Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 37	struct task_struct	*thread;
 38
 39	spinlock_t		lock;
 40	bool			enabled;	/* is this stopper enabled? */
 41	struct list_head	works;		/* list of pending works */
 42
 43	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 44};
 45
 46static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 47static bool stop_machine_initialized = false;
 48
 49/* static data for stop_cpus */
 50static DEFINE_MUTEX(stop_cpus_mutex);
 51static bool stop_cpus_in_progress;
 52
 53static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 54{
 55	memset(done, 0, sizeof(*done));
 56	atomic_set(&done->nr_todo, nr_todo);
 57	init_completion(&done->completion);
 58}
 59
 60/* signal completion unless @done is NULL */
 61static void cpu_stop_signal_done(struct cpu_stop_done *done)
 62{
 63	if (atomic_dec_and_test(&done->nr_todo))
 64		complete(&done->completion);
 65}
 66
 67static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 68					struct cpu_stop_work *work)
 69{
 70	list_add_tail(&work->list, &stopper->works);
 71	wake_up_process(stopper->thread);
 
 
 
 
 72}
 73
 74/* queue @work to @stopper.  if offline, @work is completed immediately */
 75static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 
 76{
 77	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 78	unsigned long flags;
 79	bool enabled;
 80
 81	spin_lock_irqsave(&stopper->lock, flags);
 82	enabled = stopper->enabled;
 83	if (enabled)
 84		__cpu_stop_queue_work(stopper, work);
 85	else if (work->done)
 86		cpu_stop_signal_done(work->done);
 87	spin_unlock_irqrestore(&stopper->lock, flags);
 88
 89	return enabled;
 
 
 
 
 
 
 90}
 91
 92/**
 93 * stop_one_cpu - stop a cpu
 94 * @cpu: cpu to stop
 95 * @fn: function to execute
 96 * @arg: argument to @fn
 97 *
 98 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 99 * the highest priority preempting any task on the cpu and
100 * monopolizing it.  This function returns after the execution is
101 * complete.
102 *
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes.  If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus.  @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
108 *
109 * CONTEXT:
110 * Might sleep.
111 *
112 * RETURNS:
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
115 */
116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117{
118	struct cpu_stop_done done;
119	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120
121	cpu_stop_init_done(&done, 1);
122	if (!cpu_stop_queue_work(cpu, &work))
123		return -ENOENT;
124	/*
125	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
126	 * cycle by doing a preemption:
127	 */
128	cond_resched();
129	wait_for_completion(&done.completion);
130	return done.ret;
131}
132
133/* This controls the threads on each CPU. */
134enum multi_stop_state {
135	/* Dummy starting state for thread. */
136	MULTI_STOP_NONE,
137	/* Awaiting everyone to be scheduled. */
138	MULTI_STOP_PREPARE,
139	/* Disable interrupts. */
140	MULTI_STOP_DISABLE_IRQ,
141	/* Run the function */
142	MULTI_STOP_RUN,
143	/* Exit */
144	MULTI_STOP_EXIT,
145};
146
147struct multi_stop_data {
148	cpu_stop_fn_t		fn;
149	void			*data;
150	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
151	unsigned int		num_threads;
152	const struct cpumask	*active_cpus;
153
154	enum multi_stop_state	state;
155	atomic_t		thread_ack;
156};
157
158static void set_state(struct multi_stop_data *msdata,
159		      enum multi_stop_state newstate)
160{
161	/* Reset ack counter. */
162	atomic_set(&msdata->thread_ack, msdata->num_threads);
163	smp_wmb();
164	msdata->state = newstate;
165}
166
167/* Last one to ack a state moves to the next state. */
168static void ack_state(struct multi_stop_data *msdata)
169{
170	if (atomic_dec_and_test(&msdata->thread_ack))
171		set_state(msdata, msdata->state + 1);
172}
173
174/* This is the cpu_stop function which stops the CPU. */
175static int multi_cpu_stop(void *data)
176{
177	struct multi_stop_data *msdata = data;
178	enum multi_stop_state curstate = MULTI_STOP_NONE;
179	int cpu = smp_processor_id(), err = 0;
180	unsigned long flags;
181	bool is_active;
182
183	/*
184	 * When called from stop_machine_from_inactive_cpu(), irq might
185	 * already be disabled.  Save the state and restore it on exit.
186	 */
187	local_save_flags(flags);
188
189	if (!msdata->active_cpus)
190		is_active = cpu == cpumask_first(cpu_online_mask);
191	else
192		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
193
194	/* Simple state machine */
195	do {
196		/* Chill out and ensure we re-read multi_stop_state. */
197		cpu_relax_yield();
198		if (msdata->state != curstate) {
199			curstate = msdata->state;
200			switch (curstate) {
201			case MULTI_STOP_DISABLE_IRQ:
202				local_irq_disable();
203				hard_irq_disable();
204				break;
205			case MULTI_STOP_RUN:
206				if (is_active)
207					err = msdata->fn(msdata->data);
208				break;
209			default:
210				break;
211			}
212			ack_state(msdata);
213		} else if (curstate > MULTI_STOP_PREPARE) {
214			/*
215			 * At this stage all other CPUs we depend on must spin
216			 * in the same loop. Any reason for hard-lockup should
217			 * be detected and reported on their side.
218			 */
219			touch_nmi_watchdog();
220		}
221	} while (curstate != MULTI_STOP_EXIT);
222
223	local_irq_restore(flags);
224	return err;
225}
226
227static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
228				    int cpu2, struct cpu_stop_work *work2)
229{
230	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
231	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
232	int err;
233retry:
234	spin_lock_irq(&stopper1->lock);
235	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
236
237	err = -ENOENT;
238	if (!stopper1->enabled || !stopper2->enabled)
239		goto unlock;
240	/*
241	 * Ensure that if we race with __stop_cpus() the stoppers won't get
242	 * queued up in reverse order leading to system deadlock.
243	 *
244	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
245	 * queued a work on cpu1 but not on cpu2, we hold both locks.
246	 *
247	 * It can be falsely true but it is safe to spin until it is cleared,
248	 * queue_stop_cpus_work() does everything under preempt_disable().
249	 */
250	err = -EDEADLK;
251	if (unlikely(stop_cpus_in_progress))
252			goto unlock;
253
254	err = 0;
255	__cpu_stop_queue_work(stopper1, work1);
256	__cpu_stop_queue_work(stopper2, work2);
257unlock:
258	spin_unlock(&stopper2->lock);
259	spin_unlock_irq(&stopper1->lock);
260
261	if (unlikely(err == -EDEADLK)) {
262		while (stop_cpus_in_progress)
263			cpu_relax();
264		goto retry;
265	}
266	return err;
267}
268/**
269 * stop_two_cpus - stops two cpus
270 * @cpu1: the cpu to stop
271 * @cpu2: the other cpu to stop
272 * @fn: function to execute
273 * @arg: argument to @fn
274 *
275 * Stops both the current and specified CPU and runs @fn on one of them.
276 *
277 * returns when both are completed.
278 */
279int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
280{
281	struct cpu_stop_done done;
282	struct cpu_stop_work work1, work2;
283	struct multi_stop_data msdata;
284
285	msdata = (struct multi_stop_data){
286		.fn = fn,
287		.data = arg,
288		.num_threads = 2,
289		.active_cpus = cpumask_of(cpu1),
290	};
291
292	work1 = work2 = (struct cpu_stop_work){
293		.fn = multi_cpu_stop,
294		.arg = &msdata,
295		.done = &done
296	};
297
298	cpu_stop_init_done(&done, 2);
299	set_state(&msdata, MULTI_STOP_PREPARE);
300
301	if (cpu1 > cpu2)
302		swap(cpu1, cpu2);
303	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
304		return -ENOENT;
305
306	wait_for_completion(&done.completion);
307	return done.ret;
308}
309
310/**
311 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
312 * @cpu: cpu to stop
313 * @fn: function to execute
314 * @arg: argument to @fn
315 * @work_buf: pointer to cpu_stop_work structure
316 *
317 * Similar to stop_one_cpu() but doesn't wait for completion.  The
318 * caller is responsible for ensuring @work_buf is currently unused
319 * and will remain untouched until stopper starts executing @fn.
320 *
321 * CONTEXT:
322 * Don't care.
323 *
324 * RETURNS:
325 * true if cpu_stop_work was queued successfully and @fn will be called,
326 * false otherwise.
327 */
328bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
329			struct cpu_stop_work *work_buf)
330{
331	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
332	return cpu_stop_queue_work(cpu, work_buf);
333}
334
335static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 
 
 
 
336				 cpu_stop_fn_t fn, void *arg,
337				 struct cpu_stop_done *done)
338{
339	struct cpu_stop_work *work;
340	unsigned int cpu;
341	bool queued = false;
 
 
 
 
 
 
 
342
343	/*
344	 * Disable preemption while queueing to avoid getting
345	 * preempted by a stopper which might wait for other stoppers
346	 * to enter @fn which can lead to deadlock.
347	 */
348	preempt_disable();
349	stop_cpus_in_progress = true;
350	for_each_cpu(cpu, cpumask) {
351		work = &per_cpu(cpu_stopper.stop_work, cpu);
352		work->fn = fn;
353		work->arg = arg;
354		work->done = done;
355		if (cpu_stop_queue_work(cpu, work))
356			queued = true;
357	}
358	stop_cpus_in_progress = false;
359	preempt_enable();
360
361	return queued;
362}
363
364static int __stop_cpus(const struct cpumask *cpumask,
365		       cpu_stop_fn_t fn, void *arg)
366{
367	struct cpu_stop_done done;
368
369	cpu_stop_init_done(&done, cpumask_weight(cpumask));
370	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
371		return -ENOENT;
372	wait_for_completion(&done.completion);
373	return done.ret;
374}
375
376/**
377 * stop_cpus - stop multiple cpus
378 * @cpumask: cpus to stop
379 * @fn: function to execute
380 * @arg: argument to @fn
381 *
382 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
383 * @fn is run in a process context with the highest priority
384 * preempting any task on the cpu and monopolizing it.  This function
385 * returns after all executions are complete.
386 *
387 * This function doesn't guarantee the cpus in @cpumask stay online
388 * till @fn completes.  If some cpus go down in the middle, execution
389 * on the cpu may happen partially or fully on different cpus.  @fn
390 * should either be ready for that or the caller should ensure that
391 * the cpus stay online until this function completes.
392 *
393 * All stop_cpus() calls are serialized making it safe for @fn to wait
394 * for all cpus to start executing it.
395 *
396 * CONTEXT:
397 * Might sleep.
398 *
399 * RETURNS:
400 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
401 * @cpumask were offline; otherwise, 0 if all executions of @fn
402 * returned 0, any non zero return value if any returned non zero.
403 */
404int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
405{
406	int ret;
407
408	/* static works are used, process one request at a time */
409	mutex_lock(&stop_cpus_mutex);
410	ret = __stop_cpus(cpumask, fn, arg);
411	mutex_unlock(&stop_cpus_mutex);
412	return ret;
413}
414
415/**
416 * try_stop_cpus - try to stop multiple cpus
417 * @cpumask: cpus to stop
418 * @fn: function to execute
419 * @arg: argument to @fn
420 *
421 * Identical to stop_cpus() except that it fails with -EAGAIN if
422 * someone else is already using the facility.
423 *
424 * CONTEXT:
425 * Might sleep.
426 *
427 * RETURNS:
428 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
429 * @fn(@arg) was not executed at all because all cpus in @cpumask were
430 * offline; otherwise, 0 if all executions of @fn returned 0, any non
431 * zero return value if any returned non zero.
432 */
433int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
434{
435	int ret;
436
437	/* static works are used, process one request at a time */
438	if (!mutex_trylock(&stop_cpus_mutex))
439		return -EAGAIN;
440	ret = __stop_cpus(cpumask, fn, arg);
441	mutex_unlock(&stop_cpus_mutex);
442	return ret;
443}
444
445static int cpu_stop_should_run(unsigned int cpu)
446{
447	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
448	unsigned long flags;
449	int run;
450
451	spin_lock_irqsave(&stopper->lock, flags);
452	run = !list_empty(&stopper->works);
453	spin_unlock_irqrestore(&stopper->lock, flags);
454	return run;
455}
456
457static void cpu_stopper_thread(unsigned int cpu)
458{
459	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
460	struct cpu_stop_work *work;
 
461
462repeat:
 
 
 
 
 
 
 
463	work = NULL;
464	spin_lock_irq(&stopper->lock);
465	if (!list_empty(&stopper->works)) {
466		work = list_first_entry(&stopper->works,
467					struct cpu_stop_work, list);
468		list_del_init(&work->list);
469	}
470	spin_unlock_irq(&stopper->lock);
471
472	if (work) {
473		cpu_stop_fn_t fn = work->fn;
474		void *arg = work->arg;
475		struct cpu_stop_done *done = work->done;
476		int ret;
 
 
 
 
 
477
478		/* cpu stop callbacks must not sleep, make in_atomic() == T */
479		preempt_count_inc();
480		ret = fn(arg);
481		if (done) {
482			if (ret)
483				done->ret = ret;
484			cpu_stop_signal_done(done);
485		}
486		preempt_count_dec();
487		WARN_ONCE(preempt_count(),
488			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
489		goto repeat;
490	}
491}
 
 
 
492
493void stop_machine_park(int cpu)
494{
495	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
496	/*
497	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
498	 * the pending works before it parks, until then it is fine to queue
499	 * the new works.
500	 */
501	stopper->enabled = false;
502	kthread_park(stopper->thread);
503}
504
505extern void sched_set_stop_task(int cpu, struct task_struct *stop);
506
507static void cpu_stop_create(unsigned int cpu)
508{
509	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
510}
511
512static void cpu_stop_park(unsigned int cpu)
513{
 
514	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
515
516	WARN_ON(!list_empty(&stopper->works));
517}
518
519void stop_machine_unpark(int cpu)
520{
521	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522
523	stopper->enabled = true;
524	kthread_unpark(stopper->thread);
525}
526
527static struct smp_hotplug_thread cpu_stop_threads = {
528	.store			= &cpu_stopper.thread,
529	.thread_should_run	= cpu_stop_should_run,
530	.thread_fn		= cpu_stopper_thread,
531	.thread_comm		= "migration/%u",
532	.create			= cpu_stop_create,
533	.park			= cpu_stop_park,
534	.selfparking		= true,
535};
536
537static int __init cpu_stop_init(void)
538{
 
539	unsigned int cpu;
 
540
541	for_each_possible_cpu(cpu) {
542		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
543
544		spin_lock_init(&stopper->lock);
545		INIT_LIST_HEAD(&stopper->works);
546	}
547
548	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
549	stop_machine_unpark(raw_smp_processor_id());
 
 
 
 
 
550	stop_machine_initialized = true;
 
551	return 0;
552}
553early_initcall(cpu_stop_init);
554
555static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556{
557	struct multi_stop_data msdata = {
558		.fn = fn,
559		.data = data,
560		.num_threads = num_online_cpus(),
561		.active_cpus = cpus,
562	};
563
564	if (!stop_machine_initialized) {
565		/*
566		 * Handle the case where stop_machine() is called
567		 * early in boot before stop_machine() has been
568		 * initialized.
569		 */
570		unsigned long flags;
571		int ret;
572
573		WARN_ON_ONCE(msdata.num_threads != 1);
574
575		local_irq_save(flags);
576		hard_irq_disable();
577		ret = (*fn)(data);
578		local_irq_restore(flags);
579
580		return ret;
581	}
582
583	/* Set the initial state and stop all online cpus. */
584	set_state(&msdata, MULTI_STOP_PREPARE);
585	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
586}
587
588int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
589{
590	int ret;
591
592	/* No CPUs can come up or down during this. */
593	get_online_cpus();
594	ret = __stop_machine(fn, data, cpus);
595	put_online_cpus();
596	return ret;
597}
598EXPORT_SYMBOL_GPL(stop_machine);
599
600/**
601 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
602 * @fn: the function to run
603 * @data: the data ptr for the @fn()
604 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
605 *
606 * This is identical to stop_machine() but can be called from a CPU which
607 * is not active.  The local CPU is in the process of hotplug (so no other
608 * CPU hotplug can start) and not marked active and doesn't have enough
609 * context to sleep.
610 *
611 * This function provides stop_machine() functionality for such state by
612 * using busy-wait for synchronization and executing @fn directly for local
613 * CPU.
614 *
615 * CONTEXT:
616 * Local CPU is inactive.  Temporarily stops all active CPUs.
617 *
618 * RETURNS:
619 * 0 if all executions of @fn returned 0, any non zero return value if any
620 * returned non zero.
621 */
622int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
623				  const struct cpumask *cpus)
624{
625	struct multi_stop_data msdata = { .fn = fn, .data = data,
626					    .active_cpus = cpus };
627	struct cpu_stop_done done;
628	int ret;
629
630	/* Local CPU must be inactive and CPU hotplug in progress. */
631	BUG_ON(cpu_active(raw_smp_processor_id()));
632	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
633
634	/* No proper task established and can't sleep - busy wait for lock. */
635	while (!mutex_trylock(&stop_cpus_mutex))
636		cpu_relax();
637
638	/* Schedule work on other CPUs and execute directly for local CPU */
639	set_state(&msdata, MULTI_STOP_PREPARE);
640	cpu_stop_init_done(&done, num_active_cpus());
641	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
642			     &done);
643	ret = multi_cpu_stop(&msdata);
644
645	/* Busy wait for completion. */
646	while (!completion_done(&done.completion))
647		cpu_relax();
648
649	mutex_unlock(&stop_cpus_mutex);
650	return ret ?: done.ret;
651}
v3.5.6
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21
 22#include <linux/atomic.h>
 
 23
 24/*
 25 * Structure to determine completion condition and record errors.  May
 26 * be shared by works on different cpus.
 27 */
 28struct cpu_stop_done {
 29	atomic_t		nr_todo;	/* nr left to execute */
 30	bool			executed;	/* actually executed? */
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 
 
 37	spinlock_t		lock;
 38	bool			enabled;	/* is this stopper enabled? */
 39	struct list_head	works;		/* list of pending works */
 40	struct task_struct	*thread;	/* stopper thread */
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 44static bool stop_machine_initialized = false;
 45
 
 
 
 
 46static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 47{
 48	memset(done, 0, sizeof(*done));
 49	atomic_set(&done->nr_todo, nr_todo);
 50	init_completion(&done->completion);
 51}
 52
 53/* signal completion unless @done is NULL */
 54static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 
 
 
 
 
 
 
 55{
 56	if (done) {
 57		if (executed)
 58			done->executed = true;
 59		if (atomic_dec_and_test(&done->nr_todo))
 60			complete(&done->completion);
 61	}
 62}
 63
 64/* queue @work to @stopper.  if offline, @work is completed immediately */
 65static void cpu_stop_queue_work(struct cpu_stopper *stopper,
 66				struct cpu_stop_work *work)
 67{
 
 68	unsigned long flags;
 
 69
 70	spin_lock_irqsave(&stopper->lock, flags);
 
 
 
 
 
 
 71
 72	if (stopper->enabled) {
 73		list_add_tail(&work->list, &stopper->works);
 74		wake_up_process(stopper->thread);
 75	} else
 76		cpu_stop_signal_done(work->done, false);
 77
 78	spin_unlock_irqrestore(&stopper->lock, flags);
 79}
 80
 81/**
 82 * stop_one_cpu - stop a cpu
 83 * @cpu: cpu to stop
 84 * @fn: function to execute
 85 * @arg: argument to @fn
 86 *
 87 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 88 * the highest priority preempting any task on the cpu and
 89 * monopolizing it.  This function returns after the execution is
 90 * complete.
 91 *
 92 * This function doesn't guarantee @cpu stays online till @fn
 93 * completes.  If @cpu goes down in the middle, execution may happen
 94 * partially or fully on different cpus.  @fn should either be ready
 95 * for that or the caller should ensure that @cpu stays online until
 96 * this function completes.
 97 *
 98 * CONTEXT:
 99 * Might sleep.
100 *
101 * RETURNS:
102 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
103 * otherwise, the return value of @fn.
104 */
105int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
106{
107	struct cpu_stop_done done;
108	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
109
110	cpu_stop_init_done(&done, 1);
111	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
 
 
 
 
 
 
112	wait_for_completion(&done.completion);
113	return done.executed ? done.ret : -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114}
115
116/**
117 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
118 * @cpu: cpu to stop
119 * @fn: function to execute
120 * @arg: argument to @fn
 
121 *
122 * Similar to stop_one_cpu() but doesn't wait for completion.  The
123 * caller is responsible for ensuring @work_buf is currently unused
124 * and will remain untouched until stopper starts executing @fn.
125 *
126 * CONTEXT:
127 * Don't care.
 
 
 
 
128 */
129void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
130			struct cpu_stop_work *work_buf)
131{
132	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
133	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
134}
135
136/* static data for stop_cpus */
137static DEFINE_MUTEX(stop_cpus_mutex);
138static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
139
140static void queue_stop_cpus_work(const struct cpumask *cpumask,
141				 cpu_stop_fn_t fn, void *arg,
142				 struct cpu_stop_done *done)
143{
144	struct cpu_stop_work *work;
145	unsigned int cpu;
146
147	/* initialize works and done */
148	for_each_cpu(cpu, cpumask) {
149		work = &per_cpu(stop_cpus_work, cpu);
150		work->fn = fn;
151		work->arg = arg;
152		work->done = done;
153	}
154
155	/*
156	 * Disable preemption while queueing to avoid getting
157	 * preempted by a stopper which might wait for other stoppers
158	 * to enter @fn which can lead to deadlock.
159	 */
160	preempt_disable();
161	for_each_cpu(cpu, cpumask)
162		cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
163				    &per_cpu(stop_cpus_work, cpu));
 
 
 
 
 
 
 
164	preempt_enable();
 
 
165}
166
167static int __stop_cpus(const struct cpumask *cpumask,
168		       cpu_stop_fn_t fn, void *arg)
169{
170	struct cpu_stop_done done;
171
172	cpu_stop_init_done(&done, cpumask_weight(cpumask));
173	queue_stop_cpus_work(cpumask, fn, arg, &done);
 
174	wait_for_completion(&done.completion);
175	return done.executed ? done.ret : -ENOENT;
176}
177
178/**
179 * stop_cpus - stop multiple cpus
180 * @cpumask: cpus to stop
181 * @fn: function to execute
182 * @arg: argument to @fn
183 *
184 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
185 * @fn is run in a process context with the highest priority
186 * preempting any task on the cpu and monopolizing it.  This function
187 * returns after all executions are complete.
188 *
189 * This function doesn't guarantee the cpus in @cpumask stay online
190 * till @fn completes.  If some cpus go down in the middle, execution
191 * on the cpu may happen partially or fully on different cpus.  @fn
192 * should either be ready for that or the caller should ensure that
193 * the cpus stay online until this function completes.
194 *
195 * All stop_cpus() calls are serialized making it safe for @fn to wait
196 * for all cpus to start executing it.
197 *
198 * CONTEXT:
199 * Might sleep.
200 *
201 * RETURNS:
202 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
203 * @cpumask were offline; otherwise, 0 if all executions of @fn
204 * returned 0, any non zero return value if any returned non zero.
205 */
206int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
207{
208	int ret;
209
210	/* static works are used, process one request at a time */
211	mutex_lock(&stop_cpus_mutex);
212	ret = __stop_cpus(cpumask, fn, arg);
213	mutex_unlock(&stop_cpus_mutex);
214	return ret;
215}
216
217/**
218 * try_stop_cpus - try to stop multiple cpus
219 * @cpumask: cpus to stop
220 * @fn: function to execute
221 * @arg: argument to @fn
222 *
223 * Identical to stop_cpus() except that it fails with -EAGAIN if
224 * someone else is already using the facility.
225 *
226 * CONTEXT:
227 * Might sleep.
228 *
229 * RETURNS:
230 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
231 * @fn(@arg) was not executed at all because all cpus in @cpumask were
232 * offline; otherwise, 0 if all executions of @fn returned 0, any non
233 * zero return value if any returned non zero.
234 */
235int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
236{
237	int ret;
238
239	/* static works are used, process one request at a time */
240	if (!mutex_trylock(&stop_cpus_mutex))
241		return -EAGAIN;
242	ret = __stop_cpus(cpumask, fn, arg);
243	mutex_unlock(&stop_cpus_mutex);
244	return ret;
245}
246
247static int cpu_stopper_thread(void *data)
 
 
 
 
 
 
 
 
 
 
 
 
248{
249	struct cpu_stopper *stopper = data;
250	struct cpu_stop_work *work;
251	int ret;
252
253repeat:
254	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
255
256	if (kthread_should_stop()) {
257		__set_current_state(TASK_RUNNING);
258		return 0;
259	}
260
261	work = NULL;
262	spin_lock_irq(&stopper->lock);
263	if (!list_empty(&stopper->works)) {
264		work = list_first_entry(&stopper->works,
265					struct cpu_stop_work, list);
266		list_del_init(&work->list);
267	}
268	spin_unlock_irq(&stopper->lock);
269
270	if (work) {
271		cpu_stop_fn_t fn = work->fn;
272		void *arg = work->arg;
273		struct cpu_stop_done *done = work->done;
274		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
275
276		__set_current_state(TASK_RUNNING);
277
278		/* cpu stop callbacks are not allowed to sleep */
279		preempt_disable();
280
 
 
281		ret = fn(arg);
282		if (ret)
283			done->ret = ret;
284
285		/* restore preemption and check it's still balanced */
286		preempt_enable();
 
287		WARN_ONCE(preempt_count(),
288			  "cpu_stop: %s(%p) leaked preempt count\n",
289			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
290					  ksym_buf), arg);
291
292		cpu_stop_signal_done(done, true);
293	} else
294		schedule();
295
296	goto repeat;
 
 
 
 
 
 
 
 
 
297}
298
299extern void sched_set_stop_task(int cpu, struct task_struct *stop);
300
301/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
302static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
303					   unsigned long action, void *hcpu)
 
 
 
304{
305	unsigned int cpu = (unsigned long)hcpu;
306	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
307	struct task_struct *p;
308
309	switch (action & ~CPU_TASKS_FROZEN) {
310	case CPU_UP_PREPARE:
311		BUG_ON(stopper->thread || stopper->enabled ||
312		       !list_empty(&stopper->works));
313		p = kthread_create_on_node(cpu_stopper_thread,
314					   stopper,
315					   cpu_to_node(cpu),
316					   "migration/%d", cpu);
317		if (IS_ERR(p))
318			return notifier_from_errno(PTR_ERR(p));
319		get_task_struct(p);
320		kthread_bind(p, cpu);
321		sched_set_stop_task(cpu, p);
322		stopper->thread = p;
323		break;
324
325	case CPU_ONLINE:
326		/* strictly unnecessary, as first user will wake it */
327		wake_up_process(stopper->thread);
328		/* mark enabled */
329		spin_lock_irq(&stopper->lock);
330		stopper->enabled = true;
331		spin_unlock_irq(&stopper->lock);
332		break;
333
334#ifdef CONFIG_HOTPLUG_CPU
335	case CPU_UP_CANCELED:
336	case CPU_POST_DEAD:
337	{
338		struct cpu_stop_work *work;
339
340		sched_set_stop_task(cpu, NULL);
341		/* kill the stopper */
342		kthread_stop(stopper->thread);
343		/* drain remaining works */
344		spin_lock_irq(&stopper->lock);
345		list_for_each_entry(work, &stopper->works, list)
346			cpu_stop_signal_done(work->done, false);
347		stopper->enabled = false;
348		spin_unlock_irq(&stopper->lock);
349		/* release the stopper */
350		put_task_struct(stopper->thread);
351		stopper->thread = NULL;
352		break;
353	}
354#endif
355	}
356
357	return NOTIFY_OK;
 
358}
359
360/*
361 * Give it a higher priority so that cpu stopper is available to other
362 * cpu notifiers.  It currently shares the same priority as sched
363 * migration_notifier.
364 */
365static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
366	.notifier_call	= cpu_stop_cpu_callback,
367	.priority	= 10,
368};
369
370static int __init cpu_stop_init(void)
371{
372	void *bcpu = (void *)(long)smp_processor_id();
373	unsigned int cpu;
374	int err;
375
376	for_each_possible_cpu(cpu) {
377		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
378
379		spin_lock_init(&stopper->lock);
380		INIT_LIST_HEAD(&stopper->works);
381	}
382
383	/* start one for the boot cpu */
384	err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
385				    bcpu);
386	BUG_ON(err != NOTIFY_OK);
387	cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
388	register_cpu_notifier(&cpu_stop_cpu_notifier);
389
390	stop_machine_initialized = true;
391
392	return 0;
393}
394early_initcall(cpu_stop_init);
395
396#ifdef CONFIG_STOP_MACHINE
397
398/* This controls the threads on each CPU. */
399enum stopmachine_state {
400	/* Dummy starting state for thread. */
401	STOPMACHINE_NONE,
402	/* Awaiting everyone to be scheduled. */
403	STOPMACHINE_PREPARE,
404	/* Disable interrupts. */
405	STOPMACHINE_DISABLE_IRQ,
406	/* Run the function */
407	STOPMACHINE_RUN,
408	/* Exit */
409	STOPMACHINE_EXIT,
410};
411
412struct stop_machine_data {
413	int			(*fn)(void *);
414	void			*data;
415	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
416	unsigned int		num_threads;
417	const struct cpumask	*active_cpus;
418
419	enum stopmachine_state	state;
420	atomic_t		thread_ack;
421};
422
423static void set_state(struct stop_machine_data *smdata,
424		      enum stopmachine_state newstate)
425{
426	/* Reset ack counter. */
427	atomic_set(&smdata->thread_ack, smdata->num_threads);
428	smp_wmb();
429	smdata->state = newstate;
430}
431
432/* Last one to ack a state moves to the next state. */
433static void ack_state(struct stop_machine_data *smdata)
434{
435	if (atomic_dec_and_test(&smdata->thread_ack))
436		set_state(smdata, smdata->state + 1);
437}
438
439/* This is the cpu_stop function which stops the CPU. */
440static int stop_machine_cpu_stop(void *data)
441{
442	struct stop_machine_data *smdata = data;
443	enum stopmachine_state curstate = STOPMACHINE_NONE;
444	int cpu = smp_processor_id(), err = 0;
445	unsigned long flags;
446	bool is_active;
447
448	/*
449	 * When called from stop_machine_from_inactive_cpu(), irq might
450	 * already be disabled.  Save the state and restore it on exit.
451	 */
452	local_save_flags(flags);
453
454	if (!smdata->active_cpus)
455		is_active = cpu == cpumask_first(cpu_online_mask);
456	else
457		is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
458
459	/* Simple state machine */
460	do {
461		/* Chill out and ensure we re-read stopmachine_state. */
462		cpu_relax();
463		if (smdata->state != curstate) {
464			curstate = smdata->state;
465			switch (curstate) {
466			case STOPMACHINE_DISABLE_IRQ:
467				local_irq_disable();
468				hard_irq_disable();
469				break;
470			case STOPMACHINE_RUN:
471				if (is_active)
472					err = smdata->fn(smdata->data);
473				break;
474			default:
475				break;
476			}
477			ack_state(smdata);
478		}
479	} while (curstate != STOPMACHINE_EXIT);
480
481	local_irq_restore(flags);
482	return err;
483}
484
485int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
486{
487	struct stop_machine_data smdata = { .fn = fn, .data = data,
488					    .num_threads = num_online_cpus(),
489					    .active_cpus = cpus };
 
 
 
490
491	if (!stop_machine_initialized) {
492		/*
493		 * Handle the case where stop_machine() is called
494		 * early in boot before stop_machine() has been
495		 * initialized.
496		 */
497		unsigned long flags;
498		int ret;
499
500		WARN_ON_ONCE(smdata.num_threads != 1);
501
502		local_irq_save(flags);
503		hard_irq_disable();
504		ret = (*fn)(data);
505		local_irq_restore(flags);
506
507		return ret;
508	}
509
510	/* Set the initial state and stop all online cpus. */
511	set_state(&smdata, STOPMACHINE_PREPARE);
512	return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
513}
514
515int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
516{
517	int ret;
518
519	/* No CPUs can come up or down during this. */
520	get_online_cpus();
521	ret = __stop_machine(fn, data, cpus);
522	put_online_cpus();
523	return ret;
524}
525EXPORT_SYMBOL_GPL(stop_machine);
526
527/**
528 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
529 * @fn: the function to run
530 * @data: the data ptr for the @fn()
531 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
532 *
533 * This is identical to stop_machine() but can be called from a CPU which
534 * is not active.  The local CPU is in the process of hotplug (so no other
535 * CPU hotplug can start) and not marked active and doesn't have enough
536 * context to sleep.
537 *
538 * This function provides stop_machine() functionality for such state by
539 * using busy-wait for synchronization and executing @fn directly for local
540 * CPU.
541 *
542 * CONTEXT:
543 * Local CPU is inactive.  Temporarily stops all active CPUs.
544 *
545 * RETURNS:
546 * 0 if all executions of @fn returned 0, any non zero return value if any
547 * returned non zero.
548 */
549int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
550				  const struct cpumask *cpus)
551{
552	struct stop_machine_data smdata = { .fn = fn, .data = data,
553					    .active_cpus = cpus };
554	struct cpu_stop_done done;
555	int ret;
556
557	/* Local CPU must be inactive and CPU hotplug in progress. */
558	BUG_ON(cpu_active(raw_smp_processor_id()));
559	smdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
560
561	/* No proper task established and can't sleep - busy wait for lock. */
562	while (!mutex_trylock(&stop_cpus_mutex))
563		cpu_relax();
564
565	/* Schedule work on other CPUs and execute directly for local CPU */
566	set_state(&smdata, STOPMACHINE_PREPARE);
567	cpu_stop_init_done(&done, num_active_cpus());
568	queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
569			     &done);
570	ret = stop_machine_cpu_stop(&smdata);
571
572	/* Busy wait for completion. */
573	while (!completion_done(&done.completion))
574		cpu_relax();
575
576	mutex_unlock(&stop_cpus_mutex);
577	return ret ?: done.ret;
578}
579
580#endif	/* CONFIG_STOP_MACHINE */