Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.10.11
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
  34#include "xhci-mtk.h"
  35
  36#define DRIVER_AUTHOR "Sarah Sharp"
  37#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  38
  39#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  40
  41/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  42static int link_quirk;
  43module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  44MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  45
  46static unsigned int quirks;
  47module_param(quirks, uint, S_IRUGO);
  48MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  49
  50/* TODO: copied from ehci-hcd.c - can this be refactored? */
  51/*
  52 * xhci_handshake - spin reading hc until handshake completes or fails
  53 * @ptr: address of hc register to be read
  54 * @mask: bits to look at in result of read
  55 * @done: value of those bits when handshake succeeds
  56 * @usec: timeout in microseconds
  57 *
  58 * Returns negative errno, or zero on success
  59 *
  60 * Success happens when the "mask" bits have the specified value (hardware
  61 * handshake done).  There are two failure modes:  "usec" have passed (major
  62 * hardware flakeout), or the register reads as all-ones (hardware removed).
  63 */
  64int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
 
  65{
  66	u32	result;
  67
  68	do {
  69		result = readl(ptr);
  70		if (result == ~(u32)0)		/* card removed */
  71			return -ENODEV;
  72		result &= mask;
  73		if (result == done)
  74			return 0;
  75		udelay(1);
  76		usec--;
  77	} while (usec > 0);
  78	return -ETIMEDOUT;
  79}
  80
  81/*
  82 * Disable interrupts and begin the xHCI halting process.
  83 */
  84void xhci_quiesce(struct xhci_hcd *xhci)
  85{
  86	u32 halted;
  87	u32 cmd;
  88	u32 mask;
  89
  90	mask = ~(XHCI_IRQS);
  91	halted = readl(&xhci->op_regs->status) & STS_HALT;
  92	if (!halted)
  93		mask &= ~CMD_RUN;
  94
  95	cmd = readl(&xhci->op_regs->command);
  96	cmd &= mask;
  97	writel(cmd, &xhci->op_regs->command);
  98}
  99
 100/*
 101 * Force HC into halt state.
 102 *
 103 * Disable any IRQs and clear the run/stop bit.
 104 * HC will complete any current and actively pipelined transactions, and
 105 * should halt within 16 ms of the run/stop bit being cleared.
 106 * Read HC Halted bit in the status register to see when the HC is finished.
 107 */
 108int xhci_halt(struct xhci_hcd *xhci)
 109{
 110	int ret;
 111	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 112	xhci_quiesce(xhci);
 113
 114	ret = xhci_handshake(&xhci->op_regs->status,
 115			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 116	if (ret) {
 117		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 118		return ret;
 119	}
 120	xhci->xhc_state |= XHCI_STATE_HALTED;
 121	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 122	return ret;
 123}
 124
 125/*
 126 * Set the run bit and wait for the host to be running.
 127 */
 128static int xhci_start(struct xhci_hcd *xhci)
 129{
 130	u32 temp;
 131	int ret;
 132
 133	temp = readl(&xhci->op_regs->command);
 134	temp |= (CMD_RUN);
 135	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 136			temp);
 137	writel(temp, &xhci->op_regs->command);
 138
 139	/*
 140	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 141	 * running.
 142	 */
 143	ret = xhci_handshake(&xhci->op_regs->status,
 144			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 145	if (ret == -ETIMEDOUT)
 146		xhci_err(xhci, "Host took too long to start, "
 147				"waited %u microseconds.\n",
 148				XHCI_MAX_HALT_USEC);
 149	if (!ret)
 150		/* clear state flags. Including dying, halted or removing */
 151		xhci->xhc_state = 0;
 152
 153	return ret;
 154}
 155
 156/*
 157 * Reset a halted HC.
 158 *
 159 * This resets pipelines, timers, counters, state machines, etc.
 160 * Transactions will be terminated immediately, and operational registers
 161 * will be set to their defaults.
 162 */
 163int xhci_reset(struct xhci_hcd *xhci)
 164{
 165	u32 command;
 166	u32 state;
 167	int ret, i;
 168
 169	state = readl(&xhci->op_regs->status);
 170
 171	if (state == ~(u32)0) {
 172		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 173		return -ENODEV;
 174	}
 175
 176	if ((state & STS_HALT) == 0) {
 177		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 178		return 0;
 179	}
 180
 181	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 182	command = readl(&xhci->op_regs->command);
 183	command |= CMD_RESET;
 184	writel(command, &xhci->op_regs->command);
 185
 186	/* Existing Intel xHCI controllers require a delay of 1 mS,
 187	 * after setting the CMD_RESET bit, and before accessing any
 188	 * HC registers. This allows the HC to complete the
 189	 * reset operation and be ready for HC register access.
 190	 * Without this delay, the subsequent HC register access,
 191	 * may result in a system hang very rarely.
 192	 */
 193	if (xhci->quirks & XHCI_INTEL_HOST)
 194		udelay(1000);
 195
 196	ret = xhci_handshake(&xhci->op_regs->command,
 197			CMD_RESET, 0, 10 * 1000 * 1000);
 198	if (ret)
 199		return ret;
 200
 201	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 202			 "Wait for controller to be ready for doorbell rings");
 203	/*
 204	 * xHCI cannot write to any doorbells or operational registers other
 205	 * than status until the "Controller Not Ready" flag is cleared.
 206	 */
 207	ret = xhci_handshake(&xhci->op_regs->status,
 208			STS_CNR, 0, 10 * 1000 * 1000);
 209
 210	for (i = 0; i < 2; ++i) {
 211		xhci->bus_state[i].port_c_suspend = 0;
 212		xhci->bus_state[i].suspended_ports = 0;
 213		xhci->bus_state[i].resuming_ports = 0;
 214	}
 215
 216	return ret;
 217}
 218
 219#ifdef CONFIG_PCI
 220static int xhci_free_msi(struct xhci_hcd *xhci)
 221{
 222	int i;
 223
 224	if (!xhci->msix_entries)
 225		return -EINVAL;
 226
 227	for (i = 0; i < xhci->msix_count; i++)
 228		if (xhci->msix_entries[i].vector)
 229			free_irq(xhci->msix_entries[i].vector,
 230					xhci_to_hcd(xhci));
 231	return 0;
 232}
 233
 234/*
 235 * Set up MSI
 236 */
 237static int xhci_setup_msi(struct xhci_hcd *xhci)
 238{
 239	int ret;
 240	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 241
 242	ret = pci_enable_msi(pdev);
 243	if (ret) {
 244		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 245				"failed to allocate MSI entry");
 246		return ret;
 247	}
 248
 249	ret = request_irq(pdev->irq, xhci_msi_irq,
 250				0, "xhci_hcd", xhci_to_hcd(xhci));
 251	if (ret) {
 252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 253				"disable MSI interrupt");
 254		pci_disable_msi(pdev);
 255	}
 256
 257	return ret;
 258}
 259
 260/*
 261 * Free IRQs
 262 * free all IRQs request
 263 */
 264static void xhci_free_irq(struct xhci_hcd *xhci)
 265{
 266	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 267	int ret;
 268
 269	/* return if using legacy interrupt */
 270	if (xhci_to_hcd(xhci)->irq > 0)
 271		return;
 272
 273	ret = xhci_free_msi(xhci);
 274	if (!ret)
 275		return;
 276	if (pdev->irq > 0)
 277		free_irq(pdev->irq, xhci_to_hcd(xhci));
 278
 279	return;
 280}
 281
 282/*
 283 * Set up MSI-X
 284 */
 285static int xhci_setup_msix(struct xhci_hcd *xhci)
 286{
 287	int i, ret = 0;
 288	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 289	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 290
 291	/*
 292	 * calculate number of msi-x vectors supported.
 293	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 294	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 295	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 296	 *   Add additional 1 vector to ensure always available interrupt.
 297	 */
 298	xhci->msix_count = min(num_online_cpus() + 1,
 299				HCS_MAX_INTRS(xhci->hcs_params1));
 300
 301	xhci->msix_entries =
 302		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 303				GFP_KERNEL);
 304	if (!xhci->msix_entries)
 
 305		return -ENOMEM;
 
 306
 307	for (i = 0; i < xhci->msix_count; i++) {
 308		xhci->msix_entries[i].entry = i;
 309		xhci->msix_entries[i].vector = 0;
 310	}
 311
 312	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
 313	if (ret) {
 314		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 315				"Failed to enable MSI-X");
 316		goto free_entries;
 317	}
 318
 319	for (i = 0; i < xhci->msix_count; i++) {
 320		ret = request_irq(xhci->msix_entries[i].vector,
 321				xhci_msi_irq,
 322				0, "xhci_hcd", xhci_to_hcd(xhci));
 323		if (ret)
 324			goto disable_msix;
 325	}
 326
 327	hcd->msix_enabled = 1;
 328	return ret;
 329
 330disable_msix:
 331	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 332	xhci_free_irq(xhci);
 333	pci_disable_msix(pdev);
 334free_entries:
 335	kfree(xhci->msix_entries);
 336	xhci->msix_entries = NULL;
 337	return ret;
 338}
 339
 340/* Free any IRQs and disable MSI-X */
 341static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 342{
 343	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 344	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 345
 346	if (xhci->quirks & XHCI_PLAT)
 347		return;
 348
 349	xhci_free_irq(xhci);
 350
 351	if (xhci->msix_entries) {
 352		pci_disable_msix(pdev);
 353		kfree(xhci->msix_entries);
 354		xhci->msix_entries = NULL;
 355	} else {
 356		pci_disable_msi(pdev);
 357	}
 358
 359	hcd->msix_enabled = 0;
 360	return;
 361}
 362
 363static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 364{
 365	int i;
 366
 367	if (xhci->msix_entries) {
 368		for (i = 0; i < xhci->msix_count; i++)
 369			synchronize_irq(xhci->msix_entries[i].vector);
 370	}
 371}
 372
 373static int xhci_try_enable_msi(struct usb_hcd *hcd)
 374{
 375	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 376	struct pci_dev  *pdev;
 377	int ret;
 378
 379	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 380	if (xhci->quirks & XHCI_PLAT)
 381		return 0;
 382
 383	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 384	/*
 385	 * Some Fresco Logic host controllers advertise MSI, but fail to
 386	 * generate interrupts.  Don't even try to enable MSI.
 387	 */
 388	if (xhci->quirks & XHCI_BROKEN_MSI)
 389		goto legacy_irq;
 390
 391	/* unregister the legacy interrupt */
 392	if (hcd->irq)
 393		free_irq(hcd->irq, hcd);
 394	hcd->irq = 0;
 395
 396	ret = xhci_setup_msix(xhci);
 397	if (ret)
 398		/* fall back to msi*/
 399		ret = xhci_setup_msi(xhci);
 400
 401	if (!ret)
 402		/* hcd->irq is 0, we have MSI */
 403		return 0;
 404
 405	if (!pdev->irq) {
 406		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 407		return -EINVAL;
 408	}
 409
 410 legacy_irq:
 411	if (!strlen(hcd->irq_descr))
 412		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 413			 hcd->driver->description, hcd->self.busnum);
 414
 415	/* fall back to legacy interrupt*/
 416	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 417			hcd->irq_descr, hcd);
 418	if (ret) {
 419		xhci_err(xhci, "request interrupt %d failed\n",
 420				pdev->irq);
 421		return ret;
 422	}
 423	hcd->irq = pdev->irq;
 424	return 0;
 425}
 426
 427#else
 428
 429static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 430{
 431	return 0;
 432}
 433
 434static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 435{
 436}
 437
 438static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 439{
 440}
 441
 442#endif
 443
 444static void compliance_mode_recovery(unsigned long arg)
 445{
 446	struct xhci_hcd *xhci;
 447	struct usb_hcd *hcd;
 448	u32 temp;
 449	int i;
 450
 451	xhci = (struct xhci_hcd *)arg;
 452
 453	for (i = 0; i < xhci->num_usb3_ports; i++) {
 454		temp = readl(xhci->usb3_ports[i]);
 455		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 456			/*
 457			 * Compliance Mode Detected. Letting USB Core
 458			 * handle the Warm Reset
 459			 */
 460			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 461					"Compliance mode detected->port %d",
 462					i + 1);
 463			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 464					"Attempting compliance mode recovery");
 465			hcd = xhci->shared_hcd;
 466
 467			if (hcd->state == HC_STATE_SUSPENDED)
 468				usb_hcd_resume_root_hub(hcd);
 469
 470			usb_hcd_poll_rh_status(hcd);
 471		}
 472	}
 473
 474	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 475		mod_timer(&xhci->comp_mode_recovery_timer,
 476			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 477}
 478
 479/*
 480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 481 * that causes ports behind that hardware to enter compliance mode sometimes.
 482 * The quirk creates a timer that polls every 2 seconds the link state of
 483 * each host controller's port and recovers it by issuing a Warm reset
 484 * if Compliance mode is detected, otherwise the port will become "dead" (no
 485 * device connections or disconnections will be detected anymore). Becasue no
 486 * status event is generated when entering compliance mode (per xhci spec),
 487 * this quirk is needed on systems that have the failing hardware installed.
 488 */
 489static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 490{
 491	xhci->port_status_u0 = 0;
 492	setup_timer(&xhci->comp_mode_recovery_timer,
 493		    compliance_mode_recovery, (unsigned long)xhci);
 
 
 494	xhci->comp_mode_recovery_timer.expires = jiffies +
 495			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 496
 
 
 497	add_timer(&xhci->comp_mode_recovery_timer);
 498	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 499			"Compliance mode recovery timer initialized");
 500}
 501
 502/*
 503 * This function identifies the systems that have installed the SN65LVPE502CP
 504 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 505 * Systems:
 506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 507 */
 508static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 509{
 510	const char *dmi_product_name, *dmi_sys_vendor;
 511
 512	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 513	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 514	if (!dmi_product_name || !dmi_sys_vendor)
 515		return false;
 516
 517	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 518		return false;
 519
 520	if (strstr(dmi_product_name, "Z420") ||
 521			strstr(dmi_product_name, "Z620") ||
 522			strstr(dmi_product_name, "Z820") ||
 523			strstr(dmi_product_name, "Z1 Workstation"))
 524		return true;
 525
 526	return false;
 527}
 528
 529static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 530{
 531	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 532}
 533
 534
 535/*
 536 * Initialize memory for HCD and xHC (one-time init).
 537 *
 538 * Program the PAGESIZE register, initialize the device context array, create
 539 * device contexts (?), set up a command ring segment (or two?), create event
 540 * ring (one for now).
 541 */
 542int xhci_init(struct usb_hcd *hcd)
 543{
 544	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 545	int retval = 0;
 546
 547	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 548	spin_lock_init(&xhci->lock);
 549	if (xhci->hci_version == 0x95 && link_quirk) {
 550		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 551				"QUIRK: Not clearing Link TRB chain bits.");
 552		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 553	} else {
 554		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 555				"xHCI doesn't need link TRB QUIRK");
 556	}
 557	retval = xhci_mem_init(xhci, GFP_KERNEL);
 558	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 559
 560	/* Initializing Compliance Mode Recovery Data If Needed */
 561	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 562		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 563		compliance_mode_recovery_timer_init(xhci);
 564	}
 565
 566	return retval;
 567}
 568
 569/*-------------------------------------------------------------------------*/
 570
 571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572static int xhci_run_finished(struct xhci_hcd *xhci)
 573{
 574	if (xhci_start(xhci)) {
 575		xhci_halt(xhci);
 576		return -ENODEV;
 577	}
 578	xhci->shared_hcd->state = HC_STATE_RUNNING;
 579	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 580
 581	if (xhci->quirks & XHCI_NEC_HOST)
 582		xhci_ring_cmd_db(xhci);
 583
 584	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 585			"Finished xhci_run for USB3 roothub");
 586	return 0;
 587}
 588
 589/*
 590 * Start the HC after it was halted.
 591 *
 592 * This function is called by the USB core when the HC driver is added.
 593 * Its opposite is xhci_stop().
 594 *
 595 * xhci_init() must be called once before this function can be called.
 596 * Reset the HC, enable device slot contexts, program DCBAAP, and
 597 * set command ring pointer and event ring pointer.
 598 *
 599 * Setup MSI-X vectors and enable interrupts.
 600 */
 601int xhci_run(struct usb_hcd *hcd)
 602{
 603	u32 temp;
 604	u64 temp_64;
 605	int ret;
 606	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 607
 608	/* Start the xHCI host controller running only after the USB 2.0 roothub
 609	 * is setup.
 610	 */
 611
 612	hcd->uses_new_polling = 1;
 613	if (!usb_hcd_is_primary_hcd(hcd))
 614		return xhci_run_finished(xhci);
 615
 616	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 617
 618	ret = xhci_try_enable_msi(hcd);
 619	if (ret)
 620		return ret;
 621
 
 
 
 
 
 
 
 
 
 
 
 622	xhci_dbg(xhci, "Command ring memory map follows:\n");
 623	xhci_debug_ring(xhci, xhci->cmd_ring);
 624	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 625	xhci_dbg_cmd_ptrs(xhci);
 626
 627	xhci_dbg(xhci, "ERST memory map follows:\n");
 628	xhci_dbg_erst(xhci, &xhci->erst);
 629	xhci_dbg(xhci, "Event ring:\n");
 630	xhci_debug_ring(xhci, xhci->event_ring);
 631	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 632	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 633	temp_64 &= ~ERST_PTR_MASK;
 634	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 635			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 636
 637	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 638			"// Set the interrupt modulation register");
 639	temp = readl(&xhci->ir_set->irq_control);
 640	temp &= ~ER_IRQ_INTERVAL_MASK;
 641	/*
 642	 * the increment interval is 8 times as much as that defined
 643	 * in xHCI spec on MTK's controller
 644	 */
 645	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
 646	writel(temp, &xhci->ir_set->irq_control);
 647
 648	/* Set the HCD state before we enable the irqs */
 649	temp = readl(&xhci->op_regs->command);
 650	temp |= (CMD_EIE);
 651	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 652			"// Enable interrupts, cmd = 0x%x.", temp);
 653	writel(temp, &xhci->op_regs->command);
 654
 655	temp = readl(&xhci->ir_set->irq_pending);
 656	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 657			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 658			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 659	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 660	xhci_print_ir_set(xhci, 0);
 661
 662	if (xhci->quirks & XHCI_NEC_HOST) {
 663		struct xhci_command *command;
 664		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
 665		if (!command)
 666			return -ENOMEM;
 667		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 668				TRB_TYPE(TRB_NEC_GET_FW));
 669	}
 670	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 671			"Finished xhci_run for USB2 roothub");
 672	return 0;
 673}
 674EXPORT_SYMBOL_GPL(xhci_run);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675
 676/*
 677 * Stop xHCI driver.
 678 *
 679 * This function is called by the USB core when the HC driver is removed.
 680 * Its opposite is xhci_run().
 681 *
 682 * Disable device contexts, disable IRQs, and quiesce the HC.
 683 * Reset the HC, finish any completed transactions, and cleanup memory.
 684 */
 685void xhci_stop(struct usb_hcd *hcd)
 686{
 687	u32 temp;
 688	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 689
 690	mutex_lock(&xhci->mutex);
 691
 692	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
 693		spin_lock_irq(&xhci->lock);
 694
 695		xhci->xhc_state |= XHCI_STATE_HALTED;
 696		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 697		xhci_halt(xhci);
 698		xhci_reset(xhci);
 699		spin_unlock_irq(&xhci->lock);
 700	}
 701
 702	if (!usb_hcd_is_primary_hcd(hcd)) {
 703		mutex_unlock(&xhci->mutex);
 704		return;
 705	}
 706
 
 
 
 
 
 
 
 
 707	xhci_cleanup_msix(xhci);
 708
 
 
 
 
 
 
 709	/* Deleting Compliance Mode Recovery Timer */
 710	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 711			(!(xhci_all_ports_seen_u0(xhci)))) {
 712		del_timer_sync(&xhci->comp_mode_recovery_timer);
 713		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 714				"%s: compliance mode recovery timer deleted",
 715				__func__);
 716	}
 717
 718	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 719		usb_amd_dev_put();
 720
 721	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 722			"// Disabling event ring interrupts");
 723	temp = readl(&xhci->op_regs->status);
 724	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 725	temp = readl(&xhci->ir_set->irq_pending);
 726	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 727	xhci_print_ir_set(xhci, 0);
 728
 729	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 730	xhci_mem_cleanup(xhci);
 731	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 732			"xhci_stop completed - status = %x",
 733			readl(&xhci->op_regs->status));
 734	mutex_unlock(&xhci->mutex);
 735}
 736
 737/*
 738 * Shutdown HC (not bus-specific)
 739 *
 740 * This is called when the machine is rebooting or halting.  We assume that the
 741 * machine will be powered off, and the HC's internal state will be reset.
 742 * Don't bother to free memory.
 743 *
 744 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 745 */
 746void xhci_shutdown(struct usb_hcd *hcd)
 747{
 748	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 749
 750	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 751		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 752
 753	spin_lock_irq(&xhci->lock);
 754	xhci_halt(xhci);
 755	/* Workaround for spurious wakeups at shutdown with HSW */
 756	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 757		xhci_reset(xhci);
 758	spin_unlock_irq(&xhci->lock);
 759
 760	xhci_cleanup_msix(xhci);
 761
 762	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 763			"xhci_shutdown completed - status = %x",
 764			readl(&xhci->op_regs->status));
 765
 766	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 767	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 768		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 769}
 770
 771#ifdef CONFIG_PM
 772static void xhci_save_registers(struct xhci_hcd *xhci)
 773{
 774	xhci->s3.command = readl(&xhci->op_regs->command);
 775	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 776	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 777	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 778	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 779	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 780	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 781	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 782	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 783}
 784
 785static void xhci_restore_registers(struct xhci_hcd *xhci)
 786{
 787	writel(xhci->s3.command, &xhci->op_regs->command);
 788	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 789	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 790	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 791	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 792	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 793	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 794	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 795	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 796}
 797
 798static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 799{
 800	u64	val_64;
 801
 802	/* step 2: initialize command ring buffer */
 803	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 804	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 805		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 806				      xhci->cmd_ring->dequeue) &
 807		 (u64) ~CMD_RING_RSVD_BITS) |
 808		xhci->cmd_ring->cycle_state;
 809	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 810			"// Setting command ring address to 0x%llx",
 811			(long unsigned long) val_64);
 812	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 813}
 814
 815/*
 816 * The whole command ring must be cleared to zero when we suspend the host.
 817 *
 818 * The host doesn't save the command ring pointer in the suspend well, so we
 819 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 820 * aligned, because of the reserved bits in the command ring dequeue pointer
 821 * register.  Therefore, we can't just set the dequeue pointer back in the
 822 * middle of the ring (TRBs are 16-byte aligned).
 823 */
 824static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 825{
 826	struct xhci_ring *ring;
 827	struct xhci_segment *seg;
 828
 829	ring = xhci->cmd_ring;
 830	seg = ring->deq_seg;
 831	do {
 832		memset(seg->trbs, 0,
 833			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 834		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 835			cpu_to_le32(~TRB_CYCLE);
 836		seg = seg->next;
 837	} while (seg != ring->deq_seg);
 838
 839	/* Reset the software enqueue and dequeue pointers */
 840	ring->deq_seg = ring->first_seg;
 841	ring->dequeue = ring->first_seg->trbs;
 842	ring->enq_seg = ring->deq_seg;
 843	ring->enqueue = ring->dequeue;
 844
 845	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 846	/*
 847	 * Ring is now zeroed, so the HW should look for change of ownership
 848	 * when the cycle bit is set to 1.
 849	 */
 850	ring->cycle_state = 1;
 851
 852	/*
 853	 * Reset the hardware dequeue pointer.
 854	 * Yes, this will need to be re-written after resume, but we're paranoid
 855	 * and want to make sure the hardware doesn't access bogus memory
 856	 * because, say, the BIOS or an SMI started the host without changing
 857	 * the command ring pointers.
 858	 */
 859	xhci_set_cmd_ring_deq(xhci);
 860}
 861
 862static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 863{
 864	int port_index;
 865	__le32 __iomem **port_array;
 866	unsigned long flags;
 867	u32 t1, t2;
 868
 869	spin_lock_irqsave(&xhci->lock, flags);
 870
 871	/* disble usb3 ports Wake bits*/
 872	port_index = xhci->num_usb3_ports;
 873	port_array = xhci->usb3_ports;
 874	while (port_index--) {
 875		t1 = readl(port_array[port_index]);
 876		t1 = xhci_port_state_to_neutral(t1);
 877		t2 = t1 & ~PORT_WAKE_BITS;
 878		if (t1 != t2)
 879			writel(t2, port_array[port_index]);
 880	}
 881
 882	/* disble usb2 ports Wake bits*/
 883	port_index = xhci->num_usb2_ports;
 884	port_array = xhci->usb2_ports;
 885	while (port_index--) {
 886		t1 = readl(port_array[port_index]);
 887		t1 = xhci_port_state_to_neutral(t1);
 888		t2 = t1 & ~PORT_WAKE_BITS;
 889		if (t1 != t2)
 890			writel(t2, port_array[port_index]);
 891	}
 892
 893	spin_unlock_irqrestore(&xhci->lock, flags);
 894}
 895
 896/*
 897 * Stop HC (not bus-specific)
 898 *
 899 * This is called when the machine transition into S3/S4 mode.
 900 *
 901 */
 902int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 903{
 904	int			rc = 0;
 905	unsigned int		delay = XHCI_MAX_HALT_USEC;
 906	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 907	u32			command;
 908
 909	if (!hcd->state)
 910		return 0;
 911
 912	if (hcd->state != HC_STATE_SUSPENDED ||
 913			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 914		return -EINVAL;
 915
 916	/* Clear root port wake on bits if wakeup not allowed. */
 917	if (!do_wakeup)
 918		xhci_disable_port_wake_on_bits(xhci);
 919
 920	/* Don't poll the roothubs on bus suspend. */
 921	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 922	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 923	del_timer_sync(&hcd->rh_timer);
 924	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 925	del_timer_sync(&xhci->shared_hcd->rh_timer);
 926
 927	spin_lock_irq(&xhci->lock);
 928	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 929	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 930	/* step 1: stop endpoint */
 931	/* skipped assuming that port suspend has done */
 932
 933	/* step 2: clear Run/Stop bit */
 934	command = readl(&xhci->op_regs->command);
 935	command &= ~CMD_RUN;
 936	writel(command, &xhci->op_regs->command);
 937
 938	/* Some chips from Fresco Logic need an extraordinary delay */
 939	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 940
 941	if (xhci_handshake(&xhci->op_regs->status,
 942		      STS_HALT, STS_HALT, delay)) {
 943		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 944		spin_unlock_irq(&xhci->lock);
 945		return -ETIMEDOUT;
 946	}
 947	xhci_clear_command_ring(xhci);
 948
 949	/* step 3: save registers */
 950	xhci_save_registers(xhci);
 951
 952	/* step 4: set CSS flag */
 953	command = readl(&xhci->op_regs->command);
 954	command |= CMD_CSS;
 955	writel(command, &xhci->op_regs->command);
 956	if (xhci_handshake(&xhci->op_regs->status,
 957				STS_SAVE, 0, 10 * 1000)) {
 958		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 959		spin_unlock_irq(&xhci->lock);
 960		return -ETIMEDOUT;
 961	}
 962	spin_unlock_irq(&xhci->lock);
 963
 964	/*
 965	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 966	 * is about to be suspended.
 967	 */
 968	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 969			(!(xhci_all_ports_seen_u0(xhci)))) {
 970		del_timer_sync(&xhci->comp_mode_recovery_timer);
 971		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 972				"%s: compliance mode recovery timer deleted",
 973				__func__);
 974	}
 975
 976	/* step 5: remove core well power */
 977	/* synchronize irq when using MSI-X */
 978	xhci_msix_sync_irqs(xhci);
 979
 980	return rc;
 981}
 982EXPORT_SYMBOL_GPL(xhci_suspend);
 983
 984/*
 985 * start xHC (not bus-specific)
 986 *
 987 * This is called when the machine transition from S3/S4 mode.
 988 *
 989 */
 990int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 991{
 992	u32			command, temp = 0, status;
 993	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 994	struct usb_hcd		*secondary_hcd;
 995	int			retval = 0;
 996	bool			comp_timer_running = false;
 997
 998	if (!hcd->state)
 999		return 0;
1000
1001	/* Wait a bit if either of the roothubs need to settle from the
1002	 * transition into bus suspend.
1003	 */
1004	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005			time_before(jiffies,
1006				xhci->bus_state[1].next_statechange))
1007		msleep(100);
1008
1009	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011
1012	spin_lock_irq(&xhci->lock);
1013	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014		hibernated = true;
1015
1016	if (!hibernated) {
1017		/* step 1: restore register */
1018		xhci_restore_registers(xhci);
1019		/* step 2: initialize command ring buffer */
1020		xhci_set_cmd_ring_deq(xhci);
1021		/* step 3: restore state and start state*/
1022		/* step 3: set CRS flag */
1023		command = readl(&xhci->op_regs->command);
1024		command |= CMD_CRS;
1025		writel(command, &xhci->op_regs->command);
1026		if (xhci_handshake(&xhci->op_regs->status,
1027			      STS_RESTORE, 0, 10 * 1000)) {
1028			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029			spin_unlock_irq(&xhci->lock);
1030			return -ETIMEDOUT;
1031		}
1032		temp = readl(&xhci->op_regs->status);
1033	}
1034
1035	/* If restore operation fails, re-initialize the HC during resume */
1036	if ((temp & STS_SRE) || hibernated) {
1037
1038		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039				!(xhci_all_ports_seen_u0(xhci))) {
1040			del_timer_sync(&xhci->comp_mode_recovery_timer);
1041			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042				"Compliance Mode Recovery Timer deleted!");
1043		}
1044
1045		/* Let the USB core know _both_ roothubs lost power. */
1046		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048
1049		xhci_dbg(xhci, "Stop HCD\n");
1050		xhci_halt(xhci);
1051		xhci_reset(xhci);
1052		spin_unlock_irq(&xhci->lock);
1053		xhci_cleanup_msix(xhci);
1054
 
 
 
 
 
 
1055		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056		temp = readl(&xhci->op_regs->status);
1057		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058		temp = readl(&xhci->ir_set->irq_pending);
1059		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
1060		xhci_print_ir_set(xhci, 0);
1061
1062		xhci_dbg(xhci, "cleaning up memory\n");
1063		xhci_mem_cleanup(xhci);
1064		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065			    readl(&xhci->op_regs->status));
1066
1067		/* USB core calls the PCI reinit and start functions twice:
1068		 * first with the primary HCD, and then with the secondary HCD.
1069		 * If we don't do the same, the host will never be started.
1070		 */
1071		if (!usb_hcd_is_primary_hcd(hcd))
1072			secondary_hcd = hcd;
1073		else
1074			secondary_hcd = xhci->shared_hcd;
1075
1076		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077		retval = xhci_init(hcd->primary_hcd);
1078		if (retval)
1079			return retval;
1080		comp_timer_running = true;
1081
1082		xhci_dbg(xhci, "Start the primary HCD\n");
1083		retval = xhci_run(hcd->primary_hcd);
1084		if (!retval) {
1085			xhci_dbg(xhci, "Start the secondary HCD\n");
1086			retval = xhci_run(secondary_hcd);
1087		}
1088		hcd->state = HC_STATE_SUSPENDED;
1089		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090		goto done;
1091	}
1092
1093	/* step 4: set Run/Stop bit */
1094	command = readl(&xhci->op_regs->command);
1095	command |= CMD_RUN;
1096	writel(command, &xhci->op_regs->command);
1097	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098		  0, 250 * 1000);
1099
1100	/* step 5: walk topology and initialize portsc,
1101	 * portpmsc and portli
1102	 */
1103	/* this is done in bus_resume */
1104
1105	/* step 6: restart each of the previously
1106	 * Running endpoints by ringing their doorbells
1107	 */
1108
1109	spin_unlock_irq(&xhci->lock);
1110
1111 done:
1112	if (retval == 0) {
1113		/* Resume root hubs only when have pending events. */
1114		status = readl(&xhci->op_regs->status);
1115		if (status & STS_EINT) {
1116			usb_hcd_resume_root_hub(xhci->shared_hcd);
1117			usb_hcd_resume_root_hub(hcd);
1118		}
1119	}
1120
1121	/*
1122	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123	 * be re-initialized Always after a system resume. Ports are subject
1124	 * to suffer the Compliance Mode issue again. It doesn't matter if
1125	 * ports have entered previously to U0 before system's suspension.
1126	 */
1127	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128		compliance_mode_recovery_timer_init(xhci);
1129
1130	/* Re-enable port polling. */
1131	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133	usb_hcd_poll_rh_status(xhci->shared_hcd);
1134	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135	usb_hcd_poll_rh_status(hcd);
1136
1137	return retval;
1138}
1139EXPORT_SYMBOL_GPL(xhci_resume);
1140#endif	/* CONFIG_PM */
1141
1142/*-------------------------------------------------------------------------*/
1143
1144/**
1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147 * value to right shift 1 for the bitmask.
1148 *
1149 * Index  = (epnum * 2) + direction - 1,
1150 * where direction = 0 for OUT, 1 for IN.
1151 * For control endpoints, the IN index is used (OUT index is unused), so
1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153 */
1154unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155{
1156	unsigned int index;
1157	if (usb_endpoint_xfer_control(desc))
1158		index = (unsigned int) (usb_endpoint_num(desc)*2);
1159	else
1160		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162	return index;
1163}
1164
1165/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166 * address from the XHCI endpoint index.
1167 */
1168unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169{
1170	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172	return direction | number;
1173}
1174
1175/* Find the flag for this endpoint (for use in the control context).  Use the
1176 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177 * bit 1, etc.
1178 */
1179unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180{
1181	return 1 << (xhci_get_endpoint_index(desc) + 1);
1182}
1183
1184/* Find the flag for this endpoint (for use in the control context).  Use the
1185 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186 * bit 1, etc.
1187 */
1188unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189{
1190	return 1 << (ep_index + 1);
1191}
1192
1193/* Compute the last valid endpoint context index.  Basically, this is the
1194 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195 * we find the most significant bit set in the added contexts flags.
1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198 */
1199unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200{
1201	return fls(added_ctxs) - 1;
1202}
1203
1204/* Returns 1 if the arguments are OK;
1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206 */
1207static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209		const char *func) {
1210	struct xhci_hcd	*xhci;
1211	struct xhci_virt_device	*virt_dev;
1212
1213	if (!hcd || (check_ep && !ep) || !udev) {
1214		pr_debug("xHCI %s called with invalid args\n", func);
 
1215		return -EINVAL;
1216	}
1217	if (!udev->parent) {
1218		pr_debug("xHCI %s called for root hub\n", func);
 
1219		return 0;
1220	}
1221
1222	xhci = hcd_to_xhci(hcd);
 
 
 
1223	if (check_virt_dev) {
1224		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226					func);
1227			return -EINVAL;
1228		}
1229
1230		virt_dev = xhci->devs[udev->slot_id];
1231		if (virt_dev->udev != udev) {
1232			xhci_dbg(xhci, "xHCI %s called with udev and "
1233					  "virt_dev does not match\n", func);
1234			return -EINVAL;
1235		}
1236	}
1237
1238	if (xhci->xhc_state & XHCI_STATE_HALTED)
1239		return -ENODEV;
1240
1241	return 1;
1242}
1243
1244static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245		struct usb_device *udev, struct xhci_command *command,
1246		bool ctx_change, bool must_succeed);
1247
1248/*
1249 * Full speed devices may have a max packet size greater than 8 bytes, but the
1250 * USB core doesn't know that until it reads the first 8 bytes of the
1251 * descriptor.  If the usb_device's max packet size changes after that point,
1252 * we need to issue an evaluate context command and wait on it.
1253 */
1254static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255		unsigned int ep_index, struct urb *urb)
1256{
 
1257	struct xhci_container_ctx *out_ctx;
1258	struct xhci_input_control_ctx *ctrl_ctx;
1259	struct xhci_ep_ctx *ep_ctx;
1260	struct xhci_command *command;
1261	int max_packet_size;
1262	int hw_max_packet_size;
1263	int ret = 0;
1264
1265	out_ctx = xhci->devs[slot_id]->out_ctx;
1266	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269	if (hw_max_packet_size != max_packet_size) {
1270		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271				"Max Packet Size for ep 0 changed.");
1272		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273				"Max packet size in usb_device = %d",
1274				max_packet_size);
1275		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276				"Max packet size in xHCI HW = %d",
1277				hw_max_packet_size);
1278		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279				"Issuing evaluate context command.");
1280
1281		/* Set up the input context flags for the command */
1282		/* FIXME: This won't work if a non-default control endpoint
1283		 * changes max packet sizes.
1284		 */
1285
1286		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287		if (!command)
1288			return -ENOMEM;
1289
1290		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292		if (!ctrl_ctx) {
1293			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294					__func__);
1295			ret = -ENOMEM;
1296			goto command_cleanup;
1297		}
1298		/* Set up the modified control endpoint 0 */
1299		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300				xhci->devs[slot_id]->out_ctx, ep_index);
1301
1302		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305
 
 
 
 
 
1306		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307		ctrl_ctx->drop_flags = 0;
1308
1309		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313
1314		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315				true, false);
1316
1317		/* Clean up the input context for later use by bandwidth
1318		 * functions.
1319		 */
1320		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321command_cleanup:
1322		kfree(command->completion);
1323		kfree(command);
1324	}
1325	return ret;
1326}
1327
1328/*
1329 * non-error returns are a promise to giveback() the urb later
1330 * we drop ownership so next owner (or urb unlink) can get it
1331 */
1332int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333{
1334	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335	struct xhci_td *buffer;
1336	unsigned long flags;
1337	int ret = 0;
1338	unsigned int slot_id, ep_index;
1339	struct urb_priv	*urb_priv;
1340	int size, i;
1341
1342	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1343					true, true, __func__) <= 0)
1344		return -EINVAL;
1345
1346	slot_id = urb->dev->slot_id;
1347	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1348
1349	if (!HCD_HW_ACCESSIBLE(hcd)) {
1350		if (!in_interrupt())
1351			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1352		ret = -ESHUTDOWN;
1353		goto exit;
1354	}
1355
1356	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1357		size = urb->number_of_packets;
1358	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1359	    urb->transfer_buffer_length > 0 &&
1360	    urb->transfer_flags & URB_ZERO_PACKET &&
1361	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1362		size = 2;
1363	else
1364		size = 1;
1365
1366	urb_priv = kzalloc(sizeof(struct urb_priv) +
1367				  size * sizeof(struct xhci_td *), mem_flags);
1368	if (!urb_priv)
1369		return -ENOMEM;
1370
1371	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1372	if (!buffer) {
1373		kfree(urb_priv);
1374		return -ENOMEM;
1375	}
1376
1377	for (i = 0; i < size; i++) {
1378		urb_priv->td[i] = buffer;
1379		buffer++;
1380	}
1381
1382	urb_priv->length = size;
1383	urb_priv->td_cnt = 0;
1384	urb->hcpriv = urb_priv;
1385
1386	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1387		/* Check to see if the max packet size for the default control
1388		 * endpoint changed during FS device enumeration
1389		 */
1390		if (urb->dev->speed == USB_SPEED_FULL) {
1391			ret = xhci_check_maxpacket(xhci, slot_id,
1392					ep_index, urb);
1393			if (ret < 0) {
1394				xhci_urb_free_priv(urb_priv);
1395				urb->hcpriv = NULL;
1396				return ret;
1397			}
1398		}
1399
1400		/* We have a spinlock and interrupts disabled, so we must pass
1401		 * atomic context to this function, which may allocate memory.
1402		 */
1403		spin_lock_irqsave(&xhci->lock, flags);
1404		if (xhci->xhc_state & XHCI_STATE_DYING)
1405			goto dying;
1406		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1407				slot_id, ep_index);
1408		if (ret)
1409			goto free_priv;
1410		spin_unlock_irqrestore(&xhci->lock, flags);
1411	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1412		spin_lock_irqsave(&xhci->lock, flags);
1413		if (xhci->xhc_state & XHCI_STATE_DYING)
1414			goto dying;
1415		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416				EP_GETTING_STREAMS) {
1417			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418					"is transitioning to using streams.\n");
1419			ret = -EINVAL;
1420		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1421				EP_GETTING_NO_STREAMS) {
1422			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1423					"is transitioning to "
1424					"not having streams.\n");
1425			ret = -EINVAL;
1426		} else {
1427			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1428					slot_id, ep_index);
1429		}
1430		if (ret)
1431			goto free_priv;
1432		spin_unlock_irqrestore(&xhci->lock, flags);
1433	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1434		spin_lock_irqsave(&xhci->lock, flags);
1435		if (xhci->xhc_state & XHCI_STATE_DYING)
1436			goto dying;
1437		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1438				slot_id, ep_index);
1439		if (ret)
1440			goto free_priv;
1441		spin_unlock_irqrestore(&xhci->lock, flags);
1442	} else {
1443		spin_lock_irqsave(&xhci->lock, flags);
1444		if (xhci->xhc_state & XHCI_STATE_DYING)
1445			goto dying;
1446		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1447				slot_id, ep_index);
1448		if (ret)
1449			goto free_priv;
1450		spin_unlock_irqrestore(&xhci->lock, flags);
1451	}
1452exit:
1453	return ret;
1454dying:
1455	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1456			"non-responsive xHCI host.\n",
1457			urb->ep->desc.bEndpointAddress, urb);
1458	ret = -ESHUTDOWN;
1459free_priv:
1460	xhci_urb_free_priv(urb_priv);
1461	urb->hcpriv = NULL;
1462	spin_unlock_irqrestore(&xhci->lock, flags);
1463	return ret;
1464}
1465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466/*
1467 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1468 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1469 * should pick up where it left off in the TD, unless a Set Transfer Ring
1470 * Dequeue Pointer is issued.
1471 *
1472 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1473 * the ring.  Since the ring is a contiguous structure, they can't be physically
1474 * removed.  Instead, there are two options:
1475 *
1476 *  1) If the HC is in the middle of processing the URB to be canceled, we
1477 *     simply move the ring's dequeue pointer past those TRBs using the Set
1478 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1479 *     when drivers timeout on the last submitted URB and attempt to cancel.
1480 *
1481 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1482 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1483 *     HC will need to invalidate the any TRBs it has cached after the stop
1484 *     endpoint command, as noted in the xHCI 0.95 errata.
1485 *
1486 *  3) The TD may have completed by the time the Stop Endpoint Command
1487 *     completes, so software needs to handle that case too.
1488 *
1489 * This function should protect against the TD enqueueing code ringing the
1490 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1491 * It also needs to account for multiple cancellations on happening at the same
1492 * time for the same endpoint.
1493 *
1494 * Note that this function can be called in any context, or so says
1495 * usb_hcd_unlink_urb()
1496 */
1497int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1498{
1499	unsigned long flags;
1500	int ret, i;
1501	u32 temp;
1502	struct xhci_hcd *xhci;
1503	struct urb_priv	*urb_priv;
1504	struct xhci_td *td;
1505	unsigned int ep_index;
1506	struct xhci_ring *ep_ring;
1507	struct xhci_virt_ep *ep;
1508	struct xhci_command *command;
1509
1510	xhci = hcd_to_xhci(hcd);
1511	spin_lock_irqsave(&xhci->lock, flags);
1512	/* Make sure the URB hasn't completed or been unlinked already */
1513	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1514	if (ret || !urb->hcpriv)
1515		goto done;
1516	temp = readl(&xhci->op_regs->status);
1517	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1518		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1519				"HW died, freeing TD.");
1520		urb_priv = urb->hcpriv;
1521		for (i = urb_priv->td_cnt;
1522		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1523		     i++) {
1524			td = urb_priv->td[i];
1525			if (!list_empty(&td->td_list))
1526				list_del_init(&td->td_list);
1527			if (!list_empty(&td->cancelled_td_list))
1528				list_del_init(&td->cancelled_td_list);
1529		}
1530
1531		usb_hcd_unlink_urb_from_ep(hcd, urb);
1532		spin_unlock_irqrestore(&xhci->lock, flags);
1533		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1534		xhci_urb_free_priv(urb_priv);
1535		return ret;
1536	}
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1539	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1540	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1541	if (!ep_ring) {
1542		ret = -EINVAL;
1543		goto done;
1544	}
1545
1546	urb_priv = urb->hcpriv;
1547	i = urb_priv->td_cnt;
1548	if (i < urb_priv->length)
1549		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550				"Cancel URB %p, dev %s, ep 0x%x, "
1551				"starting at offset 0x%llx",
1552				urb, urb->dev->devpath,
1553				urb->ep->desc.bEndpointAddress,
1554				(unsigned long long) xhci_trb_virt_to_dma(
1555					urb_priv->td[i]->start_seg,
1556					urb_priv->td[i]->first_trb));
1557
1558	for (; i < urb_priv->length; i++) {
1559		td = urb_priv->td[i];
1560		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1561	}
1562
1563	/* Queue a stop endpoint command, but only if this is
1564	 * the first cancellation to be handled.
1565	 */
1566	if (!(ep->ep_state & EP_HALT_PENDING)) {
1567		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1568		if (!command) {
1569			ret = -ENOMEM;
1570			goto done;
1571		}
1572		ep->ep_state |= EP_HALT_PENDING;
1573		ep->stop_cmds_pending++;
1574		ep->stop_cmd_timer.expires = jiffies +
1575			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1576		add_timer(&ep->stop_cmd_timer);
1577		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1578					 ep_index, 0);
1579		xhci_ring_cmd_db(xhci);
1580	}
1581done:
1582	spin_unlock_irqrestore(&xhci->lock, flags);
1583	return ret;
1584}
1585
1586/* Drop an endpoint from a new bandwidth configuration for this device.
1587 * Only one call to this function is allowed per endpoint before
1588 * check_bandwidth() or reset_bandwidth() must be called.
1589 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1590 * add the endpoint to the schedule with possibly new parameters denoted by a
1591 * different endpoint descriptor in usb_host_endpoint.
1592 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1593 * not allowed.
1594 *
1595 * The USB core will not allow URBs to be queued to an endpoint that is being
1596 * disabled, so there's no need for mutual exclusion to protect
1597 * the xhci->devs[slot_id] structure.
1598 */
1599int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1600		struct usb_host_endpoint *ep)
1601{
1602	struct xhci_hcd *xhci;
1603	struct xhci_container_ctx *in_ctx, *out_ctx;
1604	struct xhci_input_control_ctx *ctrl_ctx;
 
 
1605	unsigned int ep_index;
1606	struct xhci_ep_ctx *ep_ctx;
1607	u32 drop_flag;
1608	u32 new_add_flags, new_drop_flags;
1609	int ret;
1610
1611	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1612	if (ret <= 0)
1613		return ret;
1614	xhci = hcd_to_xhci(hcd);
1615	if (xhci->xhc_state & XHCI_STATE_DYING)
1616		return -ENODEV;
1617
1618	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1619	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1620	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1621		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1622				__func__, drop_flag);
1623		return 0;
1624	}
1625
1626	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1627	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1628	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1629	if (!ctrl_ctx) {
1630		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1631				__func__);
1632		return 0;
1633	}
1634
1635	ep_index = xhci_get_endpoint_index(&ep->desc);
1636	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1637	/* If the HC already knows the endpoint is disabled,
1638	 * or the HCD has noted it is disabled, ignore this request
1639	 */
1640	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1641	    le32_to_cpu(ctrl_ctx->drop_flags) &
1642	    xhci_get_endpoint_flag(&ep->desc)) {
1643		/* Do not warn when called after a usb_device_reset */
1644		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1645			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1646				  __func__, ep);
1647		return 0;
1648	}
1649
1650	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1651	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1652
1653	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1654	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1655
1656	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
 
 
 
 
 
 
 
 
1657
1658	if (xhci->quirks & XHCI_MTK_HOST)
1659		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1660
1661	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1662			(unsigned int) ep->desc.bEndpointAddress,
1663			udev->slot_id,
1664			(unsigned int) new_drop_flags,
1665			(unsigned int) new_add_flags);
 
1666	return 0;
1667}
1668
1669/* Add an endpoint to a new possible bandwidth configuration for this device.
1670 * Only one call to this function is allowed per endpoint before
1671 * check_bandwidth() or reset_bandwidth() must be called.
1672 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1673 * add the endpoint to the schedule with possibly new parameters denoted by a
1674 * different endpoint descriptor in usb_host_endpoint.
1675 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1676 * not allowed.
1677 *
1678 * The USB core will not allow URBs to be queued to an endpoint until the
1679 * configuration or alt setting is installed in the device, so there's no need
1680 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1681 */
1682int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1683		struct usb_host_endpoint *ep)
1684{
1685	struct xhci_hcd *xhci;
1686	struct xhci_container_ctx *in_ctx;
1687	unsigned int ep_index;
 
 
1688	struct xhci_input_control_ctx *ctrl_ctx;
1689	u32 added_ctxs;
1690	u32 new_add_flags, new_drop_flags;
 
1691	struct xhci_virt_device *virt_dev;
1692	int ret = 0;
1693
1694	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1695	if (ret <= 0) {
1696		/* So we won't queue a reset ep command for a root hub */
1697		ep->hcpriv = NULL;
1698		return ret;
1699	}
1700	xhci = hcd_to_xhci(hcd);
1701	if (xhci->xhc_state & XHCI_STATE_DYING)
1702		return -ENODEV;
1703
1704	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
 
1705	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1706		/* FIXME when we have to issue an evaluate endpoint command to
1707		 * deal with ep0 max packet size changing once we get the
1708		 * descriptors
1709		 */
1710		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1711				__func__, added_ctxs);
1712		return 0;
1713	}
1714
1715	virt_dev = xhci->devs[udev->slot_id];
1716	in_ctx = virt_dev->in_ctx;
1717	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1718	if (!ctrl_ctx) {
1719		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1720				__func__);
1721		return 0;
1722	}
1723
1724	ep_index = xhci_get_endpoint_index(&ep->desc);
 
 
1725	/* If this endpoint is already in use, and the upper layers are trying
1726	 * to add it again without dropping it, reject the addition.
1727	 */
1728	if (virt_dev->eps[ep_index].ring &&
1729			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
 
1730		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1731				"without dropping it.\n",
1732				(unsigned int) ep->desc.bEndpointAddress);
1733		return -EINVAL;
1734	}
1735
1736	/* If the HCD has already noted the endpoint is enabled,
1737	 * ignore this request.
1738	 */
1739	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
 
1740		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1741				__func__, ep);
1742		return 0;
1743	}
1744
1745	/*
1746	 * Configuration and alternate setting changes must be done in
1747	 * process context, not interrupt context (or so documenation
1748	 * for usb_set_interface() and usb_set_configuration() claim).
1749	 */
1750	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1751		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1752				__func__, ep->desc.bEndpointAddress);
1753		return -ENOMEM;
1754	}
1755
1756	if (xhci->quirks & XHCI_MTK_HOST) {
1757		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1758		if (ret < 0) {
1759			xhci_free_or_cache_endpoint_ring(xhci,
1760				virt_dev, ep_index);
1761			return ret;
1762		}
1763	}
1764
1765	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1766	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1767
1768	/* If xhci_endpoint_disable() was called for this endpoint, but the
1769	 * xHC hasn't been notified yet through the check_bandwidth() call,
1770	 * this re-adds a new state for the endpoint from the new endpoint
1771	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1772	 * drop flags alone.
1773	 */
1774	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1775
 
 
 
 
 
 
 
 
 
1776	/* Store the usb_device pointer for later use */
1777	ep->hcpriv = udev;
1778
1779	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1780			(unsigned int) ep->desc.bEndpointAddress,
1781			udev->slot_id,
1782			(unsigned int) new_drop_flags,
1783			(unsigned int) new_add_flags);
 
1784	return 0;
1785}
1786
1787static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1788{
1789	struct xhci_input_control_ctx *ctrl_ctx;
1790	struct xhci_ep_ctx *ep_ctx;
1791	struct xhci_slot_ctx *slot_ctx;
1792	int i;
1793
1794	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1795	if (!ctrl_ctx) {
1796		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1797				__func__);
1798		return;
1799	}
1800
1801	/* When a device's add flag and drop flag are zero, any subsequent
1802	 * configure endpoint command will leave that endpoint's state
1803	 * untouched.  Make sure we don't leave any old state in the input
1804	 * endpoint contexts.
1805	 */
 
1806	ctrl_ctx->drop_flags = 0;
1807	ctrl_ctx->add_flags = 0;
1808	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1809	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1810	/* Endpoint 0 is always valid */
1811	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1812	for (i = 1; i < 31; ++i) {
1813		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1814		ep_ctx->ep_info = 0;
1815		ep_ctx->ep_info2 = 0;
1816		ep_ctx->deq = 0;
1817		ep_ctx->tx_info = 0;
1818	}
1819}
1820
1821static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1822		struct usb_device *udev, u32 *cmd_status)
1823{
1824	int ret;
1825
1826	switch (*cmd_status) {
1827	case COMP_CMD_ABORT:
1828	case COMP_CMD_STOP:
1829		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1830		ret = -ETIME;
1831		break;
1832	case COMP_ENOMEM:
1833		dev_warn(&udev->dev,
1834			 "Not enough host controller resources for new device state.\n");
1835		ret = -ENOMEM;
1836		/* FIXME: can we allocate more resources for the HC? */
1837		break;
1838	case COMP_BW_ERR:
1839	case COMP_2ND_BW_ERR:
1840		dev_warn(&udev->dev,
1841			 "Not enough bandwidth for new device state.\n");
1842		ret = -ENOSPC;
1843		/* FIXME: can we go back to the old state? */
1844		break;
1845	case COMP_TRB_ERR:
1846		/* the HCD set up something wrong */
1847		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1848				"add flag = 1, "
1849				"and endpoint is not disabled.\n");
1850		ret = -EINVAL;
1851		break;
1852	case COMP_DEV_ERR:
1853		dev_warn(&udev->dev,
1854			 "ERROR: Incompatible device for endpoint configure command.\n");
1855		ret = -ENODEV;
1856		break;
1857	case COMP_SUCCESS:
1858		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1859				"Successful Endpoint Configure command");
1860		ret = 0;
1861		break;
1862	default:
1863		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1864				*cmd_status);
1865		ret = -EINVAL;
1866		break;
1867	}
1868	return ret;
1869}
1870
1871static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1872		struct usb_device *udev, u32 *cmd_status)
1873{
1874	int ret;
1875	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1876
1877	switch (*cmd_status) {
1878	case COMP_CMD_ABORT:
1879	case COMP_CMD_STOP:
1880		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1881		ret = -ETIME;
1882		break;
1883	case COMP_EINVAL:
1884		dev_warn(&udev->dev,
1885			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1886		ret = -EINVAL;
1887		break;
1888	case COMP_EBADSLT:
1889		dev_warn(&udev->dev,
1890			"WARN: slot not enabled for evaluate context command.\n");
1891		ret = -EINVAL;
1892		break;
1893	case COMP_CTX_STATE:
1894		dev_warn(&udev->dev,
1895			"WARN: invalid context state for evaluate context command.\n");
1896		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1897		ret = -EINVAL;
1898		break;
1899	case COMP_DEV_ERR:
1900		dev_warn(&udev->dev,
1901			"ERROR: Incompatible device for evaluate context command.\n");
1902		ret = -ENODEV;
1903		break;
1904	case COMP_MEL_ERR:
1905		/* Max Exit Latency too large error */
1906		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1907		ret = -EINVAL;
1908		break;
1909	case COMP_SUCCESS:
1910		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1911				"Successful evaluate context command");
1912		ret = 0;
1913		break;
1914	default:
1915		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1916			*cmd_status);
1917		ret = -EINVAL;
1918		break;
1919	}
1920	return ret;
1921}
1922
1923static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1924		struct xhci_input_control_ctx *ctrl_ctx)
1925{
 
1926	u32 valid_add_flags;
1927	u32 valid_drop_flags;
1928
 
1929	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1930	 * (bit 1).  The default control endpoint is added during the Address
1931	 * Device command and is never removed until the slot is disabled.
1932	 */
1933	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1934	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1935
1936	/* Use hweight32 to count the number of ones in the add flags, or
1937	 * number of endpoints added.  Don't count endpoints that are changed
1938	 * (both added and dropped).
1939	 */
1940	return hweight32(valid_add_flags) -
1941		hweight32(valid_add_flags & valid_drop_flags);
1942}
1943
1944static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1945		struct xhci_input_control_ctx *ctrl_ctx)
1946{
 
1947	u32 valid_add_flags;
1948	u32 valid_drop_flags;
1949
1950	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1951	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
 
1952
1953	return hweight32(valid_drop_flags) -
1954		hweight32(valid_add_flags & valid_drop_flags);
1955}
1956
1957/*
1958 * We need to reserve the new number of endpoints before the configure endpoint
1959 * command completes.  We can't subtract the dropped endpoints from the number
1960 * of active endpoints until the command completes because we can oversubscribe
1961 * the host in this case:
1962 *
1963 *  - the first configure endpoint command drops more endpoints than it adds
1964 *  - a second configure endpoint command that adds more endpoints is queued
1965 *  - the first configure endpoint command fails, so the config is unchanged
1966 *  - the second command may succeed, even though there isn't enough resources
1967 *
1968 * Must be called with xhci->lock held.
1969 */
1970static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1971		struct xhci_input_control_ctx *ctrl_ctx)
1972{
1973	u32 added_eps;
1974
1975	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1977		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978				"Not enough ep ctxs: "
1979				"%u active, need to add %u, limit is %u.",
1980				xhci->num_active_eps, added_eps,
1981				xhci->limit_active_eps);
1982		return -ENOMEM;
1983	}
1984	xhci->num_active_eps += added_eps;
1985	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1986			"Adding %u ep ctxs, %u now active.", added_eps,
1987			xhci->num_active_eps);
1988	return 0;
1989}
1990
1991/*
1992 * The configure endpoint was failed by the xHC for some other reason, so we
1993 * need to revert the resources that failed configuration would have used.
1994 *
1995 * Must be called with xhci->lock held.
1996 */
1997static void xhci_free_host_resources(struct xhci_hcd *xhci,
1998		struct xhci_input_control_ctx *ctrl_ctx)
1999{
2000	u32 num_failed_eps;
2001
2002	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2003	xhci->num_active_eps -= num_failed_eps;
2004	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005			"Removing %u failed ep ctxs, %u now active.",
2006			num_failed_eps,
2007			xhci->num_active_eps);
2008}
2009
2010/*
2011 * Now that the command has completed, clean up the active endpoint count by
2012 * subtracting out the endpoints that were dropped (but not changed).
2013 *
2014 * Must be called with xhci->lock held.
2015 */
2016static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2017		struct xhci_input_control_ctx *ctrl_ctx)
2018{
2019	u32 num_dropped_eps;
2020
2021	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2022	xhci->num_active_eps -= num_dropped_eps;
2023	if (num_dropped_eps)
2024		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2025				"Removing %u dropped ep ctxs, %u now active.",
2026				num_dropped_eps,
2027				xhci->num_active_eps);
2028}
2029
2030static unsigned int xhci_get_block_size(struct usb_device *udev)
2031{
2032	switch (udev->speed) {
2033	case USB_SPEED_LOW:
2034	case USB_SPEED_FULL:
2035		return FS_BLOCK;
2036	case USB_SPEED_HIGH:
2037		return HS_BLOCK;
2038	case USB_SPEED_SUPER:
2039	case USB_SPEED_SUPER_PLUS:
2040		return SS_BLOCK;
2041	case USB_SPEED_UNKNOWN:
2042	case USB_SPEED_WIRELESS:
2043	default:
2044		/* Should never happen */
2045		return 1;
2046	}
2047}
2048
2049static unsigned int
2050xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2051{
2052	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2053		return LS_OVERHEAD;
2054	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2055		return FS_OVERHEAD;
2056	return HS_OVERHEAD;
2057}
2058
2059/* If we are changing a LS/FS device under a HS hub,
2060 * make sure (if we are activating a new TT) that the HS bus has enough
2061 * bandwidth for this new TT.
2062 */
2063static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2064		struct xhci_virt_device *virt_dev,
2065		int old_active_eps)
2066{
2067	struct xhci_interval_bw_table *bw_table;
2068	struct xhci_tt_bw_info *tt_info;
2069
2070	/* Find the bandwidth table for the root port this TT is attached to. */
2071	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2072	tt_info = virt_dev->tt_info;
2073	/* If this TT already had active endpoints, the bandwidth for this TT
2074	 * has already been added.  Removing all periodic endpoints (and thus
2075	 * making the TT enactive) will only decrease the bandwidth used.
2076	 */
2077	if (old_active_eps)
2078		return 0;
2079	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2080		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2081			return -ENOMEM;
2082		return 0;
2083	}
2084	/* Not sure why we would have no new active endpoints...
2085	 *
2086	 * Maybe because of an Evaluate Context change for a hub update or a
2087	 * control endpoint 0 max packet size change?
2088	 * FIXME: skip the bandwidth calculation in that case.
2089	 */
2090	return 0;
2091}
2092
2093static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2094		struct xhci_virt_device *virt_dev)
2095{
2096	unsigned int bw_reserved;
2097
2098	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2099	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2100		return -ENOMEM;
2101
2102	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2103	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2104		return -ENOMEM;
2105
2106	return 0;
2107}
2108
2109/*
2110 * This algorithm is a very conservative estimate of the worst-case scheduling
2111 * scenario for any one interval.  The hardware dynamically schedules the
2112 * packets, so we can't tell which microframe could be the limiting factor in
2113 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2114 *
2115 * Obviously, we can't solve an NP complete problem to find the minimum worst
2116 * case scenario.  Instead, we come up with an estimate that is no less than
2117 * the worst case bandwidth used for any one microframe, but may be an
2118 * over-estimate.
2119 *
2120 * We walk the requirements for each endpoint by interval, starting with the
2121 * smallest interval, and place packets in the schedule where there is only one
2122 * possible way to schedule packets for that interval.  In order to simplify
2123 * this algorithm, we record the largest max packet size for each interval, and
2124 * assume all packets will be that size.
2125 *
2126 * For interval 0, we obviously must schedule all packets for each interval.
2127 * The bandwidth for interval 0 is just the amount of data to be transmitted
2128 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2129 * the number of packets).
2130 *
2131 * For interval 1, we have two possible microframes to schedule those packets
2132 * in.  For this algorithm, if we can schedule the same number of packets for
2133 * each possible scheduling opportunity (each microframe), we will do so.  The
2134 * remaining number of packets will be saved to be transmitted in the gaps in
2135 * the next interval's scheduling sequence.
2136 *
2137 * As we move those remaining packets to be scheduled with interval 2 packets,
2138 * we have to double the number of remaining packets to transmit.  This is
2139 * because the intervals are actually powers of 2, and we would be transmitting
2140 * the previous interval's packets twice in this interval.  We also have to be
2141 * sure that when we look at the largest max packet size for this interval, we
2142 * also look at the largest max packet size for the remaining packets and take
2143 * the greater of the two.
2144 *
2145 * The algorithm continues to evenly distribute packets in each scheduling
2146 * opportunity, and push the remaining packets out, until we get to the last
2147 * interval.  Then those packets and their associated overhead are just added
2148 * to the bandwidth used.
2149 */
2150static int xhci_check_bw_table(struct xhci_hcd *xhci,
2151		struct xhci_virt_device *virt_dev,
2152		int old_active_eps)
2153{
2154	unsigned int bw_reserved;
2155	unsigned int max_bandwidth;
2156	unsigned int bw_used;
2157	unsigned int block_size;
2158	struct xhci_interval_bw_table *bw_table;
2159	unsigned int packet_size = 0;
2160	unsigned int overhead = 0;
2161	unsigned int packets_transmitted = 0;
2162	unsigned int packets_remaining = 0;
2163	unsigned int i;
2164
2165	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2166		return xhci_check_ss_bw(xhci, virt_dev);
2167
2168	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2169		max_bandwidth = HS_BW_LIMIT;
2170		/* Convert percent of bus BW reserved to blocks reserved */
2171		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2172	} else {
2173		max_bandwidth = FS_BW_LIMIT;
2174		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2175	}
2176
2177	bw_table = virt_dev->bw_table;
2178	/* We need to translate the max packet size and max ESIT payloads into
2179	 * the units the hardware uses.
2180	 */
2181	block_size = xhci_get_block_size(virt_dev->udev);
2182
2183	/* If we are manipulating a LS/FS device under a HS hub, double check
2184	 * that the HS bus has enough bandwidth if we are activing a new TT.
2185	 */
2186	if (virt_dev->tt_info) {
2187		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2188				"Recalculating BW for rootport %u",
2189				virt_dev->real_port);
2190		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2191			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2192					"newly activated TT.\n");
2193			return -ENOMEM;
2194		}
2195		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2196				"Recalculating BW for TT slot %u port %u",
2197				virt_dev->tt_info->slot_id,
2198				virt_dev->tt_info->ttport);
2199	} else {
2200		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201				"Recalculating BW for rootport %u",
2202				virt_dev->real_port);
2203	}
2204
2205	/* Add in how much bandwidth will be used for interval zero, or the
2206	 * rounded max ESIT payload + number of packets * largest overhead.
2207	 */
2208	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2209		bw_table->interval_bw[0].num_packets *
2210		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2211
2212	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2213		unsigned int bw_added;
2214		unsigned int largest_mps;
2215		unsigned int interval_overhead;
2216
2217		/*
2218		 * How many packets could we transmit in this interval?
2219		 * If packets didn't fit in the previous interval, we will need
2220		 * to transmit that many packets twice within this interval.
2221		 */
2222		packets_remaining = 2 * packets_remaining +
2223			bw_table->interval_bw[i].num_packets;
2224
2225		/* Find the largest max packet size of this or the previous
2226		 * interval.
2227		 */
2228		if (list_empty(&bw_table->interval_bw[i].endpoints))
2229			largest_mps = 0;
2230		else {
2231			struct xhci_virt_ep *virt_ep;
2232			struct list_head *ep_entry;
2233
2234			ep_entry = bw_table->interval_bw[i].endpoints.next;
2235			virt_ep = list_entry(ep_entry,
2236					struct xhci_virt_ep, bw_endpoint_list);
2237			/* Convert to blocks, rounding up */
2238			largest_mps = DIV_ROUND_UP(
2239					virt_ep->bw_info.max_packet_size,
2240					block_size);
2241		}
2242		if (largest_mps > packet_size)
2243			packet_size = largest_mps;
2244
2245		/* Use the larger overhead of this or the previous interval. */
2246		interval_overhead = xhci_get_largest_overhead(
2247				&bw_table->interval_bw[i]);
2248		if (interval_overhead > overhead)
2249			overhead = interval_overhead;
2250
2251		/* How many packets can we evenly distribute across
2252		 * (1 << (i + 1)) possible scheduling opportunities?
2253		 */
2254		packets_transmitted = packets_remaining >> (i + 1);
2255
2256		/* Add in the bandwidth used for those scheduled packets */
2257		bw_added = packets_transmitted * (overhead + packet_size);
2258
2259		/* How many packets do we have remaining to transmit? */
2260		packets_remaining = packets_remaining % (1 << (i + 1));
2261
2262		/* What largest max packet size should those packets have? */
2263		/* If we've transmitted all packets, don't carry over the
2264		 * largest packet size.
2265		 */
2266		if (packets_remaining == 0) {
2267			packet_size = 0;
2268			overhead = 0;
2269		} else if (packets_transmitted > 0) {
2270			/* Otherwise if we do have remaining packets, and we've
2271			 * scheduled some packets in this interval, take the
2272			 * largest max packet size from endpoints with this
2273			 * interval.
2274			 */
2275			packet_size = largest_mps;
2276			overhead = interval_overhead;
2277		}
2278		/* Otherwise carry over packet_size and overhead from the last
2279		 * time we had a remainder.
2280		 */
2281		bw_used += bw_added;
2282		if (bw_used > max_bandwidth) {
2283			xhci_warn(xhci, "Not enough bandwidth. "
2284					"Proposed: %u, Max: %u\n",
2285				bw_used, max_bandwidth);
2286			return -ENOMEM;
2287		}
2288	}
2289	/*
2290	 * Ok, we know we have some packets left over after even-handedly
2291	 * scheduling interval 15.  We don't know which microframes they will
2292	 * fit into, so we over-schedule and say they will be scheduled every
2293	 * microframe.
2294	 */
2295	if (packets_remaining > 0)
2296		bw_used += overhead + packet_size;
2297
2298	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2299		unsigned int port_index = virt_dev->real_port - 1;
2300
2301		/* OK, we're manipulating a HS device attached to a
2302		 * root port bandwidth domain.  Include the number of active TTs
2303		 * in the bandwidth used.
2304		 */
2305		bw_used += TT_HS_OVERHEAD *
2306			xhci->rh_bw[port_index].num_active_tts;
2307	}
2308
2309	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2310		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2311		"Available: %u " "percent",
2312		bw_used, max_bandwidth, bw_reserved,
2313		(max_bandwidth - bw_used - bw_reserved) * 100 /
2314		max_bandwidth);
2315
2316	bw_used += bw_reserved;
2317	if (bw_used > max_bandwidth) {
2318		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2319				bw_used, max_bandwidth);
2320		return -ENOMEM;
2321	}
2322
2323	bw_table->bw_used = bw_used;
2324	return 0;
2325}
2326
2327static bool xhci_is_async_ep(unsigned int ep_type)
2328{
2329	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2330					ep_type != ISOC_IN_EP &&
2331					ep_type != INT_IN_EP);
2332}
2333
2334static bool xhci_is_sync_in_ep(unsigned int ep_type)
2335{
2336	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2337}
2338
2339static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2340{
2341	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2342
2343	if (ep_bw->ep_interval == 0)
2344		return SS_OVERHEAD_BURST +
2345			(ep_bw->mult * ep_bw->num_packets *
2346					(SS_OVERHEAD + mps));
2347	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2348				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2349				1 << ep_bw->ep_interval);
2350
2351}
2352
2353void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2354		struct xhci_bw_info *ep_bw,
2355		struct xhci_interval_bw_table *bw_table,
2356		struct usb_device *udev,
2357		struct xhci_virt_ep *virt_ep,
2358		struct xhci_tt_bw_info *tt_info)
2359{
2360	struct xhci_interval_bw	*interval_bw;
2361	int normalized_interval;
2362
2363	if (xhci_is_async_ep(ep_bw->type))
2364		return;
2365
2366	if (udev->speed >= USB_SPEED_SUPER) {
2367		if (xhci_is_sync_in_ep(ep_bw->type))
2368			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2369				xhci_get_ss_bw_consumed(ep_bw);
2370		else
2371			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2372				xhci_get_ss_bw_consumed(ep_bw);
2373		return;
2374	}
2375
2376	/* SuperSpeed endpoints never get added to intervals in the table, so
2377	 * this check is only valid for HS/FS/LS devices.
2378	 */
2379	if (list_empty(&virt_ep->bw_endpoint_list))
2380		return;
2381	/* For LS/FS devices, we need to translate the interval expressed in
2382	 * microframes to frames.
2383	 */
2384	if (udev->speed == USB_SPEED_HIGH)
2385		normalized_interval = ep_bw->ep_interval;
2386	else
2387		normalized_interval = ep_bw->ep_interval - 3;
2388
2389	if (normalized_interval == 0)
2390		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2391	interval_bw = &bw_table->interval_bw[normalized_interval];
2392	interval_bw->num_packets -= ep_bw->num_packets;
2393	switch (udev->speed) {
2394	case USB_SPEED_LOW:
2395		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2396		break;
2397	case USB_SPEED_FULL:
2398		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2399		break;
2400	case USB_SPEED_HIGH:
2401		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2402		break;
2403	case USB_SPEED_SUPER:
2404	case USB_SPEED_SUPER_PLUS:
2405	case USB_SPEED_UNKNOWN:
2406	case USB_SPEED_WIRELESS:
2407		/* Should never happen because only LS/FS/HS endpoints will get
2408		 * added to the endpoint list.
2409		 */
2410		return;
2411	}
2412	if (tt_info)
2413		tt_info->active_eps -= 1;
2414	list_del_init(&virt_ep->bw_endpoint_list);
2415}
2416
2417static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2418		struct xhci_bw_info *ep_bw,
2419		struct xhci_interval_bw_table *bw_table,
2420		struct usb_device *udev,
2421		struct xhci_virt_ep *virt_ep,
2422		struct xhci_tt_bw_info *tt_info)
2423{
2424	struct xhci_interval_bw	*interval_bw;
2425	struct xhci_virt_ep *smaller_ep;
2426	int normalized_interval;
2427
2428	if (xhci_is_async_ep(ep_bw->type))
2429		return;
2430
2431	if (udev->speed == USB_SPEED_SUPER) {
2432		if (xhci_is_sync_in_ep(ep_bw->type))
2433			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2434				xhci_get_ss_bw_consumed(ep_bw);
2435		else
2436			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2437				xhci_get_ss_bw_consumed(ep_bw);
2438		return;
2439	}
2440
2441	/* For LS/FS devices, we need to translate the interval expressed in
2442	 * microframes to frames.
2443	 */
2444	if (udev->speed == USB_SPEED_HIGH)
2445		normalized_interval = ep_bw->ep_interval;
2446	else
2447		normalized_interval = ep_bw->ep_interval - 3;
2448
2449	if (normalized_interval == 0)
2450		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2451	interval_bw = &bw_table->interval_bw[normalized_interval];
2452	interval_bw->num_packets += ep_bw->num_packets;
2453	switch (udev->speed) {
2454	case USB_SPEED_LOW:
2455		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2456		break;
2457	case USB_SPEED_FULL:
2458		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2459		break;
2460	case USB_SPEED_HIGH:
2461		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2462		break;
2463	case USB_SPEED_SUPER:
2464	case USB_SPEED_SUPER_PLUS:
2465	case USB_SPEED_UNKNOWN:
2466	case USB_SPEED_WIRELESS:
2467		/* Should never happen because only LS/FS/HS endpoints will get
2468		 * added to the endpoint list.
2469		 */
2470		return;
2471	}
2472
2473	if (tt_info)
2474		tt_info->active_eps += 1;
2475	/* Insert the endpoint into the list, largest max packet size first. */
2476	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2477			bw_endpoint_list) {
2478		if (ep_bw->max_packet_size >=
2479				smaller_ep->bw_info.max_packet_size) {
2480			/* Add the new ep before the smaller endpoint */
2481			list_add_tail(&virt_ep->bw_endpoint_list,
2482					&smaller_ep->bw_endpoint_list);
2483			return;
2484		}
2485	}
2486	/* Add the new endpoint at the end of the list. */
2487	list_add_tail(&virt_ep->bw_endpoint_list,
2488			&interval_bw->endpoints);
2489}
2490
2491void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2492		struct xhci_virt_device *virt_dev,
2493		int old_active_eps)
2494{
2495	struct xhci_root_port_bw_info *rh_bw_info;
2496	if (!virt_dev->tt_info)
2497		return;
2498
2499	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2500	if (old_active_eps == 0 &&
2501				virt_dev->tt_info->active_eps != 0) {
2502		rh_bw_info->num_active_tts += 1;
2503		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2504	} else if (old_active_eps != 0 &&
2505				virt_dev->tt_info->active_eps == 0) {
2506		rh_bw_info->num_active_tts -= 1;
2507		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2508	}
2509}
2510
2511static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2512		struct xhci_virt_device *virt_dev,
2513		struct xhci_container_ctx *in_ctx)
2514{
2515	struct xhci_bw_info ep_bw_info[31];
2516	int i;
2517	struct xhci_input_control_ctx *ctrl_ctx;
2518	int old_active_eps = 0;
2519
2520	if (virt_dev->tt_info)
2521		old_active_eps = virt_dev->tt_info->active_eps;
2522
2523	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2524	if (!ctrl_ctx) {
2525		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2526				__func__);
2527		return -ENOMEM;
2528	}
2529
2530	for (i = 0; i < 31; i++) {
2531		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2532			continue;
2533
2534		/* Make a copy of the BW info in case we need to revert this */
2535		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2536				sizeof(ep_bw_info[i]));
2537		/* Drop the endpoint from the interval table if the endpoint is
2538		 * being dropped or changed.
2539		 */
2540		if (EP_IS_DROPPED(ctrl_ctx, i))
2541			xhci_drop_ep_from_interval_table(xhci,
2542					&virt_dev->eps[i].bw_info,
2543					virt_dev->bw_table,
2544					virt_dev->udev,
2545					&virt_dev->eps[i],
2546					virt_dev->tt_info);
2547	}
2548	/* Overwrite the information stored in the endpoints' bw_info */
2549	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2550	for (i = 0; i < 31; i++) {
2551		/* Add any changed or added endpoints to the interval table */
2552		if (EP_IS_ADDED(ctrl_ctx, i))
2553			xhci_add_ep_to_interval_table(xhci,
2554					&virt_dev->eps[i].bw_info,
2555					virt_dev->bw_table,
2556					virt_dev->udev,
2557					&virt_dev->eps[i],
2558					virt_dev->tt_info);
2559	}
2560
2561	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2562		/* Ok, this fits in the bandwidth we have.
2563		 * Update the number of active TTs.
2564		 */
2565		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2566		return 0;
2567	}
2568
2569	/* We don't have enough bandwidth for this, revert the stored info. */
2570	for (i = 0; i < 31; i++) {
2571		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2572			continue;
2573
2574		/* Drop the new copies of any added or changed endpoints from
2575		 * the interval table.
2576		 */
2577		if (EP_IS_ADDED(ctrl_ctx, i)) {
2578			xhci_drop_ep_from_interval_table(xhci,
2579					&virt_dev->eps[i].bw_info,
2580					virt_dev->bw_table,
2581					virt_dev->udev,
2582					&virt_dev->eps[i],
2583					virt_dev->tt_info);
2584		}
2585		/* Revert the endpoint back to its old information */
2586		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2587				sizeof(ep_bw_info[i]));
2588		/* Add any changed or dropped endpoints back into the table */
2589		if (EP_IS_DROPPED(ctrl_ctx, i))
2590			xhci_add_ep_to_interval_table(xhci,
2591					&virt_dev->eps[i].bw_info,
2592					virt_dev->bw_table,
2593					virt_dev->udev,
2594					&virt_dev->eps[i],
2595					virt_dev->tt_info);
2596	}
2597	return -ENOMEM;
2598}
2599
2600
2601/* Issue a configure endpoint command or evaluate context command
2602 * and wait for it to finish.
2603 */
2604static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2605		struct usb_device *udev,
2606		struct xhci_command *command,
2607		bool ctx_change, bool must_succeed)
2608{
2609	int ret;
 
2610	unsigned long flags;
2611	struct xhci_input_control_ctx *ctrl_ctx;
 
 
2612	struct xhci_virt_device *virt_dev;
2613
2614	if (!command)
2615		return -EINVAL;
2616
2617	spin_lock_irqsave(&xhci->lock, flags);
2618	virt_dev = xhci->devs[udev->slot_id];
2619
2620	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2621	if (!ctrl_ctx) {
2622		spin_unlock_irqrestore(&xhci->lock, flags);
2623		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2624				__func__);
2625		return -ENOMEM;
2626	}
2627
2628	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2629			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2630		spin_unlock_irqrestore(&xhci->lock, flags);
2631		xhci_warn(xhci, "Not enough host resources, "
2632				"active endpoint contexts = %u\n",
2633				xhci->num_active_eps);
2634		return -ENOMEM;
2635	}
2636	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2637	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2638		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2639			xhci_free_host_resources(xhci, ctrl_ctx);
2640		spin_unlock_irqrestore(&xhci->lock, flags);
2641		xhci_warn(xhci, "Not enough bandwidth\n");
2642		return -ENOMEM;
2643	}
2644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645	if (!ctx_change)
2646		ret = xhci_queue_configure_endpoint(xhci, command,
2647				command->in_ctx->dma,
2648				udev->slot_id, must_succeed);
2649	else
2650		ret = xhci_queue_evaluate_context(xhci, command,
2651				command->in_ctx->dma,
2652				udev->slot_id, must_succeed);
2653	if (ret < 0) {
 
 
2654		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2655			xhci_free_host_resources(xhci, ctrl_ctx);
2656		spin_unlock_irqrestore(&xhci->lock, flags);
2657		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2658				"FIXME allocate a new ring segment");
2659		return -ENOMEM;
2660	}
2661	xhci_ring_cmd_db(xhci);
2662	spin_unlock_irqrestore(&xhci->lock, flags);
2663
2664	/* Wait for the configure endpoint command to complete */
2665	wait_for_completion(command->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2666
2667	if (!ctx_change)
2668		ret = xhci_configure_endpoint_result(xhci, udev,
2669						     &command->status);
2670	else
2671		ret = xhci_evaluate_context_result(xhci, udev,
2672						   &command->status);
2673
2674	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2675		spin_lock_irqsave(&xhci->lock, flags);
2676		/* If the command failed, remove the reserved resources.
2677		 * Otherwise, clean up the estimate to include dropped eps.
2678		 */
2679		if (ret)
2680			xhci_free_host_resources(xhci, ctrl_ctx);
2681		else
2682			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2683		spin_unlock_irqrestore(&xhci->lock, flags);
2684	}
2685	return ret;
2686}
2687
2688static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2689	struct xhci_virt_device *vdev, int i)
2690{
2691	struct xhci_virt_ep *ep = &vdev->eps[i];
2692
2693	if (ep->ep_state & EP_HAS_STREAMS) {
2694		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2695				xhci_get_endpoint_address(i));
2696		xhci_free_stream_info(xhci, ep->stream_info);
2697		ep->stream_info = NULL;
2698		ep->ep_state &= ~EP_HAS_STREAMS;
2699	}
2700}
2701
2702/* Called after one or more calls to xhci_add_endpoint() or
2703 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2704 * to call xhci_reset_bandwidth().
2705 *
2706 * Since we are in the middle of changing either configuration or
2707 * installing a new alt setting, the USB core won't allow URBs to be
2708 * enqueued for any endpoint on the old config or interface.  Nothing
2709 * else should be touching the xhci->devs[slot_id] structure, so we
2710 * don't need to take the xhci->lock for manipulating that.
2711 */
2712int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714	int i;
2715	int ret = 0;
2716	struct xhci_hcd *xhci;
2717	struct xhci_virt_device	*virt_dev;
2718	struct xhci_input_control_ctx *ctrl_ctx;
2719	struct xhci_slot_ctx *slot_ctx;
2720	struct xhci_command *command;
2721
2722	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2723	if (ret <= 0)
2724		return ret;
2725	xhci = hcd_to_xhci(hcd);
2726	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2727		(xhci->xhc_state & XHCI_STATE_REMOVING))
2728		return -ENODEV;
2729
2730	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731	virt_dev = xhci->devs[udev->slot_id];
2732
2733	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2734	if (!command)
2735		return -ENOMEM;
2736
2737	command->in_ctx = virt_dev->in_ctx;
2738
2739	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2740	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2741	if (!ctrl_ctx) {
2742		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2743				__func__);
2744		ret = -ENOMEM;
2745		goto command_cleanup;
2746	}
2747	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2748	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2749	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2750
2751	/* Don't issue the command if there's no endpoints to update. */
2752	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2753	    ctrl_ctx->drop_flags == 0) {
2754		ret = 0;
2755		goto command_cleanup;
2756	}
2757	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2758	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2759	for (i = 31; i >= 1; i--) {
2760		__le32 le32 = cpu_to_le32(BIT(i));
2761
2762		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2763		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2764			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2765			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2766			break;
2767		}
2768	}
2769	xhci_dbg(xhci, "New Input Control Context:\n");
 
2770	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2771		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2772
2773	ret = xhci_configure_endpoint(xhci, udev, command,
2774			false, false);
2775	if (ret)
2776		/* Callee should call reset_bandwidth() */
2777		goto command_cleanup;
 
2778
2779	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2780	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2781		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2782
2783	/* Free any rings that were dropped, but not changed. */
2784	for (i = 1; i < 31; ++i) {
2785		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2786		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2787			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2788			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2789		}
2790	}
2791	xhci_zero_in_ctx(xhci, virt_dev);
2792	/*
2793	 * Install any rings for completely new endpoints or changed endpoints,
2794	 * and free or cache any old rings from changed endpoints.
2795	 */
2796	for (i = 1; i < 31; ++i) {
2797		if (!virt_dev->eps[i].new_ring)
2798			continue;
2799		/* Only cache or free the old ring if it exists.
2800		 * It may not if this is the first add of an endpoint.
2801		 */
2802		if (virt_dev->eps[i].ring) {
2803			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2804		}
2805		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2806		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2807		virt_dev->eps[i].new_ring = NULL;
2808	}
2809command_cleanup:
2810	kfree(command->completion);
2811	kfree(command);
2812
2813	return ret;
2814}
2815
2816void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2817{
2818	struct xhci_hcd *xhci;
2819	struct xhci_virt_device	*virt_dev;
2820	int i, ret;
2821
2822	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2823	if (ret <= 0)
2824		return;
2825	xhci = hcd_to_xhci(hcd);
2826
2827	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2828	virt_dev = xhci->devs[udev->slot_id];
2829	/* Free any rings allocated for added endpoints */
2830	for (i = 0; i < 31; ++i) {
2831		if (virt_dev->eps[i].new_ring) {
2832			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2833			virt_dev->eps[i].new_ring = NULL;
2834		}
2835	}
2836	xhci_zero_in_ctx(xhci, virt_dev);
2837}
2838
2839static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2840		struct xhci_container_ctx *in_ctx,
2841		struct xhci_container_ctx *out_ctx,
2842		struct xhci_input_control_ctx *ctrl_ctx,
2843		u32 add_flags, u32 drop_flags)
2844{
 
 
2845	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2846	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2847	xhci_slot_copy(xhci, in_ctx, out_ctx);
2848	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2849
2850	xhci_dbg(xhci, "Input Context:\n");
2851	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2852}
2853
2854static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2855		unsigned int slot_id, unsigned int ep_index,
2856		struct xhci_dequeue_state *deq_state)
2857{
2858	struct xhci_input_control_ctx *ctrl_ctx;
2859	struct xhci_container_ctx *in_ctx;
2860	struct xhci_ep_ctx *ep_ctx;
2861	u32 added_ctxs;
2862	dma_addr_t addr;
2863
2864	in_ctx = xhci->devs[slot_id]->in_ctx;
2865	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2866	if (!ctrl_ctx) {
2867		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2868				__func__);
2869		return;
2870	}
2871
2872	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2873			xhci->devs[slot_id]->out_ctx, ep_index);
 
2874	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2875	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2876			deq_state->new_deq_ptr);
2877	if (addr == 0) {
2878		xhci_warn(xhci, "WARN Cannot submit config ep after "
2879				"reset ep command\n");
2880		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2881				deq_state->new_deq_seg,
2882				deq_state->new_deq_ptr);
2883		return;
2884	}
2885	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2886
2887	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2888	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2889			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2890			added_ctxs, added_ctxs);
2891}
2892
2893void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2894			unsigned int ep_index, struct xhci_td *td)
2895{
2896	struct xhci_dequeue_state deq_state;
2897	struct xhci_virt_ep *ep;
2898	struct usb_device *udev = td->urb->dev;
2899
2900	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2901			"Cleaning up stalled endpoint ring");
2902	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2903	/* We need to move the HW's dequeue pointer past this TD,
2904	 * or it will attempt to resend it on the next doorbell ring.
2905	 */
2906	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2907			ep_index, ep->stopped_stream, td, &deq_state);
2908
2909	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2910		return;
2911
2912	/* HW with the reset endpoint quirk will use the saved dequeue state to
2913	 * issue a configure endpoint command later.
2914	 */
2915	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2916		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2917				"Queueing new dequeue state");
2918		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2919				ep_index, ep->stopped_stream, &deq_state);
2920	} else {
2921		/* Better hope no one uses the input context between now and the
2922		 * reset endpoint completion!
2923		 * XXX: No idea how this hardware will react when stream rings
2924		 * are enabled.
2925		 */
2926		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2927				"Setting up input context for "
2928				"configure endpoint command");
2929		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2930				ep_index, &deq_state);
2931	}
2932}
2933
2934/* Called when clearing halted device. The core should have sent the control
2935 * message to clear the device halt condition. The host side of the halt should
2936 * already be cleared with a reset endpoint command issued when the STALL tx
2937 * event was received.
2938 *
2939 * Context: in_interrupt
2940 */
2941
2942void xhci_endpoint_reset(struct usb_hcd *hcd,
2943		struct usb_host_endpoint *ep)
2944{
2945	struct xhci_hcd *xhci;
 
 
 
 
 
2946
2947	xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948
 
 
 
2949	/*
2950	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2951	 * The Reset Endpoint Command may only be issued to endpoints in the
2952	 * Halted state. If software wishes reset the Data Toggle or Sequence
2953	 * Number of an endpoint that isn't in the Halted state, then software
2954	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2955	 * for the target endpoint. that is in the Stopped state.
2956	 */
 
 
 
 
 
 
 
 
 
2957
2958	/* For now just print debug to follow the situation */
2959	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2960		 ep->desc.bEndpointAddress);
2961}
2962
2963static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2964		struct usb_device *udev, struct usb_host_endpoint *ep,
2965		unsigned int slot_id)
2966{
2967	int ret;
2968	unsigned int ep_index;
2969	unsigned int ep_state;
2970
2971	if (!ep)
2972		return -EINVAL;
2973	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2974	if (ret <= 0)
2975		return -EINVAL;
2976	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2977		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2978				" descriptor for ep 0x%x does not support streams\n",
2979				ep->desc.bEndpointAddress);
2980		return -EINVAL;
2981	}
2982
2983	ep_index = xhci_get_endpoint_index(&ep->desc);
2984	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2985	if (ep_state & EP_HAS_STREAMS ||
2986			ep_state & EP_GETTING_STREAMS) {
2987		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2988				"already has streams set up.\n",
2989				ep->desc.bEndpointAddress);
2990		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2991				"dynamic stream context array reallocation.\n");
2992		return -EINVAL;
2993	}
2994	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2995		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2996				"endpoint 0x%x; URBs are pending.\n",
2997				ep->desc.bEndpointAddress);
2998		return -EINVAL;
2999	}
3000	return 0;
3001}
3002
3003static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3004		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3005{
3006	unsigned int max_streams;
3007
3008	/* The stream context array size must be a power of two */
3009	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3010	/*
3011	 * Find out how many primary stream array entries the host controller
3012	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3013	 * level page entries), but that's an optional feature for xHCI host
3014	 * controllers. xHCs must support at least 4 stream IDs.
3015	 */
3016	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3017	if (*num_stream_ctxs > max_streams) {
3018		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3019				max_streams);
3020		*num_stream_ctxs = max_streams;
3021		*num_streams = max_streams;
3022	}
3023}
3024
3025/* Returns an error code if one of the endpoint already has streams.
3026 * This does not change any data structures, it only checks and gathers
3027 * information.
3028 */
3029static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3030		struct usb_device *udev,
3031		struct usb_host_endpoint **eps, unsigned int num_eps,
3032		unsigned int *num_streams, u32 *changed_ep_bitmask)
3033{
3034	unsigned int max_streams;
3035	unsigned int endpoint_flag;
3036	int i;
3037	int ret;
3038
3039	for (i = 0; i < num_eps; i++) {
3040		ret = xhci_check_streams_endpoint(xhci, udev,
3041				eps[i], udev->slot_id);
3042		if (ret < 0)
3043			return ret;
3044
3045		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3046		if (max_streams < (*num_streams - 1)) {
3047			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3048					eps[i]->desc.bEndpointAddress,
3049					max_streams);
3050			*num_streams = max_streams+1;
3051		}
3052
3053		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3054		if (*changed_ep_bitmask & endpoint_flag)
3055			return -EINVAL;
3056		*changed_ep_bitmask |= endpoint_flag;
3057	}
3058	return 0;
3059}
3060
3061static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3062		struct usb_device *udev,
3063		struct usb_host_endpoint **eps, unsigned int num_eps)
3064{
3065	u32 changed_ep_bitmask = 0;
3066	unsigned int slot_id;
3067	unsigned int ep_index;
3068	unsigned int ep_state;
3069	int i;
3070
3071	slot_id = udev->slot_id;
3072	if (!xhci->devs[slot_id])
3073		return 0;
3074
3075	for (i = 0; i < num_eps; i++) {
3076		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3077		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3078		/* Are streams already being freed for the endpoint? */
3079		if (ep_state & EP_GETTING_NO_STREAMS) {
3080			xhci_warn(xhci, "WARN Can't disable streams for "
3081					"endpoint 0x%x, "
3082					"streams are being disabled already\n",
3083					eps[i]->desc.bEndpointAddress);
3084			return 0;
3085		}
3086		/* Are there actually any streams to free? */
3087		if (!(ep_state & EP_HAS_STREAMS) &&
3088				!(ep_state & EP_GETTING_STREAMS)) {
3089			xhci_warn(xhci, "WARN Can't disable streams for "
3090					"endpoint 0x%x, "
3091					"streams are already disabled!\n",
3092					eps[i]->desc.bEndpointAddress);
3093			xhci_warn(xhci, "WARN xhci_free_streams() called "
3094					"with non-streams endpoint\n");
3095			return 0;
3096		}
3097		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3098	}
3099	return changed_ep_bitmask;
3100}
3101
3102/*
3103 * The USB device drivers use this function (through the HCD interface in USB
3104 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3105 * coordinate mass storage command queueing across multiple endpoints (basically
3106 * a stream ID == a task ID).
3107 *
3108 * Setting up streams involves allocating the same size stream context array
3109 * for each endpoint and issuing a configure endpoint command for all endpoints.
3110 *
3111 * Don't allow the call to succeed if one endpoint only supports one stream
3112 * (which means it doesn't support streams at all).
3113 *
3114 * Drivers may get less stream IDs than they asked for, if the host controller
3115 * hardware or endpoints claim they can't support the number of requested
3116 * stream IDs.
3117 */
3118int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3119		struct usb_host_endpoint **eps, unsigned int num_eps,
3120		unsigned int num_streams, gfp_t mem_flags)
3121{
3122	int i, ret;
3123	struct xhci_hcd *xhci;
3124	struct xhci_virt_device *vdev;
3125	struct xhci_command *config_cmd;
3126	struct xhci_input_control_ctx *ctrl_ctx;
3127	unsigned int ep_index;
3128	unsigned int num_stream_ctxs;
3129	unsigned int max_packet;
3130	unsigned long flags;
3131	u32 changed_ep_bitmask = 0;
3132
3133	if (!eps)
3134		return -EINVAL;
3135
3136	/* Add one to the number of streams requested to account for
3137	 * stream 0 that is reserved for xHCI usage.
3138	 */
3139	num_streams += 1;
3140	xhci = hcd_to_xhci(hcd);
3141	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142			num_streams);
3143
3144	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3145	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3146			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3147		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3148		return -ENOSYS;
3149	}
3150
3151	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3152	if (!config_cmd) {
3153		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3154		return -ENOMEM;
3155	}
3156	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3157	if (!ctrl_ctx) {
3158		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3159				__func__);
3160		xhci_free_command(xhci, config_cmd);
3161		return -ENOMEM;
3162	}
3163
3164	/* Check to make sure all endpoints are not already configured for
3165	 * streams.  While we're at it, find the maximum number of streams that
3166	 * all the endpoints will support and check for duplicate endpoints.
3167	 */
3168	spin_lock_irqsave(&xhci->lock, flags);
3169	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3170			num_eps, &num_streams, &changed_ep_bitmask);
3171	if (ret < 0) {
3172		xhci_free_command(xhci, config_cmd);
3173		spin_unlock_irqrestore(&xhci->lock, flags);
3174		return ret;
3175	}
3176	if (num_streams <= 1) {
3177		xhci_warn(xhci, "WARN: endpoints can't handle "
3178				"more than one stream.\n");
3179		xhci_free_command(xhci, config_cmd);
3180		spin_unlock_irqrestore(&xhci->lock, flags);
3181		return -EINVAL;
3182	}
3183	vdev = xhci->devs[udev->slot_id];
3184	/* Mark each endpoint as being in transition, so
3185	 * xhci_urb_enqueue() will reject all URBs.
3186	 */
3187	for (i = 0; i < num_eps; i++) {
3188		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3189		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3190	}
3191	spin_unlock_irqrestore(&xhci->lock, flags);
3192
3193	/* Setup internal data structures and allocate HW data structures for
3194	 * streams (but don't install the HW structures in the input context
3195	 * until we're sure all memory allocation succeeded).
3196	 */
3197	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3198	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3199			num_stream_ctxs, num_streams);
3200
3201	for (i = 0; i < num_eps; i++) {
3202		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3204		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3205				num_stream_ctxs,
3206				num_streams,
3207				max_packet, mem_flags);
3208		if (!vdev->eps[ep_index].stream_info)
3209			goto cleanup;
3210		/* Set maxPstreams in endpoint context and update deq ptr to
3211		 * point to stream context array. FIXME
3212		 */
3213	}
3214
3215	/* Set up the input context for a configure endpoint command. */
3216	for (i = 0; i < num_eps; i++) {
3217		struct xhci_ep_ctx *ep_ctx;
3218
3219		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3220		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3221
3222		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3223				vdev->out_ctx, ep_index);
3224		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3225				vdev->eps[ep_index].stream_info);
3226	}
3227	/* Tell the HW to drop its old copy of the endpoint context info
3228	 * and add the updated copy from the input context.
3229	 */
3230	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3231			vdev->out_ctx, ctrl_ctx,
3232			changed_ep_bitmask, changed_ep_bitmask);
3233
3234	/* Issue and wait for the configure endpoint command */
3235	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3236			false, false);
3237
3238	/* xHC rejected the configure endpoint command for some reason, so we
3239	 * leave the old ring intact and free our internal streams data
3240	 * structure.
3241	 */
3242	if (ret < 0)
3243		goto cleanup;
3244
3245	spin_lock_irqsave(&xhci->lock, flags);
3246	for (i = 0; i < num_eps; i++) {
3247		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3249		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3250			 udev->slot_id, ep_index);
3251		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3252	}
3253	xhci_free_command(xhci, config_cmd);
3254	spin_unlock_irqrestore(&xhci->lock, flags);
3255
3256	/* Subtract 1 for stream 0, which drivers can't use */
3257	return num_streams - 1;
3258
3259cleanup:
3260	/* If it didn't work, free the streams! */
3261	for (i = 0; i < num_eps; i++) {
3262		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3264		vdev->eps[ep_index].stream_info = NULL;
3265		/* FIXME Unset maxPstreams in endpoint context and
3266		 * update deq ptr to point to normal string ring.
3267		 */
3268		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3269		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3270		xhci_endpoint_zero(xhci, vdev, eps[i]);
3271	}
3272	xhci_free_command(xhci, config_cmd);
3273	return -ENOMEM;
3274}
3275
3276/* Transition the endpoint from using streams to being a "normal" endpoint
3277 * without streams.
3278 *
3279 * Modify the endpoint context state, submit a configure endpoint command,
3280 * and free all endpoint rings for streams if that completes successfully.
3281 */
3282int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3283		struct usb_host_endpoint **eps, unsigned int num_eps,
3284		gfp_t mem_flags)
3285{
3286	int i, ret;
3287	struct xhci_hcd *xhci;
3288	struct xhci_virt_device *vdev;
3289	struct xhci_command *command;
3290	struct xhci_input_control_ctx *ctrl_ctx;
3291	unsigned int ep_index;
3292	unsigned long flags;
3293	u32 changed_ep_bitmask;
3294
3295	xhci = hcd_to_xhci(hcd);
3296	vdev = xhci->devs[udev->slot_id];
3297
3298	/* Set up a configure endpoint command to remove the streams rings */
3299	spin_lock_irqsave(&xhci->lock, flags);
3300	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3301			udev, eps, num_eps);
3302	if (changed_ep_bitmask == 0) {
3303		spin_unlock_irqrestore(&xhci->lock, flags);
3304		return -EINVAL;
3305	}
3306
3307	/* Use the xhci_command structure from the first endpoint.  We may have
3308	 * allocated too many, but the driver may call xhci_free_streams() for
3309	 * each endpoint it grouped into one call to xhci_alloc_streams().
3310	 */
3311	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3312	command = vdev->eps[ep_index].stream_info->free_streams_command;
3313	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3314	if (!ctrl_ctx) {
3315		spin_unlock_irqrestore(&xhci->lock, flags);
3316		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317				__func__);
3318		return -EINVAL;
3319	}
3320
3321	for (i = 0; i < num_eps; i++) {
3322		struct xhci_ep_ctx *ep_ctx;
3323
3324		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3325		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3326		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3327			EP_GETTING_NO_STREAMS;
3328
3329		xhci_endpoint_copy(xhci, command->in_ctx,
3330				vdev->out_ctx, ep_index);
3331		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3332				&vdev->eps[ep_index]);
3333	}
3334	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3335			vdev->out_ctx, ctrl_ctx,
3336			changed_ep_bitmask, changed_ep_bitmask);
3337	spin_unlock_irqrestore(&xhci->lock, flags);
3338
3339	/* Issue and wait for the configure endpoint command,
3340	 * which must succeed.
3341	 */
3342	ret = xhci_configure_endpoint(xhci, udev, command,
3343			false, true);
3344
3345	/* xHC rejected the configure endpoint command for some reason, so we
3346	 * leave the streams rings intact.
3347	 */
3348	if (ret < 0)
3349		return ret;
3350
3351	spin_lock_irqsave(&xhci->lock, flags);
3352	for (i = 0; i < num_eps; i++) {
3353		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3354		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3355		vdev->eps[ep_index].stream_info = NULL;
3356		/* FIXME Unset maxPstreams in endpoint context and
3357		 * update deq ptr to point to normal string ring.
3358		 */
3359		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3360		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3361	}
3362	spin_unlock_irqrestore(&xhci->lock, flags);
3363
3364	return 0;
3365}
3366
3367/*
3368 * Deletes endpoint resources for endpoints that were active before a Reset
3369 * Device command, or a Disable Slot command.  The Reset Device command leaves
3370 * the control endpoint intact, whereas the Disable Slot command deletes it.
3371 *
3372 * Must be called with xhci->lock held.
3373 */
3374void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3375	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3376{
3377	int i;
3378	unsigned int num_dropped_eps = 0;
3379	unsigned int drop_flags = 0;
3380
3381	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3382		if (virt_dev->eps[i].ring) {
3383			drop_flags |= 1 << i;
3384			num_dropped_eps++;
3385		}
3386	}
3387	xhci->num_active_eps -= num_dropped_eps;
3388	if (num_dropped_eps)
3389		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3390				"Dropped %u ep ctxs, flags = 0x%x, "
3391				"%u now active.",
3392				num_dropped_eps, drop_flags,
3393				xhci->num_active_eps);
3394}
3395
3396/*
3397 * This submits a Reset Device Command, which will set the device state to 0,
3398 * set the device address to 0, and disable all the endpoints except the default
3399 * control endpoint.  The USB core should come back and call
3400 * xhci_address_device(), and then re-set up the configuration.  If this is
3401 * called because of a usb_reset_and_verify_device(), then the old alternate
3402 * settings will be re-installed through the normal bandwidth allocation
3403 * functions.
3404 *
3405 * Wait for the Reset Device command to finish.  Remove all structures
3406 * associated with the endpoints that were disabled.  Clear the input device
3407 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3408 *
3409 * If the virt_dev to be reset does not exist or does not match the udev,
3410 * it means the device is lost, possibly due to the xHC restore error and
3411 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3412 * re-allocate the device.
3413 */
3414int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3415{
3416	int ret, i;
3417	unsigned long flags;
3418	struct xhci_hcd *xhci;
3419	unsigned int slot_id;
3420	struct xhci_virt_device *virt_dev;
3421	struct xhci_command *reset_device_cmd;
 
3422	int last_freed_endpoint;
3423	struct xhci_slot_ctx *slot_ctx;
3424	int old_active_eps = 0;
3425
3426	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3427	if (ret <= 0)
3428		return ret;
3429	xhci = hcd_to_xhci(hcd);
3430	slot_id = udev->slot_id;
3431	virt_dev = xhci->devs[slot_id];
3432	if (!virt_dev) {
3433		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3434				"not exist. Re-allocate the device\n", slot_id);
3435		ret = xhci_alloc_dev(hcd, udev);
3436		if (ret == 1)
3437			return 0;
3438		else
3439			return -EINVAL;
3440	}
3441
3442	if (virt_dev->tt_info)
3443		old_active_eps = virt_dev->tt_info->active_eps;
3444
3445	if (virt_dev->udev != udev) {
3446		/* If the virt_dev and the udev does not match, this virt_dev
3447		 * may belong to another udev.
3448		 * Re-allocate the device.
3449		 */
3450		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3451				"not match the udev. Re-allocate the device\n",
3452				slot_id);
3453		ret = xhci_alloc_dev(hcd, udev);
3454		if (ret == 1)
3455			return 0;
3456		else
3457			return -EINVAL;
3458	}
3459
3460	/* If device is not setup, there is no point in resetting it */
3461	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3462	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3463						SLOT_STATE_DISABLED)
3464		return 0;
3465
3466	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3467	/* Allocate the command structure that holds the struct completion.
3468	 * Assume we're in process context, since the normal device reset
3469	 * process has to wait for the device anyway.  Storage devices are
3470	 * reset as part of error handling, so use GFP_NOIO instead of
3471	 * GFP_KERNEL.
3472	 */
3473	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3474	if (!reset_device_cmd) {
3475		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3476		return -ENOMEM;
3477	}
3478
3479	/* Attempt to submit the Reset Device command to the command ring */
3480	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
3481
3482	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
 
3483	if (ret) {
3484		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3485		spin_unlock_irqrestore(&xhci->lock, flags);
3486		goto command_cleanup;
3487	}
3488	xhci_ring_cmd_db(xhci);
3489	spin_unlock_irqrestore(&xhci->lock, flags);
3490
3491	/* Wait for the Reset Device command to finish */
3492	wait_for_completion(reset_device_cmd->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3493
3494	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3495	 * unless we tried to reset a slot ID that wasn't enabled,
3496	 * or the device wasn't in the addressed or configured state.
3497	 */
3498	ret = reset_device_cmd->status;
3499	switch (ret) {
3500	case COMP_CMD_ABORT:
3501	case COMP_CMD_STOP:
3502		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3503		ret = -ETIME;
3504		goto command_cleanup;
3505	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3506	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3507		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3508				slot_id,
3509				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3510		xhci_dbg(xhci, "Not freeing device rings.\n");
3511		/* Don't treat this as an error.  May change my mind later. */
3512		ret = 0;
3513		goto command_cleanup;
3514	case COMP_SUCCESS:
3515		xhci_dbg(xhci, "Successful reset device command.\n");
3516		break;
3517	default:
3518		if (xhci_is_vendor_info_code(xhci, ret))
3519			break;
3520		xhci_warn(xhci, "Unknown completion code %u for "
3521				"reset device command.\n", ret);
3522		ret = -EINVAL;
3523		goto command_cleanup;
3524	}
3525
3526	/* Free up host controller endpoint resources */
3527	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3528		spin_lock_irqsave(&xhci->lock, flags);
3529		/* Don't delete the default control endpoint resources */
3530		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3531		spin_unlock_irqrestore(&xhci->lock, flags);
3532	}
3533
3534	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3535	last_freed_endpoint = 1;
3536	for (i = 1; i < 31; ++i) {
3537		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3538
3539		if (ep->ep_state & EP_HAS_STREAMS) {
3540			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3541					xhci_get_endpoint_address(i));
3542			xhci_free_stream_info(xhci, ep->stream_info);
3543			ep->stream_info = NULL;
3544			ep->ep_state &= ~EP_HAS_STREAMS;
3545		}
3546
3547		if (ep->ring) {
3548			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3549			last_freed_endpoint = i;
3550		}
3551		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3552			xhci_drop_ep_from_interval_table(xhci,
3553					&virt_dev->eps[i].bw_info,
3554					virt_dev->bw_table,
3555					udev,
3556					&virt_dev->eps[i],
3557					virt_dev->tt_info);
3558		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3559	}
3560	/* If necessary, update the number of active TTs on this root port */
3561	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3562
3563	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3564	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3565	ret = 0;
3566
3567command_cleanup:
3568	xhci_free_command(xhci, reset_device_cmd);
3569	return ret;
3570}
3571
3572/*
3573 * At this point, the struct usb_device is about to go away, the device has
3574 * disconnected, and all traffic has been stopped and the endpoints have been
3575 * disabled.  Free any HC data structures associated with that device.
3576 */
3577void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3578{
3579	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3580	struct xhci_virt_device *virt_dev;
3581	unsigned long flags;
3582	u32 state;
3583	int i, ret;
3584	struct xhci_command *command;
3585
3586	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3587	if (!command)
3588		return;
3589
3590#ifndef CONFIG_USB_DEFAULT_PERSIST
3591	/*
3592	 * We called pm_runtime_get_noresume when the device was attached.
3593	 * Decrement the counter here to allow controller to runtime suspend
3594	 * if no devices remain.
3595	 */
3596	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3597		pm_runtime_put_noidle(hcd->self.controller);
3598#endif
3599
3600	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3601	/* If the host is halted due to driver unload, we still need to free the
3602	 * device.
3603	 */
3604	if (ret <= 0 && ret != -ENODEV) {
3605		kfree(command);
3606		return;
3607	}
3608
3609	virt_dev = xhci->devs[udev->slot_id];
3610
3611	/* Stop any wayward timer functions (which may grab the lock) */
3612	for (i = 0; i < 31; ++i) {
3613		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3614		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3615	}
3616
 
 
 
 
 
3617	spin_lock_irqsave(&xhci->lock, flags);
3618	/* Don't disable the slot if the host controller is dead. */
3619	state = readl(&xhci->op_regs->status);
3620	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3621			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3622		xhci_free_virt_device(xhci, udev->slot_id);
3623		spin_unlock_irqrestore(&xhci->lock, flags);
3624		kfree(command);
3625		return;
3626	}
3627
3628	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3629				    udev->slot_id)) {
3630		spin_unlock_irqrestore(&xhci->lock, flags);
3631		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3632		return;
3633	}
3634	xhci_ring_cmd_db(xhci);
3635	spin_unlock_irqrestore(&xhci->lock, flags);
3636
3637	/*
3638	 * Event command completion handler will free any data structures
3639	 * associated with the slot.  XXX Can free sleep?
3640	 */
3641}
3642
3643/*
3644 * Checks if we have enough host controller resources for the default control
3645 * endpoint.
3646 *
3647 * Must be called with xhci->lock held.
3648 */
3649static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3650{
3651	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3652		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3653				"Not enough ep ctxs: "
3654				"%u active, need to add 1, limit is %u.",
3655				xhci->num_active_eps, xhci->limit_active_eps);
3656		return -ENOMEM;
3657	}
3658	xhci->num_active_eps += 1;
3659	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3660			"Adding 1 ep ctx, %u now active.",
3661			xhci->num_active_eps);
3662	return 0;
3663}
3664
3665
3666/*
3667 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3668 * timed out, or allocating memory failed.  Returns 1 on success.
3669 */
3670int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3671{
3672	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3673	unsigned long flags;
3674	int ret, slot_id;
3675	struct xhci_command *command;
3676
3677	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3678	if (!command)
3679		return 0;
3680
3681	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3682	mutex_lock(&xhci->mutex);
3683	spin_lock_irqsave(&xhci->lock, flags);
3684	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
 
3685	if (ret) {
3686		spin_unlock_irqrestore(&xhci->lock, flags);
3687		mutex_unlock(&xhci->mutex);
3688		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3689		xhci_free_command(xhci, command);
3690		return 0;
3691	}
3692	xhci_ring_cmd_db(xhci);
3693	spin_unlock_irqrestore(&xhci->lock, flags);
3694
3695	wait_for_completion(command->completion);
3696	slot_id = command->slot_id;
3697	mutex_unlock(&xhci->mutex);
 
 
 
 
 
 
3698
3699	if (!slot_id || command->status != COMP_SUCCESS) {
3700		xhci_err(xhci, "Error while assigning device slot ID\n");
3701		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3702				HCS_MAX_SLOTS(
3703					readl(&xhci->cap_regs->hcs_params1)));
3704		xhci_free_command(xhci, command);
3705		return 0;
3706	}
3707
3708	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3709		spin_lock_irqsave(&xhci->lock, flags);
3710		ret = xhci_reserve_host_control_ep_resources(xhci);
3711		if (ret) {
3712			spin_unlock_irqrestore(&xhci->lock, flags);
3713			xhci_warn(xhci, "Not enough host resources, "
3714					"active endpoint contexts = %u\n",
3715					xhci->num_active_eps);
3716			goto disable_slot;
3717		}
3718		spin_unlock_irqrestore(&xhci->lock, flags);
3719	}
3720	/* Use GFP_NOIO, since this function can be called from
3721	 * xhci_discover_or_reset_device(), which may be called as part of
3722	 * mass storage driver error handling.
3723	 */
3724	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3725		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3726		goto disable_slot;
3727	}
3728	udev->slot_id = slot_id;
3729
3730#ifndef CONFIG_USB_DEFAULT_PERSIST
3731	/*
3732	 * If resetting upon resume, we can't put the controller into runtime
3733	 * suspend if there is a device attached.
3734	 */
3735	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3736		pm_runtime_get_noresume(hcd->self.controller);
3737#endif
3738
3739
3740	xhci_free_command(xhci, command);
3741	/* Is this a LS or FS device under a HS hub? */
3742	/* Hub or peripherial? */
3743	return 1;
3744
3745disable_slot:
3746	/* Disable slot, if we can do it without mem alloc */
3747	spin_lock_irqsave(&xhci->lock, flags);
3748	kfree(command->completion);
3749	command->completion = NULL;
3750	command->status = 0;
3751	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3752				     udev->slot_id))
3753		xhci_ring_cmd_db(xhci);
3754	spin_unlock_irqrestore(&xhci->lock, flags);
3755	return 0;
3756}
3757
3758/*
3759 * Issue an Address Device command and optionally send a corresponding
3760 * SetAddress request to the device.
 
 
 
 
 
3761 */
3762static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3763			     enum xhci_setup_dev setup)
3764{
3765	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3766	unsigned long flags;
 
3767	struct xhci_virt_device *virt_dev;
3768	int ret = 0;
3769	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3770	struct xhci_slot_ctx *slot_ctx;
3771	struct xhci_input_control_ctx *ctrl_ctx;
3772	u64 temp_64;
3773	struct xhci_command *command = NULL;
3774
3775	mutex_lock(&xhci->mutex);
3776
3777	if (xhci->xhc_state) {	/* dying, removing or halted */
3778		ret = -ESHUTDOWN;
3779		goto out;
3780	}
3781
3782	if (!udev->slot_id) {
3783		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3784				"Bad Slot ID %d", udev->slot_id);
3785		ret = -EINVAL;
3786		goto out;
3787	}
3788
3789	virt_dev = xhci->devs[udev->slot_id];
3790
3791	if (WARN_ON(!virt_dev)) {
3792		/*
3793		 * In plug/unplug torture test with an NEC controller,
3794		 * a zero-dereference was observed once due to virt_dev = 0.
3795		 * Print useful debug rather than crash if it is observed again!
3796		 */
3797		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3798			udev->slot_id);
3799		ret = -EINVAL;
3800		goto out;
3801	}
3802
3803	if (setup == SETUP_CONTEXT_ONLY) {
3804		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3805		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3806		    SLOT_STATE_DEFAULT) {
3807			xhci_dbg(xhci, "Slot already in default state\n");
3808			goto out;
3809		}
3810	}
3811
3812	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3813	if (!command) {
3814		ret = -ENOMEM;
3815		goto out;
3816	}
3817
3818	command->in_ctx = virt_dev->in_ctx;
3819
3820	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3821	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3822	if (!ctrl_ctx) {
3823		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3824				__func__);
3825		ret = -EINVAL;
3826		goto out;
3827	}
3828	/*
3829	 * If this is the first Set Address since device plug-in or
3830	 * virt_device realloaction after a resume with an xHCI power loss,
3831	 * then set up the slot context.
3832	 */
3833	if (!slot_ctx->dev_info)
3834		xhci_setup_addressable_virt_dev(xhci, udev);
3835	/* Otherwise, update the control endpoint ring enqueue pointer. */
3836	else
3837		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
 
3838	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3839	ctrl_ctx->drop_flags = 0;
3840
3841	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3842	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3843	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3844				le32_to_cpu(slot_ctx->dev_info) >> 27);
3845
3846	spin_lock_irqsave(&xhci->lock, flags);
3847	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3848					udev->slot_id, setup);
 
3849	if (ret) {
3850		spin_unlock_irqrestore(&xhci->lock, flags);
3851		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852				"FIXME: allocate a command ring segment");
3853		goto out;
3854	}
3855	xhci_ring_cmd_db(xhci);
3856	spin_unlock_irqrestore(&xhci->lock, flags);
3857
3858	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3859	wait_for_completion(command->completion);
3860
3861	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3862	 * the SetAddress() "recovery interval" required by USB and aborting the
3863	 * command on a timeout.
3864	 */
3865	switch (command->status) {
3866	case COMP_CMD_ABORT:
3867	case COMP_CMD_STOP:
3868		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3869		ret = -ETIME;
3870		break;
 
 
 
 
 
3871	case COMP_CTX_STATE:
3872	case COMP_EBADSLT:
3873		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3874			 act, udev->slot_id);
3875		ret = -EINVAL;
3876		break;
3877	case COMP_TX_ERR:
3878		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3879		ret = -EPROTO;
3880		break;
3881	case COMP_DEV_ERR:
3882		dev_warn(&udev->dev,
3883			 "ERROR: Incompatible device for setup %s command\n", act);
3884		ret = -ENODEV;
3885		break;
3886	case COMP_SUCCESS:
3887		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3888			       "Successful setup %s command", act);
3889		break;
3890	default:
3891		xhci_err(xhci,
3892			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3893			 act, command->status);
3894		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3895		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3896		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3897		ret = -EINVAL;
3898		break;
3899	}
3900	if (ret)
3901		goto out;
 
3902	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3903	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904			"Op regs DCBAA ptr = %#016llx", temp_64);
3905	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3906		"Slot ID %d dcbaa entry @%p = %#016llx",
3907		udev->slot_id,
3908		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3909		(unsigned long long)
3910		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3911	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912			"Output Context DMA address = %#08llx",
3913			(unsigned long long)virt_dev->out_ctx->dma);
3914	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3915	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3916	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3917				le32_to_cpu(slot_ctx->dev_info) >> 27);
3918	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3919	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3920	/*
3921	 * USB core uses address 1 for the roothubs, so we add one to the
3922	 * address given back to us by the HC.
3923	 */
3924	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3925	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3926				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
3927	/* Zero the input context control for later use */
3928	ctrl_ctx->add_flags = 0;
3929	ctrl_ctx->drop_flags = 0;
3930
3931	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3932		       "Internal device address = %d",
3933		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3934out:
3935	mutex_unlock(&xhci->mutex);
3936	if (command) {
3937		kfree(command->completion);
3938		kfree(command);
3939	}
3940	return ret;
3941}
3942
3943int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3944{
3945	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3946}
3947
3948int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3949{
3950	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3951}
3952
3953/*
3954 * Transfer the port index into real index in the HW port status
3955 * registers. Caculate offset between the port's PORTSC register
3956 * and port status base. Divide the number of per port register
3957 * to get the real index. The raw port number bases 1.
3958 */
3959int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3960{
3961	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3963	__le32 __iomem *addr;
3964	int raw_port;
3965
3966	if (hcd->speed < HCD_USB3)
3967		addr = xhci->usb2_ports[port1 - 1];
3968	else
3969		addr = xhci->usb3_ports[port1 - 1];
3970
3971	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3972	return raw_port;
3973}
3974
3975/*
3976 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3977 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3978 */
3979static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3980			struct usb_device *udev, u16 max_exit_latency)
3981{
3982	struct xhci_virt_device *virt_dev;
3983	struct xhci_command *command;
3984	struct xhci_input_control_ctx *ctrl_ctx;
3985	struct xhci_slot_ctx *slot_ctx;
3986	unsigned long flags;
3987	int ret;
3988
3989	spin_lock_irqsave(&xhci->lock, flags);
3990
3991	virt_dev = xhci->devs[udev->slot_id];
3992
3993	/*
3994	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3995	 * xHC was re-initialized. Exit latency will be set later after
3996	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3997	 */
3998
3999	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4000		spin_unlock_irqrestore(&xhci->lock, flags);
4001		return 0;
4002	}
4003
4004	/* Attempt to issue an Evaluate Context command to change the MEL. */
4005	command = xhci->lpm_command;
4006	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4007	if (!ctrl_ctx) {
4008		spin_unlock_irqrestore(&xhci->lock, flags);
4009		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4010				__func__);
4011		return -ENOMEM;
4012	}
4013
4014	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4015	spin_unlock_irqrestore(&xhci->lock, flags);
4016
4017	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4018	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4019	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4020	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4021	slot_ctx->dev_state = 0;
4022
4023	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4024			"Set up evaluate context for LPM MEL change.");
4025	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4026	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4027
4028	/* Issue and wait for the evaluate context command. */
4029	ret = xhci_configure_endpoint(xhci, udev, command,
4030			true, true);
4031	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4032	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4033
4034	if (!ret) {
4035		spin_lock_irqsave(&xhci->lock, flags);
4036		virt_dev->current_mel = max_exit_latency;
4037		spin_unlock_irqrestore(&xhci->lock, flags);
4038	}
4039	return ret;
4040}
4041
4042#ifdef CONFIG_PM
4043
4044/* BESL to HIRD Encoding array for USB2 LPM */
4045static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4046	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4047
4048/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4049static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4050					struct usb_device *udev)
4051{
4052	int u2del, besl, besl_host;
4053	int besl_device = 0;
4054	u32 field;
4055
4056	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4057	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4058
4059	if (field & USB_BESL_SUPPORT) {
4060		for (besl_host = 0; besl_host < 16; besl_host++) {
4061			if (xhci_besl_encoding[besl_host] >= u2del)
4062				break;
4063		}
4064		/* Use baseline BESL value as default */
4065		if (field & USB_BESL_BASELINE_VALID)
4066			besl_device = USB_GET_BESL_BASELINE(field);
4067		else if (field & USB_BESL_DEEP_VALID)
4068			besl_device = USB_GET_BESL_DEEP(field);
4069	} else {
4070		if (u2del <= 50)
4071			besl_host = 0;
4072		else
4073			besl_host = (u2del - 51) / 75 + 1;
4074	}
4075
4076	besl = besl_host + besl_device;
4077	if (besl > 15)
4078		besl = 15;
4079
4080	return besl;
4081}
4082
4083/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4084static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4085{
4086	u32 field;
4087	int l1;
4088	int besld = 0;
4089	int hirdm = 0;
 
 
 
 
 
4090
4091	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4092
4093	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4094	l1 = udev->l1_params.timeout / 256;
4095
4096	/* device has preferred BESLD */
4097	if (field & USB_BESL_DEEP_VALID) {
4098		besld = USB_GET_BESL_DEEP(field);
4099		hirdm = 1;
 
 
 
 
 
4100	}
4101
4102	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4103}
4104
4105int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4106			struct usb_device *udev, int enable)
4107{
4108	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4109	__le32 __iomem	**port_array;
4110	__le32 __iomem	*pm_addr, *hlpm_addr;
4111	u32		pm_val, hlpm_val, field;
4112	unsigned int	port_num;
4113	unsigned long	flags;
4114	int		hird, exit_latency;
4115	int		ret;
4116
4117	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4118			!udev->lpm_capable)
4119		return -EPERM;
4120
4121	if (!udev->parent || udev->parent->parent ||
4122			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4123		return -EPERM;
4124
4125	if (udev->usb2_hw_lpm_capable != 1)
4126		return -EPERM;
4127
4128	spin_lock_irqsave(&xhci->lock, flags);
4129
4130	port_array = xhci->usb2_ports;
4131	port_num = udev->portnum - 1;
4132	pm_addr = port_array[port_num] + PORTPMSC;
4133	pm_val = readl(pm_addr);
4134	hlpm_addr = port_array[port_num] + PORTHLPMC;
4135	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4138			enable ? "enable" : "disable", port_num + 1);
4139
4140	if (enable) {
4141		/* Host supports BESL timeout instead of HIRD */
4142		if (udev->usb2_hw_lpm_besl_capable) {
4143			/* if device doesn't have a preferred BESL value use a
4144			 * default one which works with mixed HIRD and BESL
4145			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4146			 */
4147			if ((field & USB_BESL_SUPPORT) &&
4148			    (field & USB_BESL_BASELINE_VALID))
4149				hird = USB_GET_BESL_BASELINE(field);
4150			else
4151				hird = udev->l1_params.besl;
4152
4153			exit_latency = xhci_besl_encoding[hird];
4154			spin_unlock_irqrestore(&xhci->lock, flags);
4155
4156			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4157			 * input context for link powermanagement evaluate
4158			 * context commands. It is protected by hcd->bandwidth
4159			 * mutex and is shared by all devices. We need to set
4160			 * the max ext latency in USB 2 BESL LPM as well, so
4161			 * use the same mutex and xhci_change_max_exit_latency()
4162			 */
4163			mutex_lock(hcd->bandwidth_mutex);
4164			ret = xhci_change_max_exit_latency(xhci, udev,
4165							   exit_latency);
4166			mutex_unlock(hcd->bandwidth_mutex);
4167
4168			if (ret < 0)
4169				return ret;
4170			spin_lock_irqsave(&xhci->lock, flags);
4171
4172			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4173			writel(hlpm_val, hlpm_addr);
4174			/* flush write */
4175			readl(hlpm_addr);
4176		} else {
4177			hird = xhci_calculate_hird_besl(xhci, udev);
4178		}
4179
4180		pm_val &= ~PORT_HIRD_MASK;
4181		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4182		writel(pm_val, pm_addr);
4183		pm_val = readl(pm_addr);
4184		pm_val |= PORT_HLE;
4185		writel(pm_val, pm_addr);
4186		/* flush write */
4187		readl(pm_addr);
4188	} else {
4189		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4190		writel(pm_val, pm_addr);
4191		/* flush write */
4192		readl(pm_addr);
4193		if (udev->usb2_hw_lpm_besl_capable) {
4194			spin_unlock_irqrestore(&xhci->lock, flags);
4195			mutex_lock(hcd->bandwidth_mutex);
4196			xhci_change_max_exit_latency(xhci, udev, 0);
4197			mutex_unlock(hcd->bandwidth_mutex);
4198			return 0;
4199		}
4200	}
4201
4202	spin_unlock_irqrestore(&xhci->lock, flags);
4203	return 0;
4204}
4205
4206/* check if a usb2 port supports a given extened capability protocol
4207 * only USB2 ports extended protocol capability values are cached.
4208 * Return 1 if capability is supported
4209 */
4210static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4211					   unsigned capability)
4212{
4213	u32 port_offset, port_count;
4214	int i;
4215
4216	for (i = 0; i < xhci->num_ext_caps; i++) {
4217		if (xhci->ext_caps[i] & capability) {
4218			/* port offsets starts at 1 */
4219			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4220			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4221			if (port >= port_offset &&
4222			    port < port_offset + port_count)
4223				return 1;
4224		}
4225	}
 
4226	return 0;
4227}
4228
4229int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4230{
4231	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4232	int		portnum = udev->portnum - 1;
4233
4234	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4235			!udev->lpm_capable)
4236		return 0;
4237
4238	/* we only support lpm for non-hub device connected to root hub yet */
4239	if (!udev->parent || udev->parent->parent ||
4240			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4241		return 0;
4242
4243	if (xhci->hw_lpm_support == 1 &&
4244			xhci_check_usb2_port_capability(
4245				xhci, portnum, XHCI_HLC)) {
4246		udev->usb2_hw_lpm_capable = 1;
4247		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4248		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4249		if (xhci_check_usb2_port_capability(xhci, portnum,
4250					XHCI_BLC))
4251			udev->usb2_hw_lpm_besl_capable = 1;
4252	}
4253
 
 
4254	return 0;
4255}
4256
 
 
4257/*---------------------- USB 3.0 Link PM functions ------------------------*/
4258
 
4259/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4260static unsigned long long xhci_service_interval_to_ns(
4261		struct usb_endpoint_descriptor *desc)
4262{
4263	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4264}
4265
4266static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4267		enum usb3_link_state state)
4268{
4269	unsigned long long sel;
4270	unsigned long long pel;
4271	unsigned int max_sel_pel;
4272	char *state_name;
4273
4274	switch (state) {
4275	case USB3_LPM_U1:
4276		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4277		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4278		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4279		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4280		state_name = "U1";
4281		break;
4282	case USB3_LPM_U2:
4283		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4284		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4285		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4286		state_name = "U2";
4287		break;
4288	default:
4289		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4290				__func__);
4291		return USB3_LPM_DISABLED;
4292	}
4293
4294	if (sel <= max_sel_pel && pel <= max_sel_pel)
4295		return USB3_LPM_DEVICE_INITIATED;
4296
4297	if (sel > max_sel_pel)
4298		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4299				"due to long SEL %llu ms\n",
4300				state_name, sel);
4301	else
4302		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4303				"due to long PEL %llu ms\n",
4304				state_name, pel);
4305	return USB3_LPM_DISABLED;
4306}
4307
4308/* The U1 timeout should be the maximum of the following values:
 
4309 *  - For control endpoints, U1 system exit latency (SEL) * 3
4310 *  - For bulk endpoints, U1 SEL * 5
4311 *  - For interrupt endpoints:
4312 *    - Notification EPs, U1 SEL * 3
4313 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4314 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4315 */
4316static unsigned long long xhci_calculate_intel_u1_timeout(
4317		struct usb_device *udev,
4318		struct usb_endpoint_descriptor *desc)
4319{
4320	unsigned long long timeout_ns;
4321	int ep_type;
4322	int intr_type;
4323
4324	ep_type = usb_endpoint_type(desc);
4325	switch (ep_type) {
4326	case USB_ENDPOINT_XFER_CONTROL:
4327		timeout_ns = udev->u1_params.sel * 3;
4328		break;
4329	case USB_ENDPOINT_XFER_BULK:
4330		timeout_ns = udev->u1_params.sel * 5;
4331		break;
4332	case USB_ENDPOINT_XFER_INT:
4333		intr_type = usb_endpoint_interrupt_type(desc);
4334		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4335			timeout_ns = udev->u1_params.sel * 3;
4336			break;
4337		}
4338		/* Otherwise the calculation is the same as isoc eps */
4339	case USB_ENDPOINT_XFER_ISOC:
4340		timeout_ns = xhci_service_interval_to_ns(desc);
4341		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4342		if (timeout_ns < udev->u1_params.sel * 2)
4343			timeout_ns = udev->u1_params.sel * 2;
4344		break;
4345	default:
4346		return 0;
4347	}
4348
4349	return timeout_ns;
4350}
4351
4352/* Returns the hub-encoded U1 timeout value. */
4353static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4354		struct usb_device *udev,
4355		struct usb_endpoint_descriptor *desc)
4356{
4357	unsigned long long timeout_ns;
4358
4359	if (xhci->quirks & XHCI_INTEL_HOST)
4360		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4361	else
4362		timeout_ns = udev->u1_params.sel;
4363
4364	/* The U1 timeout is encoded in 1us intervals.
4365	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4366	 */
4367	if (timeout_ns == USB3_LPM_DISABLED)
4368		timeout_ns = 1;
4369	else
4370		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4371
4372	/* If the necessary timeout value is bigger than what we can set in the
4373	 * USB 3.0 hub, we have to disable hub-initiated U1.
4374	 */
4375	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4376		return timeout_ns;
4377	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4378			"due to long timeout %llu ms\n", timeout_ns);
4379	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4380}
4381
4382/* The U2 timeout should be the maximum of:
 
4383 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4384 *  - largest bInterval of any active periodic endpoint (to avoid going
4385 *    into lower power link states between intervals).
4386 *  - the U2 Exit Latency of the device
4387 */
4388static unsigned long long xhci_calculate_intel_u2_timeout(
4389		struct usb_device *udev,
4390		struct usb_endpoint_descriptor *desc)
4391{
4392	unsigned long long timeout_ns;
4393	unsigned long long u2_del_ns;
4394
4395	timeout_ns = 10 * 1000 * 1000;
4396
4397	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4398			(xhci_service_interval_to_ns(desc) > timeout_ns))
4399		timeout_ns = xhci_service_interval_to_ns(desc);
4400
4401	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4402	if (u2_del_ns > timeout_ns)
4403		timeout_ns = u2_del_ns;
4404
4405	return timeout_ns;
4406}
4407
4408/* Returns the hub-encoded U2 timeout value. */
4409static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4410		struct usb_device *udev,
4411		struct usb_endpoint_descriptor *desc)
4412{
4413	unsigned long long timeout_ns;
4414
4415	if (xhci->quirks & XHCI_INTEL_HOST)
4416		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4417	else
4418		timeout_ns = udev->u2_params.sel;
4419
4420	/* The U2 timeout is encoded in 256us intervals */
4421	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4422	/* If the necessary timeout value is bigger than what we can set in the
4423	 * USB 3.0 hub, we have to disable hub-initiated U2.
4424	 */
4425	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4426		return timeout_ns;
4427	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4428			"due to long timeout %llu ms\n", timeout_ns);
4429	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4430}
4431
4432static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4433		struct usb_device *udev,
4434		struct usb_endpoint_descriptor *desc,
4435		enum usb3_link_state state,
4436		u16 *timeout)
4437{
4438	if (state == USB3_LPM_U1)
4439		return xhci_calculate_u1_timeout(xhci, udev, desc);
4440	else if (state == USB3_LPM_U2)
4441		return xhci_calculate_u2_timeout(xhci, udev, desc);
 
 
 
4442
4443	return USB3_LPM_DISABLED;
4444}
4445
4446static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447		struct usb_device *udev,
4448		struct usb_endpoint_descriptor *desc,
4449		enum usb3_link_state state,
4450		u16 *timeout)
4451{
4452	u16 alt_timeout;
4453
4454	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4455		desc, state, timeout);
4456
4457	/* If we found we can't enable hub-initiated LPM, or
4458	 * the U1 or U2 exit latency was too high to allow
4459	 * device-initiated LPM as well, just stop searching.
4460	 */
4461	if (alt_timeout == USB3_LPM_DISABLED ||
4462			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4463		*timeout = alt_timeout;
4464		return -E2BIG;
4465	}
4466	if (alt_timeout > *timeout)
4467		*timeout = alt_timeout;
4468	return 0;
4469}
4470
4471static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4472		struct usb_device *udev,
4473		struct usb_host_interface *alt,
4474		enum usb3_link_state state,
4475		u16 *timeout)
4476{
4477	int j;
4478
4479	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4480		if (xhci_update_timeout_for_endpoint(xhci, udev,
4481					&alt->endpoint[j].desc, state, timeout))
4482			return -E2BIG;
4483		continue;
4484	}
4485	return 0;
4486}
4487
4488static int xhci_check_intel_tier_policy(struct usb_device *udev,
4489		enum usb3_link_state state)
4490{
4491	struct usb_device *parent;
4492	unsigned int num_hubs;
4493
4494	if (state == USB3_LPM_U2)
4495		return 0;
4496
4497	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4498	for (parent = udev->parent, num_hubs = 0; parent->parent;
4499			parent = parent->parent)
4500		num_hubs++;
4501
4502	if (num_hubs < 2)
4503		return 0;
4504
4505	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4506			" below second-tier hub.\n");
4507	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4508			"to decrease power consumption.\n");
4509	return -E2BIG;
4510}
4511
4512static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4513		struct usb_device *udev,
4514		enum usb3_link_state state)
4515{
4516	if (xhci->quirks & XHCI_INTEL_HOST)
4517		return xhci_check_intel_tier_policy(udev, state);
4518	else
4519		return 0;
4520}
4521
4522/* Returns the U1 or U2 timeout that should be enabled.
4523 * If the tier check or timeout setting functions return with a non-zero exit
4524 * code, that means the timeout value has been finalized and we shouldn't look
4525 * at any more endpoints.
4526 */
4527static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4528			struct usb_device *udev, enum usb3_link_state state)
4529{
4530	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4531	struct usb_host_config *config;
4532	char *state_name;
4533	int i;
4534	u16 timeout = USB3_LPM_DISABLED;
4535
4536	if (state == USB3_LPM_U1)
4537		state_name = "U1";
4538	else if (state == USB3_LPM_U2)
4539		state_name = "U2";
4540	else {
4541		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4542				state);
4543		return timeout;
4544	}
4545
4546	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4547		return timeout;
4548
4549	/* Gather some information about the currently installed configuration
4550	 * and alternate interface settings.
4551	 */
4552	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4553			state, &timeout))
4554		return timeout;
4555
4556	config = udev->actconfig;
4557	if (!config)
4558		return timeout;
4559
4560	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4561		struct usb_driver *driver;
4562		struct usb_interface *intf = config->interface[i];
4563
4564		if (!intf)
4565			continue;
4566
4567		/* Check if any currently bound drivers want hub-initiated LPM
4568		 * disabled.
4569		 */
4570		if (intf->dev.driver) {
4571			driver = to_usb_driver(intf->dev.driver);
4572			if (driver && driver->disable_hub_initiated_lpm) {
4573				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4574						"at request of driver %s\n",
4575						state_name, driver->name);
4576				return xhci_get_timeout_no_hub_lpm(udev, state);
4577			}
4578		}
4579
4580		/* Not sure how this could happen... */
4581		if (!intf->cur_altsetting)
4582			continue;
4583
4584		if (xhci_update_timeout_for_interface(xhci, udev,
4585					intf->cur_altsetting,
4586					state, &timeout))
4587			return timeout;
4588	}
4589	return timeout;
4590}
4591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4592static int calculate_max_exit_latency(struct usb_device *udev,
4593		enum usb3_link_state state_changed,
4594		u16 hub_encoded_timeout)
4595{
4596	unsigned long long u1_mel_us = 0;
4597	unsigned long long u2_mel_us = 0;
4598	unsigned long long mel_us = 0;
4599	bool disabling_u1;
4600	bool disabling_u2;
4601	bool enabling_u1;
4602	bool enabling_u2;
4603
4604	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4605			hub_encoded_timeout == USB3_LPM_DISABLED);
4606	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4607			hub_encoded_timeout == USB3_LPM_DISABLED);
4608
4609	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4610			hub_encoded_timeout != USB3_LPM_DISABLED);
4611	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4612			hub_encoded_timeout != USB3_LPM_DISABLED);
4613
4614	/* If U1 was already enabled and we're not disabling it,
4615	 * or we're going to enable U1, account for the U1 max exit latency.
4616	 */
4617	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4618			enabling_u1)
4619		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4620	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4621			enabling_u2)
4622		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4623
4624	if (u1_mel_us > u2_mel_us)
4625		mel_us = u1_mel_us;
4626	else
4627		mel_us = u2_mel_us;
4628	/* xHCI host controller max exit latency field is only 16 bits wide. */
4629	if (mel_us > MAX_EXIT) {
4630		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4631				"is too big.\n", mel_us);
4632		return -E2BIG;
4633	}
4634	return mel_us;
4635}
4636
4637/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4638int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639			struct usb_device *udev, enum usb3_link_state state)
4640{
4641	struct xhci_hcd	*xhci;
4642	u16 hub_encoded_timeout;
4643	int mel;
4644	int ret;
4645
4646	xhci = hcd_to_xhci(hcd);
4647	/* The LPM timeout values are pretty host-controller specific, so don't
4648	 * enable hub-initiated timeouts unless the vendor has provided
4649	 * information about their timeout algorithm.
4650	 */
4651	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4652			!xhci->devs[udev->slot_id])
4653		return USB3_LPM_DISABLED;
4654
4655	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4656	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4657	if (mel < 0) {
4658		/* Max Exit Latency is too big, disable LPM. */
4659		hub_encoded_timeout = USB3_LPM_DISABLED;
4660		mel = 0;
4661	}
4662
4663	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4664	if (ret)
4665		return ret;
4666	return hub_encoded_timeout;
4667}
4668
4669int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4670			struct usb_device *udev, enum usb3_link_state state)
4671{
4672	struct xhci_hcd	*xhci;
4673	u16 mel;
 
4674
4675	xhci = hcd_to_xhci(hcd);
4676	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4677			!xhci->devs[udev->slot_id])
4678		return 0;
4679
4680	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4681	return xhci_change_max_exit_latency(xhci, udev, mel);
4682}
4683#else /* CONFIG_PM */
4684
4685int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4686				struct usb_device *udev, int enable)
4687{
4688	return 0;
4689}
4690
4691int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4692{
4693	return 0;
4694}
 
4695
4696int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697			struct usb_device *udev, enum usb3_link_state state)
4698{
4699	return USB3_LPM_DISABLED;
4700}
4701
4702int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4703			struct usb_device *udev, enum usb3_link_state state)
4704{
4705	return 0;
4706}
4707#endif	/* CONFIG_PM */
4708
4709/*-------------------------------------------------------------------------*/
4710
4711/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4712 * internal data structures for the device.
4713 */
4714int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4715			struct usb_tt *tt, gfp_t mem_flags)
4716{
4717	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4718	struct xhci_virt_device *vdev;
4719	struct xhci_command *config_cmd;
4720	struct xhci_input_control_ctx *ctrl_ctx;
4721	struct xhci_slot_ctx *slot_ctx;
4722	unsigned long flags;
4723	unsigned think_time;
4724	int ret;
4725
4726	/* Ignore root hubs */
4727	if (!hdev->parent)
4728		return 0;
4729
4730	vdev = xhci->devs[hdev->slot_id];
4731	if (!vdev) {
4732		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4733		return -EINVAL;
4734	}
4735	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4736	if (!config_cmd) {
4737		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4738		return -ENOMEM;
4739	}
4740	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4741	if (!ctrl_ctx) {
4742		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4743				__func__);
4744		xhci_free_command(xhci, config_cmd);
4745		return -ENOMEM;
4746	}
4747
4748	spin_lock_irqsave(&xhci->lock, flags);
4749	if (hdev->speed == USB_SPEED_HIGH &&
4750			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4751		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4752		xhci_free_command(xhci, config_cmd);
4753		spin_unlock_irqrestore(&xhci->lock, flags);
4754		return -ENOMEM;
4755	}
4756
4757	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
 
4758	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4759	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4760	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4761	/*
4762	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4763	 * but it may be already set to 1 when setup an xHCI virtual
4764	 * device, so clear it anyway.
4765	 */
4766	if (tt->multi)
4767		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4768	else if (hdev->speed == USB_SPEED_FULL)
4769		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4770
4771	if (xhci->hci_version > 0x95) {
4772		xhci_dbg(xhci, "xHCI version %x needs hub "
4773				"TT think time and number of ports\n",
4774				(unsigned int) xhci->hci_version);
4775		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4776		/* Set TT think time - convert from ns to FS bit times.
4777		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4778		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4779		 *
4780		 * xHCI 1.0: this field shall be 0 if the device is not a
4781		 * High-spped hub.
4782		 */
4783		think_time = tt->think_time;
4784		if (think_time != 0)
4785			think_time = (think_time / 666) - 1;
4786		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4787			slot_ctx->tt_info |=
4788				cpu_to_le32(TT_THINK_TIME(think_time));
4789	} else {
4790		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4791				"TT think time or number of ports\n",
4792				(unsigned int) xhci->hci_version);
4793	}
4794	slot_ctx->dev_state = 0;
4795	spin_unlock_irqrestore(&xhci->lock, flags);
4796
4797	xhci_dbg(xhci, "Set up %s for hub device.\n",
4798			(xhci->hci_version > 0x95) ?
4799			"configure endpoint" : "evaluate context");
4800	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4801	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4802
4803	/* Issue and wait for the configure endpoint or
4804	 * evaluate context command.
4805	 */
4806	if (xhci->hci_version > 0x95)
4807		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4808				false, false);
4809	else
4810		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4811				true, false);
4812
4813	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4814	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4815
4816	xhci_free_command(xhci, config_cmd);
4817	return ret;
4818}
4819
4820int xhci_get_frame(struct usb_hcd *hcd)
4821{
4822	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4823	/* EHCI mods by the periodic size.  Why? */
4824	return readl(&xhci->run_regs->microframe_index) >> 3;
4825}
4826
4827int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4828{
4829	struct xhci_hcd		*xhci;
4830	struct device		*dev = hcd->self.controller;
4831	int			retval;
 
4832
4833	/* Accept arbitrarily long scatter-gather lists */
4834	hcd->self.sg_tablesize = ~0;
4835
4836	/* support to build packet from discontinuous buffers */
4837	hcd->self.no_sg_constraint = 1;
4838
4839	/* XHCI controllers don't stop the ep queue on short packets :| */
4840	hcd->self.no_stop_on_short = 1;
4841
4842	xhci = hcd_to_xhci(hcd);
4843
4844	if (usb_hcd_is_primary_hcd(hcd)) {
 
 
 
 
4845		xhci->main_hcd = hcd;
4846		/* Mark the first roothub as being USB 2.0.
4847		 * The xHCI driver will register the USB 3.0 roothub.
4848		 */
4849		hcd->speed = HCD_USB2;
4850		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4851		/*
4852		 * USB 2.0 roothub under xHCI has an integrated TT,
4853		 * (rate matching hub) as opposed to having an OHCI/UHCI
4854		 * companion controller.
4855		 */
4856		hcd->has_tt = 1;
4857	} else {
4858		if (xhci->sbrn == 0x31) {
4859			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4860			hcd->speed = HCD_USB31;
4861			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4862		}
4863		/* xHCI private pointer was set in xhci_pci_probe for the second
4864		 * registered roothub.
4865		 */
 
 
 
 
 
 
 
 
4866		return 0;
4867	}
4868
4869	mutex_init(&xhci->mutex);
4870	xhci->cap_regs = hcd->regs;
4871	xhci->op_regs = hcd->regs +
4872		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4873	xhci->run_regs = hcd->regs +
4874		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4875	/* Cache read-only capability registers */
4876	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4877	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4878	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4879	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4880	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4881	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4882	if (xhci->hci_version > 0x100)
4883		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4884	xhci_print_registers(xhci);
4885
4886	xhci->quirks |= quirks;
4887
4888	get_quirks(dev, xhci);
4889
4890	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4891	 * success event after a short transfer. This quirk will ignore such
4892	 * spurious event.
4893	 */
4894	if (xhci->hci_version > 0x96)
4895		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4896
4897	/* Make sure the HC is halted. */
4898	retval = xhci_halt(xhci);
4899	if (retval)
4900		return retval;
4901
4902	xhci_dbg(xhci, "Resetting HCD\n");
4903	/* Reset the internal HC memory state and registers. */
4904	retval = xhci_reset(xhci);
4905	if (retval)
4906		return retval;
4907	xhci_dbg(xhci, "Reset complete\n");
4908
4909	/*
4910	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4911	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4912	 * address memory pointers actually. So, this driver clears the AC64
4913	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4914	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4915	 */
4916	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4917		xhci->hcc_params &= ~BIT(0);
4918
4919	/* Set dma_mask and coherent_dma_mask to 64-bits,
4920	 * if xHC supports 64-bit addressing */
4921	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4922			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4923		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4924		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4925	} else {
4926		/*
4927		 * This is to avoid error in cases where a 32-bit USB
4928		 * controller is used on a 64-bit capable system.
4929		 */
4930		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4931		if (retval)
4932			return retval;
4933		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4934		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4935	}
4936
4937	xhci_dbg(xhci, "Calling HCD init\n");
4938	/* Initialize HCD and host controller data structures. */
4939	retval = xhci_init(hcd);
4940	if (retval)
4941		return retval;
4942	xhci_dbg(xhci, "Called HCD init\n");
4943
4944	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4945		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4946
4947	return 0;
 
 
 
4948}
4949EXPORT_SYMBOL_GPL(xhci_gen_setup);
4950
4951static const struct hc_driver xhci_hc_driver = {
4952	.description =		"xhci-hcd",
4953	.product_desc =		"xHCI Host Controller",
4954	.hcd_priv_size =	sizeof(struct xhci_hcd),
4955
4956	/*
4957	 * generic hardware linkage
4958	 */
4959	.irq =			xhci_irq,
4960	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4961
4962	/*
4963	 * basic lifecycle operations
4964	 */
4965	.reset =		NULL, /* set in xhci_init_driver() */
4966	.start =		xhci_run,
4967	.stop =			xhci_stop,
4968	.shutdown =		xhci_shutdown,
4969
4970	/*
4971	 * managing i/o requests and associated device resources
4972	 */
4973	.urb_enqueue =		xhci_urb_enqueue,
4974	.urb_dequeue =		xhci_urb_dequeue,
4975	.alloc_dev =		xhci_alloc_dev,
4976	.free_dev =		xhci_free_dev,
4977	.alloc_streams =	xhci_alloc_streams,
4978	.free_streams =		xhci_free_streams,
4979	.add_endpoint =		xhci_add_endpoint,
4980	.drop_endpoint =	xhci_drop_endpoint,
4981	.endpoint_reset =	xhci_endpoint_reset,
4982	.check_bandwidth =	xhci_check_bandwidth,
4983	.reset_bandwidth =	xhci_reset_bandwidth,
4984	.address_device =	xhci_address_device,
4985	.enable_device =	xhci_enable_device,
4986	.update_hub_device =	xhci_update_hub_device,
4987	.reset_device =		xhci_discover_or_reset_device,
4988
4989	/*
4990	 * scheduling support
4991	 */
4992	.get_frame_number =	xhci_get_frame,
4993
4994	/*
4995	 * root hub support
4996	 */
4997	.hub_control =		xhci_hub_control,
4998	.hub_status_data =	xhci_hub_status_data,
4999	.bus_suspend =		xhci_bus_suspend,
5000	.bus_resume =		xhci_bus_resume,
5001
5002	/*
5003	 * call back when device connected and addressed
5004	 */
5005	.update_device =        xhci_update_device,
5006	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5007	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5008	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5009	.find_raw_port_number =	xhci_find_raw_port_number,
5010};
5011
5012void xhci_init_driver(struct hc_driver *drv,
5013		      const struct xhci_driver_overrides *over)
5014{
5015	BUG_ON(!over);
5016
5017	/* Copy the generic table to drv then apply the overrides */
5018	*drv = xhci_hc_driver;
5019
5020	if (over) {
5021		drv->hcd_priv_size += over->extra_priv_size;
5022		if (over->reset)
5023			drv->reset = over->reset;
5024		if (over->start)
5025			drv->start = over->start;
5026	}
5027}
5028EXPORT_SYMBOL_GPL(xhci_init_driver);
5029
5030MODULE_DESCRIPTION(DRIVER_DESC);
5031MODULE_AUTHOR(DRIVER_AUTHOR);
5032MODULE_LICENSE("GPL");
5033
5034static int __init xhci_hcd_init(void)
5035{
 
 
 
 
 
 
 
 
 
 
 
 
5036	/*
5037	 * Check the compiler generated sizes of structures that must be laid
5038	 * out in specific ways for hardware access.
5039	 */
5040	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5041	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5042	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5043	/* xhci_device_control has eight fields, and also
5044	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5045	 */
5046	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5047	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5048	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5049	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5050	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5051	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5052	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5053
5054	if (usb_disabled())
5055		return -ENODEV;
5056
5057	return 0;
 
 
 
5058}
5059
5060/*
5061 * If an init function is provided, an exit function must also be provided
5062 * to allow module unload.
5063 */
5064static void __exit xhci_hcd_fini(void) { }
5065
5066module_init(xhci_hcd_init);
5067module_exit(xhci_hcd_fini);
 
 
 
 
 
 
v3.5.6
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
 
  30
  31#include "xhci.h"
 
 
  32
  33#define DRIVER_AUTHOR "Sarah Sharp"
  34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  35
 
 
  36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  37static int link_quirk;
  38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  40
 
 
 
 
  41/* TODO: copied from ehci-hcd.c - can this be refactored? */
  42/*
  43 * handshake - spin reading hc until handshake completes or fails
  44 * @ptr: address of hc register to be read
  45 * @mask: bits to look at in result of read
  46 * @done: value of those bits when handshake succeeds
  47 * @usec: timeout in microseconds
  48 *
  49 * Returns negative errno, or zero on success
  50 *
  51 * Success happens when the "mask" bits have the specified value (hardware
  52 * handshake done).  There are two failure modes:  "usec" have passed (major
  53 * hardware flakeout), or the register reads as all-ones (hardware removed).
  54 */
  55int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  56		      u32 mask, u32 done, int usec)
  57{
  58	u32	result;
  59
  60	do {
  61		result = xhci_readl(xhci, ptr);
  62		if (result == ~(u32)0)		/* card removed */
  63			return -ENODEV;
  64		result &= mask;
  65		if (result == done)
  66			return 0;
  67		udelay(1);
  68		usec--;
  69	} while (usec > 0);
  70	return -ETIMEDOUT;
  71}
  72
  73/*
  74 * Disable interrupts and begin the xHCI halting process.
  75 */
  76void xhci_quiesce(struct xhci_hcd *xhci)
  77{
  78	u32 halted;
  79	u32 cmd;
  80	u32 mask;
  81
  82	mask = ~(XHCI_IRQS);
  83	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  84	if (!halted)
  85		mask &= ~CMD_RUN;
  86
  87	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  88	cmd &= mask;
  89	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  90}
  91
  92/*
  93 * Force HC into halt state.
  94 *
  95 * Disable any IRQs and clear the run/stop bit.
  96 * HC will complete any current and actively pipelined transactions, and
  97 * should halt within 16 ms of the run/stop bit being cleared.
  98 * Read HC Halted bit in the status register to see when the HC is finished.
  99 */
 100int xhci_halt(struct xhci_hcd *xhci)
 101{
 102	int ret;
 103	xhci_dbg(xhci, "// Halt the HC\n");
 104	xhci_quiesce(xhci);
 105
 106	ret = handshake(xhci, &xhci->op_regs->status,
 107			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 108	if (!ret) {
 109		xhci->xhc_state |= XHCI_STATE_HALTED;
 110		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 111	} else
 112		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 113				XHCI_MAX_HALT_USEC);
 114	return ret;
 115}
 116
 117/*
 118 * Set the run bit and wait for the host to be running.
 119 */
 120static int xhci_start(struct xhci_hcd *xhci)
 121{
 122	u32 temp;
 123	int ret;
 124
 125	temp = xhci_readl(xhci, &xhci->op_regs->command);
 126	temp |= (CMD_RUN);
 127	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 128			temp);
 129	xhci_writel(xhci, temp, &xhci->op_regs->command);
 130
 131	/*
 132	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 133	 * running.
 134	 */
 135	ret = handshake(xhci, &xhci->op_regs->status,
 136			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 137	if (ret == -ETIMEDOUT)
 138		xhci_err(xhci, "Host took too long to start, "
 139				"waited %u microseconds.\n",
 140				XHCI_MAX_HALT_USEC);
 141	if (!ret)
 142		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 
 
 143	return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155	u32 command;
 156	u32 state;
 157	int ret, i;
 158
 159	state = xhci_readl(xhci, &xhci->op_regs->status);
 
 
 
 
 
 
 160	if ((state & STS_HALT) == 0) {
 161		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 162		return 0;
 163	}
 164
 165	xhci_dbg(xhci, "// Reset the HC\n");
 166	command = xhci_readl(xhci, &xhci->op_regs->command);
 167	command |= CMD_RESET;
 168	xhci_writel(xhci, command, &xhci->op_regs->command);
 
 
 
 
 
 
 
 
 
 
 169
 170	ret = handshake(xhci, &xhci->op_regs->command,
 171			CMD_RESET, 0, 10 * 1000 * 1000);
 172	if (ret)
 173		return ret;
 174
 175	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 
 176	/*
 177	 * xHCI cannot write to any doorbells or operational registers other
 178	 * than status until the "Controller Not Ready" flag is cleared.
 179	 */
 180	ret = handshake(xhci, &xhci->op_regs->status,
 181			STS_CNR, 0, 10 * 1000 * 1000);
 182
 183	for (i = 0; i < 2; ++i) {
 184		xhci->bus_state[i].port_c_suspend = 0;
 185		xhci->bus_state[i].suspended_ports = 0;
 186		xhci->bus_state[i].resuming_ports = 0;
 187	}
 188
 189	return ret;
 190}
 191
 192#ifdef CONFIG_PCI
 193static int xhci_free_msi(struct xhci_hcd *xhci)
 194{
 195	int i;
 196
 197	if (!xhci->msix_entries)
 198		return -EINVAL;
 199
 200	for (i = 0; i < xhci->msix_count; i++)
 201		if (xhci->msix_entries[i].vector)
 202			free_irq(xhci->msix_entries[i].vector,
 203					xhci_to_hcd(xhci));
 204	return 0;
 205}
 206
 207/*
 208 * Set up MSI
 209 */
 210static int xhci_setup_msi(struct xhci_hcd *xhci)
 211{
 212	int ret;
 213	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 214
 215	ret = pci_enable_msi(pdev);
 216	if (ret) {
 217		xhci_dbg(xhci, "failed to allocate MSI entry\n");
 
 218		return ret;
 219	}
 220
 221	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 222				0, "xhci_hcd", xhci_to_hcd(xhci));
 223	if (ret) {
 224		xhci_dbg(xhci, "disable MSI interrupt\n");
 
 225		pci_disable_msi(pdev);
 226	}
 227
 228	return ret;
 229}
 230
 231/*
 232 * Free IRQs
 233 * free all IRQs request
 234 */
 235static void xhci_free_irq(struct xhci_hcd *xhci)
 236{
 237	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 238	int ret;
 239
 240	/* return if using legacy interrupt */
 241	if (xhci_to_hcd(xhci)->irq > 0)
 242		return;
 243
 244	ret = xhci_free_msi(xhci);
 245	if (!ret)
 246		return;
 247	if (pdev->irq > 0)
 248		free_irq(pdev->irq, xhci_to_hcd(xhci));
 249
 250	return;
 251}
 252
 253/*
 254 * Set up MSI-X
 255 */
 256static int xhci_setup_msix(struct xhci_hcd *xhci)
 257{
 258	int i, ret = 0;
 259	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 260	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 261
 262	/*
 263	 * calculate number of msi-x vectors supported.
 264	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 265	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 266	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 267	 *   Add additional 1 vector to ensure always available interrupt.
 268	 */
 269	xhci->msix_count = min(num_online_cpus() + 1,
 270				HCS_MAX_INTRS(xhci->hcs_params1));
 271
 272	xhci->msix_entries =
 273		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 274				GFP_KERNEL);
 275	if (!xhci->msix_entries) {
 276		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 277		return -ENOMEM;
 278	}
 279
 280	for (i = 0; i < xhci->msix_count; i++) {
 281		xhci->msix_entries[i].entry = i;
 282		xhci->msix_entries[i].vector = 0;
 283	}
 284
 285	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 286	if (ret) {
 287		xhci_dbg(xhci, "Failed to enable MSI-X\n");
 
 288		goto free_entries;
 289	}
 290
 291	for (i = 0; i < xhci->msix_count; i++) {
 292		ret = request_irq(xhci->msix_entries[i].vector,
 293				(irq_handler_t)xhci_msi_irq,
 294				0, "xhci_hcd", xhci_to_hcd(xhci));
 295		if (ret)
 296			goto disable_msix;
 297	}
 298
 299	hcd->msix_enabled = 1;
 300	return ret;
 301
 302disable_msix:
 303	xhci_dbg(xhci, "disable MSI-X interrupt\n");
 304	xhci_free_irq(xhci);
 305	pci_disable_msix(pdev);
 306free_entries:
 307	kfree(xhci->msix_entries);
 308	xhci->msix_entries = NULL;
 309	return ret;
 310}
 311
 312/* Free any IRQs and disable MSI-X */
 313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 314{
 315	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 316	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 317
 
 
 
 318	xhci_free_irq(xhci);
 319
 320	if (xhci->msix_entries) {
 321		pci_disable_msix(pdev);
 322		kfree(xhci->msix_entries);
 323		xhci->msix_entries = NULL;
 324	} else {
 325		pci_disable_msi(pdev);
 326	}
 327
 328	hcd->msix_enabled = 0;
 329	return;
 330}
 331
 332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 333{
 334	int i;
 335
 336	if (xhci->msix_entries) {
 337		for (i = 0; i < xhci->msix_count; i++)
 338			synchronize_irq(xhci->msix_entries[i].vector);
 339	}
 340}
 341
 342static int xhci_try_enable_msi(struct usb_hcd *hcd)
 343{
 344	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 345	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 346	int ret;
 347
 
 
 
 
 
 348	/*
 349	 * Some Fresco Logic host controllers advertise MSI, but fail to
 350	 * generate interrupts.  Don't even try to enable MSI.
 351	 */
 352	if (xhci->quirks & XHCI_BROKEN_MSI)
 353		return 0;
 354
 355	/* unregister the legacy interrupt */
 356	if (hcd->irq)
 357		free_irq(hcd->irq, hcd);
 358	hcd->irq = 0;
 359
 360	ret = xhci_setup_msix(xhci);
 361	if (ret)
 362		/* fall back to msi*/
 363		ret = xhci_setup_msi(xhci);
 364
 365	if (!ret)
 366		/* hcd->irq is 0, we have MSI */
 367		return 0;
 368
 369	if (!pdev->irq) {
 370		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 371		return -EINVAL;
 372	}
 373
 
 
 
 
 
 374	/* fall back to legacy interrupt*/
 375	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 376			hcd->irq_descr, hcd);
 377	if (ret) {
 378		xhci_err(xhci, "request interrupt %d failed\n",
 379				pdev->irq);
 380		return ret;
 381	}
 382	hcd->irq = pdev->irq;
 383	return 0;
 384}
 385
 386#else
 387
 388static int xhci_try_enable_msi(struct usb_hcd *hcd)
 389{
 390	return 0;
 391}
 392
 393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 394{
 395}
 396
 397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 398{
 399}
 400
 401#endif
 402
 403static void compliance_mode_recovery(unsigned long arg)
 404{
 405	struct xhci_hcd *xhci;
 406	struct usb_hcd *hcd;
 407	u32 temp;
 408	int i;
 409
 410	xhci = (struct xhci_hcd *)arg;
 411
 412	for (i = 0; i < xhci->num_usb3_ports; i++) {
 413		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
 414		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 415			/*
 416			 * Compliance Mode Detected. Letting USB Core
 417			 * handle the Warm Reset
 418			 */
 419			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
 
 420					i + 1);
 421			xhci_dbg(xhci, "Attempting Recovery routine!\n");
 
 422			hcd = xhci->shared_hcd;
 423
 424			if (hcd->state == HC_STATE_SUSPENDED)
 425				usb_hcd_resume_root_hub(hcd);
 426
 427			usb_hcd_poll_rh_status(hcd);
 428		}
 429	}
 430
 431	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 432		mod_timer(&xhci->comp_mode_recovery_timer,
 433			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 434}
 435
 436/*
 437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 438 * that causes ports behind that hardware to enter compliance mode sometimes.
 439 * The quirk creates a timer that polls every 2 seconds the link state of
 440 * each host controller's port and recovers it by issuing a Warm reset
 441 * if Compliance mode is detected, otherwise the port will become "dead" (no
 442 * device connections or disconnections will be detected anymore). Becasue no
 443 * status event is generated when entering compliance mode (per xhci spec),
 444 * this quirk is needed on systems that have the failing hardware installed.
 445 */
 446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 447{
 448	xhci->port_status_u0 = 0;
 449	init_timer(&xhci->comp_mode_recovery_timer);
 450
 451	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 452	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 453	xhci->comp_mode_recovery_timer.expires = jiffies +
 454			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 455
 456	set_timer_slack(&xhci->comp_mode_recovery_timer,
 457			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 458	add_timer(&xhci->comp_mode_recovery_timer);
 459	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
 
 460}
 461
 462/*
 463 * This function identifies the systems that have installed the SN65LVPE502CP
 464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 465 * Systems:
 466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 467 */
 468static bool compliance_mode_recovery_timer_quirk_check(void)
 469{
 470	const char *dmi_product_name, *dmi_sys_vendor;
 471
 472	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 473	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 474	if (!dmi_product_name || !dmi_sys_vendor)
 475		return false;
 476
 477	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 478		return false;
 479
 480	if (strstr(dmi_product_name, "Z420") ||
 481			strstr(dmi_product_name, "Z620") ||
 482			strstr(dmi_product_name, "Z820"))
 
 483		return true;
 484
 485	return false;
 486}
 487
 488static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 489{
 490	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 491}
 492
 493
 494/*
 495 * Initialize memory for HCD and xHC (one-time init).
 496 *
 497 * Program the PAGESIZE register, initialize the device context array, create
 498 * device contexts (?), set up a command ring segment (or two?), create event
 499 * ring (one for now).
 500 */
 501int xhci_init(struct usb_hcd *hcd)
 502{
 503	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 504	int retval = 0;
 505
 506	xhci_dbg(xhci, "xhci_init\n");
 507	spin_lock_init(&xhci->lock);
 508	if (xhci->hci_version == 0x95 && link_quirk) {
 509		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 
 510		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 511	} else {
 512		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 
 513	}
 514	retval = xhci_mem_init(xhci, GFP_KERNEL);
 515	xhci_dbg(xhci, "Finished xhci_init\n");
 516
 517	/* Initializing Compliance Mode Recovery Data If Needed */
 518	if (compliance_mode_recovery_timer_quirk_check()) {
 519		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 520		compliance_mode_recovery_timer_init(xhci);
 521	}
 522
 523	return retval;
 524}
 525
 526/*-------------------------------------------------------------------------*/
 527
 528
 529#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 530static void xhci_event_ring_work(unsigned long arg)
 531{
 532	unsigned long flags;
 533	int temp;
 534	u64 temp_64;
 535	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 536	int i, j;
 537
 538	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 539
 540	spin_lock_irqsave(&xhci->lock, flags);
 541	temp = xhci_readl(xhci, &xhci->op_regs->status);
 542	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 543	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 544			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 545		xhci_dbg(xhci, "HW died, polling stopped.\n");
 546		spin_unlock_irqrestore(&xhci->lock, flags);
 547		return;
 548	}
 549
 550	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 551	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 552	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 553	xhci->error_bitmask = 0;
 554	xhci_dbg(xhci, "Event ring:\n");
 555	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 556	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 557	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 558	temp_64 &= ~ERST_PTR_MASK;
 559	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 560	xhci_dbg(xhci, "Command ring:\n");
 561	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 562	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 563	xhci_dbg_cmd_ptrs(xhci);
 564	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 565		if (!xhci->devs[i])
 566			continue;
 567		for (j = 0; j < 31; ++j) {
 568			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 569		}
 570	}
 571	spin_unlock_irqrestore(&xhci->lock, flags);
 572
 573	if (!xhci->zombie)
 574		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 575	else
 576		xhci_dbg(xhci, "Quit polling the event ring.\n");
 577}
 578#endif
 579
 580static int xhci_run_finished(struct xhci_hcd *xhci)
 581{
 582	if (xhci_start(xhci)) {
 583		xhci_halt(xhci);
 584		return -ENODEV;
 585	}
 586	xhci->shared_hcd->state = HC_STATE_RUNNING;
 587	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 588
 589	if (xhci->quirks & XHCI_NEC_HOST)
 590		xhci_ring_cmd_db(xhci);
 591
 592	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 
 593	return 0;
 594}
 595
 596/*
 597 * Start the HC after it was halted.
 598 *
 599 * This function is called by the USB core when the HC driver is added.
 600 * Its opposite is xhci_stop().
 601 *
 602 * xhci_init() must be called once before this function can be called.
 603 * Reset the HC, enable device slot contexts, program DCBAAP, and
 604 * set command ring pointer and event ring pointer.
 605 *
 606 * Setup MSI-X vectors and enable interrupts.
 607 */
 608int xhci_run(struct usb_hcd *hcd)
 609{
 610	u32 temp;
 611	u64 temp_64;
 612	int ret;
 613	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 614
 615	/* Start the xHCI host controller running only after the USB 2.0 roothub
 616	 * is setup.
 617	 */
 618
 619	hcd->uses_new_polling = 1;
 620	if (!usb_hcd_is_primary_hcd(hcd))
 621		return xhci_run_finished(xhci);
 622
 623	xhci_dbg(xhci, "xhci_run\n");
 624
 625	ret = xhci_try_enable_msi(hcd);
 626	if (ret)
 627		return ret;
 628
 629#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 630	init_timer(&xhci->event_ring_timer);
 631	xhci->event_ring_timer.data = (unsigned long) xhci;
 632	xhci->event_ring_timer.function = xhci_event_ring_work;
 633	/* Poll the event ring */
 634	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 635	xhci->zombie = 0;
 636	xhci_dbg(xhci, "Setting event ring polling timer\n");
 637	add_timer(&xhci->event_ring_timer);
 638#endif
 639
 640	xhci_dbg(xhci, "Command ring memory map follows:\n");
 641	xhci_debug_ring(xhci, xhci->cmd_ring);
 642	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 643	xhci_dbg_cmd_ptrs(xhci);
 644
 645	xhci_dbg(xhci, "ERST memory map follows:\n");
 646	xhci_dbg_erst(xhci, &xhci->erst);
 647	xhci_dbg(xhci, "Event ring:\n");
 648	xhci_debug_ring(xhci, xhci->event_ring);
 649	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 650	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 651	temp_64 &= ~ERST_PTR_MASK;
 652	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 
 653
 654	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 655	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 
 656	temp &= ~ER_IRQ_INTERVAL_MASK;
 657	temp |= (u32) 160;
 658	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 
 
 
 
 659
 660	/* Set the HCD state before we enable the irqs */
 661	temp = xhci_readl(xhci, &xhci->op_regs->command);
 662	temp |= (CMD_EIE);
 663	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 664			temp);
 665	xhci_writel(xhci, temp, &xhci->op_regs->command);
 666
 667	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 668	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 
 669			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 670	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 671			&xhci->ir_set->irq_pending);
 672	xhci_print_ir_set(xhci, 0);
 673
 674	if (xhci->quirks & XHCI_NEC_HOST)
 675		xhci_queue_vendor_command(xhci, 0, 0, 0,
 
 
 
 
 676				TRB_TYPE(TRB_NEC_GET_FW));
 677
 678	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 
 679	return 0;
 680}
 681
 682static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 683{
 684	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 685
 686	spin_lock_irq(&xhci->lock);
 687	xhci_halt(xhci);
 688
 689	/* The shared_hcd is going to be deallocated shortly (the USB core only
 690	 * calls this function when allocation fails in usb_add_hcd(), or
 691	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 692	 */
 693	xhci->shared_hcd = NULL;
 694	spin_unlock_irq(&xhci->lock);
 695}
 696
 697/*
 698 * Stop xHCI driver.
 699 *
 700 * This function is called by the USB core when the HC driver is removed.
 701 * Its opposite is xhci_run().
 702 *
 703 * Disable device contexts, disable IRQs, and quiesce the HC.
 704 * Reset the HC, finish any completed transactions, and cleanup memory.
 705 */
 706void xhci_stop(struct usb_hcd *hcd)
 707{
 708	u32 temp;
 709	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 710
 
 
 
 
 
 
 
 
 
 
 
 
 711	if (!usb_hcd_is_primary_hcd(hcd)) {
 712		xhci_only_stop_hcd(xhci->shared_hcd);
 713		return;
 714	}
 715
 716	spin_lock_irq(&xhci->lock);
 717	/* Make sure the xHC is halted for a USB3 roothub
 718	 * (xhci_stop() could be called as part of failed init).
 719	 */
 720	xhci_halt(xhci);
 721	xhci_reset(xhci);
 722	spin_unlock_irq(&xhci->lock);
 723
 724	xhci_cleanup_msix(xhci);
 725
 726#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 727	/* Tell the event ring poll function not to reschedule */
 728	xhci->zombie = 1;
 729	del_timer_sync(&xhci->event_ring_timer);
 730#endif
 731
 732	/* Deleting Compliance Mode Recovery Timer */
 733	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 734			(!(xhci_all_ports_seen_u0(xhci))))
 735		del_timer_sync(&xhci->comp_mode_recovery_timer);
 
 
 
 
 736
 737	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 738		usb_amd_dev_put();
 739
 740	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 741	temp = xhci_readl(xhci, &xhci->op_regs->status);
 742	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 743	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 744	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 745			&xhci->ir_set->irq_pending);
 746	xhci_print_ir_set(xhci, 0);
 747
 748	xhci_dbg(xhci, "cleaning up memory\n");
 749	xhci_mem_cleanup(xhci);
 750	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 751		    xhci_readl(xhci, &xhci->op_regs->status));
 
 
 752}
 753
 754/*
 755 * Shutdown HC (not bus-specific)
 756 *
 757 * This is called when the machine is rebooting or halting.  We assume that the
 758 * machine will be powered off, and the HC's internal state will be reset.
 759 * Don't bother to free memory.
 760 *
 761 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 762 */
 763void xhci_shutdown(struct usb_hcd *hcd)
 764{
 765	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 766
 767	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 768		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 769
 770	spin_lock_irq(&xhci->lock);
 771	xhci_halt(xhci);
 
 
 
 772	spin_unlock_irq(&xhci->lock);
 773
 774	xhci_cleanup_msix(xhci);
 775
 776	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 777		    xhci_readl(xhci, &xhci->op_regs->status));
 
 
 
 
 
 778}
 779
 780#ifdef CONFIG_PM
 781static void xhci_save_registers(struct xhci_hcd *xhci)
 782{
 783	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 784	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 785	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 786	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 787	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 788	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 789	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 790	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 791	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 792}
 793
 794static void xhci_restore_registers(struct xhci_hcd *xhci)
 795{
 796	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 797	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 798	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 799	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 800	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 801	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 802	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 803	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 804	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 805}
 806
 807static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 808{
 809	u64	val_64;
 810
 811	/* step 2: initialize command ring buffer */
 812	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 813	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 814		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 815				      xhci->cmd_ring->dequeue) &
 816		 (u64) ~CMD_RING_RSVD_BITS) |
 817		xhci->cmd_ring->cycle_state;
 818	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 
 819			(long unsigned long) val_64);
 820	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 821}
 822
 823/*
 824 * The whole command ring must be cleared to zero when we suspend the host.
 825 *
 826 * The host doesn't save the command ring pointer in the suspend well, so we
 827 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 828 * aligned, because of the reserved bits in the command ring dequeue pointer
 829 * register.  Therefore, we can't just set the dequeue pointer back in the
 830 * middle of the ring (TRBs are 16-byte aligned).
 831 */
 832static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 833{
 834	struct xhci_ring *ring;
 835	struct xhci_segment *seg;
 836
 837	ring = xhci->cmd_ring;
 838	seg = ring->deq_seg;
 839	do {
 840		memset(seg->trbs, 0,
 841			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 842		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 843			cpu_to_le32(~TRB_CYCLE);
 844		seg = seg->next;
 845	} while (seg != ring->deq_seg);
 846
 847	/* Reset the software enqueue and dequeue pointers */
 848	ring->deq_seg = ring->first_seg;
 849	ring->dequeue = ring->first_seg->trbs;
 850	ring->enq_seg = ring->deq_seg;
 851	ring->enqueue = ring->dequeue;
 852
 853	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 854	/*
 855	 * Ring is now zeroed, so the HW should look for change of ownership
 856	 * when the cycle bit is set to 1.
 857	 */
 858	ring->cycle_state = 1;
 859
 860	/*
 861	 * Reset the hardware dequeue pointer.
 862	 * Yes, this will need to be re-written after resume, but we're paranoid
 863	 * and want to make sure the hardware doesn't access bogus memory
 864	 * because, say, the BIOS or an SMI started the host without changing
 865	 * the command ring pointers.
 866	 */
 867	xhci_set_cmd_ring_deq(xhci);
 868}
 869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870/*
 871 * Stop HC (not bus-specific)
 872 *
 873 * This is called when the machine transition into S3/S4 mode.
 874 *
 875 */
 876int xhci_suspend(struct xhci_hcd *xhci)
 877{
 878	int			rc = 0;
 
 879	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 880	u32			command;
 881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882	spin_lock_irq(&xhci->lock);
 883	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 884	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 885	/* step 1: stop endpoint */
 886	/* skipped assuming that port suspend has done */
 887
 888	/* step 2: clear Run/Stop bit */
 889	command = xhci_readl(xhci, &xhci->op_regs->command);
 890	command &= ~CMD_RUN;
 891	xhci_writel(xhci, command, &xhci->op_regs->command);
 892	if (handshake(xhci, &xhci->op_regs->status,
 893		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
 
 
 
 
 894		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 895		spin_unlock_irq(&xhci->lock);
 896		return -ETIMEDOUT;
 897	}
 898	xhci_clear_command_ring(xhci);
 899
 900	/* step 3: save registers */
 901	xhci_save_registers(xhci);
 902
 903	/* step 4: set CSS flag */
 904	command = xhci_readl(xhci, &xhci->op_regs->command);
 905	command |= CMD_CSS;
 906	xhci_writel(xhci, command, &xhci->op_regs->command);
 907	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
 
 908		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 909		spin_unlock_irq(&xhci->lock);
 910		return -ETIMEDOUT;
 911	}
 912	spin_unlock_irq(&xhci->lock);
 913
 914	/*
 915	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 916	 * is about to be suspended.
 917	 */
 918	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 919			(!(xhci_all_ports_seen_u0(xhci)))) {
 920		del_timer_sync(&xhci->comp_mode_recovery_timer);
 921		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
 
 
 922	}
 923
 924	/* step 5: remove core well power */
 925	/* synchronize irq when using MSI-X */
 926	xhci_msix_sync_irqs(xhci);
 927
 928	return rc;
 929}
 
 930
 931/*
 932 * start xHC (not bus-specific)
 933 *
 934 * This is called when the machine transition from S3/S4 mode.
 935 *
 936 */
 937int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 938{
 939	u32			command, temp = 0;
 940	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 941	struct usb_hcd		*secondary_hcd;
 942	int			retval = 0;
 
 
 
 
 943
 944	/* Wait a bit if either of the roothubs need to settle from the
 945	 * transition into bus suspend.
 946	 */
 947	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 948			time_before(jiffies,
 949				xhci->bus_state[1].next_statechange))
 950		msleep(100);
 951
 952	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 953	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 954
 955	spin_lock_irq(&xhci->lock);
 956	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 957		hibernated = true;
 958
 959	if (!hibernated) {
 960		/* step 1: restore register */
 961		xhci_restore_registers(xhci);
 962		/* step 2: initialize command ring buffer */
 963		xhci_set_cmd_ring_deq(xhci);
 964		/* step 3: restore state and start state*/
 965		/* step 3: set CRS flag */
 966		command = xhci_readl(xhci, &xhci->op_regs->command);
 967		command |= CMD_CRS;
 968		xhci_writel(xhci, command, &xhci->op_regs->command);
 969		if (handshake(xhci, &xhci->op_regs->status,
 970			      STS_RESTORE, 0, 10 * 1000)) {
 971			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 972			spin_unlock_irq(&xhci->lock);
 973			return -ETIMEDOUT;
 974		}
 975		temp = xhci_readl(xhci, &xhci->op_regs->status);
 976	}
 977
 978	/* If restore operation fails, re-initialize the HC during resume */
 979	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
 
 980		/* Let the USB core know _both_ roothubs lost power. */
 981		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 982		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 983
 984		xhci_dbg(xhci, "Stop HCD\n");
 985		xhci_halt(xhci);
 986		xhci_reset(xhci);
 987		spin_unlock_irq(&xhci->lock);
 988		xhci_cleanup_msix(xhci);
 989
 990#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 991		/* Tell the event ring poll function not to reschedule */
 992		xhci->zombie = 1;
 993		del_timer_sync(&xhci->event_ring_timer);
 994#endif
 995
 996		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 997		temp = xhci_readl(xhci, &xhci->op_regs->status);
 998		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 999		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001				&xhci->ir_set->irq_pending);
1002		xhci_print_ir_set(xhci, 0);
1003
1004		xhci_dbg(xhci, "cleaning up memory\n");
1005		xhci_mem_cleanup(xhci);
1006		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007			    xhci_readl(xhci, &xhci->op_regs->status));
1008
1009		/* USB core calls the PCI reinit and start functions twice:
1010		 * first with the primary HCD, and then with the secondary HCD.
1011		 * If we don't do the same, the host will never be started.
1012		 */
1013		if (!usb_hcd_is_primary_hcd(hcd))
1014			secondary_hcd = hcd;
1015		else
1016			secondary_hcd = xhci->shared_hcd;
1017
1018		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019		retval = xhci_init(hcd->primary_hcd);
1020		if (retval)
1021			return retval;
 
 
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
1027		}
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = xhci_readl(xhci, &xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	xhci_writel(xhci, command, &xhci->op_regs->command);
1037	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
1049	spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
 
 
 
 
1055	}
1056
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064		compliance_mode_recovery_timer_init(xhci);
1065
 
 
 
 
 
 
 
1066	return retval;
1067}
 
1068#endif	/* CONFIG_PM */
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1075 * value to right shift 1 for the bitmask.
1076 *
1077 * Index  = (epnum * 2) + direction - 1,
1078 * where direction = 0 for OUT, 1 for IN.
1079 * For control endpoints, the IN index is used (OUT index is unused), so
1080 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081 */
1082unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083{
1084	unsigned int index;
1085	if (usb_endpoint_xfer_control(desc))
1086		index = (unsigned int) (usb_endpoint_num(desc)*2);
1087	else
1088		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090	return index;
1091}
1092
 
 
 
 
 
 
 
 
 
 
1093/* Find the flag for this endpoint (for use in the control context).  Use the
1094 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1095 * bit 1, etc.
1096 */
1097unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098{
1099	return 1 << (xhci_get_endpoint_index(desc) + 1);
1100}
1101
1102/* Find the flag for this endpoint (for use in the control context).  Use the
1103 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1104 * bit 1, etc.
1105 */
1106unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107{
1108	return 1 << (ep_index + 1);
1109}
1110
1111/* Compute the last valid endpoint context index.  Basically, this is the
1112 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1113 * we find the most significant bit set in the added contexts flags.
1114 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116 */
1117unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118{
1119	return fls(added_ctxs) - 1;
1120}
1121
1122/* Returns 1 if the arguments are OK;
1123 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124 */
1125static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127		const char *func) {
1128	struct xhci_hcd	*xhci;
1129	struct xhci_virt_device	*virt_dev;
1130
1131	if (!hcd || (check_ep && !ep) || !udev) {
1132		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133				func);
1134		return -EINVAL;
1135	}
1136	if (!udev->parent) {
1137		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138				func);
1139		return 0;
1140	}
1141
1142	xhci = hcd_to_xhci(hcd);
1143	if (xhci->xhc_state & XHCI_STATE_HALTED)
1144		return -ENODEV;
1145
1146	if (check_virt_dev) {
1147		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1148			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149						"device\n", func);
1150			return -EINVAL;
1151		}
1152
1153		virt_dev = xhci->devs[udev->slot_id];
1154		if (virt_dev->udev != udev) {
1155			printk(KERN_DEBUG "xHCI %s called with udev and "
1156					  "virt_dev does not match\n", func);
1157			return -EINVAL;
1158		}
1159	}
1160
 
 
 
1161	return 1;
1162}
1163
1164static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165		struct usb_device *udev, struct xhci_command *command,
1166		bool ctx_change, bool must_succeed);
1167
1168/*
1169 * Full speed devices may have a max packet size greater than 8 bytes, but the
1170 * USB core doesn't know that until it reads the first 8 bytes of the
1171 * descriptor.  If the usb_device's max packet size changes after that point,
1172 * we need to issue an evaluate context command and wait on it.
1173 */
1174static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175		unsigned int ep_index, struct urb *urb)
1176{
1177	struct xhci_container_ctx *in_ctx;
1178	struct xhci_container_ctx *out_ctx;
1179	struct xhci_input_control_ctx *ctrl_ctx;
1180	struct xhci_ep_ctx *ep_ctx;
 
1181	int max_packet_size;
1182	int hw_max_packet_size;
1183	int ret = 0;
1184
1185	out_ctx = xhci->devs[slot_id]->out_ctx;
1186	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189	if (hw_max_packet_size != max_packet_size) {
1190		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
 
 
1192				max_packet_size);
1193		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
 
1194				hw_max_packet_size);
1195		xhci_dbg(xhci, "Issuing evaluate context command.\n");
 
 
 
 
 
 
 
 
 
 
1196
 
 
 
 
 
 
 
 
1197		/* Set up the modified control endpoint 0 */
1198		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199				xhci->devs[slot_id]->out_ctx, ep_index);
1200		in_ctx = xhci->devs[slot_id]->in_ctx;
1201		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1202		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204
1205		/* Set up the input context flags for the command */
1206		/* FIXME: This won't work if a non-default control endpoint
1207		 * changes max packet sizes.
1208		 */
1209		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211		ctrl_ctx->drop_flags = 0;
1212
1213		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1217
1218		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219				true, false);
1220
1221		/* Clean up the input context for later use by bandwidth
1222		 * functions.
1223		 */
1224		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
 
 
 
1225	}
1226	return ret;
1227}
1228
1229/*
1230 * non-error returns are a promise to giveback() the urb later
1231 * we drop ownership so next owner (or urb unlink) can get it
1232 */
1233int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234{
1235	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236	struct xhci_td *buffer;
1237	unsigned long flags;
1238	int ret = 0;
1239	unsigned int slot_id, ep_index;
1240	struct urb_priv	*urb_priv;
1241	int size, i;
1242
1243	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244					true, true, __func__) <= 0)
1245		return -EINVAL;
1246
1247	slot_id = urb->dev->slot_id;
1248	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1249
1250	if (!HCD_HW_ACCESSIBLE(hcd)) {
1251		if (!in_interrupt())
1252			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253		ret = -ESHUTDOWN;
1254		goto exit;
1255	}
1256
1257	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258		size = urb->number_of_packets;
 
 
 
 
 
1259	else
1260		size = 1;
1261
1262	urb_priv = kzalloc(sizeof(struct urb_priv) +
1263				  size * sizeof(struct xhci_td *), mem_flags);
1264	if (!urb_priv)
1265		return -ENOMEM;
1266
1267	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268	if (!buffer) {
1269		kfree(urb_priv);
1270		return -ENOMEM;
1271	}
1272
1273	for (i = 0; i < size; i++) {
1274		urb_priv->td[i] = buffer;
1275		buffer++;
1276	}
1277
1278	urb_priv->length = size;
1279	urb_priv->td_cnt = 0;
1280	urb->hcpriv = urb_priv;
1281
1282	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283		/* Check to see if the max packet size for the default control
1284		 * endpoint changed during FS device enumeration
1285		 */
1286		if (urb->dev->speed == USB_SPEED_FULL) {
1287			ret = xhci_check_maxpacket(xhci, slot_id,
1288					ep_index, urb);
1289			if (ret < 0) {
1290				xhci_urb_free_priv(xhci, urb_priv);
1291				urb->hcpriv = NULL;
1292				return ret;
1293			}
1294		}
1295
1296		/* We have a spinlock and interrupts disabled, so we must pass
1297		 * atomic context to this function, which may allocate memory.
1298		 */
1299		spin_lock_irqsave(&xhci->lock, flags);
1300		if (xhci->xhc_state & XHCI_STATE_DYING)
1301			goto dying;
1302		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303				slot_id, ep_index);
1304		if (ret)
1305			goto free_priv;
1306		spin_unlock_irqrestore(&xhci->lock, flags);
1307	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308		spin_lock_irqsave(&xhci->lock, flags);
1309		if (xhci->xhc_state & XHCI_STATE_DYING)
1310			goto dying;
1311		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312				EP_GETTING_STREAMS) {
1313			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314					"is transitioning to using streams.\n");
1315			ret = -EINVAL;
1316		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317				EP_GETTING_NO_STREAMS) {
1318			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319					"is transitioning to "
1320					"not having streams.\n");
1321			ret = -EINVAL;
1322		} else {
1323			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324					slot_id, ep_index);
1325		}
1326		if (ret)
1327			goto free_priv;
1328		spin_unlock_irqrestore(&xhci->lock, flags);
1329	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330		spin_lock_irqsave(&xhci->lock, flags);
1331		if (xhci->xhc_state & XHCI_STATE_DYING)
1332			goto dying;
1333		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334				slot_id, ep_index);
1335		if (ret)
1336			goto free_priv;
1337		spin_unlock_irqrestore(&xhci->lock, flags);
1338	} else {
1339		spin_lock_irqsave(&xhci->lock, flags);
1340		if (xhci->xhc_state & XHCI_STATE_DYING)
1341			goto dying;
1342		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343				slot_id, ep_index);
1344		if (ret)
1345			goto free_priv;
1346		spin_unlock_irqrestore(&xhci->lock, flags);
1347	}
1348exit:
1349	return ret;
1350dying:
1351	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352			"non-responsive xHCI host.\n",
1353			urb->ep->desc.bEndpointAddress, urb);
1354	ret = -ESHUTDOWN;
1355free_priv:
1356	xhci_urb_free_priv(xhci, urb_priv);
1357	urb->hcpriv = NULL;
1358	spin_unlock_irqrestore(&xhci->lock, flags);
1359	return ret;
1360}
1361
1362/* Get the right ring for the given URB.
1363 * If the endpoint supports streams, boundary check the URB's stream ID.
1364 * If the endpoint doesn't support streams, return the singular endpoint ring.
1365 */
1366static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367		struct urb *urb)
1368{
1369	unsigned int slot_id;
1370	unsigned int ep_index;
1371	unsigned int stream_id;
1372	struct xhci_virt_ep *ep;
1373
1374	slot_id = urb->dev->slot_id;
1375	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376	stream_id = urb->stream_id;
1377	ep = &xhci->devs[slot_id]->eps[ep_index];
1378	/* Common case: no streams */
1379	if (!(ep->ep_state & EP_HAS_STREAMS))
1380		return ep->ring;
1381
1382	if (stream_id == 0) {
1383		xhci_warn(xhci,
1384				"WARN: Slot ID %u, ep index %u has streams, "
1385				"but URB has no stream ID.\n",
1386				slot_id, ep_index);
1387		return NULL;
1388	}
1389
1390	if (stream_id < ep->stream_info->num_streams)
1391		return ep->stream_info->stream_rings[stream_id];
1392
1393	xhci_warn(xhci,
1394			"WARN: Slot ID %u, ep index %u has "
1395			"stream IDs 1 to %u allocated, "
1396			"but stream ID %u is requested.\n",
1397			slot_id, ep_index,
1398			ep->stream_info->num_streams - 1,
1399			stream_id);
1400	return NULL;
1401}
1402
1403/*
1404 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1405 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1406 * should pick up where it left off in the TD, unless a Set Transfer Ring
1407 * Dequeue Pointer is issued.
1408 *
1409 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410 * the ring.  Since the ring is a contiguous structure, they can't be physically
1411 * removed.  Instead, there are two options:
1412 *
1413 *  1) If the HC is in the middle of processing the URB to be canceled, we
1414 *     simply move the ring's dequeue pointer past those TRBs using the Set
1415 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1416 *     when drivers timeout on the last submitted URB and attempt to cancel.
1417 *
1418 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1420 *     HC will need to invalidate the any TRBs it has cached after the stop
1421 *     endpoint command, as noted in the xHCI 0.95 errata.
1422 *
1423 *  3) The TD may have completed by the time the Stop Endpoint Command
1424 *     completes, so software needs to handle that case too.
1425 *
1426 * This function should protect against the TD enqueueing code ringing the
1427 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428 * It also needs to account for multiple cancellations on happening at the same
1429 * time for the same endpoint.
1430 *
1431 * Note that this function can be called in any context, or so says
1432 * usb_hcd_unlink_urb()
1433 */
1434int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435{
1436	unsigned long flags;
1437	int ret, i;
1438	u32 temp;
1439	struct xhci_hcd *xhci;
1440	struct urb_priv	*urb_priv;
1441	struct xhci_td *td;
1442	unsigned int ep_index;
1443	struct xhci_ring *ep_ring;
1444	struct xhci_virt_ep *ep;
 
1445
1446	xhci = hcd_to_xhci(hcd);
1447	spin_lock_irqsave(&xhci->lock, flags);
1448	/* Make sure the URB hasn't completed or been unlinked already */
1449	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450	if (ret || !urb->hcpriv)
1451		goto done;
1452	temp = xhci_readl(xhci, &xhci->op_regs->status);
1453	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454		xhci_dbg(xhci, "HW died, freeing TD.\n");
 
1455		urb_priv = urb->hcpriv;
1456		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
 
 
1457			td = urb_priv->td[i];
1458			if (!list_empty(&td->td_list))
1459				list_del_init(&td->td_list);
1460			if (!list_empty(&td->cancelled_td_list))
1461				list_del_init(&td->cancelled_td_list);
1462		}
1463
1464		usb_hcd_unlink_urb_from_ep(hcd, urb);
1465		spin_unlock_irqrestore(&xhci->lock, flags);
1466		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467		xhci_urb_free_priv(xhci, urb_priv);
1468		return ret;
1469	}
1470	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1472		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473				"non-responsive xHCI host.\n",
1474				urb->ep->desc.bEndpointAddress, urb);
1475		/* Let the stop endpoint command watchdog timer (which set this
1476		 * state) finish cleaning up the endpoint TD lists.  We must
1477		 * have caught it in the middle of dropping a lock and giving
1478		 * back an URB.
1479		 */
1480		goto done;
1481	}
1482
1483	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486	if (!ep_ring) {
1487		ret = -EINVAL;
1488		goto done;
1489	}
1490
1491	urb_priv = urb->hcpriv;
1492	i = urb_priv->td_cnt;
1493	if (i < urb_priv->length)
1494		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495				"starting at offset 0x%llx\n",
 
1496				urb, urb->dev->devpath,
1497				urb->ep->desc.bEndpointAddress,
1498				(unsigned long long) xhci_trb_virt_to_dma(
1499					urb_priv->td[i]->start_seg,
1500					urb_priv->td[i]->first_trb));
1501
1502	for (; i < urb_priv->length; i++) {
1503		td = urb_priv->td[i];
1504		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505	}
1506
1507	/* Queue a stop endpoint command, but only if this is
1508	 * the first cancellation to be handled.
1509	 */
1510	if (!(ep->ep_state & EP_HALT_PENDING)) {
 
 
 
 
 
1511		ep->ep_state |= EP_HALT_PENDING;
1512		ep->stop_cmds_pending++;
1513		ep->stop_cmd_timer.expires = jiffies +
1514			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515		add_timer(&ep->stop_cmd_timer);
1516		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
 
1517		xhci_ring_cmd_db(xhci);
1518	}
1519done:
1520	spin_unlock_irqrestore(&xhci->lock, flags);
1521	return ret;
1522}
1523
1524/* Drop an endpoint from a new bandwidth configuration for this device.
1525 * Only one call to this function is allowed per endpoint before
1526 * check_bandwidth() or reset_bandwidth() must be called.
1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528 * add the endpoint to the schedule with possibly new parameters denoted by a
1529 * different endpoint descriptor in usb_host_endpoint.
1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531 * not allowed.
1532 *
1533 * The USB core will not allow URBs to be queued to an endpoint that is being
1534 * disabled, so there's no need for mutual exclusion to protect
1535 * the xhci->devs[slot_id] structure.
1536 */
1537int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538		struct usb_host_endpoint *ep)
1539{
1540	struct xhci_hcd *xhci;
1541	struct xhci_container_ctx *in_ctx, *out_ctx;
1542	struct xhci_input_control_ctx *ctrl_ctx;
1543	struct xhci_slot_ctx *slot_ctx;
1544	unsigned int last_ctx;
1545	unsigned int ep_index;
1546	struct xhci_ep_ctx *ep_ctx;
1547	u32 drop_flag;
1548	u32 new_add_flags, new_drop_flags, new_slot_info;
1549	int ret;
1550
1551	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552	if (ret <= 0)
1553		return ret;
1554	xhci = hcd_to_xhci(hcd);
1555	if (xhci->xhc_state & XHCI_STATE_DYING)
1556		return -ENODEV;
1557
1558	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562				__func__, drop_flag);
1563		return 0;
1564	}
1565
1566	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
 
1569	ep_index = xhci_get_endpoint_index(&ep->desc);
1570	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571	/* If the HC already knows the endpoint is disabled,
1572	 * or the HCD has noted it is disabled, ignore this request
1573	 */
1574	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575	     cpu_to_le32(EP_STATE_DISABLED)) ||
1576	    le32_to_cpu(ctrl_ctx->drop_flags) &
1577	    xhci_get_endpoint_flag(&ep->desc)) {
1578		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579				__func__, ep);
 
 
1580		return 0;
1581	}
1582
1583	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591	/* Update the last valid endpoint context, if we deleted the last one */
1592	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593	    LAST_CTX(last_ctx)) {
1594		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596	}
1597	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
 
1600
1601	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602			(unsigned int) ep->desc.bEndpointAddress,
1603			udev->slot_id,
1604			(unsigned int) new_drop_flags,
1605			(unsigned int) new_add_flags,
1606			(unsigned int) new_slot_info);
1607	return 0;
1608}
1609
1610/* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1618 *
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622 */
1623int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624		struct usb_host_endpoint *ep)
1625{
1626	struct xhci_hcd *xhci;
1627	struct xhci_container_ctx *in_ctx, *out_ctx;
1628	unsigned int ep_index;
1629	struct xhci_ep_ctx *ep_ctx;
1630	struct xhci_slot_ctx *slot_ctx;
1631	struct xhci_input_control_ctx *ctrl_ctx;
1632	u32 added_ctxs;
1633	unsigned int last_ctx;
1634	u32 new_add_flags, new_drop_flags, new_slot_info;
1635	struct xhci_virt_device *virt_dev;
1636	int ret = 0;
1637
1638	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639	if (ret <= 0) {
1640		/* So we won't queue a reset ep command for a root hub */
1641		ep->hcpriv = NULL;
1642		return ret;
1643	}
1644	xhci = hcd_to_xhci(hcd);
1645	if (xhci->xhc_state & XHCI_STATE_DYING)
1646		return -ENODEV;
1647
1648	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651		/* FIXME when we have to issue an evaluate endpoint command to
1652		 * deal with ep0 max packet size changing once we get the
1653		 * descriptors
1654		 */
1655		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656				__func__, added_ctxs);
1657		return 0;
1658	}
1659
1660	virt_dev = xhci->devs[udev->slot_id];
1661	in_ctx = virt_dev->in_ctx;
1662	out_ctx = virt_dev->out_ctx;
1663	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
1664	ep_index = xhci_get_endpoint_index(&ep->desc);
1665	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666
1667	/* If this endpoint is already in use, and the upper layers are trying
1668	 * to add it again without dropping it, reject the addition.
1669	 */
1670	if (virt_dev->eps[ep_index].ring &&
1671			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1672				xhci_get_endpoint_flag(&ep->desc))) {
1673		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674				"without dropping it.\n",
1675				(unsigned int) ep->desc.bEndpointAddress);
1676		return -EINVAL;
1677	}
1678
1679	/* If the HCD has already noted the endpoint is enabled,
1680	 * ignore this request.
1681	 */
1682	if (le32_to_cpu(ctrl_ctx->add_flags) &
1683	    xhci_get_endpoint_flag(&ep->desc)) {
1684		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685				__func__, ep);
1686		return 0;
1687	}
1688
1689	/*
1690	 * Configuration and alternate setting changes must be done in
1691	 * process context, not interrupt context (or so documenation
1692	 * for usb_set_interface() and usb_set_configuration() claim).
1693	 */
1694	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696				__func__, ep->desc.bEndpointAddress);
1697		return -ENOMEM;
1698	}
1699
 
 
 
 
 
 
 
 
 
1700	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703	/* If xhci_endpoint_disable() was called for this endpoint, but the
1704	 * xHC hasn't been notified yet through the check_bandwidth() call,
1705	 * this re-adds a new state for the endpoint from the new endpoint
1706	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1707	 * drop flags alone.
1708	 */
1709	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712	/* Update the last valid endpoint context, if we just added one past */
1713	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714	    LAST_CTX(last_ctx)) {
1715		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717	}
1718	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720	/* Store the usb_device pointer for later use */
1721	ep->hcpriv = udev;
1722
1723	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1724			(unsigned int) ep->desc.bEndpointAddress,
1725			udev->slot_id,
1726			(unsigned int) new_drop_flags,
1727			(unsigned int) new_add_flags,
1728			(unsigned int) new_slot_info);
1729	return 0;
1730}
1731
1732static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733{
1734	struct xhci_input_control_ctx *ctrl_ctx;
1735	struct xhci_ep_ctx *ep_ctx;
1736	struct xhci_slot_ctx *slot_ctx;
1737	int i;
1738
 
 
 
 
 
 
 
1739	/* When a device's add flag and drop flag are zero, any subsequent
1740	 * configure endpoint command will leave that endpoint's state
1741	 * untouched.  Make sure we don't leave any old state in the input
1742	 * endpoint contexts.
1743	 */
1744	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745	ctrl_ctx->drop_flags = 0;
1746	ctrl_ctx->add_flags = 0;
1747	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749	/* Endpoint 0 is always valid */
1750	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751	for (i = 1; i < 31; ++i) {
1752		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753		ep_ctx->ep_info = 0;
1754		ep_ctx->ep_info2 = 0;
1755		ep_ctx->deq = 0;
1756		ep_ctx->tx_info = 0;
1757	}
1758}
1759
1760static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761		struct usb_device *udev, u32 *cmd_status)
1762{
1763	int ret;
1764
1765	switch (*cmd_status) {
 
 
 
 
 
1766	case COMP_ENOMEM:
1767		dev_warn(&udev->dev, "Not enough host controller resources "
1768				"for new device state.\n");
1769		ret = -ENOMEM;
1770		/* FIXME: can we allocate more resources for the HC? */
1771		break;
1772	case COMP_BW_ERR:
1773	case COMP_2ND_BW_ERR:
1774		dev_warn(&udev->dev, "Not enough bandwidth "
1775				"for new device state.\n");
1776		ret = -ENOSPC;
1777		/* FIXME: can we go back to the old state? */
1778		break;
1779	case COMP_TRB_ERR:
1780		/* the HCD set up something wrong */
1781		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782				"add flag = 1, "
1783				"and endpoint is not disabled.\n");
1784		ret = -EINVAL;
1785		break;
1786	case COMP_DEV_ERR:
1787		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788				"configure command.\n");
1789		ret = -ENODEV;
1790		break;
1791	case COMP_SUCCESS:
1792		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
 
1793		ret = 0;
1794		break;
1795	default:
1796		xhci_err(xhci, "ERROR: unexpected command completion "
1797				"code 0x%x.\n", *cmd_status);
1798		ret = -EINVAL;
1799		break;
1800	}
1801	return ret;
1802}
1803
1804static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805		struct usb_device *udev, u32 *cmd_status)
1806{
1807	int ret;
1808	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810	switch (*cmd_status) {
 
 
 
 
 
1811	case COMP_EINVAL:
1812		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813				"context command.\n");
1814		ret = -EINVAL;
1815		break;
1816	case COMP_EBADSLT:
1817		dev_warn(&udev->dev, "WARN: slot not enabled for"
1818				"evaluate context command.\n");
 
 
1819	case COMP_CTX_STATE:
1820		dev_warn(&udev->dev, "WARN: invalid context state for "
1821				"evaluate context command.\n");
1822		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823		ret = -EINVAL;
1824		break;
1825	case COMP_DEV_ERR:
1826		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827				"context command.\n");
1828		ret = -ENODEV;
1829		break;
1830	case COMP_MEL_ERR:
1831		/* Max Exit Latency too large error */
1832		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833		ret = -EINVAL;
1834		break;
1835	case COMP_SUCCESS:
1836		dev_dbg(&udev->dev, "Successful evaluate context command\n");
 
1837		ret = 0;
1838		break;
1839	default:
1840		xhci_err(xhci, "ERROR: unexpected command completion "
1841				"code 0x%x.\n", *cmd_status);
1842		ret = -EINVAL;
1843		break;
1844	}
1845	return ret;
1846}
1847
1848static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849		struct xhci_container_ctx *in_ctx)
1850{
1851	struct xhci_input_control_ctx *ctrl_ctx;
1852	u32 valid_add_flags;
1853	u32 valid_drop_flags;
1854
1855	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1857	 * (bit 1).  The default control endpoint is added during the Address
1858	 * Device command and is never removed until the slot is disabled.
1859	 */
1860	valid_add_flags = ctrl_ctx->add_flags >> 2;
1861	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863	/* Use hweight32 to count the number of ones in the add flags, or
1864	 * number of endpoints added.  Don't count endpoints that are changed
1865	 * (both added and dropped).
1866	 */
1867	return hweight32(valid_add_flags) -
1868		hweight32(valid_add_flags & valid_drop_flags);
1869}
1870
1871static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872		struct xhci_container_ctx *in_ctx)
1873{
1874	struct xhci_input_control_ctx *ctrl_ctx;
1875	u32 valid_add_flags;
1876	u32 valid_drop_flags;
1877
1878	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879	valid_add_flags = ctrl_ctx->add_flags >> 2;
1880	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882	return hweight32(valid_drop_flags) -
1883		hweight32(valid_add_flags & valid_drop_flags);
1884}
1885
1886/*
1887 * We need to reserve the new number of endpoints before the configure endpoint
1888 * command completes.  We can't subtract the dropped endpoints from the number
1889 * of active endpoints until the command completes because we can oversubscribe
1890 * the host in this case:
1891 *
1892 *  - the first configure endpoint command drops more endpoints than it adds
1893 *  - a second configure endpoint command that adds more endpoints is queued
1894 *  - the first configure endpoint command fails, so the config is unchanged
1895 *  - the second command may succeed, even though there isn't enough resources
1896 *
1897 * Must be called with xhci->lock held.
1898 */
1899static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900		struct xhci_container_ctx *in_ctx)
1901{
1902	u32 added_eps;
1903
1904	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906		xhci_dbg(xhci, "Not enough ep ctxs: "
1907				"%u active, need to add %u, limit is %u.\n",
 
1908				xhci->num_active_eps, added_eps,
1909				xhci->limit_active_eps);
1910		return -ENOMEM;
1911	}
1912	xhci->num_active_eps += added_eps;
1913	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
 
1914			xhci->num_active_eps);
1915	return 0;
1916}
1917
1918/*
1919 * The configure endpoint was failed by the xHC for some other reason, so we
1920 * need to revert the resources that failed configuration would have used.
1921 *
1922 * Must be called with xhci->lock held.
1923 */
1924static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925		struct xhci_container_ctx *in_ctx)
1926{
1927	u32 num_failed_eps;
1928
1929	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930	xhci->num_active_eps -= num_failed_eps;
1931	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
 
1932			num_failed_eps,
1933			xhci->num_active_eps);
1934}
1935
1936/*
1937 * Now that the command has completed, clean up the active endpoint count by
1938 * subtracting out the endpoints that were dropped (but not changed).
1939 *
1940 * Must be called with xhci->lock held.
1941 */
1942static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943		struct xhci_container_ctx *in_ctx)
1944{
1945	u32 num_dropped_eps;
1946
1947	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948	xhci->num_active_eps -= num_dropped_eps;
1949	if (num_dropped_eps)
1950		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
 
1951				num_dropped_eps,
1952				xhci->num_active_eps);
1953}
1954
1955unsigned int xhci_get_block_size(struct usb_device *udev)
1956{
1957	switch (udev->speed) {
1958	case USB_SPEED_LOW:
1959	case USB_SPEED_FULL:
1960		return FS_BLOCK;
1961	case USB_SPEED_HIGH:
1962		return HS_BLOCK;
1963	case USB_SPEED_SUPER:
 
1964		return SS_BLOCK;
1965	case USB_SPEED_UNKNOWN:
1966	case USB_SPEED_WIRELESS:
1967	default:
1968		/* Should never happen */
1969		return 1;
1970	}
1971}
1972
1973unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
 
1974{
1975	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1976		return LS_OVERHEAD;
1977	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978		return FS_OVERHEAD;
1979	return HS_OVERHEAD;
1980}
1981
1982/* If we are changing a LS/FS device under a HS hub,
1983 * make sure (if we are activating a new TT) that the HS bus has enough
1984 * bandwidth for this new TT.
1985 */
1986static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1987		struct xhci_virt_device *virt_dev,
1988		int old_active_eps)
1989{
1990	struct xhci_interval_bw_table *bw_table;
1991	struct xhci_tt_bw_info *tt_info;
1992
1993	/* Find the bandwidth table for the root port this TT is attached to. */
1994	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1995	tt_info = virt_dev->tt_info;
1996	/* If this TT already had active endpoints, the bandwidth for this TT
1997	 * has already been added.  Removing all periodic endpoints (and thus
1998	 * making the TT enactive) will only decrease the bandwidth used.
1999	 */
2000	if (old_active_eps)
2001		return 0;
2002	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2003		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2004			return -ENOMEM;
2005		return 0;
2006	}
2007	/* Not sure why we would have no new active endpoints...
2008	 *
2009	 * Maybe because of an Evaluate Context change for a hub update or a
2010	 * control endpoint 0 max packet size change?
2011	 * FIXME: skip the bandwidth calculation in that case.
2012	 */
2013	return 0;
2014}
2015
2016static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2017		struct xhci_virt_device *virt_dev)
2018{
2019	unsigned int bw_reserved;
2020
2021	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2022	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2023		return -ENOMEM;
2024
2025	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2026	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2027		return -ENOMEM;
2028
2029	return 0;
2030}
2031
2032/*
2033 * This algorithm is a very conservative estimate of the worst-case scheduling
2034 * scenario for any one interval.  The hardware dynamically schedules the
2035 * packets, so we can't tell which microframe could be the limiting factor in
2036 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2037 *
2038 * Obviously, we can't solve an NP complete problem to find the minimum worst
2039 * case scenario.  Instead, we come up with an estimate that is no less than
2040 * the worst case bandwidth used for any one microframe, but may be an
2041 * over-estimate.
2042 *
2043 * We walk the requirements for each endpoint by interval, starting with the
2044 * smallest interval, and place packets in the schedule where there is only one
2045 * possible way to schedule packets for that interval.  In order to simplify
2046 * this algorithm, we record the largest max packet size for each interval, and
2047 * assume all packets will be that size.
2048 *
2049 * For interval 0, we obviously must schedule all packets for each interval.
2050 * The bandwidth for interval 0 is just the amount of data to be transmitted
2051 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2052 * the number of packets).
2053 *
2054 * For interval 1, we have two possible microframes to schedule those packets
2055 * in.  For this algorithm, if we can schedule the same number of packets for
2056 * each possible scheduling opportunity (each microframe), we will do so.  The
2057 * remaining number of packets will be saved to be transmitted in the gaps in
2058 * the next interval's scheduling sequence.
2059 *
2060 * As we move those remaining packets to be scheduled with interval 2 packets,
2061 * we have to double the number of remaining packets to transmit.  This is
2062 * because the intervals are actually powers of 2, and we would be transmitting
2063 * the previous interval's packets twice in this interval.  We also have to be
2064 * sure that when we look at the largest max packet size for this interval, we
2065 * also look at the largest max packet size for the remaining packets and take
2066 * the greater of the two.
2067 *
2068 * The algorithm continues to evenly distribute packets in each scheduling
2069 * opportunity, and push the remaining packets out, until we get to the last
2070 * interval.  Then those packets and their associated overhead are just added
2071 * to the bandwidth used.
2072 */
2073static int xhci_check_bw_table(struct xhci_hcd *xhci,
2074		struct xhci_virt_device *virt_dev,
2075		int old_active_eps)
2076{
2077	unsigned int bw_reserved;
2078	unsigned int max_bandwidth;
2079	unsigned int bw_used;
2080	unsigned int block_size;
2081	struct xhci_interval_bw_table *bw_table;
2082	unsigned int packet_size = 0;
2083	unsigned int overhead = 0;
2084	unsigned int packets_transmitted = 0;
2085	unsigned int packets_remaining = 0;
2086	unsigned int i;
2087
2088	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2089		return xhci_check_ss_bw(xhci, virt_dev);
2090
2091	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2092		max_bandwidth = HS_BW_LIMIT;
2093		/* Convert percent of bus BW reserved to blocks reserved */
2094		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2095	} else {
2096		max_bandwidth = FS_BW_LIMIT;
2097		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2098	}
2099
2100	bw_table = virt_dev->bw_table;
2101	/* We need to translate the max packet size and max ESIT payloads into
2102	 * the units the hardware uses.
2103	 */
2104	block_size = xhci_get_block_size(virt_dev->udev);
2105
2106	/* If we are manipulating a LS/FS device under a HS hub, double check
2107	 * that the HS bus has enough bandwidth if we are activing a new TT.
2108	 */
2109	if (virt_dev->tt_info) {
2110		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2111				virt_dev->real_port);
2112		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2113			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2114					"newly activated TT.\n");
2115			return -ENOMEM;
2116		}
2117		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
 
2118				virt_dev->tt_info->slot_id,
2119				virt_dev->tt_info->ttport);
2120	} else {
2121		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2122				virt_dev->real_port);
2123	}
2124
2125	/* Add in how much bandwidth will be used for interval zero, or the
2126	 * rounded max ESIT payload + number of packets * largest overhead.
2127	 */
2128	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2129		bw_table->interval_bw[0].num_packets *
2130		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2131
2132	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2133		unsigned int bw_added;
2134		unsigned int largest_mps;
2135		unsigned int interval_overhead;
2136
2137		/*
2138		 * How many packets could we transmit in this interval?
2139		 * If packets didn't fit in the previous interval, we will need
2140		 * to transmit that many packets twice within this interval.
2141		 */
2142		packets_remaining = 2 * packets_remaining +
2143			bw_table->interval_bw[i].num_packets;
2144
2145		/* Find the largest max packet size of this or the previous
2146		 * interval.
2147		 */
2148		if (list_empty(&bw_table->interval_bw[i].endpoints))
2149			largest_mps = 0;
2150		else {
2151			struct xhci_virt_ep *virt_ep;
2152			struct list_head *ep_entry;
2153
2154			ep_entry = bw_table->interval_bw[i].endpoints.next;
2155			virt_ep = list_entry(ep_entry,
2156					struct xhci_virt_ep, bw_endpoint_list);
2157			/* Convert to blocks, rounding up */
2158			largest_mps = DIV_ROUND_UP(
2159					virt_ep->bw_info.max_packet_size,
2160					block_size);
2161		}
2162		if (largest_mps > packet_size)
2163			packet_size = largest_mps;
2164
2165		/* Use the larger overhead of this or the previous interval. */
2166		interval_overhead = xhci_get_largest_overhead(
2167				&bw_table->interval_bw[i]);
2168		if (interval_overhead > overhead)
2169			overhead = interval_overhead;
2170
2171		/* How many packets can we evenly distribute across
2172		 * (1 << (i + 1)) possible scheduling opportunities?
2173		 */
2174		packets_transmitted = packets_remaining >> (i + 1);
2175
2176		/* Add in the bandwidth used for those scheduled packets */
2177		bw_added = packets_transmitted * (overhead + packet_size);
2178
2179		/* How many packets do we have remaining to transmit? */
2180		packets_remaining = packets_remaining % (1 << (i + 1));
2181
2182		/* What largest max packet size should those packets have? */
2183		/* If we've transmitted all packets, don't carry over the
2184		 * largest packet size.
2185		 */
2186		if (packets_remaining == 0) {
2187			packet_size = 0;
2188			overhead = 0;
2189		} else if (packets_transmitted > 0) {
2190			/* Otherwise if we do have remaining packets, and we've
2191			 * scheduled some packets in this interval, take the
2192			 * largest max packet size from endpoints with this
2193			 * interval.
2194			 */
2195			packet_size = largest_mps;
2196			overhead = interval_overhead;
2197		}
2198		/* Otherwise carry over packet_size and overhead from the last
2199		 * time we had a remainder.
2200		 */
2201		bw_used += bw_added;
2202		if (bw_used > max_bandwidth) {
2203			xhci_warn(xhci, "Not enough bandwidth. "
2204					"Proposed: %u, Max: %u\n",
2205				bw_used, max_bandwidth);
2206			return -ENOMEM;
2207		}
2208	}
2209	/*
2210	 * Ok, we know we have some packets left over after even-handedly
2211	 * scheduling interval 15.  We don't know which microframes they will
2212	 * fit into, so we over-schedule and say they will be scheduled every
2213	 * microframe.
2214	 */
2215	if (packets_remaining > 0)
2216		bw_used += overhead + packet_size;
2217
2218	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2219		unsigned int port_index = virt_dev->real_port - 1;
2220
2221		/* OK, we're manipulating a HS device attached to a
2222		 * root port bandwidth domain.  Include the number of active TTs
2223		 * in the bandwidth used.
2224		 */
2225		bw_used += TT_HS_OVERHEAD *
2226			xhci->rh_bw[port_index].num_active_tts;
2227	}
2228
2229	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2230		"Available: %u " "percent\n",
 
2231		bw_used, max_bandwidth, bw_reserved,
2232		(max_bandwidth - bw_used - bw_reserved) * 100 /
2233		max_bandwidth);
2234
2235	bw_used += bw_reserved;
2236	if (bw_used > max_bandwidth) {
2237		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2238				bw_used, max_bandwidth);
2239		return -ENOMEM;
2240	}
2241
2242	bw_table->bw_used = bw_used;
2243	return 0;
2244}
2245
2246static bool xhci_is_async_ep(unsigned int ep_type)
2247{
2248	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2249					ep_type != ISOC_IN_EP &&
2250					ep_type != INT_IN_EP);
2251}
2252
2253static bool xhci_is_sync_in_ep(unsigned int ep_type)
2254{
2255	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2256}
2257
2258static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2259{
2260	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2261
2262	if (ep_bw->ep_interval == 0)
2263		return SS_OVERHEAD_BURST +
2264			(ep_bw->mult * ep_bw->num_packets *
2265					(SS_OVERHEAD + mps));
2266	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2267				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2268				1 << ep_bw->ep_interval);
2269
2270}
2271
2272void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2273		struct xhci_bw_info *ep_bw,
2274		struct xhci_interval_bw_table *bw_table,
2275		struct usb_device *udev,
2276		struct xhci_virt_ep *virt_ep,
2277		struct xhci_tt_bw_info *tt_info)
2278{
2279	struct xhci_interval_bw	*interval_bw;
2280	int normalized_interval;
2281
2282	if (xhci_is_async_ep(ep_bw->type))
2283		return;
2284
2285	if (udev->speed == USB_SPEED_SUPER) {
2286		if (xhci_is_sync_in_ep(ep_bw->type))
2287			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2288				xhci_get_ss_bw_consumed(ep_bw);
2289		else
2290			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2291				xhci_get_ss_bw_consumed(ep_bw);
2292		return;
2293	}
2294
2295	/* SuperSpeed endpoints never get added to intervals in the table, so
2296	 * this check is only valid for HS/FS/LS devices.
2297	 */
2298	if (list_empty(&virt_ep->bw_endpoint_list))
2299		return;
2300	/* For LS/FS devices, we need to translate the interval expressed in
2301	 * microframes to frames.
2302	 */
2303	if (udev->speed == USB_SPEED_HIGH)
2304		normalized_interval = ep_bw->ep_interval;
2305	else
2306		normalized_interval = ep_bw->ep_interval - 3;
2307
2308	if (normalized_interval == 0)
2309		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2310	interval_bw = &bw_table->interval_bw[normalized_interval];
2311	interval_bw->num_packets -= ep_bw->num_packets;
2312	switch (udev->speed) {
2313	case USB_SPEED_LOW:
2314		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2315		break;
2316	case USB_SPEED_FULL:
2317		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2318		break;
2319	case USB_SPEED_HIGH:
2320		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2321		break;
2322	case USB_SPEED_SUPER:
 
2323	case USB_SPEED_UNKNOWN:
2324	case USB_SPEED_WIRELESS:
2325		/* Should never happen because only LS/FS/HS endpoints will get
2326		 * added to the endpoint list.
2327		 */
2328		return;
2329	}
2330	if (tt_info)
2331		tt_info->active_eps -= 1;
2332	list_del_init(&virt_ep->bw_endpoint_list);
2333}
2334
2335static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2336		struct xhci_bw_info *ep_bw,
2337		struct xhci_interval_bw_table *bw_table,
2338		struct usb_device *udev,
2339		struct xhci_virt_ep *virt_ep,
2340		struct xhci_tt_bw_info *tt_info)
2341{
2342	struct xhci_interval_bw	*interval_bw;
2343	struct xhci_virt_ep *smaller_ep;
2344	int normalized_interval;
2345
2346	if (xhci_is_async_ep(ep_bw->type))
2347		return;
2348
2349	if (udev->speed == USB_SPEED_SUPER) {
2350		if (xhci_is_sync_in_ep(ep_bw->type))
2351			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2352				xhci_get_ss_bw_consumed(ep_bw);
2353		else
2354			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2355				xhci_get_ss_bw_consumed(ep_bw);
2356		return;
2357	}
2358
2359	/* For LS/FS devices, we need to translate the interval expressed in
2360	 * microframes to frames.
2361	 */
2362	if (udev->speed == USB_SPEED_HIGH)
2363		normalized_interval = ep_bw->ep_interval;
2364	else
2365		normalized_interval = ep_bw->ep_interval - 3;
2366
2367	if (normalized_interval == 0)
2368		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2369	interval_bw = &bw_table->interval_bw[normalized_interval];
2370	interval_bw->num_packets += ep_bw->num_packets;
2371	switch (udev->speed) {
2372	case USB_SPEED_LOW:
2373		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2374		break;
2375	case USB_SPEED_FULL:
2376		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2377		break;
2378	case USB_SPEED_HIGH:
2379		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2380		break;
2381	case USB_SPEED_SUPER:
 
2382	case USB_SPEED_UNKNOWN:
2383	case USB_SPEED_WIRELESS:
2384		/* Should never happen because only LS/FS/HS endpoints will get
2385		 * added to the endpoint list.
2386		 */
2387		return;
2388	}
2389
2390	if (tt_info)
2391		tt_info->active_eps += 1;
2392	/* Insert the endpoint into the list, largest max packet size first. */
2393	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2394			bw_endpoint_list) {
2395		if (ep_bw->max_packet_size >=
2396				smaller_ep->bw_info.max_packet_size) {
2397			/* Add the new ep before the smaller endpoint */
2398			list_add_tail(&virt_ep->bw_endpoint_list,
2399					&smaller_ep->bw_endpoint_list);
2400			return;
2401		}
2402	}
2403	/* Add the new endpoint at the end of the list. */
2404	list_add_tail(&virt_ep->bw_endpoint_list,
2405			&interval_bw->endpoints);
2406}
2407
2408void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev,
2410		int old_active_eps)
2411{
2412	struct xhci_root_port_bw_info *rh_bw_info;
2413	if (!virt_dev->tt_info)
2414		return;
2415
2416	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2417	if (old_active_eps == 0 &&
2418				virt_dev->tt_info->active_eps != 0) {
2419		rh_bw_info->num_active_tts += 1;
2420		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2421	} else if (old_active_eps != 0 &&
2422				virt_dev->tt_info->active_eps == 0) {
2423		rh_bw_info->num_active_tts -= 1;
2424		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2425	}
2426}
2427
2428static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2429		struct xhci_virt_device *virt_dev,
2430		struct xhci_container_ctx *in_ctx)
2431{
2432	struct xhci_bw_info ep_bw_info[31];
2433	int i;
2434	struct xhci_input_control_ctx *ctrl_ctx;
2435	int old_active_eps = 0;
2436
2437	if (virt_dev->tt_info)
2438		old_active_eps = virt_dev->tt_info->active_eps;
2439
2440	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
2441
2442	for (i = 0; i < 31; i++) {
2443		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2444			continue;
2445
2446		/* Make a copy of the BW info in case we need to revert this */
2447		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2448				sizeof(ep_bw_info[i]));
2449		/* Drop the endpoint from the interval table if the endpoint is
2450		 * being dropped or changed.
2451		 */
2452		if (EP_IS_DROPPED(ctrl_ctx, i))
2453			xhci_drop_ep_from_interval_table(xhci,
2454					&virt_dev->eps[i].bw_info,
2455					virt_dev->bw_table,
2456					virt_dev->udev,
2457					&virt_dev->eps[i],
2458					virt_dev->tt_info);
2459	}
2460	/* Overwrite the information stored in the endpoints' bw_info */
2461	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2462	for (i = 0; i < 31; i++) {
2463		/* Add any changed or added endpoints to the interval table */
2464		if (EP_IS_ADDED(ctrl_ctx, i))
2465			xhci_add_ep_to_interval_table(xhci,
2466					&virt_dev->eps[i].bw_info,
2467					virt_dev->bw_table,
2468					virt_dev->udev,
2469					&virt_dev->eps[i],
2470					virt_dev->tt_info);
2471	}
2472
2473	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2474		/* Ok, this fits in the bandwidth we have.
2475		 * Update the number of active TTs.
2476		 */
2477		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2478		return 0;
2479	}
2480
2481	/* We don't have enough bandwidth for this, revert the stored info. */
2482	for (i = 0; i < 31; i++) {
2483		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2484			continue;
2485
2486		/* Drop the new copies of any added or changed endpoints from
2487		 * the interval table.
2488		 */
2489		if (EP_IS_ADDED(ctrl_ctx, i)) {
2490			xhci_drop_ep_from_interval_table(xhci,
2491					&virt_dev->eps[i].bw_info,
2492					virt_dev->bw_table,
2493					virt_dev->udev,
2494					&virt_dev->eps[i],
2495					virt_dev->tt_info);
2496		}
2497		/* Revert the endpoint back to its old information */
2498		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2499				sizeof(ep_bw_info[i]));
2500		/* Add any changed or dropped endpoints back into the table */
2501		if (EP_IS_DROPPED(ctrl_ctx, i))
2502			xhci_add_ep_to_interval_table(xhci,
2503					&virt_dev->eps[i].bw_info,
2504					virt_dev->bw_table,
2505					virt_dev->udev,
2506					&virt_dev->eps[i],
2507					virt_dev->tt_info);
2508	}
2509	return -ENOMEM;
2510}
2511
2512
2513/* Issue a configure endpoint command or evaluate context command
2514 * and wait for it to finish.
2515 */
2516static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2517		struct usb_device *udev,
2518		struct xhci_command *command,
2519		bool ctx_change, bool must_succeed)
2520{
2521	int ret;
2522	int timeleft;
2523	unsigned long flags;
2524	struct xhci_container_ctx *in_ctx;
2525	struct completion *cmd_completion;
2526	u32 *cmd_status;
2527	struct xhci_virt_device *virt_dev;
2528	union xhci_trb *cmd_trb;
 
 
2529
2530	spin_lock_irqsave(&xhci->lock, flags);
2531	virt_dev = xhci->devs[udev->slot_id];
2532
2533	if (command)
2534		in_ctx = command->in_ctx;
2535	else
2536		in_ctx = virt_dev->in_ctx;
 
 
 
2537
2538	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2539			xhci_reserve_host_resources(xhci, in_ctx)) {
2540		spin_unlock_irqrestore(&xhci->lock, flags);
2541		xhci_warn(xhci, "Not enough host resources, "
2542				"active endpoint contexts = %u\n",
2543				xhci->num_active_eps);
2544		return -ENOMEM;
2545	}
2546	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2547			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2548		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2549			xhci_free_host_resources(xhci, in_ctx);
2550		spin_unlock_irqrestore(&xhci->lock, flags);
2551		xhci_warn(xhci, "Not enough bandwidth\n");
2552		return -ENOMEM;
2553	}
2554
2555	if (command) {
2556		cmd_completion = command->completion;
2557		cmd_status = &command->status;
2558		command->command_trb = xhci->cmd_ring->enqueue;
2559
2560		/* Enqueue pointer can be left pointing to the link TRB,
2561		 * we must handle that
2562		 */
2563		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2564			command->command_trb =
2565				xhci->cmd_ring->enq_seg->next->trbs;
2566
2567		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2568	} else {
2569		cmd_completion = &virt_dev->cmd_completion;
2570		cmd_status = &virt_dev->cmd_status;
2571	}
2572	init_completion(cmd_completion);
2573
2574	cmd_trb = xhci->cmd_ring->dequeue;
2575	if (!ctx_change)
2576		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
 
2577				udev->slot_id, must_succeed);
2578	else
2579		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
 
2580				udev->slot_id, must_succeed);
2581	if (ret < 0) {
2582		if (command)
2583			list_del(&command->cmd_list);
2584		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2585			xhci_free_host_resources(xhci, in_ctx);
2586		spin_unlock_irqrestore(&xhci->lock, flags);
2587		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
 
2588		return -ENOMEM;
2589	}
2590	xhci_ring_cmd_db(xhci);
2591	spin_unlock_irqrestore(&xhci->lock, flags);
2592
2593	/* Wait for the configure endpoint command to complete */
2594	timeleft = wait_for_completion_interruptible_timeout(
2595			cmd_completion,
2596			XHCI_CMD_DEFAULT_TIMEOUT);
2597	if (timeleft <= 0) {
2598		xhci_warn(xhci, "%s while waiting for %s command\n",
2599				timeleft == 0 ? "Timeout" : "Signal",
2600				ctx_change == 0 ?
2601					"configure endpoint" :
2602					"evaluate context");
2603		/* cancel the configure endpoint command */
2604		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2605		if (ret < 0)
2606			return ret;
2607		return -ETIME;
2608	}
2609
2610	if (!ctx_change)
2611		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
 
2612	else
2613		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
 
2614
2615	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2616		spin_lock_irqsave(&xhci->lock, flags);
2617		/* If the command failed, remove the reserved resources.
2618		 * Otherwise, clean up the estimate to include dropped eps.
2619		 */
2620		if (ret)
2621			xhci_free_host_resources(xhci, in_ctx);
2622		else
2623			xhci_finish_resource_reservation(xhci, in_ctx);
2624		spin_unlock_irqrestore(&xhci->lock, flags);
2625	}
2626	return ret;
2627}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629/* Called after one or more calls to xhci_add_endpoint() or
2630 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2631 * to call xhci_reset_bandwidth().
2632 *
2633 * Since we are in the middle of changing either configuration or
2634 * installing a new alt setting, the USB core won't allow URBs to be
2635 * enqueued for any endpoint on the old config or interface.  Nothing
2636 * else should be touching the xhci->devs[slot_id] structure, so we
2637 * don't need to take the xhci->lock for manipulating that.
2638 */
2639int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2640{
2641	int i;
2642	int ret = 0;
2643	struct xhci_hcd *xhci;
2644	struct xhci_virt_device	*virt_dev;
2645	struct xhci_input_control_ctx *ctrl_ctx;
2646	struct xhci_slot_ctx *slot_ctx;
 
2647
2648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2649	if (ret <= 0)
2650		return ret;
2651	xhci = hcd_to_xhci(hcd);
2652	if (xhci->xhc_state & XHCI_STATE_DYING)
 
2653		return -ENODEV;
2654
2655	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2656	virt_dev = xhci->devs[udev->slot_id];
2657
 
 
 
 
 
 
2658	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2659	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
2660	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2661	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2662	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2663
2664	/* Don't issue the command if there's no endpoints to update. */
2665	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2666			ctrl_ctx->drop_flags == 0)
2667		return 0;
 
 
 
 
 
 
2668
 
 
 
 
 
 
 
2669	xhci_dbg(xhci, "New Input Control Context:\n");
2670	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2671	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2672		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2673
2674	ret = xhci_configure_endpoint(xhci, udev, NULL,
2675			false, false);
2676	if (ret) {
2677		/* Callee should call reset_bandwidth() */
2678		return ret;
2679	}
2680
2681	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2682	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2683		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2684
2685	/* Free any rings that were dropped, but not changed. */
2686	for (i = 1; i < 31; ++i) {
2687		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2688		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2689			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
 
 
2690	}
2691	xhci_zero_in_ctx(xhci, virt_dev);
2692	/*
2693	 * Install any rings for completely new endpoints or changed endpoints,
2694	 * and free or cache any old rings from changed endpoints.
2695	 */
2696	for (i = 1; i < 31; ++i) {
2697		if (!virt_dev->eps[i].new_ring)
2698			continue;
2699		/* Only cache or free the old ring if it exists.
2700		 * It may not if this is the first add of an endpoint.
2701		 */
2702		if (virt_dev->eps[i].ring) {
2703			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2704		}
 
2705		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2706		virt_dev->eps[i].new_ring = NULL;
2707	}
 
 
 
2708
2709	return ret;
2710}
2711
2712void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714	struct xhci_hcd *xhci;
2715	struct xhci_virt_device	*virt_dev;
2716	int i, ret;
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return;
2721	xhci = hcd_to_xhci(hcd);
2722
2723	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2724	virt_dev = xhci->devs[udev->slot_id];
2725	/* Free any rings allocated for added endpoints */
2726	for (i = 0; i < 31; ++i) {
2727		if (virt_dev->eps[i].new_ring) {
2728			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2729			virt_dev->eps[i].new_ring = NULL;
2730		}
2731	}
2732	xhci_zero_in_ctx(xhci, virt_dev);
2733}
2734
2735static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2736		struct xhci_container_ctx *in_ctx,
2737		struct xhci_container_ctx *out_ctx,
 
2738		u32 add_flags, u32 drop_flags)
2739{
2740	struct xhci_input_control_ctx *ctrl_ctx;
2741	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2742	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2743	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2744	xhci_slot_copy(xhci, in_ctx, out_ctx);
2745	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2746
2747	xhci_dbg(xhci, "Input Context:\n");
2748	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2749}
2750
2751static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2752		unsigned int slot_id, unsigned int ep_index,
2753		struct xhci_dequeue_state *deq_state)
2754{
 
2755	struct xhci_container_ctx *in_ctx;
2756	struct xhci_ep_ctx *ep_ctx;
2757	u32 added_ctxs;
2758	dma_addr_t addr;
2759
 
 
 
 
 
 
 
 
2760	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2761			xhci->devs[slot_id]->out_ctx, ep_index);
2762	in_ctx = xhci->devs[slot_id]->in_ctx;
2763	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2764	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2765			deq_state->new_deq_ptr);
2766	if (addr == 0) {
2767		xhci_warn(xhci, "WARN Cannot submit config ep after "
2768				"reset ep command\n");
2769		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2770				deq_state->new_deq_seg,
2771				deq_state->new_deq_ptr);
2772		return;
2773	}
2774	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2775
2776	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2777	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2778			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
 
2779}
2780
2781void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2782		struct usb_device *udev, unsigned int ep_index)
2783{
2784	struct xhci_dequeue_state deq_state;
2785	struct xhci_virt_ep *ep;
 
2786
2787	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
 
2788	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2789	/* We need to move the HW's dequeue pointer past this TD,
2790	 * or it will attempt to resend it on the next doorbell ring.
2791	 */
2792	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2793			ep_index, ep->stopped_stream, ep->stopped_td,
2794			&deq_state);
 
 
2795
2796	/* HW with the reset endpoint quirk will use the saved dequeue state to
2797	 * issue a configure endpoint command later.
2798	 */
2799	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2800		xhci_dbg(xhci, "Queueing new dequeue state\n");
 
2801		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2802				ep_index, ep->stopped_stream, &deq_state);
2803	} else {
2804		/* Better hope no one uses the input context between now and the
2805		 * reset endpoint completion!
2806		 * XXX: No idea how this hardware will react when stream rings
2807		 * are enabled.
2808		 */
2809		xhci_dbg(xhci, "Setting up input context for "
2810				"configure endpoint command\n");
 
2811		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2812				ep_index, &deq_state);
2813	}
2814}
2815
2816/* Deal with stalled endpoints.  The core should have sent the control message
2817 * to clear the halt condition.  However, we need to make the xHCI hardware
2818 * reset its sequence number, since a device will expect a sequence number of
2819 * zero after the halt condition is cleared.
 
2820 * Context: in_interrupt
2821 */
 
2822void xhci_endpoint_reset(struct usb_hcd *hcd,
2823		struct usb_host_endpoint *ep)
2824{
2825	struct xhci_hcd *xhci;
2826	struct usb_device *udev;
2827	unsigned int ep_index;
2828	unsigned long flags;
2829	int ret;
2830	struct xhci_virt_ep *virt_ep;
2831
2832	xhci = hcd_to_xhci(hcd);
2833	udev = (struct usb_device *) ep->hcpriv;
2834	/* Called with a root hub endpoint (or an endpoint that wasn't added
2835	 * with xhci_add_endpoint()
2836	 */
2837	if (!ep->hcpriv)
2838		return;
2839	ep_index = xhci_get_endpoint_index(&ep->desc);
2840	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841	if (!virt_ep->stopped_td) {
2842		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2843				ep->desc.bEndpointAddress);
2844		return;
2845	}
2846	if (usb_endpoint_xfer_control(&ep->desc)) {
2847		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2848		return;
2849	}
2850
2851	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2852	spin_lock_irqsave(&xhci->lock, flags);
2853	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2854	/*
2855	 * Can't change the ring dequeue pointer until it's transitioned to the
2856	 * stopped state, which is only upon a successful reset endpoint
2857	 * command.  Better hope that last command worked!
 
 
 
2858	 */
2859	if (!ret) {
2860		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2861		kfree(virt_ep->stopped_td);
2862		xhci_ring_cmd_db(xhci);
2863	}
2864	virt_ep->stopped_td = NULL;
2865	virt_ep->stopped_trb = NULL;
2866	virt_ep->stopped_stream = 0;
2867	spin_unlock_irqrestore(&xhci->lock, flags);
2868
2869	if (ret)
2870		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
 
2871}
2872
2873static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2874		struct usb_device *udev, struct usb_host_endpoint *ep,
2875		unsigned int slot_id)
2876{
2877	int ret;
2878	unsigned int ep_index;
2879	unsigned int ep_state;
2880
2881	if (!ep)
2882		return -EINVAL;
2883	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2884	if (ret <= 0)
2885		return -EINVAL;
2886	if (ep->ss_ep_comp.bmAttributes == 0) {
2887		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2888				" descriptor for ep 0x%x does not support streams\n",
2889				ep->desc.bEndpointAddress);
2890		return -EINVAL;
2891	}
2892
2893	ep_index = xhci_get_endpoint_index(&ep->desc);
2894	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2895	if (ep_state & EP_HAS_STREAMS ||
2896			ep_state & EP_GETTING_STREAMS) {
2897		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2898				"already has streams set up.\n",
2899				ep->desc.bEndpointAddress);
2900		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2901				"dynamic stream context array reallocation.\n");
2902		return -EINVAL;
2903	}
2904	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2905		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2906				"endpoint 0x%x; URBs are pending.\n",
2907				ep->desc.bEndpointAddress);
2908		return -EINVAL;
2909	}
2910	return 0;
2911}
2912
2913static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2914		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2915{
2916	unsigned int max_streams;
2917
2918	/* The stream context array size must be a power of two */
2919	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2920	/*
2921	 * Find out how many primary stream array entries the host controller
2922	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2923	 * level page entries), but that's an optional feature for xHCI host
2924	 * controllers. xHCs must support at least 4 stream IDs.
2925	 */
2926	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2927	if (*num_stream_ctxs > max_streams) {
2928		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2929				max_streams);
2930		*num_stream_ctxs = max_streams;
2931		*num_streams = max_streams;
2932	}
2933}
2934
2935/* Returns an error code if one of the endpoint already has streams.
2936 * This does not change any data structures, it only checks and gathers
2937 * information.
2938 */
2939static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2940		struct usb_device *udev,
2941		struct usb_host_endpoint **eps, unsigned int num_eps,
2942		unsigned int *num_streams, u32 *changed_ep_bitmask)
2943{
2944	unsigned int max_streams;
2945	unsigned int endpoint_flag;
2946	int i;
2947	int ret;
2948
2949	for (i = 0; i < num_eps; i++) {
2950		ret = xhci_check_streams_endpoint(xhci, udev,
2951				eps[i], udev->slot_id);
2952		if (ret < 0)
2953			return ret;
2954
2955		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2956		if (max_streams < (*num_streams - 1)) {
2957			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2958					eps[i]->desc.bEndpointAddress,
2959					max_streams);
2960			*num_streams = max_streams+1;
2961		}
2962
2963		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2964		if (*changed_ep_bitmask & endpoint_flag)
2965			return -EINVAL;
2966		*changed_ep_bitmask |= endpoint_flag;
2967	}
2968	return 0;
2969}
2970
2971static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2972		struct usb_device *udev,
2973		struct usb_host_endpoint **eps, unsigned int num_eps)
2974{
2975	u32 changed_ep_bitmask = 0;
2976	unsigned int slot_id;
2977	unsigned int ep_index;
2978	unsigned int ep_state;
2979	int i;
2980
2981	slot_id = udev->slot_id;
2982	if (!xhci->devs[slot_id])
2983		return 0;
2984
2985	for (i = 0; i < num_eps; i++) {
2986		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2988		/* Are streams already being freed for the endpoint? */
2989		if (ep_state & EP_GETTING_NO_STREAMS) {
2990			xhci_warn(xhci, "WARN Can't disable streams for "
2991					"endpoint 0x%x\n, "
2992					"streams are being disabled already.",
2993					eps[i]->desc.bEndpointAddress);
2994			return 0;
2995		}
2996		/* Are there actually any streams to free? */
2997		if (!(ep_state & EP_HAS_STREAMS) &&
2998				!(ep_state & EP_GETTING_STREAMS)) {
2999			xhci_warn(xhci, "WARN Can't disable streams for "
3000					"endpoint 0x%x\n, "
3001					"streams are already disabled!",
3002					eps[i]->desc.bEndpointAddress);
3003			xhci_warn(xhci, "WARN xhci_free_streams() called "
3004					"with non-streams endpoint\n");
3005			return 0;
3006		}
3007		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3008	}
3009	return changed_ep_bitmask;
3010}
3011
3012/*
3013 * The USB device drivers use this function (though the HCD interface in USB
3014 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3015 * coordinate mass storage command queueing across multiple endpoints (basically
3016 * a stream ID == a task ID).
3017 *
3018 * Setting up streams involves allocating the same size stream context array
3019 * for each endpoint and issuing a configure endpoint command for all endpoints.
3020 *
3021 * Don't allow the call to succeed if one endpoint only supports one stream
3022 * (which means it doesn't support streams at all).
3023 *
3024 * Drivers may get less stream IDs than they asked for, if the host controller
3025 * hardware or endpoints claim they can't support the number of requested
3026 * stream IDs.
3027 */
3028int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3029		struct usb_host_endpoint **eps, unsigned int num_eps,
3030		unsigned int num_streams, gfp_t mem_flags)
3031{
3032	int i, ret;
3033	struct xhci_hcd *xhci;
3034	struct xhci_virt_device *vdev;
3035	struct xhci_command *config_cmd;
 
3036	unsigned int ep_index;
3037	unsigned int num_stream_ctxs;
 
3038	unsigned long flags;
3039	u32 changed_ep_bitmask = 0;
3040
3041	if (!eps)
3042		return -EINVAL;
3043
3044	/* Add one to the number of streams requested to account for
3045	 * stream 0 that is reserved for xHCI usage.
3046	 */
3047	num_streams += 1;
3048	xhci = hcd_to_xhci(hcd);
3049	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3050			num_streams);
3051
 
 
 
 
 
 
 
3052	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3053	if (!config_cmd) {
3054		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3055		return -ENOMEM;
3056	}
 
 
 
 
 
 
 
3057
3058	/* Check to make sure all endpoints are not already configured for
3059	 * streams.  While we're at it, find the maximum number of streams that
3060	 * all the endpoints will support and check for duplicate endpoints.
3061	 */
3062	spin_lock_irqsave(&xhci->lock, flags);
3063	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3064			num_eps, &num_streams, &changed_ep_bitmask);
3065	if (ret < 0) {
3066		xhci_free_command(xhci, config_cmd);
3067		spin_unlock_irqrestore(&xhci->lock, flags);
3068		return ret;
3069	}
3070	if (num_streams <= 1) {
3071		xhci_warn(xhci, "WARN: endpoints can't handle "
3072				"more than one stream.\n");
3073		xhci_free_command(xhci, config_cmd);
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		return -EINVAL;
3076	}
3077	vdev = xhci->devs[udev->slot_id];
3078	/* Mark each endpoint as being in transition, so
3079	 * xhci_urb_enqueue() will reject all URBs.
3080	 */
3081	for (i = 0; i < num_eps; i++) {
3082		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3084	}
3085	spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087	/* Setup internal data structures and allocate HW data structures for
3088	 * streams (but don't install the HW structures in the input context
3089	 * until we're sure all memory allocation succeeded).
3090	 */
3091	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3092	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3093			num_stream_ctxs, num_streams);
3094
3095	for (i = 0; i < num_eps; i++) {
3096		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
3097		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3098				num_stream_ctxs,
3099				num_streams, mem_flags);
 
3100		if (!vdev->eps[ep_index].stream_info)
3101			goto cleanup;
3102		/* Set maxPstreams in endpoint context and update deq ptr to
3103		 * point to stream context array. FIXME
3104		 */
3105	}
3106
3107	/* Set up the input context for a configure endpoint command. */
3108	for (i = 0; i < num_eps; i++) {
3109		struct xhci_ep_ctx *ep_ctx;
3110
3111		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3113
3114		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3115				vdev->out_ctx, ep_index);
3116		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3117				vdev->eps[ep_index].stream_info);
3118	}
3119	/* Tell the HW to drop its old copy of the endpoint context info
3120	 * and add the updated copy from the input context.
3121	 */
3122	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3123			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3124
3125	/* Issue and wait for the configure endpoint command */
3126	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3127			false, false);
3128
3129	/* xHC rejected the configure endpoint command for some reason, so we
3130	 * leave the old ring intact and free our internal streams data
3131	 * structure.
3132	 */
3133	if (ret < 0)
3134		goto cleanup;
3135
3136	spin_lock_irqsave(&xhci->lock, flags);
3137	for (i = 0; i < num_eps; i++) {
3138		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3140		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3141			 udev->slot_id, ep_index);
3142		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3143	}
3144	xhci_free_command(xhci, config_cmd);
3145	spin_unlock_irqrestore(&xhci->lock, flags);
3146
3147	/* Subtract 1 for stream 0, which drivers can't use */
3148	return num_streams - 1;
3149
3150cleanup:
3151	/* If it didn't work, free the streams! */
3152	for (i = 0; i < num_eps; i++) {
3153		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3155		vdev->eps[ep_index].stream_info = NULL;
3156		/* FIXME Unset maxPstreams in endpoint context and
3157		 * update deq ptr to point to normal string ring.
3158		 */
3159		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3161		xhci_endpoint_zero(xhci, vdev, eps[i]);
3162	}
3163	xhci_free_command(xhci, config_cmd);
3164	return -ENOMEM;
3165}
3166
3167/* Transition the endpoint from using streams to being a "normal" endpoint
3168 * without streams.
3169 *
3170 * Modify the endpoint context state, submit a configure endpoint command,
3171 * and free all endpoint rings for streams if that completes successfully.
3172 */
3173int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3174		struct usb_host_endpoint **eps, unsigned int num_eps,
3175		gfp_t mem_flags)
3176{
3177	int i, ret;
3178	struct xhci_hcd *xhci;
3179	struct xhci_virt_device *vdev;
3180	struct xhci_command *command;
 
3181	unsigned int ep_index;
3182	unsigned long flags;
3183	u32 changed_ep_bitmask;
3184
3185	xhci = hcd_to_xhci(hcd);
3186	vdev = xhci->devs[udev->slot_id];
3187
3188	/* Set up a configure endpoint command to remove the streams rings */
3189	spin_lock_irqsave(&xhci->lock, flags);
3190	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3191			udev, eps, num_eps);
3192	if (changed_ep_bitmask == 0) {
3193		spin_unlock_irqrestore(&xhci->lock, flags);
3194		return -EINVAL;
3195	}
3196
3197	/* Use the xhci_command structure from the first endpoint.  We may have
3198	 * allocated too many, but the driver may call xhci_free_streams() for
3199	 * each endpoint it grouped into one call to xhci_alloc_streams().
3200	 */
3201	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3202	command = vdev->eps[ep_index].stream_info->free_streams_command;
 
 
 
 
 
 
 
 
3203	for (i = 0; i < num_eps; i++) {
3204		struct xhci_ep_ctx *ep_ctx;
3205
3206		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3208		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3209			EP_GETTING_NO_STREAMS;
3210
3211		xhci_endpoint_copy(xhci, command->in_ctx,
3212				vdev->out_ctx, ep_index);
3213		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3214				&vdev->eps[ep_index]);
3215	}
3216	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3217			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3218	spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220	/* Issue and wait for the configure endpoint command,
3221	 * which must succeed.
3222	 */
3223	ret = xhci_configure_endpoint(xhci, udev, command,
3224			false, true);
3225
3226	/* xHC rejected the configure endpoint command for some reason, so we
3227	 * leave the streams rings intact.
3228	 */
3229	if (ret < 0)
3230		return ret;
3231
3232	spin_lock_irqsave(&xhci->lock, flags);
3233	for (i = 0; i < num_eps; i++) {
3234		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3236		vdev->eps[ep_index].stream_info = NULL;
3237		/* FIXME Unset maxPstreams in endpoint context and
3238		 * update deq ptr to point to normal string ring.
3239		 */
3240		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3241		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3242	}
3243	spin_unlock_irqrestore(&xhci->lock, flags);
3244
3245	return 0;
3246}
3247
3248/*
3249 * Deletes endpoint resources for endpoints that were active before a Reset
3250 * Device command, or a Disable Slot command.  The Reset Device command leaves
3251 * the control endpoint intact, whereas the Disable Slot command deletes it.
3252 *
3253 * Must be called with xhci->lock held.
3254 */
3255void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3256	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3257{
3258	int i;
3259	unsigned int num_dropped_eps = 0;
3260	unsigned int drop_flags = 0;
3261
3262	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3263		if (virt_dev->eps[i].ring) {
3264			drop_flags |= 1 << i;
3265			num_dropped_eps++;
3266		}
3267	}
3268	xhci->num_active_eps -= num_dropped_eps;
3269	if (num_dropped_eps)
3270		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3271				"%u now active.\n",
 
3272				num_dropped_eps, drop_flags,
3273				xhci->num_active_eps);
3274}
3275
3276/*
3277 * This submits a Reset Device Command, which will set the device state to 0,
3278 * set the device address to 0, and disable all the endpoints except the default
3279 * control endpoint.  The USB core should come back and call
3280 * xhci_address_device(), and then re-set up the configuration.  If this is
3281 * called because of a usb_reset_and_verify_device(), then the old alternate
3282 * settings will be re-installed through the normal bandwidth allocation
3283 * functions.
3284 *
3285 * Wait for the Reset Device command to finish.  Remove all structures
3286 * associated with the endpoints that were disabled.  Clear the input device
3287 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3288 *
3289 * If the virt_dev to be reset does not exist or does not match the udev,
3290 * it means the device is lost, possibly due to the xHC restore error and
3291 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3292 * re-allocate the device.
3293 */
3294int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3295{
3296	int ret, i;
3297	unsigned long flags;
3298	struct xhci_hcd *xhci;
3299	unsigned int slot_id;
3300	struct xhci_virt_device *virt_dev;
3301	struct xhci_command *reset_device_cmd;
3302	int timeleft;
3303	int last_freed_endpoint;
3304	struct xhci_slot_ctx *slot_ctx;
3305	int old_active_eps = 0;
3306
3307	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3308	if (ret <= 0)
3309		return ret;
3310	xhci = hcd_to_xhci(hcd);
3311	slot_id = udev->slot_id;
3312	virt_dev = xhci->devs[slot_id];
3313	if (!virt_dev) {
3314		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3315				"not exist. Re-allocate the device\n", slot_id);
3316		ret = xhci_alloc_dev(hcd, udev);
3317		if (ret == 1)
3318			return 0;
3319		else
3320			return -EINVAL;
3321	}
3322
 
 
 
3323	if (virt_dev->udev != udev) {
3324		/* If the virt_dev and the udev does not match, this virt_dev
3325		 * may belong to another udev.
3326		 * Re-allocate the device.
3327		 */
3328		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3329				"not match the udev. Re-allocate the device\n",
3330				slot_id);
3331		ret = xhci_alloc_dev(hcd, udev);
3332		if (ret == 1)
3333			return 0;
3334		else
3335			return -EINVAL;
3336	}
3337
3338	/* If device is not setup, there is no point in resetting it */
3339	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3340	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3341						SLOT_STATE_DISABLED)
3342		return 0;
3343
3344	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3345	/* Allocate the command structure that holds the struct completion.
3346	 * Assume we're in process context, since the normal device reset
3347	 * process has to wait for the device anyway.  Storage devices are
3348	 * reset as part of error handling, so use GFP_NOIO instead of
3349	 * GFP_KERNEL.
3350	 */
3351	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3352	if (!reset_device_cmd) {
3353		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3354		return -ENOMEM;
3355	}
3356
3357	/* Attempt to submit the Reset Device command to the command ring */
3358	spin_lock_irqsave(&xhci->lock, flags);
3359	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3360
3361	/* Enqueue pointer can be left pointing to the link TRB,
3362	 * we must handle that
3363	 */
3364	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3365		reset_device_cmd->command_trb =
3366			xhci->cmd_ring->enq_seg->next->trbs;
3367
3368	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3369	ret = xhci_queue_reset_device(xhci, slot_id);
3370	if (ret) {
3371		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372		list_del(&reset_device_cmd->cmd_list);
3373		spin_unlock_irqrestore(&xhci->lock, flags);
3374		goto command_cleanup;
3375	}
3376	xhci_ring_cmd_db(xhci);
3377	spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379	/* Wait for the Reset Device command to finish */
3380	timeleft = wait_for_completion_interruptible_timeout(
3381			reset_device_cmd->completion,
3382			USB_CTRL_SET_TIMEOUT);
3383	if (timeleft <= 0) {
3384		xhci_warn(xhci, "%s while waiting for reset device command\n",
3385				timeleft == 0 ? "Timeout" : "Signal");
3386		spin_lock_irqsave(&xhci->lock, flags);
3387		/* The timeout might have raced with the event ring handler, so
3388		 * only delete from the list if the item isn't poisoned.
3389		 */
3390		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3391			list_del(&reset_device_cmd->cmd_list);
3392		spin_unlock_irqrestore(&xhci->lock, flags);
3393		ret = -ETIME;
3394		goto command_cleanup;
3395	}
3396
3397	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3398	 * unless we tried to reset a slot ID that wasn't enabled,
3399	 * or the device wasn't in the addressed or configured state.
3400	 */
3401	ret = reset_device_cmd->status;
3402	switch (ret) {
 
 
 
 
 
3403	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3404	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3405		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3406				slot_id,
3407				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3408		xhci_info(xhci, "Not freeing device rings.\n");
3409		/* Don't treat this as an error.  May change my mind later. */
3410		ret = 0;
3411		goto command_cleanup;
3412	case COMP_SUCCESS:
3413		xhci_dbg(xhci, "Successful reset device command.\n");
3414		break;
3415	default:
3416		if (xhci_is_vendor_info_code(xhci, ret))
3417			break;
3418		xhci_warn(xhci, "Unknown completion code %u for "
3419				"reset device command.\n", ret);
3420		ret = -EINVAL;
3421		goto command_cleanup;
3422	}
3423
3424	/* Free up host controller endpoint resources */
3425	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3426		spin_lock_irqsave(&xhci->lock, flags);
3427		/* Don't delete the default control endpoint resources */
3428		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3429		spin_unlock_irqrestore(&xhci->lock, flags);
3430	}
3431
3432	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3433	last_freed_endpoint = 1;
3434	for (i = 1; i < 31; ++i) {
3435		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3436
3437		if (ep->ep_state & EP_HAS_STREAMS) {
 
 
3438			xhci_free_stream_info(xhci, ep->stream_info);
3439			ep->stream_info = NULL;
3440			ep->ep_state &= ~EP_HAS_STREAMS;
3441		}
3442
3443		if (ep->ring) {
3444			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3445			last_freed_endpoint = i;
3446		}
3447		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3448			xhci_drop_ep_from_interval_table(xhci,
3449					&virt_dev->eps[i].bw_info,
3450					virt_dev->bw_table,
3451					udev,
3452					&virt_dev->eps[i],
3453					virt_dev->tt_info);
3454		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3455	}
3456	/* If necessary, update the number of active TTs on this root port */
3457	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3458
3459	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3460	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3461	ret = 0;
3462
3463command_cleanup:
3464	xhci_free_command(xhci, reset_device_cmd);
3465	return ret;
3466}
3467
3468/*
3469 * At this point, the struct usb_device is about to go away, the device has
3470 * disconnected, and all traffic has been stopped and the endpoints have been
3471 * disabled.  Free any HC data structures associated with that device.
3472 */
3473void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3474{
3475	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476	struct xhci_virt_device *virt_dev;
3477	unsigned long flags;
3478	u32 state;
3479	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480
3481	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3482	/* If the host is halted due to driver unload, we still need to free the
3483	 * device.
3484	 */
3485	if (ret <= 0 && ret != -ENODEV)
 
3486		return;
 
3487
3488	virt_dev = xhci->devs[udev->slot_id];
3489
3490	/* Stop any wayward timer functions (which may grab the lock) */
3491	for (i = 0; i < 31; ++i) {
3492		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3493		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3494	}
3495
3496	if (udev->usb2_hw_lpm_enabled) {
3497		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3498		udev->usb2_hw_lpm_enabled = 0;
3499	}
3500
3501	spin_lock_irqsave(&xhci->lock, flags);
3502	/* Don't disable the slot if the host controller is dead. */
3503	state = xhci_readl(xhci, &xhci->op_regs->status);
3504	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3505			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3506		xhci_free_virt_device(xhci, udev->slot_id);
3507		spin_unlock_irqrestore(&xhci->lock, flags);
 
3508		return;
3509	}
3510
3511	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
 
3512		spin_unlock_irqrestore(&xhci->lock, flags);
3513		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3514		return;
3515	}
3516	xhci_ring_cmd_db(xhci);
3517	spin_unlock_irqrestore(&xhci->lock, flags);
 
3518	/*
3519	 * Event command completion handler will free any data structures
3520	 * associated with the slot.  XXX Can free sleep?
3521	 */
3522}
3523
3524/*
3525 * Checks if we have enough host controller resources for the default control
3526 * endpoint.
3527 *
3528 * Must be called with xhci->lock held.
3529 */
3530static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3531{
3532	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3533		xhci_dbg(xhci, "Not enough ep ctxs: "
3534				"%u active, need to add 1, limit is %u.\n",
 
3535				xhci->num_active_eps, xhci->limit_active_eps);
3536		return -ENOMEM;
3537	}
3538	xhci->num_active_eps += 1;
3539	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
 
3540			xhci->num_active_eps);
3541	return 0;
3542}
3543
3544
3545/*
3546 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3547 * timed out, or allocating memory failed.  Returns 1 on success.
3548 */
3549int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3550{
3551	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3552	unsigned long flags;
3553	int timeleft;
3554	int ret;
3555	union xhci_trb *cmd_trb;
 
 
 
3556
 
 
3557	spin_lock_irqsave(&xhci->lock, flags);
3558	cmd_trb = xhci->cmd_ring->dequeue;
3559	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3560	if (ret) {
3561		spin_unlock_irqrestore(&xhci->lock, flags);
 
3562		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3563		return 0;
3564	}
3565	xhci_ring_cmd_db(xhci);
3566	spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568	/* XXX: how much time for xHC slot assignment? */
3569	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3570			XHCI_CMD_DEFAULT_TIMEOUT);
3571	if (timeleft <= 0) {
3572		xhci_warn(xhci, "%s while waiting for a slot\n",
3573				timeleft == 0 ? "Timeout" : "Signal");
3574		/* cancel the enable slot request */
3575		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3576	}
3577
3578	if (!xhci->slot_id) {
3579		xhci_err(xhci, "Error while assigning device slot ID\n");
 
 
 
 
3580		return 0;
3581	}
3582
3583	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3584		spin_lock_irqsave(&xhci->lock, flags);
3585		ret = xhci_reserve_host_control_ep_resources(xhci);
3586		if (ret) {
3587			spin_unlock_irqrestore(&xhci->lock, flags);
3588			xhci_warn(xhci, "Not enough host resources, "
3589					"active endpoint contexts = %u\n",
3590					xhci->num_active_eps);
3591			goto disable_slot;
3592		}
3593		spin_unlock_irqrestore(&xhci->lock, flags);
3594	}
3595	/* Use GFP_NOIO, since this function can be called from
3596	 * xhci_discover_or_reset_device(), which may be called as part of
3597	 * mass storage driver error handling.
3598	 */
3599	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3600		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3601		goto disable_slot;
3602	}
3603	udev->slot_id = xhci->slot_id;
 
 
 
 
 
 
 
 
 
 
 
 
3604	/* Is this a LS or FS device under a HS hub? */
3605	/* Hub or peripherial? */
3606	return 1;
3607
3608disable_slot:
3609	/* Disable slot, if we can do it without mem alloc */
3610	spin_lock_irqsave(&xhci->lock, flags);
3611	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
 
 
 
 
3612		xhci_ring_cmd_db(xhci);
3613	spin_unlock_irqrestore(&xhci->lock, flags);
3614	return 0;
3615}
3616
3617/*
3618 * Issue an Address Device command (which will issue a SetAddress request to
3619 * the device).
3620 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3621 * we should only issue and wait on one address command at the same time.
3622 *
3623 * We add one to the device address issued by the hardware because the USB core
3624 * uses address 1 for the root hubs (even though they're not really devices).
3625 */
3626int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3627{
 
3628	unsigned long flags;
3629	int timeleft;
3630	struct xhci_virt_device *virt_dev;
3631	int ret = 0;
3632	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633	struct xhci_slot_ctx *slot_ctx;
3634	struct xhci_input_control_ctx *ctrl_ctx;
3635	u64 temp_64;
3636	union xhci_trb *cmd_trb;
 
 
 
 
 
 
 
3637
3638	if (!udev->slot_id) {
3639		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3640		return -EINVAL;
 
 
3641	}
3642
3643	virt_dev = xhci->devs[udev->slot_id];
3644
3645	if (WARN_ON(!virt_dev)) {
3646		/*
3647		 * In plug/unplug torture test with an NEC controller,
3648		 * a zero-dereference was observed once due to virt_dev = 0.
3649		 * Print useful debug rather than crash if it is observed again!
3650		 */
3651		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3652			udev->slot_id);
3653		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654	}
3655
 
 
3656	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
 
3657	/*
3658	 * If this is the first Set Address since device plug-in or
3659	 * virt_device realloaction after a resume with an xHCI power loss,
3660	 * then set up the slot context.
3661	 */
3662	if (!slot_ctx->dev_info)
3663		xhci_setup_addressable_virt_dev(xhci, udev);
3664	/* Otherwise, update the control endpoint ring enqueue pointer. */
3665	else
3666		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3667	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3668	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3669	ctrl_ctx->drop_flags = 0;
3670
3671	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3672	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
 
 
3673
3674	spin_lock_irqsave(&xhci->lock, flags);
3675	cmd_trb = xhci->cmd_ring->dequeue;
3676	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3677					udev->slot_id);
3678	if (ret) {
3679		spin_unlock_irqrestore(&xhci->lock, flags);
3680		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3681		return ret;
 
3682	}
3683	xhci_ring_cmd_db(xhci);
3684	spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3687	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3688			XHCI_CMD_DEFAULT_TIMEOUT);
3689	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3690	 * the SetAddress() "recovery interval" required by USB and aborting the
3691	 * command on a timeout.
3692	 */
3693	if (timeleft <= 0) {
3694		xhci_warn(xhci, "%s while waiting for address device command\n",
3695				timeleft == 0 ? "Timeout" : "Signal");
3696		/* cancel the address device command */
3697		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3698		if (ret < 0)
3699			return ret;
3700		return -ETIME;
3701	}
3702
3703	switch (virt_dev->cmd_status) {
3704	case COMP_CTX_STATE:
3705	case COMP_EBADSLT:
3706		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3707				udev->slot_id);
3708		ret = -EINVAL;
3709		break;
3710	case COMP_TX_ERR:
3711		dev_warn(&udev->dev, "Device not responding to set address.\n");
3712		ret = -EPROTO;
3713		break;
3714	case COMP_DEV_ERR:
3715		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3716				"device command.\n");
3717		ret = -ENODEV;
3718		break;
3719	case COMP_SUCCESS:
3720		xhci_dbg(xhci, "Successful Address Device command\n");
 
3721		break;
3722	default:
3723		xhci_err(xhci, "ERROR: unexpected command completion "
3724				"code 0x%x.\n", virt_dev->cmd_status);
 
3725		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3726		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
 
3727		ret = -EINVAL;
3728		break;
3729	}
3730	if (ret) {
3731		return ret;
3732	}
3733	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3734	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3735	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3736		 udev->slot_id,
3737		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3738		 (unsigned long long)
3739		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3740	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
 
 
 
3741			(unsigned long long)virt_dev->out_ctx->dma);
3742	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3743	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
 
 
3744	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3745	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3746	/*
3747	 * USB core uses address 1 for the roothubs, so we add one to the
3748	 * address given back to us by the HC.
3749	 */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	/* Use kernel assigned address for devices; store xHC assigned
3752	 * address locally. */
3753	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3754		+ 1;
3755	/* Zero the input context control for later use */
3756	ctrl_ctx->add_flags = 0;
3757	ctrl_ctx->drop_flags = 0;
3758
3759	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3760
3761	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3762}
3763
3764#ifdef CONFIG_USB_SUSPEND
3765
3766/* BESL to HIRD Encoding array for USB2 LPM */
3767static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3768	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3769
3770/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3771static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3772					struct usb_device *udev)
3773{
3774	int u2del, besl, besl_host;
3775	int besl_device = 0;
3776	u32 field;
3777
3778	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3779	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3780
3781	if (field & USB_BESL_SUPPORT) {
3782		for (besl_host = 0; besl_host < 16; besl_host++) {
3783			if (xhci_besl_encoding[besl_host] >= u2del)
3784				break;
3785		}
3786		/* Use baseline BESL value as default */
3787		if (field & USB_BESL_BASELINE_VALID)
3788			besl_device = USB_GET_BESL_BASELINE(field);
3789		else if (field & USB_BESL_DEEP_VALID)
3790			besl_device = USB_GET_BESL_DEEP(field);
3791	} else {
3792		if (u2del <= 50)
3793			besl_host = 0;
3794		else
3795			besl_host = (u2del - 51) / 75 + 1;
3796	}
3797
3798	besl = besl_host + besl_device;
3799	if (besl > 15)
3800		besl = 15;
3801
3802	return besl;
3803}
3804
3805static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3806					struct usb_device *udev)
3807{
3808	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3809	struct dev_info	*dev_info;
3810	__le32 __iomem	**port_array;
3811	__le32 __iomem	*addr, *pm_addr;
3812	u32		temp, dev_id;
3813	unsigned int	port_num;
3814	unsigned long	flags;
3815	int		hird;
3816	int		ret;
3817
3818	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3819			!udev->lpm_capable)
3820		return -EINVAL;
3821
3822	/* we only support lpm for non-hub device connected to root hub yet */
3823	if (!udev->parent || udev->parent->parent ||
3824			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3825		return -EINVAL;
3826
3827	spin_lock_irqsave(&xhci->lock, flags);
3828
3829	/* Look for devices in lpm_failed_devs list */
3830	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3831			le16_to_cpu(udev->descriptor.idProduct);
3832	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3833		if (dev_info->dev_id == dev_id) {
3834			ret = -EINVAL;
3835			goto finish;
3836		}
3837	}
3838
3839	port_array = xhci->usb2_ports;
3840	port_num = udev->portnum - 1;
3841
3842	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3843		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3844		ret = -EINVAL;
3845		goto finish;
3846	}
3847
3848	/*
3849	 * Test USB 2.0 software LPM.
3850	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3851	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3852	 * in the June 2011 errata release.
3853	 */
3854	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3855	/*
3856	 * Set L1 Device Slot and HIRD/BESL.
3857	 * Check device's USB 2.0 extension descriptor to determine whether
3858	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3859	 */
3860	pm_addr = port_array[port_num] + 1;
3861	hird = xhci_calculate_hird_besl(xhci, udev);
3862	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3863	xhci_writel(xhci, temp, pm_addr);
3864
3865	/* Set port link state to U2(L1) */
3866	addr = port_array[port_num];
3867	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3868
3869	/* wait for ACK */
3870	spin_unlock_irqrestore(&xhci->lock, flags);
3871	msleep(10);
3872	spin_lock_irqsave(&xhci->lock, flags);
3873
3874	/* Check L1 Status */
3875	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3876	if (ret != -ETIMEDOUT) {
3877		/* enter L1 successfully */
3878		temp = xhci_readl(xhci, addr);
3879		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3880				port_num, temp);
3881		ret = 0;
3882	} else {
3883		temp = xhci_readl(xhci, pm_addr);
3884		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3885				port_num, temp & PORT_L1S_MASK);
3886		ret = -EINVAL;
3887	}
3888
3889	/* Resume the port */
3890	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3891
3892	spin_unlock_irqrestore(&xhci->lock, flags);
3893	msleep(10);
3894	spin_lock_irqsave(&xhci->lock, flags);
3895
3896	/* Clear PLC */
3897	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3898
3899	/* Check PORTSC to make sure the device is in the right state */
3900	if (!ret) {
3901		temp = xhci_readl(xhci, addr);
3902		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3903		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3904				(temp & PORT_PLS_MASK) != XDEV_U0) {
3905			xhci_dbg(xhci, "port L1 resume fail\n");
3906			ret = -EINVAL;
3907		}
3908	}
3909
3910	if (ret) {
3911		/* Insert dev to lpm_failed_devs list */
3912		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3913				"re-enumerate\n");
3914		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3915		if (!dev_info) {
3916			ret = -ENOMEM;
3917			goto finish;
3918		}
3919		dev_info->dev_id = dev_id;
3920		INIT_LIST_HEAD(&dev_info->list);
3921		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3922	} else {
3923		xhci_ring_device(xhci, udev->slot_id);
3924	}
3925
3926finish:
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
3929}
3930
3931int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3932			struct usb_device *udev, int enable)
3933{
3934	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3935	__le32 __iomem	**port_array;
3936	__le32 __iomem	*pm_addr;
3937	u32		temp;
3938	unsigned int	port_num;
3939	unsigned long	flags;
3940	int		hird;
 
3941
3942	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3943			!udev->lpm_capable)
3944		return -EPERM;
3945
3946	if (!udev->parent || udev->parent->parent ||
3947			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3948		return -EPERM;
3949
3950	if (udev->usb2_hw_lpm_capable != 1)
3951		return -EPERM;
3952
3953	spin_lock_irqsave(&xhci->lock, flags);
3954
3955	port_array = xhci->usb2_ports;
3956	port_num = udev->portnum - 1;
3957	pm_addr = port_array[port_num] + 1;
3958	temp = xhci_readl(xhci, pm_addr);
 
 
3959
3960	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3961			enable ? "enable" : "disable", port_num);
3962
3963	hird = xhci_calculate_hird_besl(xhci, udev);
 
 
 
 
 
 
 
 
 
 
 
3964
3965	if (enable) {
3966		temp &= ~PORT_HIRD_MASK;
3967		temp |= PORT_HIRD(hird) | PORT_RWE;
3968		xhci_writel(xhci, temp, pm_addr);
3969		temp = xhci_readl(xhci, pm_addr);
3970		temp |= PORT_HLE;
3971		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3972	} else {
3973		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3974		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
3975	}
3976
3977	spin_unlock_irqrestore(&xhci->lock, flags);
3978	return 0;
3979}
3980
3981int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
 
 
 
 
 
3982{
3983	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3984	int		ret;
3985
3986	ret = xhci_usb2_software_lpm_test(hcd, udev);
3987	if (!ret) {
3988		xhci_dbg(xhci, "software LPM test succeed\n");
3989		if (xhci->hw_lpm_support == 1) {
3990			udev->usb2_hw_lpm_capable = 1;
3991			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3992			if (!ret)
3993				udev->usb2_hw_lpm_enabled = 1;
3994		}
3995	}
3996
3997	return 0;
3998}
3999
4000#else
 
 
 
 
 
 
 
 
 
 
 
 
4001
4002int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4003				struct usb_device *udev, int enable)
4004{
4005	return 0;
4006}
 
 
 
 
 
4007
4008int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4009{
4010	return 0;
4011}
4012
4013#endif /* CONFIG_USB_SUSPEND */
4014
4015/*---------------------- USB 3.0 Link PM functions ------------------------*/
4016
4017#ifdef CONFIG_PM
4018/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4019static unsigned long long xhci_service_interval_to_ns(
4020		struct usb_endpoint_descriptor *desc)
4021{
4022	return (1 << (desc->bInterval - 1)) * 125 * 1000;
4023}
4024
4025static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4026		enum usb3_link_state state)
4027{
4028	unsigned long long sel;
4029	unsigned long long pel;
4030	unsigned int max_sel_pel;
4031	char *state_name;
4032
4033	switch (state) {
4034	case USB3_LPM_U1:
4035		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4036		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4037		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4038		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4039		state_name = "U1";
4040		break;
4041	case USB3_LPM_U2:
4042		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4043		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4044		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4045		state_name = "U2";
4046		break;
4047	default:
4048		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4049				__func__);
4050		return USB3_LPM_DISABLED;
4051	}
4052
4053	if (sel <= max_sel_pel && pel <= max_sel_pel)
4054		return USB3_LPM_DEVICE_INITIATED;
4055
4056	if (sel > max_sel_pel)
4057		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4058				"due to long SEL %llu ms\n",
4059				state_name, sel);
4060	else
4061		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4062				"due to long PEL %llu\n ms",
4063				state_name, pel);
4064	return USB3_LPM_DISABLED;
4065}
4066
4067/* Returns the hub-encoded U1 timeout value.
4068 * The U1 timeout should be the maximum of the following values:
4069 *  - For control endpoints, U1 system exit latency (SEL) * 3
4070 *  - For bulk endpoints, U1 SEL * 5
4071 *  - For interrupt endpoints:
4072 *    - Notification EPs, U1 SEL * 3
4073 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4074 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4075 */
4076static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
 
4077		struct usb_endpoint_descriptor *desc)
4078{
4079	unsigned long long timeout_ns;
4080	int ep_type;
4081	int intr_type;
4082
4083	ep_type = usb_endpoint_type(desc);
4084	switch (ep_type) {
4085	case USB_ENDPOINT_XFER_CONTROL:
4086		timeout_ns = udev->u1_params.sel * 3;
4087		break;
4088	case USB_ENDPOINT_XFER_BULK:
4089		timeout_ns = udev->u1_params.sel * 5;
4090		break;
4091	case USB_ENDPOINT_XFER_INT:
4092		intr_type = usb_endpoint_interrupt_type(desc);
4093		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4094			timeout_ns = udev->u1_params.sel * 3;
4095			break;
4096		}
4097		/* Otherwise the calculation is the same as isoc eps */
4098	case USB_ENDPOINT_XFER_ISOC:
4099		timeout_ns = xhci_service_interval_to_ns(desc);
4100		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4101		if (timeout_ns < udev->u1_params.sel * 2)
4102			timeout_ns = udev->u1_params.sel * 2;
4103		break;
4104	default:
4105		return 0;
4106	}
4107
4108	/* The U1 timeout is encoded in 1us intervals. */
4109	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4110	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4111	if (timeout_ns == USB3_LPM_DISABLED)
4112		timeout_ns++;
 
 
4113
4114	/* If the necessary timeout value is bigger than what we can set in the
4115	 * USB 3.0 hub, we have to disable hub-initiated U1.
4116	 */
4117	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4118		return timeout_ns;
4119	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4120			"due to long timeout %llu ms\n", timeout_ns);
4121	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4122}
4123
4124/* Returns the hub-encoded U2 timeout value.
4125 * The U2 timeout should be the maximum of:
4126 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4127 *  - largest bInterval of any active periodic endpoint (to avoid going
4128 *    into lower power link states between intervals).
4129 *  - the U2 Exit Latency of the device
4130 */
4131static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
 
4132		struct usb_endpoint_descriptor *desc)
4133{
4134	unsigned long long timeout_ns;
4135	unsigned long long u2_del_ns;
4136
4137	timeout_ns = 10 * 1000 * 1000;
4138
4139	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4140			(xhci_service_interval_to_ns(desc) > timeout_ns))
4141		timeout_ns = xhci_service_interval_to_ns(desc);
4142
4143	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4144	if (u2_del_ns > timeout_ns)
4145		timeout_ns = u2_del_ns;
4146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4147	/* The U2 timeout is encoded in 256us intervals */
4148	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4149	/* If the necessary timeout value is bigger than what we can set in the
4150	 * USB 3.0 hub, we have to disable hub-initiated U2.
4151	 */
4152	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4153		return timeout_ns;
4154	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4155			"due to long timeout %llu ms\n", timeout_ns);
4156	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4157}
4158
4159static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4160		struct usb_device *udev,
4161		struct usb_endpoint_descriptor *desc,
4162		enum usb3_link_state state,
4163		u16 *timeout)
4164{
4165	if (state == USB3_LPM_U1) {
4166		if (xhci->quirks & XHCI_INTEL_HOST)
4167			return xhci_calculate_intel_u1_timeout(udev, desc);
4168	} else {
4169		if (xhci->quirks & XHCI_INTEL_HOST)
4170			return xhci_calculate_intel_u2_timeout(udev, desc);
4171	}
4172
4173	return USB3_LPM_DISABLED;
4174}
4175
4176static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4177		struct usb_device *udev,
4178		struct usb_endpoint_descriptor *desc,
4179		enum usb3_link_state state,
4180		u16 *timeout)
4181{
4182	u16 alt_timeout;
4183
4184	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4185		desc, state, timeout);
4186
4187	/* If we found we can't enable hub-initiated LPM, or
4188	 * the U1 or U2 exit latency was too high to allow
4189	 * device-initiated LPM as well, just stop searching.
4190	 */
4191	if (alt_timeout == USB3_LPM_DISABLED ||
4192			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4193		*timeout = alt_timeout;
4194		return -E2BIG;
4195	}
4196	if (alt_timeout > *timeout)
4197		*timeout = alt_timeout;
4198	return 0;
4199}
4200
4201static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4202		struct usb_device *udev,
4203		struct usb_host_interface *alt,
4204		enum usb3_link_state state,
4205		u16 *timeout)
4206{
4207	int j;
4208
4209	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4210		if (xhci_update_timeout_for_endpoint(xhci, udev,
4211					&alt->endpoint[j].desc, state, timeout))
4212			return -E2BIG;
4213		continue;
4214	}
4215	return 0;
4216}
4217
4218static int xhci_check_intel_tier_policy(struct usb_device *udev,
4219		enum usb3_link_state state)
4220{
4221	struct usb_device *parent;
4222	unsigned int num_hubs;
4223
4224	if (state == USB3_LPM_U2)
4225		return 0;
4226
4227	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4228	for (parent = udev->parent, num_hubs = 0; parent->parent;
4229			parent = parent->parent)
4230		num_hubs++;
4231
4232	if (num_hubs < 2)
4233		return 0;
4234
4235	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4236			" below second-tier hub.\n");
4237	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4238			"to decrease power consumption.\n");
4239	return -E2BIG;
4240}
4241
4242static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4243		struct usb_device *udev,
4244		enum usb3_link_state state)
4245{
4246	if (xhci->quirks & XHCI_INTEL_HOST)
4247		return xhci_check_intel_tier_policy(udev, state);
4248	return -EINVAL;
 
4249}
4250
4251/* Returns the U1 or U2 timeout that should be enabled.
4252 * If the tier check or timeout setting functions return with a non-zero exit
4253 * code, that means the timeout value has been finalized and we shouldn't look
4254 * at any more endpoints.
4255 */
4256static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4257			struct usb_device *udev, enum usb3_link_state state)
4258{
4259	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4260	struct usb_host_config *config;
4261	char *state_name;
4262	int i;
4263	u16 timeout = USB3_LPM_DISABLED;
4264
4265	if (state == USB3_LPM_U1)
4266		state_name = "U1";
4267	else if (state == USB3_LPM_U2)
4268		state_name = "U2";
4269	else {
4270		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4271				state);
4272		return timeout;
4273	}
4274
4275	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4276		return timeout;
4277
4278	/* Gather some information about the currently installed configuration
4279	 * and alternate interface settings.
4280	 */
4281	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4282			state, &timeout))
4283		return timeout;
4284
4285	config = udev->actconfig;
4286	if (!config)
4287		return timeout;
4288
4289	for (i = 0; i < USB_MAXINTERFACES; i++) {
4290		struct usb_driver *driver;
4291		struct usb_interface *intf = config->interface[i];
4292
4293		if (!intf)
4294			continue;
4295
4296		/* Check if any currently bound drivers want hub-initiated LPM
4297		 * disabled.
4298		 */
4299		if (intf->dev.driver) {
4300			driver = to_usb_driver(intf->dev.driver);
4301			if (driver && driver->disable_hub_initiated_lpm) {
4302				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4303						"at request of driver %s\n",
4304						state_name, driver->name);
4305				return xhci_get_timeout_no_hub_lpm(udev, state);
4306			}
4307		}
4308
4309		/* Not sure how this could happen... */
4310		if (!intf->cur_altsetting)
4311			continue;
4312
4313		if (xhci_update_timeout_for_interface(xhci, udev,
4314					intf->cur_altsetting,
4315					state, &timeout))
4316			return timeout;
4317	}
4318	return timeout;
4319}
4320
4321/*
4322 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4323 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4324 */
4325static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4326			struct usb_device *udev, u16 max_exit_latency)
4327{
4328	struct xhci_virt_device *virt_dev;
4329	struct xhci_command *command;
4330	struct xhci_input_control_ctx *ctrl_ctx;
4331	struct xhci_slot_ctx *slot_ctx;
4332	unsigned long flags;
4333	int ret;
4334
4335	spin_lock_irqsave(&xhci->lock, flags);
4336	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4337		spin_unlock_irqrestore(&xhci->lock, flags);
4338		return 0;
4339	}
4340
4341	/* Attempt to issue an Evaluate Context command to change the MEL. */
4342	virt_dev = xhci->devs[udev->slot_id];
4343	command = xhci->lpm_command;
4344	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345	spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4348	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4349	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4350	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4351	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4352
4353	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4354	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4355	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4356
4357	/* Issue and wait for the evaluate context command. */
4358	ret = xhci_configure_endpoint(xhci, udev, command,
4359			true, true);
4360	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4361	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4362
4363	if (!ret) {
4364		spin_lock_irqsave(&xhci->lock, flags);
4365		virt_dev->current_mel = max_exit_latency;
4366		spin_unlock_irqrestore(&xhci->lock, flags);
4367	}
4368	return ret;
4369}
4370
4371static int calculate_max_exit_latency(struct usb_device *udev,
4372		enum usb3_link_state state_changed,
4373		u16 hub_encoded_timeout)
4374{
4375	unsigned long long u1_mel_us = 0;
4376	unsigned long long u2_mel_us = 0;
4377	unsigned long long mel_us = 0;
4378	bool disabling_u1;
4379	bool disabling_u2;
4380	bool enabling_u1;
4381	bool enabling_u2;
4382
4383	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4384			hub_encoded_timeout == USB3_LPM_DISABLED);
4385	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4386			hub_encoded_timeout == USB3_LPM_DISABLED);
4387
4388	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4389			hub_encoded_timeout != USB3_LPM_DISABLED);
4390	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4391			hub_encoded_timeout != USB3_LPM_DISABLED);
4392
4393	/* If U1 was already enabled and we're not disabling it,
4394	 * or we're going to enable U1, account for the U1 max exit latency.
4395	 */
4396	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4397			enabling_u1)
4398		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4399	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4400			enabling_u2)
4401		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4402
4403	if (u1_mel_us > u2_mel_us)
4404		mel_us = u1_mel_us;
4405	else
4406		mel_us = u2_mel_us;
4407	/* xHCI host controller max exit latency field is only 16 bits wide. */
4408	if (mel_us > MAX_EXIT) {
4409		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4410				"is too big.\n", mel_us);
4411		return -E2BIG;
4412	}
4413	return mel_us;
4414}
4415
4416/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4417int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4418			struct usb_device *udev, enum usb3_link_state state)
4419{
4420	struct xhci_hcd	*xhci;
4421	u16 hub_encoded_timeout;
4422	int mel;
4423	int ret;
4424
4425	xhci = hcd_to_xhci(hcd);
4426	/* The LPM timeout values are pretty host-controller specific, so don't
4427	 * enable hub-initiated timeouts unless the vendor has provided
4428	 * information about their timeout algorithm.
4429	 */
4430	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4431			!xhci->devs[udev->slot_id])
4432		return USB3_LPM_DISABLED;
4433
4434	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4435	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4436	if (mel < 0) {
4437		/* Max Exit Latency is too big, disable LPM. */
4438		hub_encoded_timeout = USB3_LPM_DISABLED;
4439		mel = 0;
4440	}
4441
4442	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4443	if (ret)
4444		return ret;
4445	return hub_encoded_timeout;
4446}
4447
4448int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4449			struct usb_device *udev, enum usb3_link_state state)
4450{
4451	struct xhci_hcd	*xhci;
4452	u16 mel;
4453	int ret;
4454
4455	xhci = hcd_to_xhci(hcd);
4456	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4457			!xhci->devs[udev->slot_id])
4458		return 0;
4459
4460	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4461	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4462	if (ret)
4463		return ret;
 
 
 
 
 
 
 
 
 
4464	return 0;
4465}
4466#else /* CONFIG_PM */
4467
4468int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4469			struct usb_device *udev, enum usb3_link_state state)
4470{
4471	return USB3_LPM_DISABLED;
4472}
4473
4474int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4475			struct usb_device *udev, enum usb3_link_state state)
4476{
4477	return 0;
4478}
4479#endif	/* CONFIG_PM */
4480
4481/*-------------------------------------------------------------------------*/
4482
4483/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4484 * internal data structures for the device.
4485 */
4486int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4487			struct usb_tt *tt, gfp_t mem_flags)
4488{
4489	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4490	struct xhci_virt_device *vdev;
4491	struct xhci_command *config_cmd;
4492	struct xhci_input_control_ctx *ctrl_ctx;
4493	struct xhci_slot_ctx *slot_ctx;
4494	unsigned long flags;
4495	unsigned think_time;
4496	int ret;
4497
4498	/* Ignore root hubs */
4499	if (!hdev->parent)
4500		return 0;
4501
4502	vdev = xhci->devs[hdev->slot_id];
4503	if (!vdev) {
4504		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4505		return -EINVAL;
4506	}
4507	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4508	if (!config_cmd) {
4509		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4510		return -ENOMEM;
4511	}
 
 
 
 
 
 
 
4512
4513	spin_lock_irqsave(&xhci->lock, flags);
4514	if (hdev->speed == USB_SPEED_HIGH &&
4515			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4516		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4517		xhci_free_command(xhci, config_cmd);
4518		spin_unlock_irqrestore(&xhci->lock, flags);
4519		return -ENOMEM;
4520	}
4521
4522	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4523	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4524	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4526	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
 
 
 
 
 
4527	if (tt->multi)
4528		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 
 
 
4529	if (xhci->hci_version > 0x95) {
4530		xhci_dbg(xhci, "xHCI version %x needs hub "
4531				"TT think time and number of ports\n",
4532				(unsigned int) xhci->hci_version);
4533		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4534		/* Set TT think time - convert from ns to FS bit times.
4535		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4536		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4537		 *
4538		 * xHCI 1.0: this field shall be 0 if the device is not a
4539		 * High-spped hub.
4540		 */
4541		think_time = tt->think_time;
4542		if (think_time != 0)
4543			think_time = (think_time / 666) - 1;
4544		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4545			slot_ctx->tt_info |=
4546				cpu_to_le32(TT_THINK_TIME(think_time));
4547	} else {
4548		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4549				"TT think time or number of ports\n",
4550				(unsigned int) xhci->hci_version);
4551	}
4552	slot_ctx->dev_state = 0;
4553	spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555	xhci_dbg(xhci, "Set up %s for hub device.\n",
4556			(xhci->hci_version > 0x95) ?
4557			"configure endpoint" : "evaluate context");
4558	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4559	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4560
4561	/* Issue and wait for the configure endpoint or
4562	 * evaluate context command.
4563	 */
4564	if (xhci->hci_version > 0x95)
4565		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4566				false, false);
4567	else
4568		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4569				true, false);
4570
4571	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4572	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4573
4574	xhci_free_command(xhci, config_cmd);
4575	return ret;
4576}
4577
4578int xhci_get_frame(struct usb_hcd *hcd)
4579{
4580	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4581	/* EHCI mods by the periodic size.  Why? */
4582	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4583}
4584
4585int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4586{
4587	struct xhci_hcd		*xhci;
4588	struct device		*dev = hcd->self.controller;
4589	int			retval;
4590	u32			temp;
4591
4592	/* Accept arbitrarily long scatter-gather lists */
4593	hcd->self.sg_tablesize = ~0;
4594
 
 
 
 
 
 
 
 
4595	if (usb_hcd_is_primary_hcd(hcd)) {
4596		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4597		if (!xhci)
4598			return -ENOMEM;
4599		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4600		xhci->main_hcd = hcd;
4601		/* Mark the first roothub as being USB 2.0.
4602		 * The xHCI driver will register the USB 3.0 roothub.
4603		 */
4604		hcd->speed = HCD_USB2;
4605		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4606		/*
4607		 * USB 2.0 roothub under xHCI has an integrated TT,
4608		 * (rate matching hub) as opposed to having an OHCI/UHCI
4609		 * companion controller.
4610		 */
4611		hcd->has_tt = 1;
4612	} else {
 
 
 
 
 
4613		/* xHCI private pointer was set in xhci_pci_probe for the second
4614		 * registered roothub.
4615		 */
4616		xhci = hcd_to_xhci(hcd);
4617		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4618		if (HCC_64BIT_ADDR(temp)) {
4619			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4620			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4621		} else {
4622			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4623		}
4624		return 0;
4625	}
4626
 
4627	xhci->cap_regs = hcd->regs;
4628	xhci->op_regs = hcd->regs +
4629		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4630	xhci->run_regs = hcd->regs +
4631		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4632	/* Cache read-only capability registers */
4633	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4634	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4635	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4636	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4637	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4638	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
 
 
4639	xhci_print_registers(xhci);
4640
 
 
4641	get_quirks(dev, xhci);
4642
 
 
 
 
 
 
 
4643	/* Make sure the HC is halted. */
4644	retval = xhci_halt(xhci);
4645	if (retval)
4646		goto error;
4647
4648	xhci_dbg(xhci, "Resetting HCD\n");
4649	/* Reset the internal HC memory state and registers. */
4650	retval = xhci_reset(xhci);
4651	if (retval)
4652		goto error;
4653	xhci_dbg(xhci, "Reset complete\n");
4654
4655	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4656	if (HCC_64BIT_ADDR(temp)) {
 
 
 
 
 
 
 
 
 
 
 
 
4657		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4658		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4659	} else {
4660		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
 
 
 
 
 
 
 
 
4661	}
4662
4663	xhci_dbg(xhci, "Calling HCD init\n");
4664	/* Initialize HCD and host controller data structures. */
4665	retval = xhci_init(hcd);
4666	if (retval)
4667		goto error;
4668	xhci_dbg(xhci, "Called HCD init\n");
 
 
 
 
4669	return 0;
4670error:
4671	kfree(xhci);
4672	return retval;
4673}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4674
4675MODULE_DESCRIPTION(DRIVER_DESC);
4676MODULE_AUTHOR(DRIVER_AUTHOR);
4677MODULE_LICENSE("GPL");
4678
4679static int __init xhci_hcd_init(void)
4680{
4681	int retval;
4682
4683	retval = xhci_register_pci();
4684	if (retval < 0) {
4685		printk(KERN_DEBUG "Problem registering PCI driver.");
4686		return retval;
4687	}
4688	retval = xhci_register_plat();
4689	if (retval < 0) {
4690		printk(KERN_DEBUG "Problem registering platform driver.");
4691		goto unreg_pci;
4692	}
4693	/*
4694	 * Check the compiler generated sizes of structures that must be laid
4695	 * out in specific ways for hardware access.
4696	 */
4697	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4698	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4699	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4700	/* xhci_device_control has eight fields, and also
4701	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4702	 */
4703	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4704	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4705	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4706	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4707	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4708	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4709	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
 
 
 
 
4710	return 0;
4711unreg_pci:
4712	xhci_unregister_pci();
4713	return retval;
4714}
 
 
 
 
 
 
 
4715module_init(xhci_hcd_init);
4716
4717static void __exit xhci_hcd_cleanup(void)
4718{
4719	xhci_unregister_pci();
4720	xhci_unregister_plat();
4721}
4722module_exit(xhci_hcd_cleanup);