Loading...
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/export.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62#include <linux/ptrace.h>
63#include <linux/sched/rt.h>
64#include <linux/hugetlb.h>
65#include <linux/freezer.h>
66#include <linux/bootmem.h>
67#include <linux/fault-inject.h>
68
69#include <asm/futex.h>
70
71#include "locking/rtmutex_common.h"
72
73/*
74 * READ this before attempting to hack on futexes!
75 *
76 * Basic futex operation and ordering guarantees
77 * =============================================
78 *
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
85 *
86 * The waker side modifies the user space value of the futex and calls
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
90 *
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
96 *
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
112 *
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
116 *
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
120 *
121 * CPU 0 CPU 1
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
125 *
126 * waiters++; (a)
127 * smp_mb(); (A) <-- paired with -.
128 * |
129 * lock(hash_bucket(futex)); |
130 * |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
135 * |
136 * `--------> smp_mb(); (B)
137 * if (uval == val)
138 * queue();
139 * unlock(hash_bucket(futex));
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
144 *
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175int __read_mostly futex_cmpxchg_enabled;
176#endif
177
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#ifdef CONFIG_MMU
183# define FLAGS_SHARED 0x01
184#else
185/*
186 * NOMMU does not have per process address space. Let the compiler optimize
187 * code away.
188 */
189# define FLAGS_SHARED 0x00
190#endif
191#define FLAGS_CLOCKRT 0x02
192#define FLAGS_HAS_TIMEOUT 0x04
193
194/*
195 * Priority Inheritance state:
196 */
197struct futex_pi_state {
198 /*
199 * list of 'owned' pi_state instances - these have to be
200 * cleaned up in do_exit() if the task exits prematurely:
201 */
202 struct list_head list;
203
204 /*
205 * The PI object:
206 */
207 struct rt_mutex pi_mutex;
208
209 struct task_struct *owner;
210 atomic_t refcount;
211
212 union futex_key key;
213};
214
215/**
216 * struct futex_q - The hashed futex queue entry, one per waiting task
217 * @list: priority-sorted list of tasks waiting on this futex
218 * @task: the task waiting on the futex
219 * @lock_ptr: the hash bucket lock
220 * @key: the key the futex is hashed on
221 * @pi_state: optional priority inheritance state
222 * @rt_waiter: rt_waiter storage for use with requeue_pi
223 * @requeue_pi_key: the requeue_pi target futex key
224 * @bitset: bitset for the optional bitmasked wakeup
225 *
226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
227 * we can wake only the relevant ones (hashed queues may be shared).
228 *
229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
231 * The order of wakeup is always to make the first condition true, then
232 * the second.
233 *
234 * PI futexes are typically woken before they are removed from the hash list via
235 * the rt_mutex code. See unqueue_me_pi().
236 */
237struct futex_q {
238 struct plist_node list;
239
240 struct task_struct *task;
241 spinlock_t *lock_ptr;
242 union futex_key key;
243 struct futex_pi_state *pi_state;
244 struct rt_mutex_waiter *rt_waiter;
245 union futex_key *requeue_pi_key;
246 u32 bitset;
247};
248
249static const struct futex_q futex_q_init = {
250 /* list gets initialized in queue_me()*/
251 .key = FUTEX_KEY_INIT,
252 .bitset = FUTEX_BITSET_MATCH_ANY
253};
254
255/*
256 * Hash buckets are shared by all the futex_keys that hash to the same
257 * location. Each key may have multiple futex_q structures, one for each task
258 * waiting on a futex.
259 */
260struct futex_hash_bucket {
261 atomic_t waiters;
262 spinlock_t lock;
263 struct plist_head chain;
264} ____cacheline_aligned_in_smp;
265
266/*
267 * The base of the bucket array and its size are always used together
268 * (after initialization only in hash_futex()), so ensure that they
269 * reside in the same cacheline.
270 */
271static struct {
272 struct futex_hash_bucket *queues;
273 unsigned long hashsize;
274} __futex_data __read_mostly __aligned(2*sizeof(long));
275#define futex_queues (__futex_data.queues)
276#define futex_hashsize (__futex_data.hashsize)
277
278
279/*
280 * Fault injections for futexes.
281 */
282#ifdef CONFIG_FAIL_FUTEX
283
284static struct {
285 struct fault_attr attr;
286
287 bool ignore_private;
288} fail_futex = {
289 .attr = FAULT_ATTR_INITIALIZER,
290 .ignore_private = false,
291};
292
293static int __init setup_fail_futex(char *str)
294{
295 return setup_fault_attr(&fail_futex.attr, str);
296}
297__setup("fail_futex=", setup_fail_futex);
298
299static bool should_fail_futex(bool fshared)
300{
301 if (fail_futex.ignore_private && !fshared)
302 return false;
303
304 return should_fail(&fail_futex.attr, 1);
305}
306
307#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
308
309static int __init fail_futex_debugfs(void)
310{
311 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
312 struct dentry *dir;
313
314 dir = fault_create_debugfs_attr("fail_futex", NULL,
315 &fail_futex.attr);
316 if (IS_ERR(dir))
317 return PTR_ERR(dir);
318
319 if (!debugfs_create_bool("ignore-private", mode, dir,
320 &fail_futex.ignore_private)) {
321 debugfs_remove_recursive(dir);
322 return -ENOMEM;
323 }
324
325 return 0;
326}
327
328late_initcall(fail_futex_debugfs);
329
330#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
331
332#else
333static inline bool should_fail_futex(bool fshared)
334{
335 return false;
336}
337#endif /* CONFIG_FAIL_FUTEX */
338
339static inline void futex_get_mm(union futex_key *key)
340{
341 atomic_inc(&key->private.mm->mm_count);
342 /*
343 * Ensure futex_get_mm() implies a full barrier such that
344 * get_futex_key() implies a full barrier. This is relied upon
345 * as smp_mb(); (B), see the ordering comment above.
346 */
347 smp_mb__after_atomic();
348}
349
350/*
351 * Reflects a new waiter being added to the waitqueue.
352 */
353static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
354{
355#ifdef CONFIG_SMP
356 atomic_inc(&hb->waiters);
357 /*
358 * Full barrier (A), see the ordering comment above.
359 */
360 smp_mb__after_atomic();
361#endif
362}
363
364/*
365 * Reflects a waiter being removed from the waitqueue by wakeup
366 * paths.
367 */
368static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
369{
370#ifdef CONFIG_SMP
371 atomic_dec(&hb->waiters);
372#endif
373}
374
375static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
376{
377#ifdef CONFIG_SMP
378 return atomic_read(&hb->waiters);
379#else
380 return 1;
381#endif
382}
383
384/**
385 * hash_futex - Return the hash bucket in the global hash
386 * @key: Pointer to the futex key for which the hash is calculated
387 *
388 * We hash on the keys returned from get_futex_key (see below) and return the
389 * corresponding hash bucket in the global hash.
390 */
391static struct futex_hash_bucket *hash_futex(union futex_key *key)
392{
393 u32 hash = jhash2((u32*)&key->both.word,
394 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
395 key->both.offset);
396 return &futex_queues[hash & (futex_hashsize - 1)];
397}
398
399
400/**
401 * match_futex - Check whether two futex keys are equal
402 * @key1: Pointer to key1
403 * @key2: Pointer to key2
404 *
405 * Return 1 if two futex_keys are equal, 0 otherwise.
406 */
407static inline int match_futex(union futex_key *key1, union futex_key *key2)
408{
409 return (key1 && key2
410 && key1->both.word == key2->both.word
411 && key1->both.ptr == key2->both.ptr
412 && key1->both.offset == key2->both.offset);
413}
414
415/*
416 * Take a reference to the resource addressed by a key.
417 * Can be called while holding spinlocks.
418 *
419 */
420static void get_futex_key_refs(union futex_key *key)
421{
422 if (!key->both.ptr)
423 return;
424
425 /*
426 * On MMU less systems futexes are always "private" as there is no per
427 * process address space. We need the smp wmb nevertheless - yes,
428 * arch/blackfin has MMU less SMP ...
429 */
430 if (!IS_ENABLED(CONFIG_MMU)) {
431 smp_mb(); /* explicit smp_mb(); (B) */
432 return;
433 }
434
435 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
436 case FUT_OFF_INODE:
437 ihold(key->shared.inode); /* implies smp_mb(); (B) */
438 break;
439 case FUT_OFF_MMSHARED:
440 futex_get_mm(key); /* implies smp_mb(); (B) */
441 break;
442 default:
443 /*
444 * Private futexes do not hold reference on an inode or
445 * mm, therefore the only purpose of calling get_futex_key_refs
446 * is because we need the barrier for the lockless waiter check.
447 */
448 smp_mb(); /* explicit smp_mb(); (B) */
449 }
450}
451
452/*
453 * Drop a reference to the resource addressed by a key.
454 * The hash bucket spinlock must not be held. This is
455 * a no-op for private futexes, see comment in the get
456 * counterpart.
457 */
458static void drop_futex_key_refs(union futex_key *key)
459{
460 if (!key->both.ptr) {
461 /* If we're here then we tried to put a key we failed to get */
462 WARN_ON_ONCE(1);
463 return;
464 }
465
466 if (!IS_ENABLED(CONFIG_MMU))
467 return;
468
469 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
470 case FUT_OFF_INODE:
471 iput(key->shared.inode);
472 break;
473 case FUT_OFF_MMSHARED:
474 mmdrop(key->private.mm);
475 break;
476 }
477}
478
479/**
480 * get_futex_key() - Get parameters which are the keys for a futex
481 * @uaddr: virtual address of the futex
482 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
483 * @key: address where result is stored.
484 * @rw: mapping needs to be read/write (values: VERIFY_READ,
485 * VERIFY_WRITE)
486 *
487 * Return: a negative error code or 0
488 *
489 * The key words are stored in *key on success.
490 *
491 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
492 * offset_within_page). For private mappings, it's (uaddr, current->mm).
493 * We can usually work out the index without swapping in the page.
494 *
495 * lock_page() might sleep, the caller should not hold a spinlock.
496 */
497static int
498get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
499{
500 unsigned long address = (unsigned long)uaddr;
501 struct mm_struct *mm = current->mm;
502 struct page *page, *tail;
503 struct address_space *mapping;
504 int err, ro = 0;
505
506 /*
507 * The futex address must be "naturally" aligned.
508 */
509 key->both.offset = address % PAGE_SIZE;
510 if (unlikely((address % sizeof(u32)) != 0))
511 return -EINVAL;
512 address -= key->both.offset;
513
514 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
515 return -EFAULT;
516
517 if (unlikely(should_fail_futex(fshared)))
518 return -EFAULT;
519
520 /*
521 * PROCESS_PRIVATE futexes are fast.
522 * As the mm cannot disappear under us and the 'key' only needs
523 * virtual address, we dont even have to find the underlying vma.
524 * Note : We do have to check 'uaddr' is a valid user address,
525 * but access_ok() should be faster than find_vma()
526 */
527 if (!fshared) {
528 key->private.mm = mm;
529 key->private.address = address;
530 get_futex_key_refs(key); /* implies smp_mb(); (B) */
531 return 0;
532 }
533
534again:
535 /* Ignore any VERIFY_READ mapping (futex common case) */
536 if (unlikely(should_fail_futex(fshared)))
537 return -EFAULT;
538
539 err = get_user_pages_fast(address, 1, 1, &page);
540 /*
541 * If write access is not required (eg. FUTEX_WAIT), try
542 * and get read-only access.
543 */
544 if (err == -EFAULT && rw == VERIFY_READ) {
545 err = get_user_pages_fast(address, 1, 0, &page);
546 ro = 1;
547 }
548 if (err < 0)
549 return err;
550 else
551 err = 0;
552
553 /*
554 * The treatment of mapping from this point on is critical. The page
555 * lock protects many things but in this context the page lock
556 * stabilizes mapping, prevents inode freeing in the shared
557 * file-backed region case and guards against movement to swap cache.
558 *
559 * Strictly speaking the page lock is not needed in all cases being
560 * considered here and page lock forces unnecessarily serialization
561 * From this point on, mapping will be re-verified if necessary and
562 * page lock will be acquired only if it is unavoidable
563 *
564 * Mapping checks require the head page for any compound page so the
565 * head page and mapping is looked up now. For anonymous pages, it
566 * does not matter if the page splits in the future as the key is
567 * based on the address. For filesystem-backed pages, the tail is
568 * required as the index of the page determines the key. For
569 * base pages, there is no tail page and tail == page.
570 */
571 tail = page;
572 page = compound_head(page);
573 mapping = READ_ONCE(page->mapping);
574
575 /*
576 * If page->mapping is NULL, then it cannot be a PageAnon
577 * page; but it might be the ZERO_PAGE or in the gate area or
578 * in a special mapping (all cases which we are happy to fail);
579 * or it may have been a good file page when get_user_pages_fast
580 * found it, but truncated or holepunched or subjected to
581 * invalidate_complete_page2 before we got the page lock (also
582 * cases which we are happy to fail). And we hold a reference,
583 * so refcount care in invalidate_complete_page's remove_mapping
584 * prevents drop_caches from setting mapping to NULL beneath us.
585 *
586 * The case we do have to guard against is when memory pressure made
587 * shmem_writepage move it from filecache to swapcache beneath us:
588 * an unlikely race, but we do need to retry for page->mapping.
589 */
590 if (unlikely(!mapping)) {
591 int shmem_swizzled;
592
593 /*
594 * Page lock is required to identify which special case above
595 * applies. If this is really a shmem page then the page lock
596 * will prevent unexpected transitions.
597 */
598 lock_page(page);
599 shmem_swizzled = PageSwapCache(page) || page->mapping;
600 unlock_page(page);
601 put_page(page);
602
603 if (shmem_swizzled)
604 goto again;
605
606 return -EFAULT;
607 }
608
609 /*
610 * Private mappings are handled in a simple way.
611 *
612 * If the futex key is stored on an anonymous page, then the associated
613 * object is the mm which is implicitly pinned by the calling process.
614 *
615 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
616 * it's a read-only handle, it's expected that futexes attach to
617 * the object not the particular process.
618 */
619 if (PageAnon(page)) {
620 /*
621 * A RO anonymous page will never change and thus doesn't make
622 * sense for futex operations.
623 */
624 if (unlikely(should_fail_futex(fshared)) || ro) {
625 err = -EFAULT;
626 goto out;
627 }
628
629 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
630 key->private.mm = mm;
631 key->private.address = address;
632
633 get_futex_key_refs(key); /* implies smp_mb(); (B) */
634
635 } else {
636 struct inode *inode;
637
638 /*
639 * The associated futex object in this case is the inode and
640 * the page->mapping must be traversed. Ordinarily this should
641 * be stabilised under page lock but it's not strictly
642 * necessary in this case as we just want to pin the inode, not
643 * update the radix tree or anything like that.
644 *
645 * The RCU read lock is taken as the inode is finally freed
646 * under RCU. If the mapping still matches expectations then the
647 * mapping->host can be safely accessed as being a valid inode.
648 */
649 rcu_read_lock();
650
651 if (READ_ONCE(page->mapping) != mapping) {
652 rcu_read_unlock();
653 put_page(page);
654
655 goto again;
656 }
657
658 inode = READ_ONCE(mapping->host);
659 if (!inode) {
660 rcu_read_unlock();
661 put_page(page);
662
663 goto again;
664 }
665
666 /*
667 * Take a reference unless it is about to be freed. Previously
668 * this reference was taken by ihold under the page lock
669 * pinning the inode in place so i_lock was unnecessary. The
670 * only way for this check to fail is if the inode was
671 * truncated in parallel so warn for now if this happens.
672 *
673 * We are not calling into get_futex_key_refs() in file-backed
674 * cases, therefore a successful atomic_inc return below will
675 * guarantee that get_futex_key() will still imply smp_mb(); (B).
676 */
677 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
678 rcu_read_unlock();
679 put_page(page);
680
681 goto again;
682 }
683
684 /* Should be impossible but lets be paranoid for now */
685 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
686 err = -EFAULT;
687 rcu_read_unlock();
688 iput(inode);
689
690 goto out;
691 }
692
693 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
694 key->shared.inode = inode;
695 key->shared.pgoff = basepage_index(tail);
696 rcu_read_unlock();
697 }
698
699out:
700 put_page(page);
701 return err;
702}
703
704static inline void put_futex_key(union futex_key *key)
705{
706 drop_futex_key_refs(key);
707}
708
709/**
710 * fault_in_user_writeable() - Fault in user address and verify RW access
711 * @uaddr: pointer to faulting user space address
712 *
713 * Slow path to fixup the fault we just took in the atomic write
714 * access to @uaddr.
715 *
716 * We have no generic implementation of a non-destructive write to the
717 * user address. We know that we faulted in the atomic pagefault
718 * disabled section so we can as well avoid the #PF overhead by
719 * calling get_user_pages() right away.
720 */
721static int fault_in_user_writeable(u32 __user *uaddr)
722{
723 struct mm_struct *mm = current->mm;
724 int ret;
725
726 down_read(&mm->mmap_sem);
727 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
728 FAULT_FLAG_WRITE, NULL);
729 up_read(&mm->mmap_sem);
730
731 return ret < 0 ? ret : 0;
732}
733
734/**
735 * futex_top_waiter() - Return the highest priority waiter on a futex
736 * @hb: the hash bucket the futex_q's reside in
737 * @key: the futex key (to distinguish it from other futex futex_q's)
738 *
739 * Must be called with the hb lock held.
740 */
741static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
742 union futex_key *key)
743{
744 struct futex_q *this;
745
746 plist_for_each_entry(this, &hb->chain, list) {
747 if (match_futex(&this->key, key))
748 return this;
749 }
750 return NULL;
751}
752
753static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
754 u32 uval, u32 newval)
755{
756 int ret;
757
758 pagefault_disable();
759 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
760 pagefault_enable();
761
762 return ret;
763}
764
765static int get_futex_value_locked(u32 *dest, u32 __user *from)
766{
767 int ret;
768
769 pagefault_disable();
770 ret = __get_user(*dest, from);
771 pagefault_enable();
772
773 return ret ? -EFAULT : 0;
774}
775
776
777/*
778 * PI code:
779 */
780static int refill_pi_state_cache(void)
781{
782 struct futex_pi_state *pi_state;
783
784 if (likely(current->pi_state_cache))
785 return 0;
786
787 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
788
789 if (!pi_state)
790 return -ENOMEM;
791
792 INIT_LIST_HEAD(&pi_state->list);
793 /* pi_mutex gets initialized later */
794 pi_state->owner = NULL;
795 atomic_set(&pi_state->refcount, 1);
796 pi_state->key = FUTEX_KEY_INIT;
797
798 current->pi_state_cache = pi_state;
799
800 return 0;
801}
802
803static struct futex_pi_state * alloc_pi_state(void)
804{
805 struct futex_pi_state *pi_state = current->pi_state_cache;
806
807 WARN_ON(!pi_state);
808 current->pi_state_cache = NULL;
809
810 return pi_state;
811}
812
813/*
814 * Drops a reference to the pi_state object and frees or caches it
815 * when the last reference is gone.
816 *
817 * Must be called with the hb lock held.
818 */
819static void put_pi_state(struct futex_pi_state *pi_state)
820{
821 if (!pi_state)
822 return;
823
824 if (!atomic_dec_and_test(&pi_state->refcount))
825 return;
826
827 /*
828 * If pi_state->owner is NULL, the owner is most probably dying
829 * and has cleaned up the pi_state already
830 */
831 if (pi_state->owner) {
832 raw_spin_lock_irq(&pi_state->owner->pi_lock);
833 list_del_init(&pi_state->list);
834 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
835
836 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
837 }
838
839 if (current->pi_state_cache)
840 kfree(pi_state);
841 else {
842 /*
843 * pi_state->list is already empty.
844 * clear pi_state->owner.
845 * refcount is at 0 - put it back to 1.
846 */
847 pi_state->owner = NULL;
848 atomic_set(&pi_state->refcount, 1);
849 current->pi_state_cache = pi_state;
850 }
851}
852
853/*
854 * Look up the task based on what TID userspace gave us.
855 * We dont trust it.
856 */
857static struct task_struct * futex_find_get_task(pid_t pid)
858{
859 struct task_struct *p;
860
861 rcu_read_lock();
862 p = find_task_by_vpid(pid);
863 if (p)
864 get_task_struct(p);
865
866 rcu_read_unlock();
867
868 return p;
869}
870
871/*
872 * This task is holding PI mutexes at exit time => bad.
873 * Kernel cleans up PI-state, but userspace is likely hosed.
874 * (Robust-futex cleanup is separate and might save the day for userspace.)
875 */
876void exit_pi_state_list(struct task_struct *curr)
877{
878 struct list_head *next, *head = &curr->pi_state_list;
879 struct futex_pi_state *pi_state;
880 struct futex_hash_bucket *hb;
881 union futex_key key = FUTEX_KEY_INIT;
882
883 if (!futex_cmpxchg_enabled)
884 return;
885 /*
886 * We are a ZOMBIE and nobody can enqueue itself on
887 * pi_state_list anymore, but we have to be careful
888 * versus waiters unqueueing themselves:
889 */
890 raw_spin_lock_irq(&curr->pi_lock);
891 while (!list_empty(head)) {
892
893 next = head->next;
894 pi_state = list_entry(next, struct futex_pi_state, list);
895 key = pi_state->key;
896 hb = hash_futex(&key);
897 raw_spin_unlock_irq(&curr->pi_lock);
898
899 spin_lock(&hb->lock);
900
901 raw_spin_lock_irq(&curr->pi_lock);
902 /*
903 * We dropped the pi-lock, so re-check whether this
904 * task still owns the PI-state:
905 */
906 if (head->next != next) {
907 spin_unlock(&hb->lock);
908 continue;
909 }
910
911 WARN_ON(pi_state->owner != curr);
912 WARN_ON(list_empty(&pi_state->list));
913 list_del_init(&pi_state->list);
914 pi_state->owner = NULL;
915 raw_spin_unlock_irq(&curr->pi_lock);
916
917 rt_mutex_unlock(&pi_state->pi_mutex);
918
919 spin_unlock(&hb->lock);
920
921 raw_spin_lock_irq(&curr->pi_lock);
922 }
923 raw_spin_unlock_irq(&curr->pi_lock);
924}
925
926/*
927 * We need to check the following states:
928 *
929 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
930 *
931 * [1] NULL | --- | --- | 0 | 0/1 | Valid
932 * [2] NULL | --- | --- | >0 | 0/1 | Valid
933 *
934 * [3] Found | NULL | -- | Any | 0/1 | Invalid
935 *
936 * [4] Found | Found | NULL | 0 | 1 | Valid
937 * [5] Found | Found | NULL | >0 | 1 | Invalid
938 *
939 * [6] Found | Found | task | 0 | 1 | Valid
940 *
941 * [7] Found | Found | NULL | Any | 0 | Invalid
942 *
943 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
944 * [9] Found | Found | task | 0 | 0 | Invalid
945 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
946 *
947 * [1] Indicates that the kernel can acquire the futex atomically. We
948 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
949 *
950 * [2] Valid, if TID does not belong to a kernel thread. If no matching
951 * thread is found then it indicates that the owner TID has died.
952 *
953 * [3] Invalid. The waiter is queued on a non PI futex
954 *
955 * [4] Valid state after exit_robust_list(), which sets the user space
956 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
957 *
958 * [5] The user space value got manipulated between exit_robust_list()
959 * and exit_pi_state_list()
960 *
961 * [6] Valid state after exit_pi_state_list() which sets the new owner in
962 * the pi_state but cannot access the user space value.
963 *
964 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
965 *
966 * [8] Owner and user space value match
967 *
968 * [9] There is no transient state which sets the user space TID to 0
969 * except exit_robust_list(), but this is indicated by the
970 * FUTEX_OWNER_DIED bit. See [4]
971 *
972 * [10] There is no transient state which leaves owner and user space
973 * TID out of sync.
974 */
975
976/*
977 * Validate that the existing waiter has a pi_state and sanity check
978 * the pi_state against the user space value. If correct, attach to
979 * it.
980 */
981static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
982 struct futex_pi_state **ps)
983{
984 pid_t pid = uval & FUTEX_TID_MASK;
985
986 /*
987 * Userspace might have messed up non-PI and PI futexes [3]
988 */
989 if (unlikely(!pi_state))
990 return -EINVAL;
991
992 WARN_ON(!atomic_read(&pi_state->refcount));
993
994 /*
995 * Handle the owner died case:
996 */
997 if (uval & FUTEX_OWNER_DIED) {
998 /*
999 * exit_pi_state_list sets owner to NULL and wakes the
1000 * topmost waiter. The task which acquires the
1001 * pi_state->rt_mutex will fixup owner.
1002 */
1003 if (!pi_state->owner) {
1004 /*
1005 * No pi state owner, but the user space TID
1006 * is not 0. Inconsistent state. [5]
1007 */
1008 if (pid)
1009 return -EINVAL;
1010 /*
1011 * Take a ref on the state and return success. [4]
1012 */
1013 goto out_state;
1014 }
1015
1016 /*
1017 * If TID is 0, then either the dying owner has not
1018 * yet executed exit_pi_state_list() or some waiter
1019 * acquired the rtmutex in the pi state, but did not
1020 * yet fixup the TID in user space.
1021 *
1022 * Take a ref on the state and return success. [6]
1023 */
1024 if (!pid)
1025 goto out_state;
1026 } else {
1027 /*
1028 * If the owner died bit is not set, then the pi_state
1029 * must have an owner. [7]
1030 */
1031 if (!pi_state->owner)
1032 return -EINVAL;
1033 }
1034
1035 /*
1036 * Bail out if user space manipulated the futex value. If pi
1037 * state exists then the owner TID must be the same as the
1038 * user space TID. [9/10]
1039 */
1040 if (pid != task_pid_vnr(pi_state->owner))
1041 return -EINVAL;
1042out_state:
1043 atomic_inc(&pi_state->refcount);
1044 *ps = pi_state;
1045 return 0;
1046}
1047
1048/*
1049 * Lookup the task for the TID provided from user space and attach to
1050 * it after doing proper sanity checks.
1051 */
1052static int attach_to_pi_owner(u32 uval, union futex_key *key,
1053 struct futex_pi_state **ps)
1054{
1055 pid_t pid = uval & FUTEX_TID_MASK;
1056 struct futex_pi_state *pi_state;
1057 struct task_struct *p;
1058
1059 /*
1060 * We are the first waiter - try to look up the real owner and attach
1061 * the new pi_state to it, but bail out when TID = 0 [1]
1062 */
1063 if (!pid)
1064 return -ESRCH;
1065 p = futex_find_get_task(pid);
1066 if (!p)
1067 return -ESRCH;
1068
1069 if (unlikely(p->flags & PF_KTHREAD)) {
1070 put_task_struct(p);
1071 return -EPERM;
1072 }
1073
1074 /*
1075 * We need to look at the task state flags to figure out,
1076 * whether the task is exiting. To protect against the do_exit
1077 * change of the task flags, we do this protected by
1078 * p->pi_lock:
1079 */
1080 raw_spin_lock_irq(&p->pi_lock);
1081 if (unlikely(p->flags & PF_EXITING)) {
1082 /*
1083 * The task is on the way out. When PF_EXITPIDONE is
1084 * set, we know that the task has finished the
1085 * cleanup:
1086 */
1087 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1088
1089 raw_spin_unlock_irq(&p->pi_lock);
1090 put_task_struct(p);
1091 return ret;
1092 }
1093
1094 /*
1095 * No existing pi state. First waiter. [2]
1096 */
1097 pi_state = alloc_pi_state();
1098
1099 /*
1100 * Initialize the pi_mutex in locked state and make @p
1101 * the owner of it:
1102 */
1103 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1104
1105 /* Store the key for possible exit cleanups: */
1106 pi_state->key = *key;
1107
1108 WARN_ON(!list_empty(&pi_state->list));
1109 list_add(&pi_state->list, &p->pi_state_list);
1110 pi_state->owner = p;
1111 raw_spin_unlock_irq(&p->pi_lock);
1112
1113 put_task_struct(p);
1114
1115 *ps = pi_state;
1116
1117 return 0;
1118}
1119
1120static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1121 union futex_key *key, struct futex_pi_state **ps)
1122{
1123 struct futex_q *match = futex_top_waiter(hb, key);
1124
1125 /*
1126 * If there is a waiter on that futex, validate it and
1127 * attach to the pi_state when the validation succeeds.
1128 */
1129 if (match)
1130 return attach_to_pi_state(uval, match->pi_state, ps);
1131
1132 /*
1133 * We are the first waiter - try to look up the owner based on
1134 * @uval and attach to it.
1135 */
1136 return attach_to_pi_owner(uval, key, ps);
1137}
1138
1139static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1140{
1141 u32 uninitialized_var(curval);
1142
1143 if (unlikely(should_fail_futex(true)))
1144 return -EFAULT;
1145
1146 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1147 return -EFAULT;
1148
1149 /*If user space value changed, let the caller retry */
1150 return curval != uval ? -EAGAIN : 0;
1151}
1152
1153/**
1154 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1155 * @uaddr: the pi futex user address
1156 * @hb: the pi futex hash bucket
1157 * @key: the futex key associated with uaddr and hb
1158 * @ps: the pi_state pointer where we store the result of the
1159 * lookup
1160 * @task: the task to perform the atomic lock work for. This will
1161 * be "current" except in the case of requeue pi.
1162 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1163 *
1164 * Return:
1165 * 0 - ready to wait;
1166 * 1 - acquired the lock;
1167 * <0 - error
1168 *
1169 * The hb->lock and futex_key refs shall be held by the caller.
1170 */
1171static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1172 union futex_key *key,
1173 struct futex_pi_state **ps,
1174 struct task_struct *task, int set_waiters)
1175{
1176 u32 uval, newval, vpid = task_pid_vnr(task);
1177 struct futex_q *match;
1178 int ret;
1179
1180 /*
1181 * Read the user space value first so we can validate a few
1182 * things before proceeding further.
1183 */
1184 if (get_futex_value_locked(&uval, uaddr))
1185 return -EFAULT;
1186
1187 if (unlikely(should_fail_futex(true)))
1188 return -EFAULT;
1189
1190 /*
1191 * Detect deadlocks.
1192 */
1193 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1194 return -EDEADLK;
1195
1196 if ((unlikely(should_fail_futex(true))))
1197 return -EDEADLK;
1198
1199 /*
1200 * Lookup existing state first. If it exists, try to attach to
1201 * its pi_state.
1202 */
1203 match = futex_top_waiter(hb, key);
1204 if (match)
1205 return attach_to_pi_state(uval, match->pi_state, ps);
1206
1207 /*
1208 * No waiter and user TID is 0. We are here because the
1209 * waiters or the owner died bit is set or called from
1210 * requeue_cmp_pi or for whatever reason something took the
1211 * syscall.
1212 */
1213 if (!(uval & FUTEX_TID_MASK)) {
1214 /*
1215 * We take over the futex. No other waiters and the user space
1216 * TID is 0. We preserve the owner died bit.
1217 */
1218 newval = uval & FUTEX_OWNER_DIED;
1219 newval |= vpid;
1220
1221 /* The futex requeue_pi code can enforce the waiters bit */
1222 if (set_waiters)
1223 newval |= FUTEX_WAITERS;
1224
1225 ret = lock_pi_update_atomic(uaddr, uval, newval);
1226 /* If the take over worked, return 1 */
1227 return ret < 0 ? ret : 1;
1228 }
1229
1230 /*
1231 * First waiter. Set the waiters bit before attaching ourself to
1232 * the owner. If owner tries to unlock, it will be forced into
1233 * the kernel and blocked on hb->lock.
1234 */
1235 newval = uval | FUTEX_WAITERS;
1236 ret = lock_pi_update_atomic(uaddr, uval, newval);
1237 if (ret)
1238 return ret;
1239 /*
1240 * If the update of the user space value succeeded, we try to
1241 * attach to the owner. If that fails, no harm done, we only
1242 * set the FUTEX_WAITERS bit in the user space variable.
1243 */
1244 return attach_to_pi_owner(uval, key, ps);
1245}
1246
1247/**
1248 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1249 * @q: The futex_q to unqueue
1250 *
1251 * The q->lock_ptr must not be NULL and must be held by the caller.
1252 */
1253static void __unqueue_futex(struct futex_q *q)
1254{
1255 struct futex_hash_bucket *hb;
1256
1257 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1258 || WARN_ON(plist_node_empty(&q->list)))
1259 return;
1260
1261 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1262 plist_del(&q->list, &hb->chain);
1263 hb_waiters_dec(hb);
1264}
1265
1266/*
1267 * The hash bucket lock must be held when this is called.
1268 * Afterwards, the futex_q must not be accessed. Callers
1269 * must ensure to later call wake_up_q() for the actual
1270 * wakeups to occur.
1271 */
1272static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1273{
1274 struct task_struct *p = q->task;
1275
1276 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1277 return;
1278
1279 /*
1280 * Queue the task for later wakeup for after we've released
1281 * the hb->lock. wake_q_add() grabs reference to p.
1282 */
1283 wake_q_add(wake_q, p);
1284 __unqueue_futex(q);
1285 /*
1286 * The waiting task can free the futex_q as soon as
1287 * q->lock_ptr = NULL is written, without taking any locks. A
1288 * memory barrier is required here to prevent the following
1289 * store to lock_ptr from getting ahead of the plist_del.
1290 */
1291 smp_wmb();
1292 q->lock_ptr = NULL;
1293}
1294
1295static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1296 struct futex_hash_bucket *hb)
1297{
1298 struct task_struct *new_owner;
1299 struct futex_pi_state *pi_state = this->pi_state;
1300 u32 uninitialized_var(curval), newval;
1301 DEFINE_WAKE_Q(wake_q);
1302 bool deboost;
1303 int ret = 0;
1304
1305 if (!pi_state)
1306 return -EINVAL;
1307
1308 /*
1309 * If current does not own the pi_state then the futex is
1310 * inconsistent and user space fiddled with the futex value.
1311 */
1312 if (pi_state->owner != current)
1313 return -EINVAL;
1314
1315 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1316 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1317
1318 /*
1319 * It is possible that the next waiter (the one that brought
1320 * this owner to the kernel) timed out and is no longer
1321 * waiting on the lock.
1322 */
1323 if (!new_owner)
1324 new_owner = this->task;
1325
1326 /*
1327 * We pass it to the next owner. The WAITERS bit is always
1328 * kept enabled while there is PI state around. We cleanup the
1329 * owner died bit, because we are the owner.
1330 */
1331 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1332
1333 if (unlikely(should_fail_futex(true)))
1334 ret = -EFAULT;
1335
1336 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1337 ret = -EFAULT;
1338 } else if (curval != uval) {
1339 /*
1340 * If a unconditional UNLOCK_PI operation (user space did not
1341 * try the TID->0 transition) raced with a waiter setting the
1342 * FUTEX_WAITERS flag between get_user() and locking the hash
1343 * bucket lock, retry the operation.
1344 */
1345 if ((FUTEX_TID_MASK & curval) == uval)
1346 ret = -EAGAIN;
1347 else
1348 ret = -EINVAL;
1349 }
1350 if (ret) {
1351 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1352 return ret;
1353 }
1354
1355 raw_spin_lock(&pi_state->owner->pi_lock);
1356 WARN_ON(list_empty(&pi_state->list));
1357 list_del_init(&pi_state->list);
1358 raw_spin_unlock(&pi_state->owner->pi_lock);
1359
1360 raw_spin_lock(&new_owner->pi_lock);
1361 WARN_ON(!list_empty(&pi_state->list));
1362 list_add(&pi_state->list, &new_owner->pi_state_list);
1363 pi_state->owner = new_owner;
1364 raw_spin_unlock(&new_owner->pi_lock);
1365
1366 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1367
1368 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1369
1370 /*
1371 * First unlock HB so the waiter does not spin on it once he got woken
1372 * up. Second wake up the waiter before the priority is adjusted. If we
1373 * deboost first (and lose our higher priority), then the task might get
1374 * scheduled away before the wake up can take place.
1375 */
1376 spin_unlock(&hb->lock);
1377 wake_up_q(&wake_q);
1378 if (deboost)
1379 rt_mutex_adjust_prio(current);
1380
1381 return 0;
1382}
1383
1384/*
1385 * Express the locking dependencies for lockdep:
1386 */
1387static inline void
1388double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1389{
1390 if (hb1 <= hb2) {
1391 spin_lock(&hb1->lock);
1392 if (hb1 < hb2)
1393 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1394 } else { /* hb1 > hb2 */
1395 spin_lock(&hb2->lock);
1396 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1397 }
1398}
1399
1400static inline void
1401double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1402{
1403 spin_unlock(&hb1->lock);
1404 if (hb1 != hb2)
1405 spin_unlock(&hb2->lock);
1406}
1407
1408/*
1409 * Wake up waiters matching bitset queued on this futex (uaddr).
1410 */
1411static int
1412futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1413{
1414 struct futex_hash_bucket *hb;
1415 struct futex_q *this, *next;
1416 union futex_key key = FUTEX_KEY_INIT;
1417 int ret;
1418 DEFINE_WAKE_Q(wake_q);
1419
1420 if (!bitset)
1421 return -EINVAL;
1422
1423 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1424 if (unlikely(ret != 0))
1425 goto out;
1426
1427 hb = hash_futex(&key);
1428
1429 /* Make sure we really have tasks to wakeup */
1430 if (!hb_waiters_pending(hb))
1431 goto out_put_key;
1432
1433 spin_lock(&hb->lock);
1434
1435 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1436 if (match_futex (&this->key, &key)) {
1437 if (this->pi_state || this->rt_waiter) {
1438 ret = -EINVAL;
1439 break;
1440 }
1441
1442 /* Check if one of the bits is set in both bitsets */
1443 if (!(this->bitset & bitset))
1444 continue;
1445
1446 mark_wake_futex(&wake_q, this);
1447 if (++ret >= nr_wake)
1448 break;
1449 }
1450 }
1451
1452 spin_unlock(&hb->lock);
1453 wake_up_q(&wake_q);
1454out_put_key:
1455 put_futex_key(&key);
1456out:
1457 return ret;
1458}
1459
1460/*
1461 * Wake up all waiters hashed on the physical page that is mapped
1462 * to this virtual address:
1463 */
1464static int
1465futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1466 int nr_wake, int nr_wake2, int op)
1467{
1468 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1469 struct futex_hash_bucket *hb1, *hb2;
1470 struct futex_q *this, *next;
1471 int ret, op_ret;
1472 DEFINE_WAKE_Q(wake_q);
1473
1474retry:
1475 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1476 if (unlikely(ret != 0))
1477 goto out;
1478 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1479 if (unlikely(ret != 0))
1480 goto out_put_key1;
1481
1482 hb1 = hash_futex(&key1);
1483 hb2 = hash_futex(&key2);
1484
1485retry_private:
1486 double_lock_hb(hb1, hb2);
1487 op_ret = futex_atomic_op_inuser(op, uaddr2);
1488 if (unlikely(op_ret < 0)) {
1489
1490 double_unlock_hb(hb1, hb2);
1491
1492#ifndef CONFIG_MMU
1493 /*
1494 * we don't get EFAULT from MMU faults if we don't have an MMU,
1495 * but we might get them from range checking
1496 */
1497 ret = op_ret;
1498 goto out_put_keys;
1499#endif
1500
1501 if (unlikely(op_ret != -EFAULT)) {
1502 ret = op_ret;
1503 goto out_put_keys;
1504 }
1505
1506 ret = fault_in_user_writeable(uaddr2);
1507 if (ret)
1508 goto out_put_keys;
1509
1510 if (!(flags & FLAGS_SHARED))
1511 goto retry_private;
1512
1513 put_futex_key(&key2);
1514 put_futex_key(&key1);
1515 goto retry;
1516 }
1517
1518 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1519 if (match_futex (&this->key, &key1)) {
1520 if (this->pi_state || this->rt_waiter) {
1521 ret = -EINVAL;
1522 goto out_unlock;
1523 }
1524 mark_wake_futex(&wake_q, this);
1525 if (++ret >= nr_wake)
1526 break;
1527 }
1528 }
1529
1530 if (op_ret > 0) {
1531 op_ret = 0;
1532 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1533 if (match_futex (&this->key, &key2)) {
1534 if (this->pi_state || this->rt_waiter) {
1535 ret = -EINVAL;
1536 goto out_unlock;
1537 }
1538 mark_wake_futex(&wake_q, this);
1539 if (++op_ret >= nr_wake2)
1540 break;
1541 }
1542 }
1543 ret += op_ret;
1544 }
1545
1546out_unlock:
1547 double_unlock_hb(hb1, hb2);
1548 wake_up_q(&wake_q);
1549out_put_keys:
1550 put_futex_key(&key2);
1551out_put_key1:
1552 put_futex_key(&key1);
1553out:
1554 return ret;
1555}
1556
1557/**
1558 * requeue_futex() - Requeue a futex_q from one hb to another
1559 * @q: the futex_q to requeue
1560 * @hb1: the source hash_bucket
1561 * @hb2: the target hash_bucket
1562 * @key2: the new key for the requeued futex_q
1563 */
1564static inline
1565void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1566 struct futex_hash_bucket *hb2, union futex_key *key2)
1567{
1568
1569 /*
1570 * If key1 and key2 hash to the same bucket, no need to
1571 * requeue.
1572 */
1573 if (likely(&hb1->chain != &hb2->chain)) {
1574 plist_del(&q->list, &hb1->chain);
1575 hb_waiters_dec(hb1);
1576 hb_waiters_inc(hb2);
1577 plist_add(&q->list, &hb2->chain);
1578 q->lock_ptr = &hb2->lock;
1579 }
1580 get_futex_key_refs(key2);
1581 q->key = *key2;
1582}
1583
1584/**
1585 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1586 * @q: the futex_q
1587 * @key: the key of the requeue target futex
1588 * @hb: the hash_bucket of the requeue target futex
1589 *
1590 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1591 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1592 * to the requeue target futex so the waiter can detect the wakeup on the right
1593 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1594 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1595 * to protect access to the pi_state to fixup the owner later. Must be called
1596 * with both q->lock_ptr and hb->lock held.
1597 */
1598static inline
1599void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1600 struct futex_hash_bucket *hb)
1601{
1602 get_futex_key_refs(key);
1603 q->key = *key;
1604
1605 __unqueue_futex(q);
1606
1607 WARN_ON(!q->rt_waiter);
1608 q->rt_waiter = NULL;
1609
1610 q->lock_ptr = &hb->lock;
1611
1612 wake_up_state(q->task, TASK_NORMAL);
1613}
1614
1615/**
1616 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1617 * @pifutex: the user address of the to futex
1618 * @hb1: the from futex hash bucket, must be locked by the caller
1619 * @hb2: the to futex hash bucket, must be locked by the caller
1620 * @key1: the from futex key
1621 * @key2: the to futex key
1622 * @ps: address to store the pi_state pointer
1623 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1624 *
1625 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1626 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1627 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1628 * hb1 and hb2 must be held by the caller.
1629 *
1630 * Return:
1631 * 0 - failed to acquire the lock atomically;
1632 * >0 - acquired the lock, return value is vpid of the top_waiter
1633 * <0 - error
1634 */
1635static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1636 struct futex_hash_bucket *hb1,
1637 struct futex_hash_bucket *hb2,
1638 union futex_key *key1, union futex_key *key2,
1639 struct futex_pi_state **ps, int set_waiters)
1640{
1641 struct futex_q *top_waiter = NULL;
1642 u32 curval;
1643 int ret, vpid;
1644
1645 if (get_futex_value_locked(&curval, pifutex))
1646 return -EFAULT;
1647
1648 if (unlikely(should_fail_futex(true)))
1649 return -EFAULT;
1650
1651 /*
1652 * Find the top_waiter and determine if there are additional waiters.
1653 * If the caller intends to requeue more than 1 waiter to pifutex,
1654 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1655 * as we have means to handle the possible fault. If not, don't set
1656 * the bit unecessarily as it will force the subsequent unlock to enter
1657 * the kernel.
1658 */
1659 top_waiter = futex_top_waiter(hb1, key1);
1660
1661 /* There are no waiters, nothing for us to do. */
1662 if (!top_waiter)
1663 return 0;
1664
1665 /* Ensure we requeue to the expected futex. */
1666 if (!match_futex(top_waiter->requeue_pi_key, key2))
1667 return -EINVAL;
1668
1669 /*
1670 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1671 * the contended case or if set_waiters is 1. The pi_state is returned
1672 * in ps in contended cases.
1673 */
1674 vpid = task_pid_vnr(top_waiter->task);
1675 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1676 set_waiters);
1677 if (ret == 1) {
1678 requeue_pi_wake_futex(top_waiter, key2, hb2);
1679 return vpid;
1680 }
1681 return ret;
1682}
1683
1684/**
1685 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1686 * @uaddr1: source futex user address
1687 * @flags: futex flags (FLAGS_SHARED, etc.)
1688 * @uaddr2: target futex user address
1689 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1690 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1691 * @cmpval: @uaddr1 expected value (or %NULL)
1692 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1693 * pi futex (pi to pi requeue is not supported)
1694 *
1695 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1696 * uaddr2 atomically on behalf of the top waiter.
1697 *
1698 * Return:
1699 * >=0 - on success, the number of tasks requeued or woken;
1700 * <0 - on error
1701 */
1702static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1703 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1704 u32 *cmpval, int requeue_pi)
1705{
1706 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1707 int drop_count = 0, task_count = 0, ret;
1708 struct futex_pi_state *pi_state = NULL;
1709 struct futex_hash_bucket *hb1, *hb2;
1710 struct futex_q *this, *next;
1711 DEFINE_WAKE_Q(wake_q);
1712
1713 if (requeue_pi) {
1714 /*
1715 * Requeue PI only works on two distinct uaddrs. This
1716 * check is only valid for private futexes. See below.
1717 */
1718 if (uaddr1 == uaddr2)
1719 return -EINVAL;
1720
1721 /*
1722 * requeue_pi requires a pi_state, try to allocate it now
1723 * without any locks in case it fails.
1724 */
1725 if (refill_pi_state_cache())
1726 return -ENOMEM;
1727 /*
1728 * requeue_pi must wake as many tasks as it can, up to nr_wake
1729 * + nr_requeue, since it acquires the rt_mutex prior to
1730 * returning to userspace, so as to not leave the rt_mutex with
1731 * waiters and no owner. However, second and third wake-ups
1732 * cannot be predicted as they involve race conditions with the
1733 * first wake and a fault while looking up the pi_state. Both
1734 * pthread_cond_signal() and pthread_cond_broadcast() should
1735 * use nr_wake=1.
1736 */
1737 if (nr_wake != 1)
1738 return -EINVAL;
1739 }
1740
1741retry:
1742 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1743 if (unlikely(ret != 0))
1744 goto out;
1745 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1746 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1747 if (unlikely(ret != 0))
1748 goto out_put_key1;
1749
1750 /*
1751 * The check above which compares uaddrs is not sufficient for
1752 * shared futexes. We need to compare the keys:
1753 */
1754 if (requeue_pi && match_futex(&key1, &key2)) {
1755 ret = -EINVAL;
1756 goto out_put_keys;
1757 }
1758
1759 hb1 = hash_futex(&key1);
1760 hb2 = hash_futex(&key2);
1761
1762retry_private:
1763 hb_waiters_inc(hb2);
1764 double_lock_hb(hb1, hb2);
1765
1766 if (likely(cmpval != NULL)) {
1767 u32 curval;
1768
1769 ret = get_futex_value_locked(&curval, uaddr1);
1770
1771 if (unlikely(ret)) {
1772 double_unlock_hb(hb1, hb2);
1773 hb_waiters_dec(hb2);
1774
1775 ret = get_user(curval, uaddr1);
1776 if (ret)
1777 goto out_put_keys;
1778
1779 if (!(flags & FLAGS_SHARED))
1780 goto retry_private;
1781
1782 put_futex_key(&key2);
1783 put_futex_key(&key1);
1784 goto retry;
1785 }
1786 if (curval != *cmpval) {
1787 ret = -EAGAIN;
1788 goto out_unlock;
1789 }
1790 }
1791
1792 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1793 /*
1794 * Attempt to acquire uaddr2 and wake the top waiter. If we
1795 * intend to requeue waiters, force setting the FUTEX_WAITERS
1796 * bit. We force this here where we are able to easily handle
1797 * faults rather in the requeue loop below.
1798 */
1799 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1800 &key2, &pi_state, nr_requeue);
1801
1802 /*
1803 * At this point the top_waiter has either taken uaddr2 or is
1804 * waiting on it. If the former, then the pi_state will not
1805 * exist yet, look it up one more time to ensure we have a
1806 * reference to it. If the lock was taken, ret contains the
1807 * vpid of the top waiter task.
1808 * If the lock was not taken, we have pi_state and an initial
1809 * refcount on it. In case of an error we have nothing.
1810 */
1811 if (ret > 0) {
1812 WARN_ON(pi_state);
1813 drop_count++;
1814 task_count++;
1815 /*
1816 * If we acquired the lock, then the user space value
1817 * of uaddr2 should be vpid. It cannot be changed by
1818 * the top waiter as it is blocked on hb2 lock if it
1819 * tries to do so. If something fiddled with it behind
1820 * our back the pi state lookup might unearth it. So
1821 * we rather use the known value than rereading and
1822 * handing potential crap to lookup_pi_state.
1823 *
1824 * If that call succeeds then we have pi_state and an
1825 * initial refcount on it.
1826 */
1827 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1828 }
1829
1830 switch (ret) {
1831 case 0:
1832 /* We hold a reference on the pi state. */
1833 break;
1834
1835 /* If the above failed, then pi_state is NULL */
1836 case -EFAULT:
1837 double_unlock_hb(hb1, hb2);
1838 hb_waiters_dec(hb2);
1839 put_futex_key(&key2);
1840 put_futex_key(&key1);
1841 ret = fault_in_user_writeable(uaddr2);
1842 if (!ret)
1843 goto retry;
1844 goto out;
1845 case -EAGAIN:
1846 /*
1847 * Two reasons for this:
1848 * - Owner is exiting and we just wait for the
1849 * exit to complete.
1850 * - The user space value changed.
1851 */
1852 double_unlock_hb(hb1, hb2);
1853 hb_waiters_dec(hb2);
1854 put_futex_key(&key2);
1855 put_futex_key(&key1);
1856 cond_resched();
1857 goto retry;
1858 default:
1859 goto out_unlock;
1860 }
1861 }
1862
1863 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1864 if (task_count - nr_wake >= nr_requeue)
1865 break;
1866
1867 if (!match_futex(&this->key, &key1))
1868 continue;
1869
1870 /*
1871 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1872 * be paired with each other and no other futex ops.
1873 *
1874 * We should never be requeueing a futex_q with a pi_state,
1875 * which is awaiting a futex_unlock_pi().
1876 */
1877 if ((requeue_pi && !this->rt_waiter) ||
1878 (!requeue_pi && this->rt_waiter) ||
1879 this->pi_state) {
1880 ret = -EINVAL;
1881 break;
1882 }
1883
1884 /*
1885 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1886 * lock, we already woke the top_waiter. If not, it will be
1887 * woken by futex_unlock_pi().
1888 */
1889 if (++task_count <= nr_wake && !requeue_pi) {
1890 mark_wake_futex(&wake_q, this);
1891 continue;
1892 }
1893
1894 /* Ensure we requeue to the expected futex for requeue_pi. */
1895 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1896 ret = -EINVAL;
1897 break;
1898 }
1899
1900 /*
1901 * Requeue nr_requeue waiters and possibly one more in the case
1902 * of requeue_pi if we couldn't acquire the lock atomically.
1903 */
1904 if (requeue_pi) {
1905 /*
1906 * Prepare the waiter to take the rt_mutex. Take a
1907 * refcount on the pi_state and store the pointer in
1908 * the futex_q object of the waiter.
1909 */
1910 atomic_inc(&pi_state->refcount);
1911 this->pi_state = pi_state;
1912 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1913 this->rt_waiter,
1914 this->task);
1915 if (ret == 1) {
1916 /*
1917 * We got the lock. We do neither drop the
1918 * refcount on pi_state nor clear
1919 * this->pi_state because the waiter needs the
1920 * pi_state for cleaning up the user space
1921 * value. It will drop the refcount after
1922 * doing so.
1923 */
1924 requeue_pi_wake_futex(this, &key2, hb2);
1925 drop_count++;
1926 continue;
1927 } else if (ret) {
1928 /*
1929 * rt_mutex_start_proxy_lock() detected a
1930 * potential deadlock when we tried to queue
1931 * that waiter. Drop the pi_state reference
1932 * which we took above and remove the pointer
1933 * to the state from the waiters futex_q
1934 * object.
1935 */
1936 this->pi_state = NULL;
1937 put_pi_state(pi_state);
1938 /*
1939 * We stop queueing more waiters and let user
1940 * space deal with the mess.
1941 */
1942 break;
1943 }
1944 }
1945 requeue_futex(this, hb1, hb2, &key2);
1946 drop_count++;
1947 }
1948
1949 /*
1950 * We took an extra initial reference to the pi_state either
1951 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1952 * need to drop it here again.
1953 */
1954 put_pi_state(pi_state);
1955
1956out_unlock:
1957 double_unlock_hb(hb1, hb2);
1958 wake_up_q(&wake_q);
1959 hb_waiters_dec(hb2);
1960
1961 /*
1962 * drop_futex_key_refs() must be called outside the spinlocks. During
1963 * the requeue we moved futex_q's from the hash bucket at key1 to the
1964 * one at key2 and updated their key pointer. We no longer need to
1965 * hold the references to key1.
1966 */
1967 while (--drop_count >= 0)
1968 drop_futex_key_refs(&key1);
1969
1970out_put_keys:
1971 put_futex_key(&key2);
1972out_put_key1:
1973 put_futex_key(&key1);
1974out:
1975 return ret ? ret : task_count;
1976}
1977
1978/* The key must be already stored in q->key. */
1979static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1980 __acquires(&hb->lock)
1981{
1982 struct futex_hash_bucket *hb;
1983
1984 hb = hash_futex(&q->key);
1985
1986 /*
1987 * Increment the counter before taking the lock so that
1988 * a potential waker won't miss a to-be-slept task that is
1989 * waiting for the spinlock. This is safe as all queue_lock()
1990 * users end up calling queue_me(). Similarly, for housekeeping,
1991 * decrement the counter at queue_unlock() when some error has
1992 * occurred and we don't end up adding the task to the list.
1993 */
1994 hb_waiters_inc(hb);
1995
1996 q->lock_ptr = &hb->lock;
1997
1998 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1999 return hb;
2000}
2001
2002static inline void
2003queue_unlock(struct futex_hash_bucket *hb)
2004 __releases(&hb->lock)
2005{
2006 spin_unlock(&hb->lock);
2007 hb_waiters_dec(hb);
2008}
2009
2010/**
2011 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2012 * @q: The futex_q to enqueue
2013 * @hb: The destination hash bucket
2014 *
2015 * The hb->lock must be held by the caller, and is released here. A call to
2016 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2017 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2018 * or nothing if the unqueue is done as part of the wake process and the unqueue
2019 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2020 * an example).
2021 */
2022static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2023 __releases(&hb->lock)
2024{
2025 int prio;
2026
2027 /*
2028 * The priority used to register this element is
2029 * - either the real thread-priority for the real-time threads
2030 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2031 * - or MAX_RT_PRIO for non-RT threads.
2032 * Thus, all RT-threads are woken first in priority order, and
2033 * the others are woken last, in FIFO order.
2034 */
2035 prio = min(current->normal_prio, MAX_RT_PRIO);
2036
2037 plist_node_init(&q->list, prio);
2038 plist_add(&q->list, &hb->chain);
2039 q->task = current;
2040 spin_unlock(&hb->lock);
2041}
2042
2043/**
2044 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2045 * @q: The futex_q to unqueue
2046 *
2047 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2048 * be paired with exactly one earlier call to queue_me().
2049 *
2050 * Return:
2051 * 1 - if the futex_q was still queued (and we removed unqueued it);
2052 * 0 - if the futex_q was already removed by the waking thread
2053 */
2054static int unqueue_me(struct futex_q *q)
2055{
2056 spinlock_t *lock_ptr;
2057 int ret = 0;
2058
2059 /* In the common case we don't take the spinlock, which is nice. */
2060retry:
2061 /*
2062 * q->lock_ptr can change between this read and the following spin_lock.
2063 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2064 * optimizing lock_ptr out of the logic below.
2065 */
2066 lock_ptr = READ_ONCE(q->lock_ptr);
2067 if (lock_ptr != NULL) {
2068 spin_lock(lock_ptr);
2069 /*
2070 * q->lock_ptr can change between reading it and
2071 * spin_lock(), causing us to take the wrong lock. This
2072 * corrects the race condition.
2073 *
2074 * Reasoning goes like this: if we have the wrong lock,
2075 * q->lock_ptr must have changed (maybe several times)
2076 * between reading it and the spin_lock(). It can
2077 * change again after the spin_lock() but only if it was
2078 * already changed before the spin_lock(). It cannot,
2079 * however, change back to the original value. Therefore
2080 * we can detect whether we acquired the correct lock.
2081 */
2082 if (unlikely(lock_ptr != q->lock_ptr)) {
2083 spin_unlock(lock_ptr);
2084 goto retry;
2085 }
2086 __unqueue_futex(q);
2087
2088 BUG_ON(q->pi_state);
2089
2090 spin_unlock(lock_ptr);
2091 ret = 1;
2092 }
2093
2094 drop_futex_key_refs(&q->key);
2095 return ret;
2096}
2097
2098/*
2099 * PI futexes can not be requeued and must remove themself from the
2100 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2101 * and dropped here.
2102 */
2103static void unqueue_me_pi(struct futex_q *q)
2104 __releases(q->lock_ptr)
2105{
2106 __unqueue_futex(q);
2107
2108 BUG_ON(!q->pi_state);
2109 put_pi_state(q->pi_state);
2110 q->pi_state = NULL;
2111
2112 spin_unlock(q->lock_ptr);
2113}
2114
2115/*
2116 * Fixup the pi_state owner with the new owner.
2117 *
2118 * Must be called with hash bucket lock held and mm->sem held for non
2119 * private futexes.
2120 */
2121static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2122 struct task_struct *newowner)
2123{
2124 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2125 struct futex_pi_state *pi_state = q->pi_state;
2126 struct task_struct *oldowner = pi_state->owner;
2127 u32 uval, uninitialized_var(curval), newval;
2128 int ret;
2129
2130 /* Owner died? */
2131 if (!pi_state->owner)
2132 newtid |= FUTEX_OWNER_DIED;
2133
2134 /*
2135 * We are here either because we stole the rtmutex from the
2136 * previous highest priority waiter or we are the highest priority
2137 * waiter but failed to get the rtmutex the first time.
2138 * We have to replace the newowner TID in the user space variable.
2139 * This must be atomic as we have to preserve the owner died bit here.
2140 *
2141 * Note: We write the user space value _before_ changing the pi_state
2142 * because we can fault here. Imagine swapped out pages or a fork
2143 * that marked all the anonymous memory readonly for cow.
2144 *
2145 * Modifying pi_state _before_ the user space value would
2146 * leave the pi_state in an inconsistent state when we fault
2147 * here, because we need to drop the hash bucket lock to
2148 * handle the fault. This might be observed in the PID check
2149 * in lookup_pi_state.
2150 */
2151retry:
2152 if (get_futex_value_locked(&uval, uaddr))
2153 goto handle_fault;
2154
2155 while (1) {
2156 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2157
2158 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2159 goto handle_fault;
2160 if (curval == uval)
2161 break;
2162 uval = curval;
2163 }
2164
2165 /*
2166 * We fixed up user space. Now we need to fix the pi_state
2167 * itself.
2168 */
2169 if (pi_state->owner != NULL) {
2170 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2171 WARN_ON(list_empty(&pi_state->list));
2172 list_del_init(&pi_state->list);
2173 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2174 }
2175
2176 pi_state->owner = newowner;
2177
2178 raw_spin_lock_irq(&newowner->pi_lock);
2179 WARN_ON(!list_empty(&pi_state->list));
2180 list_add(&pi_state->list, &newowner->pi_state_list);
2181 raw_spin_unlock_irq(&newowner->pi_lock);
2182 return 0;
2183
2184 /*
2185 * To handle the page fault we need to drop the hash bucket
2186 * lock here. That gives the other task (either the highest priority
2187 * waiter itself or the task which stole the rtmutex) the
2188 * chance to try the fixup of the pi_state. So once we are
2189 * back from handling the fault we need to check the pi_state
2190 * after reacquiring the hash bucket lock and before trying to
2191 * do another fixup. When the fixup has been done already we
2192 * simply return.
2193 */
2194handle_fault:
2195 spin_unlock(q->lock_ptr);
2196
2197 ret = fault_in_user_writeable(uaddr);
2198
2199 spin_lock(q->lock_ptr);
2200
2201 /*
2202 * Check if someone else fixed it for us:
2203 */
2204 if (pi_state->owner != oldowner)
2205 return 0;
2206
2207 if (ret)
2208 return ret;
2209
2210 goto retry;
2211}
2212
2213static long futex_wait_restart(struct restart_block *restart);
2214
2215/**
2216 * fixup_owner() - Post lock pi_state and corner case management
2217 * @uaddr: user address of the futex
2218 * @q: futex_q (contains pi_state and access to the rt_mutex)
2219 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2220 *
2221 * After attempting to lock an rt_mutex, this function is called to cleanup
2222 * the pi_state owner as well as handle race conditions that may allow us to
2223 * acquire the lock. Must be called with the hb lock held.
2224 *
2225 * Return:
2226 * 1 - success, lock taken;
2227 * 0 - success, lock not taken;
2228 * <0 - on error (-EFAULT)
2229 */
2230static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2231{
2232 struct task_struct *owner;
2233 int ret = 0;
2234
2235 if (locked) {
2236 /*
2237 * Got the lock. We might not be the anticipated owner if we
2238 * did a lock-steal - fix up the PI-state in that case:
2239 */
2240 if (q->pi_state->owner != current)
2241 ret = fixup_pi_state_owner(uaddr, q, current);
2242 goto out;
2243 }
2244
2245 /*
2246 * Catch the rare case, where the lock was released when we were on the
2247 * way back before we locked the hash bucket.
2248 */
2249 if (q->pi_state->owner == current) {
2250 /*
2251 * Try to get the rt_mutex now. This might fail as some other
2252 * task acquired the rt_mutex after we removed ourself from the
2253 * rt_mutex waiters list.
2254 */
2255 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2256 locked = 1;
2257 goto out;
2258 }
2259
2260 /*
2261 * pi_state is incorrect, some other task did a lock steal and
2262 * we returned due to timeout or signal without taking the
2263 * rt_mutex. Too late.
2264 */
2265 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2266 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2267 if (!owner)
2268 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2269 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2270 ret = fixup_pi_state_owner(uaddr, q, owner);
2271 goto out;
2272 }
2273
2274 /*
2275 * Paranoia check. If we did not take the lock, then we should not be
2276 * the owner of the rt_mutex.
2277 */
2278 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2279 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2280 "pi-state %p\n", ret,
2281 q->pi_state->pi_mutex.owner,
2282 q->pi_state->owner);
2283
2284out:
2285 return ret ? ret : locked;
2286}
2287
2288/**
2289 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2290 * @hb: the futex hash bucket, must be locked by the caller
2291 * @q: the futex_q to queue up on
2292 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2293 */
2294static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2295 struct hrtimer_sleeper *timeout)
2296{
2297 /*
2298 * The task state is guaranteed to be set before another task can
2299 * wake it. set_current_state() is implemented using smp_store_mb() and
2300 * queue_me() calls spin_unlock() upon completion, both serializing
2301 * access to the hash list and forcing another memory barrier.
2302 */
2303 set_current_state(TASK_INTERRUPTIBLE);
2304 queue_me(q, hb);
2305
2306 /* Arm the timer */
2307 if (timeout)
2308 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2309
2310 /*
2311 * If we have been removed from the hash list, then another task
2312 * has tried to wake us, and we can skip the call to schedule().
2313 */
2314 if (likely(!plist_node_empty(&q->list))) {
2315 /*
2316 * If the timer has already expired, current will already be
2317 * flagged for rescheduling. Only call schedule if there
2318 * is no timeout, or if it has yet to expire.
2319 */
2320 if (!timeout || timeout->task)
2321 freezable_schedule();
2322 }
2323 __set_current_state(TASK_RUNNING);
2324}
2325
2326/**
2327 * futex_wait_setup() - Prepare to wait on a futex
2328 * @uaddr: the futex userspace address
2329 * @val: the expected value
2330 * @flags: futex flags (FLAGS_SHARED, etc.)
2331 * @q: the associated futex_q
2332 * @hb: storage for hash_bucket pointer to be returned to caller
2333 *
2334 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2335 * compare it with the expected value. Handle atomic faults internally.
2336 * Return with the hb lock held and a q.key reference on success, and unlocked
2337 * with no q.key reference on failure.
2338 *
2339 * Return:
2340 * 0 - uaddr contains val and hb has been locked;
2341 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2342 */
2343static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2344 struct futex_q *q, struct futex_hash_bucket **hb)
2345{
2346 u32 uval;
2347 int ret;
2348
2349 /*
2350 * Access the page AFTER the hash-bucket is locked.
2351 * Order is important:
2352 *
2353 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2354 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2355 *
2356 * The basic logical guarantee of a futex is that it blocks ONLY
2357 * if cond(var) is known to be true at the time of blocking, for
2358 * any cond. If we locked the hash-bucket after testing *uaddr, that
2359 * would open a race condition where we could block indefinitely with
2360 * cond(var) false, which would violate the guarantee.
2361 *
2362 * On the other hand, we insert q and release the hash-bucket only
2363 * after testing *uaddr. This guarantees that futex_wait() will NOT
2364 * absorb a wakeup if *uaddr does not match the desired values
2365 * while the syscall executes.
2366 */
2367retry:
2368 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2369 if (unlikely(ret != 0))
2370 return ret;
2371
2372retry_private:
2373 *hb = queue_lock(q);
2374
2375 ret = get_futex_value_locked(&uval, uaddr);
2376
2377 if (ret) {
2378 queue_unlock(*hb);
2379
2380 ret = get_user(uval, uaddr);
2381 if (ret)
2382 goto out;
2383
2384 if (!(flags & FLAGS_SHARED))
2385 goto retry_private;
2386
2387 put_futex_key(&q->key);
2388 goto retry;
2389 }
2390
2391 if (uval != val) {
2392 queue_unlock(*hb);
2393 ret = -EWOULDBLOCK;
2394 }
2395
2396out:
2397 if (ret)
2398 put_futex_key(&q->key);
2399 return ret;
2400}
2401
2402static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2403 ktime_t *abs_time, u32 bitset)
2404{
2405 struct hrtimer_sleeper timeout, *to = NULL;
2406 struct restart_block *restart;
2407 struct futex_hash_bucket *hb;
2408 struct futex_q q = futex_q_init;
2409 int ret;
2410
2411 if (!bitset)
2412 return -EINVAL;
2413 q.bitset = bitset;
2414
2415 if (abs_time) {
2416 to = &timeout;
2417
2418 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2419 CLOCK_REALTIME : CLOCK_MONOTONIC,
2420 HRTIMER_MODE_ABS);
2421 hrtimer_init_sleeper(to, current);
2422 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2423 current->timer_slack_ns);
2424 }
2425
2426retry:
2427 /*
2428 * Prepare to wait on uaddr. On success, holds hb lock and increments
2429 * q.key refs.
2430 */
2431 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2432 if (ret)
2433 goto out;
2434
2435 /* queue_me and wait for wakeup, timeout, or a signal. */
2436 futex_wait_queue_me(hb, &q, to);
2437
2438 /* If we were woken (and unqueued), we succeeded, whatever. */
2439 ret = 0;
2440 /* unqueue_me() drops q.key ref */
2441 if (!unqueue_me(&q))
2442 goto out;
2443 ret = -ETIMEDOUT;
2444 if (to && !to->task)
2445 goto out;
2446
2447 /*
2448 * We expect signal_pending(current), but we might be the
2449 * victim of a spurious wakeup as well.
2450 */
2451 if (!signal_pending(current))
2452 goto retry;
2453
2454 ret = -ERESTARTSYS;
2455 if (!abs_time)
2456 goto out;
2457
2458 restart = ¤t->restart_block;
2459 restart->fn = futex_wait_restart;
2460 restart->futex.uaddr = uaddr;
2461 restart->futex.val = val;
2462 restart->futex.time = *abs_time;
2463 restart->futex.bitset = bitset;
2464 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2465
2466 ret = -ERESTART_RESTARTBLOCK;
2467
2468out:
2469 if (to) {
2470 hrtimer_cancel(&to->timer);
2471 destroy_hrtimer_on_stack(&to->timer);
2472 }
2473 return ret;
2474}
2475
2476
2477static long futex_wait_restart(struct restart_block *restart)
2478{
2479 u32 __user *uaddr = restart->futex.uaddr;
2480 ktime_t t, *tp = NULL;
2481
2482 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2483 t = restart->futex.time;
2484 tp = &t;
2485 }
2486 restart->fn = do_no_restart_syscall;
2487
2488 return (long)futex_wait(uaddr, restart->futex.flags,
2489 restart->futex.val, tp, restart->futex.bitset);
2490}
2491
2492
2493/*
2494 * Userspace tried a 0 -> TID atomic transition of the futex value
2495 * and failed. The kernel side here does the whole locking operation:
2496 * if there are waiters then it will block as a consequence of relying
2497 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2498 * a 0 value of the futex too.).
2499 *
2500 * Also serves as futex trylock_pi()'ing, and due semantics.
2501 */
2502static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2503 ktime_t *time, int trylock)
2504{
2505 struct hrtimer_sleeper timeout, *to = NULL;
2506 struct futex_hash_bucket *hb;
2507 struct futex_q q = futex_q_init;
2508 int res, ret;
2509
2510 if (refill_pi_state_cache())
2511 return -ENOMEM;
2512
2513 if (time) {
2514 to = &timeout;
2515 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2516 HRTIMER_MODE_ABS);
2517 hrtimer_init_sleeper(to, current);
2518 hrtimer_set_expires(&to->timer, *time);
2519 }
2520
2521retry:
2522 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2523 if (unlikely(ret != 0))
2524 goto out;
2525
2526retry_private:
2527 hb = queue_lock(&q);
2528
2529 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2530 if (unlikely(ret)) {
2531 /*
2532 * Atomic work succeeded and we got the lock,
2533 * or failed. Either way, we do _not_ block.
2534 */
2535 switch (ret) {
2536 case 1:
2537 /* We got the lock. */
2538 ret = 0;
2539 goto out_unlock_put_key;
2540 case -EFAULT:
2541 goto uaddr_faulted;
2542 case -EAGAIN:
2543 /*
2544 * Two reasons for this:
2545 * - Task is exiting and we just wait for the
2546 * exit to complete.
2547 * - The user space value changed.
2548 */
2549 queue_unlock(hb);
2550 put_futex_key(&q.key);
2551 cond_resched();
2552 goto retry;
2553 default:
2554 goto out_unlock_put_key;
2555 }
2556 }
2557
2558 /*
2559 * Only actually queue now that the atomic ops are done:
2560 */
2561 queue_me(&q, hb);
2562
2563 WARN_ON(!q.pi_state);
2564 /*
2565 * Block on the PI mutex:
2566 */
2567 if (!trylock) {
2568 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2569 } else {
2570 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2571 /* Fixup the trylock return value: */
2572 ret = ret ? 0 : -EWOULDBLOCK;
2573 }
2574
2575 spin_lock(q.lock_ptr);
2576 /*
2577 * Fixup the pi_state owner and possibly acquire the lock if we
2578 * haven't already.
2579 */
2580 res = fixup_owner(uaddr, &q, !ret);
2581 /*
2582 * If fixup_owner() returned an error, proprogate that. If it acquired
2583 * the lock, clear our -ETIMEDOUT or -EINTR.
2584 */
2585 if (res)
2586 ret = (res < 0) ? res : 0;
2587
2588 /*
2589 * If fixup_owner() faulted and was unable to handle the fault, unlock
2590 * it and return the fault to userspace.
2591 */
2592 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2593 rt_mutex_unlock(&q.pi_state->pi_mutex);
2594
2595 /* Unqueue and drop the lock */
2596 unqueue_me_pi(&q);
2597
2598 goto out_put_key;
2599
2600out_unlock_put_key:
2601 queue_unlock(hb);
2602
2603out_put_key:
2604 put_futex_key(&q.key);
2605out:
2606 if (to)
2607 destroy_hrtimer_on_stack(&to->timer);
2608 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2609
2610uaddr_faulted:
2611 queue_unlock(hb);
2612
2613 ret = fault_in_user_writeable(uaddr);
2614 if (ret)
2615 goto out_put_key;
2616
2617 if (!(flags & FLAGS_SHARED))
2618 goto retry_private;
2619
2620 put_futex_key(&q.key);
2621 goto retry;
2622}
2623
2624/*
2625 * Userspace attempted a TID -> 0 atomic transition, and failed.
2626 * This is the in-kernel slowpath: we look up the PI state (if any),
2627 * and do the rt-mutex unlock.
2628 */
2629static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2630{
2631 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2632 union futex_key key = FUTEX_KEY_INIT;
2633 struct futex_hash_bucket *hb;
2634 struct futex_q *match;
2635 int ret;
2636
2637retry:
2638 if (get_user(uval, uaddr))
2639 return -EFAULT;
2640 /*
2641 * We release only a lock we actually own:
2642 */
2643 if ((uval & FUTEX_TID_MASK) != vpid)
2644 return -EPERM;
2645
2646 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2647 if (ret)
2648 return ret;
2649
2650 hb = hash_futex(&key);
2651 spin_lock(&hb->lock);
2652
2653 /*
2654 * Check waiters first. We do not trust user space values at
2655 * all and we at least want to know if user space fiddled
2656 * with the futex value instead of blindly unlocking.
2657 */
2658 match = futex_top_waiter(hb, &key);
2659 if (match) {
2660 ret = wake_futex_pi(uaddr, uval, match, hb);
2661 /*
2662 * In case of success wake_futex_pi dropped the hash
2663 * bucket lock.
2664 */
2665 if (!ret)
2666 goto out_putkey;
2667 /*
2668 * The atomic access to the futex value generated a
2669 * pagefault, so retry the user-access and the wakeup:
2670 */
2671 if (ret == -EFAULT)
2672 goto pi_faulted;
2673 /*
2674 * A unconditional UNLOCK_PI op raced against a waiter
2675 * setting the FUTEX_WAITERS bit. Try again.
2676 */
2677 if (ret == -EAGAIN) {
2678 spin_unlock(&hb->lock);
2679 put_futex_key(&key);
2680 goto retry;
2681 }
2682 /*
2683 * wake_futex_pi has detected invalid state. Tell user
2684 * space.
2685 */
2686 goto out_unlock;
2687 }
2688
2689 /*
2690 * We have no kernel internal state, i.e. no waiters in the
2691 * kernel. Waiters which are about to queue themselves are stuck
2692 * on hb->lock. So we can safely ignore them. We do neither
2693 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2694 * owner.
2695 */
2696 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2697 goto pi_faulted;
2698
2699 /*
2700 * If uval has changed, let user space handle it.
2701 */
2702 ret = (curval == uval) ? 0 : -EAGAIN;
2703
2704out_unlock:
2705 spin_unlock(&hb->lock);
2706out_putkey:
2707 put_futex_key(&key);
2708 return ret;
2709
2710pi_faulted:
2711 spin_unlock(&hb->lock);
2712 put_futex_key(&key);
2713
2714 ret = fault_in_user_writeable(uaddr);
2715 if (!ret)
2716 goto retry;
2717
2718 return ret;
2719}
2720
2721/**
2722 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2723 * @hb: the hash_bucket futex_q was original enqueued on
2724 * @q: the futex_q woken while waiting to be requeued
2725 * @key2: the futex_key of the requeue target futex
2726 * @timeout: the timeout associated with the wait (NULL if none)
2727 *
2728 * Detect if the task was woken on the initial futex as opposed to the requeue
2729 * target futex. If so, determine if it was a timeout or a signal that caused
2730 * the wakeup and return the appropriate error code to the caller. Must be
2731 * called with the hb lock held.
2732 *
2733 * Return:
2734 * 0 = no early wakeup detected;
2735 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2736 */
2737static inline
2738int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2739 struct futex_q *q, union futex_key *key2,
2740 struct hrtimer_sleeper *timeout)
2741{
2742 int ret = 0;
2743
2744 /*
2745 * With the hb lock held, we avoid races while we process the wakeup.
2746 * We only need to hold hb (and not hb2) to ensure atomicity as the
2747 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2748 * It can't be requeued from uaddr2 to something else since we don't
2749 * support a PI aware source futex for requeue.
2750 */
2751 if (!match_futex(&q->key, key2)) {
2752 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2753 /*
2754 * We were woken prior to requeue by a timeout or a signal.
2755 * Unqueue the futex_q and determine which it was.
2756 */
2757 plist_del(&q->list, &hb->chain);
2758 hb_waiters_dec(hb);
2759
2760 /* Handle spurious wakeups gracefully */
2761 ret = -EWOULDBLOCK;
2762 if (timeout && !timeout->task)
2763 ret = -ETIMEDOUT;
2764 else if (signal_pending(current))
2765 ret = -ERESTARTNOINTR;
2766 }
2767 return ret;
2768}
2769
2770/**
2771 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2772 * @uaddr: the futex we initially wait on (non-pi)
2773 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2774 * the same type, no requeueing from private to shared, etc.
2775 * @val: the expected value of uaddr
2776 * @abs_time: absolute timeout
2777 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2778 * @uaddr2: the pi futex we will take prior to returning to user-space
2779 *
2780 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2781 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2782 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2783 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2784 * without one, the pi logic would not know which task to boost/deboost, if
2785 * there was a need to.
2786 *
2787 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2788 * via the following--
2789 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2790 * 2) wakeup on uaddr2 after a requeue
2791 * 3) signal
2792 * 4) timeout
2793 *
2794 * If 3, cleanup and return -ERESTARTNOINTR.
2795 *
2796 * If 2, we may then block on trying to take the rt_mutex and return via:
2797 * 5) successful lock
2798 * 6) signal
2799 * 7) timeout
2800 * 8) other lock acquisition failure
2801 *
2802 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2803 *
2804 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2805 *
2806 * Return:
2807 * 0 - On success;
2808 * <0 - On error
2809 */
2810static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2811 u32 val, ktime_t *abs_time, u32 bitset,
2812 u32 __user *uaddr2)
2813{
2814 struct hrtimer_sleeper timeout, *to = NULL;
2815 struct rt_mutex_waiter rt_waiter;
2816 struct futex_hash_bucket *hb;
2817 union futex_key key2 = FUTEX_KEY_INIT;
2818 struct futex_q q = futex_q_init;
2819 int res, ret;
2820
2821 if (uaddr == uaddr2)
2822 return -EINVAL;
2823
2824 if (!bitset)
2825 return -EINVAL;
2826
2827 if (abs_time) {
2828 to = &timeout;
2829 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2830 CLOCK_REALTIME : CLOCK_MONOTONIC,
2831 HRTIMER_MODE_ABS);
2832 hrtimer_init_sleeper(to, current);
2833 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2834 current->timer_slack_ns);
2835 }
2836
2837 /*
2838 * The waiter is allocated on our stack, manipulated by the requeue
2839 * code while we sleep on uaddr.
2840 */
2841 debug_rt_mutex_init_waiter(&rt_waiter);
2842 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2843 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2844 rt_waiter.task = NULL;
2845
2846 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2847 if (unlikely(ret != 0))
2848 goto out;
2849
2850 q.bitset = bitset;
2851 q.rt_waiter = &rt_waiter;
2852 q.requeue_pi_key = &key2;
2853
2854 /*
2855 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2856 * count.
2857 */
2858 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2859 if (ret)
2860 goto out_key2;
2861
2862 /*
2863 * The check above which compares uaddrs is not sufficient for
2864 * shared futexes. We need to compare the keys:
2865 */
2866 if (match_futex(&q.key, &key2)) {
2867 queue_unlock(hb);
2868 ret = -EINVAL;
2869 goto out_put_keys;
2870 }
2871
2872 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2873 futex_wait_queue_me(hb, &q, to);
2874
2875 spin_lock(&hb->lock);
2876 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2877 spin_unlock(&hb->lock);
2878 if (ret)
2879 goto out_put_keys;
2880
2881 /*
2882 * In order for us to be here, we know our q.key == key2, and since
2883 * we took the hb->lock above, we also know that futex_requeue() has
2884 * completed and we no longer have to concern ourselves with a wakeup
2885 * race with the atomic proxy lock acquisition by the requeue code. The
2886 * futex_requeue dropped our key1 reference and incremented our key2
2887 * reference count.
2888 */
2889
2890 /* Check if the requeue code acquired the second futex for us. */
2891 if (!q.rt_waiter) {
2892 /*
2893 * Got the lock. We might not be the anticipated owner if we
2894 * did a lock-steal - fix up the PI-state in that case.
2895 */
2896 if (q.pi_state && (q.pi_state->owner != current)) {
2897 spin_lock(q.lock_ptr);
2898 ret = fixup_pi_state_owner(uaddr2, &q, current);
2899 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2900 rt_mutex_unlock(&q.pi_state->pi_mutex);
2901 /*
2902 * Drop the reference to the pi state which
2903 * the requeue_pi() code acquired for us.
2904 */
2905 put_pi_state(q.pi_state);
2906 spin_unlock(q.lock_ptr);
2907 }
2908 } else {
2909 struct rt_mutex *pi_mutex;
2910
2911 /*
2912 * We have been woken up by futex_unlock_pi(), a timeout, or a
2913 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2914 * the pi_state.
2915 */
2916 WARN_ON(!q.pi_state);
2917 pi_mutex = &q.pi_state->pi_mutex;
2918 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2919 debug_rt_mutex_free_waiter(&rt_waiter);
2920
2921 spin_lock(q.lock_ptr);
2922 /*
2923 * Fixup the pi_state owner and possibly acquire the lock if we
2924 * haven't already.
2925 */
2926 res = fixup_owner(uaddr2, &q, !ret);
2927 /*
2928 * If fixup_owner() returned an error, proprogate that. If it
2929 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2930 */
2931 if (res)
2932 ret = (res < 0) ? res : 0;
2933
2934 /*
2935 * If fixup_pi_state_owner() faulted and was unable to handle
2936 * the fault, unlock the rt_mutex and return the fault to
2937 * userspace.
2938 */
2939 if (ret && rt_mutex_owner(pi_mutex) == current)
2940 rt_mutex_unlock(pi_mutex);
2941
2942 /* Unqueue and drop the lock. */
2943 unqueue_me_pi(&q);
2944 }
2945
2946 if (ret == -EINTR) {
2947 /*
2948 * We've already been requeued, but cannot restart by calling
2949 * futex_lock_pi() directly. We could restart this syscall, but
2950 * it would detect that the user space "val" changed and return
2951 * -EWOULDBLOCK. Save the overhead of the restart and return
2952 * -EWOULDBLOCK directly.
2953 */
2954 ret = -EWOULDBLOCK;
2955 }
2956
2957out_put_keys:
2958 put_futex_key(&q.key);
2959out_key2:
2960 put_futex_key(&key2);
2961
2962out:
2963 if (to) {
2964 hrtimer_cancel(&to->timer);
2965 destroy_hrtimer_on_stack(&to->timer);
2966 }
2967 return ret;
2968}
2969
2970/*
2971 * Support for robust futexes: the kernel cleans up held futexes at
2972 * thread exit time.
2973 *
2974 * Implementation: user-space maintains a per-thread list of locks it
2975 * is holding. Upon do_exit(), the kernel carefully walks this list,
2976 * and marks all locks that are owned by this thread with the
2977 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2978 * always manipulated with the lock held, so the list is private and
2979 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2980 * field, to allow the kernel to clean up if the thread dies after
2981 * acquiring the lock, but just before it could have added itself to
2982 * the list. There can only be one such pending lock.
2983 */
2984
2985/**
2986 * sys_set_robust_list() - Set the robust-futex list head of a task
2987 * @head: pointer to the list-head
2988 * @len: length of the list-head, as userspace expects
2989 */
2990SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2991 size_t, len)
2992{
2993 if (!futex_cmpxchg_enabled)
2994 return -ENOSYS;
2995 /*
2996 * The kernel knows only one size for now:
2997 */
2998 if (unlikely(len != sizeof(*head)))
2999 return -EINVAL;
3000
3001 current->robust_list = head;
3002
3003 return 0;
3004}
3005
3006/**
3007 * sys_get_robust_list() - Get the robust-futex list head of a task
3008 * @pid: pid of the process [zero for current task]
3009 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3010 * @len_ptr: pointer to a length field, the kernel fills in the header size
3011 */
3012SYSCALL_DEFINE3(get_robust_list, int, pid,
3013 struct robust_list_head __user * __user *, head_ptr,
3014 size_t __user *, len_ptr)
3015{
3016 struct robust_list_head __user *head;
3017 unsigned long ret;
3018 struct task_struct *p;
3019
3020 if (!futex_cmpxchg_enabled)
3021 return -ENOSYS;
3022
3023 rcu_read_lock();
3024
3025 ret = -ESRCH;
3026 if (!pid)
3027 p = current;
3028 else {
3029 p = find_task_by_vpid(pid);
3030 if (!p)
3031 goto err_unlock;
3032 }
3033
3034 ret = -EPERM;
3035 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3036 goto err_unlock;
3037
3038 head = p->robust_list;
3039 rcu_read_unlock();
3040
3041 if (put_user(sizeof(*head), len_ptr))
3042 return -EFAULT;
3043 return put_user(head, head_ptr);
3044
3045err_unlock:
3046 rcu_read_unlock();
3047
3048 return ret;
3049}
3050
3051/*
3052 * Process a futex-list entry, check whether it's owned by the
3053 * dying task, and do notification if so:
3054 */
3055int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3056{
3057 u32 uval, uninitialized_var(nval), mval;
3058
3059retry:
3060 if (get_user(uval, uaddr))
3061 return -1;
3062
3063 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3064 /*
3065 * Ok, this dying thread is truly holding a futex
3066 * of interest. Set the OWNER_DIED bit atomically
3067 * via cmpxchg, and if the value had FUTEX_WAITERS
3068 * set, wake up a waiter (if any). (We have to do a
3069 * futex_wake() even if OWNER_DIED is already set -
3070 * to handle the rare but possible case of recursive
3071 * thread-death.) The rest of the cleanup is done in
3072 * userspace.
3073 */
3074 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3075 /*
3076 * We are not holding a lock here, but we want to have
3077 * the pagefault_disable/enable() protection because
3078 * we want to handle the fault gracefully. If the
3079 * access fails we try to fault in the futex with R/W
3080 * verification via get_user_pages. get_user() above
3081 * does not guarantee R/W access. If that fails we
3082 * give up and leave the futex locked.
3083 */
3084 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3085 if (fault_in_user_writeable(uaddr))
3086 return -1;
3087 goto retry;
3088 }
3089 if (nval != uval)
3090 goto retry;
3091
3092 /*
3093 * Wake robust non-PI futexes here. The wakeup of
3094 * PI futexes happens in exit_pi_state():
3095 */
3096 if (!pi && (uval & FUTEX_WAITERS))
3097 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3098 }
3099 return 0;
3100}
3101
3102/*
3103 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3104 */
3105static inline int fetch_robust_entry(struct robust_list __user **entry,
3106 struct robust_list __user * __user *head,
3107 unsigned int *pi)
3108{
3109 unsigned long uentry;
3110
3111 if (get_user(uentry, (unsigned long __user *)head))
3112 return -EFAULT;
3113
3114 *entry = (void __user *)(uentry & ~1UL);
3115 *pi = uentry & 1;
3116
3117 return 0;
3118}
3119
3120/*
3121 * Walk curr->robust_list (very carefully, it's a userspace list!)
3122 * and mark any locks found there dead, and notify any waiters.
3123 *
3124 * We silently return on any sign of list-walking problem.
3125 */
3126void exit_robust_list(struct task_struct *curr)
3127{
3128 struct robust_list_head __user *head = curr->robust_list;
3129 struct robust_list __user *entry, *next_entry, *pending;
3130 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3131 unsigned int uninitialized_var(next_pi);
3132 unsigned long futex_offset;
3133 int rc;
3134
3135 if (!futex_cmpxchg_enabled)
3136 return;
3137
3138 /*
3139 * Fetch the list head (which was registered earlier, via
3140 * sys_set_robust_list()):
3141 */
3142 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3143 return;
3144 /*
3145 * Fetch the relative futex offset:
3146 */
3147 if (get_user(futex_offset, &head->futex_offset))
3148 return;
3149 /*
3150 * Fetch any possibly pending lock-add first, and handle it
3151 * if it exists:
3152 */
3153 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3154 return;
3155
3156 next_entry = NULL; /* avoid warning with gcc */
3157 while (entry != &head->list) {
3158 /*
3159 * Fetch the next entry in the list before calling
3160 * handle_futex_death:
3161 */
3162 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3163 /*
3164 * A pending lock might already be on the list, so
3165 * don't process it twice:
3166 */
3167 if (entry != pending)
3168 if (handle_futex_death((void __user *)entry + futex_offset,
3169 curr, pi))
3170 return;
3171 if (rc)
3172 return;
3173 entry = next_entry;
3174 pi = next_pi;
3175 /*
3176 * Avoid excessively long or circular lists:
3177 */
3178 if (!--limit)
3179 break;
3180
3181 cond_resched();
3182 }
3183
3184 if (pending)
3185 handle_futex_death((void __user *)pending + futex_offset,
3186 curr, pip);
3187}
3188
3189long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3190 u32 __user *uaddr2, u32 val2, u32 val3)
3191{
3192 int cmd = op & FUTEX_CMD_MASK;
3193 unsigned int flags = 0;
3194
3195 if (!(op & FUTEX_PRIVATE_FLAG))
3196 flags |= FLAGS_SHARED;
3197
3198 if (op & FUTEX_CLOCK_REALTIME) {
3199 flags |= FLAGS_CLOCKRT;
3200 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3201 cmd != FUTEX_WAIT_REQUEUE_PI)
3202 return -ENOSYS;
3203 }
3204
3205 switch (cmd) {
3206 case FUTEX_LOCK_PI:
3207 case FUTEX_UNLOCK_PI:
3208 case FUTEX_TRYLOCK_PI:
3209 case FUTEX_WAIT_REQUEUE_PI:
3210 case FUTEX_CMP_REQUEUE_PI:
3211 if (!futex_cmpxchg_enabled)
3212 return -ENOSYS;
3213 }
3214
3215 switch (cmd) {
3216 case FUTEX_WAIT:
3217 val3 = FUTEX_BITSET_MATCH_ANY;
3218 case FUTEX_WAIT_BITSET:
3219 return futex_wait(uaddr, flags, val, timeout, val3);
3220 case FUTEX_WAKE:
3221 val3 = FUTEX_BITSET_MATCH_ANY;
3222 case FUTEX_WAKE_BITSET:
3223 return futex_wake(uaddr, flags, val, val3);
3224 case FUTEX_REQUEUE:
3225 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3226 case FUTEX_CMP_REQUEUE:
3227 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3228 case FUTEX_WAKE_OP:
3229 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3230 case FUTEX_LOCK_PI:
3231 return futex_lock_pi(uaddr, flags, timeout, 0);
3232 case FUTEX_UNLOCK_PI:
3233 return futex_unlock_pi(uaddr, flags);
3234 case FUTEX_TRYLOCK_PI:
3235 return futex_lock_pi(uaddr, flags, NULL, 1);
3236 case FUTEX_WAIT_REQUEUE_PI:
3237 val3 = FUTEX_BITSET_MATCH_ANY;
3238 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3239 uaddr2);
3240 case FUTEX_CMP_REQUEUE_PI:
3241 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3242 }
3243 return -ENOSYS;
3244}
3245
3246
3247SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3248 struct timespec __user *, utime, u32 __user *, uaddr2,
3249 u32, val3)
3250{
3251 struct timespec ts;
3252 ktime_t t, *tp = NULL;
3253 u32 val2 = 0;
3254 int cmd = op & FUTEX_CMD_MASK;
3255
3256 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3257 cmd == FUTEX_WAIT_BITSET ||
3258 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3259 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3260 return -EFAULT;
3261 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3262 return -EFAULT;
3263 if (!timespec_valid(&ts))
3264 return -EINVAL;
3265
3266 t = timespec_to_ktime(ts);
3267 if (cmd == FUTEX_WAIT)
3268 t = ktime_add_safe(ktime_get(), t);
3269 tp = &t;
3270 }
3271 /*
3272 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3273 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3274 */
3275 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3276 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3277 val2 = (u32) (unsigned long) utime;
3278
3279 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3280}
3281
3282static void __init futex_detect_cmpxchg(void)
3283{
3284#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3285 u32 curval;
3286
3287 /*
3288 * This will fail and we want it. Some arch implementations do
3289 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3290 * functionality. We want to know that before we call in any
3291 * of the complex code paths. Also we want to prevent
3292 * registration of robust lists in that case. NULL is
3293 * guaranteed to fault and we get -EFAULT on functional
3294 * implementation, the non-functional ones will return
3295 * -ENOSYS.
3296 */
3297 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3298 futex_cmpxchg_enabled = 1;
3299#endif
3300}
3301
3302static int __init futex_init(void)
3303{
3304 unsigned int futex_shift;
3305 unsigned long i;
3306
3307#if CONFIG_BASE_SMALL
3308 futex_hashsize = 16;
3309#else
3310 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3311#endif
3312
3313 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3314 futex_hashsize, 0,
3315 futex_hashsize < 256 ? HASH_SMALL : 0,
3316 &futex_shift, NULL,
3317 futex_hashsize, futex_hashsize);
3318 futex_hashsize = 1UL << futex_shift;
3319
3320 futex_detect_cmpxchg();
3321
3322 for (i = 0; i < futex_hashsize; i++) {
3323 atomic_set(&futex_queues[i].waiters, 0);
3324 plist_head_init(&futex_queues[i].chain);
3325 spin_lock_init(&futex_queues[i].lock);
3326 }
3327
3328 return 0;
3329}
3330core_initcall(futex_init);
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/export.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62#include <linux/ptrace.h>
63
64#include <asm/futex.h>
65
66#include "rtmutex_common.h"
67
68int __read_mostly futex_cmpxchg_enabled;
69
70#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
71
72/*
73 * Futex flags used to encode options to functions and preserve them across
74 * restarts.
75 */
76#define FLAGS_SHARED 0x01
77#define FLAGS_CLOCKRT 0x02
78#define FLAGS_HAS_TIMEOUT 0x04
79
80/*
81 * Priority Inheritance state:
82 */
83struct futex_pi_state {
84 /*
85 * list of 'owned' pi_state instances - these have to be
86 * cleaned up in do_exit() if the task exits prematurely:
87 */
88 struct list_head list;
89
90 /*
91 * The PI object:
92 */
93 struct rt_mutex pi_mutex;
94
95 struct task_struct *owner;
96 atomic_t refcount;
97
98 union futex_key key;
99};
100
101/**
102 * struct futex_q - The hashed futex queue entry, one per waiting task
103 * @list: priority-sorted list of tasks waiting on this futex
104 * @task: the task waiting on the futex
105 * @lock_ptr: the hash bucket lock
106 * @key: the key the futex is hashed on
107 * @pi_state: optional priority inheritance state
108 * @rt_waiter: rt_waiter storage for use with requeue_pi
109 * @requeue_pi_key: the requeue_pi target futex key
110 * @bitset: bitset for the optional bitmasked wakeup
111 *
112 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
113 * we can wake only the relevant ones (hashed queues may be shared).
114 *
115 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
116 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
117 * The order of wakeup is always to make the first condition true, then
118 * the second.
119 *
120 * PI futexes are typically woken before they are removed from the hash list via
121 * the rt_mutex code. See unqueue_me_pi().
122 */
123struct futex_q {
124 struct plist_node list;
125
126 struct task_struct *task;
127 spinlock_t *lock_ptr;
128 union futex_key key;
129 struct futex_pi_state *pi_state;
130 struct rt_mutex_waiter *rt_waiter;
131 union futex_key *requeue_pi_key;
132 u32 bitset;
133};
134
135static const struct futex_q futex_q_init = {
136 /* list gets initialized in queue_me()*/
137 .key = FUTEX_KEY_INIT,
138 .bitset = FUTEX_BITSET_MATCH_ANY
139};
140
141/*
142 * Hash buckets are shared by all the futex_keys that hash to the same
143 * location. Each key may have multiple futex_q structures, one for each task
144 * waiting on a futex.
145 */
146struct futex_hash_bucket {
147 spinlock_t lock;
148 struct plist_head chain;
149};
150
151static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
152
153/*
154 * We hash on the keys returned from get_futex_key (see below).
155 */
156static struct futex_hash_bucket *hash_futex(union futex_key *key)
157{
158 u32 hash = jhash2((u32*)&key->both.word,
159 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
160 key->both.offset);
161 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
162}
163
164/*
165 * Return 1 if two futex_keys are equal, 0 otherwise.
166 */
167static inline int match_futex(union futex_key *key1, union futex_key *key2)
168{
169 return (key1 && key2
170 && key1->both.word == key2->both.word
171 && key1->both.ptr == key2->both.ptr
172 && key1->both.offset == key2->both.offset);
173}
174
175/*
176 * Take a reference to the resource addressed by a key.
177 * Can be called while holding spinlocks.
178 *
179 */
180static void get_futex_key_refs(union futex_key *key)
181{
182 if (!key->both.ptr)
183 return;
184
185 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
186 case FUT_OFF_INODE:
187 ihold(key->shared.inode);
188 break;
189 case FUT_OFF_MMSHARED:
190 atomic_inc(&key->private.mm->mm_count);
191 break;
192 }
193}
194
195/*
196 * Drop a reference to the resource addressed by a key.
197 * The hash bucket spinlock must not be held.
198 */
199static void drop_futex_key_refs(union futex_key *key)
200{
201 if (!key->both.ptr) {
202 /* If we're here then we tried to put a key we failed to get */
203 WARN_ON_ONCE(1);
204 return;
205 }
206
207 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
208 case FUT_OFF_INODE:
209 iput(key->shared.inode);
210 break;
211 case FUT_OFF_MMSHARED:
212 mmdrop(key->private.mm);
213 break;
214 }
215}
216
217/**
218 * get_futex_key() - Get parameters which are the keys for a futex
219 * @uaddr: virtual address of the futex
220 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
221 * @key: address where result is stored.
222 * @rw: mapping needs to be read/write (values: VERIFY_READ,
223 * VERIFY_WRITE)
224 *
225 * Returns a negative error code or 0
226 * The key words are stored in *key on success.
227 *
228 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
229 * offset_within_page). For private mappings, it's (uaddr, current->mm).
230 * We can usually work out the index without swapping in the page.
231 *
232 * lock_page() might sleep, the caller should not hold a spinlock.
233 */
234static int
235get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
236{
237 unsigned long address = (unsigned long)uaddr;
238 struct mm_struct *mm = current->mm;
239 struct page *page, *page_head;
240 int err, ro = 0;
241
242 /*
243 * The futex address must be "naturally" aligned.
244 */
245 key->both.offset = address % PAGE_SIZE;
246 if (unlikely((address % sizeof(u32)) != 0))
247 return -EINVAL;
248 address -= key->both.offset;
249
250 /*
251 * PROCESS_PRIVATE futexes are fast.
252 * As the mm cannot disappear under us and the 'key' only needs
253 * virtual address, we dont even have to find the underlying vma.
254 * Note : We do have to check 'uaddr' is a valid user address,
255 * but access_ok() should be faster than find_vma()
256 */
257 if (!fshared) {
258 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
259 return -EFAULT;
260 key->private.mm = mm;
261 key->private.address = address;
262 get_futex_key_refs(key);
263 return 0;
264 }
265
266again:
267 err = get_user_pages_fast(address, 1, 1, &page);
268 /*
269 * If write access is not required (eg. FUTEX_WAIT), try
270 * and get read-only access.
271 */
272 if (err == -EFAULT && rw == VERIFY_READ) {
273 err = get_user_pages_fast(address, 1, 0, &page);
274 ro = 1;
275 }
276 if (err < 0)
277 return err;
278 else
279 err = 0;
280
281#ifdef CONFIG_TRANSPARENT_HUGEPAGE
282 page_head = page;
283 if (unlikely(PageTail(page))) {
284 put_page(page);
285 /* serialize against __split_huge_page_splitting() */
286 local_irq_disable();
287 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
288 page_head = compound_head(page);
289 /*
290 * page_head is valid pointer but we must pin
291 * it before taking the PG_lock and/or
292 * PG_compound_lock. The moment we re-enable
293 * irqs __split_huge_page_splitting() can
294 * return and the head page can be freed from
295 * under us. We can't take the PG_lock and/or
296 * PG_compound_lock on a page that could be
297 * freed from under us.
298 */
299 if (page != page_head) {
300 get_page(page_head);
301 put_page(page);
302 }
303 local_irq_enable();
304 } else {
305 local_irq_enable();
306 goto again;
307 }
308 }
309#else
310 page_head = compound_head(page);
311 if (page != page_head) {
312 get_page(page_head);
313 put_page(page);
314 }
315#endif
316
317 lock_page(page_head);
318
319 /*
320 * If page_head->mapping is NULL, then it cannot be a PageAnon
321 * page; but it might be the ZERO_PAGE or in the gate area or
322 * in a special mapping (all cases which we are happy to fail);
323 * or it may have been a good file page when get_user_pages_fast
324 * found it, but truncated or holepunched or subjected to
325 * invalidate_complete_page2 before we got the page lock (also
326 * cases which we are happy to fail). And we hold a reference,
327 * so refcount care in invalidate_complete_page's remove_mapping
328 * prevents drop_caches from setting mapping to NULL beneath us.
329 *
330 * The case we do have to guard against is when memory pressure made
331 * shmem_writepage move it from filecache to swapcache beneath us:
332 * an unlikely race, but we do need to retry for page_head->mapping.
333 */
334 if (!page_head->mapping) {
335 int shmem_swizzled = PageSwapCache(page_head);
336 unlock_page(page_head);
337 put_page(page_head);
338 if (shmem_swizzled)
339 goto again;
340 return -EFAULT;
341 }
342
343 /*
344 * Private mappings are handled in a simple way.
345 *
346 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
347 * it's a read-only handle, it's expected that futexes attach to
348 * the object not the particular process.
349 */
350 if (PageAnon(page_head)) {
351 /*
352 * A RO anonymous page will never change and thus doesn't make
353 * sense for futex operations.
354 */
355 if (ro) {
356 err = -EFAULT;
357 goto out;
358 }
359
360 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
361 key->private.mm = mm;
362 key->private.address = address;
363 } else {
364 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
365 key->shared.inode = page_head->mapping->host;
366 key->shared.pgoff = page_head->index;
367 }
368
369 get_futex_key_refs(key);
370
371out:
372 unlock_page(page_head);
373 put_page(page_head);
374 return err;
375}
376
377static inline void put_futex_key(union futex_key *key)
378{
379 drop_futex_key_refs(key);
380}
381
382/**
383 * fault_in_user_writeable() - Fault in user address and verify RW access
384 * @uaddr: pointer to faulting user space address
385 *
386 * Slow path to fixup the fault we just took in the atomic write
387 * access to @uaddr.
388 *
389 * We have no generic implementation of a non-destructive write to the
390 * user address. We know that we faulted in the atomic pagefault
391 * disabled section so we can as well avoid the #PF overhead by
392 * calling get_user_pages() right away.
393 */
394static int fault_in_user_writeable(u32 __user *uaddr)
395{
396 struct mm_struct *mm = current->mm;
397 int ret;
398
399 down_read(&mm->mmap_sem);
400 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
401 FAULT_FLAG_WRITE);
402 up_read(&mm->mmap_sem);
403
404 return ret < 0 ? ret : 0;
405}
406
407/**
408 * futex_top_waiter() - Return the highest priority waiter on a futex
409 * @hb: the hash bucket the futex_q's reside in
410 * @key: the futex key (to distinguish it from other futex futex_q's)
411 *
412 * Must be called with the hb lock held.
413 */
414static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
415 union futex_key *key)
416{
417 struct futex_q *this;
418
419 plist_for_each_entry(this, &hb->chain, list) {
420 if (match_futex(&this->key, key))
421 return this;
422 }
423 return NULL;
424}
425
426static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
427 u32 uval, u32 newval)
428{
429 int ret;
430
431 pagefault_disable();
432 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
433 pagefault_enable();
434
435 return ret;
436}
437
438static int get_futex_value_locked(u32 *dest, u32 __user *from)
439{
440 int ret;
441
442 pagefault_disable();
443 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
444 pagefault_enable();
445
446 return ret ? -EFAULT : 0;
447}
448
449
450/*
451 * PI code:
452 */
453static int refill_pi_state_cache(void)
454{
455 struct futex_pi_state *pi_state;
456
457 if (likely(current->pi_state_cache))
458 return 0;
459
460 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
461
462 if (!pi_state)
463 return -ENOMEM;
464
465 INIT_LIST_HEAD(&pi_state->list);
466 /* pi_mutex gets initialized later */
467 pi_state->owner = NULL;
468 atomic_set(&pi_state->refcount, 1);
469 pi_state->key = FUTEX_KEY_INIT;
470
471 current->pi_state_cache = pi_state;
472
473 return 0;
474}
475
476static struct futex_pi_state * alloc_pi_state(void)
477{
478 struct futex_pi_state *pi_state = current->pi_state_cache;
479
480 WARN_ON(!pi_state);
481 current->pi_state_cache = NULL;
482
483 return pi_state;
484}
485
486static void free_pi_state(struct futex_pi_state *pi_state)
487{
488 if (!atomic_dec_and_test(&pi_state->refcount))
489 return;
490
491 /*
492 * If pi_state->owner is NULL, the owner is most probably dying
493 * and has cleaned up the pi_state already
494 */
495 if (pi_state->owner) {
496 raw_spin_lock_irq(&pi_state->owner->pi_lock);
497 list_del_init(&pi_state->list);
498 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
499
500 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
501 }
502
503 if (current->pi_state_cache)
504 kfree(pi_state);
505 else {
506 /*
507 * pi_state->list is already empty.
508 * clear pi_state->owner.
509 * refcount is at 0 - put it back to 1.
510 */
511 pi_state->owner = NULL;
512 atomic_set(&pi_state->refcount, 1);
513 current->pi_state_cache = pi_state;
514 }
515}
516
517/*
518 * Look up the task based on what TID userspace gave us.
519 * We dont trust it.
520 */
521static struct task_struct * futex_find_get_task(pid_t pid)
522{
523 struct task_struct *p;
524
525 rcu_read_lock();
526 p = find_task_by_vpid(pid);
527 if (p)
528 get_task_struct(p);
529
530 rcu_read_unlock();
531
532 return p;
533}
534
535/*
536 * This task is holding PI mutexes at exit time => bad.
537 * Kernel cleans up PI-state, but userspace is likely hosed.
538 * (Robust-futex cleanup is separate and might save the day for userspace.)
539 */
540void exit_pi_state_list(struct task_struct *curr)
541{
542 struct list_head *next, *head = &curr->pi_state_list;
543 struct futex_pi_state *pi_state;
544 struct futex_hash_bucket *hb;
545 union futex_key key = FUTEX_KEY_INIT;
546
547 if (!futex_cmpxchg_enabled)
548 return;
549 /*
550 * We are a ZOMBIE and nobody can enqueue itself on
551 * pi_state_list anymore, but we have to be careful
552 * versus waiters unqueueing themselves:
553 */
554 raw_spin_lock_irq(&curr->pi_lock);
555 while (!list_empty(head)) {
556
557 next = head->next;
558 pi_state = list_entry(next, struct futex_pi_state, list);
559 key = pi_state->key;
560 hb = hash_futex(&key);
561 raw_spin_unlock_irq(&curr->pi_lock);
562
563 spin_lock(&hb->lock);
564
565 raw_spin_lock_irq(&curr->pi_lock);
566 /*
567 * We dropped the pi-lock, so re-check whether this
568 * task still owns the PI-state:
569 */
570 if (head->next != next) {
571 spin_unlock(&hb->lock);
572 continue;
573 }
574
575 WARN_ON(pi_state->owner != curr);
576 WARN_ON(list_empty(&pi_state->list));
577 list_del_init(&pi_state->list);
578 pi_state->owner = NULL;
579 raw_spin_unlock_irq(&curr->pi_lock);
580
581 rt_mutex_unlock(&pi_state->pi_mutex);
582
583 spin_unlock(&hb->lock);
584
585 raw_spin_lock_irq(&curr->pi_lock);
586 }
587 raw_spin_unlock_irq(&curr->pi_lock);
588}
589
590static int
591lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
592 union futex_key *key, struct futex_pi_state **ps)
593{
594 struct futex_pi_state *pi_state = NULL;
595 struct futex_q *this, *next;
596 struct plist_head *head;
597 struct task_struct *p;
598 pid_t pid = uval & FUTEX_TID_MASK;
599
600 head = &hb->chain;
601
602 plist_for_each_entry_safe(this, next, head, list) {
603 if (match_futex(&this->key, key)) {
604 /*
605 * Another waiter already exists - bump up
606 * the refcount and return its pi_state:
607 */
608 pi_state = this->pi_state;
609 /*
610 * Userspace might have messed up non-PI and PI futexes
611 */
612 if (unlikely(!pi_state))
613 return -EINVAL;
614
615 WARN_ON(!atomic_read(&pi_state->refcount));
616
617 /*
618 * When pi_state->owner is NULL then the owner died
619 * and another waiter is on the fly. pi_state->owner
620 * is fixed up by the task which acquires
621 * pi_state->rt_mutex.
622 *
623 * We do not check for pid == 0 which can happen when
624 * the owner died and robust_list_exit() cleared the
625 * TID.
626 */
627 if (pid && pi_state->owner) {
628 /*
629 * Bail out if user space manipulated the
630 * futex value.
631 */
632 if (pid != task_pid_vnr(pi_state->owner))
633 return -EINVAL;
634 }
635
636 atomic_inc(&pi_state->refcount);
637 *ps = pi_state;
638
639 return 0;
640 }
641 }
642
643 /*
644 * We are the first waiter - try to look up the real owner and attach
645 * the new pi_state to it, but bail out when TID = 0
646 */
647 if (!pid)
648 return -ESRCH;
649 p = futex_find_get_task(pid);
650 if (!p)
651 return -ESRCH;
652
653 /*
654 * We need to look at the task state flags to figure out,
655 * whether the task is exiting. To protect against the do_exit
656 * change of the task flags, we do this protected by
657 * p->pi_lock:
658 */
659 raw_spin_lock_irq(&p->pi_lock);
660 if (unlikely(p->flags & PF_EXITING)) {
661 /*
662 * The task is on the way out. When PF_EXITPIDONE is
663 * set, we know that the task has finished the
664 * cleanup:
665 */
666 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
667
668 raw_spin_unlock_irq(&p->pi_lock);
669 put_task_struct(p);
670 return ret;
671 }
672
673 pi_state = alloc_pi_state();
674
675 /*
676 * Initialize the pi_mutex in locked state and make 'p'
677 * the owner of it:
678 */
679 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
680
681 /* Store the key for possible exit cleanups: */
682 pi_state->key = *key;
683
684 WARN_ON(!list_empty(&pi_state->list));
685 list_add(&pi_state->list, &p->pi_state_list);
686 pi_state->owner = p;
687 raw_spin_unlock_irq(&p->pi_lock);
688
689 put_task_struct(p);
690
691 *ps = pi_state;
692
693 return 0;
694}
695
696/**
697 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
698 * @uaddr: the pi futex user address
699 * @hb: the pi futex hash bucket
700 * @key: the futex key associated with uaddr and hb
701 * @ps: the pi_state pointer where we store the result of the
702 * lookup
703 * @task: the task to perform the atomic lock work for. This will
704 * be "current" except in the case of requeue pi.
705 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
706 *
707 * Returns:
708 * 0 - ready to wait
709 * 1 - acquired the lock
710 * <0 - error
711 *
712 * The hb->lock and futex_key refs shall be held by the caller.
713 */
714static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
715 union futex_key *key,
716 struct futex_pi_state **ps,
717 struct task_struct *task, int set_waiters)
718{
719 int lock_taken, ret, ownerdied = 0;
720 u32 uval, newval, curval, vpid = task_pid_vnr(task);
721
722retry:
723 ret = lock_taken = 0;
724
725 /*
726 * To avoid races, we attempt to take the lock here again
727 * (by doing a 0 -> TID atomic cmpxchg), while holding all
728 * the locks. It will most likely not succeed.
729 */
730 newval = vpid;
731 if (set_waiters)
732 newval |= FUTEX_WAITERS;
733
734 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
735 return -EFAULT;
736
737 /*
738 * Detect deadlocks.
739 */
740 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
741 return -EDEADLK;
742
743 /*
744 * Surprise - we got the lock. Just return to userspace:
745 */
746 if (unlikely(!curval))
747 return 1;
748
749 uval = curval;
750
751 /*
752 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
753 * to wake at the next unlock.
754 */
755 newval = curval | FUTEX_WAITERS;
756
757 /*
758 * There are two cases, where a futex might have no owner (the
759 * owner TID is 0): OWNER_DIED. We take over the futex in this
760 * case. We also do an unconditional take over, when the owner
761 * of the futex died.
762 *
763 * This is safe as we are protected by the hash bucket lock !
764 */
765 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
766 /* Keep the OWNER_DIED bit */
767 newval = (curval & ~FUTEX_TID_MASK) | vpid;
768 ownerdied = 0;
769 lock_taken = 1;
770 }
771
772 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
773 return -EFAULT;
774 if (unlikely(curval != uval))
775 goto retry;
776
777 /*
778 * We took the lock due to owner died take over.
779 */
780 if (unlikely(lock_taken))
781 return 1;
782
783 /*
784 * We dont have the lock. Look up the PI state (or create it if
785 * we are the first waiter):
786 */
787 ret = lookup_pi_state(uval, hb, key, ps);
788
789 if (unlikely(ret)) {
790 switch (ret) {
791 case -ESRCH:
792 /*
793 * No owner found for this futex. Check if the
794 * OWNER_DIED bit is set to figure out whether
795 * this is a robust futex or not.
796 */
797 if (get_futex_value_locked(&curval, uaddr))
798 return -EFAULT;
799
800 /*
801 * We simply start over in case of a robust
802 * futex. The code above will take the futex
803 * and return happy.
804 */
805 if (curval & FUTEX_OWNER_DIED) {
806 ownerdied = 1;
807 goto retry;
808 }
809 default:
810 break;
811 }
812 }
813
814 return ret;
815}
816
817/**
818 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
819 * @q: The futex_q to unqueue
820 *
821 * The q->lock_ptr must not be NULL and must be held by the caller.
822 */
823static void __unqueue_futex(struct futex_q *q)
824{
825 struct futex_hash_bucket *hb;
826
827 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
828 || WARN_ON(plist_node_empty(&q->list)))
829 return;
830
831 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
832 plist_del(&q->list, &hb->chain);
833}
834
835/*
836 * The hash bucket lock must be held when this is called.
837 * Afterwards, the futex_q must not be accessed.
838 */
839static void wake_futex(struct futex_q *q)
840{
841 struct task_struct *p = q->task;
842
843 /*
844 * We set q->lock_ptr = NULL _before_ we wake up the task. If
845 * a non-futex wake up happens on another CPU then the task
846 * might exit and p would dereference a non-existing task
847 * struct. Prevent this by holding a reference on p across the
848 * wake up.
849 */
850 get_task_struct(p);
851
852 __unqueue_futex(q);
853 /*
854 * The waiting task can free the futex_q as soon as
855 * q->lock_ptr = NULL is written, without taking any locks. A
856 * memory barrier is required here to prevent the following
857 * store to lock_ptr from getting ahead of the plist_del.
858 */
859 smp_wmb();
860 q->lock_ptr = NULL;
861
862 wake_up_state(p, TASK_NORMAL);
863 put_task_struct(p);
864}
865
866static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
867{
868 struct task_struct *new_owner;
869 struct futex_pi_state *pi_state = this->pi_state;
870 u32 uninitialized_var(curval), newval;
871
872 if (!pi_state)
873 return -EINVAL;
874
875 /*
876 * If current does not own the pi_state then the futex is
877 * inconsistent and user space fiddled with the futex value.
878 */
879 if (pi_state->owner != current)
880 return -EINVAL;
881
882 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
883 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
884
885 /*
886 * It is possible that the next waiter (the one that brought
887 * this owner to the kernel) timed out and is no longer
888 * waiting on the lock.
889 */
890 if (!new_owner)
891 new_owner = this->task;
892
893 /*
894 * We pass it to the next owner. (The WAITERS bit is always
895 * kept enabled while there is PI state around. We must also
896 * preserve the owner died bit.)
897 */
898 if (!(uval & FUTEX_OWNER_DIED)) {
899 int ret = 0;
900
901 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
902
903 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
904 ret = -EFAULT;
905 else if (curval != uval)
906 ret = -EINVAL;
907 if (ret) {
908 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
909 return ret;
910 }
911 }
912
913 raw_spin_lock_irq(&pi_state->owner->pi_lock);
914 WARN_ON(list_empty(&pi_state->list));
915 list_del_init(&pi_state->list);
916 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
917
918 raw_spin_lock_irq(&new_owner->pi_lock);
919 WARN_ON(!list_empty(&pi_state->list));
920 list_add(&pi_state->list, &new_owner->pi_state_list);
921 pi_state->owner = new_owner;
922 raw_spin_unlock_irq(&new_owner->pi_lock);
923
924 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
925 rt_mutex_unlock(&pi_state->pi_mutex);
926
927 return 0;
928}
929
930static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
931{
932 u32 uninitialized_var(oldval);
933
934 /*
935 * There is no waiter, so we unlock the futex. The owner died
936 * bit has not to be preserved here. We are the owner:
937 */
938 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
939 return -EFAULT;
940 if (oldval != uval)
941 return -EAGAIN;
942
943 return 0;
944}
945
946/*
947 * Express the locking dependencies for lockdep:
948 */
949static inline void
950double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
951{
952 if (hb1 <= hb2) {
953 spin_lock(&hb1->lock);
954 if (hb1 < hb2)
955 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
956 } else { /* hb1 > hb2 */
957 spin_lock(&hb2->lock);
958 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
959 }
960}
961
962static inline void
963double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
964{
965 spin_unlock(&hb1->lock);
966 if (hb1 != hb2)
967 spin_unlock(&hb2->lock);
968}
969
970/*
971 * Wake up waiters matching bitset queued on this futex (uaddr).
972 */
973static int
974futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
975{
976 struct futex_hash_bucket *hb;
977 struct futex_q *this, *next;
978 struct plist_head *head;
979 union futex_key key = FUTEX_KEY_INIT;
980 int ret;
981
982 if (!bitset)
983 return -EINVAL;
984
985 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
986 if (unlikely(ret != 0))
987 goto out;
988
989 hb = hash_futex(&key);
990 spin_lock(&hb->lock);
991 head = &hb->chain;
992
993 plist_for_each_entry_safe(this, next, head, list) {
994 if (match_futex (&this->key, &key)) {
995 if (this->pi_state || this->rt_waiter) {
996 ret = -EINVAL;
997 break;
998 }
999
1000 /* Check if one of the bits is set in both bitsets */
1001 if (!(this->bitset & bitset))
1002 continue;
1003
1004 wake_futex(this);
1005 if (++ret >= nr_wake)
1006 break;
1007 }
1008 }
1009
1010 spin_unlock(&hb->lock);
1011 put_futex_key(&key);
1012out:
1013 return ret;
1014}
1015
1016/*
1017 * Wake up all waiters hashed on the physical page that is mapped
1018 * to this virtual address:
1019 */
1020static int
1021futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1022 int nr_wake, int nr_wake2, int op)
1023{
1024 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1025 struct futex_hash_bucket *hb1, *hb2;
1026 struct plist_head *head;
1027 struct futex_q *this, *next;
1028 int ret, op_ret;
1029
1030retry:
1031 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1032 if (unlikely(ret != 0))
1033 goto out;
1034 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1035 if (unlikely(ret != 0))
1036 goto out_put_key1;
1037
1038 hb1 = hash_futex(&key1);
1039 hb2 = hash_futex(&key2);
1040
1041retry_private:
1042 double_lock_hb(hb1, hb2);
1043 op_ret = futex_atomic_op_inuser(op, uaddr2);
1044 if (unlikely(op_ret < 0)) {
1045
1046 double_unlock_hb(hb1, hb2);
1047
1048#ifndef CONFIG_MMU
1049 /*
1050 * we don't get EFAULT from MMU faults if we don't have an MMU,
1051 * but we might get them from range checking
1052 */
1053 ret = op_ret;
1054 goto out_put_keys;
1055#endif
1056
1057 if (unlikely(op_ret != -EFAULT)) {
1058 ret = op_ret;
1059 goto out_put_keys;
1060 }
1061
1062 ret = fault_in_user_writeable(uaddr2);
1063 if (ret)
1064 goto out_put_keys;
1065
1066 if (!(flags & FLAGS_SHARED))
1067 goto retry_private;
1068
1069 put_futex_key(&key2);
1070 put_futex_key(&key1);
1071 goto retry;
1072 }
1073
1074 head = &hb1->chain;
1075
1076 plist_for_each_entry_safe(this, next, head, list) {
1077 if (match_futex (&this->key, &key1)) {
1078 wake_futex(this);
1079 if (++ret >= nr_wake)
1080 break;
1081 }
1082 }
1083
1084 if (op_ret > 0) {
1085 head = &hb2->chain;
1086
1087 op_ret = 0;
1088 plist_for_each_entry_safe(this, next, head, list) {
1089 if (match_futex (&this->key, &key2)) {
1090 wake_futex(this);
1091 if (++op_ret >= nr_wake2)
1092 break;
1093 }
1094 }
1095 ret += op_ret;
1096 }
1097
1098 double_unlock_hb(hb1, hb2);
1099out_put_keys:
1100 put_futex_key(&key2);
1101out_put_key1:
1102 put_futex_key(&key1);
1103out:
1104 return ret;
1105}
1106
1107/**
1108 * requeue_futex() - Requeue a futex_q from one hb to another
1109 * @q: the futex_q to requeue
1110 * @hb1: the source hash_bucket
1111 * @hb2: the target hash_bucket
1112 * @key2: the new key for the requeued futex_q
1113 */
1114static inline
1115void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1116 struct futex_hash_bucket *hb2, union futex_key *key2)
1117{
1118
1119 /*
1120 * If key1 and key2 hash to the same bucket, no need to
1121 * requeue.
1122 */
1123 if (likely(&hb1->chain != &hb2->chain)) {
1124 plist_del(&q->list, &hb1->chain);
1125 plist_add(&q->list, &hb2->chain);
1126 q->lock_ptr = &hb2->lock;
1127 }
1128 get_futex_key_refs(key2);
1129 q->key = *key2;
1130}
1131
1132/**
1133 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1134 * @q: the futex_q
1135 * @key: the key of the requeue target futex
1136 * @hb: the hash_bucket of the requeue target futex
1137 *
1138 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1139 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1140 * to the requeue target futex so the waiter can detect the wakeup on the right
1141 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1142 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1143 * to protect access to the pi_state to fixup the owner later. Must be called
1144 * with both q->lock_ptr and hb->lock held.
1145 */
1146static inline
1147void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1148 struct futex_hash_bucket *hb)
1149{
1150 get_futex_key_refs(key);
1151 q->key = *key;
1152
1153 __unqueue_futex(q);
1154
1155 WARN_ON(!q->rt_waiter);
1156 q->rt_waiter = NULL;
1157
1158 q->lock_ptr = &hb->lock;
1159
1160 wake_up_state(q->task, TASK_NORMAL);
1161}
1162
1163/**
1164 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1165 * @pifutex: the user address of the to futex
1166 * @hb1: the from futex hash bucket, must be locked by the caller
1167 * @hb2: the to futex hash bucket, must be locked by the caller
1168 * @key1: the from futex key
1169 * @key2: the to futex key
1170 * @ps: address to store the pi_state pointer
1171 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1172 *
1173 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1174 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1175 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1176 * hb1 and hb2 must be held by the caller.
1177 *
1178 * Returns:
1179 * 0 - failed to acquire the lock atomicly
1180 * 1 - acquired the lock
1181 * <0 - error
1182 */
1183static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1184 struct futex_hash_bucket *hb1,
1185 struct futex_hash_bucket *hb2,
1186 union futex_key *key1, union futex_key *key2,
1187 struct futex_pi_state **ps, int set_waiters)
1188{
1189 struct futex_q *top_waiter = NULL;
1190 u32 curval;
1191 int ret;
1192
1193 if (get_futex_value_locked(&curval, pifutex))
1194 return -EFAULT;
1195
1196 /*
1197 * Find the top_waiter and determine if there are additional waiters.
1198 * If the caller intends to requeue more than 1 waiter to pifutex,
1199 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1200 * as we have means to handle the possible fault. If not, don't set
1201 * the bit unecessarily as it will force the subsequent unlock to enter
1202 * the kernel.
1203 */
1204 top_waiter = futex_top_waiter(hb1, key1);
1205
1206 /* There are no waiters, nothing for us to do. */
1207 if (!top_waiter)
1208 return 0;
1209
1210 /* Ensure we requeue to the expected futex. */
1211 if (!match_futex(top_waiter->requeue_pi_key, key2))
1212 return -EINVAL;
1213
1214 /*
1215 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1216 * the contended case or if set_waiters is 1. The pi_state is returned
1217 * in ps in contended cases.
1218 */
1219 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1220 set_waiters);
1221 if (ret == 1)
1222 requeue_pi_wake_futex(top_waiter, key2, hb2);
1223
1224 return ret;
1225}
1226
1227/**
1228 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1229 * @uaddr1: source futex user address
1230 * @flags: futex flags (FLAGS_SHARED, etc.)
1231 * @uaddr2: target futex user address
1232 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1233 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1234 * @cmpval: @uaddr1 expected value (or %NULL)
1235 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1236 * pi futex (pi to pi requeue is not supported)
1237 *
1238 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1239 * uaddr2 atomically on behalf of the top waiter.
1240 *
1241 * Returns:
1242 * >=0 - on success, the number of tasks requeued or woken
1243 * <0 - on error
1244 */
1245static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1246 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1247 u32 *cmpval, int requeue_pi)
1248{
1249 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1250 int drop_count = 0, task_count = 0, ret;
1251 struct futex_pi_state *pi_state = NULL;
1252 struct futex_hash_bucket *hb1, *hb2;
1253 struct plist_head *head1;
1254 struct futex_q *this, *next;
1255 u32 curval2;
1256
1257 if (requeue_pi) {
1258 /*
1259 * requeue_pi requires a pi_state, try to allocate it now
1260 * without any locks in case it fails.
1261 */
1262 if (refill_pi_state_cache())
1263 return -ENOMEM;
1264 /*
1265 * requeue_pi must wake as many tasks as it can, up to nr_wake
1266 * + nr_requeue, since it acquires the rt_mutex prior to
1267 * returning to userspace, so as to not leave the rt_mutex with
1268 * waiters and no owner. However, second and third wake-ups
1269 * cannot be predicted as they involve race conditions with the
1270 * first wake and a fault while looking up the pi_state. Both
1271 * pthread_cond_signal() and pthread_cond_broadcast() should
1272 * use nr_wake=1.
1273 */
1274 if (nr_wake != 1)
1275 return -EINVAL;
1276 }
1277
1278retry:
1279 if (pi_state != NULL) {
1280 /*
1281 * We will have to lookup the pi_state again, so free this one
1282 * to keep the accounting correct.
1283 */
1284 free_pi_state(pi_state);
1285 pi_state = NULL;
1286 }
1287
1288 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1289 if (unlikely(ret != 0))
1290 goto out;
1291 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1292 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1293 if (unlikely(ret != 0))
1294 goto out_put_key1;
1295
1296 hb1 = hash_futex(&key1);
1297 hb2 = hash_futex(&key2);
1298
1299retry_private:
1300 double_lock_hb(hb1, hb2);
1301
1302 if (likely(cmpval != NULL)) {
1303 u32 curval;
1304
1305 ret = get_futex_value_locked(&curval, uaddr1);
1306
1307 if (unlikely(ret)) {
1308 double_unlock_hb(hb1, hb2);
1309
1310 ret = get_user(curval, uaddr1);
1311 if (ret)
1312 goto out_put_keys;
1313
1314 if (!(flags & FLAGS_SHARED))
1315 goto retry_private;
1316
1317 put_futex_key(&key2);
1318 put_futex_key(&key1);
1319 goto retry;
1320 }
1321 if (curval != *cmpval) {
1322 ret = -EAGAIN;
1323 goto out_unlock;
1324 }
1325 }
1326
1327 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1328 /*
1329 * Attempt to acquire uaddr2 and wake the top waiter. If we
1330 * intend to requeue waiters, force setting the FUTEX_WAITERS
1331 * bit. We force this here where we are able to easily handle
1332 * faults rather in the requeue loop below.
1333 */
1334 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1335 &key2, &pi_state, nr_requeue);
1336
1337 /*
1338 * At this point the top_waiter has either taken uaddr2 or is
1339 * waiting on it. If the former, then the pi_state will not
1340 * exist yet, look it up one more time to ensure we have a
1341 * reference to it.
1342 */
1343 if (ret == 1) {
1344 WARN_ON(pi_state);
1345 drop_count++;
1346 task_count++;
1347 ret = get_futex_value_locked(&curval2, uaddr2);
1348 if (!ret)
1349 ret = lookup_pi_state(curval2, hb2, &key2,
1350 &pi_state);
1351 }
1352
1353 switch (ret) {
1354 case 0:
1355 break;
1356 case -EFAULT:
1357 double_unlock_hb(hb1, hb2);
1358 put_futex_key(&key2);
1359 put_futex_key(&key1);
1360 ret = fault_in_user_writeable(uaddr2);
1361 if (!ret)
1362 goto retry;
1363 goto out;
1364 case -EAGAIN:
1365 /* The owner was exiting, try again. */
1366 double_unlock_hb(hb1, hb2);
1367 put_futex_key(&key2);
1368 put_futex_key(&key1);
1369 cond_resched();
1370 goto retry;
1371 default:
1372 goto out_unlock;
1373 }
1374 }
1375
1376 head1 = &hb1->chain;
1377 plist_for_each_entry_safe(this, next, head1, list) {
1378 if (task_count - nr_wake >= nr_requeue)
1379 break;
1380
1381 if (!match_futex(&this->key, &key1))
1382 continue;
1383
1384 /*
1385 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1386 * be paired with each other and no other futex ops.
1387 */
1388 if ((requeue_pi && !this->rt_waiter) ||
1389 (!requeue_pi && this->rt_waiter)) {
1390 ret = -EINVAL;
1391 break;
1392 }
1393
1394 /*
1395 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1396 * lock, we already woke the top_waiter. If not, it will be
1397 * woken by futex_unlock_pi().
1398 */
1399 if (++task_count <= nr_wake && !requeue_pi) {
1400 wake_futex(this);
1401 continue;
1402 }
1403
1404 /* Ensure we requeue to the expected futex for requeue_pi. */
1405 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1406 ret = -EINVAL;
1407 break;
1408 }
1409
1410 /*
1411 * Requeue nr_requeue waiters and possibly one more in the case
1412 * of requeue_pi if we couldn't acquire the lock atomically.
1413 */
1414 if (requeue_pi) {
1415 /* Prepare the waiter to take the rt_mutex. */
1416 atomic_inc(&pi_state->refcount);
1417 this->pi_state = pi_state;
1418 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1419 this->rt_waiter,
1420 this->task, 1);
1421 if (ret == 1) {
1422 /* We got the lock. */
1423 requeue_pi_wake_futex(this, &key2, hb2);
1424 drop_count++;
1425 continue;
1426 } else if (ret) {
1427 /* -EDEADLK */
1428 this->pi_state = NULL;
1429 free_pi_state(pi_state);
1430 goto out_unlock;
1431 }
1432 }
1433 requeue_futex(this, hb1, hb2, &key2);
1434 drop_count++;
1435 }
1436
1437out_unlock:
1438 double_unlock_hb(hb1, hb2);
1439
1440 /*
1441 * drop_futex_key_refs() must be called outside the spinlocks. During
1442 * the requeue we moved futex_q's from the hash bucket at key1 to the
1443 * one at key2 and updated their key pointer. We no longer need to
1444 * hold the references to key1.
1445 */
1446 while (--drop_count >= 0)
1447 drop_futex_key_refs(&key1);
1448
1449out_put_keys:
1450 put_futex_key(&key2);
1451out_put_key1:
1452 put_futex_key(&key1);
1453out:
1454 if (pi_state != NULL)
1455 free_pi_state(pi_state);
1456 return ret ? ret : task_count;
1457}
1458
1459/* The key must be already stored in q->key. */
1460static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1461 __acquires(&hb->lock)
1462{
1463 struct futex_hash_bucket *hb;
1464
1465 hb = hash_futex(&q->key);
1466 q->lock_ptr = &hb->lock;
1467
1468 spin_lock(&hb->lock);
1469 return hb;
1470}
1471
1472static inline void
1473queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1474 __releases(&hb->lock)
1475{
1476 spin_unlock(&hb->lock);
1477}
1478
1479/**
1480 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1481 * @q: The futex_q to enqueue
1482 * @hb: The destination hash bucket
1483 *
1484 * The hb->lock must be held by the caller, and is released here. A call to
1485 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1486 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1487 * or nothing if the unqueue is done as part of the wake process and the unqueue
1488 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1489 * an example).
1490 */
1491static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1492 __releases(&hb->lock)
1493{
1494 int prio;
1495
1496 /*
1497 * The priority used to register this element is
1498 * - either the real thread-priority for the real-time threads
1499 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1500 * - or MAX_RT_PRIO for non-RT threads.
1501 * Thus, all RT-threads are woken first in priority order, and
1502 * the others are woken last, in FIFO order.
1503 */
1504 prio = min(current->normal_prio, MAX_RT_PRIO);
1505
1506 plist_node_init(&q->list, prio);
1507 plist_add(&q->list, &hb->chain);
1508 q->task = current;
1509 spin_unlock(&hb->lock);
1510}
1511
1512/**
1513 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1514 * @q: The futex_q to unqueue
1515 *
1516 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1517 * be paired with exactly one earlier call to queue_me().
1518 *
1519 * Returns:
1520 * 1 - if the futex_q was still queued (and we removed unqueued it)
1521 * 0 - if the futex_q was already removed by the waking thread
1522 */
1523static int unqueue_me(struct futex_q *q)
1524{
1525 spinlock_t *lock_ptr;
1526 int ret = 0;
1527
1528 /* In the common case we don't take the spinlock, which is nice. */
1529retry:
1530 lock_ptr = q->lock_ptr;
1531 barrier();
1532 if (lock_ptr != NULL) {
1533 spin_lock(lock_ptr);
1534 /*
1535 * q->lock_ptr can change between reading it and
1536 * spin_lock(), causing us to take the wrong lock. This
1537 * corrects the race condition.
1538 *
1539 * Reasoning goes like this: if we have the wrong lock,
1540 * q->lock_ptr must have changed (maybe several times)
1541 * between reading it and the spin_lock(). It can
1542 * change again after the spin_lock() but only if it was
1543 * already changed before the spin_lock(). It cannot,
1544 * however, change back to the original value. Therefore
1545 * we can detect whether we acquired the correct lock.
1546 */
1547 if (unlikely(lock_ptr != q->lock_ptr)) {
1548 spin_unlock(lock_ptr);
1549 goto retry;
1550 }
1551 __unqueue_futex(q);
1552
1553 BUG_ON(q->pi_state);
1554
1555 spin_unlock(lock_ptr);
1556 ret = 1;
1557 }
1558
1559 drop_futex_key_refs(&q->key);
1560 return ret;
1561}
1562
1563/*
1564 * PI futexes can not be requeued and must remove themself from the
1565 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1566 * and dropped here.
1567 */
1568static void unqueue_me_pi(struct futex_q *q)
1569 __releases(q->lock_ptr)
1570{
1571 __unqueue_futex(q);
1572
1573 BUG_ON(!q->pi_state);
1574 free_pi_state(q->pi_state);
1575 q->pi_state = NULL;
1576
1577 spin_unlock(q->lock_ptr);
1578}
1579
1580/*
1581 * Fixup the pi_state owner with the new owner.
1582 *
1583 * Must be called with hash bucket lock held and mm->sem held for non
1584 * private futexes.
1585 */
1586static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1587 struct task_struct *newowner)
1588{
1589 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1590 struct futex_pi_state *pi_state = q->pi_state;
1591 struct task_struct *oldowner = pi_state->owner;
1592 u32 uval, uninitialized_var(curval), newval;
1593 int ret;
1594
1595 /* Owner died? */
1596 if (!pi_state->owner)
1597 newtid |= FUTEX_OWNER_DIED;
1598
1599 /*
1600 * We are here either because we stole the rtmutex from the
1601 * previous highest priority waiter or we are the highest priority
1602 * waiter but failed to get the rtmutex the first time.
1603 * We have to replace the newowner TID in the user space variable.
1604 * This must be atomic as we have to preserve the owner died bit here.
1605 *
1606 * Note: We write the user space value _before_ changing the pi_state
1607 * because we can fault here. Imagine swapped out pages or a fork
1608 * that marked all the anonymous memory readonly for cow.
1609 *
1610 * Modifying pi_state _before_ the user space value would
1611 * leave the pi_state in an inconsistent state when we fault
1612 * here, because we need to drop the hash bucket lock to
1613 * handle the fault. This might be observed in the PID check
1614 * in lookup_pi_state.
1615 */
1616retry:
1617 if (get_futex_value_locked(&uval, uaddr))
1618 goto handle_fault;
1619
1620 while (1) {
1621 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1622
1623 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1624 goto handle_fault;
1625 if (curval == uval)
1626 break;
1627 uval = curval;
1628 }
1629
1630 /*
1631 * We fixed up user space. Now we need to fix the pi_state
1632 * itself.
1633 */
1634 if (pi_state->owner != NULL) {
1635 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1636 WARN_ON(list_empty(&pi_state->list));
1637 list_del_init(&pi_state->list);
1638 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1639 }
1640
1641 pi_state->owner = newowner;
1642
1643 raw_spin_lock_irq(&newowner->pi_lock);
1644 WARN_ON(!list_empty(&pi_state->list));
1645 list_add(&pi_state->list, &newowner->pi_state_list);
1646 raw_spin_unlock_irq(&newowner->pi_lock);
1647 return 0;
1648
1649 /*
1650 * To handle the page fault we need to drop the hash bucket
1651 * lock here. That gives the other task (either the highest priority
1652 * waiter itself or the task which stole the rtmutex) the
1653 * chance to try the fixup of the pi_state. So once we are
1654 * back from handling the fault we need to check the pi_state
1655 * after reacquiring the hash bucket lock and before trying to
1656 * do another fixup. When the fixup has been done already we
1657 * simply return.
1658 */
1659handle_fault:
1660 spin_unlock(q->lock_ptr);
1661
1662 ret = fault_in_user_writeable(uaddr);
1663
1664 spin_lock(q->lock_ptr);
1665
1666 /*
1667 * Check if someone else fixed it for us:
1668 */
1669 if (pi_state->owner != oldowner)
1670 return 0;
1671
1672 if (ret)
1673 return ret;
1674
1675 goto retry;
1676}
1677
1678static long futex_wait_restart(struct restart_block *restart);
1679
1680/**
1681 * fixup_owner() - Post lock pi_state and corner case management
1682 * @uaddr: user address of the futex
1683 * @q: futex_q (contains pi_state and access to the rt_mutex)
1684 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1685 *
1686 * After attempting to lock an rt_mutex, this function is called to cleanup
1687 * the pi_state owner as well as handle race conditions that may allow us to
1688 * acquire the lock. Must be called with the hb lock held.
1689 *
1690 * Returns:
1691 * 1 - success, lock taken
1692 * 0 - success, lock not taken
1693 * <0 - on error (-EFAULT)
1694 */
1695static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1696{
1697 struct task_struct *owner;
1698 int ret = 0;
1699
1700 if (locked) {
1701 /*
1702 * Got the lock. We might not be the anticipated owner if we
1703 * did a lock-steal - fix up the PI-state in that case:
1704 */
1705 if (q->pi_state->owner != current)
1706 ret = fixup_pi_state_owner(uaddr, q, current);
1707 goto out;
1708 }
1709
1710 /*
1711 * Catch the rare case, where the lock was released when we were on the
1712 * way back before we locked the hash bucket.
1713 */
1714 if (q->pi_state->owner == current) {
1715 /*
1716 * Try to get the rt_mutex now. This might fail as some other
1717 * task acquired the rt_mutex after we removed ourself from the
1718 * rt_mutex waiters list.
1719 */
1720 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1721 locked = 1;
1722 goto out;
1723 }
1724
1725 /*
1726 * pi_state is incorrect, some other task did a lock steal and
1727 * we returned due to timeout or signal without taking the
1728 * rt_mutex. Too late.
1729 */
1730 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1731 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1732 if (!owner)
1733 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1734 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1735 ret = fixup_pi_state_owner(uaddr, q, owner);
1736 goto out;
1737 }
1738
1739 /*
1740 * Paranoia check. If we did not take the lock, then we should not be
1741 * the owner of the rt_mutex.
1742 */
1743 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1744 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1745 "pi-state %p\n", ret,
1746 q->pi_state->pi_mutex.owner,
1747 q->pi_state->owner);
1748
1749out:
1750 return ret ? ret : locked;
1751}
1752
1753/**
1754 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1755 * @hb: the futex hash bucket, must be locked by the caller
1756 * @q: the futex_q to queue up on
1757 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1758 */
1759static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1760 struct hrtimer_sleeper *timeout)
1761{
1762 /*
1763 * The task state is guaranteed to be set before another task can
1764 * wake it. set_current_state() is implemented using set_mb() and
1765 * queue_me() calls spin_unlock() upon completion, both serializing
1766 * access to the hash list and forcing another memory barrier.
1767 */
1768 set_current_state(TASK_INTERRUPTIBLE);
1769 queue_me(q, hb);
1770
1771 /* Arm the timer */
1772 if (timeout) {
1773 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1774 if (!hrtimer_active(&timeout->timer))
1775 timeout->task = NULL;
1776 }
1777
1778 /*
1779 * If we have been removed from the hash list, then another task
1780 * has tried to wake us, and we can skip the call to schedule().
1781 */
1782 if (likely(!plist_node_empty(&q->list))) {
1783 /*
1784 * If the timer has already expired, current will already be
1785 * flagged for rescheduling. Only call schedule if there
1786 * is no timeout, or if it has yet to expire.
1787 */
1788 if (!timeout || timeout->task)
1789 schedule();
1790 }
1791 __set_current_state(TASK_RUNNING);
1792}
1793
1794/**
1795 * futex_wait_setup() - Prepare to wait on a futex
1796 * @uaddr: the futex userspace address
1797 * @val: the expected value
1798 * @flags: futex flags (FLAGS_SHARED, etc.)
1799 * @q: the associated futex_q
1800 * @hb: storage for hash_bucket pointer to be returned to caller
1801 *
1802 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1803 * compare it with the expected value. Handle atomic faults internally.
1804 * Return with the hb lock held and a q.key reference on success, and unlocked
1805 * with no q.key reference on failure.
1806 *
1807 * Returns:
1808 * 0 - uaddr contains val and hb has been locked
1809 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1810 */
1811static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1812 struct futex_q *q, struct futex_hash_bucket **hb)
1813{
1814 u32 uval;
1815 int ret;
1816
1817 /*
1818 * Access the page AFTER the hash-bucket is locked.
1819 * Order is important:
1820 *
1821 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1822 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1823 *
1824 * The basic logical guarantee of a futex is that it blocks ONLY
1825 * if cond(var) is known to be true at the time of blocking, for
1826 * any cond. If we locked the hash-bucket after testing *uaddr, that
1827 * would open a race condition where we could block indefinitely with
1828 * cond(var) false, which would violate the guarantee.
1829 *
1830 * On the other hand, we insert q and release the hash-bucket only
1831 * after testing *uaddr. This guarantees that futex_wait() will NOT
1832 * absorb a wakeup if *uaddr does not match the desired values
1833 * while the syscall executes.
1834 */
1835retry:
1836 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1837 if (unlikely(ret != 0))
1838 return ret;
1839
1840retry_private:
1841 *hb = queue_lock(q);
1842
1843 ret = get_futex_value_locked(&uval, uaddr);
1844
1845 if (ret) {
1846 queue_unlock(q, *hb);
1847
1848 ret = get_user(uval, uaddr);
1849 if (ret)
1850 goto out;
1851
1852 if (!(flags & FLAGS_SHARED))
1853 goto retry_private;
1854
1855 put_futex_key(&q->key);
1856 goto retry;
1857 }
1858
1859 if (uval != val) {
1860 queue_unlock(q, *hb);
1861 ret = -EWOULDBLOCK;
1862 }
1863
1864out:
1865 if (ret)
1866 put_futex_key(&q->key);
1867 return ret;
1868}
1869
1870static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1871 ktime_t *abs_time, u32 bitset)
1872{
1873 struct hrtimer_sleeper timeout, *to = NULL;
1874 struct restart_block *restart;
1875 struct futex_hash_bucket *hb;
1876 struct futex_q q = futex_q_init;
1877 int ret;
1878
1879 if (!bitset)
1880 return -EINVAL;
1881 q.bitset = bitset;
1882
1883 if (abs_time) {
1884 to = &timeout;
1885
1886 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1887 CLOCK_REALTIME : CLOCK_MONOTONIC,
1888 HRTIMER_MODE_ABS);
1889 hrtimer_init_sleeper(to, current);
1890 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1891 current->timer_slack_ns);
1892 }
1893
1894retry:
1895 /*
1896 * Prepare to wait on uaddr. On success, holds hb lock and increments
1897 * q.key refs.
1898 */
1899 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1900 if (ret)
1901 goto out;
1902
1903 /* queue_me and wait for wakeup, timeout, or a signal. */
1904 futex_wait_queue_me(hb, &q, to);
1905
1906 /* If we were woken (and unqueued), we succeeded, whatever. */
1907 ret = 0;
1908 /* unqueue_me() drops q.key ref */
1909 if (!unqueue_me(&q))
1910 goto out;
1911 ret = -ETIMEDOUT;
1912 if (to && !to->task)
1913 goto out;
1914
1915 /*
1916 * We expect signal_pending(current), but we might be the
1917 * victim of a spurious wakeup as well.
1918 */
1919 if (!signal_pending(current))
1920 goto retry;
1921
1922 ret = -ERESTARTSYS;
1923 if (!abs_time)
1924 goto out;
1925
1926 restart = ¤t_thread_info()->restart_block;
1927 restart->fn = futex_wait_restart;
1928 restart->futex.uaddr = uaddr;
1929 restart->futex.val = val;
1930 restart->futex.time = abs_time->tv64;
1931 restart->futex.bitset = bitset;
1932 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1933
1934 ret = -ERESTART_RESTARTBLOCK;
1935
1936out:
1937 if (to) {
1938 hrtimer_cancel(&to->timer);
1939 destroy_hrtimer_on_stack(&to->timer);
1940 }
1941 return ret;
1942}
1943
1944
1945static long futex_wait_restart(struct restart_block *restart)
1946{
1947 u32 __user *uaddr = restart->futex.uaddr;
1948 ktime_t t, *tp = NULL;
1949
1950 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1951 t.tv64 = restart->futex.time;
1952 tp = &t;
1953 }
1954 restart->fn = do_no_restart_syscall;
1955
1956 return (long)futex_wait(uaddr, restart->futex.flags,
1957 restart->futex.val, tp, restart->futex.bitset);
1958}
1959
1960
1961/*
1962 * Userspace tried a 0 -> TID atomic transition of the futex value
1963 * and failed. The kernel side here does the whole locking operation:
1964 * if there are waiters then it will block, it does PI, etc. (Due to
1965 * races the kernel might see a 0 value of the futex too.)
1966 */
1967static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1968 ktime_t *time, int trylock)
1969{
1970 struct hrtimer_sleeper timeout, *to = NULL;
1971 struct futex_hash_bucket *hb;
1972 struct futex_q q = futex_q_init;
1973 int res, ret;
1974
1975 if (refill_pi_state_cache())
1976 return -ENOMEM;
1977
1978 if (time) {
1979 to = &timeout;
1980 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1981 HRTIMER_MODE_ABS);
1982 hrtimer_init_sleeper(to, current);
1983 hrtimer_set_expires(&to->timer, *time);
1984 }
1985
1986retry:
1987 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1988 if (unlikely(ret != 0))
1989 goto out;
1990
1991retry_private:
1992 hb = queue_lock(&q);
1993
1994 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1995 if (unlikely(ret)) {
1996 switch (ret) {
1997 case 1:
1998 /* We got the lock. */
1999 ret = 0;
2000 goto out_unlock_put_key;
2001 case -EFAULT:
2002 goto uaddr_faulted;
2003 case -EAGAIN:
2004 /*
2005 * Task is exiting and we just wait for the
2006 * exit to complete.
2007 */
2008 queue_unlock(&q, hb);
2009 put_futex_key(&q.key);
2010 cond_resched();
2011 goto retry;
2012 default:
2013 goto out_unlock_put_key;
2014 }
2015 }
2016
2017 /*
2018 * Only actually queue now that the atomic ops are done:
2019 */
2020 queue_me(&q, hb);
2021
2022 WARN_ON(!q.pi_state);
2023 /*
2024 * Block on the PI mutex:
2025 */
2026 if (!trylock)
2027 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2028 else {
2029 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2030 /* Fixup the trylock return value: */
2031 ret = ret ? 0 : -EWOULDBLOCK;
2032 }
2033
2034 spin_lock(q.lock_ptr);
2035 /*
2036 * Fixup the pi_state owner and possibly acquire the lock if we
2037 * haven't already.
2038 */
2039 res = fixup_owner(uaddr, &q, !ret);
2040 /*
2041 * If fixup_owner() returned an error, proprogate that. If it acquired
2042 * the lock, clear our -ETIMEDOUT or -EINTR.
2043 */
2044 if (res)
2045 ret = (res < 0) ? res : 0;
2046
2047 /*
2048 * If fixup_owner() faulted and was unable to handle the fault, unlock
2049 * it and return the fault to userspace.
2050 */
2051 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2052 rt_mutex_unlock(&q.pi_state->pi_mutex);
2053
2054 /* Unqueue and drop the lock */
2055 unqueue_me_pi(&q);
2056
2057 goto out_put_key;
2058
2059out_unlock_put_key:
2060 queue_unlock(&q, hb);
2061
2062out_put_key:
2063 put_futex_key(&q.key);
2064out:
2065 if (to)
2066 destroy_hrtimer_on_stack(&to->timer);
2067 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2068
2069uaddr_faulted:
2070 queue_unlock(&q, hb);
2071
2072 ret = fault_in_user_writeable(uaddr);
2073 if (ret)
2074 goto out_put_key;
2075
2076 if (!(flags & FLAGS_SHARED))
2077 goto retry_private;
2078
2079 put_futex_key(&q.key);
2080 goto retry;
2081}
2082
2083/*
2084 * Userspace attempted a TID -> 0 atomic transition, and failed.
2085 * This is the in-kernel slowpath: we look up the PI state (if any),
2086 * and do the rt-mutex unlock.
2087 */
2088static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2089{
2090 struct futex_hash_bucket *hb;
2091 struct futex_q *this, *next;
2092 struct plist_head *head;
2093 union futex_key key = FUTEX_KEY_INIT;
2094 u32 uval, vpid = task_pid_vnr(current);
2095 int ret;
2096
2097retry:
2098 if (get_user(uval, uaddr))
2099 return -EFAULT;
2100 /*
2101 * We release only a lock we actually own:
2102 */
2103 if ((uval & FUTEX_TID_MASK) != vpid)
2104 return -EPERM;
2105
2106 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2107 if (unlikely(ret != 0))
2108 goto out;
2109
2110 hb = hash_futex(&key);
2111 spin_lock(&hb->lock);
2112
2113 /*
2114 * To avoid races, try to do the TID -> 0 atomic transition
2115 * again. If it succeeds then we can return without waking
2116 * anyone else up:
2117 */
2118 if (!(uval & FUTEX_OWNER_DIED) &&
2119 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2120 goto pi_faulted;
2121 /*
2122 * Rare case: we managed to release the lock atomically,
2123 * no need to wake anyone else up:
2124 */
2125 if (unlikely(uval == vpid))
2126 goto out_unlock;
2127
2128 /*
2129 * Ok, other tasks may need to be woken up - check waiters
2130 * and do the wakeup if necessary:
2131 */
2132 head = &hb->chain;
2133
2134 plist_for_each_entry_safe(this, next, head, list) {
2135 if (!match_futex (&this->key, &key))
2136 continue;
2137 ret = wake_futex_pi(uaddr, uval, this);
2138 /*
2139 * The atomic access to the futex value
2140 * generated a pagefault, so retry the
2141 * user-access and the wakeup:
2142 */
2143 if (ret == -EFAULT)
2144 goto pi_faulted;
2145 goto out_unlock;
2146 }
2147 /*
2148 * No waiters - kernel unlocks the futex:
2149 */
2150 if (!(uval & FUTEX_OWNER_DIED)) {
2151 ret = unlock_futex_pi(uaddr, uval);
2152 if (ret == -EFAULT)
2153 goto pi_faulted;
2154 }
2155
2156out_unlock:
2157 spin_unlock(&hb->lock);
2158 put_futex_key(&key);
2159
2160out:
2161 return ret;
2162
2163pi_faulted:
2164 spin_unlock(&hb->lock);
2165 put_futex_key(&key);
2166
2167 ret = fault_in_user_writeable(uaddr);
2168 if (!ret)
2169 goto retry;
2170
2171 return ret;
2172}
2173
2174/**
2175 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2176 * @hb: the hash_bucket futex_q was original enqueued on
2177 * @q: the futex_q woken while waiting to be requeued
2178 * @key2: the futex_key of the requeue target futex
2179 * @timeout: the timeout associated with the wait (NULL if none)
2180 *
2181 * Detect if the task was woken on the initial futex as opposed to the requeue
2182 * target futex. If so, determine if it was a timeout or a signal that caused
2183 * the wakeup and return the appropriate error code to the caller. Must be
2184 * called with the hb lock held.
2185 *
2186 * Returns
2187 * 0 - no early wakeup detected
2188 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2189 */
2190static inline
2191int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2192 struct futex_q *q, union futex_key *key2,
2193 struct hrtimer_sleeper *timeout)
2194{
2195 int ret = 0;
2196
2197 /*
2198 * With the hb lock held, we avoid races while we process the wakeup.
2199 * We only need to hold hb (and not hb2) to ensure atomicity as the
2200 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2201 * It can't be requeued from uaddr2 to something else since we don't
2202 * support a PI aware source futex for requeue.
2203 */
2204 if (!match_futex(&q->key, key2)) {
2205 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2206 /*
2207 * We were woken prior to requeue by a timeout or a signal.
2208 * Unqueue the futex_q and determine which it was.
2209 */
2210 plist_del(&q->list, &hb->chain);
2211
2212 /* Handle spurious wakeups gracefully */
2213 ret = -EWOULDBLOCK;
2214 if (timeout && !timeout->task)
2215 ret = -ETIMEDOUT;
2216 else if (signal_pending(current))
2217 ret = -ERESTARTNOINTR;
2218 }
2219 return ret;
2220}
2221
2222/**
2223 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2224 * @uaddr: the futex we initially wait on (non-pi)
2225 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2226 * the same type, no requeueing from private to shared, etc.
2227 * @val: the expected value of uaddr
2228 * @abs_time: absolute timeout
2229 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2230 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2231 * @uaddr2: the pi futex we will take prior to returning to user-space
2232 *
2233 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2234 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2235 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2236 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2237 * without one, the pi logic would not know which task to boost/deboost, if
2238 * there was a need to.
2239 *
2240 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2241 * via the following:
2242 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2243 * 2) wakeup on uaddr2 after a requeue
2244 * 3) signal
2245 * 4) timeout
2246 *
2247 * If 3, cleanup and return -ERESTARTNOINTR.
2248 *
2249 * If 2, we may then block on trying to take the rt_mutex and return via:
2250 * 5) successful lock
2251 * 6) signal
2252 * 7) timeout
2253 * 8) other lock acquisition failure
2254 *
2255 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2256 *
2257 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2258 *
2259 * Returns:
2260 * 0 - On success
2261 * <0 - On error
2262 */
2263static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2264 u32 val, ktime_t *abs_time, u32 bitset,
2265 u32 __user *uaddr2)
2266{
2267 struct hrtimer_sleeper timeout, *to = NULL;
2268 struct rt_mutex_waiter rt_waiter;
2269 struct rt_mutex *pi_mutex = NULL;
2270 struct futex_hash_bucket *hb;
2271 union futex_key key2 = FUTEX_KEY_INIT;
2272 struct futex_q q = futex_q_init;
2273 int res, ret;
2274
2275 if (uaddr == uaddr2)
2276 return -EINVAL;
2277
2278 if (!bitset)
2279 return -EINVAL;
2280
2281 if (abs_time) {
2282 to = &timeout;
2283 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2284 CLOCK_REALTIME : CLOCK_MONOTONIC,
2285 HRTIMER_MODE_ABS);
2286 hrtimer_init_sleeper(to, current);
2287 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2288 current->timer_slack_ns);
2289 }
2290
2291 /*
2292 * The waiter is allocated on our stack, manipulated by the requeue
2293 * code while we sleep on uaddr.
2294 */
2295 debug_rt_mutex_init_waiter(&rt_waiter);
2296 rt_waiter.task = NULL;
2297
2298 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2299 if (unlikely(ret != 0))
2300 goto out;
2301
2302 q.bitset = bitset;
2303 q.rt_waiter = &rt_waiter;
2304 q.requeue_pi_key = &key2;
2305
2306 /*
2307 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2308 * count.
2309 */
2310 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2311 if (ret)
2312 goto out_key2;
2313
2314 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2315 futex_wait_queue_me(hb, &q, to);
2316
2317 spin_lock(&hb->lock);
2318 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2319 spin_unlock(&hb->lock);
2320 if (ret)
2321 goto out_put_keys;
2322
2323 /*
2324 * In order for us to be here, we know our q.key == key2, and since
2325 * we took the hb->lock above, we also know that futex_requeue() has
2326 * completed and we no longer have to concern ourselves with a wakeup
2327 * race with the atomic proxy lock acquisition by the requeue code. The
2328 * futex_requeue dropped our key1 reference and incremented our key2
2329 * reference count.
2330 */
2331
2332 /* Check if the requeue code acquired the second futex for us. */
2333 if (!q.rt_waiter) {
2334 /*
2335 * Got the lock. We might not be the anticipated owner if we
2336 * did a lock-steal - fix up the PI-state in that case.
2337 */
2338 if (q.pi_state && (q.pi_state->owner != current)) {
2339 spin_lock(q.lock_ptr);
2340 ret = fixup_pi_state_owner(uaddr2, &q, current);
2341 spin_unlock(q.lock_ptr);
2342 }
2343 } else {
2344 /*
2345 * We have been woken up by futex_unlock_pi(), a timeout, or a
2346 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2347 * the pi_state.
2348 */
2349 WARN_ON(!q.pi_state);
2350 pi_mutex = &q.pi_state->pi_mutex;
2351 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2352 debug_rt_mutex_free_waiter(&rt_waiter);
2353
2354 spin_lock(q.lock_ptr);
2355 /*
2356 * Fixup the pi_state owner and possibly acquire the lock if we
2357 * haven't already.
2358 */
2359 res = fixup_owner(uaddr2, &q, !ret);
2360 /*
2361 * If fixup_owner() returned an error, proprogate that. If it
2362 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2363 */
2364 if (res)
2365 ret = (res < 0) ? res : 0;
2366
2367 /* Unqueue and drop the lock. */
2368 unqueue_me_pi(&q);
2369 }
2370
2371 /*
2372 * If fixup_pi_state_owner() faulted and was unable to handle the
2373 * fault, unlock the rt_mutex and return the fault to userspace.
2374 */
2375 if (ret == -EFAULT) {
2376 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2377 rt_mutex_unlock(pi_mutex);
2378 } else if (ret == -EINTR) {
2379 /*
2380 * We've already been requeued, but cannot restart by calling
2381 * futex_lock_pi() directly. We could restart this syscall, but
2382 * it would detect that the user space "val" changed and return
2383 * -EWOULDBLOCK. Save the overhead of the restart and return
2384 * -EWOULDBLOCK directly.
2385 */
2386 ret = -EWOULDBLOCK;
2387 }
2388
2389out_put_keys:
2390 put_futex_key(&q.key);
2391out_key2:
2392 put_futex_key(&key2);
2393
2394out:
2395 if (to) {
2396 hrtimer_cancel(&to->timer);
2397 destroy_hrtimer_on_stack(&to->timer);
2398 }
2399 return ret;
2400}
2401
2402/*
2403 * Support for robust futexes: the kernel cleans up held futexes at
2404 * thread exit time.
2405 *
2406 * Implementation: user-space maintains a per-thread list of locks it
2407 * is holding. Upon do_exit(), the kernel carefully walks this list,
2408 * and marks all locks that are owned by this thread with the
2409 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2410 * always manipulated with the lock held, so the list is private and
2411 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2412 * field, to allow the kernel to clean up if the thread dies after
2413 * acquiring the lock, but just before it could have added itself to
2414 * the list. There can only be one such pending lock.
2415 */
2416
2417/**
2418 * sys_set_robust_list() - Set the robust-futex list head of a task
2419 * @head: pointer to the list-head
2420 * @len: length of the list-head, as userspace expects
2421 */
2422SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2423 size_t, len)
2424{
2425 if (!futex_cmpxchg_enabled)
2426 return -ENOSYS;
2427 /*
2428 * The kernel knows only one size for now:
2429 */
2430 if (unlikely(len != sizeof(*head)))
2431 return -EINVAL;
2432
2433 current->robust_list = head;
2434
2435 return 0;
2436}
2437
2438/**
2439 * sys_get_robust_list() - Get the robust-futex list head of a task
2440 * @pid: pid of the process [zero for current task]
2441 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2442 * @len_ptr: pointer to a length field, the kernel fills in the header size
2443 */
2444SYSCALL_DEFINE3(get_robust_list, int, pid,
2445 struct robust_list_head __user * __user *, head_ptr,
2446 size_t __user *, len_ptr)
2447{
2448 struct robust_list_head __user *head;
2449 unsigned long ret;
2450 struct task_struct *p;
2451
2452 if (!futex_cmpxchg_enabled)
2453 return -ENOSYS;
2454
2455 WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n");
2456
2457 rcu_read_lock();
2458
2459 ret = -ESRCH;
2460 if (!pid)
2461 p = current;
2462 else {
2463 p = find_task_by_vpid(pid);
2464 if (!p)
2465 goto err_unlock;
2466 }
2467
2468 ret = -EPERM;
2469 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2470 goto err_unlock;
2471
2472 head = p->robust_list;
2473 rcu_read_unlock();
2474
2475 if (put_user(sizeof(*head), len_ptr))
2476 return -EFAULT;
2477 return put_user(head, head_ptr);
2478
2479err_unlock:
2480 rcu_read_unlock();
2481
2482 return ret;
2483}
2484
2485/*
2486 * Process a futex-list entry, check whether it's owned by the
2487 * dying task, and do notification if so:
2488 */
2489int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2490{
2491 u32 uval, uninitialized_var(nval), mval;
2492
2493retry:
2494 if (get_user(uval, uaddr))
2495 return -1;
2496
2497 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2498 /*
2499 * Ok, this dying thread is truly holding a futex
2500 * of interest. Set the OWNER_DIED bit atomically
2501 * via cmpxchg, and if the value had FUTEX_WAITERS
2502 * set, wake up a waiter (if any). (We have to do a
2503 * futex_wake() even if OWNER_DIED is already set -
2504 * to handle the rare but possible case of recursive
2505 * thread-death.) The rest of the cleanup is done in
2506 * userspace.
2507 */
2508 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2509 /*
2510 * We are not holding a lock here, but we want to have
2511 * the pagefault_disable/enable() protection because
2512 * we want to handle the fault gracefully. If the
2513 * access fails we try to fault in the futex with R/W
2514 * verification via get_user_pages. get_user() above
2515 * does not guarantee R/W access. If that fails we
2516 * give up and leave the futex locked.
2517 */
2518 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2519 if (fault_in_user_writeable(uaddr))
2520 return -1;
2521 goto retry;
2522 }
2523 if (nval != uval)
2524 goto retry;
2525
2526 /*
2527 * Wake robust non-PI futexes here. The wakeup of
2528 * PI futexes happens in exit_pi_state():
2529 */
2530 if (!pi && (uval & FUTEX_WAITERS))
2531 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2532 }
2533 return 0;
2534}
2535
2536/*
2537 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2538 */
2539static inline int fetch_robust_entry(struct robust_list __user **entry,
2540 struct robust_list __user * __user *head,
2541 unsigned int *pi)
2542{
2543 unsigned long uentry;
2544
2545 if (get_user(uentry, (unsigned long __user *)head))
2546 return -EFAULT;
2547
2548 *entry = (void __user *)(uentry & ~1UL);
2549 *pi = uentry & 1;
2550
2551 return 0;
2552}
2553
2554/*
2555 * Walk curr->robust_list (very carefully, it's a userspace list!)
2556 * and mark any locks found there dead, and notify any waiters.
2557 *
2558 * We silently return on any sign of list-walking problem.
2559 */
2560void exit_robust_list(struct task_struct *curr)
2561{
2562 struct robust_list_head __user *head = curr->robust_list;
2563 struct robust_list __user *entry, *next_entry, *pending;
2564 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2565 unsigned int uninitialized_var(next_pi);
2566 unsigned long futex_offset;
2567 int rc;
2568
2569 if (!futex_cmpxchg_enabled)
2570 return;
2571
2572 /*
2573 * Fetch the list head (which was registered earlier, via
2574 * sys_set_robust_list()):
2575 */
2576 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2577 return;
2578 /*
2579 * Fetch the relative futex offset:
2580 */
2581 if (get_user(futex_offset, &head->futex_offset))
2582 return;
2583 /*
2584 * Fetch any possibly pending lock-add first, and handle it
2585 * if it exists:
2586 */
2587 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2588 return;
2589
2590 next_entry = NULL; /* avoid warning with gcc */
2591 while (entry != &head->list) {
2592 /*
2593 * Fetch the next entry in the list before calling
2594 * handle_futex_death:
2595 */
2596 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2597 /*
2598 * A pending lock might already be on the list, so
2599 * don't process it twice:
2600 */
2601 if (entry != pending)
2602 if (handle_futex_death((void __user *)entry + futex_offset,
2603 curr, pi))
2604 return;
2605 if (rc)
2606 return;
2607 entry = next_entry;
2608 pi = next_pi;
2609 /*
2610 * Avoid excessively long or circular lists:
2611 */
2612 if (!--limit)
2613 break;
2614
2615 cond_resched();
2616 }
2617
2618 if (pending)
2619 handle_futex_death((void __user *)pending + futex_offset,
2620 curr, pip);
2621}
2622
2623long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2624 u32 __user *uaddr2, u32 val2, u32 val3)
2625{
2626 int cmd = op & FUTEX_CMD_MASK;
2627 unsigned int flags = 0;
2628
2629 if (!(op & FUTEX_PRIVATE_FLAG))
2630 flags |= FLAGS_SHARED;
2631
2632 if (op & FUTEX_CLOCK_REALTIME) {
2633 flags |= FLAGS_CLOCKRT;
2634 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2635 return -ENOSYS;
2636 }
2637
2638 switch (cmd) {
2639 case FUTEX_LOCK_PI:
2640 case FUTEX_UNLOCK_PI:
2641 case FUTEX_TRYLOCK_PI:
2642 case FUTEX_WAIT_REQUEUE_PI:
2643 case FUTEX_CMP_REQUEUE_PI:
2644 if (!futex_cmpxchg_enabled)
2645 return -ENOSYS;
2646 }
2647
2648 switch (cmd) {
2649 case FUTEX_WAIT:
2650 val3 = FUTEX_BITSET_MATCH_ANY;
2651 case FUTEX_WAIT_BITSET:
2652 return futex_wait(uaddr, flags, val, timeout, val3);
2653 case FUTEX_WAKE:
2654 val3 = FUTEX_BITSET_MATCH_ANY;
2655 case FUTEX_WAKE_BITSET:
2656 return futex_wake(uaddr, flags, val, val3);
2657 case FUTEX_REQUEUE:
2658 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2659 case FUTEX_CMP_REQUEUE:
2660 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2661 case FUTEX_WAKE_OP:
2662 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2663 case FUTEX_LOCK_PI:
2664 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2665 case FUTEX_UNLOCK_PI:
2666 return futex_unlock_pi(uaddr, flags);
2667 case FUTEX_TRYLOCK_PI:
2668 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2669 case FUTEX_WAIT_REQUEUE_PI:
2670 val3 = FUTEX_BITSET_MATCH_ANY;
2671 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2672 uaddr2);
2673 case FUTEX_CMP_REQUEUE_PI:
2674 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2675 }
2676 return -ENOSYS;
2677}
2678
2679
2680SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2681 struct timespec __user *, utime, u32 __user *, uaddr2,
2682 u32, val3)
2683{
2684 struct timespec ts;
2685 ktime_t t, *tp = NULL;
2686 u32 val2 = 0;
2687 int cmd = op & FUTEX_CMD_MASK;
2688
2689 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2690 cmd == FUTEX_WAIT_BITSET ||
2691 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2692 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2693 return -EFAULT;
2694 if (!timespec_valid(&ts))
2695 return -EINVAL;
2696
2697 t = timespec_to_ktime(ts);
2698 if (cmd == FUTEX_WAIT)
2699 t = ktime_add_safe(ktime_get(), t);
2700 tp = &t;
2701 }
2702 /*
2703 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2704 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2705 */
2706 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2707 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2708 val2 = (u32) (unsigned long) utime;
2709
2710 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2711}
2712
2713static int __init futex_init(void)
2714{
2715 u32 curval;
2716 int i;
2717
2718 /*
2719 * This will fail and we want it. Some arch implementations do
2720 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2721 * functionality. We want to know that before we call in any
2722 * of the complex code paths. Also we want to prevent
2723 * registration of robust lists in that case. NULL is
2724 * guaranteed to fault and we get -EFAULT on functional
2725 * implementation, the non-functional ones will return
2726 * -ENOSYS.
2727 */
2728 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2729 futex_cmpxchg_enabled = 1;
2730
2731 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2732 plist_head_init(&futex_queues[i].chain);
2733 spin_lock_init(&futex_queues[i].lock);
2734 }
2735
2736 return 0;
2737}
2738__initcall(futex_init);