Loading...
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/file.h>
47#include <linux/init.h>
48#include <linux/types.h>
49#include <linux/atomic.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/err.h>
54#include <linux/kthread.h>
55#include <linux/kernel.h>
56#include <linux/syscalls.h>
57#include <linux/spinlock.h>
58#include <linux/rcupdate.h>
59#include <linux/mutex.h>
60#include <linux/gfp.h>
61
62#include <linux/audit.h>
63
64#include <net/sock.h>
65#include <net/netlink.h>
66#include <linux/skbuff.h>
67#ifdef CONFIG_SECURITY
68#include <linux/security.h>
69#endif
70#include <linux/freezer.h>
71#include <linux/pid_namespace.h>
72#include <net/netns/generic.h>
73
74#include "audit.h"
75
76/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
77 * (Initialization happens after skb_init is called.) */
78#define AUDIT_DISABLED -1
79#define AUDIT_UNINITIALIZED 0
80#define AUDIT_INITIALIZED 1
81static int audit_initialized;
82
83#define AUDIT_OFF 0
84#define AUDIT_ON 1
85#define AUDIT_LOCKED 2
86u32 audit_enabled;
87u32 audit_ever_enabled;
88
89EXPORT_SYMBOL_GPL(audit_enabled);
90
91/* Default state when kernel boots without any parameters. */
92static u32 audit_default;
93
94/* If auditing cannot proceed, audit_failure selects what happens. */
95static u32 audit_failure = AUDIT_FAIL_PRINTK;
96
97/* private audit network namespace index */
98static unsigned int audit_net_id;
99
100/**
101 * struct audit_net - audit private network namespace data
102 * @sk: communication socket
103 */
104struct audit_net {
105 struct sock *sk;
106};
107
108/**
109 * struct auditd_connection - kernel/auditd connection state
110 * @pid: auditd PID
111 * @portid: netlink portid
112 * @net: the associated network namespace
113 * @lock: spinlock to protect write access
114 *
115 * Description:
116 * This struct is RCU protected; you must either hold the RCU lock for reading
117 * or the included spinlock for writing.
118 */
119static struct auditd_connection {
120 int pid;
121 u32 portid;
122 struct net *net;
123 spinlock_t lock;
124} auditd_conn;
125
126/* If audit_rate_limit is non-zero, limit the rate of sending audit records
127 * to that number per second. This prevents DoS attacks, but results in
128 * audit records being dropped. */
129static u32 audit_rate_limit;
130
131/* Number of outstanding audit_buffers allowed.
132 * When set to zero, this means unlimited. */
133static u32 audit_backlog_limit = 64;
134#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
135static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
136
137/* The identity of the user shutting down the audit system. */
138kuid_t audit_sig_uid = INVALID_UID;
139pid_t audit_sig_pid = -1;
140u32 audit_sig_sid = 0;
141
142/* Records can be lost in several ways:
143 0) [suppressed in audit_alloc]
144 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
145 2) out of memory in audit_log_move [alloc_skb]
146 3) suppressed due to audit_rate_limit
147 4) suppressed due to audit_backlog_limit
148*/
149static atomic_t audit_lost = ATOMIC_INIT(0);
150
151/* Hash for inode-based rules */
152struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
153
154/* The audit_freelist is a list of pre-allocated audit buffers (if more
155 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
156 * being placed on the freelist). */
157static DEFINE_SPINLOCK(audit_freelist_lock);
158static int audit_freelist_count;
159static LIST_HEAD(audit_freelist);
160
161/* queue msgs to send via kauditd_task */
162static struct sk_buff_head audit_queue;
163static void kauditd_hold_skb(struct sk_buff *skb);
164/* queue msgs due to temporary unicast send problems */
165static struct sk_buff_head audit_retry_queue;
166/* queue msgs waiting for new auditd connection */
167static struct sk_buff_head audit_hold_queue;
168
169/* queue servicing thread */
170static struct task_struct *kauditd_task;
171static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
172
173/* waitqueue for callers who are blocked on the audit backlog */
174static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
175
176static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
177 .mask = -1,
178 .features = 0,
179 .lock = 0,};
180
181static char *audit_feature_names[2] = {
182 "only_unset_loginuid",
183 "loginuid_immutable",
184};
185
186
187/* Serialize requests from userspace. */
188DEFINE_MUTEX(audit_cmd_mutex);
189
190/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
191 * audit records. Since printk uses a 1024 byte buffer, this buffer
192 * should be at least that large. */
193#define AUDIT_BUFSIZ 1024
194
195/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
196 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
197#define AUDIT_MAXFREE (2*NR_CPUS)
198
199/* The audit_buffer is used when formatting an audit record. The caller
200 * locks briefly to get the record off the freelist or to allocate the
201 * buffer, and locks briefly to send the buffer to the netlink layer or
202 * to place it on a transmit queue. Multiple audit_buffers can be in
203 * use simultaneously. */
204struct audit_buffer {
205 struct list_head list;
206 struct sk_buff *skb; /* formatted skb ready to send */
207 struct audit_context *ctx; /* NULL or associated context */
208 gfp_t gfp_mask;
209};
210
211struct audit_reply {
212 __u32 portid;
213 struct net *net;
214 struct sk_buff *skb;
215};
216
217/**
218 * auditd_test_task - Check to see if a given task is an audit daemon
219 * @task: the task to check
220 *
221 * Description:
222 * Return 1 if the task is a registered audit daemon, 0 otherwise.
223 */
224int auditd_test_task(const struct task_struct *task)
225{
226 int rc;
227
228 rcu_read_lock();
229 rc = (auditd_conn.pid && task->tgid == auditd_conn.pid ? 1 : 0);
230 rcu_read_unlock();
231
232 return rc;
233}
234
235/**
236 * audit_get_sk - Return the audit socket for the given network namespace
237 * @net: the destination network namespace
238 *
239 * Description:
240 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
241 * that a reference is held for the network namespace while the sock is in use.
242 */
243static struct sock *audit_get_sk(const struct net *net)
244{
245 struct audit_net *aunet;
246
247 if (!net)
248 return NULL;
249
250 aunet = net_generic(net, audit_net_id);
251 return aunet->sk;
252}
253
254static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
255{
256 if (ab) {
257 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
258 nlh->nlmsg_pid = portid;
259 }
260}
261
262void audit_panic(const char *message)
263{
264 switch (audit_failure) {
265 case AUDIT_FAIL_SILENT:
266 break;
267 case AUDIT_FAIL_PRINTK:
268 if (printk_ratelimit())
269 pr_err("%s\n", message);
270 break;
271 case AUDIT_FAIL_PANIC:
272 panic("audit: %s\n", message);
273 break;
274 }
275}
276
277static inline int audit_rate_check(void)
278{
279 static unsigned long last_check = 0;
280 static int messages = 0;
281 static DEFINE_SPINLOCK(lock);
282 unsigned long flags;
283 unsigned long now;
284 unsigned long elapsed;
285 int retval = 0;
286
287 if (!audit_rate_limit) return 1;
288
289 spin_lock_irqsave(&lock, flags);
290 if (++messages < audit_rate_limit) {
291 retval = 1;
292 } else {
293 now = jiffies;
294 elapsed = now - last_check;
295 if (elapsed > HZ) {
296 last_check = now;
297 messages = 0;
298 retval = 1;
299 }
300 }
301 spin_unlock_irqrestore(&lock, flags);
302
303 return retval;
304}
305
306/**
307 * audit_log_lost - conditionally log lost audit message event
308 * @message: the message stating reason for lost audit message
309 *
310 * Emit at least 1 message per second, even if audit_rate_check is
311 * throttling.
312 * Always increment the lost messages counter.
313*/
314void audit_log_lost(const char *message)
315{
316 static unsigned long last_msg = 0;
317 static DEFINE_SPINLOCK(lock);
318 unsigned long flags;
319 unsigned long now;
320 int print;
321
322 atomic_inc(&audit_lost);
323
324 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
325
326 if (!print) {
327 spin_lock_irqsave(&lock, flags);
328 now = jiffies;
329 if (now - last_msg > HZ) {
330 print = 1;
331 last_msg = now;
332 }
333 spin_unlock_irqrestore(&lock, flags);
334 }
335
336 if (print) {
337 if (printk_ratelimit())
338 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
339 atomic_read(&audit_lost),
340 audit_rate_limit,
341 audit_backlog_limit);
342 audit_panic(message);
343 }
344}
345
346static int audit_log_config_change(char *function_name, u32 new, u32 old,
347 int allow_changes)
348{
349 struct audit_buffer *ab;
350 int rc = 0;
351
352 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
353 if (unlikely(!ab))
354 return rc;
355 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
356 audit_log_session_info(ab);
357 rc = audit_log_task_context(ab);
358 if (rc)
359 allow_changes = 0; /* Something weird, deny request */
360 audit_log_format(ab, " res=%d", allow_changes);
361 audit_log_end(ab);
362 return rc;
363}
364
365static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
366{
367 int allow_changes, rc = 0;
368 u32 old = *to_change;
369
370 /* check if we are locked */
371 if (audit_enabled == AUDIT_LOCKED)
372 allow_changes = 0;
373 else
374 allow_changes = 1;
375
376 if (audit_enabled != AUDIT_OFF) {
377 rc = audit_log_config_change(function_name, new, old, allow_changes);
378 if (rc)
379 allow_changes = 0;
380 }
381
382 /* If we are allowed, make the change */
383 if (allow_changes == 1)
384 *to_change = new;
385 /* Not allowed, update reason */
386 else if (rc == 0)
387 rc = -EPERM;
388 return rc;
389}
390
391static int audit_set_rate_limit(u32 limit)
392{
393 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
394}
395
396static int audit_set_backlog_limit(u32 limit)
397{
398 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
399}
400
401static int audit_set_backlog_wait_time(u32 timeout)
402{
403 return audit_do_config_change("audit_backlog_wait_time",
404 &audit_backlog_wait_time, timeout);
405}
406
407static int audit_set_enabled(u32 state)
408{
409 int rc;
410 if (state > AUDIT_LOCKED)
411 return -EINVAL;
412
413 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
414 if (!rc)
415 audit_ever_enabled |= !!state;
416
417 return rc;
418}
419
420static int audit_set_failure(u32 state)
421{
422 if (state != AUDIT_FAIL_SILENT
423 && state != AUDIT_FAIL_PRINTK
424 && state != AUDIT_FAIL_PANIC)
425 return -EINVAL;
426
427 return audit_do_config_change("audit_failure", &audit_failure, state);
428}
429
430/**
431 * auditd_set - Set/Reset the auditd connection state
432 * @pid: auditd PID
433 * @portid: auditd netlink portid
434 * @net: auditd network namespace pointer
435 *
436 * Description:
437 * This function will obtain and drop network namespace references as
438 * necessary.
439 */
440static void auditd_set(int pid, u32 portid, struct net *net)
441{
442 unsigned long flags;
443
444 spin_lock_irqsave(&auditd_conn.lock, flags);
445 auditd_conn.pid = pid;
446 auditd_conn.portid = portid;
447 if (auditd_conn.net)
448 put_net(auditd_conn.net);
449 if (net)
450 auditd_conn.net = get_net(net);
451 else
452 auditd_conn.net = NULL;
453 spin_unlock_irqrestore(&auditd_conn.lock, flags);
454}
455
456/**
457 * auditd_reset - Disconnect the auditd connection
458 *
459 * Description:
460 * Break the auditd/kauditd connection and move all the queued records into the
461 * hold queue in case auditd reconnects.
462 */
463static void auditd_reset(void)
464{
465 struct sk_buff *skb;
466
467 /* if it isn't already broken, break the connection */
468 rcu_read_lock();
469 if (auditd_conn.pid)
470 auditd_set(0, 0, NULL);
471 rcu_read_unlock();
472
473 /* flush all of the main and retry queues to the hold queue */
474 while ((skb = skb_dequeue(&audit_retry_queue)))
475 kauditd_hold_skb(skb);
476 while ((skb = skb_dequeue(&audit_queue)))
477 kauditd_hold_skb(skb);
478}
479
480/**
481 * kauditd_print_skb - Print the audit record to the ring buffer
482 * @skb: audit record
483 *
484 * Whatever the reason, this packet may not make it to the auditd connection
485 * so write it via printk so the information isn't completely lost.
486 */
487static void kauditd_printk_skb(struct sk_buff *skb)
488{
489 struct nlmsghdr *nlh = nlmsg_hdr(skb);
490 char *data = nlmsg_data(nlh);
491
492 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
493 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
494}
495
496/**
497 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
498 * @skb: audit record
499 *
500 * Description:
501 * This should only be used by the kauditd_thread when it fails to flush the
502 * hold queue.
503 */
504static void kauditd_rehold_skb(struct sk_buff *skb)
505{
506 /* put the record back in the queue at the same place */
507 skb_queue_head(&audit_hold_queue, skb);
508
509 /* fail the auditd connection */
510 auditd_reset();
511}
512
513/**
514 * kauditd_hold_skb - Queue an audit record, waiting for auditd
515 * @skb: audit record
516 *
517 * Description:
518 * Queue the audit record, waiting for an instance of auditd. When this
519 * function is called we haven't given up yet on sending the record, but things
520 * are not looking good. The first thing we want to do is try to write the
521 * record via printk and then see if we want to try and hold on to the record
522 * and queue it, if we have room. If we want to hold on to the record, but we
523 * don't have room, record a record lost message.
524 */
525static void kauditd_hold_skb(struct sk_buff *skb)
526{
527 /* at this point it is uncertain if we will ever send this to auditd so
528 * try to send the message via printk before we go any further */
529 kauditd_printk_skb(skb);
530
531 /* can we just silently drop the message? */
532 if (!audit_default) {
533 kfree_skb(skb);
534 return;
535 }
536
537 /* if we have room, queue the message */
538 if (!audit_backlog_limit ||
539 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
540 skb_queue_tail(&audit_hold_queue, skb);
541 return;
542 }
543
544 /* we have no other options - drop the message */
545 audit_log_lost("kauditd hold queue overflow");
546 kfree_skb(skb);
547
548 /* fail the auditd connection */
549 auditd_reset();
550}
551
552/**
553 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
554 * @skb: audit record
555 *
556 * Description:
557 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
558 * but for some reason we are having problems sending it audit records so
559 * queue the given record and attempt to resend.
560 */
561static void kauditd_retry_skb(struct sk_buff *skb)
562{
563 /* NOTE: because records should only live in the retry queue for a
564 * short period of time, before either being sent or moved to the hold
565 * queue, we don't currently enforce a limit on this queue */
566 skb_queue_tail(&audit_retry_queue, skb);
567}
568
569/**
570 * auditd_send_unicast_skb - Send a record via unicast to auditd
571 * @skb: audit record
572 *
573 * Description:
574 * Send a skb to the audit daemon, returns positive/zero values on success and
575 * negative values on failure; in all cases the skb will be consumed by this
576 * function. If the send results in -ECONNREFUSED the connection with auditd
577 * will be reset. This function may sleep so callers should not hold any locks
578 * where this would cause a problem.
579 */
580static int auditd_send_unicast_skb(struct sk_buff *skb)
581{
582 int rc;
583 u32 portid;
584 struct net *net;
585 struct sock *sk;
586
587 /* NOTE: we can't call netlink_unicast while in the RCU section so
588 * take a reference to the network namespace and grab local
589 * copies of the namespace, the sock, and the portid; the
590 * namespace and sock aren't going to go away while we hold a
591 * reference and if the portid does become invalid after the RCU
592 * section netlink_unicast() should safely return an error */
593
594 rcu_read_lock();
595 if (!auditd_conn.pid) {
596 rcu_read_unlock();
597 rc = -ECONNREFUSED;
598 goto err;
599 }
600 net = auditd_conn.net;
601 get_net(net);
602 sk = audit_get_sk(net);
603 portid = auditd_conn.portid;
604 rcu_read_unlock();
605
606 rc = netlink_unicast(sk, skb, portid, 0);
607 put_net(net);
608 if (rc < 0)
609 goto err;
610
611 return rc;
612
613err:
614 if (rc == -ECONNREFUSED)
615 auditd_reset();
616 return rc;
617}
618
619/**
620 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
621 * @sk: the sending sock
622 * @portid: the netlink destination
623 * @queue: the skb queue to process
624 * @retry_limit: limit on number of netlink unicast failures
625 * @skb_hook: per-skb hook for additional processing
626 * @err_hook: hook called if the skb fails the netlink unicast send
627 *
628 * Description:
629 * Run through the given queue and attempt to send the audit records to auditd,
630 * returns zero on success, negative values on failure. It is up to the caller
631 * to ensure that the @sk is valid for the duration of this function.
632 *
633 */
634static int kauditd_send_queue(struct sock *sk, u32 portid,
635 struct sk_buff_head *queue,
636 unsigned int retry_limit,
637 void (*skb_hook)(struct sk_buff *skb),
638 void (*err_hook)(struct sk_buff *skb))
639{
640 int rc = 0;
641 struct sk_buff *skb;
642 static unsigned int failed = 0;
643
644 /* NOTE: kauditd_thread takes care of all our locking, we just use
645 * the netlink info passed to us (e.g. sk and portid) */
646
647 while ((skb = skb_dequeue(queue))) {
648 /* call the skb_hook for each skb we touch */
649 if (skb_hook)
650 (*skb_hook)(skb);
651
652 /* can we send to anyone via unicast? */
653 if (!sk) {
654 if (err_hook)
655 (*err_hook)(skb);
656 continue;
657 }
658
659 /* grab an extra skb reference in case of error */
660 skb_get(skb);
661 rc = netlink_unicast(sk, skb, portid, 0);
662 if (rc < 0) {
663 /* fatal failure for our queue flush attempt? */
664 if (++failed >= retry_limit ||
665 rc == -ECONNREFUSED || rc == -EPERM) {
666 /* yes - error processing for the queue */
667 sk = NULL;
668 if (err_hook)
669 (*err_hook)(skb);
670 if (!skb_hook)
671 goto out;
672 /* keep processing with the skb_hook */
673 continue;
674 } else
675 /* no - requeue to preserve ordering */
676 skb_queue_head(queue, skb);
677 } else {
678 /* it worked - drop the extra reference and continue */
679 consume_skb(skb);
680 failed = 0;
681 }
682 }
683
684out:
685 return (rc >= 0 ? 0 : rc);
686}
687
688/*
689 * kauditd_send_multicast_skb - Send a record to any multicast listeners
690 * @skb: audit record
691 *
692 * Description:
693 * Write a multicast message to anyone listening in the initial network
694 * namespace. This function doesn't consume an skb as might be expected since
695 * it has to copy it anyways.
696 */
697static void kauditd_send_multicast_skb(struct sk_buff *skb)
698{
699 struct sk_buff *copy;
700 struct sock *sock = audit_get_sk(&init_net);
701 struct nlmsghdr *nlh;
702
703 /* NOTE: we are not taking an additional reference for init_net since
704 * we don't have to worry about it going away */
705
706 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
707 return;
708
709 /*
710 * The seemingly wasteful skb_copy() rather than bumping the refcount
711 * using skb_get() is necessary because non-standard mods are made to
712 * the skb by the original kaudit unicast socket send routine. The
713 * existing auditd daemon assumes this breakage. Fixing this would
714 * require co-ordinating a change in the established protocol between
715 * the kaudit kernel subsystem and the auditd userspace code. There is
716 * no reason for new multicast clients to continue with this
717 * non-compliance.
718 */
719 copy = skb_copy(skb, GFP_KERNEL);
720 if (!copy)
721 return;
722 nlh = nlmsg_hdr(copy);
723 nlh->nlmsg_len = skb->len;
724
725 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
726}
727
728/**
729 * kauditd_thread - Worker thread to send audit records to userspace
730 * @dummy: unused
731 */
732static int kauditd_thread(void *dummy)
733{
734 int rc;
735 u32 portid = 0;
736 struct net *net = NULL;
737 struct sock *sk = NULL;
738
739#define UNICAST_RETRIES 5
740
741 set_freezable();
742 while (!kthread_should_stop()) {
743 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
744 rcu_read_lock();
745 if (!auditd_conn.pid) {
746 rcu_read_unlock();
747 goto main_queue;
748 }
749 net = auditd_conn.net;
750 get_net(net);
751 sk = audit_get_sk(net);
752 portid = auditd_conn.portid;
753 rcu_read_unlock();
754
755 /* attempt to flush the hold queue */
756 rc = kauditd_send_queue(sk, portid,
757 &audit_hold_queue, UNICAST_RETRIES,
758 NULL, kauditd_rehold_skb);
759 if (rc < 0) {
760 sk = NULL;
761 goto main_queue;
762 }
763
764 /* attempt to flush the retry queue */
765 rc = kauditd_send_queue(sk, portid,
766 &audit_retry_queue, UNICAST_RETRIES,
767 NULL, kauditd_hold_skb);
768 if (rc < 0) {
769 sk = NULL;
770 goto main_queue;
771 }
772
773main_queue:
774 /* process the main queue - do the multicast send and attempt
775 * unicast, dump failed record sends to the retry queue; if
776 * sk == NULL due to previous failures we will just do the
777 * multicast send and move the record to the retry queue */
778 kauditd_send_queue(sk, portid, &audit_queue, 1,
779 kauditd_send_multicast_skb,
780 kauditd_retry_skb);
781
782 /* drop our netns reference, no auditd sends past this line */
783 if (net) {
784 put_net(net);
785 net = NULL;
786 }
787 sk = NULL;
788
789 /* we have processed all the queues so wake everyone */
790 wake_up(&audit_backlog_wait);
791
792 /* NOTE: we want to wake up if there is anything on the queue,
793 * regardless of if an auditd is connected, as we need to
794 * do the multicast send and rotate records from the
795 * main queue to the retry/hold queues */
796 wait_event_freezable(kauditd_wait,
797 (skb_queue_len(&audit_queue) ? 1 : 0));
798 }
799
800 return 0;
801}
802
803int audit_send_list(void *_dest)
804{
805 struct audit_netlink_list *dest = _dest;
806 struct sk_buff *skb;
807 struct sock *sk = audit_get_sk(dest->net);
808
809 /* wait for parent to finish and send an ACK */
810 mutex_lock(&audit_cmd_mutex);
811 mutex_unlock(&audit_cmd_mutex);
812
813 while ((skb = __skb_dequeue(&dest->q)) != NULL)
814 netlink_unicast(sk, skb, dest->portid, 0);
815
816 put_net(dest->net);
817 kfree(dest);
818
819 return 0;
820}
821
822struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
823 int multi, const void *payload, int size)
824{
825 struct sk_buff *skb;
826 struct nlmsghdr *nlh;
827 void *data;
828 int flags = multi ? NLM_F_MULTI : 0;
829 int t = done ? NLMSG_DONE : type;
830
831 skb = nlmsg_new(size, GFP_KERNEL);
832 if (!skb)
833 return NULL;
834
835 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
836 if (!nlh)
837 goto out_kfree_skb;
838 data = nlmsg_data(nlh);
839 memcpy(data, payload, size);
840 return skb;
841
842out_kfree_skb:
843 kfree_skb(skb);
844 return NULL;
845}
846
847static int audit_send_reply_thread(void *arg)
848{
849 struct audit_reply *reply = (struct audit_reply *)arg;
850 struct sock *sk = audit_get_sk(reply->net);
851
852 mutex_lock(&audit_cmd_mutex);
853 mutex_unlock(&audit_cmd_mutex);
854
855 /* Ignore failure. It'll only happen if the sender goes away,
856 because our timeout is set to infinite. */
857 netlink_unicast(sk, reply->skb, reply->portid, 0);
858 put_net(reply->net);
859 kfree(reply);
860 return 0;
861}
862
863/**
864 * audit_send_reply - send an audit reply message via netlink
865 * @request_skb: skb of request we are replying to (used to target the reply)
866 * @seq: sequence number
867 * @type: audit message type
868 * @done: done (last) flag
869 * @multi: multi-part message flag
870 * @payload: payload data
871 * @size: payload size
872 *
873 * Allocates an skb, builds the netlink message, and sends it to the port id.
874 * No failure notifications.
875 */
876static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
877 int multi, const void *payload, int size)
878{
879 u32 portid = NETLINK_CB(request_skb).portid;
880 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
881 struct sk_buff *skb;
882 struct task_struct *tsk;
883 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
884 GFP_KERNEL);
885
886 if (!reply)
887 return;
888
889 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
890 if (!skb)
891 goto out;
892
893 reply->net = get_net(net);
894 reply->portid = portid;
895 reply->skb = skb;
896
897 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
898 if (!IS_ERR(tsk))
899 return;
900 kfree_skb(skb);
901out:
902 kfree(reply);
903}
904
905/*
906 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
907 * control messages.
908 */
909static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
910{
911 int err = 0;
912
913 /* Only support initial user namespace for now. */
914 /*
915 * We return ECONNREFUSED because it tricks userspace into thinking
916 * that audit was not configured into the kernel. Lots of users
917 * configure their PAM stack (because that's what the distro does)
918 * to reject login if unable to send messages to audit. If we return
919 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
920 * configured in and will let login proceed. If we return EPERM
921 * userspace will reject all logins. This should be removed when we
922 * support non init namespaces!!
923 */
924 if (current_user_ns() != &init_user_ns)
925 return -ECONNREFUSED;
926
927 switch (msg_type) {
928 case AUDIT_LIST:
929 case AUDIT_ADD:
930 case AUDIT_DEL:
931 return -EOPNOTSUPP;
932 case AUDIT_GET:
933 case AUDIT_SET:
934 case AUDIT_GET_FEATURE:
935 case AUDIT_SET_FEATURE:
936 case AUDIT_LIST_RULES:
937 case AUDIT_ADD_RULE:
938 case AUDIT_DEL_RULE:
939 case AUDIT_SIGNAL_INFO:
940 case AUDIT_TTY_GET:
941 case AUDIT_TTY_SET:
942 case AUDIT_TRIM:
943 case AUDIT_MAKE_EQUIV:
944 /* Only support auditd and auditctl in initial pid namespace
945 * for now. */
946 if (task_active_pid_ns(current) != &init_pid_ns)
947 return -EPERM;
948
949 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
950 err = -EPERM;
951 break;
952 case AUDIT_USER:
953 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
954 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
955 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
956 err = -EPERM;
957 break;
958 default: /* bad msg */
959 err = -EINVAL;
960 }
961
962 return err;
963}
964
965static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
966{
967 uid_t uid = from_kuid(&init_user_ns, current_uid());
968 pid_t pid = task_tgid_nr(current);
969
970 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
971 *ab = NULL;
972 return;
973 }
974
975 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
976 if (unlikely(!*ab))
977 return;
978 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
979 audit_log_session_info(*ab);
980 audit_log_task_context(*ab);
981}
982
983int is_audit_feature_set(int i)
984{
985 return af.features & AUDIT_FEATURE_TO_MASK(i);
986}
987
988
989static int audit_get_feature(struct sk_buff *skb)
990{
991 u32 seq;
992
993 seq = nlmsg_hdr(skb)->nlmsg_seq;
994
995 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
996
997 return 0;
998}
999
1000static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1001 u32 old_lock, u32 new_lock, int res)
1002{
1003 struct audit_buffer *ab;
1004
1005 if (audit_enabled == AUDIT_OFF)
1006 return;
1007
1008 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1009 audit_log_task_info(ab, current);
1010 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1011 audit_feature_names[which], !!old_feature, !!new_feature,
1012 !!old_lock, !!new_lock, res);
1013 audit_log_end(ab);
1014}
1015
1016static int audit_set_feature(struct sk_buff *skb)
1017{
1018 struct audit_features *uaf;
1019 int i;
1020
1021 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1022 uaf = nlmsg_data(nlmsg_hdr(skb));
1023
1024 /* if there is ever a version 2 we should handle that here */
1025
1026 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1027 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1028 u32 old_feature, new_feature, old_lock, new_lock;
1029
1030 /* if we are not changing this feature, move along */
1031 if (!(feature & uaf->mask))
1032 continue;
1033
1034 old_feature = af.features & feature;
1035 new_feature = uaf->features & feature;
1036 new_lock = (uaf->lock | af.lock) & feature;
1037 old_lock = af.lock & feature;
1038
1039 /* are we changing a locked feature? */
1040 if (old_lock && (new_feature != old_feature)) {
1041 audit_log_feature_change(i, old_feature, new_feature,
1042 old_lock, new_lock, 0);
1043 return -EPERM;
1044 }
1045 }
1046 /* nothing invalid, do the changes */
1047 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1048 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1049 u32 old_feature, new_feature, old_lock, new_lock;
1050
1051 /* if we are not changing this feature, move along */
1052 if (!(feature & uaf->mask))
1053 continue;
1054
1055 old_feature = af.features & feature;
1056 new_feature = uaf->features & feature;
1057 old_lock = af.lock & feature;
1058 new_lock = (uaf->lock | af.lock) & feature;
1059
1060 if (new_feature != old_feature)
1061 audit_log_feature_change(i, old_feature, new_feature,
1062 old_lock, new_lock, 1);
1063
1064 if (new_feature)
1065 af.features |= feature;
1066 else
1067 af.features &= ~feature;
1068 af.lock |= new_lock;
1069 }
1070
1071 return 0;
1072}
1073
1074static int audit_replace(pid_t pid)
1075{
1076 struct sk_buff *skb;
1077
1078 skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, &pid, sizeof(pid));
1079 if (!skb)
1080 return -ENOMEM;
1081 return auditd_send_unicast_skb(skb);
1082}
1083
1084static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1085{
1086 u32 seq;
1087 void *data;
1088 int err;
1089 struct audit_buffer *ab;
1090 u16 msg_type = nlh->nlmsg_type;
1091 struct audit_sig_info *sig_data;
1092 char *ctx = NULL;
1093 u32 len;
1094
1095 err = audit_netlink_ok(skb, msg_type);
1096 if (err)
1097 return err;
1098
1099 seq = nlh->nlmsg_seq;
1100 data = nlmsg_data(nlh);
1101
1102 switch (msg_type) {
1103 case AUDIT_GET: {
1104 struct audit_status s;
1105 memset(&s, 0, sizeof(s));
1106 s.enabled = audit_enabled;
1107 s.failure = audit_failure;
1108 rcu_read_lock();
1109 s.pid = auditd_conn.pid;
1110 rcu_read_unlock();
1111 s.rate_limit = audit_rate_limit;
1112 s.backlog_limit = audit_backlog_limit;
1113 s.lost = atomic_read(&audit_lost);
1114 s.backlog = skb_queue_len(&audit_queue);
1115 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1116 s.backlog_wait_time = audit_backlog_wait_time;
1117 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1118 break;
1119 }
1120 case AUDIT_SET: {
1121 struct audit_status s;
1122 memset(&s, 0, sizeof(s));
1123 /* guard against past and future API changes */
1124 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1125 if (s.mask & AUDIT_STATUS_ENABLED) {
1126 err = audit_set_enabled(s.enabled);
1127 if (err < 0)
1128 return err;
1129 }
1130 if (s.mask & AUDIT_STATUS_FAILURE) {
1131 err = audit_set_failure(s.failure);
1132 if (err < 0)
1133 return err;
1134 }
1135 if (s.mask & AUDIT_STATUS_PID) {
1136 /* NOTE: we are using task_tgid_vnr() below because
1137 * the s.pid value is relative to the namespace
1138 * of the caller; at present this doesn't matter
1139 * much since you can really only run auditd
1140 * from the initial pid namespace, but something
1141 * to keep in mind if this changes */
1142 int new_pid = s.pid;
1143 pid_t auditd_pid;
1144 pid_t requesting_pid = task_tgid_vnr(current);
1145
1146 /* test the auditd connection */
1147 audit_replace(requesting_pid);
1148
1149 rcu_read_lock();
1150 auditd_pid = auditd_conn.pid;
1151 /* only the current auditd can unregister itself */
1152 if ((!new_pid) && (requesting_pid != auditd_pid)) {
1153 rcu_read_unlock();
1154 audit_log_config_change("audit_pid", new_pid,
1155 auditd_pid, 0);
1156 return -EACCES;
1157 }
1158 /* replacing a healthy auditd is not allowed */
1159 if (auditd_pid && new_pid) {
1160 rcu_read_unlock();
1161 audit_log_config_change("audit_pid", new_pid,
1162 auditd_pid, 0);
1163 return -EEXIST;
1164 }
1165 rcu_read_unlock();
1166
1167 if (audit_enabled != AUDIT_OFF)
1168 audit_log_config_change("audit_pid", new_pid,
1169 auditd_pid, 1);
1170
1171 if (new_pid) {
1172 /* register a new auditd connection */
1173 auditd_set(new_pid,
1174 NETLINK_CB(skb).portid,
1175 sock_net(NETLINK_CB(skb).sk));
1176 /* try to process any backlog */
1177 wake_up_interruptible(&kauditd_wait);
1178 } else
1179 /* unregister the auditd connection */
1180 auditd_reset();
1181 }
1182 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1183 err = audit_set_rate_limit(s.rate_limit);
1184 if (err < 0)
1185 return err;
1186 }
1187 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1188 err = audit_set_backlog_limit(s.backlog_limit);
1189 if (err < 0)
1190 return err;
1191 }
1192 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1193 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1194 return -EINVAL;
1195 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1196 return -EINVAL;
1197 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1198 if (err < 0)
1199 return err;
1200 }
1201 break;
1202 }
1203 case AUDIT_GET_FEATURE:
1204 err = audit_get_feature(skb);
1205 if (err)
1206 return err;
1207 break;
1208 case AUDIT_SET_FEATURE:
1209 err = audit_set_feature(skb);
1210 if (err)
1211 return err;
1212 break;
1213 case AUDIT_USER:
1214 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1215 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1216 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1217 return 0;
1218
1219 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1220 if (err == 1) { /* match or error */
1221 err = 0;
1222 if (msg_type == AUDIT_USER_TTY) {
1223 err = tty_audit_push();
1224 if (err)
1225 break;
1226 }
1227 audit_log_common_recv_msg(&ab, msg_type);
1228 if (msg_type != AUDIT_USER_TTY)
1229 audit_log_format(ab, " msg='%.*s'",
1230 AUDIT_MESSAGE_TEXT_MAX,
1231 (char *)data);
1232 else {
1233 int size;
1234
1235 audit_log_format(ab, " data=");
1236 size = nlmsg_len(nlh);
1237 if (size > 0 &&
1238 ((unsigned char *)data)[size - 1] == '\0')
1239 size--;
1240 audit_log_n_untrustedstring(ab, data, size);
1241 }
1242 audit_set_portid(ab, NETLINK_CB(skb).portid);
1243 audit_log_end(ab);
1244 }
1245 break;
1246 case AUDIT_ADD_RULE:
1247 case AUDIT_DEL_RULE:
1248 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1249 return -EINVAL;
1250 if (audit_enabled == AUDIT_LOCKED) {
1251 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1252 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1253 audit_log_end(ab);
1254 return -EPERM;
1255 }
1256 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
1257 seq, data, nlmsg_len(nlh));
1258 break;
1259 case AUDIT_LIST_RULES:
1260 err = audit_list_rules_send(skb, seq);
1261 break;
1262 case AUDIT_TRIM:
1263 audit_trim_trees();
1264 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1265 audit_log_format(ab, " op=trim res=1");
1266 audit_log_end(ab);
1267 break;
1268 case AUDIT_MAKE_EQUIV: {
1269 void *bufp = data;
1270 u32 sizes[2];
1271 size_t msglen = nlmsg_len(nlh);
1272 char *old, *new;
1273
1274 err = -EINVAL;
1275 if (msglen < 2 * sizeof(u32))
1276 break;
1277 memcpy(sizes, bufp, 2 * sizeof(u32));
1278 bufp += 2 * sizeof(u32);
1279 msglen -= 2 * sizeof(u32);
1280 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1281 if (IS_ERR(old)) {
1282 err = PTR_ERR(old);
1283 break;
1284 }
1285 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1286 if (IS_ERR(new)) {
1287 err = PTR_ERR(new);
1288 kfree(old);
1289 break;
1290 }
1291 /* OK, here comes... */
1292 err = audit_tag_tree(old, new);
1293
1294 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1295
1296 audit_log_format(ab, " op=make_equiv old=");
1297 audit_log_untrustedstring(ab, old);
1298 audit_log_format(ab, " new=");
1299 audit_log_untrustedstring(ab, new);
1300 audit_log_format(ab, " res=%d", !err);
1301 audit_log_end(ab);
1302 kfree(old);
1303 kfree(new);
1304 break;
1305 }
1306 case AUDIT_SIGNAL_INFO:
1307 len = 0;
1308 if (audit_sig_sid) {
1309 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1310 if (err)
1311 return err;
1312 }
1313 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1314 if (!sig_data) {
1315 if (audit_sig_sid)
1316 security_release_secctx(ctx, len);
1317 return -ENOMEM;
1318 }
1319 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1320 sig_data->pid = audit_sig_pid;
1321 if (audit_sig_sid) {
1322 memcpy(sig_data->ctx, ctx, len);
1323 security_release_secctx(ctx, len);
1324 }
1325 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1326 sig_data, sizeof(*sig_data) + len);
1327 kfree(sig_data);
1328 break;
1329 case AUDIT_TTY_GET: {
1330 struct audit_tty_status s;
1331 unsigned int t;
1332
1333 t = READ_ONCE(current->signal->audit_tty);
1334 s.enabled = t & AUDIT_TTY_ENABLE;
1335 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1336
1337 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1338 break;
1339 }
1340 case AUDIT_TTY_SET: {
1341 struct audit_tty_status s, old;
1342 struct audit_buffer *ab;
1343 unsigned int t;
1344
1345 memset(&s, 0, sizeof(s));
1346 /* guard against past and future API changes */
1347 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1348 /* check if new data is valid */
1349 if ((s.enabled != 0 && s.enabled != 1) ||
1350 (s.log_passwd != 0 && s.log_passwd != 1))
1351 err = -EINVAL;
1352
1353 if (err)
1354 t = READ_ONCE(current->signal->audit_tty);
1355 else {
1356 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1357 t = xchg(¤t->signal->audit_tty, t);
1358 }
1359 old.enabled = t & AUDIT_TTY_ENABLE;
1360 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1361
1362 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1363 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1364 " old-log_passwd=%d new-log_passwd=%d res=%d",
1365 old.enabled, s.enabled, old.log_passwd,
1366 s.log_passwd, !err);
1367 audit_log_end(ab);
1368 break;
1369 }
1370 default:
1371 err = -EINVAL;
1372 break;
1373 }
1374
1375 return err < 0 ? err : 0;
1376}
1377
1378/*
1379 * Get message from skb. Each message is processed by audit_receive_msg.
1380 * Malformed skbs with wrong length are discarded silently.
1381 */
1382static void audit_receive_skb(struct sk_buff *skb)
1383{
1384 struct nlmsghdr *nlh;
1385 /*
1386 * len MUST be signed for nlmsg_next to be able to dec it below 0
1387 * if the nlmsg_len was not aligned
1388 */
1389 int len;
1390 int err;
1391
1392 nlh = nlmsg_hdr(skb);
1393 len = skb->len;
1394
1395 while (nlmsg_ok(nlh, len)) {
1396 err = audit_receive_msg(skb, nlh);
1397 /* if err or if this message says it wants a response */
1398 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1399 netlink_ack(skb, nlh, err);
1400
1401 nlh = nlmsg_next(nlh, &len);
1402 }
1403}
1404
1405/* Receive messages from netlink socket. */
1406static void audit_receive(struct sk_buff *skb)
1407{
1408 mutex_lock(&audit_cmd_mutex);
1409 audit_receive_skb(skb);
1410 mutex_unlock(&audit_cmd_mutex);
1411}
1412
1413/* Run custom bind function on netlink socket group connect or bind requests. */
1414static int audit_bind(struct net *net, int group)
1415{
1416 if (!capable(CAP_AUDIT_READ))
1417 return -EPERM;
1418
1419 return 0;
1420}
1421
1422static int __net_init audit_net_init(struct net *net)
1423{
1424 struct netlink_kernel_cfg cfg = {
1425 .input = audit_receive,
1426 .bind = audit_bind,
1427 .flags = NL_CFG_F_NONROOT_RECV,
1428 .groups = AUDIT_NLGRP_MAX,
1429 };
1430
1431 struct audit_net *aunet = net_generic(net, audit_net_id);
1432
1433 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1434 if (aunet->sk == NULL) {
1435 audit_panic("cannot initialize netlink socket in namespace");
1436 return -ENOMEM;
1437 }
1438 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1439
1440 return 0;
1441}
1442
1443static void __net_exit audit_net_exit(struct net *net)
1444{
1445 struct audit_net *aunet = net_generic(net, audit_net_id);
1446
1447 rcu_read_lock();
1448 if (net == auditd_conn.net)
1449 auditd_reset();
1450 rcu_read_unlock();
1451
1452 netlink_kernel_release(aunet->sk);
1453}
1454
1455static struct pernet_operations audit_net_ops __net_initdata = {
1456 .init = audit_net_init,
1457 .exit = audit_net_exit,
1458 .id = &audit_net_id,
1459 .size = sizeof(struct audit_net),
1460};
1461
1462/* Initialize audit support at boot time. */
1463static int __init audit_init(void)
1464{
1465 int i;
1466
1467 if (audit_initialized == AUDIT_DISABLED)
1468 return 0;
1469
1470 memset(&auditd_conn, 0, sizeof(auditd_conn));
1471 spin_lock_init(&auditd_conn.lock);
1472
1473 skb_queue_head_init(&audit_queue);
1474 skb_queue_head_init(&audit_retry_queue);
1475 skb_queue_head_init(&audit_hold_queue);
1476
1477 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1478 INIT_LIST_HEAD(&audit_inode_hash[i]);
1479
1480 pr_info("initializing netlink subsys (%s)\n",
1481 audit_default ? "enabled" : "disabled");
1482 register_pernet_subsys(&audit_net_ops);
1483
1484 audit_initialized = AUDIT_INITIALIZED;
1485 audit_enabled = audit_default;
1486 audit_ever_enabled |= !!audit_default;
1487
1488 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1489 if (IS_ERR(kauditd_task)) {
1490 int err = PTR_ERR(kauditd_task);
1491 panic("audit: failed to start the kauditd thread (%d)\n", err);
1492 }
1493
1494 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1495
1496 return 0;
1497}
1498__initcall(audit_init);
1499
1500/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1501static int __init audit_enable(char *str)
1502{
1503 audit_default = !!simple_strtol(str, NULL, 0);
1504 if (!audit_default)
1505 audit_initialized = AUDIT_DISABLED;
1506
1507 pr_info("%s\n", audit_default ?
1508 "enabled (after initialization)" : "disabled (until reboot)");
1509
1510 return 1;
1511}
1512__setup("audit=", audit_enable);
1513
1514/* Process kernel command-line parameter at boot time.
1515 * audit_backlog_limit=<n> */
1516static int __init audit_backlog_limit_set(char *str)
1517{
1518 u32 audit_backlog_limit_arg;
1519
1520 pr_info("audit_backlog_limit: ");
1521 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1522 pr_cont("using default of %u, unable to parse %s\n",
1523 audit_backlog_limit, str);
1524 return 1;
1525 }
1526
1527 audit_backlog_limit = audit_backlog_limit_arg;
1528 pr_cont("%d\n", audit_backlog_limit);
1529
1530 return 1;
1531}
1532__setup("audit_backlog_limit=", audit_backlog_limit_set);
1533
1534static void audit_buffer_free(struct audit_buffer *ab)
1535{
1536 unsigned long flags;
1537
1538 if (!ab)
1539 return;
1540
1541 kfree_skb(ab->skb);
1542 spin_lock_irqsave(&audit_freelist_lock, flags);
1543 if (audit_freelist_count > AUDIT_MAXFREE)
1544 kfree(ab);
1545 else {
1546 audit_freelist_count++;
1547 list_add(&ab->list, &audit_freelist);
1548 }
1549 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1550}
1551
1552static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1553 gfp_t gfp_mask, int type)
1554{
1555 unsigned long flags;
1556 struct audit_buffer *ab = NULL;
1557 struct nlmsghdr *nlh;
1558
1559 spin_lock_irqsave(&audit_freelist_lock, flags);
1560 if (!list_empty(&audit_freelist)) {
1561 ab = list_entry(audit_freelist.next,
1562 struct audit_buffer, list);
1563 list_del(&ab->list);
1564 --audit_freelist_count;
1565 }
1566 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1567
1568 if (!ab) {
1569 ab = kmalloc(sizeof(*ab), gfp_mask);
1570 if (!ab)
1571 goto err;
1572 }
1573
1574 ab->ctx = ctx;
1575 ab->gfp_mask = gfp_mask;
1576
1577 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1578 if (!ab->skb)
1579 goto err;
1580
1581 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1582 if (!nlh)
1583 goto out_kfree_skb;
1584
1585 return ab;
1586
1587out_kfree_skb:
1588 kfree_skb(ab->skb);
1589 ab->skb = NULL;
1590err:
1591 audit_buffer_free(ab);
1592 return NULL;
1593}
1594
1595/**
1596 * audit_serial - compute a serial number for the audit record
1597 *
1598 * Compute a serial number for the audit record. Audit records are
1599 * written to user-space as soon as they are generated, so a complete
1600 * audit record may be written in several pieces. The timestamp of the
1601 * record and this serial number are used by the user-space tools to
1602 * determine which pieces belong to the same audit record. The
1603 * (timestamp,serial) tuple is unique for each syscall and is live from
1604 * syscall entry to syscall exit.
1605 *
1606 * NOTE: Another possibility is to store the formatted records off the
1607 * audit context (for those records that have a context), and emit them
1608 * all at syscall exit. However, this could delay the reporting of
1609 * significant errors until syscall exit (or never, if the system
1610 * halts).
1611 */
1612unsigned int audit_serial(void)
1613{
1614 static atomic_t serial = ATOMIC_INIT(0);
1615
1616 return atomic_add_return(1, &serial);
1617}
1618
1619static inline void audit_get_stamp(struct audit_context *ctx,
1620 struct timespec *t, unsigned int *serial)
1621{
1622 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1623 *t = CURRENT_TIME;
1624 *serial = audit_serial();
1625 }
1626}
1627
1628/**
1629 * audit_log_start - obtain an audit buffer
1630 * @ctx: audit_context (may be NULL)
1631 * @gfp_mask: type of allocation
1632 * @type: audit message type
1633 *
1634 * Returns audit_buffer pointer on success or NULL on error.
1635 *
1636 * Obtain an audit buffer. This routine does locking to obtain the
1637 * audit buffer, but then no locking is required for calls to
1638 * audit_log_*format. If the task (ctx) is a task that is currently in a
1639 * syscall, then the syscall is marked as auditable and an audit record
1640 * will be written at syscall exit. If there is no associated task, then
1641 * task context (ctx) should be NULL.
1642 */
1643struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1644 int type)
1645{
1646 struct audit_buffer *ab;
1647 struct timespec t;
1648 unsigned int uninitialized_var(serial);
1649
1650 if (audit_initialized != AUDIT_INITIALIZED)
1651 return NULL;
1652
1653 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1654 return NULL;
1655
1656 /* NOTE: don't ever fail/sleep on these two conditions:
1657 * 1. auditd generated record - since we need auditd to drain the
1658 * queue; also, when we are checking for auditd, compare PIDs using
1659 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1660 * using a PID anchored in the caller's namespace
1661 * 2. generator holding the audit_cmd_mutex - we don't want to block
1662 * while holding the mutex */
1663 if (!(auditd_test_task(current) ||
1664 (current == __mutex_owner(&audit_cmd_mutex)))) {
1665 long stime = audit_backlog_wait_time;
1666
1667 while (audit_backlog_limit &&
1668 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1669 /* wake kauditd to try and flush the queue */
1670 wake_up_interruptible(&kauditd_wait);
1671
1672 /* sleep if we are allowed and we haven't exhausted our
1673 * backlog wait limit */
1674 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1675 DECLARE_WAITQUEUE(wait, current);
1676
1677 add_wait_queue_exclusive(&audit_backlog_wait,
1678 &wait);
1679 set_current_state(TASK_UNINTERRUPTIBLE);
1680 stime = schedule_timeout(stime);
1681 remove_wait_queue(&audit_backlog_wait, &wait);
1682 } else {
1683 if (audit_rate_check() && printk_ratelimit())
1684 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1685 skb_queue_len(&audit_queue),
1686 audit_backlog_limit);
1687 audit_log_lost("backlog limit exceeded");
1688 return NULL;
1689 }
1690 }
1691 }
1692
1693 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1694 if (!ab) {
1695 audit_log_lost("out of memory in audit_log_start");
1696 return NULL;
1697 }
1698
1699 audit_get_stamp(ab->ctx, &t, &serial);
1700 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1701 t.tv_sec, t.tv_nsec/1000000, serial);
1702
1703 return ab;
1704}
1705
1706/**
1707 * audit_expand - expand skb in the audit buffer
1708 * @ab: audit_buffer
1709 * @extra: space to add at tail of the skb
1710 *
1711 * Returns 0 (no space) on failed expansion, or available space if
1712 * successful.
1713 */
1714static inline int audit_expand(struct audit_buffer *ab, int extra)
1715{
1716 struct sk_buff *skb = ab->skb;
1717 int oldtail = skb_tailroom(skb);
1718 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1719 int newtail = skb_tailroom(skb);
1720
1721 if (ret < 0) {
1722 audit_log_lost("out of memory in audit_expand");
1723 return 0;
1724 }
1725
1726 skb->truesize += newtail - oldtail;
1727 return newtail;
1728}
1729
1730/*
1731 * Format an audit message into the audit buffer. If there isn't enough
1732 * room in the audit buffer, more room will be allocated and vsnprint
1733 * will be called a second time. Currently, we assume that a printk
1734 * can't format message larger than 1024 bytes, so we don't either.
1735 */
1736static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1737 va_list args)
1738{
1739 int len, avail;
1740 struct sk_buff *skb;
1741 va_list args2;
1742
1743 if (!ab)
1744 return;
1745
1746 BUG_ON(!ab->skb);
1747 skb = ab->skb;
1748 avail = skb_tailroom(skb);
1749 if (avail == 0) {
1750 avail = audit_expand(ab, AUDIT_BUFSIZ);
1751 if (!avail)
1752 goto out;
1753 }
1754 va_copy(args2, args);
1755 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1756 if (len >= avail) {
1757 /* The printk buffer is 1024 bytes long, so if we get
1758 * here and AUDIT_BUFSIZ is at least 1024, then we can
1759 * log everything that printk could have logged. */
1760 avail = audit_expand(ab,
1761 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1762 if (!avail)
1763 goto out_va_end;
1764 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1765 }
1766 if (len > 0)
1767 skb_put(skb, len);
1768out_va_end:
1769 va_end(args2);
1770out:
1771 return;
1772}
1773
1774/**
1775 * audit_log_format - format a message into the audit buffer.
1776 * @ab: audit_buffer
1777 * @fmt: format string
1778 * @...: optional parameters matching @fmt string
1779 *
1780 * All the work is done in audit_log_vformat.
1781 */
1782void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1783{
1784 va_list args;
1785
1786 if (!ab)
1787 return;
1788 va_start(args, fmt);
1789 audit_log_vformat(ab, fmt, args);
1790 va_end(args);
1791}
1792
1793/**
1794 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1795 * @ab: the audit_buffer
1796 * @buf: buffer to convert to hex
1797 * @len: length of @buf to be converted
1798 *
1799 * No return value; failure to expand is silently ignored.
1800 *
1801 * This function will take the passed buf and convert it into a string of
1802 * ascii hex digits. The new string is placed onto the skb.
1803 */
1804void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1805 size_t len)
1806{
1807 int i, avail, new_len;
1808 unsigned char *ptr;
1809 struct sk_buff *skb;
1810
1811 if (!ab)
1812 return;
1813
1814 BUG_ON(!ab->skb);
1815 skb = ab->skb;
1816 avail = skb_tailroom(skb);
1817 new_len = len<<1;
1818 if (new_len >= avail) {
1819 /* Round the buffer request up to the next multiple */
1820 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1821 avail = audit_expand(ab, new_len);
1822 if (!avail)
1823 return;
1824 }
1825
1826 ptr = skb_tail_pointer(skb);
1827 for (i = 0; i < len; i++)
1828 ptr = hex_byte_pack_upper(ptr, buf[i]);
1829 *ptr = 0;
1830 skb_put(skb, len << 1); /* new string is twice the old string */
1831}
1832
1833/*
1834 * Format a string of no more than slen characters into the audit buffer,
1835 * enclosed in quote marks.
1836 */
1837void audit_log_n_string(struct audit_buffer *ab, const char *string,
1838 size_t slen)
1839{
1840 int avail, new_len;
1841 unsigned char *ptr;
1842 struct sk_buff *skb;
1843
1844 if (!ab)
1845 return;
1846
1847 BUG_ON(!ab->skb);
1848 skb = ab->skb;
1849 avail = skb_tailroom(skb);
1850 new_len = slen + 3; /* enclosing quotes + null terminator */
1851 if (new_len > avail) {
1852 avail = audit_expand(ab, new_len);
1853 if (!avail)
1854 return;
1855 }
1856 ptr = skb_tail_pointer(skb);
1857 *ptr++ = '"';
1858 memcpy(ptr, string, slen);
1859 ptr += slen;
1860 *ptr++ = '"';
1861 *ptr = 0;
1862 skb_put(skb, slen + 2); /* don't include null terminator */
1863}
1864
1865/**
1866 * audit_string_contains_control - does a string need to be logged in hex
1867 * @string: string to be checked
1868 * @len: max length of the string to check
1869 */
1870bool audit_string_contains_control(const char *string, size_t len)
1871{
1872 const unsigned char *p;
1873 for (p = string; p < (const unsigned char *)string + len; p++) {
1874 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1875 return true;
1876 }
1877 return false;
1878}
1879
1880/**
1881 * audit_log_n_untrustedstring - log a string that may contain random characters
1882 * @ab: audit_buffer
1883 * @len: length of string (not including trailing null)
1884 * @string: string to be logged
1885 *
1886 * This code will escape a string that is passed to it if the string
1887 * contains a control character, unprintable character, double quote mark,
1888 * or a space. Unescaped strings will start and end with a double quote mark.
1889 * Strings that are escaped are printed in hex (2 digits per char).
1890 *
1891 * The caller specifies the number of characters in the string to log, which may
1892 * or may not be the entire string.
1893 */
1894void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1895 size_t len)
1896{
1897 if (audit_string_contains_control(string, len))
1898 audit_log_n_hex(ab, string, len);
1899 else
1900 audit_log_n_string(ab, string, len);
1901}
1902
1903/**
1904 * audit_log_untrustedstring - log a string that may contain random characters
1905 * @ab: audit_buffer
1906 * @string: string to be logged
1907 *
1908 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1909 * determine string length.
1910 */
1911void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1912{
1913 audit_log_n_untrustedstring(ab, string, strlen(string));
1914}
1915
1916/* This is a helper-function to print the escaped d_path */
1917void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1918 const struct path *path)
1919{
1920 char *p, *pathname;
1921
1922 if (prefix)
1923 audit_log_format(ab, "%s", prefix);
1924
1925 /* We will allow 11 spaces for ' (deleted)' to be appended */
1926 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1927 if (!pathname) {
1928 audit_log_string(ab, "<no_memory>");
1929 return;
1930 }
1931 p = d_path(path, pathname, PATH_MAX+11);
1932 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1933 /* FIXME: can we save some information here? */
1934 audit_log_string(ab, "<too_long>");
1935 } else
1936 audit_log_untrustedstring(ab, p);
1937 kfree(pathname);
1938}
1939
1940void audit_log_session_info(struct audit_buffer *ab)
1941{
1942 unsigned int sessionid = audit_get_sessionid(current);
1943 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1944
1945 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1946}
1947
1948void audit_log_key(struct audit_buffer *ab, char *key)
1949{
1950 audit_log_format(ab, " key=");
1951 if (key)
1952 audit_log_untrustedstring(ab, key);
1953 else
1954 audit_log_format(ab, "(null)");
1955}
1956
1957void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1958{
1959 int i;
1960
1961 audit_log_format(ab, " %s=", prefix);
1962 CAP_FOR_EACH_U32(i) {
1963 audit_log_format(ab, "%08x",
1964 cap->cap[CAP_LAST_U32 - i]);
1965 }
1966}
1967
1968static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1969{
1970 kernel_cap_t *perm = &name->fcap.permitted;
1971 kernel_cap_t *inh = &name->fcap.inheritable;
1972 int log = 0;
1973
1974 if (!cap_isclear(*perm)) {
1975 audit_log_cap(ab, "cap_fp", perm);
1976 log = 1;
1977 }
1978 if (!cap_isclear(*inh)) {
1979 audit_log_cap(ab, "cap_fi", inh);
1980 log = 1;
1981 }
1982
1983 if (log)
1984 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1985 name->fcap.fE, name->fcap_ver);
1986}
1987
1988static inline int audit_copy_fcaps(struct audit_names *name,
1989 const struct dentry *dentry)
1990{
1991 struct cpu_vfs_cap_data caps;
1992 int rc;
1993
1994 if (!dentry)
1995 return 0;
1996
1997 rc = get_vfs_caps_from_disk(dentry, &caps);
1998 if (rc)
1999 return rc;
2000
2001 name->fcap.permitted = caps.permitted;
2002 name->fcap.inheritable = caps.inheritable;
2003 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2004 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2005 VFS_CAP_REVISION_SHIFT;
2006
2007 return 0;
2008}
2009
2010/* Copy inode data into an audit_names. */
2011void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2012 struct inode *inode)
2013{
2014 name->ino = inode->i_ino;
2015 name->dev = inode->i_sb->s_dev;
2016 name->mode = inode->i_mode;
2017 name->uid = inode->i_uid;
2018 name->gid = inode->i_gid;
2019 name->rdev = inode->i_rdev;
2020 security_inode_getsecid(inode, &name->osid);
2021 audit_copy_fcaps(name, dentry);
2022}
2023
2024/**
2025 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2026 * @context: audit_context for the task
2027 * @n: audit_names structure with reportable details
2028 * @path: optional path to report instead of audit_names->name
2029 * @record_num: record number to report when handling a list of names
2030 * @call_panic: optional pointer to int that will be updated if secid fails
2031 */
2032void audit_log_name(struct audit_context *context, struct audit_names *n,
2033 const struct path *path, int record_num, int *call_panic)
2034{
2035 struct audit_buffer *ab;
2036 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2037 if (!ab)
2038 return;
2039
2040 audit_log_format(ab, "item=%d", record_num);
2041
2042 if (path)
2043 audit_log_d_path(ab, " name=", path);
2044 else if (n->name) {
2045 switch (n->name_len) {
2046 case AUDIT_NAME_FULL:
2047 /* log the full path */
2048 audit_log_format(ab, " name=");
2049 audit_log_untrustedstring(ab, n->name->name);
2050 break;
2051 case 0:
2052 /* name was specified as a relative path and the
2053 * directory component is the cwd */
2054 audit_log_d_path(ab, " name=", &context->pwd);
2055 break;
2056 default:
2057 /* log the name's directory component */
2058 audit_log_format(ab, " name=");
2059 audit_log_n_untrustedstring(ab, n->name->name,
2060 n->name_len);
2061 }
2062 } else
2063 audit_log_format(ab, " name=(null)");
2064
2065 if (n->ino != AUDIT_INO_UNSET)
2066 audit_log_format(ab, " inode=%lu"
2067 " dev=%02x:%02x mode=%#ho"
2068 " ouid=%u ogid=%u rdev=%02x:%02x",
2069 n->ino,
2070 MAJOR(n->dev),
2071 MINOR(n->dev),
2072 n->mode,
2073 from_kuid(&init_user_ns, n->uid),
2074 from_kgid(&init_user_ns, n->gid),
2075 MAJOR(n->rdev),
2076 MINOR(n->rdev));
2077 if (n->osid != 0) {
2078 char *ctx = NULL;
2079 u32 len;
2080 if (security_secid_to_secctx(
2081 n->osid, &ctx, &len)) {
2082 audit_log_format(ab, " osid=%u", n->osid);
2083 if (call_panic)
2084 *call_panic = 2;
2085 } else {
2086 audit_log_format(ab, " obj=%s", ctx);
2087 security_release_secctx(ctx, len);
2088 }
2089 }
2090
2091 /* log the audit_names record type */
2092 audit_log_format(ab, " nametype=");
2093 switch(n->type) {
2094 case AUDIT_TYPE_NORMAL:
2095 audit_log_format(ab, "NORMAL");
2096 break;
2097 case AUDIT_TYPE_PARENT:
2098 audit_log_format(ab, "PARENT");
2099 break;
2100 case AUDIT_TYPE_CHILD_DELETE:
2101 audit_log_format(ab, "DELETE");
2102 break;
2103 case AUDIT_TYPE_CHILD_CREATE:
2104 audit_log_format(ab, "CREATE");
2105 break;
2106 default:
2107 audit_log_format(ab, "UNKNOWN");
2108 break;
2109 }
2110
2111 audit_log_fcaps(ab, n);
2112 audit_log_end(ab);
2113}
2114
2115int audit_log_task_context(struct audit_buffer *ab)
2116{
2117 char *ctx = NULL;
2118 unsigned len;
2119 int error;
2120 u32 sid;
2121
2122 security_task_getsecid(current, &sid);
2123 if (!sid)
2124 return 0;
2125
2126 error = security_secid_to_secctx(sid, &ctx, &len);
2127 if (error) {
2128 if (error != -EINVAL)
2129 goto error_path;
2130 return 0;
2131 }
2132
2133 audit_log_format(ab, " subj=%s", ctx);
2134 security_release_secctx(ctx, len);
2135 return 0;
2136
2137error_path:
2138 audit_panic("error in audit_log_task_context");
2139 return error;
2140}
2141EXPORT_SYMBOL(audit_log_task_context);
2142
2143void audit_log_d_path_exe(struct audit_buffer *ab,
2144 struct mm_struct *mm)
2145{
2146 struct file *exe_file;
2147
2148 if (!mm)
2149 goto out_null;
2150
2151 exe_file = get_mm_exe_file(mm);
2152 if (!exe_file)
2153 goto out_null;
2154
2155 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2156 fput(exe_file);
2157 return;
2158out_null:
2159 audit_log_format(ab, " exe=(null)");
2160}
2161
2162struct tty_struct *audit_get_tty(struct task_struct *tsk)
2163{
2164 struct tty_struct *tty = NULL;
2165 unsigned long flags;
2166
2167 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2168 if (tsk->signal)
2169 tty = tty_kref_get(tsk->signal->tty);
2170 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2171 return tty;
2172}
2173
2174void audit_put_tty(struct tty_struct *tty)
2175{
2176 tty_kref_put(tty);
2177}
2178
2179void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2180{
2181 const struct cred *cred;
2182 char comm[sizeof(tsk->comm)];
2183 struct tty_struct *tty;
2184
2185 if (!ab)
2186 return;
2187
2188 /* tsk == current */
2189 cred = current_cred();
2190 tty = audit_get_tty(tsk);
2191 audit_log_format(ab,
2192 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2193 " euid=%u suid=%u fsuid=%u"
2194 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2195 task_ppid_nr(tsk),
2196 task_tgid_nr(tsk),
2197 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2198 from_kuid(&init_user_ns, cred->uid),
2199 from_kgid(&init_user_ns, cred->gid),
2200 from_kuid(&init_user_ns, cred->euid),
2201 from_kuid(&init_user_ns, cred->suid),
2202 from_kuid(&init_user_ns, cred->fsuid),
2203 from_kgid(&init_user_ns, cred->egid),
2204 from_kgid(&init_user_ns, cred->sgid),
2205 from_kgid(&init_user_ns, cred->fsgid),
2206 tty ? tty_name(tty) : "(none)",
2207 audit_get_sessionid(tsk));
2208 audit_put_tty(tty);
2209 audit_log_format(ab, " comm=");
2210 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2211 audit_log_d_path_exe(ab, tsk->mm);
2212 audit_log_task_context(ab);
2213}
2214EXPORT_SYMBOL(audit_log_task_info);
2215
2216/**
2217 * audit_log_link_denied - report a link restriction denial
2218 * @operation: specific link operation
2219 * @link: the path that triggered the restriction
2220 */
2221void audit_log_link_denied(const char *operation, const struct path *link)
2222{
2223 struct audit_buffer *ab;
2224 struct audit_names *name;
2225
2226 name = kzalloc(sizeof(*name), GFP_NOFS);
2227 if (!name)
2228 return;
2229
2230 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2231 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2232 AUDIT_ANOM_LINK);
2233 if (!ab)
2234 goto out;
2235 audit_log_format(ab, "op=%s", operation);
2236 audit_log_task_info(ab, current);
2237 audit_log_format(ab, " res=0");
2238 audit_log_end(ab);
2239
2240 /* Generate AUDIT_PATH record with object. */
2241 name->type = AUDIT_TYPE_NORMAL;
2242 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2243 audit_log_name(current->audit_context, name, link, 0, NULL);
2244out:
2245 kfree(name);
2246}
2247
2248/**
2249 * audit_log_end - end one audit record
2250 * @ab: the audit_buffer
2251 *
2252 * We can not do a netlink send inside an irq context because it blocks (last
2253 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2254 * queue and a tasklet is scheduled to remove them from the queue outside the
2255 * irq context. May be called in any context.
2256 */
2257void audit_log_end(struct audit_buffer *ab)
2258{
2259 struct sk_buff *skb;
2260 struct nlmsghdr *nlh;
2261
2262 if (!ab)
2263 return;
2264
2265 if (audit_rate_check()) {
2266 skb = ab->skb;
2267 ab->skb = NULL;
2268
2269 /* setup the netlink header, see the comments in
2270 * kauditd_send_multicast_skb() for length quirks */
2271 nlh = nlmsg_hdr(skb);
2272 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2273
2274 /* queue the netlink packet and poke the kauditd thread */
2275 skb_queue_tail(&audit_queue, skb);
2276 wake_up_interruptible(&kauditd_wait);
2277 } else
2278 audit_log_lost("rate limit exceeded");
2279
2280 audit_buffer_free(ab);
2281}
2282
2283/**
2284 * audit_log - Log an audit record
2285 * @ctx: audit context
2286 * @gfp_mask: type of allocation
2287 * @type: audit message type
2288 * @fmt: format string to use
2289 * @...: variable parameters matching the format string
2290 *
2291 * This is a convenience function that calls audit_log_start,
2292 * audit_log_vformat, and audit_log_end. It may be called
2293 * in any context.
2294 */
2295void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2296 const char *fmt, ...)
2297{
2298 struct audit_buffer *ab;
2299 va_list args;
2300
2301 ab = audit_log_start(ctx, gfp_mask, type);
2302 if (ab) {
2303 va_start(args, fmt);
2304 audit_log_vformat(ab, fmt, args);
2305 va_end(args);
2306 audit_log_end(ab);
2307 }
2308}
2309
2310#ifdef CONFIG_SECURITY
2311/**
2312 * audit_log_secctx - Converts and logs SELinux context
2313 * @ab: audit_buffer
2314 * @secid: security number
2315 *
2316 * This is a helper function that calls security_secid_to_secctx to convert
2317 * secid to secctx and then adds the (converted) SELinux context to the audit
2318 * log by calling audit_log_format, thus also preventing leak of internal secid
2319 * to userspace. If secid cannot be converted audit_panic is called.
2320 */
2321void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2322{
2323 u32 len;
2324 char *secctx;
2325
2326 if (security_secid_to_secctx(secid, &secctx, &len)) {
2327 audit_panic("Cannot convert secid to context");
2328 } else {
2329 audit_log_format(ab, " obj=%s", secctx);
2330 security_release_secctx(secctx, len);
2331 }
2332}
2333EXPORT_SYMBOL(audit_log_secctx);
2334#endif
2335
2336EXPORT_SYMBOL(audit_log_start);
2337EXPORT_SYMBOL(audit_log_end);
2338EXPORT_SYMBOL(audit_log_format);
2339EXPORT_SYMBOL(audit_log);
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#include <linux/init.h>
45#include <asm/types.h>
46#include <linux/atomic.h>
47#include <linux/mm.h>
48#include <linux/export.h>
49#include <linux/slab.h>
50#include <linux/err.h>
51#include <linux/kthread.h>
52
53#include <linux/audit.h>
54
55#include <net/sock.h>
56#include <net/netlink.h>
57#include <linux/skbuff.h>
58#ifdef CONFIG_SECURITY
59#include <linux/security.h>
60#endif
61#include <linux/netlink.h>
62#include <linux/freezer.h>
63#include <linux/tty.h>
64
65#include "audit.h"
66
67/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
68 * (Initialization happens after skb_init is called.) */
69#define AUDIT_DISABLED -1
70#define AUDIT_UNINITIALIZED 0
71#define AUDIT_INITIALIZED 1
72static int audit_initialized;
73
74#define AUDIT_OFF 0
75#define AUDIT_ON 1
76#define AUDIT_LOCKED 2
77int audit_enabled;
78int audit_ever_enabled;
79
80EXPORT_SYMBOL_GPL(audit_enabled);
81
82/* Default state when kernel boots without any parameters. */
83static int audit_default;
84
85/* If auditing cannot proceed, audit_failure selects what happens. */
86static int audit_failure = AUDIT_FAIL_PRINTK;
87
88/*
89 * If audit records are to be written to the netlink socket, audit_pid
90 * contains the pid of the auditd process and audit_nlk_pid contains
91 * the pid to use to send netlink messages to that process.
92 */
93int audit_pid;
94static int audit_nlk_pid;
95
96/* If audit_rate_limit is non-zero, limit the rate of sending audit records
97 * to that number per second. This prevents DoS attacks, but results in
98 * audit records being dropped. */
99static int audit_rate_limit;
100
101/* Number of outstanding audit_buffers allowed. */
102static int audit_backlog_limit = 64;
103static int audit_backlog_wait_time = 60 * HZ;
104static int audit_backlog_wait_overflow = 0;
105
106/* The identity of the user shutting down the audit system. */
107uid_t audit_sig_uid = -1;
108pid_t audit_sig_pid = -1;
109u32 audit_sig_sid = 0;
110
111/* Records can be lost in several ways:
112 0) [suppressed in audit_alloc]
113 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
114 2) out of memory in audit_log_move [alloc_skb]
115 3) suppressed due to audit_rate_limit
116 4) suppressed due to audit_backlog_limit
117*/
118static atomic_t audit_lost = ATOMIC_INIT(0);
119
120/* The netlink socket. */
121static struct sock *audit_sock;
122
123/* Hash for inode-based rules */
124struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
125
126/* The audit_freelist is a list of pre-allocated audit buffers (if more
127 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
128 * being placed on the freelist). */
129static DEFINE_SPINLOCK(audit_freelist_lock);
130static int audit_freelist_count;
131static LIST_HEAD(audit_freelist);
132
133static struct sk_buff_head audit_skb_queue;
134/* queue of skbs to send to auditd when/if it comes back */
135static struct sk_buff_head audit_skb_hold_queue;
136static struct task_struct *kauditd_task;
137static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
138static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
139
140/* Serialize requests from userspace. */
141DEFINE_MUTEX(audit_cmd_mutex);
142
143/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
144 * audit records. Since printk uses a 1024 byte buffer, this buffer
145 * should be at least that large. */
146#define AUDIT_BUFSIZ 1024
147
148/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
149 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
150#define AUDIT_MAXFREE (2*NR_CPUS)
151
152/* The audit_buffer is used when formatting an audit record. The caller
153 * locks briefly to get the record off the freelist or to allocate the
154 * buffer, and locks briefly to send the buffer to the netlink layer or
155 * to place it on a transmit queue. Multiple audit_buffers can be in
156 * use simultaneously. */
157struct audit_buffer {
158 struct list_head list;
159 struct sk_buff *skb; /* formatted skb ready to send */
160 struct audit_context *ctx; /* NULL or associated context */
161 gfp_t gfp_mask;
162};
163
164struct audit_reply {
165 int pid;
166 struct sk_buff *skb;
167};
168
169static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
170{
171 if (ab) {
172 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
173 nlh->nlmsg_pid = pid;
174 }
175}
176
177void audit_panic(const char *message)
178{
179 switch (audit_failure)
180 {
181 case AUDIT_FAIL_SILENT:
182 break;
183 case AUDIT_FAIL_PRINTK:
184 if (printk_ratelimit())
185 printk(KERN_ERR "audit: %s\n", message);
186 break;
187 case AUDIT_FAIL_PANIC:
188 /* test audit_pid since printk is always losey, why bother? */
189 if (audit_pid)
190 panic("audit: %s\n", message);
191 break;
192 }
193}
194
195static inline int audit_rate_check(void)
196{
197 static unsigned long last_check = 0;
198 static int messages = 0;
199 static DEFINE_SPINLOCK(lock);
200 unsigned long flags;
201 unsigned long now;
202 unsigned long elapsed;
203 int retval = 0;
204
205 if (!audit_rate_limit) return 1;
206
207 spin_lock_irqsave(&lock, flags);
208 if (++messages < audit_rate_limit) {
209 retval = 1;
210 } else {
211 now = jiffies;
212 elapsed = now - last_check;
213 if (elapsed > HZ) {
214 last_check = now;
215 messages = 0;
216 retval = 1;
217 }
218 }
219 spin_unlock_irqrestore(&lock, flags);
220
221 return retval;
222}
223
224/**
225 * audit_log_lost - conditionally log lost audit message event
226 * @message: the message stating reason for lost audit message
227 *
228 * Emit at least 1 message per second, even if audit_rate_check is
229 * throttling.
230 * Always increment the lost messages counter.
231*/
232void audit_log_lost(const char *message)
233{
234 static unsigned long last_msg = 0;
235 static DEFINE_SPINLOCK(lock);
236 unsigned long flags;
237 unsigned long now;
238 int print;
239
240 atomic_inc(&audit_lost);
241
242 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
243
244 if (!print) {
245 spin_lock_irqsave(&lock, flags);
246 now = jiffies;
247 if (now - last_msg > HZ) {
248 print = 1;
249 last_msg = now;
250 }
251 spin_unlock_irqrestore(&lock, flags);
252 }
253
254 if (print) {
255 if (printk_ratelimit())
256 printk(KERN_WARNING
257 "audit: audit_lost=%d audit_rate_limit=%d "
258 "audit_backlog_limit=%d\n",
259 atomic_read(&audit_lost),
260 audit_rate_limit,
261 audit_backlog_limit);
262 audit_panic(message);
263 }
264}
265
266static int audit_log_config_change(char *function_name, int new, int old,
267 uid_t loginuid, u32 sessionid, u32 sid,
268 int allow_changes)
269{
270 struct audit_buffer *ab;
271 int rc = 0;
272
273 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
274 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
275 old, loginuid, sessionid);
276 if (sid) {
277 char *ctx = NULL;
278 u32 len;
279
280 rc = security_secid_to_secctx(sid, &ctx, &len);
281 if (rc) {
282 audit_log_format(ab, " sid=%u", sid);
283 allow_changes = 0; /* Something weird, deny request */
284 } else {
285 audit_log_format(ab, " subj=%s", ctx);
286 security_release_secctx(ctx, len);
287 }
288 }
289 audit_log_format(ab, " res=%d", allow_changes);
290 audit_log_end(ab);
291 return rc;
292}
293
294static int audit_do_config_change(char *function_name, int *to_change,
295 int new, uid_t loginuid, u32 sessionid,
296 u32 sid)
297{
298 int allow_changes, rc = 0, old = *to_change;
299
300 /* check if we are locked */
301 if (audit_enabled == AUDIT_LOCKED)
302 allow_changes = 0;
303 else
304 allow_changes = 1;
305
306 if (audit_enabled != AUDIT_OFF) {
307 rc = audit_log_config_change(function_name, new, old, loginuid,
308 sessionid, sid, allow_changes);
309 if (rc)
310 allow_changes = 0;
311 }
312
313 /* If we are allowed, make the change */
314 if (allow_changes == 1)
315 *to_change = new;
316 /* Not allowed, update reason */
317 else if (rc == 0)
318 rc = -EPERM;
319 return rc;
320}
321
322static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
323 u32 sid)
324{
325 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
326 limit, loginuid, sessionid, sid);
327}
328
329static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
330 u32 sid)
331{
332 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
333 limit, loginuid, sessionid, sid);
334}
335
336static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
337{
338 int rc;
339 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
340 return -EINVAL;
341
342 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
343 loginuid, sessionid, sid);
344
345 if (!rc)
346 audit_ever_enabled |= !!state;
347
348 return rc;
349}
350
351static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
352{
353 if (state != AUDIT_FAIL_SILENT
354 && state != AUDIT_FAIL_PRINTK
355 && state != AUDIT_FAIL_PANIC)
356 return -EINVAL;
357
358 return audit_do_config_change("audit_failure", &audit_failure, state,
359 loginuid, sessionid, sid);
360}
361
362/*
363 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
364 * already have been sent via prink/syslog and so if these messages are dropped
365 * it is not a huge concern since we already passed the audit_log_lost()
366 * notification and stuff. This is just nice to get audit messages during
367 * boot before auditd is running or messages generated while auditd is stopped.
368 * This only holds messages is audit_default is set, aka booting with audit=1
369 * or building your kernel that way.
370 */
371static void audit_hold_skb(struct sk_buff *skb)
372{
373 if (audit_default &&
374 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
375 skb_queue_tail(&audit_skb_hold_queue, skb);
376 else
377 kfree_skb(skb);
378}
379
380/*
381 * For one reason or another this nlh isn't getting delivered to the userspace
382 * audit daemon, just send it to printk.
383 */
384static void audit_printk_skb(struct sk_buff *skb)
385{
386 struct nlmsghdr *nlh = nlmsg_hdr(skb);
387 char *data = NLMSG_DATA(nlh);
388
389 if (nlh->nlmsg_type != AUDIT_EOE) {
390 if (printk_ratelimit())
391 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
392 else
393 audit_log_lost("printk limit exceeded\n");
394 }
395
396 audit_hold_skb(skb);
397}
398
399static void kauditd_send_skb(struct sk_buff *skb)
400{
401 int err;
402 /* take a reference in case we can't send it and we want to hold it */
403 skb_get(skb);
404 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
405 if (err < 0) {
406 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
407 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
408 audit_log_lost("auditd disappeared\n");
409 audit_pid = 0;
410 /* we might get lucky and get this in the next auditd */
411 audit_hold_skb(skb);
412 } else
413 /* drop the extra reference if sent ok */
414 consume_skb(skb);
415}
416
417static int kauditd_thread(void *dummy)
418{
419 struct sk_buff *skb;
420
421 set_freezable();
422 while (!kthread_should_stop()) {
423 /*
424 * if auditd just started drain the queue of messages already
425 * sent to syslog/printk. remember loss here is ok. we already
426 * called audit_log_lost() if it didn't go out normally. so the
427 * race between the skb_dequeue and the next check for audit_pid
428 * doesn't matter.
429 *
430 * if you ever find kauditd to be too slow we can get a perf win
431 * by doing our own locking and keeping better track if there
432 * are messages in this queue. I don't see the need now, but
433 * in 5 years when I want to play with this again I'll see this
434 * note and still have no friggin idea what i'm thinking today.
435 */
436 if (audit_default && audit_pid) {
437 skb = skb_dequeue(&audit_skb_hold_queue);
438 if (unlikely(skb)) {
439 while (skb && audit_pid) {
440 kauditd_send_skb(skb);
441 skb = skb_dequeue(&audit_skb_hold_queue);
442 }
443 }
444 }
445
446 skb = skb_dequeue(&audit_skb_queue);
447 wake_up(&audit_backlog_wait);
448 if (skb) {
449 if (audit_pid)
450 kauditd_send_skb(skb);
451 else
452 audit_printk_skb(skb);
453 } else {
454 DECLARE_WAITQUEUE(wait, current);
455 set_current_state(TASK_INTERRUPTIBLE);
456 add_wait_queue(&kauditd_wait, &wait);
457
458 if (!skb_queue_len(&audit_skb_queue)) {
459 try_to_freeze();
460 schedule();
461 }
462
463 __set_current_state(TASK_RUNNING);
464 remove_wait_queue(&kauditd_wait, &wait);
465 }
466 }
467 return 0;
468}
469
470static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
471{
472 struct task_struct *tsk;
473 int err;
474
475 rcu_read_lock();
476 tsk = find_task_by_vpid(pid);
477 if (!tsk) {
478 rcu_read_unlock();
479 return -ESRCH;
480 }
481 get_task_struct(tsk);
482 rcu_read_unlock();
483 err = tty_audit_push_task(tsk, loginuid, sessionid);
484 put_task_struct(tsk);
485 return err;
486}
487
488int audit_send_list(void *_dest)
489{
490 struct audit_netlink_list *dest = _dest;
491 int pid = dest->pid;
492 struct sk_buff *skb;
493
494 /* wait for parent to finish and send an ACK */
495 mutex_lock(&audit_cmd_mutex);
496 mutex_unlock(&audit_cmd_mutex);
497
498 while ((skb = __skb_dequeue(&dest->q)) != NULL)
499 netlink_unicast(audit_sock, skb, pid, 0);
500
501 kfree(dest);
502
503 return 0;
504}
505
506struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
507 int multi, const void *payload, int size)
508{
509 struct sk_buff *skb;
510 struct nlmsghdr *nlh;
511 void *data;
512 int flags = multi ? NLM_F_MULTI : 0;
513 int t = done ? NLMSG_DONE : type;
514
515 skb = nlmsg_new(size, GFP_KERNEL);
516 if (!skb)
517 return NULL;
518
519 nlh = NLMSG_NEW(skb, pid, seq, t, size, flags);
520 data = NLMSG_DATA(nlh);
521 memcpy(data, payload, size);
522 return skb;
523
524nlmsg_failure: /* Used by NLMSG_NEW */
525 if (skb)
526 kfree_skb(skb);
527 return NULL;
528}
529
530static int audit_send_reply_thread(void *arg)
531{
532 struct audit_reply *reply = (struct audit_reply *)arg;
533
534 mutex_lock(&audit_cmd_mutex);
535 mutex_unlock(&audit_cmd_mutex);
536
537 /* Ignore failure. It'll only happen if the sender goes away,
538 because our timeout is set to infinite. */
539 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
540 kfree(reply);
541 return 0;
542}
543/**
544 * audit_send_reply - send an audit reply message via netlink
545 * @pid: process id to send reply to
546 * @seq: sequence number
547 * @type: audit message type
548 * @done: done (last) flag
549 * @multi: multi-part message flag
550 * @payload: payload data
551 * @size: payload size
552 *
553 * Allocates an skb, builds the netlink message, and sends it to the pid.
554 * No failure notifications.
555 */
556static void audit_send_reply(int pid, int seq, int type, int done, int multi,
557 const void *payload, int size)
558{
559 struct sk_buff *skb;
560 struct task_struct *tsk;
561 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
562 GFP_KERNEL);
563
564 if (!reply)
565 return;
566
567 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
568 if (!skb)
569 goto out;
570
571 reply->pid = pid;
572 reply->skb = skb;
573
574 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
575 if (!IS_ERR(tsk))
576 return;
577 kfree_skb(skb);
578out:
579 kfree(reply);
580}
581
582/*
583 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
584 * control messages.
585 */
586static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
587{
588 int err = 0;
589
590 switch (msg_type) {
591 case AUDIT_GET:
592 case AUDIT_LIST:
593 case AUDIT_LIST_RULES:
594 case AUDIT_SET:
595 case AUDIT_ADD:
596 case AUDIT_ADD_RULE:
597 case AUDIT_DEL:
598 case AUDIT_DEL_RULE:
599 case AUDIT_SIGNAL_INFO:
600 case AUDIT_TTY_GET:
601 case AUDIT_TTY_SET:
602 case AUDIT_TRIM:
603 case AUDIT_MAKE_EQUIV:
604 if (!capable(CAP_AUDIT_CONTROL))
605 err = -EPERM;
606 break;
607 case AUDIT_USER:
608 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
609 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
610 if (!capable(CAP_AUDIT_WRITE))
611 err = -EPERM;
612 break;
613 default: /* bad msg */
614 err = -EINVAL;
615 }
616
617 return err;
618}
619
620static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
621 u32 pid, u32 uid, uid_t auid, u32 ses,
622 u32 sid)
623{
624 int rc = 0;
625 char *ctx = NULL;
626 u32 len;
627
628 if (!audit_enabled) {
629 *ab = NULL;
630 return rc;
631 }
632
633 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
634 audit_log_format(*ab, "pid=%d uid=%u auid=%u ses=%u",
635 pid, uid, auid, ses);
636 if (sid) {
637 rc = security_secid_to_secctx(sid, &ctx, &len);
638 if (rc)
639 audit_log_format(*ab, " ssid=%u", sid);
640 else {
641 audit_log_format(*ab, " subj=%s", ctx);
642 security_release_secctx(ctx, len);
643 }
644 }
645
646 return rc;
647}
648
649static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
650{
651 u32 uid, pid, seq, sid;
652 void *data;
653 struct audit_status *status_get, status_set;
654 int err;
655 struct audit_buffer *ab;
656 u16 msg_type = nlh->nlmsg_type;
657 uid_t loginuid; /* loginuid of sender */
658 u32 sessionid;
659 struct audit_sig_info *sig_data;
660 char *ctx = NULL;
661 u32 len;
662
663 err = audit_netlink_ok(skb, msg_type);
664 if (err)
665 return err;
666
667 /* As soon as there's any sign of userspace auditd,
668 * start kauditd to talk to it */
669 if (!kauditd_task)
670 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
671 if (IS_ERR(kauditd_task)) {
672 err = PTR_ERR(kauditd_task);
673 kauditd_task = NULL;
674 return err;
675 }
676
677 pid = NETLINK_CREDS(skb)->pid;
678 uid = NETLINK_CREDS(skb)->uid;
679 loginuid = audit_get_loginuid(current);
680 sessionid = audit_get_sessionid(current);
681 security_task_getsecid(current, &sid);
682 seq = nlh->nlmsg_seq;
683 data = NLMSG_DATA(nlh);
684
685 switch (msg_type) {
686 case AUDIT_GET:
687 status_set.enabled = audit_enabled;
688 status_set.failure = audit_failure;
689 status_set.pid = audit_pid;
690 status_set.rate_limit = audit_rate_limit;
691 status_set.backlog_limit = audit_backlog_limit;
692 status_set.lost = atomic_read(&audit_lost);
693 status_set.backlog = skb_queue_len(&audit_skb_queue);
694 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
695 &status_set, sizeof(status_set));
696 break;
697 case AUDIT_SET:
698 if (nlh->nlmsg_len < sizeof(struct audit_status))
699 return -EINVAL;
700 status_get = (struct audit_status *)data;
701 if (status_get->mask & AUDIT_STATUS_ENABLED) {
702 err = audit_set_enabled(status_get->enabled,
703 loginuid, sessionid, sid);
704 if (err < 0)
705 return err;
706 }
707 if (status_get->mask & AUDIT_STATUS_FAILURE) {
708 err = audit_set_failure(status_get->failure,
709 loginuid, sessionid, sid);
710 if (err < 0)
711 return err;
712 }
713 if (status_get->mask & AUDIT_STATUS_PID) {
714 int new_pid = status_get->pid;
715
716 if (audit_enabled != AUDIT_OFF)
717 audit_log_config_change("audit_pid", new_pid,
718 audit_pid, loginuid,
719 sessionid, sid, 1);
720
721 audit_pid = new_pid;
722 audit_nlk_pid = NETLINK_CB(skb).pid;
723 }
724 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
725 err = audit_set_rate_limit(status_get->rate_limit,
726 loginuid, sessionid, sid);
727 if (err < 0)
728 return err;
729 }
730 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
731 err = audit_set_backlog_limit(status_get->backlog_limit,
732 loginuid, sessionid, sid);
733 break;
734 case AUDIT_USER:
735 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
736 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
737 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
738 return 0;
739
740 err = audit_filter_user(&NETLINK_CB(skb));
741 if (err == 1) {
742 err = 0;
743 if (msg_type == AUDIT_USER_TTY) {
744 err = audit_prepare_user_tty(pid, loginuid,
745 sessionid);
746 if (err)
747 break;
748 }
749 audit_log_common_recv_msg(&ab, msg_type, pid, uid,
750 loginuid, sessionid, sid);
751
752 if (msg_type != AUDIT_USER_TTY)
753 audit_log_format(ab, " msg='%.1024s'",
754 (char *)data);
755 else {
756 int size;
757
758 audit_log_format(ab, " msg=");
759 size = nlmsg_len(nlh);
760 if (size > 0 &&
761 ((unsigned char *)data)[size - 1] == '\0')
762 size--;
763 audit_log_n_untrustedstring(ab, data, size);
764 }
765 audit_set_pid(ab, pid);
766 audit_log_end(ab);
767 }
768 break;
769 case AUDIT_ADD:
770 case AUDIT_DEL:
771 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
772 return -EINVAL;
773 if (audit_enabled == AUDIT_LOCKED) {
774 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
775 uid, loginuid, sessionid, sid);
776
777 audit_log_format(ab, " audit_enabled=%d res=0",
778 audit_enabled);
779 audit_log_end(ab);
780 return -EPERM;
781 }
782 /* fallthrough */
783 case AUDIT_LIST:
784 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
785 uid, seq, data, nlmsg_len(nlh),
786 loginuid, sessionid, sid);
787 break;
788 case AUDIT_ADD_RULE:
789 case AUDIT_DEL_RULE:
790 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
791 return -EINVAL;
792 if (audit_enabled == AUDIT_LOCKED) {
793 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
794 uid, loginuid, sessionid, sid);
795
796 audit_log_format(ab, " audit_enabled=%d res=0",
797 audit_enabled);
798 audit_log_end(ab);
799 return -EPERM;
800 }
801 /* fallthrough */
802 case AUDIT_LIST_RULES:
803 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
804 uid, seq, data, nlmsg_len(nlh),
805 loginuid, sessionid, sid);
806 break;
807 case AUDIT_TRIM:
808 audit_trim_trees();
809
810 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
811 uid, loginuid, sessionid, sid);
812
813 audit_log_format(ab, " op=trim res=1");
814 audit_log_end(ab);
815 break;
816 case AUDIT_MAKE_EQUIV: {
817 void *bufp = data;
818 u32 sizes[2];
819 size_t msglen = nlmsg_len(nlh);
820 char *old, *new;
821
822 err = -EINVAL;
823 if (msglen < 2 * sizeof(u32))
824 break;
825 memcpy(sizes, bufp, 2 * sizeof(u32));
826 bufp += 2 * sizeof(u32);
827 msglen -= 2 * sizeof(u32);
828 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
829 if (IS_ERR(old)) {
830 err = PTR_ERR(old);
831 break;
832 }
833 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
834 if (IS_ERR(new)) {
835 err = PTR_ERR(new);
836 kfree(old);
837 break;
838 }
839 /* OK, here comes... */
840 err = audit_tag_tree(old, new);
841
842 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
843 uid, loginuid, sessionid, sid);
844
845 audit_log_format(ab, " op=make_equiv old=");
846 audit_log_untrustedstring(ab, old);
847 audit_log_format(ab, " new=");
848 audit_log_untrustedstring(ab, new);
849 audit_log_format(ab, " res=%d", !err);
850 audit_log_end(ab);
851 kfree(old);
852 kfree(new);
853 break;
854 }
855 case AUDIT_SIGNAL_INFO:
856 len = 0;
857 if (audit_sig_sid) {
858 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
859 if (err)
860 return err;
861 }
862 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
863 if (!sig_data) {
864 if (audit_sig_sid)
865 security_release_secctx(ctx, len);
866 return -ENOMEM;
867 }
868 sig_data->uid = audit_sig_uid;
869 sig_data->pid = audit_sig_pid;
870 if (audit_sig_sid) {
871 memcpy(sig_data->ctx, ctx, len);
872 security_release_secctx(ctx, len);
873 }
874 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
875 0, 0, sig_data, sizeof(*sig_data) + len);
876 kfree(sig_data);
877 break;
878 case AUDIT_TTY_GET: {
879 struct audit_tty_status s;
880 struct task_struct *tsk;
881 unsigned long flags;
882
883 rcu_read_lock();
884 tsk = find_task_by_vpid(pid);
885 if (tsk && lock_task_sighand(tsk, &flags)) {
886 s.enabled = tsk->signal->audit_tty != 0;
887 unlock_task_sighand(tsk, &flags);
888 } else
889 err = -ESRCH;
890 rcu_read_unlock();
891
892 if (!err)
893 audit_send_reply(NETLINK_CB(skb).pid, seq,
894 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
895 break;
896 }
897 case AUDIT_TTY_SET: {
898 struct audit_tty_status *s;
899 struct task_struct *tsk;
900 unsigned long flags;
901
902 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
903 return -EINVAL;
904 s = data;
905 if (s->enabled != 0 && s->enabled != 1)
906 return -EINVAL;
907 rcu_read_lock();
908 tsk = find_task_by_vpid(pid);
909 if (tsk && lock_task_sighand(tsk, &flags)) {
910 tsk->signal->audit_tty = s->enabled != 0;
911 unlock_task_sighand(tsk, &flags);
912 } else
913 err = -ESRCH;
914 rcu_read_unlock();
915 break;
916 }
917 default:
918 err = -EINVAL;
919 break;
920 }
921
922 return err < 0 ? err : 0;
923}
924
925/*
926 * Get message from skb. Each message is processed by audit_receive_msg.
927 * Malformed skbs with wrong length are discarded silently.
928 */
929static void audit_receive_skb(struct sk_buff *skb)
930{
931 struct nlmsghdr *nlh;
932 /*
933 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
934 * if the nlmsg_len was not aligned
935 */
936 int len;
937 int err;
938
939 nlh = nlmsg_hdr(skb);
940 len = skb->len;
941
942 while (NLMSG_OK(nlh, len)) {
943 err = audit_receive_msg(skb, nlh);
944 /* if err or if this message says it wants a response */
945 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
946 netlink_ack(skb, nlh, err);
947
948 nlh = NLMSG_NEXT(nlh, len);
949 }
950}
951
952/* Receive messages from netlink socket. */
953static void audit_receive(struct sk_buff *skb)
954{
955 mutex_lock(&audit_cmd_mutex);
956 audit_receive_skb(skb);
957 mutex_unlock(&audit_cmd_mutex);
958}
959
960/* Initialize audit support at boot time. */
961static int __init audit_init(void)
962{
963 int i;
964
965 if (audit_initialized == AUDIT_DISABLED)
966 return 0;
967
968 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
969 audit_default ? "enabled" : "disabled");
970 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
971 audit_receive, NULL, THIS_MODULE);
972 if (!audit_sock)
973 audit_panic("cannot initialize netlink socket");
974 else
975 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
976
977 skb_queue_head_init(&audit_skb_queue);
978 skb_queue_head_init(&audit_skb_hold_queue);
979 audit_initialized = AUDIT_INITIALIZED;
980 audit_enabled = audit_default;
981 audit_ever_enabled |= !!audit_default;
982
983 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
984
985 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
986 INIT_LIST_HEAD(&audit_inode_hash[i]);
987
988 return 0;
989}
990__initcall(audit_init);
991
992/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
993static int __init audit_enable(char *str)
994{
995 audit_default = !!simple_strtol(str, NULL, 0);
996 if (!audit_default)
997 audit_initialized = AUDIT_DISABLED;
998
999 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
1000
1001 if (audit_initialized == AUDIT_INITIALIZED) {
1002 audit_enabled = audit_default;
1003 audit_ever_enabled |= !!audit_default;
1004 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
1005 printk(" (after initialization)");
1006 } else {
1007 printk(" (until reboot)");
1008 }
1009 printk("\n");
1010
1011 return 1;
1012}
1013
1014__setup("audit=", audit_enable);
1015
1016static void audit_buffer_free(struct audit_buffer *ab)
1017{
1018 unsigned long flags;
1019
1020 if (!ab)
1021 return;
1022
1023 if (ab->skb)
1024 kfree_skb(ab->skb);
1025
1026 spin_lock_irqsave(&audit_freelist_lock, flags);
1027 if (audit_freelist_count > AUDIT_MAXFREE)
1028 kfree(ab);
1029 else {
1030 audit_freelist_count++;
1031 list_add(&ab->list, &audit_freelist);
1032 }
1033 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1034}
1035
1036static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1037 gfp_t gfp_mask, int type)
1038{
1039 unsigned long flags;
1040 struct audit_buffer *ab = NULL;
1041 struct nlmsghdr *nlh;
1042
1043 spin_lock_irqsave(&audit_freelist_lock, flags);
1044 if (!list_empty(&audit_freelist)) {
1045 ab = list_entry(audit_freelist.next,
1046 struct audit_buffer, list);
1047 list_del(&ab->list);
1048 --audit_freelist_count;
1049 }
1050 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1051
1052 if (!ab) {
1053 ab = kmalloc(sizeof(*ab), gfp_mask);
1054 if (!ab)
1055 goto err;
1056 }
1057
1058 ab->ctx = ctx;
1059 ab->gfp_mask = gfp_mask;
1060
1061 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1062 if (!ab->skb)
1063 goto nlmsg_failure;
1064
1065 nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
1066
1067 return ab;
1068
1069nlmsg_failure: /* Used by NLMSG_NEW */
1070 kfree_skb(ab->skb);
1071 ab->skb = NULL;
1072err:
1073 audit_buffer_free(ab);
1074 return NULL;
1075}
1076
1077/**
1078 * audit_serial - compute a serial number for the audit record
1079 *
1080 * Compute a serial number for the audit record. Audit records are
1081 * written to user-space as soon as they are generated, so a complete
1082 * audit record may be written in several pieces. The timestamp of the
1083 * record and this serial number are used by the user-space tools to
1084 * determine which pieces belong to the same audit record. The
1085 * (timestamp,serial) tuple is unique for each syscall and is live from
1086 * syscall entry to syscall exit.
1087 *
1088 * NOTE: Another possibility is to store the formatted records off the
1089 * audit context (for those records that have a context), and emit them
1090 * all at syscall exit. However, this could delay the reporting of
1091 * significant errors until syscall exit (or never, if the system
1092 * halts).
1093 */
1094unsigned int audit_serial(void)
1095{
1096 static DEFINE_SPINLOCK(serial_lock);
1097 static unsigned int serial = 0;
1098
1099 unsigned long flags;
1100 unsigned int ret;
1101
1102 spin_lock_irqsave(&serial_lock, flags);
1103 do {
1104 ret = ++serial;
1105 } while (unlikely(!ret));
1106 spin_unlock_irqrestore(&serial_lock, flags);
1107
1108 return ret;
1109}
1110
1111static inline void audit_get_stamp(struct audit_context *ctx,
1112 struct timespec *t, unsigned int *serial)
1113{
1114 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1115 *t = CURRENT_TIME;
1116 *serial = audit_serial();
1117 }
1118}
1119
1120/* Obtain an audit buffer. This routine does locking to obtain the
1121 * audit buffer, but then no locking is required for calls to
1122 * audit_log_*format. If the tsk is a task that is currently in a
1123 * syscall, then the syscall is marked as auditable and an audit record
1124 * will be written at syscall exit. If there is no associated task, tsk
1125 * should be NULL. */
1126
1127/**
1128 * audit_log_start - obtain an audit buffer
1129 * @ctx: audit_context (may be NULL)
1130 * @gfp_mask: type of allocation
1131 * @type: audit message type
1132 *
1133 * Returns audit_buffer pointer on success or NULL on error.
1134 *
1135 * Obtain an audit buffer. This routine does locking to obtain the
1136 * audit buffer, but then no locking is required for calls to
1137 * audit_log_*format. If the task (ctx) is a task that is currently in a
1138 * syscall, then the syscall is marked as auditable and an audit record
1139 * will be written at syscall exit. If there is no associated task, then
1140 * task context (ctx) should be NULL.
1141 */
1142struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1143 int type)
1144{
1145 struct audit_buffer *ab = NULL;
1146 struct timespec t;
1147 unsigned int uninitialized_var(serial);
1148 int reserve;
1149 unsigned long timeout_start = jiffies;
1150
1151 if (audit_initialized != AUDIT_INITIALIZED)
1152 return NULL;
1153
1154 if (unlikely(audit_filter_type(type)))
1155 return NULL;
1156
1157 if (gfp_mask & __GFP_WAIT)
1158 reserve = 0;
1159 else
1160 reserve = 5; /* Allow atomic callers to go up to five
1161 entries over the normal backlog limit */
1162
1163 while (audit_backlog_limit
1164 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1165 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1166 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1167
1168 /* Wait for auditd to drain the queue a little */
1169 DECLARE_WAITQUEUE(wait, current);
1170 set_current_state(TASK_INTERRUPTIBLE);
1171 add_wait_queue(&audit_backlog_wait, &wait);
1172
1173 if (audit_backlog_limit &&
1174 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1175 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1176
1177 __set_current_state(TASK_RUNNING);
1178 remove_wait_queue(&audit_backlog_wait, &wait);
1179 continue;
1180 }
1181 if (audit_rate_check() && printk_ratelimit())
1182 printk(KERN_WARNING
1183 "audit: audit_backlog=%d > "
1184 "audit_backlog_limit=%d\n",
1185 skb_queue_len(&audit_skb_queue),
1186 audit_backlog_limit);
1187 audit_log_lost("backlog limit exceeded");
1188 audit_backlog_wait_time = audit_backlog_wait_overflow;
1189 wake_up(&audit_backlog_wait);
1190 return NULL;
1191 }
1192
1193 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1194 if (!ab) {
1195 audit_log_lost("out of memory in audit_log_start");
1196 return NULL;
1197 }
1198
1199 audit_get_stamp(ab->ctx, &t, &serial);
1200
1201 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1202 t.tv_sec, t.tv_nsec/1000000, serial);
1203 return ab;
1204}
1205
1206/**
1207 * audit_expand - expand skb in the audit buffer
1208 * @ab: audit_buffer
1209 * @extra: space to add at tail of the skb
1210 *
1211 * Returns 0 (no space) on failed expansion, or available space if
1212 * successful.
1213 */
1214static inline int audit_expand(struct audit_buffer *ab, int extra)
1215{
1216 struct sk_buff *skb = ab->skb;
1217 int oldtail = skb_tailroom(skb);
1218 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1219 int newtail = skb_tailroom(skb);
1220
1221 if (ret < 0) {
1222 audit_log_lost("out of memory in audit_expand");
1223 return 0;
1224 }
1225
1226 skb->truesize += newtail - oldtail;
1227 return newtail;
1228}
1229
1230/*
1231 * Format an audit message into the audit buffer. If there isn't enough
1232 * room in the audit buffer, more room will be allocated and vsnprint
1233 * will be called a second time. Currently, we assume that a printk
1234 * can't format message larger than 1024 bytes, so we don't either.
1235 */
1236static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1237 va_list args)
1238{
1239 int len, avail;
1240 struct sk_buff *skb;
1241 va_list args2;
1242
1243 if (!ab)
1244 return;
1245
1246 BUG_ON(!ab->skb);
1247 skb = ab->skb;
1248 avail = skb_tailroom(skb);
1249 if (avail == 0) {
1250 avail = audit_expand(ab, AUDIT_BUFSIZ);
1251 if (!avail)
1252 goto out;
1253 }
1254 va_copy(args2, args);
1255 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1256 if (len >= avail) {
1257 /* The printk buffer is 1024 bytes long, so if we get
1258 * here and AUDIT_BUFSIZ is at least 1024, then we can
1259 * log everything that printk could have logged. */
1260 avail = audit_expand(ab,
1261 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1262 if (!avail)
1263 goto out_va_end;
1264 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1265 }
1266 if (len > 0)
1267 skb_put(skb, len);
1268out_va_end:
1269 va_end(args2);
1270out:
1271 return;
1272}
1273
1274/**
1275 * audit_log_format - format a message into the audit buffer.
1276 * @ab: audit_buffer
1277 * @fmt: format string
1278 * @...: optional parameters matching @fmt string
1279 *
1280 * All the work is done in audit_log_vformat.
1281 */
1282void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1283{
1284 va_list args;
1285
1286 if (!ab)
1287 return;
1288 va_start(args, fmt);
1289 audit_log_vformat(ab, fmt, args);
1290 va_end(args);
1291}
1292
1293/**
1294 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1295 * @ab: the audit_buffer
1296 * @buf: buffer to convert to hex
1297 * @len: length of @buf to be converted
1298 *
1299 * No return value; failure to expand is silently ignored.
1300 *
1301 * This function will take the passed buf and convert it into a string of
1302 * ascii hex digits. The new string is placed onto the skb.
1303 */
1304void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1305 size_t len)
1306{
1307 int i, avail, new_len;
1308 unsigned char *ptr;
1309 struct sk_buff *skb;
1310 static const unsigned char *hex = "0123456789ABCDEF";
1311
1312 if (!ab)
1313 return;
1314
1315 BUG_ON(!ab->skb);
1316 skb = ab->skb;
1317 avail = skb_tailroom(skb);
1318 new_len = len<<1;
1319 if (new_len >= avail) {
1320 /* Round the buffer request up to the next multiple */
1321 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1322 avail = audit_expand(ab, new_len);
1323 if (!avail)
1324 return;
1325 }
1326
1327 ptr = skb_tail_pointer(skb);
1328 for (i=0; i<len; i++) {
1329 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1330 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1331 }
1332 *ptr = 0;
1333 skb_put(skb, len << 1); /* new string is twice the old string */
1334}
1335
1336/*
1337 * Format a string of no more than slen characters into the audit buffer,
1338 * enclosed in quote marks.
1339 */
1340void audit_log_n_string(struct audit_buffer *ab, const char *string,
1341 size_t slen)
1342{
1343 int avail, new_len;
1344 unsigned char *ptr;
1345 struct sk_buff *skb;
1346
1347 if (!ab)
1348 return;
1349
1350 BUG_ON(!ab->skb);
1351 skb = ab->skb;
1352 avail = skb_tailroom(skb);
1353 new_len = slen + 3; /* enclosing quotes + null terminator */
1354 if (new_len > avail) {
1355 avail = audit_expand(ab, new_len);
1356 if (!avail)
1357 return;
1358 }
1359 ptr = skb_tail_pointer(skb);
1360 *ptr++ = '"';
1361 memcpy(ptr, string, slen);
1362 ptr += slen;
1363 *ptr++ = '"';
1364 *ptr = 0;
1365 skb_put(skb, slen + 2); /* don't include null terminator */
1366}
1367
1368/**
1369 * audit_string_contains_control - does a string need to be logged in hex
1370 * @string: string to be checked
1371 * @len: max length of the string to check
1372 */
1373int audit_string_contains_control(const char *string, size_t len)
1374{
1375 const unsigned char *p;
1376 for (p = string; p < (const unsigned char *)string + len; p++) {
1377 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1378 return 1;
1379 }
1380 return 0;
1381}
1382
1383/**
1384 * audit_log_n_untrustedstring - log a string that may contain random characters
1385 * @ab: audit_buffer
1386 * @len: length of string (not including trailing null)
1387 * @string: string to be logged
1388 *
1389 * This code will escape a string that is passed to it if the string
1390 * contains a control character, unprintable character, double quote mark,
1391 * or a space. Unescaped strings will start and end with a double quote mark.
1392 * Strings that are escaped are printed in hex (2 digits per char).
1393 *
1394 * The caller specifies the number of characters in the string to log, which may
1395 * or may not be the entire string.
1396 */
1397void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1398 size_t len)
1399{
1400 if (audit_string_contains_control(string, len))
1401 audit_log_n_hex(ab, string, len);
1402 else
1403 audit_log_n_string(ab, string, len);
1404}
1405
1406/**
1407 * audit_log_untrustedstring - log a string that may contain random characters
1408 * @ab: audit_buffer
1409 * @string: string to be logged
1410 *
1411 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1412 * determine string length.
1413 */
1414void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1415{
1416 audit_log_n_untrustedstring(ab, string, strlen(string));
1417}
1418
1419/* This is a helper-function to print the escaped d_path */
1420void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1421 const struct path *path)
1422{
1423 char *p, *pathname;
1424
1425 if (prefix)
1426 audit_log_format(ab, "%s", prefix);
1427
1428 /* We will allow 11 spaces for ' (deleted)' to be appended */
1429 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1430 if (!pathname) {
1431 audit_log_string(ab, "<no_memory>");
1432 return;
1433 }
1434 p = d_path(path, pathname, PATH_MAX+11);
1435 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1436 /* FIXME: can we save some information here? */
1437 audit_log_string(ab, "<too_long>");
1438 } else
1439 audit_log_untrustedstring(ab, p);
1440 kfree(pathname);
1441}
1442
1443void audit_log_key(struct audit_buffer *ab, char *key)
1444{
1445 audit_log_format(ab, " key=");
1446 if (key)
1447 audit_log_untrustedstring(ab, key);
1448 else
1449 audit_log_format(ab, "(null)");
1450}
1451
1452/**
1453 * audit_log_end - end one audit record
1454 * @ab: the audit_buffer
1455 *
1456 * The netlink_* functions cannot be called inside an irq context, so
1457 * the audit buffer is placed on a queue and a tasklet is scheduled to
1458 * remove them from the queue outside the irq context. May be called in
1459 * any context.
1460 */
1461void audit_log_end(struct audit_buffer *ab)
1462{
1463 if (!ab)
1464 return;
1465 if (!audit_rate_check()) {
1466 audit_log_lost("rate limit exceeded");
1467 } else {
1468 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1469 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1470
1471 if (audit_pid) {
1472 skb_queue_tail(&audit_skb_queue, ab->skb);
1473 wake_up_interruptible(&kauditd_wait);
1474 } else {
1475 audit_printk_skb(ab->skb);
1476 }
1477 ab->skb = NULL;
1478 }
1479 audit_buffer_free(ab);
1480}
1481
1482/**
1483 * audit_log - Log an audit record
1484 * @ctx: audit context
1485 * @gfp_mask: type of allocation
1486 * @type: audit message type
1487 * @fmt: format string to use
1488 * @...: variable parameters matching the format string
1489 *
1490 * This is a convenience function that calls audit_log_start,
1491 * audit_log_vformat, and audit_log_end. It may be called
1492 * in any context.
1493 */
1494void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1495 const char *fmt, ...)
1496{
1497 struct audit_buffer *ab;
1498 va_list args;
1499
1500 ab = audit_log_start(ctx, gfp_mask, type);
1501 if (ab) {
1502 va_start(args, fmt);
1503 audit_log_vformat(ab, fmt, args);
1504 va_end(args);
1505 audit_log_end(ab);
1506 }
1507}
1508
1509#ifdef CONFIG_SECURITY
1510/**
1511 * audit_log_secctx - Converts and logs SELinux context
1512 * @ab: audit_buffer
1513 * @secid: security number
1514 *
1515 * This is a helper function that calls security_secid_to_secctx to convert
1516 * secid to secctx and then adds the (converted) SELinux context to the audit
1517 * log by calling audit_log_format, thus also preventing leak of internal secid
1518 * to userspace. If secid cannot be converted audit_panic is called.
1519 */
1520void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1521{
1522 u32 len;
1523 char *secctx;
1524
1525 if (security_secid_to_secctx(secid, &secctx, &len)) {
1526 audit_panic("Cannot convert secid to context");
1527 } else {
1528 audit_log_format(ab, " obj=%s", secctx);
1529 security_release_secctx(secctx, len);
1530 }
1531}
1532EXPORT_SYMBOL(audit_log_secctx);
1533#endif
1534
1535EXPORT_SYMBOL(audit_log_start);
1536EXPORT_SYMBOL(audit_log_end);
1537EXPORT_SYMBOL(audit_log_format);
1538EXPORT_SYMBOL(audit_log);