Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *		make semaphores SMP safe
  10 *  1998-11-19	Implemented schedule_timeout() and related stuff
  11 *		by Andrea Arcangeli
  12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *		hybrid priority-list and round-robin design with
  14 *		an array-switch method of distributing timeslices
  15 *		and per-CPU runqueues.  Cleanups and useful suggestions
  16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03	Interactivity tuning by Con Kolivas.
  18 *  2004-04-02	Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/kasan.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/nmi.h>
  33#include <linux/init.h>
  34#include <linux/uaccess.h>
  35#include <linux/highmem.h>
  36#include <linux/mmu_context.h>
  37#include <linux/interrupt.h>
  38#include <linux/capability.h>
  39#include <linux/completion.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/debug_locks.h>
  42#include <linux/perf_event.h>
  43#include <linux/security.h>
  44#include <linux/notifier.h>
  45#include <linux/profile.h>
  46#include <linux/freezer.h>
  47#include <linux/vmalloc.h>
  48#include <linux/blkdev.h>
  49#include <linux/delay.h>
  50#include <linux/pid_namespace.h>
  51#include <linux/smp.h>
  52#include <linux/threads.h>
  53#include <linux/timer.h>
  54#include <linux/rcupdate.h>
  55#include <linux/cpu.h>
  56#include <linux/cpuset.h>
  57#include <linux/percpu.h>
  58#include <linux/proc_fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/sysctl.h>
  61#include <linux/syscalls.h>
  62#include <linux/times.h>
  63#include <linux/tsacct_kern.h>
  64#include <linux/kprobes.h>
  65#include <linux/delayacct.h>
  66#include <linux/unistd.h>
  67#include <linux/pagemap.h>
  68#include <linux/hrtimer.h>
  69#include <linux/tick.h>
 
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/context_tracking.h>
  75#include <linux/compiler.h>
  76#include <linux/frame.h>
  77#include <linux/prefetch.h>
  78#include <linux/mutex.h>
  79
  80#include <asm/switch_to.h>
  81#include <asm/tlb.h>
  82#include <asm/irq_regs.h>
 
  83#ifdef CONFIG_PARAVIRT
  84#include <asm/paravirt.h>
  85#endif
  86
  87#include "sched.h"
  88#include "../workqueue_internal.h"
  89#include "../smpboot.h"
  90
  91#define CREATE_TRACE_POINTS
  92#include <trace/events/sched.h>
  93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94DEFINE_MUTEX(sched_domains_mutex);
  95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  96
  97static void update_rq_clock_task(struct rq *rq, s64 delta);
  98
  99void update_rq_clock(struct rq *rq)
 100{
 101	s64 delta;
 102
 103	lockdep_assert_held(&rq->lock);
 104
 105	if (rq->clock_skip_update & RQCF_ACT_SKIP)
 106		return;
 107
 108	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 109	if (delta < 0)
 110		return;
 111	rq->clock += delta;
 112	update_rq_clock_task(rq, delta);
 113}
 114
 115/*
 116 * Debugging: various feature bits
 117 */
 118
 119#define SCHED_FEAT(name, enabled)	\
 120	(1UL << __SCHED_FEAT_##name) * enabled |
 121
 122const_debug unsigned int sysctl_sched_features =
 123#include "features.h"
 124	0;
 125
 126#undef SCHED_FEAT
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128/*
 129 * Number of tasks to iterate in a single balance run.
 130 * Limited because this is done with IRQs disabled.
 131 */
 132const_debug unsigned int sysctl_sched_nr_migrate = 32;
 133
 134/*
 135 * period over which we average the RT time consumption, measured
 136 * in ms.
 137 *
 138 * default: 1s
 139 */
 140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 141
 142/*
 143 * period over which we measure -rt task cpu usage in us.
 144 * default: 1s
 145 */
 146unsigned int sysctl_sched_rt_period = 1000000;
 147
 148__read_mostly int scheduler_running;
 149
 150/*
 151 * part of the period that we allow rt tasks to run in us.
 152 * default: 0.95s
 153 */
 154int sysctl_sched_rt_runtime = 950000;
 155
 156/* cpus with isolated domains */
 157cpumask_var_t cpu_isolated_map;
 158
 159/*
 160 * this_rq_lock - lock this runqueue and disable interrupts.
 161 */
 162static struct rq *this_rq_lock(void)
 163	__acquires(rq->lock)
 164{
 165	struct rq *rq;
 166
 167	local_irq_disable();
 168	rq = this_rq();
 169	raw_spin_lock(&rq->lock);
 170
 171	return rq;
 172}
 173
 174/*
 175 * __task_rq_lock - lock the rq @p resides on.
 176 */
 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 178	__acquires(rq->lock)
 179{
 180	struct rq *rq;
 181
 182	lockdep_assert_held(&p->pi_lock);
 183
 184	for (;;) {
 185		rq = task_rq(p);
 186		raw_spin_lock(&rq->lock);
 187		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 188			rf->cookie = lockdep_pin_lock(&rq->lock);
 189			return rq;
 190		}
 191		raw_spin_unlock(&rq->lock);
 192
 193		while (unlikely(task_on_rq_migrating(p)))
 194			cpu_relax();
 195	}
 196}
 197
 198/*
 199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 200 */
 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 202	__acquires(p->pi_lock)
 203	__acquires(rq->lock)
 204{
 205	struct rq *rq;
 206
 207	for (;;) {
 208		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 209		rq = task_rq(p);
 210		raw_spin_lock(&rq->lock);
 211		/*
 212		 *	move_queued_task()		task_rq_lock()
 213		 *
 214		 *	ACQUIRE (rq->lock)
 215		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 216		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 217		 *	[S] ->cpu = new_cpu		[L] task_rq()
 218		 *					[L] ->on_rq
 219		 *	RELEASE (rq->lock)
 220		 *
 221		 * If we observe the old cpu in task_rq_lock, the acquire of
 222		 * the old rq->lock will fully serialize against the stores.
 223		 *
 224		 * If we observe the new cpu in task_rq_lock, the acquire will
 225		 * pair with the WMB to ensure we must then also see migrating.
 226		 */
 227		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 228			rf->cookie = lockdep_pin_lock(&rq->lock);
 229			return rq;
 230		}
 231		raw_spin_unlock(&rq->lock);
 232		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 233
 234		while (unlikely(task_on_rq_migrating(p)))
 235			cpu_relax();
 236	}
 237}
 238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239#ifdef CONFIG_SCHED_HRTICK
 240/*
 241 * Use HR-timers to deliver accurate preemption points.
 
 
 
 
 
 
 
 242 */
 243
 244static void hrtick_clear(struct rq *rq)
 245{
 246	if (hrtimer_active(&rq->hrtick_timer))
 247		hrtimer_cancel(&rq->hrtick_timer);
 248}
 249
 250/*
 251 * High-resolution timer tick.
 252 * Runs from hardirq context with interrupts disabled.
 253 */
 254static enum hrtimer_restart hrtick(struct hrtimer *timer)
 255{
 256	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 257
 258	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 259
 260	raw_spin_lock(&rq->lock);
 261	update_rq_clock(rq);
 262	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 263	raw_spin_unlock(&rq->lock);
 264
 265	return HRTIMER_NORESTART;
 266}
 267
 268#ifdef CONFIG_SMP
 269
 270static void __hrtick_restart(struct rq *rq)
 271{
 272	struct hrtimer *timer = &rq->hrtick_timer;
 273
 274	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 275}
 276
 277/*
 278 * called from hardirq (IPI) context
 279 */
 280static void __hrtick_start(void *arg)
 281{
 282	struct rq *rq = arg;
 283
 284	raw_spin_lock(&rq->lock);
 285	__hrtick_restart(rq);
 286	rq->hrtick_csd_pending = 0;
 287	raw_spin_unlock(&rq->lock);
 288}
 289
 290/*
 291 * Called to set the hrtick timer state.
 292 *
 293 * called with rq->lock held and irqs disabled
 294 */
 295void hrtick_start(struct rq *rq, u64 delay)
 296{
 297	struct hrtimer *timer = &rq->hrtick_timer;
 298	ktime_t time;
 299	s64 delta;
 300
 301	/*
 302	 * Don't schedule slices shorter than 10000ns, that just
 303	 * doesn't make sense and can cause timer DoS.
 304	 */
 305	delta = max_t(s64, delay, 10000LL);
 306	time = ktime_add_ns(timer->base->get_time(), delta);
 307
 308	hrtimer_set_expires(timer, time);
 309
 310	if (rq == this_rq()) {
 311		__hrtick_restart(rq);
 312	} else if (!rq->hrtick_csd_pending) {
 313		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 314		rq->hrtick_csd_pending = 1;
 315	}
 316}
 317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318#else
 319/*
 320 * Called to set the hrtick timer state.
 321 *
 322 * called with rq->lock held and irqs disabled
 323 */
 324void hrtick_start(struct rq *rq, u64 delay)
 325{
 326	/*
 327	 * Don't schedule slices shorter than 10000ns, that just
 328	 * doesn't make sense. Rely on vruntime for fairness.
 329	 */
 330	delay = max_t(u64, delay, 10000LL);
 331	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 332		      HRTIMER_MODE_REL_PINNED);
 333}
 334#endif /* CONFIG_SMP */
 335
 336static void init_rq_hrtick(struct rq *rq)
 337{
 338#ifdef CONFIG_SMP
 339	rq->hrtick_csd_pending = 0;
 340
 341	rq->hrtick_csd.flags = 0;
 342	rq->hrtick_csd.func = __hrtick_start;
 343	rq->hrtick_csd.info = rq;
 344#endif
 345
 346	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 347	rq->hrtick_timer.function = hrtick;
 348}
 349#else	/* CONFIG_SCHED_HRTICK */
 350static inline void hrtick_clear(struct rq *rq)
 351{
 352}
 353
 354static inline void init_rq_hrtick(struct rq *rq)
 355{
 356}
 357#endif	/* CONFIG_SCHED_HRTICK */
 358
 359/*
 360 * cmpxchg based fetch_or, macro so it works for different integer types
 361 */
 362#define fetch_or(ptr, mask)						\
 363	({								\
 364		typeof(ptr) _ptr = (ptr);				\
 365		typeof(mask) _mask = (mask);				\
 366		typeof(*_ptr) _old, _val = *_ptr;			\
 367									\
 368		for (;;) {						\
 369			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 370			if (_old == _val)				\
 371				break;					\
 372			_val = _old;					\
 373		}							\
 374	_old;								\
 375})
 376
 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 378/*
 379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 380 * this avoids any races wrt polling state changes and thereby avoids
 381 * spurious IPIs.
 382 */
 383static bool set_nr_and_not_polling(struct task_struct *p)
 384{
 385	struct thread_info *ti = task_thread_info(p);
 386	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 387}
 388
 389/*
 390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 391 *
 392 * If this returns true, then the idle task promises to call
 393 * sched_ttwu_pending() and reschedule soon.
 394 */
 395static bool set_nr_if_polling(struct task_struct *p)
 396{
 397	struct thread_info *ti = task_thread_info(p);
 398	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 399
 400	for (;;) {
 401		if (!(val & _TIF_POLLING_NRFLAG))
 402			return false;
 403		if (val & _TIF_NEED_RESCHED)
 404			return true;
 405		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 406		if (old == val)
 407			break;
 408		val = old;
 409	}
 410	return true;
 411}
 412
 413#else
 414static bool set_nr_and_not_polling(struct task_struct *p)
 415{
 416	set_tsk_need_resched(p);
 417	return true;
 418}
 419
 420#ifdef CONFIG_SMP
 421static bool set_nr_if_polling(struct task_struct *p)
 422{
 423	return false;
 424}
 425#endif
 426#endif
 427
 428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 429{
 430	struct wake_q_node *node = &task->wake_q;
 431
 432	/*
 433	 * Atomically grab the task, if ->wake_q is !nil already it means
 434	 * its already queued (either by us or someone else) and will get the
 435	 * wakeup due to that.
 436	 *
 437	 * This cmpxchg() implies a full barrier, which pairs with the write
 438	 * barrier implied by the wakeup in wake_up_q().
 439	 */
 440	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 441		return;
 442
 443	get_task_struct(task);
 444
 445	/*
 446	 * The head is context local, there can be no concurrency.
 447	 */
 448	*head->lastp = node;
 449	head->lastp = &node->next;
 450}
 451
 452void wake_up_q(struct wake_q_head *head)
 453{
 454	struct wake_q_node *node = head->first;
 455
 456	while (node != WAKE_Q_TAIL) {
 457		struct task_struct *task;
 458
 459		task = container_of(node, struct task_struct, wake_q);
 460		BUG_ON(!task);
 461		/* task can safely be re-inserted now */
 462		node = node->next;
 463		task->wake_q.next = NULL;
 464
 465		/*
 466		 * wake_up_process() implies a wmb() to pair with the queueing
 467		 * in wake_q_add() so as not to miss wakeups.
 468		 */
 469		wake_up_process(task);
 470		put_task_struct(task);
 471	}
 472}
 
 473
 474/*
 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
 476 *
 477 * On UP this means the setting of the need_resched flag, on SMP it
 478 * might also involve a cross-CPU call to trigger the scheduler on
 479 * the target CPU.
 480 */
 481void resched_curr(struct rq *rq)
 
 
 
 
 
 
 482{
 483	struct task_struct *curr = rq->curr;
 484	int cpu;
 485
 486	lockdep_assert_held(&rq->lock);
 487
 488	if (test_tsk_need_resched(curr))
 489		return;
 490
 491	cpu = cpu_of(rq);
 492
 493	if (cpu == smp_processor_id()) {
 494		set_tsk_need_resched(curr);
 495		set_preempt_need_resched();
 496		return;
 497	}
 498
 499	if (set_nr_and_not_polling(curr))
 
 
 500		smp_send_reschedule(cpu);
 501	else
 502		trace_sched_wake_idle_without_ipi(cpu);
 503}
 504
 505void resched_cpu(int cpu)
 506{
 507	struct rq *rq = cpu_rq(cpu);
 508	unsigned long flags;
 509
 510	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 511		return;
 512	resched_curr(rq);
 513	raw_spin_unlock_irqrestore(&rq->lock, flags);
 514}
 515
 516#ifdef CONFIG_SMP
 517#ifdef CONFIG_NO_HZ_COMMON
 518/*
 519 * In the semi idle case, use the nearest busy cpu for migrating timers
 520 * from an idle cpu.  This is good for power-savings.
 521 *
 522 * We don't do similar optimization for completely idle system, as
 523 * selecting an idle cpu will add more delays to the timers than intended
 524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 525 */
 526int get_nohz_timer_target(void)
 527{
 528	int i, cpu = smp_processor_id();
 
 529	struct sched_domain *sd;
 530
 531	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
 532		return cpu;
 533
 534	rcu_read_lock();
 535	for_each_domain(cpu, sd) {
 536		for_each_cpu(i, sched_domain_span(sd)) {
 537			if (cpu == i)
 538				continue;
 539
 540			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
 541				cpu = i;
 542				goto unlock;
 543			}
 544		}
 545	}
 546
 547	if (!is_housekeeping_cpu(cpu))
 548		cpu = housekeeping_any_cpu();
 549unlock:
 550	rcu_read_unlock();
 551	return cpu;
 552}
 553/*
 554 * When add_timer_on() enqueues a timer into the timer wheel of an
 555 * idle CPU then this timer might expire before the next timer event
 556 * which is scheduled to wake up that CPU. In case of a completely
 557 * idle system the next event might even be infinite time into the
 558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 559 * leaves the inner idle loop so the newly added timer is taken into
 560 * account when the CPU goes back to idle and evaluates the timer
 561 * wheel for the next timer event.
 562 */
 563static void wake_up_idle_cpu(int cpu)
 564{
 565	struct rq *rq = cpu_rq(cpu);
 566
 567	if (cpu == smp_processor_id())
 568		return;
 569
 570	if (set_nr_and_not_polling(rq->idle))
 571		smp_send_reschedule(cpu);
 572	else
 573		trace_sched_wake_idle_without_ipi(cpu);
 574}
 575
 576static bool wake_up_full_nohz_cpu(int cpu)
 577{
 578	/*
 579	 * We just need the target to call irq_exit() and re-evaluate
 580	 * the next tick. The nohz full kick at least implies that.
 581	 * If needed we can still optimize that later with an
 582	 * empty IRQ.
 
 583	 */
 584	if (cpu_is_offline(cpu))
 585		return true;  /* Don't try to wake offline CPUs. */
 586	if (tick_nohz_full_cpu(cpu)) {
 587		if (cpu != smp_processor_id() ||
 588		    tick_nohz_tick_stopped())
 589			tick_nohz_full_kick_cpu(cpu);
 590		return true;
 591	}
 592
 593	return false;
 594}
 
 
 
 
 595
 596/*
 597 * Wake up the specified CPU.  If the CPU is going offline, it is the
 598 * caller's responsibility to deal with the lost wakeup, for example,
 599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 600 */
 601void wake_up_nohz_cpu(int cpu)
 602{
 603	if (!wake_up_full_nohz_cpu(cpu))
 604		wake_up_idle_cpu(cpu);
 605}
 606
 607static inline bool got_nohz_idle_kick(void)
 608{
 609	int cpu = smp_processor_id();
 610
 611	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 612		return false;
 613
 614	if (idle_cpu(cpu) && !need_resched())
 615		return true;
 616
 617	/*
 618	 * We can't run Idle Load Balance on this CPU for this time so we
 619	 * cancel it and clear NOHZ_BALANCE_KICK
 620	 */
 621	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 622	return false;
 623}
 624
 625#else /* CONFIG_NO_HZ_COMMON */
 626
 627static inline bool got_nohz_idle_kick(void)
 628{
 629	return false;
 630}
 631
 632#endif /* CONFIG_NO_HZ_COMMON */
 633
 634#ifdef CONFIG_NO_HZ_FULL
 635bool sched_can_stop_tick(struct rq *rq)
 636{
 637	int fifo_nr_running;
 638
 639	/* Deadline tasks, even if single, need the tick */
 640	if (rq->dl.dl_nr_running)
 641		return false;
 642
 643	/*
 644	 * If there are more than one RR tasks, we need the tick to effect the
 645	 * actual RR behaviour.
 646	 */
 647	if (rq->rt.rr_nr_running) {
 648		if (rq->rt.rr_nr_running == 1)
 649			return true;
 650		else
 651			return false;
 652	}
 653
 654	/*
 655	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 656	 * forced preemption between FIFO tasks.
 657	 */
 658	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 659	if (fifo_nr_running)
 660		return true;
 661
 662	/*
 663	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 664	 * if there's more than one we need the tick for involuntary
 665	 * preemption.
 666	 */
 667	if (rq->nr_running > 1)
 668		return false;
 669
 670	return true;
 671}
 672#endif /* CONFIG_NO_HZ_FULL */
 673
 674void sched_avg_update(struct rq *rq)
 675{
 676	s64 period = sched_avg_period();
 677
 678	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 679		/*
 680		 * Inline assembly required to prevent the compiler
 681		 * optimising this loop into a divmod call.
 682		 * See __iter_div_u64_rem() for another example of this.
 683		 */
 684		asm("" : "+rm" (rq->age_stamp));
 685		rq->age_stamp += period;
 686		rq->rt_avg /= 2;
 687	}
 688}
 689
 
 
 
 
 
 
 690#endif /* CONFIG_SMP */
 691
 692#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 693			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 694/*
 695 * Iterate task_group tree rooted at *from, calling @down when first entering a
 696 * node and @up when leaving it for the final time.
 697 *
 698 * Caller must hold rcu_lock or sufficient equivalent.
 699 */
 700int walk_tg_tree_from(struct task_group *from,
 701			     tg_visitor down, tg_visitor up, void *data)
 702{
 703	struct task_group *parent, *child;
 704	int ret;
 705
 706	parent = from;
 707
 708down:
 709	ret = (*down)(parent, data);
 710	if (ret)
 711		goto out;
 712	list_for_each_entry_rcu(child, &parent->children, siblings) {
 713		parent = child;
 714		goto down;
 715
 716up:
 717		continue;
 718	}
 719	ret = (*up)(parent, data);
 720	if (ret || parent == from)
 721		goto out;
 722
 723	child = parent;
 724	parent = parent->parent;
 725	if (parent)
 726		goto up;
 727out:
 728	return ret;
 729}
 730
 731int tg_nop(struct task_group *tg, void *data)
 732{
 733	return 0;
 734}
 735#endif
 736
 737static void set_load_weight(struct task_struct *p)
 738{
 739	int prio = p->static_prio - MAX_RT_PRIO;
 740	struct load_weight *load = &p->se.load;
 741
 742	/*
 743	 * SCHED_IDLE tasks get minimal weight:
 744	 */
 745	if (idle_policy(p->policy)) {
 746		load->weight = scale_load(WEIGHT_IDLEPRIO);
 747		load->inv_weight = WMULT_IDLEPRIO;
 748		return;
 749	}
 750
 751	load->weight = scale_load(sched_prio_to_weight[prio]);
 752	load->inv_weight = sched_prio_to_wmult[prio];
 753}
 754
 755static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 756{
 757	update_rq_clock(rq);
 758	if (!(flags & ENQUEUE_RESTORE))
 759		sched_info_queued(rq, p);
 760	p->sched_class->enqueue_task(rq, p, flags);
 761}
 762
 763static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 764{
 765	update_rq_clock(rq);
 766	if (!(flags & DEQUEUE_SAVE))
 767		sched_info_dequeued(rq, p);
 768	p->sched_class->dequeue_task(rq, p, flags);
 769}
 770
 771void activate_task(struct rq *rq, struct task_struct *p, int flags)
 772{
 773	if (task_contributes_to_load(p))
 774		rq->nr_uninterruptible--;
 775
 776	enqueue_task(rq, p, flags);
 777}
 778
 779void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 780{
 781	if (task_contributes_to_load(p))
 782		rq->nr_uninterruptible++;
 783
 784	dequeue_task(rq, p, flags);
 785}
 786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787static void update_rq_clock_task(struct rq *rq, s64 delta)
 788{
 789/*
 790 * In theory, the compile should just see 0 here, and optimize out the call
 791 * to sched_rt_avg_update. But I don't trust it...
 792 */
 793#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 794	s64 steal = 0, irq_delta = 0;
 795#endif
 796#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 797	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 798
 799	/*
 800	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 801	 * this case when a previous update_rq_clock() happened inside a
 802	 * {soft,}irq region.
 803	 *
 804	 * When this happens, we stop ->clock_task and only update the
 805	 * prev_irq_time stamp to account for the part that fit, so that a next
 806	 * update will consume the rest. This ensures ->clock_task is
 807	 * monotonic.
 808	 *
 809	 * It does however cause some slight miss-attribution of {soft,}irq
 810	 * time, a more accurate solution would be to update the irq_time using
 811	 * the current rq->clock timestamp, except that would require using
 812	 * atomic ops.
 813	 */
 814	if (irq_delta > delta)
 815		irq_delta = delta;
 816
 817	rq->prev_irq_time += irq_delta;
 818	delta -= irq_delta;
 819#endif
 820#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 821	if (static_key_false((&paravirt_steal_rq_enabled))) {
 
 
 822		steal = paravirt_steal_clock(cpu_of(rq));
 823		steal -= rq->prev_steal_time_rq;
 824
 825		if (unlikely(steal > delta))
 826			steal = delta;
 827
 
 
 
 828		rq->prev_steal_time_rq += steal;
 
 829		delta -= steal;
 830	}
 831#endif
 832
 833	rq->clock_task += delta;
 834
 835#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 836	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 837		sched_rt_avg_update(rq, irq_delta + steal);
 838#endif
 839}
 840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841void sched_set_stop_task(int cpu, struct task_struct *stop)
 842{
 843	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 844	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 845
 846	if (stop) {
 847		/*
 848		 * Make it appear like a SCHED_FIFO task, its something
 849		 * userspace knows about and won't get confused about.
 850		 *
 851		 * Also, it will make PI more or less work without too
 852		 * much confusion -- but then, stop work should not
 853		 * rely on PI working anyway.
 854		 */
 855		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 856
 857		stop->sched_class = &stop_sched_class;
 858	}
 859
 860	cpu_rq(cpu)->stop = stop;
 861
 862	if (old_stop) {
 863		/*
 864		 * Reset it back to a normal scheduling class so that
 865		 * it can die in pieces.
 866		 */
 867		old_stop->sched_class = &rt_sched_class;
 868	}
 869}
 870
 871/*
 872 * __normal_prio - return the priority that is based on the static prio
 873 */
 874static inline int __normal_prio(struct task_struct *p)
 875{
 876	return p->static_prio;
 877}
 878
 879/*
 880 * Calculate the expected normal priority: i.e. priority
 881 * without taking RT-inheritance into account. Might be
 882 * boosted by interactivity modifiers. Changes upon fork,
 883 * setprio syscalls, and whenever the interactivity
 884 * estimator recalculates.
 885 */
 886static inline int normal_prio(struct task_struct *p)
 887{
 888	int prio;
 889
 890	if (task_has_dl_policy(p))
 891		prio = MAX_DL_PRIO-1;
 892	else if (task_has_rt_policy(p))
 893		prio = MAX_RT_PRIO-1 - p->rt_priority;
 894	else
 895		prio = __normal_prio(p);
 896	return prio;
 897}
 898
 899/*
 900 * Calculate the current priority, i.e. the priority
 901 * taken into account by the scheduler. This value might
 902 * be boosted by RT tasks, or might be boosted by
 903 * interactivity modifiers. Will be RT if the task got
 904 * RT-boosted. If not then it returns p->normal_prio.
 905 */
 906static int effective_prio(struct task_struct *p)
 907{
 908	p->normal_prio = normal_prio(p);
 909	/*
 910	 * If we are RT tasks or we were boosted to RT priority,
 911	 * keep the priority unchanged. Otherwise, update priority
 912	 * to the normal priority:
 913	 */
 914	if (!rt_prio(p->prio))
 915		return p->normal_prio;
 916	return p->prio;
 917}
 918
 919/**
 920 * task_curr - is this task currently executing on a CPU?
 921 * @p: the task in question.
 922 *
 923 * Return: 1 if the task is currently executing. 0 otherwise.
 924 */
 925inline int task_curr(const struct task_struct *p)
 926{
 927	return cpu_curr(task_cpu(p)) == p;
 928}
 929
 930/*
 931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 932 * use the balance_callback list if you want balancing.
 933 *
 934 * this means any call to check_class_changed() must be followed by a call to
 935 * balance_callback().
 936 */
 937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 938				       const struct sched_class *prev_class,
 939				       int oldprio)
 940{
 941	if (prev_class != p->sched_class) {
 942		if (prev_class->switched_from)
 943			prev_class->switched_from(rq, p);
 944
 945		p->sched_class->switched_to(rq, p);
 946	} else if (oldprio != p->prio || dl_task(p))
 947		p->sched_class->prio_changed(rq, p, oldprio);
 948}
 949
 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 951{
 952	const struct sched_class *class;
 953
 954	if (p->sched_class == rq->curr->sched_class) {
 955		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 956	} else {
 957		for_each_class(class) {
 958			if (class == rq->curr->sched_class)
 959				break;
 960			if (class == p->sched_class) {
 961				resched_curr(rq);
 962				break;
 963			}
 964		}
 965	}
 966
 967	/*
 968	 * A queue event has occurred, and we're going to schedule.  In
 969	 * this case, we can save a useless back to back clock update.
 970	 */
 971	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 972		rq_clock_skip_update(rq, true);
 973}
 974
 975#ifdef CONFIG_SMP
 976/*
 977 * This is how migration works:
 978 *
 979 * 1) we invoke migration_cpu_stop() on the target CPU using
 980 *    stop_one_cpu().
 981 * 2) stopper starts to run (implicitly forcing the migrated thread
 982 *    off the CPU)
 983 * 3) it checks whether the migrated task is still in the wrong runqueue.
 984 * 4) if it's in the wrong runqueue then the migration thread removes
 985 *    it and puts it into the right queue.
 986 * 5) stopper completes and stop_one_cpu() returns and the migration
 987 *    is done.
 988 */
 989
 990/*
 991 * move_queued_task - move a queued task to new rq.
 992 *
 993 * Returns (locked) new rq. Old rq's lock is released.
 994 */
 995static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
 996{
 997	lockdep_assert_held(&rq->lock);
 998
 999	p->on_rq = TASK_ON_RQ_MIGRATING;
1000	dequeue_task(rq, p, 0);
1001	set_task_cpu(p, new_cpu);
1002	raw_spin_unlock(&rq->lock);
1003
1004	rq = cpu_rq(new_cpu);
1005
1006	raw_spin_lock(&rq->lock);
1007	BUG_ON(task_cpu(p) != new_cpu);
1008	enqueue_task(rq, p, 0);
1009	p->on_rq = TASK_ON_RQ_QUEUED;
1010	check_preempt_curr(rq, p, 0);
1011
1012	return rq;
1013}
1014
1015struct migration_arg {
1016	struct task_struct *task;
1017	int dest_cpu;
1018};
1019
1020/*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1028 */
1029static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030{
1031	if (unlikely(!cpu_active(dest_cpu)))
1032		return rq;
1033
1034	/* Affinity changed (again). */
1035	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036		return rq;
1037
1038	rq = move_queued_task(rq, p, dest_cpu);
1039
1040	return rq;
1041}
1042
1043/*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048static int migration_cpu_stop(void *data)
1049{
1050	struct migration_arg *arg = data;
1051	struct task_struct *p = arg->task;
1052	struct rq *rq = this_rq();
1053
1054	/*
1055	 * The original target cpu might have gone down and we might
1056	 * be on another cpu but it doesn't matter.
1057	 */
1058	local_irq_disable();
1059	/*
1060	 * We need to explicitly wake pending tasks before running
1061	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063	 */
1064	sched_ttwu_pending();
1065
1066	raw_spin_lock(&p->pi_lock);
1067	raw_spin_lock(&rq->lock);
1068	/*
1069	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071	 * we're holding p->pi_lock.
1072	 */
1073	if (task_rq(p) == rq) {
1074		if (task_on_rq_queued(p))
1075			rq = __migrate_task(rq, p, arg->dest_cpu);
1076		else
1077			p->wake_cpu = arg->dest_cpu;
1078	}
1079	raw_spin_unlock(&rq->lock);
1080	raw_spin_unlock(&p->pi_lock);
1081
1082	local_irq_enable();
1083	return 0;
1084}
1085
1086/*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1091{
1092	cpumask_copy(&p->cpus_allowed, new_mask);
1093	p->nr_cpus_allowed = cpumask_weight(new_mask);
1094}
1095
1096void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097{
1098	struct rq *rq = task_rq(p);
1099	bool queued, running;
1100
1101	lockdep_assert_held(&p->pi_lock);
1102
1103	queued = task_on_rq_queued(p);
1104	running = task_current(rq, p);
1105
1106	if (queued) {
1107		/*
1108		 * Because __kthread_bind() calls this on blocked tasks without
1109		 * holding rq->lock.
1110		 */
1111		lockdep_assert_held(&rq->lock);
1112		dequeue_task(rq, p, DEQUEUE_SAVE);
1113	}
1114	if (running)
1115		put_prev_task(rq, p);
1116
1117	p->sched_class->set_cpus_allowed(p, new_mask);
1118
1119	if (queued)
1120		enqueue_task(rq, p, ENQUEUE_RESTORE);
1121	if (running)
1122		set_curr_task(rq, p);
1123}
1124
1125/*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
1134static int __set_cpus_allowed_ptr(struct task_struct *p,
1135				  const struct cpumask *new_mask, bool check)
1136{
1137	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138	unsigned int dest_cpu;
1139	struct rq_flags rf;
1140	struct rq *rq;
1141	int ret = 0;
1142
1143	rq = task_rq_lock(p, &rf);
1144
1145	if (p->flags & PF_KTHREAD) {
1146		/*
1147		 * Kernel threads are allowed on online && !active CPUs
1148		 */
1149		cpu_valid_mask = cpu_online_mask;
1150	}
1151
1152	/*
1153	 * Must re-check here, to close a race against __kthread_bind(),
1154	 * sched_setaffinity() is not guaranteed to observe the flag.
1155	 */
1156	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157		ret = -EINVAL;
1158		goto out;
1159	}
1160
1161	if (cpumask_equal(&p->cpus_allowed, new_mask))
1162		goto out;
1163
1164	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1165		ret = -EINVAL;
1166		goto out;
1167	}
1168
1169	do_set_cpus_allowed(p, new_mask);
1170
1171	if (p->flags & PF_KTHREAD) {
1172		/*
1173		 * For kernel threads that do indeed end up on online &&
1174		 * !active we want to ensure they are strict per-cpu threads.
1175		 */
1176		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177			!cpumask_intersects(new_mask, cpu_active_mask) &&
1178			p->nr_cpus_allowed != 1);
1179	}
1180
1181	/* Can the task run on the task's current CPU? If so, we're done */
1182	if (cpumask_test_cpu(task_cpu(p), new_mask))
1183		goto out;
1184
1185	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1186	if (task_running(rq, p) || p->state == TASK_WAKING) {
1187		struct migration_arg arg = { p, dest_cpu };
1188		/* Need help from migration thread: drop lock and wait. */
1189		task_rq_unlock(rq, p, &rf);
1190		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191		tlb_migrate_finish(p->mm);
1192		return 0;
1193	} else if (task_on_rq_queued(p)) {
1194		/*
1195		 * OK, since we're going to drop the lock immediately
1196		 * afterwards anyway.
1197		 */
1198		lockdep_unpin_lock(&rq->lock, rf.cookie);
1199		rq = move_queued_task(rq, p, dest_cpu);
1200		lockdep_repin_lock(&rq->lock, rf.cookie);
1201	}
1202out:
1203	task_rq_unlock(rq, p, &rf);
1204
1205	return ret;
1206}
1207
1208int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209{
1210	return __set_cpus_allowed_ptr(p, new_mask, false);
1211}
1212EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
1214void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1215{
1216#ifdef CONFIG_SCHED_DEBUG
1217	/*
1218	 * We should never call set_task_cpu() on a blocked task,
1219	 * ttwu() will sort out the placement.
1220	 */
1221	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1222			!p->on_rq);
1223
1224	/*
1225	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227	 * time relying on p->on_rq.
1228	 */
1229	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230		     p->sched_class == &fair_sched_class &&
1231		     (p->on_rq && !task_on_rq_migrating(p)));
1232
1233#ifdef CONFIG_LOCKDEP
1234	/*
1235	 * The caller should hold either p->pi_lock or rq->lock, when changing
1236	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237	 *
1238	 * sched_move_task() holds both and thus holding either pins the cgroup,
1239	 * see task_group().
1240	 *
1241	 * Furthermore, all task_rq users should acquire both locks, see
1242	 * task_rq_lock().
1243	 */
1244	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245				      lockdep_is_held(&task_rq(p)->lock)));
1246#endif
1247#endif
1248
1249	trace_sched_migrate_task(p, new_cpu);
1250
1251	if (task_cpu(p) != new_cpu) {
1252		if (p->sched_class->migrate_task_rq)
1253			p->sched_class->migrate_task_rq(p);
1254		p->se.nr_migrations++;
1255		perf_event_task_migrate(p);
1256	}
1257
1258	__set_task_cpu(p, new_cpu);
1259}
1260
1261static void __migrate_swap_task(struct task_struct *p, int cpu)
1262{
1263	if (task_on_rq_queued(p)) {
1264		struct rq *src_rq, *dst_rq;
1265
1266		src_rq = task_rq(p);
1267		dst_rq = cpu_rq(cpu);
1268
1269		p->on_rq = TASK_ON_RQ_MIGRATING;
1270		deactivate_task(src_rq, p, 0);
1271		set_task_cpu(p, cpu);
1272		activate_task(dst_rq, p, 0);
1273		p->on_rq = TASK_ON_RQ_QUEUED;
1274		check_preempt_curr(dst_rq, p, 0);
1275	} else {
1276		/*
1277		 * Task isn't running anymore; make it appear like we migrated
1278		 * it before it went to sleep. This means on wakeup we make the
1279		 * previous cpu our target instead of where it really is.
1280		 */
1281		p->wake_cpu = cpu;
1282	}
1283}
1284
1285struct migration_swap_arg {
1286	struct task_struct *src_task, *dst_task;
1287	int src_cpu, dst_cpu;
1288};
1289
1290static int migrate_swap_stop(void *data)
1291{
1292	struct migration_swap_arg *arg = data;
1293	struct rq *src_rq, *dst_rq;
1294	int ret = -EAGAIN;
1295
1296	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297		return -EAGAIN;
1298
1299	src_rq = cpu_rq(arg->src_cpu);
1300	dst_rq = cpu_rq(arg->dst_cpu);
1301
1302	double_raw_lock(&arg->src_task->pi_lock,
1303			&arg->dst_task->pi_lock);
1304	double_rq_lock(src_rq, dst_rq);
1305
1306	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307		goto unlock;
1308
1309	if (task_cpu(arg->src_task) != arg->src_cpu)
1310		goto unlock;
1311
1312	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313		goto unlock;
1314
1315	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316		goto unlock;
1317
1318	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1319	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321	ret = 0;
1322
1323unlock:
1324	double_rq_unlock(src_rq, dst_rq);
1325	raw_spin_unlock(&arg->dst_task->pi_lock);
1326	raw_spin_unlock(&arg->src_task->pi_lock);
1327
1328	return ret;
1329}
1330
1331/*
1332 * Cross migrate two tasks
1333 */
1334int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335{
1336	struct migration_swap_arg arg;
1337	int ret = -EINVAL;
1338
1339	arg = (struct migration_swap_arg){
1340		.src_task = cur,
1341		.src_cpu = task_cpu(cur),
1342		.dst_task = p,
1343		.dst_cpu = task_cpu(p),
1344	};
1345
1346	if (arg.src_cpu == arg.dst_cpu)
1347		goto out;
1348
1349	/*
1350	 * These three tests are all lockless; this is OK since all of them
1351	 * will be re-checked with proper locks held further down the line.
1352	 */
1353	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354		goto out;
1355
1356	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357		goto out;
1358
1359	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360		goto out;
1361
1362	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1363	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365out:
1366	return ret;
1367}
1368
1369/*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change.  If it changes, i.e. @p might have woken up,
1374 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count).  If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
1385unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1386{
1387	int running, queued;
1388	struct rq_flags rf;
1389	unsigned long ncsw;
1390	struct rq *rq;
1391
1392	for (;;) {
1393		/*
1394		 * We do the initial early heuristics without holding
1395		 * any task-queue locks at all. We'll only try to get
1396		 * the runqueue lock when things look like they will
1397		 * work out!
1398		 */
1399		rq = task_rq(p);
1400
1401		/*
1402		 * If the task is actively running on another CPU
1403		 * still, just relax and busy-wait without holding
1404		 * any locks.
1405		 *
1406		 * NOTE! Since we don't hold any locks, it's not
1407		 * even sure that "rq" stays as the right runqueue!
1408		 * But we don't care, since "task_running()" will
1409		 * return false if the runqueue has changed and p
1410		 * is actually now running somewhere else!
1411		 */
1412		while (task_running(rq, p)) {
1413			if (match_state && unlikely(p->state != match_state))
1414				return 0;
1415			cpu_relax();
1416		}
1417
1418		/*
1419		 * Ok, time to look more closely! We need the rq
1420		 * lock now, to be *sure*. If we're wrong, we'll
1421		 * just go back and repeat.
1422		 */
1423		rq = task_rq_lock(p, &rf);
1424		trace_sched_wait_task(p);
1425		running = task_running(rq, p);
1426		queued = task_on_rq_queued(p);
1427		ncsw = 0;
1428		if (!match_state || p->state == match_state)
1429			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1430		task_rq_unlock(rq, p, &rf);
1431
1432		/*
1433		 * If it changed from the expected state, bail out now.
1434		 */
1435		if (unlikely(!ncsw))
1436			break;
1437
1438		/*
1439		 * Was it really running after all now that we
1440		 * checked with the proper locks actually held?
1441		 *
1442		 * Oops. Go back and try again..
1443		 */
1444		if (unlikely(running)) {
1445			cpu_relax();
1446			continue;
1447		}
1448
1449		/*
1450		 * It's not enough that it's not actively running,
1451		 * it must be off the runqueue _entirely_, and not
1452		 * preempted!
1453		 *
1454		 * So if it was still runnable (but just not actively
1455		 * running right now), it's preempted, and we should
1456		 * yield - it could be a while.
1457		 */
1458		if (unlikely(queued)) {
1459			ktime_t to = NSEC_PER_SEC / HZ;
1460
1461			set_current_state(TASK_UNINTERRUPTIBLE);
1462			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1463			continue;
1464		}
1465
1466		/*
1467		 * Ahh, all good. It wasn't running, and it wasn't
1468		 * runnable, which means that it will never become
1469		 * running in the future either. We're all done!
1470		 */
1471		break;
1472	}
1473
1474	return ncsw;
1475}
1476
1477/***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
1484 * NOTE: this function doesn't have to take the runqueue lock,
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
1490void kick_process(struct task_struct *p)
1491{
1492	int cpu;
1493
1494	preempt_disable();
1495	cpu = task_cpu(p);
1496	if ((cpu != smp_processor_id()) && task_curr(p))
1497		smp_send_reschedule(cpu);
1498	preempt_enable();
1499}
1500EXPORT_SYMBOL_GPL(kick_process);
 
1501
 
1502/*
1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 *  - cpu_active must be a subset of cpu_online
1508 *
1509 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 *    see __set_cpus_allowed_ptr(). At this point the newly online
1511 *    cpu isn't yet part of the sched domains, and balancing will not
1512 *    see it.
1513 *
1514 *  - on cpu-down we clear cpu_active() to mask the sched domains and
1515 *    avoid the load balancer to place new tasks on the to be removed
1516 *    cpu. Existing tasks will remain running there and will be taken
1517 *    off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
1523 */
1524static int select_fallback_rq(int cpu, struct task_struct *p)
1525{
1526	int nid = cpu_to_node(cpu);
1527	const struct cpumask *nodemask = NULL;
1528	enum { cpuset, possible, fail } state = cpuset;
1529	int dest_cpu;
1530
1531	/*
1532	 * If the node that the cpu is on has been offlined, cpu_to_node()
1533	 * will return -1. There is no cpu on the node, and we should
1534	 * select the cpu on the other node.
1535	 */
1536	if (nid != -1) {
1537		nodemask = cpumask_of_node(nid);
1538
1539		/* Look for allowed, online CPU in same node. */
1540		for_each_cpu(dest_cpu, nodemask) {
1541			if (!cpu_active(dest_cpu))
1542				continue;
1543			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544				return dest_cpu;
1545		}
1546	}
1547
1548	for (;;) {
1549		/* Any allowed, online CPU? */
1550		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1551			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552				continue;
1553			if (!cpu_online(dest_cpu))
1554				continue;
 
 
1555			goto out;
1556		}
1557
1558		/* No more Mr. Nice Guy. */
1559		switch (state) {
1560		case cpuset:
1561			if (IS_ENABLED(CONFIG_CPUSETS)) {
1562				cpuset_cpus_allowed_fallback(p);
1563				state = possible;
1564				break;
1565			}
1566			/* fall-through */
1567		case possible:
1568			do_set_cpus_allowed(p, cpu_possible_mask);
1569			state = fail;
1570			break;
1571
1572		case fail:
1573			BUG();
1574			break;
1575		}
1576	}
1577
1578out:
1579	if (state != cpuset) {
1580		/*
1581		 * Don't tell them about moving exiting tasks or
1582		 * kernel threads (both mm NULL), since they never
1583		 * leave kernel.
1584		 */
1585		if (p->mm && printk_ratelimit()) {
1586			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1587					task_pid_nr(p), p->comm, cpu);
1588		}
1589	}
1590
1591	return dest_cpu;
1592}
1593
1594/*
1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1596 */
1597static inline
1598int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1599{
1600	lockdep_assert_held(&p->pi_lock);
1601
1602	if (tsk_nr_cpus_allowed(p) > 1)
1603		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1604	else
1605		cpu = cpumask_any(tsk_cpus_allowed(p));
1606
1607	/*
1608	 * In order not to call set_task_cpu() on a blocking task we need
1609	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610	 * cpu.
1611	 *
1612	 * Since this is common to all placement strategies, this lives here.
1613	 *
1614	 * [ this allows ->select_task() to simply return task_cpu(p) and
1615	 *   not worry about this generic constraint ]
1616	 */
1617	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1618		     !cpu_online(cpu)))
1619		cpu = select_fallback_rq(task_cpu(p), p);
1620
1621	return cpu;
1622}
1623
1624static void update_avg(u64 *avg, u64 sample)
1625{
1626	s64 diff = sample - *avg;
1627	*avg += diff >> 3;
1628}
1629
1630#else
1631
1632static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633					 const struct cpumask *new_mask, bool check)
1634{
1635	return set_cpus_allowed_ptr(p, new_mask);
1636}
1637
1638#endif /* CONFIG_SMP */
1639
1640static void
1641ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1642{
1643	struct rq *rq;
1644
1645	if (!schedstat_enabled())
1646		return;
1647
1648	rq = this_rq();
1649
1650#ifdef CONFIG_SMP
1651	if (cpu == rq->cpu) {
1652		schedstat_inc(rq->ttwu_local);
1653		schedstat_inc(p->se.statistics.nr_wakeups_local);
 
 
1654	} else {
1655		struct sched_domain *sd;
1656
1657		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1658		rcu_read_lock();
1659		for_each_domain(rq->cpu, sd) {
1660			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1661				schedstat_inc(sd->ttwu_wake_remote);
1662				break;
1663			}
1664		}
1665		rcu_read_unlock();
1666	}
1667
1668	if (wake_flags & WF_MIGRATED)
1669		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
 
1670#endif /* CONFIG_SMP */
1671
1672	schedstat_inc(rq->ttwu_count);
1673	schedstat_inc(p->se.statistics.nr_wakeups);
1674
1675	if (wake_flags & WF_SYNC)
1676		schedstat_inc(p->se.statistics.nr_wakeups_sync);
 
 
1677}
1678
1679static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1680{
1681	activate_task(rq, p, en_flags);
1682	p->on_rq = TASK_ON_RQ_QUEUED;
1683
1684	/* if a worker is waking up, notify workqueue */
1685	if (p->flags & PF_WQ_WORKER)
1686		wq_worker_waking_up(p, cpu_of(rq));
1687}
1688
1689/*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
1692static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693			   struct pin_cookie cookie)
1694{
 
1695	check_preempt_curr(rq, p, wake_flags);
1696	p->state = TASK_RUNNING;
1697	trace_sched_wakeup(p);
1698
 
1699#ifdef CONFIG_SMP
1700	if (p->sched_class->task_woken) {
1701		/*
1702		 * Our task @p is fully woken up and running; so its safe to
1703		 * drop the rq->lock, hereafter rq is only used for statistics.
1704		 */
1705		lockdep_unpin_lock(&rq->lock, cookie);
1706		p->sched_class->task_woken(rq, p);
1707		lockdep_repin_lock(&rq->lock, cookie);
1708	}
1709
1710	if (rq->idle_stamp) {
1711		u64 delta = rq_clock(rq) - rq->idle_stamp;
1712		u64 max = 2*rq->max_idle_balance_cost;
1713
1714		update_avg(&rq->avg_idle, delta);
1715
1716		if (rq->avg_idle > max)
1717			rq->avg_idle = max;
1718
 
1719		rq->idle_stamp = 0;
1720	}
1721#endif
1722}
1723
1724static void
1725ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726		 struct pin_cookie cookie)
1727{
1728	int en_flags = ENQUEUE_WAKEUP;
1729
1730	lockdep_assert_held(&rq->lock);
1731
1732#ifdef CONFIG_SMP
1733	if (p->sched_contributes_to_load)
1734		rq->nr_uninterruptible--;
1735
1736	if (wake_flags & WF_MIGRATED)
1737		en_flags |= ENQUEUE_MIGRATED;
1738#endif
1739
1740	ttwu_activate(rq, p, en_flags);
1741	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1742}
1743
1744/*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750static int ttwu_remote(struct task_struct *p, int wake_flags)
1751{
1752	struct rq_flags rf;
1753	struct rq *rq;
1754	int ret = 0;
1755
1756	rq = __task_rq_lock(p, &rf);
1757	if (task_on_rq_queued(p)) {
1758		/* check_preempt_curr() may use rq clock */
1759		update_rq_clock(rq);
1760		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1761		ret = 1;
1762	}
1763	__task_rq_unlock(rq, &rf);
1764
1765	return ret;
1766}
1767
1768#ifdef CONFIG_SMP
1769void sched_ttwu_pending(void)
1770{
1771	struct rq *rq = this_rq();
1772	struct llist_node *llist = llist_del_all(&rq->wake_list);
1773	struct pin_cookie cookie;
1774	struct task_struct *p;
1775	unsigned long flags;
1776
1777	if (!llist)
1778		return;
1779
1780	raw_spin_lock_irqsave(&rq->lock, flags);
1781	cookie = lockdep_pin_lock(&rq->lock);
1782
1783	while (llist) {
1784		int wake_flags = 0;
1785
1786		p = llist_entry(llist, struct task_struct, wake_entry);
1787		llist = llist_next(llist);
1788
1789		if (p->sched_remote_wakeup)
1790			wake_flags = WF_MIGRATED;
1791
1792		ttwu_do_activate(rq, p, wake_flags, cookie);
1793	}
1794
1795	lockdep_unpin_lock(&rq->lock, cookie);
1796	raw_spin_unlock_irqrestore(&rq->lock, flags);
1797}
1798
1799void scheduler_ipi(void)
1800{
1801	/*
1802	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804	 * this IPI.
1805	 */
1806	preempt_fold_need_resched();
1807
1808	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1809		return;
1810
1811	/*
1812	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813	 * traditionally all their work was done from the interrupt return
1814	 * path. Now that we actually do some work, we need to make sure
1815	 * we do call them.
1816	 *
1817	 * Some archs already do call them, luckily irq_enter/exit nest
1818	 * properly.
1819	 *
1820	 * Arguably we should visit all archs and update all handlers,
1821	 * however a fair share of IPIs are still resched only so this would
1822	 * somewhat pessimize the simple resched case.
1823	 */
1824	irq_enter();
1825	sched_ttwu_pending();
1826
1827	/*
1828	 * Check if someone kicked us for doing the nohz idle load balance.
1829	 */
1830	if (unlikely(got_nohz_idle_kick())) {
1831		this_rq()->idle_balance = 1;
1832		raise_softirq_irqoff(SCHED_SOFTIRQ);
1833	}
1834	irq_exit();
1835}
1836
1837static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1838{
1839	struct rq *rq = cpu_rq(cpu);
1840
1841	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
1843	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844		if (!set_nr_if_polling(rq->idle))
1845			smp_send_reschedule(cpu);
1846		else
1847			trace_sched_wake_idle_without_ipi(cpu);
1848	}
1849}
1850
1851void wake_up_if_idle(int cpu)
 
1852{
1853	struct rq *rq = cpu_rq(cpu);
1854	unsigned long flags;
1855
1856	rcu_read_lock();
1857
1858	if (!is_idle_task(rcu_dereference(rq->curr)))
1859		goto out;
1860
1861	if (set_nr_if_polling(rq->idle)) {
1862		trace_sched_wake_idle_without_ipi(cpu);
1863	} else {
1864		raw_spin_lock_irqsave(&rq->lock, flags);
1865		if (is_idle_task(rq->curr))
1866			smp_send_reschedule(cpu);
1867		/* Else cpu is not in idle, do nothing here */
1868		raw_spin_unlock_irqrestore(&rq->lock, flags);
1869	}
 
 
 
1870
1871out:
1872	rcu_read_unlock();
1873}
 
1874
1875bool cpus_share_cache(int this_cpu, int that_cpu)
1876{
1877	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
1879#endif /* CONFIG_SMP */
1880
1881static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1882{
1883	struct rq *rq = cpu_rq(cpu);
1884	struct pin_cookie cookie;
1885
1886#if defined(CONFIG_SMP)
1887	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1888		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1889		ttwu_queue_remote(p, cpu, wake_flags);
1890		return;
1891	}
1892#endif
1893
1894	raw_spin_lock(&rq->lock);
1895	cookie = lockdep_pin_lock(&rq->lock);
1896	ttwu_do_activate(rq, p, wake_flags, cookie);
1897	lockdep_unpin_lock(&rq->lock, cookie);
1898	raw_spin_unlock(&rq->lock);
1899}
1900
1901/*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 *  MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 *     rq(c1)->lock (if not at the same time, then in that order).
1915 *  C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 *   CPU0            CPU1            CPU2
1924 *
1925 *   LOCK rq(0)->lock
1926 *   sched-out X
1927 *   sched-in Y
1928 *   UNLOCK rq(0)->lock
1929 *
1930 *                                   LOCK rq(0)->lock // orders against CPU0
1931 *                                   dequeue X
1932 *                                   UNLOCK rq(0)->lock
1933 *
1934 *                                   LOCK rq(1)->lock
1935 *                                   enqueue X
1936 *                                   UNLOCK rq(1)->lock
1937 *
1938 *                   LOCK rq(1)->lock // orders against CPU2
1939 *                   sched-out Z
1940 *                   sched-in X
1941 *                   UNLOCK rq(1)->lock
1942 *
1943 *
1944 *  BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 *   1) smp_store_release(X->on_cpu, 0)
1951 *   2) smp_cond_load_acquire(!X->on_cpu)
1952 *
1953 * Example:
1954 *
1955 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 *   LOCK rq(0)->lock LOCK X->pi_lock
1958 *   dequeue X
1959 *   sched-out X
1960 *   smp_store_release(X->on_cpu, 0);
1961 *
1962 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1963 *                    X->state = WAKING
1964 *                    set_task_cpu(X,2)
1965 *
1966 *                    LOCK rq(2)->lock
1967 *                    enqueue X
1968 *                    X->state = RUNNING
1969 *                    UNLOCK rq(2)->lock
1970 *
1971 *                                          LOCK rq(2)->lock // orders against CPU1
1972 *                                          sched-out Z
1973 *                                          sched-in X
1974 *                                          UNLOCK rq(2)->lock
1975 *
1976 *                    UNLOCK X->pi_lock
1977 *   UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1989 *
1990 */
1991
1992/**
1993 * try_to_wake_up - wake up a thread
1994 * @p: the thread to be awakened
1995 * @state: the mask of task states that can be woken
1996 * @wake_flags: wake modifier flags (WF_*)
1997 *
1998 * If (@state & @p->state) @p->state = TASK_RUNNING.
1999 *
2000 * If the task was not queued/runnable, also place it back on a runqueue.
2001 *
2002 * Atomic against schedule() which would dequeue a task, also see
2003 * set_current_state().
2004 *
2005 * Return: %true if @p->state changes (an actual wakeup was done),
2006 *	   %false otherwise.
2007 */
2008static int
2009try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2010{
2011	unsigned long flags;
2012	int cpu, success = 0;
2013
2014	/*
2015	 * If we are going to wake up a thread waiting for CONDITION we
2016	 * need to ensure that CONDITION=1 done by the caller can not be
2017	 * reordered with p->state check below. This pairs with mb() in
2018	 * set_current_state() the waiting thread does.
2019	 */
2020	smp_mb__before_spinlock();
2021	raw_spin_lock_irqsave(&p->pi_lock, flags);
2022	if (!(p->state & state))
2023		goto out;
2024
2025	trace_sched_waking(p);
2026
2027	success = 1; /* we're going to change ->state */
2028	cpu = task_cpu(p);
2029
2030	/*
2031	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033	 * in smp_cond_load_acquire() below.
2034	 *
2035	 * sched_ttwu_pending()                 try_to_wake_up()
2036	 *   [S] p->on_rq = 1;                  [L] P->state
2037	 *       UNLOCK rq->lock  -----.
2038	 *                              \
2039	 *				 +---   RMB
2040	 * schedule()                   /
2041	 *       LOCK rq->lock    -----'
2042	 *       UNLOCK rq->lock
2043	 *
2044	 * [task p]
2045	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2046	 *
2047	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048	 * last wakeup of our task and the schedule that got our task
2049	 * current.
2050	 */
2051	smp_rmb();
2052	if (p->on_rq && ttwu_remote(p, wake_flags))
2053		goto stat;
2054
2055#ifdef CONFIG_SMP
2056	/*
2057	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058	 * possible to, falsely, observe p->on_cpu == 0.
2059	 *
2060	 * One must be running (->on_cpu == 1) in order to remove oneself
2061	 * from the runqueue.
2062	 *
2063	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2064	 *      UNLOCK rq->lock
2065	 *			RMB
2066	 *      LOCK   rq->lock
2067	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2068	 *
2069	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070	 * from the consecutive calls to schedule(); the first switching to our
2071	 * task, the second putting it to sleep.
2072	 */
2073	smp_rmb();
2074
2075	/*
2076	 * If the owning (remote) cpu is still in the middle of schedule() with
2077	 * this task as prev, wait until its done referencing the task.
2078	 *
2079	 * Pairs with the smp_store_release() in finish_lock_switch().
2080	 *
2081	 * This ensures that tasks getting woken will be fully ordered against
2082	 * their previous state and preserve Program Order.
2083	 */
2084	smp_cond_load_acquire(&p->on_cpu, !VAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085
2086	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2087	p->state = TASK_WAKING;
2088
2089	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
 
 
 
2090	if (task_cpu(p) != cpu) {
2091		wake_flags |= WF_MIGRATED;
2092		set_task_cpu(p, cpu);
2093	}
2094#endif /* CONFIG_SMP */
2095
2096	ttwu_queue(p, cpu, wake_flags);
2097stat:
2098	ttwu_stat(p, cpu, wake_flags);
2099out:
2100	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2101
2102	return success;
2103}
2104
2105/**
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
2108 * @cookie: context's cookie for pinning
2109 *
2110 * Put @p on the run-queue if it's not already there. The caller must
2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2112 * the current task.
2113 */
2114static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2115{
2116	struct rq *rq = task_rq(p);
2117
2118	if (WARN_ON_ONCE(rq != this_rq()) ||
2119	    WARN_ON_ONCE(p == current))
2120		return;
2121
2122	lockdep_assert_held(&rq->lock);
2123
2124	if (!raw_spin_trylock(&p->pi_lock)) {
2125		/*
2126		 * This is OK, because current is on_cpu, which avoids it being
2127		 * picked for load-balance and preemption/IRQs are still
2128		 * disabled avoiding further scheduler activity on it and we've
2129		 * not yet picked a replacement task.
2130		 */
2131		lockdep_unpin_lock(&rq->lock, cookie);
2132		raw_spin_unlock(&rq->lock);
2133		raw_spin_lock(&p->pi_lock);
2134		raw_spin_lock(&rq->lock);
2135		lockdep_repin_lock(&rq->lock, cookie);
2136	}
2137
2138	if (!(p->state & TASK_NORMAL))
2139		goto out;
2140
2141	trace_sched_waking(p);
2142
2143	if (!task_on_rq_queued(p))
2144		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145
2146	ttwu_do_wakeup(rq, p, 0, cookie);
2147	ttwu_stat(p, smp_processor_id(), 0);
2148out:
2149	raw_spin_unlock(&p->pi_lock);
2150}
2151
2152/**
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2155 *
2156 * Attempt to wake up the nominated process and move it to the set of runnable
2157 * processes.
2158 *
2159 * Return: 1 if the process was woken up, 0 if it was already running.
2160 *
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2163 */
2164int wake_up_process(struct task_struct *p)
2165{
2166	return try_to_wake_up(p, TASK_NORMAL, 0);
2167}
2168EXPORT_SYMBOL(wake_up_process);
2169
2170int wake_up_state(struct task_struct *p, unsigned int state)
2171{
2172	return try_to_wake_up(p, state, 0);
2173}
2174
2175/*
2176 * This function clears the sched_dl_entity static params.
2177 */
2178void __dl_clear_params(struct task_struct *p)
2179{
2180	struct sched_dl_entity *dl_se = &p->dl;
2181
2182	dl_se->dl_runtime = 0;
2183	dl_se->dl_deadline = 0;
2184	dl_se->dl_period = 0;
2185	dl_se->flags = 0;
2186	dl_se->dl_bw = 0;
2187
2188	dl_se->dl_throttled = 0;
2189	dl_se->dl_yielded = 0;
2190}
2191
2192/*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
2198static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2199{
2200	p->on_rq			= 0;
2201
2202	p->se.on_rq			= 0;
2203	p->se.exec_start		= 0;
2204	p->se.sum_exec_runtime		= 0;
2205	p->se.prev_sum_exec_runtime	= 0;
2206	p->se.nr_migrations		= 0;
2207	p->se.vruntime			= 0;
2208	INIT_LIST_HEAD(&p->se.group_node);
2209
2210#ifdef CONFIG_FAIR_GROUP_SCHED
2211	p->se.cfs_rq			= NULL;
2212#endif
2213
2214#ifdef CONFIG_SCHEDSTATS
2215	/* Even if schedstat is disabled, there should not be garbage */
2216	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2217#endif
2218
2219	RB_CLEAR_NODE(&p->dl.rb_node);
2220	init_dl_task_timer(&p->dl);
2221	__dl_clear_params(p);
2222
2223	INIT_LIST_HEAD(&p->rt.run_list);
2224	p->rt.timeout		= 0;
2225	p->rt.time_slice	= sched_rr_timeslice;
2226	p->rt.on_rq		= 0;
2227	p->rt.on_list		= 0;
2228
2229#ifdef CONFIG_PREEMPT_NOTIFIERS
2230	INIT_HLIST_HEAD(&p->preempt_notifiers);
2231#endif
2232
2233#ifdef CONFIG_NUMA_BALANCING
2234	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2235		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2236		p->mm->numa_scan_seq = 0;
2237	}
2238
2239	if (clone_flags & CLONE_VM)
2240		p->numa_preferred_nid = current->numa_preferred_nid;
2241	else
2242		p->numa_preferred_nid = -1;
2243
2244	p->node_stamp = 0ULL;
2245	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2246	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2247	p->numa_work.next = &p->numa_work;
2248	p->numa_faults = NULL;
2249	p->last_task_numa_placement = 0;
2250	p->last_sum_exec_runtime = 0;
2251
2252	p->numa_group = NULL;
2253#endif /* CONFIG_NUMA_BALANCING */
2254}
2255
2256DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257
2258#ifdef CONFIG_NUMA_BALANCING
2259
2260void set_numabalancing_state(bool enabled)
2261{
2262	if (enabled)
2263		static_branch_enable(&sched_numa_balancing);
2264	else
2265		static_branch_disable(&sched_numa_balancing);
2266}
2267
2268#ifdef CONFIG_PROC_SYSCTL
2269int sysctl_numa_balancing(struct ctl_table *table, int write,
2270			 void __user *buffer, size_t *lenp, loff_t *ppos)
2271{
2272	struct ctl_table t;
2273	int err;
2274	int state = static_branch_likely(&sched_numa_balancing);
2275
2276	if (write && !capable(CAP_SYS_ADMIN))
2277		return -EPERM;
2278
2279	t = *table;
2280	t.data = &state;
2281	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282	if (err < 0)
2283		return err;
2284	if (write)
2285		set_numabalancing_state(state);
2286	return err;
2287}
2288#endif
2289#endif
2290
2291#ifdef CONFIG_SCHEDSTATS
2292
2293DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2294static bool __initdata __sched_schedstats = false;
2295
2296static void set_schedstats(bool enabled)
2297{
2298	if (enabled)
2299		static_branch_enable(&sched_schedstats);
2300	else
2301		static_branch_disable(&sched_schedstats);
2302}
2303
2304void force_schedstat_enabled(void)
2305{
2306	if (!schedstat_enabled()) {
2307		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308		static_branch_enable(&sched_schedstats);
2309	}
2310}
2311
2312static int __init setup_schedstats(char *str)
2313{
2314	int ret = 0;
2315	if (!str)
2316		goto out;
2317
2318	/*
2319	 * This code is called before jump labels have been set up, so we can't
2320	 * change the static branch directly just yet.  Instead set a temporary
2321	 * variable so init_schedstats() can do it later.
2322	 */
2323	if (!strcmp(str, "enable")) {
2324		__sched_schedstats = true;
2325		ret = 1;
2326	} else if (!strcmp(str, "disable")) {
2327		__sched_schedstats = false;
2328		ret = 1;
2329	}
2330out:
2331	if (!ret)
2332		pr_warn("Unable to parse schedstats=\n");
2333
2334	return ret;
2335}
2336__setup("schedstats=", setup_schedstats);
2337
2338static void __init init_schedstats(void)
2339{
2340	set_schedstats(__sched_schedstats);
2341}
2342
2343#ifdef CONFIG_PROC_SYSCTL
2344int sysctl_schedstats(struct ctl_table *table, int write,
2345			 void __user *buffer, size_t *lenp, loff_t *ppos)
2346{
2347	struct ctl_table t;
2348	int err;
2349	int state = static_branch_likely(&sched_schedstats);
2350
2351	if (write && !capable(CAP_SYS_ADMIN))
2352		return -EPERM;
2353
2354	t = *table;
2355	t.data = &state;
2356	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357	if (err < 0)
2358		return err;
2359	if (write)
2360		set_schedstats(state);
2361	return err;
2362}
2363#endif /* CONFIG_PROC_SYSCTL */
2364#else  /* !CONFIG_SCHEDSTATS */
2365static inline void init_schedstats(void) {}
2366#endif /* CONFIG_SCHEDSTATS */
2367
2368/*
2369 * fork()/clone()-time setup:
2370 */
2371int sched_fork(unsigned long clone_flags, struct task_struct *p)
2372{
2373	unsigned long flags;
2374	int cpu = get_cpu();
2375
2376	__sched_fork(clone_flags, p);
2377	/*
2378	 * We mark the process as NEW here. This guarantees that
2379	 * nobody will actually run it, and a signal or other external
2380	 * event cannot wake it up and insert it on the runqueue either.
2381	 */
2382	p->state = TASK_NEW;
2383
2384	/*
2385	 * Make sure we do not leak PI boosting priority to the child.
2386	 */
2387	p->prio = current->normal_prio;
2388
2389	/*
2390	 * Revert to default priority/policy on fork if requested.
2391	 */
2392	if (unlikely(p->sched_reset_on_fork)) {
2393		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2394			p->policy = SCHED_NORMAL;
2395			p->static_prio = NICE_TO_PRIO(0);
2396			p->rt_priority = 0;
2397		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2398			p->static_prio = NICE_TO_PRIO(0);
2399
2400		p->prio = p->normal_prio = __normal_prio(p);
2401		set_load_weight(p);
2402
2403		/*
2404		 * We don't need the reset flag anymore after the fork. It has
2405		 * fulfilled its duty:
2406		 */
2407		p->sched_reset_on_fork = 0;
2408	}
2409
2410	if (dl_prio(p->prio)) {
2411		put_cpu();
2412		return -EAGAIN;
2413	} else if (rt_prio(p->prio)) {
2414		p->sched_class = &rt_sched_class;
2415	} else {
2416		p->sched_class = &fair_sched_class;
2417	}
2418
2419	init_entity_runnable_average(&p->se);
 
2420
2421	/*
2422	 * The child is not yet in the pid-hash so no cgroup attach races,
2423	 * and the cgroup is pinned to this child due to cgroup_fork()
2424	 * is ran before sched_fork().
2425	 *
2426	 * Silence PROVE_RCU.
2427	 */
2428	raw_spin_lock_irqsave(&p->pi_lock, flags);
2429	/*
2430	 * We're setting the cpu for the first time, we don't migrate,
2431	 * so use __set_task_cpu().
2432	 */
2433	__set_task_cpu(p, cpu);
2434	if (p->sched_class->task_fork)
2435		p->sched_class->task_fork(p);
2436	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2437
2438#ifdef CONFIG_SCHED_INFO
2439	if (likely(sched_info_on()))
2440		memset(&p->sched_info, 0, sizeof(p->sched_info));
2441#endif
2442#if defined(CONFIG_SMP)
2443	p->on_cpu = 0;
2444#endif
2445	init_task_preempt_count(p);
 
 
 
2446#ifdef CONFIG_SMP
2447	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2448	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2449#endif
2450
2451	put_cpu();
2452	return 0;
2453}
2454
2455unsigned long to_ratio(u64 period, u64 runtime)
2456{
2457	if (runtime == RUNTIME_INF)
2458		return 1ULL << 20;
2459
2460	/*
2461	 * Doing this here saves a lot of checks in all
2462	 * the calling paths, and returning zero seems
2463	 * safe for them anyway.
2464	 */
2465	if (period == 0)
2466		return 0;
2467
2468	return div64_u64(runtime << 20, period);
2469}
2470
2471#ifdef CONFIG_SMP
2472inline struct dl_bw *dl_bw_of(int i)
2473{
2474	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475			 "sched RCU must be held");
2476	return &cpu_rq(i)->rd->dl_bw;
2477}
2478
2479static inline int dl_bw_cpus(int i)
2480{
2481	struct root_domain *rd = cpu_rq(i)->rd;
2482	int cpus = 0;
2483
2484	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485			 "sched RCU must be held");
2486	for_each_cpu_and(i, rd->span, cpu_active_mask)
2487		cpus++;
2488
2489	return cpus;
2490}
2491#else
2492inline struct dl_bw *dl_bw_of(int i)
2493{
2494	return &cpu_rq(i)->dl.dl_bw;
2495}
2496
2497static inline int dl_bw_cpus(int i)
2498{
2499	return 1;
2500}
2501#endif
2502
2503/*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
2510 *
2511 * XXX we should delay bw change until the task's 0-lag point, see
2512 * __setparam_dl().
2513 */
2514static int dl_overflow(struct task_struct *p, int policy,
2515		       const struct sched_attr *attr)
2516{
2517
2518	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2519	u64 period = attr->sched_period ?: attr->sched_deadline;
2520	u64 runtime = attr->sched_runtime;
2521	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2522	int cpus, err = -1;
2523
2524	/* !deadline task may carry old deadline bandwidth */
2525	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2526		return 0;
2527
2528	/*
2529	 * Either if a task, enters, leave, or stays -deadline but changes
2530	 * its parameters, we may need to update accordingly the total
2531	 * allocated bandwidth of the container.
2532	 */
2533	raw_spin_lock(&dl_b->lock);
2534	cpus = dl_bw_cpus(task_cpu(p));
2535	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537		__dl_add(dl_b, new_bw);
2538		err = 0;
2539	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541		__dl_clear(dl_b, p->dl.dl_bw);
2542		__dl_add(dl_b, new_bw);
2543		err = 0;
2544	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545		__dl_clear(dl_b, p->dl.dl_bw);
2546		err = 0;
2547	}
2548	raw_spin_unlock(&dl_b->lock);
2549
2550	return err;
2551}
2552
2553extern void init_dl_bw(struct dl_bw *dl_b);
2554
2555/*
2556 * wake_up_new_task - wake up a newly created task for the first time.
2557 *
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2561 */
2562void wake_up_new_task(struct task_struct *p)
2563{
2564	struct rq_flags rf;
2565	struct rq *rq;
2566
2567	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2568	p->state = TASK_RUNNING;
2569#ifdef CONFIG_SMP
2570	/*
2571	 * Fork balancing, do it here and not earlier because:
2572	 *  - cpus_allowed can change in the fork path
2573	 *  - any previously selected cpu might disappear through hotplug
2574	 *
2575	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576	 * as we're not fully set-up yet.
2577	 */
2578	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2579#endif
2580	rq = __task_rq_lock(p, &rf);
2581	post_init_entity_util_avg(&p->se);
2582
 
2583	activate_task(rq, p, 0);
2584	p->on_rq = TASK_ON_RQ_QUEUED;
2585	trace_sched_wakeup_new(p);
2586	check_preempt_curr(rq, p, WF_FORK);
2587#ifdef CONFIG_SMP
2588	if (p->sched_class->task_woken) {
2589		/*
2590		 * Nothing relies on rq->lock after this, so its fine to
2591		 * drop it.
2592		 */
2593		lockdep_unpin_lock(&rq->lock, rf.cookie);
2594		p->sched_class->task_woken(rq, p);
2595		lockdep_repin_lock(&rq->lock, rf.cookie);
2596	}
2597#endif
2598	task_rq_unlock(rq, p, &rf);
2599}
2600
2601#ifdef CONFIG_PREEMPT_NOTIFIERS
2602
2603static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2604
2605void preempt_notifier_inc(void)
2606{
2607	static_key_slow_inc(&preempt_notifier_key);
2608}
2609EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2610
2611void preempt_notifier_dec(void)
2612{
2613	static_key_slow_dec(&preempt_notifier_key);
2614}
2615EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2616
2617/**
2618 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2619 * @notifier: notifier struct to register
2620 */
2621void preempt_notifier_register(struct preempt_notifier *notifier)
2622{
2623	if (!static_key_false(&preempt_notifier_key))
2624		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2625
2626	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630/**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
2632 * @notifier: notifier struct to unregister
2633 *
2634 * This is *not* safe to call from within a preemption notifier.
2635 */
2636void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637{
2638	hlist_del(&notifier->link);
2639}
2640EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
2642static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643{
2644	struct preempt_notifier *notifier;
 
2645
2646	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2647		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2648}
2649
2650static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651{
2652	if (static_key_false(&preempt_notifier_key))
2653		__fire_sched_in_preempt_notifiers(curr);
2654}
2655
2656static void
2657__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658				   struct task_struct *next)
2659{
2660	struct preempt_notifier *notifier;
 
2661
2662	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2663		notifier->ops->sched_out(notifier, next);
2664}
2665
2666static __always_inline void
2667fire_sched_out_preempt_notifiers(struct task_struct *curr,
2668				 struct task_struct *next)
2669{
2670	if (static_key_false(&preempt_notifier_key))
2671		__fire_sched_out_preempt_notifiers(curr, next);
2672}
2673
2674#else /* !CONFIG_PREEMPT_NOTIFIERS */
2675
2676static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2677{
2678}
2679
2680static inline void
2681fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682				 struct task_struct *next)
2683{
2684}
2685
2686#endif /* CONFIG_PREEMPT_NOTIFIERS */
2687
2688/**
2689 * prepare_task_switch - prepare to switch tasks
2690 * @rq: the runqueue preparing to switch
2691 * @prev: the current task that is being switched out
2692 * @next: the task we are going to switch to.
2693 *
2694 * This is called with the rq lock held and interrupts off. It must
2695 * be paired with a subsequent finish_task_switch after the context
2696 * switch.
2697 *
2698 * prepare_task_switch sets up locking and calls architecture specific
2699 * hooks.
2700 */
2701static inline void
2702prepare_task_switch(struct rq *rq, struct task_struct *prev,
2703		    struct task_struct *next)
2704{
2705	sched_info_switch(rq, prev, next);
2706	perf_event_task_sched_out(prev, next);
2707	fire_sched_out_preempt_notifiers(prev, next);
2708	prepare_lock_switch(rq, next);
2709	prepare_arch_switch(next);
 
2710}
2711
2712/**
2713 * finish_task_switch - clean up after a task-switch
 
2714 * @prev: the thread we just switched away from.
2715 *
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
2720 *
2721 * Note that we may have delayed dropping an mm in context_switch(). If
2722 * so, we finish that here outside of the runqueue lock. (Doing it
2723 * with the lock held can cause deadlocks; see schedule() for
2724 * details.)
2725 *
2726 * The context switch have flipped the stack from under us and restored the
2727 * local variables which were saved when this task called schedule() in the
2728 * past. prev == current is still correct but we need to recalculate this_rq
2729 * because prev may have moved to another CPU.
2730 */
2731static struct rq *finish_task_switch(struct task_struct *prev)
2732	__releases(rq->lock)
2733{
2734	struct rq *rq = this_rq();
2735	struct mm_struct *mm = rq->prev_mm;
2736	long prev_state;
2737
2738	/*
2739	 * The previous task will have left us with a preempt_count of 2
2740	 * because it left us after:
2741	 *
2742	 *	schedule()
2743	 *	  preempt_disable();			// 1
2744	 *	  __schedule()
2745	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2746	 *
2747	 * Also, see FORK_PREEMPT_COUNT.
2748	 */
2749	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2750		      "corrupted preempt_count: %s/%d/0x%x\n",
2751		      current->comm, current->pid, preempt_count()))
2752		preempt_count_set(FORK_PREEMPT_COUNT);
2753
2754	rq->prev_mm = NULL;
2755
2756	/*
2757	 * A task struct has one reference for the use as "current".
2758	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2759	 * schedule one last time. The schedule call will never return, and
2760	 * the scheduled task must drop that reference.
2761	 *
2762	 * We must observe prev->state before clearing prev->on_cpu (in
2763	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2764	 * running on another CPU and we could rave with its RUNNING -> DEAD
2765	 * transition, resulting in a double drop.
2766	 */
2767	prev_state = prev->state;
2768	vtime_task_switch(prev);
 
 
 
2769	perf_event_task_sched_in(prev, current);
 
 
 
2770	finish_lock_switch(rq, prev);
2771	finish_arch_post_lock_switch();
2772
2773	fire_sched_in_preempt_notifiers(current);
2774	if (mm)
2775		mmdrop(mm);
2776	if (unlikely(prev_state == TASK_DEAD)) {
2777		if (prev->sched_class->task_dead)
2778			prev->sched_class->task_dead(prev);
2779
2780		/*
2781		 * Remove function-return probe instances associated with this
2782		 * task and put them back on the free list.
2783		 */
2784		kprobe_flush_task(prev);
2785
2786		/* Task is done with its stack. */
2787		put_task_stack(prev);
2788
2789		put_task_struct(prev);
2790	}
2791
2792	tick_nohz_task_switch();
2793	return rq;
2794}
2795
2796#ifdef CONFIG_SMP
2797
 
 
 
 
 
 
 
2798/* rq->lock is NOT held, but preemption is disabled */
2799static void __balance_callback(struct rq *rq)
2800{
2801	struct callback_head *head, *next;
2802	void (*func)(struct rq *rq);
2803	unsigned long flags;
2804
2805	raw_spin_lock_irqsave(&rq->lock, flags);
2806	head = rq->balance_callback;
2807	rq->balance_callback = NULL;
2808	while (head) {
2809		func = (void (*)(struct rq *))head->func;
2810		next = head->next;
2811		head->next = NULL;
2812		head = next;
2813
2814		func(rq);
2815	}
2816	raw_spin_unlock_irqrestore(&rq->lock, flags);
2817}
2818
2819static inline void balance_callback(struct rq *rq)
 
 
2820{
2821	if (unlikely(rq->balance_callback))
2822		__balance_callback(rq);
2823}
2824
2825#else
2826
2827static inline void balance_callback(struct rq *rq)
2828{
2829}
2830
2831#endif
2832
2833/**
2834 * schedule_tail - first thing a freshly forked thread must call.
2835 * @prev: the thread we just switched away from.
2836 */
2837asmlinkage __visible void schedule_tail(struct task_struct *prev)
2838	__releases(rq->lock)
2839{
2840	struct rq *rq;
 
 
2841
2842	/*
2843	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2844	 * finish_task_switch() for details.
2845	 *
2846	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2847	 * and the preempt_enable() will end up enabling preemption (on
2848	 * PREEMPT_COUNT kernels).
2849	 */
 
2850
2851	rq = finish_task_switch(prev);
2852	balance_callback(rq);
2853	preempt_enable();
2854
2855	if (current->set_child_tid)
2856		put_user(task_pid_vnr(current), current->set_child_tid);
2857}
2858
2859/*
2860 * context_switch - switch to the new MM and the new thread's register state.
 
2861 */
2862static __always_inline struct rq *
2863context_switch(struct rq *rq, struct task_struct *prev,
2864	       struct task_struct *next, struct pin_cookie cookie)
2865{
2866	struct mm_struct *mm, *oldmm;
2867
2868	prepare_task_switch(rq, prev, next);
2869
2870	mm = next->mm;
2871	oldmm = prev->active_mm;
2872	/*
2873	 * For paravirt, this is coupled with an exit in switch_to to
2874	 * combine the page table reload and the switch backend into
2875	 * one hypercall.
2876	 */
2877	arch_start_context_switch(prev);
2878
2879	if (!mm) {
2880		next->active_mm = oldmm;
2881		atomic_inc(&oldmm->mm_count);
2882		enter_lazy_tlb(oldmm, next);
2883	} else
2884		switch_mm_irqs_off(oldmm, mm, next);
2885
2886	if (!prev->mm) {
2887		prev->active_mm = NULL;
2888		rq->prev_mm = oldmm;
2889	}
2890	/*
2891	 * Since the runqueue lock will be released by the next
2892	 * task (which is an invalid locking op but in the case
2893	 * of the scheduler it's an obvious special-case), so we
2894	 * do an early lockdep release here:
2895	 */
2896	lockdep_unpin_lock(&rq->lock, cookie);
2897	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 
2898
2899	/* Here we just switch the register state and the stack. */
2900	switch_to(prev, next, prev);
2901	barrier();
2902
2903	return finish_task_switch(prev);
 
 
 
 
 
 
2904}
2905
2906/*
2907 * nr_running and nr_context_switches:
2908 *
2909 * externally visible scheduler statistics: current number of runnable
2910 * threads, total number of context switches performed since bootup.
 
2911 */
2912unsigned long nr_running(void)
2913{
2914	unsigned long i, sum = 0;
2915
2916	for_each_online_cpu(i)
2917		sum += cpu_rq(i)->nr_running;
2918
2919	return sum;
2920}
2921
2922/*
2923 * Check if only the current task is running on the cpu.
2924 *
2925 * Caution: this function does not check that the caller has disabled
2926 * preemption, thus the result might have a time-of-check-to-time-of-use
2927 * race.  The caller is responsible to use it correctly, for example:
2928 *
2929 * - from a non-preemptable section (of course)
2930 *
2931 * - from a thread that is bound to a single CPU
2932 *
2933 * - in a loop with very short iterations (e.g. a polling loop)
2934 */
2935bool single_task_running(void)
2936{
2937	return raw_rq()->nr_running == 1;
 
 
 
 
 
 
 
 
 
 
 
 
2938}
2939EXPORT_SYMBOL(single_task_running);
2940
2941unsigned long long nr_context_switches(void)
2942{
2943	int i;
2944	unsigned long long sum = 0;
2945
2946	for_each_possible_cpu(i)
2947		sum += cpu_rq(i)->nr_switches;
2948
2949	return sum;
2950}
2951
2952unsigned long nr_iowait(void)
2953{
2954	unsigned long i, sum = 0;
2955
2956	for_each_possible_cpu(i)
2957		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2958
2959	return sum;
2960}
2961
2962unsigned long nr_iowait_cpu(int cpu)
2963{
2964	struct rq *this = cpu_rq(cpu);
2965	return atomic_read(&this->nr_iowait);
2966}
2967
2968void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2969{
2970	struct rq *rq = this_rq();
2971	*nr_waiters = atomic_read(&rq->nr_iowait);
2972	*load = rq->load.weight;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973}
2974
2975#ifdef CONFIG_SMP
2976
2977/*
2978 * sched_exec - execve() is a valuable balancing opportunity, because at
2979 * this point the task has the smallest effective memory and cache footprint.
2980 */
2981void sched_exec(void)
2982{
2983	struct task_struct *p = current;
2984	unsigned long flags;
2985	int dest_cpu;
2986
2987	raw_spin_lock_irqsave(&p->pi_lock, flags);
2988	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2989	if (dest_cpu == smp_processor_id())
2990		goto unlock;
2991
2992	if (likely(cpu_active(dest_cpu))) {
2993		struct migration_arg arg = { p, dest_cpu };
2994
2995		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2996		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2997		return;
2998	}
2999unlock:
3000	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3001}
3002
3003#endif
3004
3005DEFINE_PER_CPU(struct kernel_stat, kstat);
3006DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3007
3008EXPORT_PER_CPU_SYMBOL(kstat);
3009EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3010
3011/*
3012 * The function fair_sched_class.update_curr accesses the struct curr
3013 * and its field curr->exec_start; when called from task_sched_runtime(),
3014 * we observe a high rate of cache misses in practice.
3015 * Prefetching this data results in improved performance.
3016 */
3017static inline void prefetch_curr_exec_start(struct task_struct *p)
3018{
3019#ifdef CONFIG_FAIR_GROUP_SCHED
3020	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3021#else
3022	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3023#endif
3024	prefetch(curr);
3025	prefetch(&curr->exec_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3026}
3027
3028/*
3029 * Return accounted runtime for the task.
3030 * In case the task is currently running, return the runtime plus current's
3031 * pending runtime that have not been accounted yet.
3032 */
3033unsigned long long task_sched_runtime(struct task_struct *p)
3034{
3035	struct rq_flags rf;
3036	struct rq *rq;
3037	u64 ns;
 
 
 
 
 
 
 
 
 
 
 
 
3038
3039#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 
 
 
 
 
 
3040	/*
3041	 * 64-bit doesn't need locks to atomically read a 64bit value.
3042	 * So we have a optimization chance when the task's delta_exec is 0.
3043	 * Reading ->on_cpu is racy, but this is ok.
3044	 *
3045	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3046	 * If we race with it entering cpu, unaccounted time is 0. This is
3047	 * indistinguishable from the read occurring a few cycles earlier.
3048	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3049	 * been accounted, so we're correct here as well.
3050	 */
3051	if (!p->on_cpu || !task_on_rq_queued(p))
3052		return p->se.sum_exec_runtime;
 
 
 
 
 
 
 
 
 
 
 
 
3053#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054
3055	rq = task_rq_lock(p, &rf);
3056	/*
3057	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3058	 * project cycles that may never be accounted to this
3059	 * thread, breaking clock_gettime().
3060	 */
3061	if (task_current(rq, p) && task_on_rq_queued(p)) {
3062		prefetch_curr_exec_start(p);
3063		update_rq_clock(rq);
3064		p->sched_class->update_curr(rq);
3065	}
3066	ns = p->se.sum_exec_runtime;
3067	task_rq_unlock(rq, p, &rf);
3068
3069	return ns;
 
 
 
 
 
 
 
 
 
 
 
 
3070}
3071
3072/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073 * This function gets called by the timer code, with HZ frequency.
3074 * We call it with interrupts disabled.
3075 */
3076void scheduler_tick(void)
3077{
3078	int cpu = smp_processor_id();
3079	struct rq *rq = cpu_rq(cpu);
3080	struct task_struct *curr = rq->curr;
3081
3082	sched_clock_tick();
3083
3084	raw_spin_lock(&rq->lock);
3085	update_rq_clock(rq);
 
3086	curr->sched_class->task_tick(rq, curr, 0);
3087	cpu_load_update_active(rq);
3088	calc_global_load_tick(rq);
3089	raw_spin_unlock(&rq->lock);
3090
3091	perf_event_task_tick();
3092
3093#ifdef CONFIG_SMP
3094	rq->idle_balance = idle_cpu(cpu);
3095	trigger_load_balance(rq);
3096#endif
3097	rq_last_tick_reset(rq);
3098}
3099
3100#ifdef CONFIG_NO_HZ_FULL
3101/**
3102 * scheduler_tick_max_deferment
3103 *
3104 * Keep at least one tick per second when a single
3105 * active task is running because the scheduler doesn't
3106 * yet completely support full dynticks environment.
3107 *
3108 * This makes sure that uptime, CFS vruntime, load
3109 * balancing, etc... continue to move forward, even
3110 * with a very low granularity.
3111 *
3112 * Return: Maximum deferment in nanoseconds.
3113 */
3114u64 scheduler_tick_max_deferment(void)
3115{
3116	struct rq *rq = this_rq();
3117	unsigned long next, now = READ_ONCE(jiffies);
3118
3119	next = rq->last_sched_tick + HZ;
3120
3121	if (time_before_eq(next, now))
3122		return 0;
3123
3124	return jiffies_to_nsecs(next - now);
3125}
3126#endif
3127
3128#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3129				defined(CONFIG_PREEMPT_TRACER))
3130/*
3131 * If the value passed in is equal to the current preempt count
3132 * then we just disabled preemption. Start timing the latency.
3133 */
3134static inline void preempt_latency_start(int val)
3135{
3136	if (preempt_count() == val) {
3137		unsigned long ip = get_lock_parent_ip();
3138#ifdef CONFIG_DEBUG_PREEMPT
3139		current->preempt_disable_ip = ip;
3140#endif
3141		trace_preempt_off(CALLER_ADDR0, ip);
3142	}
3143}
3144
3145void preempt_count_add(int val)
3146{
3147#ifdef CONFIG_DEBUG_PREEMPT
3148	/*
3149	 * Underflow?
3150	 */
3151	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3152		return;
3153#endif
3154	__preempt_count_add(val);
3155#ifdef CONFIG_DEBUG_PREEMPT
3156	/*
3157	 * Spinlock count overflowing soon?
3158	 */
3159	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3160				PREEMPT_MASK - 10);
3161#endif
3162	preempt_latency_start(val);
3163}
3164EXPORT_SYMBOL(preempt_count_add);
3165NOKPROBE_SYMBOL(preempt_count_add);
3166
3167/*
3168 * If the value passed in equals to the current preempt count
3169 * then we just enabled preemption. Stop timing the latency.
3170 */
3171static inline void preempt_latency_stop(int val)
3172{
3173	if (preempt_count() == val)
3174		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3175}
 
3176
3177void preempt_count_sub(int val)
3178{
3179#ifdef CONFIG_DEBUG_PREEMPT
3180	/*
3181	 * Underflow?
3182	 */
3183	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3184		return;
3185	/*
3186	 * Is the spinlock portion underflowing?
3187	 */
3188	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3189			!(preempt_count() & PREEMPT_MASK)))
3190		return;
3191#endif
3192
3193	preempt_latency_stop(val);
3194	__preempt_count_sub(val);
 
3195}
3196EXPORT_SYMBOL(preempt_count_sub);
3197NOKPROBE_SYMBOL(preempt_count_sub);
3198
3199#else
3200static inline void preempt_latency_start(int val) { }
3201static inline void preempt_latency_stop(int val) { }
3202#endif
3203
3204/*
3205 * Print scheduling while atomic bug:
3206 */
3207static noinline void __schedule_bug(struct task_struct *prev)
3208{
3209	/* Save this before calling printk(), since that will clobber it */
3210	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3211
3212	if (oops_in_progress)
3213		return;
3214
3215	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3216		prev->comm, prev->pid, preempt_count());
3217
3218	debug_show_held_locks(prev);
3219	print_modules();
3220	if (irqs_disabled())
3221		print_irqtrace_events(prev);
3222	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3223	    && in_atomic_preempt_off()) {
3224		pr_err("Preemption disabled at:");
3225		print_ip_sym(preempt_disable_ip);
3226		pr_cont("\n");
3227	}
3228	if (panic_on_warn)
3229		panic("scheduling while atomic\n");
3230
3231	dump_stack();
3232	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3233}
3234
3235/*
3236 * Various schedule()-time debugging checks and statistics:
3237 */
3238static inline void schedule_debug(struct task_struct *prev)
3239{
3240#ifdef CONFIG_SCHED_STACK_END_CHECK
3241	if (task_stack_end_corrupted(prev))
3242		panic("corrupted stack end detected inside scheduler\n");
3243#endif
3244
3245	if (unlikely(in_atomic_preempt_off())) {
3246		__schedule_bug(prev);
3247		preempt_count_set(PREEMPT_DISABLED);
3248	}
3249	rcu_sleep_check();
3250
3251	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3252
3253	schedstat_inc(this_rq()->sched_count);
 
 
 
 
 
 
 
3254}
3255
3256/*
3257 * Pick up the highest-prio task:
3258 */
3259static inline struct task_struct *
3260pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3261{
3262	const struct sched_class *class = &fair_sched_class;
3263	struct task_struct *p;
3264
3265	/*
3266	 * Optimization: we know that if all tasks are in
3267	 * the fair class we can call that function directly:
3268	 */
3269	if (likely(prev->sched_class == class &&
3270		   rq->nr_running == rq->cfs.h_nr_running)) {
3271		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3272		if (unlikely(p == RETRY_TASK))
3273			goto again;
3274
3275		/* assumes fair_sched_class->next == idle_sched_class */
3276		if (unlikely(!p))
3277			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3278
3279		return p;
3280	}
3281
3282again:
3283	for_each_class(class) {
3284		p = class->pick_next_task(rq, prev, cookie);
3285		if (p) {
3286			if (unlikely(p == RETRY_TASK))
3287				goto again;
3288			return p;
3289		}
3290	}
3291
3292	BUG(); /* the idle class will always have a runnable task */
3293}
3294
3295/*
3296 * __schedule() is the main scheduler function.
3297 *
3298 * The main means of driving the scheduler and thus entering this function are:
3299 *
3300 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3301 *
3302 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3303 *      paths. For example, see arch/x86/entry_64.S.
3304 *
3305 *      To drive preemption between tasks, the scheduler sets the flag in timer
3306 *      interrupt handler scheduler_tick().
3307 *
3308 *   3. Wakeups don't really cause entry into schedule(). They add a
3309 *      task to the run-queue and that's it.
3310 *
3311 *      Now, if the new task added to the run-queue preempts the current
3312 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3313 *      called on the nearest possible occasion:
3314 *
3315 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3316 *
3317 *         - in syscall or exception context, at the next outmost
3318 *           preempt_enable(). (this might be as soon as the wake_up()'s
3319 *           spin_unlock()!)
3320 *
3321 *         - in IRQ context, return from interrupt-handler to
3322 *           preemptible context
3323 *
3324 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3325 *         then at the next:
3326 *
3327 *          - cond_resched() call
3328 *          - explicit schedule() call
3329 *          - return from syscall or exception to user-space
3330 *          - return from interrupt-handler to user-space
3331 *
3332 * WARNING: must be called with preemption disabled!
3333 */
3334static void __sched notrace __schedule(bool preempt)
3335{
3336	struct task_struct *prev, *next;
3337	unsigned long *switch_count;
3338	struct pin_cookie cookie;
3339	struct rq *rq;
3340	int cpu;
3341
 
 
3342	cpu = smp_processor_id();
3343	rq = cpu_rq(cpu);
 
3344	prev = rq->curr;
3345
3346	schedule_debug(prev);
3347
3348	if (sched_feat(HRTICK))
3349		hrtick_clear(rq);
3350
3351	local_irq_disable();
3352	rcu_note_context_switch();
3353
3354	/*
3355	 * Make sure that signal_pending_state()->signal_pending() below
3356	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3357	 * done by the caller to avoid the race with signal_wake_up().
3358	 */
3359	smp_mb__before_spinlock();
3360	raw_spin_lock(&rq->lock);
3361	cookie = lockdep_pin_lock(&rq->lock);
3362
3363	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3364
3365	switch_count = &prev->nivcsw;
3366	if (!preempt && prev->state) {
3367		if (unlikely(signal_pending_state(prev->state, prev))) {
3368			prev->state = TASK_RUNNING;
3369		} else {
3370			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3371			prev->on_rq = 0;
3372
3373			/*
3374			 * If a worker went to sleep, notify and ask workqueue
3375			 * whether it wants to wake up a task to maintain
3376			 * concurrency.
3377			 */
3378			if (prev->flags & PF_WQ_WORKER) {
3379				struct task_struct *to_wakeup;
3380
3381				to_wakeup = wq_worker_sleeping(prev);
3382				if (to_wakeup)
3383					try_to_wake_up_local(to_wakeup, cookie);
3384			}
3385		}
3386		switch_count = &prev->nvcsw;
3387	}
3388
3389	if (task_on_rq_queued(prev))
3390		update_rq_clock(rq);
 
 
3391
3392	next = pick_next_task(rq, prev, cookie);
 
3393	clear_tsk_need_resched(prev);
3394	clear_preempt_need_resched();
3395	rq->clock_skip_update = 0;
3396
3397	if (likely(prev != next)) {
3398		rq->nr_switches++;
3399		rq->curr = next;
3400		++*switch_count;
3401
3402		trace_sched_switch(preempt, prev, next);
3403		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3404	} else {
3405		lockdep_unpin_lock(&rq->lock, cookie);
 
 
 
 
 
 
3406		raw_spin_unlock_irq(&rq->lock);
3407	}
3408
3409	balance_callback(rq);
3410}
3411
3412void __noreturn do_task_dead(void)
3413{
3414	/*
3415	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3416	 * when the following two conditions become true.
3417	 *   - There is race condition of mmap_sem (It is acquired by
3418	 *     exit_mm()), and
3419	 *   - SMI occurs before setting TASK_RUNINNG.
3420	 *     (or hypervisor of virtual machine switches to other guest)
3421	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3422	 *
3423	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3424	 * is held by try_to_wake_up()
3425	 */
3426	smp_mb();
3427	raw_spin_unlock_wait(&current->pi_lock);
3428
3429	/* causes final put_task_struct in finish_task_switch(). */
3430	__set_current_state(TASK_DEAD);
3431	current->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
3432	__schedule(false);
3433	BUG();
3434	/* Avoid "noreturn function does return".  */
3435	for (;;)
3436		cpu_relax();	/* For when BUG is null */
3437}
3438
3439static inline void sched_submit_work(struct task_struct *tsk)
3440{
3441	if (!tsk->state || tsk_is_pi_blocked(tsk))
3442		return;
3443	/*
3444	 * If we are going to sleep and we have plugged IO queued,
3445	 * make sure to submit it to avoid deadlocks.
3446	 */
3447	if (blk_needs_flush_plug(tsk))
3448		blk_schedule_flush_plug(tsk);
3449}
3450
3451asmlinkage __visible void __sched schedule(void)
3452{
3453	struct task_struct *tsk = current;
3454
3455	sched_submit_work(tsk);
3456	do {
3457		preempt_disable();
3458		__schedule(false);
3459		sched_preempt_enable_no_resched();
3460	} while (need_resched());
3461}
3462EXPORT_SYMBOL(schedule);
3463
3464#ifdef CONFIG_CONTEXT_TRACKING
3465asmlinkage __visible void __sched schedule_user(void)
3466{
3467	/*
3468	 * If we come here after a random call to set_need_resched(),
3469	 * or we have been woken up remotely but the IPI has not yet arrived,
3470	 * we haven't yet exited the RCU idle mode. Do it here manually until
3471	 * we find a better solution.
3472	 *
3473	 * NB: There are buggy callers of this function.  Ideally we
3474	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3475	 * too frequently to make sense yet.
3476	 */
3477	enum ctx_state prev_state = exception_enter();
3478	schedule();
3479	exception_exit(prev_state);
3480}
3481#endif
3482
3483/**
3484 * schedule_preempt_disabled - called with preemption disabled
3485 *
3486 * Returns with preemption disabled. Note: preempt_count must be 1
3487 */
3488void __sched schedule_preempt_disabled(void)
3489{
3490	sched_preempt_enable_no_resched();
3491	schedule();
3492	preempt_disable();
3493}
3494
3495static void __sched notrace preempt_schedule_common(void)
 
 
3496{
3497	do {
3498		/*
3499		 * Because the function tracer can trace preempt_count_sub()
3500		 * and it also uses preempt_enable/disable_notrace(), if
3501		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3502		 * by the function tracer will call this function again and
3503		 * cause infinite recursion.
3504		 *
3505		 * Preemption must be disabled here before the function
3506		 * tracer can trace. Break up preempt_disable() into two
3507		 * calls. One to disable preemption without fear of being
3508		 * traced. The other to still record the preemption latency,
3509		 * which can also be traced by the function tracer.
3510		 */
3511		preempt_disable_notrace();
3512		preempt_latency_start(1);
3513		__schedule(true);
3514		preempt_latency_stop(1);
3515		preempt_enable_no_resched_notrace();
3516
3517		/*
3518		 * Check again in case we missed a preemption opportunity
3519		 * between schedule and now.
3520		 */
3521	} while (need_resched());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3522}
 
3523
3524#ifdef CONFIG_PREEMPT
3525/*
3526 * this is the entry point to schedule() from in-kernel preemption
3527 * off of preempt_enable. Kernel preemptions off return from interrupt
3528 * occur there and call schedule directly.
3529 */
3530asmlinkage __visible void __sched notrace preempt_schedule(void)
3531{
 
 
3532	/*
3533	 * If there is a non-zero preempt_count or interrupts are disabled,
3534	 * we do not want to preempt the current task. Just return..
3535	 */
3536	if (likely(!preemptible()))
3537		return;
3538
3539	preempt_schedule_common();
3540}
3541NOKPROBE_SYMBOL(preempt_schedule);
3542EXPORT_SYMBOL(preempt_schedule);
3543
3544/**
3545 * preempt_schedule_notrace - preempt_schedule called by tracing
3546 *
3547 * The tracing infrastructure uses preempt_enable_notrace to prevent
3548 * recursion and tracing preempt enabling caused by the tracing
3549 * infrastructure itself. But as tracing can happen in areas coming
3550 * from userspace or just about to enter userspace, a preempt enable
3551 * can occur before user_exit() is called. This will cause the scheduler
3552 * to be called when the system is still in usermode.
3553 *
3554 * To prevent this, the preempt_enable_notrace will use this function
3555 * instead of preempt_schedule() to exit user context if needed before
3556 * calling the scheduler.
3557 */
3558asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3559{
3560	enum ctx_state prev_ctx;
3561
3562	if (likely(!preemptible()))
3563		return;
3564
3565	do {
 
 
 
 
3566		/*
3567		 * Because the function tracer can trace preempt_count_sub()
3568		 * and it also uses preempt_enable/disable_notrace(), if
3569		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3570		 * by the function tracer will call this function again and
3571		 * cause infinite recursion.
3572		 *
3573		 * Preemption must be disabled here before the function
3574		 * tracer can trace. Break up preempt_disable() into two
3575		 * calls. One to disable preemption without fear of being
3576		 * traced. The other to still record the preemption latency,
3577		 * which can also be traced by the function tracer.
3578		 */
3579		preempt_disable_notrace();
3580		preempt_latency_start(1);
3581		/*
3582		 * Needs preempt disabled in case user_exit() is traced
3583		 * and the tracer calls preempt_enable_notrace() causing
3584		 * an infinite recursion.
3585		 */
3586		prev_ctx = exception_enter();
3587		__schedule(true);
3588		exception_exit(prev_ctx);
3589
3590		preempt_latency_stop(1);
3591		preempt_enable_no_resched_notrace();
3592	} while (need_resched());
3593}
3594EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3595
3596#endif /* CONFIG_PREEMPT */
3597
3598/*
3599 * this is the entry point to schedule() from kernel preemption
3600 * off of irq context.
3601 * Note, that this is called and return with irqs disabled. This will
3602 * protect us against recursive calling from irq.
3603 */
3604asmlinkage __visible void __sched preempt_schedule_irq(void)
3605{
3606	enum ctx_state prev_state;
3607
3608	/* Catch callers which need to be fixed */
3609	BUG_ON(preempt_count() || !irqs_disabled());
3610
3611	prev_state = exception_enter();
3612
3613	do {
3614		preempt_disable();
3615		local_irq_enable();
3616		__schedule(true);
3617		local_irq_disable();
3618		sched_preempt_enable_no_resched();
3619	} while (need_resched());
3620
3621	exception_exit(prev_state);
 
 
 
 
 
3622}
3623
 
 
3624int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3625			  void *key)
3626{
3627	return try_to_wake_up(curr->private, mode, wake_flags);
3628}
3629EXPORT_SYMBOL(default_wake_function);
3630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3631#ifdef CONFIG_RT_MUTEXES
3632
3633/*
3634 * rt_mutex_setprio - set the current priority of a task
3635 * @p: task
3636 * @prio: prio value (kernel-internal form)
3637 *
3638 * This function changes the 'effective' priority of a task. It does
3639 * not touch ->normal_prio like __setscheduler().
3640 *
3641 * Used by the rt_mutex code to implement priority inheritance
3642 * logic. Call site only calls if the priority of the task changed.
3643 */
3644void rt_mutex_setprio(struct task_struct *p, int prio)
3645{
3646	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3647	const struct sched_class *prev_class;
3648	struct rq_flags rf;
3649	struct rq *rq;
 
3650
3651	BUG_ON(prio > MAX_PRIO);
3652
3653	rq = __task_rq_lock(p, &rf);
3654
3655	/*
3656	 * Idle task boosting is a nono in general. There is one
3657	 * exception, when PREEMPT_RT and NOHZ is active:
3658	 *
3659	 * The idle task calls get_next_timer_interrupt() and holds
3660	 * the timer wheel base->lock on the CPU and another CPU wants
3661	 * to access the timer (probably to cancel it). We can safely
3662	 * ignore the boosting request, as the idle CPU runs this code
3663	 * with interrupts disabled and will complete the lock
3664	 * protected section without being interrupted. So there is no
3665	 * real need to boost.
3666	 */
3667	if (unlikely(p == rq->idle)) {
3668		WARN_ON(p != rq->curr);
3669		WARN_ON(p->pi_blocked_on);
3670		goto out_unlock;
3671	}
3672
3673	trace_sched_pi_setprio(p, prio);
3674	oldprio = p->prio;
3675
3676	if (oldprio == prio)
3677		queue_flag &= ~DEQUEUE_MOVE;
3678
3679	prev_class = p->sched_class;
3680	queued = task_on_rq_queued(p);
3681	running = task_current(rq, p);
3682	if (queued)
3683		dequeue_task(rq, p, queue_flag);
3684	if (running)
3685		put_prev_task(rq, p);
3686
3687	/*
3688	 * Boosting condition are:
3689	 * 1. -rt task is running and holds mutex A
3690	 *      --> -dl task blocks on mutex A
3691	 *
3692	 * 2. -dl task is running and holds mutex A
3693	 *      --> -dl task blocks on mutex A and could preempt the
3694	 *          running task
3695	 */
3696	if (dl_prio(prio)) {
3697		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3698		if (!dl_prio(p->normal_prio) ||
3699		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3700			p->dl.dl_boosted = 1;
3701			queue_flag |= ENQUEUE_REPLENISH;
3702		} else
3703			p->dl.dl_boosted = 0;
3704		p->sched_class = &dl_sched_class;
3705	} else if (rt_prio(prio)) {
3706		if (dl_prio(oldprio))
3707			p->dl.dl_boosted = 0;
3708		if (oldprio < prio)
3709			queue_flag |= ENQUEUE_HEAD;
3710		p->sched_class = &rt_sched_class;
3711	} else {
3712		if (dl_prio(oldprio))
3713			p->dl.dl_boosted = 0;
3714		if (rt_prio(oldprio))
3715			p->rt.timeout = 0;
3716		p->sched_class = &fair_sched_class;
3717	}
3718
3719	p->prio = prio;
3720
3721	if (queued)
3722		enqueue_task(rq, p, queue_flag);
3723	if (running)
3724		set_curr_task(rq, p);
 
 
3725
3726	check_class_changed(rq, p, prev_class, oldprio);
3727out_unlock:
3728	preempt_disable(); /* avoid rq from going away on us */
3729	__task_rq_unlock(rq, &rf);
3730
3731	balance_callback(rq);
3732	preempt_enable();
3733}
3734#endif
3735
3736void set_user_nice(struct task_struct *p, long nice)
3737{
3738	bool queued, running;
3739	int old_prio, delta;
3740	struct rq_flags rf;
3741	struct rq *rq;
3742
3743	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3744		return;
3745	/*
3746	 * We have to be careful, if called from sys_setpriority(),
3747	 * the task might be in the middle of scheduling on another CPU.
3748	 */
3749	rq = task_rq_lock(p, &rf);
3750	/*
3751	 * The RT priorities are set via sched_setscheduler(), but we still
3752	 * allow the 'normal' nice value to be set - but as expected
3753	 * it wont have any effect on scheduling until the task is
3754	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3755	 */
3756	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3757		p->static_prio = NICE_TO_PRIO(nice);
3758		goto out_unlock;
3759	}
3760	queued = task_on_rq_queued(p);
3761	running = task_current(rq, p);
3762	if (queued)
3763		dequeue_task(rq, p, DEQUEUE_SAVE);
3764	if (running)
3765		put_prev_task(rq, p);
3766
3767	p->static_prio = NICE_TO_PRIO(nice);
3768	set_load_weight(p);
3769	old_prio = p->prio;
3770	p->prio = effective_prio(p);
3771	delta = p->prio - old_prio;
3772
3773	if (queued) {
3774		enqueue_task(rq, p, ENQUEUE_RESTORE);
3775		/*
3776		 * If the task increased its priority or is running and
3777		 * lowered its priority, then reschedule its CPU:
3778		 */
3779		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3780			resched_curr(rq);
3781	}
3782	if (running)
3783		set_curr_task(rq, p);
3784out_unlock:
3785	task_rq_unlock(rq, p, &rf);
3786}
3787EXPORT_SYMBOL(set_user_nice);
3788
3789/*
3790 * can_nice - check if a task can reduce its nice value
3791 * @p: task
3792 * @nice: nice value
3793 */
3794int can_nice(const struct task_struct *p, const int nice)
3795{
3796	/* convert nice value [19,-20] to rlimit style value [1,40] */
3797	int nice_rlim = nice_to_rlimit(nice);
3798
3799	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3800		capable(CAP_SYS_NICE));
3801}
3802
3803#ifdef __ARCH_WANT_SYS_NICE
3804
3805/*
3806 * sys_nice - change the priority of the current process.
3807 * @increment: priority increment
3808 *
3809 * sys_setpriority is a more generic, but much slower function that
3810 * does similar things.
3811 */
3812SYSCALL_DEFINE1(nice, int, increment)
3813{
3814	long nice, retval;
3815
3816	/*
3817	 * Setpriority might change our priority at the same moment.
3818	 * We don't have to worry. Conceptually one call occurs first
3819	 * and we have a single winner.
3820	 */
3821	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3822	nice = task_nice(current) + increment;
 
 
 
 
 
 
 
 
3823
3824	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3825	if (increment < 0 && !can_nice(current, nice))
3826		return -EPERM;
3827
3828	retval = security_task_setnice(current, nice);
3829	if (retval)
3830		return retval;
3831
3832	set_user_nice(current, nice);
3833	return 0;
3834}
3835
3836#endif
3837
3838/**
3839 * task_prio - return the priority value of a given task.
3840 * @p: the task in question.
3841 *
3842 * Return: The priority value as seen by users in /proc.
3843 * RT tasks are offset by -200. Normal tasks are centered
3844 * around 0, value goes from -16 to +15.
3845 */
3846int task_prio(const struct task_struct *p)
3847{
3848	return p->prio - MAX_RT_PRIO;
3849}
3850
3851/**
 
 
 
 
 
 
 
 
 
 
3852 * idle_cpu - is a given cpu idle currently?
3853 * @cpu: the processor in question.
3854 *
3855 * Return: 1 if the CPU is currently idle. 0 otherwise.
3856 */
3857int idle_cpu(int cpu)
3858{
3859	struct rq *rq = cpu_rq(cpu);
3860
3861	if (rq->curr != rq->idle)
3862		return 0;
3863
3864	if (rq->nr_running)
3865		return 0;
3866
3867#ifdef CONFIG_SMP
3868	if (!llist_empty(&rq->wake_list))
3869		return 0;
3870#endif
3871
3872	return 1;
3873}
3874
3875/**
3876 * idle_task - return the idle task for a given cpu.
3877 * @cpu: the processor in question.
3878 *
3879 * Return: The idle task for the cpu @cpu.
3880 */
3881struct task_struct *idle_task(int cpu)
3882{
3883	return cpu_rq(cpu)->idle;
3884}
3885
3886/**
3887 * find_process_by_pid - find a process with a matching PID value.
3888 * @pid: the pid in question.
3889 *
3890 * The task of @pid, if found. %NULL otherwise.
3891 */
3892static struct task_struct *find_process_by_pid(pid_t pid)
3893{
3894	return pid ? find_task_by_vpid(pid) : current;
3895}
3896
3897/*
3898 * This function initializes the sched_dl_entity of a newly becoming
3899 * SCHED_DEADLINE task.
3900 *
3901 * Only the static values are considered here, the actual runtime and the
3902 * absolute deadline will be properly calculated when the task is enqueued
3903 * for the first time with its new policy.
3904 */
3905static void
3906__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3907{
3908	struct sched_dl_entity *dl_se = &p->dl;
3909
3910	dl_se->dl_runtime = attr->sched_runtime;
3911	dl_se->dl_deadline = attr->sched_deadline;
3912	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3913	dl_se->flags = attr->sched_flags;
3914	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3915
3916	/*
3917	 * Changing the parameters of a task is 'tricky' and we're not doing
3918	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3919	 *
3920	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3921	 * point. This would include retaining the task_struct until that time
3922	 * and change dl_overflow() to not immediately decrement the current
3923	 * amount.
3924	 *
3925	 * Instead we retain the current runtime/deadline and let the new
3926	 * parameters take effect after the current reservation period lapses.
3927	 * This is safe (albeit pessimistic) because the 0-lag point is always
3928	 * before the current scheduling deadline.
3929	 *
3930	 * We can still have temporary overloads because we do not delay the
3931	 * change in bandwidth until that time; so admission control is
3932	 * not on the safe side. It does however guarantee tasks will never
3933	 * consume more than promised.
3934	 */
3935}
3936
3937/*
3938 * sched_setparam() passes in -1 for its policy, to let the functions
3939 * it calls know not to change it.
3940 */
3941#define SETPARAM_POLICY	-1
3942
3943static void __setscheduler_params(struct task_struct *p,
3944		const struct sched_attr *attr)
3945{
3946	int policy = attr->sched_policy;
3947
3948	if (policy == SETPARAM_POLICY)
3949		policy = p->policy;
3950
3951	p->policy = policy;
3952
3953	if (dl_policy(policy))
3954		__setparam_dl(p, attr);
3955	else if (fair_policy(policy))
3956		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3957
3958	/*
3959	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3960	 * !rt_policy. Always setting this ensures that things like
3961	 * getparam()/getattr() don't report silly values for !rt tasks.
3962	 */
3963	p->rt_priority = attr->sched_priority;
3964	p->normal_prio = normal_prio(p);
3965	set_load_weight(p);
3966}
3967
3968/* Actually do priority change: must hold pi & rq lock. */
3969static void __setscheduler(struct rq *rq, struct task_struct *p,
3970			   const struct sched_attr *attr, bool keep_boost)
3971{
3972	__setscheduler_params(p, attr);
3973
3974	/*
3975	 * Keep a potential priority boosting if called from
3976	 * sched_setscheduler().
3977	 */
3978	if (keep_boost)
3979		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3980	else
3981		p->prio = normal_prio(p);
3982
3983	if (dl_prio(p->prio))
3984		p->sched_class = &dl_sched_class;
3985	else if (rt_prio(p->prio))
3986		p->sched_class = &rt_sched_class;
3987	else
3988		p->sched_class = &fair_sched_class;
3989}
3990
3991static void
3992__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3993{
3994	struct sched_dl_entity *dl_se = &p->dl;
3995
3996	attr->sched_priority = p->rt_priority;
3997	attr->sched_runtime = dl_se->dl_runtime;
3998	attr->sched_deadline = dl_se->dl_deadline;
3999	attr->sched_period = dl_se->dl_period;
4000	attr->sched_flags = dl_se->flags;
4001}
4002
4003/*
4004 * This function validates the new parameters of a -deadline task.
4005 * We ask for the deadline not being zero, and greater or equal
4006 * than the runtime, as well as the period of being zero or
4007 * greater than deadline. Furthermore, we have to be sure that
4008 * user parameters are above the internal resolution of 1us (we
4009 * check sched_runtime only since it is always the smaller one) and
4010 * below 2^63 ns (we have to check both sched_deadline and
4011 * sched_period, as the latter can be zero).
4012 */
4013static bool
4014__checkparam_dl(const struct sched_attr *attr)
4015{
4016	/* deadline != 0 */
4017	if (attr->sched_deadline == 0)
4018		return false;
4019
4020	/*
4021	 * Since we truncate DL_SCALE bits, make sure we're at least
4022	 * that big.
4023	 */
4024	if (attr->sched_runtime < (1ULL << DL_SCALE))
4025		return false;
4026
4027	/*
4028	 * Since we use the MSB for wrap-around and sign issues, make
4029	 * sure it's not set (mind that period can be equal to zero).
4030	 */
4031	if (attr->sched_deadline & (1ULL << 63) ||
4032	    attr->sched_period & (1ULL << 63))
4033		return false;
4034
4035	/* runtime <= deadline <= period (if period != 0) */
4036	if ((attr->sched_period != 0 &&
4037	     attr->sched_period < attr->sched_deadline) ||
4038	    attr->sched_deadline < attr->sched_runtime)
4039		return false;
4040
4041	return true;
4042}
4043
4044/*
4045 * check the target process has a UID that matches the current process's
4046 */
4047static bool check_same_owner(struct task_struct *p)
4048{
4049	const struct cred *cred = current_cred(), *pcred;
4050	bool match;
4051
4052	rcu_read_lock();
4053	pcred = __task_cred(p);
4054	match = (uid_eq(cred->euid, pcred->euid) ||
4055		 uid_eq(cred->euid, pcred->uid));
4056	rcu_read_unlock();
4057	return match;
4058}
4059
4060static bool dl_param_changed(struct task_struct *p,
4061		const struct sched_attr *attr)
4062{
4063	struct sched_dl_entity *dl_se = &p->dl;
4064
4065	if (dl_se->dl_runtime != attr->sched_runtime ||
4066		dl_se->dl_deadline != attr->sched_deadline ||
4067		dl_se->dl_period != attr->sched_period ||
4068		dl_se->flags != attr->sched_flags)
4069		return true;
4070
4071	return false;
4072}
4073
4074static int __sched_setscheduler(struct task_struct *p,
4075				const struct sched_attr *attr,
4076				bool user, bool pi)
4077{
4078	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4079		      MAX_RT_PRIO - 1 - attr->sched_priority;
4080	int retval, oldprio, oldpolicy = -1, queued, running;
4081	int new_effective_prio, policy = attr->sched_policy;
4082	const struct sched_class *prev_class;
4083	struct rq_flags rf;
4084	int reset_on_fork;
4085	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4086	struct rq *rq;
 
4087
4088	/* may grab non-irq protected spin_locks */
4089	BUG_ON(in_interrupt());
4090recheck:
4091	/* double check policy once rq lock held */
4092	if (policy < 0) {
4093		reset_on_fork = p->sched_reset_on_fork;
4094		policy = oldpolicy = p->policy;
4095	} else {
4096		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
 
4097
4098		if (!valid_policy(policy))
 
 
4099			return -EINVAL;
4100	}
4101
4102	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4103		return -EINVAL;
4104
4105	/*
4106	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4107	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108	 * SCHED_BATCH and SCHED_IDLE is 0.
4109	 */
4110	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4111	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
 
4112		return -EINVAL;
4113	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4114	    (rt_policy(policy) != (attr->sched_priority != 0)))
4115		return -EINVAL;
4116
4117	/*
4118	 * Allow unprivileged RT tasks to decrease priority:
4119	 */
4120	if (user && !capable(CAP_SYS_NICE)) {
4121		if (fair_policy(policy)) {
4122			if (attr->sched_nice < task_nice(p) &&
4123			    !can_nice(p, attr->sched_nice))
4124				return -EPERM;
4125		}
4126
4127		if (rt_policy(policy)) {
4128			unsigned long rlim_rtprio =
4129					task_rlimit(p, RLIMIT_RTPRIO);
4130
4131			/* can't set/change the rt policy */
4132			if (policy != p->policy && !rlim_rtprio)
4133				return -EPERM;
4134
4135			/* can't increase priority */
4136			if (attr->sched_priority > p->rt_priority &&
4137			    attr->sched_priority > rlim_rtprio)
4138				return -EPERM;
4139		}
4140
4141		 /*
4142		  * Can't set/change SCHED_DEADLINE policy at all for now
4143		  * (safest behavior); in the future we would like to allow
4144		  * unprivileged DL tasks to increase their relative deadline
4145		  * or reduce their runtime (both ways reducing utilization)
4146		  */
4147		if (dl_policy(policy))
4148			return -EPERM;
4149
4150		/*
4151		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4152		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4153		 */
4154		if (idle_policy(p->policy) && !idle_policy(policy)) {
4155			if (!can_nice(p, task_nice(p)))
4156				return -EPERM;
4157		}
4158
4159		/* can't change other user's priorities */
4160		if (!check_same_owner(p))
4161			return -EPERM;
4162
4163		/* Normal users shall not reset the sched_reset_on_fork flag */
4164		if (p->sched_reset_on_fork && !reset_on_fork)
4165			return -EPERM;
4166	}
4167
4168	if (user) {
4169		retval = security_task_setscheduler(p);
4170		if (retval)
4171			return retval;
4172	}
4173
4174	/*
4175	 * make sure no PI-waiters arrive (or leave) while we are
4176	 * changing the priority of the task:
4177	 *
4178	 * To be able to change p->policy safely, the appropriate
4179	 * runqueue lock must be held.
4180	 */
4181	rq = task_rq_lock(p, &rf);
4182
4183	/*
4184	 * Changing the policy of the stop threads its a very bad idea
4185	 */
4186	if (p == rq->stop) {
4187		task_rq_unlock(rq, p, &rf);
4188		return -EINVAL;
4189	}
4190
4191	/*
4192	 * If not changing anything there's no need to proceed further,
4193	 * but store a possible modification of reset_on_fork.
4194	 */
4195	if (unlikely(policy == p->policy)) {
4196		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4197			goto change;
4198		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4199			goto change;
4200		if (dl_policy(policy) && dl_param_changed(p, attr))
4201			goto change;
4202
4203		p->sched_reset_on_fork = reset_on_fork;
4204		task_rq_unlock(rq, p, &rf);
4205		return 0;
4206	}
4207change:
4208
4209	if (user) {
4210#ifdef CONFIG_RT_GROUP_SCHED
 
4211		/*
4212		 * Do not allow realtime tasks into groups that have no runtime
4213		 * assigned.
4214		 */
4215		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4216				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4217				!task_group_is_autogroup(task_group(p))) {
4218			task_rq_unlock(rq, p, &rf);
4219			return -EPERM;
4220		}
4221#endif
4222#ifdef CONFIG_SMP
4223		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4224			cpumask_t *span = rq->rd->span;
4225
4226			/*
4227			 * Don't allow tasks with an affinity mask smaller than
4228			 * the entire root_domain to become SCHED_DEADLINE. We
4229			 * will also fail if there's no bandwidth available.
4230			 */
4231			if (!cpumask_subset(span, &p->cpus_allowed) ||
4232			    rq->rd->dl_bw.bw == 0) {
4233				task_rq_unlock(rq, p, &rf);
4234				return -EPERM;
4235			}
4236		}
4237#endif
4238	}
 
4239
4240	/* recheck policy now with rq lock held */
4241	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4242		policy = oldpolicy = -1;
4243		task_rq_unlock(rq, p, &rf);
4244		goto recheck;
4245	}
4246
4247	/*
4248	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4249	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4250	 * is available.
4251	 */
4252	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4253		task_rq_unlock(rq, p, &rf);
4254		return -EBUSY;
4255	}
4256
4257	p->sched_reset_on_fork = reset_on_fork;
4258	oldprio = p->prio;
4259
4260	if (pi) {
4261		/*
4262		 * Take priority boosted tasks into account. If the new
4263		 * effective priority is unchanged, we just store the new
4264		 * normal parameters and do not touch the scheduler class and
4265		 * the runqueue. This will be done when the task deboost
4266		 * itself.
4267		 */
4268		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4269		if (new_effective_prio == oldprio)
4270			queue_flags &= ~DEQUEUE_MOVE;
4271	}
4272
4273	queued = task_on_rq_queued(p);
4274	running = task_current(rq, p);
4275	if (queued)
4276		dequeue_task(rq, p, queue_flags);
4277	if (running)
4278		put_prev_task(rq, p);
4279
4280	prev_class = p->sched_class;
4281	__setscheduler(rq, p, attr, pi);
4282
4283	if (queued) {
4284		/*
4285		 * We enqueue to tail when the priority of a task is
4286		 * increased (user space view).
4287		 */
4288		if (oldprio < p->prio)
4289			queue_flags |= ENQUEUE_HEAD;
4290
4291		enqueue_task(rq, p, queue_flags);
4292	}
4293	if (running)
4294		set_curr_task(rq, p);
 
 
4295
4296	check_class_changed(rq, p, prev_class, oldprio);
4297	preempt_disable(); /* avoid rq from going away on us */
4298	task_rq_unlock(rq, p, &rf);
4299
4300	if (pi)
4301		rt_mutex_adjust_pi(p);
4302
4303	/*
4304	 * Run balance callbacks after we've adjusted the PI chain.
4305	 */
4306	balance_callback(rq);
4307	preempt_enable();
4308
4309	return 0;
4310}
4311
4312static int _sched_setscheduler(struct task_struct *p, int policy,
4313			       const struct sched_param *param, bool check)
4314{
4315	struct sched_attr attr = {
4316		.sched_policy   = policy,
4317		.sched_priority = param->sched_priority,
4318		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4319	};
4320
4321	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4322	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4323		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4324		policy &= ~SCHED_RESET_ON_FORK;
4325		attr.sched_policy = policy;
4326	}
4327
4328	return __sched_setscheduler(p, &attr, check, true);
4329}
4330/**
4331 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4332 * @p: the task in question.
4333 * @policy: new policy.
4334 * @param: structure containing the new RT priority.
4335 *
4336 * Return: 0 on success. An error code otherwise.
4337 *
4338 * NOTE that the task may be already dead.
4339 */
4340int sched_setscheduler(struct task_struct *p, int policy,
4341		       const struct sched_param *param)
4342{
4343	return _sched_setscheduler(p, policy, param, true);
4344}
4345EXPORT_SYMBOL_GPL(sched_setscheduler);
4346
4347int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4348{
4349	return __sched_setscheduler(p, attr, true, true);
4350}
4351EXPORT_SYMBOL_GPL(sched_setattr);
4352
4353/**
4354 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4355 * @p: the task in question.
4356 * @policy: new policy.
4357 * @param: structure containing the new RT priority.
4358 *
4359 * Just like sched_setscheduler, only don't bother checking if the
4360 * current context has permission.  For example, this is needed in
4361 * stop_machine(): we create temporary high priority worker threads,
4362 * but our caller might not have that capability.
4363 *
4364 * Return: 0 on success. An error code otherwise.
4365 */
4366int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4367			       const struct sched_param *param)
4368{
4369	return _sched_setscheduler(p, policy, param, false);
4370}
4371EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4372
4373static int
4374do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4375{
4376	struct sched_param lparam;
4377	struct task_struct *p;
4378	int retval;
4379
4380	if (!param || pid < 0)
4381		return -EINVAL;
4382	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4383		return -EFAULT;
4384
4385	rcu_read_lock();
4386	retval = -ESRCH;
4387	p = find_process_by_pid(pid);
4388	if (p != NULL)
4389		retval = sched_setscheduler(p, policy, &lparam);
4390	rcu_read_unlock();
4391
4392	return retval;
4393}
4394
4395/*
4396 * Mimics kernel/events/core.c perf_copy_attr().
4397 */
4398static int sched_copy_attr(struct sched_attr __user *uattr,
4399			   struct sched_attr *attr)
4400{
4401	u32 size;
4402	int ret;
4403
4404	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4405		return -EFAULT;
4406
4407	/*
4408	 * zero the full structure, so that a short copy will be nice.
4409	 */
4410	memset(attr, 0, sizeof(*attr));
4411
4412	ret = get_user(size, &uattr->size);
4413	if (ret)
4414		return ret;
4415
4416	if (size > PAGE_SIZE)	/* silly large */
4417		goto err_size;
4418
4419	if (!size)		/* abi compat */
4420		size = SCHED_ATTR_SIZE_VER0;
4421
4422	if (size < SCHED_ATTR_SIZE_VER0)
4423		goto err_size;
4424
4425	/*
4426	 * If we're handed a bigger struct than we know of,
4427	 * ensure all the unknown bits are 0 - i.e. new
4428	 * user-space does not rely on any kernel feature
4429	 * extensions we dont know about yet.
4430	 */
4431	if (size > sizeof(*attr)) {
4432		unsigned char __user *addr;
4433		unsigned char __user *end;
4434		unsigned char val;
4435
4436		addr = (void __user *)uattr + sizeof(*attr);
4437		end  = (void __user *)uattr + size;
4438
4439		for (; addr < end; addr++) {
4440			ret = get_user(val, addr);
4441			if (ret)
4442				return ret;
4443			if (val)
4444				goto err_size;
4445		}
4446		size = sizeof(*attr);
4447	}
4448
4449	ret = copy_from_user(attr, uattr, size);
4450	if (ret)
4451		return -EFAULT;
4452
4453	/*
4454	 * XXX: do we want to be lenient like existing syscalls; or do we want
4455	 * to be strict and return an error on out-of-bounds values?
4456	 */
4457	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4458
4459	return 0;
4460
4461err_size:
4462	put_user(sizeof(*attr), &uattr->size);
4463	return -E2BIG;
4464}
4465
4466/**
4467 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4468 * @pid: the pid in question.
4469 * @policy: new policy.
4470 * @param: structure containing the new RT priority.
4471 *
4472 * Return: 0 on success. An error code otherwise.
4473 */
4474SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4475		struct sched_param __user *, param)
4476{
4477	/* negative values for policy are not valid */
4478	if (policy < 0)
4479		return -EINVAL;
4480
4481	return do_sched_setscheduler(pid, policy, param);
4482}
4483
4484/**
4485 * sys_sched_setparam - set/change the RT priority of a thread
4486 * @pid: the pid in question.
4487 * @param: structure containing the new RT priority.
4488 *
4489 * Return: 0 on success. An error code otherwise.
4490 */
4491SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4492{
4493	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4494}
4495
4496/**
4497 * sys_sched_setattr - same as above, but with extended sched_attr
4498 * @pid: the pid in question.
4499 * @uattr: structure containing the extended parameters.
4500 * @flags: for future extension.
4501 */
4502SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4503			       unsigned int, flags)
4504{
4505	struct sched_attr attr;
4506	struct task_struct *p;
4507	int retval;
4508
4509	if (!uattr || pid < 0 || flags)
4510		return -EINVAL;
4511
4512	retval = sched_copy_attr(uattr, &attr);
4513	if (retval)
4514		return retval;
4515
4516	if ((int)attr.sched_policy < 0)
4517		return -EINVAL;
4518
4519	rcu_read_lock();
4520	retval = -ESRCH;
4521	p = find_process_by_pid(pid);
4522	if (p != NULL)
4523		retval = sched_setattr(p, &attr);
4524	rcu_read_unlock();
4525
4526	return retval;
4527}
4528
4529/**
4530 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4531 * @pid: the pid in question.
4532 *
4533 * Return: On success, the policy of the thread. Otherwise, a negative error
4534 * code.
4535 */
4536SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4537{
4538	struct task_struct *p;
4539	int retval;
4540
4541	if (pid < 0)
4542		return -EINVAL;
4543
4544	retval = -ESRCH;
4545	rcu_read_lock();
4546	p = find_process_by_pid(pid);
4547	if (p) {
4548		retval = security_task_getscheduler(p);
4549		if (!retval)
4550			retval = p->policy
4551				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4552	}
4553	rcu_read_unlock();
4554	return retval;
4555}
4556
4557/**
4558 * sys_sched_getparam - get the RT priority of a thread
4559 * @pid: the pid in question.
4560 * @param: structure containing the RT priority.
4561 *
4562 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4563 * code.
4564 */
4565SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4566{
4567	struct sched_param lp = { .sched_priority = 0 };
4568	struct task_struct *p;
4569	int retval;
4570
4571	if (!param || pid < 0)
4572		return -EINVAL;
4573
4574	rcu_read_lock();
4575	p = find_process_by_pid(pid);
4576	retval = -ESRCH;
4577	if (!p)
4578		goto out_unlock;
4579
4580	retval = security_task_getscheduler(p);
4581	if (retval)
4582		goto out_unlock;
4583
4584	if (task_has_rt_policy(p))
4585		lp.sched_priority = p->rt_priority;
4586	rcu_read_unlock();
4587
4588	/*
4589	 * This one might sleep, we cannot do it with a spinlock held ...
4590	 */
4591	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4592
4593	return retval;
4594
4595out_unlock:
4596	rcu_read_unlock();
4597	return retval;
4598}
4599
4600static int sched_read_attr(struct sched_attr __user *uattr,
4601			   struct sched_attr *attr,
4602			   unsigned int usize)
4603{
4604	int ret;
4605
4606	if (!access_ok(VERIFY_WRITE, uattr, usize))
4607		return -EFAULT;
4608
4609	/*
4610	 * If we're handed a smaller struct than we know of,
4611	 * ensure all the unknown bits are 0 - i.e. old
4612	 * user-space does not get uncomplete information.
4613	 */
4614	if (usize < sizeof(*attr)) {
4615		unsigned char *addr;
4616		unsigned char *end;
4617
4618		addr = (void *)attr + usize;
4619		end  = (void *)attr + sizeof(*attr);
4620
4621		for (; addr < end; addr++) {
4622			if (*addr)
4623				return -EFBIG;
4624		}
4625
4626		attr->size = usize;
4627	}
4628
4629	ret = copy_to_user(uattr, attr, attr->size);
4630	if (ret)
4631		return -EFAULT;
4632
4633	return 0;
4634}
4635
4636/**
4637 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4638 * @pid: the pid in question.
4639 * @uattr: structure containing the extended parameters.
4640 * @size: sizeof(attr) for fwd/bwd comp.
4641 * @flags: for future extension.
4642 */
4643SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4644		unsigned int, size, unsigned int, flags)
4645{
4646	struct sched_attr attr = {
4647		.size = sizeof(struct sched_attr),
4648	};
4649	struct task_struct *p;
4650	int retval;
4651
4652	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4653	    size < SCHED_ATTR_SIZE_VER0 || flags)
4654		return -EINVAL;
4655
4656	rcu_read_lock();
4657	p = find_process_by_pid(pid);
4658	retval = -ESRCH;
4659	if (!p)
4660		goto out_unlock;
4661
4662	retval = security_task_getscheduler(p);
4663	if (retval)
4664		goto out_unlock;
4665
4666	attr.sched_policy = p->policy;
4667	if (p->sched_reset_on_fork)
4668		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4669	if (task_has_dl_policy(p))
4670		__getparam_dl(p, &attr);
4671	else if (task_has_rt_policy(p))
4672		attr.sched_priority = p->rt_priority;
4673	else
4674		attr.sched_nice = task_nice(p);
4675
4676	rcu_read_unlock();
4677
4678	retval = sched_read_attr(uattr, &attr, size);
4679	return retval;
4680
4681out_unlock:
4682	rcu_read_unlock();
4683	return retval;
4684}
4685
4686long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4687{
4688	cpumask_var_t cpus_allowed, new_mask;
4689	struct task_struct *p;
4690	int retval;
4691
 
4692	rcu_read_lock();
4693
4694	p = find_process_by_pid(pid);
4695	if (!p) {
4696		rcu_read_unlock();
 
4697		return -ESRCH;
4698	}
4699
4700	/* Prevent p going away */
4701	get_task_struct(p);
4702	rcu_read_unlock();
4703
4704	if (p->flags & PF_NO_SETAFFINITY) {
4705		retval = -EINVAL;
4706		goto out_put_task;
4707	}
4708	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4709		retval = -ENOMEM;
4710		goto out_put_task;
4711	}
4712	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4713		retval = -ENOMEM;
4714		goto out_free_cpus_allowed;
4715	}
4716	retval = -EPERM;
4717	if (!check_same_owner(p)) {
4718		rcu_read_lock();
4719		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4720			rcu_read_unlock();
4721			goto out_free_new_mask;
4722		}
4723		rcu_read_unlock();
4724	}
4725
4726	retval = security_task_setscheduler(p);
4727	if (retval)
4728		goto out_free_new_mask;
4729
4730
4731	cpuset_cpus_allowed(p, cpus_allowed);
4732	cpumask_and(new_mask, in_mask, cpus_allowed);
4733
4734	/*
4735	 * Since bandwidth control happens on root_domain basis,
4736	 * if admission test is enabled, we only admit -deadline
4737	 * tasks allowed to run on all the CPUs in the task's
4738	 * root_domain.
4739	 */
4740#ifdef CONFIG_SMP
4741	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4742		rcu_read_lock();
4743		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4744			retval = -EBUSY;
4745			rcu_read_unlock();
4746			goto out_free_new_mask;
4747		}
4748		rcu_read_unlock();
4749	}
4750#endif
4751again:
4752	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4753
4754	if (!retval) {
4755		cpuset_cpus_allowed(p, cpus_allowed);
4756		if (!cpumask_subset(new_mask, cpus_allowed)) {
4757			/*
4758			 * We must have raced with a concurrent cpuset
4759			 * update. Just reset the cpus_allowed to the
4760			 * cpuset's cpus_allowed
4761			 */
4762			cpumask_copy(new_mask, cpus_allowed);
4763			goto again;
4764		}
4765	}
4766out_free_new_mask:
4767	free_cpumask_var(new_mask);
4768out_free_cpus_allowed:
4769	free_cpumask_var(cpus_allowed);
4770out_put_task:
4771	put_task_struct(p);
 
4772	return retval;
4773}
4774
4775static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4776			     struct cpumask *new_mask)
4777{
4778	if (len < cpumask_size())
4779		cpumask_clear(new_mask);
4780	else if (len > cpumask_size())
4781		len = cpumask_size();
4782
4783	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4784}
4785
4786/**
4787 * sys_sched_setaffinity - set the cpu affinity of a process
4788 * @pid: pid of the process
4789 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4790 * @user_mask_ptr: user-space pointer to the new cpu mask
4791 *
4792 * Return: 0 on success. An error code otherwise.
4793 */
4794SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4795		unsigned long __user *, user_mask_ptr)
4796{
4797	cpumask_var_t new_mask;
4798	int retval;
4799
4800	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4801		return -ENOMEM;
4802
4803	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4804	if (retval == 0)
4805		retval = sched_setaffinity(pid, new_mask);
4806	free_cpumask_var(new_mask);
4807	return retval;
4808}
4809
4810long sched_getaffinity(pid_t pid, struct cpumask *mask)
4811{
4812	struct task_struct *p;
4813	unsigned long flags;
4814	int retval;
4815
 
4816	rcu_read_lock();
4817
4818	retval = -ESRCH;
4819	p = find_process_by_pid(pid);
4820	if (!p)
4821		goto out_unlock;
4822
4823	retval = security_task_getscheduler(p);
4824	if (retval)
4825		goto out_unlock;
4826
4827	raw_spin_lock_irqsave(&p->pi_lock, flags);
4828	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4829	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4830
4831out_unlock:
4832	rcu_read_unlock();
 
4833
4834	return retval;
4835}
4836
4837/**
4838 * sys_sched_getaffinity - get the cpu affinity of a process
4839 * @pid: pid of the process
4840 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4841 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4842 *
4843 * Return: size of CPU mask copied to user_mask_ptr on success. An
4844 * error code otherwise.
4845 */
4846SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4847		unsigned long __user *, user_mask_ptr)
4848{
4849	int ret;
4850	cpumask_var_t mask;
4851
4852	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4853		return -EINVAL;
4854	if (len & (sizeof(unsigned long)-1))
4855		return -EINVAL;
4856
4857	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4858		return -ENOMEM;
4859
4860	ret = sched_getaffinity(pid, mask);
4861	if (ret == 0) {
4862		size_t retlen = min_t(size_t, len, cpumask_size());
4863
4864		if (copy_to_user(user_mask_ptr, mask, retlen))
4865			ret = -EFAULT;
4866		else
4867			ret = retlen;
4868	}
4869	free_cpumask_var(mask);
4870
4871	return ret;
4872}
4873
4874/**
4875 * sys_sched_yield - yield the current processor to other threads.
4876 *
4877 * This function yields the current CPU to other tasks. If there are no
4878 * other threads running on this CPU then this function will return.
4879 *
4880 * Return: 0.
4881 */
4882SYSCALL_DEFINE0(sched_yield)
4883{
4884	struct rq *rq = this_rq_lock();
4885
4886	schedstat_inc(rq->yld_count);
4887	current->sched_class->yield_task(rq);
4888
4889	/*
4890	 * Since we are going to call schedule() anyway, there's
4891	 * no need to preempt or enable interrupts:
4892	 */
4893	__release(rq->lock);
4894	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4895	do_raw_spin_unlock(&rq->lock);
4896	sched_preempt_enable_no_resched();
4897
4898	schedule();
4899
4900	return 0;
4901}
4902
4903#ifndef CONFIG_PREEMPT
 
 
 
 
 
 
 
 
 
 
 
4904int __sched _cond_resched(void)
4905{
4906	if (should_resched(0)) {
4907		preempt_schedule_common();
4908		return 1;
4909	}
4910	return 0;
4911}
4912EXPORT_SYMBOL(_cond_resched);
4913#endif
4914
4915/*
4916 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4917 * call schedule, and on return reacquire the lock.
4918 *
4919 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4920 * operations here to prevent schedule() from being called twice (once via
4921 * spin_unlock(), once by hand).
4922 */
4923int __cond_resched_lock(spinlock_t *lock)
4924{
4925	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4926	int ret = 0;
4927
4928	lockdep_assert_held(lock);
4929
4930	if (spin_needbreak(lock) || resched) {
4931		spin_unlock(lock);
4932		if (resched)
4933			preempt_schedule_common();
4934		else
4935			cpu_relax();
4936		ret = 1;
4937		spin_lock(lock);
4938	}
4939	return ret;
4940}
4941EXPORT_SYMBOL(__cond_resched_lock);
4942
4943int __sched __cond_resched_softirq(void)
4944{
4945	BUG_ON(!in_softirq());
4946
4947	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4948		local_bh_enable();
4949		preempt_schedule_common();
4950		local_bh_disable();
4951		return 1;
4952	}
4953	return 0;
4954}
4955EXPORT_SYMBOL(__cond_resched_softirq);
4956
4957/**
4958 * yield - yield the current processor to other threads.
4959 *
4960 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4961 *
4962 * The scheduler is at all times free to pick the calling task as the most
4963 * eligible task to run, if removing the yield() call from your code breaks
4964 * it, its already broken.
4965 *
4966 * Typical broken usage is:
4967 *
4968 * while (!event)
4969 * 	yield();
4970 *
4971 * where one assumes that yield() will let 'the other' process run that will
4972 * make event true. If the current task is a SCHED_FIFO task that will never
4973 * happen. Never use yield() as a progress guarantee!!
4974 *
4975 * If you want to use yield() to wait for something, use wait_event().
4976 * If you want to use yield() to be 'nice' for others, use cond_resched().
4977 * If you still want to use yield(), do not!
4978 */
4979void __sched yield(void)
4980{
4981	set_current_state(TASK_RUNNING);
4982	sys_sched_yield();
4983}
4984EXPORT_SYMBOL(yield);
4985
4986/**
4987 * yield_to - yield the current processor to another thread in
4988 * your thread group, or accelerate that thread toward the
4989 * processor it's on.
4990 * @p: target task
4991 * @preempt: whether task preemption is allowed or not
4992 *
4993 * It's the caller's job to ensure that the target task struct
4994 * can't go away on us before we can do any checks.
4995 *
4996 * Return:
4997 *	true (>0) if we indeed boosted the target task.
4998 *	false (0) if we failed to boost the target.
4999 *	-ESRCH if there's no task to yield to.
5000 */
5001int __sched yield_to(struct task_struct *p, bool preempt)
5002{
5003	struct task_struct *curr = current;
5004	struct rq *rq, *p_rq;
5005	unsigned long flags;
5006	int yielded = 0;
5007
5008	local_irq_save(flags);
5009	rq = this_rq();
5010
5011again:
5012	p_rq = task_rq(p);
5013	/*
5014	 * If we're the only runnable task on the rq and target rq also
5015	 * has only one task, there's absolutely no point in yielding.
5016	 */
5017	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5018		yielded = -ESRCH;
5019		goto out_irq;
5020	}
5021
5022	double_rq_lock(rq, p_rq);
5023	if (task_rq(p) != p_rq) {
5024		double_rq_unlock(rq, p_rq);
5025		goto again;
5026	}
5027
5028	if (!curr->sched_class->yield_to_task)
5029		goto out_unlock;
5030
5031	if (curr->sched_class != p->sched_class)
5032		goto out_unlock;
5033
5034	if (task_running(p_rq, p) || p->state)
5035		goto out_unlock;
5036
5037	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5038	if (yielded) {
5039		schedstat_inc(rq->yld_count);
5040		/*
5041		 * Make p's CPU reschedule; pick_next_entity takes care of
5042		 * fairness.
5043		 */
5044		if (preempt && rq != p_rq)
5045			resched_curr(p_rq);
 
 
 
 
 
 
 
5046	}
5047
5048out_unlock:
5049	double_rq_unlock(rq, p_rq);
5050out_irq:
5051	local_irq_restore(flags);
5052
5053	if (yielded > 0)
5054		schedule();
5055
5056	return yielded;
5057}
5058EXPORT_SYMBOL_GPL(yield_to);
5059
5060/*
5061 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5062 * that process accounting knows that this is a task in IO wait state.
5063 */
5064long __sched io_schedule_timeout(long timeout)
5065{
5066	int old_iowait = current->in_iowait;
5067	struct rq *rq;
5068	long ret;
5069
 
 
 
5070	current->in_iowait = 1;
5071	blk_schedule_flush_plug(current);
 
 
 
 
 
 
 
 
 
 
5072
5073	delayacct_blkio_start();
5074	rq = raw_rq();
5075	atomic_inc(&rq->nr_iowait);
 
 
5076	ret = schedule_timeout(timeout);
5077	current->in_iowait = old_iowait;
5078	atomic_dec(&rq->nr_iowait);
5079	delayacct_blkio_end();
5080
5081	return ret;
5082}
5083EXPORT_SYMBOL(io_schedule_timeout);
5084
5085/**
5086 * sys_sched_get_priority_max - return maximum RT priority.
5087 * @policy: scheduling class.
5088 *
5089 * Return: On success, this syscall returns the maximum
5090 * rt_priority that can be used by a given scheduling class.
5091 * On failure, a negative error code is returned.
5092 */
5093SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5094{
5095	int ret = -EINVAL;
5096
5097	switch (policy) {
5098	case SCHED_FIFO:
5099	case SCHED_RR:
5100		ret = MAX_USER_RT_PRIO-1;
5101		break;
5102	case SCHED_DEADLINE:
5103	case SCHED_NORMAL:
5104	case SCHED_BATCH:
5105	case SCHED_IDLE:
5106		ret = 0;
5107		break;
5108	}
5109	return ret;
5110}
5111
5112/**
5113 * sys_sched_get_priority_min - return minimum RT priority.
5114 * @policy: scheduling class.
5115 *
5116 * Return: On success, this syscall returns the minimum
5117 * rt_priority that can be used by a given scheduling class.
5118 * On failure, a negative error code is returned.
5119 */
5120SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5121{
5122	int ret = -EINVAL;
5123
5124	switch (policy) {
5125	case SCHED_FIFO:
5126	case SCHED_RR:
5127		ret = 1;
5128		break;
5129	case SCHED_DEADLINE:
5130	case SCHED_NORMAL:
5131	case SCHED_BATCH:
5132	case SCHED_IDLE:
5133		ret = 0;
5134	}
5135	return ret;
5136}
5137
5138/**
5139 * sys_sched_rr_get_interval - return the default timeslice of a process.
5140 * @pid: pid of the process.
5141 * @interval: userspace pointer to the timeslice value.
5142 *
5143 * this syscall writes the default timeslice value of a given process
5144 * into the user-space timespec buffer. A value of '0' means infinity.
5145 *
5146 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5147 * an error code.
5148 */
5149SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5150		struct timespec __user *, interval)
5151{
5152	struct task_struct *p;
5153	unsigned int time_slice;
5154	struct rq_flags rf;
5155	struct timespec t;
5156	struct rq *rq;
5157	int retval;
 
5158
5159	if (pid < 0)
5160		return -EINVAL;
5161
5162	retval = -ESRCH;
5163	rcu_read_lock();
5164	p = find_process_by_pid(pid);
5165	if (!p)
5166		goto out_unlock;
5167
5168	retval = security_task_getscheduler(p);
5169	if (retval)
5170		goto out_unlock;
5171
5172	rq = task_rq_lock(p, &rf);
5173	time_slice = 0;
5174	if (p->sched_class->get_rr_interval)
5175		time_slice = p->sched_class->get_rr_interval(rq, p);
5176	task_rq_unlock(rq, p, &rf);
5177
5178	rcu_read_unlock();
5179	jiffies_to_timespec(time_slice, &t);
5180	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5181	return retval;
5182
5183out_unlock:
5184	rcu_read_unlock();
5185	return retval;
5186}
5187
5188static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5189
5190void sched_show_task(struct task_struct *p)
5191{
5192	unsigned long free = 0;
5193	int ppid;
5194	unsigned long state = p->state;
5195
5196	if (!try_get_task_stack(p))
5197		return;
5198	if (state)
5199		state = __ffs(state) + 1;
5200	printk(KERN_INFO "%-15.15s %c", p->comm,
5201		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
 
 
 
 
 
 
5202	if (state == TASK_RUNNING)
5203		printk(KERN_CONT "  running task    ");
 
 
 
5204#ifdef CONFIG_DEBUG_STACK_USAGE
5205	free = stack_not_used(p);
5206#endif
5207	ppid = 0;
5208	rcu_read_lock();
5209	if (pid_alive(p))
5210		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5211	rcu_read_unlock();
5212	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5213		task_pid_nr(p), ppid,
5214		(unsigned long)task_thread_info(p)->flags);
5215
5216	print_worker_info(KERN_INFO, p);
5217	show_stack(p, NULL);
5218	put_task_stack(p);
5219}
5220
5221void show_state_filter(unsigned long state_filter)
5222{
5223	struct task_struct *g, *p;
5224
5225#if BITS_PER_LONG == 32
5226	printk(KERN_INFO
5227		"  task                PC stack   pid father\n");
5228#else
5229	printk(KERN_INFO
5230		"  task                        PC stack   pid father\n");
5231#endif
5232	rcu_read_lock();
5233	for_each_process_thread(g, p) {
5234		/*
5235		 * reset the NMI-timeout, listing all files on a slow
5236		 * console might take a lot of time:
5237		 * Also, reset softlockup watchdogs on all CPUs, because
5238		 * another CPU might be blocked waiting for us to process
5239		 * an IPI.
5240		 */
5241		touch_nmi_watchdog();
5242		touch_all_softlockup_watchdogs();
5243		if (!state_filter || (p->state & state_filter))
5244			sched_show_task(p);
5245	}
 
 
5246
5247#ifdef CONFIG_SCHED_DEBUG
5248	if (!state_filter)
5249		sysrq_sched_debug_show();
5250#endif
5251	rcu_read_unlock();
5252	/*
5253	 * Only show locks if all tasks are dumped:
5254	 */
5255	if (!state_filter)
5256		debug_show_all_locks();
5257}
5258
5259void init_idle_bootup_task(struct task_struct *idle)
5260{
5261	idle->sched_class = &idle_sched_class;
5262}
5263
5264/**
5265 * init_idle - set up an idle thread for a given CPU
5266 * @idle: task in question
5267 * @cpu: cpu the idle task belongs to
5268 *
5269 * NOTE: this function does not set the idle thread's NEED_RESCHED
5270 * flag, to make booting more robust.
5271 */
5272void init_idle(struct task_struct *idle, int cpu)
5273{
5274	struct rq *rq = cpu_rq(cpu);
5275	unsigned long flags;
5276
5277	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5278	raw_spin_lock(&rq->lock);
5279
5280	__sched_fork(0, idle);
5281	idle->state = TASK_RUNNING;
5282	idle->se.exec_start = sched_clock();
5283	idle->flags |= PF_IDLE;
5284
5285	kasan_unpoison_task_stack(idle);
5286
5287#ifdef CONFIG_SMP
5288	/*
5289	 * Its possible that init_idle() gets called multiple times on a task,
5290	 * in that case do_set_cpus_allowed() will not do the right thing.
5291	 *
5292	 * And since this is boot we can forgo the serialization.
5293	 */
5294	set_cpus_allowed_common(idle, cpumask_of(cpu));
5295#endif
5296	/*
5297	 * We're having a chicken and egg problem, even though we are
5298	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5299	 * lockdep check in task_group() will fail.
5300	 *
5301	 * Similar case to sched_fork(). / Alternatively we could
5302	 * use task_rq_lock() here and obtain the other rq->lock.
5303	 *
5304	 * Silence PROVE_RCU
5305	 */
5306	rcu_read_lock();
5307	__set_task_cpu(idle, cpu);
5308	rcu_read_unlock();
5309
5310	rq->curr = rq->idle = idle;
5311	idle->on_rq = TASK_ON_RQ_QUEUED;
5312#ifdef CONFIG_SMP
5313	idle->on_cpu = 1;
5314#endif
5315	raw_spin_unlock(&rq->lock);
5316	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5317
5318	/* Set the preempt count _outside_ the spinlocks! */
5319	init_idle_preempt_count(idle, cpu);
5320
5321	/*
5322	 * The idle tasks have their own, simple scheduling class:
5323	 */
5324	idle->sched_class = &idle_sched_class;
5325	ftrace_graph_init_idle_task(idle, cpu);
5326	vtime_init_idle(idle, cpu);
5327#ifdef CONFIG_SMP
5328	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5329#endif
5330}
5331
5332int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5333			      const struct cpumask *trial)
5334{
5335	int ret = 1, trial_cpus;
5336	struct dl_bw *cur_dl_b;
5337	unsigned long flags;
5338
5339	if (!cpumask_weight(cur))
5340		return ret;
5341
5342	rcu_read_lock_sched();
5343	cur_dl_b = dl_bw_of(cpumask_any(cur));
5344	trial_cpus = cpumask_weight(trial);
5345
5346	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5347	if (cur_dl_b->bw != -1 &&
5348	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5349		ret = 0;
5350	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5351	rcu_read_unlock_sched();
5352
5353	return ret;
 
5354}
5355
5356int task_can_attach(struct task_struct *p,
5357		    const struct cpumask *cs_cpus_allowed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5358{
 
 
 
5359	int ret = 0;
5360
5361	/*
5362	 * Kthreads which disallow setaffinity shouldn't be moved
5363	 * to a new cpuset; we don't want to change their cpu
5364	 * affinity and isolating such threads by their set of
5365	 * allowed nodes is unnecessary.  Thus, cpusets are not
5366	 * applicable for such threads.  This prevents checking for
5367	 * success of set_cpus_allowed_ptr() on all attached tasks
5368	 * before cpus_allowed may be changed.
5369	 */
5370	if (p->flags & PF_NO_SETAFFINITY) {
5371		ret = -EINVAL;
5372		goto out;
5373	}
5374
5375#ifdef CONFIG_SMP
5376	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5377					      cs_cpus_allowed)) {
5378		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5379							cs_cpus_allowed);
5380		struct dl_bw *dl_b;
5381		bool overflow;
5382		int cpus;
5383		unsigned long flags;
5384
5385		rcu_read_lock_sched();
5386		dl_b = dl_bw_of(dest_cpu);
5387		raw_spin_lock_irqsave(&dl_b->lock, flags);
5388		cpus = dl_bw_cpus(dest_cpu);
5389		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5390		if (overflow)
5391			ret = -EBUSY;
5392		else {
5393			/*
5394			 * We reserve space for this task in the destination
5395			 * root_domain, as we can't fail after this point.
5396			 * We will free resources in the source root_domain
5397			 * later on (see set_cpus_allowed_dl()).
5398			 */
5399			__dl_add(dl_b, p->dl.dl_bw);
5400		}
5401		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5402		rcu_read_unlock_sched();
5403
 
 
 
 
 
 
 
 
5404	}
5405#endif
5406out:
 
 
5407	return ret;
5408}
 
5409
5410#ifdef CONFIG_SMP
5411
5412static bool sched_smp_initialized __read_mostly;
5413
5414#ifdef CONFIG_NUMA_BALANCING
5415/* Migrate current task p to target_cpu */
5416int migrate_task_to(struct task_struct *p, int target_cpu)
 
 
 
 
 
5417{
5418	struct migration_arg arg = { p, target_cpu };
5419	int curr_cpu = task_cpu(p);
5420
5421	if (curr_cpu == target_cpu)
5422		return 0;
5423
5424	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5425		return -EINVAL;
5426
5427	/* TODO: This is not properly updating schedstats */
 
 
 
 
 
 
 
5428
5429	trace_sched_move_numa(p, curr_cpu, target_cpu);
5430	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5431}
5432
5433/*
5434 * Requeue a task on a given node and accurately track the number of NUMA
5435 * tasks on the runqueues
 
5436 */
5437void sched_setnuma(struct task_struct *p, int nid)
5438{
5439	bool queued, running;
5440	struct rq_flags rf;
5441	struct rq *rq;
5442
5443	rq = task_rq_lock(p, &rf);
5444	queued = task_on_rq_queued(p);
5445	running = task_current(rq, p);
5446
5447	if (queued)
5448		dequeue_task(rq, p, DEQUEUE_SAVE);
5449	if (running)
5450		put_prev_task(rq, p);
5451
5452	p->numa_preferred_nid = nid;
5453
5454	if (queued)
5455		enqueue_task(rq, p, ENQUEUE_RESTORE);
5456	if (running)
5457		set_curr_task(rq, p);
5458	task_rq_unlock(rq, p, &rf);
 
 
 
5459}
5460#endif /* CONFIG_NUMA_BALANCING */
5461
5462#ifdef CONFIG_HOTPLUG_CPU
 
5463/*
5464 * Ensures that the idle task is using init_mm right before its cpu goes
5465 * offline.
5466 */
5467void idle_task_exit(void)
5468{
5469	struct mm_struct *mm = current->active_mm;
5470
5471	BUG_ON(cpu_online(smp_processor_id()));
5472
5473	if (mm != &init_mm) {
5474		switch_mm_irqs_off(mm, &init_mm, current);
5475		finish_arch_post_lock_switch();
5476	}
5477	mmdrop(mm);
5478}
5479
5480/*
5481 * Since this CPU is going 'away' for a while, fold any nr_active delta
5482 * we might have. Assumes we're called after migrate_tasks() so that the
5483 * nr_active count is stable. We need to take the teardown thread which
5484 * is calling this into account, so we hand in adjust = 1 to the load
5485 * calculation.
5486 *
5487 * Also see the comment "Global load-average calculations".
5488 */
5489static void calc_load_migrate(struct rq *rq)
5490{
5491	long delta = calc_load_fold_active(rq, 1);
5492	if (delta)
5493		atomic_long_add(delta, &calc_load_tasks);
 
5494}
5495
5496static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
 
 
 
5497{
 
 
5498}
5499
5500static const struct sched_class fake_sched_class = {
5501	.put_prev_task = put_prev_task_fake,
5502};
5503
5504static struct task_struct fake_task = {
5505	/*
5506	 * Avoid pull_{rt,dl}_task()
5507	 */
5508	.prio = MAX_PRIO + 1,
5509	.sched_class = &fake_sched_class,
5510};
5511
5512/*
5513 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5514 * try_to_wake_up()->select_task_rq().
5515 *
5516 * Called with rq->lock held even though we'er in stop_machine() and
5517 * there's no concurrency possible, we hold the required locks anyway
5518 * because of lock validation efforts.
5519 */
5520static void migrate_tasks(struct rq *dead_rq)
5521{
5522	struct rq *rq = dead_rq;
5523	struct task_struct *next, *stop = rq->stop;
5524	struct pin_cookie cookie;
5525	int dest_cpu;
5526
5527	/*
5528	 * Fudge the rq selection such that the below task selection loop
5529	 * doesn't get stuck on the currently eligible stop task.
5530	 *
5531	 * We're currently inside stop_machine() and the rq is either stuck
5532	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5533	 * either way we should never end up calling schedule() until we're
5534	 * done here.
5535	 */
5536	rq->stop = NULL;
5537
5538	/*
5539	 * put_prev_task() and pick_next_task() sched
5540	 * class method both need to have an up-to-date
5541	 * value of rq->clock[_task]
5542	 */
5543	update_rq_clock(rq);
5544
5545	for (;;) {
5546		/*
5547		 * There's this thread running, bail when that's the only
5548		 * remaining thread.
5549		 */
5550		if (rq->nr_running == 1)
5551			break;
5552
5553		/*
5554		 * pick_next_task assumes pinned rq->lock.
5555		 */
5556		cookie = lockdep_pin_lock(&rq->lock);
5557		next = pick_next_task(rq, &fake_task, cookie);
5558		BUG_ON(!next);
5559		next->sched_class->put_prev_task(rq, next);
5560
5561		/*
5562		 * Rules for changing task_struct::cpus_allowed are holding
5563		 * both pi_lock and rq->lock, such that holding either
5564		 * stabilizes the mask.
5565		 *
5566		 * Drop rq->lock is not quite as disastrous as it usually is
5567		 * because !cpu_active at this point, which means load-balance
5568		 * will not interfere. Also, stop-machine.
5569		 */
5570		lockdep_unpin_lock(&rq->lock, cookie);
5571		raw_spin_unlock(&rq->lock);
5572		raw_spin_lock(&next->pi_lock);
5573		raw_spin_lock(&rq->lock);
5574
5575		/*
5576		 * Since we're inside stop-machine, _nothing_ should have
5577		 * changed the task, WARN if weird stuff happened, because in
5578		 * that case the above rq->lock drop is a fail too.
5579		 */
5580		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5581			raw_spin_unlock(&next->pi_lock);
5582			continue;
5583		}
5584
5585		/* Find suitable destination for @next, with force if needed. */
5586		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5587
5588		rq = __migrate_task(rq, next, dest_cpu);
5589		if (rq != dead_rq) {
5590			raw_spin_unlock(&rq->lock);
5591			rq = dead_rq;
5592			raw_spin_lock(&rq->lock);
5593		}
5594		raw_spin_unlock(&next->pi_lock);
5595	}
5596
5597	rq->stop = stop;
5598}
 
5599#endif /* CONFIG_HOTPLUG_CPU */
5600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5601static void set_rq_online(struct rq *rq)
5602{
5603	if (!rq->online) {
5604		const struct sched_class *class;
5605
5606		cpumask_set_cpu(rq->cpu, rq->rd->online);
5607		rq->online = 1;
5608
5609		for_each_class(class) {
5610			if (class->rq_online)
5611				class->rq_online(rq);
5612		}
5613	}
5614}
5615
5616static void set_rq_offline(struct rq *rq)
5617{
5618	if (rq->online) {
5619		const struct sched_class *class;
5620
5621		for_each_class(class) {
5622			if (class->rq_offline)
5623				class->rq_offline(rq);
5624		}
5625
5626		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5627		rq->online = 0;
5628	}
5629}
5630
5631static void set_cpu_rq_start_time(unsigned int cpu)
 
 
 
 
 
5632{
 
 
5633	struct rq *rq = cpu_rq(cpu);
5634
5635	rq->age_stamp = sched_clock_cpu(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5636}
5637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5638static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5639
5640#ifdef CONFIG_SCHED_DEBUG
5641
5642static __read_mostly int sched_debug_enabled;
5643
5644static int __init sched_debug_setup(char *str)
5645{
5646	sched_debug_enabled = 1;
5647
5648	return 0;
5649}
5650early_param("sched_debug", sched_debug_setup);
5651
5652static inline bool sched_debug(void)
5653{
5654	return sched_debug_enabled;
5655}
5656
5657static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5658				  struct cpumask *groupmask)
5659{
5660	struct sched_group *group = sd->groups;
 
5661
 
5662	cpumask_clear(groupmask);
5663
5664	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5665
5666	if (!(sd->flags & SD_LOAD_BALANCE)) {
5667		printk("does not load-balance\n");
5668		if (sd->parent)
5669			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5670					" has parent");
5671		return -1;
5672	}
5673
5674	printk(KERN_CONT "span %*pbl level %s\n",
5675	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5676
5677	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5678		printk(KERN_ERR "ERROR: domain->span does not contain "
5679				"CPU%d\n", cpu);
5680	}
5681	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5682		printk(KERN_ERR "ERROR: domain->groups does not contain"
5683				" CPU%d\n", cpu);
5684	}
5685
5686	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5687	do {
5688		if (!group) {
5689			printk("\n");
5690			printk(KERN_ERR "ERROR: group is NULL\n");
5691			break;
5692		}
5693
 
 
 
 
 
 
 
 
 
 
 
 
5694		if (!cpumask_weight(sched_group_cpus(group))) {
5695			printk(KERN_CONT "\n");
5696			printk(KERN_ERR "ERROR: empty group\n");
5697			break;
5698		}
5699
5700		if (!(sd->flags & SD_OVERLAP) &&
5701		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5702			printk(KERN_CONT "\n");
5703			printk(KERN_ERR "ERROR: repeated CPUs\n");
5704			break;
5705		}
5706
5707		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5708
5709		printk(KERN_CONT " %*pbl",
5710		       cpumask_pr_args(sched_group_cpus(group)));
5711		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5712			printk(KERN_CONT " (cpu_capacity = %lu)",
5713				group->sgc->capacity);
 
5714		}
5715
5716		group = group->next;
5717	} while (group != sd->groups);
5718	printk(KERN_CONT "\n");
5719
5720	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5721		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5722
5723	if (sd->parent &&
5724	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5725		printk(KERN_ERR "ERROR: parent span is not a superset "
5726			"of domain->span\n");
5727	return 0;
5728}
5729
5730static void sched_domain_debug(struct sched_domain *sd, int cpu)
5731{
5732	int level = 0;
5733
5734	if (!sched_debug_enabled)
5735		return;
5736
5737	if (!sd) {
5738		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5739		return;
5740	}
5741
5742	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5743
5744	for (;;) {
5745		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5746			break;
5747		level++;
5748		sd = sd->parent;
5749		if (!sd)
5750			break;
5751	}
5752}
5753#else /* !CONFIG_SCHED_DEBUG */
5754
5755# define sched_debug_enabled 0
5756# define sched_domain_debug(sd, cpu) do { } while (0)
5757static inline bool sched_debug(void)
5758{
5759	return false;
5760}
5761#endif /* CONFIG_SCHED_DEBUG */
5762
5763static int sd_degenerate(struct sched_domain *sd)
5764{
5765	if (cpumask_weight(sched_domain_span(sd)) == 1)
5766		return 1;
5767
5768	/* Following flags need at least 2 groups */
5769	if (sd->flags & (SD_LOAD_BALANCE |
5770			 SD_BALANCE_NEWIDLE |
5771			 SD_BALANCE_FORK |
5772			 SD_BALANCE_EXEC |
5773			 SD_SHARE_CPUCAPACITY |
5774			 SD_ASYM_CPUCAPACITY |
5775			 SD_SHARE_PKG_RESOURCES |
5776			 SD_SHARE_POWERDOMAIN)) {
5777		if (sd->groups != sd->groups->next)
5778			return 0;
5779	}
5780
5781	/* Following flags don't use groups */
5782	if (sd->flags & (SD_WAKE_AFFINE))
5783		return 0;
5784
5785	return 1;
5786}
5787
5788static int
5789sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5790{
5791	unsigned long cflags = sd->flags, pflags = parent->flags;
5792
5793	if (sd_degenerate(parent))
5794		return 1;
5795
5796	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5797		return 0;
5798
5799	/* Flags needing groups don't count if only 1 group in parent */
5800	if (parent->groups == parent->groups->next) {
5801		pflags &= ~(SD_LOAD_BALANCE |
5802				SD_BALANCE_NEWIDLE |
5803				SD_BALANCE_FORK |
5804				SD_BALANCE_EXEC |
5805				SD_ASYM_CPUCAPACITY |
5806				SD_SHARE_CPUCAPACITY |
5807				SD_SHARE_PKG_RESOURCES |
5808				SD_PREFER_SIBLING |
5809				SD_SHARE_POWERDOMAIN);
5810		if (nr_node_ids == 1)
5811			pflags &= ~SD_SERIALIZE;
5812	}
5813	if (~cflags & pflags)
5814		return 0;
5815
5816	return 1;
5817}
5818
5819static void free_rootdomain(struct rcu_head *rcu)
5820{
5821	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5822
5823	cpupri_cleanup(&rd->cpupri);
5824	cpudl_cleanup(&rd->cpudl);
5825	free_cpumask_var(rd->dlo_mask);
5826	free_cpumask_var(rd->rto_mask);
5827	free_cpumask_var(rd->online);
5828	free_cpumask_var(rd->span);
5829	kfree(rd);
5830}
5831
5832static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5833{
5834	struct root_domain *old_rd = NULL;
5835	unsigned long flags;
5836
5837	raw_spin_lock_irqsave(&rq->lock, flags);
5838
5839	if (rq->rd) {
5840		old_rd = rq->rd;
5841
5842		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5843			set_rq_offline(rq);
5844
5845		cpumask_clear_cpu(rq->cpu, old_rd->span);
5846
5847		/*
5848		 * If we dont want to free the old_rd yet then
5849		 * set old_rd to NULL to skip the freeing later
5850		 * in this function:
5851		 */
5852		if (!atomic_dec_and_test(&old_rd->refcount))
5853			old_rd = NULL;
5854	}
5855
5856	atomic_inc(&rd->refcount);
5857	rq->rd = rd;
5858
5859	cpumask_set_cpu(rq->cpu, rd->span);
5860	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5861		set_rq_online(rq);
5862
5863	raw_spin_unlock_irqrestore(&rq->lock, flags);
5864
5865	if (old_rd)
5866		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5867}
5868
5869static int init_rootdomain(struct root_domain *rd)
5870{
5871	memset(rd, 0, sizeof(*rd));
5872
5873	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5874		goto out;
5875	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5876		goto free_span;
5877	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5878		goto free_online;
5879	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5880		goto free_dlo_mask;
5881
5882	init_dl_bw(&rd->dl_bw);
5883	if (cpudl_init(&rd->cpudl) != 0)
5884		goto free_dlo_mask;
5885
5886	if (cpupri_init(&rd->cpupri) != 0)
5887		goto free_rto_mask;
5888	return 0;
5889
5890free_rto_mask:
5891	free_cpumask_var(rd->rto_mask);
5892free_dlo_mask:
5893	free_cpumask_var(rd->dlo_mask);
5894free_online:
5895	free_cpumask_var(rd->online);
5896free_span:
5897	free_cpumask_var(rd->span);
5898out:
5899	return -ENOMEM;
5900}
5901
5902/*
5903 * By default the system creates a single root-domain with all cpus as
5904 * members (mimicking the global state we have today).
5905 */
5906struct root_domain def_root_domain;
5907
5908static void init_defrootdomain(void)
5909{
5910	init_rootdomain(&def_root_domain);
5911
5912	atomic_set(&def_root_domain.refcount, 1);
5913}
5914
5915static struct root_domain *alloc_rootdomain(void)
5916{
5917	struct root_domain *rd;
5918
5919	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5920	if (!rd)
5921		return NULL;
5922
5923	if (init_rootdomain(rd) != 0) {
5924		kfree(rd);
5925		return NULL;
5926	}
5927
5928	return rd;
5929}
5930
5931static void free_sched_groups(struct sched_group *sg, int free_sgc)
5932{
5933	struct sched_group *tmp, *first;
5934
5935	if (!sg)
5936		return;
5937
5938	first = sg;
5939	do {
5940		tmp = sg->next;
5941
5942		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5943			kfree(sg->sgc);
5944
5945		kfree(sg);
5946		sg = tmp;
5947	} while (sg != first);
5948}
5949
5950static void destroy_sched_domain(struct sched_domain *sd)
5951{
 
 
5952	/*
5953	 * If its an overlapping domain it has private groups, iterate and
5954	 * nuke them all.
5955	 */
5956	if (sd->flags & SD_OVERLAP) {
5957		free_sched_groups(sd->groups, 1);
5958	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5959		kfree(sd->groups->sgc);
5960		kfree(sd->groups);
5961	}
5962	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5963		kfree(sd->shared);
5964	kfree(sd);
5965}
5966
5967static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5968{
5969	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5970
5971	while (sd) {
5972		struct sched_domain *parent = sd->parent;
5973		destroy_sched_domain(sd);
5974		sd = parent;
5975	}
5976}
5977
5978static void destroy_sched_domains(struct sched_domain *sd)
5979{
5980	if (sd)
5981		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
5982}
5983
5984/*
5985 * Keep a special pointer to the highest sched_domain that has
5986 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5987 * allows us to avoid some pointer chasing select_idle_sibling().
5988 *
5989 * Also keep a unique ID per domain (we use the first cpu number in
5990 * the cpumask of the domain), this allows us to quickly tell if
5991 * two cpus are in the same cache domain, see cpus_share_cache().
5992 */
5993DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5994DEFINE_PER_CPU(int, sd_llc_size);
5995DEFINE_PER_CPU(int, sd_llc_id);
5996DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
5997DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5998DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5999
6000static void update_top_cache_domain(int cpu)
6001{
6002	struct sched_domain_shared *sds = NULL;
6003	struct sched_domain *sd;
6004	int id = cpu;
6005	int size = 1;
6006
6007	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6008	if (sd) {
6009		id = cpumask_first(sched_domain_span(sd));
6010		size = cpumask_weight(sched_domain_span(sd));
6011		sds = sd->shared;
6012	}
6013
6014	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6015	per_cpu(sd_llc_size, cpu) = size;
6016	per_cpu(sd_llc_id, cpu) = id;
6017	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6018
6019	sd = lowest_flag_domain(cpu, SD_NUMA);
6020	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6021
6022	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6023	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6024}
6025
6026/*
6027 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6028 * hold the hotplug lock.
6029 */
6030static void
6031cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6032{
6033	struct rq *rq = cpu_rq(cpu);
6034	struct sched_domain *tmp;
6035
6036	/* Remove the sched domains which do not contribute to scheduling. */
6037	for (tmp = sd; tmp; ) {
6038		struct sched_domain *parent = tmp->parent;
6039		if (!parent)
6040			break;
6041
6042		if (sd_parent_degenerate(tmp, parent)) {
6043			tmp->parent = parent->parent;
6044			if (parent->parent)
6045				parent->parent->child = tmp;
6046			/*
6047			 * Transfer SD_PREFER_SIBLING down in case of a
6048			 * degenerate parent; the spans match for this
6049			 * so the property transfers.
6050			 */
6051			if (parent->flags & SD_PREFER_SIBLING)
6052				tmp->flags |= SD_PREFER_SIBLING;
6053			destroy_sched_domain(parent);
6054		} else
6055			tmp = tmp->parent;
6056	}
6057
6058	if (sd && sd_degenerate(sd)) {
6059		tmp = sd;
6060		sd = sd->parent;
6061		destroy_sched_domain(tmp);
6062		if (sd)
6063			sd->child = NULL;
6064	}
6065
6066	sched_domain_debug(sd, cpu);
6067
6068	rq_attach_root(rq, rd);
6069	tmp = rq->sd;
6070	rcu_assign_pointer(rq->sd, sd);
6071	destroy_sched_domains(tmp);
6072
6073	update_top_cache_domain(cpu);
6074}
6075
 
 
 
6076/* Setup the mask of cpus configured for isolated domains */
6077static int __init isolated_cpu_setup(char *str)
6078{
6079	int ret;
6080
6081	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6082	ret = cpulist_parse(str, cpu_isolated_map);
6083	if (ret) {
6084		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6085		return 0;
6086	}
6087	return 1;
6088}
 
6089__setup("isolcpus=", isolated_cpu_setup);
6090
 
 
 
 
 
 
 
 
 
 
 
6091struct s_data {
6092	struct sched_domain ** __percpu sd;
6093	struct root_domain	*rd;
6094};
6095
6096enum s_alloc {
6097	sa_rootdomain,
6098	sa_sd,
6099	sa_sd_storage,
6100	sa_none,
6101};
6102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6103/*
6104 * Build an iteration mask that can exclude certain CPUs from the upwards
6105 * domain traversal.
6106 *
6107 * Asymmetric node setups can result in situations where the domain tree is of
6108 * unequal depth, make sure to skip domains that already cover the entire
6109 * range.
6110 *
6111 * In that case build_sched_domains() will have terminated the iteration early
6112 * and our sibling sd spans will be empty. Domains should always include the
6113 * cpu they're built on, so check that.
6114 *
6115 */
6116static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6117{
6118	const struct cpumask *span = sched_domain_span(sd);
6119	struct sd_data *sdd = sd->private;
6120	struct sched_domain *sibling;
6121	int i;
6122
6123	for_each_cpu(i, span) {
6124		sibling = *per_cpu_ptr(sdd->sd, i);
6125		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6126			continue;
6127
6128		cpumask_set_cpu(i, sched_group_mask(sg));
6129	}
6130}
6131
6132/*
6133 * Return the canonical balance cpu for this group, this is the first cpu
6134 * of this group that's also in the iteration mask.
6135 */
6136int group_balance_cpu(struct sched_group *sg)
6137{
6138	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6139}
6140
6141static int
6142build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6143{
6144	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6145	const struct cpumask *span = sched_domain_span(sd);
6146	struct cpumask *covered = sched_domains_tmpmask;
6147	struct sd_data *sdd = sd->private;
6148	struct sched_domain *sibling;
6149	int i;
6150
6151	cpumask_clear(covered);
6152
6153	for_each_cpu(i, span) {
6154		struct cpumask *sg_span;
6155
6156		if (cpumask_test_cpu(i, covered))
6157			continue;
6158
6159		sibling = *per_cpu_ptr(sdd->sd, i);
6160
6161		/* See the comment near build_group_mask(). */
6162		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6163			continue;
6164
6165		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6166				GFP_KERNEL, cpu_to_node(cpu));
6167
6168		if (!sg)
6169			goto fail;
6170
6171		sg_span = sched_group_cpus(sg);
6172		if (sibling->child)
6173			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6174		else
 
6175			cpumask_set_cpu(i, sg_span);
6176
6177		cpumask_or(covered, covered, sg_span);
6178
6179		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6180		if (atomic_inc_return(&sg->sgc->ref) == 1)
6181			build_group_mask(sd, sg);
6182
6183		/*
6184		 * Initialize sgc->capacity such that even if we mess up the
6185		 * domains and no possible iteration will get us here, we won't
6186		 * die on a /0 trap.
6187		 */
6188		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6189		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6190
6191		/*
6192		 * Make sure the first group of this domain contains the
6193		 * canonical balance cpu. Otherwise the sched_domain iteration
6194		 * breaks. See update_sg_lb_stats().
6195		 */
6196		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6197		    group_balance_cpu(sg) == cpu)
6198			groups = sg;
6199
6200		if (!first)
6201			first = sg;
6202		if (last)
6203			last->next = sg;
6204		last = sg;
6205		last->next = first;
6206	}
6207	sd->groups = groups;
6208
6209	return 0;
6210
6211fail:
6212	free_sched_groups(first, 0);
6213
6214	return -ENOMEM;
6215}
6216
6217static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6218{
6219	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6220	struct sched_domain *child = sd->child;
6221
6222	if (child)
6223		cpu = cpumask_first(sched_domain_span(child));
6224
6225	if (sg) {
6226		*sg = *per_cpu_ptr(sdd->sg, cpu);
6227		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6228		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6229	}
6230
6231	return cpu;
6232}
6233
6234/*
6235 * build_sched_groups will build a circular linked list of the groups
6236 * covered by the given span, and will set each group's ->cpumask correctly,
6237 * and ->cpu_capacity to 0.
6238 *
6239 * Assumes the sched_domain tree is fully constructed
6240 */
6241static int
6242build_sched_groups(struct sched_domain *sd, int cpu)
6243{
6244	struct sched_group *first = NULL, *last = NULL;
6245	struct sd_data *sdd = sd->private;
6246	const struct cpumask *span = sched_domain_span(sd);
6247	struct cpumask *covered;
6248	int i;
6249
6250	get_group(cpu, sdd, &sd->groups);
6251	atomic_inc(&sd->groups->ref);
6252
6253	if (cpu != cpumask_first(span))
6254		return 0;
6255
6256	lockdep_assert_held(&sched_domains_mutex);
6257	covered = sched_domains_tmpmask;
6258
6259	cpumask_clear(covered);
6260
6261	for_each_cpu(i, span) {
6262		struct sched_group *sg;
6263		int group, j;
 
6264
6265		if (cpumask_test_cpu(i, covered))
6266			continue;
6267
6268		group = get_group(i, sdd, &sg);
 
6269		cpumask_setall(sched_group_mask(sg));
6270
6271		for_each_cpu(j, span) {
6272			if (get_group(j, sdd, NULL) != group)
6273				continue;
6274
6275			cpumask_set_cpu(j, covered);
6276			cpumask_set_cpu(j, sched_group_cpus(sg));
6277		}
6278
6279		if (!first)
6280			first = sg;
6281		if (last)
6282			last->next = sg;
6283		last = sg;
6284	}
6285	last->next = first;
6286
6287	return 0;
6288}
6289
6290/*
6291 * Initialize sched groups cpu_capacity.
6292 *
6293 * cpu_capacity indicates the capacity of sched group, which is used while
6294 * distributing the load between different sched groups in a sched domain.
6295 * Typically cpu_capacity for all the groups in a sched domain will be same
6296 * unless there are asymmetries in the topology. If there are asymmetries,
6297 * group having more cpu_capacity will pickup more load compared to the
6298 * group having less cpu_capacity.
6299 */
6300static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6301{
6302	struct sched_group *sg = sd->groups;
6303
6304	WARN_ON(!sg);
6305
6306	do {
6307		int cpu, max_cpu = -1;
6308
6309		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6310
6311		if (!(sd->flags & SD_ASYM_PACKING))
6312			goto next;
6313
6314		for_each_cpu(cpu, sched_group_cpus(sg)) {
6315			if (max_cpu < 0)
6316				max_cpu = cpu;
6317			else if (sched_asym_prefer(cpu, max_cpu))
6318				max_cpu = cpu;
6319		}
6320		sg->asym_prefer_cpu = max_cpu;
6321
6322next:
6323		sg = sg->next;
6324	} while (sg != sd->groups);
6325
6326	if (cpu != group_balance_cpu(sg))
6327		return;
6328
6329	update_group_capacity(sd, cpu);
 
 
 
 
 
 
6330}
6331
6332/*
6333 * Initializers for schedule domains
6334 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6335 */
6336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6337static int default_relax_domain_level = -1;
6338int sched_domain_level_max;
6339
6340static int __init setup_relax_domain_level(char *str)
6341{
6342	if (kstrtoint(str, 0, &default_relax_domain_level))
6343		pr_warn("Unable to set relax_domain_level\n");
6344
6345	return 1;
6346}
6347__setup("relax_domain_level=", setup_relax_domain_level);
6348
6349static void set_domain_attribute(struct sched_domain *sd,
6350				 struct sched_domain_attr *attr)
6351{
6352	int request;
6353
6354	if (!attr || attr->relax_domain_level < 0) {
6355		if (default_relax_domain_level < 0)
6356			return;
6357		else
6358			request = default_relax_domain_level;
6359	} else
6360		request = attr->relax_domain_level;
6361	if (request < sd->level) {
6362		/* turn off idle balance on this domain */
6363		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6364	} else {
6365		/* turn on idle balance on this domain */
6366		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6367	}
6368}
6369
6370static void __sdt_free(const struct cpumask *cpu_map);
6371static int __sdt_alloc(const struct cpumask *cpu_map);
6372
6373static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6374				 const struct cpumask *cpu_map)
6375{
6376	switch (what) {
6377	case sa_rootdomain:
6378		if (!atomic_read(&d->rd->refcount))
6379			free_rootdomain(&d->rd->rcu); /* fall through */
6380	case sa_sd:
6381		free_percpu(d->sd); /* fall through */
6382	case sa_sd_storage:
6383		__sdt_free(cpu_map); /* fall through */
6384	case sa_none:
6385		break;
6386	}
6387}
6388
6389static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6390						   const struct cpumask *cpu_map)
6391{
6392	memset(d, 0, sizeof(*d));
6393
6394	if (__sdt_alloc(cpu_map))
6395		return sa_sd_storage;
6396	d->sd = alloc_percpu(struct sched_domain *);
6397	if (!d->sd)
6398		return sa_sd_storage;
6399	d->rd = alloc_rootdomain();
6400	if (!d->rd)
6401		return sa_sd;
6402	return sa_rootdomain;
6403}
6404
6405/*
6406 * NULL the sd_data elements we've used to build the sched_domain and
6407 * sched_group structure so that the subsequent __free_domain_allocs()
6408 * will not free the data we're using.
6409 */
6410static void claim_allocations(int cpu, struct sched_domain *sd)
6411{
6412	struct sd_data *sdd = sd->private;
6413
6414	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6415	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6416
6417	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6418		*per_cpu_ptr(sdd->sds, cpu) = NULL;
6419
6420	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6421		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6422
6423	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6424		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6425}
6426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6427#ifdef CONFIG_NUMA
 
6428static int sched_domains_numa_levels;
6429enum numa_topology_type sched_numa_topology_type;
6430static int *sched_domains_numa_distance;
6431int sched_max_numa_distance;
6432static struct cpumask ***sched_domains_numa_masks;
6433static int sched_domains_curr_level;
6434#endif
6435
6436/*
6437 * SD_flags allowed in topology descriptions.
6438 *
6439 * These flags are purely descriptive of the topology and do not prescribe
6440 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6441 * function:
6442 *
6443 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
6444 *   SD_SHARE_PKG_RESOURCES - describes shared caches
6445 *   SD_NUMA                - describes NUMA topologies
6446 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
6447 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
6448 *
6449 * Odd one out, which beside describing the topology has a quirk also
6450 * prescribes the desired behaviour that goes along with it:
6451 *
6452 *   SD_ASYM_PACKING        - describes SMT quirks
6453 */
6454#define TOPOLOGY_SD_FLAGS		\
6455	(SD_SHARE_CPUCAPACITY |		\
6456	 SD_SHARE_PKG_RESOURCES |	\
6457	 SD_NUMA |			\
6458	 SD_ASYM_PACKING |		\
6459	 SD_ASYM_CPUCAPACITY |		\
6460	 SD_SHARE_POWERDOMAIN)
6461
6462static struct sched_domain *
6463sd_init(struct sched_domain_topology_level *tl,
6464	const struct cpumask *cpu_map,
6465	struct sched_domain *child, int cpu)
6466{
6467	struct sd_data *sdd = &tl->data;
6468	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6469	int sd_id, sd_weight, sd_flags = 0;
6470
6471#ifdef CONFIG_NUMA
6472	/*
6473	 * Ugly hack to pass state to sd_numa_mask()...
6474	 */
6475	sched_domains_curr_level = tl->numa_level;
6476#endif
6477
6478	sd_weight = cpumask_weight(tl->mask(cpu));
 
6479
6480	if (tl->sd_flags)
6481		sd_flags = (*tl->sd_flags)();
6482	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6483			"wrong sd_flags in topology description\n"))
6484		sd_flags &= ~TOPOLOGY_SD_FLAGS;
 
 
6485
6486	*sd = (struct sched_domain){
6487		.min_interval		= sd_weight,
6488		.max_interval		= 2*sd_weight,
6489		.busy_factor		= 32,
6490		.imbalance_pct		= 125,
6491
6492		.cache_nice_tries	= 0,
6493		.busy_idx		= 0,
6494		.idle_idx		= 0,
6495		.newidle_idx		= 0,
6496		.wake_idx		= 0,
6497		.forkexec_idx		= 0,
6498
6499		.flags			= 1*SD_LOAD_BALANCE
6500					| 1*SD_BALANCE_NEWIDLE
6501					| 1*SD_BALANCE_EXEC
6502					| 1*SD_BALANCE_FORK
6503					| 0*SD_BALANCE_WAKE
6504					| 1*SD_WAKE_AFFINE
6505					| 0*SD_SHARE_CPUCAPACITY
 
6506					| 0*SD_SHARE_PKG_RESOURCES
6507					| 0*SD_SERIALIZE
6508					| 0*SD_PREFER_SIBLING
6509					| 0*SD_NUMA
6510					| sd_flags
6511					,
6512
6513		.last_balance		= jiffies,
6514		.balance_interval	= sd_weight,
6515		.smt_gain		= 0,
6516		.max_newidle_lb_cost	= 0,
6517		.next_decay_max_lb_cost	= jiffies,
6518		.child			= child,
6519#ifdef CONFIG_SCHED_DEBUG
6520		.name			= tl->name,
6521#endif
6522	};
6523
6524	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6525	sd_id = cpumask_first(sched_domain_span(sd));
6526
6527	/*
6528	 * Convert topological properties into behaviour.
6529	 */
6530
6531	if (sd->flags & SD_ASYM_CPUCAPACITY) {
6532		struct sched_domain *t = sd;
6533
6534		for_each_lower_domain(t)
6535			t->flags |= SD_BALANCE_WAKE;
6536	}
6537
6538	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6539		sd->flags |= SD_PREFER_SIBLING;
6540		sd->imbalance_pct = 110;
6541		sd->smt_gain = 1178; /* ~15% */
6542
6543	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6544		sd->imbalance_pct = 117;
6545		sd->cache_nice_tries = 1;
6546		sd->busy_idx = 2;
6547
6548#ifdef CONFIG_NUMA
6549	} else if (sd->flags & SD_NUMA) {
6550		sd->cache_nice_tries = 2;
6551		sd->busy_idx = 3;
6552		sd->idle_idx = 2;
6553
6554		sd->flags |= SD_SERIALIZE;
6555		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6556			sd->flags &= ~(SD_BALANCE_EXEC |
6557				       SD_BALANCE_FORK |
6558				       SD_WAKE_AFFINE);
6559		}
6560
6561#endif
6562	} else {
6563		sd->flags |= SD_PREFER_SIBLING;
6564		sd->cache_nice_tries = 1;
6565		sd->busy_idx = 2;
6566		sd->idle_idx = 1;
6567	}
6568
6569	/*
6570	 * For all levels sharing cache; connect a sched_domain_shared
6571	 * instance.
6572	 */
6573	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6574		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6575		atomic_inc(&sd->shared->ref);
6576		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6577	}
6578
6579	sd->private = sdd;
6580
6581	return sd;
6582}
6583
6584/*
6585 * Topology list, bottom-up.
6586 */
6587static struct sched_domain_topology_level default_topology[] = {
6588#ifdef CONFIG_SCHED_SMT
6589	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6590#endif
6591#ifdef CONFIG_SCHED_MC
6592	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6593#endif
6594	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6595	{ NULL, },
6596};
6597
6598static struct sched_domain_topology_level *sched_domain_topology =
6599	default_topology;
6600
6601#define for_each_sd_topology(tl)			\
6602	for (tl = sched_domain_topology; tl->mask; tl++)
6603
6604void set_sched_topology(struct sched_domain_topology_level *tl)
6605{
6606	if (WARN_ON_ONCE(sched_smp_initialized))
6607		return;
6608
6609	sched_domain_topology = tl;
6610}
6611
6612#ifdef CONFIG_NUMA
6613
6614static const struct cpumask *sd_numa_mask(int cpu)
6615{
6616	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6617}
6618
6619static void sched_numa_warn(const char *str)
6620{
6621	static int done = false;
6622	int i,j;
6623
6624	if (done)
6625		return;
6626
6627	done = true;
6628
6629	printk(KERN_WARNING "ERROR: %s\n\n", str);
6630
6631	for (i = 0; i < nr_node_ids; i++) {
6632		printk(KERN_WARNING "  ");
6633		for (j = 0; j < nr_node_ids; j++)
6634			printk(KERN_CONT "%02d ", node_distance(i,j));
6635		printk(KERN_CONT "\n");
6636	}
6637	printk(KERN_WARNING "\n");
6638}
6639
6640bool find_numa_distance(int distance)
6641{
6642	int i;
6643
6644	if (distance == node_distance(0, 0))
6645		return true;
6646
6647	for (i = 0; i < sched_domains_numa_levels; i++) {
6648		if (sched_domains_numa_distance[i] == distance)
6649			return true;
6650	}
6651
6652	return false;
6653}
6654
6655/*
6656 * A system can have three types of NUMA topology:
6657 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6658 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6659 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6660 *
6661 * The difference between a glueless mesh topology and a backplane
6662 * topology lies in whether communication between not directly
6663 * connected nodes goes through intermediary nodes (where programs
6664 * could run), or through backplane controllers. This affects
6665 * placement of programs.
6666 *
6667 * The type of topology can be discerned with the following tests:
6668 * - If the maximum distance between any nodes is 1 hop, the system
6669 *   is directly connected.
6670 * - If for two nodes A and B, located N > 1 hops away from each other,
6671 *   there is an intermediary node C, which is < N hops away from both
6672 *   nodes A and B, the system is a glueless mesh.
6673 */
6674static void init_numa_topology_type(void)
6675{
6676	int a, b, c, n;
6677
6678	n = sched_max_numa_distance;
6679
6680	if (sched_domains_numa_levels <= 1) {
6681		sched_numa_topology_type = NUMA_DIRECT;
6682		return;
6683	}
6684
6685	for_each_online_node(a) {
6686		for_each_online_node(b) {
6687			/* Find two nodes furthest removed from each other. */
6688			if (node_distance(a, b) < n)
6689				continue;
6690
6691			/* Is there an intermediary node between a and b? */
6692			for_each_online_node(c) {
6693				if (node_distance(a, c) < n &&
6694				    node_distance(b, c) < n) {
6695					sched_numa_topology_type =
6696							NUMA_GLUELESS_MESH;
6697					return;
6698				}
6699			}
6700
6701			sched_numa_topology_type = NUMA_BACKPLANE;
6702			return;
6703		}
6704	}
6705}
6706
6707static void sched_init_numa(void)
6708{
6709	int next_distance, curr_distance = node_distance(0, 0);
6710	struct sched_domain_topology_level *tl;
6711	int level = 0;
6712	int i, j, k;
6713
6714	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6715	if (!sched_domains_numa_distance)
6716		return;
6717
6718	/*
6719	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6720	 * unique distances in the node_distance() table.
6721	 *
6722	 * Assumes node_distance(0,j) includes all distances in
6723	 * node_distance(i,j) in order to avoid cubic time.
6724	 */
6725	next_distance = curr_distance;
6726	for (i = 0; i < nr_node_ids; i++) {
6727		for (j = 0; j < nr_node_ids; j++) {
6728			for (k = 0; k < nr_node_ids; k++) {
6729				int distance = node_distance(i, k);
6730
6731				if (distance > curr_distance &&
6732				    (distance < next_distance ||
6733				     next_distance == curr_distance))
6734					next_distance = distance;
6735
6736				/*
6737				 * While not a strong assumption it would be nice to know
6738				 * about cases where if node A is connected to B, B is not
6739				 * equally connected to A.
6740				 */
6741				if (sched_debug() && node_distance(k, i) != distance)
6742					sched_numa_warn("Node-distance not symmetric");
6743
6744				if (sched_debug() && i && !find_numa_distance(distance))
6745					sched_numa_warn("Node-0 not representative");
6746			}
6747			if (next_distance != curr_distance) {
6748				sched_domains_numa_distance[level++] = next_distance;
6749				sched_domains_numa_levels = level;
6750				curr_distance = next_distance;
6751			} else break;
6752		}
6753
6754		/*
6755		 * In case of sched_debug() we verify the above assumption.
6756		 */
6757		if (!sched_debug())
6758			break;
6759	}
6760
6761	if (!level)
6762		return;
6763
6764	/*
6765	 * 'level' contains the number of unique distances, excluding the
6766	 * identity distance node_distance(i,i).
6767	 *
6768	 * The sched_domains_numa_distance[] array includes the actual distance
6769	 * numbers.
6770	 */
6771
6772	/*
6773	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6774	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6775	 * the array will contain less then 'level' members. This could be
6776	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6777	 * in other functions.
6778	 *
6779	 * We reset it to 'level' at the end of this function.
6780	 */
6781	sched_domains_numa_levels = 0;
6782
6783	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6784	if (!sched_domains_numa_masks)
6785		return;
6786
6787	/*
6788	 * Now for each level, construct a mask per node which contains all
6789	 * cpus of nodes that are that many hops away from us.
6790	 */
6791	for (i = 0; i < level; i++) {
6792		sched_domains_numa_masks[i] =
6793			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6794		if (!sched_domains_numa_masks[i])
6795			return;
6796
6797		for (j = 0; j < nr_node_ids; j++) {
6798			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6799			if (!mask)
6800				return;
6801
6802			sched_domains_numa_masks[i][j] = mask;
6803
6804			for_each_node(k) {
6805				if (node_distance(j, k) > sched_domains_numa_distance[i])
6806					continue;
6807
6808				cpumask_or(mask, mask, cpumask_of_node(k));
6809			}
6810		}
6811	}
6812
6813	/* Compute default topology size */
6814	for (i = 0; sched_domain_topology[i].mask; i++);
6815
6816	tl = kzalloc((i + level + 1) *
6817			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6818	if (!tl)
6819		return;
6820
6821	/*
6822	 * Copy the default topology bits..
6823	 */
6824	for (i = 0; sched_domain_topology[i].mask; i++)
6825		tl[i] = sched_domain_topology[i];
6826
6827	/*
6828	 * .. and append 'j' levels of NUMA goodness.
6829	 */
6830	for (j = 0; j < level; i++, j++) {
6831		tl[i] = (struct sched_domain_topology_level){
 
6832			.mask = sd_numa_mask,
6833			.sd_flags = cpu_numa_flags,
6834			.flags = SDTL_OVERLAP,
6835			.numa_level = j,
6836			SD_INIT_NAME(NUMA)
6837		};
6838	}
6839
6840	sched_domain_topology = tl;
6841
6842	sched_domains_numa_levels = level;
6843	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6844
6845	init_numa_topology_type();
6846}
6847
6848static void sched_domains_numa_masks_set(unsigned int cpu)
6849{
6850	int node = cpu_to_node(cpu);
6851	int i, j;
6852
6853	for (i = 0; i < sched_domains_numa_levels; i++) {
6854		for (j = 0; j < nr_node_ids; j++) {
6855			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6856				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6857		}
6858	}
6859}
6860
6861static void sched_domains_numa_masks_clear(unsigned int cpu)
6862{
6863	int i, j;
6864
6865	for (i = 0; i < sched_domains_numa_levels; i++) {
6866		for (j = 0; j < nr_node_ids; j++)
6867			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6868	}
6869}
6870
6871#else
6872static inline void sched_init_numa(void) { }
6873static void sched_domains_numa_masks_set(unsigned int cpu) { }
6874static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6875#endif /* CONFIG_NUMA */
6876
6877static int __sdt_alloc(const struct cpumask *cpu_map)
6878{
6879	struct sched_domain_topology_level *tl;
6880	int j;
6881
6882	for_each_sd_topology(tl) {
6883		struct sd_data *sdd = &tl->data;
6884
6885		sdd->sd = alloc_percpu(struct sched_domain *);
6886		if (!sdd->sd)
6887			return -ENOMEM;
6888
6889		sdd->sds = alloc_percpu(struct sched_domain_shared *);
6890		if (!sdd->sds)
6891			return -ENOMEM;
6892
6893		sdd->sg = alloc_percpu(struct sched_group *);
6894		if (!sdd->sg)
6895			return -ENOMEM;
6896
6897		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6898		if (!sdd->sgc)
6899			return -ENOMEM;
6900
6901		for_each_cpu(j, cpu_map) {
6902			struct sched_domain *sd;
6903			struct sched_domain_shared *sds;
6904			struct sched_group *sg;
6905			struct sched_group_capacity *sgc;
6906
6907			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6908					GFP_KERNEL, cpu_to_node(j));
6909			if (!sd)
6910				return -ENOMEM;
6911
6912			*per_cpu_ptr(sdd->sd, j) = sd;
6913
6914			sds = kzalloc_node(sizeof(struct sched_domain_shared),
6915					GFP_KERNEL, cpu_to_node(j));
6916			if (!sds)
6917				return -ENOMEM;
6918
6919			*per_cpu_ptr(sdd->sds, j) = sds;
6920
6921			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6922					GFP_KERNEL, cpu_to_node(j));
6923			if (!sg)
6924				return -ENOMEM;
6925
6926			sg->next = sg;
6927
6928			*per_cpu_ptr(sdd->sg, j) = sg;
6929
6930			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6931					GFP_KERNEL, cpu_to_node(j));
6932			if (!sgc)
6933				return -ENOMEM;
6934
6935			*per_cpu_ptr(sdd->sgc, j) = sgc;
6936		}
6937	}
6938
6939	return 0;
6940}
6941
6942static void __sdt_free(const struct cpumask *cpu_map)
6943{
6944	struct sched_domain_topology_level *tl;
6945	int j;
6946
6947	for_each_sd_topology(tl) {
6948		struct sd_data *sdd = &tl->data;
6949
6950		for_each_cpu(j, cpu_map) {
6951			struct sched_domain *sd;
6952
6953			if (sdd->sd) {
6954				sd = *per_cpu_ptr(sdd->sd, j);
6955				if (sd && (sd->flags & SD_OVERLAP))
6956					free_sched_groups(sd->groups, 0);
6957				kfree(*per_cpu_ptr(sdd->sd, j));
6958			}
6959
6960			if (sdd->sds)
6961				kfree(*per_cpu_ptr(sdd->sds, j));
6962			if (sdd->sg)
6963				kfree(*per_cpu_ptr(sdd->sg, j));
6964			if (sdd->sgc)
6965				kfree(*per_cpu_ptr(sdd->sgc, j));
6966		}
6967		free_percpu(sdd->sd);
6968		sdd->sd = NULL;
6969		free_percpu(sdd->sds);
6970		sdd->sds = NULL;
6971		free_percpu(sdd->sg);
6972		sdd->sg = NULL;
6973		free_percpu(sdd->sgc);
6974		sdd->sgc = NULL;
6975	}
6976}
6977
6978struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6979		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6980		struct sched_domain *child, int cpu)
6981{
6982	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
 
 
 
6983
 
6984	if (child) {
6985		sd->level = child->level + 1;
6986		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6987		child->parent = sd;
6988
6989		if (!cpumask_subset(sched_domain_span(child),
6990				    sched_domain_span(sd))) {
6991			pr_err("BUG: arch topology borken\n");
6992#ifdef CONFIG_SCHED_DEBUG
6993			pr_err("     the %s domain not a subset of the %s domain\n",
6994					child->name, sd->name);
6995#endif
6996			/* Fixup, ensure @sd has at least @child cpus. */
6997			cpumask_or(sched_domain_span(sd),
6998				   sched_domain_span(sd),
6999				   sched_domain_span(child));
7000		}
7001
7002	}
 
7003	set_domain_attribute(sd, attr);
7004
7005	return sd;
7006}
7007
7008/*
7009 * Build sched domains for a given set of cpus and attach the sched domains
7010 * to the individual cpus
7011 */
7012static int build_sched_domains(const struct cpumask *cpu_map,
7013			       struct sched_domain_attr *attr)
7014{
7015	enum s_alloc alloc_state;
7016	struct sched_domain *sd;
7017	struct s_data d;
7018	struct rq *rq = NULL;
7019	int i, ret = -ENOMEM;
7020
7021	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7022	if (alloc_state != sa_rootdomain)
7023		goto error;
7024
7025	/* Set up domains for cpus specified by the cpu_map. */
7026	for_each_cpu(i, cpu_map) {
7027		struct sched_domain_topology_level *tl;
7028
7029		sd = NULL;
7030		for_each_sd_topology(tl) {
7031			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7032			if (tl == sched_domain_topology)
7033				*per_cpu_ptr(d.sd, i) = sd;
7034			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7035				sd->flags |= SD_OVERLAP;
7036			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7037				break;
7038		}
 
 
 
 
 
7039	}
7040
7041	/* Build the groups for the domains */
7042	for_each_cpu(i, cpu_map) {
7043		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7044			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7045			if (sd->flags & SD_OVERLAP) {
7046				if (build_overlap_sched_groups(sd, i))
7047					goto error;
7048			} else {
7049				if (build_sched_groups(sd, i))
7050					goto error;
7051			}
7052		}
7053	}
7054
7055	/* Calculate CPU capacity for physical packages and nodes */
7056	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7057		if (!cpumask_test_cpu(i, cpu_map))
7058			continue;
7059
7060		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7061			claim_allocations(i, sd);
7062			init_sched_groups_capacity(i, sd);
7063		}
7064	}
7065
7066	/* Attach the domains */
7067	rcu_read_lock();
7068	for_each_cpu(i, cpu_map) {
7069		rq = cpu_rq(i);
7070		sd = *per_cpu_ptr(d.sd, i);
7071
7072		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7073		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7074			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7075
7076		cpu_attach_domain(sd, d.rd, i);
7077	}
7078	rcu_read_unlock();
7079
7080	if (rq && sched_debug_enabled) {
7081		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7082			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7083	}
7084
7085	ret = 0;
7086error:
7087	__free_domain_allocs(&d, alloc_state, cpu_map);
7088	return ret;
7089}
7090
7091static cpumask_var_t *doms_cur;	/* current sched domains */
7092static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7093static struct sched_domain_attr *dattr_cur;
7094				/* attribues of custom domains in 'doms_cur' */
7095
7096/*
7097 * Special case: If a kmalloc of a doms_cur partition (array of
7098 * cpumask) fails, then fallback to a single sched domain,
7099 * as determined by the single cpumask fallback_doms.
7100 */
7101static cpumask_var_t fallback_doms;
7102
7103/*
7104 * arch_update_cpu_topology lets virtualized architectures update the
7105 * cpu core maps. It is supposed to return 1 if the topology changed
7106 * or 0 if it stayed the same.
7107 */
7108int __weak arch_update_cpu_topology(void)
7109{
7110	return 0;
7111}
7112
7113cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7114{
7115	int i;
7116	cpumask_var_t *doms;
7117
7118	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7119	if (!doms)
7120		return NULL;
7121	for (i = 0; i < ndoms; i++) {
7122		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7123			free_sched_domains(doms, i);
7124			return NULL;
7125		}
7126	}
7127	return doms;
7128}
7129
7130void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7131{
7132	unsigned int i;
7133	for (i = 0; i < ndoms; i++)
7134		free_cpumask_var(doms[i]);
7135	kfree(doms);
7136}
7137
7138/*
7139 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7140 * For now this just excludes isolated cpus, but could be used to
7141 * exclude other special cases in the future.
7142 */
7143static int init_sched_domains(const struct cpumask *cpu_map)
7144{
7145	int err;
7146
7147	arch_update_cpu_topology();
7148	ndoms_cur = 1;
7149	doms_cur = alloc_sched_domains(ndoms_cur);
7150	if (!doms_cur)
7151		doms_cur = &fallback_doms;
7152	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7153	err = build_sched_domains(doms_cur[0], NULL);
7154	register_sched_domain_sysctl();
7155
7156	return err;
7157}
7158
7159/*
7160 * Detach sched domains from a group of cpus specified in cpu_map
7161 * These cpus will now be attached to the NULL domain
7162 */
7163static void detach_destroy_domains(const struct cpumask *cpu_map)
7164{
7165	int i;
7166
7167	rcu_read_lock();
7168	for_each_cpu(i, cpu_map)
7169		cpu_attach_domain(NULL, &def_root_domain, i);
7170	rcu_read_unlock();
7171}
7172
7173/* handle null as "default" */
7174static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7175			struct sched_domain_attr *new, int idx_new)
7176{
7177	struct sched_domain_attr tmp;
7178
7179	/* fast path */
7180	if (!new && !cur)
7181		return 1;
7182
7183	tmp = SD_ATTR_INIT;
7184	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7185			new ? (new + idx_new) : &tmp,
7186			sizeof(struct sched_domain_attr));
7187}
7188
7189/*
7190 * Partition sched domains as specified by the 'ndoms_new'
7191 * cpumasks in the array doms_new[] of cpumasks. This compares
7192 * doms_new[] to the current sched domain partitioning, doms_cur[].
7193 * It destroys each deleted domain and builds each new domain.
7194 *
7195 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7196 * The masks don't intersect (don't overlap.) We should setup one
7197 * sched domain for each mask. CPUs not in any of the cpumasks will
7198 * not be load balanced. If the same cpumask appears both in the
7199 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7200 * it as it is.
7201 *
7202 * The passed in 'doms_new' should be allocated using
7203 * alloc_sched_domains.  This routine takes ownership of it and will
7204 * free_sched_domains it when done with it. If the caller failed the
7205 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7206 * and partition_sched_domains() will fallback to the single partition
7207 * 'fallback_doms', it also forces the domains to be rebuilt.
7208 *
7209 * If doms_new == NULL it will be replaced with cpu_online_mask.
7210 * ndoms_new == 0 is a special case for destroying existing domains,
7211 * and it will not create the default domain.
7212 *
7213 * Call with hotplug lock held
7214 */
7215void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7216			     struct sched_domain_attr *dattr_new)
7217{
7218	int i, j, n;
7219	int new_topology;
7220
7221	mutex_lock(&sched_domains_mutex);
7222
7223	/* always unregister in case we don't destroy any domains */
7224	unregister_sched_domain_sysctl();
7225
7226	/* Let architecture update cpu core mappings. */
7227	new_topology = arch_update_cpu_topology();
7228
7229	n = doms_new ? ndoms_new : 0;
7230
7231	/* Destroy deleted domains */
7232	for (i = 0; i < ndoms_cur; i++) {
7233		for (j = 0; j < n && !new_topology; j++) {
7234			if (cpumask_equal(doms_cur[i], doms_new[j])
7235			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7236				goto match1;
7237		}
7238		/* no match - a current sched domain not in new doms_new[] */
7239		detach_destroy_domains(doms_cur[i]);
7240match1:
7241		;
7242	}
7243
7244	n = ndoms_cur;
7245	if (doms_new == NULL) {
7246		n = 0;
7247		doms_new = &fallback_doms;
7248		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7249		WARN_ON_ONCE(dattr_new);
7250	}
7251
7252	/* Build new domains */
7253	for (i = 0; i < ndoms_new; i++) {
7254		for (j = 0; j < n && !new_topology; j++) {
7255			if (cpumask_equal(doms_new[i], doms_cur[j])
7256			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7257				goto match2;
7258		}
7259		/* no match - add a new doms_new */
7260		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7261match2:
7262		;
7263	}
7264
7265	/* Remember the new sched domains */
7266	if (doms_cur != &fallback_doms)
7267		free_sched_domains(doms_cur, ndoms_cur);
7268	kfree(dattr_cur);	/* kfree(NULL) is safe */
7269	doms_cur = doms_new;
7270	dattr_cur = dattr_new;
7271	ndoms_cur = ndoms_new;
7272
7273	register_sched_domain_sysctl();
7274
7275	mutex_unlock(&sched_domains_mutex);
7276}
7277
7278static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7279
7280/*
7281 * Update cpusets according to cpu_active mask.  If cpusets are
7282 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7283 * around partition_sched_domains().
7284 *
7285 * If we come here as part of a suspend/resume, don't touch cpusets because we
7286 * want to restore it back to its original state upon resume anyway.
7287 */
7288static void cpuset_cpu_active(void)
 
7289{
7290	if (cpuhp_tasks_frozen) {
7291		/*
7292		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7293		 * resume sequence. As long as this is not the last online
7294		 * operation in the resume sequence, just build a single sched
7295		 * domain, ignoring cpusets.
7296		 */
7297		num_cpus_frozen--;
7298		if (likely(num_cpus_frozen)) {
7299			partition_sched_domains(1, NULL, NULL);
7300			return;
7301		}
7302		/*
7303		 * This is the last CPU online operation. So fall through and
7304		 * restore the original sched domains by considering the
7305		 * cpuset configurations.
7306		 */
7307	}
7308	cpuset_update_active_cpus(true);
7309}
7310
7311static int cpuset_cpu_inactive(unsigned int cpu)
7312{
7313	unsigned long flags;
7314	struct dl_bw *dl_b;
7315	bool overflow;
7316	int cpus;
7317
7318	if (!cpuhp_tasks_frozen) {
7319		rcu_read_lock_sched();
7320		dl_b = dl_bw_of(cpu);
7321
7322		raw_spin_lock_irqsave(&dl_b->lock, flags);
7323		cpus = dl_bw_cpus(cpu);
7324		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7325		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7326
7327		rcu_read_unlock_sched();
7328
7329		if (overflow)
7330			return -EBUSY;
7331		cpuset_update_active_cpus(false);
7332	} else {
7333		num_cpus_frozen++;
7334		partition_sched_domains(1, NULL, NULL);
7335	}
7336	return 0;
7337}
7338
7339int sched_cpu_activate(unsigned int cpu)
7340{
7341	struct rq *rq = cpu_rq(cpu);
7342	unsigned long flags;
7343
7344	set_cpu_active(cpu, true);
7345
7346	if (sched_smp_initialized) {
7347		sched_domains_numa_masks_set(cpu);
7348		cpuset_cpu_active();
7349	}
7350
7351	/*
7352	 * Put the rq online, if not already. This happens:
7353	 *
7354	 * 1) In the early boot process, because we build the real domains
7355	 *    after all cpus have been brought up.
7356	 *
7357	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7358	 *    domains.
7359	 */
7360	raw_spin_lock_irqsave(&rq->lock, flags);
7361	if (rq->rd) {
7362		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7363		set_rq_online(rq);
7364	}
7365	raw_spin_unlock_irqrestore(&rq->lock, flags);
7366
7367	update_max_interval();
7368
7369	return 0;
7370}
7371
7372int sched_cpu_deactivate(unsigned int cpu)
7373{
7374	int ret;
7375
7376	set_cpu_active(cpu, false);
7377	/*
7378	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7379	 * users of this state to go away such that all new such users will
7380	 * observe it.
7381	 *
7382	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7383	 * not imply sync_sched(), so wait for both.
7384	 *
7385	 * Do sync before park smpboot threads to take care the rcu boost case.
7386	 */
7387	if (IS_ENABLED(CONFIG_PREEMPT))
7388		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7389	else
7390		synchronize_rcu();
7391
7392	if (!sched_smp_initialized)
7393		return 0;
7394
7395	ret = cpuset_cpu_inactive(cpu);
7396	if (ret) {
7397		set_cpu_active(cpu, true);
7398		return ret;
7399	}
7400	sched_domains_numa_masks_clear(cpu);
7401	return 0;
7402}
7403
7404static void sched_rq_cpu_starting(unsigned int cpu)
7405{
7406	struct rq *rq = cpu_rq(cpu);
7407
7408	rq->calc_load_update = calc_load_update;
7409	update_max_interval();
7410}
7411
7412int sched_cpu_starting(unsigned int cpu)
7413{
7414	set_cpu_rq_start_time(cpu);
7415	sched_rq_cpu_starting(cpu);
7416	return 0;
7417}
7418
7419#ifdef CONFIG_HOTPLUG_CPU
7420int sched_cpu_dying(unsigned int cpu)
7421{
7422	struct rq *rq = cpu_rq(cpu);
7423	unsigned long flags;
7424
7425	/* Handle pending wakeups and then migrate everything off */
7426	sched_ttwu_pending();
7427	raw_spin_lock_irqsave(&rq->lock, flags);
7428	if (rq->rd) {
7429		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7430		set_rq_offline(rq);
7431	}
7432	migrate_tasks(rq);
7433	BUG_ON(rq->nr_running != 1);
7434	raw_spin_unlock_irqrestore(&rq->lock, flags);
7435	calc_load_migrate(rq);
7436	update_max_interval();
7437	nohz_balance_exit_idle(cpu);
7438	hrtick_clear(rq);
7439	return 0;
7440}
7441#endif
7442
7443#ifdef CONFIG_SCHED_SMT
7444DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7445
7446static void sched_init_smt(void)
7447{
7448	/*
7449	 * We've enumerated all CPUs and will assume that if any CPU
7450	 * has SMT siblings, CPU0 will too.
7451	 */
7452	if (cpumask_weight(cpu_smt_mask(0)) > 1)
7453		static_branch_enable(&sched_smt_present);
7454}
7455#else
7456static inline void sched_init_smt(void) { }
7457#endif
7458
7459void __init sched_init_smp(void)
7460{
7461	cpumask_var_t non_isolated_cpus;
7462
7463	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7464	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7465
7466	sched_init_numa();
7467
7468	/*
7469	 * There's no userspace yet to cause hotplug operations; hence all the
7470	 * cpu masks are stable and all blatant races in the below code cannot
7471	 * happen.
7472	 */
7473	mutex_lock(&sched_domains_mutex);
7474	init_sched_domains(cpu_active_mask);
7475	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7476	if (cpumask_empty(non_isolated_cpus))
7477		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7478	mutex_unlock(&sched_domains_mutex);
 
 
 
 
 
 
 
 
 
7479
7480	/* Move init over to a non-isolated CPU */
7481	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7482		BUG();
7483	sched_init_granularity();
7484	free_cpumask_var(non_isolated_cpus);
7485
7486	init_sched_rt_class();
7487	init_sched_dl_class();
7488
7489	sched_init_smt();
7490
7491	sched_smp_initialized = true;
7492}
7493
7494static int __init migration_init(void)
7495{
7496	sched_rq_cpu_starting(smp_processor_id());
7497	return 0;
7498}
7499early_initcall(migration_init);
7500
7501#else
7502void __init sched_init_smp(void)
7503{
7504	sched_init_granularity();
7505}
7506#endif /* CONFIG_SMP */
7507
 
 
7508int in_sched_functions(unsigned long addr)
7509{
7510	return in_lock_functions(addr) ||
7511		(addr >= (unsigned long)__sched_text_start
7512		&& addr < (unsigned long)__sched_text_end);
7513}
7514
7515#ifdef CONFIG_CGROUP_SCHED
7516/*
7517 * Default task group.
7518 * Every task in system belongs to this group at bootup.
7519 */
7520struct task_group root_task_group;
7521LIST_HEAD(task_groups);
7522
7523/* Cacheline aligned slab cache for task_group */
7524static struct kmem_cache *task_group_cache __read_mostly;
7525#endif
7526
7527DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7528DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7529
7530#define WAIT_TABLE_BITS 8
7531#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7532static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7533
7534wait_queue_head_t *bit_waitqueue(void *word, int bit)
7535{
7536	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7537	unsigned long val = (unsigned long)word << shift | bit;
7538
7539	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7540}
7541EXPORT_SYMBOL(bit_waitqueue);
7542
7543void __init sched_init(void)
7544{
7545	int i, j;
7546	unsigned long alloc_size = 0, ptr;
7547
7548	for (i = 0; i < WAIT_TABLE_SIZE; i++)
7549		init_waitqueue_head(bit_wait_table + i);
7550
7551#ifdef CONFIG_FAIR_GROUP_SCHED
7552	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7553#endif
7554#ifdef CONFIG_RT_GROUP_SCHED
7555	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7556#endif
 
 
 
7557	if (alloc_size) {
7558		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7559
7560#ifdef CONFIG_FAIR_GROUP_SCHED
7561		root_task_group.se = (struct sched_entity **)ptr;
7562		ptr += nr_cpu_ids * sizeof(void **);
7563
7564		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7565		ptr += nr_cpu_ids * sizeof(void **);
7566
7567#endif /* CONFIG_FAIR_GROUP_SCHED */
7568#ifdef CONFIG_RT_GROUP_SCHED
7569		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7570		ptr += nr_cpu_ids * sizeof(void **);
7571
7572		root_task_group.rt_rq = (struct rt_rq **)ptr;
7573		ptr += nr_cpu_ids * sizeof(void **);
7574
7575#endif /* CONFIG_RT_GROUP_SCHED */
7576	}
7577#ifdef CONFIG_CPUMASK_OFFSTACK
7578	for_each_possible_cpu(i) {
7579		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7580			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7581		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7582			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7583	}
7584#endif /* CONFIG_CPUMASK_OFFSTACK */
7585
7586	init_rt_bandwidth(&def_rt_bandwidth,
7587			global_rt_period(), global_rt_runtime());
7588	init_dl_bandwidth(&def_dl_bandwidth,
7589			global_rt_period(), global_rt_runtime());
7590
7591#ifdef CONFIG_SMP
7592	init_defrootdomain();
7593#endif
7594
 
 
 
7595#ifdef CONFIG_RT_GROUP_SCHED
7596	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7597			global_rt_period(), global_rt_runtime());
7598#endif /* CONFIG_RT_GROUP_SCHED */
7599
7600#ifdef CONFIG_CGROUP_SCHED
7601	task_group_cache = KMEM_CACHE(task_group, 0);
7602
7603	list_add(&root_task_group.list, &task_groups);
7604	INIT_LIST_HEAD(&root_task_group.children);
7605	INIT_LIST_HEAD(&root_task_group.siblings);
7606	autogroup_init(&init_task);
 
7607#endif /* CONFIG_CGROUP_SCHED */
7608
 
 
 
 
 
 
7609	for_each_possible_cpu(i) {
7610		struct rq *rq;
7611
7612		rq = cpu_rq(i);
7613		raw_spin_lock_init(&rq->lock);
7614		rq->nr_running = 0;
7615		rq->calc_load_active = 0;
7616		rq->calc_load_update = jiffies + LOAD_FREQ;
7617		init_cfs_rq(&rq->cfs);
7618		init_rt_rq(&rq->rt);
7619		init_dl_rq(&rq->dl);
7620#ifdef CONFIG_FAIR_GROUP_SCHED
7621		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7622		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7623		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7624		/*
7625		 * How much cpu bandwidth does root_task_group get?
7626		 *
7627		 * In case of task-groups formed thr' the cgroup filesystem, it
7628		 * gets 100% of the cpu resources in the system. This overall
7629		 * system cpu resource is divided among the tasks of
7630		 * root_task_group and its child task-groups in a fair manner,
7631		 * based on each entity's (task or task-group's) weight
7632		 * (se->load.weight).
7633		 *
7634		 * In other words, if root_task_group has 10 tasks of weight
7635		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7636		 * then A0's share of the cpu resource is:
7637		 *
7638		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7639		 *
7640		 * We achieve this by letting root_task_group's tasks sit
7641		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7642		 */
7643		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7644		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7645#endif /* CONFIG_FAIR_GROUP_SCHED */
7646
7647		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7648#ifdef CONFIG_RT_GROUP_SCHED
 
7649		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7650#endif
7651
7652		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7653			rq->cpu_load[j] = 0;
7654
 
 
7655#ifdef CONFIG_SMP
7656		rq->sd = NULL;
7657		rq->rd = NULL;
7658		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7659		rq->balance_callback = NULL;
7660		rq->active_balance = 0;
7661		rq->next_balance = jiffies;
7662		rq->push_cpu = 0;
7663		rq->cpu = i;
7664		rq->online = 0;
7665		rq->idle_stamp = 0;
7666		rq->avg_idle = 2*sysctl_sched_migration_cost;
7667		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7668
7669		INIT_LIST_HEAD(&rq->cfs_tasks);
7670
7671		rq_attach_root(rq, &def_root_domain);
7672#ifdef CONFIG_NO_HZ_COMMON
7673		rq->last_load_update_tick = jiffies;
7674		rq->nohz_flags = 0;
7675#endif
7676#ifdef CONFIG_NO_HZ_FULL
7677		rq->last_sched_tick = 0;
7678#endif
7679#endif /* CONFIG_SMP */
7680		init_rq_hrtick(rq);
7681		atomic_set(&rq->nr_iowait, 0);
7682	}
7683
7684	set_load_weight(&init_task);
7685
 
 
 
 
 
 
 
 
7686	/*
7687	 * The boot idle thread does lazy MMU switching as well:
7688	 */
7689	atomic_inc(&init_mm.mm_count);
7690	enter_lazy_tlb(&init_mm, current);
7691
7692	/*
7693	 * Make us the idle thread. Technically, schedule() should not be
7694	 * called from this thread, however somewhere below it might be,
7695	 * but because we are the idle thread, we just pick up running again
7696	 * when this runqueue becomes "idle".
7697	 */
7698	init_idle(current, smp_processor_id());
7699
7700	calc_load_update = jiffies + LOAD_FREQ;
7701
 
 
 
 
 
7702#ifdef CONFIG_SMP
7703	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7704	/* May be allocated at isolcpus cmdline parse time */
7705	if (cpu_isolated_map == NULL)
7706		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7707	idle_thread_set_boot_cpu();
7708	set_cpu_rq_start_time(smp_processor_id());
7709#endif
7710	init_sched_fair_class();
7711
7712	init_schedstats();
7713
7714	scheduler_running = 1;
7715}
7716
7717#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7718static inline int preempt_count_equals(int preempt_offset)
7719{
7720	int nested = preempt_count() + rcu_preempt_depth();
7721
7722	return (nested == preempt_offset);
7723}
7724
7725void __might_sleep(const char *file, int line, int preempt_offset)
7726{
7727	/*
7728	 * Blocking primitives will set (and therefore destroy) current->state,
7729	 * since we will exit with TASK_RUNNING make sure we enter with it,
7730	 * otherwise we will destroy state.
7731	 */
7732	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7733			"do not call blocking ops when !TASK_RUNNING; "
7734			"state=%lx set at [<%p>] %pS\n",
7735			current->state,
7736			(void *)current->task_state_change,
7737			(void *)current->task_state_change);
7738
7739	___might_sleep(file, line, preempt_offset);
7740}
7741EXPORT_SYMBOL(__might_sleep);
7742
7743void ___might_sleep(const char *file, int line, int preempt_offset)
7744{
7745	static unsigned long prev_jiffy;	/* ratelimiting */
7746	unsigned long preempt_disable_ip;
7747
7748	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7749	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7750	     !is_idle_task(current)) ||
7751	    system_state != SYSTEM_RUNNING || oops_in_progress)
7752		return;
7753	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7754		return;
7755	prev_jiffy = jiffies;
7756
7757	/* Save this before calling printk(), since that will clobber it */
7758	preempt_disable_ip = get_preempt_disable_ip(current);
7759
7760	printk(KERN_ERR
7761		"BUG: sleeping function called from invalid context at %s:%d\n",
7762			file, line);
7763	printk(KERN_ERR
7764		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7765			in_atomic(), irqs_disabled(),
7766			current->pid, current->comm);
7767
7768	if (task_stack_end_corrupted(current))
7769		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7770
7771	debug_show_held_locks(current);
7772	if (irqs_disabled())
7773		print_irqtrace_events(current);
7774	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7775	    && !preempt_count_equals(preempt_offset)) {
7776		pr_err("Preemption disabled at:");
7777		print_ip_sym(preempt_disable_ip);
7778		pr_cont("\n");
7779	}
7780	dump_stack();
7781	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7782}
7783EXPORT_SYMBOL(___might_sleep);
7784#endif
7785
7786#ifdef CONFIG_MAGIC_SYSRQ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7787void normalize_rt_tasks(void)
7788{
7789	struct task_struct *g, *p;
7790	struct sched_attr attr = {
7791		.sched_policy = SCHED_NORMAL,
7792	};
7793
7794	read_lock(&tasklist_lock);
7795	for_each_process_thread(g, p) {
7796		/*
7797		 * Only normalize user tasks:
7798		 */
7799		if (p->flags & PF_KTHREAD)
7800			continue;
7801
7802		p->se.exec_start = 0;
7803		schedstat_set(p->se.statistics.wait_start,  0);
7804		schedstat_set(p->se.statistics.sleep_start, 0);
7805		schedstat_set(p->se.statistics.block_start, 0);
 
 
7806
7807		if (!dl_task(p) && !rt_task(p)) {
7808			/*
7809			 * Renice negative nice level userspace
7810			 * tasks back to 0:
7811			 */
7812			if (task_nice(p) < 0)
7813				set_user_nice(p, 0);
7814			continue;
7815		}
7816
7817		__sched_setscheduler(p, &attr, false, false);
7818	}
7819	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
7820}
7821
7822#endif /* CONFIG_MAGIC_SYSRQ */
7823
7824#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7825/*
7826 * These functions are only useful for the IA64 MCA handling, or kdb.
7827 *
7828 * They can only be called when the whole system has been
7829 * stopped - every CPU needs to be quiescent, and no scheduling
7830 * activity can take place. Using them for anything else would
7831 * be a serious bug, and as a result, they aren't even visible
7832 * under any other configuration.
7833 */
7834
7835/**
7836 * curr_task - return the current task for a given cpu.
7837 * @cpu: the processor in question.
7838 *
7839 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7840 *
7841 * Return: The current task for @cpu.
7842 */
7843struct task_struct *curr_task(int cpu)
7844{
7845	return cpu_curr(cpu);
7846}
7847
7848#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7849
7850#ifdef CONFIG_IA64
7851/**
7852 * set_curr_task - set the current task for a given cpu.
7853 * @cpu: the processor in question.
7854 * @p: the task pointer to set.
7855 *
7856 * Description: This function must only be used when non-maskable interrupts
7857 * are serviced on a separate stack. It allows the architecture to switch the
7858 * notion of the current task on a cpu in a non-blocking manner. This function
7859 * must be called with all CPU's synchronized, and interrupts disabled, the
7860 * and caller must save the original value of the current task (see
7861 * curr_task() above) and restore that value before reenabling interrupts and
7862 * re-starting the system.
7863 *
7864 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7865 */
7866void ia64_set_curr_task(int cpu, struct task_struct *p)
7867{
7868	cpu_curr(cpu) = p;
7869}
7870
7871#endif
7872
7873#ifdef CONFIG_CGROUP_SCHED
7874/* task_group_lock serializes the addition/removal of task groups */
7875static DEFINE_SPINLOCK(task_group_lock);
7876
7877static void sched_free_group(struct task_group *tg)
7878{
7879	free_fair_sched_group(tg);
7880	free_rt_sched_group(tg);
7881	autogroup_free(tg);
7882	kmem_cache_free(task_group_cache, tg);
7883}
7884
7885/* allocate runqueue etc for a new task group */
7886struct task_group *sched_create_group(struct task_group *parent)
7887{
7888	struct task_group *tg;
 
7889
7890	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7891	if (!tg)
7892		return ERR_PTR(-ENOMEM);
7893
7894	if (!alloc_fair_sched_group(tg, parent))
7895		goto err;
7896
7897	if (!alloc_rt_sched_group(tg, parent))
7898		goto err;
7899
7900	return tg;
7901
7902err:
7903	sched_free_group(tg);
7904	return ERR_PTR(-ENOMEM);
7905}
7906
7907void sched_online_group(struct task_group *tg, struct task_group *parent)
7908{
7909	unsigned long flags;
7910
7911	spin_lock_irqsave(&task_group_lock, flags);
7912	list_add_rcu(&tg->list, &task_groups);
7913
7914	WARN_ON(!parent); /* root should already exist */
7915
7916	tg->parent = parent;
7917	INIT_LIST_HEAD(&tg->children);
7918	list_add_rcu(&tg->siblings, &parent->children);
7919	spin_unlock_irqrestore(&task_group_lock, flags);
7920
7921	online_fair_sched_group(tg);
 
 
 
 
7922}
7923
7924/* rcu callback to free various structures associated with a task group */
7925static void sched_free_group_rcu(struct rcu_head *rhp)
7926{
7927	/* now it should be safe to free those cfs_rqs */
7928	sched_free_group(container_of(rhp, struct task_group, rcu));
7929}
7930
 
7931void sched_destroy_group(struct task_group *tg)
7932{
7933	/* wait for possible concurrent references to cfs_rqs complete */
7934	call_rcu(&tg->rcu, sched_free_group_rcu);
7935}
7936
7937void sched_offline_group(struct task_group *tg)
7938{
7939	unsigned long flags;
 
7940
7941	/* end participation in shares distribution */
7942	unregister_fair_sched_group(tg);
 
7943
7944	spin_lock_irqsave(&task_group_lock, flags);
7945	list_del_rcu(&tg->list);
7946	list_del_rcu(&tg->siblings);
7947	spin_unlock_irqrestore(&task_group_lock, flags);
 
 
 
7948}
7949
7950static void sched_change_group(struct task_struct *tsk, int type)
 
 
 
 
 
7951{
7952	struct task_group *tg;
 
 
 
7953
7954	/*
7955	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7956	 * which is pointless here. Thus, we pass "true" to task_css_check()
7957	 * to prevent lockdep warnings.
7958	 */
7959	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
 
 
 
 
 
 
7960			  struct task_group, css);
7961	tg = autogroup_task_group(tsk, tg);
7962	tsk->sched_task_group = tg;
7963
7964#ifdef CONFIG_FAIR_GROUP_SCHED
7965	if (tsk->sched_class->task_change_group)
7966		tsk->sched_class->task_change_group(tsk, type);
7967	else
7968#endif
7969		set_task_rq(tsk, task_cpu(tsk));
7970}
7971
7972/*
7973 * Change task's runqueue when it moves between groups.
7974 *
7975 * The caller of this function should have put the task in its new group by
7976 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7977 * its new group.
7978 */
7979void sched_move_task(struct task_struct *tsk)
7980{
7981	int queued, running;
7982	struct rq_flags rf;
7983	struct rq *rq;
7984
7985	rq = task_rq_lock(tsk, &rf);
7986
7987	running = task_current(rq, tsk);
7988	queued = task_on_rq_queued(tsk);
7989
7990	if (queued)
7991		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7992	if (unlikely(running))
7993		put_prev_task(rq, tsk);
 
 
7994
7995	sched_change_group(tsk, TASK_MOVE_GROUP);
 
 
7996
7997	if (queued)
7998		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7999	if (unlikely(running))
8000		set_curr_task(rq, tsk);
 
8001
8002	task_rq_unlock(rq, tsk, &rf);
8003}
8004#endif /* CONFIG_CGROUP_SCHED */
8005
8006#ifdef CONFIG_RT_GROUP_SCHED
8007/*
8008 * Ensure that the real time constraints are schedulable.
8009 */
8010static DEFINE_MUTEX(rt_constraints_mutex);
8011
8012/* Must be called with tasklist_lock held */
8013static inline int tg_has_rt_tasks(struct task_group *tg)
8014{
8015	struct task_struct *g, *p;
8016
8017	/*
8018	 * Autogroups do not have RT tasks; see autogroup_create().
8019	 */
8020	if (task_group_is_autogroup(tg))
8021		return 0;
8022
8023	for_each_process_thread(g, p) {
8024		if (rt_task(p) && task_group(p) == tg)
8025			return 1;
8026	}
8027
8028	return 0;
8029}
8030
8031struct rt_schedulable_data {
8032	struct task_group *tg;
8033	u64 rt_period;
8034	u64 rt_runtime;
8035};
8036
8037static int tg_rt_schedulable(struct task_group *tg, void *data)
8038{
8039	struct rt_schedulable_data *d = data;
8040	struct task_group *child;
8041	unsigned long total, sum = 0;
8042	u64 period, runtime;
8043
8044	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8045	runtime = tg->rt_bandwidth.rt_runtime;
8046
8047	if (tg == d->tg) {
8048		period = d->rt_period;
8049		runtime = d->rt_runtime;
8050	}
8051
8052	/*
8053	 * Cannot have more runtime than the period.
8054	 */
8055	if (runtime > period && runtime != RUNTIME_INF)
8056		return -EINVAL;
8057
8058	/*
8059	 * Ensure we don't starve existing RT tasks.
8060	 */
8061	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8062		return -EBUSY;
8063
8064	total = to_ratio(period, runtime);
8065
8066	/*
8067	 * Nobody can have more than the global setting allows.
8068	 */
8069	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8070		return -EINVAL;
8071
8072	/*
8073	 * The sum of our children's runtime should not exceed our own.
8074	 */
8075	list_for_each_entry_rcu(child, &tg->children, siblings) {
8076		period = ktime_to_ns(child->rt_bandwidth.rt_period);
8077		runtime = child->rt_bandwidth.rt_runtime;
8078
8079		if (child == d->tg) {
8080			period = d->rt_period;
8081			runtime = d->rt_runtime;
8082		}
8083
8084		sum += to_ratio(period, runtime);
8085	}
8086
8087	if (sum > total)
8088		return -EINVAL;
8089
8090	return 0;
8091}
8092
8093static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8094{
8095	int ret;
8096
8097	struct rt_schedulable_data data = {
8098		.tg = tg,
8099		.rt_period = period,
8100		.rt_runtime = runtime,
8101	};
8102
8103	rcu_read_lock();
8104	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8105	rcu_read_unlock();
8106
8107	return ret;
8108}
8109
8110static int tg_set_rt_bandwidth(struct task_group *tg,
8111		u64 rt_period, u64 rt_runtime)
8112{
8113	int i, err = 0;
8114
8115	/*
8116	 * Disallowing the root group RT runtime is BAD, it would disallow the
8117	 * kernel creating (and or operating) RT threads.
8118	 */
8119	if (tg == &root_task_group && rt_runtime == 0)
8120		return -EINVAL;
8121
8122	/* No period doesn't make any sense. */
8123	if (rt_period == 0)
8124		return -EINVAL;
8125
8126	mutex_lock(&rt_constraints_mutex);
8127	read_lock(&tasklist_lock);
8128	err = __rt_schedulable(tg, rt_period, rt_runtime);
8129	if (err)
8130		goto unlock;
8131
8132	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8133	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8134	tg->rt_bandwidth.rt_runtime = rt_runtime;
8135
8136	for_each_possible_cpu(i) {
8137		struct rt_rq *rt_rq = tg->rt_rq[i];
8138
8139		raw_spin_lock(&rt_rq->rt_runtime_lock);
8140		rt_rq->rt_runtime = rt_runtime;
8141		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8142	}
8143	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8144unlock:
8145	read_unlock(&tasklist_lock);
8146	mutex_unlock(&rt_constraints_mutex);
8147
8148	return err;
8149}
8150
8151static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8152{
8153	u64 rt_runtime, rt_period;
8154
8155	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8156	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8157	if (rt_runtime_us < 0)
8158		rt_runtime = RUNTIME_INF;
8159
8160	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8161}
8162
8163static long sched_group_rt_runtime(struct task_group *tg)
8164{
8165	u64 rt_runtime_us;
8166
8167	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8168		return -1;
8169
8170	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8171	do_div(rt_runtime_us, NSEC_PER_USEC);
8172	return rt_runtime_us;
8173}
8174
8175static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8176{
8177	u64 rt_runtime, rt_period;
8178
8179	rt_period = rt_period_us * NSEC_PER_USEC;
8180	rt_runtime = tg->rt_bandwidth.rt_runtime;
8181
 
 
 
8182	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8183}
8184
8185static long sched_group_rt_period(struct task_group *tg)
8186{
8187	u64 rt_period_us;
8188
8189	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8190	do_div(rt_period_us, NSEC_PER_USEC);
8191	return rt_period_us;
8192}
8193#endif /* CONFIG_RT_GROUP_SCHED */
8194
8195#ifdef CONFIG_RT_GROUP_SCHED
8196static int sched_rt_global_constraints(void)
8197{
 
8198	int ret = 0;
8199
 
 
 
 
 
 
 
 
 
 
 
 
8200	mutex_lock(&rt_constraints_mutex);
8201	read_lock(&tasklist_lock);
8202	ret = __rt_schedulable(NULL, 0, 0);
8203	read_unlock(&tasklist_lock);
8204	mutex_unlock(&rt_constraints_mutex);
8205
8206	return ret;
8207}
8208
8209static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8210{
8211	/* Don't accept realtime tasks when there is no way for them to run */
8212	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8213		return 0;
8214
8215	return 1;
8216}
8217
8218#else /* !CONFIG_RT_GROUP_SCHED */
8219static int sched_rt_global_constraints(void)
8220{
8221	unsigned long flags;
8222	int i;
8223
 
 
 
 
 
 
 
 
 
 
8224	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8225	for_each_possible_cpu(i) {
8226		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8227
8228		raw_spin_lock(&rt_rq->rt_runtime_lock);
8229		rt_rq->rt_runtime = global_rt_runtime();
8230		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8231	}
8232	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8233
8234	return 0;
8235}
8236#endif /* CONFIG_RT_GROUP_SCHED */
8237
8238static int sched_dl_global_validate(void)
8239{
8240	u64 runtime = global_rt_runtime();
8241	u64 period = global_rt_period();
8242	u64 new_bw = to_ratio(period, runtime);
8243	struct dl_bw *dl_b;
8244	int cpu, ret = 0;
8245	unsigned long flags;
8246
8247	/*
8248	 * Here we want to check the bandwidth not being set to some
8249	 * value smaller than the currently allocated bandwidth in
8250	 * any of the root_domains.
8251	 *
8252	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8253	 * cycling on root_domains... Discussion on different/better
8254	 * solutions is welcome!
8255	 */
8256	for_each_possible_cpu(cpu) {
8257		rcu_read_lock_sched();
8258		dl_b = dl_bw_of(cpu);
8259
8260		raw_spin_lock_irqsave(&dl_b->lock, flags);
8261		if (new_bw < dl_b->total_bw)
8262			ret = -EBUSY;
8263		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8264
8265		rcu_read_unlock_sched();
8266
8267		if (ret)
8268			break;
8269	}
8270
8271	return ret;
8272}
8273
8274static void sched_dl_do_global(void)
8275{
8276	u64 new_bw = -1;
8277	struct dl_bw *dl_b;
8278	int cpu;
8279	unsigned long flags;
8280
8281	def_dl_bandwidth.dl_period = global_rt_period();
8282	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8283
8284	if (global_rt_runtime() != RUNTIME_INF)
8285		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8286
8287	/*
8288	 * FIXME: As above...
8289	 */
8290	for_each_possible_cpu(cpu) {
8291		rcu_read_lock_sched();
8292		dl_b = dl_bw_of(cpu);
8293
8294		raw_spin_lock_irqsave(&dl_b->lock, flags);
8295		dl_b->bw = new_bw;
8296		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8297
8298		rcu_read_unlock_sched();
8299	}
8300}
8301
8302static int sched_rt_global_validate(void)
8303{
8304	if (sysctl_sched_rt_period <= 0)
8305		return -EINVAL;
8306
8307	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8308		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8309		return -EINVAL;
8310
8311	return 0;
8312}
8313
8314static void sched_rt_do_global(void)
8315{
8316	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8317	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8318}
8319
8320int sched_rt_handler(struct ctl_table *table, int write,
8321		void __user *buffer, size_t *lenp,
8322		loff_t *ppos)
8323{
 
8324	int old_period, old_runtime;
8325	static DEFINE_MUTEX(mutex);
8326	int ret;
8327
8328	mutex_lock(&mutex);
8329	old_period = sysctl_sched_rt_period;
8330	old_runtime = sysctl_sched_rt_runtime;
8331
8332	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8333
8334	if (!ret && write) {
8335		ret = sched_rt_global_validate();
8336		if (ret)
8337			goto undo;
8338
8339		ret = sched_dl_global_validate();
8340		if (ret)
8341			goto undo;
8342
8343		ret = sched_rt_global_constraints();
8344		if (ret)
8345			goto undo;
8346
8347		sched_rt_do_global();
8348		sched_dl_do_global();
8349	}
8350	if (0) {
8351undo:
8352		sysctl_sched_rt_period = old_period;
8353		sysctl_sched_rt_runtime = old_runtime;
8354	}
8355	mutex_unlock(&mutex);
8356
8357	return ret;
8358}
8359
8360int sched_rr_handler(struct ctl_table *table, int write,
8361		void __user *buffer, size_t *lenp,
8362		loff_t *ppos)
8363{
8364	int ret;
8365	static DEFINE_MUTEX(mutex);
8366
8367	mutex_lock(&mutex);
8368	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8369	/* make sure that internally we keep jiffies */
8370	/* also, writing zero resets timeslice to default */
8371	if (!ret && write) {
8372		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8373			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8374	}
8375	mutex_unlock(&mutex);
8376	return ret;
8377}
8378
8379#ifdef CONFIG_CGROUP_SCHED
8380
8381static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
 
8382{
8383	return css ? container_of(css, struct task_group, css) : NULL;
 
8384}
8385
8386static struct cgroup_subsys_state *
8387cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8388{
8389	struct task_group *parent = css_tg(parent_css);
8390	struct task_group *tg;
8391
8392	if (!parent) {
8393		/* This is early initialization for the top cgroup */
8394		return &root_task_group.css;
8395	}
8396
 
8397	tg = sched_create_group(parent);
8398	if (IS_ERR(tg))
8399		return ERR_PTR(-ENOMEM);
8400
8401	sched_online_group(tg, parent);
8402
8403	return &tg->css;
8404}
8405
8406static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8407{
8408	struct task_group *tg = css_tg(css);
8409
8410	sched_offline_group(tg);
8411}
8412
8413static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8414{
8415	struct task_group *tg = css_tg(css);
8416
8417	/*
8418	 * Relies on the RCU grace period between css_released() and this.
8419	 */
8420	sched_free_group(tg);
8421}
8422
8423/*
8424 * This is called before wake_up_new_task(), therefore we really only
8425 * have to set its group bits, all the other stuff does not apply.
8426 */
8427static void cpu_cgroup_fork(struct task_struct *task)
8428{
8429	struct rq_flags rf;
8430	struct rq *rq;
8431
8432	rq = task_rq_lock(task, &rf);
8433
8434	sched_change_group(task, TASK_SET_GROUP);
8435
8436	task_rq_unlock(rq, task, &rf);
8437}
8438
8439static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8440{
8441	struct task_struct *task;
8442	struct cgroup_subsys_state *css;
8443	int ret = 0;
8444
8445	cgroup_taskset_for_each(task, css, tset) {
8446#ifdef CONFIG_RT_GROUP_SCHED
8447		if (!sched_rt_can_attach(css_tg(css), task))
8448			return -EINVAL;
8449#else
8450		/* We don't support RT-tasks being in separate groups */
8451		if (task->sched_class != &fair_sched_class)
8452			return -EINVAL;
8453#endif
8454		/*
8455		 * Serialize against wake_up_new_task() such that if its
8456		 * running, we're sure to observe its full state.
8457		 */
8458		raw_spin_lock_irq(&task->pi_lock);
8459		/*
8460		 * Avoid calling sched_move_task() before wake_up_new_task()
8461		 * has happened. This would lead to problems with PELT, due to
8462		 * move wanting to detach+attach while we're not attached yet.
8463		 */
8464		if (task->state == TASK_NEW)
8465			ret = -EINVAL;
8466		raw_spin_unlock_irq(&task->pi_lock);
8467
8468		if (ret)
8469			break;
8470	}
8471	return ret;
8472}
8473
8474static void cpu_cgroup_attach(struct cgroup_taskset *tset)
 
8475{
8476	struct task_struct *task;
8477	struct cgroup_subsys_state *css;
8478
8479	cgroup_taskset_for_each(task, css, tset)
8480		sched_move_task(task);
8481}
8482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8483#ifdef CONFIG_FAIR_GROUP_SCHED
8484static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8485				struct cftype *cftype, u64 shareval)
8486{
8487	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8488}
8489
8490static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8491			       struct cftype *cft)
8492{
8493	struct task_group *tg = css_tg(css);
8494
8495	return (u64) scale_load_down(tg->shares);
8496}
8497
8498#ifdef CONFIG_CFS_BANDWIDTH
8499static DEFINE_MUTEX(cfs_constraints_mutex);
8500
8501const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8502const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8503
8504static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8505
8506static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8507{
8508	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8509	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8510
8511	if (tg == &root_task_group)
8512		return -EINVAL;
8513
8514	/*
8515	 * Ensure we have at some amount of bandwidth every period.  This is
8516	 * to prevent reaching a state of large arrears when throttled via
8517	 * entity_tick() resulting in prolonged exit starvation.
8518	 */
8519	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8520		return -EINVAL;
8521
8522	/*
8523	 * Likewise, bound things on the otherside by preventing insane quota
8524	 * periods.  This also allows us to normalize in computing quota
8525	 * feasibility.
8526	 */
8527	if (period > max_cfs_quota_period)
8528		return -EINVAL;
8529
8530	/*
8531	 * Prevent race between setting of cfs_rq->runtime_enabled and
8532	 * unthrottle_offline_cfs_rqs().
8533	 */
8534	get_online_cpus();
8535	mutex_lock(&cfs_constraints_mutex);
8536	ret = __cfs_schedulable(tg, period, quota);
8537	if (ret)
8538		goto out_unlock;
8539
8540	runtime_enabled = quota != RUNTIME_INF;
8541	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8542	/*
8543	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8544	 * before making related changes, and on->off must occur afterwards
8545	 */
8546	if (runtime_enabled && !runtime_was_enabled)
8547		cfs_bandwidth_usage_inc();
8548	raw_spin_lock_irq(&cfs_b->lock);
8549	cfs_b->period = ns_to_ktime(period);
8550	cfs_b->quota = quota;
8551
8552	__refill_cfs_bandwidth_runtime(cfs_b);
8553	/* restart the period timer (if active) to handle new period expiry */
8554	if (runtime_enabled)
8555		start_cfs_bandwidth(cfs_b);
 
 
 
8556	raw_spin_unlock_irq(&cfs_b->lock);
8557
8558	for_each_online_cpu(i) {
8559		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8560		struct rq *rq = cfs_rq->rq;
8561
8562		raw_spin_lock_irq(&rq->lock);
8563		cfs_rq->runtime_enabled = runtime_enabled;
8564		cfs_rq->runtime_remaining = 0;
8565
8566		if (cfs_rq->throttled)
8567			unthrottle_cfs_rq(cfs_rq);
8568		raw_spin_unlock_irq(&rq->lock);
8569	}
8570	if (runtime_was_enabled && !runtime_enabled)
8571		cfs_bandwidth_usage_dec();
8572out_unlock:
8573	mutex_unlock(&cfs_constraints_mutex);
8574	put_online_cpus();
8575
8576	return ret;
8577}
8578
8579int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8580{
8581	u64 quota, period;
8582
8583	period = ktime_to_ns(tg->cfs_bandwidth.period);
8584	if (cfs_quota_us < 0)
8585		quota = RUNTIME_INF;
8586	else
8587		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8588
8589	return tg_set_cfs_bandwidth(tg, period, quota);
8590}
8591
8592long tg_get_cfs_quota(struct task_group *tg)
8593{
8594	u64 quota_us;
8595
8596	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8597		return -1;
8598
8599	quota_us = tg->cfs_bandwidth.quota;
8600	do_div(quota_us, NSEC_PER_USEC);
8601
8602	return quota_us;
8603}
8604
8605int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8606{
8607	u64 quota, period;
8608
8609	period = (u64)cfs_period_us * NSEC_PER_USEC;
8610	quota = tg->cfs_bandwidth.quota;
8611
8612	return tg_set_cfs_bandwidth(tg, period, quota);
8613}
8614
8615long tg_get_cfs_period(struct task_group *tg)
8616{
8617	u64 cfs_period_us;
8618
8619	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8620	do_div(cfs_period_us, NSEC_PER_USEC);
8621
8622	return cfs_period_us;
8623}
8624
8625static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8626				  struct cftype *cft)
8627{
8628	return tg_get_cfs_quota(css_tg(css));
8629}
8630
8631static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8632				   struct cftype *cftype, s64 cfs_quota_us)
8633{
8634	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8635}
8636
8637static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8638				   struct cftype *cft)
8639{
8640	return tg_get_cfs_period(css_tg(css));
8641}
8642
8643static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8644				    struct cftype *cftype, u64 cfs_period_us)
8645{
8646	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8647}
8648
8649struct cfs_schedulable_data {
8650	struct task_group *tg;
8651	u64 period, quota;
8652};
8653
8654/*
8655 * normalize group quota/period to be quota/max_period
8656 * note: units are usecs
8657 */
8658static u64 normalize_cfs_quota(struct task_group *tg,
8659			       struct cfs_schedulable_data *d)
8660{
8661	u64 quota, period;
8662
8663	if (tg == d->tg) {
8664		period = d->period;
8665		quota = d->quota;
8666	} else {
8667		period = tg_get_cfs_period(tg);
8668		quota = tg_get_cfs_quota(tg);
8669	}
8670
8671	/* note: these should typically be equivalent */
8672	if (quota == RUNTIME_INF || quota == -1)
8673		return RUNTIME_INF;
8674
8675	return to_ratio(period, quota);
8676}
8677
8678static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8679{
8680	struct cfs_schedulable_data *d = data;
8681	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8682	s64 quota = 0, parent_quota = -1;
8683
8684	if (!tg->parent) {
8685		quota = RUNTIME_INF;
8686	} else {
8687		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8688
8689		quota = normalize_cfs_quota(tg, d);
8690		parent_quota = parent_b->hierarchical_quota;
8691
8692		/*
8693		 * ensure max(child_quota) <= parent_quota, inherit when no
8694		 * limit is set
8695		 */
8696		if (quota == RUNTIME_INF)
8697			quota = parent_quota;
8698		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8699			return -EINVAL;
8700	}
8701	cfs_b->hierarchical_quota = quota;
8702
8703	return 0;
8704}
8705
8706static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8707{
8708	int ret;
8709	struct cfs_schedulable_data data = {
8710		.tg = tg,
8711		.period = period,
8712		.quota = quota,
8713	};
8714
8715	if (quota != RUNTIME_INF) {
8716		do_div(data.period, NSEC_PER_USEC);
8717		do_div(data.quota, NSEC_PER_USEC);
8718	}
8719
8720	rcu_read_lock();
8721	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8722	rcu_read_unlock();
8723
8724	return ret;
8725}
8726
8727static int cpu_stats_show(struct seq_file *sf, void *v)
 
8728{
8729	struct task_group *tg = css_tg(seq_css(sf));
8730	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8731
8732	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8733	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8734	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8735
8736	return 0;
8737}
8738#endif /* CONFIG_CFS_BANDWIDTH */
8739#endif /* CONFIG_FAIR_GROUP_SCHED */
8740
8741#ifdef CONFIG_RT_GROUP_SCHED
8742static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8743				struct cftype *cft, s64 val)
8744{
8745	return sched_group_set_rt_runtime(css_tg(css), val);
8746}
8747
8748static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8749			       struct cftype *cft)
8750{
8751	return sched_group_rt_runtime(css_tg(css));
8752}
8753
8754static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8755				    struct cftype *cftype, u64 rt_period_us)
8756{
8757	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8758}
8759
8760static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8761				   struct cftype *cft)
8762{
8763	return sched_group_rt_period(css_tg(css));
8764}
8765#endif /* CONFIG_RT_GROUP_SCHED */
8766
8767static struct cftype cpu_files[] = {
8768#ifdef CONFIG_FAIR_GROUP_SCHED
8769	{
8770		.name = "shares",
8771		.read_u64 = cpu_shares_read_u64,
8772		.write_u64 = cpu_shares_write_u64,
8773	},
8774#endif
8775#ifdef CONFIG_CFS_BANDWIDTH
8776	{
8777		.name = "cfs_quota_us",
8778		.read_s64 = cpu_cfs_quota_read_s64,
8779		.write_s64 = cpu_cfs_quota_write_s64,
8780	},
8781	{
8782		.name = "cfs_period_us",
8783		.read_u64 = cpu_cfs_period_read_u64,
8784		.write_u64 = cpu_cfs_period_write_u64,
8785	},
8786	{
8787		.name = "stat",
8788		.seq_show = cpu_stats_show,
8789	},
8790#endif
8791#ifdef CONFIG_RT_GROUP_SCHED
8792	{
8793		.name = "rt_runtime_us",
8794		.read_s64 = cpu_rt_runtime_read,
8795		.write_s64 = cpu_rt_runtime_write,
8796	},
8797	{
8798		.name = "rt_period_us",
8799		.read_u64 = cpu_rt_period_read_uint,
8800		.write_u64 = cpu_rt_period_write_uint,
8801	},
8802#endif
8803	{ }	/* terminate */
8804};
8805
8806struct cgroup_subsys cpu_cgrp_subsys = {
8807	.css_alloc	= cpu_cgroup_css_alloc,
8808	.css_released	= cpu_cgroup_css_released,
8809	.css_free	= cpu_cgroup_css_free,
8810	.fork		= cpu_cgroup_fork,
8811	.can_attach	= cpu_cgroup_can_attach,
8812	.attach		= cpu_cgroup_attach,
8813	.legacy_cftypes	= cpu_files,
8814	.early_init	= true,
 
 
8815};
8816
8817#endif	/* CONFIG_CGROUP_SCHED */
8818
8819void dump_cpu_task(int cpu)
 
 
 
 
 
 
 
 
 
 
8820{
8821	pr_info("Task dump for CPU %d:\n", cpu);
8822	sched_show_task(cpu_curr(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8823}
8824
8825/*
8826 * Nice levels are multiplicative, with a gentle 10% change for every
8827 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8828 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8829 * that remained on nice 0.
8830 *
8831 * The "10% effect" is relative and cumulative: from _any_ nice level,
8832 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8833 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8834 * If a task goes up by ~10% and another task goes down by ~10% then
8835 * the relative distance between them is ~25%.)
8836 */
8837const int sched_prio_to_weight[40] = {
8838 /* -20 */     88761,     71755,     56483,     46273,     36291,
8839 /* -15 */     29154,     23254,     18705,     14949,     11916,
8840 /* -10 */      9548,      7620,      6100,      4904,      3906,
8841 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8842 /*   0 */      1024,       820,       655,       526,       423,
8843 /*   5 */       335,       272,       215,       172,       137,
8844 /*  10 */       110,        87,        70,        56,        45,
8845 /*  15 */        36,        29,        23,        18,        15,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8846};
8847
8848/*
8849 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8850 *
8851 * In cases where the weight does not change often, we can use the
8852 * precalculated inverse to speed up arithmetics by turning divisions
8853 * into multiplications:
8854 */
8855const u32 sched_prio_to_wmult[40] = {
8856 /* -20 */     48388,     59856,     76040,     92818,    118348,
8857 /* -15 */    147320,    184698,    229616,    287308,    360437,
8858 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8859 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8860 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8861 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8862 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8863 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8864};
v3.5.6
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *		make semaphores SMP safe
  10 *  1998-11-19	Implemented schedule_timeout() and related stuff
  11 *		by Andrea Arcangeli
  12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *		hybrid priority-list and round-robin design with
  14 *		an array-switch method of distributing timeslices
  15 *		and per-CPU runqueues.  Cleanups and useful suggestions
  16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03	Interactivity tuning by Con Kolivas.
  18 *  2004-04-02	Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
 
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
 
 
 
 
  75
  76#include <asm/switch_to.h>
  77#include <asm/tlb.h>
  78#include <asm/irq_regs.h>
  79#include <asm/mutex.h>
  80#ifdef CONFIG_PARAVIRT
  81#include <asm/paravirt.h>
  82#endif
  83
  84#include "sched.h"
  85#include "../workqueue_sched.h"
  86#include "../smpboot.h"
  87
  88#define CREATE_TRACE_POINTS
  89#include <trace/events/sched.h>
  90
  91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  92{
  93	unsigned long delta;
  94	ktime_t soft, hard, now;
  95
  96	for (;;) {
  97		if (hrtimer_active(period_timer))
  98			break;
  99
 100		now = hrtimer_cb_get_time(period_timer);
 101		hrtimer_forward(period_timer, now, period);
 102
 103		soft = hrtimer_get_softexpires(period_timer);
 104		hard = hrtimer_get_expires(period_timer);
 105		delta = ktime_to_ns(ktime_sub(hard, soft));
 106		__hrtimer_start_range_ns(period_timer, soft, delta,
 107					 HRTIMER_MODE_ABS_PINNED, 0);
 108	}
 109}
 110
 111DEFINE_MUTEX(sched_domains_mutex);
 112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 113
 114static void update_rq_clock_task(struct rq *rq, s64 delta);
 115
 116void update_rq_clock(struct rq *rq)
 117{
 118	s64 delta;
 119
 120	if (rq->skip_clock_update > 0)
 
 
 121		return;
 122
 123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 
 
 124	rq->clock += delta;
 125	update_rq_clock_task(rq, delta);
 126}
 127
 128/*
 129 * Debugging: various feature bits
 130 */
 131
 132#define SCHED_FEAT(name, enabled)	\
 133	(1UL << __SCHED_FEAT_##name) * enabled |
 134
 135const_debug unsigned int sysctl_sched_features =
 136#include "features.h"
 137	0;
 138
 139#undef SCHED_FEAT
 140
 141#ifdef CONFIG_SCHED_DEBUG
 142#define SCHED_FEAT(name, enabled)	\
 143	#name ,
 144
 145static const char * const sched_feat_names[] = {
 146#include "features.h"
 147};
 148
 149#undef SCHED_FEAT
 150
 151static int sched_feat_show(struct seq_file *m, void *v)
 152{
 153	int i;
 154
 155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 156		if (!(sysctl_sched_features & (1UL << i)))
 157			seq_puts(m, "NO_");
 158		seq_printf(m, "%s ", sched_feat_names[i]);
 159	}
 160	seq_puts(m, "\n");
 161
 162	return 0;
 163}
 164
 165#ifdef HAVE_JUMP_LABEL
 166
 167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 168#define jump_label_key__false STATIC_KEY_INIT_FALSE
 169
 170#define SCHED_FEAT(name, enabled)	\
 171	jump_label_key__##enabled ,
 172
 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 174#include "features.h"
 175};
 176
 177#undef SCHED_FEAT
 178
 179static void sched_feat_disable(int i)
 180{
 181	if (static_key_enabled(&sched_feat_keys[i]))
 182		static_key_slow_dec(&sched_feat_keys[i]);
 183}
 184
 185static void sched_feat_enable(int i)
 186{
 187	if (!static_key_enabled(&sched_feat_keys[i]))
 188		static_key_slow_inc(&sched_feat_keys[i]);
 189}
 190#else
 191static void sched_feat_disable(int i) { };
 192static void sched_feat_enable(int i) { };
 193#endif /* HAVE_JUMP_LABEL */
 194
 195static ssize_t
 196sched_feat_write(struct file *filp, const char __user *ubuf,
 197		size_t cnt, loff_t *ppos)
 198{
 199	char buf[64];
 200	char *cmp;
 201	int neg = 0;
 202	int i;
 203
 204	if (cnt > 63)
 205		cnt = 63;
 206
 207	if (copy_from_user(&buf, ubuf, cnt))
 208		return -EFAULT;
 209
 210	buf[cnt] = 0;
 211	cmp = strstrip(buf);
 212
 213	if (strncmp(cmp, "NO_", 3) == 0) {
 214		neg = 1;
 215		cmp += 3;
 216	}
 217
 218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
 220			if (neg) {
 221				sysctl_sched_features &= ~(1UL << i);
 222				sched_feat_disable(i);
 223			} else {
 224				sysctl_sched_features |= (1UL << i);
 225				sched_feat_enable(i);
 226			}
 227			break;
 228		}
 229	}
 230
 231	if (i == __SCHED_FEAT_NR)
 232		return -EINVAL;
 233
 234	*ppos += cnt;
 235
 236	return cnt;
 237}
 238
 239static int sched_feat_open(struct inode *inode, struct file *filp)
 240{
 241	return single_open(filp, sched_feat_show, NULL);
 242}
 243
 244static const struct file_operations sched_feat_fops = {
 245	.open		= sched_feat_open,
 246	.write		= sched_feat_write,
 247	.read		= seq_read,
 248	.llseek		= seq_lseek,
 249	.release	= single_release,
 250};
 251
 252static __init int sched_init_debug(void)
 253{
 254	debugfs_create_file("sched_features", 0644, NULL, NULL,
 255			&sched_feat_fops);
 256
 257	return 0;
 258}
 259late_initcall(sched_init_debug);
 260#endif /* CONFIG_SCHED_DEBUG */
 261
 262/*
 263 * Number of tasks to iterate in a single balance run.
 264 * Limited because this is done with IRQs disabled.
 265 */
 266const_debug unsigned int sysctl_sched_nr_migrate = 32;
 267
 268/*
 269 * period over which we average the RT time consumption, measured
 270 * in ms.
 271 *
 272 * default: 1s
 273 */
 274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 275
 276/*
 277 * period over which we measure -rt task cpu usage in us.
 278 * default: 1s
 279 */
 280unsigned int sysctl_sched_rt_period = 1000000;
 281
 282__read_mostly int scheduler_running;
 283
 284/*
 285 * part of the period that we allow rt tasks to run in us.
 286 * default: 0.95s
 287 */
 288int sysctl_sched_rt_runtime = 950000;
 289
 
 
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292/*
 293 * __task_rq_lock - lock the rq @p resides on.
 294 */
 295static inline struct rq *__task_rq_lock(struct task_struct *p)
 296	__acquires(rq->lock)
 297{
 298	struct rq *rq;
 299
 300	lockdep_assert_held(&p->pi_lock);
 301
 302	for (;;) {
 303		rq = task_rq(p);
 304		raw_spin_lock(&rq->lock);
 305		if (likely(rq == task_rq(p)))
 
 306			return rq;
 
 307		raw_spin_unlock(&rq->lock);
 
 
 
 308	}
 309}
 310
 311/*
 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 313 */
 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 315	__acquires(p->pi_lock)
 316	__acquires(rq->lock)
 317{
 318	struct rq *rq;
 319
 320	for (;;) {
 321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
 322		rq = task_rq(p);
 323		raw_spin_lock(&rq->lock);
 324		if (likely(rq == task_rq(p)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325			return rq;
 
 326		raw_spin_unlock(&rq->lock);
 327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 
 
 
 328	}
 329}
 330
 331static void __task_rq_unlock(struct rq *rq)
 332	__releases(rq->lock)
 333{
 334	raw_spin_unlock(&rq->lock);
 335}
 336
 337static inline void
 338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 339	__releases(rq->lock)
 340	__releases(p->pi_lock)
 341{
 342	raw_spin_unlock(&rq->lock);
 343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 344}
 345
 346/*
 347 * this_rq_lock - lock this runqueue and disable interrupts.
 348 */
 349static struct rq *this_rq_lock(void)
 350	__acquires(rq->lock)
 351{
 352	struct rq *rq;
 353
 354	local_irq_disable();
 355	rq = this_rq();
 356	raw_spin_lock(&rq->lock);
 357
 358	return rq;
 359}
 360
 361#ifdef CONFIG_SCHED_HRTICK
 362/*
 363 * Use HR-timers to deliver accurate preemption points.
 364 *
 365 * Its all a bit involved since we cannot program an hrt while holding the
 366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 367 * reschedule event.
 368 *
 369 * When we get rescheduled we reprogram the hrtick_timer outside of the
 370 * rq->lock.
 371 */
 372
 373static void hrtick_clear(struct rq *rq)
 374{
 375	if (hrtimer_active(&rq->hrtick_timer))
 376		hrtimer_cancel(&rq->hrtick_timer);
 377}
 378
 379/*
 380 * High-resolution timer tick.
 381 * Runs from hardirq context with interrupts disabled.
 382 */
 383static enum hrtimer_restart hrtick(struct hrtimer *timer)
 384{
 385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 386
 387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 388
 389	raw_spin_lock(&rq->lock);
 390	update_rq_clock(rq);
 391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 392	raw_spin_unlock(&rq->lock);
 393
 394	return HRTIMER_NORESTART;
 395}
 396
 397#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 398/*
 399 * called from hardirq (IPI) context
 400 */
 401static void __hrtick_start(void *arg)
 402{
 403	struct rq *rq = arg;
 404
 405	raw_spin_lock(&rq->lock);
 406	hrtimer_restart(&rq->hrtick_timer);
 407	rq->hrtick_csd_pending = 0;
 408	raw_spin_unlock(&rq->lock);
 409}
 410
 411/*
 412 * Called to set the hrtick timer state.
 413 *
 414 * called with rq->lock held and irqs disabled
 415 */
 416void hrtick_start(struct rq *rq, u64 delay)
 417{
 418	struct hrtimer *timer = &rq->hrtick_timer;
 419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 
 
 
 
 
 
 
 
 420
 421	hrtimer_set_expires(timer, time);
 422
 423	if (rq == this_rq()) {
 424		hrtimer_restart(timer);
 425	} else if (!rq->hrtick_csd_pending) {
 426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 427		rq->hrtick_csd_pending = 1;
 428	}
 429}
 430
 431static int
 432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 433{
 434	int cpu = (int)(long)hcpu;
 435
 436	switch (action) {
 437	case CPU_UP_CANCELED:
 438	case CPU_UP_CANCELED_FROZEN:
 439	case CPU_DOWN_PREPARE:
 440	case CPU_DOWN_PREPARE_FROZEN:
 441	case CPU_DEAD:
 442	case CPU_DEAD_FROZEN:
 443		hrtick_clear(cpu_rq(cpu));
 444		return NOTIFY_OK;
 445	}
 446
 447	return NOTIFY_DONE;
 448}
 449
 450static __init void init_hrtick(void)
 451{
 452	hotcpu_notifier(hotplug_hrtick, 0);
 453}
 454#else
 455/*
 456 * Called to set the hrtick timer state.
 457 *
 458 * called with rq->lock held and irqs disabled
 459 */
 460void hrtick_start(struct rq *rq, u64 delay)
 461{
 462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 463			HRTIMER_MODE_REL_PINNED, 0);
 464}
 465
 466static inline void init_hrtick(void)
 467{
 
 468}
 469#endif /* CONFIG_SMP */
 470
 471static void init_rq_hrtick(struct rq *rq)
 472{
 473#ifdef CONFIG_SMP
 474	rq->hrtick_csd_pending = 0;
 475
 476	rq->hrtick_csd.flags = 0;
 477	rq->hrtick_csd.func = __hrtick_start;
 478	rq->hrtick_csd.info = rq;
 479#endif
 480
 481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 482	rq->hrtick_timer.function = hrtick;
 483}
 484#else	/* CONFIG_SCHED_HRTICK */
 485static inline void hrtick_clear(struct rq *rq)
 486{
 487}
 488
 489static inline void init_rq_hrtick(struct rq *rq)
 490{
 491}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 493static inline void init_hrtick(void)
 494{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495}
 496#endif	/* CONFIG_SCHED_HRTICK */
 497
 498/*
 499 * resched_task - mark a task 'to be rescheduled now'.
 500 *
 501 * On UP this means the setting of the need_resched flag, on SMP it
 502 * might also involve a cross-CPU call to trigger the scheduler on
 503 * the target CPU.
 504 */
 505#ifdef CONFIG_SMP
 506
 507#ifndef tsk_is_polling
 508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
 509#endif
 510
 511void resched_task(struct task_struct *p)
 512{
 
 513	int cpu;
 514
 515	assert_raw_spin_locked(&task_rq(p)->lock);
 516
 517	if (test_tsk_need_resched(p))
 518		return;
 519
 520	set_tsk_need_resched(p);
 521
 522	cpu = task_cpu(p);
 523	if (cpu == smp_processor_id())
 
 524		return;
 
 525
 526	/* NEED_RESCHED must be visible before we test polling */
 527	smp_mb();
 528	if (!tsk_is_polling(p))
 529		smp_send_reschedule(cpu);
 
 
 530}
 531
 532void resched_cpu(int cpu)
 533{
 534	struct rq *rq = cpu_rq(cpu);
 535	unsigned long flags;
 536
 537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 538		return;
 539	resched_task(cpu_curr(cpu));
 540	raw_spin_unlock_irqrestore(&rq->lock, flags);
 541}
 542
 543#ifdef CONFIG_NO_HZ
 
 544/*
 545 * In the semi idle case, use the nearest busy cpu for migrating timers
 546 * from an idle cpu.  This is good for power-savings.
 547 *
 548 * We don't do similar optimization for completely idle system, as
 549 * selecting an idle cpu will add more delays to the timers than intended
 550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 551 */
 552int get_nohz_timer_target(void)
 553{
 554	int cpu = smp_processor_id();
 555	int i;
 556	struct sched_domain *sd;
 557
 
 
 
 558	rcu_read_lock();
 559	for_each_domain(cpu, sd) {
 560		for_each_cpu(i, sched_domain_span(sd)) {
 561			if (!idle_cpu(i)) {
 
 
 
 562				cpu = i;
 563				goto unlock;
 564			}
 565		}
 566	}
 
 
 
 567unlock:
 568	rcu_read_unlock();
 569	return cpu;
 570}
 571/*
 572 * When add_timer_on() enqueues a timer into the timer wheel of an
 573 * idle CPU then this timer might expire before the next timer event
 574 * which is scheduled to wake up that CPU. In case of a completely
 575 * idle system the next event might even be infinite time into the
 576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 577 * leaves the inner idle loop so the newly added timer is taken into
 578 * account when the CPU goes back to idle and evaluates the timer
 579 * wheel for the next timer event.
 580 */
 581void wake_up_idle_cpu(int cpu)
 582{
 583	struct rq *rq = cpu_rq(cpu);
 584
 585	if (cpu == smp_processor_id())
 586		return;
 587
 
 
 
 
 
 
 
 
 588	/*
 589	 * This is safe, as this function is called with the timer
 590	 * wheel base lock of (cpu) held. When the CPU is on the way
 591	 * to idle and has not yet set rq->curr to idle then it will
 592	 * be serialized on the timer wheel base lock and take the new
 593	 * timer into account automatically.
 594	 */
 595	if (rq->curr != rq->idle)
 596		return;
 
 
 
 
 
 
 597
 598	/*
 599	 * We can set TIF_RESCHED on the idle task of the other CPU
 600	 * lockless. The worst case is that the other CPU runs the
 601	 * idle task through an additional NOOP schedule()
 602	 */
 603	set_tsk_need_resched(rq->idle);
 604
 605	/* NEED_RESCHED must be visible before we test polling */
 606	smp_mb();
 607	if (!tsk_is_polling(rq->idle))
 608		smp_send_reschedule(cpu);
 
 
 
 
 
 609}
 610
 611static inline bool got_nohz_idle_kick(void)
 612{
 613	int cpu = smp_processor_id();
 614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 615}
 616
 617#else /* CONFIG_NO_HZ */
 618
 619static inline bool got_nohz_idle_kick(void)
 620{
 621	return false;
 622}
 623
 624#endif /* CONFIG_NO_HZ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626void sched_avg_update(struct rq *rq)
 627{
 628	s64 period = sched_avg_period();
 629
 630	while ((s64)(rq->clock - rq->age_stamp) > period) {
 631		/*
 632		 * Inline assembly required to prevent the compiler
 633		 * optimising this loop into a divmod call.
 634		 * See __iter_div_u64_rem() for another example of this.
 635		 */
 636		asm("" : "+rm" (rq->age_stamp));
 637		rq->age_stamp += period;
 638		rq->rt_avg /= 2;
 639	}
 640}
 641
 642#else /* !CONFIG_SMP */
 643void resched_task(struct task_struct *p)
 644{
 645	assert_raw_spin_locked(&task_rq(p)->lock);
 646	set_tsk_need_resched(p);
 647}
 648#endif /* CONFIG_SMP */
 649
 650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 652/*
 653 * Iterate task_group tree rooted at *from, calling @down when first entering a
 654 * node and @up when leaving it for the final time.
 655 *
 656 * Caller must hold rcu_lock or sufficient equivalent.
 657 */
 658int walk_tg_tree_from(struct task_group *from,
 659			     tg_visitor down, tg_visitor up, void *data)
 660{
 661	struct task_group *parent, *child;
 662	int ret;
 663
 664	parent = from;
 665
 666down:
 667	ret = (*down)(parent, data);
 668	if (ret)
 669		goto out;
 670	list_for_each_entry_rcu(child, &parent->children, siblings) {
 671		parent = child;
 672		goto down;
 673
 674up:
 675		continue;
 676	}
 677	ret = (*up)(parent, data);
 678	if (ret || parent == from)
 679		goto out;
 680
 681	child = parent;
 682	parent = parent->parent;
 683	if (parent)
 684		goto up;
 685out:
 686	return ret;
 687}
 688
 689int tg_nop(struct task_group *tg, void *data)
 690{
 691	return 0;
 692}
 693#endif
 694
 695static void set_load_weight(struct task_struct *p)
 696{
 697	int prio = p->static_prio - MAX_RT_PRIO;
 698	struct load_weight *load = &p->se.load;
 699
 700	/*
 701	 * SCHED_IDLE tasks get minimal weight:
 702	 */
 703	if (p->policy == SCHED_IDLE) {
 704		load->weight = scale_load(WEIGHT_IDLEPRIO);
 705		load->inv_weight = WMULT_IDLEPRIO;
 706		return;
 707	}
 708
 709	load->weight = scale_load(prio_to_weight[prio]);
 710	load->inv_weight = prio_to_wmult[prio];
 711}
 712
 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 714{
 715	update_rq_clock(rq);
 716	sched_info_queued(p);
 
 717	p->sched_class->enqueue_task(rq, p, flags);
 718}
 719
 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 721{
 722	update_rq_clock(rq);
 723	sched_info_dequeued(p);
 
 724	p->sched_class->dequeue_task(rq, p, flags);
 725}
 726
 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
 728{
 729	if (task_contributes_to_load(p))
 730		rq->nr_uninterruptible--;
 731
 732	enqueue_task(rq, p, flags);
 733}
 734
 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 736{
 737	if (task_contributes_to_load(p))
 738		rq->nr_uninterruptible++;
 739
 740	dequeue_task(rq, p, flags);
 741}
 742
 743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 744
 745/*
 746 * There are no locks covering percpu hardirq/softirq time.
 747 * They are only modified in account_system_vtime, on corresponding CPU
 748 * with interrupts disabled. So, writes are safe.
 749 * They are read and saved off onto struct rq in update_rq_clock().
 750 * This may result in other CPU reading this CPU's irq time and can
 751 * race with irq/account_system_vtime on this CPU. We would either get old
 752 * or new value with a side effect of accounting a slice of irq time to wrong
 753 * task when irq is in progress while we read rq->clock. That is a worthy
 754 * compromise in place of having locks on each irq in account_system_time.
 755 */
 756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
 757static DEFINE_PER_CPU(u64, cpu_softirq_time);
 758
 759static DEFINE_PER_CPU(u64, irq_start_time);
 760static int sched_clock_irqtime;
 761
 762void enable_sched_clock_irqtime(void)
 763{
 764	sched_clock_irqtime = 1;
 765}
 766
 767void disable_sched_clock_irqtime(void)
 768{
 769	sched_clock_irqtime = 0;
 770}
 771
 772#ifndef CONFIG_64BIT
 773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 774
 775static inline void irq_time_write_begin(void)
 776{
 777	__this_cpu_inc(irq_time_seq.sequence);
 778	smp_wmb();
 779}
 780
 781static inline void irq_time_write_end(void)
 782{
 783	smp_wmb();
 784	__this_cpu_inc(irq_time_seq.sequence);
 785}
 786
 787static inline u64 irq_time_read(int cpu)
 788{
 789	u64 irq_time;
 790	unsigned seq;
 791
 792	do {
 793		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
 794		irq_time = per_cpu(cpu_softirq_time, cpu) +
 795			   per_cpu(cpu_hardirq_time, cpu);
 796	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
 797
 798	return irq_time;
 799}
 800#else /* CONFIG_64BIT */
 801static inline void irq_time_write_begin(void)
 802{
 803}
 804
 805static inline void irq_time_write_end(void)
 806{
 807}
 808
 809static inline u64 irq_time_read(int cpu)
 810{
 811	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
 812}
 813#endif /* CONFIG_64BIT */
 814
 815/*
 816 * Called before incrementing preempt_count on {soft,}irq_enter
 817 * and before decrementing preempt_count on {soft,}irq_exit.
 818 */
 819void account_system_vtime(struct task_struct *curr)
 820{
 821	unsigned long flags;
 822	s64 delta;
 823	int cpu;
 824
 825	if (!sched_clock_irqtime)
 826		return;
 827
 828	local_irq_save(flags);
 829
 830	cpu = smp_processor_id();
 831	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 832	__this_cpu_add(irq_start_time, delta);
 833
 834	irq_time_write_begin();
 835	/*
 836	 * We do not account for softirq time from ksoftirqd here.
 837	 * We want to continue accounting softirq time to ksoftirqd thread
 838	 * in that case, so as not to confuse scheduler with a special task
 839	 * that do not consume any time, but still wants to run.
 840	 */
 841	if (hardirq_count())
 842		__this_cpu_add(cpu_hardirq_time, delta);
 843	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 844		__this_cpu_add(cpu_softirq_time, delta);
 845
 846	irq_time_write_end();
 847	local_irq_restore(flags);
 848}
 849EXPORT_SYMBOL_GPL(account_system_vtime);
 850
 851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 852
 853#ifdef CONFIG_PARAVIRT
 854static inline u64 steal_ticks(u64 steal)
 855{
 856	if (unlikely(steal > NSEC_PER_SEC))
 857		return div_u64(steal, TICK_NSEC);
 858
 859	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
 860}
 861#endif
 862
 863static void update_rq_clock_task(struct rq *rq, s64 delta)
 864{
 865/*
 866 * In theory, the compile should just see 0 here, and optimize out the call
 867 * to sched_rt_avg_update. But I don't trust it...
 868 */
 869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 870	s64 steal = 0, irq_delta = 0;
 871#endif
 872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 873	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 874
 875	/*
 876	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 877	 * this case when a previous update_rq_clock() happened inside a
 878	 * {soft,}irq region.
 879	 *
 880	 * When this happens, we stop ->clock_task and only update the
 881	 * prev_irq_time stamp to account for the part that fit, so that a next
 882	 * update will consume the rest. This ensures ->clock_task is
 883	 * monotonic.
 884	 *
 885	 * It does however cause some slight miss-attribution of {soft,}irq
 886	 * time, a more accurate solution would be to update the irq_time using
 887	 * the current rq->clock timestamp, except that would require using
 888	 * atomic ops.
 889	 */
 890	if (irq_delta > delta)
 891		irq_delta = delta;
 892
 893	rq->prev_irq_time += irq_delta;
 894	delta -= irq_delta;
 895#endif
 896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 897	if (static_key_false((&paravirt_steal_rq_enabled))) {
 898		u64 st;
 899
 900		steal = paravirt_steal_clock(cpu_of(rq));
 901		steal -= rq->prev_steal_time_rq;
 902
 903		if (unlikely(steal > delta))
 904			steal = delta;
 905
 906		st = steal_ticks(steal);
 907		steal = st * TICK_NSEC;
 908
 909		rq->prev_steal_time_rq += steal;
 910
 911		delta -= steal;
 912	}
 913#endif
 914
 915	rq->clock_task += delta;
 916
 917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 918	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 919		sched_rt_avg_update(rq, irq_delta + steal);
 920#endif
 921}
 922
 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 924static int irqtime_account_hi_update(void)
 925{
 926	u64 *cpustat = kcpustat_this_cpu->cpustat;
 927	unsigned long flags;
 928	u64 latest_ns;
 929	int ret = 0;
 930
 931	local_irq_save(flags);
 932	latest_ns = this_cpu_read(cpu_hardirq_time);
 933	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 934		ret = 1;
 935	local_irq_restore(flags);
 936	return ret;
 937}
 938
 939static int irqtime_account_si_update(void)
 940{
 941	u64 *cpustat = kcpustat_this_cpu->cpustat;
 942	unsigned long flags;
 943	u64 latest_ns;
 944	int ret = 0;
 945
 946	local_irq_save(flags);
 947	latest_ns = this_cpu_read(cpu_softirq_time);
 948	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
 949		ret = 1;
 950	local_irq_restore(flags);
 951	return ret;
 952}
 953
 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 955
 956#define sched_clock_irqtime	(0)
 957
 958#endif
 959
 960void sched_set_stop_task(int cpu, struct task_struct *stop)
 961{
 962	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 963	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 964
 965	if (stop) {
 966		/*
 967		 * Make it appear like a SCHED_FIFO task, its something
 968		 * userspace knows about and won't get confused about.
 969		 *
 970		 * Also, it will make PI more or less work without too
 971		 * much confusion -- but then, stop work should not
 972		 * rely on PI working anyway.
 973		 */
 974		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 975
 976		stop->sched_class = &stop_sched_class;
 977	}
 978
 979	cpu_rq(cpu)->stop = stop;
 980
 981	if (old_stop) {
 982		/*
 983		 * Reset it back to a normal scheduling class so that
 984		 * it can die in pieces.
 985		 */
 986		old_stop->sched_class = &rt_sched_class;
 987	}
 988}
 989
 990/*
 991 * __normal_prio - return the priority that is based on the static prio
 992 */
 993static inline int __normal_prio(struct task_struct *p)
 994{
 995	return p->static_prio;
 996}
 997
 998/*
 999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005static inline int normal_prio(struct task_struct *p)
1006{
1007	int prio;
1008
1009	if (task_has_rt_policy(p))
 
 
1010		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011	else
1012		prio = __normal_prio(p);
1013	return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023static int effective_prio(struct task_struct *p)
1024{
1025	p->normal_prio = normal_prio(p);
1026	/*
1027	 * If we are RT tasks or we were boosted to RT priority,
1028	 * keep the priority unchanged. Otherwise, update priority
1029	 * to the normal priority:
1030	 */
1031	if (!rt_prio(p->prio))
1032		return p->normal_prio;
1033	return p->prio;
1034}
1035
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
 
 
1039 */
1040inline int task_curr(const struct task_struct *p)
1041{
1042	return cpu_curr(task_cpu(p)) == p;
1043}
1044
 
 
 
 
 
 
 
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046				       const struct sched_class *prev_class,
1047				       int oldprio)
1048{
1049	if (prev_class != p->sched_class) {
1050		if (prev_class->switched_from)
1051			prev_class->switched_from(rq, p);
 
1052		p->sched_class->switched_to(rq, p);
1053	} else if (oldprio != p->prio)
1054		p->sched_class->prio_changed(rq, p, oldprio);
1055}
1056
1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058{
1059	const struct sched_class *class;
1060
1061	if (p->sched_class == rq->curr->sched_class) {
1062		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063	} else {
1064		for_each_class(class) {
1065			if (class == rq->curr->sched_class)
1066				break;
1067			if (class == p->sched_class) {
1068				resched_task(rq->curr);
1069				break;
1070			}
1071		}
1072	}
1073
1074	/*
1075	 * A queue event has occurred, and we're going to schedule.  In
1076	 * this case, we can save a useless back to back clock update.
1077	 */
1078	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079		rq->skip_clock_update = 1;
1080}
1081
1082#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084{
1085#ifdef CONFIG_SCHED_DEBUG
1086	/*
1087	 * We should never call set_task_cpu() on a blocked task,
1088	 * ttwu() will sort out the placement.
1089	 */
1090	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
 
 
 
 
 
 
 
 
 
1092
1093#ifdef CONFIG_LOCKDEP
1094	/*
1095	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097	 *
1098	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099	 * see task_group().
1100	 *
1101	 * Furthermore, all task_rq users should acquire both locks, see
1102	 * task_rq_lock().
1103	 */
1104	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105				      lockdep_is_held(&task_rq(p)->lock)));
1106#endif
1107#endif
1108
1109	trace_sched_migrate_task(p, new_cpu);
1110
1111	if (task_cpu(p) != new_cpu) {
 
 
1112		p->se.nr_migrations++;
1113		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114	}
1115
1116	__set_task_cpu(p, new_cpu);
1117}
1118
1119struct migration_arg {
1120	struct task_struct *task;
1121	int dest_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122};
1123
1124static int migration_cpu_stop(void *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change.  If it changes, i.e. @p might have woken up,
1131 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count).  If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143{
1144	unsigned long flags;
1145	int running, on_rq;
1146	unsigned long ncsw;
1147	struct rq *rq;
1148
1149	for (;;) {
1150		/*
1151		 * We do the initial early heuristics without holding
1152		 * any task-queue locks at all. We'll only try to get
1153		 * the runqueue lock when things look like they will
1154		 * work out!
1155		 */
1156		rq = task_rq(p);
1157
1158		/*
1159		 * If the task is actively running on another CPU
1160		 * still, just relax and busy-wait without holding
1161		 * any locks.
1162		 *
1163		 * NOTE! Since we don't hold any locks, it's not
1164		 * even sure that "rq" stays as the right runqueue!
1165		 * But we don't care, since "task_running()" will
1166		 * return false if the runqueue has changed and p
1167		 * is actually now running somewhere else!
1168		 */
1169		while (task_running(rq, p)) {
1170			if (match_state && unlikely(p->state != match_state))
1171				return 0;
1172			cpu_relax();
1173		}
1174
1175		/*
1176		 * Ok, time to look more closely! We need the rq
1177		 * lock now, to be *sure*. If we're wrong, we'll
1178		 * just go back and repeat.
1179		 */
1180		rq = task_rq_lock(p, &flags);
1181		trace_sched_wait_task(p);
1182		running = task_running(rq, p);
1183		on_rq = p->on_rq;
1184		ncsw = 0;
1185		if (!match_state || p->state == match_state)
1186			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187		task_rq_unlock(rq, p, &flags);
1188
1189		/*
1190		 * If it changed from the expected state, bail out now.
1191		 */
1192		if (unlikely(!ncsw))
1193			break;
1194
1195		/*
1196		 * Was it really running after all now that we
1197		 * checked with the proper locks actually held?
1198		 *
1199		 * Oops. Go back and try again..
1200		 */
1201		if (unlikely(running)) {
1202			cpu_relax();
1203			continue;
1204		}
1205
1206		/*
1207		 * It's not enough that it's not actively running,
1208		 * it must be off the runqueue _entirely_, and not
1209		 * preempted!
1210		 *
1211		 * So if it was still runnable (but just not actively
1212		 * running right now), it's preempted, and we should
1213		 * yield - it could be a while.
1214		 */
1215		if (unlikely(on_rq)) {
1216			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218			set_current_state(TASK_UNINTERRUPTIBLE);
1219			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220			continue;
1221		}
1222
1223		/*
1224		 * Ahh, all good. It wasn't running, and it wasn't
1225		 * runnable, which means that it will never become
1226		 * running in the future either. We're all done!
1227		 */
1228		break;
1229	}
1230
1231	return ncsw;
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247void kick_process(struct task_struct *p)
1248{
1249	int cpu;
1250
1251	preempt_disable();
1252	cpu = task_cpu(p);
1253	if ((cpu != smp_processor_id()) && task_curr(p))
1254		smp_send_reschedule(cpu);
1255	preempt_enable();
1256}
1257EXPORT_SYMBOL_GPL(kick_process);
1258#endif /* CONFIG_SMP */
1259
1260#ifdef CONFIG_SMP
1261/*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263 */
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
 
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/* Look for allowed, online CPU in same node. */
1271	for_each_cpu(dest_cpu, nodemask) {
1272		if (!cpu_online(dest_cpu))
1273			continue;
1274		if (!cpu_active(dest_cpu))
1275			continue;
1276		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277			return dest_cpu;
 
 
 
 
 
 
 
1278	}
1279
1280	for (;;) {
1281		/* Any allowed, online CPU? */
1282		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
 
 
1283			if (!cpu_online(dest_cpu))
1284				continue;
1285			if (!cpu_active(dest_cpu))
1286				continue;
1287			goto out;
1288		}
1289
 
1290		switch (state) {
1291		case cpuset:
1292			/* No more Mr. Nice Guy. */
1293			cpuset_cpus_allowed_fallback(p);
1294			state = possible;
1295			break;
1296
 
1297		case possible:
1298			do_set_cpus_allowed(p, cpu_possible_mask);
1299			state = fail;
1300			break;
1301
1302		case fail:
1303			BUG();
1304			break;
1305		}
1306	}
1307
1308out:
1309	if (state != cpuset) {
1310		/*
1311		 * Don't tell them about moving exiting tasks or
1312		 * kernel threads (both mm NULL), since they never
1313		 * leave kernel.
1314		 */
1315		if (p->mm && printk_ratelimit()) {
1316			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317					task_pid_nr(p), p->comm, cpu);
1318		}
1319	}
1320
1321	return dest_cpu;
1322}
1323
1324/*
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326 */
1327static inline
1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329{
1330	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
 
 
 
 
 
1331
1332	/*
1333	 * In order not to call set_task_cpu() on a blocking task we need
1334	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335	 * cpu.
1336	 *
1337	 * Since this is common to all placement strategies, this lives here.
1338	 *
1339	 * [ this allows ->select_task() to simply return task_cpu(p) and
1340	 *   not worry about this generic constraint ]
1341	 */
1342	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343		     !cpu_online(cpu)))
1344		cpu = select_fallback_rq(task_cpu(p), p);
1345
1346	return cpu;
1347}
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351	s64 diff = sample - *avg;
1352	*avg += diff >> 3;
1353}
1354#endif
 
 
 
 
 
 
 
 
 
1355
1356static void
1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358{
1359#ifdef CONFIG_SCHEDSTATS
1360	struct rq *rq = this_rq();
 
 
 
 
1361
1362#ifdef CONFIG_SMP
1363	int this_cpu = smp_processor_id();
1364
1365	if (cpu == this_cpu) {
1366		schedstat_inc(rq, ttwu_local);
1367		schedstat_inc(p, se.statistics.nr_wakeups_local);
1368	} else {
1369		struct sched_domain *sd;
1370
1371		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372		rcu_read_lock();
1373		for_each_domain(this_cpu, sd) {
1374			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375				schedstat_inc(sd, ttwu_wake_remote);
1376				break;
1377			}
1378		}
1379		rcu_read_unlock();
1380	}
1381
1382	if (wake_flags & WF_MIGRATED)
1383		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
1385#endif /* CONFIG_SMP */
1386
1387	schedstat_inc(rq, ttwu_count);
1388	schedstat_inc(p, se.statistics.nr_wakeups);
1389
1390	if (wake_flags & WF_SYNC)
1391		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
1398	activate_task(rq, p, en_flags);
1399	p->on_rq = 1;
1400
1401	/* if a worker is waking up, notify workqueue */
1402	if (p->flags & PF_WQ_WORKER)
1403		wq_worker_waking_up(p, cpu_of(rq));
1404}
1405
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
1409static void
1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411{
1412	trace_sched_wakeup(p, true);
1413	check_preempt_curr(rq, p, wake_flags);
 
 
1414
1415	p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417	if (p->sched_class->task_woken)
 
 
 
 
 
1418		p->sched_class->task_woken(rq, p);
 
 
1419
1420	if (rq->idle_stamp) {
1421		u64 delta = rq->clock - rq->idle_stamp;
1422		u64 max = 2*sysctl_sched_migration_cost;
 
 
1423
1424		if (delta > max)
1425			rq->avg_idle = max;
1426		else
1427			update_avg(&rq->avg_idle, delta);
1428		rq->idle_stamp = 0;
1429	}
1430#endif
1431}
1432
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
 
1435{
 
 
 
 
1436#ifdef CONFIG_SMP
1437	if (p->sched_contributes_to_load)
1438		rq->nr_uninterruptible--;
 
 
 
1439#endif
1440
1441	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442	ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
 
1453	struct rq *rq;
1454	int ret = 0;
1455
1456	rq = __task_rq_lock(p);
1457	if (p->on_rq) {
1458		ttwu_do_wakeup(rq, p, wake_flags);
 
 
1459		ret = 1;
1460	}
1461	__task_rq_unlock(rq);
1462
1463	return ret;
1464}
1465
1466#ifdef CONFIG_SMP
1467static void sched_ttwu_pending(void)
1468{
1469	struct rq *rq = this_rq();
1470	struct llist_node *llist = llist_del_all(&rq->wake_list);
 
1471	struct task_struct *p;
 
1472
1473	raw_spin_lock(&rq->lock);
 
 
 
 
1474
1475	while (llist) {
 
 
1476		p = llist_entry(llist, struct task_struct, wake_entry);
1477		llist = llist_next(llist);
1478		ttwu_do_activate(rq, p, 0);
 
 
 
 
1479	}
1480
1481	raw_spin_unlock(&rq->lock);
 
1482}
1483
1484void scheduler_ipi(void)
1485{
 
 
 
 
 
 
 
1486	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487		return;
1488
1489	/*
1490	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491	 * traditionally all their work was done from the interrupt return
1492	 * path. Now that we actually do some work, we need to make sure
1493	 * we do call them.
1494	 *
1495	 * Some archs already do call them, luckily irq_enter/exit nest
1496	 * properly.
1497	 *
1498	 * Arguably we should visit all archs and update all handlers,
1499	 * however a fair share of IPIs are still resched only so this would
1500	 * somewhat pessimize the simple resched case.
1501	 */
1502	irq_enter();
1503	sched_ttwu_pending();
1504
1505	/*
1506	 * Check if someone kicked us for doing the nohz idle load balance.
1507	 */
1508	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509		this_rq()->idle_balance = 1;
1510		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511	}
1512	irq_exit();
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
1517	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518		smp_send_reschedule(cpu);
 
 
 
 
 
 
 
 
1519}
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524	struct rq *rq;
1525	int ret = 0;
 
 
 
 
 
1526
1527	rq = __task_rq_lock(p);
1528	if (p->on_cpu) {
1529		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530		ttwu_do_wakeup(rq, p, wake_flags);
1531		ret = 1;
 
 
 
1532	}
1533	__task_rq_unlock(rq);
1534
1535	return ret;
1536
 
 
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539
1540bool cpus_share_cache(int this_cpu, int that_cpu)
1541{
1542	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
1544#endif /* CONFIG_SMP */
1545
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548	struct rq *rq = cpu_rq(cpu);
 
1549
1550#if defined(CONFIG_SMP)
1551	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553		ttwu_queue_remote(p, cpu);
1554		return;
1555	}
1556#endif
1557
1558	raw_spin_lock(&rq->lock);
1559	ttwu_do_activate(rq, p, 0);
 
 
1560	raw_spin_unlock(&rq->lock);
1561}
1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563/**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
 
1574 *
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1577 */
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580{
1581	unsigned long flags;
1582	int cpu, success = 0;
1583
1584	smp_wmb();
 
 
 
 
 
 
1585	raw_spin_lock_irqsave(&p->pi_lock, flags);
1586	if (!(p->state & state))
1587		goto out;
1588
 
 
1589	success = 1; /* we're going to change ->state */
1590	cpu = task_cpu(p);
1591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592	if (p->on_rq && ttwu_remote(p, wake_flags))
1593		goto stat;
1594
1595#ifdef CONFIG_SMP
1596	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597	 * If the owning (remote) cpu is still in the middle of schedule() with
1598	 * this task as prev, wait until its done referencing the task.
 
 
 
 
 
1599	 */
1600	while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602		/*
1603		 * In case the architecture enables interrupts in
1604		 * context_switch(), we cannot busy wait, since that
1605		 * would lead to deadlocks when an interrupt hits and
1606		 * tries to wake up @prev. So bail and do a complete
1607		 * remote wakeup.
1608		 */
1609		if (ttwu_activate_remote(p, wake_flags))
1610			goto stat;
1611#else
1612		cpu_relax();
1613#endif
1614	}
1615	/*
1616	 * Pairs with the smp_wmb() in finish_lock_switch().
1617	 */
1618	smp_rmb();
1619
1620	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621	p->state = TASK_WAKING;
1622
1623	if (p->sched_class->task_waking)
1624		p->sched_class->task_waking(p);
1625
1626	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627	if (task_cpu(p) != cpu) {
1628		wake_flags |= WF_MIGRATED;
1629		set_task_cpu(p, cpu);
1630	}
1631#endif /* CONFIG_SMP */
1632
1633	ttwu_queue(p, cpu);
1634stat:
1635	ttwu_stat(p, cpu, wake_flags);
1636out:
1637	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638
1639	return success;
1640}
1641
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
 
1645 *
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652	struct rq *rq = task_rq(p);
1653
1654	BUG_ON(rq != this_rq());
1655	BUG_ON(p == current);
 
 
1656	lockdep_assert_held(&rq->lock);
1657
1658	if (!raw_spin_trylock(&p->pi_lock)) {
 
 
 
 
 
 
 
1659		raw_spin_unlock(&rq->lock);
1660		raw_spin_lock(&p->pi_lock);
1661		raw_spin_lock(&rq->lock);
 
1662	}
1663
1664	if (!(p->state & TASK_NORMAL))
1665		goto out;
1666
1667	if (!p->on_rq)
 
 
1668		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
1670	ttwu_do_wakeup(rq, p, 0);
1671	ttwu_stat(p, smp_processor_id(), 0);
1672out:
1673	raw_spin_unlock(&p->pi_lock);
1674}
1675
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes.  Returns 1 if the process was woken up, 0 if it was already
1682 * running.
 
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
1687int wake_up_process(struct task_struct *p)
1688{
1689	return try_to_wake_up(p, TASK_ALL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
 
 
 
 
1716#ifdef CONFIG_SCHEDSTATS
 
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
 
 
 
 
1720	INIT_LIST_HEAD(&p->rt.run_list);
 
 
 
 
1721
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725}
 
 
 
 
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
1730void sched_fork(struct task_struct *p)
1731{
1732	unsigned long flags;
1733	int cpu = get_cpu();
1734
1735	__sched_fork(p);
1736	/*
1737	 * We mark the process as running here. This guarantees that
1738	 * nobody will actually run it, and a signal or other external
1739	 * event cannot wake it up and insert it on the runqueue either.
1740	 */
1741	p->state = TASK_RUNNING;
1742
1743	/*
1744	 * Make sure we do not leak PI boosting priority to the child.
1745	 */
1746	p->prio = current->normal_prio;
1747
1748	/*
1749	 * Revert to default priority/policy on fork if requested.
1750	 */
1751	if (unlikely(p->sched_reset_on_fork)) {
1752		if (task_has_rt_policy(p)) {
1753			p->policy = SCHED_NORMAL;
1754			p->static_prio = NICE_TO_PRIO(0);
1755			p->rt_priority = 0;
1756		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1757			p->static_prio = NICE_TO_PRIO(0);
1758
1759		p->prio = p->normal_prio = __normal_prio(p);
1760		set_load_weight(p);
1761
1762		/*
1763		 * We don't need the reset flag anymore after the fork. It has
1764		 * fulfilled its duty:
1765		 */
1766		p->sched_reset_on_fork = 0;
1767	}
1768
1769	if (!rt_prio(p->prio))
 
 
 
 
 
1770		p->sched_class = &fair_sched_class;
 
1771
1772	if (p->sched_class->task_fork)
1773		p->sched_class->task_fork(p);
1774
1775	/*
1776	 * The child is not yet in the pid-hash so no cgroup attach races,
1777	 * and the cgroup is pinned to this child due to cgroup_fork()
1778	 * is ran before sched_fork().
1779	 *
1780	 * Silence PROVE_RCU.
1781	 */
1782	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783	set_task_cpu(p, cpu);
 
 
 
 
 
 
1784	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785
1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787	if (likely(sched_info_on()))
1788		memset(&p->sched_info, 0, sizeof(p->sched_info));
1789#endif
1790#if defined(CONFIG_SMP)
1791	p->on_cpu = 0;
1792#endif
1793#ifdef CONFIG_PREEMPT_COUNT
1794	/* Want to start with kernel preemption disabled. */
1795	task_thread_info(p)->preempt_count = 1;
1796#endif
1797#ifdef CONFIG_SMP
1798	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 
1799#endif
1800
1801	put_cpu();
 
1802}
1803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
1811void wake_up_new_task(struct task_struct *p)
1812{
1813	unsigned long flags;
1814	struct rq *rq;
1815
1816	raw_spin_lock_irqsave(&p->pi_lock, flags);
 
1817#ifdef CONFIG_SMP
1818	/*
1819	 * Fork balancing, do it here and not earlier because:
1820	 *  - cpus_allowed can change in the fork path
1821	 *  - any previously selected cpu might disappear through hotplug
 
 
 
1822	 */
1823	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824#endif
 
 
1825
1826	rq = __task_rq_lock(p);
1827	activate_task(rq, p, 0);
1828	p->on_rq = 1;
1829	trace_sched_wakeup_new(p, true);
1830	check_preempt_curr(rq, p, WF_FORK);
1831#ifdef CONFIG_SMP
1832	if (p->sched_class->task_woken)
 
 
 
 
 
1833		p->sched_class->task_woken(rq, p);
 
 
1834#endif
1835	task_rq_unlock(rq, p, &flags);
1836}
1837
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840/**
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
 
 
 
1846	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858	hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864	struct preempt_notifier *notifier;
1865	struct hlist_node *node;
1866
1867	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
 
 
 
 
 
 
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873				 struct task_struct *next)
1874{
1875	struct preempt_notifier *notifier;
1876	struct hlist_node *node;
1877
1878	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879		notifier->ops->sched_out(notifier, next);
1880}
1881
 
 
 
 
 
 
 
 
1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890				 struct task_struct *next)
1891{
1892}
1893
1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
1895
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911		    struct task_struct *next)
1912{
1913	sched_info_switch(prev, next);
1914	perf_event_task_sched_out(prev, next);
1915	fire_sched_out_preempt_notifiers(prev, next);
1916	prepare_lock_switch(rq, next);
1917	prepare_arch_switch(next);
1918	trace_sched_switch(prev, next);
1919}
1920
1921/**
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1925 *
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
 
 
 
 
 
1935 */
1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937	__releases(rq->lock)
1938{
 
1939	struct mm_struct *mm = rq->prev_mm;
1940	long prev_state;
1941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942	rq->prev_mm = NULL;
1943
1944	/*
1945	 * A task struct has one reference for the use as "current".
1946	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947	 * schedule one last time. The schedule call will never return, and
1948	 * the scheduled task must drop that reference.
1949	 * The test for TASK_DEAD must occur while the runqueue locks are
1950	 * still held, otherwise prev could be scheduled on another cpu, die
1951	 * there before we look at prev->state, and then the reference would
1952	 * be dropped twice.
1953	 *		Manfred Spraul <manfred@colorfullife.com>
1954	 */
1955	prev_state = prev->state;
1956	finish_arch_switch(prev);
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958	local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960	perf_event_task_sched_in(prev, current);
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962	local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964	finish_lock_switch(rq, prev);
1965	finish_arch_post_lock_switch();
1966
1967	fire_sched_in_preempt_notifiers(current);
1968	if (mm)
1969		mmdrop(mm);
1970	if (unlikely(prev_state == TASK_DEAD)) {
 
 
 
1971		/*
1972		 * Remove function-return probe instances associated with this
1973		 * task and put them back on the free list.
1974		 */
1975		kprobe_flush_task(prev);
 
 
 
 
1976		put_task_struct(prev);
1977	}
 
 
 
1978}
1979
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985	if (prev->sched_class->pre_schedule)
1986		prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992	if (rq->post_schedule) {
1993		unsigned long flags;
 
1994
1995		raw_spin_lock_irqsave(&rq->lock, flags);
1996		if (rq->curr->sched_class->post_schedule)
1997			rq->curr->sched_class->post_schedule(rq);
1998		raw_spin_unlock_irqrestore(&rq->lock, flags);
 
 
 
 
1999
2000		rq->post_schedule = 0;
2001	}
 
2002}
2003
2004#else
2005
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
 
 
2008}
2009
2010static inline void post_schedule(struct rq *rq)
 
 
2011{
2012}
2013
2014#endif
2015
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
2020asmlinkage void schedule_tail(struct task_struct *prev)
2021	__releases(rq->lock)
2022{
2023	struct rq *rq = this_rq();
2024
2025	finish_task_switch(rq, prev);
2026
2027	/*
2028	 * FIXME: do we need to worry about rq being invalidated by the
2029	 * task_switch?
 
 
 
 
2030	 */
2031	post_schedule(rq);
2032
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034	/* In this case, finish_task_switch does not reenable preemption */
2035	preempt_enable();
2036#endif
2037	if (current->set_child_tid)
2038		put_user(task_pid_vnr(current), current->set_child_tid);
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
2045static inline void
2046context_switch(struct rq *rq, struct task_struct *prev,
2047	       struct task_struct *next)
2048{
2049	struct mm_struct *mm, *oldmm;
2050
2051	prepare_task_switch(rq, prev, next);
2052
2053	mm = next->mm;
2054	oldmm = prev->active_mm;
2055	/*
2056	 * For paravirt, this is coupled with an exit in switch_to to
2057	 * combine the page table reload and the switch backend into
2058	 * one hypercall.
2059	 */
2060	arch_start_context_switch(prev);
2061
2062	if (!mm) {
2063		next->active_mm = oldmm;
2064		atomic_inc(&oldmm->mm_count);
2065		enter_lazy_tlb(oldmm, next);
2066	} else
2067		switch_mm(oldmm, mm, next);
2068
2069	if (!prev->mm) {
2070		prev->active_mm = NULL;
2071		rq->prev_mm = oldmm;
2072	}
2073	/*
2074	 * Since the runqueue lock will be released by the next
2075	 * task (which is an invalid locking op but in the case
2076	 * of the scheduler it's an obvious special-case), so we
2077	 * do an early lockdep release here:
2078	 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081#endif
2082
2083	/* Here we just switch the register state and the stack. */
2084	switch_to(prev, next, prev);
 
2085
2086	barrier();
2087	/*
2088	 * this_rq must be evaluated again because prev may have moved
2089	 * CPUs since it called schedule(), thus the 'rq' on its stack
2090	 * frame will be invalid.
2091	 */
2092	finish_task_switch(this_rq(), prev);
2093}
2094
2095/*
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2097 *
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2101 */
2102unsigned long nr_running(void)
2103{
2104	unsigned long i, sum = 0;
2105
2106	for_each_online_cpu(i)
2107		sum += cpu_rq(i)->nr_running;
2108
2109	return sum;
2110}
2111
2112unsigned long nr_uninterruptible(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
2113{
2114	unsigned long i, sum = 0;
2115
2116	for_each_possible_cpu(i)
2117		sum += cpu_rq(i)->nr_uninterruptible;
2118
2119	/*
2120	 * Since we read the counters lockless, it might be slightly
2121	 * inaccurate. Do not allow it to go below zero though:
2122	 */
2123	if (unlikely((long)sum < 0))
2124		sum = 0;
2125
2126	return sum;
2127}
 
2128
2129unsigned long long nr_context_switches(void)
2130{
2131	int i;
2132	unsigned long long sum = 0;
2133
2134	for_each_possible_cpu(i)
2135		sum += cpu_rq(i)->nr_switches;
2136
2137	return sum;
2138}
2139
2140unsigned long nr_iowait(void)
2141{
2142	unsigned long i, sum = 0;
2143
2144	for_each_possible_cpu(i)
2145		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146
2147	return sum;
2148}
2149
2150unsigned long nr_iowait_cpu(int cpu)
2151{
2152	struct rq *this = cpu_rq(cpu);
2153	return atomic_read(&this->nr_iowait);
2154}
2155
2156unsigned long this_cpu_load(void)
2157{
2158	struct rq *this = this_rq();
2159	return this->cpu_load[0];
2160}
2161
2162
2163/*
2164 * Global load-average calculations
2165 *
2166 * We take a distributed and async approach to calculating the global load-avg
2167 * in order to minimize overhead.
2168 *
2169 * The global load average is an exponentially decaying average of nr_running +
2170 * nr_uninterruptible.
2171 *
2172 * Once every LOAD_FREQ:
2173 *
2174 *   nr_active = 0;
2175 *   for_each_possible_cpu(cpu)
2176 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177 *
2178 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179 *
2180 * Due to a number of reasons the above turns in the mess below:
2181 *
2182 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2183 *    serious number of cpus, therefore we need to take a distributed approach
2184 *    to calculating nr_active.
2185 *
2186 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188 *
2189 *    So assuming nr_active := 0 when we start out -- true per definition, we
2190 *    can simply take per-cpu deltas and fold those into a global accumulate
2191 *    to obtain the same result. See calc_load_fold_active().
2192 *
2193 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194 *    across the machine, we assume 10 ticks is sufficient time for every
2195 *    cpu to have completed this task.
2196 *
2197 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2198 *    again, being late doesn't loose the delta, just wrecks the sample.
2199 *
2200 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201 *    this would add another cross-cpu cacheline miss and atomic operation
2202 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2203 *    when it went into uninterruptible state and decrement on whatever cpu
2204 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2205 *    all cpus yields the correct result.
2206 *
2207 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208 */
2209
2210/* Variables and functions for calc_load */
2211static atomic_long_t calc_load_tasks;
2212static unsigned long calc_load_update;
2213unsigned long avenrun[3];
2214EXPORT_SYMBOL(avenrun); /* should be removed */
2215
2216/**
2217 * get_avenrun - get the load average array
2218 * @loads:	pointer to dest load array
2219 * @offset:	offset to add
2220 * @shift:	shift count to shift the result left
2221 *
2222 * These values are estimates at best, so no need for locking.
2223 */
2224void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225{
2226	loads[0] = (avenrun[0] + offset) << shift;
2227	loads[1] = (avenrun[1] + offset) << shift;
2228	loads[2] = (avenrun[2] + offset) << shift;
2229}
2230
2231static long calc_load_fold_active(struct rq *this_rq)
2232{
2233	long nr_active, delta = 0;
2234
2235	nr_active = this_rq->nr_running;
2236	nr_active += (long) this_rq->nr_uninterruptible;
2237
2238	if (nr_active != this_rq->calc_load_active) {
2239		delta = nr_active - this_rq->calc_load_active;
2240		this_rq->calc_load_active = nr_active;
2241	}
2242
2243	return delta;
2244}
2245
2246/*
2247 * a1 = a0 * e + a * (1 - e)
2248 */
2249static unsigned long
2250calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251{
2252	load *= exp;
2253	load += active * (FIXED_1 - exp);
2254	load += 1UL << (FSHIFT - 1);
2255	return load >> FSHIFT;
2256}
2257
2258#ifdef CONFIG_NO_HZ
2259/*
2260 * Handle NO_HZ for the global load-average.
2261 *
2262 * Since the above described distributed algorithm to compute the global
2263 * load-average relies on per-cpu sampling from the tick, it is affected by
2264 * NO_HZ.
2265 *
2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268 * when we read the global state.
2269 *
2270 * Obviously reality has to ruin such a delightfully simple scheme:
2271 *
2272 *  - When we go NO_HZ idle during the window, we can negate our sample
2273 *    contribution, causing under-accounting.
2274 *
2275 *    We avoid this by keeping two idle-delta counters and flipping them
2276 *    when the window starts, thus separating old and new NO_HZ load.
2277 *
2278 *    The only trick is the slight shift in index flip for read vs write.
2279 *
2280 *        0s            5s            10s           15s
2281 *          +10           +10           +10           +10
2282 *        |-|-----------|-|-----------|-|-----------|-|
2283 *    r:0 0 1           1 0           0 1           1 0
2284 *    w:0 1 1           0 0           1 1           0 0
2285 *
2286 *    This ensures we'll fold the old idle contribution in this window while
2287 *    accumlating the new one.
2288 *
2289 *  - When we wake up from NO_HZ idle during the window, we push up our
2290 *    contribution, since we effectively move our sample point to a known
2291 *    busy state.
2292 *
2293 *    This is solved by pushing the window forward, and thus skipping the
2294 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2295 *    was in effect at the time the window opened). This also solves the issue
2296 *    of having to deal with a cpu having been in NOHZ idle for multiple
2297 *    LOAD_FREQ intervals.
2298 *
2299 * When making the ILB scale, we should try to pull this in as well.
2300 */
2301static atomic_long_t calc_load_idle[2];
2302static int calc_load_idx;
2303
2304static inline int calc_load_write_idx(void)
2305{
2306	int idx = calc_load_idx;
2307
2308	/*
2309	 * See calc_global_nohz(), if we observe the new index, we also
2310	 * need to observe the new update time.
2311	 */
2312	smp_rmb();
2313
2314	/*
2315	 * If the folding window started, make sure we start writing in the
2316	 * next idle-delta.
2317	 */
2318	if (!time_before(jiffies, calc_load_update))
2319		idx++;
2320
2321	return idx & 1;
2322}
2323
2324static inline int calc_load_read_idx(void)
2325{
2326	return calc_load_idx & 1;
2327}
2328
2329void calc_load_enter_idle(void)
2330{
2331	struct rq *this_rq = this_rq();
2332	long delta;
2333
2334	/*
2335	 * We're going into NOHZ mode, if there's any pending delta, fold it
2336	 * into the pending idle delta.
2337	 */
2338	delta = calc_load_fold_active(this_rq);
2339	if (delta) {
2340		int idx = calc_load_write_idx();
2341		atomic_long_add(delta, &calc_load_idle[idx]);
2342	}
2343}
2344
2345void calc_load_exit_idle(void)
2346{
2347	struct rq *this_rq = this_rq();
2348
2349	/*
2350	 * If we're still before the sample window, we're done.
2351	 */
2352	if (time_before(jiffies, this_rq->calc_load_update))
2353		return;
2354
2355	/*
2356	 * We woke inside or after the sample window, this means we're already
2357	 * accounted through the nohz accounting, so skip the entire deal and
2358	 * sync up for the next window.
2359	 */
2360	this_rq->calc_load_update = calc_load_update;
2361	if (time_before(jiffies, this_rq->calc_load_update + 10))
2362		this_rq->calc_load_update += LOAD_FREQ;
2363}
2364
2365static long calc_load_fold_idle(void)
2366{
2367	int idx = calc_load_read_idx();
2368	long delta = 0;
2369
2370	if (atomic_long_read(&calc_load_idle[idx]))
2371		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2372
2373	return delta;
2374}
2375
2376/**
2377 * fixed_power_int - compute: x^n, in O(log n) time
2378 *
2379 * @x:         base of the power
2380 * @frac_bits: fractional bits of @x
2381 * @n:         power to raise @x to.
2382 *
2383 * By exploiting the relation between the definition of the natural power
2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386 * (where: n_i \elem {0, 1}, the binary vector representing n),
2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388 * of course trivially computable in O(log_2 n), the length of our binary
2389 * vector.
2390 */
2391static unsigned long
2392fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393{
2394	unsigned long result = 1UL << frac_bits;
2395
2396	if (n) for (;;) {
2397		if (n & 1) {
2398			result *= x;
2399			result += 1UL << (frac_bits - 1);
2400			result >>= frac_bits;
2401		}
2402		n >>= 1;
2403		if (!n)
2404			break;
2405		x *= x;
2406		x += 1UL << (frac_bits - 1);
2407		x >>= frac_bits;
2408	}
2409
2410	return result;
2411}
2412
2413/*
2414 * a1 = a0 * e + a * (1 - e)
2415 *
2416 * a2 = a1 * e + a * (1 - e)
2417 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2419 *
2420 * a3 = a2 * e + a * (1 - e)
2421 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423 *
2424 *  ...
2425 *
2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428 *    = a0 * e^n + a * (1 - e^n)
2429 *
2430 * [1] application of the geometric series:
2431 *
2432 *              n         1 - x^(n+1)
2433 *     S_n := \Sum x^i = -------------
2434 *             i=0          1 - x
2435 */
2436static unsigned long
2437calc_load_n(unsigned long load, unsigned long exp,
2438	    unsigned long active, unsigned int n)
2439{
2440
2441	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442}
2443
2444/*
2445 * NO_HZ can leave us missing all per-cpu ticks calling
2446 * calc_load_account_active(), but since an idle CPU folds its delta into
2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448 * in the pending idle delta if our idle period crossed a load cycle boundary.
2449 *
2450 * Once we've updated the global active value, we need to apply the exponential
2451 * weights adjusted to the number of cycles missed.
2452 */
2453static void calc_global_nohz(void)
2454{
2455	long delta, active, n;
2456
2457	if (!time_before(jiffies, calc_load_update + 10)) {
2458		/*
2459		 * Catch-up, fold however many we are behind still
2460		 */
2461		delta = jiffies - calc_load_update - 10;
2462		n = 1 + (delta / LOAD_FREQ);
2463
2464		active = atomic_long_read(&calc_load_tasks);
2465		active = active > 0 ? active * FIXED_1 : 0;
2466
2467		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2470
2471		calc_load_update += n * LOAD_FREQ;
2472	}
2473
2474	/*
2475	 * Flip the idle index...
2476	 *
2477	 * Make sure we first write the new time then flip the index, so that
2478	 * calc_load_write_idx() will see the new time when it reads the new
2479	 * index, this avoids a double flip messing things up.
2480	 */
2481	smp_wmb();
2482	calc_load_idx++;
2483}
2484#else /* !CONFIG_NO_HZ */
2485
2486static inline long calc_load_fold_idle(void) { return 0; }
2487static inline void calc_global_nohz(void) { }
2488
2489#endif /* CONFIG_NO_HZ */
2490
2491/*
2492 * calc_load - update the avenrun load estimates 10 ticks after the
2493 * CPUs have updated calc_load_tasks.
2494 */
2495void calc_global_load(unsigned long ticks)
2496{
2497	long active, delta;
2498
2499	if (time_before(jiffies, calc_load_update + 10))
2500		return;
2501
2502	/*
2503	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504	 */
2505	delta = calc_load_fold_idle();
2506	if (delta)
2507		atomic_long_add(delta, &calc_load_tasks);
2508
2509	active = atomic_long_read(&calc_load_tasks);
2510	active = active > 0 ? active * FIXED_1 : 0;
2511
2512	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2515
2516	calc_load_update += LOAD_FREQ;
2517
2518	/*
2519	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2520	 */
2521	calc_global_nohz();
2522}
2523
2524/*
2525 * Called from update_cpu_load() to periodically update this CPU's
2526 * active count.
2527 */
2528static void calc_load_account_active(struct rq *this_rq)
2529{
2530	long delta;
2531
2532	if (time_before(jiffies, this_rq->calc_load_update))
2533		return;
2534
2535	delta  = calc_load_fold_active(this_rq);
2536	if (delta)
2537		atomic_long_add(delta, &calc_load_tasks);
2538
2539	this_rq->calc_load_update += LOAD_FREQ;
2540}
2541
2542/*
2543 * End of global load-average stuff
2544 */
2545
2546/*
2547 * The exact cpuload at various idx values, calculated at every tick would be
2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549 *
2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551 * on nth tick when cpu may be busy, then we have:
2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554 *
2555 * decay_load_missed() below does efficient calculation of
2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558 *
2559 * The calculation is approximated on a 128 point scale.
2560 * degrade_zero_ticks is the number of ticks after which load at any
2561 * particular idx is approximated to be zero.
2562 * degrade_factor is a precomputed table, a row for each load idx.
2563 * Each column corresponds to degradation factor for a power of two ticks,
2564 * based on 128 point scale.
2565 * Example:
2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568 *
2569 * With this power of 2 load factors, we can degrade the load n times
2570 * by looking at 1 bits in n and doing as many mult/shift instead of
2571 * n mult/shifts needed by the exact degradation.
2572 */
2573#define DEGRADE_SHIFT		7
2574static const unsigned char
2575		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576static const unsigned char
2577		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578					{0, 0, 0, 0, 0, 0, 0, 0},
2579					{64, 32, 8, 0, 0, 0, 0, 0},
2580					{96, 72, 40, 12, 1, 0, 0},
2581					{112, 98, 75, 43, 15, 1, 0},
2582					{120, 112, 98, 76, 45, 16, 2} };
2583
2584/*
2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586 * would be when CPU is idle and so we just decay the old load without
2587 * adding any new load.
2588 */
2589static unsigned long
2590decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591{
2592	int j = 0;
2593
2594	if (!missed_updates)
2595		return load;
2596
2597	if (missed_updates >= degrade_zero_ticks[idx])
2598		return 0;
2599
2600	if (idx == 1)
2601		return load >> missed_updates;
2602
2603	while (missed_updates) {
2604		if (missed_updates % 2)
2605			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606
2607		missed_updates >>= 1;
2608		j++;
2609	}
2610	return load;
2611}
2612
2613/*
2614 * Update rq->cpu_load[] statistics. This function is usually called every
2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616 * every tick. We fix it up based on jiffies.
2617 */
2618static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619			      unsigned long pending_updates)
2620{
2621	int i, scale;
2622
2623	this_rq->nr_load_updates++;
2624
2625	/* Update our load: */
2626	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2628		unsigned long old_load, new_load;
2629
2630		/* scale is effectively 1 << i now, and >> i divides by scale */
2631
2632		old_load = this_rq->cpu_load[i];
2633		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2634		new_load = this_load;
2635		/*
2636		 * Round up the averaging division if load is increasing. This
2637		 * prevents us from getting stuck on 9 if the load is 10, for
2638		 * example.
2639		 */
2640		if (new_load > old_load)
2641			new_load += scale - 1;
2642
2643		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2644	}
2645
2646	sched_avg_update(this_rq);
2647}
2648
2649#ifdef CONFIG_NO_HZ
2650/*
2651 * There is no sane way to deal with nohz on smp when using jiffies because the
2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654 *
2655 * Therefore we cannot use the delta approach from the regular tick since that
2656 * would seriously skew the load calculation. However we'll make do for those
2657 * updates happening while idle (nohz_idle_balance) or coming out of idle
2658 * (tick_nohz_idle_exit).
2659 *
2660 * This means we might still be one tick off for nohz periods.
2661 */
2662
2663/*
2664 * Called from nohz_idle_balance() to update the load ratings before doing the
2665 * idle balance.
2666 */
2667void update_idle_cpu_load(struct rq *this_rq)
2668{
2669	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670	unsigned long load = this_rq->load.weight;
2671	unsigned long pending_updates;
2672
2673	/*
2674	 * bail if there's load or we're actually up-to-date.
2675	 */
2676	if (load || curr_jiffies == this_rq->last_load_update_tick)
2677		return;
2678
2679	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680	this_rq->last_load_update_tick = curr_jiffies;
2681
2682	__update_cpu_load(this_rq, load, pending_updates);
2683}
2684
2685/*
2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687 */
2688void update_cpu_load_nohz(void)
2689{
2690	struct rq *this_rq = this_rq();
2691	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692	unsigned long pending_updates;
2693
2694	if (curr_jiffies == this_rq->last_load_update_tick)
2695		return;
2696
2697	raw_spin_lock(&this_rq->lock);
2698	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699	if (pending_updates) {
2700		this_rq->last_load_update_tick = curr_jiffies;
2701		/*
2702		 * We were idle, this means load 0, the current load might be
2703		 * !0 due to remote wakeups and the sort.
2704		 */
2705		__update_cpu_load(this_rq, 0, pending_updates);
2706	}
2707	raw_spin_unlock(&this_rq->lock);
2708}
2709#endif /* CONFIG_NO_HZ */
2710
2711/*
2712 * Called from scheduler_tick()
2713 */
2714static void update_cpu_load_active(struct rq *this_rq)
2715{
2716	/*
2717	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2718	 */
2719	this_rq->last_load_update_tick = jiffies;
2720	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2721
2722	calc_load_account_active(this_rq);
2723}
2724
2725#ifdef CONFIG_SMP
2726
2727/*
2728 * sched_exec - execve() is a valuable balancing opportunity, because at
2729 * this point the task has the smallest effective memory and cache footprint.
2730 */
2731void sched_exec(void)
2732{
2733	struct task_struct *p = current;
2734	unsigned long flags;
2735	int dest_cpu;
2736
2737	raw_spin_lock_irqsave(&p->pi_lock, flags);
2738	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739	if (dest_cpu == smp_processor_id())
2740		goto unlock;
2741
2742	if (likely(cpu_active(dest_cpu))) {
2743		struct migration_arg arg = { p, dest_cpu };
2744
2745		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2747		return;
2748	}
2749unlock:
2750	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751}
2752
2753#endif
2754
2755DEFINE_PER_CPU(struct kernel_stat, kstat);
2756DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2757
2758EXPORT_PER_CPU_SYMBOL(kstat);
2759EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2760
2761/*
2762 * Return any ns on the sched_clock that have not yet been accounted in
2763 * @p in case that task is currently running.
2764 *
2765 * Called with task_rq_lock() held on @rq.
2766 */
2767static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768{
2769	u64 ns = 0;
2770
2771	if (task_current(rq, p)) {
2772		update_rq_clock(rq);
2773		ns = rq->clock_task - p->se.exec_start;
2774		if ((s64)ns < 0)
2775			ns = 0;
2776	}
2777
2778	return ns;
2779}
2780
2781unsigned long long task_delta_exec(struct task_struct *p)
2782{
2783	unsigned long flags;
2784	struct rq *rq;
2785	u64 ns = 0;
2786
2787	rq = task_rq_lock(p, &flags);
2788	ns = do_task_delta_exec(p, rq);
2789	task_rq_unlock(rq, p, &flags);
2790
2791	return ns;
2792}
2793
2794/*
2795 * Return accounted runtime for the task.
2796 * In case the task is currently running, return the runtime plus current's
2797 * pending runtime that have not been accounted yet.
2798 */
2799unsigned long long task_sched_runtime(struct task_struct *p)
2800{
2801	unsigned long flags;
2802	struct rq *rq;
2803	u64 ns = 0;
2804
2805	rq = task_rq_lock(p, &flags);
2806	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807	task_rq_unlock(rq, p, &flags);
2808
2809	return ns;
2810}
2811
2812#ifdef CONFIG_CGROUP_CPUACCT
2813struct cgroup_subsys cpuacct_subsys;
2814struct cpuacct root_cpuacct;
2815#endif
2816
2817static inline void task_group_account_field(struct task_struct *p, int index,
2818					    u64 tmp)
2819{
2820#ifdef CONFIG_CGROUP_CPUACCT
2821	struct kernel_cpustat *kcpustat;
2822	struct cpuacct *ca;
2823#endif
2824	/*
2825	 * Since all updates are sure to touch the root cgroup, we
2826	 * get ourselves ahead and touch it first. If the root cgroup
2827	 * is the only cgroup, then nothing else should be necessary.
2828	 *
 
 
 
 
 
2829	 */
2830	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2831
2832#ifdef CONFIG_CGROUP_CPUACCT
2833	if (unlikely(!cpuacct_subsys.active))
2834		return;
2835
2836	rcu_read_lock();
2837	ca = task_ca(p);
2838	while (ca && (ca != &root_cpuacct)) {
2839		kcpustat = this_cpu_ptr(ca->cpustat);
2840		kcpustat->cpustat[index] += tmp;
2841		ca = parent_ca(ca);
2842	}
2843	rcu_read_unlock();
2844#endif
2845}
2846
2847
2848/*
2849 * Account user cpu time to a process.
2850 * @p: the process that the cpu time gets accounted to
2851 * @cputime: the cpu time spent in user space since the last update
2852 * @cputime_scaled: cputime scaled by cpu frequency
2853 */
2854void account_user_time(struct task_struct *p, cputime_t cputime,
2855		       cputime_t cputime_scaled)
2856{
2857	int index;
2858
2859	/* Add user time to process. */
2860	p->utime += cputime;
2861	p->utimescaled += cputime_scaled;
2862	account_group_user_time(p, cputime);
2863
2864	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2865
2866	/* Add user time to cpustat. */
2867	task_group_account_field(p, index, (__force u64) cputime);
2868
2869	/* Account for user time used */
2870	acct_update_integrals(p);
2871}
2872
2873/*
2874 * Account guest cpu time to a process.
2875 * @p: the process that the cpu time gets accounted to
2876 * @cputime: the cpu time spent in virtual machine since the last update
2877 * @cputime_scaled: cputime scaled by cpu frequency
2878 */
2879static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880			       cputime_t cputime_scaled)
2881{
2882	u64 *cpustat = kcpustat_this_cpu->cpustat;
2883
2884	/* Add guest time to process. */
2885	p->utime += cputime;
2886	p->utimescaled += cputime_scaled;
2887	account_group_user_time(p, cputime);
2888	p->gtime += cputime;
2889
2890	/* Add guest time to cpustat. */
2891	if (TASK_NICE(p) > 0) {
2892		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894	} else {
2895		cpustat[CPUTIME_USER] += (__force u64) cputime;
2896		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2897	}
2898}
2899
2900/*
2901 * Account system cpu time to a process and desired cpustat field
2902 * @p: the process that the cpu time gets accounted to
2903 * @cputime: the cpu time spent in kernel space since the last update
2904 * @cputime_scaled: cputime scaled by cpu frequency
2905 * @target_cputime64: pointer to cpustat field that has to be updated
2906 */
2907static inline
2908void __account_system_time(struct task_struct *p, cputime_t cputime,
2909			cputime_t cputime_scaled, int index)
2910{
2911	/* Add system time to process. */
2912	p->stime += cputime;
2913	p->stimescaled += cputime_scaled;
2914	account_group_system_time(p, cputime);
2915
2916	/* Add system time to cpustat. */
2917	task_group_account_field(p, index, (__force u64) cputime);
2918
2919	/* Account for system time used */
2920	acct_update_integrals(p);
2921}
2922
2923/*
2924 * Account system cpu time to a process.
2925 * @p: the process that the cpu time gets accounted to
2926 * @hardirq_offset: the offset to subtract from hardirq_count()
2927 * @cputime: the cpu time spent in kernel space since the last update
2928 * @cputime_scaled: cputime scaled by cpu frequency
2929 */
2930void account_system_time(struct task_struct *p, int hardirq_offset,
2931			 cputime_t cputime, cputime_t cputime_scaled)
2932{
2933	int index;
2934
2935	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936		account_guest_time(p, cputime, cputime_scaled);
2937		return;
2938	}
2939
2940	if (hardirq_count() - hardirq_offset)
2941		index = CPUTIME_IRQ;
2942	else if (in_serving_softirq())
2943		index = CPUTIME_SOFTIRQ;
2944	else
2945		index = CPUTIME_SYSTEM;
2946
2947	__account_system_time(p, cputime, cputime_scaled, index);
2948}
2949
2950/*
2951 * Account for involuntary wait time.
2952 * @cputime: the cpu time spent in involuntary wait
2953 */
2954void account_steal_time(cputime_t cputime)
2955{
2956	u64 *cpustat = kcpustat_this_cpu->cpustat;
2957
2958	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2959}
2960
2961/*
2962 * Account for idle time.
2963 * @cputime: the cpu time spent in idle wait
2964 */
2965void account_idle_time(cputime_t cputime)
2966{
2967	u64 *cpustat = kcpustat_this_cpu->cpustat;
2968	struct rq *rq = this_rq();
2969
2970	if (atomic_read(&rq->nr_iowait) > 0)
2971		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972	else
2973		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2974}
2975
2976static __always_inline bool steal_account_process_tick(void)
2977{
2978#ifdef CONFIG_PARAVIRT
2979	if (static_key_false(&paravirt_steal_enabled)) {
2980		u64 steal, st = 0;
2981
2982		steal = paravirt_steal_clock(smp_processor_id());
2983		steal -= this_rq()->prev_steal_time;
2984
2985		st = steal_ticks(steal);
2986		this_rq()->prev_steal_time += st * TICK_NSEC;
2987
2988		account_steal_time(st);
2989		return st;
2990	}
2991#endif
2992	return false;
2993}
2994
2995#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996
2997#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998/*
2999 * Account a tick to a process and cpustat
3000 * @p: the process that the cpu time gets accounted to
3001 * @user_tick: is the tick from userspace
3002 * @rq: the pointer to rq
3003 *
3004 * Tick demultiplexing follows the order
3005 * - pending hardirq update
3006 * - pending softirq update
3007 * - user_time
3008 * - idle_time
3009 * - system time
3010 *   - check for guest_time
3011 *   - else account as system_time
3012 *
3013 * Check for hardirq is done both for system and user time as there is
3014 * no timer going off while we are on hardirq and hence we may never get an
3015 * opportunity to update it solely in system time.
3016 * p->stime and friends are only updated on system time and not on irq
3017 * softirq as those do not count in task exec_runtime any more.
3018 */
3019static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020						struct rq *rq)
3021{
3022	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023	u64 *cpustat = kcpustat_this_cpu->cpustat;
3024
3025	if (steal_account_process_tick())
3026		return;
3027
3028	if (irqtime_account_hi_update()) {
3029		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030	} else if (irqtime_account_si_update()) {
3031		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032	} else if (this_cpu_ksoftirqd() == p) {
3033		/*
3034		 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035		 * So, we have to handle it separately here.
3036		 * Also, p->stime needs to be updated for ksoftirqd.
3037		 */
3038		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039					CPUTIME_SOFTIRQ);
3040	} else if (user_tick) {
3041		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042	} else if (p == rq->idle) {
3043		account_idle_time(cputime_one_jiffy);
3044	} else if (p->flags & PF_VCPU) { /* System time or guest time */
3045		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046	} else {
3047		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048					CPUTIME_SYSTEM);
3049	}
3050}
3051
3052static void irqtime_account_idle_ticks(int ticks)
3053{
3054	int i;
3055	struct rq *rq = this_rq();
3056
3057	for (i = 0; i < ticks; i++)
3058		irqtime_account_process_tick(current, 0, rq);
3059}
3060#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061static void irqtime_account_idle_ticks(int ticks) {}
3062static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063						struct rq *rq) {}
3064#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3065
3066/*
3067 * Account a single tick of cpu time.
3068 * @p: the process that the cpu time gets accounted to
3069 * @user_tick: indicates if the tick is a user or a system tick
3070 */
3071void account_process_tick(struct task_struct *p, int user_tick)
3072{
3073	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074	struct rq *rq = this_rq();
3075
3076	if (sched_clock_irqtime) {
3077		irqtime_account_process_tick(p, user_tick, rq);
3078		return;
3079	}
3080
3081	if (steal_account_process_tick())
3082		return;
3083
3084	if (user_tick)
3085		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088				    one_jiffy_scaled);
3089	else
3090		account_idle_time(cputime_one_jiffy);
3091}
3092
3093/*
3094 * Account multiple ticks of steal time.
3095 * @p: the process from which the cpu time has been stolen
3096 * @ticks: number of stolen ticks
3097 */
3098void account_steal_ticks(unsigned long ticks)
3099{
3100	account_steal_time(jiffies_to_cputime(ticks));
3101}
3102
3103/*
3104 * Account multiple ticks of idle time.
3105 * @ticks: number of stolen ticks
3106 */
3107void account_idle_ticks(unsigned long ticks)
3108{
3109
3110	if (sched_clock_irqtime) {
3111		irqtime_account_idle_ticks(ticks);
3112		return;
3113	}
3114
3115	account_idle_time(jiffies_to_cputime(ticks));
3116}
3117
3118#endif
3119
3120/*
3121 * Use precise platform statistics if available:
3122 */
3123#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3125{
3126	*ut = p->utime;
3127	*st = p->stime;
3128}
3129
3130void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3131{
3132	struct task_cputime cputime;
3133
3134	thread_group_cputime(p, &cputime);
3135
3136	*ut = cputime.utime;
3137	*st = cputime.stime;
3138}
3139#else
3140
3141#ifndef nsecs_to_cputime
3142# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3143#endif
3144
3145static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3146{
3147	u64 temp = (__force u64) rtime;
3148
3149	temp *= (__force u64) utime;
3150
3151	if (sizeof(cputime_t) == 4)
3152		temp = div_u64(temp, (__force u32) total);
3153	else
3154		temp = div64_u64(temp, (__force u64) total);
3155
3156	return (__force cputime_t) temp;
3157}
3158
3159void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3160{
3161	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3162
 
3163	/*
3164	 * Use CFS's precise accounting:
 
 
3165	 */
3166	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
 
 
 
 
 
 
3167
3168	if (total)
3169		utime = scale_utime(utime, rtime, total);
3170	else
3171		utime = rtime;
3172
3173	/*
3174	 * Compare with previous values, to keep monotonicity:
3175	 */
3176	p->prev_utime = max(p->prev_utime, utime);
3177	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3178
3179	*ut = p->prev_utime;
3180	*st = p->prev_stime;
3181}
3182
3183/*
3184 * Must be called with siglock held.
3185 */
3186void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3187{
3188	struct signal_struct *sig = p->signal;
3189	struct task_cputime cputime;
3190	cputime_t rtime, utime, total;
3191
3192	thread_group_cputime(p, &cputime);
3193
3194	total = cputime.utime + cputime.stime;
3195	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3196
3197	if (total)
3198		utime = scale_utime(cputime.utime, rtime, total);
3199	else
3200		utime = rtime;
3201
3202	sig->prev_utime = max(sig->prev_utime, utime);
3203	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3204
3205	*ut = sig->prev_utime;
3206	*st = sig->prev_stime;
3207}
3208#endif
3209
3210/*
3211 * This function gets called by the timer code, with HZ frequency.
3212 * We call it with interrupts disabled.
3213 */
3214void scheduler_tick(void)
3215{
3216	int cpu = smp_processor_id();
3217	struct rq *rq = cpu_rq(cpu);
3218	struct task_struct *curr = rq->curr;
3219
3220	sched_clock_tick();
3221
3222	raw_spin_lock(&rq->lock);
3223	update_rq_clock(rq);
3224	update_cpu_load_active(rq);
3225	curr->sched_class->task_tick(rq, curr, 0);
 
 
3226	raw_spin_unlock(&rq->lock);
3227
3228	perf_event_task_tick();
3229
3230#ifdef CONFIG_SMP
3231	rq->idle_balance = idle_cpu(cpu);
3232	trigger_load_balance(rq, cpu);
3233#endif
 
3234}
3235
3236notrace unsigned long get_parent_ip(unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3237{
3238	if (in_lock_functions(addr)) {
3239		addr = CALLER_ADDR2;
3240		if (in_lock_functions(addr))
3241			addr = CALLER_ADDR3;
3242	}
3243	return addr;
 
 
 
3244}
 
3245
3246#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3247				defined(CONFIG_PREEMPT_TRACER))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3248
3249void __kprobes add_preempt_count(int val)
3250{
3251#ifdef CONFIG_DEBUG_PREEMPT
3252	/*
3253	 * Underflow?
3254	 */
3255	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3256		return;
3257#endif
3258	preempt_count() += val;
3259#ifdef CONFIG_DEBUG_PREEMPT
3260	/*
3261	 * Spinlock count overflowing soon?
3262	 */
3263	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3264				PREEMPT_MASK - 10);
3265#endif
 
 
 
 
 
 
 
 
 
 
 
3266	if (preempt_count() == val)
3267		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3268}
3269EXPORT_SYMBOL(add_preempt_count);
3270
3271void __kprobes sub_preempt_count(int val)
3272{
3273#ifdef CONFIG_DEBUG_PREEMPT
3274	/*
3275	 * Underflow?
3276	 */
3277	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3278		return;
3279	/*
3280	 * Is the spinlock portion underflowing?
3281	 */
3282	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3283			!(preempt_count() & PREEMPT_MASK)))
3284		return;
3285#endif
3286
3287	if (preempt_count() == val)
3288		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3289	preempt_count() -= val;
3290}
3291EXPORT_SYMBOL(sub_preempt_count);
 
3292
 
 
 
3293#endif
3294
3295/*
3296 * Print scheduling while atomic bug:
3297 */
3298static noinline void __schedule_bug(struct task_struct *prev)
3299{
 
 
 
3300	if (oops_in_progress)
3301		return;
3302
3303	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3304		prev->comm, prev->pid, preempt_count());
3305
3306	debug_show_held_locks(prev);
3307	print_modules();
3308	if (irqs_disabled())
3309		print_irqtrace_events(prev);
 
 
 
 
 
 
 
 
 
3310	dump_stack();
3311	add_taint(TAINT_WARN);
3312}
3313
3314/*
3315 * Various schedule()-time debugging checks and statistics:
3316 */
3317static inline void schedule_debug(struct task_struct *prev)
3318{
3319	/*
3320	 * Test if we are atomic. Since do_exit() needs to call into
3321	 * schedule() atomically, we ignore that path for now.
3322	 * Otherwise, whine if we are scheduling when we should not be.
3323	 */
3324	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3325		__schedule_bug(prev);
 
 
3326	rcu_sleep_check();
3327
3328	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3329
3330	schedstat_inc(this_rq(), sched_count);
3331}
3332
3333static void put_prev_task(struct rq *rq, struct task_struct *prev)
3334{
3335	if (prev->on_rq || rq->skip_clock_update < 0)
3336		update_rq_clock(rq);
3337	prev->sched_class->put_prev_task(rq, prev);
3338}
3339
3340/*
3341 * Pick up the highest-prio task:
3342 */
3343static inline struct task_struct *
3344pick_next_task(struct rq *rq)
3345{
3346	const struct sched_class *class;
3347	struct task_struct *p;
3348
3349	/*
3350	 * Optimization: we know that if all tasks are in
3351	 * the fair class we can call that function directly:
3352	 */
3353	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3354		p = fair_sched_class.pick_next_task(rq);
3355		if (likely(p))
3356			return p;
 
 
 
 
 
 
 
3357	}
3358
 
3359	for_each_class(class) {
3360		p = class->pick_next_task(rq);
3361		if (p)
 
 
3362			return p;
 
3363	}
3364
3365	BUG(); /* the idle class will always have a runnable task */
3366}
3367
3368/*
3369 * __schedule() is the main scheduler function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3370 */
3371static void __sched __schedule(void)
3372{
3373	struct task_struct *prev, *next;
3374	unsigned long *switch_count;
 
3375	struct rq *rq;
3376	int cpu;
3377
3378need_resched:
3379	preempt_disable();
3380	cpu = smp_processor_id();
3381	rq = cpu_rq(cpu);
3382	rcu_note_context_switch(cpu);
3383	prev = rq->curr;
3384
3385	schedule_debug(prev);
3386
3387	if (sched_feat(HRTICK))
3388		hrtick_clear(rq);
3389
3390	raw_spin_lock_irq(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
3391
3392	switch_count = &prev->nivcsw;
3393	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3394		if (unlikely(signal_pending_state(prev->state, prev))) {
3395			prev->state = TASK_RUNNING;
3396		} else {
3397			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3398			prev->on_rq = 0;
3399
3400			/*
3401			 * If a worker went to sleep, notify and ask workqueue
3402			 * whether it wants to wake up a task to maintain
3403			 * concurrency.
3404			 */
3405			if (prev->flags & PF_WQ_WORKER) {
3406				struct task_struct *to_wakeup;
3407
3408				to_wakeup = wq_worker_sleeping(prev, cpu);
3409				if (to_wakeup)
3410					try_to_wake_up_local(to_wakeup);
3411			}
3412		}
3413		switch_count = &prev->nvcsw;
3414	}
3415
3416	pre_schedule(rq, prev);
3417
3418	if (unlikely(!rq->nr_running))
3419		idle_balance(cpu, rq);
3420
3421	put_prev_task(rq, prev);
3422	next = pick_next_task(rq);
3423	clear_tsk_need_resched(prev);
3424	rq->skip_clock_update = 0;
 
3425
3426	if (likely(prev != next)) {
3427		rq->nr_switches++;
3428		rq->curr = next;
3429		++*switch_count;
3430
3431		context_switch(rq, prev, next); /* unlocks the rq */
3432		/*
3433		 * The context switch have flipped the stack from under us
3434		 * and restored the local variables which were saved when
3435		 * this task called schedule() in the past. prev == current
3436		 * is still correct, but it can be moved to another cpu/rq.
3437		 */
3438		cpu = smp_processor_id();
3439		rq = cpu_rq(cpu);
3440	} else
3441		raw_spin_unlock_irq(&rq->lock);
 
3442
3443	post_schedule(rq);
 
3444
3445	sched_preempt_enable_no_resched();
3446	if (need_resched())
3447		goto need_resched;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3448}
3449
3450static inline void sched_submit_work(struct task_struct *tsk)
3451{
3452	if (!tsk->state || tsk_is_pi_blocked(tsk))
3453		return;
3454	/*
3455	 * If we are going to sleep and we have plugged IO queued,
3456	 * make sure to submit it to avoid deadlocks.
3457	 */
3458	if (blk_needs_flush_plug(tsk))
3459		blk_schedule_flush_plug(tsk);
3460}
3461
3462asmlinkage void __sched schedule(void)
3463{
3464	struct task_struct *tsk = current;
3465
3466	sched_submit_work(tsk);
3467	__schedule();
 
 
 
 
3468}
3469EXPORT_SYMBOL(schedule);
3470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471/**
3472 * schedule_preempt_disabled - called with preemption disabled
3473 *
3474 * Returns with preemption disabled. Note: preempt_count must be 1
3475 */
3476void __sched schedule_preempt_disabled(void)
3477{
3478	sched_preempt_enable_no_resched();
3479	schedule();
3480	preempt_disable();
3481}
3482
3483#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3484
3485static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3486{
3487	if (lock->owner != owner)
3488		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3489
3490	/*
3491	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3492	 * lock->owner still matches owner, if that fails, owner might
3493	 * point to free()d memory, if it still matches, the rcu_read_lock()
3494	 * ensures the memory stays valid.
3495	 */
3496	barrier();
3497
3498	return owner->on_cpu;
3499}
3500
3501/*
3502 * Look out! "owner" is an entirely speculative pointer
3503 * access and not reliable.
3504 */
3505int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3506{
3507	if (!sched_feat(OWNER_SPIN))
3508		return 0;
3509
3510	rcu_read_lock();
3511	while (owner_running(lock, owner)) {
3512		if (need_resched())
3513			break;
3514
3515		arch_mutex_cpu_relax();
3516	}
3517	rcu_read_unlock();
3518
3519	/*
3520	 * We break out the loop above on need_resched() and when the
3521	 * owner changed, which is a sign for heavy contention. Return
3522	 * success only when lock->owner is NULL.
3523	 */
3524	return lock->owner == NULL;
3525}
3526#endif
3527
3528#ifdef CONFIG_PREEMPT
3529/*
3530 * this is the entry point to schedule() from in-kernel preemption
3531 * off of preempt_enable. Kernel preemptions off return from interrupt
3532 * occur there and call schedule directly.
3533 */
3534asmlinkage void __sched notrace preempt_schedule(void)
3535{
3536	struct thread_info *ti = current_thread_info();
3537
3538	/*
3539	 * If there is a non-zero preempt_count or interrupts are disabled,
3540	 * we do not want to preempt the current task. Just return..
3541	 */
3542	if (likely(ti->preempt_count || irqs_disabled()))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543		return;
3544
3545	do {
3546		add_preempt_count_notrace(PREEMPT_ACTIVE);
3547		__schedule();
3548		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3549
3550		/*
3551		 * Check again in case we missed a preemption opportunity
3552		 * between schedule and now.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553		 */
3554		barrier();
 
 
 
 
 
3555	} while (need_resched());
3556}
3557EXPORT_SYMBOL(preempt_schedule);
 
 
3558
3559/*
3560 * this is the entry point to schedule() from kernel preemption
3561 * off of irq context.
3562 * Note, that this is called and return with irqs disabled. This will
3563 * protect us against recursive calling from irq.
3564 */
3565asmlinkage void __sched preempt_schedule_irq(void)
3566{
3567	struct thread_info *ti = current_thread_info();
3568
3569	/* Catch callers which need to be fixed */
3570	BUG_ON(ti->preempt_count || !irqs_disabled());
 
 
3571
3572	do {
3573		add_preempt_count(PREEMPT_ACTIVE);
3574		local_irq_enable();
3575		__schedule();
3576		local_irq_disable();
3577		sub_preempt_count(PREEMPT_ACTIVE);
 
3578
3579		/*
3580		 * Check again in case we missed a preemption opportunity
3581		 * between schedule and now.
3582		 */
3583		barrier();
3584	} while (need_resched());
3585}
3586
3587#endif /* CONFIG_PREEMPT */
3588
3589int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3590			  void *key)
3591{
3592	return try_to_wake_up(curr->private, mode, wake_flags);
3593}
3594EXPORT_SYMBOL(default_wake_function);
3595
3596/*
3597 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3598 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3599 * number) then we wake all the non-exclusive tasks and one exclusive task.
3600 *
3601 * There are circumstances in which we can try to wake a task which has already
3602 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3603 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3604 */
3605static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3606			int nr_exclusive, int wake_flags, void *key)
3607{
3608	wait_queue_t *curr, *next;
3609
3610	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3611		unsigned flags = curr->flags;
3612
3613		if (curr->func(curr, mode, wake_flags, key) &&
3614				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3615			break;
3616	}
3617}
3618
3619/**
3620 * __wake_up - wake up threads blocked on a waitqueue.
3621 * @q: the waitqueue
3622 * @mode: which threads
3623 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624 * @key: is directly passed to the wakeup function
3625 *
3626 * It may be assumed that this function implies a write memory barrier before
3627 * changing the task state if and only if any tasks are woken up.
3628 */
3629void __wake_up(wait_queue_head_t *q, unsigned int mode,
3630			int nr_exclusive, void *key)
3631{
3632	unsigned long flags;
3633
3634	spin_lock_irqsave(&q->lock, flags);
3635	__wake_up_common(q, mode, nr_exclusive, 0, key);
3636	spin_unlock_irqrestore(&q->lock, flags);
3637}
3638EXPORT_SYMBOL(__wake_up);
3639
3640/*
3641 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3642 */
3643void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3644{
3645	__wake_up_common(q, mode, nr, 0, NULL);
3646}
3647EXPORT_SYMBOL_GPL(__wake_up_locked);
3648
3649void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3650{
3651	__wake_up_common(q, mode, 1, 0, key);
3652}
3653EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3654
3655/**
3656 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3657 * @q: the waitqueue
3658 * @mode: which threads
3659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3660 * @key: opaque value to be passed to wakeup targets
3661 *
3662 * The sync wakeup differs that the waker knows that it will schedule
3663 * away soon, so while the target thread will be woken up, it will not
3664 * be migrated to another CPU - ie. the two threads are 'synchronized'
3665 * with each other. This can prevent needless bouncing between CPUs.
3666 *
3667 * On UP it can prevent extra preemption.
3668 *
3669 * It may be assumed that this function implies a write memory barrier before
3670 * changing the task state if and only if any tasks are woken up.
3671 */
3672void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3673			int nr_exclusive, void *key)
3674{
3675	unsigned long flags;
3676	int wake_flags = WF_SYNC;
3677
3678	if (unlikely(!q))
3679		return;
3680
3681	if (unlikely(!nr_exclusive))
3682		wake_flags = 0;
3683
3684	spin_lock_irqsave(&q->lock, flags);
3685	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3686	spin_unlock_irqrestore(&q->lock, flags);
3687}
3688EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3689
3690/*
3691 * __wake_up_sync - see __wake_up_sync_key()
3692 */
3693void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3694{
3695	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3696}
3697EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3698
3699/**
3700 * complete: - signals a single thread waiting on this completion
3701 * @x:  holds the state of this particular completion
3702 *
3703 * This will wake up a single thread waiting on this completion. Threads will be
3704 * awakened in the same order in which they were queued.
3705 *
3706 * See also complete_all(), wait_for_completion() and related routines.
3707 *
3708 * It may be assumed that this function implies a write memory barrier before
3709 * changing the task state if and only if any tasks are woken up.
3710 */
3711void complete(struct completion *x)
3712{
3713	unsigned long flags;
3714
3715	spin_lock_irqsave(&x->wait.lock, flags);
3716	x->done++;
3717	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3718	spin_unlock_irqrestore(&x->wait.lock, flags);
3719}
3720EXPORT_SYMBOL(complete);
3721
3722/**
3723 * complete_all: - signals all threads waiting on this completion
3724 * @x:  holds the state of this particular completion
3725 *
3726 * This will wake up all threads waiting on this particular completion event.
3727 *
3728 * It may be assumed that this function implies a write memory barrier before
3729 * changing the task state if and only if any tasks are woken up.
3730 */
3731void complete_all(struct completion *x)
3732{
3733	unsigned long flags;
3734
3735	spin_lock_irqsave(&x->wait.lock, flags);
3736	x->done += UINT_MAX/2;
3737	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3738	spin_unlock_irqrestore(&x->wait.lock, flags);
3739}
3740EXPORT_SYMBOL(complete_all);
3741
3742static inline long __sched
3743do_wait_for_common(struct completion *x, long timeout, int state)
3744{
3745	if (!x->done) {
3746		DECLARE_WAITQUEUE(wait, current);
3747
3748		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3749		do {
3750			if (signal_pending_state(state, current)) {
3751				timeout = -ERESTARTSYS;
3752				break;
3753			}
3754			__set_current_state(state);
3755			spin_unlock_irq(&x->wait.lock);
3756			timeout = schedule_timeout(timeout);
3757			spin_lock_irq(&x->wait.lock);
3758		} while (!x->done && timeout);
3759		__remove_wait_queue(&x->wait, &wait);
3760		if (!x->done)
3761			return timeout;
3762	}
3763	x->done--;
3764	return timeout ?: 1;
3765}
3766
3767static long __sched
3768wait_for_common(struct completion *x, long timeout, int state)
3769{
3770	might_sleep();
3771
3772	spin_lock_irq(&x->wait.lock);
3773	timeout = do_wait_for_common(x, timeout, state);
3774	spin_unlock_irq(&x->wait.lock);
3775	return timeout;
3776}
3777
3778/**
3779 * wait_for_completion: - waits for completion of a task
3780 * @x:  holds the state of this particular completion
3781 *
3782 * This waits to be signaled for completion of a specific task. It is NOT
3783 * interruptible and there is no timeout.
3784 *
3785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3786 * and interrupt capability. Also see complete().
3787 */
3788void __sched wait_for_completion(struct completion *x)
3789{
3790	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3791}
3792EXPORT_SYMBOL(wait_for_completion);
3793
3794/**
3795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3796 * @x:  holds the state of this particular completion
3797 * @timeout:  timeout value in jiffies
3798 *
3799 * This waits for either a completion of a specific task to be signaled or for a
3800 * specified timeout to expire. The timeout is in jiffies. It is not
3801 * interruptible.
3802 *
3803 * The return value is 0 if timed out, and positive (at least 1, or number of
3804 * jiffies left till timeout) if completed.
3805 */
3806unsigned long __sched
3807wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3808{
3809	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3810}
3811EXPORT_SYMBOL(wait_for_completion_timeout);
3812
3813/**
3814 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3815 * @x:  holds the state of this particular completion
3816 *
3817 * This waits for completion of a specific task to be signaled. It is
3818 * interruptible.
3819 *
3820 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3821 */
3822int __sched wait_for_completion_interruptible(struct completion *x)
3823{
3824	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3825	if (t == -ERESTARTSYS)
3826		return t;
3827	return 0;
3828}
3829EXPORT_SYMBOL(wait_for_completion_interruptible);
3830
3831/**
3832 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3833 * @x:  holds the state of this particular completion
3834 * @timeout:  timeout value in jiffies
3835 *
3836 * This waits for either a completion of a specific task to be signaled or for a
3837 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3838 *
3839 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3840 * positive (at least 1, or number of jiffies left till timeout) if completed.
3841 */
3842long __sched
3843wait_for_completion_interruptible_timeout(struct completion *x,
3844					  unsigned long timeout)
3845{
3846	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3847}
3848EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3849
3850/**
3851 * wait_for_completion_killable: - waits for completion of a task (killable)
3852 * @x:  holds the state of this particular completion
3853 *
3854 * This waits to be signaled for completion of a specific task. It can be
3855 * interrupted by a kill signal.
3856 *
3857 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3858 */
3859int __sched wait_for_completion_killable(struct completion *x)
3860{
3861	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3862	if (t == -ERESTARTSYS)
3863		return t;
3864	return 0;
3865}
3866EXPORT_SYMBOL(wait_for_completion_killable);
3867
3868/**
3869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3870 * @x:  holds the state of this particular completion
3871 * @timeout:  timeout value in jiffies
3872 *
3873 * This waits for either a completion of a specific task to be
3874 * signaled or for a specified timeout to expire. It can be
3875 * interrupted by a kill signal. The timeout is in jiffies.
3876 *
3877 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3878 * positive (at least 1, or number of jiffies left till timeout) if completed.
3879 */
3880long __sched
3881wait_for_completion_killable_timeout(struct completion *x,
3882				     unsigned long timeout)
3883{
3884	return wait_for_common(x, timeout, TASK_KILLABLE);
3885}
3886EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3887
3888/**
3889 *	try_wait_for_completion - try to decrement a completion without blocking
3890 *	@x:	completion structure
3891 *
3892 *	Returns: 0 if a decrement cannot be done without blocking
3893 *		 1 if a decrement succeeded.
3894 *
3895 *	If a completion is being used as a counting completion,
3896 *	attempt to decrement the counter without blocking. This
3897 *	enables us to avoid waiting if the resource the completion
3898 *	is protecting is not available.
3899 */
3900bool try_wait_for_completion(struct completion *x)
3901{
3902	unsigned long flags;
3903	int ret = 1;
3904
3905	spin_lock_irqsave(&x->wait.lock, flags);
3906	if (!x->done)
3907		ret = 0;
3908	else
3909		x->done--;
3910	spin_unlock_irqrestore(&x->wait.lock, flags);
3911	return ret;
3912}
3913EXPORT_SYMBOL(try_wait_for_completion);
3914
3915/**
3916 *	completion_done - Test to see if a completion has any waiters
3917 *	@x:	completion structure
3918 *
3919 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3920 *		 1 if there are no waiters.
3921 *
3922 */
3923bool completion_done(struct completion *x)
3924{
3925	unsigned long flags;
3926	int ret = 1;
3927
3928	spin_lock_irqsave(&x->wait.lock, flags);
3929	if (!x->done)
3930		ret = 0;
3931	spin_unlock_irqrestore(&x->wait.lock, flags);
3932	return ret;
3933}
3934EXPORT_SYMBOL(completion_done);
3935
3936static long __sched
3937sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3938{
3939	unsigned long flags;
3940	wait_queue_t wait;
3941
3942	init_waitqueue_entry(&wait, current);
3943
3944	__set_current_state(state);
3945
3946	spin_lock_irqsave(&q->lock, flags);
3947	__add_wait_queue(q, &wait);
3948	spin_unlock(&q->lock);
3949	timeout = schedule_timeout(timeout);
3950	spin_lock_irq(&q->lock);
3951	__remove_wait_queue(q, &wait);
3952	spin_unlock_irqrestore(&q->lock, flags);
3953
3954	return timeout;
3955}
3956
3957void __sched interruptible_sleep_on(wait_queue_head_t *q)
3958{
3959	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3960}
3961EXPORT_SYMBOL(interruptible_sleep_on);
3962
3963long __sched
3964interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3965{
3966	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3967}
3968EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3969
3970void __sched sleep_on(wait_queue_head_t *q)
3971{
3972	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3973}
3974EXPORT_SYMBOL(sleep_on);
3975
3976long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3977{
3978	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3979}
3980EXPORT_SYMBOL(sleep_on_timeout);
3981
3982#ifdef CONFIG_RT_MUTEXES
3983
3984/*
3985 * rt_mutex_setprio - set the current priority of a task
3986 * @p: task
3987 * @prio: prio value (kernel-internal form)
3988 *
3989 * This function changes the 'effective' priority of a task. It does
3990 * not touch ->normal_prio like __setscheduler().
3991 *
3992 * Used by the rt_mutex code to implement priority inheritance logic.
 
3993 */
3994void rt_mutex_setprio(struct task_struct *p, int prio)
3995{
3996	int oldprio, on_rq, running;
 
 
3997	struct rq *rq;
3998	const struct sched_class *prev_class;
3999
4000	BUG_ON(prio < 0 || prio > MAX_PRIO);
4001
4002	rq = __task_rq_lock(p);
4003
4004	/*
4005	 * Idle task boosting is a nono in general. There is one
4006	 * exception, when PREEMPT_RT and NOHZ is active:
4007	 *
4008	 * The idle task calls get_next_timer_interrupt() and holds
4009	 * the timer wheel base->lock on the CPU and another CPU wants
4010	 * to access the timer (probably to cancel it). We can safely
4011	 * ignore the boosting request, as the idle CPU runs this code
4012	 * with interrupts disabled and will complete the lock
4013	 * protected section without being interrupted. So there is no
4014	 * real need to boost.
4015	 */
4016	if (unlikely(p == rq->idle)) {
4017		WARN_ON(p != rq->curr);
4018		WARN_ON(p->pi_blocked_on);
4019		goto out_unlock;
4020	}
4021
4022	trace_sched_pi_setprio(p, prio);
4023	oldprio = p->prio;
 
 
 
 
4024	prev_class = p->sched_class;
4025	on_rq = p->on_rq;
4026	running = task_current(rq, p);
4027	if (on_rq)
4028		dequeue_task(rq, p, 0);
4029	if (running)
4030		p->sched_class->put_prev_task(rq, p);
4031
4032	if (rt_prio(prio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4033		p->sched_class = &rt_sched_class;
4034	else
 
 
 
 
4035		p->sched_class = &fair_sched_class;
 
4036
4037	p->prio = prio;
4038
 
 
4039	if (running)
4040		p->sched_class->set_curr_task(rq);
4041	if (on_rq)
4042		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4043
4044	check_class_changed(rq, p, prev_class, oldprio);
4045out_unlock:
4046	__task_rq_unlock(rq);
 
 
 
 
4047}
4048#endif
 
4049void set_user_nice(struct task_struct *p, long nice)
4050{
4051	int old_prio, delta, on_rq;
4052	unsigned long flags;
 
4053	struct rq *rq;
4054
4055	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4056		return;
4057	/*
4058	 * We have to be careful, if called from sys_setpriority(),
4059	 * the task might be in the middle of scheduling on another CPU.
4060	 */
4061	rq = task_rq_lock(p, &flags);
4062	/*
4063	 * The RT priorities are set via sched_setscheduler(), but we still
4064	 * allow the 'normal' nice value to be set - but as expected
4065	 * it wont have any effect on scheduling until the task is
4066	 * SCHED_FIFO/SCHED_RR:
4067	 */
4068	if (task_has_rt_policy(p)) {
4069		p->static_prio = NICE_TO_PRIO(nice);
4070		goto out_unlock;
4071	}
4072	on_rq = p->on_rq;
4073	if (on_rq)
4074		dequeue_task(rq, p, 0);
 
 
 
4075
4076	p->static_prio = NICE_TO_PRIO(nice);
4077	set_load_weight(p);
4078	old_prio = p->prio;
4079	p->prio = effective_prio(p);
4080	delta = p->prio - old_prio;
4081
4082	if (on_rq) {
4083		enqueue_task(rq, p, 0);
4084		/*
4085		 * If the task increased its priority or is running and
4086		 * lowered its priority, then reschedule its CPU:
4087		 */
4088		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4089			resched_task(rq->curr);
4090	}
 
 
4091out_unlock:
4092	task_rq_unlock(rq, p, &flags);
4093}
4094EXPORT_SYMBOL(set_user_nice);
4095
4096/*
4097 * can_nice - check if a task can reduce its nice value
4098 * @p: task
4099 * @nice: nice value
4100 */
4101int can_nice(const struct task_struct *p, const int nice)
4102{
4103	/* convert nice value [19,-20] to rlimit style value [1,40] */
4104	int nice_rlim = 20 - nice;
4105
4106	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4107		capable(CAP_SYS_NICE));
4108}
4109
4110#ifdef __ARCH_WANT_SYS_NICE
4111
4112/*
4113 * sys_nice - change the priority of the current process.
4114 * @increment: priority increment
4115 *
4116 * sys_setpriority is a more generic, but much slower function that
4117 * does similar things.
4118 */
4119SYSCALL_DEFINE1(nice, int, increment)
4120{
4121	long nice, retval;
4122
4123	/*
4124	 * Setpriority might change our priority at the same moment.
4125	 * We don't have to worry. Conceptually one call occurs first
4126	 * and we have a single winner.
4127	 */
4128	if (increment < -40)
4129		increment = -40;
4130	if (increment > 40)
4131		increment = 40;
4132
4133	nice = TASK_NICE(current) + increment;
4134	if (nice < -20)
4135		nice = -20;
4136	if (nice > 19)
4137		nice = 19;
4138
 
4139	if (increment < 0 && !can_nice(current, nice))
4140		return -EPERM;
4141
4142	retval = security_task_setnice(current, nice);
4143	if (retval)
4144		return retval;
4145
4146	set_user_nice(current, nice);
4147	return 0;
4148}
4149
4150#endif
4151
4152/**
4153 * task_prio - return the priority value of a given task.
4154 * @p: the task in question.
4155 *
4156 * This is the priority value as seen by users in /proc.
4157 * RT tasks are offset by -200. Normal tasks are centered
4158 * around 0, value goes from -16 to +15.
4159 */
4160int task_prio(const struct task_struct *p)
4161{
4162	return p->prio - MAX_RT_PRIO;
4163}
4164
4165/**
4166 * task_nice - return the nice value of a given task.
4167 * @p: the task in question.
4168 */
4169int task_nice(const struct task_struct *p)
4170{
4171	return TASK_NICE(p);
4172}
4173EXPORT_SYMBOL(task_nice);
4174
4175/**
4176 * idle_cpu - is a given cpu idle currently?
4177 * @cpu: the processor in question.
 
 
4178 */
4179int idle_cpu(int cpu)
4180{
4181	struct rq *rq = cpu_rq(cpu);
4182
4183	if (rq->curr != rq->idle)
4184		return 0;
4185
4186	if (rq->nr_running)
4187		return 0;
4188
4189#ifdef CONFIG_SMP
4190	if (!llist_empty(&rq->wake_list))
4191		return 0;
4192#endif
4193
4194	return 1;
4195}
4196
4197/**
4198 * idle_task - return the idle task for a given cpu.
4199 * @cpu: the processor in question.
 
 
4200 */
4201struct task_struct *idle_task(int cpu)
4202{
4203	return cpu_rq(cpu)->idle;
4204}
4205
4206/**
4207 * find_process_by_pid - find a process with a matching PID value.
4208 * @pid: the pid in question.
 
 
4209 */
4210static struct task_struct *find_process_by_pid(pid_t pid)
4211{
4212	return pid ? find_task_by_vpid(pid) : current;
4213}
4214
4215/* Actually do priority change: must hold rq lock. */
 
 
 
 
 
 
 
4216static void
4217__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4218{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4219	p->policy = policy;
4220	p->rt_priority = prio;
 
 
 
 
 
 
 
 
 
 
 
4221	p->normal_prio = normal_prio(p);
4222	/* we are holding p->pi_lock already */
4223	p->prio = rt_mutex_getprio(p);
4224	if (rt_prio(p->prio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4225		p->sched_class = &rt_sched_class;
4226	else
4227		p->sched_class = &fair_sched_class;
4228	set_load_weight(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229}
4230
4231/*
4232 * check the target process has a UID that matches the current process's
4233 */
4234static bool check_same_owner(struct task_struct *p)
4235{
4236	const struct cred *cred = current_cred(), *pcred;
4237	bool match;
4238
4239	rcu_read_lock();
4240	pcred = __task_cred(p);
4241	match = (uid_eq(cred->euid, pcred->euid) ||
4242		 uid_eq(cred->euid, pcred->uid));
4243	rcu_read_unlock();
4244	return match;
4245}
4246
4247static int __sched_setscheduler(struct task_struct *p, int policy,
4248				const struct sched_param *param, bool user)
4249{
4250	int retval, oldprio, oldpolicy = -1, on_rq, running;
4251	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4252	const struct sched_class *prev_class;
 
 
 
4253	struct rq *rq;
4254	int reset_on_fork;
4255
4256	/* may grab non-irq protected spin_locks */
4257	BUG_ON(in_interrupt());
4258recheck:
4259	/* double check policy once rq lock held */
4260	if (policy < 0) {
4261		reset_on_fork = p->sched_reset_on_fork;
4262		policy = oldpolicy = p->policy;
4263	} else {
4264		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4265		policy &= ~SCHED_RESET_ON_FORK;
4266
4267		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4268				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4269				policy != SCHED_IDLE)
4270			return -EINVAL;
4271	}
4272
 
 
 
4273	/*
4274	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4275	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276	 * SCHED_BATCH and SCHED_IDLE is 0.
4277	 */
4278	if (param->sched_priority < 0 ||
4279	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4281		return -EINVAL;
4282	if (rt_policy(policy) != (param->sched_priority != 0))
 
4283		return -EINVAL;
4284
4285	/*
4286	 * Allow unprivileged RT tasks to decrease priority:
4287	 */
4288	if (user && !capable(CAP_SYS_NICE)) {
 
 
 
 
 
 
4289		if (rt_policy(policy)) {
4290			unsigned long rlim_rtprio =
4291					task_rlimit(p, RLIMIT_RTPRIO);
4292
4293			/* can't set/change the rt policy */
4294			if (policy != p->policy && !rlim_rtprio)
4295				return -EPERM;
4296
4297			/* can't increase priority */
4298			if (param->sched_priority > p->rt_priority &&
4299			    param->sched_priority > rlim_rtprio)
4300				return -EPERM;
4301		}
4302
 
 
 
 
 
 
 
 
 
4303		/*
4304		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4305		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4306		 */
4307		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4308			if (!can_nice(p, TASK_NICE(p)))
4309				return -EPERM;
4310		}
4311
4312		/* can't change other user's priorities */
4313		if (!check_same_owner(p))
4314			return -EPERM;
4315
4316		/* Normal users shall not reset the sched_reset_on_fork flag */
4317		if (p->sched_reset_on_fork && !reset_on_fork)
4318			return -EPERM;
4319	}
4320
4321	if (user) {
4322		retval = security_task_setscheduler(p);
4323		if (retval)
4324			return retval;
4325	}
4326
4327	/*
4328	 * make sure no PI-waiters arrive (or leave) while we are
4329	 * changing the priority of the task:
4330	 *
4331	 * To be able to change p->policy safely, the appropriate
4332	 * runqueue lock must be held.
4333	 */
4334	rq = task_rq_lock(p, &flags);
4335
4336	/*
4337	 * Changing the policy of the stop threads its a very bad idea
4338	 */
4339	if (p == rq->stop) {
4340		task_rq_unlock(rq, p, &flags);
4341		return -EINVAL;
4342	}
4343
4344	/*
4345	 * If not changing anything there's no need to proceed further:
 
4346	 */
4347	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4348			param->sched_priority == p->rt_priority))) {
 
 
 
 
 
4349
4350		__task_rq_unlock(rq);
4351		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4352		return 0;
4353	}
 
4354
 
4355#ifdef CONFIG_RT_GROUP_SCHED
4356	if (user) {
4357		/*
4358		 * Do not allow realtime tasks into groups that have no runtime
4359		 * assigned.
4360		 */
4361		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4362				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4363				!task_group_is_autogroup(task_group(p))) {
4364			task_rq_unlock(rq, p, &flags);
4365			return -EPERM;
4366		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4367	}
4368#endif
4369
4370	/* recheck policy now with rq lock held */
4371	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4372		policy = oldpolicy = -1;
4373		task_rq_unlock(rq, p, &flags);
4374		goto recheck;
4375	}
4376	on_rq = p->on_rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4377	running = task_current(rq, p);
4378	if (on_rq)
4379		dequeue_task(rq, p, 0);
4380	if (running)
4381		p->sched_class->put_prev_task(rq, p);
4382
4383	p->sched_reset_on_fork = reset_on_fork;
 
4384
4385	oldprio = p->prio;
4386	prev_class = p->sched_class;
4387	__setscheduler(rq, p, policy, param->sched_priority);
 
 
 
 
4388
 
 
4389	if (running)
4390		p->sched_class->set_curr_task(rq);
4391	if (on_rq)
4392		enqueue_task(rq, p, 0);
4393
4394	check_class_changed(rq, p, prev_class, oldprio);
4395	task_rq_unlock(rq, p, &flags);
 
 
 
 
4396
4397	rt_mutex_adjust_pi(p);
 
 
 
 
4398
4399	return 0;
4400}
4401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4402/**
4403 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4404 * @p: the task in question.
4405 * @policy: new policy.
4406 * @param: structure containing the new RT priority.
4407 *
 
 
4408 * NOTE that the task may be already dead.
4409 */
4410int sched_setscheduler(struct task_struct *p, int policy,
4411		       const struct sched_param *param)
4412{
4413	return __sched_setscheduler(p, policy, param, true);
4414}
4415EXPORT_SYMBOL_GPL(sched_setscheduler);
4416
 
 
 
 
 
 
4417/**
4418 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4419 * @p: the task in question.
4420 * @policy: new policy.
4421 * @param: structure containing the new RT priority.
4422 *
4423 * Just like sched_setscheduler, only don't bother checking if the
4424 * current context has permission.  For example, this is needed in
4425 * stop_machine(): we create temporary high priority worker threads,
4426 * but our caller might not have that capability.
 
 
4427 */
4428int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4429			       const struct sched_param *param)
4430{
4431	return __sched_setscheduler(p, policy, param, false);
4432}
 
4433
4434static int
4435do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4436{
4437	struct sched_param lparam;
4438	struct task_struct *p;
4439	int retval;
4440
4441	if (!param || pid < 0)
4442		return -EINVAL;
4443	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4444		return -EFAULT;
4445
4446	rcu_read_lock();
4447	retval = -ESRCH;
4448	p = find_process_by_pid(pid);
4449	if (p != NULL)
4450		retval = sched_setscheduler(p, policy, &lparam);
4451	rcu_read_unlock();
4452
4453	return retval;
4454}
4455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4456/**
4457 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4458 * @pid: the pid in question.
4459 * @policy: new policy.
4460 * @param: structure containing the new RT priority.
 
 
4461 */
4462SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4463		struct sched_param __user *, param)
4464{
4465	/* negative values for policy are not valid */
4466	if (policy < 0)
4467		return -EINVAL;
4468
4469	return do_sched_setscheduler(pid, policy, param);
4470}
4471
4472/**
4473 * sys_sched_setparam - set/change the RT priority of a thread
4474 * @pid: the pid in question.
4475 * @param: structure containing the new RT priority.
 
 
4476 */
4477SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4478{
4479	return do_sched_setscheduler(pid, -1, param);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4480}
4481
4482/**
4483 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4484 * @pid: the pid in question.
 
 
 
4485 */
4486SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4487{
4488	struct task_struct *p;
4489	int retval;
4490
4491	if (pid < 0)
4492		return -EINVAL;
4493
4494	retval = -ESRCH;
4495	rcu_read_lock();
4496	p = find_process_by_pid(pid);
4497	if (p) {
4498		retval = security_task_getscheduler(p);
4499		if (!retval)
4500			retval = p->policy
4501				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4502	}
4503	rcu_read_unlock();
4504	return retval;
4505}
4506
4507/**
4508 * sys_sched_getparam - get the RT priority of a thread
4509 * @pid: the pid in question.
4510 * @param: structure containing the RT priority.
 
 
 
4511 */
4512SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4513{
4514	struct sched_param lp;
4515	struct task_struct *p;
4516	int retval;
4517
4518	if (!param || pid < 0)
4519		return -EINVAL;
4520
4521	rcu_read_lock();
4522	p = find_process_by_pid(pid);
4523	retval = -ESRCH;
4524	if (!p)
4525		goto out_unlock;
4526
4527	retval = security_task_getscheduler(p);
4528	if (retval)
4529		goto out_unlock;
4530
4531	lp.sched_priority = p->rt_priority;
 
4532	rcu_read_unlock();
4533
4534	/*
4535	 * This one might sleep, we cannot do it with a spinlock held ...
4536	 */
4537	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4538
4539	return retval;
4540
4541out_unlock:
4542	rcu_read_unlock();
4543	return retval;
4544}
4545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4546long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4547{
4548	cpumask_var_t cpus_allowed, new_mask;
4549	struct task_struct *p;
4550	int retval;
4551
4552	get_online_cpus();
4553	rcu_read_lock();
4554
4555	p = find_process_by_pid(pid);
4556	if (!p) {
4557		rcu_read_unlock();
4558		put_online_cpus();
4559		return -ESRCH;
4560	}
4561
4562	/* Prevent p going away */
4563	get_task_struct(p);
4564	rcu_read_unlock();
4565
 
 
 
 
4566	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4567		retval = -ENOMEM;
4568		goto out_put_task;
4569	}
4570	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4571		retval = -ENOMEM;
4572		goto out_free_cpus_allowed;
4573	}
4574	retval = -EPERM;
4575	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4576		goto out_unlock;
 
 
 
 
 
 
4577
4578	retval = security_task_setscheduler(p);
4579	if (retval)
4580		goto out_unlock;
 
4581
4582	cpuset_cpus_allowed(p, cpus_allowed);
4583	cpumask_and(new_mask, in_mask, cpus_allowed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584again:
4585	retval = set_cpus_allowed_ptr(p, new_mask);
4586
4587	if (!retval) {
4588		cpuset_cpus_allowed(p, cpus_allowed);
4589		if (!cpumask_subset(new_mask, cpus_allowed)) {
4590			/*
4591			 * We must have raced with a concurrent cpuset
4592			 * update. Just reset the cpus_allowed to the
4593			 * cpuset's cpus_allowed
4594			 */
4595			cpumask_copy(new_mask, cpus_allowed);
4596			goto again;
4597		}
4598	}
4599out_unlock:
4600	free_cpumask_var(new_mask);
4601out_free_cpus_allowed:
4602	free_cpumask_var(cpus_allowed);
4603out_put_task:
4604	put_task_struct(p);
4605	put_online_cpus();
4606	return retval;
4607}
4608
4609static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4610			     struct cpumask *new_mask)
4611{
4612	if (len < cpumask_size())
4613		cpumask_clear(new_mask);
4614	else if (len > cpumask_size())
4615		len = cpumask_size();
4616
4617	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4618}
4619
4620/**
4621 * sys_sched_setaffinity - set the cpu affinity of a process
4622 * @pid: pid of the process
4623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4624 * @user_mask_ptr: user-space pointer to the new cpu mask
 
 
4625 */
4626SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4627		unsigned long __user *, user_mask_ptr)
4628{
4629	cpumask_var_t new_mask;
4630	int retval;
4631
4632	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4633		return -ENOMEM;
4634
4635	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4636	if (retval == 0)
4637		retval = sched_setaffinity(pid, new_mask);
4638	free_cpumask_var(new_mask);
4639	return retval;
4640}
4641
4642long sched_getaffinity(pid_t pid, struct cpumask *mask)
4643{
4644	struct task_struct *p;
4645	unsigned long flags;
4646	int retval;
4647
4648	get_online_cpus();
4649	rcu_read_lock();
4650
4651	retval = -ESRCH;
4652	p = find_process_by_pid(pid);
4653	if (!p)
4654		goto out_unlock;
4655
4656	retval = security_task_getscheduler(p);
4657	if (retval)
4658		goto out_unlock;
4659
4660	raw_spin_lock_irqsave(&p->pi_lock, flags);
4661	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4662	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4663
4664out_unlock:
4665	rcu_read_unlock();
4666	put_online_cpus();
4667
4668	return retval;
4669}
4670
4671/**
4672 * sys_sched_getaffinity - get the cpu affinity of a process
4673 * @pid: pid of the process
4674 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4675 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 
 
 
4676 */
4677SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4678		unsigned long __user *, user_mask_ptr)
4679{
4680	int ret;
4681	cpumask_var_t mask;
4682
4683	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4684		return -EINVAL;
4685	if (len & (sizeof(unsigned long)-1))
4686		return -EINVAL;
4687
4688	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4689		return -ENOMEM;
4690
4691	ret = sched_getaffinity(pid, mask);
4692	if (ret == 0) {
4693		size_t retlen = min_t(size_t, len, cpumask_size());
4694
4695		if (copy_to_user(user_mask_ptr, mask, retlen))
4696			ret = -EFAULT;
4697		else
4698			ret = retlen;
4699	}
4700	free_cpumask_var(mask);
4701
4702	return ret;
4703}
4704
4705/**
4706 * sys_sched_yield - yield the current processor to other threads.
4707 *
4708 * This function yields the current CPU to other tasks. If there are no
4709 * other threads running on this CPU then this function will return.
 
 
4710 */
4711SYSCALL_DEFINE0(sched_yield)
4712{
4713	struct rq *rq = this_rq_lock();
4714
4715	schedstat_inc(rq, yld_count);
4716	current->sched_class->yield_task(rq);
4717
4718	/*
4719	 * Since we are going to call schedule() anyway, there's
4720	 * no need to preempt or enable interrupts:
4721	 */
4722	__release(rq->lock);
4723	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4724	do_raw_spin_unlock(&rq->lock);
4725	sched_preempt_enable_no_resched();
4726
4727	schedule();
4728
4729	return 0;
4730}
4731
4732static inline int should_resched(void)
4733{
4734	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4735}
4736
4737static void __cond_resched(void)
4738{
4739	add_preempt_count(PREEMPT_ACTIVE);
4740	__schedule();
4741	sub_preempt_count(PREEMPT_ACTIVE);
4742}
4743
4744int __sched _cond_resched(void)
4745{
4746	if (should_resched()) {
4747		__cond_resched();
4748		return 1;
4749	}
4750	return 0;
4751}
4752EXPORT_SYMBOL(_cond_resched);
 
4753
4754/*
4755 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4756 * call schedule, and on return reacquire the lock.
4757 *
4758 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4759 * operations here to prevent schedule() from being called twice (once via
4760 * spin_unlock(), once by hand).
4761 */
4762int __cond_resched_lock(spinlock_t *lock)
4763{
4764	int resched = should_resched();
4765	int ret = 0;
4766
4767	lockdep_assert_held(lock);
4768
4769	if (spin_needbreak(lock) || resched) {
4770		spin_unlock(lock);
4771		if (resched)
4772			__cond_resched();
4773		else
4774			cpu_relax();
4775		ret = 1;
4776		spin_lock(lock);
4777	}
4778	return ret;
4779}
4780EXPORT_SYMBOL(__cond_resched_lock);
4781
4782int __sched __cond_resched_softirq(void)
4783{
4784	BUG_ON(!in_softirq());
4785
4786	if (should_resched()) {
4787		local_bh_enable();
4788		__cond_resched();
4789		local_bh_disable();
4790		return 1;
4791	}
4792	return 0;
4793}
4794EXPORT_SYMBOL(__cond_resched_softirq);
4795
4796/**
4797 * yield - yield the current processor to other threads.
4798 *
4799 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4800 *
4801 * The scheduler is at all times free to pick the calling task as the most
4802 * eligible task to run, if removing the yield() call from your code breaks
4803 * it, its already broken.
4804 *
4805 * Typical broken usage is:
4806 *
4807 * while (!event)
4808 * 	yield();
4809 *
4810 * where one assumes that yield() will let 'the other' process run that will
4811 * make event true. If the current task is a SCHED_FIFO task that will never
4812 * happen. Never use yield() as a progress guarantee!!
4813 *
4814 * If you want to use yield() to wait for something, use wait_event().
4815 * If you want to use yield() to be 'nice' for others, use cond_resched().
4816 * If you still want to use yield(), do not!
4817 */
4818void __sched yield(void)
4819{
4820	set_current_state(TASK_RUNNING);
4821	sys_sched_yield();
4822}
4823EXPORT_SYMBOL(yield);
4824
4825/**
4826 * yield_to - yield the current processor to another thread in
4827 * your thread group, or accelerate that thread toward the
4828 * processor it's on.
4829 * @p: target task
4830 * @preempt: whether task preemption is allowed or not
4831 *
4832 * It's the caller's job to ensure that the target task struct
4833 * can't go away on us before we can do any checks.
4834 *
4835 * Returns true if we indeed boosted the target task.
 
 
 
4836 */
4837bool __sched yield_to(struct task_struct *p, bool preempt)
4838{
4839	struct task_struct *curr = current;
4840	struct rq *rq, *p_rq;
4841	unsigned long flags;
4842	bool yielded = 0;
4843
4844	local_irq_save(flags);
4845	rq = this_rq();
4846
4847again:
4848	p_rq = task_rq(p);
 
 
 
 
 
 
 
 
 
4849	double_rq_lock(rq, p_rq);
4850	while (task_rq(p) != p_rq) {
4851		double_rq_unlock(rq, p_rq);
4852		goto again;
4853	}
4854
4855	if (!curr->sched_class->yield_to_task)
4856		goto out;
4857
4858	if (curr->sched_class != p->sched_class)
4859		goto out;
4860
4861	if (task_running(p_rq, p) || p->state)
4862		goto out;
4863
4864	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4865	if (yielded) {
4866		schedstat_inc(rq, yld_count);
4867		/*
4868		 * Make p's CPU reschedule; pick_next_entity takes care of
4869		 * fairness.
4870		 */
4871		if (preempt && rq != p_rq)
4872			resched_task(p_rq->curr);
4873	} else {
4874		/*
4875		 * We might have set it in task_yield_fair(), but are
4876		 * not going to schedule(), so don't want to skip
4877		 * the next update.
4878		 */
4879		rq->skip_clock_update = 0;
4880	}
4881
4882out:
4883	double_rq_unlock(rq, p_rq);
 
4884	local_irq_restore(flags);
4885
4886	if (yielded)
4887		schedule();
4888
4889	return yielded;
4890}
4891EXPORT_SYMBOL_GPL(yield_to);
4892
4893/*
4894 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4895 * that process accounting knows that this is a task in IO wait state.
4896 */
4897void __sched io_schedule(void)
4898{
4899	struct rq *rq = raw_rq();
 
 
4900
4901	delayacct_blkio_start();
4902	atomic_inc(&rq->nr_iowait);
4903	blk_flush_plug(current);
4904	current->in_iowait = 1;
4905	schedule();
4906	current->in_iowait = 0;
4907	atomic_dec(&rq->nr_iowait);
4908	delayacct_blkio_end();
4909}
4910EXPORT_SYMBOL(io_schedule);
4911
4912long __sched io_schedule_timeout(long timeout)
4913{
4914	struct rq *rq = raw_rq();
4915	long ret;
4916
4917	delayacct_blkio_start();
 
4918	atomic_inc(&rq->nr_iowait);
4919	blk_flush_plug(current);
4920	current->in_iowait = 1;
4921	ret = schedule_timeout(timeout);
4922	current->in_iowait = 0;
4923	atomic_dec(&rq->nr_iowait);
4924	delayacct_blkio_end();
 
4925	return ret;
4926}
 
4927
4928/**
4929 * sys_sched_get_priority_max - return maximum RT priority.
4930 * @policy: scheduling class.
4931 *
4932 * this syscall returns the maximum rt_priority that can be used
4933 * by a given scheduling class.
 
4934 */
4935SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4936{
4937	int ret = -EINVAL;
4938
4939	switch (policy) {
4940	case SCHED_FIFO:
4941	case SCHED_RR:
4942		ret = MAX_USER_RT_PRIO-1;
4943		break;
 
4944	case SCHED_NORMAL:
4945	case SCHED_BATCH:
4946	case SCHED_IDLE:
4947		ret = 0;
4948		break;
4949	}
4950	return ret;
4951}
4952
4953/**
4954 * sys_sched_get_priority_min - return minimum RT priority.
4955 * @policy: scheduling class.
4956 *
4957 * this syscall returns the minimum rt_priority that can be used
4958 * by a given scheduling class.
 
4959 */
4960SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4961{
4962	int ret = -EINVAL;
4963
4964	switch (policy) {
4965	case SCHED_FIFO:
4966	case SCHED_RR:
4967		ret = 1;
4968		break;
 
4969	case SCHED_NORMAL:
4970	case SCHED_BATCH:
4971	case SCHED_IDLE:
4972		ret = 0;
4973	}
4974	return ret;
4975}
4976
4977/**
4978 * sys_sched_rr_get_interval - return the default timeslice of a process.
4979 * @pid: pid of the process.
4980 * @interval: userspace pointer to the timeslice value.
4981 *
4982 * this syscall writes the default timeslice value of a given process
4983 * into the user-space timespec buffer. A value of '0' means infinity.
 
 
 
4984 */
4985SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4986		struct timespec __user *, interval)
4987{
4988	struct task_struct *p;
4989	unsigned int time_slice;
4990	unsigned long flags;
 
4991	struct rq *rq;
4992	int retval;
4993	struct timespec t;
4994
4995	if (pid < 0)
4996		return -EINVAL;
4997
4998	retval = -ESRCH;
4999	rcu_read_lock();
5000	p = find_process_by_pid(pid);
5001	if (!p)
5002		goto out_unlock;
5003
5004	retval = security_task_getscheduler(p);
5005	if (retval)
5006		goto out_unlock;
5007
5008	rq = task_rq_lock(p, &flags);
5009	time_slice = p->sched_class->get_rr_interval(rq, p);
5010	task_rq_unlock(rq, p, &flags);
 
 
5011
5012	rcu_read_unlock();
5013	jiffies_to_timespec(time_slice, &t);
5014	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5015	return retval;
5016
5017out_unlock:
5018	rcu_read_unlock();
5019	return retval;
5020}
5021
5022static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5023
5024void sched_show_task(struct task_struct *p)
5025{
5026	unsigned long free = 0;
5027	unsigned state;
 
5028
5029	state = p->state ? __ffs(p->state) + 1 : 0;
 
 
 
5030	printk(KERN_INFO "%-15.15s %c", p->comm,
5031		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5032#if BITS_PER_LONG == 32
5033	if (state == TASK_RUNNING)
5034		printk(KERN_CONT " running  ");
5035	else
5036		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5037#else
5038	if (state == TASK_RUNNING)
5039		printk(KERN_CONT "  running task    ");
5040	else
5041		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5042#endif
5043#ifdef CONFIG_DEBUG_STACK_USAGE
5044	free = stack_not_used(p);
5045#endif
 
 
 
 
 
5046	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5047		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5048		(unsigned long)task_thread_info(p)->flags);
5049
 
5050	show_stack(p, NULL);
 
5051}
5052
5053void show_state_filter(unsigned long state_filter)
5054{
5055	struct task_struct *g, *p;
5056
5057#if BITS_PER_LONG == 32
5058	printk(KERN_INFO
5059		"  task                PC stack   pid father\n");
5060#else
5061	printk(KERN_INFO
5062		"  task                        PC stack   pid father\n");
5063#endif
5064	rcu_read_lock();
5065	do_each_thread(g, p) {
5066		/*
5067		 * reset the NMI-timeout, listing all files on a slow
5068		 * console might take a lot of time:
 
 
 
5069		 */
5070		touch_nmi_watchdog();
 
5071		if (!state_filter || (p->state & state_filter))
5072			sched_show_task(p);
5073	} while_each_thread(g, p);
5074
5075	touch_all_softlockup_watchdogs();
5076
5077#ifdef CONFIG_SCHED_DEBUG
5078	sysrq_sched_debug_show();
 
5079#endif
5080	rcu_read_unlock();
5081	/*
5082	 * Only show locks if all tasks are dumped:
5083	 */
5084	if (!state_filter)
5085		debug_show_all_locks();
5086}
5087
5088void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5089{
5090	idle->sched_class = &idle_sched_class;
5091}
5092
5093/**
5094 * init_idle - set up an idle thread for a given CPU
5095 * @idle: task in question
5096 * @cpu: cpu the idle task belongs to
5097 *
5098 * NOTE: this function does not set the idle thread's NEED_RESCHED
5099 * flag, to make booting more robust.
5100 */
5101void __cpuinit init_idle(struct task_struct *idle, int cpu)
5102{
5103	struct rq *rq = cpu_rq(cpu);
5104	unsigned long flags;
5105
5106	raw_spin_lock_irqsave(&rq->lock, flags);
 
5107
5108	__sched_fork(idle);
5109	idle->state = TASK_RUNNING;
5110	idle->se.exec_start = sched_clock();
 
5111
5112	do_set_cpus_allowed(idle, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
5113	/*
5114	 * We're having a chicken and egg problem, even though we are
5115	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5116	 * lockdep check in task_group() will fail.
5117	 *
5118	 * Similar case to sched_fork(). / Alternatively we could
5119	 * use task_rq_lock() here and obtain the other rq->lock.
5120	 *
5121	 * Silence PROVE_RCU
5122	 */
5123	rcu_read_lock();
5124	__set_task_cpu(idle, cpu);
5125	rcu_read_unlock();
5126
5127	rq->curr = rq->idle = idle;
5128#if defined(CONFIG_SMP)
 
5129	idle->on_cpu = 1;
5130#endif
5131	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
5132
5133	/* Set the preempt count _outside_ the spinlocks! */
5134	task_thread_info(idle)->preempt_count = 0;
5135
5136	/*
5137	 * The idle tasks have their own, simple scheduling class:
5138	 */
5139	idle->sched_class = &idle_sched_class;
5140	ftrace_graph_init_idle_task(idle, cpu);
5141#if defined(CONFIG_SMP)
 
5142	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5143#endif
5144}
5145
5146#ifdef CONFIG_SMP
5147void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5148{
5149	if (p->sched_class && p->sched_class->set_cpus_allowed)
5150		p->sched_class->set_cpus_allowed(p, new_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5151
5152	cpumask_copy(&p->cpus_allowed, new_mask);
5153	p->nr_cpus_allowed = cpumask_weight(new_mask);
5154}
5155
5156/*
5157 * This is how migration works:
5158 *
5159 * 1) we invoke migration_cpu_stop() on the target CPU using
5160 *    stop_one_cpu().
5161 * 2) stopper starts to run (implicitly forcing the migrated thread
5162 *    off the CPU)
5163 * 3) it checks whether the migrated task is still in the wrong runqueue.
5164 * 4) if it's in the wrong runqueue then the migration thread removes
5165 *    it and puts it into the right queue.
5166 * 5) stopper completes and stop_one_cpu() returns and the migration
5167 *    is done.
5168 */
5169
5170/*
5171 * Change a given task's CPU affinity. Migrate the thread to a
5172 * proper CPU and schedule it away if the CPU it's executing on
5173 * is removed from the allowed bitmask.
5174 *
5175 * NOTE: the caller must have a valid reference to the task, the
5176 * task must not exit() & deallocate itself prematurely. The
5177 * call is not atomic; no spinlocks may be held.
5178 */
5179int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5180{
5181	unsigned long flags;
5182	struct rq *rq;
5183	unsigned int dest_cpu;
5184	int ret = 0;
5185
5186	rq = task_rq_lock(p, &flags);
5187
5188	if (cpumask_equal(&p->cpus_allowed, new_mask))
5189		goto out;
5190
5191	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 
 
 
 
5192		ret = -EINVAL;
5193		goto out;
5194	}
5195
5196	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5197		ret = -EINVAL;
5198		goto out;
5199	}
 
 
 
 
 
5200
5201	do_set_cpus_allowed(p, new_mask);
5202
5203	/* Can the task run on the task's current CPU? If so, we're done */
5204	if (cpumask_test_cpu(task_cpu(p), new_mask))
5205		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
5206
5207	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5208	if (p->on_rq) {
5209		struct migration_arg arg = { p, dest_cpu };
5210		/* Need help from migration thread: drop lock and wait. */
5211		task_rq_unlock(rq, p, &flags);
5212		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5213		tlb_migrate_finish(p->mm);
5214		return 0;
5215	}
 
5216out:
5217	task_rq_unlock(rq, p, &flags);
5218
5219	return ret;
5220}
5221EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5222
5223/*
5224 * Move (not current) task off this cpu, onto dest cpu. We're doing
5225 * this because either it can't run here any more (set_cpus_allowed()
5226 * away from this CPU, or CPU going down), or because we're
5227 * attempting to rebalance this task on exec (sched_exec).
5228 *
5229 * So we race with normal scheduler movements, but that's OK, as long
5230 * as the task is no longer on this CPU.
5231 *
5232 * Returns non-zero if task was successfully migrated.
5233 */
5234static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5235{
5236	struct rq *rq_dest, *rq_src;
5237	int ret = 0;
5238
5239	if (unlikely(!cpu_active(dest_cpu)))
5240		return ret;
5241
5242	rq_src = cpu_rq(src_cpu);
5243	rq_dest = cpu_rq(dest_cpu);
5244
5245	raw_spin_lock(&p->pi_lock);
5246	double_rq_lock(rq_src, rq_dest);
5247	/* Already moved. */
5248	if (task_cpu(p) != src_cpu)
5249		goto done;
5250	/* Affinity changed (again). */
5251	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5252		goto fail;
5253
5254	/*
5255	 * If we're not on a rq, the next wake-up will ensure we're
5256	 * placed properly.
5257	 */
5258	if (p->on_rq) {
5259		dequeue_task(rq_src, p, 0);
5260		set_task_cpu(p, dest_cpu);
5261		enqueue_task(rq_dest, p, 0);
5262		check_preempt_curr(rq_dest, p, 0);
5263	}
5264done:
5265	ret = 1;
5266fail:
5267	double_rq_unlock(rq_src, rq_dest);
5268	raw_spin_unlock(&p->pi_lock);
5269	return ret;
5270}
5271
5272/*
5273 * migration_cpu_stop - this will be executed by a highprio stopper thread
5274 * and performs thread migration by bumping thread off CPU then
5275 * 'pushing' onto another runqueue.
5276 */
5277static int migration_cpu_stop(void *data)
5278{
5279	struct migration_arg *arg = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
5280
5281	/*
5282	 * The original target cpu might have gone down and we might
5283	 * be on another cpu but it doesn't matter.
5284	 */
5285	local_irq_disable();
5286	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5287	local_irq_enable();
5288	return 0;
5289}
 
5290
5291#ifdef CONFIG_HOTPLUG_CPU
5292
5293/*
5294 * Ensures that the idle task is using init_mm right before its cpu goes
5295 * offline.
5296 */
5297void idle_task_exit(void)
5298{
5299	struct mm_struct *mm = current->active_mm;
5300
5301	BUG_ON(cpu_online(smp_processor_id()));
5302
5303	if (mm != &init_mm)
5304		switch_mm(mm, &init_mm, current);
 
 
5305	mmdrop(mm);
5306}
5307
5308/*
5309 * While a dead CPU has no uninterruptible tasks queued at this point,
5310 * it might still have a nonzero ->nr_uninterruptible counter, because
5311 * for performance reasons the counter is not stricly tracking tasks to
5312 * their home CPUs. So we just add the counter to another CPU's counter,
5313 * to keep the global sum constant after CPU-down:
 
 
5314 */
5315static void migrate_nr_uninterruptible(struct rq *rq_src)
5316{
5317	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5318
5319	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5320	rq_src->nr_uninterruptible = 0;
5321}
5322
5323/*
5324 * remove the tasks which were accounted by rq from calc_load_tasks.
5325 */
5326static void calc_global_load_remove(struct rq *rq)
5327{
5328	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5329	rq->calc_load_active = 0;
5330}
5331
 
 
 
 
 
 
 
 
 
 
 
 
5332/*
5333 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5334 * try_to_wake_up()->select_task_rq().
5335 *
5336 * Called with rq->lock held even though we'er in stop_machine() and
5337 * there's no concurrency possible, we hold the required locks anyway
5338 * because of lock validation efforts.
5339 */
5340static void migrate_tasks(unsigned int dead_cpu)
5341{
5342	struct rq *rq = cpu_rq(dead_cpu);
5343	struct task_struct *next, *stop = rq->stop;
 
5344	int dest_cpu;
5345
5346	/*
5347	 * Fudge the rq selection such that the below task selection loop
5348	 * doesn't get stuck on the currently eligible stop task.
5349	 *
5350	 * We're currently inside stop_machine() and the rq is either stuck
5351	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5352	 * either way we should never end up calling schedule() until we're
5353	 * done here.
5354	 */
5355	rq->stop = NULL;
5356
5357	/* Ensure any throttled groups are reachable by pick_next_task */
5358	unthrottle_offline_cfs_rqs(rq);
 
 
 
 
5359
5360	for ( ; ; ) {
5361		/*
5362		 * There's this thread running, bail when that's the only
5363		 * remaining thread.
5364		 */
5365		if (rq->nr_running == 1)
5366			break;
5367
5368		next = pick_next_task(rq);
 
 
 
 
5369		BUG_ON(!next);
5370		next->sched_class->put_prev_task(rq, next);
5371
5372		/* Find suitable destination for @next, with force if needed. */
5373		dest_cpu = select_fallback_rq(dead_cpu, next);
 
 
 
 
 
 
 
 
5374		raw_spin_unlock(&rq->lock);
 
 
5375
5376		__migrate_task(next, dead_cpu, dest_cpu);
 
 
 
 
 
 
 
 
 
 
 
5377
5378		raw_spin_lock(&rq->lock);
 
 
 
 
 
 
5379	}
5380
5381	rq->stop = stop;
5382}
5383
5384#endif /* CONFIG_HOTPLUG_CPU */
5385
5386#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5387
5388static struct ctl_table sd_ctl_dir[] = {
5389	{
5390		.procname	= "sched_domain",
5391		.mode		= 0555,
5392	},
5393	{}
5394};
5395
5396static struct ctl_table sd_ctl_root[] = {
5397	{
5398		.procname	= "kernel",
5399		.mode		= 0555,
5400		.child		= sd_ctl_dir,
5401	},
5402	{}
5403};
5404
5405static struct ctl_table *sd_alloc_ctl_entry(int n)
5406{
5407	struct ctl_table *entry =
5408		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5409
5410	return entry;
5411}
5412
5413static void sd_free_ctl_entry(struct ctl_table **tablep)
5414{
5415	struct ctl_table *entry;
5416
5417	/*
5418	 * In the intermediate directories, both the child directory and
5419	 * procname are dynamically allocated and could fail but the mode
5420	 * will always be set. In the lowest directory the names are
5421	 * static strings and all have proc handlers.
5422	 */
5423	for (entry = *tablep; entry->mode; entry++) {
5424		if (entry->child)
5425			sd_free_ctl_entry(&entry->child);
5426		if (entry->proc_handler == NULL)
5427			kfree(entry->procname);
5428	}
5429
5430	kfree(*tablep);
5431	*tablep = NULL;
5432}
5433
5434static void
5435set_table_entry(struct ctl_table *entry,
5436		const char *procname, void *data, int maxlen,
5437		umode_t mode, proc_handler *proc_handler)
5438{
5439	entry->procname = procname;
5440	entry->data = data;
5441	entry->maxlen = maxlen;
5442	entry->mode = mode;
5443	entry->proc_handler = proc_handler;
5444}
5445
5446static struct ctl_table *
5447sd_alloc_ctl_domain_table(struct sched_domain *sd)
5448{
5449	struct ctl_table *table = sd_alloc_ctl_entry(13);
5450
5451	if (table == NULL)
5452		return NULL;
5453
5454	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5455		sizeof(long), 0644, proc_doulongvec_minmax);
5456	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5457		sizeof(long), 0644, proc_doulongvec_minmax);
5458	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5459		sizeof(int), 0644, proc_dointvec_minmax);
5460	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5461		sizeof(int), 0644, proc_dointvec_minmax);
5462	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5463		sizeof(int), 0644, proc_dointvec_minmax);
5464	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5465		sizeof(int), 0644, proc_dointvec_minmax);
5466	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5467		sizeof(int), 0644, proc_dointvec_minmax);
5468	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5469		sizeof(int), 0644, proc_dointvec_minmax);
5470	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5471		sizeof(int), 0644, proc_dointvec_minmax);
5472	set_table_entry(&table[9], "cache_nice_tries",
5473		&sd->cache_nice_tries,
5474		sizeof(int), 0644, proc_dointvec_minmax);
5475	set_table_entry(&table[10], "flags", &sd->flags,
5476		sizeof(int), 0644, proc_dointvec_minmax);
5477	set_table_entry(&table[11], "name", sd->name,
5478		CORENAME_MAX_SIZE, 0444, proc_dostring);
5479	/* &table[12] is terminator */
5480
5481	return table;
5482}
5483
5484static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5485{
5486	struct ctl_table *entry, *table;
5487	struct sched_domain *sd;
5488	int domain_num = 0, i;
5489	char buf[32];
5490
5491	for_each_domain(cpu, sd)
5492		domain_num++;
5493	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5494	if (table == NULL)
5495		return NULL;
5496
5497	i = 0;
5498	for_each_domain(cpu, sd) {
5499		snprintf(buf, 32, "domain%d", i);
5500		entry->procname = kstrdup(buf, GFP_KERNEL);
5501		entry->mode = 0555;
5502		entry->child = sd_alloc_ctl_domain_table(sd);
5503		entry++;
5504		i++;
5505	}
5506	return table;
5507}
5508
5509static struct ctl_table_header *sd_sysctl_header;
5510static void register_sched_domain_sysctl(void)
5511{
5512	int i, cpu_num = num_possible_cpus();
5513	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5514	char buf[32];
5515
5516	WARN_ON(sd_ctl_dir[0].child);
5517	sd_ctl_dir[0].child = entry;
5518
5519	if (entry == NULL)
5520		return;
5521
5522	for_each_possible_cpu(i) {
5523		snprintf(buf, 32, "cpu%d", i);
5524		entry->procname = kstrdup(buf, GFP_KERNEL);
5525		entry->mode = 0555;
5526		entry->child = sd_alloc_ctl_cpu_table(i);
5527		entry++;
5528	}
5529
5530	WARN_ON(sd_sysctl_header);
5531	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5532}
5533
5534/* may be called multiple times per register */
5535static void unregister_sched_domain_sysctl(void)
5536{
5537	if (sd_sysctl_header)
5538		unregister_sysctl_table(sd_sysctl_header);
5539	sd_sysctl_header = NULL;
5540	if (sd_ctl_dir[0].child)
5541		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5542}
5543#else
5544static void register_sched_domain_sysctl(void)
5545{
5546}
5547static void unregister_sched_domain_sysctl(void)
5548{
5549}
5550#endif
5551
5552static void set_rq_online(struct rq *rq)
5553{
5554	if (!rq->online) {
5555		const struct sched_class *class;
5556
5557		cpumask_set_cpu(rq->cpu, rq->rd->online);
5558		rq->online = 1;
5559
5560		for_each_class(class) {
5561			if (class->rq_online)
5562				class->rq_online(rq);
5563		}
5564	}
5565}
5566
5567static void set_rq_offline(struct rq *rq)
5568{
5569	if (rq->online) {
5570		const struct sched_class *class;
5571
5572		for_each_class(class) {
5573			if (class->rq_offline)
5574				class->rq_offline(rq);
5575		}
5576
5577		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5578		rq->online = 0;
5579	}
5580}
5581
5582/*
5583 * migration_call - callback that gets triggered when a CPU is added.
5584 * Here we can start up the necessary migration thread for the new CPU.
5585 */
5586static int __cpuinit
5587migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5588{
5589	int cpu = (long)hcpu;
5590	unsigned long flags;
5591	struct rq *rq = cpu_rq(cpu);
5592
5593	switch (action & ~CPU_TASKS_FROZEN) {
5594
5595	case CPU_UP_PREPARE:
5596		rq->calc_load_update = calc_load_update;
5597		break;
5598
5599	case CPU_ONLINE:
5600		/* Update our root-domain */
5601		raw_spin_lock_irqsave(&rq->lock, flags);
5602		if (rq->rd) {
5603			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5604
5605			set_rq_online(rq);
5606		}
5607		raw_spin_unlock_irqrestore(&rq->lock, flags);
5608		break;
5609
5610#ifdef CONFIG_HOTPLUG_CPU
5611	case CPU_DYING:
5612		sched_ttwu_pending();
5613		/* Update our root-domain */
5614		raw_spin_lock_irqsave(&rq->lock, flags);
5615		if (rq->rd) {
5616			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5617			set_rq_offline(rq);
5618		}
5619		migrate_tasks(cpu);
5620		BUG_ON(rq->nr_running != 1); /* the migration thread */
5621		raw_spin_unlock_irqrestore(&rq->lock, flags);
5622
5623		migrate_nr_uninterruptible(rq);
5624		calc_global_load_remove(rq);
5625		break;
5626#endif
5627	}
5628
5629	update_max_interval();
5630
5631	return NOTIFY_OK;
5632}
5633
5634/*
5635 * Register at high priority so that task migration (migrate_all_tasks)
5636 * happens before everything else.  This has to be lower priority than
5637 * the notifier in the perf_event subsystem, though.
5638 */
5639static struct notifier_block __cpuinitdata migration_notifier = {
5640	.notifier_call = migration_call,
5641	.priority = CPU_PRI_MIGRATION,
5642};
5643
5644static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5645				      unsigned long action, void *hcpu)
5646{
5647	switch (action & ~CPU_TASKS_FROZEN) {
5648	case CPU_STARTING:
5649	case CPU_DOWN_FAILED:
5650		set_cpu_active((long)hcpu, true);
5651		return NOTIFY_OK;
5652	default:
5653		return NOTIFY_DONE;
5654	}
5655}
5656
5657static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5658					unsigned long action, void *hcpu)
5659{
5660	switch (action & ~CPU_TASKS_FROZEN) {
5661	case CPU_DOWN_PREPARE:
5662		set_cpu_active((long)hcpu, false);
5663		return NOTIFY_OK;
5664	default:
5665		return NOTIFY_DONE;
5666	}
5667}
5668
5669static int __init migration_init(void)
5670{
5671	void *cpu = (void *)(long)smp_processor_id();
5672	int err;
5673
5674	/* Initialize migration for the boot CPU */
5675	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5676	BUG_ON(err == NOTIFY_BAD);
5677	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5678	register_cpu_notifier(&migration_notifier);
5679
5680	/* Register cpu active notifiers */
5681	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5682	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5683
5684	return 0;
5685}
5686early_initcall(migration_init);
5687#endif
5688
5689#ifdef CONFIG_SMP
5690
5691static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5692
5693#ifdef CONFIG_SCHED_DEBUG
5694
5695static __read_mostly int sched_debug_enabled;
5696
5697static int __init sched_debug_setup(char *str)
5698{
5699	sched_debug_enabled = 1;
5700
5701	return 0;
5702}
5703early_param("sched_debug", sched_debug_setup);
5704
5705static inline bool sched_debug(void)
5706{
5707	return sched_debug_enabled;
5708}
5709
5710static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5711				  struct cpumask *groupmask)
5712{
5713	struct sched_group *group = sd->groups;
5714	char str[256];
5715
5716	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5717	cpumask_clear(groupmask);
5718
5719	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5720
5721	if (!(sd->flags & SD_LOAD_BALANCE)) {
5722		printk("does not load-balance\n");
5723		if (sd->parent)
5724			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5725					" has parent");
5726		return -1;
5727	}
5728
5729	printk(KERN_CONT "span %s level %s\n", str, sd->name);
 
5730
5731	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5732		printk(KERN_ERR "ERROR: domain->span does not contain "
5733				"CPU%d\n", cpu);
5734	}
5735	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5736		printk(KERN_ERR "ERROR: domain->groups does not contain"
5737				" CPU%d\n", cpu);
5738	}
5739
5740	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5741	do {
5742		if (!group) {
5743			printk("\n");
5744			printk(KERN_ERR "ERROR: group is NULL\n");
5745			break;
5746		}
5747
5748		/*
5749		 * Even though we initialize ->power to something semi-sane,
5750		 * we leave power_orig unset. This allows us to detect if
5751		 * domain iteration is still funny without causing /0 traps.
5752		 */
5753		if (!group->sgp->power_orig) {
5754			printk(KERN_CONT "\n");
5755			printk(KERN_ERR "ERROR: domain->cpu_power not "
5756					"set\n");
5757			break;
5758		}
5759
5760		if (!cpumask_weight(sched_group_cpus(group))) {
5761			printk(KERN_CONT "\n");
5762			printk(KERN_ERR "ERROR: empty group\n");
5763			break;
5764		}
5765
5766		if (!(sd->flags & SD_OVERLAP) &&
5767		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5768			printk(KERN_CONT "\n");
5769			printk(KERN_ERR "ERROR: repeated CPUs\n");
5770			break;
5771		}
5772
5773		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5774
5775		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5776
5777		printk(KERN_CONT " %s", str);
5778		if (group->sgp->power != SCHED_POWER_SCALE) {
5779			printk(KERN_CONT " (cpu_power = %d)",
5780				group->sgp->power);
5781		}
5782
5783		group = group->next;
5784	} while (group != sd->groups);
5785	printk(KERN_CONT "\n");
5786
5787	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5788		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5789
5790	if (sd->parent &&
5791	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5792		printk(KERN_ERR "ERROR: parent span is not a superset "
5793			"of domain->span\n");
5794	return 0;
5795}
5796
5797static void sched_domain_debug(struct sched_domain *sd, int cpu)
5798{
5799	int level = 0;
5800
5801	if (!sched_debug_enabled)
5802		return;
5803
5804	if (!sd) {
5805		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5806		return;
5807	}
5808
5809	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5810
5811	for (;;) {
5812		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5813			break;
5814		level++;
5815		sd = sd->parent;
5816		if (!sd)
5817			break;
5818	}
5819}
5820#else /* !CONFIG_SCHED_DEBUG */
 
 
5821# define sched_domain_debug(sd, cpu) do { } while (0)
5822static inline bool sched_debug(void)
5823{
5824	return false;
5825}
5826#endif /* CONFIG_SCHED_DEBUG */
5827
5828static int sd_degenerate(struct sched_domain *sd)
5829{
5830	if (cpumask_weight(sched_domain_span(sd)) == 1)
5831		return 1;
5832
5833	/* Following flags need at least 2 groups */
5834	if (sd->flags & (SD_LOAD_BALANCE |
5835			 SD_BALANCE_NEWIDLE |
5836			 SD_BALANCE_FORK |
5837			 SD_BALANCE_EXEC |
5838			 SD_SHARE_CPUPOWER |
5839			 SD_SHARE_PKG_RESOURCES)) {
 
 
5840		if (sd->groups != sd->groups->next)
5841			return 0;
5842	}
5843
5844	/* Following flags don't use groups */
5845	if (sd->flags & (SD_WAKE_AFFINE))
5846		return 0;
5847
5848	return 1;
5849}
5850
5851static int
5852sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5853{
5854	unsigned long cflags = sd->flags, pflags = parent->flags;
5855
5856	if (sd_degenerate(parent))
5857		return 1;
5858
5859	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5860		return 0;
5861
5862	/* Flags needing groups don't count if only 1 group in parent */
5863	if (parent->groups == parent->groups->next) {
5864		pflags &= ~(SD_LOAD_BALANCE |
5865				SD_BALANCE_NEWIDLE |
5866				SD_BALANCE_FORK |
5867				SD_BALANCE_EXEC |
5868				SD_SHARE_CPUPOWER |
5869				SD_SHARE_PKG_RESOURCES);
 
 
 
5870		if (nr_node_ids == 1)
5871			pflags &= ~SD_SERIALIZE;
5872	}
5873	if (~cflags & pflags)
5874		return 0;
5875
5876	return 1;
5877}
5878
5879static void free_rootdomain(struct rcu_head *rcu)
5880{
5881	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5882
5883	cpupri_cleanup(&rd->cpupri);
 
 
5884	free_cpumask_var(rd->rto_mask);
5885	free_cpumask_var(rd->online);
5886	free_cpumask_var(rd->span);
5887	kfree(rd);
5888}
5889
5890static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5891{
5892	struct root_domain *old_rd = NULL;
5893	unsigned long flags;
5894
5895	raw_spin_lock_irqsave(&rq->lock, flags);
5896
5897	if (rq->rd) {
5898		old_rd = rq->rd;
5899
5900		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5901			set_rq_offline(rq);
5902
5903		cpumask_clear_cpu(rq->cpu, old_rd->span);
5904
5905		/*
5906		 * If we dont want to free the old_rt yet then
5907		 * set old_rd to NULL to skip the freeing later
5908		 * in this function:
5909		 */
5910		if (!atomic_dec_and_test(&old_rd->refcount))
5911			old_rd = NULL;
5912	}
5913
5914	atomic_inc(&rd->refcount);
5915	rq->rd = rd;
5916
5917	cpumask_set_cpu(rq->cpu, rd->span);
5918	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5919		set_rq_online(rq);
5920
5921	raw_spin_unlock_irqrestore(&rq->lock, flags);
5922
5923	if (old_rd)
5924		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5925}
5926
5927static int init_rootdomain(struct root_domain *rd)
5928{
5929	memset(rd, 0, sizeof(*rd));
5930
5931	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5932		goto out;
5933	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5934		goto free_span;
5935	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5936		goto free_online;
 
 
 
 
 
 
5937
5938	if (cpupri_init(&rd->cpupri) != 0)
5939		goto free_rto_mask;
5940	return 0;
5941
5942free_rto_mask:
5943	free_cpumask_var(rd->rto_mask);
 
 
5944free_online:
5945	free_cpumask_var(rd->online);
5946free_span:
5947	free_cpumask_var(rd->span);
5948out:
5949	return -ENOMEM;
5950}
5951
5952/*
5953 * By default the system creates a single root-domain with all cpus as
5954 * members (mimicking the global state we have today).
5955 */
5956struct root_domain def_root_domain;
5957
5958static void init_defrootdomain(void)
5959{
5960	init_rootdomain(&def_root_domain);
5961
5962	atomic_set(&def_root_domain.refcount, 1);
5963}
5964
5965static struct root_domain *alloc_rootdomain(void)
5966{
5967	struct root_domain *rd;
5968
5969	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5970	if (!rd)
5971		return NULL;
5972
5973	if (init_rootdomain(rd) != 0) {
5974		kfree(rd);
5975		return NULL;
5976	}
5977
5978	return rd;
5979}
5980
5981static void free_sched_groups(struct sched_group *sg, int free_sgp)
5982{
5983	struct sched_group *tmp, *first;
5984
5985	if (!sg)
5986		return;
5987
5988	first = sg;
5989	do {
5990		tmp = sg->next;
5991
5992		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5993			kfree(sg->sgp);
5994
5995		kfree(sg);
5996		sg = tmp;
5997	} while (sg != first);
5998}
5999
6000static void free_sched_domain(struct rcu_head *rcu)
6001{
6002	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6003
6004	/*
6005	 * If its an overlapping domain it has private groups, iterate and
6006	 * nuke them all.
6007	 */
6008	if (sd->flags & SD_OVERLAP) {
6009		free_sched_groups(sd->groups, 1);
6010	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6011		kfree(sd->groups->sgp);
6012		kfree(sd->groups);
6013	}
 
 
6014	kfree(sd);
6015}
6016
6017static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6018{
6019	call_rcu(&sd->rcu, free_sched_domain);
 
 
 
 
 
 
6020}
6021
6022static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6023{
6024	for (; sd; sd = sd->parent)
6025		destroy_sched_domain(sd, cpu);
6026}
6027
6028/*
6029 * Keep a special pointer to the highest sched_domain that has
6030 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6031 * allows us to avoid some pointer chasing select_idle_sibling().
6032 *
6033 * Also keep a unique ID per domain (we use the first cpu number in
6034 * the cpumask of the domain), this allows us to quickly tell if
6035 * two cpus are in the same cache domain, see cpus_share_cache().
6036 */
6037DEFINE_PER_CPU(struct sched_domain *, sd_llc);
 
6038DEFINE_PER_CPU(int, sd_llc_id);
 
 
 
6039
6040static void update_top_cache_domain(int cpu)
6041{
 
6042	struct sched_domain *sd;
6043	int id = cpu;
 
6044
6045	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6046	if (sd)
6047		id = cpumask_first(sched_domain_span(sd));
 
 
 
6048
6049	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 
6050	per_cpu(sd_llc_id, cpu) = id;
 
 
 
 
 
 
 
6051}
6052
6053/*
6054 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6055 * hold the hotplug lock.
6056 */
6057static void
6058cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6059{
6060	struct rq *rq = cpu_rq(cpu);
6061	struct sched_domain *tmp;
6062
6063	/* Remove the sched domains which do not contribute to scheduling. */
6064	for (tmp = sd; tmp; ) {
6065		struct sched_domain *parent = tmp->parent;
6066		if (!parent)
6067			break;
6068
6069		if (sd_parent_degenerate(tmp, parent)) {
6070			tmp->parent = parent->parent;
6071			if (parent->parent)
6072				parent->parent->child = tmp;
6073			destroy_sched_domain(parent, cpu);
 
 
 
 
 
 
 
6074		} else
6075			tmp = tmp->parent;
6076	}
6077
6078	if (sd && sd_degenerate(sd)) {
6079		tmp = sd;
6080		sd = sd->parent;
6081		destroy_sched_domain(tmp, cpu);
6082		if (sd)
6083			sd->child = NULL;
6084	}
6085
6086	sched_domain_debug(sd, cpu);
6087
6088	rq_attach_root(rq, rd);
6089	tmp = rq->sd;
6090	rcu_assign_pointer(rq->sd, sd);
6091	destroy_sched_domains(tmp, cpu);
6092
6093	update_top_cache_domain(cpu);
6094}
6095
6096/* cpus with isolated domains */
6097static cpumask_var_t cpu_isolated_map;
6098
6099/* Setup the mask of cpus configured for isolated domains */
6100static int __init isolated_cpu_setup(char *str)
6101{
 
 
6102	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6103	cpulist_parse(str, cpu_isolated_map);
 
 
 
 
6104	return 1;
6105}
6106
6107__setup("isolcpus=", isolated_cpu_setup);
6108
6109static const struct cpumask *cpu_cpu_mask(int cpu)
6110{
6111	return cpumask_of_node(cpu_to_node(cpu));
6112}
6113
6114struct sd_data {
6115	struct sched_domain **__percpu sd;
6116	struct sched_group **__percpu sg;
6117	struct sched_group_power **__percpu sgp;
6118};
6119
6120struct s_data {
6121	struct sched_domain ** __percpu sd;
6122	struct root_domain	*rd;
6123};
6124
6125enum s_alloc {
6126	sa_rootdomain,
6127	sa_sd,
6128	sa_sd_storage,
6129	sa_none,
6130};
6131
6132struct sched_domain_topology_level;
6133
6134typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6135typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6136
6137#define SDTL_OVERLAP	0x01
6138
6139struct sched_domain_topology_level {
6140	sched_domain_init_f init;
6141	sched_domain_mask_f mask;
6142	int		    flags;
6143	int		    numa_level;
6144	struct sd_data      data;
6145};
6146
6147/*
6148 * Build an iteration mask that can exclude certain CPUs from the upwards
6149 * domain traversal.
6150 *
6151 * Asymmetric node setups can result in situations where the domain tree is of
6152 * unequal depth, make sure to skip domains that already cover the entire
6153 * range.
6154 *
6155 * In that case build_sched_domains() will have terminated the iteration early
6156 * and our sibling sd spans will be empty. Domains should always include the
6157 * cpu they're built on, so check that.
6158 *
6159 */
6160static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6161{
6162	const struct cpumask *span = sched_domain_span(sd);
6163	struct sd_data *sdd = sd->private;
6164	struct sched_domain *sibling;
6165	int i;
6166
6167	for_each_cpu(i, span) {
6168		sibling = *per_cpu_ptr(sdd->sd, i);
6169		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6170			continue;
6171
6172		cpumask_set_cpu(i, sched_group_mask(sg));
6173	}
6174}
6175
6176/*
6177 * Return the canonical balance cpu for this group, this is the first cpu
6178 * of this group that's also in the iteration mask.
6179 */
6180int group_balance_cpu(struct sched_group *sg)
6181{
6182	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6183}
6184
6185static int
6186build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6187{
6188	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6189	const struct cpumask *span = sched_domain_span(sd);
6190	struct cpumask *covered = sched_domains_tmpmask;
6191	struct sd_data *sdd = sd->private;
6192	struct sched_domain *child;
6193	int i;
6194
6195	cpumask_clear(covered);
6196
6197	for_each_cpu(i, span) {
6198		struct cpumask *sg_span;
6199
6200		if (cpumask_test_cpu(i, covered))
6201			continue;
6202
6203		child = *per_cpu_ptr(sdd->sd, i);
6204
6205		/* See the comment near build_group_mask(). */
6206		if (!cpumask_test_cpu(i, sched_domain_span(child)))
6207			continue;
6208
6209		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6210				GFP_KERNEL, cpu_to_node(cpu));
6211
6212		if (!sg)
6213			goto fail;
6214
6215		sg_span = sched_group_cpus(sg);
6216		if (child->child) {
6217			child = child->child;
6218			cpumask_copy(sg_span, sched_domain_span(child));
6219		} else
6220			cpumask_set_cpu(i, sg_span);
6221
6222		cpumask_or(covered, covered, sg_span);
6223
6224		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6225		if (atomic_inc_return(&sg->sgp->ref) == 1)
6226			build_group_mask(sd, sg);
6227
6228		/*
6229		 * Initialize sgp->power such that even if we mess up the
6230		 * domains and no possible iteration will get us here, we won't
6231		 * die on a /0 trap.
6232		 */
6233		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
 
6234
6235		/*
6236		 * Make sure the first group of this domain contains the
6237		 * canonical balance cpu. Otherwise the sched_domain iteration
6238		 * breaks. See update_sg_lb_stats().
6239		 */
6240		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6241		    group_balance_cpu(sg) == cpu)
6242			groups = sg;
6243
6244		if (!first)
6245			first = sg;
6246		if (last)
6247			last->next = sg;
6248		last = sg;
6249		last->next = first;
6250	}
6251	sd->groups = groups;
6252
6253	return 0;
6254
6255fail:
6256	free_sched_groups(first, 0);
6257
6258	return -ENOMEM;
6259}
6260
6261static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6262{
6263	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6264	struct sched_domain *child = sd->child;
6265
6266	if (child)
6267		cpu = cpumask_first(sched_domain_span(child));
6268
6269	if (sg) {
6270		*sg = *per_cpu_ptr(sdd->sg, cpu);
6271		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6272		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6273	}
6274
6275	return cpu;
6276}
6277
6278/*
6279 * build_sched_groups will build a circular linked list of the groups
6280 * covered by the given span, and will set each group's ->cpumask correctly,
6281 * and ->cpu_power to 0.
6282 *
6283 * Assumes the sched_domain tree is fully constructed
6284 */
6285static int
6286build_sched_groups(struct sched_domain *sd, int cpu)
6287{
6288	struct sched_group *first = NULL, *last = NULL;
6289	struct sd_data *sdd = sd->private;
6290	const struct cpumask *span = sched_domain_span(sd);
6291	struct cpumask *covered;
6292	int i;
6293
6294	get_group(cpu, sdd, &sd->groups);
6295	atomic_inc(&sd->groups->ref);
6296
6297	if (cpu != cpumask_first(sched_domain_span(sd)))
6298		return 0;
6299
6300	lockdep_assert_held(&sched_domains_mutex);
6301	covered = sched_domains_tmpmask;
6302
6303	cpumask_clear(covered);
6304
6305	for_each_cpu(i, span) {
6306		struct sched_group *sg;
6307		int group = get_group(i, sdd, &sg);
6308		int j;
6309
6310		if (cpumask_test_cpu(i, covered))
6311			continue;
6312
6313		cpumask_clear(sched_group_cpus(sg));
6314		sg->sgp->power = 0;
6315		cpumask_setall(sched_group_mask(sg));
6316
6317		for_each_cpu(j, span) {
6318			if (get_group(j, sdd, NULL) != group)
6319				continue;
6320
6321			cpumask_set_cpu(j, covered);
6322			cpumask_set_cpu(j, sched_group_cpus(sg));
6323		}
6324
6325		if (!first)
6326			first = sg;
6327		if (last)
6328			last->next = sg;
6329		last = sg;
6330	}
6331	last->next = first;
6332
6333	return 0;
6334}
6335
6336/*
6337 * Initialize sched groups cpu_power.
6338 *
6339 * cpu_power indicates the capacity of sched group, which is used while
6340 * distributing the load between different sched groups in a sched domain.
6341 * Typically cpu_power for all the groups in a sched domain will be same unless
6342 * there are asymmetries in the topology. If there are asymmetries, group
6343 * having more cpu_power will pickup more load compared to the group having
6344 * less cpu_power.
6345 */
6346static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6347{
6348	struct sched_group *sg = sd->groups;
6349
6350	WARN_ON(!sd || !sg);
6351
6352	do {
 
 
6353		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
 
 
 
 
 
 
 
 
 
 
 
 
 
6354		sg = sg->next;
6355	} while (sg != sd->groups);
6356
6357	if (cpu != group_balance_cpu(sg))
6358		return;
6359
6360	update_group_power(sd, cpu);
6361	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6362}
6363
6364int __weak arch_sd_sibling_asym_packing(void)
6365{
6366       return 0*SD_ASYM_PACKING;
6367}
6368
6369/*
6370 * Initializers for schedule domains
6371 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6372 */
6373
6374#ifdef CONFIG_SCHED_DEBUG
6375# define SD_INIT_NAME(sd, type)		sd->name = #type
6376#else
6377# define SD_INIT_NAME(sd, type)		do { } while (0)
6378#endif
6379
6380#define SD_INIT_FUNC(type)						\
6381static noinline struct sched_domain *					\
6382sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6383{									\
6384	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6385	*sd = SD_##type##_INIT;						\
6386	SD_INIT_NAME(sd, type);						\
6387	sd->private = &tl->data;					\
6388	return sd;							\
6389}
6390
6391SD_INIT_FUNC(CPU)
6392#ifdef CONFIG_SCHED_SMT
6393 SD_INIT_FUNC(SIBLING)
6394#endif
6395#ifdef CONFIG_SCHED_MC
6396 SD_INIT_FUNC(MC)
6397#endif
6398#ifdef CONFIG_SCHED_BOOK
6399 SD_INIT_FUNC(BOOK)
6400#endif
6401
6402static int default_relax_domain_level = -1;
6403int sched_domain_level_max;
6404
6405static int __init setup_relax_domain_level(char *str)
6406{
6407	if (kstrtoint(str, 0, &default_relax_domain_level))
6408		pr_warn("Unable to set relax_domain_level\n");
6409
6410	return 1;
6411}
6412__setup("relax_domain_level=", setup_relax_domain_level);
6413
6414static void set_domain_attribute(struct sched_domain *sd,
6415				 struct sched_domain_attr *attr)
6416{
6417	int request;
6418
6419	if (!attr || attr->relax_domain_level < 0) {
6420		if (default_relax_domain_level < 0)
6421			return;
6422		else
6423			request = default_relax_domain_level;
6424	} else
6425		request = attr->relax_domain_level;
6426	if (request < sd->level) {
6427		/* turn off idle balance on this domain */
6428		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6429	} else {
6430		/* turn on idle balance on this domain */
6431		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6432	}
6433}
6434
6435static void __sdt_free(const struct cpumask *cpu_map);
6436static int __sdt_alloc(const struct cpumask *cpu_map);
6437
6438static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6439				 const struct cpumask *cpu_map)
6440{
6441	switch (what) {
6442	case sa_rootdomain:
6443		if (!atomic_read(&d->rd->refcount))
6444			free_rootdomain(&d->rd->rcu); /* fall through */
6445	case sa_sd:
6446		free_percpu(d->sd); /* fall through */
6447	case sa_sd_storage:
6448		__sdt_free(cpu_map); /* fall through */
6449	case sa_none:
6450		break;
6451	}
6452}
6453
6454static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6455						   const struct cpumask *cpu_map)
6456{
6457	memset(d, 0, sizeof(*d));
6458
6459	if (__sdt_alloc(cpu_map))
6460		return sa_sd_storage;
6461	d->sd = alloc_percpu(struct sched_domain *);
6462	if (!d->sd)
6463		return sa_sd_storage;
6464	d->rd = alloc_rootdomain();
6465	if (!d->rd)
6466		return sa_sd;
6467	return sa_rootdomain;
6468}
6469
6470/*
6471 * NULL the sd_data elements we've used to build the sched_domain and
6472 * sched_group structure so that the subsequent __free_domain_allocs()
6473 * will not free the data we're using.
6474 */
6475static void claim_allocations(int cpu, struct sched_domain *sd)
6476{
6477	struct sd_data *sdd = sd->private;
6478
6479	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6480	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6481
 
 
 
6482	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6483		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6484
6485	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6486		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6487}
6488
6489#ifdef CONFIG_SCHED_SMT
6490static const struct cpumask *cpu_smt_mask(int cpu)
6491{
6492	return topology_thread_cpumask(cpu);
6493}
6494#endif
6495
6496/*
6497 * Topology list, bottom-up.
6498 */
6499static struct sched_domain_topology_level default_topology[] = {
6500#ifdef CONFIG_SCHED_SMT
6501	{ sd_init_SIBLING, cpu_smt_mask, },
6502#endif
6503#ifdef CONFIG_SCHED_MC
6504	{ sd_init_MC, cpu_coregroup_mask, },
6505#endif
6506#ifdef CONFIG_SCHED_BOOK
6507	{ sd_init_BOOK, cpu_book_mask, },
6508#endif
6509	{ sd_init_CPU, cpu_cpu_mask, },
6510	{ NULL, },
6511};
6512
6513static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6514
6515#ifdef CONFIG_NUMA
6516
6517static int sched_domains_numa_levels;
 
6518static int *sched_domains_numa_distance;
 
6519static struct cpumask ***sched_domains_numa_masks;
6520static int sched_domains_curr_level;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6521
6522static inline int sd_local_flags(int level)
 
 
 
6523{
6524	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6525		return 0;
 
 
 
 
 
 
 
 
6526
6527	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6528}
6529
6530static struct sched_domain *
6531sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6532{
6533	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6534	int level = tl->numa_level;
6535	int sd_weight = cpumask_weight(
6536			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6537
6538	*sd = (struct sched_domain){
6539		.min_interval		= sd_weight,
6540		.max_interval		= 2*sd_weight,
6541		.busy_factor		= 32,
6542		.imbalance_pct		= 125,
6543		.cache_nice_tries	= 2,
6544		.busy_idx		= 3,
6545		.idle_idx		= 2,
 
6546		.newidle_idx		= 0,
6547		.wake_idx		= 0,
6548		.forkexec_idx		= 0,
6549
6550		.flags			= 1*SD_LOAD_BALANCE
6551					| 1*SD_BALANCE_NEWIDLE
6552					| 0*SD_BALANCE_EXEC
6553					| 0*SD_BALANCE_FORK
6554					| 0*SD_BALANCE_WAKE
6555					| 0*SD_WAKE_AFFINE
6556					| 0*SD_PREFER_LOCAL
6557					| 0*SD_SHARE_CPUPOWER
6558					| 0*SD_SHARE_PKG_RESOURCES
6559					| 1*SD_SERIALIZE
6560					| 0*SD_PREFER_SIBLING
6561					| sd_local_flags(level)
 
6562					,
 
6563		.last_balance		= jiffies,
6564		.balance_interval	= sd_weight,
 
 
 
 
 
 
 
6565	};
6566	SD_INIT_NAME(sd, NUMA);
6567	sd->private = &tl->data;
 
6568
6569	/*
6570	 * Ugly hack to pass state to sd_numa_mask()...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6571	 */
6572	sched_domains_curr_level = tl->numa_level;
 
 
 
 
 
 
6573
6574	return sd;
6575}
6576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6577static const struct cpumask *sd_numa_mask(int cpu)
6578{
6579	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6580}
6581
6582static void sched_numa_warn(const char *str)
6583{
6584	static int done = false;
6585	int i,j;
6586
6587	if (done)
6588		return;
6589
6590	done = true;
6591
6592	printk(KERN_WARNING "ERROR: %s\n\n", str);
6593
6594	for (i = 0; i < nr_node_ids; i++) {
6595		printk(KERN_WARNING "  ");
6596		for (j = 0; j < nr_node_ids; j++)
6597			printk(KERN_CONT "%02d ", node_distance(i,j));
6598		printk(KERN_CONT "\n");
6599	}
6600	printk(KERN_WARNING "\n");
6601}
6602
6603static bool find_numa_distance(int distance)
6604{
6605	int i;
6606
6607	if (distance == node_distance(0, 0))
6608		return true;
6609
6610	for (i = 0; i < sched_domains_numa_levels; i++) {
6611		if (sched_domains_numa_distance[i] == distance)
6612			return true;
6613	}
6614
6615	return false;
6616}
6617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6618static void sched_init_numa(void)
6619{
6620	int next_distance, curr_distance = node_distance(0, 0);
6621	struct sched_domain_topology_level *tl;
6622	int level = 0;
6623	int i, j, k;
6624
6625	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6626	if (!sched_domains_numa_distance)
6627		return;
6628
6629	/*
6630	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6631	 * unique distances in the node_distance() table.
6632	 *
6633	 * Assumes node_distance(0,j) includes all distances in
6634	 * node_distance(i,j) in order to avoid cubic time.
6635	 */
6636	next_distance = curr_distance;
6637	for (i = 0; i < nr_node_ids; i++) {
6638		for (j = 0; j < nr_node_ids; j++) {
6639			for (k = 0; k < nr_node_ids; k++) {
6640				int distance = node_distance(i, k);
6641
6642				if (distance > curr_distance &&
6643				    (distance < next_distance ||
6644				     next_distance == curr_distance))
6645					next_distance = distance;
6646
6647				/*
6648				 * While not a strong assumption it would be nice to know
6649				 * about cases where if node A is connected to B, B is not
6650				 * equally connected to A.
6651				 */
6652				if (sched_debug() && node_distance(k, i) != distance)
6653					sched_numa_warn("Node-distance not symmetric");
6654
6655				if (sched_debug() && i && !find_numa_distance(distance))
6656					sched_numa_warn("Node-0 not representative");
6657			}
6658			if (next_distance != curr_distance) {
6659				sched_domains_numa_distance[level++] = next_distance;
6660				sched_domains_numa_levels = level;
6661				curr_distance = next_distance;
6662			} else break;
6663		}
6664
6665		/*
6666		 * In case of sched_debug() we verify the above assumption.
6667		 */
6668		if (!sched_debug())
6669			break;
6670	}
 
 
 
 
6671	/*
6672	 * 'level' contains the number of unique distances, excluding the
6673	 * identity distance node_distance(i,i).
6674	 *
6675	 * The sched_domains_nume_distance[] array includes the actual distance
6676	 * numbers.
6677	 */
6678
 
 
 
 
 
 
 
 
 
 
 
6679	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6680	if (!sched_domains_numa_masks)
6681		return;
6682
6683	/*
6684	 * Now for each level, construct a mask per node which contains all
6685	 * cpus of nodes that are that many hops away from us.
6686	 */
6687	for (i = 0; i < level; i++) {
6688		sched_domains_numa_masks[i] =
6689			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6690		if (!sched_domains_numa_masks[i])
6691			return;
6692
6693		for (j = 0; j < nr_node_ids; j++) {
6694			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6695			if (!mask)
6696				return;
6697
6698			sched_domains_numa_masks[i][j] = mask;
6699
6700			for (k = 0; k < nr_node_ids; k++) {
6701				if (node_distance(j, k) > sched_domains_numa_distance[i])
6702					continue;
6703
6704				cpumask_or(mask, mask, cpumask_of_node(k));
6705			}
6706		}
6707	}
6708
6709	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
 
 
 
6710			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6711	if (!tl)
6712		return;
6713
6714	/*
6715	 * Copy the default topology bits..
6716	 */
6717	for (i = 0; default_topology[i].init; i++)
6718		tl[i] = default_topology[i];
6719
6720	/*
6721	 * .. and append 'j' levels of NUMA goodness.
6722	 */
6723	for (j = 0; j < level; i++, j++) {
6724		tl[i] = (struct sched_domain_topology_level){
6725			.init = sd_numa_init,
6726			.mask = sd_numa_mask,
 
6727			.flags = SDTL_OVERLAP,
6728			.numa_level = j,
 
6729		};
6730	}
6731
6732	sched_domain_topology = tl;
 
 
 
 
 
6733}
6734#else
6735static inline void sched_init_numa(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
6736{
 
 
 
 
 
 
6737}
 
 
 
 
 
6738#endif /* CONFIG_NUMA */
6739
6740static int __sdt_alloc(const struct cpumask *cpu_map)
6741{
6742	struct sched_domain_topology_level *tl;
6743	int j;
6744
6745	for (tl = sched_domain_topology; tl->init; tl++) {
6746		struct sd_data *sdd = &tl->data;
6747
6748		sdd->sd = alloc_percpu(struct sched_domain *);
6749		if (!sdd->sd)
6750			return -ENOMEM;
6751
 
 
 
 
6752		sdd->sg = alloc_percpu(struct sched_group *);
6753		if (!sdd->sg)
6754			return -ENOMEM;
6755
6756		sdd->sgp = alloc_percpu(struct sched_group_power *);
6757		if (!sdd->sgp)
6758			return -ENOMEM;
6759
6760		for_each_cpu(j, cpu_map) {
6761			struct sched_domain *sd;
 
6762			struct sched_group *sg;
6763			struct sched_group_power *sgp;
6764
6765		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6766					GFP_KERNEL, cpu_to_node(j));
6767			if (!sd)
6768				return -ENOMEM;
6769
6770			*per_cpu_ptr(sdd->sd, j) = sd;
6771
 
 
 
 
 
 
 
6772			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6773					GFP_KERNEL, cpu_to_node(j));
6774			if (!sg)
6775				return -ENOMEM;
6776
6777			sg->next = sg;
6778
6779			*per_cpu_ptr(sdd->sg, j) = sg;
6780
6781			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6782					GFP_KERNEL, cpu_to_node(j));
6783			if (!sgp)
6784				return -ENOMEM;
6785
6786			*per_cpu_ptr(sdd->sgp, j) = sgp;
6787		}
6788	}
6789
6790	return 0;
6791}
6792
6793static void __sdt_free(const struct cpumask *cpu_map)
6794{
6795	struct sched_domain_topology_level *tl;
6796	int j;
6797
6798	for (tl = sched_domain_topology; tl->init; tl++) {
6799		struct sd_data *sdd = &tl->data;
6800
6801		for_each_cpu(j, cpu_map) {
6802			struct sched_domain *sd;
6803
6804			if (sdd->sd) {
6805				sd = *per_cpu_ptr(sdd->sd, j);
6806				if (sd && (sd->flags & SD_OVERLAP))
6807					free_sched_groups(sd->groups, 0);
6808				kfree(*per_cpu_ptr(sdd->sd, j));
6809			}
6810
 
 
6811			if (sdd->sg)
6812				kfree(*per_cpu_ptr(sdd->sg, j));
6813			if (sdd->sgp)
6814				kfree(*per_cpu_ptr(sdd->sgp, j));
6815		}
6816		free_percpu(sdd->sd);
6817		sdd->sd = NULL;
 
 
6818		free_percpu(sdd->sg);
6819		sdd->sg = NULL;
6820		free_percpu(sdd->sgp);
6821		sdd->sgp = NULL;
6822	}
6823}
6824
6825struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6826		struct s_data *d, const struct cpumask *cpu_map,
6827		struct sched_domain_attr *attr, struct sched_domain *child,
6828		int cpu)
6829{
6830	struct sched_domain *sd = tl->init(tl, cpu);
6831	if (!sd)
6832		return child;
6833
6834	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6835	if (child) {
6836		sd->level = child->level + 1;
6837		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6838		child->parent = sd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6839	}
6840	sd->child = child;
6841	set_domain_attribute(sd, attr);
6842
6843	return sd;
6844}
6845
6846/*
6847 * Build sched domains for a given set of cpus and attach the sched domains
6848 * to the individual cpus
6849 */
6850static int build_sched_domains(const struct cpumask *cpu_map,
6851			       struct sched_domain_attr *attr)
6852{
6853	enum s_alloc alloc_state = sa_none;
6854	struct sched_domain *sd;
6855	struct s_data d;
 
6856	int i, ret = -ENOMEM;
6857
6858	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6859	if (alloc_state != sa_rootdomain)
6860		goto error;
6861
6862	/* Set up domains for cpus specified by the cpu_map. */
6863	for_each_cpu(i, cpu_map) {
6864		struct sched_domain_topology_level *tl;
6865
6866		sd = NULL;
6867		for (tl = sched_domain_topology; tl->init; tl++) {
6868			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
 
 
6869			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6870				sd->flags |= SD_OVERLAP;
6871			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6872				break;
6873		}
6874
6875		while (sd->child)
6876			sd = sd->child;
6877
6878		*per_cpu_ptr(d.sd, i) = sd;
6879	}
6880
6881	/* Build the groups for the domains */
6882	for_each_cpu(i, cpu_map) {
6883		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6884			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6885			if (sd->flags & SD_OVERLAP) {
6886				if (build_overlap_sched_groups(sd, i))
6887					goto error;
6888			} else {
6889				if (build_sched_groups(sd, i))
6890					goto error;
6891			}
6892		}
6893	}
6894
6895	/* Calculate CPU power for physical packages and nodes */
6896	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6897		if (!cpumask_test_cpu(i, cpu_map))
6898			continue;
6899
6900		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6901			claim_allocations(i, sd);
6902			init_sched_groups_power(i, sd);
6903		}
6904	}
6905
6906	/* Attach the domains */
6907	rcu_read_lock();
6908	for_each_cpu(i, cpu_map) {
 
6909		sd = *per_cpu_ptr(d.sd, i);
 
 
 
 
 
6910		cpu_attach_domain(sd, d.rd, i);
6911	}
6912	rcu_read_unlock();
6913
 
 
 
 
 
6914	ret = 0;
6915error:
6916	__free_domain_allocs(&d, alloc_state, cpu_map);
6917	return ret;
6918}
6919
6920static cpumask_var_t *doms_cur;	/* current sched domains */
6921static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6922static struct sched_domain_attr *dattr_cur;
6923				/* attribues of custom domains in 'doms_cur' */
6924
6925/*
6926 * Special case: If a kmalloc of a doms_cur partition (array of
6927 * cpumask) fails, then fallback to a single sched domain,
6928 * as determined by the single cpumask fallback_doms.
6929 */
6930static cpumask_var_t fallback_doms;
6931
6932/*
6933 * arch_update_cpu_topology lets virtualized architectures update the
6934 * cpu core maps. It is supposed to return 1 if the topology changed
6935 * or 0 if it stayed the same.
6936 */
6937int __attribute__((weak)) arch_update_cpu_topology(void)
6938{
6939	return 0;
6940}
6941
6942cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6943{
6944	int i;
6945	cpumask_var_t *doms;
6946
6947	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6948	if (!doms)
6949		return NULL;
6950	for (i = 0; i < ndoms; i++) {
6951		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6952			free_sched_domains(doms, i);
6953			return NULL;
6954		}
6955	}
6956	return doms;
6957}
6958
6959void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6960{
6961	unsigned int i;
6962	for (i = 0; i < ndoms; i++)
6963		free_cpumask_var(doms[i]);
6964	kfree(doms);
6965}
6966
6967/*
6968 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6969 * For now this just excludes isolated cpus, but could be used to
6970 * exclude other special cases in the future.
6971 */
6972static int init_sched_domains(const struct cpumask *cpu_map)
6973{
6974	int err;
6975
6976	arch_update_cpu_topology();
6977	ndoms_cur = 1;
6978	doms_cur = alloc_sched_domains(ndoms_cur);
6979	if (!doms_cur)
6980		doms_cur = &fallback_doms;
6981	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6982	err = build_sched_domains(doms_cur[0], NULL);
6983	register_sched_domain_sysctl();
6984
6985	return err;
6986}
6987
6988/*
6989 * Detach sched domains from a group of cpus specified in cpu_map
6990 * These cpus will now be attached to the NULL domain
6991 */
6992static void detach_destroy_domains(const struct cpumask *cpu_map)
6993{
6994	int i;
6995
6996	rcu_read_lock();
6997	for_each_cpu(i, cpu_map)
6998		cpu_attach_domain(NULL, &def_root_domain, i);
6999	rcu_read_unlock();
7000}
7001
7002/* handle null as "default" */
7003static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7004			struct sched_domain_attr *new, int idx_new)
7005{
7006	struct sched_domain_attr tmp;
7007
7008	/* fast path */
7009	if (!new && !cur)
7010		return 1;
7011
7012	tmp = SD_ATTR_INIT;
7013	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7014			new ? (new + idx_new) : &tmp,
7015			sizeof(struct sched_domain_attr));
7016}
7017
7018/*
7019 * Partition sched domains as specified by the 'ndoms_new'
7020 * cpumasks in the array doms_new[] of cpumasks. This compares
7021 * doms_new[] to the current sched domain partitioning, doms_cur[].
7022 * It destroys each deleted domain and builds each new domain.
7023 *
7024 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7025 * The masks don't intersect (don't overlap.) We should setup one
7026 * sched domain for each mask. CPUs not in any of the cpumasks will
7027 * not be load balanced. If the same cpumask appears both in the
7028 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7029 * it as it is.
7030 *
7031 * The passed in 'doms_new' should be allocated using
7032 * alloc_sched_domains.  This routine takes ownership of it and will
7033 * free_sched_domains it when done with it. If the caller failed the
7034 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7035 * and partition_sched_domains() will fallback to the single partition
7036 * 'fallback_doms', it also forces the domains to be rebuilt.
7037 *
7038 * If doms_new == NULL it will be replaced with cpu_online_mask.
7039 * ndoms_new == 0 is a special case for destroying existing domains,
7040 * and it will not create the default domain.
7041 *
7042 * Call with hotplug lock held
7043 */
7044void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7045			     struct sched_domain_attr *dattr_new)
7046{
7047	int i, j, n;
7048	int new_topology;
7049
7050	mutex_lock(&sched_domains_mutex);
7051
7052	/* always unregister in case we don't destroy any domains */
7053	unregister_sched_domain_sysctl();
7054
7055	/* Let architecture update cpu core mappings. */
7056	new_topology = arch_update_cpu_topology();
7057
7058	n = doms_new ? ndoms_new : 0;
7059
7060	/* Destroy deleted domains */
7061	for (i = 0; i < ndoms_cur; i++) {
7062		for (j = 0; j < n && !new_topology; j++) {
7063			if (cpumask_equal(doms_cur[i], doms_new[j])
7064			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7065				goto match1;
7066		}
7067		/* no match - a current sched domain not in new doms_new[] */
7068		detach_destroy_domains(doms_cur[i]);
7069match1:
7070		;
7071	}
7072
 
7073	if (doms_new == NULL) {
7074		ndoms_cur = 0;
7075		doms_new = &fallback_doms;
7076		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7077		WARN_ON_ONCE(dattr_new);
7078	}
7079
7080	/* Build new domains */
7081	for (i = 0; i < ndoms_new; i++) {
7082		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7083			if (cpumask_equal(doms_new[i], doms_cur[j])
7084			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7085				goto match2;
7086		}
7087		/* no match - add a new doms_new */
7088		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7089match2:
7090		;
7091	}
7092
7093	/* Remember the new sched domains */
7094	if (doms_cur != &fallback_doms)
7095		free_sched_domains(doms_cur, ndoms_cur);
7096	kfree(dattr_cur);	/* kfree(NULL) is safe */
7097	doms_cur = doms_new;
7098	dattr_cur = dattr_new;
7099	ndoms_cur = ndoms_new;
7100
7101	register_sched_domain_sysctl();
7102
7103	mutex_unlock(&sched_domains_mutex);
7104}
7105
 
 
7106/*
7107 * Update cpusets according to cpu_active mask.  If cpusets are
7108 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7109 * around partition_sched_domains().
 
 
 
7110 */
7111static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7112			     void *hcpu)
7113{
7114	switch (action & ~CPU_TASKS_FROZEN) {
7115	case CPU_ONLINE:
7116	case CPU_DOWN_FAILED:
7117		cpuset_update_active_cpus();
7118		return NOTIFY_OK;
7119	default:
7120		return NOTIFY_DONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7121	}
 
7122}
7123
7124static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7125			       void *hcpu)
7126{
7127	switch (action & ~CPU_TASKS_FROZEN) {
7128	case CPU_DOWN_PREPARE:
7129		cpuset_update_active_cpus();
7130		return NOTIFY_OK;
7131	default:
7132		return NOTIFY_DONE;
 
7133	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7134}
 
 
 
7135
7136void __init sched_init_smp(void)
7137{
7138	cpumask_var_t non_isolated_cpus;
7139
7140	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7141	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7142
7143	sched_init_numa();
7144
7145	get_online_cpus();
 
 
 
 
7146	mutex_lock(&sched_domains_mutex);
7147	init_sched_domains(cpu_active_mask);
7148	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7149	if (cpumask_empty(non_isolated_cpus))
7150		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7151	mutex_unlock(&sched_domains_mutex);
7152	put_online_cpus();
7153
7154	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7155	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7156
7157	/* RT runtime code needs to handle some hotplug events */
7158	hotcpu_notifier(update_runtime, 0);
7159
7160	init_hrtick();
7161
7162	/* Move init over to a non-isolated CPU */
7163	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7164		BUG();
7165	sched_init_granularity();
7166	free_cpumask_var(non_isolated_cpus);
7167
7168	init_sched_rt_class();
 
 
 
 
 
7169}
 
 
 
 
 
 
 
 
7170#else
7171void __init sched_init_smp(void)
7172{
7173	sched_init_granularity();
7174}
7175#endif /* CONFIG_SMP */
7176
7177const_debug unsigned int sysctl_timer_migration = 1;
7178
7179int in_sched_functions(unsigned long addr)
7180{
7181	return in_lock_functions(addr) ||
7182		(addr >= (unsigned long)__sched_text_start
7183		&& addr < (unsigned long)__sched_text_end);
7184}
7185
7186#ifdef CONFIG_CGROUP_SCHED
 
 
 
 
7187struct task_group root_task_group;
7188LIST_HEAD(task_groups);
 
 
 
7189#endif
7190
7191DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7192
7193void __init sched_init(void)
7194{
7195	int i, j;
7196	unsigned long alloc_size = 0, ptr;
7197
 
 
 
7198#ifdef CONFIG_FAIR_GROUP_SCHED
7199	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7200#endif
7201#ifdef CONFIG_RT_GROUP_SCHED
7202	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7203#endif
7204#ifdef CONFIG_CPUMASK_OFFSTACK
7205	alloc_size += num_possible_cpus() * cpumask_size();
7206#endif
7207	if (alloc_size) {
7208		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7209
7210#ifdef CONFIG_FAIR_GROUP_SCHED
7211		root_task_group.se = (struct sched_entity **)ptr;
7212		ptr += nr_cpu_ids * sizeof(void **);
7213
7214		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7215		ptr += nr_cpu_ids * sizeof(void **);
7216
7217#endif /* CONFIG_FAIR_GROUP_SCHED */
7218#ifdef CONFIG_RT_GROUP_SCHED
7219		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7220		ptr += nr_cpu_ids * sizeof(void **);
7221
7222		root_task_group.rt_rq = (struct rt_rq **)ptr;
7223		ptr += nr_cpu_ids * sizeof(void **);
7224
7225#endif /* CONFIG_RT_GROUP_SCHED */
 
7226#ifdef CONFIG_CPUMASK_OFFSTACK
7227		for_each_possible_cpu(i) {
7228			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7229			ptr += cpumask_size();
7230		}
 
 
7231#endif /* CONFIG_CPUMASK_OFFSTACK */
7232	}
 
 
 
 
7233
7234#ifdef CONFIG_SMP
7235	init_defrootdomain();
7236#endif
7237
7238	init_rt_bandwidth(&def_rt_bandwidth,
7239			global_rt_period(), global_rt_runtime());
7240
7241#ifdef CONFIG_RT_GROUP_SCHED
7242	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7243			global_rt_period(), global_rt_runtime());
7244#endif /* CONFIG_RT_GROUP_SCHED */
7245
7246#ifdef CONFIG_CGROUP_SCHED
 
 
7247	list_add(&root_task_group.list, &task_groups);
7248	INIT_LIST_HEAD(&root_task_group.children);
7249	INIT_LIST_HEAD(&root_task_group.siblings);
7250	autogroup_init(&init_task);
7251
7252#endif /* CONFIG_CGROUP_SCHED */
7253
7254#ifdef CONFIG_CGROUP_CPUACCT
7255	root_cpuacct.cpustat = &kernel_cpustat;
7256	root_cpuacct.cpuusage = alloc_percpu(u64);
7257	/* Too early, not expected to fail */
7258	BUG_ON(!root_cpuacct.cpuusage);
7259#endif
7260	for_each_possible_cpu(i) {
7261		struct rq *rq;
7262
7263		rq = cpu_rq(i);
7264		raw_spin_lock_init(&rq->lock);
7265		rq->nr_running = 0;
7266		rq->calc_load_active = 0;
7267		rq->calc_load_update = jiffies + LOAD_FREQ;
7268		init_cfs_rq(&rq->cfs);
7269		init_rt_rq(&rq->rt, rq);
 
7270#ifdef CONFIG_FAIR_GROUP_SCHED
7271		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7272		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 
7273		/*
7274		 * How much cpu bandwidth does root_task_group get?
7275		 *
7276		 * In case of task-groups formed thr' the cgroup filesystem, it
7277		 * gets 100% of the cpu resources in the system. This overall
7278		 * system cpu resource is divided among the tasks of
7279		 * root_task_group and its child task-groups in a fair manner,
7280		 * based on each entity's (task or task-group's) weight
7281		 * (se->load.weight).
7282		 *
7283		 * In other words, if root_task_group has 10 tasks of weight
7284		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7285		 * then A0's share of the cpu resource is:
7286		 *
7287		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7288		 *
7289		 * We achieve this by letting root_task_group's tasks sit
7290		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7291		 */
7292		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7293		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7294#endif /* CONFIG_FAIR_GROUP_SCHED */
7295
7296		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7297#ifdef CONFIG_RT_GROUP_SCHED
7298		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7299		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7300#endif
7301
7302		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7303			rq->cpu_load[j] = 0;
7304
7305		rq->last_load_update_tick = jiffies;
7306
7307#ifdef CONFIG_SMP
7308		rq->sd = NULL;
7309		rq->rd = NULL;
7310		rq->cpu_power = SCHED_POWER_SCALE;
7311		rq->post_schedule = 0;
7312		rq->active_balance = 0;
7313		rq->next_balance = jiffies;
7314		rq->push_cpu = 0;
7315		rq->cpu = i;
7316		rq->online = 0;
7317		rq->idle_stamp = 0;
7318		rq->avg_idle = 2*sysctl_sched_migration_cost;
 
7319
7320		INIT_LIST_HEAD(&rq->cfs_tasks);
7321
7322		rq_attach_root(rq, &def_root_domain);
7323#ifdef CONFIG_NO_HZ
 
7324		rq->nohz_flags = 0;
7325#endif
 
 
7326#endif
 
7327		init_rq_hrtick(rq);
7328		atomic_set(&rq->nr_iowait, 0);
7329	}
7330
7331	set_load_weight(&init_task);
7332
7333#ifdef CONFIG_PREEMPT_NOTIFIERS
7334	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7335#endif
7336
7337#ifdef CONFIG_RT_MUTEXES
7338	plist_head_init(&init_task.pi_waiters);
7339#endif
7340
7341	/*
7342	 * The boot idle thread does lazy MMU switching as well:
7343	 */
7344	atomic_inc(&init_mm.mm_count);
7345	enter_lazy_tlb(&init_mm, current);
7346
7347	/*
7348	 * Make us the idle thread. Technically, schedule() should not be
7349	 * called from this thread, however somewhere below it might be,
7350	 * but because we are the idle thread, we just pick up running again
7351	 * when this runqueue becomes "idle".
7352	 */
7353	init_idle(current, smp_processor_id());
7354
7355	calc_load_update = jiffies + LOAD_FREQ;
7356
7357	/*
7358	 * During early bootup we pretend to be a normal task:
7359	 */
7360	current->sched_class = &fair_sched_class;
7361
7362#ifdef CONFIG_SMP
7363	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7364	/* May be allocated at isolcpus cmdline parse time */
7365	if (cpu_isolated_map == NULL)
7366		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7367	idle_thread_set_boot_cpu();
 
7368#endif
7369	init_sched_fair_class();
7370
 
 
7371	scheduler_running = 1;
7372}
7373
7374#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7375static inline int preempt_count_equals(int preempt_offset)
7376{
7377	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7378
7379	return (nested == preempt_offset);
7380}
7381
7382void __might_sleep(const char *file, int line, int preempt_offset)
7383{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7384	static unsigned long prev_jiffy;	/* ratelimiting */
 
7385
7386	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7387	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
 
7388	    system_state != SYSTEM_RUNNING || oops_in_progress)
7389		return;
7390	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7391		return;
7392	prev_jiffy = jiffies;
7393
 
 
 
7394	printk(KERN_ERR
7395		"BUG: sleeping function called from invalid context at %s:%d\n",
7396			file, line);
7397	printk(KERN_ERR
7398		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7399			in_atomic(), irqs_disabled(),
7400			current->pid, current->comm);
7401
 
 
 
7402	debug_show_held_locks(current);
7403	if (irqs_disabled())
7404		print_irqtrace_events(current);
 
 
 
 
 
 
7405	dump_stack();
 
7406}
7407EXPORT_SYMBOL(__might_sleep);
7408#endif
7409
7410#ifdef CONFIG_MAGIC_SYSRQ
7411static void normalize_task(struct rq *rq, struct task_struct *p)
7412{
7413	const struct sched_class *prev_class = p->sched_class;
7414	int old_prio = p->prio;
7415	int on_rq;
7416
7417	on_rq = p->on_rq;
7418	if (on_rq)
7419		dequeue_task(rq, p, 0);
7420	__setscheduler(rq, p, SCHED_NORMAL, 0);
7421	if (on_rq) {
7422		enqueue_task(rq, p, 0);
7423		resched_task(rq->curr);
7424	}
7425
7426	check_class_changed(rq, p, prev_class, old_prio);
7427}
7428
7429void normalize_rt_tasks(void)
7430{
7431	struct task_struct *g, *p;
7432	unsigned long flags;
7433	struct rq *rq;
 
7434
7435	read_lock_irqsave(&tasklist_lock, flags);
7436	do_each_thread(g, p) {
7437		/*
7438		 * Only normalize user tasks:
7439		 */
7440		if (!p->mm)
7441			continue;
7442
7443		p->se.exec_start		= 0;
7444#ifdef CONFIG_SCHEDSTATS
7445		p->se.statistics.wait_start	= 0;
7446		p->se.statistics.sleep_start	= 0;
7447		p->se.statistics.block_start	= 0;
7448#endif
7449
7450		if (!rt_task(p)) {
7451			/*
7452			 * Renice negative nice level userspace
7453			 * tasks back to 0:
7454			 */
7455			if (TASK_NICE(p) < 0 && p->mm)
7456				set_user_nice(p, 0);
7457			continue;
7458		}
7459
7460		raw_spin_lock(&p->pi_lock);
7461		rq = __task_rq_lock(p);
7462
7463		normalize_task(rq, p);
7464
7465		__task_rq_unlock(rq);
7466		raw_spin_unlock(&p->pi_lock);
7467	} while_each_thread(g, p);
7468
7469	read_unlock_irqrestore(&tasklist_lock, flags);
7470}
7471
7472#endif /* CONFIG_MAGIC_SYSRQ */
7473
7474#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7475/*
7476 * These functions are only useful for the IA64 MCA handling, or kdb.
7477 *
7478 * They can only be called when the whole system has been
7479 * stopped - every CPU needs to be quiescent, and no scheduling
7480 * activity can take place. Using them for anything else would
7481 * be a serious bug, and as a result, they aren't even visible
7482 * under any other configuration.
7483 */
7484
7485/**
7486 * curr_task - return the current task for a given cpu.
7487 * @cpu: the processor in question.
7488 *
7489 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 
 
7490 */
7491struct task_struct *curr_task(int cpu)
7492{
7493	return cpu_curr(cpu);
7494}
7495
7496#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7497
7498#ifdef CONFIG_IA64
7499/**
7500 * set_curr_task - set the current task for a given cpu.
7501 * @cpu: the processor in question.
7502 * @p: the task pointer to set.
7503 *
7504 * Description: This function must only be used when non-maskable interrupts
7505 * are serviced on a separate stack. It allows the architecture to switch the
7506 * notion of the current task on a cpu in a non-blocking manner. This function
7507 * must be called with all CPU's synchronized, and interrupts disabled, the
7508 * and caller must save the original value of the current task (see
7509 * curr_task() above) and restore that value before reenabling interrupts and
7510 * re-starting the system.
7511 *
7512 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7513 */
7514void set_curr_task(int cpu, struct task_struct *p)
7515{
7516	cpu_curr(cpu) = p;
7517}
7518
7519#endif
7520
7521#ifdef CONFIG_CGROUP_SCHED
7522/* task_group_lock serializes the addition/removal of task groups */
7523static DEFINE_SPINLOCK(task_group_lock);
7524
7525static void free_sched_group(struct task_group *tg)
7526{
7527	free_fair_sched_group(tg);
7528	free_rt_sched_group(tg);
7529	autogroup_free(tg);
7530	kfree(tg);
7531}
7532
7533/* allocate runqueue etc for a new task group */
7534struct task_group *sched_create_group(struct task_group *parent)
7535{
7536	struct task_group *tg;
7537	unsigned long flags;
7538
7539	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7540	if (!tg)
7541		return ERR_PTR(-ENOMEM);
7542
7543	if (!alloc_fair_sched_group(tg, parent))
7544		goto err;
7545
7546	if (!alloc_rt_sched_group(tg, parent))
7547		goto err;
7548
 
 
 
 
 
 
 
 
 
 
 
7549	spin_lock_irqsave(&task_group_lock, flags);
7550	list_add_rcu(&tg->list, &task_groups);
7551
7552	WARN_ON(!parent); /* root should already exist */
7553
7554	tg->parent = parent;
7555	INIT_LIST_HEAD(&tg->children);
7556	list_add_rcu(&tg->siblings, &parent->children);
7557	spin_unlock_irqrestore(&task_group_lock, flags);
7558
7559	return tg;
7560
7561err:
7562	free_sched_group(tg);
7563	return ERR_PTR(-ENOMEM);
7564}
7565
7566/* rcu callback to free various structures associated with a task group */
7567static void free_sched_group_rcu(struct rcu_head *rhp)
7568{
7569	/* now it should be safe to free those cfs_rqs */
7570	free_sched_group(container_of(rhp, struct task_group, rcu));
7571}
7572
7573/* Destroy runqueue etc associated with a task group */
7574void sched_destroy_group(struct task_group *tg)
7575{
 
 
 
 
 
 
7576	unsigned long flags;
7577	int i;
7578
7579	/* end participation in shares distribution */
7580	for_each_possible_cpu(i)
7581		unregister_fair_sched_group(tg, i);
7582
7583	spin_lock_irqsave(&task_group_lock, flags);
7584	list_del_rcu(&tg->list);
7585	list_del_rcu(&tg->siblings);
7586	spin_unlock_irqrestore(&task_group_lock, flags);
7587
7588	/* wait for possible concurrent references to cfs_rqs complete */
7589	call_rcu(&tg->rcu, free_sched_group_rcu);
7590}
7591
7592/* change task's runqueue when it moves between groups.
7593 *	The caller of this function should have put the task in its new group
7594 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7595 *	reflect its new group.
7596 */
7597void sched_move_task(struct task_struct *tsk)
7598{
7599	struct task_group *tg;
7600	int on_rq, running;
7601	unsigned long flags;
7602	struct rq *rq;
7603
7604	rq = task_rq_lock(tsk, &flags);
7605
7606	running = task_current(rq, tsk);
7607	on_rq = tsk->on_rq;
7608
7609	if (on_rq)
7610		dequeue_task(rq, tsk, 0);
7611	if (unlikely(running))
7612		tsk->sched_class->put_prev_task(rq, tsk);
7613
7614	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7615				lockdep_is_held(&tsk->sighand->siglock)),
7616			  struct task_group, css);
7617	tg = autogroup_task_group(tsk, tg);
7618	tsk->sched_task_group = tg;
7619
7620#ifdef CONFIG_FAIR_GROUP_SCHED
7621	if (tsk->sched_class->task_move_group)
7622		tsk->sched_class->task_move_group(tsk, on_rq);
7623	else
7624#endif
7625		set_task_rq(tsk, task_cpu(tsk));
 
7626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7627	if (unlikely(running))
7628		tsk->sched_class->set_curr_task(rq);
7629	if (on_rq)
7630		enqueue_task(rq, tsk, 0);
7631
7632	task_rq_unlock(rq, tsk, &flags);
7633}
7634#endif /* CONFIG_CGROUP_SCHED */
7635
7636#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7637static unsigned long to_ratio(u64 period, u64 runtime)
7638{
7639	if (runtime == RUNTIME_INF)
7640		return 1ULL << 20;
7641
7642	return div64_u64(runtime << 20, period);
7643}
7644#endif
7645
7646#ifdef CONFIG_RT_GROUP_SCHED
7647/*
7648 * Ensure that the real time constraints are schedulable.
7649 */
7650static DEFINE_MUTEX(rt_constraints_mutex);
7651
7652/* Must be called with tasklist_lock held */
7653static inline int tg_has_rt_tasks(struct task_group *tg)
7654{
7655	struct task_struct *g, *p;
7656
7657	do_each_thread(g, p) {
7658		if (rt_task(p) && task_rq(p)->rt.tg == tg)
 
 
 
 
 
 
7659			return 1;
7660	} while_each_thread(g, p);
7661
7662	return 0;
7663}
7664
7665struct rt_schedulable_data {
7666	struct task_group *tg;
7667	u64 rt_period;
7668	u64 rt_runtime;
7669};
7670
7671static int tg_rt_schedulable(struct task_group *tg, void *data)
7672{
7673	struct rt_schedulable_data *d = data;
7674	struct task_group *child;
7675	unsigned long total, sum = 0;
7676	u64 period, runtime;
7677
7678	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7679	runtime = tg->rt_bandwidth.rt_runtime;
7680
7681	if (tg == d->tg) {
7682		period = d->rt_period;
7683		runtime = d->rt_runtime;
7684	}
7685
7686	/*
7687	 * Cannot have more runtime than the period.
7688	 */
7689	if (runtime > period && runtime != RUNTIME_INF)
7690		return -EINVAL;
7691
7692	/*
7693	 * Ensure we don't starve existing RT tasks.
7694	 */
7695	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7696		return -EBUSY;
7697
7698	total = to_ratio(period, runtime);
7699
7700	/*
7701	 * Nobody can have more than the global setting allows.
7702	 */
7703	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7704		return -EINVAL;
7705
7706	/*
7707	 * The sum of our children's runtime should not exceed our own.
7708	 */
7709	list_for_each_entry_rcu(child, &tg->children, siblings) {
7710		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7711		runtime = child->rt_bandwidth.rt_runtime;
7712
7713		if (child == d->tg) {
7714			period = d->rt_period;
7715			runtime = d->rt_runtime;
7716		}
7717
7718		sum += to_ratio(period, runtime);
7719	}
7720
7721	if (sum > total)
7722		return -EINVAL;
7723
7724	return 0;
7725}
7726
7727static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7728{
7729	int ret;
7730
7731	struct rt_schedulable_data data = {
7732		.tg = tg,
7733		.rt_period = period,
7734		.rt_runtime = runtime,
7735	};
7736
7737	rcu_read_lock();
7738	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7739	rcu_read_unlock();
7740
7741	return ret;
7742}
7743
7744static int tg_set_rt_bandwidth(struct task_group *tg,
7745		u64 rt_period, u64 rt_runtime)
7746{
7747	int i, err = 0;
7748
 
 
 
 
 
 
 
 
 
 
 
7749	mutex_lock(&rt_constraints_mutex);
7750	read_lock(&tasklist_lock);
7751	err = __rt_schedulable(tg, rt_period, rt_runtime);
7752	if (err)
7753		goto unlock;
7754
7755	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7756	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7757	tg->rt_bandwidth.rt_runtime = rt_runtime;
7758
7759	for_each_possible_cpu(i) {
7760		struct rt_rq *rt_rq = tg->rt_rq[i];
7761
7762		raw_spin_lock(&rt_rq->rt_runtime_lock);
7763		rt_rq->rt_runtime = rt_runtime;
7764		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7765	}
7766	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7767unlock:
7768	read_unlock(&tasklist_lock);
7769	mutex_unlock(&rt_constraints_mutex);
7770
7771	return err;
7772}
7773
7774int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7775{
7776	u64 rt_runtime, rt_period;
7777
7778	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7779	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7780	if (rt_runtime_us < 0)
7781		rt_runtime = RUNTIME_INF;
7782
7783	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7784}
7785
7786long sched_group_rt_runtime(struct task_group *tg)
7787{
7788	u64 rt_runtime_us;
7789
7790	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7791		return -1;
7792
7793	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7794	do_div(rt_runtime_us, NSEC_PER_USEC);
7795	return rt_runtime_us;
7796}
7797
7798int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7799{
7800	u64 rt_runtime, rt_period;
7801
7802	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7803	rt_runtime = tg->rt_bandwidth.rt_runtime;
7804
7805	if (rt_period == 0)
7806		return -EINVAL;
7807
7808	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7809}
7810
7811long sched_group_rt_period(struct task_group *tg)
7812{
7813	u64 rt_period_us;
7814
7815	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7816	do_div(rt_period_us, NSEC_PER_USEC);
7817	return rt_period_us;
7818}
 
7819
 
7820static int sched_rt_global_constraints(void)
7821{
7822	u64 runtime, period;
7823	int ret = 0;
7824
7825	if (sysctl_sched_rt_period <= 0)
7826		return -EINVAL;
7827
7828	runtime = global_rt_runtime();
7829	period = global_rt_period();
7830
7831	/*
7832	 * Sanity check on the sysctl variables.
7833	 */
7834	if (runtime > period && runtime != RUNTIME_INF)
7835		return -EINVAL;
7836
7837	mutex_lock(&rt_constraints_mutex);
7838	read_lock(&tasklist_lock);
7839	ret = __rt_schedulable(NULL, 0, 0);
7840	read_unlock(&tasklist_lock);
7841	mutex_unlock(&rt_constraints_mutex);
7842
7843	return ret;
7844}
7845
7846int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7847{
7848	/* Don't accept realtime tasks when there is no way for them to run */
7849	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7850		return 0;
7851
7852	return 1;
7853}
7854
7855#else /* !CONFIG_RT_GROUP_SCHED */
7856static int sched_rt_global_constraints(void)
7857{
7858	unsigned long flags;
7859	int i;
7860
7861	if (sysctl_sched_rt_period <= 0)
7862		return -EINVAL;
7863
7864	/*
7865	 * There's always some RT tasks in the root group
7866	 * -- migration, kstopmachine etc..
7867	 */
7868	if (sysctl_sched_rt_runtime == 0)
7869		return -EBUSY;
7870
7871	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7872	for_each_possible_cpu(i) {
7873		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7874
7875		raw_spin_lock(&rt_rq->rt_runtime_lock);
7876		rt_rq->rt_runtime = global_rt_runtime();
7877		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7878	}
7879	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7880
7881	return 0;
7882}
7883#endif /* CONFIG_RT_GROUP_SCHED */
7884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7885int sched_rt_handler(struct ctl_table *table, int write,
7886		void __user *buffer, size_t *lenp,
7887		loff_t *ppos)
7888{
7889	int ret;
7890	int old_period, old_runtime;
7891	static DEFINE_MUTEX(mutex);
 
7892
7893	mutex_lock(&mutex);
7894	old_period = sysctl_sched_rt_period;
7895	old_runtime = sysctl_sched_rt_runtime;
7896
7897	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7898
7899	if (!ret && write) {
 
 
 
 
 
 
 
 
7900		ret = sched_rt_global_constraints();
7901		if (ret) {
7902			sysctl_sched_rt_period = old_period;
7903			sysctl_sched_rt_runtime = old_runtime;
7904		} else {
7905			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7906			def_rt_bandwidth.rt_period =
7907				ns_to_ktime(global_rt_period());
7908		}
 
 
7909	}
7910	mutex_unlock(&mutex);
7911
7912	return ret;
7913}
7914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7915#ifdef CONFIG_CGROUP_SCHED
7916
7917/* return corresponding task_group object of a cgroup */
7918static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7919{
7920	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7921			    struct task_group, css);
7922}
7923
7924static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
 
7925{
7926	struct task_group *tg, *parent;
 
7927
7928	if (!cgrp->parent) {
7929		/* This is early initialization for the top cgroup */
7930		return &root_task_group.css;
7931	}
7932
7933	parent = cgroup_tg(cgrp->parent);
7934	tg = sched_create_group(parent);
7935	if (IS_ERR(tg))
7936		return ERR_PTR(-ENOMEM);
7937
 
 
7938	return &tg->css;
7939}
7940
7941static void cpu_cgroup_destroy(struct cgroup *cgrp)
7942{
7943	struct task_group *tg = cgroup_tg(cgrp);
7944
7945	sched_destroy_group(tg);
7946}
7947
7948static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7949				 struct cgroup_taskset *tset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7950{
7951	struct task_struct *task;
 
 
7952
7953	cgroup_taskset_for_each(task, cgrp, tset) {
7954#ifdef CONFIG_RT_GROUP_SCHED
7955		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7956			return -EINVAL;
7957#else
7958		/* We don't support RT-tasks being in separate groups */
7959		if (task->sched_class != &fair_sched_class)
7960			return -EINVAL;
7961#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7962	}
7963	return 0;
7964}
7965
7966static void cpu_cgroup_attach(struct cgroup *cgrp,
7967			      struct cgroup_taskset *tset)
7968{
7969	struct task_struct *task;
 
7970
7971	cgroup_taskset_for_each(task, cgrp, tset)
7972		sched_move_task(task);
7973}
7974
7975static void
7976cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7977		struct task_struct *task)
7978{
7979	/*
7980	 * cgroup_exit() is called in the copy_process() failure path.
7981	 * Ignore this case since the task hasn't ran yet, this avoids
7982	 * trying to poke a half freed task state from generic code.
7983	 */
7984	if (!(task->flags & PF_EXITING))
7985		return;
7986
7987	sched_move_task(task);
7988}
7989
7990#ifdef CONFIG_FAIR_GROUP_SCHED
7991static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7992				u64 shareval)
7993{
7994	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7995}
7996
7997static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
 
7998{
7999	struct task_group *tg = cgroup_tg(cgrp);
8000
8001	return (u64) scale_load_down(tg->shares);
8002}
8003
8004#ifdef CONFIG_CFS_BANDWIDTH
8005static DEFINE_MUTEX(cfs_constraints_mutex);
8006
8007const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8008const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8009
8010static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8011
8012static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8013{
8014	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8015	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8016
8017	if (tg == &root_task_group)
8018		return -EINVAL;
8019
8020	/*
8021	 * Ensure we have at some amount of bandwidth every period.  This is
8022	 * to prevent reaching a state of large arrears when throttled via
8023	 * entity_tick() resulting in prolonged exit starvation.
8024	 */
8025	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8026		return -EINVAL;
8027
8028	/*
8029	 * Likewise, bound things on the otherside by preventing insane quota
8030	 * periods.  This also allows us to normalize in computing quota
8031	 * feasibility.
8032	 */
8033	if (period > max_cfs_quota_period)
8034		return -EINVAL;
8035
 
 
 
 
 
8036	mutex_lock(&cfs_constraints_mutex);
8037	ret = __cfs_schedulable(tg, period, quota);
8038	if (ret)
8039		goto out_unlock;
8040
8041	runtime_enabled = quota != RUNTIME_INF;
8042	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8043	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
 
 
 
 
 
8044	raw_spin_lock_irq(&cfs_b->lock);
8045	cfs_b->period = ns_to_ktime(period);
8046	cfs_b->quota = quota;
8047
8048	__refill_cfs_bandwidth_runtime(cfs_b);
8049	/* restart the period timer (if active) to handle new period expiry */
8050	if (runtime_enabled && cfs_b->timer_active) {
8051		/* force a reprogram */
8052		cfs_b->timer_active = 0;
8053		__start_cfs_bandwidth(cfs_b);
8054	}
8055	raw_spin_unlock_irq(&cfs_b->lock);
8056
8057	for_each_possible_cpu(i) {
8058		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8059		struct rq *rq = cfs_rq->rq;
8060
8061		raw_spin_lock_irq(&rq->lock);
8062		cfs_rq->runtime_enabled = runtime_enabled;
8063		cfs_rq->runtime_remaining = 0;
8064
8065		if (cfs_rq->throttled)
8066			unthrottle_cfs_rq(cfs_rq);
8067		raw_spin_unlock_irq(&rq->lock);
8068	}
 
 
8069out_unlock:
8070	mutex_unlock(&cfs_constraints_mutex);
 
8071
8072	return ret;
8073}
8074
8075int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8076{
8077	u64 quota, period;
8078
8079	period = ktime_to_ns(tg->cfs_bandwidth.period);
8080	if (cfs_quota_us < 0)
8081		quota = RUNTIME_INF;
8082	else
8083		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8084
8085	return tg_set_cfs_bandwidth(tg, period, quota);
8086}
8087
8088long tg_get_cfs_quota(struct task_group *tg)
8089{
8090	u64 quota_us;
8091
8092	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8093		return -1;
8094
8095	quota_us = tg->cfs_bandwidth.quota;
8096	do_div(quota_us, NSEC_PER_USEC);
8097
8098	return quota_us;
8099}
8100
8101int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8102{
8103	u64 quota, period;
8104
8105	period = (u64)cfs_period_us * NSEC_PER_USEC;
8106	quota = tg->cfs_bandwidth.quota;
8107
8108	return tg_set_cfs_bandwidth(tg, period, quota);
8109}
8110
8111long tg_get_cfs_period(struct task_group *tg)
8112{
8113	u64 cfs_period_us;
8114
8115	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8116	do_div(cfs_period_us, NSEC_PER_USEC);
8117
8118	return cfs_period_us;
8119}
8120
8121static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
 
8122{
8123	return tg_get_cfs_quota(cgroup_tg(cgrp));
8124}
8125
8126static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8127				s64 cfs_quota_us)
8128{
8129	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8130}
8131
8132static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
 
8133{
8134	return tg_get_cfs_period(cgroup_tg(cgrp));
8135}
8136
8137static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8138				u64 cfs_period_us)
8139{
8140	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8141}
8142
8143struct cfs_schedulable_data {
8144	struct task_group *tg;
8145	u64 period, quota;
8146};
8147
8148/*
8149 * normalize group quota/period to be quota/max_period
8150 * note: units are usecs
8151 */
8152static u64 normalize_cfs_quota(struct task_group *tg,
8153			       struct cfs_schedulable_data *d)
8154{
8155	u64 quota, period;
8156
8157	if (tg == d->tg) {
8158		period = d->period;
8159		quota = d->quota;
8160	} else {
8161		period = tg_get_cfs_period(tg);
8162		quota = tg_get_cfs_quota(tg);
8163	}
8164
8165	/* note: these should typically be equivalent */
8166	if (quota == RUNTIME_INF || quota == -1)
8167		return RUNTIME_INF;
8168
8169	return to_ratio(period, quota);
8170}
8171
8172static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8173{
8174	struct cfs_schedulable_data *d = data;
8175	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8176	s64 quota = 0, parent_quota = -1;
8177
8178	if (!tg->parent) {
8179		quota = RUNTIME_INF;
8180	} else {
8181		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8182
8183		quota = normalize_cfs_quota(tg, d);
8184		parent_quota = parent_b->hierarchal_quota;
8185
8186		/*
8187		 * ensure max(child_quota) <= parent_quota, inherit when no
8188		 * limit is set
8189		 */
8190		if (quota == RUNTIME_INF)
8191			quota = parent_quota;
8192		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8193			return -EINVAL;
8194	}
8195	cfs_b->hierarchal_quota = quota;
8196
8197	return 0;
8198}
8199
8200static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8201{
8202	int ret;
8203	struct cfs_schedulable_data data = {
8204		.tg = tg,
8205		.period = period,
8206		.quota = quota,
8207	};
8208
8209	if (quota != RUNTIME_INF) {
8210		do_div(data.period, NSEC_PER_USEC);
8211		do_div(data.quota, NSEC_PER_USEC);
8212	}
8213
8214	rcu_read_lock();
8215	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8216	rcu_read_unlock();
8217
8218	return ret;
8219}
8220
8221static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8222		struct cgroup_map_cb *cb)
8223{
8224	struct task_group *tg = cgroup_tg(cgrp);
8225	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8226
8227	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8228	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8229	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8230
8231	return 0;
8232}
8233#endif /* CONFIG_CFS_BANDWIDTH */
8234#endif /* CONFIG_FAIR_GROUP_SCHED */
8235
8236#ifdef CONFIG_RT_GROUP_SCHED
8237static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8238				s64 val)
8239{
8240	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8241}
8242
8243static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
 
8244{
8245	return sched_group_rt_runtime(cgroup_tg(cgrp));
8246}
8247
8248static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8249		u64 rt_period_us)
8250{
8251	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8252}
8253
8254static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
 
8255{
8256	return sched_group_rt_period(cgroup_tg(cgrp));
8257}
8258#endif /* CONFIG_RT_GROUP_SCHED */
8259
8260static struct cftype cpu_files[] = {
8261#ifdef CONFIG_FAIR_GROUP_SCHED
8262	{
8263		.name = "shares",
8264		.read_u64 = cpu_shares_read_u64,
8265		.write_u64 = cpu_shares_write_u64,
8266	},
8267#endif
8268#ifdef CONFIG_CFS_BANDWIDTH
8269	{
8270		.name = "cfs_quota_us",
8271		.read_s64 = cpu_cfs_quota_read_s64,
8272		.write_s64 = cpu_cfs_quota_write_s64,
8273	},
8274	{
8275		.name = "cfs_period_us",
8276		.read_u64 = cpu_cfs_period_read_u64,
8277		.write_u64 = cpu_cfs_period_write_u64,
8278	},
8279	{
8280		.name = "stat",
8281		.read_map = cpu_stats_show,
8282	},
8283#endif
8284#ifdef CONFIG_RT_GROUP_SCHED
8285	{
8286		.name = "rt_runtime_us",
8287		.read_s64 = cpu_rt_runtime_read,
8288		.write_s64 = cpu_rt_runtime_write,
8289	},
8290	{
8291		.name = "rt_period_us",
8292		.read_u64 = cpu_rt_period_read_uint,
8293		.write_u64 = cpu_rt_period_write_uint,
8294	},
8295#endif
8296	{ }	/* terminate */
8297};
8298
8299struct cgroup_subsys cpu_cgroup_subsys = {
8300	.name		= "cpu",
8301	.create		= cpu_cgroup_create,
8302	.destroy	= cpu_cgroup_destroy,
 
8303	.can_attach	= cpu_cgroup_can_attach,
8304	.attach		= cpu_cgroup_attach,
8305	.exit		= cpu_cgroup_exit,
8306	.subsys_id	= cpu_cgroup_subsys_id,
8307	.base_cftypes	= cpu_files,
8308	.early_init	= 1,
8309};
8310
8311#endif	/* CONFIG_CGROUP_SCHED */
8312
8313#ifdef CONFIG_CGROUP_CPUACCT
8314
8315/*
8316 * CPU accounting code for task groups.
8317 *
8318 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8319 * (balbir@in.ibm.com).
8320 */
8321
8322/* create a new cpu accounting group */
8323static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8324{
8325	struct cpuacct *ca;
8326
8327	if (!cgrp->parent)
8328		return &root_cpuacct.css;
8329
8330	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8331	if (!ca)
8332		goto out;
8333
8334	ca->cpuusage = alloc_percpu(u64);
8335	if (!ca->cpuusage)
8336		goto out_free_ca;
8337
8338	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8339	if (!ca->cpustat)
8340		goto out_free_cpuusage;
8341
8342	return &ca->css;
8343
8344out_free_cpuusage:
8345	free_percpu(ca->cpuusage);
8346out_free_ca:
8347	kfree(ca);
8348out:
8349	return ERR_PTR(-ENOMEM);
8350}
8351
8352/* destroy an existing cpu accounting group */
8353static void cpuacct_destroy(struct cgroup *cgrp)
8354{
8355	struct cpuacct *ca = cgroup_ca(cgrp);
8356
8357	free_percpu(ca->cpustat);
8358	free_percpu(ca->cpuusage);
8359	kfree(ca);
8360}
8361
8362static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8363{
8364	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8365	u64 data;
8366
8367#ifndef CONFIG_64BIT
8368	/*
8369	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8370	 */
8371	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8372	data = *cpuusage;
8373	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8374#else
8375	data = *cpuusage;
8376#endif
8377
8378	return data;
8379}
8380
8381static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8382{
8383	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8384
8385#ifndef CONFIG_64BIT
8386	/*
8387	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8388	 */
8389	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8390	*cpuusage = val;
8391	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8392#else
8393	*cpuusage = val;
8394#endif
8395}
8396
8397/* return total cpu usage (in nanoseconds) of a group */
8398static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8399{
8400	struct cpuacct *ca = cgroup_ca(cgrp);
8401	u64 totalcpuusage = 0;
8402	int i;
8403
8404	for_each_present_cpu(i)
8405		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8406
8407	return totalcpuusage;
8408}
8409
8410static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8411								u64 reset)
8412{
8413	struct cpuacct *ca = cgroup_ca(cgrp);
8414	int err = 0;
8415	int i;
8416
8417	if (reset) {
8418		err = -EINVAL;
8419		goto out;
8420	}
8421
8422	for_each_present_cpu(i)
8423		cpuacct_cpuusage_write(ca, i, 0);
8424
8425out:
8426	return err;
8427}
8428
8429static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8430				   struct seq_file *m)
8431{
8432	struct cpuacct *ca = cgroup_ca(cgroup);
8433	u64 percpu;
8434	int i;
8435
8436	for_each_present_cpu(i) {
8437		percpu = cpuacct_cpuusage_read(ca, i);
8438		seq_printf(m, "%llu ", (unsigned long long) percpu);
8439	}
8440	seq_printf(m, "\n");
8441	return 0;
8442}
8443
8444static const char *cpuacct_stat_desc[] = {
8445	[CPUACCT_STAT_USER] = "user",
8446	[CPUACCT_STAT_SYSTEM] = "system",
8447};
8448
8449static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8450			      struct cgroup_map_cb *cb)
8451{
8452	struct cpuacct *ca = cgroup_ca(cgrp);
8453	int cpu;
8454	s64 val = 0;
8455
8456	for_each_online_cpu(cpu) {
8457		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8458		val += kcpustat->cpustat[CPUTIME_USER];
8459		val += kcpustat->cpustat[CPUTIME_NICE];
8460	}
8461	val = cputime64_to_clock_t(val);
8462	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8463
8464	val = 0;
8465	for_each_online_cpu(cpu) {
8466		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8467		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8468		val += kcpustat->cpustat[CPUTIME_IRQ];
8469		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8470	}
8471
8472	val = cputime64_to_clock_t(val);
8473	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8474
8475	return 0;
8476}
8477
8478static struct cftype files[] = {
8479	{
8480		.name = "usage",
8481		.read_u64 = cpuusage_read,
8482		.write_u64 = cpuusage_write,
8483	},
8484	{
8485		.name = "usage_percpu",
8486		.read_seq_string = cpuacct_percpu_seq_read,
8487	},
8488	{
8489		.name = "stat",
8490		.read_map = cpuacct_stats_show,
8491	},
8492	{ }	/* terminate */
8493};
8494
8495/*
8496 * charge this task's execution time to its accounting group.
8497 *
8498 * called with rq->lock held.
8499 */
8500void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8501{
8502	struct cpuacct *ca;
8503	int cpu;
8504
8505	if (unlikely(!cpuacct_subsys.active))
8506		return;
8507
8508	cpu = task_cpu(tsk);
8509
8510	rcu_read_lock();
8511
8512	ca = task_ca(tsk);
8513
8514	for (; ca; ca = parent_ca(ca)) {
8515		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8516		*cpuusage += cputime;
8517	}
8518
8519	rcu_read_unlock();
8520}
8521
8522struct cgroup_subsys cpuacct_subsys = {
8523	.name = "cpuacct",
8524	.create = cpuacct_create,
8525	.destroy = cpuacct_destroy,
8526	.subsys_id = cpuacct_subsys_id,
8527	.base_cftypes = files,
8528};
8529#endif	/* CONFIG_CGROUP_CPUACCT */