Loading...
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/kasan.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
34#include <linux/uaccess.h>
35#include <linux/highmem.h>
36#include <linux/mmu_context.h>
37#include <linux/interrupt.h>
38#include <linux/capability.h>
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h>
42#include <linux/perf_event.h>
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
46#include <linux/freezer.h>
47#include <linux/vmalloc.h>
48#include <linux/blkdev.h>
49#include <linux/delay.h>
50#include <linux/pid_namespace.h>
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/sysctl.h>
61#include <linux/syscalls.h>
62#include <linux/times.h>
63#include <linux/tsacct_kern.h>
64#include <linux/kprobes.h>
65#include <linux/delayacct.h>
66#include <linux/unistd.h>
67#include <linux/pagemap.h>
68#include <linux/hrtimer.h>
69#include <linux/tick.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/context_tracking.h>
75#include <linux/compiler.h>
76#include <linux/frame.h>
77#include <linux/prefetch.h>
78#include <linux/mutex.h>
79
80#include <asm/switch_to.h>
81#include <asm/tlb.h>
82#include <asm/irq_regs.h>
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
86
87#include "sched.h"
88#include "../workqueue_internal.h"
89#include "../smpboot.h"
90
91#define CREATE_TRACE_POINTS
92#include <trace/events/sched.h>
93
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99void update_rq_clock(struct rq *rq)
100{
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113}
114
115/*
116 * Debugging: various feature bits
117 */
118
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122const_debug unsigned int sysctl_sched_features =
123#include "features.h"
124 0;
125
126#undef SCHED_FEAT
127
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142/*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146unsigned int sysctl_sched_rt_period = 1000000;
147
148__read_mostly int scheduler_running;
149
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
155
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
159/*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164{
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172}
173
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266}
267
268#ifdef CONFIG_SMP
269
270static void __hrtick_restart(struct rq *rq)
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275}
276
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
281{
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288}
289
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295void hrtick_start(struct rq *rq, u64 delay)
296{
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316}
317
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324void hrtick_start(struct rq *rq, u64 delay)
325{
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333}
334#endif /* CONFIG_SMP */
335
336static void init_rq_hrtick(struct rq *rq)
337{
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348}
349#else /* CONFIG_SCHED_HRTICK */
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
357#endif /* CONFIG_SCHED_HRTICK */
358
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
426#endif
427
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
474/*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481void resched_curr(struct rq *rq)
482{
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503}
504
505void resched_cpu(int cpu)
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514}
515
516#ifdef CONFIG_SMP
517#ifdef CONFIG_NO_HZ_COMMON
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526int get_nohz_timer_target(void)
527{
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549unlock:
550 rcu_read_unlock();
551 return cpu;
552}
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563static void wake_up_idle_cpu(int cpu)
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574}
575
576static bool wake_up_full_nohz_cpu(int cpu)
577{
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594}
595
596/*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601void wake_up_nohz_cpu(int cpu)
602{
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605}
606
607static inline bool got_nohz_idle_kick(void)
608{
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623}
624
625#else /* CONFIG_NO_HZ_COMMON */
626
627static inline bool got_nohz_idle_kick(void)
628{
629 return false;
630}
631
632#endif /* CONFIG_NO_HZ_COMMON */
633
634#ifdef CONFIG_NO_HZ_FULL
635bool sched_can_stop_tick(struct rq *rq)
636{
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671}
672#endif /* CONFIG_NO_HZ_FULL */
673
674void sched_avg_update(struct rq *rq)
675{
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688}
689
690#endif /* CONFIG_SMP */
691
692#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694/*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702{
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727out:
728 return ret;
729}
730
731int tg_nop(struct task_group *tg, void *data)
732{
733 return 0;
734}
735#endif
736
737static void set_load_weight(struct task_struct *p)
738{
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
753}
754
755static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756{
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
761}
762
763static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
769}
770
771void activate_task(struct rq *rq, struct task_struct *p, int flags)
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
776 enqueue_task(rq, p, flags);
777}
778
779void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
784 dequeue_task(rq, p, flags);
785}
786
787static void update_rq_clock_task(struct rq *rq, s64 delta)
788{
789/*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795#endif
796#ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819#endif
820#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((¶virt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
830 }
831#endif
832
833 rq->clock_task += delta;
834
835#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838#endif
839}
840
841void sched_set_stop_task(int cpu, struct task_struct *stop)
842{
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869}
870
871/*
872 * __normal_prio - return the priority that is based on the static prio
873 */
874static inline int __normal_prio(struct task_struct *p)
875{
876 return p->static_prio;
877}
878
879/*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
886static inline int normal_prio(struct task_struct *p)
887{
888 int prio;
889
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906static int effective_prio(struct task_struct *p)
907{
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917}
918
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
924 */
925inline int task_curr(const struct task_struct *p)
926{
927 return cpu_curr(task_cpu(p)) == p;
928}
929
930/*
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
936 */
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
940{
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
944
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948}
949
950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
973}
974
975#ifdef CONFIG_SMP
976/*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990/*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
995static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
996{
997 lockdep_assert_held(&rq->lock);
998
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013}
1014
1015struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018};
1019
1020/*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1028 */
1029static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030{
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1037
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
1041}
1042
1043/*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048static int migration_cpu_stop(void *data)
1049{
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
1082 local_irq_enable();
1083 return 0;
1084}
1085
1086/*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1091{
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094}
1095
1096void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097{
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
1101 lockdep_assert_held(&p->pi_lock);
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1112 dequeue_task(rq, p, DEQUEUE_SAVE);
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
1117 p->sched_class->set_cpus_allowed(p, new_mask);
1118
1119 if (queued)
1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
1121 if (running)
1122 set_curr_task(rq, p);
1123}
1124
1125/*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
1134static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
1136{
1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138 unsigned int dest_cpu;
1139 struct rq_flags rf;
1140 struct rq *rq;
1141 int ret = 0;
1142
1143 rq = task_rq_lock(p, &rf);
1144
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
1189 task_rq_unlock(rq, p, &rf);
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
1198 lockdep_unpin_lock(&rq->lock, rf.cookie);
1199 rq = move_queued_task(rq, p, dest_cpu);
1200 lockdep_repin_lock(&rq->lock, rf.cookie);
1201 }
1202out:
1203 task_rq_unlock(rq, p, &rf);
1204
1205 return ret;
1206}
1207
1208int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209{
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211}
1212EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
1214void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1215{
1216#ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1222 !p->on_rq);
1223
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
1233#ifdef CONFIG_LOCKDEP
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
1239 * see task_group().
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246#endif
1247#endif
1248
1249 trace_sched_migrate_task(p, new_cpu);
1250
1251 if (task_cpu(p) != new_cpu) {
1252 if (p->sched_class->migrate_task_rq)
1253 p->sched_class->migrate_task_rq(p);
1254 p->se.nr_migrations++;
1255 perf_event_task_migrate(p);
1256 }
1257
1258 __set_task_cpu(p, new_cpu);
1259}
1260
1261static void __migrate_swap_task(struct task_struct *p, int cpu)
1262{
1263 if (task_on_rq_queued(p)) {
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
1269 p->on_rq = TASK_ON_RQ_MIGRATING;
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
1273 p->on_rq = TASK_ON_RQ_QUEUED;
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
1279 * previous cpu our target instead of where it really is.
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283}
1284
1285struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288};
1289
1290static int migrate_swap_stop(void *data)
1291{
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
1304 double_rq_lock(src_rq, dst_rq);
1305
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323unlock:
1324 double_rq_unlock(src_rq, dst_rq);
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
1327
1328 return ret;
1329}
1330
1331/*
1332 * Cross migrate two tasks
1333 */
1334int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335{
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365out:
1366 return ret;
1367}
1368
1369/*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
1385unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1386{
1387 int running, queued;
1388 struct rq_flags rf;
1389 unsigned long ncsw;
1390 struct rq *rq;
1391
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
1400
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
1415 cpu_relax();
1416 }
1417
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
1423 rq = task_rq_lock(p, &rf);
1424 trace_sched_wait_task(p);
1425 running = task_running(rq, p);
1426 queued = task_on_rq_queued(p);
1427 ncsw = 0;
1428 if (!match_state || p->state == match_state)
1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1430 task_rq_unlock(rq, p, &rf);
1431
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
1448
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
1454 * So if it was still runnable (but just not actively
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
1458 if (unlikely(queued)) {
1459 ktime_t to = NSEC_PER_SEC / HZ;
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1463 continue;
1464 }
1465
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
1473
1474 return ncsw;
1475}
1476
1477/***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
1484 * NOTE: this function doesn't have to take the runqueue lock,
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
1490void kick_process(struct task_struct *p)
1491{
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499}
1500EXPORT_SYMBOL_GPL(kick_process);
1501
1502/*
1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
1523 */
1524static int select_fallback_rq(int cpu, struct task_struct *p)
1525{
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
1530
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
1546 }
1547
1548 for (;;) {
1549 /* Any allowed, online CPU? */
1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
1554 continue;
1555 goto out;
1556 }
1557
1558 /* No more Mr. Nice Guy. */
1559 switch (state) {
1560 case cpuset:
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1587 task_pid_nr(p), p->comm, cpu);
1588 }
1589 }
1590
1591 return dest_cpu;
1592}
1593
1594/*
1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1596 */
1597static inline
1598int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1599{
1600 lockdep_assert_held(&p->pi_lock);
1601
1602 if (tsk_nr_cpus_allowed(p) > 1)
1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1618 !cpu_online(cpu)))
1619 cpu = select_fallback_rq(task_cpu(p), p);
1620
1621 return cpu;
1622}
1623
1624static void update_avg(u64 *avg, u64 sample)
1625{
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628}
1629
1630#else
1631
1632static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634{
1635 return set_cpus_allowed_ptr(p, new_mask);
1636}
1637
1638#endif /* CONFIG_SMP */
1639
1640static void
1641ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1642{
1643 struct rq *rq;
1644
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
1649
1650#ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
1654 } else {
1655 struct sched_domain *sd;
1656
1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1658 rcu_read_lock();
1659 for_each_domain(rq->cpu, sd) {
1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1661 schedstat_inc(sd->ttwu_wake_remote);
1662 break;
1663 }
1664 }
1665 rcu_read_unlock();
1666 }
1667
1668 if (wake_flags & WF_MIGRATED)
1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1670#endif /* CONFIG_SMP */
1671
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
1674
1675 if (wake_flags & WF_SYNC)
1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1677}
1678
1679static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1680{
1681 activate_task(rq, p, en_flags);
1682 p->on_rq = TASK_ON_RQ_QUEUED;
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
1687}
1688
1689/*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
1692static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693 struct pin_cookie cookie)
1694{
1695 check_preempt_curr(rq, p, wake_flags);
1696 p->state = TASK_RUNNING;
1697 trace_sched_wakeup(p);
1698
1699#ifdef CONFIG_SMP
1700 if (p->sched_class->task_woken) {
1701 /*
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
1704 */
1705 lockdep_unpin_lock(&rq->lock, cookie);
1706 p->sched_class->task_woken(rq, p);
1707 lockdep_repin_lock(&rq->lock, cookie);
1708 }
1709
1710 if (rq->idle_stamp) {
1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
1712 u64 max = 2*rq->max_idle_balance_cost;
1713
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
1717 rq->avg_idle = max;
1718
1719 rq->idle_stamp = 0;
1720 }
1721#endif
1722}
1723
1724static void
1725ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726 struct pin_cookie cookie)
1727{
1728 int en_flags = ENQUEUE_WAKEUP;
1729
1730 lockdep_assert_held(&rq->lock);
1731
1732#ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
1735
1736 if (wake_flags & WF_MIGRATED)
1737 en_flags |= ENQUEUE_MIGRATED;
1738#endif
1739
1740 ttwu_activate(rq, p, en_flags);
1741 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1742}
1743
1744/*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750static int ttwu_remote(struct task_struct *p, int wake_flags)
1751{
1752 struct rq_flags rf;
1753 struct rq *rq;
1754 int ret = 0;
1755
1756 rq = __task_rq_lock(p, &rf);
1757 if (task_on_rq_queued(p)) {
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
1760 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1761 ret = 1;
1762 }
1763 __task_rq_unlock(rq, &rf);
1764
1765 return ret;
1766}
1767
1768#ifdef CONFIG_SMP
1769void sched_ttwu_pending(void)
1770{
1771 struct rq *rq = this_rq();
1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
1773 struct pin_cookie cookie;
1774 struct task_struct *p;
1775 unsigned long flags;
1776
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
1781 cookie = lockdep_pin_lock(&rq->lock);
1782
1783 while (llist) {
1784 int wake_flags = 0;
1785
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
1792 ttwu_do_activate(rq, p, wake_flags, cookie);
1793 }
1794
1795 lockdep_unpin_lock(&rq->lock, cookie);
1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
1797}
1798
1799void scheduler_ipi(void)
1800{
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
1806 preempt_fold_need_resched();
1807
1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
1825 sched_ttwu_pending();
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
1830 if (unlikely(got_nohz_idle_kick())) {
1831 this_rq()->idle_balance = 1;
1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
1833 }
1834 irq_exit();
1835}
1836
1837static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1838{
1839 struct rq *rq = cpu_rq(cpu);
1840
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
1849}
1850
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
1870
1871out:
1872 rcu_read_unlock();
1873}
1874
1875bool cpus_share_cache(int this_cpu, int that_cpu)
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
1879#endif /* CONFIG_SMP */
1880
1881static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1882{
1883 struct rq *rq = cpu_rq(cpu);
1884 struct pin_cookie cookie;
1885
1886#if defined(CONFIG_SMP)
1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1889 ttwu_queue_remote(p, cpu, wake_flags);
1890 return;
1891 }
1892#endif
1893
1894 raw_spin_lock(&rq->lock);
1895 cookie = lockdep_pin_lock(&rq->lock);
1896 ttwu_do_activate(rq, p, wake_flags, cookie);
1897 lockdep_unpin_lock(&rq->lock, cookie);
1898 raw_spin_unlock(&rq->lock);
1899}
1900
1901/*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1951 * 2) smp_cond_load_acquire(!X->on_cpu)
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1989 *
1990 */
1991
1992/**
1993 * try_to_wake_up - wake up a thread
1994 * @p: the thread to be awakened
1995 * @state: the mask of task states that can be woken
1996 * @wake_flags: wake modifier flags (WF_*)
1997 *
1998 * If (@state & @p->state) @p->state = TASK_RUNNING.
1999 *
2000 * If the task was not queued/runnable, also place it back on a runqueue.
2001 *
2002 * Atomic against schedule() which would dequeue a task, also see
2003 * set_current_state().
2004 *
2005 * Return: %true if @p->state changes (an actual wakeup was done),
2006 * %false otherwise.
2007 */
2008static int
2009try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2010{
2011 unsigned long flags;
2012 int cpu, success = 0;
2013
2014 /*
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2019 */
2020 smp_mb__before_spinlock();
2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
2022 if (!(p->state & state))
2023 goto out;
2024
2025 trace_sched_waking(p);
2026
2027 success = 1; /* we're going to change ->state */
2028 cpu = task_cpu(p);
2029
2030 /*
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2034 *
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2038 * \
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2043 *
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2046 *
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2050 */
2051 smp_rmb();
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
2054
2055#ifdef CONFIG_SMP
2056 /*
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2059 *
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2062 *
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2068 *
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2072 */
2073 smp_rmb();
2074
2075 /*
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
2078 *
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2080 *
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
2083 */
2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
2085
2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2087 p->state = TASK_WAKING;
2088
2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
2092 set_task_cpu(p, cpu);
2093 }
2094#endif /* CONFIG_SMP */
2095
2096 ttwu_queue(p, cpu, wake_flags);
2097stat:
2098 ttwu_stat(p, cpu, wake_flags);
2099out:
2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2101
2102 return success;
2103}
2104
2105/**
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
2108 * @cookie: context's cookie for pinning
2109 *
2110 * Put @p on the run-queue if it's not already there. The caller must
2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2112 * the current task.
2113 */
2114static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2115{
2116 struct rq *rq = task_rq(p);
2117
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2121
2122 lockdep_assert_held(&rq->lock);
2123
2124 if (!raw_spin_trylock(&p->pi_lock)) {
2125 /*
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2130 */
2131 lockdep_unpin_lock(&rq->lock, cookie);
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
2135 lockdep_repin_lock(&rq->lock, cookie);
2136 }
2137
2138 if (!(p->state & TASK_NORMAL))
2139 goto out;
2140
2141 trace_sched_waking(p);
2142
2143 if (!task_on_rq_queued(p))
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145
2146 ttwu_do_wakeup(rq, p, 0, cookie);
2147 ttwu_stat(p, smp_processor_id(), 0);
2148out:
2149 raw_spin_unlock(&p->pi_lock);
2150}
2151
2152/**
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2155 *
2156 * Attempt to wake up the nominated process and move it to the set of runnable
2157 * processes.
2158 *
2159 * Return: 1 if the process was woken up, 0 if it was already running.
2160 *
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2163 */
2164int wake_up_process(struct task_struct *p)
2165{
2166 return try_to_wake_up(p, TASK_NORMAL, 0);
2167}
2168EXPORT_SYMBOL(wake_up_process);
2169
2170int wake_up_state(struct task_struct *p, unsigned int state)
2171{
2172 return try_to_wake_up(p, state, 0);
2173}
2174
2175/*
2176 * This function clears the sched_dl_entity static params.
2177 */
2178void __dl_clear_params(struct task_struct *p)
2179{
2180 struct sched_dl_entity *dl_se = &p->dl;
2181
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
2187
2188 dl_se->dl_throttled = 0;
2189 dl_se->dl_yielded = 0;
2190}
2191
2192/*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
2198static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2199{
2200 p->on_rq = 0;
2201
2202 p->se.on_rq = 0;
2203 p->se.exec_start = 0;
2204 p->se.sum_exec_runtime = 0;
2205 p->se.prev_sum_exec_runtime = 0;
2206 p->se.nr_migrations = 0;
2207 p->se.vruntime = 0;
2208 INIT_LIST_HEAD(&p->se.group_node);
2209
2210#ifdef CONFIG_FAIR_GROUP_SCHED
2211 p->se.cfs_rq = NULL;
2212#endif
2213
2214#ifdef CONFIG_SCHEDSTATS
2215 /* Even if schedstat is disabled, there should not be garbage */
2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2217#endif
2218
2219 RB_CLEAR_NODE(&p->dl.rb_node);
2220 init_dl_task_timer(&p->dl);
2221 __dl_clear_params(p);
2222
2223 INIT_LIST_HEAD(&p->rt.run_list);
2224 p->rt.timeout = 0;
2225 p->rt.time_slice = sched_rr_timeslice;
2226 p->rt.on_rq = 0;
2227 p->rt.on_list = 0;
2228
2229#ifdef CONFIG_PREEMPT_NOTIFIERS
2230 INIT_HLIST_HEAD(&p->preempt_notifiers);
2231#endif
2232
2233#ifdef CONFIG_NUMA_BALANCING
2234 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2235 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2236 p->mm->numa_scan_seq = 0;
2237 }
2238
2239 if (clone_flags & CLONE_VM)
2240 p->numa_preferred_nid = current->numa_preferred_nid;
2241 else
2242 p->numa_preferred_nid = -1;
2243
2244 p->node_stamp = 0ULL;
2245 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2246 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2247 p->numa_work.next = &p->numa_work;
2248 p->numa_faults = NULL;
2249 p->last_task_numa_placement = 0;
2250 p->last_sum_exec_runtime = 0;
2251
2252 p->numa_group = NULL;
2253#endif /* CONFIG_NUMA_BALANCING */
2254}
2255
2256DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257
2258#ifdef CONFIG_NUMA_BALANCING
2259
2260void set_numabalancing_state(bool enabled)
2261{
2262 if (enabled)
2263 static_branch_enable(&sched_numa_balancing);
2264 else
2265 static_branch_disable(&sched_numa_balancing);
2266}
2267
2268#ifdef CONFIG_PROC_SYSCTL
2269int sysctl_numa_balancing(struct ctl_table *table, int write,
2270 void __user *buffer, size_t *lenp, loff_t *ppos)
2271{
2272 struct ctl_table t;
2273 int err;
2274 int state = static_branch_likely(&sched_numa_balancing);
2275
2276 if (write && !capable(CAP_SYS_ADMIN))
2277 return -EPERM;
2278
2279 t = *table;
2280 t.data = &state;
2281 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 if (err < 0)
2283 return err;
2284 if (write)
2285 set_numabalancing_state(state);
2286 return err;
2287}
2288#endif
2289#endif
2290
2291#ifdef CONFIG_SCHEDSTATS
2292
2293DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2294static bool __initdata __sched_schedstats = false;
2295
2296static void set_schedstats(bool enabled)
2297{
2298 if (enabled)
2299 static_branch_enable(&sched_schedstats);
2300 else
2301 static_branch_disable(&sched_schedstats);
2302}
2303
2304void force_schedstat_enabled(void)
2305{
2306 if (!schedstat_enabled()) {
2307 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308 static_branch_enable(&sched_schedstats);
2309 }
2310}
2311
2312static int __init setup_schedstats(char *str)
2313{
2314 int ret = 0;
2315 if (!str)
2316 goto out;
2317
2318 /*
2319 * This code is called before jump labels have been set up, so we can't
2320 * change the static branch directly just yet. Instead set a temporary
2321 * variable so init_schedstats() can do it later.
2322 */
2323 if (!strcmp(str, "enable")) {
2324 __sched_schedstats = true;
2325 ret = 1;
2326 } else if (!strcmp(str, "disable")) {
2327 __sched_schedstats = false;
2328 ret = 1;
2329 }
2330out:
2331 if (!ret)
2332 pr_warn("Unable to parse schedstats=\n");
2333
2334 return ret;
2335}
2336__setup("schedstats=", setup_schedstats);
2337
2338static void __init init_schedstats(void)
2339{
2340 set_schedstats(__sched_schedstats);
2341}
2342
2343#ifdef CONFIG_PROC_SYSCTL
2344int sysctl_schedstats(struct ctl_table *table, int write,
2345 void __user *buffer, size_t *lenp, loff_t *ppos)
2346{
2347 struct ctl_table t;
2348 int err;
2349 int state = static_branch_likely(&sched_schedstats);
2350
2351 if (write && !capable(CAP_SYS_ADMIN))
2352 return -EPERM;
2353
2354 t = *table;
2355 t.data = &state;
2356 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357 if (err < 0)
2358 return err;
2359 if (write)
2360 set_schedstats(state);
2361 return err;
2362}
2363#endif /* CONFIG_PROC_SYSCTL */
2364#else /* !CONFIG_SCHEDSTATS */
2365static inline void init_schedstats(void) {}
2366#endif /* CONFIG_SCHEDSTATS */
2367
2368/*
2369 * fork()/clone()-time setup:
2370 */
2371int sched_fork(unsigned long clone_flags, struct task_struct *p)
2372{
2373 unsigned long flags;
2374 int cpu = get_cpu();
2375
2376 __sched_fork(clone_flags, p);
2377 /*
2378 * We mark the process as NEW here. This guarantees that
2379 * nobody will actually run it, and a signal or other external
2380 * event cannot wake it up and insert it on the runqueue either.
2381 */
2382 p->state = TASK_NEW;
2383
2384 /*
2385 * Make sure we do not leak PI boosting priority to the child.
2386 */
2387 p->prio = current->normal_prio;
2388
2389 /*
2390 * Revert to default priority/policy on fork if requested.
2391 */
2392 if (unlikely(p->sched_reset_on_fork)) {
2393 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2394 p->policy = SCHED_NORMAL;
2395 p->static_prio = NICE_TO_PRIO(0);
2396 p->rt_priority = 0;
2397 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2398 p->static_prio = NICE_TO_PRIO(0);
2399
2400 p->prio = p->normal_prio = __normal_prio(p);
2401 set_load_weight(p);
2402
2403 /*
2404 * We don't need the reset flag anymore after the fork. It has
2405 * fulfilled its duty:
2406 */
2407 p->sched_reset_on_fork = 0;
2408 }
2409
2410 if (dl_prio(p->prio)) {
2411 put_cpu();
2412 return -EAGAIN;
2413 } else if (rt_prio(p->prio)) {
2414 p->sched_class = &rt_sched_class;
2415 } else {
2416 p->sched_class = &fair_sched_class;
2417 }
2418
2419 init_entity_runnable_average(&p->se);
2420
2421 /*
2422 * The child is not yet in the pid-hash so no cgroup attach races,
2423 * and the cgroup is pinned to this child due to cgroup_fork()
2424 * is ran before sched_fork().
2425 *
2426 * Silence PROVE_RCU.
2427 */
2428 raw_spin_lock_irqsave(&p->pi_lock, flags);
2429 /*
2430 * We're setting the cpu for the first time, we don't migrate,
2431 * so use __set_task_cpu().
2432 */
2433 __set_task_cpu(p, cpu);
2434 if (p->sched_class->task_fork)
2435 p->sched_class->task_fork(p);
2436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2437
2438#ifdef CONFIG_SCHED_INFO
2439 if (likely(sched_info_on()))
2440 memset(&p->sched_info, 0, sizeof(p->sched_info));
2441#endif
2442#if defined(CONFIG_SMP)
2443 p->on_cpu = 0;
2444#endif
2445 init_task_preempt_count(p);
2446#ifdef CONFIG_SMP
2447 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2448 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2449#endif
2450
2451 put_cpu();
2452 return 0;
2453}
2454
2455unsigned long to_ratio(u64 period, u64 runtime)
2456{
2457 if (runtime == RUNTIME_INF)
2458 return 1ULL << 20;
2459
2460 /*
2461 * Doing this here saves a lot of checks in all
2462 * the calling paths, and returning zero seems
2463 * safe for them anyway.
2464 */
2465 if (period == 0)
2466 return 0;
2467
2468 return div64_u64(runtime << 20, period);
2469}
2470
2471#ifdef CONFIG_SMP
2472inline struct dl_bw *dl_bw_of(int i)
2473{
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
2476 return &cpu_rq(i)->rd->dl_bw;
2477}
2478
2479static inline int dl_bw_cpus(int i)
2480{
2481 struct root_domain *rd = cpu_rq(i)->rd;
2482 int cpus = 0;
2483
2484 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485 "sched RCU must be held");
2486 for_each_cpu_and(i, rd->span, cpu_active_mask)
2487 cpus++;
2488
2489 return cpus;
2490}
2491#else
2492inline struct dl_bw *dl_bw_of(int i)
2493{
2494 return &cpu_rq(i)->dl.dl_bw;
2495}
2496
2497static inline int dl_bw_cpus(int i)
2498{
2499 return 1;
2500}
2501#endif
2502
2503/*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
2510 *
2511 * XXX we should delay bw change until the task's 0-lag point, see
2512 * __setparam_dl().
2513 */
2514static int dl_overflow(struct task_struct *p, int policy,
2515 const struct sched_attr *attr)
2516{
2517
2518 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2519 u64 period = attr->sched_period ?: attr->sched_deadline;
2520 u64 runtime = attr->sched_runtime;
2521 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2522 int cpus, err = -1;
2523
2524 /* !deadline task may carry old deadline bandwidth */
2525 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2526 return 0;
2527
2528 /*
2529 * Either if a task, enters, leave, or stays -deadline but changes
2530 * its parameters, we may need to update accordingly the total
2531 * allocated bandwidth of the container.
2532 */
2533 raw_spin_lock(&dl_b->lock);
2534 cpus = dl_bw_cpus(task_cpu(p));
2535 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541 __dl_clear(dl_b, p->dl.dl_bw);
2542 __dl_add(dl_b, new_bw);
2543 err = 0;
2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 __dl_clear(dl_b, p->dl.dl_bw);
2546 err = 0;
2547 }
2548 raw_spin_unlock(&dl_b->lock);
2549
2550 return err;
2551}
2552
2553extern void init_dl_bw(struct dl_bw *dl_b);
2554
2555/*
2556 * wake_up_new_task - wake up a newly created task for the first time.
2557 *
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2561 */
2562void wake_up_new_task(struct task_struct *p)
2563{
2564 struct rq_flags rf;
2565 struct rq *rq;
2566
2567 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2568 p->state = TASK_RUNNING;
2569#ifdef CONFIG_SMP
2570 /*
2571 * Fork balancing, do it here and not earlier because:
2572 * - cpus_allowed can change in the fork path
2573 * - any previously selected cpu might disappear through hotplug
2574 *
2575 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576 * as we're not fully set-up yet.
2577 */
2578 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2579#endif
2580 rq = __task_rq_lock(p, &rf);
2581 post_init_entity_util_avg(&p->se);
2582
2583 activate_task(rq, p, 0);
2584 p->on_rq = TASK_ON_RQ_QUEUED;
2585 trace_sched_wakeup_new(p);
2586 check_preempt_curr(rq, p, WF_FORK);
2587#ifdef CONFIG_SMP
2588 if (p->sched_class->task_woken) {
2589 /*
2590 * Nothing relies on rq->lock after this, so its fine to
2591 * drop it.
2592 */
2593 lockdep_unpin_lock(&rq->lock, rf.cookie);
2594 p->sched_class->task_woken(rq, p);
2595 lockdep_repin_lock(&rq->lock, rf.cookie);
2596 }
2597#endif
2598 task_rq_unlock(rq, p, &rf);
2599}
2600
2601#ifdef CONFIG_PREEMPT_NOTIFIERS
2602
2603static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2604
2605void preempt_notifier_inc(void)
2606{
2607 static_key_slow_inc(&preempt_notifier_key);
2608}
2609EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2610
2611void preempt_notifier_dec(void)
2612{
2613 static_key_slow_dec(&preempt_notifier_key);
2614}
2615EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2616
2617/**
2618 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2619 * @notifier: notifier struct to register
2620 */
2621void preempt_notifier_register(struct preempt_notifier *notifier)
2622{
2623 if (!static_key_false(&preempt_notifier_key))
2624 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2625
2626 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630/**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
2632 * @notifier: notifier struct to unregister
2633 *
2634 * This is *not* safe to call from within a preemption notifier.
2635 */
2636void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637{
2638 hlist_del(¬ifier->link);
2639}
2640EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
2642static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643{
2644 struct preempt_notifier *notifier;
2645
2646 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2647 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2648}
2649
2650static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651{
2652 if (static_key_false(&preempt_notifier_key))
2653 __fire_sched_in_preempt_notifiers(curr);
2654}
2655
2656static void
2657__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659{
2660 struct preempt_notifier *notifier;
2661
2662 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2663 notifier->ops->sched_out(notifier, next);
2664}
2665
2666static __always_inline void
2667fire_sched_out_preempt_notifiers(struct task_struct *curr,
2668 struct task_struct *next)
2669{
2670 if (static_key_false(&preempt_notifier_key))
2671 __fire_sched_out_preempt_notifiers(curr, next);
2672}
2673
2674#else /* !CONFIG_PREEMPT_NOTIFIERS */
2675
2676static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2677{
2678}
2679
2680static inline void
2681fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683{
2684}
2685
2686#endif /* CONFIG_PREEMPT_NOTIFIERS */
2687
2688/**
2689 * prepare_task_switch - prepare to switch tasks
2690 * @rq: the runqueue preparing to switch
2691 * @prev: the current task that is being switched out
2692 * @next: the task we are going to switch to.
2693 *
2694 * This is called with the rq lock held and interrupts off. It must
2695 * be paired with a subsequent finish_task_switch after the context
2696 * switch.
2697 *
2698 * prepare_task_switch sets up locking and calls architecture specific
2699 * hooks.
2700 */
2701static inline void
2702prepare_task_switch(struct rq *rq, struct task_struct *prev,
2703 struct task_struct *next)
2704{
2705 sched_info_switch(rq, prev, next);
2706 perf_event_task_sched_out(prev, next);
2707 fire_sched_out_preempt_notifiers(prev, next);
2708 prepare_lock_switch(rq, next);
2709 prepare_arch_switch(next);
2710}
2711
2712/**
2713 * finish_task_switch - clean up after a task-switch
2714 * @prev: the thread we just switched away from.
2715 *
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
2720 *
2721 * Note that we may have delayed dropping an mm in context_switch(). If
2722 * so, we finish that here outside of the runqueue lock. (Doing it
2723 * with the lock held can cause deadlocks; see schedule() for
2724 * details.)
2725 *
2726 * The context switch have flipped the stack from under us and restored the
2727 * local variables which were saved when this task called schedule() in the
2728 * past. prev == current is still correct but we need to recalculate this_rq
2729 * because prev may have moved to another CPU.
2730 */
2731static struct rq *finish_task_switch(struct task_struct *prev)
2732 __releases(rq->lock)
2733{
2734 struct rq *rq = this_rq();
2735 struct mm_struct *mm = rq->prev_mm;
2736 long prev_state;
2737
2738 /*
2739 * The previous task will have left us with a preempt_count of 2
2740 * because it left us after:
2741 *
2742 * schedule()
2743 * preempt_disable(); // 1
2744 * __schedule()
2745 * raw_spin_lock_irq(&rq->lock) // 2
2746 *
2747 * Also, see FORK_PREEMPT_COUNT.
2748 */
2749 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2750 "corrupted preempt_count: %s/%d/0x%x\n",
2751 current->comm, current->pid, preempt_count()))
2752 preempt_count_set(FORK_PREEMPT_COUNT);
2753
2754 rq->prev_mm = NULL;
2755
2756 /*
2757 * A task struct has one reference for the use as "current".
2758 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2759 * schedule one last time. The schedule call will never return, and
2760 * the scheduled task must drop that reference.
2761 *
2762 * We must observe prev->state before clearing prev->on_cpu (in
2763 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2764 * running on another CPU and we could rave with its RUNNING -> DEAD
2765 * transition, resulting in a double drop.
2766 */
2767 prev_state = prev->state;
2768 vtime_task_switch(prev);
2769 perf_event_task_sched_in(prev, current);
2770 finish_lock_switch(rq, prev);
2771 finish_arch_post_lock_switch();
2772
2773 fire_sched_in_preempt_notifiers(current);
2774 if (mm)
2775 mmdrop(mm);
2776 if (unlikely(prev_state == TASK_DEAD)) {
2777 if (prev->sched_class->task_dead)
2778 prev->sched_class->task_dead(prev);
2779
2780 /*
2781 * Remove function-return probe instances associated with this
2782 * task and put them back on the free list.
2783 */
2784 kprobe_flush_task(prev);
2785
2786 /* Task is done with its stack. */
2787 put_task_stack(prev);
2788
2789 put_task_struct(prev);
2790 }
2791
2792 tick_nohz_task_switch();
2793 return rq;
2794}
2795
2796#ifdef CONFIG_SMP
2797
2798/* rq->lock is NOT held, but preemption is disabled */
2799static void __balance_callback(struct rq *rq)
2800{
2801 struct callback_head *head, *next;
2802 void (*func)(struct rq *rq);
2803 unsigned long flags;
2804
2805 raw_spin_lock_irqsave(&rq->lock, flags);
2806 head = rq->balance_callback;
2807 rq->balance_callback = NULL;
2808 while (head) {
2809 func = (void (*)(struct rq *))head->func;
2810 next = head->next;
2811 head->next = NULL;
2812 head = next;
2813
2814 func(rq);
2815 }
2816 raw_spin_unlock_irqrestore(&rq->lock, flags);
2817}
2818
2819static inline void balance_callback(struct rq *rq)
2820{
2821 if (unlikely(rq->balance_callback))
2822 __balance_callback(rq);
2823}
2824
2825#else
2826
2827static inline void balance_callback(struct rq *rq)
2828{
2829}
2830
2831#endif
2832
2833/**
2834 * schedule_tail - first thing a freshly forked thread must call.
2835 * @prev: the thread we just switched away from.
2836 */
2837asmlinkage __visible void schedule_tail(struct task_struct *prev)
2838 __releases(rq->lock)
2839{
2840 struct rq *rq;
2841
2842 /*
2843 * New tasks start with FORK_PREEMPT_COUNT, see there and
2844 * finish_task_switch() for details.
2845 *
2846 * finish_task_switch() will drop rq->lock() and lower preempt_count
2847 * and the preempt_enable() will end up enabling preemption (on
2848 * PREEMPT_COUNT kernels).
2849 */
2850
2851 rq = finish_task_switch(prev);
2852 balance_callback(rq);
2853 preempt_enable();
2854
2855 if (current->set_child_tid)
2856 put_user(task_pid_vnr(current), current->set_child_tid);
2857}
2858
2859/*
2860 * context_switch - switch to the new MM and the new thread's register state.
2861 */
2862static __always_inline struct rq *
2863context_switch(struct rq *rq, struct task_struct *prev,
2864 struct task_struct *next, struct pin_cookie cookie)
2865{
2866 struct mm_struct *mm, *oldmm;
2867
2868 prepare_task_switch(rq, prev, next);
2869
2870 mm = next->mm;
2871 oldmm = prev->active_mm;
2872 /*
2873 * For paravirt, this is coupled with an exit in switch_to to
2874 * combine the page table reload and the switch backend into
2875 * one hypercall.
2876 */
2877 arch_start_context_switch(prev);
2878
2879 if (!mm) {
2880 next->active_mm = oldmm;
2881 atomic_inc(&oldmm->mm_count);
2882 enter_lazy_tlb(oldmm, next);
2883 } else
2884 switch_mm_irqs_off(oldmm, mm, next);
2885
2886 if (!prev->mm) {
2887 prev->active_mm = NULL;
2888 rq->prev_mm = oldmm;
2889 }
2890 /*
2891 * Since the runqueue lock will be released by the next
2892 * task (which is an invalid locking op but in the case
2893 * of the scheduler it's an obvious special-case), so we
2894 * do an early lockdep release here:
2895 */
2896 lockdep_unpin_lock(&rq->lock, cookie);
2897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2898
2899 /* Here we just switch the register state and the stack. */
2900 switch_to(prev, next, prev);
2901 barrier();
2902
2903 return finish_task_switch(prev);
2904}
2905
2906/*
2907 * nr_running and nr_context_switches:
2908 *
2909 * externally visible scheduler statistics: current number of runnable
2910 * threads, total number of context switches performed since bootup.
2911 */
2912unsigned long nr_running(void)
2913{
2914 unsigned long i, sum = 0;
2915
2916 for_each_online_cpu(i)
2917 sum += cpu_rq(i)->nr_running;
2918
2919 return sum;
2920}
2921
2922/*
2923 * Check if only the current task is running on the cpu.
2924 *
2925 * Caution: this function does not check that the caller has disabled
2926 * preemption, thus the result might have a time-of-check-to-time-of-use
2927 * race. The caller is responsible to use it correctly, for example:
2928 *
2929 * - from a non-preemptable section (of course)
2930 *
2931 * - from a thread that is bound to a single CPU
2932 *
2933 * - in a loop with very short iterations (e.g. a polling loop)
2934 */
2935bool single_task_running(void)
2936{
2937 return raw_rq()->nr_running == 1;
2938}
2939EXPORT_SYMBOL(single_task_running);
2940
2941unsigned long long nr_context_switches(void)
2942{
2943 int i;
2944 unsigned long long sum = 0;
2945
2946 for_each_possible_cpu(i)
2947 sum += cpu_rq(i)->nr_switches;
2948
2949 return sum;
2950}
2951
2952unsigned long nr_iowait(void)
2953{
2954 unsigned long i, sum = 0;
2955
2956 for_each_possible_cpu(i)
2957 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2958
2959 return sum;
2960}
2961
2962unsigned long nr_iowait_cpu(int cpu)
2963{
2964 struct rq *this = cpu_rq(cpu);
2965 return atomic_read(&this->nr_iowait);
2966}
2967
2968void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2969{
2970 struct rq *rq = this_rq();
2971 *nr_waiters = atomic_read(&rq->nr_iowait);
2972 *load = rq->load.weight;
2973}
2974
2975#ifdef CONFIG_SMP
2976
2977/*
2978 * sched_exec - execve() is a valuable balancing opportunity, because at
2979 * this point the task has the smallest effective memory and cache footprint.
2980 */
2981void sched_exec(void)
2982{
2983 struct task_struct *p = current;
2984 unsigned long flags;
2985 int dest_cpu;
2986
2987 raw_spin_lock_irqsave(&p->pi_lock, flags);
2988 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2989 if (dest_cpu == smp_processor_id())
2990 goto unlock;
2991
2992 if (likely(cpu_active(dest_cpu))) {
2993 struct migration_arg arg = { p, dest_cpu };
2994
2995 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2996 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2997 return;
2998 }
2999unlock:
3000 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3001}
3002
3003#endif
3004
3005DEFINE_PER_CPU(struct kernel_stat, kstat);
3006DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3007
3008EXPORT_PER_CPU_SYMBOL(kstat);
3009EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3010
3011/*
3012 * The function fair_sched_class.update_curr accesses the struct curr
3013 * and its field curr->exec_start; when called from task_sched_runtime(),
3014 * we observe a high rate of cache misses in practice.
3015 * Prefetching this data results in improved performance.
3016 */
3017static inline void prefetch_curr_exec_start(struct task_struct *p)
3018{
3019#ifdef CONFIG_FAIR_GROUP_SCHED
3020 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3021#else
3022 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3023#endif
3024 prefetch(curr);
3025 prefetch(&curr->exec_start);
3026}
3027
3028/*
3029 * Return accounted runtime for the task.
3030 * In case the task is currently running, return the runtime plus current's
3031 * pending runtime that have not been accounted yet.
3032 */
3033unsigned long long task_sched_runtime(struct task_struct *p)
3034{
3035 struct rq_flags rf;
3036 struct rq *rq;
3037 u64 ns;
3038
3039#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3040 /*
3041 * 64-bit doesn't need locks to atomically read a 64bit value.
3042 * So we have a optimization chance when the task's delta_exec is 0.
3043 * Reading ->on_cpu is racy, but this is ok.
3044 *
3045 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3046 * If we race with it entering cpu, unaccounted time is 0. This is
3047 * indistinguishable from the read occurring a few cycles earlier.
3048 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3049 * been accounted, so we're correct here as well.
3050 */
3051 if (!p->on_cpu || !task_on_rq_queued(p))
3052 return p->se.sum_exec_runtime;
3053#endif
3054
3055 rq = task_rq_lock(p, &rf);
3056 /*
3057 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3058 * project cycles that may never be accounted to this
3059 * thread, breaking clock_gettime().
3060 */
3061 if (task_current(rq, p) && task_on_rq_queued(p)) {
3062 prefetch_curr_exec_start(p);
3063 update_rq_clock(rq);
3064 p->sched_class->update_curr(rq);
3065 }
3066 ns = p->se.sum_exec_runtime;
3067 task_rq_unlock(rq, p, &rf);
3068
3069 return ns;
3070}
3071
3072/*
3073 * This function gets called by the timer code, with HZ frequency.
3074 * We call it with interrupts disabled.
3075 */
3076void scheduler_tick(void)
3077{
3078 int cpu = smp_processor_id();
3079 struct rq *rq = cpu_rq(cpu);
3080 struct task_struct *curr = rq->curr;
3081
3082 sched_clock_tick();
3083
3084 raw_spin_lock(&rq->lock);
3085 update_rq_clock(rq);
3086 curr->sched_class->task_tick(rq, curr, 0);
3087 cpu_load_update_active(rq);
3088 calc_global_load_tick(rq);
3089 raw_spin_unlock(&rq->lock);
3090
3091 perf_event_task_tick();
3092
3093#ifdef CONFIG_SMP
3094 rq->idle_balance = idle_cpu(cpu);
3095 trigger_load_balance(rq);
3096#endif
3097 rq_last_tick_reset(rq);
3098}
3099
3100#ifdef CONFIG_NO_HZ_FULL
3101/**
3102 * scheduler_tick_max_deferment
3103 *
3104 * Keep at least one tick per second when a single
3105 * active task is running because the scheduler doesn't
3106 * yet completely support full dynticks environment.
3107 *
3108 * This makes sure that uptime, CFS vruntime, load
3109 * balancing, etc... continue to move forward, even
3110 * with a very low granularity.
3111 *
3112 * Return: Maximum deferment in nanoseconds.
3113 */
3114u64 scheduler_tick_max_deferment(void)
3115{
3116 struct rq *rq = this_rq();
3117 unsigned long next, now = READ_ONCE(jiffies);
3118
3119 next = rq->last_sched_tick + HZ;
3120
3121 if (time_before_eq(next, now))
3122 return 0;
3123
3124 return jiffies_to_nsecs(next - now);
3125}
3126#endif
3127
3128#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3129 defined(CONFIG_PREEMPT_TRACER))
3130/*
3131 * If the value passed in is equal to the current preempt count
3132 * then we just disabled preemption. Start timing the latency.
3133 */
3134static inline void preempt_latency_start(int val)
3135{
3136 if (preempt_count() == val) {
3137 unsigned long ip = get_lock_parent_ip();
3138#ifdef CONFIG_DEBUG_PREEMPT
3139 current->preempt_disable_ip = ip;
3140#endif
3141 trace_preempt_off(CALLER_ADDR0, ip);
3142 }
3143}
3144
3145void preempt_count_add(int val)
3146{
3147#ifdef CONFIG_DEBUG_PREEMPT
3148 /*
3149 * Underflow?
3150 */
3151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3152 return;
3153#endif
3154 __preempt_count_add(val);
3155#ifdef CONFIG_DEBUG_PREEMPT
3156 /*
3157 * Spinlock count overflowing soon?
3158 */
3159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3160 PREEMPT_MASK - 10);
3161#endif
3162 preempt_latency_start(val);
3163}
3164EXPORT_SYMBOL(preempt_count_add);
3165NOKPROBE_SYMBOL(preempt_count_add);
3166
3167/*
3168 * If the value passed in equals to the current preempt count
3169 * then we just enabled preemption. Stop timing the latency.
3170 */
3171static inline void preempt_latency_stop(int val)
3172{
3173 if (preempt_count() == val)
3174 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3175}
3176
3177void preempt_count_sub(int val)
3178{
3179#ifdef CONFIG_DEBUG_PREEMPT
3180 /*
3181 * Underflow?
3182 */
3183 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3184 return;
3185 /*
3186 * Is the spinlock portion underflowing?
3187 */
3188 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3189 !(preempt_count() & PREEMPT_MASK)))
3190 return;
3191#endif
3192
3193 preempt_latency_stop(val);
3194 __preempt_count_sub(val);
3195}
3196EXPORT_SYMBOL(preempt_count_sub);
3197NOKPROBE_SYMBOL(preempt_count_sub);
3198
3199#else
3200static inline void preempt_latency_start(int val) { }
3201static inline void preempt_latency_stop(int val) { }
3202#endif
3203
3204/*
3205 * Print scheduling while atomic bug:
3206 */
3207static noinline void __schedule_bug(struct task_struct *prev)
3208{
3209 /* Save this before calling printk(), since that will clobber it */
3210 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3211
3212 if (oops_in_progress)
3213 return;
3214
3215 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3216 prev->comm, prev->pid, preempt_count());
3217
3218 debug_show_held_locks(prev);
3219 print_modules();
3220 if (irqs_disabled())
3221 print_irqtrace_events(prev);
3222 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3223 && in_atomic_preempt_off()) {
3224 pr_err("Preemption disabled at:");
3225 print_ip_sym(preempt_disable_ip);
3226 pr_cont("\n");
3227 }
3228 if (panic_on_warn)
3229 panic("scheduling while atomic\n");
3230
3231 dump_stack();
3232 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3233}
3234
3235/*
3236 * Various schedule()-time debugging checks and statistics:
3237 */
3238static inline void schedule_debug(struct task_struct *prev)
3239{
3240#ifdef CONFIG_SCHED_STACK_END_CHECK
3241 if (task_stack_end_corrupted(prev))
3242 panic("corrupted stack end detected inside scheduler\n");
3243#endif
3244
3245 if (unlikely(in_atomic_preempt_off())) {
3246 __schedule_bug(prev);
3247 preempt_count_set(PREEMPT_DISABLED);
3248 }
3249 rcu_sleep_check();
3250
3251 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3252
3253 schedstat_inc(this_rq()->sched_count);
3254}
3255
3256/*
3257 * Pick up the highest-prio task:
3258 */
3259static inline struct task_struct *
3260pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3261{
3262 const struct sched_class *class = &fair_sched_class;
3263 struct task_struct *p;
3264
3265 /*
3266 * Optimization: we know that if all tasks are in
3267 * the fair class we can call that function directly:
3268 */
3269 if (likely(prev->sched_class == class &&
3270 rq->nr_running == rq->cfs.h_nr_running)) {
3271 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3272 if (unlikely(p == RETRY_TASK))
3273 goto again;
3274
3275 /* assumes fair_sched_class->next == idle_sched_class */
3276 if (unlikely(!p))
3277 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3278
3279 return p;
3280 }
3281
3282again:
3283 for_each_class(class) {
3284 p = class->pick_next_task(rq, prev, cookie);
3285 if (p) {
3286 if (unlikely(p == RETRY_TASK))
3287 goto again;
3288 return p;
3289 }
3290 }
3291
3292 BUG(); /* the idle class will always have a runnable task */
3293}
3294
3295/*
3296 * __schedule() is the main scheduler function.
3297 *
3298 * The main means of driving the scheduler and thus entering this function are:
3299 *
3300 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3301 *
3302 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3303 * paths. For example, see arch/x86/entry_64.S.
3304 *
3305 * To drive preemption between tasks, the scheduler sets the flag in timer
3306 * interrupt handler scheduler_tick().
3307 *
3308 * 3. Wakeups don't really cause entry into schedule(). They add a
3309 * task to the run-queue and that's it.
3310 *
3311 * Now, if the new task added to the run-queue preempts the current
3312 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3313 * called on the nearest possible occasion:
3314 *
3315 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3316 *
3317 * - in syscall or exception context, at the next outmost
3318 * preempt_enable(). (this might be as soon as the wake_up()'s
3319 * spin_unlock()!)
3320 *
3321 * - in IRQ context, return from interrupt-handler to
3322 * preemptible context
3323 *
3324 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3325 * then at the next:
3326 *
3327 * - cond_resched() call
3328 * - explicit schedule() call
3329 * - return from syscall or exception to user-space
3330 * - return from interrupt-handler to user-space
3331 *
3332 * WARNING: must be called with preemption disabled!
3333 */
3334static void __sched notrace __schedule(bool preempt)
3335{
3336 struct task_struct *prev, *next;
3337 unsigned long *switch_count;
3338 struct pin_cookie cookie;
3339 struct rq *rq;
3340 int cpu;
3341
3342 cpu = smp_processor_id();
3343 rq = cpu_rq(cpu);
3344 prev = rq->curr;
3345
3346 schedule_debug(prev);
3347
3348 if (sched_feat(HRTICK))
3349 hrtick_clear(rq);
3350
3351 local_irq_disable();
3352 rcu_note_context_switch();
3353
3354 /*
3355 * Make sure that signal_pending_state()->signal_pending() below
3356 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3357 * done by the caller to avoid the race with signal_wake_up().
3358 */
3359 smp_mb__before_spinlock();
3360 raw_spin_lock(&rq->lock);
3361 cookie = lockdep_pin_lock(&rq->lock);
3362
3363 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3364
3365 switch_count = &prev->nivcsw;
3366 if (!preempt && prev->state) {
3367 if (unlikely(signal_pending_state(prev->state, prev))) {
3368 prev->state = TASK_RUNNING;
3369 } else {
3370 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3371 prev->on_rq = 0;
3372
3373 /*
3374 * If a worker went to sleep, notify and ask workqueue
3375 * whether it wants to wake up a task to maintain
3376 * concurrency.
3377 */
3378 if (prev->flags & PF_WQ_WORKER) {
3379 struct task_struct *to_wakeup;
3380
3381 to_wakeup = wq_worker_sleeping(prev);
3382 if (to_wakeup)
3383 try_to_wake_up_local(to_wakeup, cookie);
3384 }
3385 }
3386 switch_count = &prev->nvcsw;
3387 }
3388
3389 if (task_on_rq_queued(prev))
3390 update_rq_clock(rq);
3391
3392 next = pick_next_task(rq, prev, cookie);
3393 clear_tsk_need_resched(prev);
3394 clear_preempt_need_resched();
3395 rq->clock_skip_update = 0;
3396
3397 if (likely(prev != next)) {
3398 rq->nr_switches++;
3399 rq->curr = next;
3400 ++*switch_count;
3401
3402 trace_sched_switch(preempt, prev, next);
3403 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3404 } else {
3405 lockdep_unpin_lock(&rq->lock, cookie);
3406 raw_spin_unlock_irq(&rq->lock);
3407 }
3408
3409 balance_callback(rq);
3410}
3411
3412void __noreturn do_task_dead(void)
3413{
3414 /*
3415 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3416 * when the following two conditions become true.
3417 * - There is race condition of mmap_sem (It is acquired by
3418 * exit_mm()), and
3419 * - SMI occurs before setting TASK_RUNINNG.
3420 * (or hypervisor of virtual machine switches to other guest)
3421 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3422 *
3423 * To avoid it, we have to wait for releasing tsk->pi_lock which
3424 * is held by try_to_wake_up()
3425 */
3426 smp_mb();
3427 raw_spin_unlock_wait(¤t->pi_lock);
3428
3429 /* causes final put_task_struct in finish_task_switch(). */
3430 __set_current_state(TASK_DEAD);
3431 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3432 __schedule(false);
3433 BUG();
3434 /* Avoid "noreturn function does return". */
3435 for (;;)
3436 cpu_relax(); /* For when BUG is null */
3437}
3438
3439static inline void sched_submit_work(struct task_struct *tsk)
3440{
3441 if (!tsk->state || tsk_is_pi_blocked(tsk))
3442 return;
3443 /*
3444 * If we are going to sleep and we have plugged IO queued,
3445 * make sure to submit it to avoid deadlocks.
3446 */
3447 if (blk_needs_flush_plug(tsk))
3448 blk_schedule_flush_plug(tsk);
3449}
3450
3451asmlinkage __visible void __sched schedule(void)
3452{
3453 struct task_struct *tsk = current;
3454
3455 sched_submit_work(tsk);
3456 do {
3457 preempt_disable();
3458 __schedule(false);
3459 sched_preempt_enable_no_resched();
3460 } while (need_resched());
3461}
3462EXPORT_SYMBOL(schedule);
3463
3464#ifdef CONFIG_CONTEXT_TRACKING
3465asmlinkage __visible void __sched schedule_user(void)
3466{
3467 /*
3468 * If we come here after a random call to set_need_resched(),
3469 * or we have been woken up remotely but the IPI has not yet arrived,
3470 * we haven't yet exited the RCU idle mode. Do it here manually until
3471 * we find a better solution.
3472 *
3473 * NB: There are buggy callers of this function. Ideally we
3474 * should warn if prev_state != CONTEXT_USER, but that will trigger
3475 * too frequently to make sense yet.
3476 */
3477 enum ctx_state prev_state = exception_enter();
3478 schedule();
3479 exception_exit(prev_state);
3480}
3481#endif
3482
3483/**
3484 * schedule_preempt_disabled - called with preemption disabled
3485 *
3486 * Returns with preemption disabled. Note: preempt_count must be 1
3487 */
3488void __sched schedule_preempt_disabled(void)
3489{
3490 sched_preempt_enable_no_resched();
3491 schedule();
3492 preempt_disable();
3493}
3494
3495static void __sched notrace preempt_schedule_common(void)
3496{
3497 do {
3498 /*
3499 * Because the function tracer can trace preempt_count_sub()
3500 * and it also uses preempt_enable/disable_notrace(), if
3501 * NEED_RESCHED is set, the preempt_enable_notrace() called
3502 * by the function tracer will call this function again and
3503 * cause infinite recursion.
3504 *
3505 * Preemption must be disabled here before the function
3506 * tracer can trace. Break up preempt_disable() into two
3507 * calls. One to disable preemption without fear of being
3508 * traced. The other to still record the preemption latency,
3509 * which can also be traced by the function tracer.
3510 */
3511 preempt_disable_notrace();
3512 preempt_latency_start(1);
3513 __schedule(true);
3514 preempt_latency_stop(1);
3515 preempt_enable_no_resched_notrace();
3516
3517 /*
3518 * Check again in case we missed a preemption opportunity
3519 * between schedule and now.
3520 */
3521 } while (need_resched());
3522}
3523
3524#ifdef CONFIG_PREEMPT
3525/*
3526 * this is the entry point to schedule() from in-kernel preemption
3527 * off of preempt_enable. Kernel preemptions off return from interrupt
3528 * occur there and call schedule directly.
3529 */
3530asmlinkage __visible void __sched notrace preempt_schedule(void)
3531{
3532 /*
3533 * If there is a non-zero preempt_count or interrupts are disabled,
3534 * we do not want to preempt the current task. Just return..
3535 */
3536 if (likely(!preemptible()))
3537 return;
3538
3539 preempt_schedule_common();
3540}
3541NOKPROBE_SYMBOL(preempt_schedule);
3542EXPORT_SYMBOL(preempt_schedule);
3543
3544/**
3545 * preempt_schedule_notrace - preempt_schedule called by tracing
3546 *
3547 * The tracing infrastructure uses preempt_enable_notrace to prevent
3548 * recursion and tracing preempt enabling caused by the tracing
3549 * infrastructure itself. But as tracing can happen in areas coming
3550 * from userspace or just about to enter userspace, a preempt enable
3551 * can occur before user_exit() is called. This will cause the scheduler
3552 * to be called when the system is still in usermode.
3553 *
3554 * To prevent this, the preempt_enable_notrace will use this function
3555 * instead of preempt_schedule() to exit user context if needed before
3556 * calling the scheduler.
3557 */
3558asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3559{
3560 enum ctx_state prev_ctx;
3561
3562 if (likely(!preemptible()))
3563 return;
3564
3565 do {
3566 /*
3567 * Because the function tracer can trace preempt_count_sub()
3568 * and it also uses preempt_enable/disable_notrace(), if
3569 * NEED_RESCHED is set, the preempt_enable_notrace() called
3570 * by the function tracer will call this function again and
3571 * cause infinite recursion.
3572 *
3573 * Preemption must be disabled here before the function
3574 * tracer can trace. Break up preempt_disable() into two
3575 * calls. One to disable preemption without fear of being
3576 * traced. The other to still record the preemption latency,
3577 * which can also be traced by the function tracer.
3578 */
3579 preempt_disable_notrace();
3580 preempt_latency_start(1);
3581 /*
3582 * Needs preempt disabled in case user_exit() is traced
3583 * and the tracer calls preempt_enable_notrace() causing
3584 * an infinite recursion.
3585 */
3586 prev_ctx = exception_enter();
3587 __schedule(true);
3588 exception_exit(prev_ctx);
3589
3590 preempt_latency_stop(1);
3591 preempt_enable_no_resched_notrace();
3592 } while (need_resched());
3593}
3594EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3595
3596#endif /* CONFIG_PREEMPT */
3597
3598/*
3599 * this is the entry point to schedule() from kernel preemption
3600 * off of irq context.
3601 * Note, that this is called and return with irqs disabled. This will
3602 * protect us against recursive calling from irq.
3603 */
3604asmlinkage __visible void __sched preempt_schedule_irq(void)
3605{
3606 enum ctx_state prev_state;
3607
3608 /* Catch callers which need to be fixed */
3609 BUG_ON(preempt_count() || !irqs_disabled());
3610
3611 prev_state = exception_enter();
3612
3613 do {
3614 preempt_disable();
3615 local_irq_enable();
3616 __schedule(true);
3617 local_irq_disable();
3618 sched_preempt_enable_no_resched();
3619 } while (need_resched());
3620
3621 exception_exit(prev_state);
3622}
3623
3624int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3625 void *key)
3626{
3627 return try_to_wake_up(curr->private, mode, wake_flags);
3628}
3629EXPORT_SYMBOL(default_wake_function);
3630
3631#ifdef CONFIG_RT_MUTEXES
3632
3633/*
3634 * rt_mutex_setprio - set the current priority of a task
3635 * @p: task
3636 * @prio: prio value (kernel-internal form)
3637 *
3638 * This function changes the 'effective' priority of a task. It does
3639 * not touch ->normal_prio like __setscheduler().
3640 *
3641 * Used by the rt_mutex code to implement priority inheritance
3642 * logic. Call site only calls if the priority of the task changed.
3643 */
3644void rt_mutex_setprio(struct task_struct *p, int prio)
3645{
3646 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3647 const struct sched_class *prev_class;
3648 struct rq_flags rf;
3649 struct rq *rq;
3650
3651 BUG_ON(prio > MAX_PRIO);
3652
3653 rq = __task_rq_lock(p, &rf);
3654
3655 /*
3656 * Idle task boosting is a nono in general. There is one
3657 * exception, when PREEMPT_RT and NOHZ is active:
3658 *
3659 * The idle task calls get_next_timer_interrupt() and holds
3660 * the timer wheel base->lock on the CPU and another CPU wants
3661 * to access the timer (probably to cancel it). We can safely
3662 * ignore the boosting request, as the idle CPU runs this code
3663 * with interrupts disabled and will complete the lock
3664 * protected section without being interrupted. So there is no
3665 * real need to boost.
3666 */
3667 if (unlikely(p == rq->idle)) {
3668 WARN_ON(p != rq->curr);
3669 WARN_ON(p->pi_blocked_on);
3670 goto out_unlock;
3671 }
3672
3673 trace_sched_pi_setprio(p, prio);
3674 oldprio = p->prio;
3675
3676 if (oldprio == prio)
3677 queue_flag &= ~DEQUEUE_MOVE;
3678
3679 prev_class = p->sched_class;
3680 queued = task_on_rq_queued(p);
3681 running = task_current(rq, p);
3682 if (queued)
3683 dequeue_task(rq, p, queue_flag);
3684 if (running)
3685 put_prev_task(rq, p);
3686
3687 /*
3688 * Boosting condition are:
3689 * 1. -rt task is running and holds mutex A
3690 * --> -dl task blocks on mutex A
3691 *
3692 * 2. -dl task is running and holds mutex A
3693 * --> -dl task blocks on mutex A and could preempt the
3694 * running task
3695 */
3696 if (dl_prio(prio)) {
3697 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3698 if (!dl_prio(p->normal_prio) ||
3699 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3700 p->dl.dl_boosted = 1;
3701 queue_flag |= ENQUEUE_REPLENISH;
3702 } else
3703 p->dl.dl_boosted = 0;
3704 p->sched_class = &dl_sched_class;
3705 } else if (rt_prio(prio)) {
3706 if (dl_prio(oldprio))
3707 p->dl.dl_boosted = 0;
3708 if (oldprio < prio)
3709 queue_flag |= ENQUEUE_HEAD;
3710 p->sched_class = &rt_sched_class;
3711 } else {
3712 if (dl_prio(oldprio))
3713 p->dl.dl_boosted = 0;
3714 if (rt_prio(oldprio))
3715 p->rt.timeout = 0;
3716 p->sched_class = &fair_sched_class;
3717 }
3718
3719 p->prio = prio;
3720
3721 if (queued)
3722 enqueue_task(rq, p, queue_flag);
3723 if (running)
3724 set_curr_task(rq, p);
3725
3726 check_class_changed(rq, p, prev_class, oldprio);
3727out_unlock:
3728 preempt_disable(); /* avoid rq from going away on us */
3729 __task_rq_unlock(rq, &rf);
3730
3731 balance_callback(rq);
3732 preempt_enable();
3733}
3734#endif
3735
3736void set_user_nice(struct task_struct *p, long nice)
3737{
3738 bool queued, running;
3739 int old_prio, delta;
3740 struct rq_flags rf;
3741 struct rq *rq;
3742
3743 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3744 return;
3745 /*
3746 * We have to be careful, if called from sys_setpriority(),
3747 * the task might be in the middle of scheduling on another CPU.
3748 */
3749 rq = task_rq_lock(p, &rf);
3750 /*
3751 * The RT priorities are set via sched_setscheduler(), but we still
3752 * allow the 'normal' nice value to be set - but as expected
3753 * it wont have any effect on scheduling until the task is
3754 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3755 */
3756 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3757 p->static_prio = NICE_TO_PRIO(nice);
3758 goto out_unlock;
3759 }
3760 queued = task_on_rq_queued(p);
3761 running = task_current(rq, p);
3762 if (queued)
3763 dequeue_task(rq, p, DEQUEUE_SAVE);
3764 if (running)
3765 put_prev_task(rq, p);
3766
3767 p->static_prio = NICE_TO_PRIO(nice);
3768 set_load_weight(p);
3769 old_prio = p->prio;
3770 p->prio = effective_prio(p);
3771 delta = p->prio - old_prio;
3772
3773 if (queued) {
3774 enqueue_task(rq, p, ENQUEUE_RESTORE);
3775 /*
3776 * If the task increased its priority or is running and
3777 * lowered its priority, then reschedule its CPU:
3778 */
3779 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3780 resched_curr(rq);
3781 }
3782 if (running)
3783 set_curr_task(rq, p);
3784out_unlock:
3785 task_rq_unlock(rq, p, &rf);
3786}
3787EXPORT_SYMBOL(set_user_nice);
3788
3789/*
3790 * can_nice - check if a task can reduce its nice value
3791 * @p: task
3792 * @nice: nice value
3793 */
3794int can_nice(const struct task_struct *p, const int nice)
3795{
3796 /* convert nice value [19,-20] to rlimit style value [1,40] */
3797 int nice_rlim = nice_to_rlimit(nice);
3798
3799 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3800 capable(CAP_SYS_NICE));
3801}
3802
3803#ifdef __ARCH_WANT_SYS_NICE
3804
3805/*
3806 * sys_nice - change the priority of the current process.
3807 * @increment: priority increment
3808 *
3809 * sys_setpriority is a more generic, but much slower function that
3810 * does similar things.
3811 */
3812SYSCALL_DEFINE1(nice, int, increment)
3813{
3814 long nice, retval;
3815
3816 /*
3817 * Setpriority might change our priority at the same moment.
3818 * We don't have to worry. Conceptually one call occurs first
3819 * and we have a single winner.
3820 */
3821 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3822 nice = task_nice(current) + increment;
3823
3824 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3825 if (increment < 0 && !can_nice(current, nice))
3826 return -EPERM;
3827
3828 retval = security_task_setnice(current, nice);
3829 if (retval)
3830 return retval;
3831
3832 set_user_nice(current, nice);
3833 return 0;
3834}
3835
3836#endif
3837
3838/**
3839 * task_prio - return the priority value of a given task.
3840 * @p: the task in question.
3841 *
3842 * Return: The priority value as seen by users in /proc.
3843 * RT tasks are offset by -200. Normal tasks are centered
3844 * around 0, value goes from -16 to +15.
3845 */
3846int task_prio(const struct task_struct *p)
3847{
3848 return p->prio - MAX_RT_PRIO;
3849}
3850
3851/**
3852 * idle_cpu - is a given cpu idle currently?
3853 * @cpu: the processor in question.
3854 *
3855 * Return: 1 if the CPU is currently idle. 0 otherwise.
3856 */
3857int idle_cpu(int cpu)
3858{
3859 struct rq *rq = cpu_rq(cpu);
3860
3861 if (rq->curr != rq->idle)
3862 return 0;
3863
3864 if (rq->nr_running)
3865 return 0;
3866
3867#ifdef CONFIG_SMP
3868 if (!llist_empty(&rq->wake_list))
3869 return 0;
3870#endif
3871
3872 return 1;
3873}
3874
3875/**
3876 * idle_task - return the idle task for a given cpu.
3877 * @cpu: the processor in question.
3878 *
3879 * Return: The idle task for the cpu @cpu.
3880 */
3881struct task_struct *idle_task(int cpu)
3882{
3883 return cpu_rq(cpu)->idle;
3884}
3885
3886/**
3887 * find_process_by_pid - find a process with a matching PID value.
3888 * @pid: the pid in question.
3889 *
3890 * The task of @pid, if found. %NULL otherwise.
3891 */
3892static struct task_struct *find_process_by_pid(pid_t pid)
3893{
3894 return pid ? find_task_by_vpid(pid) : current;
3895}
3896
3897/*
3898 * This function initializes the sched_dl_entity of a newly becoming
3899 * SCHED_DEADLINE task.
3900 *
3901 * Only the static values are considered here, the actual runtime and the
3902 * absolute deadline will be properly calculated when the task is enqueued
3903 * for the first time with its new policy.
3904 */
3905static void
3906__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3907{
3908 struct sched_dl_entity *dl_se = &p->dl;
3909
3910 dl_se->dl_runtime = attr->sched_runtime;
3911 dl_se->dl_deadline = attr->sched_deadline;
3912 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3913 dl_se->flags = attr->sched_flags;
3914 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3915
3916 /*
3917 * Changing the parameters of a task is 'tricky' and we're not doing
3918 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3919 *
3920 * What we SHOULD do is delay the bandwidth release until the 0-lag
3921 * point. This would include retaining the task_struct until that time
3922 * and change dl_overflow() to not immediately decrement the current
3923 * amount.
3924 *
3925 * Instead we retain the current runtime/deadline and let the new
3926 * parameters take effect after the current reservation period lapses.
3927 * This is safe (albeit pessimistic) because the 0-lag point is always
3928 * before the current scheduling deadline.
3929 *
3930 * We can still have temporary overloads because we do not delay the
3931 * change in bandwidth until that time; so admission control is
3932 * not on the safe side. It does however guarantee tasks will never
3933 * consume more than promised.
3934 */
3935}
3936
3937/*
3938 * sched_setparam() passes in -1 for its policy, to let the functions
3939 * it calls know not to change it.
3940 */
3941#define SETPARAM_POLICY -1
3942
3943static void __setscheduler_params(struct task_struct *p,
3944 const struct sched_attr *attr)
3945{
3946 int policy = attr->sched_policy;
3947
3948 if (policy == SETPARAM_POLICY)
3949 policy = p->policy;
3950
3951 p->policy = policy;
3952
3953 if (dl_policy(policy))
3954 __setparam_dl(p, attr);
3955 else if (fair_policy(policy))
3956 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3957
3958 /*
3959 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3960 * !rt_policy. Always setting this ensures that things like
3961 * getparam()/getattr() don't report silly values for !rt tasks.
3962 */
3963 p->rt_priority = attr->sched_priority;
3964 p->normal_prio = normal_prio(p);
3965 set_load_weight(p);
3966}
3967
3968/* Actually do priority change: must hold pi & rq lock. */
3969static void __setscheduler(struct rq *rq, struct task_struct *p,
3970 const struct sched_attr *attr, bool keep_boost)
3971{
3972 __setscheduler_params(p, attr);
3973
3974 /*
3975 * Keep a potential priority boosting if called from
3976 * sched_setscheduler().
3977 */
3978 if (keep_boost)
3979 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3980 else
3981 p->prio = normal_prio(p);
3982
3983 if (dl_prio(p->prio))
3984 p->sched_class = &dl_sched_class;
3985 else if (rt_prio(p->prio))
3986 p->sched_class = &rt_sched_class;
3987 else
3988 p->sched_class = &fair_sched_class;
3989}
3990
3991static void
3992__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3993{
3994 struct sched_dl_entity *dl_se = &p->dl;
3995
3996 attr->sched_priority = p->rt_priority;
3997 attr->sched_runtime = dl_se->dl_runtime;
3998 attr->sched_deadline = dl_se->dl_deadline;
3999 attr->sched_period = dl_se->dl_period;
4000 attr->sched_flags = dl_se->flags;
4001}
4002
4003/*
4004 * This function validates the new parameters of a -deadline task.
4005 * We ask for the deadline not being zero, and greater or equal
4006 * than the runtime, as well as the period of being zero or
4007 * greater than deadline. Furthermore, we have to be sure that
4008 * user parameters are above the internal resolution of 1us (we
4009 * check sched_runtime only since it is always the smaller one) and
4010 * below 2^63 ns (we have to check both sched_deadline and
4011 * sched_period, as the latter can be zero).
4012 */
4013static bool
4014__checkparam_dl(const struct sched_attr *attr)
4015{
4016 /* deadline != 0 */
4017 if (attr->sched_deadline == 0)
4018 return false;
4019
4020 /*
4021 * Since we truncate DL_SCALE bits, make sure we're at least
4022 * that big.
4023 */
4024 if (attr->sched_runtime < (1ULL << DL_SCALE))
4025 return false;
4026
4027 /*
4028 * Since we use the MSB for wrap-around and sign issues, make
4029 * sure it's not set (mind that period can be equal to zero).
4030 */
4031 if (attr->sched_deadline & (1ULL << 63) ||
4032 attr->sched_period & (1ULL << 63))
4033 return false;
4034
4035 /* runtime <= deadline <= period (if period != 0) */
4036 if ((attr->sched_period != 0 &&
4037 attr->sched_period < attr->sched_deadline) ||
4038 attr->sched_deadline < attr->sched_runtime)
4039 return false;
4040
4041 return true;
4042}
4043
4044/*
4045 * check the target process has a UID that matches the current process's
4046 */
4047static bool check_same_owner(struct task_struct *p)
4048{
4049 const struct cred *cred = current_cred(), *pcred;
4050 bool match;
4051
4052 rcu_read_lock();
4053 pcred = __task_cred(p);
4054 match = (uid_eq(cred->euid, pcred->euid) ||
4055 uid_eq(cred->euid, pcred->uid));
4056 rcu_read_unlock();
4057 return match;
4058}
4059
4060static bool dl_param_changed(struct task_struct *p,
4061 const struct sched_attr *attr)
4062{
4063 struct sched_dl_entity *dl_se = &p->dl;
4064
4065 if (dl_se->dl_runtime != attr->sched_runtime ||
4066 dl_se->dl_deadline != attr->sched_deadline ||
4067 dl_se->dl_period != attr->sched_period ||
4068 dl_se->flags != attr->sched_flags)
4069 return true;
4070
4071 return false;
4072}
4073
4074static int __sched_setscheduler(struct task_struct *p,
4075 const struct sched_attr *attr,
4076 bool user, bool pi)
4077{
4078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4079 MAX_RT_PRIO - 1 - attr->sched_priority;
4080 int retval, oldprio, oldpolicy = -1, queued, running;
4081 int new_effective_prio, policy = attr->sched_policy;
4082 const struct sched_class *prev_class;
4083 struct rq_flags rf;
4084 int reset_on_fork;
4085 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4086 struct rq *rq;
4087
4088 /* may grab non-irq protected spin_locks */
4089 BUG_ON(in_interrupt());
4090recheck:
4091 /* double check policy once rq lock held */
4092 if (policy < 0) {
4093 reset_on_fork = p->sched_reset_on_fork;
4094 policy = oldpolicy = p->policy;
4095 } else {
4096 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4097
4098 if (!valid_policy(policy))
4099 return -EINVAL;
4100 }
4101
4102 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4103 return -EINVAL;
4104
4105 /*
4106 * Valid priorities for SCHED_FIFO and SCHED_RR are
4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 * SCHED_BATCH and SCHED_IDLE is 0.
4109 */
4110 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4111 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4112 return -EINVAL;
4113 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4114 (rt_policy(policy) != (attr->sched_priority != 0)))
4115 return -EINVAL;
4116
4117 /*
4118 * Allow unprivileged RT tasks to decrease priority:
4119 */
4120 if (user && !capable(CAP_SYS_NICE)) {
4121 if (fair_policy(policy)) {
4122 if (attr->sched_nice < task_nice(p) &&
4123 !can_nice(p, attr->sched_nice))
4124 return -EPERM;
4125 }
4126
4127 if (rt_policy(policy)) {
4128 unsigned long rlim_rtprio =
4129 task_rlimit(p, RLIMIT_RTPRIO);
4130
4131 /* can't set/change the rt policy */
4132 if (policy != p->policy && !rlim_rtprio)
4133 return -EPERM;
4134
4135 /* can't increase priority */
4136 if (attr->sched_priority > p->rt_priority &&
4137 attr->sched_priority > rlim_rtprio)
4138 return -EPERM;
4139 }
4140
4141 /*
4142 * Can't set/change SCHED_DEADLINE policy at all for now
4143 * (safest behavior); in the future we would like to allow
4144 * unprivileged DL tasks to increase their relative deadline
4145 * or reduce their runtime (both ways reducing utilization)
4146 */
4147 if (dl_policy(policy))
4148 return -EPERM;
4149
4150 /*
4151 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4153 */
4154 if (idle_policy(p->policy) && !idle_policy(policy)) {
4155 if (!can_nice(p, task_nice(p)))
4156 return -EPERM;
4157 }
4158
4159 /* can't change other user's priorities */
4160 if (!check_same_owner(p))
4161 return -EPERM;
4162
4163 /* Normal users shall not reset the sched_reset_on_fork flag */
4164 if (p->sched_reset_on_fork && !reset_on_fork)
4165 return -EPERM;
4166 }
4167
4168 if (user) {
4169 retval = security_task_setscheduler(p);
4170 if (retval)
4171 return retval;
4172 }
4173
4174 /*
4175 * make sure no PI-waiters arrive (or leave) while we are
4176 * changing the priority of the task:
4177 *
4178 * To be able to change p->policy safely, the appropriate
4179 * runqueue lock must be held.
4180 */
4181 rq = task_rq_lock(p, &rf);
4182
4183 /*
4184 * Changing the policy of the stop threads its a very bad idea
4185 */
4186 if (p == rq->stop) {
4187 task_rq_unlock(rq, p, &rf);
4188 return -EINVAL;
4189 }
4190
4191 /*
4192 * If not changing anything there's no need to proceed further,
4193 * but store a possible modification of reset_on_fork.
4194 */
4195 if (unlikely(policy == p->policy)) {
4196 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4197 goto change;
4198 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4199 goto change;
4200 if (dl_policy(policy) && dl_param_changed(p, attr))
4201 goto change;
4202
4203 p->sched_reset_on_fork = reset_on_fork;
4204 task_rq_unlock(rq, p, &rf);
4205 return 0;
4206 }
4207change:
4208
4209 if (user) {
4210#ifdef CONFIG_RT_GROUP_SCHED
4211 /*
4212 * Do not allow realtime tasks into groups that have no runtime
4213 * assigned.
4214 */
4215 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4216 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4217 !task_group_is_autogroup(task_group(p))) {
4218 task_rq_unlock(rq, p, &rf);
4219 return -EPERM;
4220 }
4221#endif
4222#ifdef CONFIG_SMP
4223 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4224 cpumask_t *span = rq->rd->span;
4225
4226 /*
4227 * Don't allow tasks with an affinity mask smaller than
4228 * the entire root_domain to become SCHED_DEADLINE. We
4229 * will also fail if there's no bandwidth available.
4230 */
4231 if (!cpumask_subset(span, &p->cpus_allowed) ||
4232 rq->rd->dl_bw.bw == 0) {
4233 task_rq_unlock(rq, p, &rf);
4234 return -EPERM;
4235 }
4236 }
4237#endif
4238 }
4239
4240 /* recheck policy now with rq lock held */
4241 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4242 policy = oldpolicy = -1;
4243 task_rq_unlock(rq, p, &rf);
4244 goto recheck;
4245 }
4246
4247 /*
4248 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4249 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4250 * is available.
4251 */
4252 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4253 task_rq_unlock(rq, p, &rf);
4254 return -EBUSY;
4255 }
4256
4257 p->sched_reset_on_fork = reset_on_fork;
4258 oldprio = p->prio;
4259
4260 if (pi) {
4261 /*
4262 * Take priority boosted tasks into account. If the new
4263 * effective priority is unchanged, we just store the new
4264 * normal parameters and do not touch the scheduler class and
4265 * the runqueue. This will be done when the task deboost
4266 * itself.
4267 */
4268 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4269 if (new_effective_prio == oldprio)
4270 queue_flags &= ~DEQUEUE_MOVE;
4271 }
4272
4273 queued = task_on_rq_queued(p);
4274 running = task_current(rq, p);
4275 if (queued)
4276 dequeue_task(rq, p, queue_flags);
4277 if (running)
4278 put_prev_task(rq, p);
4279
4280 prev_class = p->sched_class;
4281 __setscheduler(rq, p, attr, pi);
4282
4283 if (queued) {
4284 /*
4285 * We enqueue to tail when the priority of a task is
4286 * increased (user space view).
4287 */
4288 if (oldprio < p->prio)
4289 queue_flags |= ENQUEUE_HEAD;
4290
4291 enqueue_task(rq, p, queue_flags);
4292 }
4293 if (running)
4294 set_curr_task(rq, p);
4295
4296 check_class_changed(rq, p, prev_class, oldprio);
4297 preempt_disable(); /* avoid rq from going away on us */
4298 task_rq_unlock(rq, p, &rf);
4299
4300 if (pi)
4301 rt_mutex_adjust_pi(p);
4302
4303 /*
4304 * Run balance callbacks after we've adjusted the PI chain.
4305 */
4306 balance_callback(rq);
4307 preempt_enable();
4308
4309 return 0;
4310}
4311
4312static int _sched_setscheduler(struct task_struct *p, int policy,
4313 const struct sched_param *param, bool check)
4314{
4315 struct sched_attr attr = {
4316 .sched_policy = policy,
4317 .sched_priority = param->sched_priority,
4318 .sched_nice = PRIO_TO_NICE(p->static_prio),
4319 };
4320
4321 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4322 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4323 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4324 policy &= ~SCHED_RESET_ON_FORK;
4325 attr.sched_policy = policy;
4326 }
4327
4328 return __sched_setscheduler(p, &attr, check, true);
4329}
4330/**
4331 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4332 * @p: the task in question.
4333 * @policy: new policy.
4334 * @param: structure containing the new RT priority.
4335 *
4336 * Return: 0 on success. An error code otherwise.
4337 *
4338 * NOTE that the task may be already dead.
4339 */
4340int sched_setscheduler(struct task_struct *p, int policy,
4341 const struct sched_param *param)
4342{
4343 return _sched_setscheduler(p, policy, param, true);
4344}
4345EXPORT_SYMBOL_GPL(sched_setscheduler);
4346
4347int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4348{
4349 return __sched_setscheduler(p, attr, true, true);
4350}
4351EXPORT_SYMBOL_GPL(sched_setattr);
4352
4353/**
4354 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4355 * @p: the task in question.
4356 * @policy: new policy.
4357 * @param: structure containing the new RT priority.
4358 *
4359 * Just like sched_setscheduler, only don't bother checking if the
4360 * current context has permission. For example, this is needed in
4361 * stop_machine(): we create temporary high priority worker threads,
4362 * but our caller might not have that capability.
4363 *
4364 * Return: 0 on success. An error code otherwise.
4365 */
4366int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4367 const struct sched_param *param)
4368{
4369 return _sched_setscheduler(p, policy, param, false);
4370}
4371EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4372
4373static int
4374do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4375{
4376 struct sched_param lparam;
4377 struct task_struct *p;
4378 int retval;
4379
4380 if (!param || pid < 0)
4381 return -EINVAL;
4382 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4383 return -EFAULT;
4384
4385 rcu_read_lock();
4386 retval = -ESRCH;
4387 p = find_process_by_pid(pid);
4388 if (p != NULL)
4389 retval = sched_setscheduler(p, policy, &lparam);
4390 rcu_read_unlock();
4391
4392 return retval;
4393}
4394
4395/*
4396 * Mimics kernel/events/core.c perf_copy_attr().
4397 */
4398static int sched_copy_attr(struct sched_attr __user *uattr,
4399 struct sched_attr *attr)
4400{
4401 u32 size;
4402 int ret;
4403
4404 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4405 return -EFAULT;
4406
4407 /*
4408 * zero the full structure, so that a short copy will be nice.
4409 */
4410 memset(attr, 0, sizeof(*attr));
4411
4412 ret = get_user(size, &uattr->size);
4413 if (ret)
4414 return ret;
4415
4416 if (size > PAGE_SIZE) /* silly large */
4417 goto err_size;
4418
4419 if (!size) /* abi compat */
4420 size = SCHED_ATTR_SIZE_VER0;
4421
4422 if (size < SCHED_ATTR_SIZE_VER0)
4423 goto err_size;
4424
4425 /*
4426 * If we're handed a bigger struct than we know of,
4427 * ensure all the unknown bits are 0 - i.e. new
4428 * user-space does not rely on any kernel feature
4429 * extensions we dont know about yet.
4430 */
4431 if (size > sizeof(*attr)) {
4432 unsigned char __user *addr;
4433 unsigned char __user *end;
4434 unsigned char val;
4435
4436 addr = (void __user *)uattr + sizeof(*attr);
4437 end = (void __user *)uattr + size;
4438
4439 for (; addr < end; addr++) {
4440 ret = get_user(val, addr);
4441 if (ret)
4442 return ret;
4443 if (val)
4444 goto err_size;
4445 }
4446 size = sizeof(*attr);
4447 }
4448
4449 ret = copy_from_user(attr, uattr, size);
4450 if (ret)
4451 return -EFAULT;
4452
4453 /*
4454 * XXX: do we want to be lenient like existing syscalls; or do we want
4455 * to be strict and return an error on out-of-bounds values?
4456 */
4457 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4458
4459 return 0;
4460
4461err_size:
4462 put_user(sizeof(*attr), &uattr->size);
4463 return -E2BIG;
4464}
4465
4466/**
4467 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4468 * @pid: the pid in question.
4469 * @policy: new policy.
4470 * @param: structure containing the new RT priority.
4471 *
4472 * Return: 0 on success. An error code otherwise.
4473 */
4474SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4475 struct sched_param __user *, param)
4476{
4477 /* negative values for policy are not valid */
4478 if (policy < 0)
4479 return -EINVAL;
4480
4481 return do_sched_setscheduler(pid, policy, param);
4482}
4483
4484/**
4485 * sys_sched_setparam - set/change the RT priority of a thread
4486 * @pid: the pid in question.
4487 * @param: structure containing the new RT priority.
4488 *
4489 * Return: 0 on success. An error code otherwise.
4490 */
4491SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4492{
4493 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4494}
4495
4496/**
4497 * sys_sched_setattr - same as above, but with extended sched_attr
4498 * @pid: the pid in question.
4499 * @uattr: structure containing the extended parameters.
4500 * @flags: for future extension.
4501 */
4502SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4503 unsigned int, flags)
4504{
4505 struct sched_attr attr;
4506 struct task_struct *p;
4507 int retval;
4508
4509 if (!uattr || pid < 0 || flags)
4510 return -EINVAL;
4511
4512 retval = sched_copy_attr(uattr, &attr);
4513 if (retval)
4514 return retval;
4515
4516 if ((int)attr.sched_policy < 0)
4517 return -EINVAL;
4518
4519 rcu_read_lock();
4520 retval = -ESRCH;
4521 p = find_process_by_pid(pid);
4522 if (p != NULL)
4523 retval = sched_setattr(p, &attr);
4524 rcu_read_unlock();
4525
4526 return retval;
4527}
4528
4529/**
4530 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4531 * @pid: the pid in question.
4532 *
4533 * Return: On success, the policy of the thread. Otherwise, a negative error
4534 * code.
4535 */
4536SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4537{
4538 struct task_struct *p;
4539 int retval;
4540
4541 if (pid < 0)
4542 return -EINVAL;
4543
4544 retval = -ESRCH;
4545 rcu_read_lock();
4546 p = find_process_by_pid(pid);
4547 if (p) {
4548 retval = security_task_getscheduler(p);
4549 if (!retval)
4550 retval = p->policy
4551 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4552 }
4553 rcu_read_unlock();
4554 return retval;
4555}
4556
4557/**
4558 * sys_sched_getparam - get the RT priority of a thread
4559 * @pid: the pid in question.
4560 * @param: structure containing the RT priority.
4561 *
4562 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4563 * code.
4564 */
4565SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4566{
4567 struct sched_param lp = { .sched_priority = 0 };
4568 struct task_struct *p;
4569 int retval;
4570
4571 if (!param || pid < 0)
4572 return -EINVAL;
4573
4574 rcu_read_lock();
4575 p = find_process_by_pid(pid);
4576 retval = -ESRCH;
4577 if (!p)
4578 goto out_unlock;
4579
4580 retval = security_task_getscheduler(p);
4581 if (retval)
4582 goto out_unlock;
4583
4584 if (task_has_rt_policy(p))
4585 lp.sched_priority = p->rt_priority;
4586 rcu_read_unlock();
4587
4588 /*
4589 * This one might sleep, we cannot do it with a spinlock held ...
4590 */
4591 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4592
4593 return retval;
4594
4595out_unlock:
4596 rcu_read_unlock();
4597 return retval;
4598}
4599
4600static int sched_read_attr(struct sched_attr __user *uattr,
4601 struct sched_attr *attr,
4602 unsigned int usize)
4603{
4604 int ret;
4605
4606 if (!access_ok(VERIFY_WRITE, uattr, usize))
4607 return -EFAULT;
4608
4609 /*
4610 * If we're handed a smaller struct than we know of,
4611 * ensure all the unknown bits are 0 - i.e. old
4612 * user-space does not get uncomplete information.
4613 */
4614 if (usize < sizeof(*attr)) {
4615 unsigned char *addr;
4616 unsigned char *end;
4617
4618 addr = (void *)attr + usize;
4619 end = (void *)attr + sizeof(*attr);
4620
4621 for (; addr < end; addr++) {
4622 if (*addr)
4623 return -EFBIG;
4624 }
4625
4626 attr->size = usize;
4627 }
4628
4629 ret = copy_to_user(uattr, attr, attr->size);
4630 if (ret)
4631 return -EFAULT;
4632
4633 return 0;
4634}
4635
4636/**
4637 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4638 * @pid: the pid in question.
4639 * @uattr: structure containing the extended parameters.
4640 * @size: sizeof(attr) for fwd/bwd comp.
4641 * @flags: for future extension.
4642 */
4643SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4644 unsigned int, size, unsigned int, flags)
4645{
4646 struct sched_attr attr = {
4647 .size = sizeof(struct sched_attr),
4648 };
4649 struct task_struct *p;
4650 int retval;
4651
4652 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4653 size < SCHED_ATTR_SIZE_VER0 || flags)
4654 return -EINVAL;
4655
4656 rcu_read_lock();
4657 p = find_process_by_pid(pid);
4658 retval = -ESRCH;
4659 if (!p)
4660 goto out_unlock;
4661
4662 retval = security_task_getscheduler(p);
4663 if (retval)
4664 goto out_unlock;
4665
4666 attr.sched_policy = p->policy;
4667 if (p->sched_reset_on_fork)
4668 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4669 if (task_has_dl_policy(p))
4670 __getparam_dl(p, &attr);
4671 else if (task_has_rt_policy(p))
4672 attr.sched_priority = p->rt_priority;
4673 else
4674 attr.sched_nice = task_nice(p);
4675
4676 rcu_read_unlock();
4677
4678 retval = sched_read_attr(uattr, &attr, size);
4679 return retval;
4680
4681out_unlock:
4682 rcu_read_unlock();
4683 return retval;
4684}
4685
4686long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4687{
4688 cpumask_var_t cpus_allowed, new_mask;
4689 struct task_struct *p;
4690 int retval;
4691
4692 rcu_read_lock();
4693
4694 p = find_process_by_pid(pid);
4695 if (!p) {
4696 rcu_read_unlock();
4697 return -ESRCH;
4698 }
4699
4700 /* Prevent p going away */
4701 get_task_struct(p);
4702 rcu_read_unlock();
4703
4704 if (p->flags & PF_NO_SETAFFINITY) {
4705 retval = -EINVAL;
4706 goto out_put_task;
4707 }
4708 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4709 retval = -ENOMEM;
4710 goto out_put_task;
4711 }
4712 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4713 retval = -ENOMEM;
4714 goto out_free_cpus_allowed;
4715 }
4716 retval = -EPERM;
4717 if (!check_same_owner(p)) {
4718 rcu_read_lock();
4719 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4720 rcu_read_unlock();
4721 goto out_free_new_mask;
4722 }
4723 rcu_read_unlock();
4724 }
4725
4726 retval = security_task_setscheduler(p);
4727 if (retval)
4728 goto out_free_new_mask;
4729
4730
4731 cpuset_cpus_allowed(p, cpus_allowed);
4732 cpumask_and(new_mask, in_mask, cpus_allowed);
4733
4734 /*
4735 * Since bandwidth control happens on root_domain basis,
4736 * if admission test is enabled, we only admit -deadline
4737 * tasks allowed to run on all the CPUs in the task's
4738 * root_domain.
4739 */
4740#ifdef CONFIG_SMP
4741 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4742 rcu_read_lock();
4743 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4744 retval = -EBUSY;
4745 rcu_read_unlock();
4746 goto out_free_new_mask;
4747 }
4748 rcu_read_unlock();
4749 }
4750#endif
4751again:
4752 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4753
4754 if (!retval) {
4755 cpuset_cpus_allowed(p, cpus_allowed);
4756 if (!cpumask_subset(new_mask, cpus_allowed)) {
4757 /*
4758 * We must have raced with a concurrent cpuset
4759 * update. Just reset the cpus_allowed to the
4760 * cpuset's cpus_allowed
4761 */
4762 cpumask_copy(new_mask, cpus_allowed);
4763 goto again;
4764 }
4765 }
4766out_free_new_mask:
4767 free_cpumask_var(new_mask);
4768out_free_cpus_allowed:
4769 free_cpumask_var(cpus_allowed);
4770out_put_task:
4771 put_task_struct(p);
4772 return retval;
4773}
4774
4775static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4776 struct cpumask *new_mask)
4777{
4778 if (len < cpumask_size())
4779 cpumask_clear(new_mask);
4780 else if (len > cpumask_size())
4781 len = cpumask_size();
4782
4783 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4784}
4785
4786/**
4787 * sys_sched_setaffinity - set the cpu affinity of a process
4788 * @pid: pid of the process
4789 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4790 * @user_mask_ptr: user-space pointer to the new cpu mask
4791 *
4792 * Return: 0 on success. An error code otherwise.
4793 */
4794SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4795 unsigned long __user *, user_mask_ptr)
4796{
4797 cpumask_var_t new_mask;
4798 int retval;
4799
4800 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4801 return -ENOMEM;
4802
4803 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4804 if (retval == 0)
4805 retval = sched_setaffinity(pid, new_mask);
4806 free_cpumask_var(new_mask);
4807 return retval;
4808}
4809
4810long sched_getaffinity(pid_t pid, struct cpumask *mask)
4811{
4812 struct task_struct *p;
4813 unsigned long flags;
4814 int retval;
4815
4816 rcu_read_lock();
4817
4818 retval = -ESRCH;
4819 p = find_process_by_pid(pid);
4820 if (!p)
4821 goto out_unlock;
4822
4823 retval = security_task_getscheduler(p);
4824 if (retval)
4825 goto out_unlock;
4826
4827 raw_spin_lock_irqsave(&p->pi_lock, flags);
4828 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4829 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4830
4831out_unlock:
4832 rcu_read_unlock();
4833
4834 return retval;
4835}
4836
4837/**
4838 * sys_sched_getaffinity - get the cpu affinity of a process
4839 * @pid: pid of the process
4840 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4841 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4842 *
4843 * Return: size of CPU mask copied to user_mask_ptr on success. An
4844 * error code otherwise.
4845 */
4846SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4847 unsigned long __user *, user_mask_ptr)
4848{
4849 int ret;
4850 cpumask_var_t mask;
4851
4852 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4853 return -EINVAL;
4854 if (len & (sizeof(unsigned long)-1))
4855 return -EINVAL;
4856
4857 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4858 return -ENOMEM;
4859
4860 ret = sched_getaffinity(pid, mask);
4861 if (ret == 0) {
4862 size_t retlen = min_t(size_t, len, cpumask_size());
4863
4864 if (copy_to_user(user_mask_ptr, mask, retlen))
4865 ret = -EFAULT;
4866 else
4867 ret = retlen;
4868 }
4869 free_cpumask_var(mask);
4870
4871 return ret;
4872}
4873
4874/**
4875 * sys_sched_yield - yield the current processor to other threads.
4876 *
4877 * This function yields the current CPU to other tasks. If there are no
4878 * other threads running on this CPU then this function will return.
4879 *
4880 * Return: 0.
4881 */
4882SYSCALL_DEFINE0(sched_yield)
4883{
4884 struct rq *rq = this_rq_lock();
4885
4886 schedstat_inc(rq->yld_count);
4887 current->sched_class->yield_task(rq);
4888
4889 /*
4890 * Since we are going to call schedule() anyway, there's
4891 * no need to preempt or enable interrupts:
4892 */
4893 __release(rq->lock);
4894 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4895 do_raw_spin_unlock(&rq->lock);
4896 sched_preempt_enable_no_resched();
4897
4898 schedule();
4899
4900 return 0;
4901}
4902
4903#ifndef CONFIG_PREEMPT
4904int __sched _cond_resched(void)
4905{
4906 if (should_resched(0)) {
4907 preempt_schedule_common();
4908 return 1;
4909 }
4910 return 0;
4911}
4912EXPORT_SYMBOL(_cond_resched);
4913#endif
4914
4915/*
4916 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4917 * call schedule, and on return reacquire the lock.
4918 *
4919 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4920 * operations here to prevent schedule() from being called twice (once via
4921 * spin_unlock(), once by hand).
4922 */
4923int __cond_resched_lock(spinlock_t *lock)
4924{
4925 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4926 int ret = 0;
4927
4928 lockdep_assert_held(lock);
4929
4930 if (spin_needbreak(lock) || resched) {
4931 spin_unlock(lock);
4932 if (resched)
4933 preempt_schedule_common();
4934 else
4935 cpu_relax();
4936 ret = 1;
4937 spin_lock(lock);
4938 }
4939 return ret;
4940}
4941EXPORT_SYMBOL(__cond_resched_lock);
4942
4943int __sched __cond_resched_softirq(void)
4944{
4945 BUG_ON(!in_softirq());
4946
4947 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4948 local_bh_enable();
4949 preempt_schedule_common();
4950 local_bh_disable();
4951 return 1;
4952 }
4953 return 0;
4954}
4955EXPORT_SYMBOL(__cond_resched_softirq);
4956
4957/**
4958 * yield - yield the current processor to other threads.
4959 *
4960 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4961 *
4962 * The scheduler is at all times free to pick the calling task as the most
4963 * eligible task to run, if removing the yield() call from your code breaks
4964 * it, its already broken.
4965 *
4966 * Typical broken usage is:
4967 *
4968 * while (!event)
4969 * yield();
4970 *
4971 * where one assumes that yield() will let 'the other' process run that will
4972 * make event true. If the current task is a SCHED_FIFO task that will never
4973 * happen. Never use yield() as a progress guarantee!!
4974 *
4975 * If you want to use yield() to wait for something, use wait_event().
4976 * If you want to use yield() to be 'nice' for others, use cond_resched().
4977 * If you still want to use yield(), do not!
4978 */
4979void __sched yield(void)
4980{
4981 set_current_state(TASK_RUNNING);
4982 sys_sched_yield();
4983}
4984EXPORT_SYMBOL(yield);
4985
4986/**
4987 * yield_to - yield the current processor to another thread in
4988 * your thread group, or accelerate that thread toward the
4989 * processor it's on.
4990 * @p: target task
4991 * @preempt: whether task preemption is allowed or not
4992 *
4993 * It's the caller's job to ensure that the target task struct
4994 * can't go away on us before we can do any checks.
4995 *
4996 * Return:
4997 * true (>0) if we indeed boosted the target task.
4998 * false (0) if we failed to boost the target.
4999 * -ESRCH if there's no task to yield to.
5000 */
5001int __sched yield_to(struct task_struct *p, bool preempt)
5002{
5003 struct task_struct *curr = current;
5004 struct rq *rq, *p_rq;
5005 unsigned long flags;
5006 int yielded = 0;
5007
5008 local_irq_save(flags);
5009 rq = this_rq();
5010
5011again:
5012 p_rq = task_rq(p);
5013 /*
5014 * If we're the only runnable task on the rq and target rq also
5015 * has only one task, there's absolutely no point in yielding.
5016 */
5017 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5018 yielded = -ESRCH;
5019 goto out_irq;
5020 }
5021
5022 double_rq_lock(rq, p_rq);
5023 if (task_rq(p) != p_rq) {
5024 double_rq_unlock(rq, p_rq);
5025 goto again;
5026 }
5027
5028 if (!curr->sched_class->yield_to_task)
5029 goto out_unlock;
5030
5031 if (curr->sched_class != p->sched_class)
5032 goto out_unlock;
5033
5034 if (task_running(p_rq, p) || p->state)
5035 goto out_unlock;
5036
5037 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5038 if (yielded) {
5039 schedstat_inc(rq->yld_count);
5040 /*
5041 * Make p's CPU reschedule; pick_next_entity takes care of
5042 * fairness.
5043 */
5044 if (preempt && rq != p_rq)
5045 resched_curr(p_rq);
5046 }
5047
5048out_unlock:
5049 double_rq_unlock(rq, p_rq);
5050out_irq:
5051 local_irq_restore(flags);
5052
5053 if (yielded > 0)
5054 schedule();
5055
5056 return yielded;
5057}
5058EXPORT_SYMBOL_GPL(yield_to);
5059
5060/*
5061 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5062 * that process accounting knows that this is a task in IO wait state.
5063 */
5064long __sched io_schedule_timeout(long timeout)
5065{
5066 int old_iowait = current->in_iowait;
5067 struct rq *rq;
5068 long ret;
5069
5070 current->in_iowait = 1;
5071 blk_schedule_flush_plug(current);
5072
5073 delayacct_blkio_start();
5074 rq = raw_rq();
5075 atomic_inc(&rq->nr_iowait);
5076 ret = schedule_timeout(timeout);
5077 current->in_iowait = old_iowait;
5078 atomic_dec(&rq->nr_iowait);
5079 delayacct_blkio_end();
5080
5081 return ret;
5082}
5083EXPORT_SYMBOL(io_schedule_timeout);
5084
5085/**
5086 * sys_sched_get_priority_max - return maximum RT priority.
5087 * @policy: scheduling class.
5088 *
5089 * Return: On success, this syscall returns the maximum
5090 * rt_priority that can be used by a given scheduling class.
5091 * On failure, a negative error code is returned.
5092 */
5093SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5094{
5095 int ret = -EINVAL;
5096
5097 switch (policy) {
5098 case SCHED_FIFO:
5099 case SCHED_RR:
5100 ret = MAX_USER_RT_PRIO-1;
5101 break;
5102 case SCHED_DEADLINE:
5103 case SCHED_NORMAL:
5104 case SCHED_BATCH:
5105 case SCHED_IDLE:
5106 ret = 0;
5107 break;
5108 }
5109 return ret;
5110}
5111
5112/**
5113 * sys_sched_get_priority_min - return minimum RT priority.
5114 * @policy: scheduling class.
5115 *
5116 * Return: On success, this syscall returns the minimum
5117 * rt_priority that can be used by a given scheduling class.
5118 * On failure, a negative error code is returned.
5119 */
5120SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5121{
5122 int ret = -EINVAL;
5123
5124 switch (policy) {
5125 case SCHED_FIFO:
5126 case SCHED_RR:
5127 ret = 1;
5128 break;
5129 case SCHED_DEADLINE:
5130 case SCHED_NORMAL:
5131 case SCHED_BATCH:
5132 case SCHED_IDLE:
5133 ret = 0;
5134 }
5135 return ret;
5136}
5137
5138/**
5139 * sys_sched_rr_get_interval - return the default timeslice of a process.
5140 * @pid: pid of the process.
5141 * @interval: userspace pointer to the timeslice value.
5142 *
5143 * this syscall writes the default timeslice value of a given process
5144 * into the user-space timespec buffer. A value of '0' means infinity.
5145 *
5146 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5147 * an error code.
5148 */
5149SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5150 struct timespec __user *, interval)
5151{
5152 struct task_struct *p;
5153 unsigned int time_slice;
5154 struct rq_flags rf;
5155 struct timespec t;
5156 struct rq *rq;
5157 int retval;
5158
5159 if (pid < 0)
5160 return -EINVAL;
5161
5162 retval = -ESRCH;
5163 rcu_read_lock();
5164 p = find_process_by_pid(pid);
5165 if (!p)
5166 goto out_unlock;
5167
5168 retval = security_task_getscheduler(p);
5169 if (retval)
5170 goto out_unlock;
5171
5172 rq = task_rq_lock(p, &rf);
5173 time_slice = 0;
5174 if (p->sched_class->get_rr_interval)
5175 time_slice = p->sched_class->get_rr_interval(rq, p);
5176 task_rq_unlock(rq, p, &rf);
5177
5178 rcu_read_unlock();
5179 jiffies_to_timespec(time_slice, &t);
5180 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5181 return retval;
5182
5183out_unlock:
5184 rcu_read_unlock();
5185 return retval;
5186}
5187
5188static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5189
5190void sched_show_task(struct task_struct *p)
5191{
5192 unsigned long free = 0;
5193 int ppid;
5194 unsigned long state = p->state;
5195
5196 if (!try_get_task_stack(p))
5197 return;
5198 if (state)
5199 state = __ffs(state) + 1;
5200 printk(KERN_INFO "%-15.15s %c", p->comm,
5201 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5202 if (state == TASK_RUNNING)
5203 printk(KERN_CONT " running task ");
5204#ifdef CONFIG_DEBUG_STACK_USAGE
5205 free = stack_not_used(p);
5206#endif
5207 ppid = 0;
5208 rcu_read_lock();
5209 if (pid_alive(p))
5210 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5211 rcu_read_unlock();
5212 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5213 task_pid_nr(p), ppid,
5214 (unsigned long)task_thread_info(p)->flags);
5215
5216 print_worker_info(KERN_INFO, p);
5217 show_stack(p, NULL);
5218 put_task_stack(p);
5219}
5220
5221void show_state_filter(unsigned long state_filter)
5222{
5223 struct task_struct *g, *p;
5224
5225#if BITS_PER_LONG == 32
5226 printk(KERN_INFO
5227 " task PC stack pid father\n");
5228#else
5229 printk(KERN_INFO
5230 " task PC stack pid father\n");
5231#endif
5232 rcu_read_lock();
5233 for_each_process_thread(g, p) {
5234 /*
5235 * reset the NMI-timeout, listing all files on a slow
5236 * console might take a lot of time:
5237 * Also, reset softlockup watchdogs on all CPUs, because
5238 * another CPU might be blocked waiting for us to process
5239 * an IPI.
5240 */
5241 touch_nmi_watchdog();
5242 touch_all_softlockup_watchdogs();
5243 if (!state_filter || (p->state & state_filter))
5244 sched_show_task(p);
5245 }
5246
5247#ifdef CONFIG_SCHED_DEBUG
5248 if (!state_filter)
5249 sysrq_sched_debug_show();
5250#endif
5251 rcu_read_unlock();
5252 /*
5253 * Only show locks if all tasks are dumped:
5254 */
5255 if (!state_filter)
5256 debug_show_all_locks();
5257}
5258
5259void init_idle_bootup_task(struct task_struct *idle)
5260{
5261 idle->sched_class = &idle_sched_class;
5262}
5263
5264/**
5265 * init_idle - set up an idle thread for a given CPU
5266 * @idle: task in question
5267 * @cpu: cpu the idle task belongs to
5268 *
5269 * NOTE: this function does not set the idle thread's NEED_RESCHED
5270 * flag, to make booting more robust.
5271 */
5272void init_idle(struct task_struct *idle, int cpu)
5273{
5274 struct rq *rq = cpu_rq(cpu);
5275 unsigned long flags;
5276
5277 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5278 raw_spin_lock(&rq->lock);
5279
5280 __sched_fork(0, idle);
5281 idle->state = TASK_RUNNING;
5282 idle->se.exec_start = sched_clock();
5283 idle->flags |= PF_IDLE;
5284
5285 kasan_unpoison_task_stack(idle);
5286
5287#ifdef CONFIG_SMP
5288 /*
5289 * Its possible that init_idle() gets called multiple times on a task,
5290 * in that case do_set_cpus_allowed() will not do the right thing.
5291 *
5292 * And since this is boot we can forgo the serialization.
5293 */
5294 set_cpus_allowed_common(idle, cpumask_of(cpu));
5295#endif
5296 /*
5297 * We're having a chicken and egg problem, even though we are
5298 * holding rq->lock, the cpu isn't yet set to this cpu so the
5299 * lockdep check in task_group() will fail.
5300 *
5301 * Similar case to sched_fork(). / Alternatively we could
5302 * use task_rq_lock() here and obtain the other rq->lock.
5303 *
5304 * Silence PROVE_RCU
5305 */
5306 rcu_read_lock();
5307 __set_task_cpu(idle, cpu);
5308 rcu_read_unlock();
5309
5310 rq->curr = rq->idle = idle;
5311 idle->on_rq = TASK_ON_RQ_QUEUED;
5312#ifdef CONFIG_SMP
5313 idle->on_cpu = 1;
5314#endif
5315 raw_spin_unlock(&rq->lock);
5316 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5317
5318 /* Set the preempt count _outside_ the spinlocks! */
5319 init_idle_preempt_count(idle, cpu);
5320
5321 /*
5322 * The idle tasks have their own, simple scheduling class:
5323 */
5324 idle->sched_class = &idle_sched_class;
5325 ftrace_graph_init_idle_task(idle, cpu);
5326 vtime_init_idle(idle, cpu);
5327#ifdef CONFIG_SMP
5328 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5329#endif
5330}
5331
5332int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5333 const struct cpumask *trial)
5334{
5335 int ret = 1, trial_cpus;
5336 struct dl_bw *cur_dl_b;
5337 unsigned long flags;
5338
5339 if (!cpumask_weight(cur))
5340 return ret;
5341
5342 rcu_read_lock_sched();
5343 cur_dl_b = dl_bw_of(cpumask_any(cur));
5344 trial_cpus = cpumask_weight(trial);
5345
5346 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5347 if (cur_dl_b->bw != -1 &&
5348 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5349 ret = 0;
5350 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5351 rcu_read_unlock_sched();
5352
5353 return ret;
5354}
5355
5356int task_can_attach(struct task_struct *p,
5357 const struct cpumask *cs_cpus_allowed)
5358{
5359 int ret = 0;
5360
5361 /*
5362 * Kthreads which disallow setaffinity shouldn't be moved
5363 * to a new cpuset; we don't want to change their cpu
5364 * affinity and isolating such threads by their set of
5365 * allowed nodes is unnecessary. Thus, cpusets are not
5366 * applicable for such threads. This prevents checking for
5367 * success of set_cpus_allowed_ptr() on all attached tasks
5368 * before cpus_allowed may be changed.
5369 */
5370 if (p->flags & PF_NO_SETAFFINITY) {
5371 ret = -EINVAL;
5372 goto out;
5373 }
5374
5375#ifdef CONFIG_SMP
5376 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5377 cs_cpus_allowed)) {
5378 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5379 cs_cpus_allowed);
5380 struct dl_bw *dl_b;
5381 bool overflow;
5382 int cpus;
5383 unsigned long flags;
5384
5385 rcu_read_lock_sched();
5386 dl_b = dl_bw_of(dest_cpu);
5387 raw_spin_lock_irqsave(&dl_b->lock, flags);
5388 cpus = dl_bw_cpus(dest_cpu);
5389 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5390 if (overflow)
5391 ret = -EBUSY;
5392 else {
5393 /*
5394 * We reserve space for this task in the destination
5395 * root_domain, as we can't fail after this point.
5396 * We will free resources in the source root_domain
5397 * later on (see set_cpus_allowed_dl()).
5398 */
5399 __dl_add(dl_b, p->dl.dl_bw);
5400 }
5401 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5402 rcu_read_unlock_sched();
5403
5404 }
5405#endif
5406out:
5407 return ret;
5408}
5409
5410#ifdef CONFIG_SMP
5411
5412static bool sched_smp_initialized __read_mostly;
5413
5414#ifdef CONFIG_NUMA_BALANCING
5415/* Migrate current task p to target_cpu */
5416int migrate_task_to(struct task_struct *p, int target_cpu)
5417{
5418 struct migration_arg arg = { p, target_cpu };
5419 int curr_cpu = task_cpu(p);
5420
5421 if (curr_cpu == target_cpu)
5422 return 0;
5423
5424 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5425 return -EINVAL;
5426
5427 /* TODO: This is not properly updating schedstats */
5428
5429 trace_sched_move_numa(p, curr_cpu, target_cpu);
5430 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5431}
5432
5433/*
5434 * Requeue a task on a given node and accurately track the number of NUMA
5435 * tasks on the runqueues
5436 */
5437void sched_setnuma(struct task_struct *p, int nid)
5438{
5439 bool queued, running;
5440 struct rq_flags rf;
5441 struct rq *rq;
5442
5443 rq = task_rq_lock(p, &rf);
5444 queued = task_on_rq_queued(p);
5445 running = task_current(rq, p);
5446
5447 if (queued)
5448 dequeue_task(rq, p, DEQUEUE_SAVE);
5449 if (running)
5450 put_prev_task(rq, p);
5451
5452 p->numa_preferred_nid = nid;
5453
5454 if (queued)
5455 enqueue_task(rq, p, ENQUEUE_RESTORE);
5456 if (running)
5457 set_curr_task(rq, p);
5458 task_rq_unlock(rq, p, &rf);
5459}
5460#endif /* CONFIG_NUMA_BALANCING */
5461
5462#ifdef CONFIG_HOTPLUG_CPU
5463/*
5464 * Ensures that the idle task is using init_mm right before its cpu goes
5465 * offline.
5466 */
5467void idle_task_exit(void)
5468{
5469 struct mm_struct *mm = current->active_mm;
5470
5471 BUG_ON(cpu_online(smp_processor_id()));
5472
5473 if (mm != &init_mm) {
5474 switch_mm_irqs_off(mm, &init_mm, current);
5475 finish_arch_post_lock_switch();
5476 }
5477 mmdrop(mm);
5478}
5479
5480/*
5481 * Since this CPU is going 'away' for a while, fold any nr_active delta
5482 * we might have. Assumes we're called after migrate_tasks() so that the
5483 * nr_active count is stable. We need to take the teardown thread which
5484 * is calling this into account, so we hand in adjust = 1 to the load
5485 * calculation.
5486 *
5487 * Also see the comment "Global load-average calculations".
5488 */
5489static void calc_load_migrate(struct rq *rq)
5490{
5491 long delta = calc_load_fold_active(rq, 1);
5492 if (delta)
5493 atomic_long_add(delta, &calc_load_tasks);
5494}
5495
5496static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5497{
5498}
5499
5500static const struct sched_class fake_sched_class = {
5501 .put_prev_task = put_prev_task_fake,
5502};
5503
5504static struct task_struct fake_task = {
5505 /*
5506 * Avoid pull_{rt,dl}_task()
5507 */
5508 .prio = MAX_PRIO + 1,
5509 .sched_class = &fake_sched_class,
5510};
5511
5512/*
5513 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5514 * try_to_wake_up()->select_task_rq().
5515 *
5516 * Called with rq->lock held even though we'er in stop_machine() and
5517 * there's no concurrency possible, we hold the required locks anyway
5518 * because of lock validation efforts.
5519 */
5520static void migrate_tasks(struct rq *dead_rq)
5521{
5522 struct rq *rq = dead_rq;
5523 struct task_struct *next, *stop = rq->stop;
5524 struct pin_cookie cookie;
5525 int dest_cpu;
5526
5527 /*
5528 * Fudge the rq selection such that the below task selection loop
5529 * doesn't get stuck on the currently eligible stop task.
5530 *
5531 * We're currently inside stop_machine() and the rq is either stuck
5532 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5533 * either way we should never end up calling schedule() until we're
5534 * done here.
5535 */
5536 rq->stop = NULL;
5537
5538 /*
5539 * put_prev_task() and pick_next_task() sched
5540 * class method both need to have an up-to-date
5541 * value of rq->clock[_task]
5542 */
5543 update_rq_clock(rq);
5544
5545 for (;;) {
5546 /*
5547 * There's this thread running, bail when that's the only
5548 * remaining thread.
5549 */
5550 if (rq->nr_running == 1)
5551 break;
5552
5553 /*
5554 * pick_next_task assumes pinned rq->lock.
5555 */
5556 cookie = lockdep_pin_lock(&rq->lock);
5557 next = pick_next_task(rq, &fake_task, cookie);
5558 BUG_ON(!next);
5559 next->sched_class->put_prev_task(rq, next);
5560
5561 /*
5562 * Rules for changing task_struct::cpus_allowed are holding
5563 * both pi_lock and rq->lock, such that holding either
5564 * stabilizes the mask.
5565 *
5566 * Drop rq->lock is not quite as disastrous as it usually is
5567 * because !cpu_active at this point, which means load-balance
5568 * will not interfere. Also, stop-machine.
5569 */
5570 lockdep_unpin_lock(&rq->lock, cookie);
5571 raw_spin_unlock(&rq->lock);
5572 raw_spin_lock(&next->pi_lock);
5573 raw_spin_lock(&rq->lock);
5574
5575 /*
5576 * Since we're inside stop-machine, _nothing_ should have
5577 * changed the task, WARN if weird stuff happened, because in
5578 * that case the above rq->lock drop is a fail too.
5579 */
5580 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5581 raw_spin_unlock(&next->pi_lock);
5582 continue;
5583 }
5584
5585 /* Find suitable destination for @next, with force if needed. */
5586 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5587
5588 rq = __migrate_task(rq, next, dest_cpu);
5589 if (rq != dead_rq) {
5590 raw_spin_unlock(&rq->lock);
5591 rq = dead_rq;
5592 raw_spin_lock(&rq->lock);
5593 }
5594 raw_spin_unlock(&next->pi_lock);
5595 }
5596
5597 rq->stop = stop;
5598}
5599#endif /* CONFIG_HOTPLUG_CPU */
5600
5601static void set_rq_online(struct rq *rq)
5602{
5603 if (!rq->online) {
5604 const struct sched_class *class;
5605
5606 cpumask_set_cpu(rq->cpu, rq->rd->online);
5607 rq->online = 1;
5608
5609 for_each_class(class) {
5610 if (class->rq_online)
5611 class->rq_online(rq);
5612 }
5613 }
5614}
5615
5616static void set_rq_offline(struct rq *rq)
5617{
5618 if (rq->online) {
5619 const struct sched_class *class;
5620
5621 for_each_class(class) {
5622 if (class->rq_offline)
5623 class->rq_offline(rq);
5624 }
5625
5626 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5627 rq->online = 0;
5628 }
5629}
5630
5631static void set_cpu_rq_start_time(unsigned int cpu)
5632{
5633 struct rq *rq = cpu_rq(cpu);
5634
5635 rq->age_stamp = sched_clock_cpu(cpu);
5636}
5637
5638static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5639
5640#ifdef CONFIG_SCHED_DEBUG
5641
5642static __read_mostly int sched_debug_enabled;
5643
5644static int __init sched_debug_setup(char *str)
5645{
5646 sched_debug_enabled = 1;
5647
5648 return 0;
5649}
5650early_param("sched_debug", sched_debug_setup);
5651
5652static inline bool sched_debug(void)
5653{
5654 return sched_debug_enabled;
5655}
5656
5657static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5658 struct cpumask *groupmask)
5659{
5660 struct sched_group *group = sd->groups;
5661
5662 cpumask_clear(groupmask);
5663
5664 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5665
5666 if (!(sd->flags & SD_LOAD_BALANCE)) {
5667 printk("does not load-balance\n");
5668 if (sd->parent)
5669 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5670 " has parent");
5671 return -1;
5672 }
5673
5674 printk(KERN_CONT "span %*pbl level %s\n",
5675 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5676
5677 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5678 printk(KERN_ERR "ERROR: domain->span does not contain "
5679 "CPU%d\n", cpu);
5680 }
5681 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5682 printk(KERN_ERR "ERROR: domain->groups does not contain"
5683 " CPU%d\n", cpu);
5684 }
5685
5686 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5687 do {
5688 if (!group) {
5689 printk("\n");
5690 printk(KERN_ERR "ERROR: group is NULL\n");
5691 break;
5692 }
5693
5694 if (!cpumask_weight(sched_group_cpus(group))) {
5695 printk(KERN_CONT "\n");
5696 printk(KERN_ERR "ERROR: empty group\n");
5697 break;
5698 }
5699
5700 if (!(sd->flags & SD_OVERLAP) &&
5701 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5702 printk(KERN_CONT "\n");
5703 printk(KERN_ERR "ERROR: repeated CPUs\n");
5704 break;
5705 }
5706
5707 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5708
5709 printk(KERN_CONT " %*pbl",
5710 cpumask_pr_args(sched_group_cpus(group)));
5711 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5712 printk(KERN_CONT " (cpu_capacity = %lu)",
5713 group->sgc->capacity);
5714 }
5715
5716 group = group->next;
5717 } while (group != sd->groups);
5718 printk(KERN_CONT "\n");
5719
5720 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5721 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5722
5723 if (sd->parent &&
5724 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5725 printk(KERN_ERR "ERROR: parent span is not a superset "
5726 "of domain->span\n");
5727 return 0;
5728}
5729
5730static void sched_domain_debug(struct sched_domain *sd, int cpu)
5731{
5732 int level = 0;
5733
5734 if (!sched_debug_enabled)
5735 return;
5736
5737 if (!sd) {
5738 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5739 return;
5740 }
5741
5742 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5743
5744 for (;;) {
5745 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5746 break;
5747 level++;
5748 sd = sd->parent;
5749 if (!sd)
5750 break;
5751 }
5752}
5753#else /* !CONFIG_SCHED_DEBUG */
5754
5755# define sched_debug_enabled 0
5756# define sched_domain_debug(sd, cpu) do { } while (0)
5757static inline bool sched_debug(void)
5758{
5759 return false;
5760}
5761#endif /* CONFIG_SCHED_DEBUG */
5762
5763static int sd_degenerate(struct sched_domain *sd)
5764{
5765 if (cpumask_weight(sched_domain_span(sd)) == 1)
5766 return 1;
5767
5768 /* Following flags need at least 2 groups */
5769 if (sd->flags & (SD_LOAD_BALANCE |
5770 SD_BALANCE_NEWIDLE |
5771 SD_BALANCE_FORK |
5772 SD_BALANCE_EXEC |
5773 SD_SHARE_CPUCAPACITY |
5774 SD_ASYM_CPUCAPACITY |
5775 SD_SHARE_PKG_RESOURCES |
5776 SD_SHARE_POWERDOMAIN)) {
5777 if (sd->groups != sd->groups->next)
5778 return 0;
5779 }
5780
5781 /* Following flags don't use groups */
5782 if (sd->flags & (SD_WAKE_AFFINE))
5783 return 0;
5784
5785 return 1;
5786}
5787
5788static int
5789sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5790{
5791 unsigned long cflags = sd->flags, pflags = parent->flags;
5792
5793 if (sd_degenerate(parent))
5794 return 1;
5795
5796 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5797 return 0;
5798
5799 /* Flags needing groups don't count if only 1 group in parent */
5800 if (parent->groups == parent->groups->next) {
5801 pflags &= ~(SD_LOAD_BALANCE |
5802 SD_BALANCE_NEWIDLE |
5803 SD_BALANCE_FORK |
5804 SD_BALANCE_EXEC |
5805 SD_ASYM_CPUCAPACITY |
5806 SD_SHARE_CPUCAPACITY |
5807 SD_SHARE_PKG_RESOURCES |
5808 SD_PREFER_SIBLING |
5809 SD_SHARE_POWERDOMAIN);
5810 if (nr_node_ids == 1)
5811 pflags &= ~SD_SERIALIZE;
5812 }
5813 if (~cflags & pflags)
5814 return 0;
5815
5816 return 1;
5817}
5818
5819static void free_rootdomain(struct rcu_head *rcu)
5820{
5821 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5822
5823 cpupri_cleanup(&rd->cpupri);
5824 cpudl_cleanup(&rd->cpudl);
5825 free_cpumask_var(rd->dlo_mask);
5826 free_cpumask_var(rd->rto_mask);
5827 free_cpumask_var(rd->online);
5828 free_cpumask_var(rd->span);
5829 kfree(rd);
5830}
5831
5832static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5833{
5834 struct root_domain *old_rd = NULL;
5835 unsigned long flags;
5836
5837 raw_spin_lock_irqsave(&rq->lock, flags);
5838
5839 if (rq->rd) {
5840 old_rd = rq->rd;
5841
5842 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5843 set_rq_offline(rq);
5844
5845 cpumask_clear_cpu(rq->cpu, old_rd->span);
5846
5847 /*
5848 * If we dont want to free the old_rd yet then
5849 * set old_rd to NULL to skip the freeing later
5850 * in this function:
5851 */
5852 if (!atomic_dec_and_test(&old_rd->refcount))
5853 old_rd = NULL;
5854 }
5855
5856 atomic_inc(&rd->refcount);
5857 rq->rd = rd;
5858
5859 cpumask_set_cpu(rq->cpu, rd->span);
5860 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5861 set_rq_online(rq);
5862
5863 raw_spin_unlock_irqrestore(&rq->lock, flags);
5864
5865 if (old_rd)
5866 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5867}
5868
5869static int init_rootdomain(struct root_domain *rd)
5870{
5871 memset(rd, 0, sizeof(*rd));
5872
5873 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5874 goto out;
5875 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5876 goto free_span;
5877 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5878 goto free_online;
5879 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5880 goto free_dlo_mask;
5881
5882 init_dl_bw(&rd->dl_bw);
5883 if (cpudl_init(&rd->cpudl) != 0)
5884 goto free_dlo_mask;
5885
5886 if (cpupri_init(&rd->cpupri) != 0)
5887 goto free_rto_mask;
5888 return 0;
5889
5890free_rto_mask:
5891 free_cpumask_var(rd->rto_mask);
5892free_dlo_mask:
5893 free_cpumask_var(rd->dlo_mask);
5894free_online:
5895 free_cpumask_var(rd->online);
5896free_span:
5897 free_cpumask_var(rd->span);
5898out:
5899 return -ENOMEM;
5900}
5901
5902/*
5903 * By default the system creates a single root-domain with all cpus as
5904 * members (mimicking the global state we have today).
5905 */
5906struct root_domain def_root_domain;
5907
5908static void init_defrootdomain(void)
5909{
5910 init_rootdomain(&def_root_domain);
5911
5912 atomic_set(&def_root_domain.refcount, 1);
5913}
5914
5915static struct root_domain *alloc_rootdomain(void)
5916{
5917 struct root_domain *rd;
5918
5919 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5920 if (!rd)
5921 return NULL;
5922
5923 if (init_rootdomain(rd) != 0) {
5924 kfree(rd);
5925 return NULL;
5926 }
5927
5928 return rd;
5929}
5930
5931static void free_sched_groups(struct sched_group *sg, int free_sgc)
5932{
5933 struct sched_group *tmp, *first;
5934
5935 if (!sg)
5936 return;
5937
5938 first = sg;
5939 do {
5940 tmp = sg->next;
5941
5942 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5943 kfree(sg->sgc);
5944
5945 kfree(sg);
5946 sg = tmp;
5947 } while (sg != first);
5948}
5949
5950static void destroy_sched_domain(struct sched_domain *sd)
5951{
5952 /*
5953 * If its an overlapping domain it has private groups, iterate and
5954 * nuke them all.
5955 */
5956 if (sd->flags & SD_OVERLAP) {
5957 free_sched_groups(sd->groups, 1);
5958 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5959 kfree(sd->groups->sgc);
5960 kfree(sd->groups);
5961 }
5962 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5963 kfree(sd->shared);
5964 kfree(sd);
5965}
5966
5967static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5968{
5969 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5970
5971 while (sd) {
5972 struct sched_domain *parent = sd->parent;
5973 destroy_sched_domain(sd);
5974 sd = parent;
5975 }
5976}
5977
5978static void destroy_sched_domains(struct sched_domain *sd)
5979{
5980 if (sd)
5981 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
5982}
5983
5984/*
5985 * Keep a special pointer to the highest sched_domain that has
5986 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5987 * allows us to avoid some pointer chasing select_idle_sibling().
5988 *
5989 * Also keep a unique ID per domain (we use the first cpu number in
5990 * the cpumask of the domain), this allows us to quickly tell if
5991 * two cpus are in the same cache domain, see cpus_share_cache().
5992 */
5993DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5994DEFINE_PER_CPU(int, sd_llc_size);
5995DEFINE_PER_CPU(int, sd_llc_id);
5996DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
5997DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5998DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5999
6000static void update_top_cache_domain(int cpu)
6001{
6002 struct sched_domain_shared *sds = NULL;
6003 struct sched_domain *sd;
6004 int id = cpu;
6005 int size = 1;
6006
6007 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6008 if (sd) {
6009 id = cpumask_first(sched_domain_span(sd));
6010 size = cpumask_weight(sched_domain_span(sd));
6011 sds = sd->shared;
6012 }
6013
6014 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6015 per_cpu(sd_llc_size, cpu) = size;
6016 per_cpu(sd_llc_id, cpu) = id;
6017 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6018
6019 sd = lowest_flag_domain(cpu, SD_NUMA);
6020 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6021
6022 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6023 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6024}
6025
6026/*
6027 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6028 * hold the hotplug lock.
6029 */
6030static void
6031cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6032{
6033 struct rq *rq = cpu_rq(cpu);
6034 struct sched_domain *tmp;
6035
6036 /* Remove the sched domains which do not contribute to scheduling. */
6037 for (tmp = sd; tmp; ) {
6038 struct sched_domain *parent = tmp->parent;
6039 if (!parent)
6040 break;
6041
6042 if (sd_parent_degenerate(tmp, parent)) {
6043 tmp->parent = parent->parent;
6044 if (parent->parent)
6045 parent->parent->child = tmp;
6046 /*
6047 * Transfer SD_PREFER_SIBLING down in case of a
6048 * degenerate parent; the spans match for this
6049 * so the property transfers.
6050 */
6051 if (parent->flags & SD_PREFER_SIBLING)
6052 tmp->flags |= SD_PREFER_SIBLING;
6053 destroy_sched_domain(parent);
6054 } else
6055 tmp = tmp->parent;
6056 }
6057
6058 if (sd && sd_degenerate(sd)) {
6059 tmp = sd;
6060 sd = sd->parent;
6061 destroy_sched_domain(tmp);
6062 if (sd)
6063 sd->child = NULL;
6064 }
6065
6066 sched_domain_debug(sd, cpu);
6067
6068 rq_attach_root(rq, rd);
6069 tmp = rq->sd;
6070 rcu_assign_pointer(rq->sd, sd);
6071 destroy_sched_domains(tmp);
6072
6073 update_top_cache_domain(cpu);
6074}
6075
6076/* Setup the mask of cpus configured for isolated domains */
6077static int __init isolated_cpu_setup(char *str)
6078{
6079 int ret;
6080
6081 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6082 ret = cpulist_parse(str, cpu_isolated_map);
6083 if (ret) {
6084 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6085 return 0;
6086 }
6087 return 1;
6088}
6089__setup("isolcpus=", isolated_cpu_setup);
6090
6091struct s_data {
6092 struct sched_domain ** __percpu sd;
6093 struct root_domain *rd;
6094};
6095
6096enum s_alloc {
6097 sa_rootdomain,
6098 sa_sd,
6099 sa_sd_storage,
6100 sa_none,
6101};
6102
6103/*
6104 * Build an iteration mask that can exclude certain CPUs from the upwards
6105 * domain traversal.
6106 *
6107 * Asymmetric node setups can result in situations where the domain tree is of
6108 * unequal depth, make sure to skip domains that already cover the entire
6109 * range.
6110 *
6111 * In that case build_sched_domains() will have terminated the iteration early
6112 * and our sibling sd spans will be empty. Domains should always include the
6113 * cpu they're built on, so check that.
6114 *
6115 */
6116static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6117{
6118 const struct cpumask *span = sched_domain_span(sd);
6119 struct sd_data *sdd = sd->private;
6120 struct sched_domain *sibling;
6121 int i;
6122
6123 for_each_cpu(i, span) {
6124 sibling = *per_cpu_ptr(sdd->sd, i);
6125 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6126 continue;
6127
6128 cpumask_set_cpu(i, sched_group_mask(sg));
6129 }
6130}
6131
6132/*
6133 * Return the canonical balance cpu for this group, this is the first cpu
6134 * of this group that's also in the iteration mask.
6135 */
6136int group_balance_cpu(struct sched_group *sg)
6137{
6138 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6139}
6140
6141static int
6142build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6143{
6144 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6145 const struct cpumask *span = sched_domain_span(sd);
6146 struct cpumask *covered = sched_domains_tmpmask;
6147 struct sd_data *sdd = sd->private;
6148 struct sched_domain *sibling;
6149 int i;
6150
6151 cpumask_clear(covered);
6152
6153 for_each_cpu(i, span) {
6154 struct cpumask *sg_span;
6155
6156 if (cpumask_test_cpu(i, covered))
6157 continue;
6158
6159 sibling = *per_cpu_ptr(sdd->sd, i);
6160
6161 /* See the comment near build_group_mask(). */
6162 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6163 continue;
6164
6165 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6166 GFP_KERNEL, cpu_to_node(cpu));
6167
6168 if (!sg)
6169 goto fail;
6170
6171 sg_span = sched_group_cpus(sg);
6172 if (sibling->child)
6173 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6174 else
6175 cpumask_set_cpu(i, sg_span);
6176
6177 cpumask_or(covered, covered, sg_span);
6178
6179 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6180 if (atomic_inc_return(&sg->sgc->ref) == 1)
6181 build_group_mask(sd, sg);
6182
6183 /*
6184 * Initialize sgc->capacity such that even if we mess up the
6185 * domains and no possible iteration will get us here, we won't
6186 * die on a /0 trap.
6187 */
6188 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6189 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6190
6191 /*
6192 * Make sure the first group of this domain contains the
6193 * canonical balance cpu. Otherwise the sched_domain iteration
6194 * breaks. See update_sg_lb_stats().
6195 */
6196 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6197 group_balance_cpu(sg) == cpu)
6198 groups = sg;
6199
6200 if (!first)
6201 first = sg;
6202 if (last)
6203 last->next = sg;
6204 last = sg;
6205 last->next = first;
6206 }
6207 sd->groups = groups;
6208
6209 return 0;
6210
6211fail:
6212 free_sched_groups(first, 0);
6213
6214 return -ENOMEM;
6215}
6216
6217static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6218{
6219 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6220 struct sched_domain *child = sd->child;
6221
6222 if (child)
6223 cpu = cpumask_first(sched_domain_span(child));
6224
6225 if (sg) {
6226 *sg = *per_cpu_ptr(sdd->sg, cpu);
6227 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6228 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6229 }
6230
6231 return cpu;
6232}
6233
6234/*
6235 * build_sched_groups will build a circular linked list of the groups
6236 * covered by the given span, and will set each group's ->cpumask correctly,
6237 * and ->cpu_capacity to 0.
6238 *
6239 * Assumes the sched_domain tree is fully constructed
6240 */
6241static int
6242build_sched_groups(struct sched_domain *sd, int cpu)
6243{
6244 struct sched_group *first = NULL, *last = NULL;
6245 struct sd_data *sdd = sd->private;
6246 const struct cpumask *span = sched_domain_span(sd);
6247 struct cpumask *covered;
6248 int i;
6249
6250 get_group(cpu, sdd, &sd->groups);
6251 atomic_inc(&sd->groups->ref);
6252
6253 if (cpu != cpumask_first(span))
6254 return 0;
6255
6256 lockdep_assert_held(&sched_domains_mutex);
6257 covered = sched_domains_tmpmask;
6258
6259 cpumask_clear(covered);
6260
6261 for_each_cpu(i, span) {
6262 struct sched_group *sg;
6263 int group, j;
6264
6265 if (cpumask_test_cpu(i, covered))
6266 continue;
6267
6268 group = get_group(i, sdd, &sg);
6269 cpumask_setall(sched_group_mask(sg));
6270
6271 for_each_cpu(j, span) {
6272 if (get_group(j, sdd, NULL) != group)
6273 continue;
6274
6275 cpumask_set_cpu(j, covered);
6276 cpumask_set_cpu(j, sched_group_cpus(sg));
6277 }
6278
6279 if (!first)
6280 first = sg;
6281 if (last)
6282 last->next = sg;
6283 last = sg;
6284 }
6285 last->next = first;
6286
6287 return 0;
6288}
6289
6290/*
6291 * Initialize sched groups cpu_capacity.
6292 *
6293 * cpu_capacity indicates the capacity of sched group, which is used while
6294 * distributing the load between different sched groups in a sched domain.
6295 * Typically cpu_capacity for all the groups in a sched domain will be same
6296 * unless there are asymmetries in the topology. If there are asymmetries,
6297 * group having more cpu_capacity will pickup more load compared to the
6298 * group having less cpu_capacity.
6299 */
6300static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6301{
6302 struct sched_group *sg = sd->groups;
6303
6304 WARN_ON(!sg);
6305
6306 do {
6307 int cpu, max_cpu = -1;
6308
6309 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6310
6311 if (!(sd->flags & SD_ASYM_PACKING))
6312 goto next;
6313
6314 for_each_cpu(cpu, sched_group_cpus(sg)) {
6315 if (max_cpu < 0)
6316 max_cpu = cpu;
6317 else if (sched_asym_prefer(cpu, max_cpu))
6318 max_cpu = cpu;
6319 }
6320 sg->asym_prefer_cpu = max_cpu;
6321
6322next:
6323 sg = sg->next;
6324 } while (sg != sd->groups);
6325
6326 if (cpu != group_balance_cpu(sg))
6327 return;
6328
6329 update_group_capacity(sd, cpu);
6330}
6331
6332/*
6333 * Initializers for schedule domains
6334 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6335 */
6336
6337static int default_relax_domain_level = -1;
6338int sched_domain_level_max;
6339
6340static int __init setup_relax_domain_level(char *str)
6341{
6342 if (kstrtoint(str, 0, &default_relax_domain_level))
6343 pr_warn("Unable to set relax_domain_level\n");
6344
6345 return 1;
6346}
6347__setup("relax_domain_level=", setup_relax_domain_level);
6348
6349static void set_domain_attribute(struct sched_domain *sd,
6350 struct sched_domain_attr *attr)
6351{
6352 int request;
6353
6354 if (!attr || attr->relax_domain_level < 0) {
6355 if (default_relax_domain_level < 0)
6356 return;
6357 else
6358 request = default_relax_domain_level;
6359 } else
6360 request = attr->relax_domain_level;
6361 if (request < sd->level) {
6362 /* turn off idle balance on this domain */
6363 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6364 } else {
6365 /* turn on idle balance on this domain */
6366 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6367 }
6368}
6369
6370static void __sdt_free(const struct cpumask *cpu_map);
6371static int __sdt_alloc(const struct cpumask *cpu_map);
6372
6373static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6374 const struct cpumask *cpu_map)
6375{
6376 switch (what) {
6377 case sa_rootdomain:
6378 if (!atomic_read(&d->rd->refcount))
6379 free_rootdomain(&d->rd->rcu); /* fall through */
6380 case sa_sd:
6381 free_percpu(d->sd); /* fall through */
6382 case sa_sd_storage:
6383 __sdt_free(cpu_map); /* fall through */
6384 case sa_none:
6385 break;
6386 }
6387}
6388
6389static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6390 const struct cpumask *cpu_map)
6391{
6392 memset(d, 0, sizeof(*d));
6393
6394 if (__sdt_alloc(cpu_map))
6395 return sa_sd_storage;
6396 d->sd = alloc_percpu(struct sched_domain *);
6397 if (!d->sd)
6398 return sa_sd_storage;
6399 d->rd = alloc_rootdomain();
6400 if (!d->rd)
6401 return sa_sd;
6402 return sa_rootdomain;
6403}
6404
6405/*
6406 * NULL the sd_data elements we've used to build the sched_domain and
6407 * sched_group structure so that the subsequent __free_domain_allocs()
6408 * will not free the data we're using.
6409 */
6410static void claim_allocations(int cpu, struct sched_domain *sd)
6411{
6412 struct sd_data *sdd = sd->private;
6413
6414 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6415 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6416
6417 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6418 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6419
6420 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6421 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6422
6423 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6424 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6425}
6426
6427#ifdef CONFIG_NUMA
6428static int sched_domains_numa_levels;
6429enum numa_topology_type sched_numa_topology_type;
6430static int *sched_domains_numa_distance;
6431int sched_max_numa_distance;
6432static struct cpumask ***sched_domains_numa_masks;
6433static int sched_domains_curr_level;
6434#endif
6435
6436/*
6437 * SD_flags allowed in topology descriptions.
6438 *
6439 * These flags are purely descriptive of the topology and do not prescribe
6440 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6441 * function:
6442 *
6443 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6444 * SD_SHARE_PKG_RESOURCES - describes shared caches
6445 * SD_NUMA - describes NUMA topologies
6446 * SD_SHARE_POWERDOMAIN - describes shared power domain
6447 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6448 *
6449 * Odd one out, which beside describing the topology has a quirk also
6450 * prescribes the desired behaviour that goes along with it:
6451 *
6452 * SD_ASYM_PACKING - describes SMT quirks
6453 */
6454#define TOPOLOGY_SD_FLAGS \
6455 (SD_SHARE_CPUCAPACITY | \
6456 SD_SHARE_PKG_RESOURCES | \
6457 SD_NUMA | \
6458 SD_ASYM_PACKING | \
6459 SD_ASYM_CPUCAPACITY | \
6460 SD_SHARE_POWERDOMAIN)
6461
6462static struct sched_domain *
6463sd_init(struct sched_domain_topology_level *tl,
6464 const struct cpumask *cpu_map,
6465 struct sched_domain *child, int cpu)
6466{
6467 struct sd_data *sdd = &tl->data;
6468 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6469 int sd_id, sd_weight, sd_flags = 0;
6470
6471#ifdef CONFIG_NUMA
6472 /*
6473 * Ugly hack to pass state to sd_numa_mask()...
6474 */
6475 sched_domains_curr_level = tl->numa_level;
6476#endif
6477
6478 sd_weight = cpumask_weight(tl->mask(cpu));
6479
6480 if (tl->sd_flags)
6481 sd_flags = (*tl->sd_flags)();
6482 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6483 "wrong sd_flags in topology description\n"))
6484 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6485
6486 *sd = (struct sched_domain){
6487 .min_interval = sd_weight,
6488 .max_interval = 2*sd_weight,
6489 .busy_factor = 32,
6490 .imbalance_pct = 125,
6491
6492 .cache_nice_tries = 0,
6493 .busy_idx = 0,
6494 .idle_idx = 0,
6495 .newidle_idx = 0,
6496 .wake_idx = 0,
6497 .forkexec_idx = 0,
6498
6499 .flags = 1*SD_LOAD_BALANCE
6500 | 1*SD_BALANCE_NEWIDLE
6501 | 1*SD_BALANCE_EXEC
6502 | 1*SD_BALANCE_FORK
6503 | 0*SD_BALANCE_WAKE
6504 | 1*SD_WAKE_AFFINE
6505 | 0*SD_SHARE_CPUCAPACITY
6506 | 0*SD_SHARE_PKG_RESOURCES
6507 | 0*SD_SERIALIZE
6508 | 0*SD_PREFER_SIBLING
6509 | 0*SD_NUMA
6510 | sd_flags
6511 ,
6512
6513 .last_balance = jiffies,
6514 .balance_interval = sd_weight,
6515 .smt_gain = 0,
6516 .max_newidle_lb_cost = 0,
6517 .next_decay_max_lb_cost = jiffies,
6518 .child = child,
6519#ifdef CONFIG_SCHED_DEBUG
6520 .name = tl->name,
6521#endif
6522 };
6523
6524 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6525 sd_id = cpumask_first(sched_domain_span(sd));
6526
6527 /*
6528 * Convert topological properties into behaviour.
6529 */
6530
6531 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6532 struct sched_domain *t = sd;
6533
6534 for_each_lower_domain(t)
6535 t->flags |= SD_BALANCE_WAKE;
6536 }
6537
6538 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6539 sd->flags |= SD_PREFER_SIBLING;
6540 sd->imbalance_pct = 110;
6541 sd->smt_gain = 1178; /* ~15% */
6542
6543 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6544 sd->imbalance_pct = 117;
6545 sd->cache_nice_tries = 1;
6546 sd->busy_idx = 2;
6547
6548#ifdef CONFIG_NUMA
6549 } else if (sd->flags & SD_NUMA) {
6550 sd->cache_nice_tries = 2;
6551 sd->busy_idx = 3;
6552 sd->idle_idx = 2;
6553
6554 sd->flags |= SD_SERIALIZE;
6555 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6556 sd->flags &= ~(SD_BALANCE_EXEC |
6557 SD_BALANCE_FORK |
6558 SD_WAKE_AFFINE);
6559 }
6560
6561#endif
6562 } else {
6563 sd->flags |= SD_PREFER_SIBLING;
6564 sd->cache_nice_tries = 1;
6565 sd->busy_idx = 2;
6566 sd->idle_idx = 1;
6567 }
6568
6569 /*
6570 * For all levels sharing cache; connect a sched_domain_shared
6571 * instance.
6572 */
6573 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6574 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6575 atomic_inc(&sd->shared->ref);
6576 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6577 }
6578
6579 sd->private = sdd;
6580
6581 return sd;
6582}
6583
6584/*
6585 * Topology list, bottom-up.
6586 */
6587static struct sched_domain_topology_level default_topology[] = {
6588#ifdef CONFIG_SCHED_SMT
6589 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6590#endif
6591#ifdef CONFIG_SCHED_MC
6592 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6593#endif
6594 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6595 { NULL, },
6596};
6597
6598static struct sched_domain_topology_level *sched_domain_topology =
6599 default_topology;
6600
6601#define for_each_sd_topology(tl) \
6602 for (tl = sched_domain_topology; tl->mask; tl++)
6603
6604void set_sched_topology(struct sched_domain_topology_level *tl)
6605{
6606 if (WARN_ON_ONCE(sched_smp_initialized))
6607 return;
6608
6609 sched_domain_topology = tl;
6610}
6611
6612#ifdef CONFIG_NUMA
6613
6614static const struct cpumask *sd_numa_mask(int cpu)
6615{
6616 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6617}
6618
6619static void sched_numa_warn(const char *str)
6620{
6621 static int done = false;
6622 int i,j;
6623
6624 if (done)
6625 return;
6626
6627 done = true;
6628
6629 printk(KERN_WARNING "ERROR: %s\n\n", str);
6630
6631 for (i = 0; i < nr_node_ids; i++) {
6632 printk(KERN_WARNING " ");
6633 for (j = 0; j < nr_node_ids; j++)
6634 printk(KERN_CONT "%02d ", node_distance(i,j));
6635 printk(KERN_CONT "\n");
6636 }
6637 printk(KERN_WARNING "\n");
6638}
6639
6640bool find_numa_distance(int distance)
6641{
6642 int i;
6643
6644 if (distance == node_distance(0, 0))
6645 return true;
6646
6647 for (i = 0; i < sched_domains_numa_levels; i++) {
6648 if (sched_domains_numa_distance[i] == distance)
6649 return true;
6650 }
6651
6652 return false;
6653}
6654
6655/*
6656 * A system can have three types of NUMA topology:
6657 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6658 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6659 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6660 *
6661 * The difference between a glueless mesh topology and a backplane
6662 * topology lies in whether communication between not directly
6663 * connected nodes goes through intermediary nodes (where programs
6664 * could run), or through backplane controllers. This affects
6665 * placement of programs.
6666 *
6667 * The type of topology can be discerned with the following tests:
6668 * - If the maximum distance between any nodes is 1 hop, the system
6669 * is directly connected.
6670 * - If for two nodes A and B, located N > 1 hops away from each other,
6671 * there is an intermediary node C, which is < N hops away from both
6672 * nodes A and B, the system is a glueless mesh.
6673 */
6674static void init_numa_topology_type(void)
6675{
6676 int a, b, c, n;
6677
6678 n = sched_max_numa_distance;
6679
6680 if (sched_domains_numa_levels <= 1) {
6681 sched_numa_topology_type = NUMA_DIRECT;
6682 return;
6683 }
6684
6685 for_each_online_node(a) {
6686 for_each_online_node(b) {
6687 /* Find two nodes furthest removed from each other. */
6688 if (node_distance(a, b) < n)
6689 continue;
6690
6691 /* Is there an intermediary node between a and b? */
6692 for_each_online_node(c) {
6693 if (node_distance(a, c) < n &&
6694 node_distance(b, c) < n) {
6695 sched_numa_topology_type =
6696 NUMA_GLUELESS_MESH;
6697 return;
6698 }
6699 }
6700
6701 sched_numa_topology_type = NUMA_BACKPLANE;
6702 return;
6703 }
6704 }
6705}
6706
6707static void sched_init_numa(void)
6708{
6709 int next_distance, curr_distance = node_distance(0, 0);
6710 struct sched_domain_topology_level *tl;
6711 int level = 0;
6712 int i, j, k;
6713
6714 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6715 if (!sched_domains_numa_distance)
6716 return;
6717
6718 /*
6719 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6720 * unique distances in the node_distance() table.
6721 *
6722 * Assumes node_distance(0,j) includes all distances in
6723 * node_distance(i,j) in order to avoid cubic time.
6724 */
6725 next_distance = curr_distance;
6726 for (i = 0; i < nr_node_ids; i++) {
6727 for (j = 0; j < nr_node_ids; j++) {
6728 for (k = 0; k < nr_node_ids; k++) {
6729 int distance = node_distance(i, k);
6730
6731 if (distance > curr_distance &&
6732 (distance < next_distance ||
6733 next_distance == curr_distance))
6734 next_distance = distance;
6735
6736 /*
6737 * While not a strong assumption it would be nice to know
6738 * about cases where if node A is connected to B, B is not
6739 * equally connected to A.
6740 */
6741 if (sched_debug() && node_distance(k, i) != distance)
6742 sched_numa_warn("Node-distance not symmetric");
6743
6744 if (sched_debug() && i && !find_numa_distance(distance))
6745 sched_numa_warn("Node-0 not representative");
6746 }
6747 if (next_distance != curr_distance) {
6748 sched_domains_numa_distance[level++] = next_distance;
6749 sched_domains_numa_levels = level;
6750 curr_distance = next_distance;
6751 } else break;
6752 }
6753
6754 /*
6755 * In case of sched_debug() we verify the above assumption.
6756 */
6757 if (!sched_debug())
6758 break;
6759 }
6760
6761 if (!level)
6762 return;
6763
6764 /*
6765 * 'level' contains the number of unique distances, excluding the
6766 * identity distance node_distance(i,i).
6767 *
6768 * The sched_domains_numa_distance[] array includes the actual distance
6769 * numbers.
6770 */
6771
6772 /*
6773 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6774 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6775 * the array will contain less then 'level' members. This could be
6776 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6777 * in other functions.
6778 *
6779 * We reset it to 'level' at the end of this function.
6780 */
6781 sched_domains_numa_levels = 0;
6782
6783 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6784 if (!sched_domains_numa_masks)
6785 return;
6786
6787 /*
6788 * Now for each level, construct a mask per node which contains all
6789 * cpus of nodes that are that many hops away from us.
6790 */
6791 for (i = 0; i < level; i++) {
6792 sched_domains_numa_masks[i] =
6793 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6794 if (!sched_domains_numa_masks[i])
6795 return;
6796
6797 for (j = 0; j < nr_node_ids; j++) {
6798 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6799 if (!mask)
6800 return;
6801
6802 sched_domains_numa_masks[i][j] = mask;
6803
6804 for_each_node(k) {
6805 if (node_distance(j, k) > sched_domains_numa_distance[i])
6806 continue;
6807
6808 cpumask_or(mask, mask, cpumask_of_node(k));
6809 }
6810 }
6811 }
6812
6813 /* Compute default topology size */
6814 for (i = 0; sched_domain_topology[i].mask; i++);
6815
6816 tl = kzalloc((i + level + 1) *
6817 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6818 if (!tl)
6819 return;
6820
6821 /*
6822 * Copy the default topology bits..
6823 */
6824 for (i = 0; sched_domain_topology[i].mask; i++)
6825 tl[i] = sched_domain_topology[i];
6826
6827 /*
6828 * .. and append 'j' levels of NUMA goodness.
6829 */
6830 for (j = 0; j < level; i++, j++) {
6831 tl[i] = (struct sched_domain_topology_level){
6832 .mask = sd_numa_mask,
6833 .sd_flags = cpu_numa_flags,
6834 .flags = SDTL_OVERLAP,
6835 .numa_level = j,
6836 SD_INIT_NAME(NUMA)
6837 };
6838 }
6839
6840 sched_domain_topology = tl;
6841
6842 sched_domains_numa_levels = level;
6843 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6844
6845 init_numa_topology_type();
6846}
6847
6848static void sched_domains_numa_masks_set(unsigned int cpu)
6849{
6850 int node = cpu_to_node(cpu);
6851 int i, j;
6852
6853 for (i = 0; i < sched_domains_numa_levels; i++) {
6854 for (j = 0; j < nr_node_ids; j++) {
6855 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6856 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6857 }
6858 }
6859}
6860
6861static void sched_domains_numa_masks_clear(unsigned int cpu)
6862{
6863 int i, j;
6864
6865 for (i = 0; i < sched_domains_numa_levels; i++) {
6866 for (j = 0; j < nr_node_ids; j++)
6867 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6868 }
6869}
6870
6871#else
6872static inline void sched_init_numa(void) { }
6873static void sched_domains_numa_masks_set(unsigned int cpu) { }
6874static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6875#endif /* CONFIG_NUMA */
6876
6877static int __sdt_alloc(const struct cpumask *cpu_map)
6878{
6879 struct sched_domain_topology_level *tl;
6880 int j;
6881
6882 for_each_sd_topology(tl) {
6883 struct sd_data *sdd = &tl->data;
6884
6885 sdd->sd = alloc_percpu(struct sched_domain *);
6886 if (!sdd->sd)
6887 return -ENOMEM;
6888
6889 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6890 if (!sdd->sds)
6891 return -ENOMEM;
6892
6893 sdd->sg = alloc_percpu(struct sched_group *);
6894 if (!sdd->sg)
6895 return -ENOMEM;
6896
6897 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6898 if (!sdd->sgc)
6899 return -ENOMEM;
6900
6901 for_each_cpu(j, cpu_map) {
6902 struct sched_domain *sd;
6903 struct sched_domain_shared *sds;
6904 struct sched_group *sg;
6905 struct sched_group_capacity *sgc;
6906
6907 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6908 GFP_KERNEL, cpu_to_node(j));
6909 if (!sd)
6910 return -ENOMEM;
6911
6912 *per_cpu_ptr(sdd->sd, j) = sd;
6913
6914 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6915 GFP_KERNEL, cpu_to_node(j));
6916 if (!sds)
6917 return -ENOMEM;
6918
6919 *per_cpu_ptr(sdd->sds, j) = sds;
6920
6921 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6922 GFP_KERNEL, cpu_to_node(j));
6923 if (!sg)
6924 return -ENOMEM;
6925
6926 sg->next = sg;
6927
6928 *per_cpu_ptr(sdd->sg, j) = sg;
6929
6930 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6931 GFP_KERNEL, cpu_to_node(j));
6932 if (!sgc)
6933 return -ENOMEM;
6934
6935 *per_cpu_ptr(sdd->sgc, j) = sgc;
6936 }
6937 }
6938
6939 return 0;
6940}
6941
6942static void __sdt_free(const struct cpumask *cpu_map)
6943{
6944 struct sched_domain_topology_level *tl;
6945 int j;
6946
6947 for_each_sd_topology(tl) {
6948 struct sd_data *sdd = &tl->data;
6949
6950 for_each_cpu(j, cpu_map) {
6951 struct sched_domain *sd;
6952
6953 if (sdd->sd) {
6954 sd = *per_cpu_ptr(sdd->sd, j);
6955 if (sd && (sd->flags & SD_OVERLAP))
6956 free_sched_groups(sd->groups, 0);
6957 kfree(*per_cpu_ptr(sdd->sd, j));
6958 }
6959
6960 if (sdd->sds)
6961 kfree(*per_cpu_ptr(sdd->sds, j));
6962 if (sdd->sg)
6963 kfree(*per_cpu_ptr(sdd->sg, j));
6964 if (sdd->sgc)
6965 kfree(*per_cpu_ptr(sdd->sgc, j));
6966 }
6967 free_percpu(sdd->sd);
6968 sdd->sd = NULL;
6969 free_percpu(sdd->sds);
6970 sdd->sds = NULL;
6971 free_percpu(sdd->sg);
6972 sdd->sg = NULL;
6973 free_percpu(sdd->sgc);
6974 sdd->sgc = NULL;
6975 }
6976}
6977
6978struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6979 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6980 struct sched_domain *child, int cpu)
6981{
6982 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
6983
6984 if (child) {
6985 sd->level = child->level + 1;
6986 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6987 child->parent = sd;
6988
6989 if (!cpumask_subset(sched_domain_span(child),
6990 sched_domain_span(sd))) {
6991 pr_err("BUG: arch topology borken\n");
6992#ifdef CONFIG_SCHED_DEBUG
6993 pr_err(" the %s domain not a subset of the %s domain\n",
6994 child->name, sd->name);
6995#endif
6996 /* Fixup, ensure @sd has at least @child cpus. */
6997 cpumask_or(sched_domain_span(sd),
6998 sched_domain_span(sd),
6999 sched_domain_span(child));
7000 }
7001
7002 }
7003 set_domain_attribute(sd, attr);
7004
7005 return sd;
7006}
7007
7008/*
7009 * Build sched domains for a given set of cpus and attach the sched domains
7010 * to the individual cpus
7011 */
7012static int build_sched_domains(const struct cpumask *cpu_map,
7013 struct sched_domain_attr *attr)
7014{
7015 enum s_alloc alloc_state;
7016 struct sched_domain *sd;
7017 struct s_data d;
7018 struct rq *rq = NULL;
7019 int i, ret = -ENOMEM;
7020
7021 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7022 if (alloc_state != sa_rootdomain)
7023 goto error;
7024
7025 /* Set up domains for cpus specified by the cpu_map. */
7026 for_each_cpu(i, cpu_map) {
7027 struct sched_domain_topology_level *tl;
7028
7029 sd = NULL;
7030 for_each_sd_topology(tl) {
7031 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7032 if (tl == sched_domain_topology)
7033 *per_cpu_ptr(d.sd, i) = sd;
7034 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7035 sd->flags |= SD_OVERLAP;
7036 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7037 break;
7038 }
7039 }
7040
7041 /* Build the groups for the domains */
7042 for_each_cpu(i, cpu_map) {
7043 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7044 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7045 if (sd->flags & SD_OVERLAP) {
7046 if (build_overlap_sched_groups(sd, i))
7047 goto error;
7048 } else {
7049 if (build_sched_groups(sd, i))
7050 goto error;
7051 }
7052 }
7053 }
7054
7055 /* Calculate CPU capacity for physical packages and nodes */
7056 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7057 if (!cpumask_test_cpu(i, cpu_map))
7058 continue;
7059
7060 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7061 claim_allocations(i, sd);
7062 init_sched_groups_capacity(i, sd);
7063 }
7064 }
7065
7066 /* Attach the domains */
7067 rcu_read_lock();
7068 for_each_cpu(i, cpu_map) {
7069 rq = cpu_rq(i);
7070 sd = *per_cpu_ptr(d.sd, i);
7071
7072 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7073 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7074 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7075
7076 cpu_attach_domain(sd, d.rd, i);
7077 }
7078 rcu_read_unlock();
7079
7080 if (rq && sched_debug_enabled) {
7081 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7082 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7083 }
7084
7085 ret = 0;
7086error:
7087 __free_domain_allocs(&d, alloc_state, cpu_map);
7088 return ret;
7089}
7090
7091static cpumask_var_t *doms_cur; /* current sched domains */
7092static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7093static struct sched_domain_attr *dattr_cur;
7094 /* attribues of custom domains in 'doms_cur' */
7095
7096/*
7097 * Special case: If a kmalloc of a doms_cur partition (array of
7098 * cpumask) fails, then fallback to a single sched domain,
7099 * as determined by the single cpumask fallback_doms.
7100 */
7101static cpumask_var_t fallback_doms;
7102
7103/*
7104 * arch_update_cpu_topology lets virtualized architectures update the
7105 * cpu core maps. It is supposed to return 1 if the topology changed
7106 * or 0 if it stayed the same.
7107 */
7108int __weak arch_update_cpu_topology(void)
7109{
7110 return 0;
7111}
7112
7113cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7114{
7115 int i;
7116 cpumask_var_t *doms;
7117
7118 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7119 if (!doms)
7120 return NULL;
7121 for (i = 0; i < ndoms; i++) {
7122 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7123 free_sched_domains(doms, i);
7124 return NULL;
7125 }
7126 }
7127 return doms;
7128}
7129
7130void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7131{
7132 unsigned int i;
7133 for (i = 0; i < ndoms; i++)
7134 free_cpumask_var(doms[i]);
7135 kfree(doms);
7136}
7137
7138/*
7139 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7140 * For now this just excludes isolated cpus, but could be used to
7141 * exclude other special cases in the future.
7142 */
7143static int init_sched_domains(const struct cpumask *cpu_map)
7144{
7145 int err;
7146
7147 arch_update_cpu_topology();
7148 ndoms_cur = 1;
7149 doms_cur = alloc_sched_domains(ndoms_cur);
7150 if (!doms_cur)
7151 doms_cur = &fallback_doms;
7152 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7153 err = build_sched_domains(doms_cur[0], NULL);
7154 register_sched_domain_sysctl();
7155
7156 return err;
7157}
7158
7159/*
7160 * Detach sched domains from a group of cpus specified in cpu_map
7161 * These cpus will now be attached to the NULL domain
7162 */
7163static void detach_destroy_domains(const struct cpumask *cpu_map)
7164{
7165 int i;
7166
7167 rcu_read_lock();
7168 for_each_cpu(i, cpu_map)
7169 cpu_attach_domain(NULL, &def_root_domain, i);
7170 rcu_read_unlock();
7171}
7172
7173/* handle null as "default" */
7174static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7175 struct sched_domain_attr *new, int idx_new)
7176{
7177 struct sched_domain_attr tmp;
7178
7179 /* fast path */
7180 if (!new && !cur)
7181 return 1;
7182
7183 tmp = SD_ATTR_INIT;
7184 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7185 new ? (new + idx_new) : &tmp,
7186 sizeof(struct sched_domain_attr));
7187}
7188
7189/*
7190 * Partition sched domains as specified by the 'ndoms_new'
7191 * cpumasks in the array doms_new[] of cpumasks. This compares
7192 * doms_new[] to the current sched domain partitioning, doms_cur[].
7193 * It destroys each deleted domain and builds each new domain.
7194 *
7195 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7196 * The masks don't intersect (don't overlap.) We should setup one
7197 * sched domain for each mask. CPUs not in any of the cpumasks will
7198 * not be load balanced. If the same cpumask appears both in the
7199 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7200 * it as it is.
7201 *
7202 * The passed in 'doms_new' should be allocated using
7203 * alloc_sched_domains. This routine takes ownership of it and will
7204 * free_sched_domains it when done with it. If the caller failed the
7205 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7206 * and partition_sched_domains() will fallback to the single partition
7207 * 'fallback_doms', it also forces the domains to be rebuilt.
7208 *
7209 * If doms_new == NULL it will be replaced with cpu_online_mask.
7210 * ndoms_new == 0 is a special case for destroying existing domains,
7211 * and it will not create the default domain.
7212 *
7213 * Call with hotplug lock held
7214 */
7215void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7216 struct sched_domain_attr *dattr_new)
7217{
7218 int i, j, n;
7219 int new_topology;
7220
7221 mutex_lock(&sched_domains_mutex);
7222
7223 /* always unregister in case we don't destroy any domains */
7224 unregister_sched_domain_sysctl();
7225
7226 /* Let architecture update cpu core mappings. */
7227 new_topology = arch_update_cpu_topology();
7228
7229 n = doms_new ? ndoms_new : 0;
7230
7231 /* Destroy deleted domains */
7232 for (i = 0; i < ndoms_cur; i++) {
7233 for (j = 0; j < n && !new_topology; j++) {
7234 if (cpumask_equal(doms_cur[i], doms_new[j])
7235 && dattrs_equal(dattr_cur, i, dattr_new, j))
7236 goto match1;
7237 }
7238 /* no match - a current sched domain not in new doms_new[] */
7239 detach_destroy_domains(doms_cur[i]);
7240match1:
7241 ;
7242 }
7243
7244 n = ndoms_cur;
7245 if (doms_new == NULL) {
7246 n = 0;
7247 doms_new = &fallback_doms;
7248 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7249 WARN_ON_ONCE(dattr_new);
7250 }
7251
7252 /* Build new domains */
7253 for (i = 0; i < ndoms_new; i++) {
7254 for (j = 0; j < n && !new_topology; j++) {
7255 if (cpumask_equal(doms_new[i], doms_cur[j])
7256 && dattrs_equal(dattr_new, i, dattr_cur, j))
7257 goto match2;
7258 }
7259 /* no match - add a new doms_new */
7260 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7261match2:
7262 ;
7263 }
7264
7265 /* Remember the new sched domains */
7266 if (doms_cur != &fallback_doms)
7267 free_sched_domains(doms_cur, ndoms_cur);
7268 kfree(dattr_cur); /* kfree(NULL) is safe */
7269 doms_cur = doms_new;
7270 dattr_cur = dattr_new;
7271 ndoms_cur = ndoms_new;
7272
7273 register_sched_domain_sysctl();
7274
7275 mutex_unlock(&sched_domains_mutex);
7276}
7277
7278static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7279
7280/*
7281 * Update cpusets according to cpu_active mask. If cpusets are
7282 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7283 * around partition_sched_domains().
7284 *
7285 * If we come here as part of a suspend/resume, don't touch cpusets because we
7286 * want to restore it back to its original state upon resume anyway.
7287 */
7288static void cpuset_cpu_active(void)
7289{
7290 if (cpuhp_tasks_frozen) {
7291 /*
7292 * num_cpus_frozen tracks how many CPUs are involved in suspend
7293 * resume sequence. As long as this is not the last online
7294 * operation in the resume sequence, just build a single sched
7295 * domain, ignoring cpusets.
7296 */
7297 num_cpus_frozen--;
7298 if (likely(num_cpus_frozen)) {
7299 partition_sched_domains(1, NULL, NULL);
7300 return;
7301 }
7302 /*
7303 * This is the last CPU online operation. So fall through and
7304 * restore the original sched domains by considering the
7305 * cpuset configurations.
7306 */
7307 }
7308 cpuset_update_active_cpus(true);
7309}
7310
7311static int cpuset_cpu_inactive(unsigned int cpu)
7312{
7313 unsigned long flags;
7314 struct dl_bw *dl_b;
7315 bool overflow;
7316 int cpus;
7317
7318 if (!cpuhp_tasks_frozen) {
7319 rcu_read_lock_sched();
7320 dl_b = dl_bw_of(cpu);
7321
7322 raw_spin_lock_irqsave(&dl_b->lock, flags);
7323 cpus = dl_bw_cpus(cpu);
7324 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7325 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7326
7327 rcu_read_unlock_sched();
7328
7329 if (overflow)
7330 return -EBUSY;
7331 cpuset_update_active_cpus(false);
7332 } else {
7333 num_cpus_frozen++;
7334 partition_sched_domains(1, NULL, NULL);
7335 }
7336 return 0;
7337}
7338
7339int sched_cpu_activate(unsigned int cpu)
7340{
7341 struct rq *rq = cpu_rq(cpu);
7342 unsigned long flags;
7343
7344 set_cpu_active(cpu, true);
7345
7346 if (sched_smp_initialized) {
7347 sched_domains_numa_masks_set(cpu);
7348 cpuset_cpu_active();
7349 }
7350
7351 /*
7352 * Put the rq online, if not already. This happens:
7353 *
7354 * 1) In the early boot process, because we build the real domains
7355 * after all cpus have been brought up.
7356 *
7357 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7358 * domains.
7359 */
7360 raw_spin_lock_irqsave(&rq->lock, flags);
7361 if (rq->rd) {
7362 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7363 set_rq_online(rq);
7364 }
7365 raw_spin_unlock_irqrestore(&rq->lock, flags);
7366
7367 update_max_interval();
7368
7369 return 0;
7370}
7371
7372int sched_cpu_deactivate(unsigned int cpu)
7373{
7374 int ret;
7375
7376 set_cpu_active(cpu, false);
7377 /*
7378 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7379 * users of this state to go away such that all new such users will
7380 * observe it.
7381 *
7382 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7383 * not imply sync_sched(), so wait for both.
7384 *
7385 * Do sync before park smpboot threads to take care the rcu boost case.
7386 */
7387 if (IS_ENABLED(CONFIG_PREEMPT))
7388 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7389 else
7390 synchronize_rcu();
7391
7392 if (!sched_smp_initialized)
7393 return 0;
7394
7395 ret = cpuset_cpu_inactive(cpu);
7396 if (ret) {
7397 set_cpu_active(cpu, true);
7398 return ret;
7399 }
7400 sched_domains_numa_masks_clear(cpu);
7401 return 0;
7402}
7403
7404static void sched_rq_cpu_starting(unsigned int cpu)
7405{
7406 struct rq *rq = cpu_rq(cpu);
7407
7408 rq->calc_load_update = calc_load_update;
7409 update_max_interval();
7410}
7411
7412int sched_cpu_starting(unsigned int cpu)
7413{
7414 set_cpu_rq_start_time(cpu);
7415 sched_rq_cpu_starting(cpu);
7416 return 0;
7417}
7418
7419#ifdef CONFIG_HOTPLUG_CPU
7420int sched_cpu_dying(unsigned int cpu)
7421{
7422 struct rq *rq = cpu_rq(cpu);
7423 unsigned long flags;
7424
7425 /* Handle pending wakeups and then migrate everything off */
7426 sched_ttwu_pending();
7427 raw_spin_lock_irqsave(&rq->lock, flags);
7428 if (rq->rd) {
7429 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7430 set_rq_offline(rq);
7431 }
7432 migrate_tasks(rq);
7433 BUG_ON(rq->nr_running != 1);
7434 raw_spin_unlock_irqrestore(&rq->lock, flags);
7435 calc_load_migrate(rq);
7436 update_max_interval();
7437 nohz_balance_exit_idle(cpu);
7438 hrtick_clear(rq);
7439 return 0;
7440}
7441#endif
7442
7443#ifdef CONFIG_SCHED_SMT
7444DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7445
7446static void sched_init_smt(void)
7447{
7448 /*
7449 * We've enumerated all CPUs and will assume that if any CPU
7450 * has SMT siblings, CPU0 will too.
7451 */
7452 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7453 static_branch_enable(&sched_smt_present);
7454}
7455#else
7456static inline void sched_init_smt(void) { }
7457#endif
7458
7459void __init sched_init_smp(void)
7460{
7461 cpumask_var_t non_isolated_cpus;
7462
7463 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7464 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7465
7466 sched_init_numa();
7467
7468 /*
7469 * There's no userspace yet to cause hotplug operations; hence all the
7470 * cpu masks are stable and all blatant races in the below code cannot
7471 * happen.
7472 */
7473 mutex_lock(&sched_domains_mutex);
7474 init_sched_domains(cpu_active_mask);
7475 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7476 if (cpumask_empty(non_isolated_cpus))
7477 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7478 mutex_unlock(&sched_domains_mutex);
7479
7480 /* Move init over to a non-isolated CPU */
7481 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7482 BUG();
7483 sched_init_granularity();
7484 free_cpumask_var(non_isolated_cpus);
7485
7486 init_sched_rt_class();
7487 init_sched_dl_class();
7488
7489 sched_init_smt();
7490
7491 sched_smp_initialized = true;
7492}
7493
7494static int __init migration_init(void)
7495{
7496 sched_rq_cpu_starting(smp_processor_id());
7497 return 0;
7498}
7499early_initcall(migration_init);
7500
7501#else
7502void __init sched_init_smp(void)
7503{
7504 sched_init_granularity();
7505}
7506#endif /* CONFIG_SMP */
7507
7508int in_sched_functions(unsigned long addr)
7509{
7510 return in_lock_functions(addr) ||
7511 (addr >= (unsigned long)__sched_text_start
7512 && addr < (unsigned long)__sched_text_end);
7513}
7514
7515#ifdef CONFIG_CGROUP_SCHED
7516/*
7517 * Default task group.
7518 * Every task in system belongs to this group at bootup.
7519 */
7520struct task_group root_task_group;
7521LIST_HEAD(task_groups);
7522
7523/* Cacheline aligned slab cache for task_group */
7524static struct kmem_cache *task_group_cache __read_mostly;
7525#endif
7526
7527DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7528DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7529
7530#define WAIT_TABLE_BITS 8
7531#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7532static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7533
7534wait_queue_head_t *bit_waitqueue(void *word, int bit)
7535{
7536 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7537 unsigned long val = (unsigned long)word << shift | bit;
7538
7539 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7540}
7541EXPORT_SYMBOL(bit_waitqueue);
7542
7543void __init sched_init(void)
7544{
7545 int i, j;
7546 unsigned long alloc_size = 0, ptr;
7547
7548 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7549 init_waitqueue_head(bit_wait_table + i);
7550
7551#ifdef CONFIG_FAIR_GROUP_SCHED
7552 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7553#endif
7554#ifdef CONFIG_RT_GROUP_SCHED
7555 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7556#endif
7557 if (alloc_size) {
7558 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7559
7560#ifdef CONFIG_FAIR_GROUP_SCHED
7561 root_task_group.se = (struct sched_entity **)ptr;
7562 ptr += nr_cpu_ids * sizeof(void **);
7563
7564 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7565 ptr += nr_cpu_ids * sizeof(void **);
7566
7567#endif /* CONFIG_FAIR_GROUP_SCHED */
7568#ifdef CONFIG_RT_GROUP_SCHED
7569 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7570 ptr += nr_cpu_ids * sizeof(void **);
7571
7572 root_task_group.rt_rq = (struct rt_rq **)ptr;
7573 ptr += nr_cpu_ids * sizeof(void **);
7574
7575#endif /* CONFIG_RT_GROUP_SCHED */
7576 }
7577#ifdef CONFIG_CPUMASK_OFFSTACK
7578 for_each_possible_cpu(i) {
7579 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7580 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7581 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7582 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7583 }
7584#endif /* CONFIG_CPUMASK_OFFSTACK */
7585
7586 init_rt_bandwidth(&def_rt_bandwidth,
7587 global_rt_period(), global_rt_runtime());
7588 init_dl_bandwidth(&def_dl_bandwidth,
7589 global_rt_period(), global_rt_runtime());
7590
7591#ifdef CONFIG_SMP
7592 init_defrootdomain();
7593#endif
7594
7595#ifdef CONFIG_RT_GROUP_SCHED
7596 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7597 global_rt_period(), global_rt_runtime());
7598#endif /* CONFIG_RT_GROUP_SCHED */
7599
7600#ifdef CONFIG_CGROUP_SCHED
7601 task_group_cache = KMEM_CACHE(task_group, 0);
7602
7603 list_add(&root_task_group.list, &task_groups);
7604 INIT_LIST_HEAD(&root_task_group.children);
7605 INIT_LIST_HEAD(&root_task_group.siblings);
7606 autogroup_init(&init_task);
7607#endif /* CONFIG_CGROUP_SCHED */
7608
7609 for_each_possible_cpu(i) {
7610 struct rq *rq;
7611
7612 rq = cpu_rq(i);
7613 raw_spin_lock_init(&rq->lock);
7614 rq->nr_running = 0;
7615 rq->calc_load_active = 0;
7616 rq->calc_load_update = jiffies + LOAD_FREQ;
7617 init_cfs_rq(&rq->cfs);
7618 init_rt_rq(&rq->rt);
7619 init_dl_rq(&rq->dl);
7620#ifdef CONFIG_FAIR_GROUP_SCHED
7621 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7622 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7623 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7624 /*
7625 * How much cpu bandwidth does root_task_group get?
7626 *
7627 * In case of task-groups formed thr' the cgroup filesystem, it
7628 * gets 100% of the cpu resources in the system. This overall
7629 * system cpu resource is divided among the tasks of
7630 * root_task_group and its child task-groups in a fair manner,
7631 * based on each entity's (task or task-group's) weight
7632 * (se->load.weight).
7633 *
7634 * In other words, if root_task_group has 10 tasks of weight
7635 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7636 * then A0's share of the cpu resource is:
7637 *
7638 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7639 *
7640 * We achieve this by letting root_task_group's tasks sit
7641 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7642 */
7643 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7644 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7645#endif /* CONFIG_FAIR_GROUP_SCHED */
7646
7647 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7648#ifdef CONFIG_RT_GROUP_SCHED
7649 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7650#endif
7651
7652 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7653 rq->cpu_load[j] = 0;
7654
7655#ifdef CONFIG_SMP
7656 rq->sd = NULL;
7657 rq->rd = NULL;
7658 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7659 rq->balance_callback = NULL;
7660 rq->active_balance = 0;
7661 rq->next_balance = jiffies;
7662 rq->push_cpu = 0;
7663 rq->cpu = i;
7664 rq->online = 0;
7665 rq->idle_stamp = 0;
7666 rq->avg_idle = 2*sysctl_sched_migration_cost;
7667 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7668
7669 INIT_LIST_HEAD(&rq->cfs_tasks);
7670
7671 rq_attach_root(rq, &def_root_domain);
7672#ifdef CONFIG_NO_HZ_COMMON
7673 rq->last_load_update_tick = jiffies;
7674 rq->nohz_flags = 0;
7675#endif
7676#ifdef CONFIG_NO_HZ_FULL
7677 rq->last_sched_tick = 0;
7678#endif
7679#endif /* CONFIG_SMP */
7680 init_rq_hrtick(rq);
7681 atomic_set(&rq->nr_iowait, 0);
7682 }
7683
7684 set_load_weight(&init_task);
7685
7686 /*
7687 * The boot idle thread does lazy MMU switching as well:
7688 */
7689 atomic_inc(&init_mm.mm_count);
7690 enter_lazy_tlb(&init_mm, current);
7691
7692 /*
7693 * Make us the idle thread. Technically, schedule() should not be
7694 * called from this thread, however somewhere below it might be,
7695 * but because we are the idle thread, we just pick up running again
7696 * when this runqueue becomes "idle".
7697 */
7698 init_idle(current, smp_processor_id());
7699
7700 calc_load_update = jiffies + LOAD_FREQ;
7701
7702#ifdef CONFIG_SMP
7703 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7704 /* May be allocated at isolcpus cmdline parse time */
7705 if (cpu_isolated_map == NULL)
7706 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7707 idle_thread_set_boot_cpu();
7708 set_cpu_rq_start_time(smp_processor_id());
7709#endif
7710 init_sched_fair_class();
7711
7712 init_schedstats();
7713
7714 scheduler_running = 1;
7715}
7716
7717#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7718static inline int preempt_count_equals(int preempt_offset)
7719{
7720 int nested = preempt_count() + rcu_preempt_depth();
7721
7722 return (nested == preempt_offset);
7723}
7724
7725void __might_sleep(const char *file, int line, int preempt_offset)
7726{
7727 /*
7728 * Blocking primitives will set (and therefore destroy) current->state,
7729 * since we will exit with TASK_RUNNING make sure we enter with it,
7730 * otherwise we will destroy state.
7731 */
7732 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7733 "do not call blocking ops when !TASK_RUNNING; "
7734 "state=%lx set at [<%p>] %pS\n",
7735 current->state,
7736 (void *)current->task_state_change,
7737 (void *)current->task_state_change);
7738
7739 ___might_sleep(file, line, preempt_offset);
7740}
7741EXPORT_SYMBOL(__might_sleep);
7742
7743void ___might_sleep(const char *file, int line, int preempt_offset)
7744{
7745 static unsigned long prev_jiffy; /* ratelimiting */
7746 unsigned long preempt_disable_ip;
7747
7748 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7749 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7750 !is_idle_task(current)) ||
7751 system_state != SYSTEM_RUNNING || oops_in_progress)
7752 return;
7753 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7754 return;
7755 prev_jiffy = jiffies;
7756
7757 /* Save this before calling printk(), since that will clobber it */
7758 preempt_disable_ip = get_preempt_disable_ip(current);
7759
7760 printk(KERN_ERR
7761 "BUG: sleeping function called from invalid context at %s:%d\n",
7762 file, line);
7763 printk(KERN_ERR
7764 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7765 in_atomic(), irqs_disabled(),
7766 current->pid, current->comm);
7767
7768 if (task_stack_end_corrupted(current))
7769 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7770
7771 debug_show_held_locks(current);
7772 if (irqs_disabled())
7773 print_irqtrace_events(current);
7774 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7775 && !preempt_count_equals(preempt_offset)) {
7776 pr_err("Preemption disabled at:");
7777 print_ip_sym(preempt_disable_ip);
7778 pr_cont("\n");
7779 }
7780 dump_stack();
7781 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7782}
7783EXPORT_SYMBOL(___might_sleep);
7784#endif
7785
7786#ifdef CONFIG_MAGIC_SYSRQ
7787void normalize_rt_tasks(void)
7788{
7789 struct task_struct *g, *p;
7790 struct sched_attr attr = {
7791 .sched_policy = SCHED_NORMAL,
7792 };
7793
7794 read_lock(&tasklist_lock);
7795 for_each_process_thread(g, p) {
7796 /*
7797 * Only normalize user tasks:
7798 */
7799 if (p->flags & PF_KTHREAD)
7800 continue;
7801
7802 p->se.exec_start = 0;
7803 schedstat_set(p->se.statistics.wait_start, 0);
7804 schedstat_set(p->se.statistics.sleep_start, 0);
7805 schedstat_set(p->se.statistics.block_start, 0);
7806
7807 if (!dl_task(p) && !rt_task(p)) {
7808 /*
7809 * Renice negative nice level userspace
7810 * tasks back to 0:
7811 */
7812 if (task_nice(p) < 0)
7813 set_user_nice(p, 0);
7814 continue;
7815 }
7816
7817 __sched_setscheduler(p, &attr, false, false);
7818 }
7819 read_unlock(&tasklist_lock);
7820}
7821
7822#endif /* CONFIG_MAGIC_SYSRQ */
7823
7824#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7825/*
7826 * These functions are only useful for the IA64 MCA handling, or kdb.
7827 *
7828 * They can only be called when the whole system has been
7829 * stopped - every CPU needs to be quiescent, and no scheduling
7830 * activity can take place. Using them for anything else would
7831 * be a serious bug, and as a result, they aren't even visible
7832 * under any other configuration.
7833 */
7834
7835/**
7836 * curr_task - return the current task for a given cpu.
7837 * @cpu: the processor in question.
7838 *
7839 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7840 *
7841 * Return: The current task for @cpu.
7842 */
7843struct task_struct *curr_task(int cpu)
7844{
7845 return cpu_curr(cpu);
7846}
7847
7848#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7849
7850#ifdef CONFIG_IA64
7851/**
7852 * set_curr_task - set the current task for a given cpu.
7853 * @cpu: the processor in question.
7854 * @p: the task pointer to set.
7855 *
7856 * Description: This function must only be used when non-maskable interrupts
7857 * are serviced on a separate stack. It allows the architecture to switch the
7858 * notion of the current task on a cpu in a non-blocking manner. This function
7859 * must be called with all CPU's synchronized, and interrupts disabled, the
7860 * and caller must save the original value of the current task (see
7861 * curr_task() above) and restore that value before reenabling interrupts and
7862 * re-starting the system.
7863 *
7864 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7865 */
7866void ia64_set_curr_task(int cpu, struct task_struct *p)
7867{
7868 cpu_curr(cpu) = p;
7869}
7870
7871#endif
7872
7873#ifdef CONFIG_CGROUP_SCHED
7874/* task_group_lock serializes the addition/removal of task groups */
7875static DEFINE_SPINLOCK(task_group_lock);
7876
7877static void sched_free_group(struct task_group *tg)
7878{
7879 free_fair_sched_group(tg);
7880 free_rt_sched_group(tg);
7881 autogroup_free(tg);
7882 kmem_cache_free(task_group_cache, tg);
7883}
7884
7885/* allocate runqueue etc for a new task group */
7886struct task_group *sched_create_group(struct task_group *parent)
7887{
7888 struct task_group *tg;
7889
7890 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7891 if (!tg)
7892 return ERR_PTR(-ENOMEM);
7893
7894 if (!alloc_fair_sched_group(tg, parent))
7895 goto err;
7896
7897 if (!alloc_rt_sched_group(tg, parent))
7898 goto err;
7899
7900 return tg;
7901
7902err:
7903 sched_free_group(tg);
7904 return ERR_PTR(-ENOMEM);
7905}
7906
7907void sched_online_group(struct task_group *tg, struct task_group *parent)
7908{
7909 unsigned long flags;
7910
7911 spin_lock_irqsave(&task_group_lock, flags);
7912 list_add_rcu(&tg->list, &task_groups);
7913
7914 WARN_ON(!parent); /* root should already exist */
7915
7916 tg->parent = parent;
7917 INIT_LIST_HEAD(&tg->children);
7918 list_add_rcu(&tg->siblings, &parent->children);
7919 spin_unlock_irqrestore(&task_group_lock, flags);
7920
7921 online_fair_sched_group(tg);
7922}
7923
7924/* rcu callback to free various structures associated with a task group */
7925static void sched_free_group_rcu(struct rcu_head *rhp)
7926{
7927 /* now it should be safe to free those cfs_rqs */
7928 sched_free_group(container_of(rhp, struct task_group, rcu));
7929}
7930
7931void sched_destroy_group(struct task_group *tg)
7932{
7933 /* wait for possible concurrent references to cfs_rqs complete */
7934 call_rcu(&tg->rcu, sched_free_group_rcu);
7935}
7936
7937void sched_offline_group(struct task_group *tg)
7938{
7939 unsigned long flags;
7940
7941 /* end participation in shares distribution */
7942 unregister_fair_sched_group(tg);
7943
7944 spin_lock_irqsave(&task_group_lock, flags);
7945 list_del_rcu(&tg->list);
7946 list_del_rcu(&tg->siblings);
7947 spin_unlock_irqrestore(&task_group_lock, flags);
7948}
7949
7950static void sched_change_group(struct task_struct *tsk, int type)
7951{
7952 struct task_group *tg;
7953
7954 /*
7955 * All callers are synchronized by task_rq_lock(); we do not use RCU
7956 * which is pointless here. Thus, we pass "true" to task_css_check()
7957 * to prevent lockdep warnings.
7958 */
7959 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7960 struct task_group, css);
7961 tg = autogroup_task_group(tsk, tg);
7962 tsk->sched_task_group = tg;
7963
7964#ifdef CONFIG_FAIR_GROUP_SCHED
7965 if (tsk->sched_class->task_change_group)
7966 tsk->sched_class->task_change_group(tsk, type);
7967 else
7968#endif
7969 set_task_rq(tsk, task_cpu(tsk));
7970}
7971
7972/*
7973 * Change task's runqueue when it moves between groups.
7974 *
7975 * The caller of this function should have put the task in its new group by
7976 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7977 * its new group.
7978 */
7979void sched_move_task(struct task_struct *tsk)
7980{
7981 int queued, running;
7982 struct rq_flags rf;
7983 struct rq *rq;
7984
7985 rq = task_rq_lock(tsk, &rf);
7986
7987 running = task_current(rq, tsk);
7988 queued = task_on_rq_queued(tsk);
7989
7990 if (queued)
7991 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7992 if (unlikely(running))
7993 put_prev_task(rq, tsk);
7994
7995 sched_change_group(tsk, TASK_MOVE_GROUP);
7996
7997 if (queued)
7998 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7999 if (unlikely(running))
8000 set_curr_task(rq, tsk);
8001
8002 task_rq_unlock(rq, tsk, &rf);
8003}
8004#endif /* CONFIG_CGROUP_SCHED */
8005
8006#ifdef CONFIG_RT_GROUP_SCHED
8007/*
8008 * Ensure that the real time constraints are schedulable.
8009 */
8010static DEFINE_MUTEX(rt_constraints_mutex);
8011
8012/* Must be called with tasklist_lock held */
8013static inline int tg_has_rt_tasks(struct task_group *tg)
8014{
8015 struct task_struct *g, *p;
8016
8017 /*
8018 * Autogroups do not have RT tasks; see autogroup_create().
8019 */
8020 if (task_group_is_autogroup(tg))
8021 return 0;
8022
8023 for_each_process_thread(g, p) {
8024 if (rt_task(p) && task_group(p) == tg)
8025 return 1;
8026 }
8027
8028 return 0;
8029}
8030
8031struct rt_schedulable_data {
8032 struct task_group *tg;
8033 u64 rt_period;
8034 u64 rt_runtime;
8035};
8036
8037static int tg_rt_schedulable(struct task_group *tg, void *data)
8038{
8039 struct rt_schedulable_data *d = data;
8040 struct task_group *child;
8041 unsigned long total, sum = 0;
8042 u64 period, runtime;
8043
8044 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8045 runtime = tg->rt_bandwidth.rt_runtime;
8046
8047 if (tg == d->tg) {
8048 period = d->rt_period;
8049 runtime = d->rt_runtime;
8050 }
8051
8052 /*
8053 * Cannot have more runtime than the period.
8054 */
8055 if (runtime > period && runtime != RUNTIME_INF)
8056 return -EINVAL;
8057
8058 /*
8059 * Ensure we don't starve existing RT tasks.
8060 */
8061 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8062 return -EBUSY;
8063
8064 total = to_ratio(period, runtime);
8065
8066 /*
8067 * Nobody can have more than the global setting allows.
8068 */
8069 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8070 return -EINVAL;
8071
8072 /*
8073 * The sum of our children's runtime should not exceed our own.
8074 */
8075 list_for_each_entry_rcu(child, &tg->children, siblings) {
8076 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8077 runtime = child->rt_bandwidth.rt_runtime;
8078
8079 if (child == d->tg) {
8080 period = d->rt_period;
8081 runtime = d->rt_runtime;
8082 }
8083
8084 sum += to_ratio(period, runtime);
8085 }
8086
8087 if (sum > total)
8088 return -EINVAL;
8089
8090 return 0;
8091}
8092
8093static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8094{
8095 int ret;
8096
8097 struct rt_schedulable_data data = {
8098 .tg = tg,
8099 .rt_period = period,
8100 .rt_runtime = runtime,
8101 };
8102
8103 rcu_read_lock();
8104 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8105 rcu_read_unlock();
8106
8107 return ret;
8108}
8109
8110static int tg_set_rt_bandwidth(struct task_group *tg,
8111 u64 rt_period, u64 rt_runtime)
8112{
8113 int i, err = 0;
8114
8115 /*
8116 * Disallowing the root group RT runtime is BAD, it would disallow the
8117 * kernel creating (and or operating) RT threads.
8118 */
8119 if (tg == &root_task_group && rt_runtime == 0)
8120 return -EINVAL;
8121
8122 /* No period doesn't make any sense. */
8123 if (rt_period == 0)
8124 return -EINVAL;
8125
8126 mutex_lock(&rt_constraints_mutex);
8127 read_lock(&tasklist_lock);
8128 err = __rt_schedulable(tg, rt_period, rt_runtime);
8129 if (err)
8130 goto unlock;
8131
8132 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8133 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8134 tg->rt_bandwidth.rt_runtime = rt_runtime;
8135
8136 for_each_possible_cpu(i) {
8137 struct rt_rq *rt_rq = tg->rt_rq[i];
8138
8139 raw_spin_lock(&rt_rq->rt_runtime_lock);
8140 rt_rq->rt_runtime = rt_runtime;
8141 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8142 }
8143 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8144unlock:
8145 read_unlock(&tasklist_lock);
8146 mutex_unlock(&rt_constraints_mutex);
8147
8148 return err;
8149}
8150
8151static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8152{
8153 u64 rt_runtime, rt_period;
8154
8155 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8156 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8157 if (rt_runtime_us < 0)
8158 rt_runtime = RUNTIME_INF;
8159
8160 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8161}
8162
8163static long sched_group_rt_runtime(struct task_group *tg)
8164{
8165 u64 rt_runtime_us;
8166
8167 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8168 return -1;
8169
8170 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8171 do_div(rt_runtime_us, NSEC_PER_USEC);
8172 return rt_runtime_us;
8173}
8174
8175static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8176{
8177 u64 rt_runtime, rt_period;
8178
8179 rt_period = rt_period_us * NSEC_PER_USEC;
8180 rt_runtime = tg->rt_bandwidth.rt_runtime;
8181
8182 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8183}
8184
8185static long sched_group_rt_period(struct task_group *tg)
8186{
8187 u64 rt_period_us;
8188
8189 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8190 do_div(rt_period_us, NSEC_PER_USEC);
8191 return rt_period_us;
8192}
8193#endif /* CONFIG_RT_GROUP_SCHED */
8194
8195#ifdef CONFIG_RT_GROUP_SCHED
8196static int sched_rt_global_constraints(void)
8197{
8198 int ret = 0;
8199
8200 mutex_lock(&rt_constraints_mutex);
8201 read_lock(&tasklist_lock);
8202 ret = __rt_schedulable(NULL, 0, 0);
8203 read_unlock(&tasklist_lock);
8204 mutex_unlock(&rt_constraints_mutex);
8205
8206 return ret;
8207}
8208
8209static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8210{
8211 /* Don't accept realtime tasks when there is no way for them to run */
8212 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8213 return 0;
8214
8215 return 1;
8216}
8217
8218#else /* !CONFIG_RT_GROUP_SCHED */
8219static int sched_rt_global_constraints(void)
8220{
8221 unsigned long flags;
8222 int i;
8223
8224 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8225 for_each_possible_cpu(i) {
8226 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8227
8228 raw_spin_lock(&rt_rq->rt_runtime_lock);
8229 rt_rq->rt_runtime = global_rt_runtime();
8230 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8231 }
8232 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8233
8234 return 0;
8235}
8236#endif /* CONFIG_RT_GROUP_SCHED */
8237
8238static int sched_dl_global_validate(void)
8239{
8240 u64 runtime = global_rt_runtime();
8241 u64 period = global_rt_period();
8242 u64 new_bw = to_ratio(period, runtime);
8243 struct dl_bw *dl_b;
8244 int cpu, ret = 0;
8245 unsigned long flags;
8246
8247 /*
8248 * Here we want to check the bandwidth not being set to some
8249 * value smaller than the currently allocated bandwidth in
8250 * any of the root_domains.
8251 *
8252 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8253 * cycling on root_domains... Discussion on different/better
8254 * solutions is welcome!
8255 */
8256 for_each_possible_cpu(cpu) {
8257 rcu_read_lock_sched();
8258 dl_b = dl_bw_of(cpu);
8259
8260 raw_spin_lock_irqsave(&dl_b->lock, flags);
8261 if (new_bw < dl_b->total_bw)
8262 ret = -EBUSY;
8263 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8264
8265 rcu_read_unlock_sched();
8266
8267 if (ret)
8268 break;
8269 }
8270
8271 return ret;
8272}
8273
8274static void sched_dl_do_global(void)
8275{
8276 u64 new_bw = -1;
8277 struct dl_bw *dl_b;
8278 int cpu;
8279 unsigned long flags;
8280
8281 def_dl_bandwidth.dl_period = global_rt_period();
8282 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8283
8284 if (global_rt_runtime() != RUNTIME_INF)
8285 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8286
8287 /*
8288 * FIXME: As above...
8289 */
8290 for_each_possible_cpu(cpu) {
8291 rcu_read_lock_sched();
8292 dl_b = dl_bw_of(cpu);
8293
8294 raw_spin_lock_irqsave(&dl_b->lock, flags);
8295 dl_b->bw = new_bw;
8296 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8297
8298 rcu_read_unlock_sched();
8299 }
8300}
8301
8302static int sched_rt_global_validate(void)
8303{
8304 if (sysctl_sched_rt_period <= 0)
8305 return -EINVAL;
8306
8307 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8308 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8309 return -EINVAL;
8310
8311 return 0;
8312}
8313
8314static void sched_rt_do_global(void)
8315{
8316 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8317 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8318}
8319
8320int sched_rt_handler(struct ctl_table *table, int write,
8321 void __user *buffer, size_t *lenp,
8322 loff_t *ppos)
8323{
8324 int old_period, old_runtime;
8325 static DEFINE_MUTEX(mutex);
8326 int ret;
8327
8328 mutex_lock(&mutex);
8329 old_period = sysctl_sched_rt_period;
8330 old_runtime = sysctl_sched_rt_runtime;
8331
8332 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8333
8334 if (!ret && write) {
8335 ret = sched_rt_global_validate();
8336 if (ret)
8337 goto undo;
8338
8339 ret = sched_dl_global_validate();
8340 if (ret)
8341 goto undo;
8342
8343 ret = sched_rt_global_constraints();
8344 if (ret)
8345 goto undo;
8346
8347 sched_rt_do_global();
8348 sched_dl_do_global();
8349 }
8350 if (0) {
8351undo:
8352 sysctl_sched_rt_period = old_period;
8353 sysctl_sched_rt_runtime = old_runtime;
8354 }
8355 mutex_unlock(&mutex);
8356
8357 return ret;
8358}
8359
8360int sched_rr_handler(struct ctl_table *table, int write,
8361 void __user *buffer, size_t *lenp,
8362 loff_t *ppos)
8363{
8364 int ret;
8365 static DEFINE_MUTEX(mutex);
8366
8367 mutex_lock(&mutex);
8368 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8369 /* make sure that internally we keep jiffies */
8370 /* also, writing zero resets timeslice to default */
8371 if (!ret && write) {
8372 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8373 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8374 }
8375 mutex_unlock(&mutex);
8376 return ret;
8377}
8378
8379#ifdef CONFIG_CGROUP_SCHED
8380
8381static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8382{
8383 return css ? container_of(css, struct task_group, css) : NULL;
8384}
8385
8386static struct cgroup_subsys_state *
8387cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8388{
8389 struct task_group *parent = css_tg(parent_css);
8390 struct task_group *tg;
8391
8392 if (!parent) {
8393 /* This is early initialization for the top cgroup */
8394 return &root_task_group.css;
8395 }
8396
8397 tg = sched_create_group(parent);
8398 if (IS_ERR(tg))
8399 return ERR_PTR(-ENOMEM);
8400
8401 sched_online_group(tg, parent);
8402
8403 return &tg->css;
8404}
8405
8406static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8407{
8408 struct task_group *tg = css_tg(css);
8409
8410 sched_offline_group(tg);
8411}
8412
8413static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8414{
8415 struct task_group *tg = css_tg(css);
8416
8417 /*
8418 * Relies on the RCU grace period between css_released() and this.
8419 */
8420 sched_free_group(tg);
8421}
8422
8423/*
8424 * This is called before wake_up_new_task(), therefore we really only
8425 * have to set its group bits, all the other stuff does not apply.
8426 */
8427static void cpu_cgroup_fork(struct task_struct *task)
8428{
8429 struct rq_flags rf;
8430 struct rq *rq;
8431
8432 rq = task_rq_lock(task, &rf);
8433
8434 sched_change_group(task, TASK_SET_GROUP);
8435
8436 task_rq_unlock(rq, task, &rf);
8437}
8438
8439static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8440{
8441 struct task_struct *task;
8442 struct cgroup_subsys_state *css;
8443 int ret = 0;
8444
8445 cgroup_taskset_for_each(task, css, tset) {
8446#ifdef CONFIG_RT_GROUP_SCHED
8447 if (!sched_rt_can_attach(css_tg(css), task))
8448 return -EINVAL;
8449#else
8450 /* We don't support RT-tasks being in separate groups */
8451 if (task->sched_class != &fair_sched_class)
8452 return -EINVAL;
8453#endif
8454 /*
8455 * Serialize against wake_up_new_task() such that if its
8456 * running, we're sure to observe its full state.
8457 */
8458 raw_spin_lock_irq(&task->pi_lock);
8459 /*
8460 * Avoid calling sched_move_task() before wake_up_new_task()
8461 * has happened. This would lead to problems with PELT, due to
8462 * move wanting to detach+attach while we're not attached yet.
8463 */
8464 if (task->state == TASK_NEW)
8465 ret = -EINVAL;
8466 raw_spin_unlock_irq(&task->pi_lock);
8467
8468 if (ret)
8469 break;
8470 }
8471 return ret;
8472}
8473
8474static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8475{
8476 struct task_struct *task;
8477 struct cgroup_subsys_state *css;
8478
8479 cgroup_taskset_for_each(task, css, tset)
8480 sched_move_task(task);
8481}
8482
8483#ifdef CONFIG_FAIR_GROUP_SCHED
8484static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8485 struct cftype *cftype, u64 shareval)
8486{
8487 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8488}
8489
8490static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8491 struct cftype *cft)
8492{
8493 struct task_group *tg = css_tg(css);
8494
8495 return (u64) scale_load_down(tg->shares);
8496}
8497
8498#ifdef CONFIG_CFS_BANDWIDTH
8499static DEFINE_MUTEX(cfs_constraints_mutex);
8500
8501const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8502const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8503
8504static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8505
8506static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8507{
8508 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8509 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8510
8511 if (tg == &root_task_group)
8512 return -EINVAL;
8513
8514 /*
8515 * Ensure we have at some amount of bandwidth every period. This is
8516 * to prevent reaching a state of large arrears when throttled via
8517 * entity_tick() resulting in prolonged exit starvation.
8518 */
8519 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8520 return -EINVAL;
8521
8522 /*
8523 * Likewise, bound things on the otherside by preventing insane quota
8524 * periods. This also allows us to normalize in computing quota
8525 * feasibility.
8526 */
8527 if (period > max_cfs_quota_period)
8528 return -EINVAL;
8529
8530 /*
8531 * Prevent race between setting of cfs_rq->runtime_enabled and
8532 * unthrottle_offline_cfs_rqs().
8533 */
8534 get_online_cpus();
8535 mutex_lock(&cfs_constraints_mutex);
8536 ret = __cfs_schedulable(tg, period, quota);
8537 if (ret)
8538 goto out_unlock;
8539
8540 runtime_enabled = quota != RUNTIME_INF;
8541 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8542 /*
8543 * If we need to toggle cfs_bandwidth_used, off->on must occur
8544 * before making related changes, and on->off must occur afterwards
8545 */
8546 if (runtime_enabled && !runtime_was_enabled)
8547 cfs_bandwidth_usage_inc();
8548 raw_spin_lock_irq(&cfs_b->lock);
8549 cfs_b->period = ns_to_ktime(period);
8550 cfs_b->quota = quota;
8551
8552 __refill_cfs_bandwidth_runtime(cfs_b);
8553 /* restart the period timer (if active) to handle new period expiry */
8554 if (runtime_enabled)
8555 start_cfs_bandwidth(cfs_b);
8556 raw_spin_unlock_irq(&cfs_b->lock);
8557
8558 for_each_online_cpu(i) {
8559 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8560 struct rq *rq = cfs_rq->rq;
8561
8562 raw_spin_lock_irq(&rq->lock);
8563 cfs_rq->runtime_enabled = runtime_enabled;
8564 cfs_rq->runtime_remaining = 0;
8565
8566 if (cfs_rq->throttled)
8567 unthrottle_cfs_rq(cfs_rq);
8568 raw_spin_unlock_irq(&rq->lock);
8569 }
8570 if (runtime_was_enabled && !runtime_enabled)
8571 cfs_bandwidth_usage_dec();
8572out_unlock:
8573 mutex_unlock(&cfs_constraints_mutex);
8574 put_online_cpus();
8575
8576 return ret;
8577}
8578
8579int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8580{
8581 u64 quota, period;
8582
8583 period = ktime_to_ns(tg->cfs_bandwidth.period);
8584 if (cfs_quota_us < 0)
8585 quota = RUNTIME_INF;
8586 else
8587 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8588
8589 return tg_set_cfs_bandwidth(tg, period, quota);
8590}
8591
8592long tg_get_cfs_quota(struct task_group *tg)
8593{
8594 u64 quota_us;
8595
8596 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8597 return -1;
8598
8599 quota_us = tg->cfs_bandwidth.quota;
8600 do_div(quota_us, NSEC_PER_USEC);
8601
8602 return quota_us;
8603}
8604
8605int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8606{
8607 u64 quota, period;
8608
8609 period = (u64)cfs_period_us * NSEC_PER_USEC;
8610 quota = tg->cfs_bandwidth.quota;
8611
8612 return tg_set_cfs_bandwidth(tg, period, quota);
8613}
8614
8615long tg_get_cfs_period(struct task_group *tg)
8616{
8617 u64 cfs_period_us;
8618
8619 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8620 do_div(cfs_period_us, NSEC_PER_USEC);
8621
8622 return cfs_period_us;
8623}
8624
8625static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8626 struct cftype *cft)
8627{
8628 return tg_get_cfs_quota(css_tg(css));
8629}
8630
8631static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8632 struct cftype *cftype, s64 cfs_quota_us)
8633{
8634 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8635}
8636
8637static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8638 struct cftype *cft)
8639{
8640 return tg_get_cfs_period(css_tg(css));
8641}
8642
8643static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8644 struct cftype *cftype, u64 cfs_period_us)
8645{
8646 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8647}
8648
8649struct cfs_schedulable_data {
8650 struct task_group *tg;
8651 u64 period, quota;
8652};
8653
8654/*
8655 * normalize group quota/period to be quota/max_period
8656 * note: units are usecs
8657 */
8658static u64 normalize_cfs_quota(struct task_group *tg,
8659 struct cfs_schedulable_data *d)
8660{
8661 u64 quota, period;
8662
8663 if (tg == d->tg) {
8664 period = d->period;
8665 quota = d->quota;
8666 } else {
8667 period = tg_get_cfs_period(tg);
8668 quota = tg_get_cfs_quota(tg);
8669 }
8670
8671 /* note: these should typically be equivalent */
8672 if (quota == RUNTIME_INF || quota == -1)
8673 return RUNTIME_INF;
8674
8675 return to_ratio(period, quota);
8676}
8677
8678static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8679{
8680 struct cfs_schedulable_data *d = data;
8681 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8682 s64 quota = 0, parent_quota = -1;
8683
8684 if (!tg->parent) {
8685 quota = RUNTIME_INF;
8686 } else {
8687 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8688
8689 quota = normalize_cfs_quota(tg, d);
8690 parent_quota = parent_b->hierarchical_quota;
8691
8692 /*
8693 * ensure max(child_quota) <= parent_quota, inherit when no
8694 * limit is set
8695 */
8696 if (quota == RUNTIME_INF)
8697 quota = parent_quota;
8698 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8699 return -EINVAL;
8700 }
8701 cfs_b->hierarchical_quota = quota;
8702
8703 return 0;
8704}
8705
8706static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8707{
8708 int ret;
8709 struct cfs_schedulable_data data = {
8710 .tg = tg,
8711 .period = period,
8712 .quota = quota,
8713 };
8714
8715 if (quota != RUNTIME_INF) {
8716 do_div(data.period, NSEC_PER_USEC);
8717 do_div(data.quota, NSEC_PER_USEC);
8718 }
8719
8720 rcu_read_lock();
8721 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8722 rcu_read_unlock();
8723
8724 return ret;
8725}
8726
8727static int cpu_stats_show(struct seq_file *sf, void *v)
8728{
8729 struct task_group *tg = css_tg(seq_css(sf));
8730 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8731
8732 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8733 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8734 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8735
8736 return 0;
8737}
8738#endif /* CONFIG_CFS_BANDWIDTH */
8739#endif /* CONFIG_FAIR_GROUP_SCHED */
8740
8741#ifdef CONFIG_RT_GROUP_SCHED
8742static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8743 struct cftype *cft, s64 val)
8744{
8745 return sched_group_set_rt_runtime(css_tg(css), val);
8746}
8747
8748static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8749 struct cftype *cft)
8750{
8751 return sched_group_rt_runtime(css_tg(css));
8752}
8753
8754static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8755 struct cftype *cftype, u64 rt_period_us)
8756{
8757 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8758}
8759
8760static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8761 struct cftype *cft)
8762{
8763 return sched_group_rt_period(css_tg(css));
8764}
8765#endif /* CONFIG_RT_GROUP_SCHED */
8766
8767static struct cftype cpu_files[] = {
8768#ifdef CONFIG_FAIR_GROUP_SCHED
8769 {
8770 .name = "shares",
8771 .read_u64 = cpu_shares_read_u64,
8772 .write_u64 = cpu_shares_write_u64,
8773 },
8774#endif
8775#ifdef CONFIG_CFS_BANDWIDTH
8776 {
8777 .name = "cfs_quota_us",
8778 .read_s64 = cpu_cfs_quota_read_s64,
8779 .write_s64 = cpu_cfs_quota_write_s64,
8780 },
8781 {
8782 .name = "cfs_period_us",
8783 .read_u64 = cpu_cfs_period_read_u64,
8784 .write_u64 = cpu_cfs_period_write_u64,
8785 },
8786 {
8787 .name = "stat",
8788 .seq_show = cpu_stats_show,
8789 },
8790#endif
8791#ifdef CONFIG_RT_GROUP_SCHED
8792 {
8793 .name = "rt_runtime_us",
8794 .read_s64 = cpu_rt_runtime_read,
8795 .write_s64 = cpu_rt_runtime_write,
8796 },
8797 {
8798 .name = "rt_period_us",
8799 .read_u64 = cpu_rt_period_read_uint,
8800 .write_u64 = cpu_rt_period_write_uint,
8801 },
8802#endif
8803 { } /* terminate */
8804};
8805
8806struct cgroup_subsys cpu_cgrp_subsys = {
8807 .css_alloc = cpu_cgroup_css_alloc,
8808 .css_released = cpu_cgroup_css_released,
8809 .css_free = cpu_cgroup_css_free,
8810 .fork = cpu_cgroup_fork,
8811 .can_attach = cpu_cgroup_can_attach,
8812 .attach = cpu_cgroup_attach,
8813 .legacy_cftypes = cpu_files,
8814 .early_init = true,
8815};
8816
8817#endif /* CONFIG_CGROUP_SCHED */
8818
8819void dump_cpu_task(int cpu)
8820{
8821 pr_info("Task dump for CPU %d:\n", cpu);
8822 sched_show_task(cpu_curr(cpu));
8823}
8824
8825/*
8826 * Nice levels are multiplicative, with a gentle 10% change for every
8827 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8828 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8829 * that remained on nice 0.
8830 *
8831 * The "10% effect" is relative and cumulative: from _any_ nice level,
8832 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8833 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8834 * If a task goes up by ~10% and another task goes down by ~10% then
8835 * the relative distance between them is ~25%.)
8836 */
8837const int sched_prio_to_weight[40] = {
8838 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8839 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8840 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8841 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8842 /* 0 */ 1024, 820, 655, 526, 423,
8843 /* 5 */ 335, 272, 215, 172, 137,
8844 /* 10 */ 110, 87, 70, 56, 45,
8845 /* 15 */ 36, 29, 23, 18, 15,
8846};
8847
8848/*
8849 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8850 *
8851 * In cases where the weight does not change often, we can use the
8852 * precalculated inverse to speed up arithmetics by turning divisions
8853 * into multiplications:
8854 */
8855const u32 sched_prio_to_wmult[40] = {
8856 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8857 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8858 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8859 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8860 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8861 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8862 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8863 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8864};
1/*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8#include "sched.h"
9
10#include <linux/kthread.h>
11#include <linux/nospec.h>
12
13#include <asm/switch_to.h>
14#include <asm/tlb.h>
15
16#include "../workqueue_internal.h"
17#include "../smpboot.h"
18
19#define CREATE_TRACE_POINTS
20#include <trace/events/sched.h>
21
22DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
23
24#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
25/*
26 * Debugging: various feature bits
27 *
28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29 * sysctl_sched_features, defined in sched.h, to allow constants propagation
30 * at compile time and compiler optimization based on features default.
31 */
32#define SCHED_FEAT(name, enabled) \
33 (1UL << __SCHED_FEAT_##name) * enabled |
34const_debug unsigned int sysctl_sched_features =
35#include "features.h"
36 0;
37#undef SCHED_FEAT
38#endif
39
40/*
41 * Number of tasks to iterate in a single balance run.
42 * Limited because this is done with IRQs disabled.
43 */
44const_debug unsigned int sysctl_sched_nr_migrate = 32;
45
46/*
47 * period over which we average the RT time consumption, measured
48 * in ms.
49 *
50 * default: 1s
51 */
52const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
53
54/*
55 * period over which we measure -rt task CPU usage in us.
56 * default: 1s
57 */
58unsigned int sysctl_sched_rt_period = 1000000;
59
60__read_mostly int scheduler_running;
61
62/*
63 * part of the period that we allow rt tasks to run in us.
64 * default: 0.95s
65 */
66int sysctl_sched_rt_runtime = 950000;
67
68/*
69 * __task_rq_lock - lock the rq @p resides on.
70 */
71struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
72 __acquires(rq->lock)
73{
74 struct rq *rq;
75
76 lockdep_assert_held(&p->pi_lock);
77
78 for (;;) {
79 rq = task_rq(p);
80 raw_spin_lock(&rq->lock);
81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
82 rq_pin_lock(rq, rf);
83 return rq;
84 }
85 raw_spin_unlock(&rq->lock);
86
87 while (unlikely(task_on_rq_migrating(p)))
88 cpu_relax();
89 }
90}
91
92/*
93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
94 */
95struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
96 __acquires(p->pi_lock)
97 __acquires(rq->lock)
98{
99 struct rq *rq;
100
101 for (;;) {
102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
103 rq = task_rq(p);
104 raw_spin_lock(&rq->lock);
105 /*
106 * move_queued_task() task_rq_lock()
107 *
108 * ACQUIRE (rq->lock)
109 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
111 * [S] ->cpu = new_cpu [L] task_rq()
112 * [L] ->on_rq
113 * RELEASE (rq->lock)
114 *
115 * If we observe the old CPU in task_rq_lock, the acquire of
116 * the old rq->lock will fully serialize against the stores.
117 *
118 * If we observe the new CPU in task_rq_lock, the acquire will
119 * pair with the WMB to ensure we must then also see migrating.
120 */
121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
122 rq_pin_lock(rq, rf);
123 return rq;
124 }
125 raw_spin_unlock(&rq->lock);
126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
127
128 while (unlikely(task_on_rq_migrating(p)))
129 cpu_relax();
130 }
131}
132
133/*
134 * RQ-clock updating methods:
135 */
136
137static void update_rq_clock_task(struct rq *rq, s64 delta)
138{
139/*
140 * In theory, the compile should just see 0 here, and optimize out the call
141 * to sched_rt_avg_update. But I don't trust it...
142 */
143#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 s64 steal = 0, irq_delta = 0;
145#endif
146#ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
148
149 /*
150 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 * this case when a previous update_rq_clock() happened inside a
152 * {soft,}irq region.
153 *
154 * When this happens, we stop ->clock_task and only update the
155 * prev_irq_time stamp to account for the part that fit, so that a next
156 * update will consume the rest. This ensures ->clock_task is
157 * monotonic.
158 *
159 * It does however cause some slight miss-attribution of {soft,}irq
160 * time, a more accurate solution would be to update the irq_time using
161 * the current rq->clock timestamp, except that would require using
162 * atomic ops.
163 */
164 if (irq_delta > delta)
165 irq_delta = delta;
166
167 rq->prev_irq_time += irq_delta;
168 delta -= irq_delta;
169#endif
170#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 if (static_key_false((¶virt_steal_rq_enabled))) {
172 steal = paravirt_steal_clock(cpu_of(rq));
173 steal -= rq->prev_steal_time_rq;
174
175 if (unlikely(steal > delta))
176 steal = delta;
177
178 rq->prev_steal_time_rq += steal;
179 delta -= steal;
180 }
181#endif
182
183 rq->clock_task += delta;
184
185#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 sched_rt_avg_update(rq, irq_delta + steal);
188#endif
189}
190
191void update_rq_clock(struct rq *rq)
192{
193 s64 delta;
194
195 lockdep_assert_held(&rq->lock);
196
197 if (rq->clock_update_flags & RQCF_ACT_SKIP)
198 return;
199
200#ifdef CONFIG_SCHED_DEBUG
201 if (sched_feat(WARN_DOUBLE_CLOCK))
202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
203 rq->clock_update_flags |= RQCF_UPDATED;
204#endif
205
206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
207 if (delta < 0)
208 return;
209 rq->clock += delta;
210 update_rq_clock_task(rq, delta);
211}
212
213
214#ifdef CONFIG_SCHED_HRTICK
215/*
216 * Use HR-timers to deliver accurate preemption points.
217 */
218
219static void hrtick_clear(struct rq *rq)
220{
221 if (hrtimer_active(&rq->hrtick_timer))
222 hrtimer_cancel(&rq->hrtick_timer);
223}
224
225/*
226 * High-resolution timer tick.
227 * Runs from hardirq context with interrupts disabled.
228 */
229static enum hrtimer_restart hrtick(struct hrtimer *timer)
230{
231 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
232 struct rq_flags rf;
233
234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
235
236 rq_lock(rq, &rf);
237 update_rq_clock(rq);
238 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
239 rq_unlock(rq, &rf);
240
241 return HRTIMER_NORESTART;
242}
243
244#ifdef CONFIG_SMP
245
246static void __hrtick_restart(struct rq *rq)
247{
248 struct hrtimer *timer = &rq->hrtick_timer;
249
250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
251}
252
253/*
254 * called from hardirq (IPI) context
255 */
256static void __hrtick_start(void *arg)
257{
258 struct rq *rq = arg;
259 struct rq_flags rf;
260
261 rq_lock(rq, &rf);
262 __hrtick_restart(rq);
263 rq->hrtick_csd_pending = 0;
264 rq_unlock(rq, &rf);
265}
266
267/*
268 * Called to set the hrtick timer state.
269 *
270 * called with rq->lock held and irqs disabled
271 */
272void hrtick_start(struct rq *rq, u64 delay)
273{
274 struct hrtimer *timer = &rq->hrtick_timer;
275 ktime_t time;
276 s64 delta;
277
278 /*
279 * Don't schedule slices shorter than 10000ns, that just
280 * doesn't make sense and can cause timer DoS.
281 */
282 delta = max_t(s64, delay, 10000LL);
283 time = ktime_add_ns(timer->base->get_time(), delta);
284
285 hrtimer_set_expires(timer, time);
286
287 if (rq == this_rq()) {
288 __hrtick_restart(rq);
289 } else if (!rq->hrtick_csd_pending) {
290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
291 rq->hrtick_csd_pending = 1;
292 }
293}
294
295#else
296/*
297 * Called to set the hrtick timer state.
298 *
299 * called with rq->lock held and irqs disabled
300 */
301void hrtick_start(struct rq *rq, u64 delay)
302{
303 /*
304 * Don't schedule slices shorter than 10000ns, that just
305 * doesn't make sense. Rely on vruntime for fairness.
306 */
307 delay = max_t(u64, delay, 10000LL);
308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 HRTIMER_MODE_REL_PINNED);
310}
311#endif /* CONFIG_SMP */
312
313static void hrtick_rq_init(struct rq *rq)
314{
315#ifdef CONFIG_SMP
316 rq->hrtick_csd_pending = 0;
317
318 rq->hrtick_csd.flags = 0;
319 rq->hrtick_csd.func = __hrtick_start;
320 rq->hrtick_csd.info = rq;
321#endif
322
323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 rq->hrtick_timer.function = hrtick;
325}
326#else /* CONFIG_SCHED_HRTICK */
327static inline void hrtick_clear(struct rq *rq)
328{
329}
330
331static inline void hrtick_rq_init(struct rq *rq)
332{
333}
334#endif /* CONFIG_SCHED_HRTICK */
335
336/*
337 * cmpxchg based fetch_or, macro so it works for different integer types
338 */
339#define fetch_or(ptr, mask) \
340 ({ \
341 typeof(ptr) _ptr = (ptr); \
342 typeof(mask) _mask = (mask); \
343 typeof(*_ptr) _old, _val = *_ptr; \
344 \
345 for (;;) { \
346 _old = cmpxchg(_ptr, _val, _val | _mask); \
347 if (_old == _val) \
348 break; \
349 _val = _old; \
350 } \
351 _old; \
352})
353
354#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
355/*
356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357 * this avoids any races wrt polling state changes and thereby avoids
358 * spurious IPIs.
359 */
360static bool set_nr_and_not_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
364}
365
366/*
367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
368 *
369 * If this returns true, then the idle task promises to call
370 * sched_ttwu_pending() and reschedule soon.
371 */
372static bool set_nr_if_polling(struct task_struct *p)
373{
374 struct thread_info *ti = task_thread_info(p);
375 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
376
377 for (;;) {
378 if (!(val & _TIF_POLLING_NRFLAG))
379 return false;
380 if (val & _TIF_NEED_RESCHED)
381 return true;
382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
383 if (old == val)
384 break;
385 val = old;
386 }
387 return true;
388}
389
390#else
391static bool set_nr_and_not_polling(struct task_struct *p)
392{
393 set_tsk_need_resched(p);
394 return true;
395}
396
397#ifdef CONFIG_SMP
398static bool set_nr_if_polling(struct task_struct *p)
399{
400 return false;
401}
402#endif
403#endif
404
405void wake_q_add(struct wake_q_head *head, struct task_struct *task)
406{
407 struct wake_q_node *node = &task->wake_q;
408
409 /*
410 * Atomically grab the task, if ->wake_q is !nil already it means
411 * its already queued (either by us or someone else) and will get the
412 * wakeup due to that.
413 *
414 * This cmpxchg() implies a full barrier, which pairs with the write
415 * barrier implied by the wakeup in wake_up_q().
416 */
417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
418 return;
419
420 get_task_struct(task);
421
422 /*
423 * The head is context local, there can be no concurrency.
424 */
425 *head->lastp = node;
426 head->lastp = &node->next;
427}
428
429void wake_up_q(struct wake_q_head *head)
430{
431 struct wake_q_node *node = head->first;
432
433 while (node != WAKE_Q_TAIL) {
434 struct task_struct *task;
435
436 task = container_of(node, struct task_struct, wake_q);
437 BUG_ON(!task);
438 /* Task can safely be re-inserted now: */
439 node = node->next;
440 task->wake_q.next = NULL;
441
442 /*
443 * wake_up_process() implies a wmb() to pair with the queueing
444 * in wake_q_add() so as not to miss wakeups.
445 */
446 wake_up_process(task);
447 put_task_struct(task);
448 }
449}
450
451/*
452 * resched_curr - mark rq's current task 'to be rescheduled now'.
453 *
454 * On UP this means the setting of the need_resched flag, on SMP it
455 * might also involve a cross-CPU call to trigger the scheduler on
456 * the target CPU.
457 */
458void resched_curr(struct rq *rq)
459{
460 struct task_struct *curr = rq->curr;
461 int cpu;
462
463 lockdep_assert_held(&rq->lock);
464
465 if (test_tsk_need_resched(curr))
466 return;
467
468 cpu = cpu_of(rq);
469
470 if (cpu == smp_processor_id()) {
471 set_tsk_need_resched(curr);
472 set_preempt_need_resched();
473 return;
474 }
475
476 if (set_nr_and_not_polling(curr))
477 smp_send_reschedule(cpu);
478 else
479 trace_sched_wake_idle_without_ipi(cpu);
480}
481
482void resched_cpu(int cpu)
483{
484 struct rq *rq = cpu_rq(cpu);
485 unsigned long flags;
486
487 raw_spin_lock_irqsave(&rq->lock, flags);
488 if (cpu_online(cpu) || cpu == smp_processor_id())
489 resched_curr(rq);
490 raw_spin_unlock_irqrestore(&rq->lock, flags);
491}
492
493#ifdef CONFIG_SMP
494#ifdef CONFIG_NO_HZ_COMMON
495/*
496 * In the semi idle case, use the nearest busy CPU for migrating timers
497 * from an idle CPU. This is good for power-savings.
498 *
499 * We don't do similar optimization for completely idle system, as
500 * selecting an idle CPU will add more delays to the timers than intended
501 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
502 */
503int get_nohz_timer_target(void)
504{
505 int i, cpu = smp_processor_id();
506 struct sched_domain *sd;
507
508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
509 return cpu;
510
511 rcu_read_lock();
512 for_each_domain(cpu, sd) {
513 for_each_cpu(i, sched_domain_span(sd)) {
514 if (cpu == i)
515 continue;
516
517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
518 cpu = i;
519 goto unlock;
520 }
521 }
522 }
523
524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
526unlock:
527 rcu_read_unlock();
528 return cpu;
529}
530
531/*
532 * When add_timer_on() enqueues a timer into the timer wheel of an
533 * idle CPU then this timer might expire before the next timer event
534 * which is scheduled to wake up that CPU. In case of a completely
535 * idle system the next event might even be infinite time into the
536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537 * leaves the inner idle loop so the newly added timer is taken into
538 * account when the CPU goes back to idle and evaluates the timer
539 * wheel for the next timer event.
540 */
541static void wake_up_idle_cpu(int cpu)
542{
543 struct rq *rq = cpu_rq(cpu);
544
545 if (cpu == smp_processor_id())
546 return;
547
548 if (set_nr_and_not_polling(rq->idle))
549 smp_send_reschedule(cpu);
550 else
551 trace_sched_wake_idle_without_ipi(cpu);
552}
553
554static bool wake_up_full_nohz_cpu(int cpu)
555{
556 /*
557 * We just need the target to call irq_exit() and re-evaluate
558 * the next tick. The nohz full kick at least implies that.
559 * If needed we can still optimize that later with an
560 * empty IRQ.
561 */
562 if (cpu_is_offline(cpu))
563 return true; /* Don't try to wake offline CPUs. */
564 if (tick_nohz_full_cpu(cpu)) {
565 if (cpu != smp_processor_id() ||
566 tick_nohz_tick_stopped())
567 tick_nohz_full_kick_cpu(cpu);
568 return true;
569 }
570
571 return false;
572}
573
574/*
575 * Wake up the specified CPU. If the CPU is going offline, it is the
576 * caller's responsibility to deal with the lost wakeup, for example,
577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
578 */
579void wake_up_nohz_cpu(int cpu)
580{
581 if (!wake_up_full_nohz_cpu(cpu))
582 wake_up_idle_cpu(cpu);
583}
584
585static inline bool got_nohz_idle_kick(void)
586{
587 int cpu = smp_processor_id();
588
589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
590 return false;
591
592 if (idle_cpu(cpu) && !need_resched())
593 return true;
594
595 /*
596 * We can't run Idle Load Balance on this CPU for this time so we
597 * cancel it and clear NOHZ_BALANCE_KICK
598 */
599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
600 return false;
601}
602
603#else /* CONFIG_NO_HZ_COMMON */
604
605static inline bool got_nohz_idle_kick(void)
606{
607 return false;
608}
609
610#endif /* CONFIG_NO_HZ_COMMON */
611
612#ifdef CONFIG_NO_HZ_FULL
613bool sched_can_stop_tick(struct rq *rq)
614{
615 int fifo_nr_running;
616
617 /* Deadline tasks, even if single, need the tick */
618 if (rq->dl.dl_nr_running)
619 return false;
620
621 /*
622 * If there are more than one RR tasks, we need the tick to effect the
623 * actual RR behaviour.
624 */
625 if (rq->rt.rr_nr_running) {
626 if (rq->rt.rr_nr_running == 1)
627 return true;
628 else
629 return false;
630 }
631
632 /*
633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 * forced preemption between FIFO tasks.
635 */
636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 if (fifo_nr_running)
638 return true;
639
640 /*
641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 * if there's more than one we need the tick for involuntary
643 * preemption.
644 */
645 if (rq->nr_running > 1)
646 return false;
647
648 return true;
649}
650#endif /* CONFIG_NO_HZ_FULL */
651
652void sched_avg_update(struct rq *rq)
653{
654 s64 period = sched_avg_period();
655
656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
657 /*
658 * Inline assembly required to prevent the compiler
659 * optimising this loop into a divmod call.
660 * See __iter_div_u64_rem() for another example of this.
661 */
662 asm("" : "+rm" (rq->age_stamp));
663 rq->age_stamp += period;
664 rq->rt_avg /= 2;
665 }
666}
667
668#endif /* CONFIG_SMP */
669
670#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
672/*
673 * Iterate task_group tree rooted at *from, calling @down when first entering a
674 * node and @up when leaving it for the final time.
675 *
676 * Caller must hold rcu_lock or sufficient equivalent.
677 */
678int walk_tg_tree_from(struct task_group *from,
679 tg_visitor down, tg_visitor up, void *data)
680{
681 struct task_group *parent, *child;
682 int ret;
683
684 parent = from;
685
686down:
687 ret = (*down)(parent, data);
688 if (ret)
689 goto out;
690 list_for_each_entry_rcu(child, &parent->children, siblings) {
691 parent = child;
692 goto down;
693
694up:
695 continue;
696 }
697 ret = (*up)(parent, data);
698 if (ret || parent == from)
699 goto out;
700
701 child = parent;
702 parent = parent->parent;
703 if (parent)
704 goto up;
705out:
706 return ret;
707}
708
709int tg_nop(struct task_group *tg, void *data)
710{
711 return 0;
712}
713#endif
714
715static void set_load_weight(struct task_struct *p, bool update_load)
716{
717 int prio = p->static_prio - MAX_RT_PRIO;
718 struct load_weight *load = &p->se.load;
719
720 /*
721 * SCHED_IDLE tasks get minimal weight:
722 */
723 if (idle_policy(p->policy)) {
724 load->weight = scale_load(WEIGHT_IDLEPRIO);
725 load->inv_weight = WMULT_IDLEPRIO;
726 return;
727 }
728
729 /*
730 * SCHED_OTHER tasks have to update their load when changing their
731 * weight
732 */
733 if (update_load && p->sched_class == &fair_sched_class) {
734 reweight_task(p, prio);
735 } else {
736 load->weight = scale_load(sched_prio_to_weight[prio]);
737 load->inv_weight = sched_prio_to_wmult[prio];
738 }
739}
740
741static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
742{
743 if (!(flags & ENQUEUE_NOCLOCK))
744 update_rq_clock(rq);
745
746 if (!(flags & ENQUEUE_RESTORE))
747 sched_info_queued(rq, p);
748
749 p->sched_class->enqueue_task(rq, p, flags);
750}
751
752static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
753{
754 if (!(flags & DEQUEUE_NOCLOCK))
755 update_rq_clock(rq);
756
757 if (!(flags & DEQUEUE_SAVE))
758 sched_info_dequeued(rq, p);
759
760 p->sched_class->dequeue_task(rq, p, flags);
761}
762
763void activate_task(struct rq *rq, struct task_struct *p, int flags)
764{
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
768 enqueue_task(rq, p, flags);
769}
770
771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
776 dequeue_task(rq, p, flags);
777}
778
779/*
780 * __normal_prio - return the priority that is based on the static prio
781 */
782static inline int __normal_prio(struct task_struct *p)
783{
784 return p->static_prio;
785}
786
787/*
788 * Calculate the expected normal priority: i.e. priority
789 * without taking RT-inheritance into account. Might be
790 * boosted by interactivity modifiers. Changes upon fork,
791 * setprio syscalls, and whenever the interactivity
792 * estimator recalculates.
793 */
794static inline int normal_prio(struct task_struct *p)
795{
796 int prio;
797
798 if (task_has_dl_policy(p))
799 prio = MAX_DL_PRIO-1;
800 else if (task_has_rt_policy(p))
801 prio = MAX_RT_PRIO-1 - p->rt_priority;
802 else
803 prio = __normal_prio(p);
804 return prio;
805}
806
807/*
808 * Calculate the current priority, i.e. the priority
809 * taken into account by the scheduler. This value might
810 * be boosted by RT tasks, or might be boosted by
811 * interactivity modifiers. Will be RT if the task got
812 * RT-boosted. If not then it returns p->normal_prio.
813 */
814static int effective_prio(struct task_struct *p)
815{
816 p->normal_prio = normal_prio(p);
817 /*
818 * If we are RT tasks or we were boosted to RT priority,
819 * keep the priority unchanged. Otherwise, update priority
820 * to the normal priority:
821 */
822 if (!rt_prio(p->prio))
823 return p->normal_prio;
824 return p->prio;
825}
826
827/**
828 * task_curr - is this task currently executing on a CPU?
829 * @p: the task in question.
830 *
831 * Return: 1 if the task is currently executing. 0 otherwise.
832 */
833inline int task_curr(const struct task_struct *p)
834{
835 return cpu_curr(task_cpu(p)) == p;
836}
837
838/*
839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840 * use the balance_callback list if you want balancing.
841 *
842 * this means any call to check_class_changed() must be followed by a call to
843 * balance_callback().
844 */
845static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 const struct sched_class *prev_class,
847 int oldprio)
848{
849 if (prev_class != p->sched_class) {
850 if (prev_class->switched_from)
851 prev_class->switched_from(rq, p);
852
853 p->sched_class->switched_to(rq, p);
854 } else if (oldprio != p->prio || dl_task(p))
855 p->sched_class->prio_changed(rq, p, oldprio);
856}
857
858void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
859{
860 const struct sched_class *class;
861
862 if (p->sched_class == rq->curr->sched_class) {
863 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
864 } else {
865 for_each_class(class) {
866 if (class == rq->curr->sched_class)
867 break;
868 if (class == p->sched_class) {
869 resched_curr(rq);
870 break;
871 }
872 }
873 }
874
875 /*
876 * A queue event has occurred, and we're going to schedule. In
877 * this case, we can save a useless back to back clock update.
878 */
879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
880 rq_clock_skip_update(rq);
881}
882
883#ifdef CONFIG_SMP
884
885static inline bool is_per_cpu_kthread(struct task_struct *p)
886{
887 if (!(p->flags & PF_KTHREAD))
888 return false;
889
890 if (p->nr_cpus_allowed != 1)
891 return false;
892
893 return true;
894}
895
896/*
897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
898 * __set_cpus_allowed_ptr() and select_fallback_rq().
899 */
900static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
901{
902 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
903 return false;
904
905 if (is_per_cpu_kthread(p))
906 return cpu_online(cpu);
907
908 return cpu_active(cpu);
909}
910
911/*
912 * This is how migration works:
913 *
914 * 1) we invoke migration_cpu_stop() on the target CPU using
915 * stop_one_cpu().
916 * 2) stopper starts to run (implicitly forcing the migrated thread
917 * off the CPU)
918 * 3) it checks whether the migrated task is still in the wrong runqueue.
919 * 4) if it's in the wrong runqueue then the migration thread removes
920 * it and puts it into the right queue.
921 * 5) stopper completes and stop_one_cpu() returns and the migration
922 * is done.
923 */
924
925/*
926 * move_queued_task - move a queued task to new rq.
927 *
928 * Returns (locked) new rq. Old rq's lock is released.
929 */
930static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
931 struct task_struct *p, int new_cpu)
932{
933 lockdep_assert_held(&rq->lock);
934
935 p->on_rq = TASK_ON_RQ_MIGRATING;
936 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
937 set_task_cpu(p, new_cpu);
938 rq_unlock(rq, rf);
939
940 rq = cpu_rq(new_cpu);
941
942 rq_lock(rq, rf);
943 BUG_ON(task_cpu(p) != new_cpu);
944 enqueue_task(rq, p, 0);
945 p->on_rq = TASK_ON_RQ_QUEUED;
946 check_preempt_curr(rq, p, 0);
947
948 return rq;
949}
950
951struct migration_arg {
952 struct task_struct *task;
953 int dest_cpu;
954};
955
956/*
957 * Move (not current) task off this CPU, onto the destination CPU. We're doing
958 * this because either it can't run here any more (set_cpus_allowed()
959 * away from this CPU, or CPU going down), or because we're
960 * attempting to rebalance this task on exec (sched_exec).
961 *
962 * So we race with normal scheduler movements, but that's OK, as long
963 * as the task is no longer on this CPU.
964 */
965static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
966 struct task_struct *p, int dest_cpu)
967{
968 /* Affinity changed (again). */
969 if (!is_cpu_allowed(p, dest_cpu))
970 return rq;
971
972 update_rq_clock(rq);
973 rq = move_queued_task(rq, rf, p, dest_cpu);
974
975 return rq;
976}
977
978/*
979 * migration_cpu_stop - this will be executed by a highprio stopper thread
980 * and performs thread migration by bumping thread off CPU then
981 * 'pushing' onto another runqueue.
982 */
983static int migration_cpu_stop(void *data)
984{
985 struct migration_arg *arg = data;
986 struct task_struct *p = arg->task;
987 struct rq *rq = this_rq();
988 struct rq_flags rf;
989
990 /*
991 * The original target CPU might have gone down and we might
992 * be on another CPU but it doesn't matter.
993 */
994 local_irq_disable();
995 /*
996 * We need to explicitly wake pending tasks before running
997 * __migrate_task() such that we will not miss enforcing cpus_allowed
998 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
999 */
1000 sched_ttwu_pending();
1001
1002 raw_spin_lock(&p->pi_lock);
1003 rq_lock(rq, &rf);
1004 /*
1005 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007 * we're holding p->pi_lock.
1008 */
1009 if (task_rq(p) == rq) {
1010 if (task_on_rq_queued(p))
1011 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1012 else
1013 p->wake_cpu = arg->dest_cpu;
1014 }
1015 rq_unlock(rq, &rf);
1016 raw_spin_unlock(&p->pi_lock);
1017
1018 local_irq_enable();
1019 return 0;
1020}
1021
1022/*
1023 * sched_class::set_cpus_allowed must do the below, but is not required to
1024 * actually call this function.
1025 */
1026void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1027{
1028 cpumask_copy(&p->cpus_allowed, new_mask);
1029 p->nr_cpus_allowed = cpumask_weight(new_mask);
1030}
1031
1032void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1033{
1034 struct rq *rq = task_rq(p);
1035 bool queued, running;
1036
1037 lockdep_assert_held(&p->pi_lock);
1038
1039 queued = task_on_rq_queued(p);
1040 running = task_current(rq, p);
1041
1042 if (queued) {
1043 /*
1044 * Because __kthread_bind() calls this on blocked tasks without
1045 * holding rq->lock.
1046 */
1047 lockdep_assert_held(&rq->lock);
1048 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1049 }
1050 if (running)
1051 put_prev_task(rq, p);
1052
1053 p->sched_class->set_cpus_allowed(p, new_mask);
1054
1055 if (queued)
1056 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1057 if (running)
1058 set_curr_task(rq, p);
1059}
1060
1061/*
1062 * Change a given task's CPU affinity. Migrate the thread to a
1063 * proper CPU and schedule it away if the CPU it's executing on
1064 * is removed from the allowed bitmask.
1065 *
1066 * NOTE: the caller must have a valid reference to the task, the
1067 * task must not exit() & deallocate itself prematurely. The
1068 * call is not atomic; no spinlocks may be held.
1069 */
1070static int __set_cpus_allowed_ptr(struct task_struct *p,
1071 const struct cpumask *new_mask, bool check)
1072{
1073 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1074 unsigned int dest_cpu;
1075 struct rq_flags rf;
1076 struct rq *rq;
1077 int ret = 0;
1078
1079 rq = task_rq_lock(p, &rf);
1080 update_rq_clock(rq);
1081
1082 if (p->flags & PF_KTHREAD) {
1083 /*
1084 * Kernel threads are allowed on online && !active CPUs
1085 */
1086 cpu_valid_mask = cpu_online_mask;
1087 }
1088
1089 /*
1090 * Must re-check here, to close a race against __kthread_bind(),
1091 * sched_setaffinity() is not guaranteed to observe the flag.
1092 */
1093 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1094 ret = -EINVAL;
1095 goto out;
1096 }
1097
1098 if (cpumask_equal(&p->cpus_allowed, new_mask))
1099 goto out;
1100
1101 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1102 ret = -EINVAL;
1103 goto out;
1104 }
1105
1106 do_set_cpus_allowed(p, new_mask);
1107
1108 if (p->flags & PF_KTHREAD) {
1109 /*
1110 * For kernel threads that do indeed end up on online &&
1111 * !active we want to ensure they are strict per-CPU threads.
1112 */
1113 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114 !cpumask_intersects(new_mask, cpu_active_mask) &&
1115 p->nr_cpus_allowed != 1);
1116 }
1117
1118 /* Can the task run on the task's current CPU? If so, we're done */
1119 if (cpumask_test_cpu(task_cpu(p), new_mask))
1120 goto out;
1121
1122 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1123 if (task_running(rq, p) || p->state == TASK_WAKING) {
1124 struct migration_arg arg = { p, dest_cpu };
1125 /* Need help from migration thread: drop lock and wait. */
1126 task_rq_unlock(rq, p, &rf);
1127 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128 tlb_migrate_finish(p->mm);
1129 return 0;
1130 } else if (task_on_rq_queued(p)) {
1131 /*
1132 * OK, since we're going to drop the lock immediately
1133 * afterwards anyway.
1134 */
1135 rq = move_queued_task(rq, &rf, p, dest_cpu);
1136 }
1137out:
1138 task_rq_unlock(rq, p, &rf);
1139
1140 return ret;
1141}
1142
1143int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1144{
1145 return __set_cpus_allowed_ptr(p, new_mask, false);
1146}
1147EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1148
1149void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1150{
1151#ifdef CONFIG_SCHED_DEBUG
1152 /*
1153 * We should never call set_task_cpu() on a blocked task,
1154 * ttwu() will sort out the placement.
1155 */
1156 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1157 !p->on_rq);
1158
1159 /*
1160 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162 * time relying on p->on_rq.
1163 */
1164 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165 p->sched_class == &fair_sched_class &&
1166 (p->on_rq && !task_on_rq_migrating(p)));
1167
1168#ifdef CONFIG_LOCKDEP
1169 /*
1170 * The caller should hold either p->pi_lock or rq->lock, when changing
1171 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1172 *
1173 * sched_move_task() holds both and thus holding either pins the cgroup,
1174 * see task_group().
1175 *
1176 * Furthermore, all task_rq users should acquire both locks, see
1177 * task_rq_lock().
1178 */
1179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180 lockdep_is_held(&task_rq(p)->lock)));
1181#endif
1182 /*
1183 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1184 */
1185 WARN_ON_ONCE(!cpu_online(new_cpu));
1186#endif
1187
1188 trace_sched_migrate_task(p, new_cpu);
1189
1190 if (task_cpu(p) != new_cpu) {
1191 if (p->sched_class->migrate_task_rq)
1192 p->sched_class->migrate_task_rq(p);
1193 p->se.nr_migrations++;
1194 perf_event_task_migrate(p);
1195 }
1196
1197 __set_task_cpu(p, new_cpu);
1198}
1199
1200static void __migrate_swap_task(struct task_struct *p, int cpu)
1201{
1202 if (task_on_rq_queued(p)) {
1203 struct rq *src_rq, *dst_rq;
1204 struct rq_flags srf, drf;
1205
1206 src_rq = task_rq(p);
1207 dst_rq = cpu_rq(cpu);
1208
1209 rq_pin_lock(src_rq, &srf);
1210 rq_pin_lock(dst_rq, &drf);
1211
1212 p->on_rq = TASK_ON_RQ_MIGRATING;
1213 deactivate_task(src_rq, p, 0);
1214 set_task_cpu(p, cpu);
1215 activate_task(dst_rq, p, 0);
1216 p->on_rq = TASK_ON_RQ_QUEUED;
1217 check_preempt_curr(dst_rq, p, 0);
1218
1219 rq_unpin_lock(dst_rq, &drf);
1220 rq_unpin_lock(src_rq, &srf);
1221
1222 } else {
1223 /*
1224 * Task isn't running anymore; make it appear like we migrated
1225 * it before it went to sleep. This means on wakeup we make the
1226 * previous CPU our target instead of where it really is.
1227 */
1228 p->wake_cpu = cpu;
1229 }
1230}
1231
1232struct migration_swap_arg {
1233 struct task_struct *src_task, *dst_task;
1234 int src_cpu, dst_cpu;
1235};
1236
1237static int migrate_swap_stop(void *data)
1238{
1239 struct migration_swap_arg *arg = data;
1240 struct rq *src_rq, *dst_rq;
1241 int ret = -EAGAIN;
1242
1243 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1244 return -EAGAIN;
1245
1246 src_rq = cpu_rq(arg->src_cpu);
1247 dst_rq = cpu_rq(arg->dst_cpu);
1248
1249 double_raw_lock(&arg->src_task->pi_lock,
1250 &arg->dst_task->pi_lock);
1251 double_rq_lock(src_rq, dst_rq);
1252
1253 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1254 goto unlock;
1255
1256 if (task_cpu(arg->src_task) != arg->src_cpu)
1257 goto unlock;
1258
1259 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1260 goto unlock;
1261
1262 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1263 goto unlock;
1264
1265 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1266 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1267
1268 ret = 0;
1269
1270unlock:
1271 double_rq_unlock(src_rq, dst_rq);
1272 raw_spin_unlock(&arg->dst_task->pi_lock);
1273 raw_spin_unlock(&arg->src_task->pi_lock);
1274
1275 return ret;
1276}
1277
1278/*
1279 * Cross migrate two tasks
1280 */
1281int migrate_swap(struct task_struct *cur, struct task_struct *p)
1282{
1283 struct migration_swap_arg arg;
1284 int ret = -EINVAL;
1285
1286 arg = (struct migration_swap_arg){
1287 .src_task = cur,
1288 .src_cpu = task_cpu(cur),
1289 .dst_task = p,
1290 .dst_cpu = task_cpu(p),
1291 };
1292
1293 if (arg.src_cpu == arg.dst_cpu)
1294 goto out;
1295
1296 /*
1297 * These three tests are all lockless; this is OK since all of them
1298 * will be re-checked with proper locks held further down the line.
1299 */
1300 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1301 goto out;
1302
1303 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1304 goto out;
1305
1306 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1307 goto out;
1308
1309 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1310 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1311
1312out:
1313 return ret;
1314}
1315
1316/*
1317 * wait_task_inactive - wait for a thread to unschedule.
1318 *
1319 * If @match_state is nonzero, it's the @p->state value just checked and
1320 * not expected to change. If it changes, i.e. @p might have woken up,
1321 * then return zero. When we succeed in waiting for @p to be off its CPU,
1322 * we return a positive number (its total switch count). If a second call
1323 * a short while later returns the same number, the caller can be sure that
1324 * @p has remained unscheduled the whole time.
1325 *
1326 * The caller must ensure that the task *will* unschedule sometime soon,
1327 * else this function might spin for a *long* time. This function can't
1328 * be called with interrupts off, or it may introduce deadlock with
1329 * smp_call_function() if an IPI is sent by the same process we are
1330 * waiting to become inactive.
1331 */
1332unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1333{
1334 int running, queued;
1335 struct rq_flags rf;
1336 unsigned long ncsw;
1337 struct rq *rq;
1338
1339 for (;;) {
1340 /*
1341 * We do the initial early heuristics without holding
1342 * any task-queue locks at all. We'll only try to get
1343 * the runqueue lock when things look like they will
1344 * work out!
1345 */
1346 rq = task_rq(p);
1347
1348 /*
1349 * If the task is actively running on another CPU
1350 * still, just relax and busy-wait without holding
1351 * any locks.
1352 *
1353 * NOTE! Since we don't hold any locks, it's not
1354 * even sure that "rq" stays as the right runqueue!
1355 * But we don't care, since "task_running()" will
1356 * return false if the runqueue has changed and p
1357 * is actually now running somewhere else!
1358 */
1359 while (task_running(rq, p)) {
1360 if (match_state && unlikely(p->state != match_state))
1361 return 0;
1362 cpu_relax();
1363 }
1364
1365 /*
1366 * Ok, time to look more closely! We need the rq
1367 * lock now, to be *sure*. If we're wrong, we'll
1368 * just go back and repeat.
1369 */
1370 rq = task_rq_lock(p, &rf);
1371 trace_sched_wait_task(p);
1372 running = task_running(rq, p);
1373 queued = task_on_rq_queued(p);
1374 ncsw = 0;
1375 if (!match_state || p->state == match_state)
1376 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1377 task_rq_unlock(rq, p, &rf);
1378
1379 /*
1380 * If it changed from the expected state, bail out now.
1381 */
1382 if (unlikely(!ncsw))
1383 break;
1384
1385 /*
1386 * Was it really running after all now that we
1387 * checked with the proper locks actually held?
1388 *
1389 * Oops. Go back and try again..
1390 */
1391 if (unlikely(running)) {
1392 cpu_relax();
1393 continue;
1394 }
1395
1396 /*
1397 * It's not enough that it's not actively running,
1398 * it must be off the runqueue _entirely_, and not
1399 * preempted!
1400 *
1401 * So if it was still runnable (but just not actively
1402 * running right now), it's preempted, and we should
1403 * yield - it could be a while.
1404 */
1405 if (unlikely(queued)) {
1406 ktime_t to = NSEC_PER_SEC / HZ;
1407
1408 set_current_state(TASK_UNINTERRUPTIBLE);
1409 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1410 continue;
1411 }
1412
1413 /*
1414 * Ahh, all good. It wasn't running, and it wasn't
1415 * runnable, which means that it will never become
1416 * running in the future either. We're all done!
1417 */
1418 break;
1419 }
1420
1421 return ncsw;
1422}
1423
1424/***
1425 * kick_process - kick a running thread to enter/exit the kernel
1426 * @p: the to-be-kicked thread
1427 *
1428 * Cause a process which is running on another CPU to enter
1429 * kernel-mode, without any delay. (to get signals handled.)
1430 *
1431 * NOTE: this function doesn't have to take the runqueue lock,
1432 * because all it wants to ensure is that the remote task enters
1433 * the kernel. If the IPI races and the task has been migrated
1434 * to another CPU then no harm is done and the purpose has been
1435 * achieved as well.
1436 */
1437void kick_process(struct task_struct *p)
1438{
1439 int cpu;
1440
1441 preempt_disable();
1442 cpu = task_cpu(p);
1443 if ((cpu != smp_processor_id()) && task_curr(p))
1444 smp_send_reschedule(cpu);
1445 preempt_enable();
1446}
1447EXPORT_SYMBOL_GPL(kick_process);
1448
1449/*
1450 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1451 *
1452 * A few notes on cpu_active vs cpu_online:
1453 *
1454 * - cpu_active must be a subset of cpu_online
1455 *
1456 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1457 * see __set_cpus_allowed_ptr(). At this point the newly online
1458 * CPU isn't yet part of the sched domains, and balancing will not
1459 * see it.
1460 *
1461 * - on CPU-down we clear cpu_active() to mask the sched domains and
1462 * avoid the load balancer to place new tasks on the to be removed
1463 * CPU. Existing tasks will remain running there and will be taken
1464 * off.
1465 *
1466 * This means that fallback selection must not select !active CPUs.
1467 * And can assume that any active CPU must be online. Conversely
1468 * select_task_rq() below may allow selection of !active CPUs in order
1469 * to satisfy the above rules.
1470 */
1471static int select_fallback_rq(int cpu, struct task_struct *p)
1472{
1473 int nid = cpu_to_node(cpu);
1474 const struct cpumask *nodemask = NULL;
1475 enum { cpuset, possible, fail } state = cpuset;
1476 int dest_cpu;
1477
1478 /*
1479 * If the node that the CPU is on has been offlined, cpu_to_node()
1480 * will return -1. There is no CPU on the node, and we should
1481 * select the CPU on the other node.
1482 */
1483 if (nid != -1) {
1484 nodemask = cpumask_of_node(nid);
1485
1486 /* Look for allowed, online CPU in same node. */
1487 for_each_cpu(dest_cpu, nodemask) {
1488 if (!cpu_active(dest_cpu))
1489 continue;
1490 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1491 return dest_cpu;
1492 }
1493 }
1494
1495 for (;;) {
1496 /* Any allowed, online CPU? */
1497 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1498 if (!is_cpu_allowed(p, dest_cpu))
1499 continue;
1500
1501 goto out;
1502 }
1503
1504 /* No more Mr. Nice Guy. */
1505 switch (state) {
1506 case cpuset:
1507 if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 cpuset_cpus_allowed_fallback(p);
1509 state = possible;
1510 break;
1511 }
1512 /* Fall-through */
1513 case possible:
1514 do_set_cpus_allowed(p, cpu_possible_mask);
1515 state = fail;
1516 break;
1517
1518 case fail:
1519 BUG();
1520 break;
1521 }
1522 }
1523
1524out:
1525 if (state != cpuset) {
1526 /*
1527 * Don't tell them about moving exiting tasks or
1528 * kernel threads (both mm NULL), since they never
1529 * leave kernel.
1530 */
1531 if (p->mm && printk_ratelimit()) {
1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 task_pid_nr(p), p->comm, cpu);
1534 }
1535 }
1536
1537 return dest_cpu;
1538}
1539
1540/*
1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542 */
1543static inline
1544int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545{
1546 lockdep_assert_held(&p->pi_lock);
1547
1548 if (p->nr_cpus_allowed > 1)
1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550 else
1551 cpu = cpumask_any(&p->cpus_allowed);
1552
1553 /*
1554 * In order not to call set_task_cpu() on a blocking task we need
1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556 * CPU.
1557 *
1558 * Since this is common to all placement strategies, this lives here.
1559 *
1560 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 * not worry about this generic constraint ]
1562 */
1563 if (unlikely(!is_cpu_allowed(p, cpu)))
1564 cpu = select_fallback_rq(task_cpu(p), p);
1565
1566 return cpu;
1567}
1568
1569static void update_avg(u64 *avg, u64 sample)
1570{
1571 s64 diff = sample - *avg;
1572 *avg += diff >> 3;
1573}
1574
1575void sched_set_stop_task(int cpu, struct task_struct *stop)
1576{
1577 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1578 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1579
1580 if (stop) {
1581 /*
1582 * Make it appear like a SCHED_FIFO task, its something
1583 * userspace knows about and won't get confused about.
1584 *
1585 * Also, it will make PI more or less work without too
1586 * much confusion -- but then, stop work should not
1587 * rely on PI working anyway.
1588 */
1589 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1590
1591 stop->sched_class = &stop_sched_class;
1592 }
1593
1594 cpu_rq(cpu)->stop = stop;
1595
1596 if (old_stop) {
1597 /*
1598 * Reset it back to a normal scheduling class so that
1599 * it can die in pieces.
1600 */
1601 old_stop->sched_class = &rt_sched_class;
1602 }
1603}
1604
1605#else
1606
1607static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1608 const struct cpumask *new_mask, bool check)
1609{
1610 return set_cpus_allowed_ptr(p, new_mask);
1611}
1612
1613#endif /* CONFIG_SMP */
1614
1615static void
1616ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1617{
1618 struct rq *rq;
1619
1620 if (!schedstat_enabled())
1621 return;
1622
1623 rq = this_rq();
1624
1625#ifdef CONFIG_SMP
1626 if (cpu == rq->cpu) {
1627 __schedstat_inc(rq->ttwu_local);
1628 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1629 } else {
1630 struct sched_domain *sd;
1631
1632 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1633 rcu_read_lock();
1634 for_each_domain(rq->cpu, sd) {
1635 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1636 __schedstat_inc(sd->ttwu_wake_remote);
1637 break;
1638 }
1639 }
1640 rcu_read_unlock();
1641 }
1642
1643 if (wake_flags & WF_MIGRATED)
1644 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1645#endif /* CONFIG_SMP */
1646
1647 __schedstat_inc(rq->ttwu_count);
1648 __schedstat_inc(p->se.statistics.nr_wakeups);
1649
1650 if (wake_flags & WF_SYNC)
1651 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1652}
1653
1654static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1655{
1656 activate_task(rq, p, en_flags);
1657 p->on_rq = TASK_ON_RQ_QUEUED;
1658
1659 /* If a worker is waking up, notify the workqueue: */
1660 if (p->flags & PF_WQ_WORKER)
1661 wq_worker_waking_up(p, cpu_of(rq));
1662}
1663
1664/*
1665 * Mark the task runnable and perform wakeup-preemption.
1666 */
1667static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1668 struct rq_flags *rf)
1669{
1670 check_preempt_curr(rq, p, wake_flags);
1671 p->state = TASK_RUNNING;
1672 trace_sched_wakeup(p);
1673
1674#ifdef CONFIG_SMP
1675 if (p->sched_class->task_woken) {
1676 /*
1677 * Our task @p is fully woken up and running; so its safe to
1678 * drop the rq->lock, hereafter rq is only used for statistics.
1679 */
1680 rq_unpin_lock(rq, rf);
1681 p->sched_class->task_woken(rq, p);
1682 rq_repin_lock(rq, rf);
1683 }
1684
1685 if (rq->idle_stamp) {
1686 u64 delta = rq_clock(rq) - rq->idle_stamp;
1687 u64 max = 2*rq->max_idle_balance_cost;
1688
1689 update_avg(&rq->avg_idle, delta);
1690
1691 if (rq->avg_idle > max)
1692 rq->avg_idle = max;
1693
1694 rq->idle_stamp = 0;
1695 }
1696#endif
1697}
1698
1699static void
1700ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1701 struct rq_flags *rf)
1702{
1703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1704
1705 lockdep_assert_held(&rq->lock);
1706
1707#ifdef CONFIG_SMP
1708 if (p->sched_contributes_to_load)
1709 rq->nr_uninterruptible--;
1710
1711 if (wake_flags & WF_MIGRATED)
1712 en_flags |= ENQUEUE_MIGRATED;
1713#endif
1714
1715 ttwu_activate(rq, p, en_flags);
1716 ttwu_do_wakeup(rq, p, wake_flags, rf);
1717}
1718
1719/*
1720 * Called in case the task @p isn't fully descheduled from its runqueue,
1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722 * since all we need to do is flip p->state to TASK_RUNNING, since
1723 * the task is still ->on_rq.
1724 */
1725static int ttwu_remote(struct task_struct *p, int wake_flags)
1726{
1727 struct rq_flags rf;
1728 struct rq *rq;
1729 int ret = 0;
1730
1731 rq = __task_rq_lock(p, &rf);
1732 if (task_on_rq_queued(p)) {
1733 /* check_preempt_curr() may use rq clock */
1734 update_rq_clock(rq);
1735 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1736 ret = 1;
1737 }
1738 __task_rq_unlock(rq, &rf);
1739
1740 return ret;
1741}
1742
1743#ifdef CONFIG_SMP
1744void sched_ttwu_pending(void)
1745{
1746 struct rq *rq = this_rq();
1747 struct llist_node *llist = llist_del_all(&rq->wake_list);
1748 struct task_struct *p, *t;
1749 struct rq_flags rf;
1750
1751 if (!llist)
1752 return;
1753
1754 rq_lock_irqsave(rq, &rf);
1755 update_rq_clock(rq);
1756
1757 llist_for_each_entry_safe(p, t, llist, wake_entry)
1758 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1759
1760 rq_unlock_irqrestore(rq, &rf);
1761}
1762
1763void scheduler_ipi(void)
1764{
1765 /*
1766 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1767 * TIF_NEED_RESCHED remotely (for the first time) will also send
1768 * this IPI.
1769 */
1770 preempt_fold_need_resched();
1771
1772 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1773 return;
1774
1775 /*
1776 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1777 * traditionally all their work was done from the interrupt return
1778 * path. Now that we actually do some work, we need to make sure
1779 * we do call them.
1780 *
1781 * Some archs already do call them, luckily irq_enter/exit nest
1782 * properly.
1783 *
1784 * Arguably we should visit all archs and update all handlers,
1785 * however a fair share of IPIs are still resched only so this would
1786 * somewhat pessimize the simple resched case.
1787 */
1788 irq_enter();
1789 sched_ttwu_pending();
1790
1791 /*
1792 * Check if someone kicked us for doing the nohz idle load balance.
1793 */
1794 if (unlikely(got_nohz_idle_kick())) {
1795 this_rq()->idle_balance = 1;
1796 raise_softirq_irqoff(SCHED_SOFTIRQ);
1797 }
1798 irq_exit();
1799}
1800
1801static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1802{
1803 struct rq *rq = cpu_rq(cpu);
1804
1805 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1806
1807 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808 if (!set_nr_if_polling(rq->idle))
1809 smp_send_reschedule(cpu);
1810 else
1811 trace_sched_wake_idle_without_ipi(cpu);
1812 }
1813}
1814
1815void wake_up_if_idle(int cpu)
1816{
1817 struct rq *rq = cpu_rq(cpu);
1818 struct rq_flags rf;
1819
1820 rcu_read_lock();
1821
1822 if (!is_idle_task(rcu_dereference(rq->curr)))
1823 goto out;
1824
1825 if (set_nr_if_polling(rq->idle)) {
1826 trace_sched_wake_idle_without_ipi(cpu);
1827 } else {
1828 rq_lock_irqsave(rq, &rf);
1829 if (is_idle_task(rq->curr))
1830 smp_send_reschedule(cpu);
1831 /* Else CPU is not idle, do nothing here: */
1832 rq_unlock_irqrestore(rq, &rf);
1833 }
1834
1835out:
1836 rcu_read_unlock();
1837}
1838
1839bool cpus_share_cache(int this_cpu, int that_cpu)
1840{
1841 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1842}
1843#endif /* CONFIG_SMP */
1844
1845static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1846{
1847 struct rq *rq = cpu_rq(cpu);
1848 struct rq_flags rf;
1849
1850#if defined(CONFIG_SMP)
1851 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1852 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1853 ttwu_queue_remote(p, cpu, wake_flags);
1854 return;
1855 }
1856#endif
1857
1858 rq_lock(rq, &rf);
1859 update_rq_clock(rq);
1860 ttwu_do_activate(rq, p, wake_flags, &rf);
1861 rq_unlock(rq, &rf);
1862}
1863
1864/*
1865 * Notes on Program-Order guarantees on SMP systems.
1866 *
1867 * MIGRATION
1868 *
1869 * The basic program-order guarantee on SMP systems is that when a task [t]
1870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1871 * execution on its new CPU [c1].
1872 *
1873 * For migration (of runnable tasks) this is provided by the following means:
1874 *
1875 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1876 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1877 * rq(c1)->lock (if not at the same time, then in that order).
1878 * C) LOCK of the rq(c1)->lock scheduling in task
1879 *
1880 * Transitivity guarantees that B happens after A and C after B.
1881 * Note: we only require RCpc transitivity.
1882 * Note: the CPU doing B need not be c0 or c1
1883 *
1884 * Example:
1885 *
1886 * CPU0 CPU1 CPU2
1887 *
1888 * LOCK rq(0)->lock
1889 * sched-out X
1890 * sched-in Y
1891 * UNLOCK rq(0)->lock
1892 *
1893 * LOCK rq(0)->lock // orders against CPU0
1894 * dequeue X
1895 * UNLOCK rq(0)->lock
1896 *
1897 * LOCK rq(1)->lock
1898 * enqueue X
1899 * UNLOCK rq(1)->lock
1900 *
1901 * LOCK rq(1)->lock // orders against CPU2
1902 * sched-out Z
1903 * sched-in X
1904 * UNLOCK rq(1)->lock
1905 *
1906 *
1907 * BLOCKING -- aka. SLEEP + WAKEUP
1908 *
1909 * For blocking we (obviously) need to provide the same guarantee as for
1910 * migration. However the means are completely different as there is no lock
1911 * chain to provide order. Instead we do:
1912 *
1913 * 1) smp_store_release(X->on_cpu, 0)
1914 * 2) smp_cond_load_acquire(!X->on_cpu)
1915 *
1916 * Example:
1917 *
1918 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1919 *
1920 * LOCK rq(0)->lock LOCK X->pi_lock
1921 * dequeue X
1922 * sched-out X
1923 * smp_store_release(X->on_cpu, 0);
1924 *
1925 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1926 * X->state = WAKING
1927 * set_task_cpu(X,2)
1928 *
1929 * LOCK rq(2)->lock
1930 * enqueue X
1931 * X->state = RUNNING
1932 * UNLOCK rq(2)->lock
1933 *
1934 * LOCK rq(2)->lock // orders against CPU1
1935 * sched-out Z
1936 * sched-in X
1937 * UNLOCK rq(2)->lock
1938 *
1939 * UNLOCK X->pi_lock
1940 * UNLOCK rq(0)->lock
1941 *
1942 *
1943 * However; for wakeups there is a second guarantee we must provide, namely we
1944 * must observe the state that lead to our wakeup. That is, not only must our
1945 * task observe its own prior state, it must also observe the stores prior to
1946 * its wakeup.
1947 *
1948 * This means that any means of doing remote wakeups must order the CPU doing
1949 * the wakeup against the CPU the task is going to end up running on. This,
1950 * however, is already required for the regular Program-Order guarantee above,
1951 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1952 *
1953 */
1954
1955/**
1956 * try_to_wake_up - wake up a thread
1957 * @p: the thread to be awakened
1958 * @state: the mask of task states that can be woken
1959 * @wake_flags: wake modifier flags (WF_*)
1960 *
1961 * If (@state & @p->state) @p->state = TASK_RUNNING.
1962 *
1963 * If the task was not queued/runnable, also place it back on a runqueue.
1964 *
1965 * Atomic against schedule() which would dequeue a task, also see
1966 * set_current_state().
1967 *
1968 * Return: %true if @p->state changes (an actual wakeup was done),
1969 * %false otherwise.
1970 */
1971static int
1972try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1973{
1974 unsigned long flags;
1975 int cpu, success = 0;
1976
1977 /*
1978 * If we are going to wake up a thread waiting for CONDITION we
1979 * need to ensure that CONDITION=1 done by the caller can not be
1980 * reordered with p->state check below. This pairs with mb() in
1981 * set_current_state() the waiting thread does.
1982 */
1983 raw_spin_lock_irqsave(&p->pi_lock, flags);
1984 smp_mb__after_spinlock();
1985 if (!(p->state & state))
1986 goto out;
1987
1988 trace_sched_waking(p);
1989
1990 /* We're going to change ->state: */
1991 success = 1;
1992 cpu = task_cpu(p);
1993
1994 /*
1995 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1996 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1997 * in smp_cond_load_acquire() below.
1998 *
1999 * sched_ttwu_pending() try_to_wake_up()
2000 * [S] p->on_rq = 1; [L] P->state
2001 * UNLOCK rq->lock -----.
2002 * \
2003 * +--- RMB
2004 * schedule() /
2005 * LOCK rq->lock -----'
2006 * UNLOCK rq->lock
2007 *
2008 * [task p]
2009 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2010 *
2011 * Pairs with the UNLOCK+LOCK on rq->lock from the
2012 * last wakeup of our task and the schedule that got our task
2013 * current.
2014 */
2015 smp_rmb();
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2017 goto stat;
2018
2019#ifdef CONFIG_SMP
2020 /*
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2023 *
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2026 *
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2028 * UNLOCK rq->lock
2029 * RMB
2030 * LOCK rq->lock
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2032 *
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2036 */
2037 smp_rmb();
2038
2039 /*
2040 * If the owning (remote) CPU is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
2042 *
2043 * Pairs with the smp_store_release() in finish_task().
2044 *
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
2047 */
2048 smp_cond_load_acquire(&p->on_cpu, !VAL);
2049
2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 p->state = TASK_WAKING;
2052
2053 if (p->in_iowait) {
2054 delayacct_blkio_end(p);
2055 atomic_dec(&task_rq(p)->nr_iowait);
2056 }
2057
2058 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2059 if (task_cpu(p) != cpu) {
2060 wake_flags |= WF_MIGRATED;
2061 set_task_cpu(p, cpu);
2062 }
2063
2064#else /* CONFIG_SMP */
2065
2066 if (p->in_iowait) {
2067 delayacct_blkio_end(p);
2068 atomic_dec(&task_rq(p)->nr_iowait);
2069 }
2070
2071#endif /* CONFIG_SMP */
2072
2073 ttwu_queue(p, cpu, wake_flags);
2074stat:
2075 ttwu_stat(p, cpu, wake_flags);
2076out:
2077 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2078
2079 return success;
2080}
2081
2082/**
2083 * try_to_wake_up_local - try to wake up a local task with rq lock held
2084 * @p: the thread to be awakened
2085 * @rf: request-queue flags for pinning
2086 *
2087 * Put @p on the run-queue if it's not already there. The caller must
2088 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2089 * the current task.
2090 */
2091static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2092{
2093 struct rq *rq = task_rq(p);
2094
2095 if (WARN_ON_ONCE(rq != this_rq()) ||
2096 WARN_ON_ONCE(p == current))
2097 return;
2098
2099 lockdep_assert_held(&rq->lock);
2100
2101 if (!raw_spin_trylock(&p->pi_lock)) {
2102 /*
2103 * This is OK, because current is on_cpu, which avoids it being
2104 * picked for load-balance and preemption/IRQs are still
2105 * disabled avoiding further scheduler activity on it and we've
2106 * not yet picked a replacement task.
2107 */
2108 rq_unlock(rq, rf);
2109 raw_spin_lock(&p->pi_lock);
2110 rq_relock(rq, rf);
2111 }
2112
2113 if (!(p->state & TASK_NORMAL))
2114 goto out;
2115
2116 trace_sched_waking(p);
2117
2118 if (!task_on_rq_queued(p)) {
2119 if (p->in_iowait) {
2120 delayacct_blkio_end(p);
2121 atomic_dec(&rq->nr_iowait);
2122 }
2123 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2124 }
2125
2126 ttwu_do_wakeup(rq, p, 0, rf);
2127 ttwu_stat(p, smp_processor_id(), 0);
2128out:
2129 raw_spin_unlock(&p->pi_lock);
2130}
2131
2132/**
2133 * wake_up_process - Wake up a specific process
2134 * @p: The process to be woken up.
2135 *
2136 * Attempt to wake up the nominated process and move it to the set of runnable
2137 * processes.
2138 *
2139 * Return: 1 if the process was woken up, 0 if it was already running.
2140 *
2141 * It may be assumed that this function implies a write memory barrier before
2142 * changing the task state if and only if any tasks are woken up.
2143 */
2144int wake_up_process(struct task_struct *p)
2145{
2146 return try_to_wake_up(p, TASK_NORMAL, 0);
2147}
2148EXPORT_SYMBOL(wake_up_process);
2149
2150int wake_up_state(struct task_struct *p, unsigned int state)
2151{
2152 return try_to_wake_up(p, state, 0);
2153}
2154
2155/*
2156 * Perform scheduler related setup for a newly forked process p.
2157 * p is forked by current.
2158 *
2159 * __sched_fork() is basic setup used by init_idle() too:
2160 */
2161static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2162{
2163 p->on_rq = 0;
2164
2165 p->se.on_rq = 0;
2166 p->se.exec_start = 0;
2167 p->se.sum_exec_runtime = 0;
2168 p->se.prev_sum_exec_runtime = 0;
2169 p->se.nr_migrations = 0;
2170 p->se.vruntime = 0;
2171 INIT_LIST_HEAD(&p->se.group_node);
2172
2173#ifdef CONFIG_FAIR_GROUP_SCHED
2174 p->se.cfs_rq = NULL;
2175#endif
2176
2177#ifdef CONFIG_SCHEDSTATS
2178 /* Even if schedstat is disabled, there should not be garbage */
2179 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2180#endif
2181
2182 RB_CLEAR_NODE(&p->dl.rb_node);
2183 init_dl_task_timer(&p->dl);
2184 init_dl_inactive_task_timer(&p->dl);
2185 __dl_clear_params(p);
2186
2187 INIT_LIST_HEAD(&p->rt.run_list);
2188 p->rt.timeout = 0;
2189 p->rt.time_slice = sched_rr_timeslice;
2190 p->rt.on_rq = 0;
2191 p->rt.on_list = 0;
2192
2193#ifdef CONFIG_PREEMPT_NOTIFIERS
2194 INIT_HLIST_HEAD(&p->preempt_notifiers);
2195#endif
2196
2197#ifdef CONFIG_NUMA_BALANCING
2198 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2199 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2200 p->mm->numa_scan_seq = 0;
2201 }
2202
2203 if (clone_flags & CLONE_VM)
2204 p->numa_preferred_nid = current->numa_preferred_nid;
2205 else
2206 p->numa_preferred_nid = -1;
2207
2208 p->node_stamp = 0ULL;
2209 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2210 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2211 p->numa_work.next = &p->numa_work;
2212 p->numa_faults = NULL;
2213 p->last_task_numa_placement = 0;
2214 p->last_sum_exec_runtime = 0;
2215
2216 p->numa_group = NULL;
2217#endif /* CONFIG_NUMA_BALANCING */
2218}
2219
2220DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2221
2222#ifdef CONFIG_NUMA_BALANCING
2223
2224void set_numabalancing_state(bool enabled)
2225{
2226 if (enabled)
2227 static_branch_enable(&sched_numa_balancing);
2228 else
2229 static_branch_disable(&sched_numa_balancing);
2230}
2231
2232#ifdef CONFIG_PROC_SYSCTL
2233int sysctl_numa_balancing(struct ctl_table *table, int write,
2234 void __user *buffer, size_t *lenp, loff_t *ppos)
2235{
2236 struct ctl_table t;
2237 int err;
2238 int state = static_branch_likely(&sched_numa_balancing);
2239
2240 if (write && !capable(CAP_SYS_ADMIN))
2241 return -EPERM;
2242
2243 t = *table;
2244 t.data = &state;
2245 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2246 if (err < 0)
2247 return err;
2248 if (write)
2249 set_numabalancing_state(state);
2250 return err;
2251}
2252#endif
2253#endif
2254
2255#ifdef CONFIG_SCHEDSTATS
2256
2257DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2258static bool __initdata __sched_schedstats = false;
2259
2260static void set_schedstats(bool enabled)
2261{
2262 if (enabled)
2263 static_branch_enable(&sched_schedstats);
2264 else
2265 static_branch_disable(&sched_schedstats);
2266}
2267
2268void force_schedstat_enabled(void)
2269{
2270 if (!schedstat_enabled()) {
2271 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2272 static_branch_enable(&sched_schedstats);
2273 }
2274}
2275
2276static int __init setup_schedstats(char *str)
2277{
2278 int ret = 0;
2279 if (!str)
2280 goto out;
2281
2282 /*
2283 * This code is called before jump labels have been set up, so we can't
2284 * change the static branch directly just yet. Instead set a temporary
2285 * variable so init_schedstats() can do it later.
2286 */
2287 if (!strcmp(str, "enable")) {
2288 __sched_schedstats = true;
2289 ret = 1;
2290 } else if (!strcmp(str, "disable")) {
2291 __sched_schedstats = false;
2292 ret = 1;
2293 }
2294out:
2295 if (!ret)
2296 pr_warn("Unable to parse schedstats=\n");
2297
2298 return ret;
2299}
2300__setup("schedstats=", setup_schedstats);
2301
2302static void __init init_schedstats(void)
2303{
2304 set_schedstats(__sched_schedstats);
2305}
2306
2307#ifdef CONFIG_PROC_SYSCTL
2308int sysctl_schedstats(struct ctl_table *table, int write,
2309 void __user *buffer, size_t *lenp, loff_t *ppos)
2310{
2311 struct ctl_table t;
2312 int err;
2313 int state = static_branch_likely(&sched_schedstats);
2314
2315 if (write && !capable(CAP_SYS_ADMIN))
2316 return -EPERM;
2317
2318 t = *table;
2319 t.data = &state;
2320 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2321 if (err < 0)
2322 return err;
2323 if (write)
2324 set_schedstats(state);
2325 return err;
2326}
2327#endif /* CONFIG_PROC_SYSCTL */
2328#else /* !CONFIG_SCHEDSTATS */
2329static inline void init_schedstats(void) {}
2330#endif /* CONFIG_SCHEDSTATS */
2331
2332/*
2333 * fork()/clone()-time setup:
2334 */
2335int sched_fork(unsigned long clone_flags, struct task_struct *p)
2336{
2337 unsigned long flags;
2338 int cpu = get_cpu();
2339
2340 __sched_fork(clone_flags, p);
2341 /*
2342 * We mark the process as NEW here. This guarantees that
2343 * nobody will actually run it, and a signal or other external
2344 * event cannot wake it up and insert it on the runqueue either.
2345 */
2346 p->state = TASK_NEW;
2347
2348 /*
2349 * Make sure we do not leak PI boosting priority to the child.
2350 */
2351 p->prio = current->normal_prio;
2352
2353 /*
2354 * Revert to default priority/policy on fork if requested.
2355 */
2356 if (unlikely(p->sched_reset_on_fork)) {
2357 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2358 p->policy = SCHED_NORMAL;
2359 p->static_prio = NICE_TO_PRIO(0);
2360 p->rt_priority = 0;
2361 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2362 p->static_prio = NICE_TO_PRIO(0);
2363
2364 p->prio = p->normal_prio = __normal_prio(p);
2365 set_load_weight(p, false);
2366
2367 /*
2368 * We don't need the reset flag anymore after the fork. It has
2369 * fulfilled its duty:
2370 */
2371 p->sched_reset_on_fork = 0;
2372 }
2373
2374 if (dl_prio(p->prio)) {
2375 put_cpu();
2376 return -EAGAIN;
2377 } else if (rt_prio(p->prio)) {
2378 p->sched_class = &rt_sched_class;
2379 } else {
2380 p->sched_class = &fair_sched_class;
2381 }
2382
2383 init_entity_runnable_average(&p->se);
2384
2385 /*
2386 * The child is not yet in the pid-hash so no cgroup attach races,
2387 * and the cgroup is pinned to this child due to cgroup_fork()
2388 * is ran before sched_fork().
2389 *
2390 * Silence PROVE_RCU.
2391 */
2392 raw_spin_lock_irqsave(&p->pi_lock, flags);
2393 /*
2394 * We're setting the CPU for the first time, we don't migrate,
2395 * so use __set_task_cpu().
2396 */
2397 __set_task_cpu(p, cpu);
2398 if (p->sched_class->task_fork)
2399 p->sched_class->task_fork(p);
2400 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2401
2402#ifdef CONFIG_SCHED_INFO
2403 if (likely(sched_info_on()))
2404 memset(&p->sched_info, 0, sizeof(p->sched_info));
2405#endif
2406#if defined(CONFIG_SMP)
2407 p->on_cpu = 0;
2408#endif
2409 init_task_preempt_count(p);
2410#ifdef CONFIG_SMP
2411 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2412 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2413#endif
2414
2415 put_cpu();
2416 return 0;
2417}
2418
2419unsigned long to_ratio(u64 period, u64 runtime)
2420{
2421 if (runtime == RUNTIME_INF)
2422 return BW_UNIT;
2423
2424 /*
2425 * Doing this here saves a lot of checks in all
2426 * the calling paths, and returning zero seems
2427 * safe for them anyway.
2428 */
2429 if (period == 0)
2430 return 0;
2431
2432 return div64_u64(runtime << BW_SHIFT, period);
2433}
2434
2435/*
2436 * wake_up_new_task - wake up a newly created task for the first time.
2437 *
2438 * This function will do some initial scheduler statistics housekeeping
2439 * that must be done for every newly created context, then puts the task
2440 * on the runqueue and wakes it.
2441 */
2442void wake_up_new_task(struct task_struct *p)
2443{
2444 struct rq_flags rf;
2445 struct rq *rq;
2446
2447 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2448 p->state = TASK_RUNNING;
2449#ifdef CONFIG_SMP
2450 /*
2451 * Fork balancing, do it here and not earlier because:
2452 * - cpus_allowed can change in the fork path
2453 * - any previously selected CPU might disappear through hotplug
2454 *
2455 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2456 * as we're not fully set-up yet.
2457 */
2458 p->recent_used_cpu = task_cpu(p);
2459 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2460#endif
2461 rq = __task_rq_lock(p, &rf);
2462 update_rq_clock(rq);
2463 post_init_entity_util_avg(&p->se);
2464
2465 activate_task(rq, p, ENQUEUE_NOCLOCK);
2466 p->on_rq = TASK_ON_RQ_QUEUED;
2467 trace_sched_wakeup_new(p);
2468 check_preempt_curr(rq, p, WF_FORK);
2469#ifdef CONFIG_SMP
2470 if (p->sched_class->task_woken) {
2471 /*
2472 * Nothing relies on rq->lock after this, so its fine to
2473 * drop it.
2474 */
2475 rq_unpin_lock(rq, &rf);
2476 p->sched_class->task_woken(rq, p);
2477 rq_repin_lock(rq, &rf);
2478 }
2479#endif
2480 task_rq_unlock(rq, p, &rf);
2481}
2482
2483#ifdef CONFIG_PREEMPT_NOTIFIERS
2484
2485static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2486
2487void preempt_notifier_inc(void)
2488{
2489 static_branch_inc(&preempt_notifier_key);
2490}
2491EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2492
2493void preempt_notifier_dec(void)
2494{
2495 static_branch_dec(&preempt_notifier_key);
2496}
2497EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2498
2499/**
2500 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2501 * @notifier: notifier struct to register
2502 */
2503void preempt_notifier_register(struct preempt_notifier *notifier)
2504{
2505 if (!static_branch_unlikely(&preempt_notifier_key))
2506 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2507
2508 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2509}
2510EXPORT_SYMBOL_GPL(preempt_notifier_register);
2511
2512/**
2513 * preempt_notifier_unregister - no longer interested in preemption notifications
2514 * @notifier: notifier struct to unregister
2515 *
2516 * This is *not* safe to call from within a preemption notifier.
2517 */
2518void preempt_notifier_unregister(struct preempt_notifier *notifier)
2519{
2520 hlist_del(¬ifier->link);
2521}
2522EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2523
2524static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2525{
2526 struct preempt_notifier *notifier;
2527
2528 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2530}
2531
2532static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534 if (static_branch_unlikely(&preempt_notifier_key))
2535 __fire_sched_in_preempt_notifiers(curr);
2536}
2537
2538static void
2539__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2541{
2542 struct preempt_notifier *notifier;
2543
2544 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2545 notifier->ops->sched_out(notifier, next);
2546}
2547
2548static __always_inline void
2549fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550 struct task_struct *next)
2551{
2552 if (static_branch_unlikely(&preempt_notifier_key))
2553 __fire_sched_out_preempt_notifiers(curr, next);
2554}
2555
2556#else /* !CONFIG_PREEMPT_NOTIFIERS */
2557
2558static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2559{
2560}
2561
2562static inline void
2563fire_sched_out_preempt_notifiers(struct task_struct *curr,
2564 struct task_struct *next)
2565{
2566}
2567
2568#endif /* CONFIG_PREEMPT_NOTIFIERS */
2569
2570static inline void prepare_task(struct task_struct *next)
2571{
2572#ifdef CONFIG_SMP
2573 /*
2574 * Claim the task as running, we do this before switching to it
2575 * such that any running task will have this set.
2576 */
2577 next->on_cpu = 1;
2578#endif
2579}
2580
2581static inline void finish_task(struct task_struct *prev)
2582{
2583#ifdef CONFIG_SMP
2584 /*
2585 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2586 * We must ensure this doesn't happen until the switch is completely
2587 * finished.
2588 *
2589 * In particular, the load of prev->state in finish_task_switch() must
2590 * happen before this.
2591 *
2592 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2593 */
2594 smp_store_release(&prev->on_cpu, 0);
2595#endif
2596}
2597
2598static inline void
2599prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2600{
2601 /*
2602 * Since the runqueue lock will be released by the next
2603 * task (which is an invalid locking op but in the case
2604 * of the scheduler it's an obvious special-case), so we
2605 * do an early lockdep release here:
2606 */
2607 rq_unpin_lock(rq, rf);
2608 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2609#ifdef CONFIG_DEBUG_SPINLOCK
2610 /* this is a valid case when another task releases the spinlock */
2611 rq->lock.owner = next;
2612#endif
2613}
2614
2615static inline void finish_lock_switch(struct rq *rq)
2616{
2617 /*
2618 * If we are tracking spinlock dependencies then we have to
2619 * fix up the runqueue lock - which gets 'carried over' from
2620 * prev into current:
2621 */
2622 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2623 raw_spin_unlock_irq(&rq->lock);
2624}
2625
2626/*
2627 * NOP if the arch has not defined these:
2628 */
2629
2630#ifndef prepare_arch_switch
2631# define prepare_arch_switch(next) do { } while (0)
2632#endif
2633
2634#ifndef finish_arch_post_lock_switch
2635# define finish_arch_post_lock_switch() do { } while (0)
2636#endif
2637
2638/**
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
2641 * @prev: the current task that is being switched out
2642 * @next: the task we are going to switch to.
2643 *
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2646 * switch.
2647 *
2648 * prepare_task_switch sets up locking and calls architecture specific
2649 * hooks.
2650 */
2651static inline void
2652prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653 struct task_struct *next)
2654{
2655 sched_info_switch(rq, prev, next);
2656 perf_event_task_sched_out(prev, next);
2657 fire_sched_out_preempt_notifiers(prev, next);
2658 prepare_task(next);
2659 prepare_arch_switch(next);
2660}
2661
2662/**
2663 * finish_task_switch - clean up after a task-switch
2664 * @prev: the thread we just switched away from.
2665 *
2666 * finish_task_switch must be called after the context switch, paired
2667 * with a prepare_task_switch call before the context switch.
2668 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2669 * and do any other architecture-specific cleanup actions.
2670 *
2671 * Note that we may have delayed dropping an mm in context_switch(). If
2672 * so, we finish that here outside of the runqueue lock. (Doing it
2673 * with the lock held can cause deadlocks; see schedule() for
2674 * details.)
2675 *
2676 * The context switch have flipped the stack from under us and restored the
2677 * local variables which were saved when this task called schedule() in the
2678 * past. prev == current is still correct but we need to recalculate this_rq
2679 * because prev may have moved to another CPU.
2680 */
2681static struct rq *finish_task_switch(struct task_struct *prev)
2682 __releases(rq->lock)
2683{
2684 struct rq *rq = this_rq();
2685 struct mm_struct *mm = rq->prev_mm;
2686 long prev_state;
2687
2688 /*
2689 * The previous task will have left us with a preempt_count of 2
2690 * because it left us after:
2691 *
2692 * schedule()
2693 * preempt_disable(); // 1
2694 * __schedule()
2695 * raw_spin_lock_irq(&rq->lock) // 2
2696 *
2697 * Also, see FORK_PREEMPT_COUNT.
2698 */
2699 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2700 "corrupted preempt_count: %s/%d/0x%x\n",
2701 current->comm, current->pid, preempt_count()))
2702 preempt_count_set(FORK_PREEMPT_COUNT);
2703
2704 rq->prev_mm = NULL;
2705
2706 /*
2707 * A task struct has one reference for the use as "current".
2708 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2709 * schedule one last time. The schedule call will never return, and
2710 * the scheduled task must drop that reference.
2711 *
2712 * We must observe prev->state before clearing prev->on_cpu (in
2713 * finish_task), otherwise a concurrent wakeup can get prev
2714 * running on another CPU and we could rave with its RUNNING -> DEAD
2715 * transition, resulting in a double drop.
2716 */
2717 prev_state = prev->state;
2718 vtime_task_switch(prev);
2719 perf_event_task_sched_in(prev, current);
2720 finish_task(prev);
2721 finish_lock_switch(rq);
2722 finish_arch_post_lock_switch();
2723
2724 fire_sched_in_preempt_notifiers(current);
2725 /*
2726 * When switching through a kernel thread, the loop in
2727 * membarrier_{private,global}_expedited() may have observed that
2728 * kernel thread and not issued an IPI. It is therefore possible to
2729 * schedule between user->kernel->user threads without passing though
2730 * switch_mm(). Membarrier requires a barrier after storing to
2731 * rq->curr, before returning to userspace, so provide them here:
2732 *
2733 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2734 * provided by mmdrop(),
2735 * - a sync_core for SYNC_CORE.
2736 */
2737 if (mm) {
2738 membarrier_mm_sync_core_before_usermode(mm);
2739 mmdrop(mm);
2740 }
2741 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2742 switch (prev_state) {
2743 case TASK_DEAD:
2744 if (prev->sched_class->task_dead)
2745 prev->sched_class->task_dead(prev);
2746
2747 /*
2748 * Remove function-return probe instances associated with this
2749 * task and put them back on the free list.
2750 */
2751 kprobe_flush_task(prev);
2752
2753 /* Task is done with its stack. */
2754 put_task_stack(prev);
2755
2756 put_task_struct(prev);
2757 break;
2758
2759 case TASK_PARKED:
2760 kthread_park_complete(prev);
2761 break;
2762 }
2763 }
2764
2765 tick_nohz_task_switch();
2766 return rq;
2767}
2768
2769#ifdef CONFIG_SMP
2770
2771/* rq->lock is NOT held, but preemption is disabled */
2772static void __balance_callback(struct rq *rq)
2773{
2774 struct callback_head *head, *next;
2775 void (*func)(struct rq *rq);
2776 unsigned long flags;
2777
2778 raw_spin_lock_irqsave(&rq->lock, flags);
2779 head = rq->balance_callback;
2780 rq->balance_callback = NULL;
2781 while (head) {
2782 func = (void (*)(struct rq *))head->func;
2783 next = head->next;
2784 head->next = NULL;
2785 head = next;
2786
2787 func(rq);
2788 }
2789 raw_spin_unlock_irqrestore(&rq->lock, flags);
2790}
2791
2792static inline void balance_callback(struct rq *rq)
2793{
2794 if (unlikely(rq->balance_callback))
2795 __balance_callback(rq);
2796}
2797
2798#else
2799
2800static inline void balance_callback(struct rq *rq)
2801{
2802}
2803
2804#endif
2805
2806/**
2807 * schedule_tail - first thing a freshly forked thread must call.
2808 * @prev: the thread we just switched away from.
2809 */
2810asmlinkage __visible void schedule_tail(struct task_struct *prev)
2811 __releases(rq->lock)
2812{
2813 struct rq *rq;
2814
2815 /*
2816 * New tasks start with FORK_PREEMPT_COUNT, see there and
2817 * finish_task_switch() for details.
2818 *
2819 * finish_task_switch() will drop rq->lock() and lower preempt_count
2820 * and the preempt_enable() will end up enabling preemption (on
2821 * PREEMPT_COUNT kernels).
2822 */
2823
2824 rq = finish_task_switch(prev);
2825 balance_callback(rq);
2826 preempt_enable();
2827
2828 if (current->set_child_tid)
2829 put_user(task_pid_vnr(current), current->set_child_tid);
2830}
2831
2832/*
2833 * context_switch - switch to the new MM and the new thread's register state.
2834 */
2835static __always_inline struct rq *
2836context_switch(struct rq *rq, struct task_struct *prev,
2837 struct task_struct *next, struct rq_flags *rf)
2838{
2839 struct mm_struct *mm, *oldmm;
2840
2841 prepare_task_switch(rq, prev, next);
2842
2843 mm = next->mm;
2844 oldmm = prev->active_mm;
2845 /*
2846 * For paravirt, this is coupled with an exit in switch_to to
2847 * combine the page table reload and the switch backend into
2848 * one hypercall.
2849 */
2850 arch_start_context_switch(prev);
2851
2852 /*
2853 * If mm is non-NULL, we pass through switch_mm(). If mm is
2854 * NULL, we will pass through mmdrop() in finish_task_switch().
2855 * Both of these contain the full memory barrier required by
2856 * membarrier after storing to rq->curr, before returning to
2857 * user-space.
2858 */
2859 if (!mm) {
2860 next->active_mm = oldmm;
2861 mmgrab(oldmm);
2862 enter_lazy_tlb(oldmm, next);
2863 } else
2864 switch_mm_irqs_off(oldmm, mm, next);
2865
2866 if (!prev->mm) {
2867 prev->active_mm = NULL;
2868 rq->prev_mm = oldmm;
2869 }
2870
2871 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2872
2873 prepare_lock_switch(rq, next, rf);
2874
2875 /* Here we just switch the register state and the stack. */
2876 switch_to(prev, next, prev);
2877 barrier();
2878
2879 return finish_task_switch(prev);
2880}
2881
2882/*
2883 * nr_running and nr_context_switches:
2884 *
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, total number of context switches performed since bootup.
2887 */
2888unsigned long nr_running(void)
2889{
2890 unsigned long i, sum = 0;
2891
2892 for_each_online_cpu(i)
2893 sum += cpu_rq(i)->nr_running;
2894
2895 return sum;
2896}
2897
2898/*
2899 * Check if only the current task is running on the CPU.
2900 *
2901 * Caution: this function does not check that the caller has disabled
2902 * preemption, thus the result might have a time-of-check-to-time-of-use
2903 * race. The caller is responsible to use it correctly, for example:
2904 *
2905 * - from a non-preemptable section (of course)
2906 *
2907 * - from a thread that is bound to a single CPU
2908 *
2909 * - in a loop with very short iterations (e.g. a polling loop)
2910 */
2911bool single_task_running(void)
2912{
2913 return raw_rq()->nr_running == 1;
2914}
2915EXPORT_SYMBOL(single_task_running);
2916
2917unsigned long long nr_context_switches(void)
2918{
2919 int i;
2920 unsigned long long sum = 0;
2921
2922 for_each_possible_cpu(i)
2923 sum += cpu_rq(i)->nr_switches;
2924
2925 return sum;
2926}
2927
2928/*
2929 * IO-wait accounting, and how its mostly bollocks (on SMP).
2930 *
2931 * The idea behind IO-wait account is to account the idle time that we could
2932 * have spend running if it were not for IO. That is, if we were to improve the
2933 * storage performance, we'd have a proportional reduction in IO-wait time.
2934 *
2935 * This all works nicely on UP, where, when a task blocks on IO, we account
2936 * idle time as IO-wait, because if the storage were faster, it could've been
2937 * running and we'd not be idle.
2938 *
2939 * This has been extended to SMP, by doing the same for each CPU. This however
2940 * is broken.
2941 *
2942 * Imagine for instance the case where two tasks block on one CPU, only the one
2943 * CPU will have IO-wait accounted, while the other has regular idle. Even
2944 * though, if the storage were faster, both could've ran at the same time,
2945 * utilising both CPUs.
2946 *
2947 * This means, that when looking globally, the current IO-wait accounting on
2948 * SMP is a lower bound, by reason of under accounting.
2949 *
2950 * Worse, since the numbers are provided per CPU, they are sometimes
2951 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2952 * associated with any one particular CPU, it can wake to another CPU than it
2953 * blocked on. This means the per CPU IO-wait number is meaningless.
2954 *
2955 * Task CPU affinities can make all that even more 'interesting'.
2956 */
2957
2958unsigned long nr_iowait(void)
2959{
2960 unsigned long i, sum = 0;
2961
2962 for_each_possible_cpu(i)
2963 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964
2965 return sum;
2966}
2967
2968/*
2969 * Consumers of these two interfaces, like for example the cpufreq menu
2970 * governor are using nonsensical data. Boosting frequency for a CPU that has
2971 * IO-wait which might not even end up running the task when it does become
2972 * runnable.
2973 */
2974
2975unsigned long nr_iowait_cpu(int cpu)
2976{
2977 struct rq *this = cpu_rq(cpu);
2978 return atomic_read(&this->nr_iowait);
2979}
2980
2981void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2982{
2983 struct rq *rq = this_rq();
2984 *nr_waiters = atomic_read(&rq->nr_iowait);
2985 *load = rq->load.weight;
2986}
2987
2988#ifdef CONFIG_SMP
2989
2990/*
2991 * sched_exec - execve() is a valuable balancing opportunity, because at
2992 * this point the task has the smallest effective memory and cache footprint.
2993 */
2994void sched_exec(void)
2995{
2996 struct task_struct *p = current;
2997 unsigned long flags;
2998 int dest_cpu;
2999
3000 raw_spin_lock_irqsave(&p->pi_lock, flags);
3001 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3002 if (dest_cpu == smp_processor_id())
3003 goto unlock;
3004
3005 if (likely(cpu_active(dest_cpu))) {
3006 struct migration_arg arg = { p, dest_cpu };
3007
3008 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3009 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3010 return;
3011 }
3012unlock:
3013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3014}
3015
3016#endif
3017
3018DEFINE_PER_CPU(struct kernel_stat, kstat);
3019DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3020
3021EXPORT_PER_CPU_SYMBOL(kstat);
3022EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3023
3024/*
3025 * The function fair_sched_class.update_curr accesses the struct curr
3026 * and its field curr->exec_start; when called from task_sched_runtime(),
3027 * we observe a high rate of cache misses in practice.
3028 * Prefetching this data results in improved performance.
3029 */
3030static inline void prefetch_curr_exec_start(struct task_struct *p)
3031{
3032#ifdef CONFIG_FAIR_GROUP_SCHED
3033 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3034#else
3035 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3036#endif
3037 prefetch(curr);
3038 prefetch(&curr->exec_start);
3039}
3040
3041/*
3042 * Return accounted runtime for the task.
3043 * In case the task is currently running, return the runtime plus current's
3044 * pending runtime that have not been accounted yet.
3045 */
3046unsigned long long task_sched_runtime(struct task_struct *p)
3047{
3048 struct rq_flags rf;
3049 struct rq *rq;
3050 u64 ns;
3051
3052#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3053 /*
3054 * 64-bit doesn't need locks to atomically read a 64-bit value.
3055 * So we have a optimization chance when the task's delta_exec is 0.
3056 * Reading ->on_cpu is racy, but this is ok.
3057 *
3058 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3059 * If we race with it entering CPU, unaccounted time is 0. This is
3060 * indistinguishable from the read occurring a few cycles earlier.
3061 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3062 * been accounted, so we're correct here as well.
3063 */
3064 if (!p->on_cpu || !task_on_rq_queued(p))
3065 return p->se.sum_exec_runtime;
3066#endif
3067
3068 rq = task_rq_lock(p, &rf);
3069 /*
3070 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3071 * project cycles that may never be accounted to this
3072 * thread, breaking clock_gettime().
3073 */
3074 if (task_current(rq, p) && task_on_rq_queued(p)) {
3075 prefetch_curr_exec_start(p);
3076 update_rq_clock(rq);
3077 p->sched_class->update_curr(rq);
3078 }
3079 ns = p->se.sum_exec_runtime;
3080 task_rq_unlock(rq, p, &rf);
3081
3082 return ns;
3083}
3084
3085/*
3086 * This function gets called by the timer code, with HZ frequency.
3087 * We call it with interrupts disabled.
3088 */
3089void scheduler_tick(void)
3090{
3091 int cpu = smp_processor_id();
3092 struct rq *rq = cpu_rq(cpu);
3093 struct task_struct *curr = rq->curr;
3094 struct rq_flags rf;
3095
3096 sched_clock_tick();
3097
3098 rq_lock(rq, &rf);
3099
3100 update_rq_clock(rq);
3101 curr->sched_class->task_tick(rq, curr, 0);
3102 cpu_load_update_active(rq);
3103 calc_global_load_tick(rq);
3104
3105 rq_unlock(rq, &rf);
3106
3107 perf_event_task_tick();
3108
3109#ifdef CONFIG_SMP
3110 rq->idle_balance = idle_cpu(cpu);
3111 trigger_load_balance(rq);
3112#endif
3113}
3114
3115#ifdef CONFIG_NO_HZ_FULL
3116
3117struct tick_work {
3118 int cpu;
3119 struct delayed_work work;
3120};
3121
3122static struct tick_work __percpu *tick_work_cpu;
3123
3124static void sched_tick_remote(struct work_struct *work)
3125{
3126 struct delayed_work *dwork = to_delayed_work(work);
3127 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3128 int cpu = twork->cpu;
3129 struct rq *rq = cpu_rq(cpu);
3130 struct rq_flags rf;
3131
3132 /*
3133 * Handle the tick only if it appears the remote CPU is running in full
3134 * dynticks mode. The check is racy by nature, but missing a tick or
3135 * having one too much is no big deal because the scheduler tick updates
3136 * statistics and checks timeslices in a time-independent way, regardless
3137 * of when exactly it is running.
3138 */
3139 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3140 struct task_struct *curr;
3141 u64 delta;
3142
3143 rq_lock_irq(rq, &rf);
3144 update_rq_clock(rq);
3145 curr = rq->curr;
3146 delta = rq_clock_task(rq) - curr->se.exec_start;
3147
3148 /*
3149 * Make sure the next tick runs within a reasonable
3150 * amount of time.
3151 */
3152 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3153 curr->sched_class->task_tick(rq, curr, 0);
3154 rq_unlock_irq(rq, &rf);
3155 }
3156
3157 /*
3158 * Run the remote tick once per second (1Hz). This arbitrary
3159 * frequency is large enough to avoid overload but short enough
3160 * to keep scheduler internal stats reasonably up to date.
3161 */
3162 queue_delayed_work(system_unbound_wq, dwork, HZ);
3163}
3164
3165static void sched_tick_start(int cpu)
3166{
3167 struct tick_work *twork;
3168
3169 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3170 return;
3171
3172 WARN_ON_ONCE(!tick_work_cpu);
3173
3174 twork = per_cpu_ptr(tick_work_cpu, cpu);
3175 twork->cpu = cpu;
3176 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3177 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3178}
3179
3180#ifdef CONFIG_HOTPLUG_CPU
3181static void sched_tick_stop(int cpu)
3182{
3183 struct tick_work *twork;
3184
3185 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3186 return;
3187
3188 WARN_ON_ONCE(!tick_work_cpu);
3189
3190 twork = per_cpu_ptr(tick_work_cpu, cpu);
3191 cancel_delayed_work_sync(&twork->work);
3192}
3193#endif /* CONFIG_HOTPLUG_CPU */
3194
3195int __init sched_tick_offload_init(void)
3196{
3197 tick_work_cpu = alloc_percpu(struct tick_work);
3198 BUG_ON(!tick_work_cpu);
3199
3200 return 0;
3201}
3202
3203#else /* !CONFIG_NO_HZ_FULL */
3204static inline void sched_tick_start(int cpu) { }
3205static inline void sched_tick_stop(int cpu) { }
3206#endif
3207
3208#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209 defined(CONFIG_PREEMPT_TRACER))
3210/*
3211 * If the value passed in is equal to the current preempt count
3212 * then we just disabled preemption. Start timing the latency.
3213 */
3214static inline void preempt_latency_start(int val)
3215{
3216 if (preempt_count() == val) {
3217 unsigned long ip = get_lock_parent_ip();
3218#ifdef CONFIG_DEBUG_PREEMPT
3219 current->preempt_disable_ip = ip;
3220#endif
3221 trace_preempt_off(CALLER_ADDR0, ip);
3222 }
3223}
3224
3225void preempt_count_add(int val)
3226{
3227#ifdef CONFIG_DEBUG_PREEMPT
3228 /*
3229 * Underflow?
3230 */
3231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3232 return;
3233#endif
3234 __preempt_count_add(val);
3235#ifdef CONFIG_DEBUG_PREEMPT
3236 /*
3237 * Spinlock count overflowing soon?
3238 */
3239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3240 PREEMPT_MASK - 10);
3241#endif
3242 preempt_latency_start(val);
3243}
3244EXPORT_SYMBOL(preempt_count_add);
3245NOKPROBE_SYMBOL(preempt_count_add);
3246
3247/*
3248 * If the value passed in equals to the current preempt count
3249 * then we just enabled preemption. Stop timing the latency.
3250 */
3251static inline void preempt_latency_stop(int val)
3252{
3253 if (preempt_count() == val)
3254 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3255}
3256
3257void preempt_count_sub(int val)
3258{
3259#ifdef CONFIG_DEBUG_PREEMPT
3260 /*
3261 * Underflow?
3262 */
3263 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3264 return;
3265 /*
3266 * Is the spinlock portion underflowing?
3267 */
3268 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3269 !(preempt_count() & PREEMPT_MASK)))
3270 return;
3271#endif
3272
3273 preempt_latency_stop(val);
3274 __preempt_count_sub(val);
3275}
3276EXPORT_SYMBOL(preempt_count_sub);
3277NOKPROBE_SYMBOL(preempt_count_sub);
3278
3279#else
3280static inline void preempt_latency_start(int val) { }
3281static inline void preempt_latency_stop(int val) { }
3282#endif
3283
3284static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3285{
3286#ifdef CONFIG_DEBUG_PREEMPT
3287 return p->preempt_disable_ip;
3288#else
3289 return 0;
3290#endif
3291}
3292
3293/*
3294 * Print scheduling while atomic bug:
3295 */
3296static noinline void __schedule_bug(struct task_struct *prev)
3297{
3298 /* Save this before calling printk(), since that will clobber it */
3299 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3300
3301 if (oops_in_progress)
3302 return;
3303
3304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 prev->comm, prev->pid, preempt_count());
3306
3307 debug_show_held_locks(prev);
3308 print_modules();
3309 if (irqs_disabled())
3310 print_irqtrace_events(prev);
3311 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3312 && in_atomic_preempt_off()) {
3313 pr_err("Preemption disabled at:");
3314 print_ip_sym(preempt_disable_ip);
3315 pr_cont("\n");
3316 }
3317 if (panic_on_warn)
3318 panic("scheduling while atomic\n");
3319
3320 dump_stack();
3321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3322}
3323
3324/*
3325 * Various schedule()-time debugging checks and statistics:
3326 */
3327static inline void schedule_debug(struct task_struct *prev)
3328{
3329#ifdef CONFIG_SCHED_STACK_END_CHECK
3330 if (task_stack_end_corrupted(prev))
3331 panic("corrupted stack end detected inside scheduler\n");
3332#endif
3333
3334 if (unlikely(in_atomic_preempt_off())) {
3335 __schedule_bug(prev);
3336 preempt_count_set(PREEMPT_DISABLED);
3337 }
3338 rcu_sleep_check();
3339
3340 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3341
3342 schedstat_inc(this_rq()->sched_count);
3343}
3344
3345/*
3346 * Pick up the highest-prio task:
3347 */
3348static inline struct task_struct *
3349pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3350{
3351 const struct sched_class *class;
3352 struct task_struct *p;
3353
3354 /*
3355 * Optimization: we know that if all tasks are in the fair class we can
3356 * call that function directly, but only if the @prev task wasn't of a
3357 * higher scheduling class, because otherwise those loose the
3358 * opportunity to pull in more work from other CPUs.
3359 */
3360 if (likely((prev->sched_class == &idle_sched_class ||
3361 prev->sched_class == &fair_sched_class) &&
3362 rq->nr_running == rq->cfs.h_nr_running)) {
3363
3364 p = fair_sched_class.pick_next_task(rq, prev, rf);
3365 if (unlikely(p == RETRY_TASK))
3366 goto again;
3367
3368 /* Assumes fair_sched_class->next == idle_sched_class */
3369 if (unlikely(!p))
3370 p = idle_sched_class.pick_next_task(rq, prev, rf);
3371
3372 return p;
3373 }
3374
3375again:
3376 for_each_class(class) {
3377 p = class->pick_next_task(rq, prev, rf);
3378 if (p) {
3379 if (unlikely(p == RETRY_TASK))
3380 goto again;
3381 return p;
3382 }
3383 }
3384
3385 /* The idle class should always have a runnable task: */
3386 BUG();
3387}
3388
3389/*
3390 * __schedule() is the main scheduler function.
3391 *
3392 * The main means of driving the scheduler and thus entering this function are:
3393 *
3394 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3395 *
3396 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397 * paths. For example, see arch/x86/entry_64.S.
3398 *
3399 * To drive preemption between tasks, the scheduler sets the flag in timer
3400 * interrupt handler scheduler_tick().
3401 *
3402 * 3. Wakeups don't really cause entry into schedule(). They add a
3403 * task to the run-queue and that's it.
3404 *
3405 * Now, if the new task added to the run-queue preempts the current
3406 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407 * called on the nearest possible occasion:
3408 *
3409 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3410 *
3411 * - in syscall or exception context, at the next outmost
3412 * preempt_enable(). (this might be as soon as the wake_up()'s
3413 * spin_unlock()!)
3414 *
3415 * - in IRQ context, return from interrupt-handler to
3416 * preemptible context
3417 *
3418 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3419 * then at the next:
3420 *
3421 * - cond_resched() call
3422 * - explicit schedule() call
3423 * - return from syscall or exception to user-space
3424 * - return from interrupt-handler to user-space
3425 *
3426 * WARNING: must be called with preemption disabled!
3427 */
3428static void __sched notrace __schedule(bool preempt)
3429{
3430 struct task_struct *prev, *next;
3431 unsigned long *switch_count;
3432 struct rq_flags rf;
3433 struct rq *rq;
3434 int cpu;
3435
3436 cpu = smp_processor_id();
3437 rq = cpu_rq(cpu);
3438 prev = rq->curr;
3439
3440 schedule_debug(prev);
3441
3442 if (sched_feat(HRTICK))
3443 hrtick_clear(rq);
3444
3445 local_irq_disable();
3446 rcu_note_context_switch(preempt);
3447
3448 /*
3449 * Make sure that signal_pending_state()->signal_pending() below
3450 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451 * done by the caller to avoid the race with signal_wake_up().
3452 *
3453 * The membarrier system call requires a full memory barrier
3454 * after coming from user-space, before storing to rq->curr.
3455 */
3456 rq_lock(rq, &rf);
3457 smp_mb__after_spinlock();
3458
3459 /* Promote REQ to ACT */
3460 rq->clock_update_flags <<= 1;
3461 update_rq_clock(rq);
3462
3463 switch_count = &prev->nivcsw;
3464 if (!preempt && prev->state) {
3465 if (unlikely(signal_pending_state(prev->state, prev))) {
3466 prev->state = TASK_RUNNING;
3467 } else {
3468 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3469 prev->on_rq = 0;
3470
3471 if (prev->in_iowait) {
3472 atomic_inc(&rq->nr_iowait);
3473 delayacct_blkio_start();
3474 }
3475
3476 /*
3477 * If a worker went to sleep, notify and ask workqueue
3478 * whether it wants to wake up a task to maintain
3479 * concurrency.
3480 */
3481 if (prev->flags & PF_WQ_WORKER) {
3482 struct task_struct *to_wakeup;
3483
3484 to_wakeup = wq_worker_sleeping(prev);
3485 if (to_wakeup)
3486 try_to_wake_up_local(to_wakeup, &rf);
3487 }
3488 }
3489 switch_count = &prev->nvcsw;
3490 }
3491
3492 next = pick_next_task(rq, prev, &rf);
3493 clear_tsk_need_resched(prev);
3494 clear_preempt_need_resched();
3495
3496 if (likely(prev != next)) {
3497 rq->nr_switches++;
3498 rq->curr = next;
3499 /*
3500 * The membarrier system call requires each architecture
3501 * to have a full memory barrier after updating
3502 * rq->curr, before returning to user-space.
3503 *
3504 * Here are the schemes providing that barrier on the
3505 * various architectures:
3506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508 * - finish_lock_switch() for weakly-ordered
3509 * architectures where spin_unlock is a full barrier,
3510 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511 * is a RELEASE barrier),
3512 */
3513 ++*switch_count;
3514
3515 trace_sched_switch(preempt, prev, next);
3516
3517 /* Also unlocks the rq: */
3518 rq = context_switch(rq, prev, next, &rf);
3519 } else {
3520 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3521 rq_unlock_irq(rq, &rf);
3522 }
3523
3524 balance_callback(rq);
3525}
3526
3527void __noreturn do_task_dead(void)
3528{
3529 /* Causes final put_task_struct in finish_task_switch(): */
3530 set_special_state(TASK_DEAD);
3531
3532 /* Tell freezer to ignore us: */
3533 current->flags |= PF_NOFREEZE;
3534
3535 __schedule(false);
3536 BUG();
3537
3538 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3539 for (;;)
3540 cpu_relax();
3541}
3542
3543static inline void sched_submit_work(struct task_struct *tsk)
3544{
3545 if (!tsk->state || tsk_is_pi_blocked(tsk))
3546 return;
3547 /*
3548 * If we are going to sleep and we have plugged IO queued,
3549 * make sure to submit it to avoid deadlocks.
3550 */
3551 if (blk_needs_flush_plug(tsk))
3552 blk_schedule_flush_plug(tsk);
3553}
3554
3555asmlinkage __visible void __sched schedule(void)
3556{
3557 struct task_struct *tsk = current;
3558
3559 sched_submit_work(tsk);
3560 do {
3561 preempt_disable();
3562 __schedule(false);
3563 sched_preempt_enable_no_resched();
3564 } while (need_resched());
3565}
3566EXPORT_SYMBOL(schedule);
3567
3568/*
3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570 * state (have scheduled out non-voluntarily) by making sure that all
3571 * tasks have either left the run queue or have gone into user space.
3572 * As idle tasks do not do either, they must not ever be preempted
3573 * (schedule out non-voluntarily).
3574 *
3575 * schedule_idle() is similar to schedule_preempt_disable() except that it
3576 * never enables preemption because it does not call sched_submit_work().
3577 */
3578void __sched schedule_idle(void)
3579{
3580 /*
3581 * As this skips calling sched_submit_work(), which the idle task does
3582 * regardless because that function is a nop when the task is in a
3583 * TASK_RUNNING state, make sure this isn't used someplace that the
3584 * current task can be in any other state. Note, idle is always in the
3585 * TASK_RUNNING state.
3586 */
3587 WARN_ON_ONCE(current->state);
3588 do {
3589 __schedule(false);
3590 } while (need_resched());
3591}
3592
3593#ifdef CONFIG_CONTEXT_TRACKING
3594asmlinkage __visible void __sched schedule_user(void)
3595{
3596 /*
3597 * If we come here after a random call to set_need_resched(),
3598 * or we have been woken up remotely but the IPI has not yet arrived,
3599 * we haven't yet exited the RCU idle mode. Do it here manually until
3600 * we find a better solution.
3601 *
3602 * NB: There are buggy callers of this function. Ideally we
3603 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604 * too frequently to make sense yet.
3605 */
3606 enum ctx_state prev_state = exception_enter();
3607 schedule();
3608 exception_exit(prev_state);
3609}
3610#endif
3611
3612/**
3613 * schedule_preempt_disabled - called with preemption disabled
3614 *
3615 * Returns with preemption disabled. Note: preempt_count must be 1
3616 */
3617void __sched schedule_preempt_disabled(void)
3618{
3619 sched_preempt_enable_no_resched();
3620 schedule();
3621 preempt_disable();
3622}
3623
3624static void __sched notrace preempt_schedule_common(void)
3625{
3626 do {
3627 /*
3628 * Because the function tracer can trace preempt_count_sub()
3629 * and it also uses preempt_enable/disable_notrace(), if
3630 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 * by the function tracer will call this function again and
3632 * cause infinite recursion.
3633 *
3634 * Preemption must be disabled here before the function
3635 * tracer can trace. Break up preempt_disable() into two
3636 * calls. One to disable preemption without fear of being
3637 * traced. The other to still record the preemption latency,
3638 * which can also be traced by the function tracer.
3639 */
3640 preempt_disable_notrace();
3641 preempt_latency_start(1);
3642 __schedule(true);
3643 preempt_latency_stop(1);
3644 preempt_enable_no_resched_notrace();
3645
3646 /*
3647 * Check again in case we missed a preemption opportunity
3648 * between schedule and now.
3649 */
3650 } while (need_resched());
3651}
3652
3653#ifdef CONFIG_PREEMPT
3654/*
3655 * this is the entry point to schedule() from in-kernel preemption
3656 * off of preempt_enable. Kernel preemptions off return from interrupt
3657 * occur there and call schedule directly.
3658 */
3659asmlinkage __visible void __sched notrace preempt_schedule(void)
3660{
3661 /*
3662 * If there is a non-zero preempt_count or interrupts are disabled,
3663 * we do not want to preempt the current task. Just return..
3664 */
3665 if (likely(!preemptible()))
3666 return;
3667
3668 preempt_schedule_common();
3669}
3670NOKPROBE_SYMBOL(preempt_schedule);
3671EXPORT_SYMBOL(preempt_schedule);
3672
3673/**
3674 * preempt_schedule_notrace - preempt_schedule called by tracing
3675 *
3676 * The tracing infrastructure uses preempt_enable_notrace to prevent
3677 * recursion and tracing preempt enabling caused by the tracing
3678 * infrastructure itself. But as tracing can happen in areas coming
3679 * from userspace or just about to enter userspace, a preempt enable
3680 * can occur before user_exit() is called. This will cause the scheduler
3681 * to be called when the system is still in usermode.
3682 *
3683 * To prevent this, the preempt_enable_notrace will use this function
3684 * instead of preempt_schedule() to exit user context if needed before
3685 * calling the scheduler.
3686 */
3687asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3688{
3689 enum ctx_state prev_ctx;
3690
3691 if (likely(!preemptible()))
3692 return;
3693
3694 do {
3695 /*
3696 * Because the function tracer can trace preempt_count_sub()
3697 * and it also uses preempt_enable/disable_notrace(), if
3698 * NEED_RESCHED is set, the preempt_enable_notrace() called
3699 * by the function tracer will call this function again and
3700 * cause infinite recursion.
3701 *
3702 * Preemption must be disabled here before the function
3703 * tracer can trace. Break up preempt_disable() into two
3704 * calls. One to disable preemption without fear of being
3705 * traced. The other to still record the preemption latency,
3706 * which can also be traced by the function tracer.
3707 */
3708 preempt_disable_notrace();
3709 preempt_latency_start(1);
3710 /*
3711 * Needs preempt disabled in case user_exit() is traced
3712 * and the tracer calls preempt_enable_notrace() causing
3713 * an infinite recursion.
3714 */
3715 prev_ctx = exception_enter();
3716 __schedule(true);
3717 exception_exit(prev_ctx);
3718
3719 preempt_latency_stop(1);
3720 preempt_enable_no_resched_notrace();
3721 } while (need_resched());
3722}
3723EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3724
3725#endif /* CONFIG_PREEMPT */
3726
3727/*
3728 * this is the entry point to schedule() from kernel preemption
3729 * off of irq context.
3730 * Note, that this is called and return with irqs disabled. This will
3731 * protect us against recursive calling from irq.
3732 */
3733asmlinkage __visible void __sched preempt_schedule_irq(void)
3734{
3735 enum ctx_state prev_state;
3736
3737 /* Catch callers which need to be fixed */
3738 BUG_ON(preempt_count() || !irqs_disabled());
3739
3740 prev_state = exception_enter();
3741
3742 do {
3743 preempt_disable();
3744 local_irq_enable();
3745 __schedule(true);
3746 local_irq_disable();
3747 sched_preempt_enable_no_resched();
3748 } while (need_resched());
3749
3750 exception_exit(prev_state);
3751}
3752
3753int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3754 void *key)
3755{
3756 return try_to_wake_up(curr->private, mode, wake_flags);
3757}
3758EXPORT_SYMBOL(default_wake_function);
3759
3760#ifdef CONFIG_RT_MUTEXES
3761
3762static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3763{
3764 if (pi_task)
3765 prio = min(prio, pi_task->prio);
3766
3767 return prio;
3768}
3769
3770static inline int rt_effective_prio(struct task_struct *p, int prio)
3771{
3772 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3773
3774 return __rt_effective_prio(pi_task, prio);
3775}
3776
3777/*
3778 * rt_mutex_setprio - set the current priority of a task
3779 * @p: task to boost
3780 * @pi_task: donor task
3781 *
3782 * This function changes the 'effective' priority of a task. It does
3783 * not touch ->normal_prio like __setscheduler().
3784 *
3785 * Used by the rt_mutex code to implement priority inheritance
3786 * logic. Call site only calls if the priority of the task changed.
3787 */
3788void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3789{
3790 int prio, oldprio, queued, running, queue_flag =
3791 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3792 const struct sched_class *prev_class;
3793 struct rq_flags rf;
3794 struct rq *rq;
3795
3796 /* XXX used to be waiter->prio, not waiter->task->prio */
3797 prio = __rt_effective_prio(pi_task, p->normal_prio);
3798
3799 /*
3800 * If nothing changed; bail early.
3801 */
3802 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3803 return;
3804
3805 rq = __task_rq_lock(p, &rf);
3806 update_rq_clock(rq);
3807 /*
3808 * Set under pi_lock && rq->lock, such that the value can be used under
3809 * either lock.
3810 *
3811 * Note that there is loads of tricky to make this pointer cache work
3812 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3813 * ensure a task is de-boosted (pi_task is set to NULL) before the
3814 * task is allowed to run again (and can exit). This ensures the pointer
3815 * points to a blocked task -- which guaratees the task is present.
3816 */
3817 p->pi_top_task = pi_task;
3818
3819 /*
3820 * For FIFO/RR we only need to set prio, if that matches we're done.
3821 */
3822 if (prio == p->prio && !dl_prio(prio))
3823 goto out_unlock;
3824
3825 /*
3826 * Idle task boosting is a nono in general. There is one
3827 * exception, when PREEMPT_RT and NOHZ is active:
3828 *
3829 * The idle task calls get_next_timer_interrupt() and holds
3830 * the timer wheel base->lock on the CPU and another CPU wants
3831 * to access the timer (probably to cancel it). We can safely
3832 * ignore the boosting request, as the idle CPU runs this code
3833 * with interrupts disabled and will complete the lock
3834 * protected section without being interrupted. So there is no
3835 * real need to boost.
3836 */
3837 if (unlikely(p == rq->idle)) {
3838 WARN_ON(p != rq->curr);
3839 WARN_ON(p->pi_blocked_on);
3840 goto out_unlock;
3841 }
3842
3843 trace_sched_pi_setprio(p, pi_task);
3844 oldprio = p->prio;
3845
3846 if (oldprio == prio)
3847 queue_flag &= ~DEQUEUE_MOVE;
3848
3849 prev_class = p->sched_class;
3850 queued = task_on_rq_queued(p);
3851 running = task_current(rq, p);
3852 if (queued)
3853 dequeue_task(rq, p, queue_flag);
3854 if (running)
3855 put_prev_task(rq, p);
3856
3857 /*
3858 * Boosting condition are:
3859 * 1. -rt task is running and holds mutex A
3860 * --> -dl task blocks on mutex A
3861 *
3862 * 2. -dl task is running and holds mutex A
3863 * --> -dl task blocks on mutex A and could preempt the
3864 * running task
3865 */
3866 if (dl_prio(prio)) {
3867 if (!dl_prio(p->normal_prio) ||
3868 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3869 p->dl.dl_boosted = 1;
3870 queue_flag |= ENQUEUE_REPLENISH;
3871 } else
3872 p->dl.dl_boosted = 0;
3873 p->sched_class = &dl_sched_class;
3874 } else if (rt_prio(prio)) {
3875 if (dl_prio(oldprio))
3876 p->dl.dl_boosted = 0;
3877 if (oldprio < prio)
3878 queue_flag |= ENQUEUE_HEAD;
3879 p->sched_class = &rt_sched_class;
3880 } else {
3881 if (dl_prio(oldprio))
3882 p->dl.dl_boosted = 0;
3883 if (rt_prio(oldprio))
3884 p->rt.timeout = 0;
3885 p->sched_class = &fair_sched_class;
3886 }
3887
3888 p->prio = prio;
3889
3890 if (queued)
3891 enqueue_task(rq, p, queue_flag);
3892 if (running)
3893 set_curr_task(rq, p);
3894
3895 check_class_changed(rq, p, prev_class, oldprio);
3896out_unlock:
3897 /* Avoid rq from going away on us: */
3898 preempt_disable();
3899 __task_rq_unlock(rq, &rf);
3900
3901 balance_callback(rq);
3902 preempt_enable();
3903}
3904#else
3905static inline int rt_effective_prio(struct task_struct *p, int prio)
3906{
3907 return prio;
3908}
3909#endif
3910
3911void set_user_nice(struct task_struct *p, long nice)
3912{
3913 bool queued, running;
3914 int old_prio, delta;
3915 struct rq_flags rf;
3916 struct rq *rq;
3917
3918 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3919 return;
3920 /*
3921 * We have to be careful, if called from sys_setpriority(),
3922 * the task might be in the middle of scheduling on another CPU.
3923 */
3924 rq = task_rq_lock(p, &rf);
3925 update_rq_clock(rq);
3926
3927 /*
3928 * The RT priorities are set via sched_setscheduler(), but we still
3929 * allow the 'normal' nice value to be set - but as expected
3930 * it wont have any effect on scheduling until the task is
3931 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3932 */
3933 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3934 p->static_prio = NICE_TO_PRIO(nice);
3935 goto out_unlock;
3936 }
3937 queued = task_on_rq_queued(p);
3938 running = task_current(rq, p);
3939 if (queued)
3940 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3941 if (running)
3942 put_prev_task(rq, p);
3943
3944 p->static_prio = NICE_TO_PRIO(nice);
3945 set_load_weight(p, true);
3946 old_prio = p->prio;
3947 p->prio = effective_prio(p);
3948 delta = p->prio - old_prio;
3949
3950 if (queued) {
3951 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3952 /*
3953 * If the task increased its priority or is running and
3954 * lowered its priority, then reschedule its CPU:
3955 */
3956 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3957 resched_curr(rq);
3958 }
3959 if (running)
3960 set_curr_task(rq, p);
3961out_unlock:
3962 task_rq_unlock(rq, p, &rf);
3963}
3964EXPORT_SYMBOL(set_user_nice);
3965
3966/*
3967 * can_nice - check if a task can reduce its nice value
3968 * @p: task
3969 * @nice: nice value
3970 */
3971int can_nice(const struct task_struct *p, const int nice)
3972{
3973 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3974 int nice_rlim = nice_to_rlimit(nice);
3975
3976 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3977 capable(CAP_SYS_NICE));
3978}
3979
3980#ifdef __ARCH_WANT_SYS_NICE
3981
3982/*
3983 * sys_nice - change the priority of the current process.
3984 * @increment: priority increment
3985 *
3986 * sys_setpriority is a more generic, but much slower function that
3987 * does similar things.
3988 */
3989SYSCALL_DEFINE1(nice, int, increment)
3990{
3991 long nice, retval;
3992
3993 /*
3994 * Setpriority might change our priority at the same moment.
3995 * We don't have to worry. Conceptually one call occurs first
3996 * and we have a single winner.
3997 */
3998 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3999 nice = task_nice(current) + increment;
4000
4001 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4002 if (increment < 0 && !can_nice(current, nice))
4003 return -EPERM;
4004
4005 retval = security_task_setnice(current, nice);
4006 if (retval)
4007 return retval;
4008
4009 set_user_nice(current, nice);
4010 return 0;
4011}
4012
4013#endif
4014
4015/**
4016 * task_prio - return the priority value of a given task.
4017 * @p: the task in question.
4018 *
4019 * Return: The priority value as seen by users in /proc.
4020 * RT tasks are offset by -200. Normal tasks are centered
4021 * around 0, value goes from -16 to +15.
4022 */
4023int task_prio(const struct task_struct *p)
4024{
4025 return p->prio - MAX_RT_PRIO;
4026}
4027
4028/**
4029 * idle_cpu - is a given CPU idle currently?
4030 * @cpu: the processor in question.
4031 *
4032 * Return: 1 if the CPU is currently idle. 0 otherwise.
4033 */
4034int idle_cpu(int cpu)
4035{
4036 struct rq *rq = cpu_rq(cpu);
4037
4038 if (rq->curr != rq->idle)
4039 return 0;
4040
4041 if (rq->nr_running)
4042 return 0;
4043
4044#ifdef CONFIG_SMP
4045 if (!llist_empty(&rq->wake_list))
4046 return 0;
4047#endif
4048
4049 return 1;
4050}
4051
4052/**
4053 * idle_task - return the idle task for a given CPU.
4054 * @cpu: the processor in question.
4055 *
4056 * Return: The idle task for the CPU @cpu.
4057 */
4058struct task_struct *idle_task(int cpu)
4059{
4060 return cpu_rq(cpu)->idle;
4061}
4062
4063/**
4064 * find_process_by_pid - find a process with a matching PID value.
4065 * @pid: the pid in question.
4066 *
4067 * The task of @pid, if found. %NULL otherwise.
4068 */
4069static struct task_struct *find_process_by_pid(pid_t pid)
4070{
4071 return pid ? find_task_by_vpid(pid) : current;
4072}
4073
4074/*
4075 * sched_setparam() passes in -1 for its policy, to let the functions
4076 * it calls know not to change it.
4077 */
4078#define SETPARAM_POLICY -1
4079
4080static void __setscheduler_params(struct task_struct *p,
4081 const struct sched_attr *attr)
4082{
4083 int policy = attr->sched_policy;
4084
4085 if (policy == SETPARAM_POLICY)
4086 policy = p->policy;
4087
4088 p->policy = policy;
4089
4090 if (dl_policy(policy))
4091 __setparam_dl(p, attr);
4092 else if (fair_policy(policy))
4093 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4094
4095 /*
4096 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4097 * !rt_policy. Always setting this ensures that things like
4098 * getparam()/getattr() don't report silly values for !rt tasks.
4099 */
4100 p->rt_priority = attr->sched_priority;
4101 p->normal_prio = normal_prio(p);
4102 set_load_weight(p, true);
4103}
4104
4105/* Actually do priority change: must hold pi & rq lock. */
4106static void __setscheduler(struct rq *rq, struct task_struct *p,
4107 const struct sched_attr *attr, bool keep_boost)
4108{
4109 __setscheduler_params(p, attr);
4110
4111 /*
4112 * Keep a potential priority boosting if called from
4113 * sched_setscheduler().
4114 */
4115 p->prio = normal_prio(p);
4116 if (keep_boost)
4117 p->prio = rt_effective_prio(p, p->prio);
4118
4119 if (dl_prio(p->prio))
4120 p->sched_class = &dl_sched_class;
4121 else if (rt_prio(p->prio))
4122 p->sched_class = &rt_sched_class;
4123 else
4124 p->sched_class = &fair_sched_class;
4125}
4126
4127/*
4128 * Check the target process has a UID that matches the current process's:
4129 */
4130static bool check_same_owner(struct task_struct *p)
4131{
4132 const struct cred *cred = current_cred(), *pcred;
4133 bool match;
4134
4135 rcu_read_lock();
4136 pcred = __task_cred(p);
4137 match = (uid_eq(cred->euid, pcred->euid) ||
4138 uid_eq(cred->euid, pcred->uid));
4139 rcu_read_unlock();
4140 return match;
4141}
4142
4143static int __sched_setscheduler(struct task_struct *p,
4144 const struct sched_attr *attr,
4145 bool user, bool pi)
4146{
4147 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4148 MAX_RT_PRIO - 1 - attr->sched_priority;
4149 int retval, oldprio, oldpolicy = -1, queued, running;
4150 int new_effective_prio, policy = attr->sched_policy;
4151 const struct sched_class *prev_class;
4152 struct rq_flags rf;
4153 int reset_on_fork;
4154 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4155 struct rq *rq;
4156
4157 /* The pi code expects interrupts enabled */
4158 BUG_ON(pi && in_interrupt());
4159recheck:
4160 /* Double check policy once rq lock held: */
4161 if (policy < 0) {
4162 reset_on_fork = p->sched_reset_on_fork;
4163 policy = oldpolicy = p->policy;
4164 } else {
4165 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4166
4167 if (!valid_policy(policy))
4168 return -EINVAL;
4169 }
4170
4171 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4172 return -EINVAL;
4173
4174 /*
4175 * Valid priorities for SCHED_FIFO and SCHED_RR are
4176 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4177 * SCHED_BATCH and SCHED_IDLE is 0.
4178 */
4179 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4180 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4181 return -EINVAL;
4182 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4183 (rt_policy(policy) != (attr->sched_priority != 0)))
4184 return -EINVAL;
4185
4186 /*
4187 * Allow unprivileged RT tasks to decrease priority:
4188 */
4189 if (user && !capable(CAP_SYS_NICE)) {
4190 if (fair_policy(policy)) {
4191 if (attr->sched_nice < task_nice(p) &&
4192 !can_nice(p, attr->sched_nice))
4193 return -EPERM;
4194 }
4195
4196 if (rt_policy(policy)) {
4197 unsigned long rlim_rtprio =
4198 task_rlimit(p, RLIMIT_RTPRIO);
4199
4200 /* Can't set/change the rt policy: */
4201 if (policy != p->policy && !rlim_rtprio)
4202 return -EPERM;
4203
4204 /* Can't increase priority: */
4205 if (attr->sched_priority > p->rt_priority &&
4206 attr->sched_priority > rlim_rtprio)
4207 return -EPERM;
4208 }
4209
4210 /*
4211 * Can't set/change SCHED_DEADLINE policy at all for now
4212 * (safest behavior); in the future we would like to allow
4213 * unprivileged DL tasks to increase their relative deadline
4214 * or reduce their runtime (both ways reducing utilization)
4215 */
4216 if (dl_policy(policy))
4217 return -EPERM;
4218
4219 /*
4220 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4221 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4222 */
4223 if (idle_policy(p->policy) && !idle_policy(policy)) {
4224 if (!can_nice(p, task_nice(p)))
4225 return -EPERM;
4226 }
4227
4228 /* Can't change other user's priorities: */
4229 if (!check_same_owner(p))
4230 return -EPERM;
4231
4232 /* Normal users shall not reset the sched_reset_on_fork flag: */
4233 if (p->sched_reset_on_fork && !reset_on_fork)
4234 return -EPERM;
4235 }
4236
4237 if (user) {
4238 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4239 return -EINVAL;
4240
4241 retval = security_task_setscheduler(p);
4242 if (retval)
4243 return retval;
4244 }
4245
4246 /*
4247 * Make sure no PI-waiters arrive (or leave) while we are
4248 * changing the priority of the task:
4249 *
4250 * To be able to change p->policy safely, the appropriate
4251 * runqueue lock must be held.
4252 */
4253 rq = task_rq_lock(p, &rf);
4254 update_rq_clock(rq);
4255
4256 /*
4257 * Changing the policy of the stop threads its a very bad idea:
4258 */
4259 if (p == rq->stop) {
4260 task_rq_unlock(rq, p, &rf);
4261 return -EINVAL;
4262 }
4263
4264 /*
4265 * If not changing anything there's no need to proceed further,
4266 * but store a possible modification of reset_on_fork.
4267 */
4268 if (unlikely(policy == p->policy)) {
4269 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4270 goto change;
4271 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4272 goto change;
4273 if (dl_policy(policy) && dl_param_changed(p, attr))
4274 goto change;
4275
4276 p->sched_reset_on_fork = reset_on_fork;
4277 task_rq_unlock(rq, p, &rf);
4278 return 0;
4279 }
4280change:
4281
4282 if (user) {
4283#ifdef CONFIG_RT_GROUP_SCHED
4284 /*
4285 * Do not allow realtime tasks into groups that have no runtime
4286 * assigned.
4287 */
4288 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4289 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4290 !task_group_is_autogroup(task_group(p))) {
4291 task_rq_unlock(rq, p, &rf);
4292 return -EPERM;
4293 }
4294#endif
4295#ifdef CONFIG_SMP
4296 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4297 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4298 cpumask_t *span = rq->rd->span;
4299
4300 /*
4301 * Don't allow tasks with an affinity mask smaller than
4302 * the entire root_domain to become SCHED_DEADLINE. We
4303 * will also fail if there's no bandwidth available.
4304 */
4305 if (!cpumask_subset(span, &p->cpus_allowed) ||
4306 rq->rd->dl_bw.bw == 0) {
4307 task_rq_unlock(rq, p, &rf);
4308 return -EPERM;
4309 }
4310 }
4311#endif
4312 }
4313
4314 /* Re-check policy now with rq lock held: */
4315 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4316 policy = oldpolicy = -1;
4317 task_rq_unlock(rq, p, &rf);
4318 goto recheck;
4319 }
4320
4321 /*
4322 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4323 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4324 * is available.
4325 */
4326 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4327 task_rq_unlock(rq, p, &rf);
4328 return -EBUSY;
4329 }
4330
4331 p->sched_reset_on_fork = reset_on_fork;
4332 oldprio = p->prio;
4333
4334 if (pi) {
4335 /*
4336 * Take priority boosted tasks into account. If the new
4337 * effective priority is unchanged, we just store the new
4338 * normal parameters and do not touch the scheduler class and
4339 * the runqueue. This will be done when the task deboost
4340 * itself.
4341 */
4342 new_effective_prio = rt_effective_prio(p, newprio);
4343 if (new_effective_prio == oldprio)
4344 queue_flags &= ~DEQUEUE_MOVE;
4345 }
4346
4347 queued = task_on_rq_queued(p);
4348 running = task_current(rq, p);
4349 if (queued)
4350 dequeue_task(rq, p, queue_flags);
4351 if (running)
4352 put_prev_task(rq, p);
4353
4354 prev_class = p->sched_class;
4355 __setscheduler(rq, p, attr, pi);
4356
4357 if (queued) {
4358 /*
4359 * We enqueue to tail when the priority of a task is
4360 * increased (user space view).
4361 */
4362 if (oldprio < p->prio)
4363 queue_flags |= ENQUEUE_HEAD;
4364
4365 enqueue_task(rq, p, queue_flags);
4366 }
4367 if (running)
4368 set_curr_task(rq, p);
4369
4370 check_class_changed(rq, p, prev_class, oldprio);
4371
4372 /* Avoid rq from going away on us: */
4373 preempt_disable();
4374 task_rq_unlock(rq, p, &rf);
4375
4376 if (pi)
4377 rt_mutex_adjust_pi(p);
4378
4379 /* Run balance callbacks after we've adjusted the PI chain: */
4380 balance_callback(rq);
4381 preempt_enable();
4382
4383 return 0;
4384}
4385
4386static int _sched_setscheduler(struct task_struct *p, int policy,
4387 const struct sched_param *param, bool check)
4388{
4389 struct sched_attr attr = {
4390 .sched_policy = policy,
4391 .sched_priority = param->sched_priority,
4392 .sched_nice = PRIO_TO_NICE(p->static_prio),
4393 };
4394
4395 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4396 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4397 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4398 policy &= ~SCHED_RESET_ON_FORK;
4399 attr.sched_policy = policy;
4400 }
4401
4402 return __sched_setscheduler(p, &attr, check, true);
4403}
4404/**
4405 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4406 * @p: the task in question.
4407 * @policy: new policy.
4408 * @param: structure containing the new RT priority.
4409 *
4410 * Return: 0 on success. An error code otherwise.
4411 *
4412 * NOTE that the task may be already dead.
4413 */
4414int sched_setscheduler(struct task_struct *p, int policy,
4415 const struct sched_param *param)
4416{
4417 return _sched_setscheduler(p, policy, param, true);
4418}
4419EXPORT_SYMBOL_GPL(sched_setscheduler);
4420
4421int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4422{
4423 return __sched_setscheduler(p, attr, true, true);
4424}
4425EXPORT_SYMBOL_GPL(sched_setattr);
4426
4427int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4428{
4429 return __sched_setscheduler(p, attr, false, true);
4430}
4431
4432/**
4433 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4434 * @p: the task in question.
4435 * @policy: new policy.
4436 * @param: structure containing the new RT priority.
4437 *
4438 * Just like sched_setscheduler, only don't bother checking if the
4439 * current context has permission. For example, this is needed in
4440 * stop_machine(): we create temporary high priority worker threads,
4441 * but our caller might not have that capability.
4442 *
4443 * Return: 0 on success. An error code otherwise.
4444 */
4445int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4446 const struct sched_param *param)
4447{
4448 return _sched_setscheduler(p, policy, param, false);
4449}
4450EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4451
4452static int
4453do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4454{
4455 struct sched_param lparam;
4456 struct task_struct *p;
4457 int retval;
4458
4459 if (!param || pid < 0)
4460 return -EINVAL;
4461 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4462 return -EFAULT;
4463
4464 rcu_read_lock();
4465 retval = -ESRCH;
4466 p = find_process_by_pid(pid);
4467 if (p != NULL)
4468 retval = sched_setscheduler(p, policy, &lparam);
4469 rcu_read_unlock();
4470
4471 return retval;
4472}
4473
4474/*
4475 * Mimics kernel/events/core.c perf_copy_attr().
4476 */
4477static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4478{
4479 u32 size;
4480 int ret;
4481
4482 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4483 return -EFAULT;
4484
4485 /* Zero the full structure, so that a short copy will be nice: */
4486 memset(attr, 0, sizeof(*attr));
4487
4488 ret = get_user(size, &uattr->size);
4489 if (ret)
4490 return ret;
4491
4492 /* Bail out on silly large: */
4493 if (size > PAGE_SIZE)
4494 goto err_size;
4495
4496 /* ABI compatibility quirk: */
4497 if (!size)
4498 size = SCHED_ATTR_SIZE_VER0;
4499
4500 if (size < SCHED_ATTR_SIZE_VER0)
4501 goto err_size;
4502
4503 /*
4504 * If we're handed a bigger struct than we know of,
4505 * ensure all the unknown bits are 0 - i.e. new
4506 * user-space does not rely on any kernel feature
4507 * extensions we dont know about yet.
4508 */
4509 if (size > sizeof(*attr)) {
4510 unsigned char __user *addr;
4511 unsigned char __user *end;
4512 unsigned char val;
4513
4514 addr = (void __user *)uattr + sizeof(*attr);
4515 end = (void __user *)uattr + size;
4516
4517 for (; addr < end; addr++) {
4518 ret = get_user(val, addr);
4519 if (ret)
4520 return ret;
4521 if (val)
4522 goto err_size;
4523 }
4524 size = sizeof(*attr);
4525 }
4526
4527 ret = copy_from_user(attr, uattr, size);
4528 if (ret)
4529 return -EFAULT;
4530
4531 /*
4532 * XXX: Do we want to be lenient like existing syscalls; or do we want
4533 * to be strict and return an error on out-of-bounds values?
4534 */
4535 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4536
4537 return 0;
4538
4539err_size:
4540 put_user(sizeof(*attr), &uattr->size);
4541 return -E2BIG;
4542}
4543
4544/**
4545 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4546 * @pid: the pid in question.
4547 * @policy: new policy.
4548 * @param: structure containing the new RT priority.
4549 *
4550 * Return: 0 on success. An error code otherwise.
4551 */
4552SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4553{
4554 if (policy < 0)
4555 return -EINVAL;
4556
4557 return do_sched_setscheduler(pid, policy, param);
4558}
4559
4560/**
4561 * sys_sched_setparam - set/change the RT priority of a thread
4562 * @pid: the pid in question.
4563 * @param: structure containing the new RT priority.
4564 *
4565 * Return: 0 on success. An error code otherwise.
4566 */
4567SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4568{
4569 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4570}
4571
4572/**
4573 * sys_sched_setattr - same as above, but with extended sched_attr
4574 * @pid: the pid in question.
4575 * @uattr: structure containing the extended parameters.
4576 * @flags: for future extension.
4577 */
4578SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4579 unsigned int, flags)
4580{
4581 struct sched_attr attr;
4582 struct task_struct *p;
4583 int retval;
4584
4585 if (!uattr || pid < 0 || flags)
4586 return -EINVAL;
4587
4588 retval = sched_copy_attr(uattr, &attr);
4589 if (retval)
4590 return retval;
4591
4592 if ((int)attr.sched_policy < 0)
4593 return -EINVAL;
4594
4595 rcu_read_lock();
4596 retval = -ESRCH;
4597 p = find_process_by_pid(pid);
4598 if (p != NULL)
4599 retval = sched_setattr(p, &attr);
4600 rcu_read_unlock();
4601
4602 return retval;
4603}
4604
4605/**
4606 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4607 * @pid: the pid in question.
4608 *
4609 * Return: On success, the policy of the thread. Otherwise, a negative error
4610 * code.
4611 */
4612SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4613{
4614 struct task_struct *p;
4615 int retval;
4616
4617 if (pid < 0)
4618 return -EINVAL;
4619
4620 retval = -ESRCH;
4621 rcu_read_lock();
4622 p = find_process_by_pid(pid);
4623 if (p) {
4624 retval = security_task_getscheduler(p);
4625 if (!retval)
4626 retval = p->policy
4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4628 }
4629 rcu_read_unlock();
4630 return retval;
4631}
4632
4633/**
4634 * sys_sched_getparam - get the RT priority of a thread
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4637 *
4638 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4639 * code.
4640 */
4641SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4642{
4643 struct sched_param lp = { .sched_priority = 0 };
4644 struct task_struct *p;
4645 int retval;
4646
4647 if (!param || pid < 0)
4648 return -EINVAL;
4649
4650 rcu_read_lock();
4651 p = find_process_by_pid(pid);
4652 retval = -ESRCH;
4653 if (!p)
4654 goto out_unlock;
4655
4656 retval = security_task_getscheduler(p);
4657 if (retval)
4658 goto out_unlock;
4659
4660 if (task_has_rt_policy(p))
4661 lp.sched_priority = p->rt_priority;
4662 rcu_read_unlock();
4663
4664 /*
4665 * This one might sleep, we cannot do it with a spinlock held ...
4666 */
4667 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4668
4669 return retval;
4670
4671out_unlock:
4672 rcu_read_unlock();
4673 return retval;
4674}
4675
4676static int sched_read_attr(struct sched_attr __user *uattr,
4677 struct sched_attr *attr,
4678 unsigned int usize)
4679{
4680 int ret;
4681
4682 if (!access_ok(VERIFY_WRITE, uattr, usize))
4683 return -EFAULT;
4684
4685 /*
4686 * If we're handed a smaller struct than we know of,
4687 * ensure all the unknown bits are 0 - i.e. old
4688 * user-space does not get uncomplete information.
4689 */
4690 if (usize < sizeof(*attr)) {
4691 unsigned char *addr;
4692 unsigned char *end;
4693
4694 addr = (void *)attr + usize;
4695 end = (void *)attr + sizeof(*attr);
4696
4697 for (; addr < end; addr++) {
4698 if (*addr)
4699 return -EFBIG;
4700 }
4701
4702 attr->size = usize;
4703 }
4704
4705 ret = copy_to_user(uattr, attr, attr->size);
4706 if (ret)
4707 return -EFAULT;
4708
4709 return 0;
4710}
4711
4712/**
4713 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4714 * @pid: the pid in question.
4715 * @uattr: structure containing the extended parameters.
4716 * @size: sizeof(attr) for fwd/bwd comp.
4717 * @flags: for future extension.
4718 */
4719SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4720 unsigned int, size, unsigned int, flags)
4721{
4722 struct sched_attr attr = {
4723 .size = sizeof(struct sched_attr),
4724 };
4725 struct task_struct *p;
4726 int retval;
4727
4728 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4729 size < SCHED_ATTR_SIZE_VER0 || flags)
4730 return -EINVAL;
4731
4732 rcu_read_lock();
4733 p = find_process_by_pid(pid);
4734 retval = -ESRCH;
4735 if (!p)
4736 goto out_unlock;
4737
4738 retval = security_task_getscheduler(p);
4739 if (retval)
4740 goto out_unlock;
4741
4742 attr.sched_policy = p->policy;
4743 if (p->sched_reset_on_fork)
4744 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4745 if (task_has_dl_policy(p))
4746 __getparam_dl(p, &attr);
4747 else if (task_has_rt_policy(p))
4748 attr.sched_priority = p->rt_priority;
4749 else
4750 attr.sched_nice = task_nice(p);
4751
4752 rcu_read_unlock();
4753
4754 retval = sched_read_attr(uattr, &attr, size);
4755 return retval;
4756
4757out_unlock:
4758 rcu_read_unlock();
4759 return retval;
4760}
4761
4762long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4763{
4764 cpumask_var_t cpus_allowed, new_mask;
4765 struct task_struct *p;
4766 int retval;
4767
4768 rcu_read_lock();
4769
4770 p = find_process_by_pid(pid);
4771 if (!p) {
4772 rcu_read_unlock();
4773 return -ESRCH;
4774 }
4775
4776 /* Prevent p going away */
4777 get_task_struct(p);
4778 rcu_read_unlock();
4779
4780 if (p->flags & PF_NO_SETAFFINITY) {
4781 retval = -EINVAL;
4782 goto out_put_task;
4783 }
4784 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4785 retval = -ENOMEM;
4786 goto out_put_task;
4787 }
4788 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4789 retval = -ENOMEM;
4790 goto out_free_cpus_allowed;
4791 }
4792 retval = -EPERM;
4793 if (!check_same_owner(p)) {
4794 rcu_read_lock();
4795 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4796 rcu_read_unlock();
4797 goto out_free_new_mask;
4798 }
4799 rcu_read_unlock();
4800 }
4801
4802 retval = security_task_setscheduler(p);
4803 if (retval)
4804 goto out_free_new_mask;
4805
4806
4807 cpuset_cpus_allowed(p, cpus_allowed);
4808 cpumask_and(new_mask, in_mask, cpus_allowed);
4809
4810 /*
4811 * Since bandwidth control happens on root_domain basis,
4812 * if admission test is enabled, we only admit -deadline
4813 * tasks allowed to run on all the CPUs in the task's
4814 * root_domain.
4815 */
4816#ifdef CONFIG_SMP
4817 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4818 rcu_read_lock();
4819 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4820 retval = -EBUSY;
4821 rcu_read_unlock();
4822 goto out_free_new_mask;
4823 }
4824 rcu_read_unlock();
4825 }
4826#endif
4827again:
4828 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4829
4830 if (!retval) {
4831 cpuset_cpus_allowed(p, cpus_allowed);
4832 if (!cpumask_subset(new_mask, cpus_allowed)) {
4833 /*
4834 * We must have raced with a concurrent cpuset
4835 * update. Just reset the cpus_allowed to the
4836 * cpuset's cpus_allowed
4837 */
4838 cpumask_copy(new_mask, cpus_allowed);
4839 goto again;
4840 }
4841 }
4842out_free_new_mask:
4843 free_cpumask_var(new_mask);
4844out_free_cpus_allowed:
4845 free_cpumask_var(cpus_allowed);
4846out_put_task:
4847 put_task_struct(p);
4848 return retval;
4849}
4850
4851static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4852 struct cpumask *new_mask)
4853{
4854 if (len < cpumask_size())
4855 cpumask_clear(new_mask);
4856 else if (len > cpumask_size())
4857 len = cpumask_size();
4858
4859 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4860}
4861
4862/**
4863 * sys_sched_setaffinity - set the CPU affinity of a process
4864 * @pid: pid of the process
4865 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4866 * @user_mask_ptr: user-space pointer to the new CPU mask
4867 *
4868 * Return: 0 on success. An error code otherwise.
4869 */
4870SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4871 unsigned long __user *, user_mask_ptr)
4872{
4873 cpumask_var_t new_mask;
4874 int retval;
4875
4876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4877 return -ENOMEM;
4878
4879 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4880 if (retval == 0)
4881 retval = sched_setaffinity(pid, new_mask);
4882 free_cpumask_var(new_mask);
4883 return retval;
4884}
4885
4886long sched_getaffinity(pid_t pid, struct cpumask *mask)
4887{
4888 struct task_struct *p;
4889 unsigned long flags;
4890 int retval;
4891
4892 rcu_read_lock();
4893
4894 retval = -ESRCH;
4895 p = find_process_by_pid(pid);
4896 if (!p)
4897 goto out_unlock;
4898
4899 retval = security_task_getscheduler(p);
4900 if (retval)
4901 goto out_unlock;
4902
4903 raw_spin_lock_irqsave(&p->pi_lock, flags);
4904 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4905 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4906
4907out_unlock:
4908 rcu_read_unlock();
4909
4910 return retval;
4911}
4912
4913/**
4914 * sys_sched_getaffinity - get the CPU affinity of a process
4915 * @pid: pid of the process
4916 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4917 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4918 *
4919 * Return: size of CPU mask copied to user_mask_ptr on success. An
4920 * error code otherwise.
4921 */
4922SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4923 unsigned long __user *, user_mask_ptr)
4924{
4925 int ret;
4926 cpumask_var_t mask;
4927
4928 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4929 return -EINVAL;
4930 if (len & (sizeof(unsigned long)-1))
4931 return -EINVAL;
4932
4933 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4934 return -ENOMEM;
4935
4936 ret = sched_getaffinity(pid, mask);
4937 if (ret == 0) {
4938 unsigned int retlen = min(len, cpumask_size());
4939
4940 if (copy_to_user(user_mask_ptr, mask, retlen))
4941 ret = -EFAULT;
4942 else
4943 ret = retlen;
4944 }
4945 free_cpumask_var(mask);
4946
4947 return ret;
4948}
4949
4950/**
4951 * sys_sched_yield - yield the current processor to other threads.
4952 *
4953 * This function yields the current CPU to other tasks. If there are no
4954 * other threads running on this CPU then this function will return.
4955 *
4956 * Return: 0.
4957 */
4958static void do_sched_yield(void)
4959{
4960 struct rq_flags rf;
4961 struct rq *rq;
4962
4963 local_irq_disable();
4964 rq = this_rq();
4965 rq_lock(rq, &rf);
4966
4967 schedstat_inc(rq->yld_count);
4968 current->sched_class->yield_task(rq);
4969
4970 /*
4971 * Since we are going to call schedule() anyway, there's
4972 * no need to preempt or enable interrupts:
4973 */
4974 preempt_disable();
4975 rq_unlock(rq, &rf);
4976 sched_preempt_enable_no_resched();
4977
4978 schedule();
4979}
4980
4981SYSCALL_DEFINE0(sched_yield)
4982{
4983 do_sched_yield();
4984 return 0;
4985}
4986
4987#ifndef CONFIG_PREEMPT
4988int __sched _cond_resched(void)
4989{
4990 if (should_resched(0)) {
4991 preempt_schedule_common();
4992 return 1;
4993 }
4994 rcu_all_qs();
4995 return 0;
4996}
4997EXPORT_SYMBOL(_cond_resched);
4998#endif
4999
5000/*
5001 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5002 * call schedule, and on return reacquire the lock.
5003 *
5004 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5005 * operations here to prevent schedule() from being called twice (once via
5006 * spin_unlock(), once by hand).
5007 */
5008int __cond_resched_lock(spinlock_t *lock)
5009{
5010 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5011 int ret = 0;
5012
5013 lockdep_assert_held(lock);
5014
5015 if (spin_needbreak(lock) || resched) {
5016 spin_unlock(lock);
5017 if (resched)
5018 preempt_schedule_common();
5019 else
5020 cpu_relax();
5021 ret = 1;
5022 spin_lock(lock);
5023 }
5024 return ret;
5025}
5026EXPORT_SYMBOL(__cond_resched_lock);
5027
5028int __sched __cond_resched_softirq(void)
5029{
5030 BUG_ON(!in_softirq());
5031
5032 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5033 local_bh_enable();
5034 preempt_schedule_common();
5035 local_bh_disable();
5036 return 1;
5037 }
5038 return 0;
5039}
5040EXPORT_SYMBOL(__cond_resched_softirq);
5041
5042/**
5043 * yield - yield the current processor to other threads.
5044 *
5045 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5046 *
5047 * The scheduler is at all times free to pick the calling task as the most
5048 * eligible task to run, if removing the yield() call from your code breaks
5049 * it, its already broken.
5050 *
5051 * Typical broken usage is:
5052 *
5053 * while (!event)
5054 * yield();
5055 *
5056 * where one assumes that yield() will let 'the other' process run that will
5057 * make event true. If the current task is a SCHED_FIFO task that will never
5058 * happen. Never use yield() as a progress guarantee!!
5059 *
5060 * If you want to use yield() to wait for something, use wait_event().
5061 * If you want to use yield() to be 'nice' for others, use cond_resched().
5062 * If you still want to use yield(), do not!
5063 */
5064void __sched yield(void)
5065{
5066 set_current_state(TASK_RUNNING);
5067 do_sched_yield();
5068}
5069EXPORT_SYMBOL(yield);
5070
5071/**
5072 * yield_to - yield the current processor to another thread in
5073 * your thread group, or accelerate that thread toward the
5074 * processor it's on.
5075 * @p: target task
5076 * @preempt: whether task preemption is allowed or not
5077 *
5078 * It's the caller's job to ensure that the target task struct
5079 * can't go away on us before we can do any checks.
5080 *
5081 * Return:
5082 * true (>0) if we indeed boosted the target task.
5083 * false (0) if we failed to boost the target.
5084 * -ESRCH if there's no task to yield to.
5085 */
5086int __sched yield_to(struct task_struct *p, bool preempt)
5087{
5088 struct task_struct *curr = current;
5089 struct rq *rq, *p_rq;
5090 unsigned long flags;
5091 int yielded = 0;
5092
5093 local_irq_save(flags);
5094 rq = this_rq();
5095
5096again:
5097 p_rq = task_rq(p);
5098 /*
5099 * If we're the only runnable task on the rq and target rq also
5100 * has only one task, there's absolutely no point in yielding.
5101 */
5102 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5103 yielded = -ESRCH;
5104 goto out_irq;
5105 }
5106
5107 double_rq_lock(rq, p_rq);
5108 if (task_rq(p) != p_rq) {
5109 double_rq_unlock(rq, p_rq);
5110 goto again;
5111 }
5112
5113 if (!curr->sched_class->yield_to_task)
5114 goto out_unlock;
5115
5116 if (curr->sched_class != p->sched_class)
5117 goto out_unlock;
5118
5119 if (task_running(p_rq, p) || p->state)
5120 goto out_unlock;
5121
5122 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5123 if (yielded) {
5124 schedstat_inc(rq->yld_count);
5125 /*
5126 * Make p's CPU reschedule; pick_next_entity takes care of
5127 * fairness.
5128 */
5129 if (preempt && rq != p_rq)
5130 resched_curr(p_rq);
5131 }
5132
5133out_unlock:
5134 double_rq_unlock(rq, p_rq);
5135out_irq:
5136 local_irq_restore(flags);
5137
5138 if (yielded > 0)
5139 schedule();
5140
5141 return yielded;
5142}
5143EXPORT_SYMBOL_GPL(yield_to);
5144
5145int io_schedule_prepare(void)
5146{
5147 int old_iowait = current->in_iowait;
5148
5149 current->in_iowait = 1;
5150 blk_schedule_flush_plug(current);
5151
5152 return old_iowait;
5153}
5154
5155void io_schedule_finish(int token)
5156{
5157 current->in_iowait = token;
5158}
5159
5160/*
5161 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5162 * that process accounting knows that this is a task in IO wait state.
5163 */
5164long __sched io_schedule_timeout(long timeout)
5165{
5166 int token;
5167 long ret;
5168
5169 token = io_schedule_prepare();
5170 ret = schedule_timeout(timeout);
5171 io_schedule_finish(token);
5172
5173 return ret;
5174}
5175EXPORT_SYMBOL(io_schedule_timeout);
5176
5177void io_schedule(void)
5178{
5179 int token;
5180
5181 token = io_schedule_prepare();
5182 schedule();
5183 io_schedule_finish(token);
5184}
5185EXPORT_SYMBOL(io_schedule);
5186
5187/**
5188 * sys_sched_get_priority_max - return maximum RT priority.
5189 * @policy: scheduling class.
5190 *
5191 * Return: On success, this syscall returns the maximum
5192 * rt_priority that can be used by a given scheduling class.
5193 * On failure, a negative error code is returned.
5194 */
5195SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5196{
5197 int ret = -EINVAL;
5198
5199 switch (policy) {
5200 case SCHED_FIFO:
5201 case SCHED_RR:
5202 ret = MAX_USER_RT_PRIO-1;
5203 break;
5204 case SCHED_DEADLINE:
5205 case SCHED_NORMAL:
5206 case SCHED_BATCH:
5207 case SCHED_IDLE:
5208 ret = 0;
5209 break;
5210 }
5211 return ret;
5212}
5213
5214/**
5215 * sys_sched_get_priority_min - return minimum RT priority.
5216 * @policy: scheduling class.
5217 *
5218 * Return: On success, this syscall returns the minimum
5219 * rt_priority that can be used by a given scheduling class.
5220 * On failure, a negative error code is returned.
5221 */
5222SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5223{
5224 int ret = -EINVAL;
5225
5226 switch (policy) {
5227 case SCHED_FIFO:
5228 case SCHED_RR:
5229 ret = 1;
5230 break;
5231 case SCHED_DEADLINE:
5232 case SCHED_NORMAL:
5233 case SCHED_BATCH:
5234 case SCHED_IDLE:
5235 ret = 0;
5236 }
5237 return ret;
5238}
5239
5240static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5241{
5242 struct task_struct *p;
5243 unsigned int time_slice;
5244 struct rq_flags rf;
5245 struct rq *rq;
5246 int retval;
5247
5248 if (pid < 0)
5249 return -EINVAL;
5250
5251 retval = -ESRCH;
5252 rcu_read_lock();
5253 p = find_process_by_pid(pid);
5254 if (!p)
5255 goto out_unlock;
5256
5257 retval = security_task_getscheduler(p);
5258 if (retval)
5259 goto out_unlock;
5260
5261 rq = task_rq_lock(p, &rf);
5262 time_slice = 0;
5263 if (p->sched_class->get_rr_interval)
5264 time_slice = p->sched_class->get_rr_interval(rq, p);
5265 task_rq_unlock(rq, p, &rf);
5266
5267 rcu_read_unlock();
5268 jiffies_to_timespec64(time_slice, t);
5269 return 0;
5270
5271out_unlock:
5272 rcu_read_unlock();
5273 return retval;
5274}
5275
5276/**
5277 * sys_sched_rr_get_interval - return the default timeslice of a process.
5278 * @pid: pid of the process.
5279 * @interval: userspace pointer to the timeslice value.
5280 *
5281 * this syscall writes the default timeslice value of a given process
5282 * into the user-space timespec buffer. A value of '0' means infinity.
5283 *
5284 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5285 * an error code.
5286 */
5287SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5288 struct timespec __user *, interval)
5289{
5290 struct timespec64 t;
5291 int retval = sched_rr_get_interval(pid, &t);
5292
5293 if (retval == 0)
5294 retval = put_timespec64(&t, interval);
5295
5296 return retval;
5297}
5298
5299#ifdef CONFIG_COMPAT
5300COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5301 compat_pid_t, pid,
5302 struct compat_timespec __user *, interval)
5303{
5304 struct timespec64 t;
5305 int retval = sched_rr_get_interval(pid, &t);
5306
5307 if (retval == 0)
5308 retval = compat_put_timespec64(&t, interval);
5309 return retval;
5310}
5311#endif
5312
5313void sched_show_task(struct task_struct *p)
5314{
5315 unsigned long free = 0;
5316 int ppid;
5317
5318 if (!try_get_task_stack(p))
5319 return;
5320
5321 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5322
5323 if (p->state == TASK_RUNNING)
5324 printk(KERN_CONT " running task ");
5325#ifdef CONFIG_DEBUG_STACK_USAGE
5326 free = stack_not_used(p);
5327#endif
5328 ppid = 0;
5329 rcu_read_lock();
5330 if (pid_alive(p))
5331 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5332 rcu_read_unlock();
5333 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5334 task_pid_nr(p), ppid,
5335 (unsigned long)task_thread_info(p)->flags);
5336
5337 print_worker_info(KERN_INFO, p);
5338 show_stack(p, NULL);
5339 put_task_stack(p);
5340}
5341EXPORT_SYMBOL_GPL(sched_show_task);
5342
5343static inline bool
5344state_filter_match(unsigned long state_filter, struct task_struct *p)
5345{
5346 /* no filter, everything matches */
5347 if (!state_filter)
5348 return true;
5349
5350 /* filter, but doesn't match */
5351 if (!(p->state & state_filter))
5352 return false;
5353
5354 /*
5355 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5356 * TASK_KILLABLE).
5357 */
5358 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5359 return false;
5360
5361 return true;
5362}
5363
5364
5365void show_state_filter(unsigned long state_filter)
5366{
5367 struct task_struct *g, *p;
5368
5369#if BITS_PER_LONG == 32
5370 printk(KERN_INFO
5371 " task PC stack pid father\n");
5372#else
5373 printk(KERN_INFO
5374 " task PC stack pid father\n");
5375#endif
5376 rcu_read_lock();
5377 for_each_process_thread(g, p) {
5378 /*
5379 * reset the NMI-timeout, listing all files on a slow
5380 * console might take a lot of time:
5381 * Also, reset softlockup watchdogs on all CPUs, because
5382 * another CPU might be blocked waiting for us to process
5383 * an IPI.
5384 */
5385 touch_nmi_watchdog();
5386 touch_all_softlockup_watchdogs();
5387 if (state_filter_match(state_filter, p))
5388 sched_show_task(p);
5389 }
5390
5391#ifdef CONFIG_SCHED_DEBUG
5392 if (!state_filter)
5393 sysrq_sched_debug_show();
5394#endif
5395 rcu_read_unlock();
5396 /*
5397 * Only show locks if all tasks are dumped:
5398 */
5399 if (!state_filter)
5400 debug_show_all_locks();
5401}
5402
5403/**
5404 * init_idle - set up an idle thread for a given CPU
5405 * @idle: task in question
5406 * @cpu: CPU the idle task belongs to
5407 *
5408 * NOTE: this function does not set the idle thread's NEED_RESCHED
5409 * flag, to make booting more robust.
5410 */
5411void init_idle(struct task_struct *idle, int cpu)
5412{
5413 struct rq *rq = cpu_rq(cpu);
5414 unsigned long flags;
5415
5416 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5417 raw_spin_lock(&rq->lock);
5418
5419 __sched_fork(0, idle);
5420 idle->state = TASK_RUNNING;
5421 idle->se.exec_start = sched_clock();
5422 idle->flags |= PF_IDLE;
5423
5424 kasan_unpoison_task_stack(idle);
5425
5426#ifdef CONFIG_SMP
5427 /*
5428 * Its possible that init_idle() gets called multiple times on a task,
5429 * in that case do_set_cpus_allowed() will not do the right thing.
5430 *
5431 * And since this is boot we can forgo the serialization.
5432 */
5433 set_cpus_allowed_common(idle, cpumask_of(cpu));
5434#endif
5435 /*
5436 * We're having a chicken and egg problem, even though we are
5437 * holding rq->lock, the CPU isn't yet set to this CPU so the
5438 * lockdep check in task_group() will fail.
5439 *
5440 * Similar case to sched_fork(). / Alternatively we could
5441 * use task_rq_lock() here and obtain the other rq->lock.
5442 *
5443 * Silence PROVE_RCU
5444 */
5445 rcu_read_lock();
5446 __set_task_cpu(idle, cpu);
5447 rcu_read_unlock();
5448
5449 rq->curr = rq->idle = idle;
5450 idle->on_rq = TASK_ON_RQ_QUEUED;
5451#ifdef CONFIG_SMP
5452 idle->on_cpu = 1;
5453#endif
5454 raw_spin_unlock(&rq->lock);
5455 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5456
5457 /* Set the preempt count _outside_ the spinlocks! */
5458 init_idle_preempt_count(idle, cpu);
5459
5460 /*
5461 * The idle tasks have their own, simple scheduling class:
5462 */
5463 idle->sched_class = &idle_sched_class;
5464 ftrace_graph_init_idle_task(idle, cpu);
5465 vtime_init_idle(idle, cpu);
5466#ifdef CONFIG_SMP
5467 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5468#endif
5469}
5470
5471#ifdef CONFIG_SMP
5472
5473int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5474 const struct cpumask *trial)
5475{
5476 int ret = 1;
5477
5478 if (!cpumask_weight(cur))
5479 return ret;
5480
5481 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5482
5483 return ret;
5484}
5485
5486int task_can_attach(struct task_struct *p,
5487 const struct cpumask *cs_cpus_allowed)
5488{
5489 int ret = 0;
5490
5491 /*
5492 * Kthreads which disallow setaffinity shouldn't be moved
5493 * to a new cpuset; we don't want to change their CPU
5494 * affinity and isolating such threads by their set of
5495 * allowed nodes is unnecessary. Thus, cpusets are not
5496 * applicable for such threads. This prevents checking for
5497 * success of set_cpus_allowed_ptr() on all attached tasks
5498 * before cpus_allowed may be changed.
5499 */
5500 if (p->flags & PF_NO_SETAFFINITY) {
5501 ret = -EINVAL;
5502 goto out;
5503 }
5504
5505 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5506 cs_cpus_allowed))
5507 ret = dl_task_can_attach(p, cs_cpus_allowed);
5508
5509out:
5510 return ret;
5511}
5512
5513bool sched_smp_initialized __read_mostly;
5514
5515#ifdef CONFIG_NUMA_BALANCING
5516/* Migrate current task p to target_cpu */
5517int migrate_task_to(struct task_struct *p, int target_cpu)
5518{
5519 struct migration_arg arg = { p, target_cpu };
5520 int curr_cpu = task_cpu(p);
5521
5522 if (curr_cpu == target_cpu)
5523 return 0;
5524
5525 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5526 return -EINVAL;
5527
5528 /* TODO: This is not properly updating schedstats */
5529
5530 trace_sched_move_numa(p, curr_cpu, target_cpu);
5531 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5532}
5533
5534/*
5535 * Requeue a task on a given node and accurately track the number of NUMA
5536 * tasks on the runqueues
5537 */
5538void sched_setnuma(struct task_struct *p, int nid)
5539{
5540 bool queued, running;
5541 struct rq_flags rf;
5542 struct rq *rq;
5543
5544 rq = task_rq_lock(p, &rf);
5545 queued = task_on_rq_queued(p);
5546 running = task_current(rq, p);
5547
5548 if (queued)
5549 dequeue_task(rq, p, DEQUEUE_SAVE);
5550 if (running)
5551 put_prev_task(rq, p);
5552
5553 p->numa_preferred_nid = nid;
5554
5555 if (queued)
5556 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5557 if (running)
5558 set_curr_task(rq, p);
5559 task_rq_unlock(rq, p, &rf);
5560}
5561#endif /* CONFIG_NUMA_BALANCING */
5562
5563#ifdef CONFIG_HOTPLUG_CPU
5564/*
5565 * Ensure that the idle task is using init_mm right before its CPU goes
5566 * offline.
5567 */
5568void idle_task_exit(void)
5569{
5570 struct mm_struct *mm = current->active_mm;
5571
5572 BUG_ON(cpu_online(smp_processor_id()));
5573
5574 if (mm != &init_mm) {
5575 switch_mm(mm, &init_mm, current);
5576 current->active_mm = &init_mm;
5577 finish_arch_post_lock_switch();
5578 }
5579 mmdrop(mm);
5580}
5581
5582/*
5583 * Since this CPU is going 'away' for a while, fold any nr_active delta
5584 * we might have. Assumes we're called after migrate_tasks() so that the
5585 * nr_active count is stable. We need to take the teardown thread which
5586 * is calling this into account, so we hand in adjust = 1 to the load
5587 * calculation.
5588 *
5589 * Also see the comment "Global load-average calculations".
5590 */
5591static void calc_load_migrate(struct rq *rq)
5592{
5593 long delta = calc_load_fold_active(rq, 1);
5594 if (delta)
5595 atomic_long_add(delta, &calc_load_tasks);
5596}
5597
5598static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5599{
5600}
5601
5602static const struct sched_class fake_sched_class = {
5603 .put_prev_task = put_prev_task_fake,
5604};
5605
5606static struct task_struct fake_task = {
5607 /*
5608 * Avoid pull_{rt,dl}_task()
5609 */
5610 .prio = MAX_PRIO + 1,
5611 .sched_class = &fake_sched_class,
5612};
5613
5614/*
5615 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5616 * try_to_wake_up()->select_task_rq().
5617 *
5618 * Called with rq->lock held even though we'er in stop_machine() and
5619 * there's no concurrency possible, we hold the required locks anyway
5620 * because of lock validation efforts.
5621 */
5622static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5623{
5624 struct rq *rq = dead_rq;
5625 struct task_struct *next, *stop = rq->stop;
5626 struct rq_flags orf = *rf;
5627 int dest_cpu;
5628
5629 /*
5630 * Fudge the rq selection such that the below task selection loop
5631 * doesn't get stuck on the currently eligible stop task.
5632 *
5633 * We're currently inside stop_machine() and the rq is either stuck
5634 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5635 * either way we should never end up calling schedule() until we're
5636 * done here.
5637 */
5638 rq->stop = NULL;
5639
5640 /*
5641 * put_prev_task() and pick_next_task() sched
5642 * class method both need to have an up-to-date
5643 * value of rq->clock[_task]
5644 */
5645 update_rq_clock(rq);
5646
5647 for (;;) {
5648 /*
5649 * There's this thread running, bail when that's the only
5650 * remaining thread:
5651 */
5652 if (rq->nr_running == 1)
5653 break;
5654
5655 /*
5656 * pick_next_task() assumes pinned rq->lock:
5657 */
5658 next = pick_next_task(rq, &fake_task, rf);
5659 BUG_ON(!next);
5660 put_prev_task(rq, next);
5661
5662 /*
5663 * Rules for changing task_struct::cpus_allowed are holding
5664 * both pi_lock and rq->lock, such that holding either
5665 * stabilizes the mask.
5666 *
5667 * Drop rq->lock is not quite as disastrous as it usually is
5668 * because !cpu_active at this point, which means load-balance
5669 * will not interfere. Also, stop-machine.
5670 */
5671 rq_unlock(rq, rf);
5672 raw_spin_lock(&next->pi_lock);
5673 rq_relock(rq, rf);
5674
5675 /*
5676 * Since we're inside stop-machine, _nothing_ should have
5677 * changed the task, WARN if weird stuff happened, because in
5678 * that case the above rq->lock drop is a fail too.
5679 */
5680 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5681 raw_spin_unlock(&next->pi_lock);
5682 continue;
5683 }
5684
5685 /* Find suitable destination for @next, with force if needed. */
5686 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5687 rq = __migrate_task(rq, rf, next, dest_cpu);
5688 if (rq != dead_rq) {
5689 rq_unlock(rq, rf);
5690 rq = dead_rq;
5691 *rf = orf;
5692 rq_relock(rq, rf);
5693 }
5694 raw_spin_unlock(&next->pi_lock);
5695 }
5696
5697 rq->stop = stop;
5698}
5699#endif /* CONFIG_HOTPLUG_CPU */
5700
5701void set_rq_online(struct rq *rq)
5702{
5703 if (!rq->online) {
5704 const struct sched_class *class;
5705
5706 cpumask_set_cpu(rq->cpu, rq->rd->online);
5707 rq->online = 1;
5708
5709 for_each_class(class) {
5710 if (class->rq_online)
5711 class->rq_online(rq);
5712 }
5713 }
5714}
5715
5716void set_rq_offline(struct rq *rq)
5717{
5718 if (rq->online) {
5719 const struct sched_class *class;
5720
5721 for_each_class(class) {
5722 if (class->rq_offline)
5723 class->rq_offline(rq);
5724 }
5725
5726 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5727 rq->online = 0;
5728 }
5729}
5730
5731static void set_cpu_rq_start_time(unsigned int cpu)
5732{
5733 struct rq *rq = cpu_rq(cpu);
5734
5735 rq->age_stamp = sched_clock_cpu(cpu);
5736}
5737
5738/*
5739 * used to mark begin/end of suspend/resume:
5740 */
5741static int num_cpus_frozen;
5742
5743/*
5744 * Update cpusets according to cpu_active mask. If cpusets are
5745 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5746 * around partition_sched_domains().
5747 *
5748 * If we come here as part of a suspend/resume, don't touch cpusets because we
5749 * want to restore it back to its original state upon resume anyway.
5750 */
5751static void cpuset_cpu_active(void)
5752{
5753 if (cpuhp_tasks_frozen) {
5754 /*
5755 * num_cpus_frozen tracks how many CPUs are involved in suspend
5756 * resume sequence. As long as this is not the last online
5757 * operation in the resume sequence, just build a single sched
5758 * domain, ignoring cpusets.
5759 */
5760 partition_sched_domains(1, NULL, NULL);
5761 if (--num_cpus_frozen)
5762 return;
5763 /*
5764 * This is the last CPU online operation. So fall through and
5765 * restore the original sched domains by considering the
5766 * cpuset configurations.
5767 */
5768 cpuset_force_rebuild();
5769 }
5770 cpuset_update_active_cpus();
5771}
5772
5773static int cpuset_cpu_inactive(unsigned int cpu)
5774{
5775 if (!cpuhp_tasks_frozen) {
5776 if (dl_cpu_busy(cpu))
5777 return -EBUSY;
5778 cpuset_update_active_cpus();
5779 } else {
5780 num_cpus_frozen++;
5781 partition_sched_domains(1, NULL, NULL);
5782 }
5783 return 0;
5784}
5785
5786int sched_cpu_activate(unsigned int cpu)
5787{
5788 struct rq *rq = cpu_rq(cpu);
5789 struct rq_flags rf;
5790
5791 set_cpu_active(cpu, true);
5792
5793 if (sched_smp_initialized) {
5794 sched_domains_numa_masks_set(cpu);
5795 cpuset_cpu_active();
5796 }
5797
5798 /*
5799 * Put the rq online, if not already. This happens:
5800 *
5801 * 1) In the early boot process, because we build the real domains
5802 * after all CPUs have been brought up.
5803 *
5804 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5805 * domains.
5806 */
5807 rq_lock_irqsave(rq, &rf);
5808 if (rq->rd) {
5809 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5810 set_rq_online(rq);
5811 }
5812 rq_unlock_irqrestore(rq, &rf);
5813
5814 update_max_interval();
5815
5816 return 0;
5817}
5818
5819int sched_cpu_deactivate(unsigned int cpu)
5820{
5821 int ret;
5822
5823 set_cpu_active(cpu, false);
5824 /*
5825 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5826 * users of this state to go away such that all new such users will
5827 * observe it.
5828 *
5829 * Do sync before park smpboot threads to take care the rcu boost case.
5830 */
5831 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5832
5833 if (!sched_smp_initialized)
5834 return 0;
5835
5836 ret = cpuset_cpu_inactive(cpu);
5837 if (ret) {
5838 set_cpu_active(cpu, true);
5839 return ret;
5840 }
5841 sched_domains_numa_masks_clear(cpu);
5842 return 0;
5843}
5844
5845static void sched_rq_cpu_starting(unsigned int cpu)
5846{
5847 struct rq *rq = cpu_rq(cpu);
5848
5849 rq->calc_load_update = calc_load_update;
5850 update_max_interval();
5851}
5852
5853int sched_cpu_starting(unsigned int cpu)
5854{
5855 set_cpu_rq_start_time(cpu);
5856 sched_rq_cpu_starting(cpu);
5857 sched_tick_start(cpu);
5858 return 0;
5859}
5860
5861#ifdef CONFIG_HOTPLUG_CPU
5862int sched_cpu_dying(unsigned int cpu)
5863{
5864 struct rq *rq = cpu_rq(cpu);
5865 struct rq_flags rf;
5866
5867 /* Handle pending wakeups and then migrate everything off */
5868 sched_ttwu_pending();
5869 sched_tick_stop(cpu);
5870
5871 rq_lock_irqsave(rq, &rf);
5872 if (rq->rd) {
5873 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5874 set_rq_offline(rq);
5875 }
5876 migrate_tasks(rq, &rf);
5877 BUG_ON(rq->nr_running != 1);
5878 rq_unlock_irqrestore(rq, &rf);
5879
5880 calc_load_migrate(rq);
5881 update_max_interval();
5882 nohz_balance_exit_idle(rq);
5883 hrtick_clear(rq);
5884 return 0;
5885}
5886#endif
5887
5888#ifdef CONFIG_SCHED_SMT
5889DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5890
5891static void sched_init_smt(void)
5892{
5893 /*
5894 * We've enumerated all CPUs and will assume that if any CPU
5895 * has SMT siblings, CPU0 will too.
5896 */
5897 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5898 static_branch_enable(&sched_smt_present);
5899}
5900#else
5901static inline void sched_init_smt(void) { }
5902#endif
5903
5904void __init sched_init_smp(void)
5905{
5906 sched_init_numa();
5907
5908 /*
5909 * There's no userspace yet to cause hotplug operations; hence all the
5910 * CPU masks are stable and all blatant races in the below code cannot
5911 * happen.
5912 */
5913 mutex_lock(&sched_domains_mutex);
5914 sched_init_domains(cpu_active_mask);
5915 mutex_unlock(&sched_domains_mutex);
5916
5917 /* Move init over to a non-isolated CPU */
5918 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5919 BUG();
5920 sched_init_granularity();
5921
5922 init_sched_rt_class();
5923 init_sched_dl_class();
5924
5925 sched_init_smt();
5926
5927 sched_smp_initialized = true;
5928}
5929
5930static int __init migration_init(void)
5931{
5932 sched_rq_cpu_starting(smp_processor_id());
5933 return 0;
5934}
5935early_initcall(migration_init);
5936
5937#else
5938void __init sched_init_smp(void)
5939{
5940 sched_init_granularity();
5941}
5942#endif /* CONFIG_SMP */
5943
5944int in_sched_functions(unsigned long addr)
5945{
5946 return in_lock_functions(addr) ||
5947 (addr >= (unsigned long)__sched_text_start
5948 && addr < (unsigned long)__sched_text_end);
5949}
5950
5951#ifdef CONFIG_CGROUP_SCHED
5952/*
5953 * Default task group.
5954 * Every task in system belongs to this group at bootup.
5955 */
5956struct task_group root_task_group;
5957LIST_HEAD(task_groups);
5958
5959/* Cacheline aligned slab cache for task_group */
5960static struct kmem_cache *task_group_cache __read_mostly;
5961#endif
5962
5963DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5964DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5965
5966void __init sched_init(void)
5967{
5968 int i, j;
5969 unsigned long alloc_size = 0, ptr;
5970
5971 sched_clock_init();
5972 wait_bit_init();
5973
5974#ifdef CONFIG_FAIR_GROUP_SCHED
5975 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5976#endif
5977#ifdef CONFIG_RT_GROUP_SCHED
5978 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5979#endif
5980 if (alloc_size) {
5981 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5982
5983#ifdef CONFIG_FAIR_GROUP_SCHED
5984 root_task_group.se = (struct sched_entity **)ptr;
5985 ptr += nr_cpu_ids * sizeof(void **);
5986
5987 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5988 ptr += nr_cpu_ids * sizeof(void **);
5989
5990#endif /* CONFIG_FAIR_GROUP_SCHED */
5991#ifdef CONFIG_RT_GROUP_SCHED
5992 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5993 ptr += nr_cpu_ids * sizeof(void **);
5994
5995 root_task_group.rt_rq = (struct rt_rq **)ptr;
5996 ptr += nr_cpu_ids * sizeof(void **);
5997
5998#endif /* CONFIG_RT_GROUP_SCHED */
5999 }
6000#ifdef CONFIG_CPUMASK_OFFSTACK
6001 for_each_possible_cpu(i) {
6002 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6003 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6004 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6005 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6006 }
6007#endif /* CONFIG_CPUMASK_OFFSTACK */
6008
6009 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6010 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6011
6012#ifdef CONFIG_SMP
6013 init_defrootdomain();
6014#endif
6015
6016#ifdef CONFIG_RT_GROUP_SCHED
6017 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6018 global_rt_period(), global_rt_runtime());
6019#endif /* CONFIG_RT_GROUP_SCHED */
6020
6021#ifdef CONFIG_CGROUP_SCHED
6022 task_group_cache = KMEM_CACHE(task_group, 0);
6023
6024 list_add(&root_task_group.list, &task_groups);
6025 INIT_LIST_HEAD(&root_task_group.children);
6026 INIT_LIST_HEAD(&root_task_group.siblings);
6027 autogroup_init(&init_task);
6028#endif /* CONFIG_CGROUP_SCHED */
6029
6030 for_each_possible_cpu(i) {
6031 struct rq *rq;
6032
6033 rq = cpu_rq(i);
6034 raw_spin_lock_init(&rq->lock);
6035 rq->nr_running = 0;
6036 rq->calc_load_active = 0;
6037 rq->calc_load_update = jiffies + LOAD_FREQ;
6038 init_cfs_rq(&rq->cfs);
6039 init_rt_rq(&rq->rt);
6040 init_dl_rq(&rq->dl);
6041#ifdef CONFIG_FAIR_GROUP_SCHED
6042 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6043 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6044 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6045 /*
6046 * How much CPU bandwidth does root_task_group get?
6047 *
6048 * In case of task-groups formed thr' the cgroup filesystem, it
6049 * gets 100% of the CPU resources in the system. This overall
6050 * system CPU resource is divided among the tasks of
6051 * root_task_group and its child task-groups in a fair manner,
6052 * based on each entity's (task or task-group's) weight
6053 * (se->load.weight).
6054 *
6055 * In other words, if root_task_group has 10 tasks of weight
6056 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6057 * then A0's share of the CPU resource is:
6058 *
6059 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6060 *
6061 * We achieve this by letting root_task_group's tasks sit
6062 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6063 */
6064 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6065 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6066#endif /* CONFIG_FAIR_GROUP_SCHED */
6067
6068 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6069#ifdef CONFIG_RT_GROUP_SCHED
6070 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6071#endif
6072
6073 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6074 rq->cpu_load[j] = 0;
6075
6076#ifdef CONFIG_SMP
6077 rq->sd = NULL;
6078 rq->rd = NULL;
6079 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6080 rq->balance_callback = NULL;
6081 rq->active_balance = 0;
6082 rq->next_balance = jiffies;
6083 rq->push_cpu = 0;
6084 rq->cpu = i;
6085 rq->online = 0;
6086 rq->idle_stamp = 0;
6087 rq->avg_idle = 2*sysctl_sched_migration_cost;
6088 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6089
6090 INIT_LIST_HEAD(&rq->cfs_tasks);
6091
6092 rq_attach_root(rq, &def_root_domain);
6093#ifdef CONFIG_NO_HZ_COMMON
6094 rq->last_load_update_tick = jiffies;
6095 rq->last_blocked_load_update_tick = jiffies;
6096 atomic_set(&rq->nohz_flags, 0);
6097#endif
6098#endif /* CONFIG_SMP */
6099 hrtick_rq_init(rq);
6100 atomic_set(&rq->nr_iowait, 0);
6101 }
6102
6103 set_load_weight(&init_task, false);
6104
6105 /*
6106 * The boot idle thread does lazy MMU switching as well:
6107 */
6108 mmgrab(&init_mm);
6109 enter_lazy_tlb(&init_mm, current);
6110
6111 /*
6112 * Make us the idle thread. Technically, schedule() should not be
6113 * called from this thread, however somewhere below it might be,
6114 * but because we are the idle thread, we just pick up running again
6115 * when this runqueue becomes "idle".
6116 */
6117 init_idle(current, smp_processor_id());
6118
6119 calc_load_update = jiffies + LOAD_FREQ;
6120
6121#ifdef CONFIG_SMP
6122 idle_thread_set_boot_cpu();
6123 set_cpu_rq_start_time(smp_processor_id());
6124#endif
6125 init_sched_fair_class();
6126
6127 init_schedstats();
6128
6129 scheduler_running = 1;
6130}
6131
6132#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6133static inline int preempt_count_equals(int preempt_offset)
6134{
6135 int nested = preempt_count() + rcu_preempt_depth();
6136
6137 return (nested == preempt_offset);
6138}
6139
6140void __might_sleep(const char *file, int line, int preempt_offset)
6141{
6142 /*
6143 * Blocking primitives will set (and therefore destroy) current->state,
6144 * since we will exit with TASK_RUNNING make sure we enter with it,
6145 * otherwise we will destroy state.
6146 */
6147 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6148 "do not call blocking ops when !TASK_RUNNING; "
6149 "state=%lx set at [<%p>] %pS\n",
6150 current->state,
6151 (void *)current->task_state_change,
6152 (void *)current->task_state_change);
6153
6154 ___might_sleep(file, line, preempt_offset);
6155}
6156EXPORT_SYMBOL(__might_sleep);
6157
6158void ___might_sleep(const char *file, int line, int preempt_offset)
6159{
6160 /* Ratelimiting timestamp: */
6161 static unsigned long prev_jiffy;
6162
6163 unsigned long preempt_disable_ip;
6164
6165 /* WARN_ON_ONCE() by default, no rate limit required: */
6166 rcu_sleep_check();
6167
6168 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6169 !is_idle_task(current)) ||
6170 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6171 oops_in_progress)
6172 return;
6173
6174 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6175 return;
6176 prev_jiffy = jiffies;
6177
6178 /* Save this before calling printk(), since that will clobber it: */
6179 preempt_disable_ip = get_preempt_disable_ip(current);
6180
6181 printk(KERN_ERR
6182 "BUG: sleeping function called from invalid context at %s:%d\n",
6183 file, line);
6184 printk(KERN_ERR
6185 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6186 in_atomic(), irqs_disabled(),
6187 current->pid, current->comm);
6188
6189 if (task_stack_end_corrupted(current))
6190 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6191
6192 debug_show_held_locks(current);
6193 if (irqs_disabled())
6194 print_irqtrace_events(current);
6195 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6196 && !preempt_count_equals(preempt_offset)) {
6197 pr_err("Preemption disabled at:");
6198 print_ip_sym(preempt_disable_ip);
6199 pr_cont("\n");
6200 }
6201 dump_stack();
6202 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6203}
6204EXPORT_SYMBOL(___might_sleep);
6205#endif
6206
6207#ifdef CONFIG_MAGIC_SYSRQ
6208void normalize_rt_tasks(void)
6209{
6210 struct task_struct *g, *p;
6211 struct sched_attr attr = {
6212 .sched_policy = SCHED_NORMAL,
6213 };
6214
6215 read_lock(&tasklist_lock);
6216 for_each_process_thread(g, p) {
6217 /*
6218 * Only normalize user tasks:
6219 */
6220 if (p->flags & PF_KTHREAD)
6221 continue;
6222
6223 p->se.exec_start = 0;
6224 schedstat_set(p->se.statistics.wait_start, 0);
6225 schedstat_set(p->se.statistics.sleep_start, 0);
6226 schedstat_set(p->se.statistics.block_start, 0);
6227
6228 if (!dl_task(p) && !rt_task(p)) {
6229 /*
6230 * Renice negative nice level userspace
6231 * tasks back to 0:
6232 */
6233 if (task_nice(p) < 0)
6234 set_user_nice(p, 0);
6235 continue;
6236 }
6237
6238 __sched_setscheduler(p, &attr, false, false);
6239 }
6240 read_unlock(&tasklist_lock);
6241}
6242
6243#endif /* CONFIG_MAGIC_SYSRQ */
6244
6245#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6246/*
6247 * These functions are only useful for the IA64 MCA handling, or kdb.
6248 *
6249 * They can only be called when the whole system has been
6250 * stopped - every CPU needs to be quiescent, and no scheduling
6251 * activity can take place. Using them for anything else would
6252 * be a serious bug, and as a result, they aren't even visible
6253 * under any other configuration.
6254 */
6255
6256/**
6257 * curr_task - return the current task for a given CPU.
6258 * @cpu: the processor in question.
6259 *
6260 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6261 *
6262 * Return: The current task for @cpu.
6263 */
6264struct task_struct *curr_task(int cpu)
6265{
6266 return cpu_curr(cpu);
6267}
6268
6269#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6270
6271#ifdef CONFIG_IA64
6272/**
6273 * set_curr_task - set the current task for a given CPU.
6274 * @cpu: the processor in question.
6275 * @p: the task pointer to set.
6276 *
6277 * Description: This function must only be used when non-maskable interrupts
6278 * are serviced on a separate stack. It allows the architecture to switch the
6279 * notion of the current task on a CPU in a non-blocking manner. This function
6280 * must be called with all CPU's synchronized, and interrupts disabled, the
6281 * and caller must save the original value of the current task (see
6282 * curr_task() above) and restore that value before reenabling interrupts and
6283 * re-starting the system.
6284 *
6285 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6286 */
6287void ia64_set_curr_task(int cpu, struct task_struct *p)
6288{
6289 cpu_curr(cpu) = p;
6290}
6291
6292#endif
6293
6294#ifdef CONFIG_CGROUP_SCHED
6295/* task_group_lock serializes the addition/removal of task groups */
6296static DEFINE_SPINLOCK(task_group_lock);
6297
6298static void sched_free_group(struct task_group *tg)
6299{
6300 free_fair_sched_group(tg);
6301 free_rt_sched_group(tg);
6302 autogroup_free(tg);
6303 kmem_cache_free(task_group_cache, tg);
6304}
6305
6306/* allocate runqueue etc for a new task group */
6307struct task_group *sched_create_group(struct task_group *parent)
6308{
6309 struct task_group *tg;
6310
6311 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6312 if (!tg)
6313 return ERR_PTR(-ENOMEM);
6314
6315 if (!alloc_fair_sched_group(tg, parent))
6316 goto err;
6317
6318 if (!alloc_rt_sched_group(tg, parent))
6319 goto err;
6320
6321 return tg;
6322
6323err:
6324 sched_free_group(tg);
6325 return ERR_PTR(-ENOMEM);
6326}
6327
6328void sched_online_group(struct task_group *tg, struct task_group *parent)
6329{
6330 unsigned long flags;
6331
6332 spin_lock_irqsave(&task_group_lock, flags);
6333 list_add_rcu(&tg->list, &task_groups);
6334
6335 /* Root should already exist: */
6336 WARN_ON(!parent);
6337
6338 tg->parent = parent;
6339 INIT_LIST_HEAD(&tg->children);
6340 list_add_rcu(&tg->siblings, &parent->children);
6341 spin_unlock_irqrestore(&task_group_lock, flags);
6342
6343 online_fair_sched_group(tg);
6344}
6345
6346/* rcu callback to free various structures associated with a task group */
6347static void sched_free_group_rcu(struct rcu_head *rhp)
6348{
6349 /* Now it should be safe to free those cfs_rqs: */
6350 sched_free_group(container_of(rhp, struct task_group, rcu));
6351}
6352
6353void sched_destroy_group(struct task_group *tg)
6354{
6355 /* Wait for possible concurrent references to cfs_rqs complete: */
6356 call_rcu(&tg->rcu, sched_free_group_rcu);
6357}
6358
6359void sched_offline_group(struct task_group *tg)
6360{
6361 unsigned long flags;
6362
6363 /* End participation in shares distribution: */
6364 unregister_fair_sched_group(tg);
6365
6366 spin_lock_irqsave(&task_group_lock, flags);
6367 list_del_rcu(&tg->list);
6368 list_del_rcu(&tg->siblings);
6369 spin_unlock_irqrestore(&task_group_lock, flags);
6370}
6371
6372static void sched_change_group(struct task_struct *tsk, int type)
6373{
6374 struct task_group *tg;
6375
6376 /*
6377 * All callers are synchronized by task_rq_lock(); we do not use RCU
6378 * which is pointless here. Thus, we pass "true" to task_css_check()
6379 * to prevent lockdep warnings.
6380 */
6381 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6382 struct task_group, css);
6383 tg = autogroup_task_group(tsk, tg);
6384 tsk->sched_task_group = tg;
6385
6386#ifdef CONFIG_FAIR_GROUP_SCHED
6387 if (tsk->sched_class->task_change_group)
6388 tsk->sched_class->task_change_group(tsk, type);
6389 else
6390#endif
6391 set_task_rq(tsk, task_cpu(tsk));
6392}
6393
6394/*
6395 * Change task's runqueue when it moves between groups.
6396 *
6397 * The caller of this function should have put the task in its new group by
6398 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6399 * its new group.
6400 */
6401void sched_move_task(struct task_struct *tsk)
6402{
6403 int queued, running, queue_flags =
6404 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6405 struct rq_flags rf;
6406 struct rq *rq;
6407
6408 rq = task_rq_lock(tsk, &rf);
6409 update_rq_clock(rq);
6410
6411 running = task_current(rq, tsk);
6412 queued = task_on_rq_queued(tsk);
6413
6414 if (queued)
6415 dequeue_task(rq, tsk, queue_flags);
6416 if (running)
6417 put_prev_task(rq, tsk);
6418
6419 sched_change_group(tsk, TASK_MOVE_GROUP);
6420
6421 if (queued)
6422 enqueue_task(rq, tsk, queue_flags);
6423 if (running)
6424 set_curr_task(rq, tsk);
6425
6426 task_rq_unlock(rq, tsk, &rf);
6427}
6428
6429static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6430{
6431 return css ? container_of(css, struct task_group, css) : NULL;
6432}
6433
6434static struct cgroup_subsys_state *
6435cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6436{
6437 struct task_group *parent = css_tg(parent_css);
6438 struct task_group *tg;
6439
6440 if (!parent) {
6441 /* This is early initialization for the top cgroup */
6442 return &root_task_group.css;
6443 }
6444
6445 tg = sched_create_group(parent);
6446 if (IS_ERR(tg))
6447 return ERR_PTR(-ENOMEM);
6448
6449 return &tg->css;
6450}
6451
6452/* Expose task group only after completing cgroup initialization */
6453static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6454{
6455 struct task_group *tg = css_tg(css);
6456 struct task_group *parent = css_tg(css->parent);
6457
6458 if (parent)
6459 sched_online_group(tg, parent);
6460 return 0;
6461}
6462
6463static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6464{
6465 struct task_group *tg = css_tg(css);
6466
6467 sched_offline_group(tg);
6468}
6469
6470static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6471{
6472 struct task_group *tg = css_tg(css);
6473
6474 /*
6475 * Relies on the RCU grace period between css_released() and this.
6476 */
6477 sched_free_group(tg);
6478}
6479
6480/*
6481 * This is called before wake_up_new_task(), therefore we really only
6482 * have to set its group bits, all the other stuff does not apply.
6483 */
6484static void cpu_cgroup_fork(struct task_struct *task)
6485{
6486 struct rq_flags rf;
6487 struct rq *rq;
6488
6489 rq = task_rq_lock(task, &rf);
6490
6491 update_rq_clock(rq);
6492 sched_change_group(task, TASK_SET_GROUP);
6493
6494 task_rq_unlock(rq, task, &rf);
6495}
6496
6497static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6498{
6499 struct task_struct *task;
6500 struct cgroup_subsys_state *css;
6501 int ret = 0;
6502
6503 cgroup_taskset_for_each(task, css, tset) {
6504#ifdef CONFIG_RT_GROUP_SCHED
6505 if (!sched_rt_can_attach(css_tg(css), task))
6506 return -EINVAL;
6507#else
6508 /* We don't support RT-tasks being in separate groups */
6509 if (task->sched_class != &fair_sched_class)
6510 return -EINVAL;
6511#endif
6512 /*
6513 * Serialize against wake_up_new_task() such that if its
6514 * running, we're sure to observe its full state.
6515 */
6516 raw_spin_lock_irq(&task->pi_lock);
6517 /*
6518 * Avoid calling sched_move_task() before wake_up_new_task()
6519 * has happened. This would lead to problems with PELT, due to
6520 * move wanting to detach+attach while we're not attached yet.
6521 */
6522 if (task->state == TASK_NEW)
6523 ret = -EINVAL;
6524 raw_spin_unlock_irq(&task->pi_lock);
6525
6526 if (ret)
6527 break;
6528 }
6529 return ret;
6530}
6531
6532static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6533{
6534 struct task_struct *task;
6535 struct cgroup_subsys_state *css;
6536
6537 cgroup_taskset_for_each(task, css, tset)
6538 sched_move_task(task);
6539}
6540
6541#ifdef CONFIG_FAIR_GROUP_SCHED
6542static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6543 struct cftype *cftype, u64 shareval)
6544{
6545 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6546}
6547
6548static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6549 struct cftype *cft)
6550{
6551 struct task_group *tg = css_tg(css);
6552
6553 return (u64) scale_load_down(tg->shares);
6554}
6555
6556#ifdef CONFIG_CFS_BANDWIDTH
6557static DEFINE_MUTEX(cfs_constraints_mutex);
6558
6559const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6560const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6561
6562static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6563
6564static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6565{
6566 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6567 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6568
6569 if (tg == &root_task_group)
6570 return -EINVAL;
6571
6572 /*
6573 * Ensure we have at some amount of bandwidth every period. This is
6574 * to prevent reaching a state of large arrears when throttled via
6575 * entity_tick() resulting in prolonged exit starvation.
6576 */
6577 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6578 return -EINVAL;
6579
6580 /*
6581 * Likewise, bound things on the otherside by preventing insane quota
6582 * periods. This also allows us to normalize in computing quota
6583 * feasibility.
6584 */
6585 if (period > max_cfs_quota_period)
6586 return -EINVAL;
6587
6588 /*
6589 * Prevent race between setting of cfs_rq->runtime_enabled and
6590 * unthrottle_offline_cfs_rqs().
6591 */
6592 get_online_cpus();
6593 mutex_lock(&cfs_constraints_mutex);
6594 ret = __cfs_schedulable(tg, period, quota);
6595 if (ret)
6596 goto out_unlock;
6597
6598 runtime_enabled = quota != RUNTIME_INF;
6599 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6600 /*
6601 * If we need to toggle cfs_bandwidth_used, off->on must occur
6602 * before making related changes, and on->off must occur afterwards
6603 */
6604 if (runtime_enabled && !runtime_was_enabled)
6605 cfs_bandwidth_usage_inc();
6606 raw_spin_lock_irq(&cfs_b->lock);
6607 cfs_b->period = ns_to_ktime(period);
6608 cfs_b->quota = quota;
6609
6610 __refill_cfs_bandwidth_runtime(cfs_b);
6611
6612 /* Restart the period timer (if active) to handle new period expiry: */
6613 if (runtime_enabled)
6614 start_cfs_bandwidth(cfs_b);
6615
6616 raw_spin_unlock_irq(&cfs_b->lock);
6617
6618 for_each_online_cpu(i) {
6619 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6620 struct rq *rq = cfs_rq->rq;
6621 struct rq_flags rf;
6622
6623 rq_lock_irq(rq, &rf);
6624 cfs_rq->runtime_enabled = runtime_enabled;
6625 cfs_rq->runtime_remaining = 0;
6626
6627 if (cfs_rq->throttled)
6628 unthrottle_cfs_rq(cfs_rq);
6629 rq_unlock_irq(rq, &rf);
6630 }
6631 if (runtime_was_enabled && !runtime_enabled)
6632 cfs_bandwidth_usage_dec();
6633out_unlock:
6634 mutex_unlock(&cfs_constraints_mutex);
6635 put_online_cpus();
6636
6637 return ret;
6638}
6639
6640int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6641{
6642 u64 quota, period;
6643
6644 period = ktime_to_ns(tg->cfs_bandwidth.period);
6645 if (cfs_quota_us < 0)
6646 quota = RUNTIME_INF;
6647 else
6648 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6649
6650 return tg_set_cfs_bandwidth(tg, period, quota);
6651}
6652
6653long tg_get_cfs_quota(struct task_group *tg)
6654{
6655 u64 quota_us;
6656
6657 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6658 return -1;
6659
6660 quota_us = tg->cfs_bandwidth.quota;
6661 do_div(quota_us, NSEC_PER_USEC);
6662
6663 return quota_us;
6664}
6665
6666int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6667{
6668 u64 quota, period;
6669
6670 period = (u64)cfs_period_us * NSEC_PER_USEC;
6671 quota = tg->cfs_bandwidth.quota;
6672
6673 return tg_set_cfs_bandwidth(tg, period, quota);
6674}
6675
6676long tg_get_cfs_period(struct task_group *tg)
6677{
6678 u64 cfs_period_us;
6679
6680 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6681 do_div(cfs_period_us, NSEC_PER_USEC);
6682
6683 return cfs_period_us;
6684}
6685
6686static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6687 struct cftype *cft)
6688{
6689 return tg_get_cfs_quota(css_tg(css));
6690}
6691
6692static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6693 struct cftype *cftype, s64 cfs_quota_us)
6694{
6695 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6696}
6697
6698static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6699 struct cftype *cft)
6700{
6701 return tg_get_cfs_period(css_tg(css));
6702}
6703
6704static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6705 struct cftype *cftype, u64 cfs_period_us)
6706{
6707 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6708}
6709
6710struct cfs_schedulable_data {
6711 struct task_group *tg;
6712 u64 period, quota;
6713};
6714
6715/*
6716 * normalize group quota/period to be quota/max_period
6717 * note: units are usecs
6718 */
6719static u64 normalize_cfs_quota(struct task_group *tg,
6720 struct cfs_schedulable_data *d)
6721{
6722 u64 quota, period;
6723
6724 if (tg == d->tg) {
6725 period = d->period;
6726 quota = d->quota;
6727 } else {
6728 period = tg_get_cfs_period(tg);
6729 quota = tg_get_cfs_quota(tg);
6730 }
6731
6732 /* note: these should typically be equivalent */
6733 if (quota == RUNTIME_INF || quota == -1)
6734 return RUNTIME_INF;
6735
6736 return to_ratio(period, quota);
6737}
6738
6739static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6740{
6741 struct cfs_schedulable_data *d = data;
6742 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6743 s64 quota = 0, parent_quota = -1;
6744
6745 if (!tg->parent) {
6746 quota = RUNTIME_INF;
6747 } else {
6748 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6749
6750 quota = normalize_cfs_quota(tg, d);
6751 parent_quota = parent_b->hierarchical_quota;
6752
6753 /*
6754 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6755 * always take the min. On cgroup1, only inherit when no
6756 * limit is set:
6757 */
6758 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6759 quota = min(quota, parent_quota);
6760 } else {
6761 if (quota == RUNTIME_INF)
6762 quota = parent_quota;
6763 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6764 return -EINVAL;
6765 }
6766 }
6767 cfs_b->hierarchical_quota = quota;
6768
6769 return 0;
6770}
6771
6772static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6773{
6774 int ret;
6775 struct cfs_schedulable_data data = {
6776 .tg = tg,
6777 .period = period,
6778 .quota = quota,
6779 };
6780
6781 if (quota != RUNTIME_INF) {
6782 do_div(data.period, NSEC_PER_USEC);
6783 do_div(data.quota, NSEC_PER_USEC);
6784 }
6785
6786 rcu_read_lock();
6787 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6788 rcu_read_unlock();
6789
6790 return ret;
6791}
6792
6793static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6794{
6795 struct task_group *tg = css_tg(seq_css(sf));
6796 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6797
6798 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6799 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6800 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6801
6802 return 0;
6803}
6804#endif /* CONFIG_CFS_BANDWIDTH */
6805#endif /* CONFIG_FAIR_GROUP_SCHED */
6806
6807#ifdef CONFIG_RT_GROUP_SCHED
6808static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6809 struct cftype *cft, s64 val)
6810{
6811 return sched_group_set_rt_runtime(css_tg(css), val);
6812}
6813
6814static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6815 struct cftype *cft)
6816{
6817 return sched_group_rt_runtime(css_tg(css));
6818}
6819
6820static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6821 struct cftype *cftype, u64 rt_period_us)
6822{
6823 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6824}
6825
6826static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6827 struct cftype *cft)
6828{
6829 return sched_group_rt_period(css_tg(css));
6830}
6831#endif /* CONFIG_RT_GROUP_SCHED */
6832
6833static struct cftype cpu_legacy_files[] = {
6834#ifdef CONFIG_FAIR_GROUP_SCHED
6835 {
6836 .name = "shares",
6837 .read_u64 = cpu_shares_read_u64,
6838 .write_u64 = cpu_shares_write_u64,
6839 },
6840#endif
6841#ifdef CONFIG_CFS_BANDWIDTH
6842 {
6843 .name = "cfs_quota_us",
6844 .read_s64 = cpu_cfs_quota_read_s64,
6845 .write_s64 = cpu_cfs_quota_write_s64,
6846 },
6847 {
6848 .name = "cfs_period_us",
6849 .read_u64 = cpu_cfs_period_read_u64,
6850 .write_u64 = cpu_cfs_period_write_u64,
6851 },
6852 {
6853 .name = "stat",
6854 .seq_show = cpu_cfs_stat_show,
6855 },
6856#endif
6857#ifdef CONFIG_RT_GROUP_SCHED
6858 {
6859 .name = "rt_runtime_us",
6860 .read_s64 = cpu_rt_runtime_read,
6861 .write_s64 = cpu_rt_runtime_write,
6862 },
6863 {
6864 .name = "rt_period_us",
6865 .read_u64 = cpu_rt_period_read_uint,
6866 .write_u64 = cpu_rt_period_write_uint,
6867 },
6868#endif
6869 { } /* Terminate */
6870};
6871
6872static int cpu_extra_stat_show(struct seq_file *sf,
6873 struct cgroup_subsys_state *css)
6874{
6875#ifdef CONFIG_CFS_BANDWIDTH
6876 {
6877 struct task_group *tg = css_tg(css);
6878 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6879 u64 throttled_usec;
6880
6881 throttled_usec = cfs_b->throttled_time;
6882 do_div(throttled_usec, NSEC_PER_USEC);
6883
6884 seq_printf(sf, "nr_periods %d\n"
6885 "nr_throttled %d\n"
6886 "throttled_usec %llu\n",
6887 cfs_b->nr_periods, cfs_b->nr_throttled,
6888 throttled_usec);
6889 }
6890#endif
6891 return 0;
6892}
6893
6894#ifdef CONFIG_FAIR_GROUP_SCHED
6895static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6896 struct cftype *cft)
6897{
6898 struct task_group *tg = css_tg(css);
6899 u64 weight = scale_load_down(tg->shares);
6900
6901 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6902}
6903
6904static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6905 struct cftype *cft, u64 weight)
6906{
6907 /*
6908 * cgroup weight knobs should use the common MIN, DFL and MAX
6909 * values which are 1, 100 and 10000 respectively. While it loses
6910 * a bit of range on both ends, it maps pretty well onto the shares
6911 * value used by scheduler and the round-trip conversions preserve
6912 * the original value over the entire range.
6913 */
6914 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6915 return -ERANGE;
6916
6917 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6918
6919 return sched_group_set_shares(css_tg(css), scale_load(weight));
6920}
6921
6922static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6923 struct cftype *cft)
6924{
6925 unsigned long weight = scale_load_down(css_tg(css)->shares);
6926 int last_delta = INT_MAX;
6927 int prio, delta;
6928
6929 /* find the closest nice value to the current weight */
6930 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6931 delta = abs(sched_prio_to_weight[prio] - weight);
6932 if (delta >= last_delta)
6933 break;
6934 last_delta = delta;
6935 }
6936
6937 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6938}
6939
6940static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6941 struct cftype *cft, s64 nice)
6942{
6943 unsigned long weight;
6944 int idx;
6945
6946 if (nice < MIN_NICE || nice > MAX_NICE)
6947 return -ERANGE;
6948
6949 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6950 idx = array_index_nospec(idx, 40);
6951 weight = sched_prio_to_weight[idx];
6952
6953 return sched_group_set_shares(css_tg(css), scale_load(weight));
6954}
6955#endif
6956
6957static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6958 long period, long quota)
6959{
6960 if (quota < 0)
6961 seq_puts(sf, "max");
6962 else
6963 seq_printf(sf, "%ld", quota);
6964
6965 seq_printf(sf, " %ld\n", period);
6966}
6967
6968/* caller should put the current value in *@periodp before calling */
6969static int __maybe_unused cpu_period_quota_parse(char *buf,
6970 u64 *periodp, u64 *quotap)
6971{
6972 char tok[21]; /* U64_MAX */
6973
6974 if (!sscanf(buf, "%s %llu", tok, periodp))
6975 return -EINVAL;
6976
6977 *periodp *= NSEC_PER_USEC;
6978
6979 if (sscanf(tok, "%llu", quotap))
6980 *quotap *= NSEC_PER_USEC;
6981 else if (!strcmp(tok, "max"))
6982 *quotap = RUNTIME_INF;
6983 else
6984 return -EINVAL;
6985
6986 return 0;
6987}
6988
6989#ifdef CONFIG_CFS_BANDWIDTH
6990static int cpu_max_show(struct seq_file *sf, void *v)
6991{
6992 struct task_group *tg = css_tg(seq_css(sf));
6993
6994 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6995 return 0;
6996}
6997
6998static ssize_t cpu_max_write(struct kernfs_open_file *of,
6999 char *buf, size_t nbytes, loff_t off)
7000{
7001 struct task_group *tg = css_tg(of_css(of));
7002 u64 period = tg_get_cfs_period(tg);
7003 u64 quota;
7004 int ret;
7005
7006 ret = cpu_period_quota_parse(buf, &period, "a);
7007 if (!ret)
7008 ret = tg_set_cfs_bandwidth(tg, period, quota);
7009 return ret ?: nbytes;
7010}
7011#endif
7012
7013static struct cftype cpu_files[] = {
7014#ifdef CONFIG_FAIR_GROUP_SCHED
7015 {
7016 .name = "weight",
7017 .flags = CFTYPE_NOT_ON_ROOT,
7018 .read_u64 = cpu_weight_read_u64,
7019 .write_u64 = cpu_weight_write_u64,
7020 },
7021 {
7022 .name = "weight.nice",
7023 .flags = CFTYPE_NOT_ON_ROOT,
7024 .read_s64 = cpu_weight_nice_read_s64,
7025 .write_s64 = cpu_weight_nice_write_s64,
7026 },
7027#endif
7028#ifdef CONFIG_CFS_BANDWIDTH
7029 {
7030 .name = "max",
7031 .flags = CFTYPE_NOT_ON_ROOT,
7032 .seq_show = cpu_max_show,
7033 .write = cpu_max_write,
7034 },
7035#endif
7036 { } /* terminate */
7037};
7038
7039struct cgroup_subsys cpu_cgrp_subsys = {
7040 .css_alloc = cpu_cgroup_css_alloc,
7041 .css_online = cpu_cgroup_css_online,
7042 .css_released = cpu_cgroup_css_released,
7043 .css_free = cpu_cgroup_css_free,
7044 .css_extra_stat_show = cpu_extra_stat_show,
7045 .fork = cpu_cgroup_fork,
7046 .can_attach = cpu_cgroup_can_attach,
7047 .attach = cpu_cgroup_attach,
7048 .legacy_cftypes = cpu_legacy_files,
7049 .dfl_cftypes = cpu_files,
7050 .early_init = true,
7051 .threaded = true,
7052};
7053
7054#endif /* CONFIG_CGROUP_SCHED */
7055
7056void dump_cpu_task(int cpu)
7057{
7058 pr_info("Task dump for CPU %d:\n", cpu);
7059 sched_show_task(cpu_curr(cpu));
7060}
7061
7062/*
7063 * Nice levels are multiplicative, with a gentle 10% change for every
7064 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7065 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7066 * that remained on nice 0.
7067 *
7068 * The "10% effect" is relative and cumulative: from _any_ nice level,
7069 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7070 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7071 * If a task goes up by ~10% and another task goes down by ~10% then
7072 * the relative distance between them is ~25%.)
7073 */
7074const int sched_prio_to_weight[40] = {
7075 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7076 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7077 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7078 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7079 /* 0 */ 1024, 820, 655, 526, 423,
7080 /* 5 */ 335, 272, 215, 172, 137,
7081 /* 10 */ 110, 87, 70, 56, 45,
7082 /* 15 */ 36, 29, 23, 18, 15,
7083};
7084
7085/*
7086 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7087 *
7088 * In cases where the weight does not change often, we can use the
7089 * precalculated inverse to speed up arithmetics by turning divisions
7090 * into multiplications:
7091 */
7092const u32 sched_prio_to_wmult[40] = {
7093 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7094 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7095 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7096 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7097 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7098 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7099 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7100 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7101};
7102
7103#undef CREATE_TRACE_POINTS