Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *	  2) Minimal run-time overhead:
  26 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *	     b) Small when syscall auditing is enabled and no audit record
  28 *		is generated (defer as much work as possible to record
  29 *		generation time):
  30 *		i) context is allocated,
  31 *		ii) names from getname are stored without a copy, and
  32 *		iii) inode information stored from path_lookup.
  33 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  34 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  35 *	     then a syscall record will be generated automatically for the
  36 *	     current syscall).
  37 *	  5) Netlink interface to user-space.
  38 *	  6) Support low-overhead kernel-based filtering to minimize the
  39 *	     information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
 
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/file.h>
  47#include <linux/init.h>
  48#include <linux/types.h>
  49#include <linux/atomic.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/err.h>
  54#include <linux/kthread.h>
  55#include <linux/kernel.h>
  56#include <linux/syscalls.h>
  57#include <linux/spinlock.h>
  58#include <linux/rcupdate.h>
  59#include <linux/mutex.h>
  60#include <linux/gfp.h>
 
  61
  62#include <linux/audit.h>
  63
  64#include <net/sock.h>
  65#include <net/netlink.h>
  66#include <linux/skbuff.h>
  67#ifdef CONFIG_SECURITY
  68#include <linux/security.h>
  69#endif
  70#include <linux/freezer.h>
  71#include <linux/pid_namespace.h>
  72#include <net/netns/generic.h>
  73
  74#include "audit.h"
  75
  76/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  77 * (Initialization happens after skb_init is called.) */
  78#define AUDIT_DISABLED		-1
  79#define AUDIT_UNINITIALIZED	0
  80#define AUDIT_INITIALIZED	1
  81static int	audit_initialized;
  82
  83#define AUDIT_OFF	0
  84#define AUDIT_ON	1
  85#define AUDIT_LOCKED	2
  86u32		audit_enabled;
  87u32		audit_ever_enabled;
  88
  89EXPORT_SYMBOL_GPL(audit_enabled);
  90
  91/* Default state when kernel boots without any parameters. */
  92static u32	audit_default;
  93
  94/* If auditing cannot proceed, audit_failure selects what happens. */
  95static u32	audit_failure = AUDIT_FAIL_PRINTK;
  96
  97/* private audit network namespace index */
  98static unsigned int audit_net_id;
  99
 100/**
 101 * struct audit_net - audit private network namespace data
 102 * @sk: communication socket
 103 */
 104struct audit_net {
 105	struct sock *sk;
 106};
 107
 108/**
 109 * struct auditd_connection - kernel/auditd connection state
 110 * @pid: auditd PID
 111 * @portid: netlink portid
 112 * @net: the associated network namespace
 113 * @lock: spinlock to protect write access
 114 *
 115 * Description:
 116 * This struct is RCU protected; you must either hold the RCU lock for reading
 117 * or the included spinlock for writing.
 118 */
 119static struct auditd_connection {
 120	int pid;
 121	u32 portid;
 122	struct net *net;
 123	spinlock_t lock;
 124} auditd_conn;
 
 
 125
 126/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 127 * to that number per second.  This prevents DoS attacks, but results in
 128 * audit records being dropped. */
 129static u32	audit_rate_limit;
 130
 131/* Number of outstanding audit_buffers allowed.
 132 * When set to zero, this means unlimited. */
 133static u32	audit_backlog_limit = 64;
 134#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 135static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 136
 137/* The identity of the user shutting down the audit system. */
 138kuid_t		audit_sig_uid = INVALID_UID;
 139pid_t		audit_sig_pid = -1;
 140u32		audit_sig_sid = 0;
 141
 142/* Records can be lost in several ways:
 143   0) [suppressed in audit_alloc]
 144   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 145   2) out of memory in audit_log_move [alloc_skb]
 146   3) suppressed due to audit_rate_limit
 147   4) suppressed due to audit_backlog_limit
 148*/
 149static atomic_t    audit_lost = ATOMIC_INIT(0);
 
 
 
 
 
 150
 151/* Hash for inode-based rules */
 152struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 153
 154/* The audit_freelist is a list of pre-allocated audit buffers (if more
 155 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 156 * being placed on the freelist). */
 157static DEFINE_SPINLOCK(audit_freelist_lock);
 158static int	   audit_freelist_count;
 159static LIST_HEAD(audit_freelist);
 160
 161/* queue msgs to send via kauditd_task */
 162static struct sk_buff_head audit_queue;
 163static void kauditd_hold_skb(struct sk_buff *skb);
 164/* queue msgs due to temporary unicast send problems */
 165static struct sk_buff_head audit_retry_queue;
 166/* queue msgs waiting for new auditd connection */
 167static struct sk_buff_head audit_hold_queue;
 168
 169/* queue servicing thread */
 170static struct task_struct *kauditd_task;
 171static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 172
 173/* waitqueue for callers who are blocked on the audit backlog */
 174static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 175
 176static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 177				   .mask = -1,
 178				   .features = 0,
 179				   .lock = 0,};
 180
 181static char *audit_feature_names[2] = {
 182	"only_unset_loginuid",
 183	"loginuid_immutable",
 184};
 185
 186
 187/* Serialize requests from userspace. */
 188DEFINE_MUTEX(audit_cmd_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 189
 190/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 191 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 192 * should be at least that large. */
 193#define AUDIT_BUFSIZ 1024
 194
 195/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 196 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 197#define AUDIT_MAXFREE  (2*NR_CPUS)
 198
 199/* The audit_buffer is used when formatting an audit record.  The caller
 200 * locks briefly to get the record off the freelist or to allocate the
 201 * buffer, and locks briefly to send the buffer to the netlink layer or
 202 * to place it on a transmit queue.  Multiple audit_buffers can be in
 203 * use simultaneously. */
 204struct audit_buffer {
 205	struct list_head     list;
 206	struct sk_buff       *skb;	/* formatted skb ready to send */
 207	struct audit_context *ctx;	/* NULL or associated context */
 208	gfp_t		     gfp_mask;
 209};
 210
 211struct audit_reply {
 212	__u32 portid;
 213	struct net *net;
 214	struct sk_buff *skb;
 215};
 216
 217/**
 218 * auditd_test_task - Check to see if a given task is an audit daemon
 219 * @task: the task to check
 220 *
 221 * Description:
 222 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 223 */
 224int auditd_test_task(const struct task_struct *task)
 225{
 226	int rc;
 
 227
 228	rcu_read_lock();
 229	rc = (auditd_conn.pid && task->tgid == auditd_conn.pid ? 1 : 0);
 
 230	rcu_read_unlock();
 231
 232	return rc;
 233}
 234
 235/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236 * audit_get_sk - Return the audit socket for the given network namespace
 237 * @net: the destination network namespace
 238 *
 239 * Description:
 240 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 241 * that a reference is held for the network namespace while the sock is in use.
 242 */
 243static struct sock *audit_get_sk(const struct net *net)
 244{
 245	struct audit_net *aunet;
 246
 247	if (!net)
 248		return NULL;
 249
 250	aunet = net_generic(net, audit_net_id);
 251	return aunet->sk;
 252}
 253
 254static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 255{
 256	if (ab) {
 257		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 258		nlh->nlmsg_pid = portid;
 259	}
 260}
 261
 262void audit_panic(const char *message)
 263{
 264	switch (audit_failure) {
 265	case AUDIT_FAIL_SILENT:
 266		break;
 267	case AUDIT_FAIL_PRINTK:
 268		if (printk_ratelimit())
 269			pr_err("%s\n", message);
 270		break;
 271	case AUDIT_FAIL_PANIC:
 272		panic("audit: %s\n", message);
 273		break;
 274	}
 275}
 276
 277static inline int audit_rate_check(void)
 278{
 279	static unsigned long	last_check = 0;
 280	static int		messages   = 0;
 281	static DEFINE_SPINLOCK(lock);
 282	unsigned long		flags;
 283	unsigned long		now;
 284	unsigned long		elapsed;
 285	int			retval	   = 0;
 286
 287	if (!audit_rate_limit) return 1;
 
 288
 289	spin_lock_irqsave(&lock, flags);
 290	if (++messages < audit_rate_limit) {
 291		retval = 1;
 292	} else {
 293		now     = jiffies;
 294		elapsed = now - last_check;
 295		if (elapsed > HZ) {
 296			last_check = now;
 297			messages   = 0;
 298			retval     = 1;
 299		}
 300	}
 301	spin_unlock_irqrestore(&lock, flags);
 302
 303	return retval;
 304}
 305
 306/**
 307 * audit_log_lost - conditionally log lost audit message event
 308 * @message: the message stating reason for lost audit message
 309 *
 310 * Emit at least 1 message per second, even if audit_rate_check is
 311 * throttling.
 312 * Always increment the lost messages counter.
 313*/
 314void audit_log_lost(const char *message)
 315{
 316	static unsigned long	last_msg = 0;
 317	static DEFINE_SPINLOCK(lock);
 318	unsigned long		flags;
 319	unsigned long		now;
 320	int			print;
 321
 322	atomic_inc(&audit_lost);
 323
 324	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 325
 326	if (!print) {
 327		spin_lock_irqsave(&lock, flags);
 328		now = jiffies;
 329		if (now - last_msg > HZ) {
 330			print = 1;
 331			last_msg = now;
 332		}
 333		spin_unlock_irqrestore(&lock, flags);
 334	}
 335
 336	if (print) {
 337		if (printk_ratelimit())
 338			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 339				atomic_read(&audit_lost),
 340				audit_rate_limit,
 341				audit_backlog_limit);
 342		audit_panic(message);
 343	}
 344}
 345
 346static int audit_log_config_change(char *function_name, u32 new, u32 old,
 347				   int allow_changes)
 348{
 349	struct audit_buffer *ab;
 350	int rc = 0;
 351
 352	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 353	if (unlikely(!ab))
 354		return rc;
 355	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 356	audit_log_session_info(ab);
 357	rc = audit_log_task_context(ab);
 358	if (rc)
 359		allow_changes = 0; /* Something weird, deny request */
 360	audit_log_format(ab, " res=%d", allow_changes);
 361	audit_log_end(ab);
 362	return rc;
 363}
 364
 365static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 366{
 367	int allow_changes, rc = 0;
 368	u32 old = *to_change;
 369
 370	/* check if we are locked */
 371	if (audit_enabled == AUDIT_LOCKED)
 372		allow_changes = 0;
 373	else
 374		allow_changes = 1;
 375
 376	if (audit_enabled != AUDIT_OFF) {
 377		rc = audit_log_config_change(function_name, new, old, allow_changes);
 378		if (rc)
 379			allow_changes = 0;
 380	}
 381
 382	/* If we are allowed, make the change */
 383	if (allow_changes == 1)
 384		*to_change = new;
 385	/* Not allowed, update reason */
 386	else if (rc == 0)
 387		rc = -EPERM;
 388	return rc;
 389}
 390
 391static int audit_set_rate_limit(u32 limit)
 392{
 393	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 394}
 395
 396static int audit_set_backlog_limit(u32 limit)
 397{
 398	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 399}
 400
 401static int audit_set_backlog_wait_time(u32 timeout)
 402{
 403	return audit_do_config_change("audit_backlog_wait_time",
 404				      &audit_backlog_wait_time, timeout);
 405}
 406
 407static int audit_set_enabled(u32 state)
 408{
 409	int rc;
 410	if (state > AUDIT_LOCKED)
 411		return -EINVAL;
 412
 413	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 414	if (!rc)
 415		audit_ever_enabled |= !!state;
 416
 417	return rc;
 418}
 419
 420static int audit_set_failure(u32 state)
 421{
 422	if (state != AUDIT_FAIL_SILENT
 423	    && state != AUDIT_FAIL_PRINTK
 424	    && state != AUDIT_FAIL_PANIC)
 425		return -EINVAL;
 426
 427	return audit_do_config_change("audit_failure", &audit_failure, state);
 428}
 429
 430/**
 431 * auditd_set - Set/Reset the auditd connection state
 432 * @pid: auditd PID
 433 * @portid: auditd netlink portid
 434 * @net: auditd network namespace pointer
 435 *
 436 * Description:
 437 * This function will obtain and drop network namespace references as
 438 * necessary.
 439 */
 440static void auditd_set(int pid, u32 portid, struct net *net)
 441{
 442	unsigned long flags;
 443
 444	spin_lock_irqsave(&auditd_conn.lock, flags);
 445	auditd_conn.pid = pid;
 446	auditd_conn.portid = portid;
 447	if (auditd_conn.net)
 448		put_net(auditd_conn.net);
 449	if (net)
 450		auditd_conn.net = get_net(net);
 451	else
 452		auditd_conn.net = NULL;
 453	spin_unlock_irqrestore(&auditd_conn.lock, flags);
 454}
 455
 456/**
 457 * auditd_reset - Disconnect the auditd connection
 
 
 
 
 
 458 *
 459 * Description:
 460 * Break the auditd/kauditd connection and move all the queued records into the
 461 * hold queue in case auditd reconnects.
 462 */
 463static void auditd_reset(void)
 
 464{
 465	struct sk_buff *skb;
 
 
 466
 467	/* if it isn't already broken, break the connection */
 468	rcu_read_lock();
 469	if (auditd_conn.pid)
 470		auditd_set(0, 0, NULL);
 471	rcu_read_unlock();
 472
 473	/* flush all of the main and retry queues to the hold queue */
 474	while ((skb = skb_dequeue(&audit_retry_queue)))
 475		kauditd_hold_skb(skb);
 476	while ((skb = skb_dequeue(&audit_queue)))
 477		kauditd_hold_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480/**
 481 * kauditd_print_skb - Print the audit record to the ring buffer
 482 * @skb: audit record
 483 *
 484 * Whatever the reason, this packet may not make it to the auditd connection
 485 * so write it via printk so the information isn't completely lost.
 486 */
 487static void kauditd_printk_skb(struct sk_buff *skb)
 488{
 489	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 490	char *data = nlmsg_data(nlh);
 491
 492	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 493		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 494}
 495
 496/**
 497 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 498 * @skb: audit record
 
 499 *
 500 * Description:
 501 * This should only be used by the kauditd_thread when it fails to flush the
 502 * hold queue.
 503 */
 504static void kauditd_rehold_skb(struct sk_buff *skb)
 505{
 506	/* put the record back in the queue at the same place */
 507	skb_queue_head(&audit_hold_queue, skb);
 508
 509	/* fail the auditd connection */
 510	auditd_reset();
 511}
 512
 513/**
 514 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 515 * @skb: audit record
 
 516 *
 517 * Description:
 518 * Queue the audit record, waiting for an instance of auditd.  When this
 519 * function is called we haven't given up yet on sending the record, but things
 520 * are not looking good.  The first thing we want to do is try to write the
 521 * record via printk and then see if we want to try and hold on to the record
 522 * and queue it, if we have room.  If we want to hold on to the record, but we
 523 * don't have room, record a record lost message.
 524 */
 525static void kauditd_hold_skb(struct sk_buff *skb)
 526{
 527	/* at this point it is uncertain if we will ever send this to auditd so
 528	 * try to send the message via printk before we go any further */
 529	kauditd_printk_skb(skb);
 530
 531	/* can we just silently drop the message? */
 532	if (!audit_default) {
 533		kfree_skb(skb);
 534		return;
 
 
 
 
 
 
 
 
 
 
 
 
 535	}
 536
 537	/* if we have room, queue the message */
 538	if (!audit_backlog_limit ||
 539	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 540		skb_queue_tail(&audit_hold_queue, skb);
 541		return;
 542	}
 543
 544	/* we have no other options - drop the message */
 545	audit_log_lost("kauditd hold queue overflow");
 
 546	kfree_skb(skb);
 547
 548	/* fail the auditd connection */
 549	auditd_reset();
 550}
 551
 552/**
 553 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 554 * @skb: audit record
 
 555 *
 556 * Description:
 557 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 558 * but for some reason we are having problems sending it audit records so
 559 * queue the given record and attempt to resend.
 560 */
 561static void kauditd_retry_skb(struct sk_buff *skb)
 562{
 563	/* NOTE: because records should only live in the retry queue for a
 564	 * short period of time, before either being sent or moved to the hold
 565	 * queue, we don't currently enforce a limit on this queue */
 566	skb_queue_tail(&audit_retry_queue, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567}
 568
 569/**
 570 * auditd_send_unicast_skb - Send a record via unicast to auditd
 571 * @skb: audit record
 572 *
 573 * Description:
 574 * Send a skb to the audit daemon, returns positive/zero values on success and
 575 * negative values on failure; in all cases the skb will be consumed by this
 576 * function.  If the send results in -ECONNREFUSED the connection with auditd
 577 * will be reset.  This function may sleep so callers should not hold any locks
 578 * where this would cause a problem.
 579 */
 580static int auditd_send_unicast_skb(struct sk_buff *skb)
 581{
 582	int rc;
 583	u32 portid;
 584	struct net *net;
 585	struct sock *sk;
 
 586
 587	/* NOTE: we can't call netlink_unicast while in the RCU section so
 588	 *       take a reference to the network namespace and grab local
 589	 *       copies of the namespace, the sock, and the portid; the
 590	 *       namespace and sock aren't going to go away while we hold a
 591	 *       reference and if the portid does become invalid after the RCU
 592	 *       section netlink_unicast() should safely return an error */
 593
 594	rcu_read_lock();
 595	if (!auditd_conn.pid) {
 
 596		rcu_read_unlock();
 
 597		rc = -ECONNREFUSED;
 598		goto err;
 599	}
 600	net = auditd_conn.net;
 601	get_net(net);
 602	sk = audit_get_sk(net);
 603	portid = auditd_conn.portid;
 604	rcu_read_unlock();
 605
 606	rc = netlink_unicast(sk, skb, portid, 0);
 607	put_net(net);
 608	if (rc < 0)
 609		goto err;
 610
 611	return rc;
 612
 613err:
 614	if (rc == -ECONNREFUSED)
 615		auditd_reset();
 616	return rc;
 617}
 618
 619/**
 620 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 621 * @sk: the sending sock
 622 * @portid: the netlink destination
 623 * @queue: the skb queue to process
 624 * @retry_limit: limit on number of netlink unicast failures
 625 * @skb_hook: per-skb hook for additional processing
 626 * @err_hook: hook called if the skb fails the netlink unicast send
 627 *
 628 * Description:
 629 * Run through the given queue and attempt to send the audit records to auditd,
 630 * returns zero on success, negative values on failure.  It is up to the caller
 631 * to ensure that the @sk is valid for the duration of this function.
 632 *
 633 */
 634static int kauditd_send_queue(struct sock *sk, u32 portid,
 635			      struct sk_buff_head *queue,
 636			      unsigned int retry_limit,
 637			      void (*skb_hook)(struct sk_buff *skb),
 638			      void (*err_hook)(struct sk_buff *skb))
 639{
 640	int rc = 0;
 641	struct sk_buff *skb;
 642	static unsigned int failed = 0;
 
 643
 644	/* NOTE: kauditd_thread takes care of all our locking, we just use
 645	 *       the netlink info passed to us (e.g. sk and portid) */
 646
 647	while ((skb = skb_dequeue(queue))) {
 
 648		/* call the skb_hook for each skb we touch */
 649		if (skb_hook)
 650			(*skb_hook)(skb);
 651
 652		/* can we send to anyone via unicast? */
 653		if (!sk) {
 654			if (err_hook)
 655				(*err_hook)(skb);
 656			continue;
 657		}
 658
 
 659		/* grab an extra skb reference in case of error */
 660		skb_get(skb);
 661		rc = netlink_unicast(sk, skb, portid, 0);
 662		if (rc < 0) {
 663			/* fatal failure for our queue flush attempt? */
 664			if (++failed >= retry_limit ||
 665			    rc == -ECONNREFUSED || rc == -EPERM) {
 666				/* yes - error processing for the queue */
 667				sk = NULL;
 668				if (err_hook)
 669					(*err_hook)(skb);
 670				if (!skb_hook)
 671					goto out;
 672				/* keep processing with the skb_hook */
 673				continue;
 674			} else
 675				/* no - requeue to preserve ordering */
 676				skb_queue_head(queue, skb);
 677		} else {
 678			/* it worked - drop the extra reference and continue */
 679			consume_skb(skb);
 680			failed = 0;
 681		}
 682	}
 683
 684out:
 685	return (rc >= 0 ? 0 : rc);
 686}
 687
 688/*
 689 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 690 * @skb: audit record
 691 *
 692 * Description:
 693 * Write a multicast message to anyone listening in the initial network
 694 * namespace.  This function doesn't consume an skb as might be expected since
 695 * it has to copy it anyways.
 696 */
 697static void kauditd_send_multicast_skb(struct sk_buff *skb)
 698{
 699	struct sk_buff *copy;
 700	struct sock *sock = audit_get_sk(&init_net);
 701	struct nlmsghdr *nlh;
 702
 703	/* NOTE: we are not taking an additional reference for init_net since
 704	 *       we don't have to worry about it going away */
 705
 706	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 707		return;
 708
 709	/*
 710	 * The seemingly wasteful skb_copy() rather than bumping the refcount
 711	 * using skb_get() is necessary because non-standard mods are made to
 712	 * the skb by the original kaudit unicast socket send routine.  The
 713	 * existing auditd daemon assumes this breakage.  Fixing this would
 714	 * require co-ordinating a change in the established protocol between
 715	 * the kaudit kernel subsystem and the auditd userspace code.  There is
 716	 * no reason for new multicast clients to continue with this
 717	 * non-compliance.
 718	 */
 719	copy = skb_copy(skb, GFP_KERNEL);
 720	if (!copy)
 721		return;
 722	nlh = nlmsg_hdr(copy);
 723	nlh->nlmsg_len = skb->len;
 724
 725	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 726}
 727
 728/**
 729 * kauditd_thread - Worker thread to send audit records to userspace
 730 * @dummy: unused
 731 */
 732static int kauditd_thread(void *dummy)
 733{
 734	int rc;
 735	u32 portid = 0;
 736	struct net *net = NULL;
 737	struct sock *sk = NULL;
 
 738
 739#define UNICAST_RETRIES 5
 740
 741	set_freezable();
 742	while (!kthread_should_stop()) {
 743		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
 744		rcu_read_lock();
 745		if (!auditd_conn.pid) {
 
 746			rcu_read_unlock();
 747			goto main_queue;
 748		}
 749		net = auditd_conn.net;
 750		get_net(net);
 751		sk = audit_get_sk(net);
 752		portid = auditd_conn.portid;
 753		rcu_read_unlock();
 754
 755		/* attempt to flush the hold queue */
 756		rc = kauditd_send_queue(sk, portid,
 757					&audit_hold_queue, UNICAST_RETRIES,
 758					NULL, kauditd_rehold_skb);
 759		if (rc < 0) {
 760			sk = NULL;
 
 761			goto main_queue;
 762		}
 763
 764		/* attempt to flush the retry queue */
 765		rc = kauditd_send_queue(sk, portid,
 766					&audit_retry_queue, UNICAST_RETRIES,
 767					NULL, kauditd_hold_skb);
 768		if (rc < 0) {
 769			sk = NULL;
 
 770			goto main_queue;
 771		}
 772
 773main_queue:
 774		/* process the main queue - do the multicast send and attempt
 775		 * unicast, dump failed record sends to the retry queue; if
 776		 * sk == NULL due to previous failures we will just do the
 777		 * multicast send and move the record to the retry queue */
 778		kauditd_send_queue(sk, portid, &audit_queue, 1,
 779				   kauditd_send_multicast_skb,
 780				   kauditd_retry_skb);
 
 
 
 
 781
 782		/* drop our netns reference, no auditd sends past this line */
 783		if (net) {
 784			put_net(net);
 785			net = NULL;
 786		}
 787		sk = NULL;
 788
 789		/* we have processed all the queues so wake everyone */
 790		wake_up(&audit_backlog_wait);
 791
 792		/* NOTE: we want to wake up if there is anything on the queue,
 793		 *       regardless of if an auditd is connected, as we need to
 794		 *       do the multicast send and rotate records from the
 795		 *       main queue to the retry/hold queues */
 796		wait_event_freezable(kauditd_wait,
 797				     (skb_queue_len(&audit_queue) ? 1 : 0));
 798	}
 799
 800	return 0;
 801}
 802
 803int audit_send_list(void *_dest)
 804{
 805	struct audit_netlink_list *dest = _dest;
 806	struct sk_buff *skb;
 807	struct sock *sk = audit_get_sk(dest->net);
 808
 809	/* wait for parent to finish and send an ACK */
 810	mutex_lock(&audit_cmd_mutex);
 811	mutex_unlock(&audit_cmd_mutex);
 812
 813	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 814		netlink_unicast(sk, skb, dest->portid, 0);
 815
 816	put_net(dest->net);
 817	kfree(dest);
 818
 819	return 0;
 820}
 821
 822struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 823				 int multi, const void *payload, int size)
 824{
 825	struct sk_buff	*skb;
 826	struct nlmsghdr	*nlh;
 827	void		*data;
 828	int		flags = multi ? NLM_F_MULTI : 0;
 829	int		t     = done  ? NLMSG_DONE  : type;
 830
 831	skb = nlmsg_new(size, GFP_KERNEL);
 832	if (!skb)
 833		return NULL;
 834
 835	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
 836	if (!nlh)
 837		goto out_kfree_skb;
 838	data = nlmsg_data(nlh);
 839	memcpy(data, payload, size);
 840	return skb;
 841
 842out_kfree_skb:
 843	kfree_skb(skb);
 844	return NULL;
 845}
 846
 
 
 
 
 
 
 
 
 
 
 
 847static int audit_send_reply_thread(void *arg)
 848{
 849	struct audit_reply *reply = (struct audit_reply *)arg;
 850	struct sock *sk = audit_get_sk(reply->net);
 851
 852	mutex_lock(&audit_cmd_mutex);
 853	mutex_unlock(&audit_cmd_mutex);
 854
 855	/* Ignore failure. It'll only happen if the sender goes away,
 856	   because our timeout is set to infinite. */
 857	netlink_unicast(sk, reply->skb, reply->portid, 0);
 858	put_net(reply->net);
 859	kfree(reply);
 860	return 0;
 861}
 862
 863/**
 864 * audit_send_reply - send an audit reply message via netlink
 865 * @request_skb: skb of request we are replying to (used to target the reply)
 866 * @seq: sequence number
 867 * @type: audit message type
 868 * @done: done (last) flag
 869 * @multi: multi-part message flag
 870 * @payload: payload data
 871 * @size: payload size
 872 *
 873 * Allocates an skb, builds the netlink message, and sends it to the port id.
 874 * No failure notifications.
 875 */
 876static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 877			     int multi, const void *payload, int size)
 878{
 879	u32 portid = NETLINK_CB(request_skb).portid;
 880	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 881	struct sk_buff *skb;
 882	struct task_struct *tsk;
 883	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 884					    GFP_KERNEL);
 885
 
 886	if (!reply)
 887		return;
 888
 889	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 890	if (!skb)
 891		goto out;
 892
 893	reply->net = get_net(net);
 894	reply->portid = portid;
 895	reply->skb = skb;
 896
 897	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 898	if (!IS_ERR(tsk))
 899		return;
 900	kfree_skb(skb);
 901out:
 902	kfree(reply);
 
 
 903}
 904
 905/*
 906 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 907 * control messages.
 908 */
 909static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 910{
 911	int err = 0;
 912
 913	/* Only support initial user namespace for now. */
 914	/*
 915	 * We return ECONNREFUSED because it tricks userspace into thinking
 916	 * that audit was not configured into the kernel.  Lots of users
 917	 * configure their PAM stack (because that's what the distro does)
 918	 * to reject login if unable to send messages to audit.  If we return
 919	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 920	 * configured in and will let login proceed.  If we return EPERM
 921	 * userspace will reject all logins.  This should be removed when we
 922	 * support non init namespaces!!
 923	 */
 924	if (current_user_ns() != &init_user_ns)
 925		return -ECONNREFUSED;
 926
 927	switch (msg_type) {
 928	case AUDIT_LIST:
 929	case AUDIT_ADD:
 930	case AUDIT_DEL:
 931		return -EOPNOTSUPP;
 932	case AUDIT_GET:
 933	case AUDIT_SET:
 934	case AUDIT_GET_FEATURE:
 935	case AUDIT_SET_FEATURE:
 936	case AUDIT_LIST_RULES:
 937	case AUDIT_ADD_RULE:
 938	case AUDIT_DEL_RULE:
 939	case AUDIT_SIGNAL_INFO:
 940	case AUDIT_TTY_GET:
 941	case AUDIT_TTY_SET:
 942	case AUDIT_TRIM:
 943	case AUDIT_MAKE_EQUIV:
 944		/* Only support auditd and auditctl in initial pid namespace
 945		 * for now. */
 946		if (task_active_pid_ns(current) != &init_pid_ns)
 947			return -EPERM;
 948
 949		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 950			err = -EPERM;
 951		break;
 952	case AUDIT_USER:
 953	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 954	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 955		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 956			err = -EPERM;
 957		break;
 958	default:  /* bad msg */
 959		err = -EINVAL;
 960	}
 961
 962	return err;
 963}
 964
 965static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 
 966{
 967	uid_t uid = from_kuid(&init_user_ns, current_uid());
 968	pid_t pid = task_tgid_nr(current);
 969
 970	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 971		*ab = NULL;
 972		return;
 973	}
 974
 975	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 976	if (unlikely(!*ab))
 977		return;
 978	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 979	audit_log_session_info(*ab);
 980	audit_log_task_context(*ab);
 981}
 982
 983int is_audit_feature_set(int i)
 
 
 
 
 
 
 984{
 985	return af.features & AUDIT_FEATURE_TO_MASK(i);
 986}
 987
 988
 989static int audit_get_feature(struct sk_buff *skb)
 990{
 991	u32 seq;
 992
 993	seq = nlmsg_hdr(skb)->nlmsg_seq;
 994
 995	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
 996
 997	return 0;
 998}
 999
1000static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1001				     u32 old_lock, u32 new_lock, int res)
1002{
1003	struct audit_buffer *ab;
1004
1005	if (audit_enabled == AUDIT_OFF)
1006		return;
1007
1008	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1009	audit_log_task_info(ab, current);
 
 
1010	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1011			 audit_feature_names[which], !!old_feature, !!new_feature,
1012			 !!old_lock, !!new_lock, res);
1013	audit_log_end(ab);
1014}
1015
1016static int audit_set_feature(struct sk_buff *skb)
1017{
1018	struct audit_features *uaf;
1019	int i;
1020
1021	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1022	uaf = nlmsg_data(nlmsg_hdr(skb));
1023
1024	/* if there is ever a version 2 we should handle that here */
1025
1026	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1027		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1028		u32 old_feature, new_feature, old_lock, new_lock;
1029
1030		/* if we are not changing this feature, move along */
1031		if (!(feature & uaf->mask))
1032			continue;
1033
1034		old_feature = af.features & feature;
1035		new_feature = uaf->features & feature;
1036		new_lock = (uaf->lock | af.lock) & feature;
1037		old_lock = af.lock & feature;
1038
1039		/* are we changing a locked feature? */
1040		if (old_lock && (new_feature != old_feature)) {
1041			audit_log_feature_change(i, old_feature, new_feature,
1042						 old_lock, new_lock, 0);
1043			return -EPERM;
1044		}
1045	}
1046	/* nothing invalid, do the changes */
1047	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1048		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1049		u32 old_feature, new_feature, old_lock, new_lock;
1050
1051		/* if we are not changing this feature, move along */
1052		if (!(feature & uaf->mask))
1053			continue;
1054
1055		old_feature = af.features & feature;
1056		new_feature = uaf->features & feature;
1057		old_lock = af.lock & feature;
1058		new_lock = (uaf->lock | af.lock) & feature;
1059
1060		if (new_feature != old_feature)
1061			audit_log_feature_change(i, old_feature, new_feature,
1062						 old_lock, new_lock, 1);
1063
1064		if (new_feature)
1065			af.features |= feature;
1066		else
1067			af.features &= ~feature;
1068		af.lock |= new_lock;
1069	}
1070
1071	return 0;
1072}
1073
1074static int audit_replace(pid_t pid)
1075{
 
1076	struct sk_buff *skb;
1077
1078	skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, &pid, sizeof(pid));
 
1079	if (!skb)
1080		return -ENOMEM;
1081	return auditd_send_unicast_skb(skb);
1082}
1083
1084static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 
1085{
1086	u32			seq;
1087	void			*data;
 
1088	int			err;
1089	struct audit_buffer	*ab;
1090	u16			msg_type = nlh->nlmsg_type;
1091	struct audit_sig_info   *sig_data;
1092	char			*ctx = NULL;
1093	u32			len;
1094
1095	err = audit_netlink_ok(skb, msg_type);
1096	if (err)
1097		return err;
1098
1099	seq  = nlh->nlmsg_seq;
1100	data = nlmsg_data(nlh);
 
1101
1102	switch (msg_type) {
1103	case AUDIT_GET: {
1104		struct audit_status	s;
1105		memset(&s, 0, sizeof(s));
1106		s.enabled		= audit_enabled;
1107		s.failure		= audit_failure;
1108		rcu_read_lock();
1109		s.pid			= auditd_conn.pid;
1110		rcu_read_unlock();
1111		s.rate_limit		= audit_rate_limit;
1112		s.backlog_limit		= audit_backlog_limit;
1113		s.lost			= atomic_read(&audit_lost);
1114		s.backlog		= skb_queue_len(&audit_queue);
1115		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1116		s.backlog_wait_time	= audit_backlog_wait_time;
 
1117		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1118		break;
1119	}
1120	case AUDIT_SET: {
1121		struct audit_status	s;
1122		memset(&s, 0, sizeof(s));
1123		/* guard against past and future API changes */
1124		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1125		if (s.mask & AUDIT_STATUS_ENABLED) {
1126			err = audit_set_enabled(s.enabled);
1127			if (err < 0)
1128				return err;
1129		}
1130		if (s.mask & AUDIT_STATUS_FAILURE) {
1131			err = audit_set_failure(s.failure);
1132			if (err < 0)
1133				return err;
1134		}
1135		if (s.mask & AUDIT_STATUS_PID) {
1136			/* NOTE: we are using task_tgid_vnr() below because
1137			 *       the s.pid value is relative to the namespace
1138			 *       of the caller; at present this doesn't matter
1139			 *       much since you can really only run auditd
1140			 *       from the initial pid namespace, but something
1141			 *       to keep in mind if this changes */
1142			int new_pid = s.pid;
1143			pid_t auditd_pid;
1144			pid_t requesting_pid = task_tgid_vnr(current);
 
 
 
 
 
1145
1146			/* test the auditd connection */
1147			audit_replace(requesting_pid);
1148
1149			rcu_read_lock();
1150			auditd_pid = auditd_conn.pid;
1151			/* only the current auditd can unregister itself */
1152			if ((!new_pid) && (requesting_pid != auditd_pid)) {
1153				rcu_read_unlock();
1154				audit_log_config_change("audit_pid", new_pid,
1155							auditd_pid, 0);
1156				return -EACCES;
1157			}
1158			/* replacing a healthy auditd is not allowed */
1159			if (auditd_pid && new_pid) {
1160				rcu_read_unlock();
1161				audit_log_config_change("audit_pid", new_pid,
1162							auditd_pid, 0);
1163				return -EEXIST;
1164			}
1165			rcu_read_unlock();
1166
1167			if (audit_enabled != AUDIT_OFF)
1168				audit_log_config_change("audit_pid", new_pid,
1169							auditd_pid, 1);
1170
1171			if (new_pid) {
1172				/* register a new auditd connection */
1173				auditd_set(new_pid,
1174					   NETLINK_CB(skb).portid,
1175					   sock_net(NETLINK_CB(skb).sk));
 
 
 
 
 
 
 
 
 
1176				/* try to process any backlog */
1177				wake_up_interruptible(&kauditd_wait);
1178			} else
 
 
 
 
 
1179				/* unregister the auditd connection */
1180				auditd_reset();
 
1181		}
1182		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1183			err = audit_set_rate_limit(s.rate_limit);
1184			if (err < 0)
1185				return err;
1186		}
1187		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1188			err = audit_set_backlog_limit(s.backlog_limit);
1189			if (err < 0)
1190				return err;
1191		}
1192		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1193			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1194				return -EINVAL;
1195			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1196				return -EINVAL;
1197			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1198			if (err < 0)
1199				return err;
1200		}
 
 
 
 
 
 
 
 
 
 
 
 
1201		break;
1202	}
1203	case AUDIT_GET_FEATURE:
1204		err = audit_get_feature(skb);
1205		if (err)
1206			return err;
1207		break;
1208	case AUDIT_SET_FEATURE:
1209		err = audit_set_feature(skb);
 
 
1210		if (err)
1211			return err;
1212		break;
1213	case AUDIT_USER:
1214	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1215	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1216		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1217			return 0;
 
 
 
1218
1219		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1220		if (err == 1) { /* match or error */
 
 
1221			err = 0;
1222			if (msg_type == AUDIT_USER_TTY) {
1223				err = tty_audit_push();
1224				if (err)
1225					break;
1226			}
1227			audit_log_common_recv_msg(&ab, msg_type);
1228			if (msg_type != AUDIT_USER_TTY)
 
 
1229				audit_log_format(ab, " msg='%.*s'",
1230						 AUDIT_MESSAGE_TEXT_MAX,
1231						 (char *)data);
1232			else {
1233				int size;
1234
1235				audit_log_format(ab, " data=");
1236				size = nlmsg_len(nlh);
1237				if (size > 0 &&
1238				    ((unsigned char *)data)[size - 1] == '\0')
1239					size--;
1240				audit_log_n_untrustedstring(ab, data, size);
1241			}
1242			audit_set_portid(ab, NETLINK_CB(skb).portid);
1243			audit_log_end(ab);
1244		}
1245		break;
1246	case AUDIT_ADD_RULE:
1247	case AUDIT_DEL_RULE:
1248		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1249			return -EINVAL;
1250		if (audit_enabled == AUDIT_LOCKED) {
1251			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1252			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 
 
 
 
1253			audit_log_end(ab);
1254			return -EPERM;
1255		}
1256		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
1257					   seq, data, nlmsg_len(nlh));
1258		break;
1259	case AUDIT_LIST_RULES:
1260		err = audit_list_rules_send(skb, seq);
1261		break;
1262	case AUDIT_TRIM:
1263		audit_trim_trees();
1264		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 
1265		audit_log_format(ab, " op=trim res=1");
1266		audit_log_end(ab);
1267		break;
1268	case AUDIT_MAKE_EQUIV: {
1269		void *bufp = data;
1270		u32 sizes[2];
1271		size_t msglen = nlmsg_len(nlh);
1272		char *old, *new;
1273
1274		err = -EINVAL;
1275		if (msglen < 2 * sizeof(u32))
1276			break;
1277		memcpy(sizes, bufp, 2 * sizeof(u32));
1278		bufp += 2 * sizeof(u32);
1279		msglen -= 2 * sizeof(u32);
1280		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1281		if (IS_ERR(old)) {
1282			err = PTR_ERR(old);
1283			break;
1284		}
1285		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1286		if (IS_ERR(new)) {
1287			err = PTR_ERR(new);
1288			kfree(old);
1289			break;
1290		}
1291		/* OK, here comes... */
1292		err = audit_tag_tree(old, new);
1293
1294		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1295
1296		audit_log_format(ab, " op=make_equiv old=");
1297		audit_log_untrustedstring(ab, old);
1298		audit_log_format(ab, " new=");
1299		audit_log_untrustedstring(ab, new);
1300		audit_log_format(ab, " res=%d", !err);
1301		audit_log_end(ab);
1302		kfree(old);
1303		kfree(new);
1304		break;
1305	}
1306	case AUDIT_SIGNAL_INFO:
1307		len = 0;
1308		if (audit_sig_sid) {
1309			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1310			if (err)
1311				return err;
1312		}
1313		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1314		if (!sig_data) {
1315			if (audit_sig_sid)
1316				security_release_secctx(ctx, len);
1317			return -ENOMEM;
1318		}
1319		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1320		sig_data->pid = audit_sig_pid;
1321		if (audit_sig_sid) {
1322			memcpy(sig_data->ctx, ctx, len);
1323			security_release_secctx(ctx, len);
1324		}
1325		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1326				 sig_data, sizeof(*sig_data) + len);
1327		kfree(sig_data);
1328		break;
1329	case AUDIT_TTY_GET: {
1330		struct audit_tty_status s;
1331		unsigned int t;
1332
1333		t = READ_ONCE(current->signal->audit_tty);
1334		s.enabled = t & AUDIT_TTY_ENABLE;
1335		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1336
1337		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1338		break;
1339	}
1340	case AUDIT_TTY_SET: {
1341		struct audit_tty_status s, old;
1342		struct audit_buffer	*ab;
1343		unsigned int t;
1344
1345		memset(&s, 0, sizeof(s));
1346		/* guard against past and future API changes */
1347		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1348		/* check if new data is valid */
1349		if ((s.enabled != 0 && s.enabled != 1) ||
1350		    (s.log_passwd != 0 && s.log_passwd != 1))
1351			err = -EINVAL;
1352
1353		if (err)
1354			t = READ_ONCE(current->signal->audit_tty);
1355		else {
1356			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1357			t = xchg(&current->signal->audit_tty, t);
1358		}
1359		old.enabled = t & AUDIT_TTY_ENABLE;
1360		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1361
1362		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 
1363		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1364				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1365				 old.enabled, s.enabled, old.log_passwd,
1366				 s.log_passwd, !err);
1367		audit_log_end(ab);
1368		break;
1369	}
1370	default:
1371		err = -EINVAL;
1372		break;
1373	}
1374
1375	return err < 0 ? err : 0;
1376}
1377
1378/*
1379 * Get message from skb.  Each message is processed by audit_receive_msg.
1380 * Malformed skbs with wrong length are discarded silently.
 
 
 
1381 */
1382static void audit_receive_skb(struct sk_buff *skb)
1383{
1384	struct nlmsghdr *nlh;
 
1385	/*
1386	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1387	 * if the nlmsg_len was not aligned
1388	 */
1389	int len;
1390	int err;
1391
1392	nlh = nlmsg_hdr(skb);
1393	len = skb->len;
1394
 
1395	while (nlmsg_ok(nlh, len)) {
1396		err = audit_receive_msg(skb, nlh);
1397		/* if err or if this message says it wants a response */
1398		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1399			netlink_ack(skb, nlh, err);
 
 
 
1400
1401		nlh = nlmsg_next(nlh, &len);
1402	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403}
1404
1405/* Receive messages from netlink socket. */
1406static void audit_receive(struct sk_buff  *skb)
1407{
1408	mutex_lock(&audit_cmd_mutex);
1409	audit_receive_skb(skb);
1410	mutex_unlock(&audit_cmd_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1411}
1412
1413/* Run custom bind function on netlink socket group connect or bind requests. */
1414static int audit_bind(struct net *net, int group)
1415{
 
 
1416	if (!capable(CAP_AUDIT_READ))
1417		return -EPERM;
 
 
 
1418
1419	return 0;
 
 
1420}
1421
1422static int __net_init audit_net_init(struct net *net)
1423{
1424	struct netlink_kernel_cfg cfg = {
1425		.input	= audit_receive,
1426		.bind	= audit_bind,
 
1427		.flags	= NL_CFG_F_NONROOT_RECV,
1428		.groups	= AUDIT_NLGRP_MAX,
1429	};
1430
1431	struct audit_net *aunet = net_generic(net, audit_net_id);
1432
1433	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1434	if (aunet->sk == NULL) {
1435		audit_panic("cannot initialize netlink socket in namespace");
1436		return -ENOMEM;
1437	}
1438	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 
1439
1440	return 0;
1441}
1442
1443static void __net_exit audit_net_exit(struct net *net)
1444{
1445	struct audit_net *aunet = net_generic(net, audit_net_id);
1446
1447	rcu_read_lock();
1448	if (net == auditd_conn.net)
1449		auditd_reset();
1450	rcu_read_unlock();
 
1451
1452	netlink_kernel_release(aunet->sk);
1453}
1454
1455static struct pernet_operations audit_net_ops __net_initdata = {
1456	.init = audit_net_init,
1457	.exit = audit_net_exit,
1458	.id = &audit_net_id,
1459	.size = sizeof(struct audit_net),
1460};
1461
1462/* Initialize audit support at boot time. */
1463static int __init audit_init(void)
1464{
1465	int i;
1466
1467	if (audit_initialized == AUDIT_DISABLED)
1468		return 0;
1469
1470	memset(&auditd_conn, 0, sizeof(auditd_conn));
1471	spin_lock_init(&auditd_conn.lock);
 
1472
1473	skb_queue_head_init(&audit_queue);
1474	skb_queue_head_init(&audit_retry_queue);
1475	skb_queue_head_init(&audit_hold_queue);
1476
1477	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1478		INIT_LIST_HEAD(&audit_inode_hash[i]);
1479
 
 
 
1480	pr_info("initializing netlink subsys (%s)\n",
1481		audit_default ? "enabled" : "disabled");
1482	register_pernet_subsys(&audit_net_ops);
1483
1484	audit_initialized = AUDIT_INITIALIZED;
1485	audit_enabled = audit_default;
1486	audit_ever_enabled |= !!audit_default;
1487
1488	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1489	if (IS_ERR(kauditd_task)) {
1490		int err = PTR_ERR(kauditd_task);
1491		panic("audit: failed to start the kauditd thread (%d)\n", err);
1492	}
1493
1494	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
 
 
1495
1496	return 0;
1497}
1498__initcall(audit_init);
1499
1500/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
 
 
 
1501static int __init audit_enable(char *str)
1502{
1503	audit_default = !!simple_strtol(str, NULL, 0);
1504	if (!audit_default)
 
 
 
 
 
 
 
 
1505		audit_initialized = AUDIT_DISABLED;
 
 
 
1506
1507	pr_info("%s\n", audit_default ?
1508		"enabled (after initialization)" : "disabled (until reboot)");
1509
1510	return 1;
1511}
1512__setup("audit=", audit_enable);
1513
1514/* Process kernel command-line parameter at boot time.
1515 * audit_backlog_limit=<n> */
1516static int __init audit_backlog_limit_set(char *str)
1517{
1518	u32 audit_backlog_limit_arg;
1519
1520	pr_info("audit_backlog_limit: ");
1521	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1522		pr_cont("using default of %u, unable to parse %s\n",
1523			audit_backlog_limit, str);
1524		return 1;
1525	}
1526
1527	audit_backlog_limit = audit_backlog_limit_arg;
1528	pr_cont("%d\n", audit_backlog_limit);
1529
1530	return 1;
1531}
1532__setup("audit_backlog_limit=", audit_backlog_limit_set);
1533
1534static void audit_buffer_free(struct audit_buffer *ab)
1535{
1536	unsigned long flags;
1537
1538	if (!ab)
1539		return;
1540
1541	kfree_skb(ab->skb);
1542	spin_lock_irqsave(&audit_freelist_lock, flags);
1543	if (audit_freelist_count > AUDIT_MAXFREE)
1544		kfree(ab);
1545	else {
1546		audit_freelist_count++;
1547		list_add(&ab->list, &audit_freelist);
1548	}
1549	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1550}
1551
1552static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1553						gfp_t gfp_mask, int type)
1554{
1555	unsigned long flags;
1556	struct audit_buffer *ab = NULL;
1557	struct nlmsghdr *nlh;
1558
1559	spin_lock_irqsave(&audit_freelist_lock, flags);
1560	if (!list_empty(&audit_freelist)) {
1561		ab = list_entry(audit_freelist.next,
1562				struct audit_buffer, list);
1563		list_del(&ab->list);
1564		--audit_freelist_count;
1565	}
1566	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1567
1568	if (!ab) {
1569		ab = kmalloc(sizeof(*ab), gfp_mask);
1570		if (!ab)
1571			goto err;
1572	}
1573
1574	ab->ctx = ctx;
1575	ab->gfp_mask = gfp_mask;
 
1576
1577	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1578	if (!ab->skb)
1579		goto err;
 
 
1580
1581	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1582	if (!nlh)
1583		goto out_kfree_skb;
1584
1585	return ab;
1586
1587out_kfree_skb:
1588	kfree_skb(ab->skb);
1589	ab->skb = NULL;
1590err:
1591	audit_buffer_free(ab);
1592	return NULL;
1593}
1594
1595/**
1596 * audit_serial - compute a serial number for the audit record
1597 *
1598 * Compute a serial number for the audit record.  Audit records are
1599 * written to user-space as soon as they are generated, so a complete
1600 * audit record may be written in several pieces.  The timestamp of the
1601 * record and this serial number are used by the user-space tools to
1602 * determine which pieces belong to the same audit record.  The
1603 * (timestamp,serial) tuple is unique for each syscall and is live from
1604 * syscall entry to syscall exit.
1605 *
1606 * NOTE: Another possibility is to store the formatted records off the
1607 * audit context (for those records that have a context), and emit them
1608 * all at syscall exit.  However, this could delay the reporting of
1609 * significant errors until syscall exit (or never, if the system
1610 * halts).
1611 */
1612unsigned int audit_serial(void)
1613{
1614	static atomic_t serial = ATOMIC_INIT(0);
1615
1616	return atomic_add_return(1, &serial);
1617}
1618
1619static inline void audit_get_stamp(struct audit_context *ctx,
1620				   struct timespec *t, unsigned int *serial)
1621{
1622	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1623		*t = CURRENT_TIME;
1624		*serial = audit_serial();
1625	}
1626}
1627
1628/**
1629 * audit_log_start - obtain an audit buffer
1630 * @ctx: audit_context (may be NULL)
1631 * @gfp_mask: type of allocation
1632 * @type: audit message type
1633 *
1634 * Returns audit_buffer pointer on success or NULL on error.
1635 *
1636 * Obtain an audit buffer.  This routine does locking to obtain the
1637 * audit buffer, but then no locking is required for calls to
1638 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1639 * syscall, then the syscall is marked as auditable and an audit record
1640 * will be written at syscall exit.  If there is no associated task, then
1641 * task context (ctx) should be NULL.
1642 */
1643struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1644				     int type)
1645{
1646	struct audit_buffer *ab;
1647	struct timespec t;
1648	unsigned int uninitialized_var(serial);
1649
1650	if (audit_initialized != AUDIT_INITIALIZED)
1651		return NULL;
1652
1653	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1654		return NULL;
1655
1656	/* NOTE: don't ever fail/sleep on these two conditions:
1657	 * 1. auditd generated record - since we need auditd to drain the
1658	 *    queue; also, when we are checking for auditd, compare PIDs using
1659	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1660	 *    using a PID anchored in the caller's namespace
1661	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1662	 *    while holding the mutex */
1663	if (!(auditd_test_task(current) ||
1664	      (current == __mutex_owner(&audit_cmd_mutex)))) {
 
1665		long stime = audit_backlog_wait_time;
1666
1667		while (audit_backlog_limit &&
1668		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1669			/* wake kauditd to try and flush the queue */
1670			wake_up_interruptible(&kauditd_wait);
1671
1672			/* sleep if we are allowed and we haven't exhausted our
1673			 * backlog wait limit */
1674			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
 
 
1675				DECLARE_WAITQUEUE(wait, current);
1676
1677				add_wait_queue_exclusive(&audit_backlog_wait,
1678							 &wait);
1679				set_current_state(TASK_UNINTERRUPTIBLE);
1680				stime = schedule_timeout(stime);
 
1681				remove_wait_queue(&audit_backlog_wait, &wait);
1682			} else {
1683				if (audit_rate_check() && printk_ratelimit())
1684					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1685						skb_queue_len(&audit_queue),
1686						audit_backlog_limit);
1687				audit_log_lost("backlog limit exceeded");
1688				return NULL;
1689			}
1690		}
1691	}
1692
1693	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1694	if (!ab) {
1695		audit_log_lost("out of memory in audit_log_start");
1696		return NULL;
1697	}
1698
1699	audit_get_stamp(ab->ctx, &t, &serial);
1700	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1701			 t.tv_sec, t.tv_nsec/1000000, serial);
 
 
 
1702
1703	return ab;
1704}
1705
1706/**
1707 * audit_expand - expand skb in the audit buffer
1708 * @ab: audit_buffer
1709 * @extra: space to add at tail of the skb
1710 *
1711 * Returns 0 (no space) on failed expansion, or available space if
1712 * successful.
1713 */
1714static inline int audit_expand(struct audit_buffer *ab, int extra)
1715{
1716	struct sk_buff *skb = ab->skb;
1717	int oldtail = skb_tailroom(skb);
1718	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1719	int newtail = skb_tailroom(skb);
1720
1721	if (ret < 0) {
1722		audit_log_lost("out of memory in audit_expand");
1723		return 0;
1724	}
1725
1726	skb->truesize += newtail - oldtail;
1727	return newtail;
1728}
1729
1730/*
1731 * Format an audit message into the audit buffer.  If there isn't enough
1732 * room in the audit buffer, more room will be allocated and vsnprint
1733 * will be called a second time.  Currently, we assume that a printk
1734 * can't format message larger than 1024 bytes, so we don't either.
1735 */
1736static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1737			      va_list args)
1738{
1739	int len, avail;
1740	struct sk_buff *skb;
1741	va_list args2;
1742
1743	if (!ab)
1744		return;
1745
1746	BUG_ON(!ab->skb);
1747	skb = ab->skb;
1748	avail = skb_tailroom(skb);
1749	if (avail == 0) {
1750		avail = audit_expand(ab, AUDIT_BUFSIZ);
1751		if (!avail)
1752			goto out;
1753	}
1754	va_copy(args2, args);
1755	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1756	if (len >= avail) {
1757		/* The printk buffer is 1024 bytes long, so if we get
1758		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1759		 * log everything that printk could have logged. */
1760		avail = audit_expand(ab,
1761			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1762		if (!avail)
1763			goto out_va_end;
1764		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1765	}
1766	if (len > 0)
1767		skb_put(skb, len);
1768out_va_end:
1769	va_end(args2);
1770out:
1771	return;
1772}
1773
1774/**
1775 * audit_log_format - format a message into the audit buffer.
1776 * @ab: audit_buffer
1777 * @fmt: format string
1778 * @...: optional parameters matching @fmt string
1779 *
1780 * All the work is done in audit_log_vformat.
1781 */
1782void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1783{
1784	va_list args;
1785
1786	if (!ab)
1787		return;
1788	va_start(args, fmt);
1789	audit_log_vformat(ab, fmt, args);
1790	va_end(args);
1791}
1792
1793/**
1794 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1795 * @ab: the audit_buffer
1796 * @buf: buffer to convert to hex
1797 * @len: length of @buf to be converted
1798 *
1799 * No return value; failure to expand is silently ignored.
1800 *
1801 * This function will take the passed buf and convert it into a string of
1802 * ascii hex digits. The new string is placed onto the skb.
1803 */
1804void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1805		size_t len)
1806{
1807	int i, avail, new_len;
1808	unsigned char *ptr;
1809	struct sk_buff *skb;
1810
1811	if (!ab)
1812		return;
1813
1814	BUG_ON(!ab->skb);
1815	skb = ab->skb;
1816	avail = skb_tailroom(skb);
1817	new_len = len<<1;
1818	if (new_len >= avail) {
1819		/* Round the buffer request up to the next multiple */
1820		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1821		avail = audit_expand(ab, new_len);
1822		if (!avail)
1823			return;
1824	}
1825
1826	ptr = skb_tail_pointer(skb);
1827	for (i = 0; i < len; i++)
1828		ptr = hex_byte_pack_upper(ptr, buf[i]);
1829	*ptr = 0;
1830	skb_put(skb, len << 1); /* new string is twice the old string */
1831}
1832
1833/*
1834 * Format a string of no more than slen characters into the audit buffer,
1835 * enclosed in quote marks.
1836 */
1837void audit_log_n_string(struct audit_buffer *ab, const char *string,
1838			size_t slen)
1839{
1840	int avail, new_len;
1841	unsigned char *ptr;
1842	struct sk_buff *skb;
1843
1844	if (!ab)
1845		return;
1846
1847	BUG_ON(!ab->skb);
1848	skb = ab->skb;
1849	avail = skb_tailroom(skb);
1850	new_len = slen + 3;	/* enclosing quotes + null terminator */
1851	if (new_len > avail) {
1852		avail = audit_expand(ab, new_len);
1853		if (!avail)
1854			return;
1855	}
1856	ptr = skb_tail_pointer(skb);
1857	*ptr++ = '"';
1858	memcpy(ptr, string, slen);
1859	ptr += slen;
1860	*ptr++ = '"';
1861	*ptr = 0;
1862	skb_put(skb, slen + 2);	/* don't include null terminator */
1863}
1864
1865/**
1866 * audit_string_contains_control - does a string need to be logged in hex
1867 * @string: string to be checked
1868 * @len: max length of the string to check
1869 */
1870bool audit_string_contains_control(const char *string, size_t len)
1871{
1872	const unsigned char *p;
1873	for (p = string; p < (const unsigned char *)string + len; p++) {
1874		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1875			return true;
1876	}
1877	return false;
1878}
1879
1880/**
1881 * audit_log_n_untrustedstring - log a string that may contain random characters
1882 * @ab: audit_buffer
1883 * @len: length of string (not including trailing null)
1884 * @string: string to be logged
1885 *
1886 * This code will escape a string that is passed to it if the string
1887 * contains a control character, unprintable character, double quote mark,
1888 * or a space. Unescaped strings will start and end with a double quote mark.
1889 * Strings that are escaped are printed in hex (2 digits per char).
1890 *
1891 * The caller specifies the number of characters in the string to log, which may
1892 * or may not be the entire string.
1893 */
1894void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1895				 size_t len)
1896{
1897	if (audit_string_contains_control(string, len))
1898		audit_log_n_hex(ab, string, len);
1899	else
1900		audit_log_n_string(ab, string, len);
1901}
1902
1903/**
1904 * audit_log_untrustedstring - log a string that may contain random characters
1905 * @ab: audit_buffer
1906 * @string: string to be logged
1907 *
1908 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1909 * determine string length.
1910 */
1911void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1912{
1913	audit_log_n_untrustedstring(ab, string, strlen(string));
1914}
1915
1916/* This is a helper-function to print the escaped d_path */
1917void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1918		      const struct path *path)
1919{
1920	char *p, *pathname;
1921
1922	if (prefix)
1923		audit_log_format(ab, "%s", prefix);
1924
1925	/* We will allow 11 spaces for ' (deleted)' to be appended */
1926	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1927	if (!pathname) {
1928		audit_log_string(ab, "<no_memory>");
1929		return;
1930	}
1931	p = d_path(path, pathname, PATH_MAX+11);
1932	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1933		/* FIXME: can we save some information here? */
1934		audit_log_string(ab, "<too_long>");
1935	} else
1936		audit_log_untrustedstring(ab, p);
1937	kfree(pathname);
1938}
1939
1940void audit_log_session_info(struct audit_buffer *ab)
1941{
1942	unsigned int sessionid = audit_get_sessionid(current);
1943	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1944
1945	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1946}
1947
1948void audit_log_key(struct audit_buffer *ab, char *key)
1949{
1950	audit_log_format(ab, " key=");
1951	if (key)
1952		audit_log_untrustedstring(ab, key);
1953	else
1954		audit_log_format(ab, "(null)");
1955}
1956
1957void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1958{
1959	int i;
1960
1961	audit_log_format(ab, " %s=", prefix);
1962	CAP_FOR_EACH_U32(i) {
1963		audit_log_format(ab, "%08x",
1964				 cap->cap[CAP_LAST_U32 - i]);
1965	}
1966}
1967
1968static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1969{
1970	kernel_cap_t *perm = &name->fcap.permitted;
1971	kernel_cap_t *inh = &name->fcap.inheritable;
1972	int log = 0;
1973
1974	if (!cap_isclear(*perm)) {
1975		audit_log_cap(ab, "cap_fp", perm);
1976		log = 1;
1977	}
1978	if (!cap_isclear(*inh)) {
1979		audit_log_cap(ab, "cap_fi", inh);
1980		log = 1;
1981	}
1982
1983	if (log)
1984		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1985				 name->fcap.fE, name->fcap_ver);
1986}
1987
1988static inline int audit_copy_fcaps(struct audit_names *name,
1989				   const struct dentry *dentry)
1990{
1991	struct cpu_vfs_cap_data caps;
1992	int rc;
1993
1994	if (!dentry)
1995		return 0;
1996
1997	rc = get_vfs_caps_from_disk(dentry, &caps);
1998	if (rc)
1999		return rc;
2000
2001	name->fcap.permitted = caps.permitted;
2002	name->fcap.inheritable = caps.inheritable;
2003	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2004	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2005				VFS_CAP_REVISION_SHIFT;
2006
2007	return 0;
2008}
2009
2010/* Copy inode data into an audit_names. */
2011void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2012		      struct inode *inode)
2013{
2014	name->ino   = inode->i_ino;
2015	name->dev   = inode->i_sb->s_dev;
2016	name->mode  = inode->i_mode;
2017	name->uid   = inode->i_uid;
2018	name->gid   = inode->i_gid;
2019	name->rdev  = inode->i_rdev;
2020	security_inode_getsecid(inode, &name->osid);
2021	audit_copy_fcaps(name, dentry);
2022}
2023
2024/**
2025 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2026 * @context: audit_context for the task
2027 * @n: audit_names structure with reportable details
2028 * @path: optional path to report instead of audit_names->name
2029 * @record_num: record number to report when handling a list of names
2030 * @call_panic: optional pointer to int that will be updated if secid fails
2031 */
2032void audit_log_name(struct audit_context *context, struct audit_names *n,
2033		    const struct path *path, int record_num, int *call_panic)
2034{
2035	struct audit_buffer *ab;
2036	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2037	if (!ab)
2038		return;
2039
2040	audit_log_format(ab, "item=%d", record_num);
2041
2042	if (path)
2043		audit_log_d_path(ab, " name=", path);
2044	else if (n->name) {
2045		switch (n->name_len) {
2046		case AUDIT_NAME_FULL:
2047			/* log the full path */
2048			audit_log_format(ab, " name=");
2049			audit_log_untrustedstring(ab, n->name->name);
2050			break;
2051		case 0:
2052			/* name was specified as a relative path and the
2053			 * directory component is the cwd */
2054			audit_log_d_path(ab, " name=", &context->pwd);
2055			break;
2056		default:
2057			/* log the name's directory component */
2058			audit_log_format(ab, " name=");
2059			audit_log_n_untrustedstring(ab, n->name->name,
2060						    n->name_len);
2061		}
2062	} else
2063		audit_log_format(ab, " name=(null)");
2064
2065	if (n->ino != AUDIT_INO_UNSET)
2066		audit_log_format(ab, " inode=%lu"
2067				 " dev=%02x:%02x mode=%#ho"
2068				 " ouid=%u ogid=%u rdev=%02x:%02x",
2069				 n->ino,
2070				 MAJOR(n->dev),
2071				 MINOR(n->dev),
2072				 n->mode,
2073				 from_kuid(&init_user_ns, n->uid),
2074				 from_kgid(&init_user_ns, n->gid),
2075				 MAJOR(n->rdev),
2076				 MINOR(n->rdev));
2077	if (n->osid != 0) {
2078		char *ctx = NULL;
2079		u32 len;
2080		if (security_secid_to_secctx(
2081			n->osid, &ctx, &len)) {
2082			audit_log_format(ab, " osid=%u", n->osid);
2083			if (call_panic)
2084				*call_panic = 2;
2085		} else {
2086			audit_log_format(ab, " obj=%s", ctx);
2087			security_release_secctx(ctx, len);
2088		}
2089	}
2090
2091	/* log the audit_names record type */
2092	audit_log_format(ab, " nametype=");
2093	switch(n->type) {
2094	case AUDIT_TYPE_NORMAL:
2095		audit_log_format(ab, "NORMAL");
2096		break;
2097	case AUDIT_TYPE_PARENT:
2098		audit_log_format(ab, "PARENT");
2099		break;
2100	case AUDIT_TYPE_CHILD_DELETE:
2101		audit_log_format(ab, "DELETE");
2102		break;
2103	case AUDIT_TYPE_CHILD_CREATE:
2104		audit_log_format(ab, "CREATE");
2105		break;
2106	default:
2107		audit_log_format(ab, "UNKNOWN");
2108		break;
2109	}
2110
2111	audit_log_fcaps(ab, n);
2112	audit_log_end(ab);
2113}
2114
2115int audit_log_task_context(struct audit_buffer *ab)
2116{
2117	char *ctx = NULL;
2118	unsigned len;
2119	int error;
2120	u32 sid;
2121
2122	security_task_getsecid(current, &sid);
2123	if (!sid)
2124		return 0;
2125
2126	error = security_secid_to_secctx(sid, &ctx, &len);
2127	if (error) {
2128		if (error != -EINVAL)
2129			goto error_path;
2130		return 0;
2131	}
2132
2133	audit_log_format(ab, " subj=%s", ctx);
2134	security_release_secctx(ctx, len);
2135	return 0;
2136
2137error_path:
2138	audit_panic("error in audit_log_task_context");
2139	return error;
2140}
2141EXPORT_SYMBOL(audit_log_task_context);
2142
2143void audit_log_d_path_exe(struct audit_buffer *ab,
2144			  struct mm_struct *mm)
2145{
2146	struct file *exe_file;
2147
2148	if (!mm)
2149		goto out_null;
2150
2151	exe_file = get_mm_exe_file(mm);
2152	if (!exe_file)
2153		goto out_null;
2154
2155	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2156	fput(exe_file);
2157	return;
2158out_null:
2159	audit_log_format(ab, " exe=(null)");
2160}
2161
2162struct tty_struct *audit_get_tty(struct task_struct *tsk)
2163{
2164	struct tty_struct *tty = NULL;
2165	unsigned long flags;
2166
2167	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2168	if (tsk->signal)
2169		tty = tty_kref_get(tsk->signal->tty);
2170	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2171	return tty;
2172}
2173
2174void audit_put_tty(struct tty_struct *tty)
2175{
2176	tty_kref_put(tty);
2177}
2178
2179void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2180{
2181	const struct cred *cred;
2182	char comm[sizeof(tsk->comm)];
2183	struct tty_struct *tty;
2184
2185	if (!ab)
2186		return;
2187
2188	/* tsk == current */
2189	cred = current_cred();
2190	tty = audit_get_tty(tsk);
2191	audit_log_format(ab,
2192			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2193			 " euid=%u suid=%u fsuid=%u"
2194			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2195			 task_ppid_nr(tsk),
2196			 task_tgid_nr(tsk),
2197			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2198			 from_kuid(&init_user_ns, cred->uid),
2199			 from_kgid(&init_user_ns, cred->gid),
2200			 from_kuid(&init_user_ns, cred->euid),
2201			 from_kuid(&init_user_ns, cred->suid),
2202			 from_kuid(&init_user_ns, cred->fsuid),
2203			 from_kgid(&init_user_ns, cred->egid),
2204			 from_kgid(&init_user_ns, cred->sgid),
2205			 from_kgid(&init_user_ns, cred->fsgid),
2206			 tty ? tty_name(tty) : "(none)",
2207			 audit_get_sessionid(tsk));
2208	audit_put_tty(tty);
2209	audit_log_format(ab, " comm=");
2210	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2211	audit_log_d_path_exe(ab, tsk->mm);
2212	audit_log_task_context(ab);
2213}
2214EXPORT_SYMBOL(audit_log_task_info);
2215
2216/**
2217 * audit_log_link_denied - report a link restriction denial
2218 * @operation: specific link operation
2219 * @link: the path that triggered the restriction
2220 */
2221void audit_log_link_denied(const char *operation, const struct path *link)
2222{
2223	struct audit_buffer *ab;
2224	struct audit_names *name;
2225
2226	name = kzalloc(sizeof(*name), GFP_NOFS);
2227	if (!name)
2228		return;
2229
2230	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2231	ab = audit_log_start(current->audit_context, GFP_KERNEL,
2232			     AUDIT_ANOM_LINK);
2233	if (!ab)
2234		goto out;
2235	audit_log_format(ab, "op=%s", operation);
2236	audit_log_task_info(ab, current);
2237	audit_log_format(ab, " res=0");
2238	audit_log_end(ab);
 
2239
2240	/* Generate AUDIT_PATH record with object. */
2241	name->type = AUDIT_TYPE_NORMAL;
2242	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2243	audit_log_name(current->audit_context, name, link, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244out:
2245	kfree(name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246}
2247
2248/**
2249 * audit_log_end - end one audit record
2250 * @ab: the audit_buffer
2251 *
2252 * We can not do a netlink send inside an irq context because it blocks (last
2253 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2254 * queue and a tasklet is scheduled to remove them from the queue outside the
2255 * irq context.  May be called in any context.
2256 */
2257void audit_log_end(struct audit_buffer *ab)
2258{
2259	struct sk_buff *skb;
2260	struct nlmsghdr *nlh;
2261
2262	if (!ab)
2263		return;
2264
2265	if (audit_rate_check()) {
2266		skb = ab->skb;
2267		ab->skb = NULL;
2268
2269		/* setup the netlink header, see the comments in
2270		 * kauditd_send_multicast_skb() for length quirks */
2271		nlh = nlmsg_hdr(skb);
2272		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2273
2274		/* queue the netlink packet and poke the kauditd thread */
2275		skb_queue_tail(&audit_queue, skb);
2276		wake_up_interruptible(&kauditd_wait);
2277	} else
2278		audit_log_lost("rate limit exceeded");
2279
2280	audit_buffer_free(ab);
2281}
2282
2283/**
2284 * audit_log - Log an audit record
2285 * @ctx: audit context
2286 * @gfp_mask: type of allocation
2287 * @type: audit message type
2288 * @fmt: format string to use
2289 * @...: variable parameters matching the format string
2290 *
2291 * This is a convenience function that calls audit_log_start,
2292 * audit_log_vformat, and audit_log_end.  It may be called
2293 * in any context.
2294 */
2295void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2296	       const char *fmt, ...)
2297{
2298	struct audit_buffer *ab;
2299	va_list args;
2300
2301	ab = audit_log_start(ctx, gfp_mask, type);
2302	if (ab) {
2303		va_start(args, fmt);
2304		audit_log_vformat(ab, fmt, args);
2305		va_end(args);
2306		audit_log_end(ab);
2307	}
2308}
2309
2310#ifdef CONFIG_SECURITY
2311/**
2312 * audit_log_secctx - Converts and logs SELinux context
2313 * @ab: audit_buffer
2314 * @secid: security number
2315 *
2316 * This is a helper function that calls security_secid_to_secctx to convert
2317 * secid to secctx and then adds the (converted) SELinux context to the audit
2318 * log by calling audit_log_format, thus also preventing leak of internal secid
2319 * to userspace. If secid cannot be converted audit_panic is called.
2320 */
2321void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2322{
2323	u32 len;
2324	char *secctx;
2325
2326	if (security_secid_to_secctx(secid, &secctx, &len)) {
2327		audit_panic("Cannot convert secid to context");
2328	} else {
2329		audit_log_format(ab, " obj=%s", secctx);
2330		security_release_secctx(secctx, len);
2331	}
2332}
2333EXPORT_SYMBOL(audit_log_secctx);
2334#endif
2335
2336EXPORT_SYMBOL(audit_log_start);
2337EXPORT_SYMBOL(audit_log_end);
2338EXPORT_SYMBOL(audit_log_format);
2339EXPORT_SYMBOL(audit_log);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* audit.c -- Auditing support
   3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   4 * System-call specific features have moved to auditsc.c
   5 *
   6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   7 * All Rights Reserved.
   8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  10 *
  11 * Goals: 1) Integrate fully with Security Modules.
  12 *	  2) Minimal run-time overhead:
  13 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  14 *	     b) Small when syscall auditing is enabled and no audit record
  15 *		is generated (defer as much work as possible to record
  16 *		generation time):
  17 *		i) context is allocated,
  18 *		ii) names from getname are stored without a copy, and
  19 *		iii) inode information stored from path_lookup.
  20 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  21 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  22 *	     then a syscall record will be generated automatically for the
  23 *	     current syscall).
  24 *	  5) Netlink interface to user-space.
  25 *	  6) Support low-overhead kernel-based filtering to minimize the
  26 *	     information that must be passed to user-space.
  27 *
  28 * Audit userspace, documentation, tests, and bug/issue trackers:
  29 * 	https://github.com/linux-audit
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/file.h>
  35#include <linux/init.h>
  36#include <linux/types.h>
  37#include <linux/atomic.h>
  38#include <linux/mm.h>
  39#include <linux/export.h>
  40#include <linux/slab.h>
  41#include <linux/err.h>
  42#include <linux/kthread.h>
  43#include <linux/kernel.h>
  44#include <linux/syscalls.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/mutex.h>
  48#include <linux/gfp.h>
  49#include <linux/pid.h>
  50
  51#include <linux/audit.h>
  52
  53#include <net/sock.h>
  54#include <net/netlink.h>
  55#include <linux/skbuff.h>
 
  56#include <linux/security.h>
 
  57#include <linux/freezer.h>
  58#include <linux/pid_namespace.h>
  59#include <net/netns/generic.h>
  60
  61#include "audit.h"
  62
  63/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  64 * (Initialization happens after skb_init is called.) */
  65#define AUDIT_DISABLED		-1
  66#define AUDIT_UNINITIALIZED	0
  67#define AUDIT_INITIALIZED	1
  68static int	audit_initialized = AUDIT_UNINITIALIZED;
  69
  70u32		audit_enabled = AUDIT_OFF;
  71bool		audit_ever_enabled = !!AUDIT_OFF;
 
 
 
  72
  73EXPORT_SYMBOL_GPL(audit_enabled);
  74
  75/* Default state when kernel boots without any parameters. */
  76static u32	audit_default = AUDIT_OFF;
  77
  78/* If auditing cannot proceed, audit_failure selects what happens. */
  79static u32	audit_failure = AUDIT_FAIL_PRINTK;
  80
  81/* private audit network namespace index */
  82static unsigned int audit_net_id;
  83
  84/**
  85 * struct audit_net - audit private network namespace data
  86 * @sk: communication socket
  87 */
  88struct audit_net {
  89	struct sock *sk;
  90};
  91
  92/**
  93 * struct auditd_connection - kernel/auditd connection state
  94 * @pid: auditd PID
  95 * @portid: netlink portid
  96 * @net: the associated network namespace
  97 * @rcu: RCU head
  98 *
  99 * Description:
 100 * This struct is RCU protected; you must either hold the RCU lock for reading
 101 * or the associated spinlock for writing.
 102 */
 103struct auditd_connection {
 104	struct pid *pid;
 105	u32 portid;
 106	struct net *net;
 107	struct rcu_head rcu;
 108};
 109static struct auditd_connection __rcu *auditd_conn;
 110static DEFINE_SPINLOCK(auditd_conn_lock);
 111
 112/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 113 * to that number per second.  This prevents DoS attacks, but results in
 114 * audit records being dropped. */
 115static u32	audit_rate_limit;
 116
 117/* Number of outstanding audit_buffers allowed.
 118 * When set to zero, this means unlimited. */
 119static u32	audit_backlog_limit = 64;
 120#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 121static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 122
 123/* The identity of the user shutting down the audit system. */
 124static kuid_t		audit_sig_uid = INVALID_UID;
 125static pid_t		audit_sig_pid = -1;
 126static u32		audit_sig_sid;
 127
 128/* Records can be lost in several ways:
 129   0) [suppressed in audit_alloc]
 130   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 131   2) out of memory in audit_log_move [alloc_skb]
 132   3) suppressed due to audit_rate_limit
 133   4) suppressed due to audit_backlog_limit
 134*/
 135static atomic_t	audit_lost = ATOMIC_INIT(0);
 136
 137/* Monotonically increasing sum of time the kernel has spent
 138 * waiting while the backlog limit is exceeded.
 139 */
 140static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
 141
 142/* Hash for inode-based rules */
 143struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 144
 145static struct kmem_cache *audit_buffer_cache;
 
 
 
 
 
 146
 147/* queue msgs to send via kauditd_task */
 148static struct sk_buff_head audit_queue;
 
 149/* queue msgs due to temporary unicast send problems */
 150static struct sk_buff_head audit_retry_queue;
 151/* queue msgs waiting for new auditd connection */
 152static struct sk_buff_head audit_hold_queue;
 153
 154/* queue servicing thread */
 155static struct task_struct *kauditd_task;
 156static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 157
 158/* waitqueue for callers who are blocked on the audit backlog */
 159static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 160
 161static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 162				   .mask = -1,
 163				   .features = 0,
 164				   .lock = 0,};
 165
 166static char *audit_feature_names[2] = {
 167	"only_unset_loginuid",
 168	"loginuid_immutable",
 169};
 170
 171/**
 172 * struct audit_ctl_mutex - serialize requests from userspace
 173 * @lock: the mutex used for locking
 174 * @owner: the task which owns the lock
 175 *
 176 * Description:
 177 * This is the lock struct used to ensure we only process userspace requests
 178 * in an orderly fashion.  We can't simply use a mutex/lock here because we
 179 * need to track lock ownership so we don't end up blocking the lock owner in
 180 * audit_log_start() or similar.
 181 */
 182static struct audit_ctl_mutex {
 183	struct mutex lock;
 184	void *owner;
 185} audit_cmd_mutex;
 186
 187/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 188 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 189 * should be at least that large. */
 190#define AUDIT_BUFSIZ 1024
 191
 
 
 
 
 192/* The audit_buffer is used when formatting an audit record.  The caller
 193 * locks briefly to get the record off the freelist or to allocate the
 194 * buffer, and locks briefly to send the buffer to the netlink layer or
 195 * to place it on a transmit queue.  Multiple audit_buffers can be in
 196 * use simultaneously. */
 197struct audit_buffer {
 
 198	struct sk_buff       *skb;	/* formatted skb ready to send */
 199	struct audit_context *ctx;	/* NULL or associated context */
 200	gfp_t		     gfp_mask;
 201};
 202
 203struct audit_reply {
 204	__u32 portid;
 205	struct net *net;
 206	struct sk_buff *skb;
 207};
 208
 209/**
 210 * auditd_test_task - Check to see if a given task is an audit daemon
 211 * @task: the task to check
 212 *
 213 * Description:
 214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 215 */
 216int auditd_test_task(struct task_struct *task)
 217{
 218	int rc;
 219	struct auditd_connection *ac;
 220
 221	rcu_read_lock();
 222	ac = rcu_dereference(auditd_conn);
 223	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
 224	rcu_read_unlock();
 225
 226	return rc;
 227}
 228
 229/**
 230 * audit_ctl_lock - Take the audit control lock
 231 */
 232void audit_ctl_lock(void)
 233{
 234	mutex_lock(&audit_cmd_mutex.lock);
 235	audit_cmd_mutex.owner = current;
 236}
 237
 238/**
 239 * audit_ctl_unlock - Drop the audit control lock
 240 */
 241void audit_ctl_unlock(void)
 242{
 243	audit_cmd_mutex.owner = NULL;
 244	mutex_unlock(&audit_cmd_mutex.lock);
 245}
 246
 247/**
 248 * audit_ctl_owner_current - Test to see if the current task owns the lock
 249 *
 250 * Description:
 251 * Return true if the current task owns the audit control lock, false if it
 252 * doesn't own the lock.
 253 */
 254static bool audit_ctl_owner_current(void)
 255{
 256	return (current == audit_cmd_mutex.owner);
 257}
 258
 259/**
 260 * auditd_pid_vnr - Return the auditd PID relative to the namespace
 261 *
 262 * Description:
 263 * Returns the PID in relation to the namespace, 0 on failure.
 264 */
 265static pid_t auditd_pid_vnr(void)
 266{
 267	pid_t pid;
 268	const struct auditd_connection *ac;
 269
 270	rcu_read_lock();
 271	ac = rcu_dereference(auditd_conn);
 272	if (!ac || !ac->pid)
 273		pid = 0;
 274	else
 275		pid = pid_vnr(ac->pid);
 276	rcu_read_unlock();
 277
 278	return pid;
 279}
 280
 281/**
 282 * audit_get_sk - Return the audit socket for the given network namespace
 283 * @net: the destination network namespace
 284 *
 285 * Description:
 286 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 287 * that a reference is held for the network namespace while the sock is in use.
 288 */
 289static struct sock *audit_get_sk(const struct net *net)
 290{
 291	struct audit_net *aunet;
 292
 293	if (!net)
 294		return NULL;
 295
 296	aunet = net_generic(net, audit_net_id);
 297	return aunet->sk;
 298}
 299
 
 
 
 
 
 
 
 
 300void audit_panic(const char *message)
 301{
 302	switch (audit_failure) {
 303	case AUDIT_FAIL_SILENT:
 304		break;
 305	case AUDIT_FAIL_PRINTK:
 306		if (printk_ratelimit())
 307			pr_err("%s\n", message);
 308		break;
 309	case AUDIT_FAIL_PANIC:
 310		panic("audit: %s\n", message);
 311		break;
 312	}
 313}
 314
 315static inline int audit_rate_check(void)
 316{
 317	static unsigned long	last_check = 0;
 318	static int		messages   = 0;
 319	static DEFINE_SPINLOCK(lock);
 320	unsigned long		flags;
 321	unsigned long		now;
 
 322	int			retval	   = 0;
 323
 324	if (!audit_rate_limit)
 325		return 1;
 326
 327	spin_lock_irqsave(&lock, flags);
 328	if (++messages < audit_rate_limit) {
 329		retval = 1;
 330	} else {
 331		now = jiffies;
 332		if (time_after(now, last_check + HZ)) {
 
 333			last_check = now;
 334			messages   = 0;
 335			retval     = 1;
 336		}
 337	}
 338	spin_unlock_irqrestore(&lock, flags);
 339
 340	return retval;
 341}
 342
 343/**
 344 * audit_log_lost - conditionally log lost audit message event
 345 * @message: the message stating reason for lost audit message
 346 *
 347 * Emit at least 1 message per second, even if audit_rate_check is
 348 * throttling.
 349 * Always increment the lost messages counter.
 350*/
 351void audit_log_lost(const char *message)
 352{
 353	static unsigned long	last_msg = 0;
 354	static DEFINE_SPINLOCK(lock);
 355	unsigned long		flags;
 356	unsigned long		now;
 357	int			print;
 358
 359	atomic_inc(&audit_lost);
 360
 361	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 362
 363	if (!print) {
 364		spin_lock_irqsave(&lock, flags);
 365		now = jiffies;
 366		if (time_after(now, last_msg + HZ)) {
 367			print = 1;
 368			last_msg = now;
 369		}
 370		spin_unlock_irqrestore(&lock, flags);
 371	}
 372
 373	if (print) {
 374		if (printk_ratelimit())
 375			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 376				atomic_read(&audit_lost),
 377				audit_rate_limit,
 378				audit_backlog_limit);
 379		audit_panic(message);
 380	}
 381}
 382
 383static int audit_log_config_change(char *function_name, u32 new, u32 old,
 384				   int allow_changes)
 385{
 386	struct audit_buffer *ab;
 387	int rc = 0;
 388
 389	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 390	if (unlikely(!ab))
 391		return rc;
 392	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
 393	audit_log_session_info(ab);
 394	rc = audit_log_task_context(ab);
 395	if (rc)
 396		allow_changes = 0; /* Something weird, deny request */
 397	audit_log_format(ab, " res=%d", allow_changes);
 398	audit_log_end(ab);
 399	return rc;
 400}
 401
 402static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 403{
 404	int allow_changes, rc = 0;
 405	u32 old = *to_change;
 406
 407	/* check if we are locked */
 408	if (audit_enabled == AUDIT_LOCKED)
 409		allow_changes = 0;
 410	else
 411		allow_changes = 1;
 412
 413	if (audit_enabled != AUDIT_OFF) {
 414		rc = audit_log_config_change(function_name, new, old, allow_changes);
 415		if (rc)
 416			allow_changes = 0;
 417	}
 418
 419	/* If we are allowed, make the change */
 420	if (allow_changes == 1)
 421		*to_change = new;
 422	/* Not allowed, update reason */
 423	else if (rc == 0)
 424		rc = -EPERM;
 425	return rc;
 426}
 427
 428static int audit_set_rate_limit(u32 limit)
 429{
 430	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 431}
 432
 433static int audit_set_backlog_limit(u32 limit)
 434{
 435	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 436}
 437
 438static int audit_set_backlog_wait_time(u32 timeout)
 439{
 440	return audit_do_config_change("audit_backlog_wait_time",
 441				      &audit_backlog_wait_time, timeout);
 442}
 443
 444static int audit_set_enabled(u32 state)
 445{
 446	int rc;
 447	if (state > AUDIT_LOCKED)
 448		return -EINVAL;
 449
 450	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 451	if (!rc)
 452		audit_ever_enabled |= !!state;
 453
 454	return rc;
 455}
 456
 457static int audit_set_failure(u32 state)
 458{
 459	if (state != AUDIT_FAIL_SILENT
 460	    && state != AUDIT_FAIL_PRINTK
 461	    && state != AUDIT_FAIL_PANIC)
 462		return -EINVAL;
 463
 464	return audit_do_config_change("audit_failure", &audit_failure, state);
 465}
 466
 467/**
 468 * auditd_conn_free - RCU helper to release an auditd connection struct
 469 * @rcu: RCU head
 
 
 470 *
 471 * Description:
 472 * Drop any references inside the auditd connection tracking struct and free
 473 * the memory.
 474 */
 475static void auditd_conn_free(struct rcu_head *rcu)
 476{
 477	struct auditd_connection *ac;
 478
 479	ac = container_of(rcu, struct auditd_connection, rcu);
 480	put_pid(ac->pid);
 481	put_net(ac->net);
 482	kfree(ac);
 
 
 
 
 
 
 483}
 484
 485/**
 486 * auditd_set - Set/Reset the auditd connection state
 487 * @pid: auditd PID
 488 * @portid: auditd netlink portid
 489 * @net: auditd network namespace pointer
 490 * @skb: the netlink command from the audit daemon
 491 * @ack: netlink ack flag, cleared if ack'd here
 492 *
 493 * Description:
 494 * This function will obtain and drop network namespace references as
 495 * necessary.  Returns zero on success, negative values on failure.
 496 */
 497static int auditd_set(struct pid *pid, u32 portid, struct net *net,
 498		      struct sk_buff *skb, bool *ack)
 499{
 500	unsigned long flags;
 501	struct auditd_connection *ac_old, *ac_new;
 502	struct nlmsghdr *nlh;
 503
 504	if (!pid || !net)
 505		return -EINVAL;
 
 
 
 506
 507	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
 508	if (!ac_new)
 509		return -ENOMEM;
 510	ac_new->pid = get_pid(pid);
 511	ac_new->portid = portid;
 512	ac_new->net = get_net(net);
 513
 514	/* send the ack now to avoid a race with the queue backlog */
 515	if (*ack) {
 516		nlh = nlmsg_hdr(skb);
 517		netlink_ack(skb, nlh, 0, NULL);
 518		*ack = false;
 519	}
 520
 521	spin_lock_irqsave(&auditd_conn_lock, flags);
 522	ac_old = rcu_dereference_protected(auditd_conn,
 523					   lockdep_is_held(&auditd_conn_lock));
 524	rcu_assign_pointer(auditd_conn, ac_new);
 525	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 526
 527	if (ac_old)
 528		call_rcu(&ac_old->rcu, auditd_conn_free);
 529
 530	return 0;
 531}
 532
 533/**
 534 * kauditd_printk_skb - Print the audit record to the ring buffer
 535 * @skb: audit record
 536 *
 537 * Whatever the reason, this packet may not make it to the auditd connection
 538 * so write it via printk so the information isn't completely lost.
 539 */
 540static void kauditd_printk_skb(struct sk_buff *skb)
 541{
 542	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 543	char *data = nlmsg_data(nlh);
 544
 545	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 546		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 547}
 548
 549/**
 550 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 551 * @skb: audit record
 552 * @error: error code (unused)
 553 *
 554 * Description:
 555 * This should only be used by the kauditd_thread when it fails to flush the
 556 * hold queue.
 557 */
 558static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
 559{
 560	/* put the record back in the queue */
 561	skb_queue_tail(&audit_hold_queue, skb);
 
 
 
 562}
 563
 564/**
 565 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 566 * @skb: audit record
 567 * @error: error code
 568 *
 569 * Description:
 570 * Queue the audit record, waiting for an instance of auditd.  When this
 571 * function is called we haven't given up yet on sending the record, but things
 572 * are not looking good.  The first thing we want to do is try to write the
 573 * record via printk and then see if we want to try and hold on to the record
 574 * and queue it, if we have room.  If we want to hold on to the record, but we
 575 * don't have room, record a record lost message.
 576 */
 577static void kauditd_hold_skb(struct sk_buff *skb, int error)
 578{
 579	/* at this point it is uncertain if we will ever send this to auditd so
 580	 * try to send the message via printk before we go any further */
 581	kauditd_printk_skb(skb);
 582
 583	/* can we just silently drop the message? */
 584	if (!audit_default)
 585		goto drop;
 586
 587	/* the hold queue is only for when the daemon goes away completely,
 588	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
 589	 * record on the retry queue unless it's full, in which case drop it
 590	 */
 591	if (error == -EAGAIN) {
 592		if (!audit_backlog_limit ||
 593		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
 594			skb_queue_tail(&audit_retry_queue, skb);
 595			return;
 596		}
 597		audit_log_lost("kauditd retry queue overflow");
 598		goto drop;
 599	}
 600
 601	/* if we have room in the hold queue, queue the message */
 602	if (!audit_backlog_limit ||
 603	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 604		skb_queue_tail(&audit_hold_queue, skb);
 605		return;
 606	}
 607
 608	/* we have no other options - drop the message */
 609	audit_log_lost("kauditd hold queue overflow");
 610drop:
 611	kfree_skb(skb);
 
 
 
 612}
 613
 614/**
 615 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 616 * @skb: audit record
 617 * @error: error code (unused)
 618 *
 619 * Description:
 620 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 621 * but for some reason we are having problems sending it audit records so
 622 * queue the given record and attempt to resend.
 623 */
 624static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
 625{
 626	if (!audit_backlog_limit ||
 627	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
 628		skb_queue_tail(&audit_retry_queue, skb);
 629		return;
 630	}
 631
 632	/* we have to drop the record, send it via printk as a last effort */
 633	kauditd_printk_skb(skb);
 634	audit_log_lost("kauditd retry queue overflow");
 635	kfree_skb(skb);
 636}
 637
 638/**
 639 * auditd_reset - Disconnect the auditd connection
 640 * @ac: auditd connection state
 641 *
 642 * Description:
 643 * Break the auditd/kauditd connection and move all the queued records into the
 644 * hold queue in case auditd reconnects.  It is important to note that the @ac
 645 * pointer should never be dereferenced inside this function as it may be NULL
 646 * or invalid, you can only compare the memory address!  If @ac is NULL then
 647 * the connection will always be reset.
 648 */
 649static void auditd_reset(const struct auditd_connection *ac)
 650{
 651	unsigned long flags;
 652	struct sk_buff *skb;
 653	struct auditd_connection *ac_old;
 654
 655	/* if it isn't already broken, break the connection */
 656	spin_lock_irqsave(&auditd_conn_lock, flags);
 657	ac_old = rcu_dereference_protected(auditd_conn,
 658					   lockdep_is_held(&auditd_conn_lock));
 659	if (ac && ac != ac_old) {
 660		/* someone already registered a new auditd connection */
 661		spin_unlock_irqrestore(&auditd_conn_lock, flags);
 662		return;
 663	}
 664	rcu_assign_pointer(auditd_conn, NULL);
 665	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 666
 667	if (ac_old)
 668		call_rcu(&ac_old->rcu, auditd_conn_free);
 669
 670	/* flush the retry queue to the hold queue, but don't touch the main
 671	 * queue since we need to process that normally for multicast */
 672	while ((skb = skb_dequeue(&audit_retry_queue)))
 673		kauditd_hold_skb(skb, -ECONNREFUSED);
 674}
 675
 676/**
 677 * auditd_send_unicast_skb - Send a record via unicast to auditd
 678 * @skb: audit record
 679 *
 680 * Description:
 681 * Send a skb to the audit daemon, returns positive/zero values on success and
 682 * negative values on failure; in all cases the skb will be consumed by this
 683 * function.  If the send results in -ECONNREFUSED the connection with auditd
 684 * will be reset.  This function may sleep so callers should not hold any locks
 685 * where this would cause a problem.
 686 */
 687static int auditd_send_unicast_skb(struct sk_buff *skb)
 688{
 689	int rc;
 690	u32 portid;
 691	struct net *net;
 692	struct sock *sk;
 693	struct auditd_connection *ac;
 694
 695	/* NOTE: we can't call netlink_unicast while in the RCU section so
 696	 *       take a reference to the network namespace and grab local
 697	 *       copies of the namespace, the sock, and the portid; the
 698	 *       namespace and sock aren't going to go away while we hold a
 699	 *       reference and if the portid does become invalid after the RCU
 700	 *       section netlink_unicast() should safely return an error */
 701
 702	rcu_read_lock();
 703	ac = rcu_dereference(auditd_conn);
 704	if (!ac) {
 705		rcu_read_unlock();
 706		kfree_skb(skb);
 707		rc = -ECONNREFUSED;
 708		goto err;
 709	}
 710	net = get_net(ac->net);
 
 711	sk = audit_get_sk(net);
 712	portid = ac->portid;
 713	rcu_read_unlock();
 714
 715	rc = netlink_unicast(sk, skb, portid, 0);
 716	put_net(net);
 717	if (rc < 0)
 718		goto err;
 719
 720	return rc;
 721
 722err:
 723	if (ac && rc == -ECONNREFUSED)
 724		auditd_reset(ac);
 725	return rc;
 726}
 727
 728/**
 729 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 730 * @sk: the sending sock
 731 * @portid: the netlink destination
 732 * @queue: the skb queue to process
 733 * @retry_limit: limit on number of netlink unicast failures
 734 * @skb_hook: per-skb hook for additional processing
 735 * @err_hook: hook called if the skb fails the netlink unicast send
 736 *
 737 * Description:
 738 * Run through the given queue and attempt to send the audit records to auditd,
 739 * returns zero on success, negative values on failure.  It is up to the caller
 740 * to ensure that the @sk is valid for the duration of this function.
 741 *
 742 */
 743static int kauditd_send_queue(struct sock *sk, u32 portid,
 744			      struct sk_buff_head *queue,
 745			      unsigned int retry_limit,
 746			      void (*skb_hook)(struct sk_buff *skb),
 747			      void (*err_hook)(struct sk_buff *skb, int error))
 748{
 749	int rc = 0;
 750	struct sk_buff *skb = NULL;
 751	struct sk_buff *skb_tail;
 752	unsigned int failed = 0;
 753
 754	/* NOTE: kauditd_thread takes care of all our locking, we just use
 755	 *       the netlink info passed to us (e.g. sk and portid) */
 756
 757	skb_tail = skb_peek_tail(queue);
 758	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
 759		/* call the skb_hook for each skb we touch */
 760		if (skb_hook)
 761			(*skb_hook)(skb);
 762
 763		/* can we send to anyone via unicast? */
 764		if (!sk) {
 765			if (err_hook)
 766				(*err_hook)(skb, -ECONNREFUSED);
 767			continue;
 768		}
 769
 770retry:
 771		/* grab an extra skb reference in case of error */
 772		skb_get(skb);
 773		rc = netlink_unicast(sk, skb, portid, 0);
 774		if (rc < 0) {
 775			/* send failed - try a few times unless fatal error */
 776			if (++failed >= retry_limit ||
 777			    rc == -ECONNREFUSED || rc == -EPERM) {
 
 778				sk = NULL;
 779				if (err_hook)
 780					(*err_hook)(skb, rc);
 781				if (rc == -EAGAIN)
 782					rc = 0;
 783				/* continue to drain the queue */
 784				continue;
 785			} else
 786				goto retry;
 
 787		} else {
 788			/* skb sent - drop the extra reference and continue */
 789			consume_skb(skb);
 790			failed = 0;
 791		}
 792	}
 793
 
 794	return (rc >= 0 ? 0 : rc);
 795}
 796
 797/*
 798 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 799 * @skb: audit record
 800 *
 801 * Description:
 802 * Write a multicast message to anyone listening in the initial network
 803 * namespace.  This function doesn't consume an skb as might be expected since
 804 * it has to copy it anyways.
 805 */
 806static void kauditd_send_multicast_skb(struct sk_buff *skb)
 807{
 808	struct sk_buff *copy;
 809	struct sock *sock = audit_get_sk(&init_net);
 810	struct nlmsghdr *nlh;
 811
 812	/* NOTE: we are not taking an additional reference for init_net since
 813	 *       we don't have to worry about it going away */
 814
 815	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 816		return;
 817
 818	/*
 819	 * The seemingly wasteful skb_copy() rather than bumping the refcount
 820	 * using skb_get() is necessary because non-standard mods are made to
 821	 * the skb by the original kaudit unicast socket send routine.  The
 822	 * existing auditd daemon assumes this breakage.  Fixing this would
 823	 * require co-ordinating a change in the established protocol between
 824	 * the kaudit kernel subsystem and the auditd userspace code.  There is
 825	 * no reason for new multicast clients to continue with this
 826	 * non-compliance.
 827	 */
 828	copy = skb_copy(skb, GFP_KERNEL);
 829	if (!copy)
 830		return;
 831	nlh = nlmsg_hdr(copy);
 832	nlh->nlmsg_len = skb->len;
 833
 834	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 835}
 836
 837/**
 838 * kauditd_thread - Worker thread to send audit records to userspace
 839 * @dummy: unused
 840 */
 841static int kauditd_thread(void *dummy)
 842{
 843	int rc;
 844	u32 portid = 0;
 845	struct net *net = NULL;
 846	struct sock *sk = NULL;
 847	struct auditd_connection *ac;
 848
 849#define UNICAST_RETRIES 5
 850
 851	set_freezable();
 852	while (!kthread_should_stop()) {
 853		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
 854		rcu_read_lock();
 855		ac = rcu_dereference(auditd_conn);
 856		if (!ac) {
 857			rcu_read_unlock();
 858			goto main_queue;
 859		}
 860		net = get_net(ac->net);
 
 861		sk = audit_get_sk(net);
 862		portid = ac->portid;
 863		rcu_read_unlock();
 864
 865		/* attempt to flush the hold queue */
 866		rc = kauditd_send_queue(sk, portid,
 867					&audit_hold_queue, UNICAST_RETRIES,
 868					NULL, kauditd_rehold_skb);
 869		if (rc < 0) {
 870			sk = NULL;
 871			auditd_reset(ac);
 872			goto main_queue;
 873		}
 874
 875		/* attempt to flush the retry queue */
 876		rc = kauditd_send_queue(sk, portid,
 877					&audit_retry_queue, UNICAST_RETRIES,
 878					NULL, kauditd_hold_skb);
 879		if (rc < 0) {
 880			sk = NULL;
 881			auditd_reset(ac);
 882			goto main_queue;
 883		}
 884
 885main_queue:
 886		/* process the main queue - do the multicast send and attempt
 887		 * unicast, dump failed record sends to the retry queue; if
 888		 * sk == NULL due to previous failures we will just do the
 889		 * multicast send and move the record to the hold queue */
 890		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
 891					kauditd_send_multicast_skb,
 892					(sk ?
 893					 kauditd_retry_skb : kauditd_hold_skb));
 894		if (ac && rc < 0)
 895			auditd_reset(ac);
 896		sk = NULL;
 897
 898		/* drop our netns reference, no auditd sends past this line */
 899		if (net) {
 900			put_net(net);
 901			net = NULL;
 902		}
 
 903
 904		/* we have processed all the queues so wake everyone */
 905		wake_up(&audit_backlog_wait);
 906
 907		/* NOTE: we want to wake up if there is anything on the queue,
 908		 *       regardless of if an auditd is connected, as we need to
 909		 *       do the multicast send and rotate records from the
 910		 *       main queue to the retry/hold queues */
 911		wait_event_freezable(kauditd_wait,
 912				     (skb_queue_len(&audit_queue) ? 1 : 0));
 913	}
 914
 915	return 0;
 916}
 917
 918int audit_send_list_thread(void *_dest)
 919{
 920	struct audit_netlink_list *dest = _dest;
 921	struct sk_buff *skb;
 922	struct sock *sk = audit_get_sk(dest->net);
 923
 924	/* wait for parent to finish and send an ACK */
 925	audit_ctl_lock();
 926	audit_ctl_unlock();
 927
 928	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 929		netlink_unicast(sk, skb, dest->portid, 0);
 930
 931	put_net(dest->net);
 932	kfree(dest);
 933
 934	return 0;
 935}
 936
 937struct sk_buff *audit_make_reply(int seq, int type, int done,
 938				 int multi, const void *payload, int size)
 939{
 940	struct sk_buff	*skb;
 941	struct nlmsghdr	*nlh;
 942	void		*data;
 943	int		flags = multi ? NLM_F_MULTI : 0;
 944	int		t     = done  ? NLMSG_DONE  : type;
 945
 946	skb = nlmsg_new(size, GFP_KERNEL);
 947	if (!skb)
 948		return NULL;
 949
 950	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
 951	if (!nlh)
 952		goto out_kfree_skb;
 953	data = nlmsg_data(nlh);
 954	memcpy(data, payload, size);
 955	return skb;
 956
 957out_kfree_skb:
 958	kfree_skb(skb);
 959	return NULL;
 960}
 961
 962static void audit_free_reply(struct audit_reply *reply)
 963{
 964	if (!reply)
 965		return;
 966
 967	kfree_skb(reply->skb);
 968	if (reply->net)
 969		put_net(reply->net);
 970	kfree(reply);
 971}
 972
 973static int audit_send_reply_thread(void *arg)
 974{
 975	struct audit_reply *reply = (struct audit_reply *)arg;
 
 976
 977	audit_ctl_lock();
 978	audit_ctl_unlock();
 979
 980	/* Ignore failure. It'll only happen if the sender goes away,
 981	   because our timeout is set to infinite. */
 982	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
 983	reply->skb = NULL;
 984	audit_free_reply(reply);
 985	return 0;
 986}
 987
 988/**
 989 * audit_send_reply - send an audit reply message via netlink
 990 * @request_skb: skb of request we are replying to (used to target the reply)
 991 * @seq: sequence number
 992 * @type: audit message type
 993 * @done: done (last) flag
 994 * @multi: multi-part message flag
 995 * @payload: payload data
 996 * @size: payload size
 997 *
 998 * Allocates a skb, builds the netlink message, and sends it to the port id.
 
 999 */
1000static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001			     int multi, const void *payload, int size)
1002{
 
 
 
1003	struct task_struct *tsk;
1004	struct audit_reply *reply;
 
1005
1006	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007	if (!reply)
1008		return;
1009
1010	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011	if (!reply->skb)
1012		goto err;
1013	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014	reply->portid = NETLINK_CB(request_skb).portid;
 
 
1015
1016	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017	if (IS_ERR(tsk))
1018		goto err;
1019
1020	return;
1021
1022err:
1023	audit_free_reply(reply);
1024}
1025
1026/*
1027 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028 * control messages.
1029 */
1030static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031{
1032	int err = 0;
1033
1034	/* Only support initial user namespace for now. */
1035	/*
1036	 * We return ECONNREFUSED because it tricks userspace into thinking
1037	 * that audit was not configured into the kernel.  Lots of users
1038	 * configure their PAM stack (because that's what the distro does)
1039	 * to reject login if unable to send messages to audit.  If we return
1040	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041	 * configured in and will let login proceed.  If we return EPERM
1042	 * userspace will reject all logins.  This should be removed when we
1043	 * support non init namespaces!!
1044	 */
1045	if (current_user_ns() != &init_user_ns)
1046		return -ECONNREFUSED;
1047
1048	switch (msg_type) {
1049	case AUDIT_LIST:
1050	case AUDIT_ADD:
1051	case AUDIT_DEL:
1052		return -EOPNOTSUPP;
1053	case AUDIT_GET:
1054	case AUDIT_SET:
1055	case AUDIT_GET_FEATURE:
1056	case AUDIT_SET_FEATURE:
1057	case AUDIT_LIST_RULES:
1058	case AUDIT_ADD_RULE:
1059	case AUDIT_DEL_RULE:
1060	case AUDIT_SIGNAL_INFO:
1061	case AUDIT_TTY_GET:
1062	case AUDIT_TTY_SET:
1063	case AUDIT_TRIM:
1064	case AUDIT_MAKE_EQUIV:
1065		/* Only support auditd and auditctl in initial pid namespace
1066		 * for now. */
1067		if (task_active_pid_ns(current) != &init_pid_ns)
1068			return -EPERM;
1069
1070		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071			err = -EPERM;
1072		break;
1073	case AUDIT_USER:
1074	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077			err = -EPERM;
1078		break;
1079	default:  /* bad msg */
1080		err = -EINVAL;
1081	}
1082
1083	return err;
1084}
1085
1086static void audit_log_common_recv_msg(struct audit_context *context,
1087					struct audit_buffer **ab, u16 msg_type)
1088{
1089	uid_t uid = from_kuid(&init_user_ns, current_uid());
1090	pid_t pid = task_tgid_nr(current);
1091
1092	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093		*ab = NULL;
1094		return;
1095	}
1096
1097	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098	if (unlikely(!*ab))
1099		return;
1100	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101	audit_log_session_info(*ab);
1102	audit_log_task_context(*ab);
1103}
1104
1105static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106					   u16 msg_type)
1107{
1108	audit_log_common_recv_msg(NULL, ab, msg_type);
1109}
1110
1111static int is_audit_feature_set(int i)
1112{
1113	return af.features & AUDIT_FEATURE_TO_MASK(i);
1114}
1115
1116
1117static int audit_get_feature(struct sk_buff *skb)
1118{
1119	u32 seq;
1120
1121	seq = nlmsg_hdr(skb)->nlmsg_seq;
1122
1123	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124
1125	return 0;
1126}
1127
1128static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129				     u32 old_lock, u32 new_lock, int res)
1130{
1131	struct audit_buffer *ab;
1132
1133	if (audit_enabled == AUDIT_OFF)
1134		return;
1135
1136	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137	if (!ab)
1138		return;
1139	audit_log_task_info(ab);
1140	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141			 audit_feature_names[which], !!old_feature, !!new_feature,
1142			 !!old_lock, !!new_lock, res);
1143	audit_log_end(ab);
1144}
1145
1146static int audit_set_feature(struct audit_features *uaf)
1147{
 
1148	int i;
1149
1150	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 
1151
1152	/* if there is ever a version 2 we should handle that here */
1153
1154	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156		u32 old_feature, new_feature, old_lock, new_lock;
1157
1158		/* if we are not changing this feature, move along */
1159		if (!(feature & uaf->mask))
1160			continue;
1161
1162		old_feature = af.features & feature;
1163		new_feature = uaf->features & feature;
1164		new_lock = (uaf->lock | af.lock) & feature;
1165		old_lock = af.lock & feature;
1166
1167		/* are we changing a locked feature? */
1168		if (old_lock && (new_feature != old_feature)) {
1169			audit_log_feature_change(i, old_feature, new_feature,
1170						 old_lock, new_lock, 0);
1171			return -EPERM;
1172		}
1173	}
1174	/* nothing invalid, do the changes */
1175	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177		u32 old_feature, new_feature, old_lock, new_lock;
1178
1179		/* if we are not changing this feature, move along */
1180		if (!(feature & uaf->mask))
1181			continue;
1182
1183		old_feature = af.features & feature;
1184		new_feature = uaf->features & feature;
1185		old_lock = af.lock & feature;
1186		new_lock = (uaf->lock | af.lock) & feature;
1187
1188		if (new_feature != old_feature)
1189			audit_log_feature_change(i, old_feature, new_feature,
1190						 old_lock, new_lock, 1);
1191
1192		if (new_feature)
1193			af.features |= feature;
1194		else
1195			af.features &= ~feature;
1196		af.lock |= new_lock;
1197	}
1198
1199	return 0;
1200}
1201
1202static int audit_replace(struct pid *pid)
1203{
1204	pid_t pvnr;
1205	struct sk_buff *skb;
1206
1207	pvnr = pid_vnr(pid);
1208	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209	if (!skb)
1210		return -ENOMEM;
1211	return auditd_send_unicast_skb(skb);
1212}
1213
1214static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215			     bool *ack)
1216{
1217	u32			seq;
1218	void			*data;
1219	int			data_len;
1220	int			err;
1221	struct audit_buffer	*ab;
1222	u16			msg_type = nlh->nlmsg_type;
1223	struct audit_sig_info   *sig_data;
1224	char			*ctx = NULL;
1225	u32			len;
1226
1227	err = audit_netlink_ok(skb, msg_type);
1228	if (err)
1229		return err;
1230
1231	seq  = nlh->nlmsg_seq;
1232	data = nlmsg_data(nlh);
1233	data_len = nlmsg_len(nlh);
1234
1235	switch (msg_type) {
1236	case AUDIT_GET: {
1237		struct audit_status	s;
1238		memset(&s, 0, sizeof(s));
1239		s.enabled		   = audit_enabled;
1240		s.failure		   = audit_failure;
1241		/* NOTE: use pid_vnr() so the PID is relative to the current
1242		 *       namespace */
1243		s.pid			   = auditd_pid_vnr();
1244		s.rate_limit		   = audit_rate_limit;
1245		s.backlog_limit		   = audit_backlog_limit;
1246		s.lost			   = atomic_read(&audit_lost);
1247		s.backlog		   = skb_queue_len(&audit_queue);
1248		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1249		s.backlog_wait_time	   = audit_backlog_wait_time;
1250		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1251		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1252		break;
1253	}
1254	case AUDIT_SET: {
1255		struct audit_status	s;
1256		memset(&s, 0, sizeof(s));
1257		/* guard against past and future API changes */
1258		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1259		if (s.mask & AUDIT_STATUS_ENABLED) {
1260			err = audit_set_enabled(s.enabled);
1261			if (err < 0)
1262				return err;
1263		}
1264		if (s.mask & AUDIT_STATUS_FAILURE) {
1265			err = audit_set_failure(s.failure);
1266			if (err < 0)
1267				return err;
1268		}
1269		if (s.mask & AUDIT_STATUS_PID) {
1270			/* NOTE: we are using the vnr PID functions below
1271			 *       because the s.pid value is relative to the
1272			 *       namespace of the caller; at present this
1273			 *       doesn't matter much since you can really only
1274			 *       run auditd from the initial pid namespace, but
1275			 *       something to keep in mind if this changes */
1276			pid_t new_pid = s.pid;
1277			pid_t auditd_pid;
1278			struct pid *req_pid = task_tgid(current);
1279
1280			/* Sanity check - PID values must match. Setting
1281			 * pid to 0 is how auditd ends auditing. */
1282			if (new_pid && (new_pid != pid_vnr(req_pid)))
1283				return -EINVAL;
1284
1285			/* test the auditd connection */
1286			audit_replace(req_pid);
1287
1288			auditd_pid = auditd_pid_vnr();
1289			if (auditd_pid) {
1290				/* replacing a healthy auditd is not allowed */
1291				if (new_pid) {
1292					audit_log_config_change("audit_pid",
1293							new_pid, auditd_pid, 0);
1294					return -EEXIST;
1295				}
1296				/* only current auditd can unregister itself */
1297				if (pid_vnr(req_pid) != auditd_pid) {
1298					audit_log_config_change("audit_pid",
1299							new_pid, auditd_pid, 0);
1300					return -EACCES;
1301				}
 
1302			}
 
 
 
 
 
1303
1304			if (new_pid) {
1305				/* register a new auditd connection */
1306				err = auditd_set(req_pid,
1307						 NETLINK_CB(skb).portid,
1308						 sock_net(NETLINK_CB(skb).sk),
1309						 skb, ack);
1310				if (audit_enabled != AUDIT_OFF)
1311					audit_log_config_change("audit_pid",
1312								new_pid,
1313								auditd_pid,
1314								err ? 0 : 1);
1315				if (err)
1316					return err;
1317
1318				/* try to process any backlog */
1319				wake_up_interruptible(&kauditd_wait);
1320			} else {
1321				if (audit_enabled != AUDIT_OFF)
1322					audit_log_config_change("audit_pid",
1323								new_pid,
1324								auditd_pid, 1);
1325
1326				/* unregister the auditd connection */
1327				auditd_reset(NULL);
1328			}
1329		}
1330		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1331			err = audit_set_rate_limit(s.rate_limit);
1332			if (err < 0)
1333				return err;
1334		}
1335		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1336			err = audit_set_backlog_limit(s.backlog_limit);
1337			if (err < 0)
1338				return err;
1339		}
1340		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1341			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1342				return -EINVAL;
1343			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1344				return -EINVAL;
1345			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1346			if (err < 0)
1347				return err;
1348		}
1349		if (s.mask == AUDIT_STATUS_LOST) {
1350			u32 lost = atomic_xchg(&audit_lost, 0);
1351
1352			audit_log_config_change("lost", 0, lost, 1);
1353			return lost;
1354		}
1355		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1356			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1357
1358			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1359			return actual;
1360		}
1361		break;
1362	}
1363	case AUDIT_GET_FEATURE:
1364		err = audit_get_feature(skb);
1365		if (err)
1366			return err;
1367		break;
1368	case AUDIT_SET_FEATURE:
1369		if (data_len < sizeof(struct audit_features))
1370			return -EINVAL;
1371		err = audit_set_feature(data);
1372		if (err)
1373			return err;
1374		break;
1375	case AUDIT_USER:
1376	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1377	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1378		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1379			return 0;
1380		/* exit early if there isn't at least one character to print */
1381		if (data_len < 2)
1382			return -EINVAL;
1383
1384		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1385		if (err == 1) { /* match or error */
1386			char *str = data;
1387
1388			err = 0;
1389			if (msg_type == AUDIT_USER_TTY) {
1390				err = tty_audit_push();
1391				if (err)
1392					break;
1393			}
1394			audit_log_user_recv_msg(&ab, msg_type);
1395			if (msg_type != AUDIT_USER_TTY) {
1396				/* ensure NULL termination */
1397				str[data_len - 1] = '\0';
1398				audit_log_format(ab, " msg='%.*s'",
1399						 AUDIT_MESSAGE_TEXT_MAX,
1400						 str);
1401			} else {
 
 
1402				audit_log_format(ab, " data=");
1403				if (str[data_len - 1] == '\0')
1404					data_len--;
1405				audit_log_n_untrustedstring(ab, str, data_len);
 
 
1406			}
 
1407			audit_log_end(ab);
1408		}
1409		break;
1410	case AUDIT_ADD_RULE:
1411	case AUDIT_DEL_RULE:
1412		if (data_len < sizeof(struct audit_rule_data))
1413			return -EINVAL;
1414		if (audit_enabled == AUDIT_LOCKED) {
1415			audit_log_common_recv_msg(audit_context(), &ab,
1416						  AUDIT_CONFIG_CHANGE);
1417			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1418					 msg_type == AUDIT_ADD_RULE ?
1419						"add_rule" : "remove_rule",
1420					 audit_enabled);
1421			audit_log_end(ab);
1422			return -EPERM;
1423		}
1424		err = audit_rule_change(msg_type, seq, data, data_len);
 
1425		break;
1426	case AUDIT_LIST_RULES:
1427		err = audit_list_rules_send(skb, seq);
1428		break;
1429	case AUDIT_TRIM:
1430		audit_trim_trees();
1431		audit_log_common_recv_msg(audit_context(), &ab,
1432					  AUDIT_CONFIG_CHANGE);
1433		audit_log_format(ab, " op=trim res=1");
1434		audit_log_end(ab);
1435		break;
1436	case AUDIT_MAKE_EQUIV: {
1437		void *bufp = data;
1438		u32 sizes[2];
1439		size_t msglen = data_len;
1440		char *old, *new;
1441
1442		err = -EINVAL;
1443		if (msglen < 2 * sizeof(u32))
1444			break;
1445		memcpy(sizes, bufp, 2 * sizeof(u32));
1446		bufp += 2 * sizeof(u32);
1447		msglen -= 2 * sizeof(u32);
1448		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1449		if (IS_ERR(old)) {
1450			err = PTR_ERR(old);
1451			break;
1452		}
1453		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1454		if (IS_ERR(new)) {
1455			err = PTR_ERR(new);
1456			kfree(old);
1457			break;
1458		}
1459		/* OK, here comes... */
1460		err = audit_tag_tree(old, new);
1461
1462		audit_log_common_recv_msg(audit_context(), &ab,
1463					  AUDIT_CONFIG_CHANGE);
1464		audit_log_format(ab, " op=make_equiv old=");
1465		audit_log_untrustedstring(ab, old);
1466		audit_log_format(ab, " new=");
1467		audit_log_untrustedstring(ab, new);
1468		audit_log_format(ab, " res=%d", !err);
1469		audit_log_end(ab);
1470		kfree(old);
1471		kfree(new);
1472		break;
1473	}
1474	case AUDIT_SIGNAL_INFO:
1475		len = 0;
1476		if (audit_sig_sid) {
1477			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1478			if (err)
1479				return err;
1480		}
1481		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1482		if (!sig_data) {
1483			if (audit_sig_sid)
1484				security_release_secctx(ctx, len);
1485			return -ENOMEM;
1486		}
1487		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1488		sig_data->pid = audit_sig_pid;
1489		if (audit_sig_sid) {
1490			memcpy(sig_data->ctx, ctx, len);
1491			security_release_secctx(ctx, len);
1492		}
1493		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1494				 sig_data, struct_size(sig_data, ctx, len));
1495		kfree(sig_data);
1496		break;
1497	case AUDIT_TTY_GET: {
1498		struct audit_tty_status s;
1499		unsigned int t;
1500
1501		t = READ_ONCE(current->signal->audit_tty);
1502		s.enabled = t & AUDIT_TTY_ENABLE;
1503		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1504
1505		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1506		break;
1507	}
1508	case AUDIT_TTY_SET: {
1509		struct audit_tty_status s, old;
1510		struct audit_buffer	*ab;
1511		unsigned int t;
1512
1513		memset(&s, 0, sizeof(s));
1514		/* guard against past and future API changes */
1515		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1516		/* check if new data is valid */
1517		if ((s.enabled != 0 && s.enabled != 1) ||
1518		    (s.log_passwd != 0 && s.log_passwd != 1))
1519			err = -EINVAL;
1520
1521		if (err)
1522			t = READ_ONCE(current->signal->audit_tty);
1523		else {
1524			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1525			t = xchg(&current->signal->audit_tty, t);
1526		}
1527		old.enabled = t & AUDIT_TTY_ENABLE;
1528		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1529
1530		audit_log_common_recv_msg(audit_context(), &ab,
1531					  AUDIT_CONFIG_CHANGE);
1532		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1533				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1534				 old.enabled, s.enabled, old.log_passwd,
1535				 s.log_passwd, !err);
1536		audit_log_end(ab);
1537		break;
1538	}
1539	default:
1540		err = -EINVAL;
1541		break;
1542	}
1543
1544	return err < 0 ? err : 0;
1545}
1546
1547/**
1548 * audit_receive - receive messages from a netlink control socket
1549 * @skb: the message buffer
1550 *
1551 * Parse the provided skb and deal with any messages that may be present,
1552 * malformed skbs are discarded.
1553 */
1554static void audit_receive(struct sk_buff *skb)
1555{
1556	struct nlmsghdr *nlh;
1557	bool ack;
1558	/*
1559	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1560	 * if the nlmsg_len was not aligned
1561	 */
1562	int len;
1563	int err;
1564
1565	nlh = nlmsg_hdr(skb);
1566	len = skb->len;
1567
1568	audit_ctl_lock();
1569	while (nlmsg_ok(nlh, len)) {
1570		ack = nlh->nlmsg_flags & NLM_F_ACK;
1571		err = audit_receive_msg(skb, nlh, &ack);
1572
1573		/* send an ack if the user asked for one and audit_receive_msg
1574		 * didn't already do it, or if there was an error. */
1575		if (ack || err)
1576			netlink_ack(skb, nlh, err, NULL);
1577
1578		nlh = nlmsg_next(nlh, &len);
1579	}
1580	audit_ctl_unlock();
1581
1582	/* can't block with the ctrl lock, so penalize the sender now */
1583	if (audit_backlog_limit &&
1584	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1585		DECLARE_WAITQUEUE(wait, current);
1586
1587		/* wake kauditd to try and flush the queue */
1588		wake_up_interruptible(&kauditd_wait);
1589
1590		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1591		set_current_state(TASK_UNINTERRUPTIBLE);
1592		schedule_timeout(audit_backlog_wait_time);
1593		remove_wait_queue(&audit_backlog_wait, &wait);
1594	}
1595}
1596
1597/* Log information about who is connecting to the audit multicast socket */
1598static void audit_log_multicast(int group, const char *op, int err)
1599{
1600	const struct cred *cred;
1601	struct tty_struct *tty;
1602	char comm[sizeof(current->comm)];
1603	struct audit_buffer *ab;
1604
1605	if (!audit_enabled)
1606		return;
1607
1608	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1609	if (!ab)
1610		return;
1611
1612	cred = current_cred();
1613	tty = audit_get_tty();
1614	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1615			 task_pid_nr(current),
1616			 from_kuid(&init_user_ns, cred->uid),
1617			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1618			 tty ? tty_name(tty) : "(none)",
1619			 audit_get_sessionid(current));
1620	audit_put_tty(tty);
1621	audit_log_task_context(ab); /* subj= */
1622	audit_log_format(ab, " comm=");
1623	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1624	audit_log_d_path_exe(ab, current->mm); /* exe= */
1625	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1626	audit_log_end(ab);
1627}
1628
1629/* Run custom bind function on netlink socket group connect or bind requests. */
1630static int audit_multicast_bind(struct net *net, int group)
1631{
1632	int err = 0;
1633
1634	if (!capable(CAP_AUDIT_READ))
1635		err = -EPERM;
1636	audit_log_multicast(group, "connect", err);
1637	return err;
1638}
1639
1640static void audit_multicast_unbind(struct net *net, int group)
1641{
1642	audit_log_multicast(group, "disconnect", 0);
1643}
1644
1645static int __net_init audit_net_init(struct net *net)
1646{
1647	struct netlink_kernel_cfg cfg = {
1648		.input	= audit_receive,
1649		.bind	= audit_multicast_bind,
1650		.unbind	= audit_multicast_unbind,
1651		.flags	= NL_CFG_F_NONROOT_RECV,
1652		.groups	= AUDIT_NLGRP_MAX,
1653	};
1654
1655	struct audit_net *aunet = net_generic(net, audit_net_id);
1656
1657	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1658	if (aunet->sk == NULL) {
1659		audit_panic("cannot initialize netlink socket in namespace");
1660		return -ENOMEM;
1661	}
1662	/* limit the timeout in case auditd is blocked/stopped */
1663	aunet->sk->sk_sndtimeo = HZ / 10;
1664
1665	return 0;
1666}
1667
1668static void __net_exit audit_net_exit(struct net *net)
1669{
1670	struct audit_net *aunet = net_generic(net, audit_net_id);
1671
1672	/* NOTE: you would think that we would want to check the auditd
1673	 * connection and potentially reset it here if it lives in this
1674	 * namespace, but since the auditd connection tracking struct holds a
1675	 * reference to this namespace (see auditd_set()) we are only ever
1676	 * going to get here after that connection has been released */
1677
1678	netlink_kernel_release(aunet->sk);
1679}
1680
1681static struct pernet_operations audit_net_ops __net_initdata = {
1682	.init = audit_net_init,
1683	.exit = audit_net_exit,
1684	.id = &audit_net_id,
1685	.size = sizeof(struct audit_net),
1686};
1687
1688/* Initialize audit support at boot time. */
1689static int __init audit_init(void)
1690{
1691	int i;
1692
1693	if (audit_initialized == AUDIT_DISABLED)
1694		return 0;
1695
1696	audit_buffer_cache = kmem_cache_create("audit_buffer",
1697					       sizeof(struct audit_buffer),
1698					       0, SLAB_PANIC, NULL);
1699
1700	skb_queue_head_init(&audit_queue);
1701	skb_queue_head_init(&audit_retry_queue);
1702	skb_queue_head_init(&audit_hold_queue);
1703
1704	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1705		INIT_LIST_HEAD(&audit_inode_hash[i]);
1706
1707	mutex_init(&audit_cmd_mutex.lock);
1708	audit_cmd_mutex.owner = NULL;
1709
1710	pr_info("initializing netlink subsys (%s)\n",
1711		audit_default ? "enabled" : "disabled");
1712	register_pernet_subsys(&audit_net_ops);
1713
1714	audit_initialized = AUDIT_INITIALIZED;
 
 
1715
1716	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1717	if (IS_ERR(kauditd_task)) {
1718		int err = PTR_ERR(kauditd_task);
1719		panic("audit: failed to start the kauditd thread (%d)\n", err);
1720	}
1721
1722	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1723		"state=initialized audit_enabled=%u res=1",
1724		 audit_enabled);
1725
1726	return 0;
1727}
1728postcore_initcall(audit_init);
1729
1730/*
1731 * Process kernel command-line parameter at boot time.
1732 * audit={0|off} or audit={1|on}.
1733 */
1734static int __init audit_enable(char *str)
1735{
1736	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1737		audit_default = AUDIT_OFF;
1738	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1739		audit_default = AUDIT_ON;
1740	else {
1741		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1742		audit_default = AUDIT_ON;
1743	}
1744
1745	if (audit_default == AUDIT_OFF)
1746		audit_initialized = AUDIT_DISABLED;
1747	if (audit_set_enabled(audit_default))
1748		pr_err("audit: error setting audit state (%d)\n",
1749		       audit_default);
1750
1751	pr_info("%s\n", audit_default ?
1752		"enabled (after initialization)" : "disabled (until reboot)");
1753
1754	return 1;
1755}
1756__setup("audit=", audit_enable);
1757
1758/* Process kernel command-line parameter at boot time.
1759 * audit_backlog_limit=<n> */
1760static int __init audit_backlog_limit_set(char *str)
1761{
1762	u32 audit_backlog_limit_arg;
1763
1764	pr_info("audit_backlog_limit: ");
1765	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1766		pr_cont("using default of %u, unable to parse %s\n",
1767			audit_backlog_limit, str);
1768		return 1;
1769	}
1770
1771	audit_backlog_limit = audit_backlog_limit_arg;
1772	pr_cont("%d\n", audit_backlog_limit);
1773
1774	return 1;
1775}
1776__setup("audit_backlog_limit=", audit_backlog_limit_set);
1777
1778static void audit_buffer_free(struct audit_buffer *ab)
1779{
 
 
1780	if (!ab)
1781		return;
1782
1783	kfree_skb(ab->skb);
1784	kmem_cache_free(audit_buffer_cache, ab);
 
 
 
 
 
 
 
1785}
1786
1787static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1788					       gfp_t gfp_mask, int type)
1789{
1790	struct audit_buffer *ab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791
1792	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1793	if (!ab)
1794		return NULL;
1795
1796	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1797	if (!ab->skb)
1798		goto err;
1799	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1800		goto err;
1801
1802	ab->ctx = ctx;
1803	ab->gfp_mask = gfp_mask;
 
1804
1805	return ab;
1806
 
 
 
1807err:
1808	audit_buffer_free(ab);
1809	return NULL;
1810}
1811
1812/**
1813 * audit_serial - compute a serial number for the audit record
1814 *
1815 * Compute a serial number for the audit record.  Audit records are
1816 * written to user-space as soon as they are generated, so a complete
1817 * audit record may be written in several pieces.  The timestamp of the
1818 * record and this serial number are used by the user-space tools to
1819 * determine which pieces belong to the same audit record.  The
1820 * (timestamp,serial) tuple is unique for each syscall and is live from
1821 * syscall entry to syscall exit.
1822 *
1823 * NOTE: Another possibility is to store the formatted records off the
1824 * audit context (for those records that have a context), and emit them
1825 * all at syscall exit.  However, this could delay the reporting of
1826 * significant errors until syscall exit (or never, if the system
1827 * halts).
1828 */
1829unsigned int audit_serial(void)
1830{
1831	static atomic_t serial = ATOMIC_INIT(0);
1832
1833	return atomic_inc_return(&serial);
1834}
1835
1836static inline void audit_get_stamp(struct audit_context *ctx,
1837				   struct timespec64 *t, unsigned int *serial)
1838{
1839	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1840		ktime_get_coarse_real_ts64(t);
1841		*serial = audit_serial();
1842	}
1843}
1844
1845/**
1846 * audit_log_start - obtain an audit buffer
1847 * @ctx: audit_context (may be NULL)
1848 * @gfp_mask: type of allocation
1849 * @type: audit message type
1850 *
1851 * Returns audit_buffer pointer on success or NULL on error.
1852 *
1853 * Obtain an audit buffer.  This routine does locking to obtain the
1854 * audit buffer, but then no locking is required for calls to
1855 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1856 * syscall, then the syscall is marked as auditable and an audit record
1857 * will be written at syscall exit.  If there is no associated task, then
1858 * task context (ctx) should be NULL.
1859 */
1860struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1861				     int type)
1862{
1863	struct audit_buffer *ab;
1864	struct timespec64 t;
1865	unsigned int serial;
1866
1867	if (audit_initialized != AUDIT_INITIALIZED)
1868		return NULL;
1869
1870	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1871		return NULL;
1872
1873	/* NOTE: don't ever fail/sleep on these two conditions:
1874	 * 1. auditd generated record - since we need auditd to drain the
1875	 *    queue; also, when we are checking for auditd, compare PIDs using
1876	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1877	 *    using a PID anchored in the caller's namespace
1878	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1879	 *    while holding the mutex, although we do penalize the sender
1880	 *    later in audit_receive() when it is safe to block
1881	 */
1882	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1883		long stime = audit_backlog_wait_time;
1884
1885		while (audit_backlog_limit &&
1886		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1887			/* wake kauditd to try and flush the queue */
1888			wake_up_interruptible(&kauditd_wait);
1889
1890			/* sleep if we are allowed and we haven't exhausted our
1891			 * backlog wait limit */
1892			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1893				long rtime = stime;
1894
1895				DECLARE_WAITQUEUE(wait, current);
1896
1897				add_wait_queue_exclusive(&audit_backlog_wait,
1898							 &wait);
1899				set_current_state(TASK_UNINTERRUPTIBLE);
1900				stime = schedule_timeout(rtime);
1901				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1902				remove_wait_queue(&audit_backlog_wait, &wait);
1903			} else {
1904				if (audit_rate_check() && printk_ratelimit())
1905					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1906						skb_queue_len(&audit_queue),
1907						audit_backlog_limit);
1908				audit_log_lost("backlog limit exceeded");
1909				return NULL;
1910			}
1911		}
1912	}
1913
1914	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1915	if (!ab) {
1916		audit_log_lost("out of memory in audit_log_start");
1917		return NULL;
1918	}
1919
1920	audit_get_stamp(ab->ctx, &t, &serial);
1921	/* cancel dummy context to enable supporting records */
1922	if (ctx)
1923		ctx->dummy = 0;
1924	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1925			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1926
1927	return ab;
1928}
1929
1930/**
1931 * audit_expand - expand skb in the audit buffer
1932 * @ab: audit_buffer
1933 * @extra: space to add at tail of the skb
1934 *
1935 * Returns 0 (no space) on failed expansion, or available space if
1936 * successful.
1937 */
1938static inline int audit_expand(struct audit_buffer *ab, int extra)
1939{
1940	struct sk_buff *skb = ab->skb;
1941	int oldtail = skb_tailroom(skb);
1942	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1943	int newtail = skb_tailroom(skb);
1944
1945	if (ret < 0) {
1946		audit_log_lost("out of memory in audit_expand");
1947		return 0;
1948	}
1949
1950	skb->truesize += newtail - oldtail;
1951	return newtail;
1952}
1953
1954/*
1955 * Format an audit message into the audit buffer.  If there isn't enough
1956 * room in the audit buffer, more room will be allocated and vsnprint
1957 * will be called a second time.  Currently, we assume that a printk
1958 * can't format message larger than 1024 bytes, so we don't either.
1959 */
1960static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1961			      va_list args)
1962{
1963	int len, avail;
1964	struct sk_buff *skb;
1965	va_list args2;
1966
1967	if (!ab)
1968		return;
1969
1970	BUG_ON(!ab->skb);
1971	skb = ab->skb;
1972	avail = skb_tailroom(skb);
1973	if (avail == 0) {
1974		avail = audit_expand(ab, AUDIT_BUFSIZ);
1975		if (!avail)
1976			goto out;
1977	}
1978	va_copy(args2, args);
1979	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1980	if (len >= avail) {
1981		/* The printk buffer is 1024 bytes long, so if we get
1982		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1983		 * log everything that printk could have logged. */
1984		avail = audit_expand(ab,
1985			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1986		if (!avail)
1987			goto out_va_end;
1988		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1989	}
1990	if (len > 0)
1991		skb_put(skb, len);
1992out_va_end:
1993	va_end(args2);
1994out:
1995	return;
1996}
1997
1998/**
1999 * audit_log_format - format a message into the audit buffer.
2000 * @ab: audit_buffer
2001 * @fmt: format string
2002 * @...: optional parameters matching @fmt string
2003 *
2004 * All the work is done in audit_log_vformat.
2005 */
2006void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2007{
2008	va_list args;
2009
2010	if (!ab)
2011		return;
2012	va_start(args, fmt);
2013	audit_log_vformat(ab, fmt, args);
2014	va_end(args);
2015}
2016
2017/**
2018 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2019 * @ab: the audit_buffer
2020 * @buf: buffer to convert to hex
2021 * @len: length of @buf to be converted
2022 *
2023 * No return value; failure to expand is silently ignored.
2024 *
2025 * This function will take the passed buf and convert it into a string of
2026 * ascii hex digits. The new string is placed onto the skb.
2027 */
2028void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2029		size_t len)
2030{
2031	int i, avail, new_len;
2032	unsigned char *ptr;
2033	struct sk_buff *skb;
2034
2035	if (!ab)
2036		return;
2037
2038	BUG_ON(!ab->skb);
2039	skb = ab->skb;
2040	avail = skb_tailroom(skb);
2041	new_len = len<<1;
2042	if (new_len >= avail) {
2043		/* Round the buffer request up to the next multiple */
2044		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2045		avail = audit_expand(ab, new_len);
2046		if (!avail)
2047			return;
2048	}
2049
2050	ptr = skb_tail_pointer(skb);
2051	for (i = 0; i < len; i++)
2052		ptr = hex_byte_pack_upper(ptr, buf[i]);
2053	*ptr = 0;
2054	skb_put(skb, len << 1); /* new string is twice the old string */
2055}
2056
2057/*
2058 * Format a string of no more than slen characters into the audit buffer,
2059 * enclosed in quote marks.
2060 */
2061void audit_log_n_string(struct audit_buffer *ab, const char *string,
2062			size_t slen)
2063{
2064	int avail, new_len;
2065	unsigned char *ptr;
2066	struct sk_buff *skb;
2067
2068	if (!ab)
2069		return;
2070
2071	BUG_ON(!ab->skb);
2072	skb = ab->skb;
2073	avail = skb_tailroom(skb);
2074	new_len = slen + 3;	/* enclosing quotes + null terminator */
2075	if (new_len > avail) {
2076		avail = audit_expand(ab, new_len);
2077		if (!avail)
2078			return;
2079	}
2080	ptr = skb_tail_pointer(skb);
2081	*ptr++ = '"';
2082	memcpy(ptr, string, slen);
2083	ptr += slen;
2084	*ptr++ = '"';
2085	*ptr = 0;
2086	skb_put(skb, slen + 2);	/* don't include null terminator */
2087}
2088
2089/**
2090 * audit_string_contains_control - does a string need to be logged in hex
2091 * @string: string to be checked
2092 * @len: max length of the string to check
2093 */
2094bool audit_string_contains_control(const char *string, size_t len)
2095{
2096	const unsigned char *p;
2097	for (p = string; p < (const unsigned char *)string + len; p++) {
2098		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2099			return true;
2100	}
2101	return false;
2102}
2103
2104/**
2105 * audit_log_n_untrustedstring - log a string that may contain random characters
2106 * @ab: audit_buffer
2107 * @len: length of string (not including trailing null)
2108 * @string: string to be logged
2109 *
2110 * This code will escape a string that is passed to it if the string
2111 * contains a control character, unprintable character, double quote mark,
2112 * or a space. Unescaped strings will start and end with a double quote mark.
2113 * Strings that are escaped are printed in hex (2 digits per char).
2114 *
2115 * The caller specifies the number of characters in the string to log, which may
2116 * or may not be the entire string.
2117 */
2118void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2119				 size_t len)
2120{
2121	if (audit_string_contains_control(string, len))
2122		audit_log_n_hex(ab, string, len);
2123	else
2124		audit_log_n_string(ab, string, len);
2125}
2126
2127/**
2128 * audit_log_untrustedstring - log a string that may contain random characters
2129 * @ab: audit_buffer
2130 * @string: string to be logged
2131 *
2132 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2133 * determine string length.
2134 */
2135void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2136{
2137	audit_log_n_untrustedstring(ab, string, strlen(string));
2138}
2139
2140/* This is a helper-function to print the escaped d_path */
2141void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2142		      const struct path *path)
2143{
2144	char *p, *pathname;
2145
2146	if (prefix)
2147		audit_log_format(ab, "%s", prefix);
2148
2149	/* We will allow 11 spaces for ' (deleted)' to be appended */
2150	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2151	if (!pathname) {
2152		audit_log_format(ab, "\"<no_memory>\"");
2153		return;
2154	}
2155	p = d_path(path, pathname, PATH_MAX+11);
2156	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2157		/* FIXME: can we save some information here? */
2158		audit_log_format(ab, "\"<too_long>\"");
2159	} else
2160		audit_log_untrustedstring(ab, p);
2161	kfree(pathname);
2162}
2163
2164void audit_log_session_info(struct audit_buffer *ab)
2165{
2166	unsigned int sessionid = audit_get_sessionid(current);
2167	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2168
2169	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2170}
2171
2172void audit_log_key(struct audit_buffer *ab, char *key)
2173{
2174	audit_log_format(ab, " key=");
2175	if (key)
2176		audit_log_untrustedstring(ab, key);
2177	else
2178		audit_log_format(ab, "(null)");
2179}
2180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181int audit_log_task_context(struct audit_buffer *ab)
2182{
2183	char *ctx = NULL;
2184	unsigned len;
2185	int error;
2186	u32 sid;
2187
2188	security_current_getsecid_subj(&sid);
2189	if (!sid)
2190		return 0;
2191
2192	error = security_secid_to_secctx(sid, &ctx, &len);
2193	if (error) {
2194		if (error != -EINVAL)
2195			goto error_path;
2196		return 0;
2197	}
2198
2199	audit_log_format(ab, " subj=%s", ctx);
2200	security_release_secctx(ctx, len);
2201	return 0;
2202
2203error_path:
2204	audit_panic("error in audit_log_task_context");
2205	return error;
2206}
2207EXPORT_SYMBOL(audit_log_task_context);
2208
2209void audit_log_d_path_exe(struct audit_buffer *ab,
2210			  struct mm_struct *mm)
2211{
2212	struct file *exe_file;
2213
2214	if (!mm)
2215		goto out_null;
2216
2217	exe_file = get_mm_exe_file(mm);
2218	if (!exe_file)
2219		goto out_null;
2220
2221	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2222	fput(exe_file);
2223	return;
2224out_null:
2225	audit_log_format(ab, " exe=(null)");
2226}
2227
2228struct tty_struct *audit_get_tty(void)
2229{
2230	struct tty_struct *tty = NULL;
2231	unsigned long flags;
2232
2233	spin_lock_irqsave(&current->sighand->siglock, flags);
2234	if (current->signal)
2235		tty = tty_kref_get(current->signal->tty);
2236	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2237	return tty;
2238}
2239
2240void audit_put_tty(struct tty_struct *tty)
2241{
2242	tty_kref_put(tty);
2243}
2244
2245void audit_log_task_info(struct audit_buffer *ab)
2246{
2247	const struct cred *cred;
2248	char comm[sizeof(current->comm)];
2249	struct tty_struct *tty;
2250
2251	if (!ab)
2252		return;
2253
 
2254	cred = current_cred();
2255	tty = audit_get_tty();
2256	audit_log_format(ab,
2257			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2258			 " euid=%u suid=%u fsuid=%u"
2259			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2260			 task_ppid_nr(current),
2261			 task_tgid_nr(current),
2262			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2263			 from_kuid(&init_user_ns, cred->uid),
2264			 from_kgid(&init_user_ns, cred->gid),
2265			 from_kuid(&init_user_ns, cred->euid),
2266			 from_kuid(&init_user_ns, cred->suid),
2267			 from_kuid(&init_user_ns, cred->fsuid),
2268			 from_kgid(&init_user_ns, cred->egid),
2269			 from_kgid(&init_user_ns, cred->sgid),
2270			 from_kgid(&init_user_ns, cred->fsgid),
2271			 tty ? tty_name(tty) : "(none)",
2272			 audit_get_sessionid(current));
2273	audit_put_tty(tty);
2274	audit_log_format(ab, " comm=");
2275	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2276	audit_log_d_path_exe(ab, current->mm);
2277	audit_log_task_context(ab);
2278}
2279EXPORT_SYMBOL(audit_log_task_info);
2280
2281/**
2282 * audit_log_path_denied - report a path restriction denial
2283 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2284 * @operation: specific operation name
2285 */
2286void audit_log_path_denied(int type, const char *operation)
2287{
2288	struct audit_buffer *ab;
 
2289
2290	if (!audit_enabled || audit_dummy_context())
 
2291		return;
2292
2293	/* Generate log with subject, operation, outcome. */
2294	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
 
2295	if (!ab)
2296		return;
2297	audit_log_format(ab, "op=%s", operation);
2298	audit_log_task_info(ab);
2299	audit_log_format(ab, " res=0");
2300	audit_log_end(ab);
2301}
2302
2303/* global counter which is incremented every time something logs in */
2304static atomic_t session_id = ATOMIC_INIT(0);
2305
2306static int audit_set_loginuid_perm(kuid_t loginuid)
2307{
2308	/* if we are unset, we don't need privs */
2309	if (!audit_loginuid_set(current))
2310		return 0;
2311	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2312	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2313		return -EPERM;
2314	/* it is set, you need permission */
2315	if (!capable(CAP_AUDIT_CONTROL))
2316		return -EPERM;
2317	/* reject if this is not an unset and we don't allow that */
2318	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2319				 && uid_valid(loginuid))
2320		return -EPERM;
2321	return 0;
2322}
2323
2324static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2325				   unsigned int oldsessionid,
2326				   unsigned int sessionid, int rc)
2327{
2328	struct audit_buffer *ab;
2329	uid_t uid, oldloginuid, loginuid;
2330	struct tty_struct *tty;
2331
2332	if (!audit_enabled)
2333		return;
2334
2335	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2336	if (!ab)
2337		return;
2338
2339	uid = from_kuid(&init_user_ns, task_uid(current));
2340	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2341	loginuid = from_kuid(&init_user_ns, kloginuid);
2342	tty = audit_get_tty();
2343
2344	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2345	audit_log_task_context(ab);
2346	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2347			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2348			 oldsessionid, sessionid, !rc);
2349	audit_put_tty(tty);
2350	audit_log_end(ab);
2351}
2352
2353/**
2354 * audit_set_loginuid - set current task's loginuid
2355 * @loginuid: loginuid value
2356 *
2357 * Returns 0.
2358 *
2359 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2360 */
2361int audit_set_loginuid(kuid_t loginuid)
2362{
2363	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2364	kuid_t oldloginuid;
2365	int rc;
2366
2367	oldloginuid = audit_get_loginuid(current);
2368	oldsessionid = audit_get_sessionid(current);
2369
2370	rc = audit_set_loginuid_perm(loginuid);
2371	if (rc)
2372		goto out;
2373
2374	/* are we setting or clearing? */
2375	if (uid_valid(loginuid)) {
2376		sessionid = (unsigned int)atomic_inc_return(&session_id);
2377		if (unlikely(sessionid == AUDIT_SID_UNSET))
2378			sessionid = (unsigned int)atomic_inc_return(&session_id);
2379	}
2380
2381	current->sessionid = sessionid;
2382	current->loginuid = loginuid;
2383out:
2384	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2385	return rc;
2386}
2387
2388/**
2389 * audit_signal_info - record signal info for shutting down audit subsystem
2390 * @sig: signal value
2391 * @t: task being signaled
2392 *
2393 * If the audit subsystem is being terminated, record the task (pid)
2394 * and uid that is doing that.
2395 */
2396int audit_signal_info(int sig, struct task_struct *t)
2397{
2398	kuid_t uid = current_uid(), auid;
2399
2400	if (auditd_test_task(t) &&
2401	    (sig == SIGTERM || sig == SIGHUP ||
2402	     sig == SIGUSR1 || sig == SIGUSR2)) {
2403		audit_sig_pid = task_tgid_nr(current);
2404		auid = audit_get_loginuid(current);
2405		if (uid_valid(auid))
2406			audit_sig_uid = auid;
2407		else
2408			audit_sig_uid = uid;
2409		security_current_getsecid_subj(&audit_sig_sid);
2410	}
2411
2412	return audit_signal_info_syscall(t);
2413}
2414
2415/**
2416 * audit_log_end - end one audit record
2417 * @ab: the audit_buffer
2418 *
2419 * We can not do a netlink send inside an irq context because it blocks (last
2420 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2421 * queue and a kthread is scheduled to remove them from the queue outside the
2422 * irq context.  May be called in any context.
2423 */
2424void audit_log_end(struct audit_buffer *ab)
2425{
2426	struct sk_buff *skb;
2427	struct nlmsghdr *nlh;
2428
2429	if (!ab)
2430		return;
2431
2432	if (audit_rate_check()) {
2433		skb = ab->skb;
2434		ab->skb = NULL;
2435
2436		/* setup the netlink header, see the comments in
2437		 * kauditd_send_multicast_skb() for length quirks */
2438		nlh = nlmsg_hdr(skb);
2439		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2440
2441		/* queue the netlink packet and poke the kauditd thread */
2442		skb_queue_tail(&audit_queue, skb);
2443		wake_up_interruptible(&kauditd_wait);
2444	} else
2445		audit_log_lost("rate limit exceeded");
2446
2447	audit_buffer_free(ab);
2448}
2449
2450/**
2451 * audit_log - Log an audit record
2452 * @ctx: audit context
2453 * @gfp_mask: type of allocation
2454 * @type: audit message type
2455 * @fmt: format string to use
2456 * @...: variable parameters matching the format string
2457 *
2458 * This is a convenience function that calls audit_log_start,
2459 * audit_log_vformat, and audit_log_end.  It may be called
2460 * in any context.
2461 */
2462void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2463	       const char *fmt, ...)
2464{
2465	struct audit_buffer *ab;
2466	va_list args;
2467
2468	ab = audit_log_start(ctx, gfp_mask, type);
2469	if (ab) {
2470		va_start(args, fmt);
2471		audit_log_vformat(ab, fmt, args);
2472		va_end(args);
2473		audit_log_end(ab);
2474	}
2475}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476
2477EXPORT_SYMBOL(audit_log_start);
2478EXPORT_SYMBOL(audit_log_end);
2479EXPORT_SYMBOL(audit_log_format);
2480EXPORT_SYMBOL(audit_log);