Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 37	struct task_struct	*thread;
 38
 39	spinlock_t		lock;
 40	bool			enabled;	/* is this stopper enabled? */
 41	struct list_head	works;		/* list of pending works */
 42
 43	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 44};
 45
 46static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 47static bool stop_machine_initialized = false;
 48
 49/* static data for stop_cpus */
 50static DEFINE_MUTEX(stop_cpus_mutex);
 51static bool stop_cpus_in_progress;
 52
 53static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 54{
 55	memset(done, 0, sizeof(*done));
 56	atomic_set(&done->nr_todo, nr_todo);
 57	init_completion(&done->completion);
 58}
 59
 60/* signal completion unless @done is NULL */
 61static void cpu_stop_signal_done(struct cpu_stop_done *done)
 62{
 63	if (atomic_dec_and_test(&done->nr_todo))
 64		complete(&done->completion);
 65}
 66
 67static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 68					struct cpu_stop_work *work)
 
 69{
 70	list_add_tail(&work->list, &stopper->works);
 71	wake_up_process(stopper->thread);
 72}
 73
 74/* queue @work to @stopper.  if offline, @work is completed immediately */
 75static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 76{
 77	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 78	unsigned long flags;
 79	bool enabled;
 80
 81	spin_lock_irqsave(&stopper->lock, flags);
 82	enabled = stopper->enabled;
 83	if (enabled)
 84		__cpu_stop_queue_work(stopper, work);
 85	else if (work->done)
 86		cpu_stop_signal_done(work->done);
 87	spin_unlock_irqrestore(&stopper->lock, flags);
 88
 
 
 89	return enabled;
 90}
 91
 92/**
 93 * stop_one_cpu - stop a cpu
 94 * @cpu: cpu to stop
 95 * @fn: function to execute
 96 * @arg: argument to @fn
 97 *
 98 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 99 * the highest priority preempting any task on the cpu and
100 * monopolizing it.  This function returns after the execution is
101 * complete.
102 *
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes.  If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus.  @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
108 *
109 * CONTEXT:
110 * Might sleep.
111 *
112 * RETURNS:
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
115 */
116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117{
118	struct cpu_stop_done done;
119	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120
121	cpu_stop_init_done(&done, 1);
122	if (!cpu_stop_queue_work(cpu, &work))
123		return -ENOENT;
124	/*
125	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
126	 * cycle by doing a preemption:
127	 */
128	cond_resched();
129	wait_for_completion(&done.completion);
130	return done.ret;
131}
132
133/* This controls the threads on each CPU. */
134enum multi_stop_state {
135	/* Dummy starting state for thread. */
136	MULTI_STOP_NONE,
137	/* Awaiting everyone to be scheduled. */
138	MULTI_STOP_PREPARE,
139	/* Disable interrupts. */
140	MULTI_STOP_DISABLE_IRQ,
141	/* Run the function */
142	MULTI_STOP_RUN,
143	/* Exit */
144	MULTI_STOP_EXIT,
145};
146
147struct multi_stop_data {
148	cpu_stop_fn_t		fn;
149	void			*data;
150	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
151	unsigned int		num_threads;
152	const struct cpumask	*active_cpus;
153
154	enum multi_stop_state	state;
155	atomic_t		thread_ack;
156};
157
158static void set_state(struct multi_stop_data *msdata,
159		      enum multi_stop_state newstate)
160{
161	/* Reset ack counter. */
162	atomic_set(&msdata->thread_ack, msdata->num_threads);
163	smp_wmb();
164	msdata->state = newstate;
165}
166
167/* Last one to ack a state moves to the next state. */
168static void ack_state(struct multi_stop_data *msdata)
169{
170	if (atomic_dec_and_test(&msdata->thread_ack))
171		set_state(msdata, msdata->state + 1);
172}
173
174/* This is the cpu_stop function which stops the CPU. */
175static int multi_cpu_stop(void *data)
176{
177	struct multi_stop_data *msdata = data;
178	enum multi_stop_state curstate = MULTI_STOP_NONE;
179	int cpu = smp_processor_id(), err = 0;
180	unsigned long flags;
181	bool is_active;
182
183	/*
184	 * When called from stop_machine_from_inactive_cpu(), irq might
185	 * already be disabled.  Save the state and restore it on exit.
186	 */
187	local_save_flags(flags);
188
189	if (!msdata->active_cpus)
190		is_active = cpu == cpumask_first(cpu_online_mask);
191	else
192		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
193
194	/* Simple state machine */
195	do {
196		/* Chill out and ensure we re-read multi_stop_state. */
197		cpu_relax_yield();
198		if (msdata->state != curstate) {
199			curstate = msdata->state;
200			switch (curstate) {
201			case MULTI_STOP_DISABLE_IRQ:
202				local_irq_disable();
203				hard_irq_disable();
204				break;
205			case MULTI_STOP_RUN:
206				if (is_active)
207					err = msdata->fn(msdata->data);
208				break;
209			default:
210				break;
211			}
212			ack_state(msdata);
213		} else if (curstate > MULTI_STOP_PREPARE) {
214			/*
215			 * At this stage all other CPUs we depend on must spin
216			 * in the same loop. Any reason for hard-lockup should
217			 * be detected and reported on their side.
218			 */
219			touch_nmi_watchdog();
220		}
221	} while (curstate != MULTI_STOP_EXIT);
222
223	local_irq_restore(flags);
224	return err;
225}
226
227static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
228				    int cpu2, struct cpu_stop_work *work2)
229{
230	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
231	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
 
232	int err;
233retry:
234	spin_lock_irq(&stopper1->lock);
235	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
236
237	err = -ENOENT;
238	if (!stopper1->enabled || !stopper2->enabled)
239		goto unlock;
240	/*
241	 * Ensure that if we race with __stop_cpus() the stoppers won't get
242	 * queued up in reverse order leading to system deadlock.
243	 *
244	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
245	 * queued a work on cpu1 but not on cpu2, we hold both locks.
246	 *
247	 * It can be falsely true but it is safe to spin until it is cleared,
248	 * queue_stop_cpus_work() does everything under preempt_disable().
249	 */
250	err = -EDEADLK;
251	if (unlikely(stop_cpus_in_progress))
252			goto unlock;
253
254	err = 0;
255	__cpu_stop_queue_work(stopper1, work1);
256	__cpu_stop_queue_work(stopper2, work2);
257unlock:
258	spin_unlock(&stopper2->lock);
259	spin_unlock_irq(&stopper1->lock);
260
261	if (unlikely(err == -EDEADLK)) {
262		while (stop_cpus_in_progress)
263			cpu_relax();
264		goto retry;
265	}
 
 
 
266	return err;
267}
268/**
269 * stop_two_cpus - stops two cpus
270 * @cpu1: the cpu to stop
271 * @cpu2: the other cpu to stop
272 * @fn: function to execute
273 * @arg: argument to @fn
274 *
275 * Stops both the current and specified CPU and runs @fn on one of them.
276 *
277 * returns when both are completed.
278 */
279int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
280{
281	struct cpu_stop_done done;
282	struct cpu_stop_work work1, work2;
283	struct multi_stop_data msdata;
284
285	msdata = (struct multi_stop_data){
286		.fn = fn,
287		.data = arg,
288		.num_threads = 2,
289		.active_cpus = cpumask_of(cpu1),
290	};
291
292	work1 = work2 = (struct cpu_stop_work){
293		.fn = multi_cpu_stop,
294		.arg = &msdata,
295		.done = &done
296	};
297
298	cpu_stop_init_done(&done, 2);
299	set_state(&msdata, MULTI_STOP_PREPARE);
300
301	if (cpu1 > cpu2)
302		swap(cpu1, cpu2);
303	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
304		return -ENOENT;
305
306	wait_for_completion(&done.completion);
307	return done.ret;
308}
309
310/**
311 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
312 * @cpu: cpu to stop
313 * @fn: function to execute
314 * @arg: argument to @fn
315 * @work_buf: pointer to cpu_stop_work structure
316 *
317 * Similar to stop_one_cpu() but doesn't wait for completion.  The
318 * caller is responsible for ensuring @work_buf is currently unused
319 * and will remain untouched until stopper starts executing @fn.
320 *
321 * CONTEXT:
322 * Don't care.
323 *
324 * RETURNS:
325 * true if cpu_stop_work was queued successfully and @fn will be called,
326 * false otherwise.
327 */
328bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
329			struct cpu_stop_work *work_buf)
330{
331	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
332	return cpu_stop_queue_work(cpu, work_buf);
333}
334
335static bool queue_stop_cpus_work(const struct cpumask *cpumask,
336				 cpu_stop_fn_t fn, void *arg,
337				 struct cpu_stop_done *done)
338{
339	struct cpu_stop_work *work;
340	unsigned int cpu;
341	bool queued = false;
342
343	/*
344	 * Disable preemption while queueing to avoid getting
345	 * preempted by a stopper which might wait for other stoppers
346	 * to enter @fn which can lead to deadlock.
347	 */
348	preempt_disable();
349	stop_cpus_in_progress = true;
350	for_each_cpu(cpu, cpumask) {
351		work = &per_cpu(cpu_stopper.stop_work, cpu);
352		work->fn = fn;
353		work->arg = arg;
354		work->done = done;
355		if (cpu_stop_queue_work(cpu, work))
356			queued = true;
357	}
358	stop_cpus_in_progress = false;
359	preempt_enable();
360
361	return queued;
362}
363
364static int __stop_cpus(const struct cpumask *cpumask,
365		       cpu_stop_fn_t fn, void *arg)
366{
367	struct cpu_stop_done done;
368
369	cpu_stop_init_done(&done, cpumask_weight(cpumask));
370	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
371		return -ENOENT;
372	wait_for_completion(&done.completion);
373	return done.ret;
374}
375
376/**
377 * stop_cpus - stop multiple cpus
378 * @cpumask: cpus to stop
379 * @fn: function to execute
380 * @arg: argument to @fn
381 *
382 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
383 * @fn is run in a process context with the highest priority
384 * preempting any task on the cpu and monopolizing it.  This function
385 * returns after all executions are complete.
386 *
387 * This function doesn't guarantee the cpus in @cpumask stay online
388 * till @fn completes.  If some cpus go down in the middle, execution
389 * on the cpu may happen partially or fully on different cpus.  @fn
390 * should either be ready for that or the caller should ensure that
391 * the cpus stay online until this function completes.
392 *
393 * All stop_cpus() calls are serialized making it safe for @fn to wait
394 * for all cpus to start executing it.
395 *
396 * CONTEXT:
397 * Might sleep.
398 *
399 * RETURNS:
400 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
401 * @cpumask were offline; otherwise, 0 if all executions of @fn
402 * returned 0, any non zero return value if any returned non zero.
403 */
404int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
405{
406	int ret;
407
408	/* static works are used, process one request at a time */
409	mutex_lock(&stop_cpus_mutex);
410	ret = __stop_cpus(cpumask, fn, arg);
411	mutex_unlock(&stop_cpus_mutex);
412	return ret;
413}
414
415/**
416 * try_stop_cpus - try to stop multiple cpus
417 * @cpumask: cpus to stop
418 * @fn: function to execute
419 * @arg: argument to @fn
420 *
421 * Identical to stop_cpus() except that it fails with -EAGAIN if
422 * someone else is already using the facility.
423 *
424 * CONTEXT:
425 * Might sleep.
426 *
427 * RETURNS:
428 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
429 * @fn(@arg) was not executed at all because all cpus in @cpumask were
430 * offline; otherwise, 0 if all executions of @fn returned 0, any non
431 * zero return value if any returned non zero.
432 */
433int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
434{
435	int ret;
436
437	/* static works are used, process one request at a time */
438	if (!mutex_trylock(&stop_cpus_mutex))
439		return -EAGAIN;
440	ret = __stop_cpus(cpumask, fn, arg);
441	mutex_unlock(&stop_cpus_mutex);
442	return ret;
443}
444
445static int cpu_stop_should_run(unsigned int cpu)
446{
447	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
448	unsigned long flags;
449	int run;
450
451	spin_lock_irqsave(&stopper->lock, flags);
452	run = !list_empty(&stopper->works);
453	spin_unlock_irqrestore(&stopper->lock, flags);
454	return run;
455}
456
457static void cpu_stopper_thread(unsigned int cpu)
458{
459	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
460	struct cpu_stop_work *work;
461
462repeat:
463	work = NULL;
464	spin_lock_irq(&stopper->lock);
465	if (!list_empty(&stopper->works)) {
466		work = list_first_entry(&stopper->works,
467					struct cpu_stop_work, list);
468		list_del_init(&work->list);
469	}
470	spin_unlock_irq(&stopper->lock);
471
472	if (work) {
473		cpu_stop_fn_t fn = work->fn;
474		void *arg = work->arg;
475		struct cpu_stop_done *done = work->done;
476		int ret;
477
478		/* cpu stop callbacks must not sleep, make in_atomic() == T */
479		preempt_count_inc();
480		ret = fn(arg);
481		if (done) {
482			if (ret)
483				done->ret = ret;
484			cpu_stop_signal_done(done);
485		}
486		preempt_count_dec();
487		WARN_ONCE(preempt_count(),
488			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
489		goto repeat;
490	}
491}
492
493void stop_machine_park(int cpu)
494{
495	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
496	/*
497	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
498	 * the pending works before it parks, until then it is fine to queue
499	 * the new works.
500	 */
501	stopper->enabled = false;
502	kthread_park(stopper->thread);
503}
504
505extern void sched_set_stop_task(int cpu, struct task_struct *stop);
506
507static void cpu_stop_create(unsigned int cpu)
508{
509	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
510}
511
512static void cpu_stop_park(unsigned int cpu)
513{
514	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
515
516	WARN_ON(!list_empty(&stopper->works));
517}
518
519void stop_machine_unpark(int cpu)
520{
521	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
522
523	stopper->enabled = true;
524	kthread_unpark(stopper->thread);
525}
526
527static struct smp_hotplug_thread cpu_stop_threads = {
528	.store			= &cpu_stopper.thread,
529	.thread_should_run	= cpu_stop_should_run,
530	.thread_fn		= cpu_stopper_thread,
531	.thread_comm		= "migration/%u",
532	.create			= cpu_stop_create,
533	.park			= cpu_stop_park,
534	.selfparking		= true,
535};
536
537static int __init cpu_stop_init(void)
538{
539	unsigned int cpu;
540
541	for_each_possible_cpu(cpu) {
542		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
543
544		spin_lock_init(&stopper->lock);
545		INIT_LIST_HEAD(&stopper->works);
546	}
547
548	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
549	stop_machine_unpark(raw_smp_processor_id());
550	stop_machine_initialized = true;
551	return 0;
552}
553early_initcall(cpu_stop_init);
554
555static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 
556{
557	struct multi_stop_data msdata = {
558		.fn = fn,
559		.data = data,
560		.num_threads = num_online_cpus(),
561		.active_cpus = cpus,
562	};
563
 
 
564	if (!stop_machine_initialized) {
565		/*
566		 * Handle the case where stop_machine() is called
567		 * early in boot before stop_machine() has been
568		 * initialized.
569		 */
570		unsigned long flags;
571		int ret;
572
573		WARN_ON_ONCE(msdata.num_threads != 1);
574
575		local_irq_save(flags);
576		hard_irq_disable();
577		ret = (*fn)(data);
578		local_irq_restore(flags);
579
580		return ret;
581	}
582
583	/* Set the initial state and stop all online cpus. */
584	set_state(&msdata, MULTI_STOP_PREPARE);
585	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
586}
587
588int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
589{
590	int ret;
591
592	/* No CPUs can come up or down during this. */
593	get_online_cpus();
594	ret = __stop_machine(fn, data, cpus);
595	put_online_cpus();
596	return ret;
597}
598EXPORT_SYMBOL_GPL(stop_machine);
599
600/**
601 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
602 * @fn: the function to run
603 * @data: the data ptr for the @fn()
604 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
605 *
606 * This is identical to stop_machine() but can be called from a CPU which
607 * is not active.  The local CPU is in the process of hotplug (so no other
608 * CPU hotplug can start) and not marked active and doesn't have enough
609 * context to sleep.
610 *
611 * This function provides stop_machine() functionality for such state by
612 * using busy-wait for synchronization and executing @fn directly for local
613 * CPU.
614 *
615 * CONTEXT:
616 * Local CPU is inactive.  Temporarily stops all active CPUs.
617 *
618 * RETURNS:
619 * 0 if all executions of @fn returned 0, any non zero return value if any
620 * returned non zero.
621 */
622int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
623				  const struct cpumask *cpus)
624{
625	struct multi_stop_data msdata = { .fn = fn, .data = data,
626					    .active_cpus = cpus };
627	struct cpu_stop_done done;
628	int ret;
629
630	/* Local CPU must be inactive and CPU hotplug in progress. */
631	BUG_ON(cpu_active(raw_smp_processor_id()));
632	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
633
634	/* No proper task established and can't sleep - busy wait for lock. */
635	while (!mutex_trylock(&stop_cpus_mutex))
636		cpu_relax();
637
638	/* Schedule work on other CPUs and execute directly for local CPU */
639	set_state(&msdata, MULTI_STOP_PREPARE);
640	cpu_stop_init_done(&done, num_active_cpus());
641	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
642			     &done);
643	ret = multi_cpu_stop(&msdata);
644
645	/* Busy wait for completion. */
646	while (!completion_done(&done.completion))
647		cpu_relax();
648
649	mutex_unlock(&stop_cpus_mutex);
650	return ret ?: done.ret;
651}
v4.17
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24#include <linux/sched/wake_q.h>
 25
 26/*
 27 * Structure to determine completion condition and record errors.  May
 28 * be shared by works on different cpus.
 29 */
 30struct cpu_stop_done {
 31	atomic_t		nr_todo;	/* nr left to execute */
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	struct task_struct	*thread;
 39
 40	spinlock_t		lock;
 41	bool			enabled;	/* is this stopper enabled? */
 42	struct list_head	works;		/* list of pending works */
 43
 44	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 45};
 46
 47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 48static bool stop_machine_initialized = false;
 49
 50/* static data for stop_cpus */
 51static DEFINE_MUTEX(stop_cpus_mutex);
 52static bool stop_cpus_in_progress;
 53
 54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 55{
 56	memset(done, 0, sizeof(*done));
 57	atomic_set(&done->nr_todo, nr_todo);
 58	init_completion(&done->completion);
 59}
 60
 61/* signal completion unless @done is NULL */
 62static void cpu_stop_signal_done(struct cpu_stop_done *done)
 63{
 64	if (atomic_dec_and_test(&done->nr_todo))
 65		complete(&done->completion);
 66}
 67
 68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 69					struct cpu_stop_work *work,
 70					struct wake_q_head *wakeq)
 71{
 72	list_add_tail(&work->list, &stopper->works);
 73	wake_q_add(wakeq, stopper->thread);
 74}
 75
 76/* queue @work to @stopper.  if offline, @work is completed immediately */
 77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 78{
 79	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 80	DEFINE_WAKE_Q(wakeq);
 81	unsigned long flags;
 82	bool enabled;
 83
 84	spin_lock_irqsave(&stopper->lock, flags);
 85	enabled = stopper->enabled;
 86	if (enabled)
 87		__cpu_stop_queue_work(stopper, work, &wakeq);
 88	else if (work->done)
 89		cpu_stop_signal_done(work->done);
 90	spin_unlock_irqrestore(&stopper->lock, flags);
 91
 92	wake_up_q(&wakeq);
 93
 94	return enabled;
 95}
 96
 97/**
 98 * stop_one_cpu - stop a cpu
 99 * @cpu: cpu to stop
100 * @fn: function to execute
101 * @arg: argument to @fn
102 *
103 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104 * the highest priority preempting any task on the cpu and
105 * monopolizing it.  This function returns after the execution is
106 * complete.
107 *
108 * This function doesn't guarantee @cpu stays online till @fn
109 * completes.  If @cpu goes down in the middle, execution may happen
110 * partially or fully on different cpus.  @fn should either be ready
111 * for that or the caller should ensure that @cpu stays online until
112 * this function completes.
113 *
114 * CONTEXT:
115 * Might sleep.
116 *
117 * RETURNS:
118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119 * otherwise, the return value of @fn.
120 */
121int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122{
123	struct cpu_stop_done done;
124	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125
126	cpu_stop_init_done(&done, 1);
127	if (!cpu_stop_queue_work(cpu, &work))
128		return -ENOENT;
129	/*
130	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
131	 * cycle by doing a preemption:
132	 */
133	cond_resched();
134	wait_for_completion(&done.completion);
135	return done.ret;
136}
137
138/* This controls the threads on each CPU. */
139enum multi_stop_state {
140	/* Dummy starting state for thread. */
141	MULTI_STOP_NONE,
142	/* Awaiting everyone to be scheduled. */
143	MULTI_STOP_PREPARE,
144	/* Disable interrupts. */
145	MULTI_STOP_DISABLE_IRQ,
146	/* Run the function */
147	MULTI_STOP_RUN,
148	/* Exit */
149	MULTI_STOP_EXIT,
150};
151
152struct multi_stop_data {
153	cpu_stop_fn_t		fn;
154	void			*data;
155	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156	unsigned int		num_threads;
157	const struct cpumask	*active_cpus;
158
159	enum multi_stop_state	state;
160	atomic_t		thread_ack;
161};
162
163static void set_state(struct multi_stop_data *msdata,
164		      enum multi_stop_state newstate)
165{
166	/* Reset ack counter. */
167	atomic_set(&msdata->thread_ack, msdata->num_threads);
168	smp_wmb();
169	msdata->state = newstate;
170}
171
172/* Last one to ack a state moves to the next state. */
173static void ack_state(struct multi_stop_data *msdata)
174{
175	if (atomic_dec_and_test(&msdata->thread_ack))
176		set_state(msdata, msdata->state + 1);
177}
178
179/* This is the cpu_stop function which stops the CPU. */
180static int multi_cpu_stop(void *data)
181{
182	struct multi_stop_data *msdata = data;
183	enum multi_stop_state curstate = MULTI_STOP_NONE;
184	int cpu = smp_processor_id(), err = 0;
185	unsigned long flags;
186	bool is_active;
187
188	/*
189	 * When called from stop_machine_from_inactive_cpu(), irq might
190	 * already be disabled.  Save the state and restore it on exit.
191	 */
192	local_save_flags(flags);
193
194	if (!msdata->active_cpus)
195		is_active = cpu == cpumask_first(cpu_online_mask);
196	else
197		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198
199	/* Simple state machine */
200	do {
201		/* Chill out and ensure we re-read multi_stop_state. */
202		cpu_relax_yield();
203		if (msdata->state != curstate) {
204			curstate = msdata->state;
205			switch (curstate) {
206			case MULTI_STOP_DISABLE_IRQ:
207				local_irq_disable();
208				hard_irq_disable();
209				break;
210			case MULTI_STOP_RUN:
211				if (is_active)
212					err = msdata->fn(msdata->data);
213				break;
214			default:
215				break;
216			}
217			ack_state(msdata);
218		} else if (curstate > MULTI_STOP_PREPARE) {
219			/*
220			 * At this stage all other CPUs we depend on must spin
221			 * in the same loop. Any reason for hard-lockup should
222			 * be detected and reported on their side.
223			 */
224			touch_nmi_watchdog();
225		}
226	} while (curstate != MULTI_STOP_EXIT);
227
228	local_irq_restore(flags);
229	return err;
230}
231
232static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
233				    int cpu2, struct cpu_stop_work *work2)
234{
235	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
236	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
237	DEFINE_WAKE_Q(wakeq);
238	int err;
239retry:
240	spin_lock_irq(&stopper1->lock);
241	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
242
243	err = -ENOENT;
244	if (!stopper1->enabled || !stopper2->enabled)
245		goto unlock;
246	/*
247	 * Ensure that if we race with __stop_cpus() the stoppers won't get
248	 * queued up in reverse order leading to system deadlock.
249	 *
250	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
251	 * queued a work on cpu1 but not on cpu2, we hold both locks.
252	 *
253	 * It can be falsely true but it is safe to spin until it is cleared,
254	 * queue_stop_cpus_work() does everything under preempt_disable().
255	 */
256	err = -EDEADLK;
257	if (unlikely(stop_cpus_in_progress))
258			goto unlock;
259
260	err = 0;
261	__cpu_stop_queue_work(stopper1, work1, &wakeq);
262	__cpu_stop_queue_work(stopper2, work2, &wakeq);
263unlock:
264	spin_unlock(&stopper2->lock);
265	spin_unlock_irq(&stopper1->lock);
266
267	if (unlikely(err == -EDEADLK)) {
268		while (stop_cpus_in_progress)
269			cpu_relax();
270		goto retry;
271	}
272
273	wake_up_q(&wakeq);
274
275	return err;
276}
277/**
278 * stop_two_cpus - stops two cpus
279 * @cpu1: the cpu to stop
280 * @cpu2: the other cpu to stop
281 * @fn: function to execute
282 * @arg: argument to @fn
283 *
284 * Stops both the current and specified CPU and runs @fn on one of them.
285 *
286 * returns when both are completed.
287 */
288int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
289{
290	struct cpu_stop_done done;
291	struct cpu_stop_work work1, work2;
292	struct multi_stop_data msdata;
293
294	msdata = (struct multi_stop_data){
295		.fn = fn,
296		.data = arg,
297		.num_threads = 2,
298		.active_cpus = cpumask_of(cpu1),
299	};
300
301	work1 = work2 = (struct cpu_stop_work){
302		.fn = multi_cpu_stop,
303		.arg = &msdata,
304		.done = &done
305	};
306
307	cpu_stop_init_done(&done, 2);
308	set_state(&msdata, MULTI_STOP_PREPARE);
309
310	if (cpu1 > cpu2)
311		swap(cpu1, cpu2);
312	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
313		return -ENOENT;
314
315	wait_for_completion(&done.completion);
316	return done.ret;
317}
318
319/**
320 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
321 * @cpu: cpu to stop
322 * @fn: function to execute
323 * @arg: argument to @fn
324 * @work_buf: pointer to cpu_stop_work structure
325 *
326 * Similar to stop_one_cpu() but doesn't wait for completion.  The
327 * caller is responsible for ensuring @work_buf is currently unused
328 * and will remain untouched until stopper starts executing @fn.
329 *
330 * CONTEXT:
331 * Don't care.
332 *
333 * RETURNS:
334 * true if cpu_stop_work was queued successfully and @fn will be called,
335 * false otherwise.
336 */
337bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
338			struct cpu_stop_work *work_buf)
339{
340	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
341	return cpu_stop_queue_work(cpu, work_buf);
342}
343
344static bool queue_stop_cpus_work(const struct cpumask *cpumask,
345				 cpu_stop_fn_t fn, void *arg,
346				 struct cpu_stop_done *done)
347{
348	struct cpu_stop_work *work;
349	unsigned int cpu;
350	bool queued = false;
351
352	/*
353	 * Disable preemption while queueing to avoid getting
354	 * preempted by a stopper which might wait for other stoppers
355	 * to enter @fn which can lead to deadlock.
356	 */
357	preempt_disable();
358	stop_cpus_in_progress = true;
359	for_each_cpu(cpu, cpumask) {
360		work = &per_cpu(cpu_stopper.stop_work, cpu);
361		work->fn = fn;
362		work->arg = arg;
363		work->done = done;
364		if (cpu_stop_queue_work(cpu, work))
365			queued = true;
366	}
367	stop_cpus_in_progress = false;
368	preempt_enable();
369
370	return queued;
371}
372
373static int __stop_cpus(const struct cpumask *cpumask,
374		       cpu_stop_fn_t fn, void *arg)
375{
376	struct cpu_stop_done done;
377
378	cpu_stop_init_done(&done, cpumask_weight(cpumask));
379	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
380		return -ENOENT;
381	wait_for_completion(&done.completion);
382	return done.ret;
383}
384
385/**
386 * stop_cpus - stop multiple cpus
387 * @cpumask: cpus to stop
388 * @fn: function to execute
389 * @arg: argument to @fn
390 *
391 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
392 * @fn is run in a process context with the highest priority
393 * preempting any task on the cpu and monopolizing it.  This function
394 * returns after all executions are complete.
395 *
396 * This function doesn't guarantee the cpus in @cpumask stay online
397 * till @fn completes.  If some cpus go down in the middle, execution
398 * on the cpu may happen partially or fully on different cpus.  @fn
399 * should either be ready for that or the caller should ensure that
400 * the cpus stay online until this function completes.
401 *
402 * All stop_cpus() calls are serialized making it safe for @fn to wait
403 * for all cpus to start executing it.
404 *
405 * CONTEXT:
406 * Might sleep.
407 *
408 * RETURNS:
409 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
410 * @cpumask were offline; otherwise, 0 if all executions of @fn
411 * returned 0, any non zero return value if any returned non zero.
412 */
413int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
414{
415	int ret;
416
417	/* static works are used, process one request at a time */
418	mutex_lock(&stop_cpus_mutex);
419	ret = __stop_cpus(cpumask, fn, arg);
420	mutex_unlock(&stop_cpus_mutex);
421	return ret;
422}
423
424/**
425 * try_stop_cpus - try to stop multiple cpus
426 * @cpumask: cpus to stop
427 * @fn: function to execute
428 * @arg: argument to @fn
429 *
430 * Identical to stop_cpus() except that it fails with -EAGAIN if
431 * someone else is already using the facility.
432 *
433 * CONTEXT:
434 * Might sleep.
435 *
436 * RETURNS:
437 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
438 * @fn(@arg) was not executed at all because all cpus in @cpumask were
439 * offline; otherwise, 0 if all executions of @fn returned 0, any non
440 * zero return value if any returned non zero.
441 */
442int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
443{
444	int ret;
445
446	/* static works are used, process one request at a time */
447	if (!mutex_trylock(&stop_cpus_mutex))
448		return -EAGAIN;
449	ret = __stop_cpus(cpumask, fn, arg);
450	mutex_unlock(&stop_cpus_mutex);
451	return ret;
452}
453
454static int cpu_stop_should_run(unsigned int cpu)
455{
456	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
457	unsigned long flags;
458	int run;
459
460	spin_lock_irqsave(&stopper->lock, flags);
461	run = !list_empty(&stopper->works);
462	spin_unlock_irqrestore(&stopper->lock, flags);
463	return run;
464}
465
466static void cpu_stopper_thread(unsigned int cpu)
467{
468	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
469	struct cpu_stop_work *work;
470
471repeat:
472	work = NULL;
473	spin_lock_irq(&stopper->lock);
474	if (!list_empty(&stopper->works)) {
475		work = list_first_entry(&stopper->works,
476					struct cpu_stop_work, list);
477		list_del_init(&work->list);
478	}
479	spin_unlock_irq(&stopper->lock);
480
481	if (work) {
482		cpu_stop_fn_t fn = work->fn;
483		void *arg = work->arg;
484		struct cpu_stop_done *done = work->done;
485		int ret;
486
487		/* cpu stop callbacks must not sleep, make in_atomic() == T */
488		preempt_count_inc();
489		ret = fn(arg);
490		if (done) {
491			if (ret)
492				done->ret = ret;
493			cpu_stop_signal_done(done);
494		}
495		preempt_count_dec();
496		WARN_ONCE(preempt_count(),
497			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
498		goto repeat;
499	}
500}
501
502void stop_machine_park(int cpu)
503{
504	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
505	/*
506	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
507	 * the pending works before it parks, until then it is fine to queue
508	 * the new works.
509	 */
510	stopper->enabled = false;
511	kthread_park(stopper->thread);
512}
513
514extern void sched_set_stop_task(int cpu, struct task_struct *stop);
515
516static void cpu_stop_create(unsigned int cpu)
517{
518	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
519}
520
521static void cpu_stop_park(unsigned int cpu)
522{
523	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
524
525	WARN_ON(!list_empty(&stopper->works));
526}
527
528void stop_machine_unpark(int cpu)
529{
530	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
531
532	stopper->enabled = true;
533	kthread_unpark(stopper->thread);
534}
535
536static struct smp_hotplug_thread cpu_stop_threads = {
537	.store			= &cpu_stopper.thread,
538	.thread_should_run	= cpu_stop_should_run,
539	.thread_fn		= cpu_stopper_thread,
540	.thread_comm		= "migration/%u",
541	.create			= cpu_stop_create,
542	.park			= cpu_stop_park,
543	.selfparking		= true,
544};
545
546static int __init cpu_stop_init(void)
547{
548	unsigned int cpu;
549
550	for_each_possible_cpu(cpu) {
551		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
552
553		spin_lock_init(&stopper->lock);
554		INIT_LIST_HEAD(&stopper->works);
555	}
556
557	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
558	stop_machine_unpark(raw_smp_processor_id());
559	stop_machine_initialized = true;
560	return 0;
561}
562early_initcall(cpu_stop_init);
563
564int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
565			    const struct cpumask *cpus)
566{
567	struct multi_stop_data msdata = {
568		.fn = fn,
569		.data = data,
570		.num_threads = num_online_cpus(),
571		.active_cpus = cpus,
572	};
573
574	lockdep_assert_cpus_held();
575
576	if (!stop_machine_initialized) {
577		/*
578		 * Handle the case where stop_machine() is called
579		 * early in boot before stop_machine() has been
580		 * initialized.
581		 */
582		unsigned long flags;
583		int ret;
584
585		WARN_ON_ONCE(msdata.num_threads != 1);
586
587		local_irq_save(flags);
588		hard_irq_disable();
589		ret = (*fn)(data);
590		local_irq_restore(flags);
591
592		return ret;
593	}
594
595	/* Set the initial state and stop all online cpus. */
596	set_state(&msdata, MULTI_STOP_PREPARE);
597	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
598}
599
600int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
601{
602	int ret;
603
604	/* No CPUs can come up or down during this. */
605	cpus_read_lock();
606	ret = stop_machine_cpuslocked(fn, data, cpus);
607	cpus_read_unlock();
608	return ret;
609}
610EXPORT_SYMBOL_GPL(stop_machine);
611
612/**
613 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
614 * @fn: the function to run
615 * @data: the data ptr for the @fn()
616 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
617 *
618 * This is identical to stop_machine() but can be called from a CPU which
619 * is not active.  The local CPU is in the process of hotplug (so no other
620 * CPU hotplug can start) and not marked active and doesn't have enough
621 * context to sleep.
622 *
623 * This function provides stop_machine() functionality for such state by
624 * using busy-wait for synchronization and executing @fn directly for local
625 * CPU.
626 *
627 * CONTEXT:
628 * Local CPU is inactive.  Temporarily stops all active CPUs.
629 *
630 * RETURNS:
631 * 0 if all executions of @fn returned 0, any non zero return value if any
632 * returned non zero.
633 */
634int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
635				  const struct cpumask *cpus)
636{
637	struct multi_stop_data msdata = { .fn = fn, .data = data,
638					    .active_cpus = cpus };
639	struct cpu_stop_done done;
640	int ret;
641
642	/* Local CPU must be inactive and CPU hotplug in progress. */
643	BUG_ON(cpu_active(raw_smp_processor_id()));
644	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
645
646	/* No proper task established and can't sleep - busy wait for lock. */
647	while (!mutex_trylock(&stop_cpus_mutex))
648		cpu_relax();
649
650	/* Schedule work on other CPUs and execute directly for local CPU */
651	set_state(&msdata, MULTI_STOP_PREPARE);
652	cpu_stop_init_done(&done, num_active_cpus());
653	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
654			     &done);
655	ret = multi_cpu_stop(&msdata);
656
657	/* Busy wait for completion. */
658	while (!completion_done(&done.completion))
659		cpu_relax();
660
661	mutex_unlock(&stop_cpus_mutex);
662	return ret ?: done.ret;
663}