu_to_le64(rdev->sectors);
2189 sb->incompat_features = cpu_to_le32(0);
2190
2191 /* Zero out the rest of the payload after the size of the superblock */
2192 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2193}
2194
2195/*
2196 * super_load
2197 *
2198 * This function creates a superblock if one is not found on the device
2199 * and will decide which superblock to use if there's a choice.
2200 *
2201 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2202 */
2203static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2204{
2205 int r;
2206 struct dm_raid_superblock *sb;
2207 struct dm_raid_superblock *refsb;
2208 uint64_t events_sb, events_refsb;
2209
2210 r = read_disk_sb(rdev, rdev->sb_size, false);
2211 if (r)
2212 return r;
2213
2214 sb = page_address(rdev->sb_page);
2215
2216 /*
2217 * Two cases that we want to write new superblocks and rebuild:
2218 * 1) New device (no matching magic number)
2219 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2220 */
2221 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2222 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2223 super_sync(rdev->mddev, rdev);
2224
2225 set_bit(FirstUse, &rdev->flags);
2226 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2227
2228 /* Force writing of superblocks to disk */
2229 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2230
2231 /* Any superblock is better than none, choose that if given */
2232 return refdev ? 0 : 1;
2233 }
2234
2235 if (!refdev)
2236 return 1;
2237
2238 events_sb = le64_to_cpu(sb->events);
2239
2240 refsb = page_address(refdev->sb_page);
2241 events_refsb = le64_to_cpu(refsb->events);
2242
2243 return (events_sb > events_refsb) ? 1 : 0;
2244}
2245
2246static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2247{
2248 int role;
2249 unsigned int d;
2250 struct mddev *mddev = &rs->md;
2251 uint64_t events_sb;
2252 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2253 struct dm_raid_superblock *sb;
2254 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2255 struct md_rdev *r;
2256 struct dm_raid_superblock *sb2;
2257
2258 sb = page_address(rdev->sb_page);
2259 events_sb = le64_to_cpu(sb->events);
2260
2261 /*
2262 * Initialise to 1 if this is a new superblock.
2263 */
2264 mddev->events = events_sb ? : 1;
2265
2266 mddev->reshape_position = MaxSector;
2267
2268 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2269 mddev->level = le32_to_cpu(sb->level);
2270 mddev->layout = le32_to_cpu(sb->layout);
2271 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2272
2273 /*
2274 * Reshaping is supported, e.g. reshape_position is valid
2275 * in superblock and superblock content is authoritative.
2276 */
2277 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2278 /* Superblock is authoritative wrt given raid set layout! */
2279 mddev->new_level = le32_to_cpu(sb->new_level);
2280 mddev->new_layout = le32_to_cpu(sb->new_layout);
2281 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2282 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2283 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2284
2285 /* raid was reshaping and got interrupted */
2286 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2287 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2288 DMERR("Reshape requested but raid set is still reshaping");
2289 return -EINVAL;
2290 }
2291
2292 if (mddev->delta_disks < 0 ||
2293 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2294 mddev->reshape_backwards = 1;
2295 else
2296 mddev->reshape_backwards = 0;
2297
2298 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2299 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2300 }
2301
2302 } else {
2303 /*
2304 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2305 */
2306 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2307 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2308
2309 if (rs_takeover_requested(rs)) {
2310 if (rt_cur && rt_new)
2311 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2312 rt_cur->name, rt_new->name);
2313 else
2314 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2315 return -EINVAL;
2316 } else if (rs_reshape_requested(rs)) {
2317 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2318 if (mddev->layout != mddev->new_layout) {
2319 if (rt_cur && rt_new)
2320 DMERR(" current layout %s vs new layout %s",
2321 rt_cur->name, rt_new->name);
2322 else
2323 DMERR(" current layout 0x%X vs new layout 0x%X",
2324 le32_to_cpu(sb->layout), mddev->new_layout);
2325 }
2326 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2327 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2328 mddev->chunk_sectors, mddev->new_chunk_sectors);
2329 if (rs->delta_disks)
2330 DMERR(" current %u disks vs new %u disks",
2331 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2332 if (rs_is_raid10(rs)) {
2333 DMERR(" Old layout: %s w/ %u copies",
2334 raid10_md_layout_to_format(mddev->layout),
2335 raid10_md_layout_to_copies(mddev->layout));
2336 DMERR(" New layout: %s w/ %u copies",
2337 raid10_md_layout_to_format(mddev->new_layout),
2338 raid10_md_layout_to_copies(mddev->new_layout));
2339 }
2340 return -EINVAL;
2341 }
2342
2343 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2344 }
2345
2346 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2347 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2348
2349 /*
2350 * During load, we set FirstUse if a new superblock was written.
2351 * There are two reasons we might not have a superblock:
2352 * 1) The raid set is brand new - in which case, all of the
2353 * devices must have their In_sync bit set. Also,
2354 * recovery_cp must be 0, unless forced.
2355 * 2) This is a new device being added to an old raid set
2356 * and the new device needs to be rebuilt - in which
2357 * case the In_sync bit will /not/ be set and
2358 * recovery_cp must be MaxSector.
2359 * 3) This is/are a new device(s) being added to an old
2360 * raid set during takeover to a higher raid level
2361 * to provide capacity for redundancy or during reshape
2362 * to add capacity to grow the raid set.
2363 */
2364 d = 0;
2365 rdev_for_each(r, mddev) {
2366 if (test_bit(Journal, &rdev->flags))
2367 continue;
2368
2369 if (test_bit(FirstUse, &r->flags))
2370 new_devs++;
2371
2372 if (!test_bit(In_sync, &r->flags)) {
2373 DMINFO("Device %d specified for rebuild; clearing superblock",
2374 r->raid_disk);
2375 rebuilds++;
2376
2377 if (test_bit(FirstUse, &r->flags))
2378 rebuild_and_new++;
2379 }
2380
2381 d++;
2382 }
2383
2384 if (new_devs == rs->raid_disks || !rebuilds) {
2385 /* Replace a broken device */
2386 if (new_devs == 1 && !rs->delta_disks)
2387 ;
2388 if (new_devs == rs->raid_disks) {
2389 DMINFO("Superblocks created for new raid set");
2390 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2391 } else if (new_devs != rebuilds &&
2392 new_devs != rs->delta_disks) {
2393 DMERR("New device injected into existing raid set without "
2394 "'delta_disks' or 'rebuild' parameter specified");
2395 return -EINVAL;
2396 }
2397 } else if (new_devs && new_devs != rebuilds) {
2398 DMERR("%u 'rebuild' devices cannot be injected into"
2399 " a raid set with %u other first-time devices",
2400 rebuilds, new_devs);
2401 return -EINVAL;
2402 } else if (rebuilds) {
2403 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2404 DMERR("new device%s provided without 'rebuild'",
2405 new_devs > 1 ? "s" : "");
2406 return -EINVAL;
2407 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2408 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2409 (unsigned long long) mddev->recovery_cp);
2410 return -EINVAL;
2411 } else if (rs_is_reshaping(rs)) {
2412 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2413 (unsigned long long) mddev->reshape_position);
2414 return -EINVAL;
2415 }
2416 }
2417
2418 /*
2419 * Now we set the Faulty bit for those devices that are
2420 * recorded in the superblock as failed.
2421 */
2422 sb_retrieve_failed_devices(sb, failed_devices);
2423 rdev_for_each(r, mddev) {
2424 if (test_bit(Journal, &rdev->flags) ||
2425 !r->sb_page)
2426 continue;
2427 sb2 = page_address(r->sb_page);
2428 sb2->failed_devices = 0;
2429 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2430
2431 /*
2432 * Check for any device re-ordering.
2433 */
2434 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2435 role = le32_to_cpu(sb2->array_position);
2436 if (role < 0)
2437 continue;
2438
2439 if (role != r->raid_disk) {
2440 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2441 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2442 rs->raid_disks % rs->raid10_copies) {
2443 rs->ti->error =
2444 "Cannot change raid10 near set to odd # of devices!";
2445 return -EINVAL;
2446 }
2447
2448 sb2->array_position = cpu_to_le32(r->raid_disk);
2449
2450 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2451 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2452 !rt_is_raid1(rs->raid_type)) {
2453 rs->ti->error = "Cannot change device positions in raid set";
2454 return -EINVAL;
2455 }
2456
2457 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2458 }
2459
2460 /*
2461 * Partial recovery is performed on
2462 * returning failed devices.
2463 */
2464 if (test_bit(role, (void *) failed_devices))
2465 set_bit(Faulty, &r->flags);
2466 }
2467 }
2468
2469 return 0;
2470}
2471
2472static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2473{
2474 struct mddev *mddev = &rs->md;
2475 struct dm_raid_superblock *sb;
2476
2477 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2478 return 0;
2479
2480 sb = page_address(rdev->sb_page);
2481
2482 /*
2483 * If mddev->events is not set, we know we have not yet initialized
2484 * the array.
2485 */
2486 if (!mddev->events && super_init_validation(rs, rdev))
2487 return -EINVAL;
2488
2489 if (le32_to_cpu(sb->compat_features) &&
2490 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2491 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2492 return -EINVAL;
2493 }
2494
2495 if (sb->incompat_features) {
2496 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2497 return -EINVAL;
2498 }
2499
2500 /* Enable bitmap creation for RAID levels != 0 */
2501 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2502 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2503
2504 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2505 /*
2506 * Retrieve rdev size stored in superblock to be prepared for shrink.
2507 * Check extended superblock members are present otherwise the size
2508 * will not be set!
2509 */
2510 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2511 rdev->sectors = le64_to_cpu(sb->sectors);
2512
2513 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2514 if (rdev->recovery_offset == MaxSector)
2515 set_bit(In_sync, &rdev->flags);
2516 /*
2517 * If no reshape in progress -> we're recovering single
2518 * disk(s) and have to set the device(s) to out-of-sync
2519 */
2520 else if (!rs_is_reshaping(rs))
2521 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2522 }
2523
2524 /*
2525 * If a device comes back, set it as not In_sync and no longer faulty.
2526 */
2527 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2528 rdev->recovery_offset = 0;
2529 clear_bit(In_sync, &rdev->flags);
2530 rdev->saved_raid_disk = rdev->raid_disk;
2531 }
2532
2533 /* Reshape support -> restore repective data offsets */
2534 rdev->data_offset = le64_to_cpu(sb->data_offset);
2535 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2536
2537 return 0;
2538}
2539
2540/*
2541 * Analyse superblocks and select the freshest.
2542 */
2543static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2544{
2545 int r;
2546 struct md_rdev *rdev, *freshest;
2547 struct mddev *mddev = &rs->md;
2548
2549 freshest = NULL;
2550 rdev_for_each(rdev, mddev) {
2551 if (test_bit(Journal, &rdev->flags))
2552 continue;
2553
2554 if (!rdev->meta_bdev)
2555 continue;
2556
2557 /* Set superblock offset/size for metadata device. */
2558 rdev->sb_start = 0;
2559 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2560 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2561 DMERR("superblock size of a logical block is no longer valid");
2562 return -EINVAL;
2563 }
2564
2565 /*
2566 * Skipping super_load due to CTR_FLAG_SYNC will cause
2567 * the array to undergo initialization again as
2568 * though it were new. This is the intended effect
2569 * of the "sync" directive.
2570 *
2571 * With reshaping capability added, we must ensure that
2572 * that the "sync" directive is disallowed during the reshape.
2573 */
2574 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2575 continue;
2576
2577 r = super_load(rdev, freshest);
2578
2579 switch (r) {
2580 case 1:
2581 freshest = rdev;
2582 break;
2583 case 0:
2584 break;
2585 default:
2586 /* This is a failure to read the superblock from the metadata device. */
2587 /*
2588 * We have to keep any raid0 data/metadata device pairs or
2589 * the MD raid0 personality will fail to start the array.
2590 */
2591 if (rs_is_raid0(rs))
2592 continue;
2593
2594 /*
2595 * We keep the dm_devs to be able to emit the device tuple
2596 * properly on the table line in raid_status() (rather than
2597 * mistakenly acting as if '- -' got passed into the constructor).
2598 *
2599 * The rdev has to stay on the same_set list to allow for
2600 * the attempt to restore faulty devices on second resume.
2601 */
2602 rdev->raid_disk = rdev->saved_raid_disk = -1;
2603 break;
2604 }
2605 }
2606
2607 if (!freshest)
2608 return 0;
2609
2610 /*
2611 * Validation of the freshest device provides the source of
2612 * validation for the remaining devices.
2613 */
2614 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2615 if (super_validate(rs, freshest))
2616 return -EINVAL;
2617
2618 if (validate_raid_redundancy(rs)) {
2619 rs->ti->error = "Insufficient redundancy to activate array";
2620 return -EINVAL;
2621 }
2622
2623 rdev_for_each(rdev, mddev)
2624 if (!test_bit(Journal, &rdev->flags) &&
2625 rdev != freshest &&
2626 super_validate(rs, rdev))
2627 return -EINVAL;
2628 return 0;
2629}
2630
2631/*
2632 * Adjust data_offset and new_data_offset on all disk members of @rs
2633 * for out of place reshaping if requested by contructor
2634 *
2635 * We need free space at the beginning of each raid disk for forward
2636 * and at the end for backward reshapes which userspace has to provide
2637 * via remapping/reordering of space.
2638 */
2639static int rs_adjust_data_offsets(struct raid_set *rs)
2640{
2641 sector_t data_offset = 0, new_data_offset = 0;
2642 struct md_rdev *rdev;
2643
2644 /* Constructor did not request data offset change */
2645 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2646 if (!rs_is_reshapable(rs))
2647 goto out;
2648
2649 return 0;
2650 }
2651
2652 /* HM FIXME: get InSync raid_dev? */
2653 rdev = &rs->dev[0].rdev;
2654
2655 if (rs->delta_disks < 0) {
2656 /*
2657 * Removing disks (reshaping backwards):
2658 *
2659 * - before reshape: data is at offset 0 and free space
2660 * is at end of each component LV
2661 *
2662 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2663 */
2664 data_offset = 0;
2665 new_data_offset = rs->data_offset;
2666
2667 } else if (rs->delta_disks > 0) {
2668 /*
2669 * Adding disks (reshaping forwards):
2670 *
2671 * - before reshape: data is at offset rs->data_offset != 0 and
2672 * free space is at begin of each component LV
2673 *
2674 * - after reshape: data is at offset 0 on each component LV
2675 */
2676 data_offset = rs->data_offset;
2677 new_data_offset = 0;
2678
2679 } else {
2680 /*
2681 * User space passes in 0 for data offset after having removed reshape space
2682 *
2683 * - or - (data offset != 0)
2684 *
2685 * Changing RAID layout or chunk size -> toggle offsets
2686 *
2687 * - before reshape: data is at offset rs->data_offset 0 and
2688 * free space is at end of each component LV
2689 * -or-
2690 * data is at offset rs->data_offset != 0 and
2691 * free space is at begin of each component LV
2692 *
2693 * - after reshape: data is at offset 0 if it was at offset != 0
2694 * or at offset != 0 if it was at offset 0
2695 * on each component LV
2696 *
2697 */
2698 data_offset = rs->data_offset ? rdev->data_offset : 0;
2699 new_data_offset = data_offset ? 0 : rs->data_offset;
2700 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2701 }
2702
2703 /*
2704 * Make sure we got a minimum amount of free sectors per device
2705 */
2706 if (rs->data_offset &&
2707 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2708 rs->ti->error = data_offset ? "No space for forward reshape" :
2709 "No space for backward reshape";
2710 return -ENOSPC;
2711 }
2712out:
2713 /*
2714 * Raise recovery_cp in case data_offset != 0 to
2715 * avoid false recovery positives in the constructor.
2716 */
2717 if (rs->md.recovery_cp < rs->md.dev_sectors)
2718 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2719
2720 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2721 rdev_for_each(rdev, &rs->md) {
2722 if (!test_bit(Journal, &rdev->flags)) {
2723 rdev->data_offset = data_offset;
2724 rdev->new_data_offset = new_data_offset;
2725 }
2726 }
2727
2728 return 0;
2729}
2730
2731/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2732static void __reorder_raid_disk_indexes(struct raid_set *rs)
2733{
2734 int i = 0;
2735 struct md_rdev *rdev;
2736
2737 rdev_for_each(rdev, &rs->md) {
2738 if (!test_bit(Journal, &rdev->flags)) {
2739 rdev->raid_disk = i++;
2740 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2741 }
2742 }
2743}
2744
2745/*
2746 * Setup @rs for takeover by a different raid level
2747 */
2748static int rs_setup_takeover(struct raid_set *rs)
2749{
2750 struct mddev *mddev = &rs->md;
2751 struct md_rdev *rdev;
2752 unsigned int d = mddev->raid_disks = rs->raid_disks;
2753 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2754
2755 if (rt_is_raid10(rs->raid_type)) {
2756 if (rs_is_raid0(rs)) {
2757 /* Userpace reordered disks -> adjust raid_disk indexes */
2758 __reorder_raid_disk_indexes(rs);
2759
2760 /* raid0 -> raid10_far layout */
2761 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2762 rs->raid10_copies);
2763 } else if (rs_is_raid1(rs))
2764 /* raid1 -> raid10_near layout */
2765 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2766 rs->raid_disks);
2767 else
2768 return -EINVAL;
2769
2770 }
2771
2772 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2773 mddev->recovery_cp = MaxSector;
2774
2775 while (d--) {
2776 rdev = &rs->dev[d].rdev;
2777
2778 if (test_bit(d, (void *) rs->rebuild_disks)) {
2779 clear_bit(In_sync, &rdev->flags);
2780 clear_bit(Faulty, &rdev->flags);
2781 mddev->recovery_cp = rdev->recovery_offset = 0;
2782 /* Bitmap has to be created when we do an "up" takeover */
2783 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2784 }
2785
2786 rdev->new_data_offset = new_data_offset;
2787 }
2788
2789 return 0;
2790}
2791
2792/* Prepare @rs for reshape */
2793static int rs_prepare_reshape(struct raid_set *rs)
2794{
2795 bool reshape;
2796 struct mddev *mddev = &rs->md;
2797
2798 if (rs_is_raid10(rs)) {
2799 if (rs->raid_disks != mddev->raid_disks &&
2800 __is_raid10_near(mddev->layout) &&
2801 rs->raid10_copies &&
2802 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2803 /*
2804 * raid disk have to be multiple of data copies to allow this conversion,
2805 *
2806 * This is actually not a reshape it is a
2807 * rebuild of any additional mirrors per group
2808 */
2809 if (rs->raid_disks % rs->raid10_copies) {
2810 rs->ti->error = "Can't reshape raid10 mirror groups";
2811 return -EINVAL;
2812 }
2813
2814 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2815 __reorder_raid_disk_indexes(rs);
2816 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2817 rs->raid10_copies);
2818 mddev->new_layout = mddev->layout;
2819 reshape = false;
2820 } else
2821 reshape = true;
2822
2823 } else if (rs_is_raid456(rs))
2824 reshape = true;
2825
2826 else if (rs_is_raid1(rs)) {
2827 if (rs->delta_disks) {
2828 /* Process raid1 via delta_disks */
2829 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2830 reshape = true;
2831 } else {
2832 /* Process raid1 without delta_disks */
2833 mddev->raid_disks = rs->raid_disks;
2834 reshape = false;
2835 }
2836 } else {
2837 rs->ti->error = "Called with bogus raid type";
2838 return -EINVAL;
2839 }
2840
2841 if (reshape) {
2842 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2843 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2844 } else if (mddev->raid_disks < rs->raid_disks)
2845 /* Create new superblocks and bitmaps, if any new disks */
2846 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2847
2848 return 0;
2849}
2850
2851/* Get reshape sectors from data_offsets or raid set */
2852static sector_t _get_reshape_sectors(struct raid_set *rs)
2853{
2854 struct md_rdev *rdev;
2855 sector_t reshape_sectors = 0;
2856
2857 rdev_for_each(rdev, &rs->md)
2858 if (!test_bit(Journal, &rdev->flags)) {
2859 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2860 rdev->data_offset - rdev->new_data_offset :
2861 rdev->new_data_offset - rdev->data_offset;
2862 break;
2863 }
2864
2865 return max(reshape_sectors, (sector_t) rs->data_offset);
2866}
2867
2868/*
2869 *
2870 * - change raid layout
2871 * - change chunk size
2872 * - add disks
2873 * - remove disks
2874 */
2875static int rs_setup_reshape(struct raid_set *rs)
2876{
2877 int r = 0;
2878 unsigned int cur_raid_devs, d;
2879 sector_t reshape_sectors = _get_reshape_sectors(rs);
2880 struct mddev *mddev = &rs->md;
2881 struct md_rdev *rdev;
2882
2883 mddev->delta_disks = rs->delta_disks;
2884 cur_raid_devs = mddev->raid_disks;
2885
2886 /* Ignore impossible layout change whilst adding/removing disks */
2887 if (mddev->delta_disks &&
2888 mddev->layout != mddev->new_layout) {
2889 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2890 mddev->new_layout = mddev->layout;
2891 }
2892
2893 /*
2894 * Adjust array size:
2895 *
2896 * - in case of adding disk(s), array size has
2897 * to grow after the disk adding reshape,
2898 * which'll hapen in the event handler;
2899 * reshape will happen forward, so space has to
2900 * be available at the beginning of each disk
2901 *
2902 * - in case of removing disk(s), array size
2903 * has to shrink before starting the reshape,
2904 * which'll happen here;
2905 * reshape will happen backward, so space has to
2906 * be available at the end of each disk
2907 *
2908 * - data_offset and new_data_offset are
2909 * adjusted for aforementioned out of place
2910 * reshaping based on userspace passing in
2911 * the "data_offset <sectors>" key/value
2912 * pair via the constructor
2913 */
2914
2915 /* Add disk(s) */
2916 if (rs->delta_disks > 0) {
2917 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2918 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2919 rdev = &rs->dev[d].rdev;
2920 clear_bit(In_sync, &rdev->flags);
2921
2922 /*
2923 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2924 * by md, which'll store that erroneously in the superblock on reshape
2925 */
2926 rdev->saved_raid_disk = -1;
2927 rdev->raid_disk = d;
2928
2929 rdev->sectors = mddev->dev_sectors;
2930 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2931 }
2932
2933 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2934
2935 /* Remove disk(s) */
2936 } else if (rs->delta_disks < 0) {
2937 r = rs_set_dev_and_array_sectors(rs, true);
2938 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2939
2940 /* Change layout and/or chunk size */
2941 } else {
2942 /*
2943 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2944 *
2945 * keeping number of disks and do layout change ->
2946 *
2947 * toggle reshape_backward depending on data_offset:
2948 *
2949 * - free space upfront -> reshape forward
2950 *
2951 * - free space at the end -> reshape backward
2952 *
2953 *
2954 * This utilizes free reshape space avoiding the need
2955 * for userspace to move (parts of) LV segments in
2956 * case of layout/chunksize change (for disk
2957 * adding/removing reshape space has to be at
2958 * the proper address (see above with delta_disks):
2959 *
2960 * add disk(s) -> begin
2961 * remove disk(s)-> end
2962 */
2963 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2964 }
2965
2966 /*
2967 * Adjust device size for forward reshape
2968 * because md_finish_reshape() reduces it.
2969 */
2970 if (!mddev->reshape_backwards)
2971 rdev_for_each(rdev, &rs->md)
2972 if (!test_bit(Journal, &rdev->flags))
2973 rdev->sectors += reshape_sectors;
2974
2975 return r;
2976}
2977
2978/*
2979 * Enable/disable discard support on RAID set depending on
2980 * RAID level and discard properties of underlying RAID members.
2981 */
2982static void configure_discard_support(struct raid_set *rs)
2983{
2984 int i;
2985 bool raid456;
2986 struct dm_target *ti = rs->ti;
2987
2988 /*
2989 * XXX: RAID level 4,5,6 require zeroing for safety.
2990 */
2991 raid456 = rs_is_raid456(rs);
2992
2993 for (i = 0; i < rs->raid_disks; i++) {
2994 struct request_queue *q;
2995
2996 if (!rs->dev[i].rdev.bdev)
2997 continue;
2998
2999 q = bdev_get_queue(rs->dev[i].rdev.bdev);
3000 if (!q || !blk_queue_discard(q))
3001 return;
3002
3003 if (raid456) {
3004 if (!devices_handle_discard_safely) {
3005 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
3006 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
3007 return;
3008 }
3009 }
3010 }
3011
3012 /*
3013 * RAID1 and RAID10 personalities require bio splitting,
3014 * RAID0/4/5/6 don't and process large discard bios properly.
3015 */
3016 ti->split_discard_bios = !!(rs_is_raid1(rs) || rs_is_raid10(rs));
3017 ti->num_discard_bios = 1;
3018}
3019
3020/*
3021 * Construct a RAID0/1/10/4/5/6 mapping:
3022 * Args:
3023 * <raid_type> <#raid_params> <raid_params>{0,} \
3024 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
3025 *
3026 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
3027 * details on possible <raid_params>.
3028 *
3029 * Userspace is free to initialize the metadata devices, hence the superblocks to
3030 * enforce recreation based on the passed in table parameters.
3031 *
3032 */
3033static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3034{
3035 int r;
3036 bool resize = false;
3037 struct raid_type *rt;
3038 unsigned int num_raid_params, num_raid_devs;
3039 sector_t calculated_dev_sectors, rdev_sectors, reshape_sectors;
3040 struct raid_set *rs = NULL;
3041 const char *arg;
3042 struct rs_layout rs_layout;
3043 struct dm_arg_set as = { argc, argv }, as_nrd;
3044 struct dm_arg _args[] = {
3045 { 0, as.argc, "Cannot understand number of raid parameters" },
3046 { 1, 254, "Cannot understand number of raid devices parameters" }
3047 };
3048
3049 /* Must have <raid_type> */
3050 arg = dm_shift_arg(&as);
3051 if (!arg) {
3052 ti->error = "No arguments";
3053 return -EINVAL;
3054 }
3055
3056 rt = get_raid_type(arg);
3057 if (!rt) {
3058 ti->error = "Unrecognised raid_type";
3059 return -EINVAL;
3060 }
3061
3062 /* Must have <#raid_params> */
3063 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3064 return -EINVAL;
3065
3066 /* number of raid device tupples <meta_dev data_dev> */
3067 as_nrd = as;
3068 dm_consume_args(&as_nrd, num_raid_params);
3069 _args[1].max = (as_nrd.argc - 1) / 2;
3070 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3071 return -EINVAL;
3072
3073 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3074 ti->error = "Invalid number of supplied raid devices";
3075 return -EINVAL;
3076 }
3077
3078 rs = raid_set_alloc(ti, rt, num_raid_devs);
3079 if (IS_ERR(rs))
3080 return PTR_ERR(rs);
3081
3082 r = parse_raid_params(rs, &as, num_raid_params);
3083 if (r)
3084 goto bad;
3085
3086 r = parse_dev_params(rs, &as);
3087 if (r)
3088 goto bad;
3089
3090 rs->md.sync_super = super_sync;
3091
3092 /*
3093 * Calculate ctr requested array and device sizes to allow
3094 * for superblock analysis needing device sizes defined.
3095 *
3096 * Any existing superblock will overwrite the array and device sizes
3097 */
3098 r = rs_set_dev_and_array_sectors(rs, false);
3099 if (r)
3100 goto bad;
3101
3102 calculated_dev_sectors = rs->md.dev_sectors;
3103
3104 /*
3105 * Backup any new raid set level, layout, ...
3106 * requested to be able to compare to superblock
3107 * members for conversion decisions.
3108 */
3109 rs_config_backup(rs, &rs_layout);
3110
3111 r = analyse_superblocks(ti, rs);
3112 if (r)
3113 goto bad;
3114
3115 rdev_sectors = __rdev_sectors(rs);
3116 if (!rdev_sectors) {
3117 ti->error = "Invalid rdev size";
3118 r = -EINVAL;
3119 goto bad;
3120 }
3121
3122
3123 reshape_sectors = _get_reshape_sectors(rs);
3124 if (calculated_dev_sectors != rdev_sectors)
3125 resize = calculated_dev_sectors != (reshape_sectors ? rdev_sectors - reshape_sectors : rdev_sectors);
3126
3127 INIT_WORK(&rs->md.event_work, do_table_event);
3128 ti->private = rs;
3129 ti->num_flush_bios = 1;
3130
3131 /* Restore any requested new layout for conversion decision */
3132 rs_config_restore(rs, &rs_layout);
3133
3134 /*
3135 * Now that we have any superblock metadata available,
3136 * check for new, recovering, reshaping, to be taken over,
3137 * to be reshaped or an existing, unchanged raid set to
3138 * run in sequence.
3139 */
3140 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3141 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3142 if (rs_is_raid6(rs) &&
3143 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3144 ti->error = "'nosync' not allowed for new raid6 set";
3145 r = -EINVAL;
3146 goto bad;
3147 }
3148 rs_setup_recovery(rs, 0);
3149 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3150 rs_set_new(rs);
3151 } else if (rs_is_recovering(rs)) {
3152 /* A recovering raid set may be resized */
3153 ; /* skip setup rs */
3154 } else if (rs_is_reshaping(rs)) {
3155 /* Have to reject size change request during reshape */
3156 if (resize) {
3157 ti->error = "Can't resize a reshaping raid set";
3158 r = -EPERM;
3159 goto bad;
3160 }
3161 /* skip setup rs */
3162 } else if (rs_takeover_requested(rs)) {
3163 if (rs_is_reshaping(rs)) {
3164 ti->error = "Can't takeover a reshaping raid set";
3165 r = -EPERM;
3166 goto bad;
3167 }
3168
3169 /* We can't takeover a journaled raid4/5/6 */
3170 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3171 ti->error = "Can't takeover a journaled raid4/5/6 set";
3172 r = -EPERM;
3173 goto bad;
3174 }
3175
3176 /*
3177 * If a takeover is needed, userspace sets any additional
3178 * devices to rebuild and we can check for a valid request here.
3179 *
3180 * If acceptible, set the level to the new requested
3181 * one, prohibit requesting recovery, allow the raid
3182 * set to run and store superblocks during resume.
3183 */
3184 r = rs_check_takeover(rs);
3185 if (r)
3186 goto bad;
3187
3188 r = rs_setup_takeover(rs);
3189 if (r)
3190 goto bad;
3191
3192 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3193 /* Takeover ain't recovery, so disable recovery */
3194 rs_setup_recovery(rs, MaxSector);
3195 rs_set_new(rs);
3196 } else if (rs_reshape_requested(rs)) {
3197 /*
3198 * No need to check for 'ongoing' takeover here, because takeover
3199 * is an instant operation as oposed to an ongoing reshape.
3200 */
3201
3202 /* We can't reshape a journaled raid4/5/6 */
3203 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3204 ti->error = "Can't reshape a journaled raid4/5/6 set";
3205 r = -EPERM;
3206 goto bad;
3207 }
3208
3209 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3210 if (reshape_sectors || rs_is_raid1(rs)) {
3211 /*
3212 * We can only prepare for a reshape here, because the
3213 * raid set needs to run to provide the repective reshape
3214 * check functions via its MD personality instance.
3215 *
3216 * So do the reshape check after md_run() succeeded.
3217 */
3218 r = rs_prepare_reshape(rs);
3219 if (r)
3220 return r;
3221
3222 /* Reshaping ain't recovery, so disable recovery */
3223 rs_setup_recovery(rs, MaxSector);
3224 }
3225 rs_set_cur(rs);
3226 } else {
3227 /* May not set recovery when a device rebuild is requested */
3228 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3229 rs_setup_recovery(rs, MaxSector);
3230 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3231 } else
3232 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3233 0 : (resize ? calculated_dev_sectors : MaxSector));
3234 rs_set_cur(rs);
3235 }
3236
3237 /* If constructor requested it, change data and new_data offsets */
3238 r = rs_adjust_data_offsets(rs);
3239 if (r)
3240 goto bad;
3241
3242 /* Start raid set read-only and assumed clean to change in raid_resume() */
3243 rs->md.ro = 1;
3244 rs->md.in_sync = 1;
3245 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3246
3247 /* Has to be held on running the array */
3248 mddev_lock_nointr(&rs->md);
3249 r = md_run(&rs->md);
3250 rs->md.in_sync = 0; /* Assume already marked dirty */
3251 if (r) {
3252 ti->error = "Failed to run raid array";
3253 mddev_unlock(&rs->md);
3254 goto bad;
3255 }
3256
3257 r = md_start(&rs->md);
3258
3259 if (r) {
3260 ti->error = "Failed to start raid array";
3261 mddev_unlock(&rs->md);
3262 goto bad_md_start;
3263 }
3264
3265 rs->callbacks.congested_fn = raid_is_congested;
3266 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3267
3268 /* If raid4/5/6 journal mode explictely requested (only possible with journal dev) -> set it */
3269 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3270 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3271 if (r) {
3272 ti->error = "Failed to set raid4/5/6 journal mode";
3273 mddev_unlock(&rs->md);
3274 goto bad_journal_mode_set;
3275 }
3276 }
3277
3278 mddev_suspend(&rs->md);
3279 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3280
3281 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3282 if (rs_is_raid456(rs)) {
3283 r = rs_set_raid456_stripe_cache(rs);
3284 if (r)
3285 goto bad_stripe_cache;
3286 }
3287
3288 /* Now do an early reshape check */
3289 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3290 r = rs_check_reshape(rs);
3291 if (r)
3292 goto bad_check_reshape;
3293
3294 /* Restore new, ctr requested layout to perform check */
3295 rs_config_restore(rs, &rs_layout);
3296
3297 if (rs->md.pers->start_reshape) {
3298 r = rs->md.pers->check_reshape(&rs->md);
3299 if (r) {
3300 ti->error = "Reshape check failed";
3301 goto bad_check_reshape;
3302 }
3303 }
3304 }
3305
3306 /* Disable/enable discard support on raid set. */
3307 configure_discard_support(rs);
3308
3309 mddev_unlock(&rs->md);
3310 return 0;
3311
3312bad_md_start:
3313bad_journal_mode_set:
3314bad_stripe_cache:
3315bad_check_reshape:
3316 md_stop(&rs->md);
3317bad:
3318 raid_set_free(rs);
3319
3320 return r;
3321}
3322
3323static void raid_dtr(struct dm_target *ti)
3324{
3325 struct raid_set *rs = ti->private;
3326
3327 list_del_init(&rs->callbacks.list);
3328 md_stop(&rs->md);
3329 raid_set_free(rs);
3330}
3331
3332static int raid_map(struct dm_target *ti, struct bio *bio)
3333{
3334 struct raid_set *rs = ti->private;
3335 struct mddev *mddev = &rs->md;
3336
3337 /*
3338 * If we're reshaping to add disk(s)), ti->len and
3339 * mddev->array_sectors will differ during the process
3340 * (ti->len > mddev->array_sectors), so we have to requeue
3341 * bios with addresses > mddev->array_sectors here or
3342 * there will occur accesses past EOD of the component
3343 * data images thus erroring the raid set.
3344 */
3345 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3346 return DM_MAPIO_REQUEUE;
3347
3348 md_handle_request(mddev, bio);
3349
3350 return DM_MAPIO_SUBMITTED;
3351}
3352
3353/* Return string describing the current sync action of @mddev */
3354static const char *decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3355{
3356 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3357 return "frozen";
3358
3359 /* The MD sync thread can be done with io but still be running */
3360 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3361 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3362 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3363 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3364 return "reshape";
3365
3366 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3367 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3368 return "resync";
3369 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
3370 return "check";
3371 return "repair";
3372 }
3373
3374 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3375 return "recover";
3376 }
3377
3378 return "idle";
3379}
3380
3381/*
3382 * Return status string for @rdev
3383 *
3384 * Status characters:
3385 *
3386 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3387 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3388 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3389 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3390 */
3391static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3392{
3393 if (!rdev->bdev)
3394 return "-";
3395 else if (test_bit(Faulty, &rdev->flags))
3396 return "D";
3397 else if (test_bit(Journal, &rdev->flags))
3398 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3399 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3400 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3401 !test_bit(In_sync, &rdev->flags)))
3402 return "a";
3403 else
3404 return "A";
3405}
3406
3407/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3408static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3409 sector_t resync_max_sectors)
3410{
3411 sector_t r;
3412 struct mddev *mddev = &rs->md;
3413
3414 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3415 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3416
3417 if (rs_is_raid0(rs)) {
3418 r = resync_max_sectors;
3419 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3420
3421 } else {
3422 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) &&
3423 !test_bit(MD_RECOVERY_INTR, &recovery) &&
3424 (test_bit(MD_RECOVERY_NEEDED, &recovery) ||
3425 test_bit(MD_RECOVERY_RESHAPE, &recovery) ||
3426 test_bit(MD_RECOVERY_RUNNING, &recovery)))
3427 r = mddev->curr_resync_completed;
3428 else
3429 r = mddev->recovery_cp;
3430
3431 if (r >= resync_max_sectors &&
3432 (!test_bit(MD_RECOVERY_REQUESTED, &recovery) ||
3433 (!test_bit(MD_RECOVERY_FROZEN, &recovery) &&
3434 !test_bit(MD_RECOVERY_NEEDED, &recovery) &&
3435 !test_bit(MD_RECOVERY_RUNNING, &recovery)))) {
3436 /*
3437 * Sync complete.
3438 */
3439 /* In case we have finished recovering, the array is in sync. */
3440 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3441 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3442
3443 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) {
3444 /*
3445 * In case we are recovering, the array is not in sync
3446 * and health chars should show the recovering legs.
3447 */
3448 ;
3449
3450 } else if (test_bit(MD_RECOVERY_SYNC, &recovery) &&
3451 !test_bit(MD_RECOVERY_REQUESTED, &recovery)) {
3452 /*
3453 * If "resync" is occurring, the raid set
3454 * is or may be out of sync hence the health
3455 * characters shall be 'a'.
3456 */
3457 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3458
3459 } else if (test_bit(MD_RECOVERY_RESHAPE, &recovery) &&
3460 !test_bit(MD_RECOVERY_REQUESTED, &recovery)) {
3461 /*
3462 * If "reshape" is occurring, the raid set
3463 * is or may be out of sync hence the health
3464 * characters shall be 'a'.
3465 */
3466 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3467
3468 } else if (test_bit(MD_RECOVERY_REQUESTED, &recovery)) {
3469 /*
3470 * If "check" or "repair" is occurring, the raid set has
3471 * undergone an initial sync and the health characters
3472 * should not be 'a' anymore.
3473 */
3474 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3475
3476 } else {
3477 struct md_rdev *rdev;
3478
3479 /*
3480 * We are idle and recovery is needed, prevent 'A' chars race
3481 * caused by components still set to in-sync by constrcuctor.
3482 */
3483 if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3484 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3485
3486 /*
3487 * The raid set may be doing an initial sync, or it may
3488 * be rebuilding individual components. If all the
3489 * devices are In_sync, then it is the raid set that is
3490 * being initialized.
3491 */
3492 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3493 rdev_for_each(rdev, mddev)
3494 if (!test_bit(Journal, &rdev->flags) &&
3495 !test_bit(In_sync, &rdev->flags)) {
3496 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3497 break;
3498 }
3499 }
3500 }
3501
3502 return min(r, resync_max_sectors);
3503}
3504
3505/* Helper to return @dev name or "-" if !@dev */
3506static const char *__get_dev_name(struct dm_dev *dev)
3507{
3508 return dev ? dev->name : "-";
3509}
3510
3511static void raid_status(struct dm_target *ti, status_type_t type,
3512 unsigned int status_flags, char *result, unsigned int maxlen)
3513{
3514 struct raid_set *rs = ti->private;
3515 struct mddev *mddev = &rs->md;
3516 struct r5conf *conf = mddev->private;
3517 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3518 unsigned long recovery;
3519 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3520 unsigned int sz = 0;
3521 unsigned int rebuild_disks;
3522 unsigned int write_mostly_params = 0;
3523 sector_t progress, resync_max_sectors, resync_mismatches;
3524 const char *sync_action;
3525 struct raid_type *rt;
3526
3527 switch (type) {
3528 case STATUSTYPE_INFO:
3529 /* *Should* always succeed */
3530 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3531 if (!rt)
3532 return;
3533
3534 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3535
3536 /* Access most recent mddev properties for status output */
3537 smp_rmb();
3538 recovery = rs->md.recovery;
3539 /* Get sensible max sectors even if raid set not yet started */
3540 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3541 mddev->resync_max_sectors : mddev->dev_sectors;
3542 progress = rs_get_progress(rs, recovery, resync_max_sectors);
3543 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3544 atomic64_read(&mddev->resync_mismatches) : 0;
3545 sync_action = decipher_sync_action(&rs->md, recovery);
3546
3547 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3548 for (i = 0; i < rs->raid_disks; i++)
3549 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3550
3551 /*
3552 * In-sync/Reshape ratio:
3553 * The in-sync ratio shows the progress of:
3554 * - Initializing the raid set
3555 * - Rebuilding a subset of devices of the raid set
3556 * The user can distinguish between the two by referring
3557 * to the status characters.
3558 *
3559 * The reshape ratio shows the progress of
3560 * changing the raid layout or the number of
3561 * disks of a raid set
3562 */
3563 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3564 (unsigned long long) resync_max_sectors);
3565
3566 /*
3567 * v1.5.0+:
3568 *
3569 * Sync action:
3570 * See Documentation/device-mapper/dm-raid.txt for
3571 * information on each of these states.
3572 */
3573 DMEMIT(" %s", sync_action);
3574
3575 /*
3576 * v1.5.0+:
3577 *
3578 * resync_mismatches/mismatch_cnt
3579 * This field shows the number of discrepancies found when
3580 * performing a "check" of the raid set.
3581 */
3582 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3583
3584 /*
3585 * v1.9.0+:
3586 *
3587 * data_offset (needed for out of space reshaping)
3588 * This field shows the data offset into the data
3589 * image LV where the first stripes data starts.
3590 *
3591 * We keep data_offset equal on all raid disks of the set,
3592 * so retrieving it from the first raid disk is sufficient.
3593 */
3594 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3595
3596 /*
3597 * v1.10.0+:
3598 */
3599 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3600 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3601 break;
3602
3603 case STATUSTYPE_TABLE:
3604 /* Report the table line string you would use to construct this raid set */
3605
3606 /* Calculate raid parameter count */
3607 for (i = 0; i < rs->raid_disks; i++)
3608 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3609 write_mostly_params += 2;
3610 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3611 raid_param_cnt += rebuild_disks * 2 +
3612 write_mostly_params +
3613 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3614 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3615 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) +
3616 (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0);
3617
3618 /* Emit table line */
3619 /* This has to be in the documented order for userspace! */
3620 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3621 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3622 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3623 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3624 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3625 if (rebuild_disks)
3626 for (i = 0; i < rs->raid_disks; i++)
3627 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3628 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3629 rs->dev[i].rdev.raid_disk);
3630 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3631 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3632 mddev->bitmap_info.daemon_sleep);
3633 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3634 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3635 mddev->sync_speed_min);
3636 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3637 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3638 mddev->sync_speed_max);
3639 if (write_mostly_params)
3640 for (i = 0; i < rs->raid_disks; i++)
3641 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3642 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3643 rs->dev[i].rdev.raid_disk);
3644 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3645 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3646 mddev->bitmap_info.max_write_behind);
3647 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3648 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3649 max_nr_stripes);
3650 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3651 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3652 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3653 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3654 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3655 raid10_md_layout_to_copies(mddev->layout));
3656 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3657 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3658 raid10_md_layout_to_format(mddev->layout));
3659 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3660 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3661 max(rs->delta_disks, mddev->delta_disks));
3662 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3663 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3664 (unsigned long long) rs->data_offset);
3665 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3666 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3667 __get_dev_name(rs->journal_dev.dev));
3668 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3669 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3670 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3671 DMEMIT(" %d", rs->raid_disks);
3672 for (i = 0; i < rs->raid_disks; i++)
3673 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3674 __get_dev_name(rs->dev[i].data_dev));
3675 }
3676}
3677
3678static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3679 char *result, unsigned maxlen)
3680{
3681 struct raid_set *rs = ti->private;
3682 struct mddev *mddev = &rs->md;
3683
3684 if (!mddev->pers || !mddev->pers->sync_request)
3685 return -EINVAL;
3686
3687 if (!strcasecmp(argv[0], "frozen"))
3688 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3689 else
3690 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3691
3692 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3693 if (mddev->sync_thread) {
3694 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3695 md_reap_sync_thread(mddev);
3696 }
3697 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3698 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3699 return -EBUSY;
3700 else if (!strcasecmp(argv[0], "resync"))
3701 ; /* MD_RECOVERY_NEEDED set below */
3702 else if (!strcasecmp(argv[0], "recover"))
3703 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3704 else {
3705 if (!strcasecmp(argv[0], "check")) {
3706 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3707 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3708 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3709 } else if (!strcasecmp(argv[0], "repair")) {
3710 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3711 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3712 } else
3713 return -EINVAL;
3714 }
3715 if (mddev->ro == 2) {
3716 /* A write to sync_action is enough to justify
3717 * canceling read-auto mode
3718 */
3719 mddev->ro = 0;
3720 if (!mddev->suspended && mddev->sync_thread)
3721 md_wakeup_thread(mddev->sync_thread);
3722 }
3723 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3724 if (!mddev->suspended && mddev->thread)
3725 md_wakeup_thread(mddev->thread);
3726
3727 return 0;
3728}
3729
3730static int raid_iterate_devices(struct dm_target *ti,
3731 iterate_devices_callout_fn fn, void *data)
3732{
3733 struct raid_set *rs = ti->private;
3734 unsigned int i;
3735 int r = 0;
3736
3737 for (i = 0; !r && i < rs->md.raid_disks; i++)
3738 if (rs->dev[i].data_dev)
3739 r = fn(ti,
3740 rs->dev[i].data_dev,
3741 0, /* No offset on data devs */
3742 rs->md.dev_sectors,
3743 data);
3744
3745 return r;
3746}
3747
3748static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3749{
3750 struct raid_set *rs = ti->private;
3751 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3752
3753 blk_limits_io_min(limits, chunk_size);
3754 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3755}
3756
3757static void raid_postsuspend(struct dm_target *ti)
3758{
3759 struct raid_set *rs = ti->private;
3760
3761 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3762 /* Writes have to be stopped before suspending to avoid deadlocks. */
3763 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3764 md_stop_writes(&rs->md);
3765
3766 mddev_lock_nointr(&rs->md);
3767 mddev_suspend(&rs->md);
3768 mddev_unlock(&rs->md);
3769 }
3770}
3771
3772static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3773{
3774 int i;
3775 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3776 unsigned long flags;
3777 bool cleared = false;
3778 struct dm_raid_superblock *sb;
3779 struct mddev *mddev = &rs->md;
3780 struct md_rdev *r;
3781
3782 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3783 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3784 return;
3785
3786 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3787
3788 for (i = 0; i < mddev->raid_disks; i++) {
3789 r = &rs->dev[i].rdev;
3790 /* HM FIXME: enhance journal device recovery processing */
3791 if (test_bit(Journal, &r->flags))
3792 continue;
3793
3794 if (test_bit(Faulty, &r->flags) &&
3795 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3796 DMINFO("Faulty %s device #%d has readable super block."
3797 " Attempting to revive it.",
3798 rs->raid_type->name, i);
3799
3800 /*
3801 * Faulty bit may be set, but sometimes the array can
3802 * be suspended before the personalities can respond
3803 * by removing the device from the array (i.e. calling
3804 * 'hot_remove_disk'). If they haven't yet removed
3805 * the failed device, its 'raid_disk' number will be
3806 * '>= 0' - meaning we must call this function
3807 * ourselves.
3808 */
3809 flags = r->flags;
3810 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3811 if (r->raid_disk >= 0) {
3812 if (mddev->pers->hot_remove_disk(mddev, r)) {
3813 /* Failed to revive this device, try next */
3814 r->flags = flags;
3815 continue;
3816 }
3817 } else
3818 r->raid_disk = r->saved_raid_disk = i;
3819
3820 clear_bit(Faulty, &r->flags);
3821 clear_bit(WriteErrorSeen, &r->flags);
3822
3823 if (mddev->pers->hot_add_disk(mddev, r)) {
3824 /* Failed to revive this device, try next */
3825 r->raid_disk = r->saved_raid_disk = -1;
3826 r->flags = flags;
3827 } else {
3828 clear_bit(In_sync, &r->flags);
3829 r->recovery_offset = 0;
3830 set_bit(i, (void *) cleared_failed_devices);
3831 cleared = true;
3832 }
3833 }
3834 }
3835
3836 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3837 if (cleared) {
3838 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3839
3840 rdev_for_each(r, &rs->md) {
3841 if (test_bit(Journal, &r->flags))
3842 continue;
3843
3844 sb = page_address(r->sb_page);
3845 sb_retrieve_failed_devices(sb, failed_devices);
3846
3847 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3848 failed_devices[i] &= ~cleared_failed_devices[i];
3849
3850 sb_update_failed_devices(sb, failed_devices);
3851 }
3852 }
3853}
3854
3855static int __load_dirty_region_bitmap(struct raid_set *rs)
3856{
3857 int r = 0;
3858
3859 /* Try loading the bitmap unless "raid0", which does not have one */
3860 if (!rs_is_raid0(rs) &&
3861 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3862 r = bitmap_load(&rs->md);
3863 if (r)
3864 DMERR("Failed to load bitmap");
3865 }
3866
3867 return r;
3868}
3869
3870/* Enforce updating all superblocks */
3871static void rs_update_sbs(struct raid_set *rs)
3872{
3873 struct mddev *mddev = &rs->md;
3874 int ro = mddev->ro;
3875
3876 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3877 mddev->ro = 0;
3878 md_update_sb(mddev, 1);
3879 mddev->ro = ro;
3880}
3881
3882/*
3883 * Reshape changes raid algorithm of @rs to new one within personality
3884 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3885 * disks from a raid set thus growing/shrinking it or resizes the set
3886 *
3887 * Call mddev_lock_nointr() before!
3888 */
3889static int rs_start_reshape(struct raid_set *rs)
3890{
3891 int r;
3892 struct mddev *mddev = &rs->md;
3893 struct md_personality *pers = mddev->pers;
3894
3895 r = rs_setup_reshape(rs);
3896 if (r)
3897 return r;
3898
3899 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3900 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags))
3901 mddev_resume(mddev);
3902
3903 /*
3904 * Check any reshape constraints enforced by the personalility
3905 *
3906 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3907 */
3908 r = pers->check_reshape(mddev);
3909 if (r) {
3910 rs->ti->error = "pers->check_reshape() failed";
3911 return r;
3912 }
3913
3914 /*
3915 * Personality may not provide start reshape method in which
3916 * case check_reshape above has already covered everything
3917 */
3918 if (pers->start_reshape) {
3919 r = pers->start_reshape(mddev);
3920 if (r) {
3921 rs->ti->error = "pers->start_reshape() failed";
3922 return r;
3923 }
3924 }
3925
3926 /* Suspend because a resume will happen in raid_resume() */
3927 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3928 mddev_suspend(mddev);
3929
3930 /*
3931 * Now reshape got set up, update superblocks to
3932 * reflect the fact so that a table reload will
3933 * access proper superblock content in the ctr.
3934 */
3935 rs_update_sbs(rs);
3936
3937 return 0;
3938}
3939
3940static int raid_preresume(struct dm_target *ti)
3941{
3942 int r;
3943 struct raid_set *rs = ti->private;
3944 struct mddev *mddev = &rs->md;
3945
3946 /* This is a resume after a suspend of the set -> it's already started. */
3947 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3948 return 0;
3949
3950 if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3951 struct raid_set *rs_active = rs_find_active(rs);
3952
3953 if (rs_active) {
3954 /*
3955 * In case no rebuilds have been requested
3956 * and an active table slot exists, copy
3957 * current resynchonization completed and
3958 * reshape position pointers across from
3959 * suspended raid set in the active slot.
3960 *
3961 * This resumes the new mapping at current
3962 * offsets to continue recover/reshape without
3963 * necessarily redoing a raid set partially or
3964 * causing data corruption in case of a reshape.
3965 */
3966 if (rs_active->md.curr_resync_completed != MaxSector)
3967 mddev->curr_resync_completed = rs_active->md.curr_resync_completed;
3968 if (rs_active->md.reshape_position != MaxSector)
3969 mddev->reshape_position = rs_active->md.reshape_position;
3970 }
3971 }
3972
3973 /*
3974 * The superblocks need to be updated on disk if the
3975 * array is new or new devices got added (thus zeroed
3976 * out by userspace) or __load_dirty_region_bitmap
3977 * will overwrite them in core with old data or fail.
3978 */
3979 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3980 rs_update_sbs(rs);
3981
3982 /* Load the bitmap from disk unless raid0 */
3983 r = __load_dirty_region_bitmap(rs);
3984 if (r)
3985 return r;
3986
3987 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3988 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3989 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3990 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3991 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3992 if (r)
3993 DMERR("Failed to resize bitmap");
3994 }
3995
3996 /* Check for any resize/reshape on @rs and adjust/initiate */
3997 /* Be prepared for mddev_resume() in raid_resume() */
3998 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3999 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4000 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4001 mddev->resync_min = mddev->recovery_cp;
4002 }
4003
4004 /* Check for any reshape request unless new raid set */
4005 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4006 /* Initiate a reshape. */
4007 rs_set_rdev_sectors(rs);
4008 mddev_lock_nointr(mddev);
4009 r = rs_start_reshape(rs);
4010 mddev_unlock(mddev);
4011 if (r)
4012 DMWARN("Failed to check/start reshape, continuing without change");
4013 r = 0;
4014 }
4015
4016 return r;
4017}
4018
4019static void raid_resume(struct dm_target *ti)
4020{
4021 struct raid_set *rs = ti->private;
4022 struct mddev *mddev = &rs->md;
4023
4024 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4025 /*
4026 * A secondary resume while the device is active.
4027 * Take this opportunity to check whether any failed
4028 * devices are reachable again.
4029 */
4030 attempt_restore_of_faulty_devices(rs);
4031 }
4032
4033 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4034 /* Only reduce raid set size before running a disk removing reshape. */
4035 if (mddev->delta_disks < 0)
4036 rs_set_capacity(rs);
4037
4038 mddev_lock_nointr(mddev);
4039 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4040 mddev->ro = 0;
4041 mddev->in_sync = 0;
4042 mddev_resume(mddev);
4043 mddev_unlock(mddev);
4044 }
4045}
4046
4047static struct target_type raid_target = {
4048 .name = "raid",
4049 .version = {1, 13, 2},
4050 .module = THIS_MODULE,
4051 .ctr = raid_ctr,
4052 .dtr = raid_dtr,
4053 .map = raid_map,
4054 .status = raid_status,
4055 .message = raid_message,
4056 .iterate_devices = raid_iterate_devices,
4057 .io_hints = raid_io_hints,
4058 .postsuspend = raid_postsuspend,
4059 .preresume = raid_preresume,
4060 .resume = raid_resume,
4061};
4062
4063static int __init dm_raid_init(void)
4064{
4065 DMINFO("Loading target version %u.%u.%u",
4066 raid_target.version[0],
4067 raid_target.version[1],
4068 raid_target.version[2]);
4069 return dm_register_target(&raid_target);
4070}
4071
4072static void __exit dm_raid_exit(void)
4073{
4074 dm_unregister_target(&raid_target);
4075}
4076
4077module_init(dm_raid_init);
4078module_exit(dm_raid_exit);
4079
4080module_param(devices_handle_discard_safely, bool, 0644);
4081MODULE_PARM_DESC(devices_handle_discard_safely,
4082 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4083
4084MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4085MODULE_ALIAS("dm-raid0");
4086MODULE_ALIAS("dm-raid1");
4087MODULE_ALIAS("dm-raid10");
4088MODULE_ALIAS("dm-raid4");
4089MODULE_ALIAS("dm-raid5");
4090MODULE_ALIAS("dm-raid6");
4091MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4092MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4093MODULE_LICENSE("GPL");