Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/sched.h>		/* test_thread_flag(), ...	*/
 
   7#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
   8#include <linux/extable.h>		/* search_exception_tables	*/
   9#include <linux/bootmem.h>		/* max_low_pfn			*/
  10#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  11#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  12#include <linux/perf_event.h>		/* perf_sw_event		*/
  13#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  14#include <linux/prefetch.h>		/* prefetchw			*/
  15#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  16#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  17
  18#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  19#include <asm/traps.h>			/* dotraplinkage, ...		*/
  20#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  21#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
  22#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  23#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  24#include <asm/vm86.h>			/* struct vm86			*/
  25#include <asm/mmu_context.h>		/* vma_pkey()			*/
  26
  27#define CREATE_TRACE_POINTS
  28#include <asm/trace/exceptions.h>
  29
  30/*
  31 * Page fault error code bits:
  32 *
  33 *   bit 0 ==	 0: no page found	1: protection fault
  34 *   bit 1 ==	 0: read access		1: write access
  35 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
  36 *   bit 3 ==				1: use of reserved bit detected
  37 *   bit 4 ==				1: fault was an instruction fetch
  38 *   bit 5 ==				1: protection keys block access
  39 */
  40enum x86_pf_error_code {
  41
  42	PF_PROT		=		1 << 0,
  43	PF_WRITE	=		1 << 1,
  44	PF_USER		=		1 << 2,
  45	PF_RSVD		=		1 << 3,
  46	PF_INSTR	=		1 << 4,
  47	PF_PK		=		1 << 5,
  48};
  49
  50/*
  51 * Returns 0 if mmiotrace is disabled, or if the fault is not
  52 * handled by mmiotrace:
  53 */
  54static nokprobe_inline int
  55kmmio_fault(struct pt_regs *regs, unsigned long addr)
  56{
  57	if (unlikely(is_kmmio_active()))
  58		if (kmmio_handler(regs, addr) == 1)
  59			return -1;
  60	return 0;
  61}
  62
  63static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
  64{
  65	int ret = 0;
  66
  67	/* kprobe_running() needs smp_processor_id() */
  68	if (kprobes_built_in() && !user_mode(regs)) {
  69		preempt_disable();
  70		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  71			ret = 1;
  72		preempt_enable();
  73	}
  74
  75	return ret;
  76}
  77
  78/*
  79 * Prefetch quirks:
  80 *
  81 * 32-bit mode:
  82 *
  83 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  84 *   Check that here and ignore it.
  85 *
  86 * 64-bit mode:
  87 *
  88 *   Sometimes the CPU reports invalid exceptions on prefetch.
  89 *   Check that here and ignore it.
  90 *
  91 * Opcode checker based on code by Richard Brunner.
  92 */
  93static inline int
  94check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  95		      unsigned char opcode, int *prefetch)
  96{
  97	unsigned char instr_hi = opcode & 0xf0;
  98	unsigned char instr_lo = opcode & 0x0f;
  99
 100	switch (instr_hi) {
 101	case 0x20:
 102	case 0x30:
 103		/*
 104		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
 105		 * In X86_64 long mode, the CPU will signal invalid
 106		 * opcode if some of these prefixes are present so
 107		 * X86_64 will never get here anyway
 108		 */
 109		return ((instr_lo & 7) == 0x6);
 110#ifdef CONFIG_X86_64
 111	case 0x40:
 112		/*
 113		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 114		 * Need to figure out under what instruction mode the
 115		 * instruction was issued. Could check the LDT for lm,
 116		 * but for now it's good enough to assume that long
 117		 * mode only uses well known segments or kernel.
 118		 */
 119		return (!user_mode(regs) || user_64bit_mode(regs));
 120#endif
 121	case 0x60:
 122		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 123		return (instr_lo & 0xC) == 0x4;
 124	case 0xF0:
 125		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 126		return !instr_lo || (instr_lo>>1) == 1;
 127	case 0x00:
 128		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 129		if (probe_kernel_address(instr, opcode))
 130			return 0;
 131
 132		*prefetch = (instr_lo == 0xF) &&
 133			(opcode == 0x0D || opcode == 0x18);
 134		return 0;
 135	default:
 136		return 0;
 137	}
 138}
 139
 140static int
 141is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 142{
 143	unsigned char *max_instr;
 144	unsigned char *instr;
 145	int prefetch = 0;
 146
 147	/*
 148	 * If it was a exec (instruction fetch) fault on NX page, then
 149	 * do not ignore the fault:
 150	 */
 151	if (error_code & PF_INSTR)
 152		return 0;
 153
 154	instr = (void *)convert_ip_to_linear(current, regs);
 155	max_instr = instr + 15;
 156
 157	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 158		return 0;
 159
 160	while (instr < max_instr) {
 161		unsigned char opcode;
 162
 163		if (probe_kernel_address(instr, opcode))
 164			break;
 165
 166		instr++;
 167
 168		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 169			break;
 170	}
 171	return prefetch;
 172}
 173
 174/*
 175 * A protection key fault means that the PKRU value did not allow
 176 * access to some PTE.  Userspace can figure out what PKRU was
 177 * from the XSAVE state, and this function fills out a field in
 178 * siginfo so userspace can discover which protection key was set
 179 * on the PTE.
 180 *
 181 * If we get here, we know that the hardware signaled a PF_PK
 182 * fault and that there was a VMA once we got in the fault
 183 * handler.  It does *not* guarantee that the VMA we find here
 184 * was the one that we faulted on.
 185 *
 186 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 187 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 188 * 3. T1   : faults...
 189 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 190 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 191 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 192 *	     faulted on a pte with its pkey=4.
 193 */
 194static void fill_sig_info_pkey(int si_code, siginfo_t *info,
 195		struct vm_area_struct *vma)
 196{
 197	/* This is effectively an #ifdef */
 198	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 199		return;
 200
 201	/* Fault not from Protection Keys: nothing to do */
 202	if (si_code != SEGV_PKUERR)
 203		return;
 204	/*
 205	 * force_sig_info_fault() is called from a number of
 206	 * contexts, some of which have a VMA and some of which
 207	 * do not.  The PF_PK handing happens after we have a
 208	 * valid VMA, so we should never reach this without a
 209	 * valid VMA.
 210	 */
 211	if (!vma) {
 212		WARN_ONCE(1, "PKU fault with no VMA passed in");
 213		info->si_pkey = 0;
 214		return;
 215	}
 216	/*
 217	 * si_pkey should be thought of as a strong hint, but not
 218	 * absolutely guranteed to be 100% accurate because of
 219	 * the race explained above.
 220	 */
 221	info->si_pkey = vma_pkey(vma);
 222}
 223
 224static void
 225force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 226		     struct task_struct *tsk, struct vm_area_struct *vma,
 227		     int fault)
 228{
 229	unsigned lsb = 0;
 230	siginfo_t info;
 231
 232	info.si_signo	= si_signo;
 233	info.si_errno	= 0;
 234	info.si_code	= si_code;
 235	info.si_addr	= (void __user *)address;
 236	if (fault & VM_FAULT_HWPOISON_LARGE)
 237		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 238	if (fault & VM_FAULT_HWPOISON)
 239		lsb = PAGE_SHIFT;
 240	info.si_addr_lsb = lsb;
 241
 242	fill_sig_info_pkey(si_code, &info, vma);
 243
 244	force_sig_info(si_signo, &info, tsk);
 245}
 246
 247DEFINE_SPINLOCK(pgd_lock);
 248LIST_HEAD(pgd_list);
 249
 250#ifdef CONFIG_X86_32
 251static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 252{
 253	unsigned index = pgd_index(address);
 254	pgd_t *pgd_k;
 
 255	pud_t *pud, *pud_k;
 256	pmd_t *pmd, *pmd_k;
 257
 258	pgd += index;
 259	pgd_k = init_mm.pgd + index;
 260
 261	if (!pgd_present(*pgd_k))
 262		return NULL;
 263
 264	/*
 265	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 266	 * and redundant with the set_pmd() on non-PAE. As would
 267	 * set_pud.
 268	 */
 269	pud = pud_offset(pgd, address);
 270	pud_k = pud_offset(pgd_k, address);
 
 
 
 
 
 271	if (!pud_present(*pud_k))
 272		return NULL;
 273
 274	pmd = pmd_offset(pud, address);
 275	pmd_k = pmd_offset(pud_k, address);
 276	if (!pmd_present(*pmd_k))
 277		return NULL;
 278
 279	if (!pmd_present(*pmd))
 280		set_pmd(pmd, *pmd_k);
 281	else
 282		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 283
 284	return pmd_k;
 285}
 286
 287void vmalloc_sync_all(void)
 288{
 289	unsigned long address;
 290
 291	if (SHARED_KERNEL_PMD)
 292		return;
 293
 294	for (address = VMALLOC_START & PMD_MASK;
 295	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
 296	     address += PMD_SIZE) {
 297		struct page *page;
 298
 299		spin_lock(&pgd_lock);
 300		list_for_each_entry(page, &pgd_list, lru) {
 301			spinlock_t *pgt_lock;
 302			pmd_t *ret;
 303
 304			/* the pgt_lock only for Xen */
 305			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 306
 307			spin_lock(pgt_lock);
 308			ret = vmalloc_sync_one(page_address(page), address);
 309			spin_unlock(pgt_lock);
 310
 311			if (!ret)
 312				break;
 313		}
 314		spin_unlock(&pgd_lock);
 315	}
 316}
 317
 318/*
 319 * 32-bit:
 320 *
 321 *   Handle a fault on the vmalloc or module mapping area
 322 */
 323static noinline int vmalloc_fault(unsigned long address)
 324{
 325	unsigned long pgd_paddr;
 326	pmd_t *pmd_k;
 327	pte_t *pte_k;
 328
 329	/* Make sure we are in vmalloc area: */
 330	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 331		return -1;
 332
 333	WARN_ON_ONCE(in_nmi());
 334
 335	/*
 336	 * Synchronize this task's top level page-table
 337	 * with the 'reference' page table.
 338	 *
 339	 * Do _not_ use "current" here. We might be inside
 340	 * an interrupt in the middle of a task switch..
 341	 */
 342	pgd_paddr = read_cr3();
 343	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 344	if (!pmd_k)
 345		return -1;
 346
 347	if (pmd_huge(*pmd_k))
 348		return 0;
 349
 350	pte_k = pte_offset_kernel(pmd_k, address);
 351	if (!pte_present(*pte_k))
 352		return -1;
 353
 354	return 0;
 355}
 356NOKPROBE_SYMBOL(vmalloc_fault);
 357
 358/*
 359 * Did it hit the DOS screen memory VA from vm86 mode?
 360 */
 361static inline void
 362check_v8086_mode(struct pt_regs *regs, unsigned long address,
 363		 struct task_struct *tsk)
 364{
 365#ifdef CONFIG_VM86
 366	unsigned long bit;
 367
 368	if (!v8086_mode(regs) || !tsk->thread.vm86)
 369		return;
 370
 371	bit = (address - 0xA0000) >> PAGE_SHIFT;
 372	if (bit < 32)
 373		tsk->thread.vm86->screen_bitmap |= 1 << bit;
 374#endif
 375}
 376
 377static bool low_pfn(unsigned long pfn)
 378{
 379	return pfn < max_low_pfn;
 380}
 381
 382static void dump_pagetable(unsigned long address)
 383{
 384	pgd_t *base = __va(read_cr3());
 385	pgd_t *pgd = &base[pgd_index(address)];
 
 
 386	pmd_t *pmd;
 387	pte_t *pte;
 388
 389#ifdef CONFIG_X86_PAE
 390	printk("*pdpt = %016Lx ", pgd_val(*pgd));
 391	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 392		goto out;
 
 
 
 393#endif
 394	pmd = pmd_offset(pud_offset(pgd, address), address);
 395	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 
 
 
 396
 397	/*
 398	 * We must not directly access the pte in the highpte
 399	 * case if the page table is located in highmem.
 400	 * And let's rather not kmap-atomic the pte, just in case
 401	 * it's allocated already:
 402	 */
 403	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 404		goto out;
 405
 406	pte = pte_offset_kernel(pmd, address);
 407	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 408out:
 409	printk("\n");
 410}
 411
 412#else /* CONFIG_X86_64: */
 413
 414void vmalloc_sync_all(void)
 415{
 416	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 417}
 418
 419/*
 420 * 64-bit:
 421 *
 422 *   Handle a fault on the vmalloc area
 423 */
 424static noinline int vmalloc_fault(unsigned long address)
 425{
 426	pgd_t *pgd, *pgd_ref;
 427	pud_t *pud, *pud_ref;
 428	pmd_t *pmd, *pmd_ref;
 429	pte_t *pte, *pte_ref;
 
 430
 431	/* Make sure we are in vmalloc area: */
 432	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 433		return -1;
 434
 435	WARN_ON_ONCE(in_nmi());
 436
 437	/*
 438	 * Copy kernel mappings over when needed. This can also
 439	 * happen within a race in page table update. In the later
 440	 * case just flush:
 441	 */
 442	pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
 443	pgd_ref = pgd_offset_k(address);
 444	if (pgd_none(*pgd_ref))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445		return -1;
 446
 447	if (pgd_none(*pgd)) {
 448		set_pgd(pgd, *pgd_ref);
 449		arch_flush_lazy_mmu_mode();
 450	} else {
 451		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 452	}
 453
 454	/*
 455	 * Below here mismatches are bugs because these lower tables
 456	 * are shared:
 457	 */
 458
 459	pud = pud_offset(pgd, address);
 460	pud_ref = pud_offset(pgd_ref, address);
 461	if (pud_none(*pud_ref))
 462		return -1;
 463
 464	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
 465		BUG();
 466
 467	if (pud_huge(*pud))
 468		return 0;
 469
 470	pmd = pmd_offset(pud, address);
 471	pmd_ref = pmd_offset(pud_ref, address);
 472	if (pmd_none(*pmd_ref))
 473		return -1;
 474
 475	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
 476		BUG();
 477
 478	if (pmd_huge(*pmd))
 479		return 0;
 480
 481	pte_ref = pte_offset_kernel(pmd_ref, address);
 482	if (!pte_present(*pte_ref))
 483		return -1;
 484
 485	pte = pte_offset_kernel(pmd, address);
 486
 487	/*
 488	 * Don't use pte_page here, because the mappings can point
 489	 * outside mem_map, and the NUMA hash lookup cannot handle
 490	 * that:
 491	 */
 492	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 493		BUG();
 494
 495	return 0;
 496}
 497NOKPROBE_SYMBOL(vmalloc_fault);
 498
 499#ifdef CONFIG_CPU_SUP_AMD
 500static const char errata93_warning[] =
 501KERN_ERR 
 502"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 503"******* Working around it, but it may cause SEGVs or burn power.\n"
 504"******* Please consider a BIOS update.\n"
 505"******* Disabling USB legacy in the BIOS may also help.\n";
 506#endif
 507
 508/*
 509 * No vm86 mode in 64-bit mode:
 510 */
 511static inline void
 512check_v8086_mode(struct pt_regs *regs, unsigned long address,
 513		 struct task_struct *tsk)
 514{
 515}
 516
 517static int bad_address(void *p)
 518{
 519	unsigned long dummy;
 520
 521	return probe_kernel_address((unsigned long *)p, dummy);
 522}
 523
 524static void dump_pagetable(unsigned long address)
 525{
 526	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 527	pgd_t *pgd = base + pgd_index(address);
 
 528	pud_t *pud;
 529	pmd_t *pmd;
 530	pte_t *pte;
 531
 532	if (bad_address(pgd))
 533		goto bad;
 534
 535	printk("PGD %lx ", pgd_val(*pgd));
 536
 537	if (!pgd_present(*pgd))
 538		goto out;
 539
 540	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 
 541	if (bad_address(pud))
 542		goto bad;
 543
 544	printk("PUD %lx ", pud_val(*pud));
 545	if (!pud_present(*pud) || pud_large(*pud))
 546		goto out;
 547
 548	pmd = pmd_offset(pud, address);
 549	if (bad_address(pmd))
 550		goto bad;
 551
 552	printk("PMD %lx ", pmd_val(*pmd));
 553	if (!pmd_present(*pmd) || pmd_large(*pmd))
 554		goto out;
 555
 556	pte = pte_offset_kernel(pmd, address);
 557	if (bad_address(pte))
 558		goto bad;
 559
 560	printk("PTE %lx", pte_val(*pte));
 561out:
 562	printk("\n");
 563	return;
 564bad:
 565	printk("BAD\n");
 566}
 567
 568#endif /* CONFIG_X86_64 */
 569
 570/*
 571 * Workaround for K8 erratum #93 & buggy BIOS.
 572 *
 573 * BIOS SMM functions are required to use a specific workaround
 574 * to avoid corruption of the 64bit RIP register on C stepping K8.
 575 *
 576 * A lot of BIOS that didn't get tested properly miss this.
 577 *
 578 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 579 * Try to work around it here.
 580 *
 581 * Note we only handle faults in kernel here.
 582 * Does nothing on 32-bit.
 583 */
 584static int is_errata93(struct pt_regs *regs, unsigned long address)
 585{
 586#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 587	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 588	    || boot_cpu_data.x86 != 0xf)
 589		return 0;
 590
 591	if (address != regs->ip)
 592		return 0;
 593
 594	if ((address >> 32) != 0)
 595		return 0;
 596
 597	address |= 0xffffffffUL << 32;
 598	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 599	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 600		printk_once(errata93_warning);
 601		regs->ip = address;
 602		return 1;
 603	}
 604#endif
 605	return 0;
 606}
 607
 608/*
 609 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 610 * to illegal addresses >4GB.
 611 *
 612 * We catch this in the page fault handler because these addresses
 613 * are not reachable. Just detect this case and return.  Any code
 614 * segment in LDT is compatibility mode.
 615 */
 616static int is_errata100(struct pt_regs *regs, unsigned long address)
 617{
 618#ifdef CONFIG_X86_64
 619	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 620		return 1;
 621#endif
 622	return 0;
 623}
 624
 625static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 626{
 627#ifdef CONFIG_X86_F00F_BUG
 628	unsigned long nr;
 629
 630	/*
 631	 * Pentium F0 0F C7 C8 bug workaround:
 632	 */
 633	if (boot_cpu_has_bug(X86_BUG_F00F)) {
 634		nr = (address - idt_descr.address) >> 3;
 635
 636		if (nr == 6) {
 637			do_invalid_op(regs, 0);
 638			return 1;
 639		}
 640	}
 641#endif
 642	return 0;
 643}
 644
 645static const char nx_warning[] = KERN_CRIT
 646"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 647static const char smep_warning[] = KERN_CRIT
 648"unable to execute userspace code (SMEP?) (uid: %d)\n";
 649
 650static void
 651show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 652		unsigned long address)
 653{
 654	if (!oops_may_print())
 655		return;
 656
 657	if (error_code & PF_INSTR) {
 658		unsigned int level;
 659		pgd_t *pgd;
 660		pte_t *pte;
 661
 662		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 663		pgd += pgd_index(address);
 664
 665		pte = lookup_address_in_pgd(pgd, address, &level);
 666
 667		if (pte && pte_present(*pte) && !pte_exec(*pte))
 668			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 669		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 670				(pgd_flags(*pgd) & _PAGE_USER) &&
 671				(__read_cr4() & X86_CR4_SMEP))
 672			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
 673	}
 674
 675	printk(KERN_ALERT "BUG: unable to handle kernel ");
 676	if (address < PAGE_SIZE)
 677		printk(KERN_CONT "NULL pointer dereference");
 678	else
 679		printk(KERN_CONT "paging request");
 680
 681	printk(KERN_CONT " at %p\n", (void *) address);
 682	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
 683
 684	dump_pagetable(address);
 685}
 686
 687static noinline void
 688pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 689	    unsigned long address)
 690{
 691	struct task_struct *tsk;
 692	unsigned long flags;
 693	int sig;
 694
 695	flags = oops_begin();
 696	tsk = current;
 697	sig = SIGKILL;
 698
 699	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 700	       tsk->comm, address);
 701	dump_pagetable(address);
 702
 703	tsk->thread.cr2		= address;
 704	tsk->thread.trap_nr	= X86_TRAP_PF;
 705	tsk->thread.error_code	= error_code;
 706
 707	if (__die("Bad pagetable", regs, error_code))
 708		sig = 0;
 709
 710	oops_end(flags, regs, sig);
 711}
 712
 713static noinline void
 714no_context(struct pt_regs *regs, unsigned long error_code,
 715	   unsigned long address, int signal, int si_code)
 716{
 717	struct task_struct *tsk = current;
 718	unsigned long flags;
 719	int sig;
 720	/* No context means no VMA to pass down */
 721	struct vm_area_struct *vma = NULL;
 722
 723	/* Are we prepared to handle this kernel fault? */
 724	if (fixup_exception(regs, X86_TRAP_PF)) {
 725		/*
 726		 * Any interrupt that takes a fault gets the fixup. This makes
 727		 * the below recursive fault logic only apply to a faults from
 728		 * task context.
 729		 */
 730		if (in_interrupt())
 731			return;
 732
 733		/*
 734		 * Per the above we're !in_interrupt(), aka. task context.
 735		 *
 736		 * In this case we need to make sure we're not recursively
 737		 * faulting through the emulate_vsyscall() logic.
 738		 */
 739		if (current->thread.sig_on_uaccess_err && signal) {
 740			tsk->thread.trap_nr = X86_TRAP_PF;
 741			tsk->thread.error_code = error_code | PF_USER;
 742			tsk->thread.cr2 = address;
 743
 744			/* XXX: hwpoison faults will set the wrong code. */
 745			force_sig_info_fault(signal, si_code, address,
 746					     tsk, vma, 0);
 747		}
 748
 749		/*
 750		 * Barring that, we can do the fixup and be happy.
 751		 */
 752		return;
 753	}
 754
 755#ifdef CONFIG_VMAP_STACK
 756	/*
 757	 * Stack overflow?  During boot, we can fault near the initial
 758	 * stack in the direct map, but that's not an overflow -- check
 759	 * that we're in vmalloc space to avoid this.
 760	 */
 761	if (is_vmalloc_addr((void *)address) &&
 762	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 763	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 764		register void *__sp asm("rsp");
 765		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
 766		/*
 767		 * We're likely to be running with very little stack space
 768		 * left.  It's plausible that we'd hit this condition but
 769		 * double-fault even before we get this far, in which case
 770		 * we're fine: the double-fault handler will deal with it.
 771		 *
 772		 * We don't want to make it all the way into the oops code
 773		 * and then double-fault, though, because we're likely to
 774		 * break the console driver and lose most of the stack dump.
 775		 */
 776		asm volatile ("movq %[stack], %%rsp\n\t"
 777			      "call handle_stack_overflow\n\t"
 778			      "1: jmp 1b"
 779			      : "+r" (__sp)
 780			      : "D" ("kernel stack overflow (page fault)"),
 781				"S" (regs), "d" (address),
 782				[stack] "rm" (stack));
 783		unreachable();
 784	}
 785#endif
 786
 787	/*
 788	 * 32-bit:
 789	 *
 790	 *   Valid to do another page fault here, because if this fault
 791	 *   had been triggered by is_prefetch fixup_exception would have
 792	 *   handled it.
 793	 *
 794	 * 64-bit:
 795	 *
 796	 *   Hall of shame of CPU/BIOS bugs.
 797	 */
 798	if (is_prefetch(regs, error_code, address))
 799		return;
 800
 801	if (is_errata93(regs, address))
 802		return;
 803
 804	/*
 805	 * Oops. The kernel tried to access some bad page. We'll have to
 806	 * terminate things with extreme prejudice:
 807	 */
 808	flags = oops_begin();
 809
 810	show_fault_oops(regs, error_code, address);
 811
 812	if (task_stack_end_corrupted(tsk))
 813		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 814
 815	tsk->thread.cr2		= address;
 816	tsk->thread.trap_nr	= X86_TRAP_PF;
 817	tsk->thread.error_code	= error_code;
 818
 819	sig = SIGKILL;
 820	if (__die("Oops", regs, error_code))
 821		sig = 0;
 822
 823	/* Executive summary in case the body of the oops scrolled away */
 824	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 825
 826	oops_end(flags, regs, sig);
 827}
 828
 829/*
 830 * Print out info about fatal segfaults, if the show_unhandled_signals
 831 * sysctl is set:
 832 */
 833static inline void
 834show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 835		unsigned long address, struct task_struct *tsk)
 836{
 837	if (!unhandled_signal(tsk, SIGSEGV))
 838		return;
 839
 840	if (!printk_ratelimit())
 841		return;
 842
 843	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 844		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 845		tsk->comm, task_pid_nr(tsk), address,
 846		(void *)regs->ip, (void *)regs->sp, error_code);
 847
 848	print_vma_addr(KERN_CONT " in ", regs->ip);
 849
 850	printk(KERN_CONT "\n");
 851}
 852
 853static void
 854__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 855		       unsigned long address, struct vm_area_struct *vma,
 856		       int si_code)
 857{
 858	struct task_struct *tsk = current;
 859
 860	/* User mode accesses just cause a SIGSEGV */
 861	if (error_code & PF_USER) {
 862		/*
 863		 * It's possible to have interrupts off here:
 864		 */
 865		local_irq_enable();
 866
 867		/*
 868		 * Valid to do another page fault here because this one came
 869		 * from user space:
 870		 */
 871		if (is_prefetch(regs, error_code, address))
 872			return;
 873
 874		if (is_errata100(regs, address))
 875			return;
 876
 877#ifdef CONFIG_X86_64
 878		/*
 879		 * Instruction fetch faults in the vsyscall page might need
 880		 * emulation.
 881		 */
 882		if (unlikely((error_code & PF_INSTR) &&
 883			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
 884			if (emulate_vsyscall(regs, address))
 885				return;
 886		}
 887#endif
 888
 889		/*
 890		 * To avoid leaking information about the kernel page table
 891		 * layout, pretend that user-mode accesses to kernel addresses
 892		 * are always protection faults.
 893		 */
 894		if (address >= TASK_SIZE_MAX)
 895			error_code |= PF_PROT;
 896
 897		if (likely(show_unhandled_signals))
 898			show_signal_msg(regs, error_code, address, tsk);
 899
 900		tsk->thread.cr2		= address;
 901		tsk->thread.error_code	= error_code;
 902		tsk->thread.trap_nr	= X86_TRAP_PF;
 903
 904		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
 905
 906		return;
 907	}
 908
 909	if (is_f00f_bug(regs, address))
 910		return;
 911
 912	no_context(regs, error_code, address, SIGSEGV, si_code);
 913}
 914
 915static noinline void
 916bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 917		     unsigned long address, struct vm_area_struct *vma)
 918{
 919	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
 920}
 921
 922static void
 923__bad_area(struct pt_regs *regs, unsigned long error_code,
 924	   unsigned long address,  struct vm_area_struct *vma, int si_code)
 925{
 926	struct mm_struct *mm = current->mm;
 
 
 
 
 927
 928	/*
 929	 * Something tried to access memory that isn't in our memory map..
 930	 * Fix it, but check if it's kernel or user first..
 931	 */
 932	up_read(&mm->mmap_sem);
 933
 934	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
 
 935}
 936
 937static noinline void
 938bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 939{
 940	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
 941}
 942
 943static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 944		struct vm_area_struct *vma)
 945{
 946	/* This code is always called on the current mm */
 947	bool foreign = false;
 948
 949	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 950		return false;
 951	if (error_code & PF_PK)
 952		return true;
 953	/* this checks permission keys on the VMA: */
 954	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
 955				(error_code & PF_INSTR), foreign))
 956		return true;
 957	return false;
 958}
 959
 960static noinline void
 961bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 962		      unsigned long address, struct vm_area_struct *vma)
 963{
 964	/*
 965	 * This OSPKE check is not strictly necessary at runtime.
 966	 * But, doing it this way allows compiler optimizations
 967	 * if pkeys are compiled out.
 968	 */
 969	if (bad_area_access_from_pkeys(error_code, vma))
 970		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
 971	else
 972		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
 973}
 974
 975static void
 976do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 977	  struct vm_area_struct *vma, unsigned int fault)
 978{
 979	struct task_struct *tsk = current;
 980	int code = BUS_ADRERR;
 981
 982	/* Kernel mode? Handle exceptions or die: */
 983	if (!(error_code & PF_USER)) {
 984		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 985		return;
 986	}
 987
 988	/* User-space => ok to do another page fault: */
 989	if (is_prefetch(regs, error_code, address))
 990		return;
 991
 992	tsk->thread.cr2		= address;
 993	tsk->thread.error_code	= error_code;
 994	tsk->thread.trap_nr	= X86_TRAP_PF;
 995
 996#ifdef CONFIG_MEMORY_FAILURE
 997	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 998		printk(KERN_ERR
 999	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1000			tsk->comm, tsk->pid, address);
1001		code = BUS_MCEERR_AR;
1002	}
1003#endif
1004	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1005}
1006
1007static noinline void
1008mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1009	       unsigned long address, struct vm_area_struct *vma,
1010	       unsigned int fault)
1011{
1012	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1013		no_context(regs, error_code, address, 0, 0);
1014		return;
1015	}
1016
1017	if (fault & VM_FAULT_OOM) {
1018		/* Kernel mode? Handle exceptions or die: */
1019		if (!(error_code & PF_USER)) {
1020			no_context(regs, error_code, address,
1021				   SIGSEGV, SEGV_MAPERR);
1022			return;
1023		}
1024
1025		/*
1026		 * We ran out of memory, call the OOM killer, and return the
1027		 * userspace (which will retry the fault, or kill us if we got
1028		 * oom-killed):
1029		 */
1030		pagefault_out_of_memory();
1031	} else {
1032		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1033			     VM_FAULT_HWPOISON_LARGE))
1034			do_sigbus(regs, error_code, address, vma, fault);
1035		else if (fault & VM_FAULT_SIGSEGV)
1036			bad_area_nosemaphore(regs, error_code, address, vma);
1037		else
1038			BUG();
1039	}
1040}
1041
1042static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1043{
1044	if ((error_code & PF_WRITE) && !pte_write(*pte))
1045		return 0;
1046
1047	if ((error_code & PF_INSTR) && !pte_exec(*pte))
1048		return 0;
1049	/*
1050	 * Note: We do not do lazy flushing on protection key
1051	 * changes, so no spurious fault will ever set PF_PK.
1052	 */
1053	if ((error_code & PF_PK))
1054		return 1;
1055
1056	return 1;
1057}
1058
1059/*
1060 * Handle a spurious fault caused by a stale TLB entry.
1061 *
1062 * This allows us to lazily refresh the TLB when increasing the
1063 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1064 * eagerly is very expensive since that implies doing a full
1065 * cross-processor TLB flush, even if no stale TLB entries exist
1066 * on other processors.
1067 *
1068 * Spurious faults may only occur if the TLB contains an entry with
1069 * fewer permission than the page table entry.  Non-present (P = 0)
1070 * and reserved bit (R = 1) faults are never spurious.
1071 *
1072 * There are no security implications to leaving a stale TLB when
1073 * increasing the permissions on a page.
1074 *
1075 * Returns non-zero if a spurious fault was handled, zero otherwise.
1076 *
1077 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1078 * (Optional Invalidation).
1079 */
1080static noinline int
1081spurious_fault(unsigned long error_code, unsigned long address)
1082{
1083	pgd_t *pgd;
 
1084	pud_t *pud;
1085	pmd_t *pmd;
1086	pte_t *pte;
1087	int ret;
1088
1089	/*
1090	 * Only writes to RO or instruction fetches from NX may cause
1091	 * spurious faults.
1092	 *
1093	 * These could be from user or supervisor accesses but the TLB
1094	 * is only lazily flushed after a kernel mapping protection
1095	 * change, so user accesses are not expected to cause spurious
1096	 * faults.
1097	 */
1098	if (error_code != (PF_WRITE | PF_PROT)
1099	    && error_code != (PF_INSTR | PF_PROT))
1100		return 0;
1101
1102	pgd = init_mm.pgd + pgd_index(address);
1103	if (!pgd_present(*pgd))
1104		return 0;
1105
1106	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
1107	if (!pud_present(*pud))
1108		return 0;
1109
1110	if (pud_large(*pud))
1111		return spurious_fault_check(error_code, (pte_t *) pud);
1112
1113	pmd = pmd_offset(pud, address);
1114	if (!pmd_present(*pmd))
1115		return 0;
1116
1117	if (pmd_large(*pmd))
1118		return spurious_fault_check(error_code, (pte_t *) pmd);
1119
1120	pte = pte_offset_kernel(pmd, address);
1121	if (!pte_present(*pte))
1122		return 0;
1123
1124	ret = spurious_fault_check(error_code, pte);
1125	if (!ret)
1126		return 0;
1127
1128	/*
1129	 * Make sure we have permissions in PMD.
1130	 * If not, then there's a bug in the page tables:
1131	 */
1132	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1133	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1134
1135	return ret;
1136}
1137NOKPROBE_SYMBOL(spurious_fault);
1138
1139int show_unhandled_signals = 1;
1140
1141static inline int
1142access_error(unsigned long error_code, struct vm_area_struct *vma)
1143{
1144	/* This is only called for the current mm, so: */
1145	bool foreign = false;
1146
1147	/*
1148	 * Read or write was blocked by protection keys.  This is
1149	 * always an unconditional error and can never result in
1150	 * a follow-up action to resolve the fault, like a COW.
1151	 */
1152	if (error_code & PF_PK)
1153		return 1;
1154
1155	/*
1156	 * Make sure to check the VMA so that we do not perform
1157	 * faults just to hit a PF_PK as soon as we fill in a
1158	 * page.
1159	 */
1160	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1161				(error_code & PF_INSTR), foreign))
1162		return 1;
1163
1164	if (error_code & PF_WRITE) {
1165		/* write, present and write, not present: */
1166		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1167			return 1;
1168		return 0;
1169	}
1170
1171	/* read, present: */
1172	if (unlikely(error_code & PF_PROT))
1173		return 1;
1174
1175	/* read, not present: */
1176	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1177		return 1;
1178
1179	return 0;
1180}
1181
1182static int fault_in_kernel_space(unsigned long address)
1183{
1184	return address >= TASK_SIZE_MAX;
1185}
1186
1187static inline bool smap_violation(int error_code, struct pt_regs *regs)
1188{
1189	if (!IS_ENABLED(CONFIG_X86_SMAP))
1190		return false;
1191
1192	if (!static_cpu_has(X86_FEATURE_SMAP))
1193		return false;
1194
1195	if (error_code & PF_USER)
1196		return false;
1197
1198	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1199		return false;
1200
1201	return true;
1202}
1203
1204/*
1205 * This routine handles page faults.  It determines the address,
1206 * and the problem, and then passes it off to one of the appropriate
1207 * routines.
1208 *
1209 * This function must have noinline because both callers
1210 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1211 * guarantees there's a function trace entry.
1212 */
1213static noinline void
1214__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1215		unsigned long address)
1216{
1217	struct vm_area_struct *vma;
1218	struct task_struct *tsk;
1219	struct mm_struct *mm;
1220	int fault, major = 0;
1221	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 
1222
1223	tsk = current;
1224	mm = tsk->mm;
1225
1226	/*
1227	 * Detect and handle instructions that would cause a page fault for
1228	 * both a tracked kernel page and a userspace page.
1229	 */
1230	if (kmemcheck_active(regs))
1231		kmemcheck_hide(regs);
1232	prefetchw(&mm->mmap_sem);
1233
1234	if (unlikely(kmmio_fault(regs, address)))
1235		return;
1236
1237	/*
1238	 * We fault-in kernel-space virtual memory on-demand. The
1239	 * 'reference' page table is init_mm.pgd.
1240	 *
1241	 * NOTE! We MUST NOT take any locks for this case. We may
1242	 * be in an interrupt or a critical region, and should
1243	 * only copy the information from the master page table,
1244	 * nothing more.
1245	 *
1246	 * This verifies that the fault happens in kernel space
1247	 * (error_code & 4) == 0, and that the fault was not a
1248	 * protection error (error_code & 9) == 0.
1249	 */
1250	if (unlikely(fault_in_kernel_space(address))) {
1251		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1252			if (vmalloc_fault(address) >= 0)
1253				return;
1254
1255			if (kmemcheck_fault(regs, address, error_code))
1256				return;
1257		}
1258
1259		/* Can handle a stale RO->RW TLB: */
1260		if (spurious_fault(error_code, address))
1261			return;
1262
1263		/* kprobes don't want to hook the spurious faults: */
1264		if (kprobes_fault(regs))
1265			return;
1266		/*
1267		 * Don't take the mm semaphore here. If we fixup a prefetch
1268		 * fault we could otherwise deadlock:
1269		 */
1270		bad_area_nosemaphore(regs, error_code, address, NULL);
1271
1272		return;
1273	}
1274
1275	/* kprobes don't want to hook the spurious faults: */
1276	if (unlikely(kprobes_fault(regs)))
1277		return;
1278
1279	if (unlikely(error_code & PF_RSVD))
1280		pgtable_bad(regs, error_code, address);
1281
1282	if (unlikely(smap_violation(error_code, regs))) {
1283		bad_area_nosemaphore(regs, error_code, address, NULL);
1284		return;
1285	}
1286
1287	/*
1288	 * If we're in an interrupt, have no user context or are running
1289	 * in a region with pagefaults disabled then we must not take the fault
1290	 */
1291	if (unlikely(faulthandler_disabled() || !mm)) {
1292		bad_area_nosemaphore(regs, error_code, address, NULL);
1293		return;
1294	}
1295
1296	/*
1297	 * It's safe to allow irq's after cr2 has been saved and the
1298	 * vmalloc fault has been handled.
1299	 *
1300	 * User-mode registers count as a user access even for any
1301	 * potential system fault or CPU buglet:
1302	 */
1303	if (user_mode(regs)) {
1304		local_irq_enable();
1305		error_code |= PF_USER;
1306		flags |= FAULT_FLAG_USER;
1307	} else {
1308		if (regs->flags & X86_EFLAGS_IF)
1309			local_irq_enable();
1310	}
1311
1312	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1313
1314	if (error_code & PF_WRITE)
1315		flags |= FAULT_FLAG_WRITE;
1316	if (error_code & PF_INSTR)
1317		flags |= FAULT_FLAG_INSTRUCTION;
1318
1319	/*
1320	 * When running in the kernel we expect faults to occur only to
1321	 * addresses in user space.  All other faults represent errors in
1322	 * the kernel and should generate an OOPS.  Unfortunately, in the
1323	 * case of an erroneous fault occurring in a code path which already
1324	 * holds mmap_sem we will deadlock attempting to validate the fault
1325	 * against the address space.  Luckily the kernel only validly
1326	 * references user space from well defined areas of code, which are
1327	 * listed in the exceptions table.
1328	 *
1329	 * As the vast majority of faults will be valid we will only perform
1330	 * the source reference check when there is a possibility of a
1331	 * deadlock. Attempt to lock the address space, if we cannot we then
1332	 * validate the source. If this is invalid we can skip the address
1333	 * space check, thus avoiding the deadlock:
1334	 */
1335	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1336		if ((error_code & PF_USER) == 0 &&
1337		    !search_exception_tables(regs->ip)) {
1338			bad_area_nosemaphore(regs, error_code, address, NULL);
1339			return;
1340		}
1341retry:
1342		down_read(&mm->mmap_sem);
1343	} else {
1344		/*
1345		 * The above down_read_trylock() might have succeeded in
1346		 * which case we'll have missed the might_sleep() from
1347		 * down_read():
1348		 */
1349		might_sleep();
1350	}
1351
1352	vma = find_vma(mm, address);
1353	if (unlikely(!vma)) {
1354		bad_area(regs, error_code, address);
1355		return;
1356	}
1357	if (likely(vma->vm_start <= address))
1358		goto good_area;
1359	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1360		bad_area(regs, error_code, address);
1361		return;
1362	}
1363	if (error_code & PF_USER) {
1364		/*
1365		 * Accessing the stack below %sp is always a bug.
1366		 * The large cushion allows instructions like enter
1367		 * and pusha to work. ("enter $65535, $31" pushes
1368		 * 32 pointers and then decrements %sp by 65535.)
1369		 */
1370		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1371			bad_area(regs, error_code, address);
1372			return;
1373		}
1374	}
1375	if (unlikely(expand_stack(vma, address))) {
1376		bad_area(regs, error_code, address);
1377		return;
1378	}
1379
1380	/*
1381	 * Ok, we have a good vm_area for this memory access, so
1382	 * we can handle it..
1383	 */
1384good_area:
1385	if (unlikely(access_error(error_code, vma))) {
1386		bad_area_access_error(regs, error_code, address, vma);
1387		return;
1388	}
1389
1390	/*
1391	 * If for any reason at all we couldn't handle the fault,
1392	 * make sure we exit gracefully rather than endlessly redo
1393	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1394	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
 
 
 
 
 
 
 
 
 
1395	 */
 
1396	fault = handle_mm_fault(vma, address, flags);
1397	major |= fault & VM_FAULT_MAJOR;
1398
1399	/*
1400	 * If we need to retry the mmap_sem has already been released,
1401	 * and if there is a fatal signal pending there is no guarantee
1402	 * that we made any progress. Handle this case first.
1403	 */
1404	if (unlikely(fault & VM_FAULT_RETRY)) {
1405		/* Retry at most once */
1406		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1407			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1408			flags |= FAULT_FLAG_TRIED;
1409			if (!fatal_signal_pending(tsk))
1410				goto retry;
1411		}
1412
1413		/* User mode? Just return to handle the fatal exception */
1414		if (flags & FAULT_FLAG_USER)
1415			return;
1416
1417		/* Not returning to user mode? Handle exceptions or die: */
1418		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1419		return;
1420	}
1421
1422	up_read(&mm->mmap_sem);
1423	if (unlikely(fault & VM_FAULT_ERROR)) {
1424		mm_fault_error(regs, error_code, address, vma, fault);
1425		return;
1426	}
1427
1428	/*
1429	 * Major/minor page fault accounting. If any of the events
1430	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1431	 */
1432	if (major) {
1433		tsk->maj_flt++;
1434		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1435	} else {
1436		tsk->min_flt++;
1437		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1438	}
1439
1440	check_v8086_mode(regs, address, tsk);
1441}
1442NOKPROBE_SYMBOL(__do_page_fault);
1443
1444dotraplinkage void notrace
1445do_page_fault(struct pt_regs *regs, unsigned long error_code)
1446{
1447	unsigned long address = read_cr2(); /* Get the faulting address */
1448	enum ctx_state prev_state;
1449
1450	/*
1451	 * We must have this function tagged with __kprobes, notrace and call
1452	 * read_cr2() before calling anything else. To avoid calling any kind
1453	 * of tracing machinery before we've observed the CR2 value.
1454	 *
1455	 * exception_{enter,exit}() contain all sorts of tracepoints.
1456	 */
1457
1458	prev_state = exception_enter();
1459	__do_page_fault(regs, error_code, address);
1460	exception_exit(prev_state);
1461}
1462NOKPROBE_SYMBOL(do_page_fault);
1463
1464#ifdef CONFIG_TRACING
1465static nokprobe_inline void
1466trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1467			 unsigned long error_code)
1468{
1469	if (user_mode(regs))
1470		trace_page_fault_user(address, regs, error_code);
1471	else
1472		trace_page_fault_kernel(address, regs, error_code);
1473}
1474
 
 
 
 
 
 
 
1475dotraplinkage void notrace
1476trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1477{
1478	/*
1479	 * The exception_enter and tracepoint processing could
1480	 * trigger another page faults (user space callchain
1481	 * reading) and destroy the original cr2 value, so read
1482	 * the faulting address now.
1483	 */
1484	unsigned long address = read_cr2();
1485	enum ctx_state prev_state;
1486
1487	prev_state = exception_enter();
1488	trace_page_fault_entries(address, regs, error_code);
 
 
1489	__do_page_fault(regs, error_code, address);
1490	exception_exit(prev_state);
1491}
1492NOKPROBE_SYMBOL(trace_do_page_fault);
1493#endif /* CONFIG_TRACING */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/bootmem.h>		/* max_low_pfn			*/
  12#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  13#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  14#include <linux/perf_event.h>		/* perf_sw_event		*/
  15#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  16#include <linux/prefetch.h>		/* prefetchw			*/
  17#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  18#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  19
  20#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  21#include <asm/traps.h>			/* dotraplinkage, ...		*/
  22#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
 
  23#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  24#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  25#include <asm/vm86.h>			/* struct vm86			*/
  26#include <asm/mmu_context.h>		/* vma_pkey()			*/
  27
  28#define CREATE_TRACE_POINTS
  29#include <asm/trace/exceptions.h>
  30
  31/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32 * Returns 0 if mmiotrace is disabled, or if the fault is not
  33 * handled by mmiotrace:
  34 */
  35static nokprobe_inline int
  36kmmio_fault(struct pt_regs *regs, unsigned long addr)
  37{
  38	if (unlikely(is_kmmio_active()))
  39		if (kmmio_handler(regs, addr) == 1)
  40			return -1;
  41	return 0;
  42}
  43
  44static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
  45{
  46	int ret = 0;
  47
  48	/* kprobe_running() needs smp_processor_id() */
  49	if (kprobes_built_in() && !user_mode(regs)) {
  50		preempt_disable();
  51		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  52			ret = 1;
  53		preempt_enable();
  54	}
  55
  56	return ret;
  57}
  58
  59/*
  60 * Prefetch quirks:
  61 *
  62 * 32-bit mode:
  63 *
  64 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  65 *   Check that here and ignore it.
  66 *
  67 * 64-bit mode:
  68 *
  69 *   Sometimes the CPU reports invalid exceptions on prefetch.
  70 *   Check that here and ignore it.
  71 *
  72 * Opcode checker based on code by Richard Brunner.
  73 */
  74static inline int
  75check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  76		      unsigned char opcode, int *prefetch)
  77{
  78	unsigned char instr_hi = opcode & 0xf0;
  79	unsigned char instr_lo = opcode & 0x0f;
  80
  81	switch (instr_hi) {
  82	case 0x20:
  83	case 0x30:
  84		/*
  85		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  86		 * In X86_64 long mode, the CPU will signal invalid
  87		 * opcode if some of these prefixes are present so
  88		 * X86_64 will never get here anyway
  89		 */
  90		return ((instr_lo & 7) == 0x6);
  91#ifdef CONFIG_X86_64
  92	case 0x40:
  93		/*
  94		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  95		 * Need to figure out under what instruction mode the
  96		 * instruction was issued. Could check the LDT for lm,
  97		 * but for now it's good enough to assume that long
  98		 * mode only uses well known segments or kernel.
  99		 */
 100		return (!user_mode(regs) || user_64bit_mode(regs));
 101#endif
 102	case 0x60:
 103		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 104		return (instr_lo & 0xC) == 0x4;
 105	case 0xF0:
 106		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 107		return !instr_lo || (instr_lo>>1) == 1;
 108	case 0x00:
 109		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 110		if (probe_kernel_address(instr, opcode))
 111			return 0;
 112
 113		*prefetch = (instr_lo == 0xF) &&
 114			(opcode == 0x0D || opcode == 0x18);
 115		return 0;
 116	default:
 117		return 0;
 118	}
 119}
 120
 121static int
 122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 123{
 124	unsigned char *max_instr;
 125	unsigned char *instr;
 126	int prefetch = 0;
 127
 128	/*
 129	 * If it was a exec (instruction fetch) fault on NX page, then
 130	 * do not ignore the fault:
 131	 */
 132	if (error_code & X86_PF_INSTR)
 133		return 0;
 134
 135	instr = (void *)convert_ip_to_linear(current, regs);
 136	max_instr = instr + 15;
 137
 138	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 139		return 0;
 140
 141	while (instr < max_instr) {
 142		unsigned char opcode;
 143
 144		if (probe_kernel_address(instr, opcode))
 145			break;
 146
 147		instr++;
 148
 149		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 150			break;
 151	}
 152	return prefetch;
 153}
 154
 155/*
 156 * A protection key fault means that the PKRU value did not allow
 157 * access to some PTE.  Userspace can figure out what PKRU was
 158 * from the XSAVE state, and this function fills out a field in
 159 * siginfo so userspace can discover which protection key was set
 160 * on the PTE.
 161 *
 162 * If we get here, we know that the hardware signaled a X86_PF_PK
 163 * fault and that there was a VMA once we got in the fault
 164 * handler.  It does *not* guarantee that the VMA we find here
 165 * was the one that we faulted on.
 166 *
 167 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 168 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 169 * 3. T1   : faults...
 170 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 171 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 172 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 173 *	     faulted on a pte with its pkey=4.
 174 */
 175static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
 176		u32 *pkey)
 177{
 178	/* This is effectively an #ifdef */
 179	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 180		return;
 181
 182	/* Fault not from Protection Keys: nothing to do */
 183	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
 184		return;
 185	/*
 186	 * force_sig_info_fault() is called from a number of
 187	 * contexts, some of which have a VMA and some of which
 188	 * do not.  The X86_PF_PK handing happens after we have a
 189	 * valid VMA, so we should never reach this without a
 190	 * valid VMA.
 191	 */
 192	if (!pkey) {
 193		WARN_ONCE(1, "PKU fault with no VMA passed in");
 194		info->si_pkey = 0;
 195		return;
 196	}
 197	/*
 198	 * si_pkey should be thought of as a strong hint, but not
 199	 * absolutely guranteed to be 100% accurate because of
 200	 * the race explained above.
 201	 */
 202	info->si_pkey = *pkey;
 203}
 204
 205static void
 206force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 207		     struct task_struct *tsk, u32 *pkey, int fault)
 
 208{
 209	unsigned lsb = 0;
 210	siginfo_t info;
 211
 212	info.si_signo	= si_signo;
 213	info.si_errno	= 0;
 214	info.si_code	= si_code;
 215	info.si_addr	= (void __user *)address;
 216	if (fault & VM_FAULT_HWPOISON_LARGE)
 217		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 218	if (fault & VM_FAULT_HWPOISON)
 219		lsb = PAGE_SHIFT;
 220	info.si_addr_lsb = lsb;
 221
 222	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
 223
 224	force_sig_info(si_signo, &info, tsk);
 225}
 226
 227DEFINE_SPINLOCK(pgd_lock);
 228LIST_HEAD(pgd_list);
 229
 230#ifdef CONFIG_X86_32
 231static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 232{
 233	unsigned index = pgd_index(address);
 234	pgd_t *pgd_k;
 235	p4d_t *p4d, *p4d_k;
 236	pud_t *pud, *pud_k;
 237	pmd_t *pmd, *pmd_k;
 238
 239	pgd += index;
 240	pgd_k = init_mm.pgd + index;
 241
 242	if (!pgd_present(*pgd_k))
 243		return NULL;
 244
 245	/*
 246	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 247	 * and redundant with the set_pmd() on non-PAE. As would
 248	 * set_p4d/set_pud.
 249	 */
 250	p4d = p4d_offset(pgd, address);
 251	p4d_k = p4d_offset(pgd_k, address);
 252	if (!p4d_present(*p4d_k))
 253		return NULL;
 254
 255	pud = pud_offset(p4d, address);
 256	pud_k = pud_offset(p4d_k, address);
 257	if (!pud_present(*pud_k))
 258		return NULL;
 259
 260	pmd = pmd_offset(pud, address);
 261	pmd_k = pmd_offset(pud_k, address);
 262	if (!pmd_present(*pmd_k))
 263		return NULL;
 264
 265	if (!pmd_present(*pmd))
 266		set_pmd(pmd, *pmd_k);
 267	else
 268		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 269
 270	return pmd_k;
 271}
 272
 273void vmalloc_sync_all(void)
 274{
 275	unsigned long address;
 276
 277	if (SHARED_KERNEL_PMD)
 278		return;
 279
 280	for (address = VMALLOC_START & PMD_MASK;
 281	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
 282	     address += PMD_SIZE) {
 283		struct page *page;
 284
 285		spin_lock(&pgd_lock);
 286		list_for_each_entry(page, &pgd_list, lru) {
 287			spinlock_t *pgt_lock;
 288			pmd_t *ret;
 289
 290			/* the pgt_lock only for Xen */
 291			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 292
 293			spin_lock(pgt_lock);
 294			ret = vmalloc_sync_one(page_address(page), address);
 295			spin_unlock(pgt_lock);
 296
 297			if (!ret)
 298				break;
 299		}
 300		spin_unlock(&pgd_lock);
 301	}
 302}
 303
 304/*
 305 * 32-bit:
 306 *
 307 *   Handle a fault on the vmalloc or module mapping area
 308 */
 309static noinline int vmalloc_fault(unsigned long address)
 310{
 311	unsigned long pgd_paddr;
 312	pmd_t *pmd_k;
 313	pte_t *pte_k;
 314
 315	/* Make sure we are in vmalloc area: */
 316	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 317		return -1;
 318
 319	WARN_ON_ONCE(in_nmi());
 320
 321	/*
 322	 * Synchronize this task's top level page-table
 323	 * with the 'reference' page table.
 324	 *
 325	 * Do _not_ use "current" here. We might be inside
 326	 * an interrupt in the middle of a task switch..
 327	 */
 328	pgd_paddr = read_cr3_pa();
 329	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 330	if (!pmd_k)
 331		return -1;
 332
 333	if (pmd_large(*pmd_k))
 334		return 0;
 335
 336	pte_k = pte_offset_kernel(pmd_k, address);
 337	if (!pte_present(*pte_k))
 338		return -1;
 339
 340	return 0;
 341}
 342NOKPROBE_SYMBOL(vmalloc_fault);
 343
 344/*
 345 * Did it hit the DOS screen memory VA from vm86 mode?
 346 */
 347static inline void
 348check_v8086_mode(struct pt_regs *regs, unsigned long address,
 349		 struct task_struct *tsk)
 350{
 351#ifdef CONFIG_VM86
 352	unsigned long bit;
 353
 354	if (!v8086_mode(regs) || !tsk->thread.vm86)
 355		return;
 356
 357	bit = (address - 0xA0000) >> PAGE_SHIFT;
 358	if (bit < 32)
 359		tsk->thread.vm86->screen_bitmap |= 1 << bit;
 360#endif
 361}
 362
 363static bool low_pfn(unsigned long pfn)
 364{
 365	return pfn < max_low_pfn;
 366}
 367
 368static void dump_pagetable(unsigned long address)
 369{
 370	pgd_t *base = __va(read_cr3_pa());
 371	pgd_t *pgd = &base[pgd_index(address)];
 372	p4d_t *p4d;
 373	pud_t *pud;
 374	pmd_t *pmd;
 375	pte_t *pte;
 376
 377#ifdef CONFIG_X86_PAE
 378	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 379	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 380		goto out;
 381#define pr_pde pr_cont
 382#else
 383#define pr_pde pr_info
 384#endif
 385	p4d = p4d_offset(pgd, address);
 386	pud = pud_offset(p4d, address);
 387	pmd = pmd_offset(pud, address);
 388	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 389#undef pr_pde
 390
 391	/*
 392	 * We must not directly access the pte in the highpte
 393	 * case if the page table is located in highmem.
 394	 * And let's rather not kmap-atomic the pte, just in case
 395	 * it's allocated already:
 396	 */
 397	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 398		goto out;
 399
 400	pte = pte_offset_kernel(pmd, address);
 401	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 402out:
 403	pr_cont("\n");
 404}
 405
 406#else /* CONFIG_X86_64: */
 407
 408void vmalloc_sync_all(void)
 409{
 410	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 411}
 412
 413/*
 414 * 64-bit:
 415 *
 416 *   Handle a fault on the vmalloc area
 417 */
 418static noinline int vmalloc_fault(unsigned long address)
 419{
 420	pgd_t *pgd, *pgd_k;
 421	p4d_t *p4d, *p4d_k;
 422	pud_t *pud;
 423	pmd_t *pmd;
 424	pte_t *pte;
 425
 426	/* Make sure we are in vmalloc area: */
 427	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 428		return -1;
 429
 430	WARN_ON_ONCE(in_nmi());
 431
 432	/*
 433	 * Copy kernel mappings over when needed. This can also
 434	 * happen within a race in page table update. In the later
 435	 * case just flush:
 436	 */
 437	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
 438	pgd_k = pgd_offset_k(address);
 439	if (pgd_none(*pgd_k))
 440		return -1;
 441
 442	if (pgtable_l5_enabled) {
 443		if (pgd_none(*pgd)) {
 444			set_pgd(pgd, *pgd_k);
 445			arch_flush_lazy_mmu_mode();
 446		} else {
 447			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
 448		}
 449	}
 450
 451	/* With 4-level paging, copying happens on the p4d level. */
 452	p4d = p4d_offset(pgd, address);
 453	p4d_k = p4d_offset(pgd_k, address);
 454	if (p4d_none(*p4d_k))
 455		return -1;
 456
 457	if (p4d_none(*p4d) && !pgtable_l5_enabled) {
 458		set_p4d(p4d, *p4d_k);
 459		arch_flush_lazy_mmu_mode();
 460	} else {
 461		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
 462	}
 463
 464	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
 
 
 
 465
 466	pud = pud_offset(p4d, address);
 467	if (pud_none(*pud))
 
 468		return -1;
 469
 470	if (pud_large(*pud))
 
 
 
 471		return 0;
 472
 473	pmd = pmd_offset(pud, address);
 474	if (pmd_none(*pmd))
 
 475		return -1;
 476
 477	if (pmd_large(*pmd))
 
 
 
 478		return 0;
 479
 
 
 
 
 480	pte = pte_offset_kernel(pmd, address);
 481	if (!pte_present(*pte))
 482		return -1;
 
 
 
 
 
 
 483
 484	return 0;
 485}
 486NOKPROBE_SYMBOL(vmalloc_fault);
 487
 488#ifdef CONFIG_CPU_SUP_AMD
 489static const char errata93_warning[] =
 490KERN_ERR 
 491"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 492"******* Working around it, but it may cause SEGVs or burn power.\n"
 493"******* Please consider a BIOS update.\n"
 494"******* Disabling USB legacy in the BIOS may also help.\n";
 495#endif
 496
 497/*
 498 * No vm86 mode in 64-bit mode:
 499 */
 500static inline void
 501check_v8086_mode(struct pt_regs *regs, unsigned long address,
 502		 struct task_struct *tsk)
 503{
 504}
 505
 506static int bad_address(void *p)
 507{
 508	unsigned long dummy;
 509
 510	return probe_kernel_address((unsigned long *)p, dummy);
 511}
 512
 513static void dump_pagetable(unsigned long address)
 514{
 515	pgd_t *base = __va(read_cr3_pa());
 516	pgd_t *pgd = base + pgd_index(address);
 517	p4d_t *p4d;
 518	pud_t *pud;
 519	pmd_t *pmd;
 520	pte_t *pte;
 521
 522	if (bad_address(pgd))
 523		goto bad;
 524
 525	pr_info("PGD %lx ", pgd_val(*pgd));
 526
 527	if (!pgd_present(*pgd))
 528		goto out;
 529
 530	p4d = p4d_offset(pgd, address);
 531	if (bad_address(p4d))
 532		goto bad;
 533
 534	pr_cont("P4D %lx ", p4d_val(*p4d));
 535	if (!p4d_present(*p4d) || p4d_large(*p4d))
 536		goto out;
 537
 538	pud = pud_offset(p4d, address);
 539	if (bad_address(pud))
 540		goto bad;
 541
 542	pr_cont("PUD %lx ", pud_val(*pud));
 543	if (!pud_present(*pud) || pud_large(*pud))
 544		goto out;
 545
 546	pmd = pmd_offset(pud, address);
 547	if (bad_address(pmd))
 548		goto bad;
 549
 550	pr_cont("PMD %lx ", pmd_val(*pmd));
 551	if (!pmd_present(*pmd) || pmd_large(*pmd))
 552		goto out;
 553
 554	pte = pte_offset_kernel(pmd, address);
 555	if (bad_address(pte))
 556		goto bad;
 557
 558	pr_cont("PTE %lx", pte_val(*pte));
 559out:
 560	pr_cont("\n");
 561	return;
 562bad:
 563	pr_info("BAD\n");
 564}
 565
 566#endif /* CONFIG_X86_64 */
 567
 568/*
 569 * Workaround for K8 erratum #93 & buggy BIOS.
 570 *
 571 * BIOS SMM functions are required to use a specific workaround
 572 * to avoid corruption of the 64bit RIP register on C stepping K8.
 573 *
 574 * A lot of BIOS that didn't get tested properly miss this.
 575 *
 576 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 577 * Try to work around it here.
 578 *
 579 * Note we only handle faults in kernel here.
 580 * Does nothing on 32-bit.
 581 */
 582static int is_errata93(struct pt_regs *regs, unsigned long address)
 583{
 584#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 585	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 586	    || boot_cpu_data.x86 != 0xf)
 587		return 0;
 588
 589	if (address != regs->ip)
 590		return 0;
 591
 592	if ((address >> 32) != 0)
 593		return 0;
 594
 595	address |= 0xffffffffUL << 32;
 596	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 597	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 598		printk_once(errata93_warning);
 599		regs->ip = address;
 600		return 1;
 601	}
 602#endif
 603	return 0;
 604}
 605
 606/*
 607 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 608 * to illegal addresses >4GB.
 609 *
 610 * We catch this in the page fault handler because these addresses
 611 * are not reachable. Just detect this case and return.  Any code
 612 * segment in LDT is compatibility mode.
 613 */
 614static int is_errata100(struct pt_regs *regs, unsigned long address)
 615{
 616#ifdef CONFIG_X86_64
 617	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 618		return 1;
 619#endif
 620	return 0;
 621}
 622
 623static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 624{
 625#ifdef CONFIG_X86_F00F_BUG
 626	unsigned long nr;
 627
 628	/*
 629	 * Pentium F0 0F C7 C8 bug workaround:
 630	 */
 631	if (boot_cpu_has_bug(X86_BUG_F00F)) {
 632		nr = (address - idt_descr.address) >> 3;
 633
 634		if (nr == 6) {
 635			do_invalid_op(regs, 0);
 636			return 1;
 637		}
 638	}
 639#endif
 640	return 0;
 641}
 642
 643static const char nx_warning[] = KERN_CRIT
 644"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 645static const char smep_warning[] = KERN_CRIT
 646"unable to execute userspace code (SMEP?) (uid: %d)\n";
 647
 648static void
 649show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 650		unsigned long address)
 651{
 652	if (!oops_may_print())
 653		return;
 654
 655	if (error_code & X86_PF_INSTR) {
 656		unsigned int level;
 657		pgd_t *pgd;
 658		pte_t *pte;
 659
 660		pgd = __va(read_cr3_pa());
 661		pgd += pgd_index(address);
 662
 663		pte = lookup_address_in_pgd(pgd, address, &level);
 664
 665		if (pte && pte_present(*pte) && !pte_exec(*pte))
 666			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 667		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 668				(pgd_flags(*pgd) & _PAGE_USER) &&
 669				(__read_cr4() & X86_CR4_SMEP))
 670			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
 671	}
 672
 673	printk(KERN_ALERT "BUG: unable to handle kernel ");
 674	if (address < PAGE_SIZE)
 675		printk(KERN_CONT "NULL pointer dereference");
 676	else
 677		printk(KERN_CONT "paging request");
 678
 679	printk(KERN_CONT " at %px\n", (void *) address);
 
 680
 681	dump_pagetable(address);
 682}
 683
 684static noinline void
 685pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 686	    unsigned long address)
 687{
 688	struct task_struct *tsk;
 689	unsigned long flags;
 690	int sig;
 691
 692	flags = oops_begin();
 693	tsk = current;
 694	sig = SIGKILL;
 695
 696	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 697	       tsk->comm, address);
 698	dump_pagetable(address);
 699
 700	tsk->thread.cr2		= address;
 701	tsk->thread.trap_nr	= X86_TRAP_PF;
 702	tsk->thread.error_code	= error_code;
 703
 704	if (__die("Bad pagetable", regs, error_code))
 705		sig = 0;
 706
 707	oops_end(flags, regs, sig);
 708}
 709
 710static noinline void
 711no_context(struct pt_regs *regs, unsigned long error_code,
 712	   unsigned long address, int signal, int si_code)
 713{
 714	struct task_struct *tsk = current;
 715	unsigned long flags;
 716	int sig;
 
 
 717
 718	/* Are we prepared to handle this kernel fault? */
 719	if (fixup_exception(regs, X86_TRAP_PF)) {
 720		/*
 721		 * Any interrupt that takes a fault gets the fixup. This makes
 722		 * the below recursive fault logic only apply to a faults from
 723		 * task context.
 724		 */
 725		if (in_interrupt())
 726			return;
 727
 728		/*
 729		 * Per the above we're !in_interrupt(), aka. task context.
 730		 *
 731		 * In this case we need to make sure we're not recursively
 732		 * faulting through the emulate_vsyscall() logic.
 733		 */
 734		if (current->thread.sig_on_uaccess_err && signal) {
 735			tsk->thread.trap_nr = X86_TRAP_PF;
 736			tsk->thread.error_code = error_code | X86_PF_USER;
 737			tsk->thread.cr2 = address;
 738
 739			/* XXX: hwpoison faults will set the wrong code. */
 740			force_sig_info_fault(signal, si_code, address,
 741					     tsk, NULL, 0);
 742		}
 743
 744		/*
 745		 * Barring that, we can do the fixup and be happy.
 746		 */
 747		return;
 748	}
 749
 750#ifdef CONFIG_VMAP_STACK
 751	/*
 752	 * Stack overflow?  During boot, we can fault near the initial
 753	 * stack in the direct map, but that's not an overflow -- check
 754	 * that we're in vmalloc space to avoid this.
 755	 */
 756	if (is_vmalloc_addr((void *)address) &&
 757	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 758	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 
 759		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
 760		/*
 761		 * We're likely to be running with very little stack space
 762		 * left.  It's plausible that we'd hit this condition but
 763		 * double-fault even before we get this far, in which case
 764		 * we're fine: the double-fault handler will deal with it.
 765		 *
 766		 * We don't want to make it all the way into the oops code
 767		 * and then double-fault, though, because we're likely to
 768		 * break the console driver and lose most of the stack dump.
 769		 */
 770		asm volatile ("movq %[stack], %%rsp\n\t"
 771			      "call handle_stack_overflow\n\t"
 772			      "1: jmp 1b"
 773			      : ASM_CALL_CONSTRAINT
 774			      : "D" ("kernel stack overflow (page fault)"),
 775				"S" (regs), "d" (address),
 776				[stack] "rm" (stack));
 777		unreachable();
 778	}
 779#endif
 780
 781	/*
 782	 * 32-bit:
 783	 *
 784	 *   Valid to do another page fault here, because if this fault
 785	 *   had been triggered by is_prefetch fixup_exception would have
 786	 *   handled it.
 787	 *
 788	 * 64-bit:
 789	 *
 790	 *   Hall of shame of CPU/BIOS bugs.
 791	 */
 792	if (is_prefetch(regs, error_code, address))
 793		return;
 794
 795	if (is_errata93(regs, address))
 796		return;
 797
 798	/*
 799	 * Oops. The kernel tried to access some bad page. We'll have to
 800	 * terminate things with extreme prejudice:
 801	 */
 802	flags = oops_begin();
 803
 804	show_fault_oops(regs, error_code, address);
 805
 806	if (task_stack_end_corrupted(tsk))
 807		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 808
 809	tsk->thread.cr2		= address;
 810	tsk->thread.trap_nr	= X86_TRAP_PF;
 811	tsk->thread.error_code	= error_code;
 812
 813	sig = SIGKILL;
 814	if (__die("Oops", regs, error_code))
 815		sig = 0;
 816
 817	/* Executive summary in case the body of the oops scrolled away */
 818	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 819
 820	oops_end(flags, regs, sig);
 821}
 822
 823/*
 824 * Print out info about fatal segfaults, if the show_unhandled_signals
 825 * sysctl is set:
 826 */
 827static inline void
 828show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 829		unsigned long address, struct task_struct *tsk)
 830{
 831	if (!unhandled_signal(tsk, SIGSEGV))
 832		return;
 833
 834	if (!printk_ratelimit())
 835		return;
 836
 837	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 838		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 839		tsk->comm, task_pid_nr(tsk), address,
 840		(void *)regs->ip, (void *)regs->sp, error_code);
 841
 842	print_vma_addr(KERN_CONT " in ", regs->ip);
 843
 844	printk(KERN_CONT "\n");
 845}
 846
 847static void
 848__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 849		       unsigned long address, u32 *pkey, int si_code)
 
 850{
 851	struct task_struct *tsk = current;
 852
 853	/* User mode accesses just cause a SIGSEGV */
 854	if (error_code & X86_PF_USER) {
 855		/*
 856		 * It's possible to have interrupts off here:
 857		 */
 858		local_irq_enable();
 859
 860		/*
 861		 * Valid to do another page fault here because this one came
 862		 * from user space:
 863		 */
 864		if (is_prefetch(regs, error_code, address))
 865			return;
 866
 867		if (is_errata100(regs, address))
 868			return;
 869
 870#ifdef CONFIG_X86_64
 871		/*
 872		 * Instruction fetch faults in the vsyscall page might need
 873		 * emulation.
 874		 */
 875		if (unlikely((error_code & X86_PF_INSTR) &&
 876			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
 877			if (emulate_vsyscall(regs, address))
 878				return;
 879		}
 880#endif
 881
 882		/*
 883		 * To avoid leaking information about the kernel page table
 884		 * layout, pretend that user-mode accesses to kernel addresses
 885		 * are always protection faults.
 886		 */
 887		if (address >= TASK_SIZE_MAX)
 888			error_code |= X86_PF_PROT;
 889
 890		if (likely(show_unhandled_signals))
 891			show_signal_msg(regs, error_code, address, tsk);
 892
 893		tsk->thread.cr2		= address;
 894		tsk->thread.error_code	= error_code;
 895		tsk->thread.trap_nr	= X86_TRAP_PF;
 896
 897		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
 898
 899		return;
 900	}
 901
 902	if (is_f00f_bug(regs, address))
 903		return;
 904
 905	no_context(regs, error_code, address, SIGSEGV, si_code);
 906}
 907
 908static noinline void
 909bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 910		     unsigned long address, u32 *pkey)
 911{
 912	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
 913}
 914
 915static void
 916__bad_area(struct pt_regs *regs, unsigned long error_code,
 917	   unsigned long address,  struct vm_area_struct *vma, int si_code)
 918{
 919	struct mm_struct *mm = current->mm;
 920	u32 pkey;
 921
 922	if (vma)
 923		pkey = vma_pkey(vma);
 924
 925	/*
 926	 * Something tried to access memory that isn't in our memory map..
 927	 * Fix it, but check if it's kernel or user first..
 928	 */
 929	up_read(&mm->mmap_sem);
 930
 931	__bad_area_nosemaphore(regs, error_code, address,
 932			       (vma) ? &pkey : NULL, si_code);
 933}
 934
 935static noinline void
 936bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 937{
 938	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
 939}
 940
 941static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 942		struct vm_area_struct *vma)
 943{
 944	/* This code is always called on the current mm */
 945	bool foreign = false;
 946
 947	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 948		return false;
 949	if (error_code & X86_PF_PK)
 950		return true;
 951	/* this checks permission keys on the VMA: */
 952	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 953				       (error_code & X86_PF_INSTR), foreign))
 954		return true;
 955	return false;
 956}
 957
 958static noinline void
 959bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 960		      unsigned long address, struct vm_area_struct *vma)
 961{
 962	/*
 963	 * This OSPKE check is not strictly necessary at runtime.
 964	 * But, doing it this way allows compiler optimizations
 965	 * if pkeys are compiled out.
 966	 */
 967	if (bad_area_access_from_pkeys(error_code, vma))
 968		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
 969	else
 970		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
 971}
 972
 973static void
 974do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 975	  u32 *pkey, unsigned int fault)
 976{
 977	struct task_struct *tsk = current;
 978	int code = BUS_ADRERR;
 979
 980	/* Kernel mode? Handle exceptions or die: */
 981	if (!(error_code & X86_PF_USER)) {
 982		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 983		return;
 984	}
 985
 986	/* User-space => ok to do another page fault: */
 987	if (is_prefetch(regs, error_code, address))
 988		return;
 989
 990	tsk->thread.cr2		= address;
 991	tsk->thread.error_code	= error_code;
 992	tsk->thread.trap_nr	= X86_TRAP_PF;
 993
 994#ifdef CONFIG_MEMORY_FAILURE
 995	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 996		printk(KERN_ERR
 997	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 998			tsk->comm, tsk->pid, address);
 999		code = BUS_MCEERR_AR;
1000	}
1001#endif
1002	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1003}
1004
1005static noinline void
1006mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1007	       unsigned long address, u32 *pkey, unsigned int fault)
 
1008{
1009	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1010		no_context(regs, error_code, address, 0, 0);
1011		return;
1012	}
1013
1014	if (fault & VM_FAULT_OOM) {
1015		/* Kernel mode? Handle exceptions or die: */
1016		if (!(error_code & X86_PF_USER)) {
1017			no_context(regs, error_code, address,
1018				   SIGSEGV, SEGV_MAPERR);
1019			return;
1020		}
1021
1022		/*
1023		 * We ran out of memory, call the OOM killer, and return the
1024		 * userspace (which will retry the fault, or kill us if we got
1025		 * oom-killed):
1026		 */
1027		pagefault_out_of_memory();
1028	} else {
1029		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1030			     VM_FAULT_HWPOISON_LARGE))
1031			do_sigbus(regs, error_code, address, pkey, fault);
1032		else if (fault & VM_FAULT_SIGSEGV)
1033			bad_area_nosemaphore(regs, error_code, address, pkey);
1034		else
1035			BUG();
1036	}
1037}
1038
1039static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1040{
1041	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1042		return 0;
1043
1044	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1045		return 0;
1046	/*
1047	 * Note: We do not do lazy flushing on protection key
1048	 * changes, so no spurious fault will ever set X86_PF_PK.
1049	 */
1050	if ((error_code & X86_PF_PK))
1051		return 1;
1052
1053	return 1;
1054}
1055
1056/*
1057 * Handle a spurious fault caused by a stale TLB entry.
1058 *
1059 * This allows us to lazily refresh the TLB when increasing the
1060 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1061 * eagerly is very expensive since that implies doing a full
1062 * cross-processor TLB flush, even if no stale TLB entries exist
1063 * on other processors.
1064 *
1065 * Spurious faults may only occur if the TLB contains an entry with
1066 * fewer permission than the page table entry.  Non-present (P = 0)
1067 * and reserved bit (R = 1) faults are never spurious.
1068 *
1069 * There are no security implications to leaving a stale TLB when
1070 * increasing the permissions on a page.
1071 *
1072 * Returns non-zero if a spurious fault was handled, zero otherwise.
1073 *
1074 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1075 * (Optional Invalidation).
1076 */
1077static noinline int
1078spurious_fault(unsigned long error_code, unsigned long address)
1079{
1080	pgd_t *pgd;
1081	p4d_t *p4d;
1082	pud_t *pud;
1083	pmd_t *pmd;
1084	pte_t *pte;
1085	int ret;
1086
1087	/*
1088	 * Only writes to RO or instruction fetches from NX may cause
1089	 * spurious faults.
1090	 *
1091	 * These could be from user or supervisor accesses but the TLB
1092	 * is only lazily flushed after a kernel mapping protection
1093	 * change, so user accesses are not expected to cause spurious
1094	 * faults.
1095	 */
1096	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1097	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1098		return 0;
1099
1100	pgd = init_mm.pgd + pgd_index(address);
1101	if (!pgd_present(*pgd))
1102		return 0;
1103
1104	p4d = p4d_offset(pgd, address);
1105	if (!p4d_present(*p4d))
1106		return 0;
1107
1108	if (p4d_large(*p4d))
1109		return spurious_fault_check(error_code, (pte_t *) p4d);
1110
1111	pud = pud_offset(p4d, address);
1112	if (!pud_present(*pud))
1113		return 0;
1114
1115	if (pud_large(*pud))
1116		return spurious_fault_check(error_code, (pte_t *) pud);
1117
1118	pmd = pmd_offset(pud, address);
1119	if (!pmd_present(*pmd))
1120		return 0;
1121
1122	if (pmd_large(*pmd))
1123		return spurious_fault_check(error_code, (pte_t *) pmd);
1124
1125	pte = pte_offset_kernel(pmd, address);
1126	if (!pte_present(*pte))
1127		return 0;
1128
1129	ret = spurious_fault_check(error_code, pte);
1130	if (!ret)
1131		return 0;
1132
1133	/*
1134	 * Make sure we have permissions in PMD.
1135	 * If not, then there's a bug in the page tables:
1136	 */
1137	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1138	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1139
1140	return ret;
1141}
1142NOKPROBE_SYMBOL(spurious_fault);
1143
1144int show_unhandled_signals = 1;
1145
1146static inline int
1147access_error(unsigned long error_code, struct vm_area_struct *vma)
1148{
1149	/* This is only called for the current mm, so: */
1150	bool foreign = false;
1151
1152	/*
1153	 * Read or write was blocked by protection keys.  This is
1154	 * always an unconditional error and can never result in
1155	 * a follow-up action to resolve the fault, like a COW.
1156	 */
1157	if (error_code & X86_PF_PK)
1158		return 1;
1159
1160	/*
1161	 * Make sure to check the VMA so that we do not perform
1162	 * faults just to hit a X86_PF_PK as soon as we fill in a
1163	 * page.
1164	 */
1165	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1166				       (error_code & X86_PF_INSTR), foreign))
1167		return 1;
1168
1169	if (error_code & X86_PF_WRITE) {
1170		/* write, present and write, not present: */
1171		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1172			return 1;
1173		return 0;
1174	}
1175
1176	/* read, present: */
1177	if (unlikely(error_code & X86_PF_PROT))
1178		return 1;
1179
1180	/* read, not present: */
1181	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1182		return 1;
1183
1184	return 0;
1185}
1186
1187static int fault_in_kernel_space(unsigned long address)
1188{
1189	return address >= TASK_SIZE_MAX;
1190}
1191
1192static inline bool smap_violation(int error_code, struct pt_regs *regs)
1193{
1194	if (!IS_ENABLED(CONFIG_X86_SMAP))
1195		return false;
1196
1197	if (!static_cpu_has(X86_FEATURE_SMAP))
1198		return false;
1199
1200	if (error_code & X86_PF_USER)
1201		return false;
1202
1203	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1204		return false;
1205
1206	return true;
1207}
1208
1209/*
1210 * This routine handles page faults.  It determines the address,
1211 * and the problem, and then passes it off to one of the appropriate
1212 * routines.
 
 
 
 
1213 */
1214static noinline void
1215__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1216		unsigned long address)
1217{
1218	struct vm_area_struct *vma;
1219	struct task_struct *tsk;
1220	struct mm_struct *mm;
1221	int fault, major = 0;
1222	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1223	u32 pkey;
1224
1225	tsk = current;
1226	mm = tsk->mm;
1227
 
 
 
 
 
 
1228	prefetchw(&mm->mmap_sem);
1229
1230	if (unlikely(kmmio_fault(regs, address)))
1231		return;
1232
1233	/*
1234	 * We fault-in kernel-space virtual memory on-demand. The
1235	 * 'reference' page table is init_mm.pgd.
1236	 *
1237	 * NOTE! We MUST NOT take any locks for this case. We may
1238	 * be in an interrupt or a critical region, and should
1239	 * only copy the information from the master page table,
1240	 * nothing more.
1241	 *
1242	 * This verifies that the fault happens in kernel space
1243	 * (error_code & 4) == 0, and that the fault was not a
1244	 * protection error (error_code & 9) == 0.
1245	 */
1246	if (unlikely(fault_in_kernel_space(address))) {
1247		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1248			if (vmalloc_fault(address) >= 0)
1249				return;
 
 
 
1250		}
1251
1252		/* Can handle a stale RO->RW TLB: */
1253		if (spurious_fault(error_code, address))
1254			return;
1255
1256		/* kprobes don't want to hook the spurious faults: */
1257		if (kprobes_fault(regs))
1258			return;
1259		/*
1260		 * Don't take the mm semaphore here. If we fixup a prefetch
1261		 * fault we could otherwise deadlock:
1262		 */
1263		bad_area_nosemaphore(regs, error_code, address, NULL);
1264
1265		return;
1266	}
1267
1268	/* kprobes don't want to hook the spurious faults: */
1269	if (unlikely(kprobes_fault(regs)))
1270		return;
1271
1272	if (unlikely(error_code & X86_PF_RSVD))
1273		pgtable_bad(regs, error_code, address);
1274
1275	if (unlikely(smap_violation(error_code, regs))) {
1276		bad_area_nosemaphore(regs, error_code, address, NULL);
1277		return;
1278	}
1279
1280	/*
1281	 * If we're in an interrupt, have no user context or are running
1282	 * in a region with pagefaults disabled then we must not take the fault
1283	 */
1284	if (unlikely(faulthandler_disabled() || !mm)) {
1285		bad_area_nosemaphore(regs, error_code, address, NULL);
1286		return;
1287	}
1288
1289	/*
1290	 * It's safe to allow irq's after cr2 has been saved and the
1291	 * vmalloc fault has been handled.
1292	 *
1293	 * User-mode registers count as a user access even for any
1294	 * potential system fault or CPU buglet:
1295	 */
1296	if (user_mode(regs)) {
1297		local_irq_enable();
1298		error_code |= X86_PF_USER;
1299		flags |= FAULT_FLAG_USER;
1300	} else {
1301		if (regs->flags & X86_EFLAGS_IF)
1302			local_irq_enable();
1303	}
1304
1305	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1306
1307	if (error_code & X86_PF_WRITE)
1308		flags |= FAULT_FLAG_WRITE;
1309	if (error_code & X86_PF_INSTR)
1310		flags |= FAULT_FLAG_INSTRUCTION;
1311
1312	/*
1313	 * When running in the kernel we expect faults to occur only to
1314	 * addresses in user space.  All other faults represent errors in
1315	 * the kernel and should generate an OOPS.  Unfortunately, in the
1316	 * case of an erroneous fault occurring in a code path which already
1317	 * holds mmap_sem we will deadlock attempting to validate the fault
1318	 * against the address space.  Luckily the kernel only validly
1319	 * references user space from well defined areas of code, which are
1320	 * listed in the exceptions table.
1321	 *
1322	 * As the vast majority of faults will be valid we will only perform
1323	 * the source reference check when there is a possibility of a
1324	 * deadlock. Attempt to lock the address space, if we cannot we then
1325	 * validate the source. If this is invalid we can skip the address
1326	 * space check, thus avoiding the deadlock:
1327	 */
1328	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1329		if (!(error_code & X86_PF_USER) &&
1330		    !search_exception_tables(regs->ip)) {
1331			bad_area_nosemaphore(regs, error_code, address, NULL);
1332			return;
1333		}
1334retry:
1335		down_read(&mm->mmap_sem);
1336	} else {
1337		/*
1338		 * The above down_read_trylock() might have succeeded in
1339		 * which case we'll have missed the might_sleep() from
1340		 * down_read():
1341		 */
1342		might_sleep();
1343	}
1344
1345	vma = find_vma(mm, address);
1346	if (unlikely(!vma)) {
1347		bad_area(regs, error_code, address);
1348		return;
1349	}
1350	if (likely(vma->vm_start <= address))
1351		goto good_area;
1352	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1353		bad_area(regs, error_code, address);
1354		return;
1355	}
1356	if (error_code & X86_PF_USER) {
1357		/*
1358		 * Accessing the stack below %sp is always a bug.
1359		 * The large cushion allows instructions like enter
1360		 * and pusha to work. ("enter $65535, $31" pushes
1361		 * 32 pointers and then decrements %sp by 65535.)
1362		 */
1363		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1364			bad_area(regs, error_code, address);
1365			return;
1366		}
1367	}
1368	if (unlikely(expand_stack(vma, address))) {
1369		bad_area(regs, error_code, address);
1370		return;
1371	}
1372
1373	/*
1374	 * Ok, we have a good vm_area for this memory access, so
1375	 * we can handle it..
1376	 */
1377good_area:
1378	if (unlikely(access_error(error_code, vma))) {
1379		bad_area_access_error(regs, error_code, address, vma);
1380		return;
1381	}
1382
1383	/*
1384	 * If for any reason at all we couldn't handle the fault,
1385	 * make sure we exit gracefully rather than endlessly redo
1386	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1387	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1388	 *
1389	 * Note that handle_userfault() may also release and reacquire mmap_sem
1390	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1391	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1392	 * (potentially after handling any pending signal during the return to
1393	 * userland). The return to userland is identified whenever
1394	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1395	 * Thus we have to be careful about not touching vma after handling the
1396	 * fault, so we read the pkey beforehand.
1397	 */
1398	pkey = vma_pkey(vma);
1399	fault = handle_mm_fault(vma, address, flags);
1400	major |= fault & VM_FAULT_MAJOR;
1401
1402	/*
1403	 * If we need to retry the mmap_sem has already been released,
1404	 * and if there is a fatal signal pending there is no guarantee
1405	 * that we made any progress. Handle this case first.
1406	 */
1407	if (unlikely(fault & VM_FAULT_RETRY)) {
1408		/* Retry at most once */
1409		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1410			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1411			flags |= FAULT_FLAG_TRIED;
1412			if (!fatal_signal_pending(tsk))
1413				goto retry;
1414		}
1415
1416		/* User mode? Just return to handle the fatal exception */
1417		if (flags & FAULT_FLAG_USER)
1418			return;
1419
1420		/* Not returning to user mode? Handle exceptions or die: */
1421		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1422		return;
1423	}
1424
1425	up_read(&mm->mmap_sem);
1426	if (unlikely(fault & VM_FAULT_ERROR)) {
1427		mm_fault_error(regs, error_code, address, &pkey, fault);
1428		return;
1429	}
1430
1431	/*
1432	 * Major/minor page fault accounting. If any of the events
1433	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1434	 */
1435	if (major) {
1436		tsk->maj_flt++;
1437		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1438	} else {
1439		tsk->min_flt++;
1440		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1441	}
1442
1443	check_v8086_mode(regs, address, tsk);
1444}
1445NOKPROBE_SYMBOL(__do_page_fault);
1446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447static nokprobe_inline void
1448trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1449			 unsigned long error_code)
1450{
1451	if (user_mode(regs))
1452		trace_page_fault_user(address, regs, error_code);
1453	else
1454		trace_page_fault_kernel(address, regs, error_code);
1455}
1456
1457/*
1458 * We must have this function blacklisted from kprobes, tagged with notrace
1459 * and call read_cr2() before calling anything else. To avoid calling any
1460 * kind of tracing machinery before we've observed the CR2 value.
1461 *
1462 * exception_{enter,exit}() contains all sorts of tracepoints.
1463 */
1464dotraplinkage void notrace
1465do_page_fault(struct pt_regs *regs, unsigned long error_code)
1466{
1467	unsigned long address = read_cr2(); /* Get the faulting address */
 
 
 
 
 
 
1468	enum ctx_state prev_state;
1469
1470	prev_state = exception_enter();
1471	if (trace_pagefault_enabled())
1472		trace_page_fault_entries(address, regs, error_code);
1473
1474	__do_page_fault(regs, error_code, address);
1475	exception_exit(prev_state);
1476}
1477NOKPROBE_SYMBOL(do_page_fault);