Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
 
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
  34#include "xhci-mtk.h"
 
 
  35
  36#define DRIVER_AUTHOR "Sarah Sharp"
  37#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  38
  39#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  40
  41/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  42static int link_quirk;
  43module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  44MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  45
  46static unsigned int quirks;
  47module_param(quirks, uint, S_IRUGO);
  48MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  49
  50/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51/*
  52 * xhci_handshake - spin reading hc until handshake completes or fails
  53 * @ptr: address of hc register to be read
  54 * @mask: bits to look at in result of read
  55 * @done: value of those bits when handshake succeeds
  56 * @usec: timeout in microseconds
  57 *
  58 * Returns negative errno, or zero on success
  59 *
  60 * Success happens when the "mask" bits have the specified value (hardware
  61 * handshake done).  There are two failure modes:  "usec" have passed (major
  62 * hardware flakeout), or the register reads as all-ones (hardware removed).
  63 */
  64int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  65{
  66	u32	result;
 
  67
  68	do {
  69		result = readl(ptr);
  70		if (result == ~(u32)0)		/* card removed */
  71			return -ENODEV;
  72		result &= mask;
  73		if (result == done)
  74			return 0;
  75		udelay(1);
  76		usec--;
  77	} while (usec > 0);
  78	return -ETIMEDOUT;
  79}
  80
  81/*
  82 * Disable interrupts and begin the xHCI halting process.
  83 */
  84void xhci_quiesce(struct xhci_hcd *xhci)
  85{
  86	u32 halted;
  87	u32 cmd;
  88	u32 mask;
  89
  90	mask = ~(XHCI_IRQS);
  91	halted = readl(&xhci->op_regs->status) & STS_HALT;
  92	if (!halted)
  93		mask &= ~CMD_RUN;
  94
  95	cmd = readl(&xhci->op_regs->command);
  96	cmd &= mask;
  97	writel(cmd, &xhci->op_regs->command);
  98}
  99
 100/*
 101 * Force HC into halt state.
 102 *
 103 * Disable any IRQs and clear the run/stop bit.
 104 * HC will complete any current and actively pipelined transactions, and
 105 * should halt within 16 ms of the run/stop bit being cleared.
 106 * Read HC Halted bit in the status register to see when the HC is finished.
 107 */
 108int xhci_halt(struct xhci_hcd *xhci)
 109{
 110	int ret;
 111	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 112	xhci_quiesce(xhci);
 113
 114	ret = xhci_handshake(&xhci->op_regs->status,
 115			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 116	if (ret) {
 117		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 118		return ret;
 119	}
 120	xhci->xhc_state |= XHCI_STATE_HALTED;
 121	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 122	return ret;
 123}
 124
 125/*
 126 * Set the run bit and wait for the host to be running.
 127 */
 128static int xhci_start(struct xhci_hcd *xhci)
 129{
 130	u32 temp;
 131	int ret;
 132
 133	temp = readl(&xhci->op_regs->command);
 134	temp |= (CMD_RUN);
 135	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 136			temp);
 137	writel(temp, &xhci->op_regs->command);
 138
 139	/*
 140	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 141	 * running.
 142	 */
 143	ret = xhci_handshake(&xhci->op_regs->status,
 144			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 145	if (ret == -ETIMEDOUT)
 146		xhci_err(xhci, "Host took too long to start, "
 147				"waited %u microseconds.\n",
 148				XHCI_MAX_HALT_USEC);
 149	if (!ret)
 150		/* clear state flags. Including dying, halted or removing */
 151		xhci->xhc_state = 0;
 152
 153	return ret;
 154}
 155
 156/*
 157 * Reset a halted HC.
 158 *
 159 * This resets pipelines, timers, counters, state machines, etc.
 160 * Transactions will be terminated immediately, and operational registers
 161 * will be set to their defaults.
 162 */
 163int xhci_reset(struct xhci_hcd *xhci)
 164{
 165	u32 command;
 166	u32 state;
 167	int ret, i;
 168
 169	state = readl(&xhci->op_regs->status);
 170
 171	if (state == ~(u32)0) {
 172		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 173		return -ENODEV;
 174	}
 175
 176	if ((state & STS_HALT) == 0) {
 177		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 178		return 0;
 179	}
 180
 181	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 182	command = readl(&xhci->op_regs->command);
 183	command |= CMD_RESET;
 184	writel(command, &xhci->op_regs->command);
 185
 186	/* Existing Intel xHCI controllers require a delay of 1 mS,
 187	 * after setting the CMD_RESET bit, and before accessing any
 188	 * HC registers. This allows the HC to complete the
 189	 * reset operation and be ready for HC register access.
 190	 * Without this delay, the subsequent HC register access,
 191	 * may result in a system hang very rarely.
 192	 */
 193	if (xhci->quirks & XHCI_INTEL_HOST)
 194		udelay(1000);
 195
 196	ret = xhci_handshake(&xhci->op_regs->command,
 197			CMD_RESET, 0, 10 * 1000 * 1000);
 198	if (ret)
 199		return ret;
 200
 
 
 
 201	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 202			 "Wait for controller to be ready for doorbell rings");
 203	/*
 204	 * xHCI cannot write to any doorbells or operational registers other
 205	 * than status until the "Controller Not Ready" flag is cleared.
 206	 */
 207	ret = xhci_handshake(&xhci->op_regs->status,
 208			STS_CNR, 0, 10 * 1000 * 1000);
 209
 210	for (i = 0; i < 2; ++i) {
 211		xhci->bus_state[i].port_c_suspend = 0;
 212		xhci->bus_state[i].suspended_ports = 0;
 213		xhci->bus_state[i].resuming_ports = 0;
 214	}
 
 215
 216	return ret;
 217}
 218
 219#ifdef CONFIG_PCI
 220static int xhci_free_msi(struct xhci_hcd *xhci)
 221{
 222	int i;
 
 
 223
 224	if (!xhci->msix_entries)
 225		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226
 227	for (i = 0; i < xhci->msix_count; i++)
 228		if (xhci->msix_entries[i].vector)
 229			free_irq(xhci->msix_entries[i].vector,
 230					xhci_to_hcd(xhci));
 231	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232}
 233
 
 234/*
 235 * Set up MSI
 236 */
 237static int xhci_setup_msi(struct xhci_hcd *xhci)
 238{
 239	int ret;
 
 
 
 240	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 241
 242	ret = pci_enable_msi(pdev);
 243	if (ret) {
 244		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 245				"failed to allocate MSI entry");
 246		return ret;
 247	}
 248
 249	ret = request_irq(pdev->irq, xhci_msi_irq,
 250				0, "xhci_hcd", xhci_to_hcd(xhci));
 251	if (ret) {
 252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 253				"disable MSI interrupt");
 254		pci_disable_msi(pdev);
 255	}
 256
 257	return ret;
 258}
 259
 260/*
 261 * Free IRQs
 262 * free all IRQs request
 263 */
 264static void xhci_free_irq(struct xhci_hcd *xhci)
 265{
 266	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 267	int ret;
 268
 269	/* return if using legacy interrupt */
 270	if (xhci_to_hcd(xhci)->irq > 0)
 271		return;
 272
 273	ret = xhci_free_msi(xhci);
 274	if (!ret)
 275		return;
 276	if (pdev->irq > 0)
 277		free_irq(pdev->irq, xhci_to_hcd(xhci));
 278
 279	return;
 280}
 281
 282/*
 283 * Set up MSI-X
 284 */
 285static int xhci_setup_msix(struct xhci_hcd *xhci)
 286{
 287	int i, ret = 0;
 288	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 289	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 290
 291	/*
 292	 * calculate number of msi-x vectors supported.
 293	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 294	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 295	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 296	 *   Add additional 1 vector to ensure always available interrupt.
 297	 */
 298	xhci->msix_count = min(num_online_cpus() + 1,
 299				HCS_MAX_INTRS(xhci->hcs_params1));
 300
 301	xhci->msix_entries =
 302		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 303				GFP_KERNEL);
 304	if (!xhci->msix_entries)
 305		return -ENOMEM;
 306
 307	for (i = 0; i < xhci->msix_count; i++) {
 308		xhci->msix_entries[i].entry = i;
 309		xhci->msix_entries[i].vector = 0;
 310	}
 311
 312	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
 313	if (ret) {
 314		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 315				"Failed to enable MSI-X");
 316		goto free_entries;
 317	}
 318
 319	for (i = 0; i < xhci->msix_count; i++) {
 320		ret = request_irq(xhci->msix_entries[i].vector,
 321				xhci_msi_irq,
 322				0, "xhci_hcd", xhci_to_hcd(xhci));
 323		if (ret)
 324			goto disable_msix;
 325	}
 326
 327	hcd->msix_enabled = 1;
 328	return ret;
 329
 330disable_msix:
 331	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 332	xhci_free_irq(xhci);
 333	pci_disable_msix(pdev);
 334free_entries:
 335	kfree(xhci->msix_entries);
 336	xhci->msix_entries = NULL;
 337	return ret;
 338}
 339
 340/* Free any IRQs and disable MSI-X */
 341static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 342{
 343	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 344	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 345
 346	if (xhci->quirks & XHCI_PLAT)
 347		return;
 348
 349	xhci_free_irq(xhci);
 
 
 
 
 
 350
 351	if (xhci->msix_entries) {
 352		pci_disable_msix(pdev);
 353		kfree(xhci->msix_entries);
 354		xhci->msix_entries = NULL;
 355	} else {
 356		pci_disable_msi(pdev);
 357	}
 358
 
 359	hcd->msix_enabled = 0;
 360	return;
 361}
 362
 363static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 364{
 365	int i;
 
 
 
 
 366
 367	if (xhci->msix_entries) {
 368		for (i = 0; i < xhci->msix_count; i++)
 369			synchronize_irq(xhci->msix_entries[i].vector);
 370	}
 371}
 372
 373static int xhci_try_enable_msi(struct usb_hcd *hcd)
 374{
 375	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 376	struct pci_dev  *pdev;
 377	int ret;
 378
 379	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 380	if (xhci->quirks & XHCI_PLAT)
 381		return 0;
 382
 383	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 384	/*
 385	 * Some Fresco Logic host controllers advertise MSI, but fail to
 386	 * generate interrupts.  Don't even try to enable MSI.
 387	 */
 388	if (xhci->quirks & XHCI_BROKEN_MSI)
 389		goto legacy_irq;
 390
 391	/* unregister the legacy interrupt */
 392	if (hcd->irq)
 393		free_irq(hcd->irq, hcd);
 394	hcd->irq = 0;
 395
 396	ret = xhci_setup_msix(xhci);
 397	if (ret)
 398		/* fall back to msi*/
 399		ret = xhci_setup_msi(xhci);
 400
 401	if (!ret)
 402		/* hcd->irq is 0, we have MSI */
 403		return 0;
 
 404
 405	if (!pdev->irq) {
 406		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 407		return -EINVAL;
 408	}
 409
 410 legacy_irq:
 411	if (!strlen(hcd->irq_descr))
 412		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 413			 hcd->driver->description, hcd->self.busnum);
 414
 415	/* fall back to legacy interrupt*/
 416	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 417			hcd->irq_descr, hcd);
 418	if (ret) {
 419		xhci_err(xhci, "request interrupt %d failed\n",
 420				pdev->irq);
 421		return ret;
 422	}
 423	hcd->irq = pdev->irq;
 424	return 0;
 425}
 426
 427#else
 428
 429static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 430{
 431	return 0;
 432}
 433
 434static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 435{
 436}
 437
 438static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 439{
 440}
 441
 442#endif
 443
 444static void compliance_mode_recovery(unsigned long arg)
 445{
 446	struct xhci_hcd *xhci;
 447	struct usb_hcd *hcd;
 
 448	u32 temp;
 449	int i;
 450
 451	xhci = (struct xhci_hcd *)arg;
 
 452
 453	for (i = 0; i < xhci->num_usb3_ports; i++) {
 454		temp = readl(xhci->usb3_ports[i]);
 455		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 456			/*
 457			 * Compliance Mode Detected. Letting USB Core
 458			 * handle the Warm Reset
 459			 */
 460			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 461					"Compliance mode detected->port %d",
 462					i + 1);
 463			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 464					"Attempting compliance mode recovery");
 465			hcd = xhci->shared_hcd;
 466
 467			if (hcd->state == HC_STATE_SUSPENDED)
 468				usb_hcd_resume_root_hub(hcd);
 469
 470			usb_hcd_poll_rh_status(hcd);
 471		}
 472	}
 473
 474	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 475		mod_timer(&xhci->comp_mode_recovery_timer,
 476			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 477}
 478
 479/*
 480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 481 * that causes ports behind that hardware to enter compliance mode sometimes.
 482 * The quirk creates a timer that polls every 2 seconds the link state of
 483 * each host controller's port and recovers it by issuing a Warm reset
 484 * if Compliance mode is detected, otherwise the port will become "dead" (no
 485 * device connections or disconnections will be detected anymore). Becasue no
 486 * status event is generated when entering compliance mode (per xhci spec),
 487 * this quirk is needed on systems that have the failing hardware installed.
 488 */
 489static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 490{
 491	xhci->port_status_u0 = 0;
 492	setup_timer(&xhci->comp_mode_recovery_timer,
 493		    compliance_mode_recovery, (unsigned long)xhci);
 494	xhci->comp_mode_recovery_timer.expires = jiffies +
 495			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 496
 497	add_timer(&xhci->comp_mode_recovery_timer);
 498	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 499			"Compliance mode recovery timer initialized");
 500}
 501
 502/*
 503 * This function identifies the systems that have installed the SN65LVPE502CP
 504 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 505 * Systems:
 506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 507 */
 508static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 509{
 510	const char *dmi_product_name, *dmi_sys_vendor;
 511
 512	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 513	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 514	if (!dmi_product_name || !dmi_sys_vendor)
 515		return false;
 516
 517	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 518		return false;
 519
 520	if (strstr(dmi_product_name, "Z420") ||
 521			strstr(dmi_product_name, "Z620") ||
 522			strstr(dmi_product_name, "Z820") ||
 523			strstr(dmi_product_name, "Z1 Workstation"))
 524		return true;
 525
 526	return false;
 527}
 528
 529static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 530{
 531	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 532}
 533
 534
 535/*
 536 * Initialize memory for HCD and xHC (one-time init).
 537 *
 538 * Program the PAGESIZE register, initialize the device context array, create
 539 * device contexts (?), set up a command ring segment (or two?), create event
 540 * ring (one for now).
 541 */
 542int xhci_init(struct usb_hcd *hcd)
 543{
 544	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 545	int retval = 0;
 546
 547	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 548	spin_lock_init(&xhci->lock);
 549	if (xhci->hci_version == 0x95 && link_quirk) {
 550		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 551				"QUIRK: Not clearing Link TRB chain bits.");
 552		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 553	} else {
 554		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 555				"xHCI doesn't need link TRB QUIRK");
 556	}
 557	retval = xhci_mem_init(xhci, GFP_KERNEL);
 558	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 559
 560	/* Initializing Compliance Mode Recovery Data If Needed */
 561	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 562		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 563		compliance_mode_recovery_timer_init(xhci);
 564	}
 565
 566	return retval;
 567}
 568
 569/*-------------------------------------------------------------------------*/
 570
 571
 572static int xhci_run_finished(struct xhci_hcd *xhci)
 573{
 574	if (xhci_start(xhci)) {
 575		xhci_halt(xhci);
 576		return -ENODEV;
 577	}
 578	xhci->shared_hcd->state = HC_STATE_RUNNING;
 579	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 580
 581	if (xhci->quirks & XHCI_NEC_HOST)
 582		xhci_ring_cmd_db(xhci);
 583
 584	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 585			"Finished xhci_run for USB3 roothub");
 586	return 0;
 587}
 588
 589/*
 590 * Start the HC after it was halted.
 591 *
 592 * This function is called by the USB core when the HC driver is added.
 593 * Its opposite is xhci_stop().
 594 *
 595 * xhci_init() must be called once before this function can be called.
 596 * Reset the HC, enable device slot contexts, program DCBAAP, and
 597 * set command ring pointer and event ring pointer.
 598 *
 599 * Setup MSI-X vectors and enable interrupts.
 600 */
 601int xhci_run(struct usb_hcd *hcd)
 602{
 603	u32 temp;
 604	u64 temp_64;
 605	int ret;
 606	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 607
 608	/* Start the xHCI host controller running only after the USB 2.0 roothub
 609	 * is setup.
 610	 */
 611
 612	hcd->uses_new_polling = 1;
 613	if (!usb_hcd_is_primary_hcd(hcd))
 614		return xhci_run_finished(xhci);
 615
 616	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 617
 618	ret = xhci_try_enable_msi(hcd);
 619	if (ret)
 620		return ret;
 621
 622	xhci_dbg(xhci, "Command ring memory map follows:\n");
 623	xhci_debug_ring(xhci, xhci->cmd_ring);
 624	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 625	xhci_dbg_cmd_ptrs(xhci);
 626
 627	xhci_dbg(xhci, "ERST memory map follows:\n");
 628	xhci_dbg_erst(xhci, &xhci->erst);
 629	xhci_dbg(xhci, "Event ring:\n");
 630	xhci_debug_ring(xhci, xhci->event_ring);
 631	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 632	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 633	temp_64 &= ~ERST_PTR_MASK;
 634	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 635			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 636
 637	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 638			"// Set the interrupt modulation register");
 639	temp = readl(&xhci->ir_set->irq_control);
 640	temp &= ~ER_IRQ_INTERVAL_MASK;
 641	/*
 642	 * the increment interval is 8 times as much as that defined
 643	 * in xHCI spec on MTK's controller
 644	 */
 645	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
 646	writel(temp, &xhci->ir_set->irq_control);
 647
 648	/* Set the HCD state before we enable the irqs */
 649	temp = readl(&xhci->op_regs->command);
 650	temp |= (CMD_EIE);
 651	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 652			"// Enable interrupts, cmd = 0x%x.", temp);
 653	writel(temp, &xhci->op_regs->command);
 654
 655	temp = readl(&xhci->ir_set->irq_pending);
 656	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 657			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 658			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 659	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 660	xhci_print_ir_set(xhci, 0);
 661
 662	if (xhci->quirks & XHCI_NEC_HOST) {
 663		struct xhci_command *command;
 664		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
 
 665		if (!command)
 666			return -ENOMEM;
 667		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 
 668				TRB_TYPE(TRB_NEC_GET_FW));
 
 
 669	}
 670	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 671			"Finished xhci_run for USB2 roothub");
 
 
 
 
 
 672	return 0;
 673}
 674EXPORT_SYMBOL_GPL(xhci_run);
 675
 676/*
 677 * Stop xHCI driver.
 678 *
 679 * This function is called by the USB core when the HC driver is removed.
 680 * Its opposite is xhci_run().
 681 *
 682 * Disable device contexts, disable IRQs, and quiesce the HC.
 683 * Reset the HC, finish any completed transactions, and cleanup memory.
 684 */
 685void xhci_stop(struct usb_hcd *hcd)
 686{
 687	u32 temp;
 688	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 689
 690	mutex_lock(&xhci->mutex);
 691
 692	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
 693		spin_lock_irq(&xhci->lock);
 694
 695		xhci->xhc_state |= XHCI_STATE_HALTED;
 696		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 697		xhci_halt(xhci);
 698		xhci_reset(xhci);
 699		spin_unlock_irq(&xhci->lock);
 700	}
 701
 702	if (!usb_hcd_is_primary_hcd(hcd)) {
 703		mutex_unlock(&xhci->mutex);
 704		return;
 705	}
 706
 
 
 
 
 
 
 
 
 
 707	xhci_cleanup_msix(xhci);
 708
 709	/* Deleting Compliance Mode Recovery Timer */
 710	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 711			(!(xhci_all_ports_seen_u0(xhci)))) {
 712		del_timer_sync(&xhci->comp_mode_recovery_timer);
 713		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 714				"%s: compliance mode recovery timer deleted",
 715				__func__);
 716	}
 717
 718	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 719		usb_amd_dev_put();
 720
 721	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 722			"// Disabling event ring interrupts");
 723	temp = readl(&xhci->op_regs->status);
 724	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 725	temp = readl(&xhci->ir_set->irq_pending);
 726	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 727	xhci_print_ir_set(xhci, 0);
 728
 729	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 730	xhci_mem_cleanup(xhci);
 
 731	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 732			"xhci_stop completed - status = %x",
 733			readl(&xhci->op_regs->status));
 734	mutex_unlock(&xhci->mutex);
 735}
 736
 737/*
 738 * Shutdown HC (not bus-specific)
 739 *
 740 * This is called when the machine is rebooting or halting.  We assume that the
 741 * machine will be powered off, and the HC's internal state will be reset.
 742 * Don't bother to free memory.
 743 *
 744 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 745 */
 746void xhci_shutdown(struct usb_hcd *hcd)
 747{
 748	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 749
 750	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 751		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 752
 753	spin_lock_irq(&xhci->lock);
 754	xhci_halt(xhci);
 755	/* Workaround for spurious wakeups at shutdown with HSW */
 756	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 757		xhci_reset(xhci);
 758	spin_unlock_irq(&xhci->lock);
 759
 760	xhci_cleanup_msix(xhci);
 761
 762	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 763			"xhci_shutdown completed - status = %x",
 764			readl(&xhci->op_regs->status));
 765
 766	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 767	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 768		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 769}
 770
 771#ifdef CONFIG_PM
 772static void xhci_save_registers(struct xhci_hcd *xhci)
 773{
 774	xhci->s3.command = readl(&xhci->op_regs->command);
 775	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 776	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 777	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 778	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 779	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 780	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 781	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 782	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 783}
 784
 785static void xhci_restore_registers(struct xhci_hcd *xhci)
 786{
 787	writel(xhci->s3.command, &xhci->op_regs->command);
 788	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 789	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 790	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 791	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 792	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 793	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 794	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 795	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 796}
 797
 798static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 799{
 800	u64	val_64;
 801
 802	/* step 2: initialize command ring buffer */
 803	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 804	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 805		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 806				      xhci->cmd_ring->dequeue) &
 807		 (u64) ~CMD_RING_RSVD_BITS) |
 808		xhci->cmd_ring->cycle_state;
 809	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 810			"// Setting command ring address to 0x%llx",
 811			(long unsigned long) val_64);
 812	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 813}
 814
 815/*
 816 * The whole command ring must be cleared to zero when we suspend the host.
 817 *
 818 * The host doesn't save the command ring pointer in the suspend well, so we
 819 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 820 * aligned, because of the reserved bits in the command ring dequeue pointer
 821 * register.  Therefore, we can't just set the dequeue pointer back in the
 822 * middle of the ring (TRBs are 16-byte aligned).
 823 */
 824static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 825{
 826	struct xhci_ring *ring;
 827	struct xhci_segment *seg;
 828
 829	ring = xhci->cmd_ring;
 830	seg = ring->deq_seg;
 831	do {
 832		memset(seg->trbs, 0,
 833			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 834		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 835			cpu_to_le32(~TRB_CYCLE);
 836		seg = seg->next;
 837	} while (seg != ring->deq_seg);
 838
 839	/* Reset the software enqueue and dequeue pointers */
 840	ring->deq_seg = ring->first_seg;
 841	ring->dequeue = ring->first_seg->trbs;
 842	ring->enq_seg = ring->deq_seg;
 843	ring->enqueue = ring->dequeue;
 844
 845	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 846	/*
 847	 * Ring is now zeroed, so the HW should look for change of ownership
 848	 * when the cycle bit is set to 1.
 849	 */
 850	ring->cycle_state = 1;
 851
 852	/*
 853	 * Reset the hardware dequeue pointer.
 854	 * Yes, this will need to be re-written after resume, but we're paranoid
 855	 * and want to make sure the hardware doesn't access bogus memory
 856	 * because, say, the BIOS or an SMI started the host without changing
 857	 * the command ring pointers.
 858	 */
 859	xhci_set_cmd_ring_deq(xhci);
 860}
 861
 862static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 863{
 
 864	int port_index;
 865	__le32 __iomem **port_array;
 866	unsigned long flags;
 867	u32 t1, t2;
 868
 869	spin_lock_irqsave(&xhci->lock, flags);
 870
 871	/* disble usb3 ports Wake bits*/
 872	port_index = xhci->num_usb3_ports;
 873	port_array = xhci->usb3_ports;
 874	while (port_index--) {
 875		t1 = readl(port_array[port_index]);
 
 876		t1 = xhci_port_state_to_neutral(t1);
 877		t2 = t1 & ~PORT_WAKE_BITS;
 878		if (t1 != t2)
 879			writel(t2, port_array[port_index]);
 
 
 
 
 880	}
 881
 882	/* disble usb2 ports Wake bits*/
 883	port_index = xhci->num_usb2_ports;
 884	port_array = xhci->usb2_ports;
 885	while (port_index--) {
 886		t1 = readl(port_array[port_index]);
 
 887		t1 = xhci_port_state_to_neutral(t1);
 888		t2 = t1 & ~PORT_WAKE_BITS;
 889		if (t1 != t2)
 890			writel(t2, port_array[port_index]);
 
 
 
 
 891	}
 892
 893	spin_unlock_irqrestore(&xhci->lock, flags);
 894}
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896/*
 897 * Stop HC (not bus-specific)
 898 *
 899 * This is called when the machine transition into S3/S4 mode.
 900 *
 901 */
 902int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 903{
 904	int			rc = 0;
 905	unsigned int		delay = XHCI_MAX_HALT_USEC;
 906	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 907	u32			command;
 
 908
 909	if (!hcd->state)
 910		return 0;
 911
 912	if (hcd->state != HC_STATE_SUSPENDED ||
 913			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 914		return -EINVAL;
 915
 
 
 916	/* Clear root port wake on bits if wakeup not allowed. */
 917	if (!do_wakeup)
 918		xhci_disable_port_wake_on_bits(xhci);
 919
 920	/* Don't poll the roothubs on bus suspend. */
 921	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 922	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 923	del_timer_sync(&hcd->rh_timer);
 924	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 925	del_timer_sync(&xhci->shared_hcd->rh_timer);
 926
 
 
 
 927	spin_lock_irq(&xhci->lock);
 928	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 929	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 930	/* step 1: stop endpoint */
 931	/* skipped assuming that port suspend has done */
 932
 933	/* step 2: clear Run/Stop bit */
 934	command = readl(&xhci->op_regs->command);
 935	command &= ~CMD_RUN;
 936	writel(command, &xhci->op_regs->command);
 937
 938	/* Some chips from Fresco Logic need an extraordinary delay */
 939	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 940
 941	if (xhci_handshake(&xhci->op_regs->status,
 942		      STS_HALT, STS_HALT, delay)) {
 943		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 944		spin_unlock_irq(&xhci->lock);
 945		return -ETIMEDOUT;
 946	}
 947	xhci_clear_command_ring(xhci);
 948
 949	/* step 3: save registers */
 950	xhci_save_registers(xhci);
 951
 952	/* step 4: set CSS flag */
 953	command = readl(&xhci->op_regs->command);
 954	command |= CMD_CSS;
 955	writel(command, &xhci->op_regs->command);
 
 956	if (xhci_handshake(&xhci->op_regs->status,
 957				STS_SAVE, 0, 10 * 1000)) {
 958		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 959		spin_unlock_irq(&xhci->lock);
 960		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961	}
 962	spin_unlock_irq(&xhci->lock);
 963
 964	/*
 965	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 966	 * is about to be suspended.
 967	 */
 968	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 969			(!(xhci_all_ports_seen_u0(xhci)))) {
 970		del_timer_sync(&xhci->comp_mode_recovery_timer);
 971		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 972				"%s: compliance mode recovery timer deleted",
 973				__func__);
 974	}
 975
 976	/* step 5: remove core well power */
 977	/* synchronize irq when using MSI-X */
 978	xhci_msix_sync_irqs(xhci);
 979
 980	return rc;
 981}
 982EXPORT_SYMBOL_GPL(xhci_suspend);
 983
 984/*
 985 * start xHC (not bus-specific)
 986 *
 987 * This is called when the machine transition from S3/S4 mode.
 988 *
 989 */
 990int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 991{
 992	u32			command, temp = 0, status;
 993	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 994	struct usb_hcd		*secondary_hcd;
 995	int			retval = 0;
 996	bool			comp_timer_running = false;
 997
 998	if (!hcd->state)
 999		return 0;
1000
1001	/* Wait a bit if either of the roothubs need to settle from the
1002	 * transition into bus suspend.
1003	 */
1004	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005			time_before(jiffies,
1006				xhci->bus_state[1].next_statechange))
1007		msleep(100);
1008
1009	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011
1012	spin_lock_irq(&xhci->lock);
1013	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014		hibernated = true;
1015
1016	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
1017		/* step 1: restore register */
1018		xhci_restore_registers(xhci);
1019		/* step 2: initialize command ring buffer */
1020		xhci_set_cmd_ring_deq(xhci);
1021		/* step 3: restore state and start state*/
1022		/* step 3: set CRS flag */
1023		command = readl(&xhci->op_regs->command);
1024		command |= CMD_CRS;
1025		writel(command, &xhci->op_regs->command);
 
 
 
 
 
1026		if (xhci_handshake(&xhci->op_regs->status,
1027			      STS_RESTORE, 0, 10 * 1000)) {
1028			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029			spin_unlock_irq(&xhci->lock);
1030			return -ETIMEDOUT;
1031		}
1032		temp = readl(&xhci->op_regs->status);
1033	}
1034
1035	/* If restore operation fails, re-initialize the HC during resume */
1036	if ((temp & STS_SRE) || hibernated) {
1037
1038		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039				!(xhci_all_ports_seen_u0(xhci))) {
1040			del_timer_sync(&xhci->comp_mode_recovery_timer);
1041			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042				"Compliance Mode Recovery Timer deleted!");
1043		}
1044
1045		/* Let the USB core know _both_ roothubs lost power. */
1046		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048
1049		xhci_dbg(xhci, "Stop HCD\n");
1050		xhci_halt(xhci);
 
1051		xhci_reset(xhci);
1052		spin_unlock_irq(&xhci->lock);
1053		xhci_cleanup_msix(xhci);
1054
1055		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056		temp = readl(&xhci->op_regs->status);
1057		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058		temp = readl(&xhci->ir_set->irq_pending);
1059		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060		xhci_print_ir_set(xhci, 0);
1061
1062		xhci_dbg(xhci, "cleaning up memory\n");
1063		xhci_mem_cleanup(xhci);
 
1064		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065			    readl(&xhci->op_regs->status));
1066
1067		/* USB core calls the PCI reinit and start functions twice:
1068		 * first with the primary HCD, and then with the secondary HCD.
1069		 * If we don't do the same, the host will never be started.
1070		 */
1071		if (!usb_hcd_is_primary_hcd(hcd))
1072			secondary_hcd = hcd;
1073		else
1074			secondary_hcd = xhci->shared_hcd;
1075
1076		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077		retval = xhci_init(hcd->primary_hcd);
1078		if (retval)
1079			return retval;
1080		comp_timer_running = true;
1081
1082		xhci_dbg(xhci, "Start the primary HCD\n");
1083		retval = xhci_run(hcd->primary_hcd);
1084		if (!retval) {
1085			xhci_dbg(xhci, "Start the secondary HCD\n");
1086			retval = xhci_run(secondary_hcd);
1087		}
1088		hcd->state = HC_STATE_SUSPENDED;
1089		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090		goto done;
1091	}
1092
1093	/* step 4: set Run/Stop bit */
1094	command = readl(&xhci->op_regs->command);
1095	command |= CMD_RUN;
1096	writel(command, &xhci->op_regs->command);
1097	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098		  0, 250 * 1000);
1099
1100	/* step 5: walk topology and initialize portsc,
1101	 * portpmsc and portli
1102	 */
1103	/* this is done in bus_resume */
1104
1105	/* step 6: restart each of the previously
1106	 * Running endpoints by ringing their doorbells
1107	 */
1108
1109	spin_unlock_irq(&xhci->lock);
1110
 
 
1111 done:
1112	if (retval == 0) {
1113		/* Resume root hubs only when have pending events. */
1114		status = readl(&xhci->op_regs->status);
1115		if (status & STS_EINT) {
1116			usb_hcd_resume_root_hub(xhci->shared_hcd);
1117			usb_hcd_resume_root_hub(hcd);
1118		}
1119	}
1120
1121	/*
1122	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123	 * be re-initialized Always after a system resume. Ports are subject
1124	 * to suffer the Compliance Mode issue again. It doesn't matter if
1125	 * ports have entered previously to U0 before system's suspension.
1126	 */
1127	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128		compliance_mode_recovery_timer_init(xhci);
1129
 
 
 
1130	/* Re-enable port polling. */
1131	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133	usb_hcd_poll_rh_status(xhci->shared_hcd);
1134	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135	usb_hcd_poll_rh_status(hcd);
1136
1137	return retval;
1138}
1139EXPORT_SYMBOL_GPL(xhci_resume);
1140#endif	/* CONFIG_PM */
1141
1142/*-------------------------------------------------------------------------*/
1143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144/**
1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147 * value to right shift 1 for the bitmask.
1148 *
1149 * Index  = (epnum * 2) + direction - 1,
1150 * where direction = 0 for OUT, 1 for IN.
1151 * For control endpoints, the IN index is used (OUT index is unused), so
1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153 */
1154unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155{
1156	unsigned int index;
1157	if (usb_endpoint_xfer_control(desc))
1158		index = (unsigned int) (usb_endpoint_num(desc)*2);
1159	else
1160		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162	return index;
1163}
1164
1165/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166 * address from the XHCI endpoint index.
1167 */
1168unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169{
1170	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172	return direction | number;
1173}
1174
1175/* Find the flag for this endpoint (for use in the control context).  Use the
1176 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177 * bit 1, etc.
1178 */
1179unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180{
1181	return 1 << (xhci_get_endpoint_index(desc) + 1);
1182}
1183
1184/* Find the flag for this endpoint (for use in the control context).  Use the
1185 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186 * bit 1, etc.
1187 */
1188unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189{
1190	return 1 << (ep_index + 1);
1191}
1192
1193/* Compute the last valid endpoint context index.  Basically, this is the
1194 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195 * we find the most significant bit set in the added contexts flags.
1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198 */
1199unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200{
1201	return fls(added_ctxs) - 1;
1202}
1203
1204/* Returns 1 if the arguments are OK;
1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206 */
1207static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209		const char *func) {
1210	struct xhci_hcd	*xhci;
1211	struct xhci_virt_device	*virt_dev;
1212
1213	if (!hcd || (check_ep && !ep) || !udev) {
1214		pr_debug("xHCI %s called with invalid args\n", func);
1215		return -EINVAL;
1216	}
1217	if (!udev->parent) {
1218		pr_debug("xHCI %s called for root hub\n", func);
1219		return 0;
1220	}
1221
1222	xhci = hcd_to_xhci(hcd);
1223	if (check_virt_dev) {
1224		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226					func);
1227			return -EINVAL;
1228		}
1229
1230		virt_dev = xhci->devs[udev->slot_id];
1231		if (virt_dev->udev != udev) {
1232			xhci_dbg(xhci, "xHCI %s called with udev and "
1233					  "virt_dev does not match\n", func);
1234			return -EINVAL;
1235		}
1236	}
1237
1238	if (xhci->xhc_state & XHCI_STATE_HALTED)
1239		return -ENODEV;
1240
1241	return 1;
1242}
1243
1244static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245		struct usb_device *udev, struct xhci_command *command,
1246		bool ctx_change, bool must_succeed);
1247
1248/*
1249 * Full speed devices may have a max packet size greater than 8 bytes, but the
1250 * USB core doesn't know that until it reads the first 8 bytes of the
1251 * descriptor.  If the usb_device's max packet size changes after that point,
1252 * we need to issue an evaluate context command and wait on it.
1253 */
1254static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255		unsigned int ep_index, struct urb *urb)
1256{
1257	struct xhci_container_ctx *out_ctx;
1258	struct xhci_input_control_ctx *ctrl_ctx;
1259	struct xhci_ep_ctx *ep_ctx;
1260	struct xhci_command *command;
1261	int max_packet_size;
1262	int hw_max_packet_size;
1263	int ret = 0;
1264
1265	out_ctx = xhci->devs[slot_id]->out_ctx;
1266	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269	if (hw_max_packet_size != max_packet_size) {
1270		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271				"Max Packet Size for ep 0 changed.");
1272		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273				"Max packet size in usb_device = %d",
1274				max_packet_size);
1275		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276				"Max packet size in xHCI HW = %d",
1277				hw_max_packet_size);
1278		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279				"Issuing evaluate context command.");
1280
1281		/* Set up the input context flags for the command */
1282		/* FIXME: This won't work if a non-default control endpoint
1283		 * changes max packet sizes.
1284		 */
1285
1286		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287		if (!command)
1288			return -ENOMEM;
1289
1290		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292		if (!ctrl_ctx) {
1293			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294					__func__);
1295			ret = -ENOMEM;
1296			goto command_cleanup;
1297		}
1298		/* Set up the modified control endpoint 0 */
1299		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300				xhci->devs[slot_id]->out_ctx, ep_index);
1301
1302		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305
1306		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307		ctrl_ctx->drop_flags = 0;
1308
1309		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313
1314		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315				true, false);
1316
1317		/* Clean up the input context for later use by bandwidth
1318		 * functions.
1319		 */
1320		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321command_cleanup:
1322		kfree(command->completion);
1323		kfree(command);
1324	}
1325	return ret;
1326}
1327
1328/*
1329 * non-error returns are a promise to giveback() the urb later
1330 * we drop ownership so next owner (or urb unlink) can get it
1331 */
1332int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333{
1334	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335	struct xhci_td *buffer;
1336	unsigned long flags;
1337	int ret = 0;
1338	unsigned int slot_id, ep_index;
 
1339	struct urb_priv	*urb_priv;
1340	int size, i;
1341
1342	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1343					true, true, __func__) <= 0)
1344		return -EINVAL;
1345
1346	slot_id = urb->dev->slot_id;
1347	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
 
1348
1349	if (!HCD_HW_ACCESSIBLE(hcd)) {
1350		if (!in_interrupt())
1351			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1352		ret = -ESHUTDOWN;
1353		goto exit;
 
 
 
1354	}
1355
1356	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1357		size = urb->number_of_packets;
1358	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1359	    urb->transfer_buffer_length > 0 &&
1360	    urb->transfer_flags & URB_ZERO_PACKET &&
1361	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1362		size = 2;
1363	else
1364		size = 1;
1365
1366	urb_priv = kzalloc(sizeof(struct urb_priv) +
1367				  size * sizeof(struct xhci_td *), mem_flags);
1368	if (!urb_priv)
1369		return -ENOMEM;
1370
1371	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1372	if (!buffer) {
1373		kfree(urb_priv);
1374		return -ENOMEM;
1375	}
1376
1377	for (i = 0; i < size; i++) {
1378		urb_priv->td[i] = buffer;
1379		buffer++;
1380	}
1381
1382	urb_priv->length = size;
1383	urb_priv->td_cnt = 0;
1384	urb->hcpriv = urb_priv;
1385
 
 
1386	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1387		/* Check to see if the max packet size for the default control
1388		 * endpoint changed during FS device enumeration
1389		 */
1390		if (urb->dev->speed == USB_SPEED_FULL) {
1391			ret = xhci_check_maxpacket(xhci, slot_id,
1392					ep_index, urb);
1393			if (ret < 0) {
1394				xhci_urb_free_priv(urb_priv);
1395				urb->hcpriv = NULL;
1396				return ret;
1397			}
1398		}
 
1399
1400		/* We have a spinlock and interrupts disabled, so we must pass
1401		 * atomic context to this function, which may allocate memory.
1402		 */
1403		spin_lock_irqsave(&xhci->lock, flags);
1404		if (xhci->xhc_state & XHCI_STATE_DYING)
1405			goto dying;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1407				slot_id, ep_index);
1408		if (ret)
1409			goto free_priv;
1410		spin_unlock_irqrestore(&xhci->lock, flags);
1411	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1412		spin_lock_irqsave(&xhci->lock, flags);
1413		if (xhci->xhc_state & XHCI_STATE_DYING)
1414			goto dying;
1415		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416				EP_GETTING_STREAMS) {
1417			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418					"is transitioning to using streams.\n");
1419			ret = -EINVAL;
1420		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1421				EP_GETTING_NO_STREAMS) {
1422			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1423					"is transitioning to "
1424					"not having streams.\n");
1425			ret = -EINVAL;
1426		} else {
1427			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1428					slot_id, ep_index);
1429		}
1430		if (ret)
1431			goto free_priv;
1432		spin_unlock_irqrestore(&xhci->lock, flags);
1433	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1434		spin_lock_irqsave(&xhci->lock, flags);
1435		if (xhci->xhc_state & XHCI_STATE_DYING)
1436			goto dying;
1437		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1438				slot_id, ep_index);
1439		if (ret)
1440			goto free_priv;
1441		spin_unlock_irqrestore(&xhci->lock, flags);
1442	} else {
1443		spin_lock_irqsave(&xhci->lock, flags);
1444		if (xhci->xhc_state & XHCI_STATE_DYING)
1445			goto dying;
1446		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1447				slot_id, ep_index);
1448		if (ret)
1449			goto free_priv;
1450		spin_unlock_irqrestore(&xhci->lock, flags);
1451	}
1452exit:
1453	return ret;
1454dying:
1455	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1456			"non-responsive xHCI host.\n",
1457			urb->ep->desc.bEndpointAddress, urb);
1458	ret = -ESHUTDOWN;
1459free_priv:
1460	xhci_urb_free_priv(urb_priv);
1461	urb->hcpriv = NULL;
 
1462	spin_unlock_irqrestore(&xhci->lock, flags);
1463	return ret;
1464}
1465
1466/*
1467 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1468 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1469 * should pick up where it left off in the TD, unless a Set Transfer Ring
1470 * Dequeue Pointer is issued.
1471 *
1472 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1473 * the ring.  Since the ring is a contiguous structure, they can't be physically
1474 * removed.  Instead, there are two options:
1475 *
1476 *  1) If the HC is in the middle of processing the URB to be canceled, we
1477 *     simply move the ring's dequeue pointer past those TRBs using the Set
1478 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1479 *     when drivers timeout on the last submitted URB and attempt to cancel.
1480 *
1481 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1482 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1483 *     HC will need to invalidate the any TRBs it has cached after the stop
1484 *     endpoint command, as noted in the xHCI 0.95 errata.
1485 *
1486 *  3) The TD may have completed by the time the Stop Endpoint Command
1487 *     completes, so software needs to handle that case too.
1488 *
1489 * This function should protect against the TD enqueueing code ringing the
1490 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1491 * It also needs to account for multiple cancellations on happening at the same
1492 * time for the same endpoint.
1493 *
1494 * Note that this function can be called in any context, or so says
1495 * usb_hcd_unlink_urb()
1496 */
1497int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1498{
1499	unsigned long flags;
1500	int ret, i;
1501	u32 temp;
1502	struct xhci_hcd *xhci;
1503	struct urb_priv	*urb_priv;
1504	struct xhci_td *td;
1505	unsigned int ep_index;
1506	struct xhci_ring *ep_ring;
1507	struct xhci_virt_ep *ep;
1508	struct xhci_command *command;
 
1509
1510	xhci = hcd_to_xhci(hcd);
1511	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1512	/* Make sure the URB hasn't completed or been unlinked already */
1513	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1514	if (ret || !urb->hcpriv)
1515		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516	temp = readl(&xhci->op_regs->status);
1517	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1519				"HW died, freeing TD.");
1520		urb_priv = urb->hcpriv;
1521		for (i = urb_priv->td_cnt;
1522		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1523		     i++) {
1524			td = urb_priv->td[i];
1525			if (!list_empty(&td->td_list))
1526				list_del_init(&td->td_list);
1527			if (!list_empty(&td->cancelled_td_list))
1528				list_del_init(&td->cancelled_td_list);
1529		}
1530
1531		usb_hcd_unlink_urb_from_ep(hcd, urb);
1532		spin_unlock_irqrestore(&xhci->lock, flags);
1533		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1534		xhci_urb_free_priv(urb_priv);
1535		return ret;
1536	}
1537
1538	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1539	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1540	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1541	if (!ep_ring) {
1542		ret = -EINVAL;
1543		goto done;
1544	}
1545
1546	urb_priv = urb->hcpriv;
1547	i = urb_priv->td_cnt;
1548	if (i < urb_priv->length)
1549		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550				"Cancel URB %p, dev %s, ep 0x%x, "
1551				"starting at offset 0x%llx",
1552				urb, urb->dev->devpath,
1553				urb->ep->desc.bEndpointAddress,
1554				(unsigned long long) xhci_trb_virt_to_dma(
1555					urb_priv->td[i]->start_seg,
1556					urb_priv->td[i]->first_trb));
1557
1558	for (; i < urb_priv->length; i++) {
1559		td = urb_priv->td[i];
1560		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1561	}
1562
1563	/* Queue a stop endpoint command, but only if this is
1564	 * the first cancellation to be handled.
1565	 */
1566	if (!(ep->ep_state & EP_HALT_PENDING)) {
1567		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1568		if (!command) {
1569			ret = -ENOMEM;
1570			goto done;
1571		}
1572		ep->ep_state |= EP_HALT_PENDING;
1573		ep->stop_cmds_pending++;
1574		ep->stop_cmd_timer.expires = jiffies +
1575			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1576		add_timer(&ep->stop_cmd_timer);
1577		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1578					 ep_index, 0);
1579		xhci_ring_cmd_db(xhci);
1580	}
1581done:
1582	spin_unlock_irqrestore(&xhci->lock, flags);
1583	return ret;
 
 
 
 
 
 
 
 
1584}
1585
1586/* Drop an endpoint from a new bandwidth configuration for this device.
1587 * Only one call to this function is allowed per endpoint before
1588 * check_bandwidth() or reset_bandwidth() must be called.
1589 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1590 * add the endpoint to the schedule with possibly new parameters denoted by a
1591 * different endpoint descriptor in usb_host_endpoint.
1592 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1593 * not allowed.
1594 *
1595 * The USB core will not allow URBs to be queued to an endpoint that is being
1596 * disabled, so there's no need for mutual exclusion to protect
1597 * the xhci->devs[slot_id] structure.
1598 */
1599int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1600		struct usb_host_endpoint *ep)
1601{
1602	struct xhci_hcd *xhci;
1603	struct xhci_container_ctx *in_ctx, *out_ctx;
1604	struct xhci_input_control_ctx *ctrl_ctx;
1605	unsigned int ep_index;
1606	struct xhci_ep_ctx *ep_ctx;
1607	u32 drop_flag;
1608	u32 new_add_flags, new_drop_flags;
1609	int ret;
1610
1611	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1612	if (ret <= 0)
1613		return ret;
1614	xhci = hcd_to_xhci(hcd);
1615	if (xhci->xhc_state & XHCI_STATE_DYING)
1616		return -ENODEV;
1617
1618	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1619	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1620	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1621		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1622				__func__, drop_flag);
1623		return 0;
1624	}
1625
1626	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1627	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1628	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1629	if (!ctrl_ctx) {
1630		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1631				__func__);
1632		return 0;
1633	}
1634
1635	ep_index = xhci_get_endpoint_index(&ep->desc);
1636	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1637	/* If the HC already knows the endpoint is disabled,
1638	 * or the HCD has noted it is disabled, ignore this request
1639	 */
1640	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1641	    le32_to_cpu(ctrl_ctx->drop_flags) &
1642	    xhci_get_endpoint_flag(&ep->desc)) {
1643		/* Do not warn when called after a usb_device_reset */
1644		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1645			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1646				  __func__, ep);
1647		return 0;
1648	}
1649
1650	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1651	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1652
1653	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1654	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1655
 
 
1656	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1657
1658	if (xhci->quirks & XHCI_MTK_HOST)
1659		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1660
1661	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1662			(unsigned int) ep->desc.bEndpointAddress,
1663			udev->slot_id,
1664			(unsigned int) new_drop_flags,
1665			(unsigned int) new_add_flags);
1666	return 0;
1667}
1668
1669/* Add an endpoint to a new possible bandwidth configuration for this device.
1670 * Only one call to this function is allowed per endpoint before
1671 * check_bandwidth() or reset_bandwidth() must be called.
1672 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1673 * add the endpoint to the schedule with possibly new parameters denoted by a
1674 * different endpoint descriptor in usb_host_endpoint.
1675 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1676 * not allowed.
1677 *
1678 * The USB core will not allow URBs to be queued to an endpoint until the
1679 * configuration or alt setting is installed in the device, so there's no need
1680 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1681 */
1682int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1683		struct usb_host_endpoint *ep)
1684{
1685	struct xhci_hcd *xhci;
1686	struct xhci_container_ctx *in_ctx;
1687	unsigned int ep_index;
1688	struct xhci_input_control_ctx *ctrl_ctx;
 
1689	u32 added_ctxs;
1690	u32 new_add_flags, new_drop_flags;
1691	struct xhci_virt_device *virt_dev;
1692	int ret = 0;
1693
1694	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1695	if (ret <= 0) {
1696		/* So we won't queue a reset ep command for a root hub */
1697		ep->hcpriv = NULL;
1698		return ret;
1699	}
1700	xhci = hcd_to_xhci(hcd);
1701	if (xhci->xhc_state & XHCI_STATE_DYING)
1702		return -ENODEV;
1703
1704	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1705	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1706		/* FIXME when we have to issue an evaluate endpoint command to
1707		 * deal with ep0 max packet size changing once we get the
1708		 * descriptors
1709		 */
1710		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1711				__func__, added_ctxs);
1712		return 0;
1713	}
1714
1715	virt_dev = xhci->devs[udev->slot_id];
1716	in_ctx = virt_dev->in_ctx;
1717	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1718	if (!ctrl_ctx) {
1719		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1720				__func__);
1721		return 0;
1722	}
1723
1724	ep_index = xhci_get_endpoint_index(&ep->desc);
1725	/* If this endpoint is already in use, and the upper layers are trying
1726	 * to add it again without dropping it, reject the addition.
1727	 */
1728	if (virt_dev->eps[ep_index].ring &&
1729			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1730		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1731				"without dropping it.\n",
1732				(unsigned int) ep->desc.bEndpointAddress);
1733		return -EINVAL;
1734	}
1735
1736	/* If the HCD has already noted the endpoint is enabled,
1737	 * ignore this request.
1738	 */
1739	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1740		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1741				__func__, ep);
1742		return 0;
1743	}
1744
1745	/*
1746	 * Configuration and alternate setting changes must be done in
1747	 * process context, not interrupt context (or so documenation
1748	 * for usb_set_interface() and usb_set_configuration() claim).
1749	 */
1750	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1751		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1752				__func__, ep->desc.bEndpointAddress);
1753		return -ENOMEM;
1754	}
1755
1756	if (xhci->quirks & XHCI_MTK_HOST) {
1757		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1758		if (ret < 0) {
1759			xhci_free_or_cache_endpoint_ring(xhci,
1760				virt_dev, ep_index);
1761			return ret;
1762		}
1763	}
1764
1765	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1766	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1767
1768	/* If xhci_endpoint_disable() was called for this endpoint, but the
1769	 * xHC hasn't been notified yet through the check_bandwidth() call,
1770	 * this re-adds a new state for the endpoint from the new endpoint
1771	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1772	 * drop flags alone.
1773	 */
1774	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1775
1776	/* Store the usb_device pointer for later use */
1777	ep->hcpriv = udev;
1778
 
 
 
 
 
1779	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1780			(unsigned int) ep->desc.bEndpointAddress,
1781			udev->slot_id,
1782			(unsigned int) new_drop_flags,
1783			(unsigned int) new_add_flags);
1784	return 0;
1785}
1786
1787static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1788{
1789	struct xhci_input_control_ctx *ctrl_ctx;
1790	struct xhci_ep_ctx *ep_ctx;
1791	struct xhci_slot_ctx *slot_ctx;
1792	int i;
1793
1794	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1795	if (!ctrl_ctx) {
1796		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1797				__func__);
1798		return;
1799	}
1800
1801	/* When a device's add flag and drop flag are zero, any subsequent
1802	 * configure endpoint command will leave that endpoint's state
1803	 * untouched.  Make sure we don't leave any old state in the input
1804	 * endpoint contexts.
1805	 */
1806	ctrl_ctx->drop_flags = 0;
1807	ctrl_ctx->add_flags = 0;
1808	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1809	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1810	/* Endpoint 0 is always valid */
1811	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1812	for (i = 1; i < 31; ++i) {
1813		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1814		ep_ctx->ep_info = 0;
1815		ep_ctx->ep_info2 = 0;
1816		ep_ctx->deq = 0;
1817		ep_ctx->tx_info = 0;
1818	}
1819}
1820
1821static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1822		struct usb_device *udev, u32 *cmd_status)
1823{
1824	int ret;
1825
1826	switch (*cmd_status) {
1827	case COMP_CMD_ABORT:
1828	case COMP_CMD_STOP:
1829		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1830		ret = -ETIME;
1831		break;
1832	case COMP_ENOMEM:
1833		dev_warn(&udev->dev,
1834			 "Not enough host controller resources for new device state.\n");
1835		ret = -ENOMEM;
1836		/* FIXME: can we allocate more resources for the HC? */
1837		break;
1838	case COMP_BW_ERR:
1839	case COMP_2ND_BW_ERR:
1840		dev_warn(&udev->dev,
1841			 "Not enough bandwidth for new device state.\n");
1842		ret = -ENOSPC;
1843		/* FIXME: can we go back to the old state? */
1844		break;
1845	case COMP_TRB_ERR:
1846		/* the HCD set up something wrong */
1847		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1848				"add flag = 1, "
1849				"and endpoint is not disabled.\n");
1850		ret = -EINVAL;
1851		break;
1852	case COMP_DEV_ERR:
1853		dev_warn(&udev->dev,
1854			 "ERROR: Incompatible device for endpoint configure command.\n");
1855		ret = -ENODEV;
1856		break;
1857	case COMP_SUCCESS:
1858		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1859				"Successful Endpoint Configure command");
1860		ret = 0;
1861		break;
1862	default:
1863		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1864				*cmd_status);
1865		ret = -EINVAL;
1866		break;
1867	}
1868	return ret;
1869}
1870
1871static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1872		struct usb_device *udev, u32 *cmd_status)
1873{
1874	int ret;
1875	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1876
1877	switch (*cmd_status) {
1878	case COMP_CMD_ABORT:
1879	case COMP_CMD_STOP:
1880		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1881		ret = -ETIME;
1882		break;
1883	case COMP_EINVAL:
1884		dev_warn(&udev->dev,
1885			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1886		ret = -EINVAL;
1887		break;
1888	case COMP_EBADSLT:
1889		dev_warn(&udev->dev,
1890			"WARN: slot not enabled for evaluate context command.\n");
1891		ret = -EINVAL;
1892		break;
1893	case COMP_CTX_STATE:
1894		dev_warn(&udev->dev,
1895			"WARN: invalid context state for evaluate context command.\n");
1896		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1897		ret = -EINVAL;
1898		break;
1899	case COMP_DEV_ERR:
1900		dev_warn(&udev->dev,
1901			"ERROR: Incompatible device for evaluate context command.\n");
1902		ret = -ENODEV;
1903		break;
1904	case COMP_MEL_ERR:
1905		/* Max Exit Latency too large error */
1906		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1907		ret = -EINVAL;
1908		break;
1909	case COMP_SUCCESS:
1910		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1911				"Successful evaluate context command");
1912		ret = 0;
1913		break;
1914	default:
1915		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1916			*cmd_status);
1917		ret = -EINVAL;
1918		break;
1919	}
1920	return ret;
1921}
1922
1923static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1924		struct xhci_input_control_ctx *ctrl_ctx)
1925{
1926	u32 valid_add_flags;
1927	u32 valid_drop_flags;
1928
1929	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1930	 * (bit 1).  The default control endpoint is added during the Address
1931	 * Device command and is never removed until the slot is disabled.
1932	 */
1933	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1934	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1935
1936	/* Use hweight32 to count the number of ones in the add flags, or
1937	 * number of endpoints added.  Don't count endpoints that are changed
1938	 * (both added and dropped).
1939	 */
1940	return hweight32(valid_add_flags) -
1941		hweight32(valid_add_flags & valid_drop_flags);
1942}
1943
1944static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1945		struct xhci_input_control_ctx *ctrl_ctx)
1946{
1947	u32 valid_add_flags;
1948	u32 valid_drop_flags;
1949
1950	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1951	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1952
1953	return hweight32(valid_drop_flags) -
1954		hweight32(valid_add_flags & valid_drop_flags);
1955}
1956
1957/*
1958 * We need to reserve the new number of endpoints before the configure endpoint
1959 * command completes.  We can't subtract the dropped endpoints from the number
1960 * of active endpoints until the command completes because we can oversubscribe
1961 * the host in this case:
1962 *
1963 *  - the first configure endpoint command drops more endpoints than it adds
1964 *  - a second configure endpoint command that adds more endpoints is queued
1965 *  - the first configure endpoint command fails, so the config is unchanged
1966 *  - the second command may succeed, even though there isn't enough resources
1967 *
1968 * Must be called with xhci->lock held.
1969 */
1970static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1971		struct xhci_input_control_ctx *ctrl_ctx)
1972{
1973	u32 added_eps;
1974
1975	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1977		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978				"Not enough ep ctxs: "
1979				"%u active, need to add %u, limit is %u.",
1980				xhci->num_active_eps, added_eps,
1981				xhci->limit_active_eps);
1982		return -ENOMEM;
1983	}
1984	xhci->num_active_eps += added_eps;
1985	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1986			"Adding %u ep ctxs, %u now active.", added_eps,
1987			xhci->num_active_eps);
1988	return 0;
1989}
1990
1991/*
1992 * The configure endpoint was failed by the xHC for some other reason, so we
1993 * need to revert the resources that failed configuration would have used.
1994 *
1995 * Must be called with xhci->lock held.
1996 */
1997static void xhci_free_host_resources(struct xhci_hcd *xhci,
1998		struct xhci_input_control_ctx *ctrl_ctx)
1999{
2000	u32 num_failed_eps;
2001
2002	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2003	xhci->num_active_eps -= num_failed_eps;
2004	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005			"Removing %u failed ep ctxs, %u now active.",
2006			num_failed_eps,
2007			xhci->num_active_eps);
2008}
2009
2010/*
2011 * Now that the command has completed, clean up the active endpoint count by
2012 * subtracting out the endpoints that were dropped (but not changed).
2013 *
2014 * Must be called with xhci->lock held.
2015 */
2016static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2017		struct xhci_input_control_ctx *ctrl_ctx)
2018{
2019	u32 num_dropped_eps;
2020
2021	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2022	xhci->num_active_eps -= num_dropped_eps;
2023	if (num_dropped_eps)
2024		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2025				"Removing %u dropped ep ctxs, %u now active.",
2026				num_dropped_eps,
2027				xhci->num_active_eps);
2028}
2029
2030static unsigned int xhci_get_block_size(struct usb_device *udev)
2031{
2032	switch (udev->speed) {
2033	case USB_SPEED_LOW:
2034	case USB_SPEED_FULL:
2035		return FS_BLOCK;
2036	case USB_SPEED_HIGH:
2037		return HS_BLOCK;
2038	case USB_SPEED_SUPER:
2039	case USB_SPEED_SUPER_PLUS:
2040		return SS_BLOCK;
2041	case USB_SPEED_UNKNOWN:
2042	case USB_SPEED_WIRELESS:
2043	default:
2044		/* Should never happen */
2045		return 1;
2046	}
2047}
2048
2049static unsigned int
2050xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2051{
2052	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2053		return LS_OVERHEAD;
2054	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2055		return FS_OVERHEAD;
2056	return HS_OVERHEAD;
2057}
2058
2059/* If we are changing a LS/FS device under a HS hub,
2060 * make sure (if we are activating a new TT) that the HS bus has enough
2061 * bandwidth for this new TT.
2062 */
2063static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2064		struct xhci_virt_device *virt_dev,
2065		int old_active_eps)
2066{
2067	struct xhci_interval_bw_table *bw_table;
2068	struct xhci_tt_bw_info *tt_info;
2069
2070	/* Find the bandwidth table for the root port this TT is attached to. */
2071	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2072	tt_info = virt_dev->tt_info;
2073	/* If this TT already had active endpoints, the bandwidth for this TT
2074	 * has already been added.  Removing all periodic endpoints (and thus
2075	 * making the TT enactive) will only decrease the bandwidth used.
2076	 */
2077	if (old_active_eps)
2078		return 0;
2079	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2080		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2081			return -ENOMEM;
2082		return 0;
2083	}
2084	/* Not sure why we would have no new active endpoints...
2085	 *
2086	 * Maybe because of an Evaluate Context change for a hub update or a
2087	 * control endpoint 0 max packet size change?
2088	 * FIXME: skip the bandwidth calculation in that case.
2089	 */
2090	return 0;
2091}
2092
2093static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2094		struct xhci_virt_device *virt_dev)
2095{
2096	unsigned int bw_reserved;
2097
2098	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2099	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2100		return -ENOMEM;
2101
2102	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2103	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2104		return -ENOMEM;
2105
2106	return 0;
2107}
2108
2109/*
2110 * This algorithm is a very conservative estimate of the worst-case scheduling
2111 * scenario for any one interval.  The hardware dynamically schedules the
2112 * packets, so we can't tell which microframe could be the limiting factor in
2113 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2114 *
2115 * Obviously, we can't solve an NP complete problem to find the minimum worst
2116 * case scenario.  Instead, we come up with an estimate that is no less than
2117 * the worst case bandwidth used for any one microframe, but may be an
2118 * over-estimate.
2119 *
2120 * We walk the requirements for each endpoint by interval, starting with the
2121 * smallest interval, and place packets in the schedule where there is only one
2122 * possible way to schedule packets for that interval.  In order to simplify
2123 * this algorithm, we record the largest max packet size for each interval, and
2124 * assume all packets will be that size.
2125 *
2126 * For interval 0, we obviously must schedule all packets for each interval.
2127 * The bandwidth for interval 0 is just the amount of data to be transmitted
2128 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2129 * the number of packets).
2130 *
2131 * For interval 1, we have two possible microframes to schedule those packets
2132 * in.  For this algorithm, if we can schedule the same number of packets for
2133 * each possible scheduling opportunity (each microframe), we will do so.  The
2134 * remaining number of packets will be saved to be transmitted in the gaps in
2135 * the next interval's scheduling sequence.
2136 *
2137 * As we move those remaining packets to be scheduled with interval 2 packets,
2138 * we have to double the number of remaining packets to transmit.  This is
2139 * because the intervals are actually powers of 2, and we would be transmitting
2140 * the previous interval's packets twice in this interval.  We also have to be
2141 * sure that when we look at the largest max packet size for this interval, we
2142 * also look at the largest max packet size for the remaining packets and take
2143 * the greater of the two.
2144 *
2145 * The algorithm continues to evenly distribute packets in each scheduling
2146 * opportunity, and push the remaining packets out, until we get to the last
2147 * interval.  Then those packets and their associated overhead are just added
2148 * to the bandwidth used.
2149 */
2150static int xhci_check_bw_table(struct xhci_hcd *xhci,
2151		struct xhci_virt_device *virt_dev,
2152		int old_active_eps)
2153{
2154	unsigned int bw_reserved;
2155	unsigned int max_bandwidth;
2156	unsigned int bw_used;
2157	unsigned int block_size;
2158	struct xhci_interval_bw_table *bw_table;
2159	unsigned int packet_size = 0;
2160	unsigned int overhead = 0;
2161	unsigned int packets_transmitted = 0;
2162	unsigned int packets_remaining = 0;
2163	unsigned int i;
2164
2165	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2166		return xhci_check_ss_bw(xhci, virt_dev);
2167
2168	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2169		max_bandwidth = HS_BW_LIMIT;
2170		/* Convert percent of bus BW reserved to blocks reserved */
2171		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2172	} else {
2173		max_bandwidth = FS_BW_LIMIT;
2174		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2175	}
2176
2177	bw_table = virt_dev->bw_table;
2178	/* We need to translate the max packet size and max ESIT payloads into
2179	 * the units the hardware uses.
2180	 */
2181	block_size = xhci_get_block_size(virt_dev->udev);
2182
2183	/* If we are manipulating a LS/FS device under a HS hub, double check
2184	 * that the HS bus has enough bandwidth if we are activing a new TT.
2185	 */
2186	if (virt_dev->tt_info) {
2187		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2188				"Recalculating BW for rootport %u",
2189				virt_dev->real_port);
2190		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2191			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2192					"newly activated TT.\n");
2193			return -ENOMEM;
2194		}
2195		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2196				"Recalculating BW for TT slot %u port %u",
2197				virt_dev->tt_info->slot_id,
2198				virt_dev->tt_info->ttport);
2199	} else {
2200		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201				"Recalculating BW for rootport %u",
2202				virt_dev->real_port);
2203	}
2204
2205	/* Add in how much bandwidth will be used for interval zero, or the
2206	 * rounded max ESIT payload + number of packets * largest overhead.
2207	 */
2208	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2209		bw_table->interval_bw[0].num_packets *
2210		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2211
2212	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2213		unsigned int bw_added;
2214		unsigned int largest_mps;
2215		unsigned int interval_overhead;
2216
2217		/*
2218		 * How many packets could we transmit in this interval?
2219		 * If packets didn't fit in the previous interval, we will need
2220		 * to transmit that many packets twice within this interval.
2221		 */
2222		packets_remaining = 2 * packets_remaining +
2223			bw_table->interval_bw[i].num_packets;
2224
2225		/* Find the largest max packet size of this or the previous
2226		 * interval.
2227		 */
2228		if (list_empty(&bw_table->interval_bw[i].endpoints))
2229			largest_mps = 0;
2230		else {
2231			struct xhci_virt_ep *virt_ep;
2232			struct list_head *ep_entry;
2233
2234			ep_entry = bw_table->interval_bw[i].endpoints.next;
2235			virt_ep = list_entry(ep_entry,
2236					struct xhci_virt_ep, bw_endpoint_list);
2237			/* Convert to blocks, rounding up */
2238			largest_mps = DIV_ROUND_UP(
2239					virt_ep->bw_info.max_packet_size,
2240					block_size);
2241		}
2242		if (largest_mps > packet_size)
2243			packet_size = largest_mps;
2244
2245		/* Use the larger overhead of this or the previous interval. */
2246		interval_overhead = xhci_get_largest_overhead(
2247				&bw_table->interval_bw[i]);
2248		if (interval_overhead > overhead)
2249			overhead = interval_overhead;
2250
2251		/* How many packets can we evenly distribute across
2252		 * (1 << (i + 1)) possible scheduling opportunities?
2253		 */
2254		packets_transmitted = packets_remaining >> (i + 1);
2255
2256		/* Add in the bandwidth used for those scheduled packets */
2257		bw_added = packets_transmitted * (overhead + packet_size);
2258
2259		/* How many packets do we have remaining to transmit? */
2260		packets_remaining = packets_remaining % (1 << (i + 1));
2261
2262		/* What largest max packet size should those packets have? */
2263		/* If we've transmitted all packets, don't carry over the
2264		 * largest packet size.
2265		 */
2266		if (packets_remaining == 0) {
2267			packet_size = 0;
2268			overhead = 0;
2269		} else if (packets_transmitted > 0) {
2270			/* Otherwise if we do have remaining packets, and we've
2271			 * scheduled some packets in this interval, take the
2272			 * largest max packet size from endpoints with this
2273			 * interval.
2274			 */
2275			packet_size = largest_mps;
2276			overhead = interval_overhead;
2277		}
2278		/* Otherwise carry over packet_size and overhead from the last
2279		 * time we had a remainder.
2280		 */
2281		bw_used += bw_added;
2282		if (bw_used > max_bandwidth) {
2283			xhci_warn(xhci, "Not enough bandwidth. "
2284					"Proposed: %u, Max: %u\n",
2285				bw_used, max_bandwidth);
2286			return -ENOMEM;
2287		}
2288	}
2289	/*
2290	 * Ok, we know we have some packets left over after even-handedly
2291	 * scheduling interval 15.  We don't know which microframes they will
2292	 * fit into, so we over-schedule and say they will be scheduled every
2293	 * microframe.
2294	 */
2295	if (packets_remaining > 0)
2296		bw_used += overhead + packet_size;
2297
2298	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2299		unsigned int port_index = virt_dev->real_port - 1;
2300
2301		/* OK, we're manipulating a HS device attached to a
2302		 * root port bandwidth domain.  Include the number of active TTs
2303		 * in the bandwidth used.
2304		 */
2305		bw_used += TT_HS_OVERHEAD *
2306			xhci->rh_bw[port_index].num_active_tts;
2307	}
2308
2309	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2310		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2311		"Available: %u " "percent",
2312		bw_used, max_bandwidth, bw_reserved,
2313		(max_bandwidth - bw_used - bw_reserved) * 100 /
2314		max_bandwidth);
2315
2316	bw_used += bw_reserved;
2317	if (bw_used > max_bandwidth) {
2318		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2319				bw_used, max_bandwidth);
2320		return -ENOMEM;
2321	}
2322
2323	bw_table->bw_used = bw_used;
2324	return 0;
2325}
2326
2327static bool xhci_is_async_ep(unsigned int ep_type)
2328{
2329	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2330					ep_type != ISOC_IN_EP &&
2331					ep_type != INT_IN_EP);
2332}
2333
2334static bool xhci_is_sync_in_ep(unsigned int ep_type)
2335{
2336	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2337}
2338
2339static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2340{
2341	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2342
2343	if (ep_bw->ep_interval == 0)
2344		return SS_OVERHEAD_BURST +
2345			(ep_bw->mult * ep_bw->num_packets *
2346					(SS_OVERHEAD + mps));
2347	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2348				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2349				1 << ep_bw->ep_interval);
2350
2351}
2352
2353void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2354		struct xhci_bw_info *ep_bw,
2355		struct xhci_interval_bw_table *bw_table,
2356		struct usb_device *udev,
2357		struct xhci_virt_ep *virt_ep,
2358		struct xhci_tt_bw_info *tt_info)
2359{
2360	struct xhci_interval_bw	*interval_bw;
2361	int normalized_interval;
2362
2363	if (xhci_is_async_ep(ep_bw->type))
2364		return;
2365
2366	if (udev->speed >= USB_SPEED_SUPER) {
2367		if (xhci_is_sync_in_ep(ep_bw->type))
2368			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2369				xhci_get_ss_bw_consumed(ep_bw);
2370		else
2371			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2372				xhci_get_ss_bw_consumed(ep_bw);
2373		return;
2374	}
2375
2376	/* SuperSpeed endpoints never get added to intervals in the table, so
2377	 * this check is only valid for HS/FS/LS devices.
2378	 */
2379	if (list_empty(&virt_ep->bw_endpoint_list))
2380		return;
2381	/* For LS/FS devices, we need to translate the interval expressed in
2382	 * microframes to frames.
2383	 */
2384	if (udev->speed == USB_SPEED_HIGH)
2385		normalized_interval = ep_bw->ep_interval;
2386	else
2387		normalized_interval = ep_bw->ep_interval - 3;
2388
2389	if (normalized_interval == 0)
2390		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2391	interval_bw = &bw_table->interval_bw[normalized_interval];
2392	interval_bw->num_packets -= ep_bw->num_packets;
2393	switch (udev->speed) {
2394	case USB_SPEED_LOW:
2395		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2396		break;
2397	case USB_SPEED_FULL:
2398		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2399		break;
2400	case USB_SPEED_HIGH:
2401		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2402		break;
2403	case USB_SPEED_SUPER:
2404	case USB_SPEED_SUPER_PLUS:
2405	case USB_SPEED_UNKNOWN:
2406	case USB_SPEED_WIRELESS:
2407		/* Should never happen because only LS/FS/HS endpoints will get
2408		 * added to the endpoint list.
2409		 */
2410		return;
2411	}
2412	if (tt_info)
2413		tt_info->active_eps -= 1;
2414	list_del_init(&virt_ep->bw_endpoint_list);
2415}
2416
2417static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2418		struct xhci_bw_info *ep_bw,
2419		struct xhci_interval_bw_table *bw_table,
2420		struct usb_device *udev,
2421		struct xhci_virt_ep *virt_ep,
2422		struct xhci_tt_bw_info *tt_info)
2423{
2424	struct xhci_interval_bw	*interval_bw;
2425	struct xhci_virt_ep *smaller_ep;
2426	int normalized_interval;
2427
2428	if (xhci_is_async_ep(ep_bw->type))
2429		return;
2430
2431	if (udev->speed == USB_SPEED_SUPER) {
2432		if (xhci_is_sync_in_ep(ep_bw->type))
2433			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2434				xhci_get_ss_bw_consumed(ep_bw);
2435		else
2436			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2437				xhci_get_ss_bw_consumed(ep_bw);
2438		return;
2439	}
2440
2441	/* For LS/FS devices, we need to translate the interval expressed in
2442	 * microframes to frames.
2443	 */
2444	if (udev->speed == USB_SPEED_HIGH)
2445		normalized_interval = ep_bw->ep_interval;
2446	else
2447		normalized_interval = ep_bw->ep_interval - 3;
2448
2449	if (normalized_interval == 0)
2450		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2451	interval_bw = &bw_table->interval_bw[normalized_interval];
2452	interval_bw->num_packets += ep_bw->num_packets;
2453	switch (udev->speed) {
2454	case USB_SPEED_LOW:
2455		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2456		break;
2457	case USB_SPEED_FULL:
2458		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2459		break;
2460	case USB_SPEED_HIGH:
2461		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2462		break;
2463	case USB_SPEED_SUPER:
2464	case USB_SPEED_SUPER_PLUS:
2465	case USB_SPEED_UNKNOWN:
2466	case USB_SPEED_WIRELESS:
2467		/* Should never happen because only LS/FS/HS endpoints will get
2468		 * added to the endpoint list.
2469		 */
2470		return;
2471	}
2472
2473	if (tt_info)
2474		tt_info->active_eps += 1;
2475	/* Insert the endpoint into the list, largest max packet size first. */
2476	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2477			bw_endpoint_list) {
2478		if (ep_bw->max_packet_size >=
2479				smaller_ep->bw_info.max_packet_size) {
2480			/* Add the new ep before the smaller endpoint */
2481			list_add_tail(&virt_ep->bw_endpoint_list,
2482					&smaller_ep->bw_endpoint_list);
2483			return;
2484		}
2485	}
2486	/* Add the new endpoint at the end of the list. */
2487	list_add_tail(&virt_ep->bw_endpoint_list,
2488			&interval_bw->endpoints);
2489}
2490
2491void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2492		struct xhci_virt_device *virt_dev,
2493		int old_active_eps)
2494{
2495	struct xhci_root_port_bw_info *rh_bw_info;
2496	if (!virt_dev->tt_info)
2497		return;
2498
2499	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2500	if (old_active_eps == 0 &&
2501				virt_dev->tt_info->active_eps != 0) {
2502		rh_bw_info->num_active_tts += 1;
2503		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2504	} else if (old_active_eps != 0 &&
2505				virt_dev->tt_info->active_eps == 0) {
2506		rh_bw_info->num_active_tts -= 1;
2507		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2508	}
2509}
2510
2511static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2512		struct xhci_virt_device *virt_dev,
2513		struct xhci_container_ctx *in_ctx)
2514{
2515	struct xhci_bw_info ep_bw_info[31];
2516	int i;
2517	struct xhci_input_control_ctx *ctrl_ctx;
2518	int old_active_eps = 0;
2519
2520	if (virt_dev->tt_info)
2521		old_active_eps = virt_dev->tt_info->active_eps;
2522
2523	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2524	if (!ctrl_ctx) {
2525		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2526				__func__);
2527		return -ENOMEM;
2528	}
2529
2530	for (i = 0; i < 31; i++) {
2531		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2532			continue;
2533
2534		/* Make a copy of the BW info in case we need to revert this */
2535		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2536				sizeof(ep_bw_info[i]));
2537		/* Drop the endpoint from the interval table if the endpoint is
2538		 * being dropped or changed.
2539		 */
2540		if (EP_IS_DROPPED(ctrl_ctx, i))
2541			xhci_drop_ep_from_interval_table(xhci,
2542					&virt_dev->eps[i].bw_info,
2543					virt_dev->bw_table,
2544					virt_dev->udev,
2545					&virt_dev->eps[i],
2546					virt_dev->tt_info);
2547	}
2548	/* Overwrite the information stored in the endpoints' bw_info */
2549	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2550	for (i = 0; i < 31; i++) {
2551		/* Add any changed or added endpoints to the interval table */
2552		if (EP_IS_ADDED(ctrl_ctx, i))
2553			xhci_add_ep_to_interval_table(xhci,
2554					&virt_dev->eps[i].bw_info,
2555					virt_dev->bw_table,
2556					virt_dev->udev,
2557					&virt_dev->eps[i],
2558					virt_dev->tt_info);
2559	}
2560
2561	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2562		/* Ok, this fits in the bandwidth we have.
2563		 * Update the number of active TTs.
2564		 */
2565		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2566		return 0;
2567	}
2568
2569	/* We don't have enough bandwidth for this, revert the stored info. */
2570	for (i = 0; i < 31; i++) {
2571		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2572			continue;
2573
2574		/* Drop the new copies of any added or changed endpoints from
2575		 * the interval table.
2576		 */
2577		if (EP_IS_ADDED(ctrl_ctx, i)) {
2578			xhci_drop_ep_from_interval_table(xhci,
2579					&virt_dev->eps[i].bw_info,
2580					virt_dev->bw_table,
2581					virt_dev->udev,
2582					&virt_dev->eps[i],
2583					virt_dev->tt_info);
2584		}
2585		/* Revert the endpoint back to its old information */
2586		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2587				sizeof(ep_bw_info[i]));
2588		/* Add any changed or dropped endpoints back into the table */
2589		if (EP_IS_DROPPED(ctrl_ctx, i))
2590			xhci_add_ep_to_interval_table(xhci,
2591					&virt_dev->eps[i].bw_info,
2592					virt_dev->bw_table,
2593					virt_dev->udev,
2594					&virt_dev->eps[i],
2595					virt_dev->tt_info);
2596	}
2597	return -ENOMEM;
2598}
2599
2600
2601/* Issue a configure endpoint command or evaluate context command
2602 * and wait for it to finish.
2603 */
2604static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2605		struct usb_device *udev,
2606		struct xhci_command *command,
2607		bool ctx_change, bool must_succeed)
2608{
2609	int ret;
2610	unsigned long flags;
2611	struct xhci_input_control_ctx *ctrl_ctx;
2612	struct xhci_virt_device *virt_dev;
 
2613
2614	if (!command)
2615		return -EINVAL;
2616
2617	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
2618	virt_dev = xhci->devs[udev->slot_id];
2619
2620	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2621	if (!ctrl_ctx) {
2622		spin_unlock_irqrestore(&xhci->lock, flags);
2623		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2624				__func__);
2625		return -ENOMEM;
2626	}
2627
2628	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2629			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2630		spin_unlock_irqrestore(&xhci->lock, flags);
2631		xhci_warn(xhci, "Not enough host resources, "
2632				"active endpoint contexts = %u\n",
2633				xhci->num_active_eps);
2634		return -ENOMEM;
2635	}
2636	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2637	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2638		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2639			xhci_free_host_resources(xhci, ctrl_ctx);
2640		spin_unlock_irqrestore(&xhci->lock, flags);
2641		xhci_warn(xhci, "Not enough bandwidth\n");
2642		return -ENOMEM;
2643	}
2644
 
 
 
 
 
2645	if (!ctx_change)
2646		ret = xhci_queue_configure_endpoint(xhci, command,
2647				command->in_ctx->dma,
2648				udev->slot_id, must_succeed);
2649	else
2650		ret = xhci_queue_evaluate_context(xhci, command,
2651				command->in_ctx->dma,
2652				udev->slot_id, must_succeed);
2653	if (ret < 0) {
2654		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2655			xhci_free_host_resources(xhci, ctrl_ctx);
2656		spin_unlock_irqrestore(&xhci->lock, flags);
2657		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2658				"FIXME allocate a new ring segment");
2659		return -ENOMEM;
2660	}
2661	xhci_ring_cmd_db(xhci);
2662	spin_unlock_irqrestore(&xhci->lock, flags);
2663
2664	/* Wait for the configure endpoint command to complete */
2665	wait_for_completion(command->completion);
2666
2667	if (!ctx_change)
2668		ret = xhci_configure_endpoint_result(xhci, udev,
2669						     &command->status);
2670	else
2671		ret = xhci_evaluate_context_result(xhci, udev,
2672						   &command->status);
2673
2674	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2675		spin_lock_irqsave(&xhci->lock, flags);
2676		/* If the command failed, remove the reserved resources.
2677		 * Otherwise, clean up the estimate to include dropped eps.
2678		 */
2679		if (ret)
2680			xhci_free_host_resources(xhci, ctrl_ctx);
2681		else
2682			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2683		spin_unlock_irqrestore(&xhci->lock, flags);
2684	}
2685	return ret;
2686}
2687
2688static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2689	struct xhci_virt_device *vdev, int i)
2690{
2691	struct xhci_virt_ep *ep = &vdev->eps[i];
2692
2693	if (ep->ep_state & EP_HAS_STREAMS) {
2694		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2695				xhci_get_endpoint_address(i));
2696		xhci_free_stream_info(xhci, ep->stream_info);
2697		ep->stream_info = NULL;
2698		ep->ep_state &= ~EP_HAS_STREAMS;
2699	}
2700}
2701
2702/* Called after one or more calls to xhci_add_endpoint() or
2703 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2704 * to call xhci_reset_bandwidth().
2705 *
2706 * Since we are in the middle of changing either configuration or
2707 * installing a new alt setting, the USB core won't allow URBs to be
2708 * enqueued for any endpoint on the old config or interface.  Nothing
2709 * else should be touching the xhci->devs[slot_id] structure, so we
2710 * don't need to take the xhci->lock for manipulating that.
2711 */
2712int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714	int i;
2715	int ret = 0;
2716	struct xhci_hcd *xhci;
2717	struct xhci_virt_device	*virt_dev;
2718	struct xhci_input_control_ctx *ctrl_ctx;
2719	struct xhci_slot_ctx *slot_ctx;
2720	struct xhci_command *command;
2721
2722	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2723	if (ret <= 0)
2724		return ret;
2725	xhci = hcd_to_xhci(hcd);
2726	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2727		(xhci->xhc_state & XHCI_STATE_REMOVING))
2728		return -ENODEV;
2729
2730	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731	virt_dev = xhci->devs[udev->slot_id];
2732
2733	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2734	if (!command)
2735		return -ENOMEM;
2736
2737	command->in_ctx = virt_dev->in_ctx;
2738
2739	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2740	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2741	if (!ctrl_ctx) {
2742		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2743				__func__);
2744		ret = -ENOMEM;
2745		goto command_cleanup;
2746	}
2747	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2748	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2749	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2750
2751	/* Don't issue the command if there's no endpoints to update. */
2752	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2753	    ctrl_ctx->drop_flags == 0) {
2754		ret = 0;
2755		goto command_cleanup;
2756	}
2757	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2758	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2759	for (i = 31; i >= 1; i--) {
2760		__le32 le32 = cpu_to_le32(BIT(i));
2761
2762		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2763		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2764			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2765			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2766			break;
2767		}
2768	}
2769	xhci_dbg(xhci, "New Input Control Context:\n");
2770	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2771		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2772
2773	ret = xhci_configure_endpoint(xhci, udev, command,
2774			false, false);
2775	if (ret)
2776		/* Callee should call reset_bandwidth() */
2777		goto command_cleanup;
2778
2779	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2780	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2781		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2782
2783	/* Free any rings that were dropped, but not changed. */
2784	for (i = 1; i < 31; ++i) {
2785		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2786		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2787			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2788			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2789		}
2790	}
2791	xhci_zero_in_ctx(xhci, virt_dev);
2792	/*
2793	 * Install any rings for completely new endpoints or changed endpoints,
2794	 * and free or cache any old rings from changed endpoints.
2795	 */
2796	for (i = 1; i < 31; ++i) {
2797		if (!virt_dev->eps[i].new_ring)
2798			continue;
2799		/* Only cache or free the old ring if it exists.
2800		 * It may not if this is the first add of an endpoint.
2801		 */
2802		if (virt_dev->eps[i].ring) {
2803			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2804		}
2805		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2806		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2807		virt_dev->eps[i].new_ring = NULL;
2808	}
2809command_cleanup:
2810	kfree(command->completion);
2811	kfree(command);
2812
2813	return ret;
2814}
2815
2816void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2817{
2818	struct xhci_hcd *xhci;
2819	struct xhci_virt_device	*virt_dev;
2820	int i, ret;
2821
2822	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2823	if (ret <= 0)
2824		return;
2825	xhci = hcd_to_xhci(hcd);
2826
2827	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2828	virt_dev = xhci->devs[udev->slot_id];
2829	/* Free any rings allocated for added endpoints */
2830	for (i = 0; i < 31; ++i) {
2831		if (virt_dev->eps[i].new_ring) {
 
2832			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2833			virt_dev->eps[i].new_ring = NULL;
2834		}
2835	}
2836	xhci_zero_in_ctx(xhci, virt_dev);
2837}
2838
2839static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2840		struct xhci_container_ctx *in_ctx,
2841		struct xhci_container_ctx *out_ctx,
2842		struct xhci_input_control_ctx *ctrl_ctx,
2843		u32 add_flags, u32 drop_flags)
2844{
2845	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2846	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2847	xhci_slot_copy(xhci, in_ctx, out_ctx);
2848	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2849
2850	xhci_dbg(xhci, "Input Context:\n");
2851	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2852}
2853
2854static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2855		unsigned int slot_id, unsigned int ep_index,
2856		struct xhci_dequeue_state *deq_state)
2857{
2858	struct xhci_input_control_ctx *ctrl_ctx;
2859	struct xhci_container_ctx *in_ctx;
2860	struct xhci_ep_ctx *ep_ctx;
2861	u32 added_ctxs;
2862	dma_addr_t addr;
2863
2864	in_ctx = xhci->devs[slot_id]->in_ctx;
2865	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2866	if (!ctrl_ctx) {
2867		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2868				__func__);
2869		return;
2870	}
2871
2872	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2873			xhci->devs[slot_id]->out_ctx, ep_index);
2874	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2875	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2876			deq_state->new_deq_ptr);
2877	if (addr == 0) {
2878		xhci_warn(xhci, "WARN Cannot submit config ep after "
2879				"reset ep command\n");
2880		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2881				deq_state->new_deq_seg,
2882				deq_state->new_deq_ptr);
2883		return;
2884	}
2885	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2886
2887	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2888	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2889			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2890			added_ctxs, added_ctxs);
2891}
2892
2893void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2894			unsigned int ep_index, struct xhci_td *td)
2895{
2896	struct xhci_dequeue_state deq_state;
2897	struct xhci_virt_ep *ep;
2898	struct usb_device *udev = td->urb->dev;
2899
2900	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2901			"Cleaning up stalled endpoint ring");
2902	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2903	/* We need to move the HW's dequeue pointer past this TD,
2904	 * or it will attempt to resend it on the next doorbell ring.
2905	 */
2906	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2907			ep_index, ep->stopped_stream, td, &deq_state);
2908
2909	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2910		return;
2911
2912	/* HW with the reset endpoint quirk will use the saved dequeue state to
2913	 * issue a configure endpoint command later.
2914	 */
2915	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2916		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2917				"Queueing new dequeue state");
2918		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2919				ep_index, ep->stopped_stream, &deq_state);
2920	} else {
2921		/* Better hope no one uses the input context between now and the
2922		 * reset endpoint completion!
2923		 * XXX: No idea how this hardware will react when stream rings
2924		 * are enabled.
2925		 */
2926		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2927				"Setting up input context for "
2928				"configure endpoint command");
2929		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2930				ep_index, &deq_state);
2931	}
2932}
2933
2934/* Called when clearing halted device. The core should have sent the control
2935 * message to clear the device halt condition. The host side of the halt should
2936 * already be cleared with a reset endpoint command issued when the STALL tx
2937 * event was received.
2938 *
2939 * Context: in_interrupt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940 */
2941
2942void xhci_endpoint_reset(struct usb_hcd *hcd,
2943		struct usb_host_endpoint *ep)
2944{
2945	struct xhci_hcd *xhci;
 
 
 
 
 
 
 
 
 
2946
2947	xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948
2949	/*
2950	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2951	 * The Reset Endpoint Command may only be issued to endpoints in the
2952	 * Halted state. If software wishes reset the Data Toggle or Sequence
2953	 * Number of an endpoint that isn't in the Halted state, then software
2954	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2955	 * for the target endpoint. that is in the Stopped state.
2956	 */
2957
2958	/* For now just print debug to follow the situation */
2959	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2960		 ep->desc.bEndpointAddress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961}
2962
2963static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2964		struct usb_device *udev, struct usb_host_endpoint *ep,
2965		unsigned int slot_id)
2966{
2967	int ret;
2968	unsigned int ep_index;
2969	unsigned int ep_state;
2970
2971	if (!ep)
2972		return -EINVAL;
2973	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2974	if (ret <= 0)
2975		return -EINVAL;
2976	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2977		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2978				" descriptor for ep 0x%x does not support streams\n",
2979				ep->desc.bEndpointAddress);
2980		return -EINVAL;
2981	}
2982
2983	ep_index = xhci_get_endpoint_index(&ep->desc);
2984	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2985	if (ep_state & EP_HAS_STREAMS ||
2986			ep_state & EP_GETTING_STREAMS) {
2987		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2988				"already has streams set up.\n",
2989				ep->desc.bEndpointAddress);
2990		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2991				"dynamic stream context array reallocation.\n");
2992		return -EINVAL;
2993	}
2994	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2995		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2996				"endpoint 0x%x; URBs are pending.\n",
2997				ep->desc.bEndpointAddress);
2998		return -EINVAL;
2999	}
3000	return 0;
3001}
3002
3003static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3004		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3005{
3006	unsigned int max_streams;
3007
3008	/* The stream context array size must be a power of two */
3009	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3010	/*
3011	 * Find out how many primary stream array entries the host controller
3012	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3013	 * level page entries), but that's an optional feature for xHCI host
3014	 * controllers. xHCs must support at least 4 stream IDs.
3015	 */
3016	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3017	if (*num_stream_ctxs > max_streams) {
3018		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3019				max_streams);
3020		*num_stream_ctxs = max_streams;
3021		*num_streams = max_streams;
3022	}
3023}
3024
3025/* Returns an error code if one of the endpoint already has streams.
3026 * This does not change any data structures, it only checks and gathers
3027 * information.
3028 */
3029static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3030		struct usb_device *udev,
3031		struct usb_host_endpoint **eps, unsigned int num_eps,
3032		unsigned int *num_streams, u32 *changed_ep_bitmask)
3033{
3034	unsigned int max_streams;
3035	unsigned int endpoint_flag;
3036	int i;
3037	int ret;
3038
3039	for (i = 0; i < num_eps; i++) {
3040		ret = xhci_check_streams_endpoint(xhci, udev,
3041				eps[i], udev->slot_id);
3042		if (ret < 0)
3043			return ret;
3044
3045		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3046		if (max_streams < (*num_streams - 1)) {
3047			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3048					eps[i]->desc.bEndpointAddress,
3049					max_streams);
3050			*num_streams = max_streams+1;
3051		}
3052
3053		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3054		if (*changed_ep_bitmask & endpoint_flag)
3055			return -EINVAL;
3056		*changed_ep_bitmask |= endpoint_flag;
3057	}
3058	return 0;
3059}
3060
3061static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3062		struct usb_device *udev,
3063		struct usb_host_endpoint **eps, unsigned int num_eps)
3064{
3065	u32 changed_ep_bitmask = 0;
3066	unsigned int slot_id;
3067	unsigned int ep_index;
3068	unsigned int ep_state;
3069	int i;
3070
3071	slot_id = udev->slot_id;
3072	if (!xhci->devs[slot_id])
3073		return 0;
3074
3075	for (i = 0; i < num_eps; i++) {
3076		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3077		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3078		/* Are streams already being freed for the endpoint? */
3079		if (ep_state & EP_GETTING_NO_STREAMS) {
3080			xhci_warn(xhci, "WARN Can't disable streams for "
3081					"endpoint 0x%x, "
3082					"streams are being disabled already\n",
3083					eps[i]->desc.bEndpointAddress);
3084			return 0;
3085		}
3086		/* Are there actually any streams to free? */
3087		if (!(ep_state & EP_HAS_STREAMS) &&
3088				!(ep_state & EP_GETTING_STREAMS)) {
3089			xhci_warn(xhci, "WARN Can't disable streams for "
3090					"endpoint 0x%x, "
3091					"streams are already disabled!\n",
3092					eps[i]->desc.bEndpointAddress);
3093			xhci_warn(xhci, "WARN xhci_free_streams() called "
3094					"with non-streams endpoint\n");
3095			return 0;
3096		}
3097		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3098	}
3099	return changed_ep_bitmask;
3100}
3101
3102/*
3103 * The USB device drivers use this function (through the HCD interface in USB
3104 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3105 * coordinate mass storage command queueing across multiple endpoints (basically
3106 * a stream ID == a task ID).
3107 *
3108 * Setting up streams involves allocating the same size stream context array
3109 * for each endpoint and issuing a configure endpoint command for all endpoints.
3110 *
3111 * Don't allow the call to succeed if one endpoint only supports one stream
3112 * (which means it doesn't support streams at all).
3113 *
3114 * Drivers may get less stream IDs than they asked for, if the host controller
3115 * hardware or endpoints claim they can't support the number of requested
3116 * stream IDs.
3117 */
3118int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3119		struct usb_host_endpoint **eps, unsigned int num_eps,
3120		unsigned int num_streams, gfp_t mem_flags)
3121{
3122	int i, ret;
3123	struct xhci_hcd *xhci;
3124	struct xhci_virt_device *vdev;
3125	struct xhci_command *config_cmd;
3126	struct xhci_input_control_ctx *ctrl_ctx;
3127	unsigned int ep_index;
3128	unsigned int num_stream_ctxs;
3129	unsigned int max_packet;
3130	unsigned long flags;
3131	u32 changed_ep_bitmask = 0;
3132
3133	if (!eps)
3134		return -EINVAL;
3135
3136	/* Add one to the number of streams requested to account for
3137	 * stream 0 that is reserved for xHCI usage.
3138	 */
3139	num_streams += 1;
3140	xhci = hcd_to_xhci(hcd);
3141	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142			num_streams);
3143
3144	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3145	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3146			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3147		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3148		return -ENOSYS;
3149	}
3150
3151	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3152	if (!config_cmd) {
3153		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3154		return -ENOMEM;
3155	}
3156	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3157	if (!ctrl_ctx) {
3158		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3159				__func__);
3160		xhci_free_command(xhci, config_cmd);
3161		return -ENOMEM;
3162	}
3163
3164	/* Check to make sure all endpoints are not already configured for
3165	 * streams.  While we're at it, find the maximum number of streams that
3166	 * all the endpoints will support and check for duplicate endpoints.
3167	 */
3168	spin_lock_irqsave(&xhci->lock, flags);
3169	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3170			num_eps, &num_streams, &changed_ep_bitmask);
3171	if (ret < 0) {
3172		xhci_free_command(xhci, config_cmd);
3173		spin_unlock_irqrestore(&xhci->lock, flags);
3174		return ret;
3175	}
3176	if (num_streams <= 1) {
3177		xhci_warn(xhci, "WARN: endpoints can't handle "
3178				"more than one stream.\n");
3179		xhci_free_command(xhci, config_cmd);
3180		spin_unlock_irqrestore(&xhci->lock, flags);
3181		return -EINVAL;
3182	}
3183	vdev = xhci->devs[udev->slot_id];
3184	/* Mark each endpoint as being in transition, so
3185	 * xhci_urb_enqueue() will reject all URBs.
3186	 */
3187	for (i = 0; i < num_eps; i++) {
3188		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3189		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3190	}
3191	spin_unlock_irqrestore(&xhci->lock, flags);
3192
3193	/* Setup internal data structures and allocate HW data structures for
3194	 * streams (but don't install the HW structures in the input context
3195	 * until we're sure all memory allocation succeeded).
3196	 */
3197	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3198	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3199			num_stream_ctxs, num_streams);
3200
3201	for (i = 0; i < num_eps; i++) {
3202		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3204		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3205				num_stream_ctxs,
3206				num_streams,
3207				max_packet, mem_flags);
3208		if (!vdev->eps[ep_index].stream_info)
3209			goto cleanup;
3210		/* Set maxPstreams in endpoint context and update deq ptr to
3211		 * point to stream context array. FIXME
3212		 */
3213	}
3214
3215	/* Set up the input context for a configure endpoint command. */
3216	for (i = 0; i < num_eps; i++) {
3217		struct xhci_ep_ctx *ep_ctx;
3218
3219		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3220		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3221
3222		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3223				vdev->out_ctx, ep_index);
3224		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3225				vdev->eps[ep_index].stream_info);
3226	}
3227	/* Tell the HW to drop its old copy of the endpoint context info
3228	 * and add the updated copy from the input context.
3229	 */
3230	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3231			vdev->out_ctx, ctrl_ctx,
3232			changed_ep_bitmask, changed_ep_bitmask);
3233
3234	/* Issue and wait for the configure endpoint command */
3235	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3236			false, false);
3237
3238	/* xHC rejected the configure endpoint command for some reason, so we
3239	 * leave the old ring intact and free our internal streams data
3240	 * structure.
3241	 */
3242	if (ret < 0)
3243		goto cleanup;
3244
3245	spin_lock_irqsave(&xhci->lock, flags);
3246	for (i = 0; i < num_eps; i++) {
3247		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3249		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3250			 udev->slot_id, ep_index);
3251		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3252	}
3253	xhci_free_command(xhci, config_cmd);
3254	spin_unlock_irqrestore(&xhci->lock, flags);
3255
3256	/* Subtract 1 for stream 0, which drivers can't use */
3257	return num_streams - 1;
3258
3259cleanup:
3260	/* If it didn't work, free the streams! */
3261	for (i = 0; i < num_eps; i++) {
3262		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3264		vdev->eps[ep_index].stream_info = NULL;
3265		/* FIXME Unset maxPstreams in endpoint context and
3266		 * update deq ptr to point to normal string ring.
3267		 */
3268		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3269		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3270		xhci_endpoint_zero(xhci, vdev, eps[i]);
3271	}
3272	xhci_free_command(xhci, config_cmd);
3273	return -ENOMEM;
3274}
3275
3276/* Transition the endpoint from using streams to being a "normal" endpoint
3277 * without streams.
3278 *
3279 * Modify the endpoint context state, submit a configure endpoint command,
3280 * and free all endpoint rings for streams if that completes successfully.
3281 */
3282int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3283		struct usb_host_endpoint **eps, unsigned int num_eps,
3284		gfp_t mem_flags)
3285{
3286	int i, ret;
3287	struct xhci_hcd *xhci;
3288	struct xhci_virt_device *vdev;
3289	struct xhci_command *command;
3290	struct xhci_input_control_ctx *ctrl_ctx;
3291	unsigned int ep_index;
3292	unsigned long flags;
3293	u32 changed_ep_bitmask;
3294
3295	xhci = hcd_to_xhci(hcd);
3296	vdev = xhci->devs[udev->slot_id];
3297
3298	/* Set up a configure endpoint command to remove the streams rings */
3299	spin_lock_irqsave(&xhci->lock, flags);
3300	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3301			udev, eps, num_eps);
3302	if (changed_ep_bitmask == 0) {
3303		spin_unlock_irqrestore(&xhci->lock, flags);
3304		return -EINVAL;
3305	}
3306
3307	/* Use the xhci_command structure from the first endpoint.  We may have
3308	 * allocated too many, but the driver may call xhci_free_streams() for
3309	 * each endpoint it grouped into one call to xhci_alloc_streams().
3310	 */
3311	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3312	command = vdev->eps[ep_index].stream_info->free_streams_command;
3313	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3314	if (!ctrl_ctx) {
3315		spin_unlock_irqrestore(&xhci->lock, flags);
3316		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317				__func__);
3318		return -EINVAL;
3319	}
3320
3321	for (i = 0; i < num_eps; i++) {
3322		struct xhci_ep_ctx *ep_ctx;
3323
3324		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3325		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3326		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3327			EP_GETTING_NO_STREAMS;
3328
3329		xhci_endpoint_copy(xhci, command->in_ctx,
3330				vdev->out_ctx, ep_index);
3331		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3332				&vdev->eps[ep_index]);
3333	}
3334	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3335			vdev->out_ctx, ctrl_ctx,
3336			changed_ep_bitmask, changed_ep_bitmask);
3337	spin_unlock_irqrestore(&xhci->lock, flags);
3338
3339	/* Issue and wait for the configure endpoint command,
3340	 * which must succeed.
3341	 */
3342	ret = xhci_configure_endpoint(xhci, udev, command,
3343			false, true);
3344
3345	/* xHC rejected the configure endpoint command for some reason, so we
3346	 * leave the streams rings intact.
3347	 */
3348	if (ret < 0)
3349		return ret;
3350
3351	spin_lock_irqsave(&xhci->lock, flags);
3352	for (i = 0; i < num_eps; i++) {
3353		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3354		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3355		vdev->eps[ep_index].stream_info = NULL;
3356		/* FIXME Unset maxPstreams in endpoint context and
3357		 * update deq ptr to point to normal string ring.
3358		 */
3359		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3360		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3361	}
3362	spin_unlock_irqrestore(&xhci->lock, flags);
3363
3364	return 0;
3365}
3366
3367/*
3368 * Deletes endpoint resources for endpoints that were active before a Reset
3369 * Device command, or a Disable Slot command.  The Reset Device command leaves
3370 * the control endpoint intact, whereas the Disable Slot command deletes it.
3371 *
3372 * Must be called with xhci->lock held.
3373 */
3374void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3375	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3376{
3377	int i;
3378	unsigned int num_dropped_eps = 0;
3379	unsigned int drop_flags = 0;
3380
3381	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3382		if (virt_dev->eps[i].ring) {
3383			drop_flags |= 1 << i;
3384			num_dropped_eps++;
3385		}
3386	}
3387	xhci->num_active_eps -= num_dropped_eps;
3388	if (num_dropped_eps)
3389		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3390				"Dropped %u ep ctxs, flags = 0x%x, "
3391				"%u now active.",
3392				num_dropped_eps, drop_flags,
3393				xhci->num_active_eps);
3394}
3395
3396/*
3397 * This submits a Reset Device Command, which will set the device state to 0,
3398 * set the device address to 0, and disable all the endpoints except the default
3399 * control endpoint.  The USB core should come back and call
3400 * xhci_address_device(), and then re-set up the configuration.  If this is
3401 * called because of a usb_reset_and_verify_device(), then the old alternate
3402 * settings will be re-installed through the normal bandwidth allocation
3403 * functions.
3404 *
3405 * Wait for the Reset Device command to finish.  Remove all structures
3406 * associated with the endpoints that were disabled.  Clear the input device
3407 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3408 *
3409 * If the virt_dev to be reset does not exist or does not match the udev,
3410 * it means the device is lost, possibly due to the xHC restore error and
3411 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3412 * re-allocate the device.
3413 */
3414int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3415{
3416	int ret, i;
3417	unsigned long flags;
3418	struct xhci_hcd *xhci;
3419	unsigned int slot_id;
3420	struct xhci_virt_device *virt_dev;
3421	struct xhci_command *reset_device_cmd;
3422	int last_freed_endpoint;
3423	struct xhci_slot_ctx *slot_ctx;
3424	int old_active_eps = 0;
3425
3426	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3427	if (ret <= 0)
3428		return ret;
3429	xhci = hcd_to_xhci(hcd);
3430	slot_id = udev->slot_id;
3431	virt_dev = xhci->devs[slot_id];
3432	if (!virt_dev) {
3433		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3434				"not exist. Re-allocate the device\n", slot_id);
3435		ret = xhci_alloc_dev(hcd, udev);
3436		if (ret == 1)
3437			return 0;
3438		else
3439			return -EINVAL;
3440	}
3441
3442	if (virt_dev->tt_info)
3443		old_active_eps = virt_dev->tt_info->active_eps;
3444
3445	if (virt_dev->udev != udev) {
3446		/* If the virt_dev and the udev does not match, this virt_dev
3447		 * may belong to another udev.
3448		 * Re-allocate the device.
3449		 */
3450		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3451				"not match the udev. Re-allocate the device\n",
3452				slot_id);
3453		ret = xhci_alloc_dev(hcd, udev);
3454		if (ret == 1)
3455			return 0;
3456		else
3457			return -EINVAL;
3458	}
3459
3460	/* If device is not setup, there is no point in resetting it */
3461	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3462	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3463						SLOT_STATE_DISABLED)
3464		return 0;
3465
 
 
3466	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3467	/* Allocate the command structure that holds the struct completion.
3468	 * Assume we're in process context, since the normal device reset
3469	 * process has to wait for the device anyway.  Storage devices are
3470	 * reset as part of error handling, so use GFP_NOIO instead of
3471	 * GFP_KERNEL.
3472	 */
3473	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3474	if (!reset_device_cmd) {
3475		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3476		return -ENOMEM;
3477	}
3478
3479	/* Attempt to submit the Reset Device command to the command ring */
3480	spin_lock_irqsave(&xhci->lock, flags);
3481
3482	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3483	if (ret) {
3484		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3485		spin_unlock_irqrestore(&xhci->lock, flags);
3486		goto command_cleanup;
3487	}
3488	xhci_ring_cmd_db(xhci);
3489	spin_unlock_irqrestore(&xhci->lock, flags);
3490
3491	/* Wait for the Reset Device command to finish */
3492	wait_for_completion(reset_device_cmd->completion);
3493
3494	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3495	 * unless we tried to reset a slot ID that wasn't enabled,
3496	 * or the device wasn't in the addressed or configured state.
3497	 */
3498	ret = reset_device_cmd->status;
3499	switch (ret) {
3500	case COMP_CMD_ABORT:
3501	case COMP_CMD_STOP:
3502		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3503		ret = -ETIME;
3504		goto command_cleanup;
3505	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3506	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3507		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3508				slot_id,
3509				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3510		xhci_dbg(xhci, "Not freeing device rings.\n");
3511		/* Don't treat this as an error.  May change my mind later. */
3512		ret = 0;
3513		goto command_cleanup;
3514	case COMP_SUCCESS:
3515		xhci_dbg(xhci, "Successful reset device command.\n");
3516		break;
3517	default:
3518		if (xhci_is_vendor_info_code(xhci, ret))
3519			break;
3520		xhci_warn(xhci, "Unknown completion code %u for "
3521				"reset device command.\n", ret);
3522		ret = -EINVAL;
3523		goto command_cleanup;
3524	}
3525
3526	/* Free up host controller endpoint resources */
3527	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3528		spin_lock_irqsave(&xhci->lock, flags);
3529		/* Don't delete the default control endpoint resources */
3530		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3531		spin_unlock_irqrestore(&xhci->lock, flags);
3532	}
3533
3534	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3535	last_freed_endpoint = 1;
3536	for (i = 1; i < 31; ++i) {
3537		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3538
3539		if (ep->ep_state & EP_HAS_STREAMS) {
3540			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3541					xhci_get_endpoint_address(i));
3542			xhci_free_stream_info(xhci, ep->stream_info);
3543			ep->stream_info = NULL;
3544			ep->ep_state &= ~EP_HAS_STREAMS;
3545		}
3546
3547		if (ep->ring) {
3548			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3549			last_freed_endpoint = i;
3550		}
3551		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3552			xhci_drop_ep_from_interval_table(xhci,
3553					&virt_dev->eps[i].bw_info,
3554					virt_dev->bw_table,
3555					udev,
3556					&virt_dev->eps[i],
3557					virt_dev->tt_info);
3558		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3559	}
3560	/* If necessary, update the number of active TTs on this root port */
3561	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3562
3563	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3564	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3565	ret = 0;
3566
3567command_cleanup:
3568	xhci_free_command(xhci, reset_device_cmd);
3569	return ret;
3570}
3571
3572/*
3573 * At this point, the struct usb_device is about to go away, the device has
3574 * disconnected, and all traffic has been stopped and the endpoints have been
3575 * disabled.  Free any HC data structures associated with that device.
3576 */
3577void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3578{
3579	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3580	struct xhci_virt_device *virt_dev;
3581	unsigned long flags;
3582	u32 state;
3583	int i, ret;
3584	struct xhci_command *command;
3585
3586	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3587	if (!command)
3588		return;
3589
3590#ifndef CONFIG_USB_DEFAULT_PERSIST
3591	/*
3592	 * We called pm_runtime_get_noresume when the device was attached.
3593	 * Decrement the counter here to allow controller to runtime suspend
3594	 * if no devices remain.
3595	 */
3596	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3597		pm_runtime_put_noidle(hcd->self.controller);
3598#endif
3599
3600	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3601	/* If the host is halted due to driver unload, we still need to free the
3602	 * device.
3603	 */
3604	if (ret <= 0 && ret != -ENODEV) {
3605		kfree(command);
3606		return;
3607	}
3608
3609	virt_dev = xhci->devs[udev->slot_id];
 
 
3610
3611	/* Stop any wayward timer functions (which may grab the lock) */
3612	for (i = 0; i < 31; ++i) {
3613		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3614		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3615	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3616
3617	spin_lock_irqsave(&xhci->lock, flags);
3618	/* Don't disable the slot if the host controller is dead. */
3619	state = readl(&xhci->op_regs->status);
3620	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3621			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3622		xhci_free_virt_device(xhci, udev->slot_id);
3623		spin_unlock_irqrestore(&xhci->lock, flags);
3624		kfree(command);
3625		return;
3626	}
3627
3628	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3629				    udev->slot_id)) {
 
3630		spin_unlock_irqrestore(&xhci->lock, flags);
3631		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3632		return;
3633	}
3634	xhci_ring_cmd_db(xhci);
3635	spin_unlock_irqrestore(&xhci->lock, flags);
3636
3637	/*
3638	 * Event command completion handler will free any data structures
3639	 * associated with the slot.  XXX Can free sleep?
3640	 */
3641}
3642
3643/*
3644 * Checks if we have enough host controller resources for the default control
3645 * endpoint.
3646 *
3647 * Must be called with xhci->lock held.
3648 */
3649static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3650{
3651	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3652		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3653				"Not enough ep ctxs: "
3654				"%u active, need to add 1, limit is %u.",
3655				xhci->num_active_eps, xhci->limit_active_eps);
3656		return -ENOMEM;
3657	}
3658	xhci->num_active_eps += 1;
3659	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3660			"Adding 1 ep ctx, %u now active.",
3661			xhci->num_active_eps);
3662	return 0;
3663}
3664
3665
3666/*
3667 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3668 * timed out, or allocating memory failed.  Returns 1 on success.
3669 */
3670int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3671{
3672	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
3673	unsigned long flags;
3674	int ret, slot_id;
3675	struct xhci_command *command;
3676
3677	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3678	if (!command)
3679		return 0;
3680
3681	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3682	mutex_lock(&xhci->mutex);
3683	spin_lock_irqsave(&xhci->lock, flags);
3684	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3685	if (ret) {
3686		spin_unlock_irqrestore(&xhci->lock, flags);
3687		mutex_unlock(&xhci->mutex);
3688		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3689		xhci_free_command(xhci, command);
3690		return 0;
3691	}
3692	xhci_ring_cmd_db(xhci);
3693	spin_unlock_irqrestore(&xhci->lock, flags);
3694
3695	wait_for_completion(command->completion);
3696	slot_id = command->slot_id;
3697	mutex_unlock(&xhci->mutex);
3698
3699	if (!slot_id || command->status != COMP_SUCCESS) {
3700		xhci_err(xhci, "Error while assigning device slot ID\n");
3701		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3702				HCS_MAX_SLOTS(
3703					readl(&xhci->cap_regs->hcs_params1)));
3704		xhci_free_command(xhci, command);
3705		return 0;
3706	}
3707
 
 
3708	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3709		spin_lock_irqsave(&xhci->lock, flags);
3710		ret = xhci_reserve_host_control_ep_resources(xhci);
3711		if (ret) {
3712			spin_unlock_irqrestore(&xhci->lock, flags);
3713			xhci_warn(xhci, "Not enough host resources, "
3714					"active endpoint contexts = %u\n",
3715					xhci->num_active_eps);
3716			goto disable_slot;
3717		}
3718		spin_unlock_irqrestore(&xhci->lock, flags);
3719	}
3720	/* Use GFP_NOIO, since this function can be called from
3721	 * xhci_discover_or_reset_device(), which may be called as part of
3722	 * mass storage driver error handling.
3723	 */
3724	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3725		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3726		goto disable_slot;
3727	}
 
 
 
 
3728	udev->slot_id = slot_id;
3729
 
 
3730#ifndef CONFIG_USB_DEFAULT_PERSIST
3731	/*
3732	 * If resetting upon resume, we can't put the controller into runtime
3733	 * suspend if there is a device attached.
3734	 */
3735	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3736		pm_runtime_get_noresume(hcd->self.controller);
3737#endif
3738
3739
3740	xhci_free_command(xhci, command);
3741	/* Is this a LS or FS device under a HS hub? */
3742	/* Hub or peripherial? */
3743	return 1;
3744
3745disable_slot:
3746	/* Disable slot, if we can do it without mem alloc */
3747	spin_lock_irqsave(&xhci->lock, flags);
3748	kfree(command->completion);
3749	command->completion = NULL;
3750	command->status = 0;
3751	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3752				     udev->slot_id))
3753		xhci_ring_cmd_db(xhci);
3754	spin_unlock_irqrestore(&xhci->lock, flags);
3755	return 0;
3756}
3757
3758/*
3759 * Issue an Address Device command and optionally send a corresponding
3760 * SetAddress request to the device.
3761 */
3762static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3763			     enum xhci_setup_dev setup)
3764{
3765	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3766	unsigned long flags;
3767	struct xhci_virt_device *virt_dev;
3768	int ret = 0;
3769	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3770	struct xhci_slot_ctx *slot_ctx;
3771	struct xhci_input_control_ctx *ctrl_ctx;
3772	u64 temp_64;
3773	struct xhci_command *command = NULL;
3774
3775	mutex_lock(&xhci->mutex);
3776
3777	if (xhci->xhc_state) {	/* dying, removing or halted */
3778		ret = -ESHUTDOWN;
3779		goto out;
3780	}
3781
3782	if (!udev->slot_id) {
3783		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3784				"Bad Slot ID %d", udev->slot_id);
3785		ret = -EINVAL;
3786		goto out;
3787	}
3788
3789	virt_dev = xhci->devs[udev->slot_id];
3790
3791	if (WARN_ON(!virt_dev)) {
3792		/*
3793		 * In plug/unplug torture test with an NEC controller,
3794		 * a zero-dereference was observed once due to virt_dev = 0.
3795		 * Print useful debug rather than crash if it is observed again!
3796		 */
3797		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3798			udev->slot_id);
3799		ret = -EINVAL;
3800		goto out;
3801	}
 
 
3802
3803	if (setup == SETUP_CONTEXT_ONLY) {
3804		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3805		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3806		    SLOT_STATE_DEFAULT) {
3807			xhci_dbg(xhci, "Slot already in default state\n");
3808			goto out;
3809		}
3810	}
3811
3812	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3813	if (!command) {
3814		ret = -ENOMEM;
3815		goto out;
3816	}
3817
3818	command->in_ctx = virt_dev->in_ctx;
3819
3820	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3821	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3822	if (!ctrl_ctx) {
3823		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3824				__func__);
3825		ret = -EINVAL;
3826		goto out;
3827	}
3828	/*
3829	 * If this is the first Set Address since device plug-in or
3830	 * virt_device realloaction after a resume with an xHCI power loss,
3831	 * then set up the slot context.
3832	 */
3833	if (!slot_ctx->dev_info)
3834		xhci_setup_addressable_virt_dev(xhci, udev);
3835	/* Otherwise, update the control endpoint ring enqueue pointer. */
3836	else
3837		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3838	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3839	ctrl_ctx->drop_flags = 0;
3840
3841	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3842	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3843	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3844				le32_to_cpu(slot_ctx->dev_info) >> 27);
3845
 
3846	spin_lock_irqsave(&xhci->lock, flags);
 
3847	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3848					udev->slot_id, setup);
3849	if (ret) {
3850		spin_unlock_irqrestore(&xhci->lock, flags);
3851		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852				"FIXME: allocate a command ring segment");
3853		goto out;
3854	}
3855	xhci_ring_cmd_db(xhci);
3856	spin_unlock_irqrestore(&xhci->lock, flags);
3857
3858	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3859	wait_for_completion(command->completion);
3860
3861	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3862	 * the SetAddress() "recovery interval" required by USB and aborting the
3863	 * command on a timeout.
3864	 */
3865	switch (command->status) {
3866	case COMP_CMD_ABORT:
3867	case COMP_CMD_STOP:
3868		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3869		ret = -ETIME;
3870		break;
3871	case COMP_CTX_STATE:
3872	case COMP_EBADSLT:
3873		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3874			 act, udev->slot_id);
3875		ret = -EINVAL;
3876		break;
3877	case COMP_TX_ERR:
3878		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3879		ret = -EPROTO;
3880		break;
3881	case COMP_DEV_ERR:
 
 
 
 
 
 
3882		dev_warn(&udev->dev,
3883			 "ERROR: Incompatible device for setup %s command\n", act);
3884		ret = -ENODEV;
3885		break;
3886	case COMP_SUCCESS:
3887		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3888			       "Successful setup %s command", act);
3889		break;
3890	default:
3891		xhci_err(xhci,
3892			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3893			 act, command->status);
3894		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3895		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3896		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3897		ret = -EINVAL;
3898		break;
3899	}
3900	if (ret)
3901		goto out;
3902	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3903	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904			"Op regs DCBAA ptr = %#016llx", temp_64);
3905	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3906		"Slot ID %d dcbaa entry @%p = %#016llx",
3907		udev->slot_id,
3908		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3909		(unsigned long long)
3910		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3911	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912			"Output Context DMA address = %#08llx",
3913			(unsigned long long)virt_dev->out_ctx->dma);
3914	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3915	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3916	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3917				le32_to_cpu(slot_ctx->dev_info) >> 27);
3918	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3919	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3920	/*
3921	 * USB core uses address 1 for the roothubs, so we add one to the
3922	 * address given back to us by the HC.
3923	 */
3924	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3925	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3926				le32_to_cpu(slot_ctx->dev_info) >> 27);
3927	/* Zero the input context control for later use */
3928	ctrl_ctx->add_flags = 0;
3929	ctrl_ctx->drop_flags = 0;
 
 
3930
3931	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3932		       "Internal device address = %d",
3933		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3934out:
3935	mutex_unlock(&xhci->mutex);
3936	if (command) {
3937		kfree(command->completion);
3938		kfree(command);
3939	}
3940	return ret;
3941}
3942
3943int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3944{
3945	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3946}
3947
3948int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3949{
3950	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3951}
3952
3953/*
3954 * Transfer the port index into real index in the HW port status
3955 * registers. Caculate offset between the port's PORTSC register
3956 * and port status base. Divide the number of per port register
3957 * to get the real index. The raw port number bases 1.
3958 */
3959int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3960{
3961	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3963	__le32 __iomem *addr;
3964	int raw_port;
3965
3966	if (hcd->speed < HCD_USB3)
3967		addr = xhci->usb2_ports[port1 - 1];
3968	else
3969		addr = xhci->usb3_ports[port1 - 1];
3970
3971	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3972	return raw_port;
3973}
3974
3975/*
3976 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3977 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3978 */
3979static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3980			struct usb_device *udev, u16 max_exit_latency)
3981{
3982	struct xhci_virt_device *virt_dev;
3983	struct xhci_command *command;
3984	struct xhci_input_control_ctx *ctrl_ctx;
3985	struct xhci_slot_ctx *slot_ctx;
3986	unsigned long flags;
3987	int ret;
3988
3989	spin_lock_irqsave(&xhci->lock, flags);
3990
3991	virt_dev = xhci->devs[udev->slot_id];
3992
3993	/*
3994	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3995	 * xHC was re-initialized. Exit latency will be set later after
3996	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3997	 */
3998
3999	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4000		spin_unlock_irqrestore(&xhci->lock, flags);
4001		return 0;
4002	}
4003
4004	/* Attempt to issue an Evaluate Context command to change the MEL. */
4005	command = xhci->lpm_command;
4006	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4007	if (!ctrl_ctx) {
4008		spin_unlock_irqrestore(&xhci->lock, flags);
4009		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4010				__func__);
4011		return -ENOMEM;
4012	}
4013
4014	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4015	spin_unlock_irqrestore(&xhci->lock, flags);
4016
4017	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4018	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4019	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4020	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4021	slot_ctx->dev_state = 0;
4022
4023	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4024			"Set up evaluate context for LPM MEL change.");
4025	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4026	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4027
4028	/* Issue and wait for the evaluate context command. */
4029	ret = xhci_configure_endpoint(xhci, udev, command,
4030			true, true);
4031	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4032	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4033
4034	if (!ret) {
4035		spin_lock_irqsave(&xhci->lock, flags);
4036		virt_dev->current_mel = max_exit_latency;
4037		spin_unlock_irqrestore(&xhci->lock, flags);
4038	}
4039	return ret;
4040}
4041
4042#ifdef CONFIG_PM
4043
4044/* BESL to HIRD Encoding array for USB2 LPM */
4045static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4046	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4047
4048/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4049static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4050					struct usb_device *udev)
4051{
4052	int u2del, besl, besl_host;
4053	int besl_device = 0;
4054	u32 field;
4055
4056	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4057	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4058
4059	if (field & USB_BESL_SUPPORT) {
4060		for (besl_host = 0; besl_host < 16; besl_host++) {
4061			if (xhci_besl_encoding[besl_host] >= u2del)
4062				break;
4063		}
4064		/* Use baseline BESL value as default */
4065		if (field & USB_BESL_BASELINE_VALID)
4066			besl_device = USB_GET_BESL_BASELINE(field);
4067		else if (field & USB_BESL_DEEP_VALID)
4068			besl_device = USB_GET_BESL_DEEP(field);
4069	} else {
4070		if (u2del <= 50)
4071			besl_host = 0;
4072		else
4073			besl_host = (u2del - 51) / 75 + 1;
4074	}
4075
4076	besl = besl_host + besl_device;
4077	if (besl > 15)
4078		besl = 15;
4079
4080	return besl;
4081}
4082
4083/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4084static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4085{
4086	u32 field;
4087	int l1;
4088	int besld = 0;
4089	int hirdm = 0;
4090
4091	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4092
4093	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4094	l1 = udev->l1_params.timeout / 256;
4095
4096	/* device has preferred BESLD */
4097	if (field & USB_BESL_DEEP_VALID) {
4098		besld = USB_GET_BESL_DEEP(field);
4099		hirdm = 1;
4100	}
4101
4102	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4103}
4104
4105int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4106			struct usb_device *udev, int enable)
4107{
4108	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4109	__le32 __iomem	**port_array;
4110	__le32 __iomem	*pm_addr, *hlpm_addr;
4111	u32		pm_val, hlpm_val, field;
4112	unsigned int	port_num;
4113	unsigned long	flags;
4114	int		hird, exit_latency;
4115	int		ret;
4116
4117	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4118			!udev->lpm_capable)
4119		return -EPERM;
4120
4121	if (!udev->parent || udev->parent->parent ||
4122			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4123		return -EPERM;
4124
4125	if (udev->usb2_hw_lpm_capable != 1)
4126		return -EPERM;
4127
4128	spin_lock_irqsave(&xhci->lock, flags);
4129
4130	port_array = xhci->usb2_ports;
4131	port_num = udev->portnum - 1;
4132	pm_addr = port_array[port_num] + PORTPMSC;
4133	pm_val = readl(pm_addr);
4134	hlpm_addr = port_array[port_num] + PORTHLPMC;
4135	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4138			enable ? "enable" : "disable", port_num + 1);
4139
4140	if (enable) {
4141		/* Host supports BESL timeout instead of HIRD */
4142		if (udev->usb2_hw_lpm_besl_capable) {
4143			/* if device doesn't have a preferred BESL value use a
4144			 * default one which works with mixed HIRD and BESL
4145			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4146			 */
 
4147			if ((field & USB_BESL_SUPPORT) &&
4148			    (field & USB_BESL_BASELINE_VALID))
4149				hird = USB_GET_BESL_BASELINE(field);
4150			else
4151				hird = udev->l1_params.besl;
4152
4153			exit_latency = xhci_besl_encoding[hird];
4154			spin_unlock_irqrestore(&xhci->lock, flags);
4155
4156			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4157			 * input context for link powermanagement evaluate
4158			 * context commands. It is protected by hcd->bandwidth
4159			 * mutex and is shared by all devices. We need to set
4160			 * the max ext latency in USB 2 BESL LPM as well, so
4161			 * use the same mutex and xhci_change_max_exit_latency()
4162			 */
4163			mutex_lock(hcd->bandwidth_mutex);
4164			ret = xhci_change_max_exit_latency(xhci, udev,
4165							   exit_latency);
4166			mutex_unlock(hcd->bandwidth_mutex);
4167
4168			if (ret < 0)
4169				return ret;
4170			spin_lock_irqsave(&xhci->lock, flags);
4171
4172			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4173			writel(hlpm_val, hlpm_addr);
4174			/* flush write */
4175			readl(hlpm_addr);
4176		} else {
4177			hird = xhci_calculate_hird_besl(xhci, udev);
4178		}
4179
4180		pm_val &= ~PORT_HIRD_MASK;
4181		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4182		writel(pm_val, pm_addr);
4183		pm_val = readl(pm_addr);
4184		pm_val |= PORT_HLE;
4185		writel(pm_val, pm_addr);
4186		/* flush write */
4187		readl(pm_addr);
4188	} else {
4189		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4190		writel(pm_val, pm_addr);
4191		/* flush write */
4192		readl(pm_addr);
4193		if (udev->usb2_hw_lpm_besl_capable) {
4194			spin_unlock_irqrestore(&xhci->lock, flags);
4195			mutex_lock(hcd->bandwidth_mutex);
4196			xhci_change_max_exit_latency(xhci, udev, 0);
4197			mutex_unlock(hcd->bandwidth_mutex);
4198			return 0;
4199		}
4200	}
4201
4202	spin_unlock_irqrestore(&xhci->lock, flags);
4203	return 0;
4204}
4205
4206/* check if a usb2 port supports a given extened capability protocol
4207 * only USB2 ports extended protocol capability values are cached.
4208 * Return 1 if capability is supported
4209 */
4210static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4211					   unsigned capability)
4212{
4213	u32 port_offset, port_count;
4214	int i;
4215
4216	for (i = 0; i < xhci->num_ext_caps; i++) {
4217		if (xhci->ext_caps[i] & capability) {
4218			/* port offsets starts at 1 */
4219			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4220			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4221			if (port >= port_offset &&
4222			    port < port_offset + port_count)
4223				return 1;
4224		}
4225	}
4226	return 0;
4227}
4228
4229int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4230{
4231	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4232	int		portnum = udev->portnum - 1;
4233
4234	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4235			!udev->lpm_capable)
4236		return 0;
4237
4238	/* we only support lpm for non-hub device connected to root hub yet */
4239	if (!udev->parent || udev->parent->parent ||
4240			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4241		return 0;
4242
4243	if (xhci->hw_lpm_support == 1 &&
4244			xhci_check_usb2_port_capability(
4245				xhci, portnum, XHCI_HLC)) {
4246		udev->usb2_hw_lpm_capable = 1;
4247		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4248		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4249		if (xhci_check_usb2_port_capability(xhci, portnum,
4250					XHCI_BLC))
4251			udev->usb2_hw_lpm_besl_capable = 1;
4252	}
4253
4254	return 0;
4255}
4256
4257/*---------------------- USB 3.0 Link PM functions ------------------------*/
4258
4259/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4260static unsigned long long xhci_service_interval_to_ns(
4261		struct usb_endpoint_descriptor *desc)
4262{
4263	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4264}
4265
4266static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4267		enum usb3_link_state state)
4268{
4269	unsigned long long sel;
4270	unsigned long long pel;
4271	unsigned int max_sel_pel;
4272	char *state_name;
4273
4274	switch (state) {
4275	case USB3_LPM_U1:
4276		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4277		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4278		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4279		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4280		state_name = "U1";
4281		break;
4282	case USB3_LPM_U2:
4283		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4284		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4285		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4286		state_name = "U2";
4287		break;
4288	default:
4289		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4290				__func__);
4291		return USB3_LPM_DISABLED;
4292	}
4293
4294	if (sel <= max_sel_pel && pel <= max_sel_pel)
4295		return USB3_LPM_DEVICE_INITIATED;
4296
4297	if (sel > max_sel_pel)
4298		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4299				"due to long SEL %llu ms\n",
4300				state_name, sel);
4301	else
4302		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4303				"due to long PEL %llu ms\n",
4304				state_name, pel);
4305	return USB3_LPM_DISABLED;
4306}
4307
4308/* The U1 timeout should be the maximum of the following values:
4309 *  - For control endpoints, U1 system exit latency (SEL) * 3
4310 *  - For bulk endpoints, U1 SEL * 5
4311 *  - For interrupt endpoints:
4312 *    - Notification EPs, U1 SEL * 3
4313 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4314 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4315 */
4316static unsigned long long xhci_calculate_intel_u1_timeout(
4317		struct usb_device *udev,
4318		struct usb_endpoint_descriptor *desc)
4319{
4320	unsigned long long timeout_ns;
4321	int ep_type;
4322	int intr_type;
4323
4324	ep_type = usb_endpoint_type(desc);
4325	switch (ep_type) {
4326	case USB_ENDPOINT_XFER_CONTROL:
4327		timeout_ns = udev->u1_params.sel * 3;
4328		break;
4329	case USB_ENDPOINT_XFER_BULK:
4330		timeout_ns = udev->u1_params.sel * 5;
4331		break;
4332	case USB_ENDPOINT_XFER_INT:
4333		intr_type = usb_endpoint_interrupt_type(desc);
4334		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4335			timeout_ns = udev->u1_params.sel * 3;
4336			break;
4337		}
4338		/* Otherwise the calculation is the same as isoc eps */
 
4339	case USB_ENDPOINT_XFER_ISOC:
4340		timeout_ns = xhci_service_interval_to_ns(desc);
4341		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4342		if (timeout_ns < udev->u1_params.sel * 2)
4343			timeout_ns = udev->u1_params.sel * 2;
4344		break;
4345	default:
4346		return 0;
4347	}
4348
4349	return timeout_ns;
4350}
4351
4352/* Returns the hub-encoded U1 timeout value. */
4353static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4354		struct usb_device *udev,
4355		struct usb_endpoint_descriptor *desc)
4356{
4357	unsigned long long timeout_ns;
4358
 
 
 
 
 
 
 
 
4359	if (xhci->quirks & XHCI_INTEL_HOST)
4360		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4361	else
4362		timeout_ns = udev->u1_params.sel;
4363
4364	/* The U1 timeout is encoded in 1us intervals.
4365	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4366	 */
4367	if (timeout_ns == USB3_LPM_DISABLED)
4368		timeout_ns = 1;
4369	else
4370		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4371
4372	/* If the necessary timeout value is bigger than what we can set in the
4373	 * USB 3.0 hub, we have to disable hub-initiated U1.
4374	 */
4375	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4376		return timeout_ns;
4377	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4378			"due to long timeout %llu ms\n", timeout_ns);
4379	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4380}
4381
4382/* The U2 timeout should be the maximum of:
4383 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4384 *  - largest bInterval of any active periodic endpoint (to avoid going
4385 *    into lower power link states between intervals).
4386 *  - the U2 Exit Latency of the device
4387 */
4388static unsigned long long xhci_calculate_intel_u2_timeout(
4389		struct usb_device *udev,
4390		struct usb_endpoint_descriptor *desc)
4391{
4392	unsigned long long timeout_ns;
4393	unsigned long long u2_del_ns;
4394
4395	timeout_ns = 10 * 1000 * 1000;
4396
4397	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4398			(xhci_service_interval_to_ns(desc) > timeout_ns))
4399		timeout_ns = xhci_service_interval_to_ns(desc);
4400
4401	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4402	if (u2_del_ns > timeout_ns)
4403		timeout_ns = u2_del_ns;
4404
4405	return timeout_ns;
4406}
4407
4408/* Returns the hub-encoded U2 timeout value. */
4409static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4410		struct usb_device *udev,
4411		struct usb_endpoint_descriptor *desc)
4412{
4413	unsigned long long timeout_ns;
4414
 
 
 
 
 
 
 
 
4415	if (xhci->quirks & XHCI_INTEL_HOST)
4416		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4417	else
4418		timeout_ns = udev->u2_params.sel;
4419
4420	/* The U2 timeout is encoded in 256us intervals */
4421	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4422	/* If the necessary timeout value is bigger than what we can set in the
4423	 * USB 3.0 hub, we have to disable hub-initiated U2.
4424	 */
4425	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4426		return timeout_ns;
4427	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4428			"due to long timeout %llu ms\n", timeout_ns);
4429	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4430}
4431
4432static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4433		struct usb_device *udev,
4434		struct usb_endpoint_descriptor *desc,
4435		enum usb3_link_state state,
4436		u16 *timeout)
4437{
4438	if (state == USB3_LPM_U1)
4439		return xhci_calculate_u1_timeout(xhci, udev, desc);
4440	else if (state == USB3_LPM_U2)
4441		return xhci_calculate_u2_timeout(xhci, udev, desc);
4442
4443	return USB3_LPM_DISABLED;
4444}
4445
4446static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447		struct usb_device *udev,
4448		struct usb_endpoint_descriptor *desc,
4449		enum usb3_link_state state,
4450		u16 *timeout)
4451{
4452	u16 alt_timeout;
4453
4454	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4455		desc, state, timeout);
4456
4457	/* If we found we can't enable hub-initiated LPM, or
4458	 * the U1 or U2 exit latency was too high to allow
4459	 * device-initiated LPM as well, just stop searching.
 
4460	 */
4461	if (alt_timeout == USB3_LPM_DISABLED ||
4462			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4463		*timeout = alt_timeout;
4464		return -E2BIG;
4465	}
4466	if (alt_timeout > *timeout)
4467		*timeout = alt_timeout;
4468	return 0;
4469}
4470
4471static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4472		struct usb_device *udev,
4473		struct usb_host_interface *alt,
4474		enum usb3_link_state state,
4475		u16 *timeout)
4476{
4477	int j;
4478
4479	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4480		if (xhci_update_timeout_for_endpoint(xhci, udev,
4481					&alt->endpoint[j].desc, state, timeout))
4482			return -E2BIG;
4483		continue;
4484	}
4485	return 0;
4486}
4487
4488static int xhci_check_intel_tier_policy(struct usb_device *udev,
4489		enum usb3_link_state state)
4490{
4491	struct usb_device *parent;
4492	unsigned int num_hubs;
4493
4494	if (state == USB3_LPM_U2)
4495		return 0;
4496
4497	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4498	for (parent = udev->parent, num_hubs = 0; parent->parent;
4499			parent = parent->parent)
4500		num_hubs++;
4501
4502	if (num_hubs < 2)
4503		return 0;
4504
4505	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4506			" below second-tier hub.\n");
4507	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4508			"to decrease power consumption.\n");
4509	return -E2BIG;
4510}
4511
4512static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4513		struct usb_device *udev,
4514		enum usb3_link_state state)
4515{
4516	if (xhci->quirks & XHCI_INTEL_HOST)
4517		return xhci_check_intel_tier_policy(udev, state);
4518	else
4519		return 0;
4520}
4521
4522/* Returns the U1 or U2 timeout that should be enabled.
4523 * If the tier check or timeout setting functions return with a non-zero exit
4524 * code, that means the timeout value has been finalized and we shouldn't look
4525 * at any more endpoints.
4526 */
4527static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4528			struct usb_device *udev, enum usb3_link_state state)
4529{
4530	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4531	struct usb_host_config *config;
4532	char *state_name;
4533	int i;
4534	u16 timeout = USB3_LPM_DISABLED;
4535
4536	if (state == USB3_LPM_U1)
4537		state_name = "U1";
4538	else if (state == USB3_LPM_U2)
4539		state_name = "U2";
4540	else {
4541		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4542				state);
4543		return timeout;
4544	}
4545
4546	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4547		return timeout;
4548
4549	/* Gather some information about the currently installed configuration
4550	 * and alternate interface settings.
4551	 */
4552	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4553			state, &timeout))
4554		return timeout;
4555
4556	config = udev->actconfig;
4557	if (!config)
4558		return timeout;
4559
4560	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4561		struct usb_driver *driver;
4562		struct usb_interface *intf = config->interface[i];
4563
4564		if (!intf)
4565			continue;
4566
4567		/* Check if any currently bound drivers want hub-initiated LPM
4568		 * disabled.
4569		 */
4570		if (intf->dev.driver) {
4571			driver = to_usb_driver(intf->dev.driver);
4572			if (driver && driver->disable_hub_initiated_lpm) {
4573				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4574						"at request of driver %s\n",
4575						state_name, driver->name);
4576				return xhci_get_timeout_no_hub_lpm(udev, state);
 
 
4577			}
4578		}
4579
4580		/* Not sure how this could happen... */
4581		if (!intf->cur_altsetting)
4582			continue;
4583
4584		if (xhci_update_timeout_for_interface(xhci, udev,
4585					intf->cur_altsetting,
4586					state, &timeout))
4587			return timeout;
4588	}
4589	return timeout;
4590}
4591
4592static int calculate_max_exit_latency(struct usb_device *udev,
4593		enum usb3_link_state state_changed,
4594		u16 hub_encoded_timeout)
4595{
4596	unsigned long long u1_mel_us = 0;
4597	unsigned long long u2_mel_us = 0;
4598	unsigned long long mel_us = 0;
4599	bool disabling_u1;
4600	bool disabling_u2;
4601	bool enabling_u1;
4602	bool enabling_u2;
4603
4604	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4605			hub_encoded_timeout == USB3_LPM_DISABLED);
4606	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4607			hub_encoded_timeout == USB3_LPM_DISABLED);
4608
4609	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4610			hub_encoded_timeout != USB3_LPM_DISABLED);
4611	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4612			hub_encoded_timeout != USB3_LPM_DISABLED);
4613
4614	/* If U1 was already enabled and we're not disabling it,
4615	 * or we're going to enable U1, account for the U1 max exit latency.
4616	 */
4617	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4618			enabling_u1)
4619		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4620	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4621			enabling_u2)
4622		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4623
4624	if (u1_mel_us > u2_mel_us)
4625		mel_us = u1_mel_us;
4626	else
4627		mel_us = u2_mel_us;
4628	/* xHCI host controller max exit latency field is only 16 bits wide. */
4629	if (mel_us > MAX_EXIT) {
4630		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4631				"is too big.\n", mel_us);
4632		return -E2BIG;
4633	}
4634	return mel_us;
4635}
4636
4637/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4638int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639			struct usb_device *udev, enum usb3_link_state state)
4640{
4641	struct xhci_hcd	*xhci;
4642	u16 hub_encoded_timeout;
4643	int mel;
4644	int ret;
4645
4646	xhci = hcd_to_xhci(hcd);
4647	/* The LPM timeout values are pretty host-controller specific, so don't
4648	 * enable hub-initiated timeouts unless the vendor has provided
4649	 * information about their timeout algorithm.
4650	 */
4651	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4652			!xhci->devs[udev->slot_id])
4653		return USB3_LPM_DISABLED;
4654
4655	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4656	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4657	if (mel < 0) {
4658		/* Max Exit Latency is too big, disable LPM. */
4659		hub_encoded_timeout = USB3_LPM_DISABLED;
4660		mel = 0;
4661	}
4662
4663	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4664	if (ret)
4665		return ret;
4666	return hub_encoded_timeout;
4667}
4668
4669int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4670			struct usb_device *udev, enum usb3_link_state state)
4671{
4672	struct xhci_hcd	*xhci;
4673	u16 mel;
4674
4675	xhci = hcd_to_xhci(hcd);
4676	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4677			!xhci->devs[udev->slot_id])
4678		return 0;
4679
4680	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4681	return xhci_change_max_exit_latency(xhci, udev, mel);
4682}
4683#else /* CONFIG_PM */
4684
4685int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4686				struct usb_device *udev, int enable)
4687{
4688	return 0;
4689}
4690
4691int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4692{
4693	return 0;
4694}
4695
4696int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697			struct usb_device *udev, enum usb3_link_state state)
4698{
4699	return USB3_LPM_DISABLED;
4700}
4701
4702int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4703			struct usb_device *udev, enum usb3_link_state state)
4704{
4705	return 0;
4706}
4707#endif	/* CONFIG_PM */
4708
4709/*-------------------------------------------------------------------------*/
4710
4711/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4712 * internal data structures for the device.
4713 */
4714int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4715			struct usb_tt *tt, gfp_t mem_flags)
4716{
4717	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4718	struct xhci_virt_device *vdev;
4719	struct xhci_command *config_cmd;
4720	struct xhci_input_control_ctx *ctrl_ctx;
4721	struct xhci_slot_ctx *slot_ctx;
4722	unsigned long flags;
4723	unsigned think_time;
4724	int ret;
4725
4726	/* Ignore root hubs */
4727	if (!hdev->parent)
4728		return 0;
4729
4730	vdev = xhci->devs[hdev->slot_id];
4731	if (!vdev) {
4732		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4733		return -EINVAL;
4734	}
4735	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4736	if (!config_cmd) {
4737		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4738		return -ENOMEM;
4739	}
4740	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4741	if (!ctrl_ctx) {
4742		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4743				__func__);
4744		xhci_free_command(xhci, config_cmd);
4745		return -ENOMEM;
4746	}
4747
4748	spin_lock_irqsave(&xhci->lock, flags);
4749	if (hdev->speed == USB_SPEED_HIGH &&
4750			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4751		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4752		xhci_free_command(xhci, config_cmd);
4753		spin_unlock_irqrestore(&xhci->lock, flags);
4754		return -ENOMEM;
4755	}
4756
4757	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4758	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4759	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4760	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4761	/*
4762	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4763	 * but it may be already set to 1 when setup an xHCI virtual
4764	 * device, so clear it anyway.
4765	 */
4766	if (tt->multi)
4767		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4768	else if (hdev->speed == USB_SPEED_FULL)
4769		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4770
4771	if (xhci->hci_version > 0x95) {
4772		xhci_dbg(xhci, "xHCI version %x needs hub "
4773				"TT think time and number of ports\n",
4774				(unsigned int) xhci->hci_version);
4775		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4776		/* Set TT think time - convert from ns to FS bit times.
4777		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4778		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4779		 *
4780		 * xHCI 1.0: this field shall be 0 if the device is not a
4781		 * High-spped hub.
4782		 */
4783		think_time = tt->think_time;
4784		if (think_time != 0)
4785			think_time = (think_time / 666) - 1;
4786		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4787			slot_ctx->tt_info |=
4788				cpu_to_le32(TT_THINK_TIME(think_time));
4789	} else {
4790		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4791				"TT think time or number of ports\n",
4792				(unsigned int) xhci->hci_version);
4793	}
4794	slot_ctx->dev_state = 0;
4795	spin_unlock_irqrestore(&xhci->lock, flags);
4796
4797	xhci_dbg(xhci, "Set up %s for hub device.\n",
4798			(xhci->hci_version > 0x95) ?
4799			"configure endpoint" : "evaluate context");
4800	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4801	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4802
4803	/* Issue and wait for the configure endpoint or
4804	 * evaluate context command.
4805	 */
4806	if (xhci->hci_version > 0x95)
4807		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4808				false, false);
4809	else
4810		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4811				true, false);
4812
4813	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4814	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4815
4816	xhci_free_command(xhci, config_cmd);
4817	return ret;
4818}
4819
4820int xhci_get_frame(struct usb_hcd *hcd)
4821{
4822	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4823	/* EHCI mods by the periodic size.  Why? */
4824	return readl(&xhci->run_regs->microframe_index) >> 3;
4825}
4826
4827int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4828{
4829	struct xhci_hcd		*xhci;
4830	struct device		*dev = hcd->self.controller;
 
 
 
 
 
4831	int			retval;
4832
4833	/* Accept arbitrarily long scatter-gather lists */
4834	hcd->self.sg_tablesize = ~0;
4835
4836	/* support to build packet from discontinuous buffers */
4837	hcd->self.no_sg_constraint = 1;
4838
4839	/* XHCI controllers don't stop the ep queue on short packets :| */
4840	hcd->self.no_stop_on_short = 1;
4841
4842	xhci = hcd_to_xhci(hcd);
4843
4844	if (usb_hcd_is_primary_hcd(hcd)) {
4845		xhci->main_hcd = hcd;
 
4846		/* Mark the first roothub as being USB 2.0.
4847		 * The xHCI driver will register the USB 3.0 roothub.
4848		 */
4849		hcd->speed = HCD_USB2;
4850		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4851		/*
4852		 * USB 2.0 roothub under xHCI has an integrated TT,
4853		 * (rate matching hub) as opposed to having an OHCI/UHCI
4854		 * companion controller.
4855		 */
4856		hcd->has_tt = 1;
4857	} else {
4858		if (xhci->sbrn == 0x31) {
4859			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4860			hcd->speed = HCD_USB31;
4861			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
 
4862		}
 
 
 
 
 
4863		/* xHCI private pointer was set in xhci_pci_probe for the second
4864		 * registered roothub.
4865		 */
4866		return 0;
4867	}
4868
4869	mutex_init(&xhci->mutex);
4870	xhci->cap_regs = hcd->regs;
4871	xhci->op_regs = hcd->regs +
4872		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4873	xhci->run_regs = hcd->regs +
4874		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4875	/* Cache read-only capability registers */
4876	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4877	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4878	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4879	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4880	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4881	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4882	if (xhci->hci_version > 0x100)
4883		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4884	xhci_print_registers(xhci);
4885
4886	xhci->quirks |= quirks;
4887
4888	get_quirks(dev, xhci);
4889
4890	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4891	 * success event after a short transfer. This quirk will ignore such
4892	 * spurious event.
4893	 */
4894	if (xhci->hci_version > 0x96)
4895		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4896
4897	/* Make sure the HC is halted. */
4898	retval = xhci_halt(xhci);
4899	if (retval)
4900		return retval;
4901
 
 
4902	xhci_dbg(xhci, "Resetting HCD\n");
4903	/* Reset the internal HC memory state and registers. */
4904	retval = xhci_reset(xhci);
4905	if (retval)
4906		return retval;
4907	xhci_dbg(xhci, "Reset complete\n");
4908
4909	/*
4910	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4911	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4912	 * address memory pointers actually. So, this driver clears the AC64
4913	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4914	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4915	 */
4916	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4917		xhci->hcc_params &= ~BIT(0);
4918
4919	/* Set dma_mask and coherent_dma_mask to 64-bits,
4920	 * if xHC supports 64-bit addressing */
4921	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4922			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4923		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4924		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4925	} else {
4926		/*
4927		 * This is to avoid error in cases where a 32-bit USB
4928		 * controller is used on a 64-bit capable system.
4929		 */
4930		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4931		if (retval)
4932			return retval;
4933		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4934		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4935	}
4936
4937	xhci_dbg(xhci, "Calling HCD init\n");
4938	/* Initialize HCD and host controller data structures. */
4939	retval = xhci_init(hcd);
4940	if (retval)
4941		return retval;
4942	xhci_dbg(xhci, "Called HCD init\n");
4943
4944	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4945		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4946
4947	return 0;
4948}
4949EXPORT_SYMBOL_GPL(xhci_gen_setup);
4950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4951static const struct hc_driver xhci_hc_driver = {
4952	.description =		"xhci-hcd",
4953	.product_desc =		"xHCI Host Controller",
4954	.hcd_priv_size =	sizeof(struct xhci_hcd),
4955
4956	/*
4957	 * generic hardware linkage
4958	 */
4959	.irq =			xhci_irq,
4960	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4961
4962	/*
4963	 * basic lifecycle operations
4964	 */
4965	.reset =		NULL, /* set in xhci_init_driver() */
4966	.start =		xhci_run,
4967	.stop =			xhci_stop,
4968	.shutdown =		xhci_shutdown,
4969
4970	/*
4971	 * managing i/o requests and associated device resources
4972	 */
 
4973	.urb_enqueue =		xhci_urb_enqueue,
4974	.urb_dequeue =		xhci_urb_dequeue,
4975	.alloc_dev =		xhci_alloc_dev,
4976	.free_dev =		xhci_free_dev,
4977	.alloc_streams =	xhci_alloc_streams,
4978	.free_streams =		xhci_free_streams,
4979	.add_endpoint =		xhci_add_endpoint,
4980	.drop_endpoint =	xhci_drop_endpoint,
 
4981	.endpoint_reset =	xhci_endpoint_reset,
4982	.check_bandwidth =	xhci_check_bandwidth,
4983	.reset_bandwidth =	xhci_reset_bandwidth,
4984	.address_device =	xhci_address_device,
4985	.enable_device =	xhci_enable_device,
4986	.update_hub_device =	xhci_update_hub_device,
4987	.reset_device =		xhci_discover_or_reset_device,
4988
4989	/*
4990	 * scheduling support
4991	 */
4992	.get_frame_number =	xhci_get_frame,
4993
4994	/*
4995	 * root hub support
4996	 */
4997	.hub_control =		xhci_hub_control,
4998	.hub_status_data =	xhci_hub_status_data,
4999	.bus_suspend =		xhci_bus_suspend,
5000	.bus_resume =		xhci_bus_resume,
 
5001
5002	/*
5003	 * call back when device connected and addressed
5004	 */
5005	.update_device =        xhci_update_device,
5006	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5007	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5008	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5009	.find_raw_port_number =	xhci_find_raw_port_number,
 
5010};
5011
5012void xhci_init_driver(struct hc_driver *drv,
5013		      const struct xhci_driver_overrides *over)
5014{
5015	BUG_ON(!over);
5016
5017	/* Copy the generic table to drv then apply the overrides */
5018	*drv = xhci_hc_driver;
5019
5020	if (over) {
5021		drv->hcd_priv_size += over->extra_priv_size;
5022		if (over->reset)
5023			drv->reset = over->reset;
5024		if (over->start)
5025			drv->start = over->start;
5026	}
5027}
5028EXPORT_SYMBOL_GPL(xhci_init_driver);
5029
5030MODULE_DESCRIPTION(DRIVER_DESC);
5031MODULE_AUTHOR(DRIVER_AUTHOR);
5032MODULE_LICENSE("GPL");
5033
5034static int __init xhci_hcd_init(void)
5035{
5036	/*
5037	 * Check the compiler generated sizes of structures that must be laid
5038	 * out in specific ways for hardware access.
5039	 */
5040	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5041	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5042	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5043	/* xhci_device_control has eight fields, and also
5044	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5045	 */
5046	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5047	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5048	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5049	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5050	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5051	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5052	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5053
5054	if (usb_disabled())
5055		return -ENODEV;
5056
 
 
5057	return 0;
5058}
5059
5060/*
5061 * If an init function is provided, an exit function must also be provided
5062 * to allow module unload.
5063 */
5064static void __exit xhci_hcd_fini(void) { }
 
 
 
5065
5066module_init(xhci_hcd_init);
5067module_exit(xhci_hcd_fini);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-mtk.h"
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, usec);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
 
 
 
  82}
  83
  84/*
  85 * Disable interrupts and begin the xHCI halting process.
  86 */
  87void xhci_quiesce(struct xhci_hcd *xhci)
  88{
  89	u32 halted;
  90	u32 cmd;
  91	u32 mask;
  92
  93	mask = ~(XHCI_IRQS);
  94	halted = readl(&xhci->op_regs->status) & STS_HALT;
  95	if (!halted)
  96		mask &= ~CMD_RUN;
  97
  98	cmd = readl(&xhci->op_regs->command);
  99	cmd &= mask;
 100	writel(cmd, &xhci->op_regs->command);
 101}
 102
 103/*
 104 * Force HC into halt state.
 105 *
 106 * Disable any IRQs and clear the run/stop bit.
 107 * HC will complete any current and actively pipelined transactions, and
 108 * should halt within 16 ms of the run/stop bit being cleared.
 109 * Read HC Halted bit in the status register to see when the HC is finished.
 110 */
 111int xhci_halt(struct xhci_hcd *xhci)
 112{
 113	int ret;
 114	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 115	xhci_quiesce(xhci);
 116
 117	ret = xhci_handshake(&xhci->op_regs->status,
 118			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 119	if (ret) {
 120		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 121		return ret;
 122	}
 123	xhci->xhc_state |= XHCI_STATE_HALTED;
 124	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 125	return ret;
 126}
 127
 128/*
 129 * Set the run bit and wait for the host to be running.
 130 */
 131int xhci_start(struct xhci_hcd *xhci)
 132{
 133	u32 temp;
 134	int ret;
 135
 136	temp = readl(&xhci->op_regs->command);
 137	temp |= (CMD_RUN);
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 139			temp);
 140	writel(temp, &xhci->op_regs->command);
 141
 142	/*
 143	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 144	 * running.
 145	 */
 146	ret = xhci_handshake(&xhci->op_regs->status,
 147			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 148	if (ret == -ETIMEDOUT)
 149		xhci_err(xhci, "Host took too long to start, "
 150				"waited %u microseconds.\n",
 151				XHCI_MAX_HALT_USEC);
 152	if (!ret)
 153		/* clear state flags. Including dying, halted or removing */
 154		xhci->xhc_state = 0;
 155
 156	return ret;
 157}
 158
 159/*
 160 * Reset a halted HC.
 161 *
 162 * This resets pipelines, timers, counters, state machines, etc.
 163 * Transactions will be terminated immediately, and operational registers
 164 * will be set to their defaults.
 165 */
 166int xhci_reset(struct xhci_hcd *xhci)
 167{
 168	u32 command;
 169	u32 state;
 170	int ret;
 171
 172	state = readl(&xhci->op_regs->status);
 173
 174	if (state == ~(u32)0) {
 175		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 176		return -ENODEV;
 177	}
 178
 179	if ((state & STS_HALT) == 0) {
 180		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 181		return 0;
 182	}
 183
 184	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 185	command = readl(&xhci->op_regs->command);
 186	command |= CMD_RESET;
 187	writel(command, &xhci->op_regs->command);
 188
 189	/* Existing Intel xHCI controllers require a delay of 1 mS,
 190	 * after setting the CMD_RESET bit, and before accessing any
 191	 * HC registers. This allows the HC to complete the
 192	 * reset operation and be ready for HC register access.
 193	 * Without this delay, the subsequent HC register access,
 194	 * may result in a system hang very rarely.
 195	 */
 196	if (xhci->quirks & XHCI_INTEL_HOST)
 197		udelay(1000);
 198
 199	ret = xhci_handshake(&xhci->op_regs->command,
 200			CMD_RESET, 0, 10 * 1000 * 1000);
 201	if (ret)
 202		return ret;
 203
 204	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 205		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 206
 207	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 208			 "Wait for controller to be ready for doorbell rings");
 209	/*
 210	 * xHCI cannot write to any doorbells or operational registers other
 211	 * than status until the "Controller Not Ready" flag is cleared.
 212	 */
 213	ret = xhci_handshake(&xhci->op_regs->status,
 214			STS_CNR, 0, 10 * 1000 * 1000);
 215
 216	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 217	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 218	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 219	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 220	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 221	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 222
 223	return ret;
 224}
 225
 226static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 
 227{
 228	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 229	int err, i;
 230	u64 val;
 231
 232	/*
 233	 * Some Renesas controllers get into a weird state if they are
 234	 * reset while programmed with 64bit addresses (they will preserve
 235	 * the top half of the address in internal, non visible
 236	 * registers). You end up with half the address coming from the
 237	 * kernel, and the other half coming from the firmware. Also,
 238	 * changing the programming leads to extra accesses even if the
 239	 * controller is supposed to be halted. The controller ends up with
 240	 * a fatal fault, and is then ripe for being properly reset.
 241	 *
 242	 * Special care is taken to only apply this if the device is behind
 243	 * an iommu. Doing anything when there is no iommu is definitely
 244	 * unsafe...
 245	 */
 246	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 247		return;
 248
 249	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 250
 251	/* Clear HSEIE so that faults do not get signaled */
 252	val = readl(&xhci->op_regs->command);
 253	val &= ~CMD_HSEIE;
 254	writel(val, &xhci->op_regs->command);
 255
 256	/* Clear HSE (aka FATAL) */
 257	val = readl(&xhci->op_regs->status);
 258	val |= STS_FATAL;
 259	writel(val, &xhci->op_regs->status);
 260
 261	/* Now zero the registers, and brace for impact */
 262	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 263	if (upper_32_bits(val))
 264		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 265	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 268
 269	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
 270		struct xhci_intr_reg __iomem *ir;
 271
 272		ir = &xhci->run_regs->ir_set[i];
 273		val = xhci_read_64(xhci, &ir->erst_base);
 274		if (upper_32_bits(val))
 275			xhci_write_64(xhci, 0, &ir->erst_base);
 276		val= xhci_read_64(xhci, &ir->erst_dequeue);
 277		if (upper_32_bits(val))
 278			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 279	}
 280
 281	/* Wait for the fault to appear. It will be cleared on reset */
 282	err = xhci_handshake(&xhci->op_regs->status,
 283			     STS_FATAL, STS_FATAL,
 284			     XHCI_MAX_HALT_USEC);
 285	if (!err)
 286		xhci_info(xhci, "Fault detected\n");
 287}
 288
 289#ifdef CONFIG_USB_PCI
 290/*
 291 * Set up MSI
 292 */
 293static int xhci_setup_msi(struct xhci_hcd *xhci)
 294{
 295	int ret;
 296	/*
 297	 * TODO:Check with MSI Soc for sysdev
 298	 */
 299	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 300
 301	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 302	if (ret < 0) {
 303		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 304				"failed to allocate MSI entry");
 305		return ret;
 306	}
 307
 308	ret = request_irq(pdev->irq, xhci_msi_irq,
 309				0, "xhci_hcd", xhci_to_hcd(xhci));
 310	if (ret) {
 311		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 312				"disable MSI interrupt");
 313		pci_free_irq_vectors(pdev);
 314	}
 315
 316	return ret;
 317}
 318
 319/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320 * Set up MSI-X
 321 */
 322static int xhci_setup_msix(struct xhci_hcd *xhci)
 323{
 324	int i, ret = 0;
 325	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 326	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 327
 328	/*
 329	 * calculate number of msi-x vectors supported.
 330	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 331	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 332	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 333	 *   Add additional 1 vector to ensure always available interrupt.
 334	 */
 335	xhci->msix_count = min(num_online_cpus() + 1,
 336				HCS_MAX_INTRS(xhci->hcs_params1));
 337
 338	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 339			PCI_IRQ_MSIX);
 340	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
 341		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 342				"Failed to enable MSI-X");
 343		return ret;
 344	}
 345
 346	for (i = 0; i < xhci->msix_count; i++) {
 347		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 348				"xhci_hcd", xhci_to_hcd(xhci));
 
 349		if (ret)
 350			goto disable_msix;
 351	}
 352
 353	hcd->msix_enabled = 1;
 354	return ret;
 355
 356disable_msix:
 357	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 358	while (--i >= 0)
 359		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 360	pci_free_irq_vectors(pdev);
 
 
 361	return ret;
 362}
 363
 364/* Free any IRQs and disable MSI-X */
 365static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 366{
 367	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 368	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 369
 370	if (xhci->quirks & XHCI_PLAT)
 371		return;
 372
 373	/* return if using legacy interrupt */
 374	if (hcd->irq > 0)
 375		return;
 376
 377	if (hcd->msix_enabled) {
 378		int i;
 379
 380		for (i = 0; i < xhci->msix_count; i++)
 381			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 
 
 382	} else {
 383		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 384	}
 385
 386	pci_free_irq_vectors(pdev);
 387	hcd->msix_enabled = 0;
 
 388}
 389
 390static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 391{
 392	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 393
 394	if (hcd->msix_enabled) {
 395		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 396		int i;
 397
 
 398		for (i = 0; i < xhci->msix_count; i++)
 399			synchronize_irq(pci_irq_vector(pdev, i));
 400	}
 401}
 402
 403static int xhci_try_enable_msi(struct usb_hcd *hcd)
 404{
 405	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 406	struct pci_dev  *pdev;
 407	int ret;
 408
 409	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 410	if (xhci->quirks & XHCI_PLAT)
 411		return 0;
 412
 413	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 414	/*
 415	 * Some Fresco Logic host controllers advertise MSI, but fail to
 416	 * generate interrupts.  Don't even try to enable MSI.
 417	 */
 418	if (xhci->quirks & XHCI_BROKEN_MSI)
 419		goto legacy_irq;
 420
 421	/* unregister the legacy interrupt */
 422	if (hcd->irq)
 423		free_irq(hcd->irq, hcd);
 424	hcd->irq = 0;
 425
 426	ret = xhci_setup_msix(xhci);
 427	if (ret)
 428		/* fall back to msi*/
 429		ret = xhci_setup_msi(xhci);
 430
 431	if (!ret) {
 432		hcd->msi_enabled = 1;
 433		return 0;
 434	}
 435
 436	if (!pdev->irq) {
 437		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 438		return -EINVAL;
 439	}
 440
 441 legacy_irq:
 442	if (!strlen(hcd->irq_descr))
 443		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 444			 hcd->driver->description, hcd->self.busnum);
 445
 446	/* fall back to legacy interrupt*/
 447	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 448			hcd->irq_descr, hcd);
 449	if (ret) {
 450		xhci_err(xhci, "request interrupt %d failed\n",
 451				pdev->irq);
 452		return ret;
 453	}
 454	hcd->irq = pdev->irq;
 455	return 0;
 456}
 457
 458#else
 459
 460static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 461{
 462	return 0;
 463}
 464
 465static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 466{
 467}
 468
 469static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 470{
 471}
 472
 473#endif
 474
 475static void compliance_mode_recovery(struct timer_list *t)
 476{
 477	struct xhci_hcd *xhci;
 478	struct usb_hcd *hcd;
 479	struct xhci_hub *rhub;
 480	u32 temp;
 481	int i;
 482
 483	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 484	rhub = &xhci->usb3_rhub;
 485
 486	for (i = 0; i < rhub->num_ports; i++) {
 487		temp = readl(rhub->ports[i]->addr);
 488		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 489			/*
 490			 * Compliance Mode Detected. Letting USB Core
 491			 * handle the Warm Reset
 492			 */
 493			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 494					"Compliance mode detected->port %d",
 495					i + 1);
 496			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497					"Attempting compliance mode recovery");
 498			hcd = xhci->shared_hcd;
 499
 500			if (hcd->state == HC_STATE_SUSPENDED)
 501				usb_hcd_resume_root_hub(hcd);
 502
 503			usb_hcd_poll_rh_status(hcd);
 504		}
 505	}
 506
 507	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 508		mod_timer(&xhci->comp_mode_recovery_timer,
 509			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 510}
 511
 512/*
 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 514 * that causes ports behind that hardware to enter compliance mode sometimes.
 515 * The quirk creates a timer that polls every 2 seconds the link state of
 516 * each host controller's port and recovers it by issuing a Warm reset
 517 * if Compliance mode is detected, otherwise the port will become "dead" (no
 518 * device connections or disconnections will be detected anymore). Becasue no
 519 * status event is generated when entering compliance mode (per xhci spec),
 520 * this quirk is needed on systems that have the failing hardware installed.
 521 */
 522static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 523{
 524	xhci->port_status_u0 = 0;
 525	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 526		    0);
 527	xhci->comp_mode_recovery_timer.expires = jiffies +
 528			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 529
 530	add_timer(&xhci->comp_mode_recovery_timer);
 531	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 532			"Compliance mode recovery timer initialized");
 533}
 534
 535/*
 536 * This function identifies the systems that have installed the SN65LVPE502CP
 537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 538 * Systems:
 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 540 */
 541static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 542{
 543	const char *dmi_product_name, *dmi_sys_vendor;
 544
 545	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 546	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 547	if (!dmi_product_name || !dmi_sys_vendor)
 548		return false;
 549
 550	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 551		return false;
 552
 553	if (strstr(dmi_product_name, "Z420") ||
 554			strstr(dmi_product_name, "Z620") ||
 555			strstr(dmi_product_name, "Z820") ||
 556			strstr(dmi_product_name, "Z1 Workstation"))
 557		return true;
 558
 559	return false;
 560}
 561
 562static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 563{
 564	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 565}
 566
 567
 568/*
 569 * Initialize memory for HCD and xHC (one-time init).
 570 *
 571 * Program the PAGESIZE register, initialize the device context array, create
 572 * device contexts (?), set up a command ring segment (or two?), create event
 573 * ring (one for now).
 574 */
 575static int xhci_init(struct usb_hcd *hcd)
 576{
 577	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 578	int retval = 0;
 579
 580	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 581	spin_lock_init(&xhci->lock);
 582	if (xhci->hci_version == 0x95 && link_quirk) {
 583		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 584				"QUIRK: Not clearing Link TRB chain bits.");
 585		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 586	} else {
 587		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 588				"xHCI doesn't need link TRB QUIRK");
 589	}
 590	retval = xhci_mem_init(xhci, GFP_KERNEL);
 591	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 592
 593	/* Initializing Compliance Mode Recovery Data If Needed */
 594	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 595		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 596		compliance_mode_recovery_timer_init(xhci);
 597	}
 598
 599	return retval;
 600}
 601
 602/*-------------------------------------------------------------------------*/
 603
 604
 605static int xhci_run_finished(struct xhci_hcd *xhci)
 606{
 607	if (xhci_start(xhci)) {
 608		xhci_halt(xhci);
 609		return -ENODEV;
 610	}
 611	xhci->shared_hcd->state = HC_STATE_RUNNING;
 612	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 613
 614	if (xhci->quirks & XHCI_NEC_HOST)
 615		xhci_ring_cmd_db(xhci);
 616
 617	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 618			"Finished xhci_run for USB3 roothub");
 619	return 0;
 620}
 621
 622/*
 623 * Start the HC after it was halted.
 624 *
 625 * This function is called by the USB core when the HC driver is added.
 626 * Its opposite is xhci_stop().
 627 *
 628 * xhci_init() must be called once before this function can be called.
 629 * Reset the HC, enable device slot contexts, program DCBAAP, and
 630 * set command ring pointer and event ring pointer.
 631 *
 632 * Setup MSI-X vectors and enable interrupts.
 633 */
 634int xhci_run(struct usb_hcd *hcd)
 635{
 636	u32 temp;
 637	u64 temp_64;
 638	int ret;
 639	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 640
 641	/* Start the xHCI host controller running only after the USB 2.0 roothub
 642	 * is setup.
 643	 */
 644
 645	hcd->uses_new_polling = 1;
 646	if (!usb_hcd_is_primary_hcd(hcd))
 647		return xhci_run_finished(xhci);
 648
 649	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 650
 651	ret = xhci_try_enable_msi(hcd);
 652	if (ret)
 653		return ret;
 654
 
 
 
 
 
 
 
 
 
 
 655	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 656	temp_64 &= ~ERST_PTR_MASK;
 657	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 658			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 659
 660	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 661			"// Set the interrupt modulation register");
 662	temp = readl(&xhci->ir_set->irq_control);
 663	temp &= ~ER_IRQ_INTERVAL_MASK;
 664	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 
 
 
 
 665	writel(temp, &xhci->ir_set->irq_control);
 666
 667	/* Set the HCD state before we enable the irqs */
 668	temp = readl(&xhci->op_regs->command);
 669	temp |= (CMD_EIE);
 670	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 671			"// Enable interrupts, cmd = 0x%x.", temp);
 672	writel(temp, &xhci->op_regs->command);
 673
 674	temp = readl(&xhci->ir_set->irq_pending);
 675	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 676			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 677			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 678	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 679
 680	if (xhci->quirks & XHCI_NEC_HOST) {
 681		struct xhci_command *command;
 682
 683		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 684		if (!command)
 685			return -ENOMEM;
 686
 687		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 688				TRB_TYPE(TRB_NEC_GET_FW));
 689		if (ret)
 690			xhci_free_command(xhci, command);
 691	}
 692	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 693			"Finished xhci_run for USB2 roothub");
 694
 695	xhci_dbc_init(xhci);
 696
 697	xhci_debugfs_init(xhci);
 698
 699	return 0;
 700}
 701EXPORT_SYMBOL_GPL(xhci_run);
 702
 703/*
 704 * Stop xHCI driver.
 705 *
 706 * This function is called by the USB core when the HC driver is removed.
 707 * Its opposite is xhci_run().
 708 *
 709 * Disable device contexts, disable IRQs, and quiesce the HC.
 710 * Reset the HC, finish any completed transactions, and cleanup memory.
 711 */
 712static void xhci_stop(struct usb_hcd *hcd)
 713{
 714	u32 temp;
 715	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 716
 717	mutex_lock(&xhci->mutex);
 718
 719	/* Only halt host and free memory after both hcds are removed */
 
 
 
 
 
 
 
 
 
 720	if (!usb_hcd_is_primary_hcd(hcd)) {
 721		mutex_unlock(&xhci->mutex);
 722		return;
 723	}
 724
 725	xhci_dbc_exit(xhci);
 726
 727	spin_lock_irq(&xhci->lock);
 728	xhci->xhc_state |= XHCI_STATE_HALTED;
 729	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 730	xhci_halt(xhci);
 731	xhci_reset(xhci);
 732	spin_unlock_irq(&xhci->lock);
 733
 734	xhci_cleanup_msix(xhci);
 735
 736	/* Deleting Compliance Mode Recovery Timer */
 737	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 738			(!(xhci_all_ports_seen_u0(xhci)))) {
 739		del_timer_sync(&xhci->comp_mode_recovery_timer);
 740		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 741				"%s: compliance mode recovery timer deleted",
 742				__func__);
 743	}
 744
 745	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 746		usb_amd_dev_put();
 747
 748	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 749			"// Disabling event ring interrupts");
 750	temp = readl(&xhci->op_regs->status);
 751	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 752	temp = readl(&xhci->ir_set->irq_pending);
 753	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
 754
 755	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 756	xhci_mem_cleanup(xhci);
 757	xhci_debugfs_exit(xhci);
 758	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 759			"xhci_stop completed - status = %x",
 760			readl(&xhci->op_regs->status));
 761	mutex_unlock(&xhci->mutex);
 762}
 763
 764/*
 765 * Shutdown HC (not bus-specific)
 766 *
 767 * This is called when the machine is rebooting or halting.  We assume that the
 768 * machine will be powered off, and the HC's internal state will be reset.
 769 * Don't bother to free memory.
 770 *
 771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 772 */
 773static void xhci_shutdown(struct usb_hcd *hcd)
 774{
 775	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 776
 777	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 778		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 779
 780	spin_lock_irq(&xhci->lock);
 781	xhci_halt(xhci);
 782	/* Workaround for spurious wakeups at shutdown with HSW */
 783	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 784		xhci_reset(xhci);
 785	spin_unlock_irq(&xhci->lock);
 786
 787	xhci_cleanup_msix(xhci);
 788
 789	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 790			"xhci_shutdown completed - status = %x",
 791			readl(&xhci->op_regs->status));
 792
 793	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 794	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 795		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
 796}
 797
 798#ifdef CONFIG_PM
 799static void xhci_save_registers(struct xhci_hcd *xhci)
 800{
 801	xhci->s3.command = readl(&xhci->op_regs->command);
 802	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 803	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 804	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 805	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 806	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 807	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 808	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 809	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 810}
 811
 812static void xhci_restore_registers(struct xhci_hcd *xhci)
 813{
 814	writel(xhci->s3.command, &xhci->op_regs->command);
 815	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 816	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 817	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 818	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 819	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 820	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 821	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 822	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 823}
 824
 825static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 826{
 827	u64	val_64;
 828
 829	/* step 2: initialize command ring buffer */
 830	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 831	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 832		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 833				      xhci->cmd_ring->dequeue) &
 834		 (u64) ~CMD_RING_RSVD_BITS) |
 835		xhci->cmd_ring->cycle_state;
 836	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 837			"// Setting command ring address to 0x%llx",
 838			(long unsigned long) val_64);
 839	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 840}
 841
 842/*
 843 * The whole command ring must be cleared to zero when we suspend the host.
 844 *
 845 * The host doesn't save the command ring pointer in the suspend well, so we
 846 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 847 * aligned, because of the reserved bits in the command ring dequeue pointer
 848 * register.  Therefore, we can't just set the dequeue pointer back in the
 849 * middle of the ring (TRBs are 16-byte aligned).
 850 */
 851static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 852{
 853	struct xhci_ring *ring;
 854	struct xhci_segment *seg;
 855
 856	ring = xhci->cmd_ring;
 857	seg = ring->deq_seg;
 858	do {
 859		memset(seg->trbs, 0,
 860			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 861		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 862			cpu_to_le32(~TRB_CYCLE);
 863		seg = seg->next;
 864	} while (seg != ring->deq_seg);
 865
 866	/* Reset the software enqueue and dequeue pointers */
 867	ring->deq_seg = ring->first_seg;
 868	ring->dequeue = ring->first_seg->trbs;
 869	ring->enq_seg = ring->deq_seg;
 870	ring->enqueue = ring->dequeue;
 871
 872	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 873	/*
 874	 * Ring is now zeroed, so the HW should look for change of ownership
 875	 * when the cycle bit is set to 1.
 876	 */
 877	ring->cycle_state = 1;
 878
 879	/*
 880	 * Reset the hardware dequeue pointer.
 881	 * Yes, this will need to be re-written after resume, but we're paranoid
 882	 * and want to make sure the hardware doesn't access bogus memory
 883	 * because, say, the BIOS or an SMI started the host without changing
 884	 * the command ring pointers.
 885	 */
 886	xhci_set_cmd_ring_deq(xhci);
 887}
 888
 889static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 890{
 891	struct xhci_port **ports;
 892	int port_index;
 
 893	unsigned long flags;
 894	u32 t1, t2, portsc;
 895
 896	spin_lock_irqsave(&xhci->lock, flags);
 897
 898	/* disable usb3 ports Wake bits */
 899	port_index = xhci->usb3_rhub.num_ports;
 900	ports = xhci->usb3_rhub.ports;
 901	while (port_index--) {
 902		t1 = readl(ports[port_index]->addr);
 903		portsc = t1;
 904		t1 = xhci_port_state_to_neutral(t1);
 905		t2 = t1 & ~PORT_WAKE_BITS;
 906		if (t1 != t2) {
 907			writel(t2, ports[port_index]->addr);
 908			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 909				 xhci->usb3_rhub.hcd->self.busnum,
 910				 port_index + 1, portsc, t2);
 911		}
 912	}
 913
 914	/* disable usb2 ports Wake bits */
 915	port_index = xhci->usb2_rhub.num_ports;
 916	ports = xhci->usb2_rhub.ports;
 917	while (port_index--) {
 918		t1 = readl(ports[port_index]->addr);
 919		portsc = t1;
 920		t1 = xhci_port_state_to_neutral(t1);
 921		t2 = t1 & ~PORT_WAKE_BITS;
 922		if (t1 != t2) {
 923			writel(t2, ports[port_index]->addr);
 924			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
 925				 xhci->usb2_rhub.hcd->self.busnum,
 926				 port_index + 1, portsc, t2);
 927		}
 928	}
 
 929	spin_unlock_irqrestore(&xhci->lock, flags);
 930}
 931
 932static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 933{
 934	struct xhci_port	**ports;
 935	int			port_index;
 936	u32			status;
 937	u32			portsc;
 938
 939	status = readl(&xhci->op_regs->status);
 940	if (status & STS_EINT)
 941		return true;
 942	/*
 943	 * Checking STS_EINT is not enough as there is a lag between a change
 944	 * bit being set and the Port Status Change Event that it generated
 945	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 946	 */
 947
 948	port_index = xhci->usb2_rhub.num_ports;
 949	ports = xhci->usb2_rhub.ports;
 950	while (port_index--) {
 951		portsc = readl(ports[port_index]->addr);
 952		if (portsc & PORT_CHANGE_MASK ||
 953		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 954			return true;
 955	}
 956	port_index = xhci->usb3_rhub.num_ports;
 957	ports = xhci->usb3_rhub.ports;
 958	while (port_index--) {
 959		portsc = readl(ports[port_index]->addr);
 960		if (portsc & PORT_CHANGE_MASK ||
 961		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 962			return true;
 963	}
 964	return false;
 965}
 966
 967/*
 968 * Stop HC (not bus-specific)
 969 *
 970 * This is called when the machine transition into S3/S4 mode.
 971 *
 972 */
 973int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 974{
 975	int			rc = 0;
 976	unsigned int		delay = XHCI_MAX_HALT_USEC;
 977	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 978	u32			command;
 979	u32			res;
 980
 981	if (!hcd->state)
 982		return 0;
 983
 984	if (hcd->state != HC_STATE_SUSPENDED ||
 985			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 986		return -EINVAL;
 987
 988	xhci_dbc_suspend(xhci);
 989
 990	/* Clear root port wake on bits if wakeup not allowed. */
 991	if (!do_wakeup)
 992		xhci_disable_port_wake_on_bits(xhci);
 993
 994	/* Don't poll the roothubs on bus suspend. */
 995	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 996	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 997	del_timer_sync(&hcd->rh_timer);
 998	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 999	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002		usleep_range(1000, 1500);
1003
1004	spin_lock_irq(&xhci->lock);
1005	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007	/* step 1: stop endpoint */
1008	/* skipped assuming that port suspend has done */
1009
1010	/* step 2: clear Run/Stop bit */
1011	command = readl(&xhci->op_regs->command);
1012	command &= ~CMD_RUN;
1013	writel(command, &xhci->op_regs->command);
1014
1015	/* Some chips from Fresco Logic need an extraordinary delay */
1016	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018	if (xhci_handshake(&xhci->op_regs->status,
1019		      STS_HALT, STS_HALT, delay)) {
1020		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021		spin_unlock_irq(&xhci->lock);
1022		return -ETIMEDOUT;
1023	}
1024	xhci_clear_command_ring(xhci);
1025
1026	/* step 3: save registers */
1027	xhci_save_registers(xhci);
1028
1029	/* step 4: set CSS flag */
1030	command = readl(&xhci->op_regs->command);
1031	command |= CMD_CSS;
1032	writel(command, &xhci->op_regs->command);
1033	xhci->broken_suspend = 0;
1034	if (xhci_handshake(&xhci->op_regs->status,
1035				STS_SAVE, 0, 20 * 1000)) {
1036	/*
1037	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038	 * SSS bit of USBSTS and when driver tries to poll
1039	 * to see if the xHC clears BIT(8) which never happens
1040	 * and driver assumes that controller is not responding
1041	 * and times out. To workaround this, its good to check
1042	 * if SRE and HCE bits are not set (as per xhci
1043	 * Section 5.4.2) and bypass the timeout.
1044	 */
1045		res = readl(&xhci->op_regs->status);
1046		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047		    (((res & STS_SRE) == 0) &&
1048				((res & STS_HCE) == 0))) {
1049			xhci->broken_suspend = 1;
1050		} else {
1051			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052			spin_unlock_irq(&xhci->lock);
1053			return -ETIMEDOUT;
1054		}
1055	}
1056	spin_unlock_irq(&xhci->lock);
1057
1058	/*
1059	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060	 * is about to be suspended.
1061	 */
1062	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063			(!(xhci_all_ports_seen_u0(xhci)))) {
1064		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066				"%s: compliance mode recovery timer deleted",
1067				__func__);
1068	}
1069
1070	/* step 5: remove core well power */
1071	/* synchronize irq when using MSI-X */
1072	xhci_msix_sync_irqs(xhci);
1073
1074	return rc;
1075}
1076EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078/*
1079 * start xHC (not bus-specific)
1080 *
1081 * This is called when the machine transition from S3/S4 mode.
1082 *
1083 */
1084int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085{
1086	u32			command, temp = 0;
1087	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088	struct usb_hcd		*secondary_hcd;
1089	int			retval = 0;
1090	bool			comp_timer_running = false;
1091
1092	if (!hcd->state)
1093		return 0;
1094
1095	/* Wait a bit if either of the roothubs need to settle from the
1096	 * transition into bus suspend.
1097	 */
1098
1099	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101		msleep(100);
1102
1103	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106	spin_lock_irq(&xhci->lock);
1107	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108		hibernated = true;
1109
1110	if (!hibernated) {
1111		/*
1112		 * Some controllers might lose power during suspend, so wait
1113		 * for controller not ready bit to clear, just as in xHC init.
1114		 */
1115		retval = xhci_handshake(&xhci->op_regs->status,
1116					STS_CNR, 0, 10 * 1000 * 1000);
1117		if (retval) {
1118			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119				  retval);
1120			spin_unlock_irq(&xhci->lock);
1121			return retval;
1122		}
1123		/* step 1: restore register */
1124		xhci_restore_registers(xhci);
1125		/* step 2: initialize command ring buffer */
1126		xhci_set_cmd_ring_deq(xhci);
1127		/* step 3: restore state and start state*/
1128		/* step 3: set CRS flag */
1129		command = readl(&xhci->op_regs->command);
1130		command |= CMD_CRS;
1131		writel(command, &xhci->op_regs->command);
1132		/*
1133		 * Some controllers take up to 55+ ms to complete the controller
1134		 * restore so setting the timeout to 100ms. Xhci specification
1135		 * doesn't mention any timeout value.
1136		 */
1137		if (xhci_handshake(&xhci->op_regs->status,
1138			      STS_RESTORE, 0, 100 * 1000)) {
1139			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140			spin_unlock_irq(&xhci->lock);
1141			return -ETIMEDOUT;
1142		}
1143		temp = readl(&xhci->op_regs->status);
1144	}
1145
1146	/* If restore operation fails, re-initialize the HC during resume */
1147	if ((temp & STS_SRE) || hibernated) {
1148
1149		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150				!(xhci_all_ports_seen_u0(xhci))) {
1151			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153				"Compliance Mode Recovery Timer deleted!");
1154		}
1155
1156		/* Let the USB core know _both_ roothubs lost power. */
1157		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160		xhci_dbg(xhci, "Stop HCD\n");
1161		xhci_halt(xhci);
1162		xhci_zero_64b_regs(xhci);
1163		xhci_reset(xhci);
1164		spin_unlock_irq(&xhci->lock);
1165		xhci_cleanup_msix(xhci);
1166
1167		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1168		temp = readl(&xhci->op_regs->status);
1169		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1170		temp = readl(&xhci->ir_set->irq_pending);
1171		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
1172
1173		xhci_dbg(xhci, "cleaning up memory\n");
1174		xhci_mem_cleanup(xhci);
1175		xhci_debugfs_exit(xhci);
1176		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1177			    readl(&xhci->op_regs->status));
1178
1179		/* USB core calls the PCI reinit and start functions twice:
1180		 * first with the primary HCD, and then with the secondary HCD.
1181		 * If we don't do the same, the host will never be started.
1182		 */
1183		if (!usb_hcd_is_primary_hcd(hcd))
1184			secondary_hcd = hcd;
1185		else
1186			secondary_hcd = xhci->shared_hcd;
1187
1188		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1189		retval = xhci_init(hcd->primary_hcd);
1190		if (retval)
1191			return retval;
1192		comp_timer_running = true;
1193
1194		xhci_dbg(xhci, "Start the primary HCD\n");
1195		retval = xhci_run(hcd->primary_hcd);
1196		if (!retval) {
1197			xhci_dbg(xhci, "Start the secondary HCD\n");
1198			retval = xhci_run(secondary_hcd);
1199		}
1200		hcd->state = HC_STATE_SUSPENDED;
1201		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1202		goto done;
1203	}
1204
1205	/* step 4: set Run/Stop bit */
1206	command = readl(&xhci->op_regs->command);
1207	command |= CMD_RUN;
1208	writel(command, &xhci->op_regs->command);
1209	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1210		  0, 250 * 1000);
1211
1212	/* step 5: walk topology and initialize portsc,
1213	 * portpmsc and portli
1214	 */
1215	/* this is done in bus_resume */
1216
1217	/* step 6: restart each of the previously
1218	 * Running endpoints by ringing their doorbells
1219	 */
1220
1221	spin_unlock_irq(&xhci->lock);
1222
1223	xhci_dbc_resume(xhci);
1224
1225 done:
1226	if (retval == 0) {
1227		/* Resume root hubs only when have pending events. */
1228		if (xhci_pending_portevent(xhci)) {
 
1229			usb_hcd_resume_root_hub(xhci->shared_hcd);
1230			usb_hcd_resume_root_hub(hcd);
1231		}
1232	}
1233
1234	/*
1235	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1236	 * be re-initialized Always after a system resume. Ports are subject
1237	 * to suffer the Compliance Mode issue again. It doesn't matter if
1238	 * ports have entered previously to U0 before system's suspension.
1239	 */
1240	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1241		compliance_mode_recovery_timer_init(xhci);
1242
1243	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1244		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1245
1246	/* Re-enable port polling. */
1247	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1248	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1249	usb_hcd_poll_rh_status(xhci->shared_hcd);
1250	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1251	usb_hcd_poll_rh_status(hcd);
1252
1253	return retval;
1254}
1255EXPORT_SYMBOL_GPL(xhci_resume);
1256#endif	/* CONFIG_PM */
1257
1258/*-------------------------------------------------------------------------*/
1259
1260/*
1261 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1262 * we'll copy the actual data into the TRB address register. This is limited to
1263 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1264 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1265 */
1266static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1267				gfp_t mem_flags)
1268{
1269	if (xhci_urb_suitable_for_idt(urb))
1270		return 0;
1271
1272	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1273}
1274
1275/**
1276 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1277 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1278 * value to right shift 1 for the bitmask.
1279 *
1280 * Index  = (epnum * 2) + direction - 1,
1281 * where direction = 0 for OUT, 1 for IN.
1282 * For control endpoints, the IN index is used (OUT index is unused), so
1283 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1284 */
1285unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1286{
1287	unsigned int index;
1288	if (usb_endpoint_xfer_control(desc))
1289		index = (unsigned int) (usb_endpoint_num(desc)*2);
1290	else
1291		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1292			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1293	return index;
1294}
1295
1296/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1297 * address from the XHCI endpoint index.
1298 */
1299unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1300{
1301	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1302	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1303	return direction | number;
1304}
1305
1306/* Find the flag for this endpoint (for use in the control context).  Use the
1307 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1308 * bit 1, etc.
1309 */
1310static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1311{
1312	return 1 << (xhci_get_endpoint_index(desc) + 1);
1313}
1314
1315/* Find the flag for this endpoint (for use in the control context).  Use the
1316 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1317 * bit 1, etc.
1318 */
1319static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1320{
1321	return 1 << (ep_index + 1);
1322}
1323
1324/* Compute the last valid endpoint context index.  Basically, this is the
1325 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1326 * we find the most significant bit set in the added contexts flags.
1327 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1328 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1329 */
1330unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1331{
1332	return fls(added_ctxs) - 1;
1333}
1334
1335/* Returns 1 if the arguments are OK;
1336 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1337 */
1338static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1339		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1340		const char *func) {
1341	struct xhci_hcd	*xhci;
1342	struct xhci_virt_device	*virt_dev;
1343
1344	if (!hcd || (check_ep && !ep) || !udev) {
1345		pr_debug("xHCI %s called with invalid args\n", func);
1346		return -EINVAL;
1347	}
1348	if (!udev->parent) {
1349		pr_debug("xHCI %s called for root hub\n", func);
1350		return 0;
1351	}
1352
1353	xhci = hcd_to_xhci(hcd);
1354	if (check_virt_dev) {
1355		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1356			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1357					func);
1358			return -EINVAL;
1359		}
1360
1361		virt_dev = xhci->devs[udev->slot_id];
1362		if (virt_dev->udev != udev) {
1363			xhci_dbg(xhci, "xHCI %s called with udev and "
1364					  "virt_dev does not match\n", func);
1365			return -EINVAL;
1366		}
1367	}
1368
1369	if (xhci->xhc_state & XHCI_STATE_HALTED)
1370		return -ENODEV;
1371
1372	return 1;
1373}
1374
1375static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1376		struct usb_device *udev, struct xhci_command *command,
1377		bool ctx_change, bool must_succeed);
1378
1379/*
1380 * Full speed devices may have a max packet size greater than 8 bytes, but the
1381 * USB core doesn't know that until it reads the first 8 bytes of the
1382 * descriptor.  If the usb_device's max packet size changes after that point,
1383 * we need to issue an evaluate context command and wait on it.
1384 */
1385static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1386		unsigned int ep_index, struct urb *urb)
1387{
1388	struct xhci_container_ctx *out_ctx;
1389	struct xhci_input_control_ctx *ctrl_ctx;
1390	struct xhci_ep_ctx *ep_ctx;
1391	struct xhci_command *command;
1392	int max_packet_size;
1393	int hw_max_packet_size;
1394	int ret = 0;
1395
1396	out_ctx = xhci->devs[slot_id]->out_ctx;
1397	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1398	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1399	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1400	if (hw_max_packet_size != max_packet_size) {
1401		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1402				"Max Packet Size for ep 0 changed.");
1403		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404				"Max packet size in usb_device = %d",
1405				max_packet_size);
1406		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1407				"Max packet size in xHCI HW = %d",
1408				hw_max_packet_size);
1409		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1410				"Issuing evaluate context command.");
1411
1412		/* Set up the input context flags for the command */
1413		/* FIXME: This won't work if a non-default control endpoint
1414		 * changes max packet sizes.
1415		 */
1416
1417		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1418		if (!command)
1419			return -ENOMEM;
1420
1421		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1422		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1423		if (!ctrl_ctx) {
1424			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1425					__func__);
1426			ret = -ENOMEM;
1427			goto command_cleanup;
1428		}
1429		/* Set up the modified control endpoint 0 */
1430		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1431				xhci->devs[slot_id]->out_ctx, ep_index);
1432
1433		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1434		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1435		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1436
1437		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1438		ctrl_ctx->drop_flags = 0;
1439
 
 
 
 
 
1440		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1441				true, false);
1442
1443		/* Clean up the input context for later use by bandwidth
1444		 * functions.
1445		 */
1446		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1447command_cleanup:
1448		kfree(command->completion);
1449		kfree(command);
1450	}
1451	return ret;
1452}
1453
1454/*
1455 * non-error returns are a promise to giveback() the urb later
1456 * we drop ownership so next owner (or urb unlink) can get it
1457 */
1458static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1459{
1460	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1461	unsigned long flags;
1462	int ret = 0;
1463	unsigned int slot_id, ep_index;
1464	unsigned int *ep_state;
1465	struct urb_priv	*urb_priv;
1466	int num_tds;
1467
1468	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1469					true, true, __func__) <= 0)
1470		return -EINVAL;
1471
1472	slot_id = urb->dev->slot_id;
1473	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1475
1476	if (!HCD_HW_ACCESSIBLE(hcd)) {
1477		if (!in_interrupt())
1478			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1479		return -ESHUTDOWN;
1480	}
1481	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1482		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1483		return -ENODEV;
1484	}
1485
1486	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1487		num_tds = urb->number_of_packets;
1488	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1489	    urb->transfer_buffer_length > 0 &&
1490	    urb->transfer_flags & URB_ZERO_PACKET &&
1491	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1492		num_tds = 2;
1493	else
1494		num_tds = 1;
1495
1496	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1497	if (!urb_priv)
1498		return -ENOMEM;
1499
1500	urb_priv->num_tds = num_tds;
1501	urb_priv->num_tds_done = 0;
 
 
 
 
 
 
 
 
 
 
 
1502	urb->hcpriv = urb_priv;
1503
1504	trace_xhci_urb_enqueue(urb);
1505
1506	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1507		/* Check to see if the max packet size for the default control
1508		 * endpoint changed during FS device enumeration
1509		 */
1510		if (urb->dev->speed == USB_SPEED_FULL) {
1511			ret = xhci_check_maxpacket(xhci, slot_id,
1512					ep_index, urb);
1513			if (ret < 0) {
1514				xhci_urb_free_priv(urb_priv);
1515				urb->hcpriv = NULL;
1516				return ret;
1517			}
1518		}
1519	}
1520
1521	spin_lock_irqsave(&xhci->lock, flags);
1522
1523	if (xhci->xhc_state & XHCI_STATE_DYING) {
1524		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1525			 urb->ep->desc.bEndpointAddress, urb);
1526		ret = -ESHUTDOWN;
1527		goto free_priv;
1528	}
1529	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1530		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1531			  *ep_state);
1532		ret = -EINVAL;
1533		goto free_priv;
1534	}
1535	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1536		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1537		ret = -EINVAL;
1538		goto free_priv;
1539	}
1540
1541	switch (usb_endpoint_type(&urb->ep->desc)) {
1542
1543	case USB_ENDPOINT_XFER_CONTROL:
1544		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1545					 slot_id, ep_index);
1546		break;
1547	case USB_ENDPOINT_XFER_BULK:
1548		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1549					 slot_id, ep_index);
1550		break;
1551	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1553				slot_id, ep_index);
1554		break;
1555	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1556		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1557				slot_id, ep_index);
 
 
 
1558	}
1559
1560	if (ret) {
 
 
 
 
 
1561free_priv:
1562		xhci_urb_free_priv(urb_priv);
1563		urb->hcpriv = NULL;
1564	}
1565	spin_unlock_irqrestore(&xhci->lock, flags);
1566	return ret;
1567}
1568
1569/*
1570 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1571 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1572 * should pick up where it left off in the TD, unless a Set Transfer Ring
1573 * Dequeue Pointer is issued.
1574 *
1575 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1576 * the ring.  Since the ring is a contiguous structure, they can't be physically
1577 * removed.  Instead, there are two options:
1578 *
1579 *  1) If the HC is in the middle of processing the URB to be canceled, we
1580 *     simply move the ring's dequeue pointer past those TRBs using the Set
1581 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1582 *     when drivers timeout on the last submitted URB and attempt to cancel.
1583 *
1584 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1585 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1586 *     HC will need to invalidate the any TRBs it has cached after the stop
1587 *     endpoint command, as noted in the xHCI 0.95 errata.
1588 *
1589 *  3) The TD may have completed by the time the Stop Endpoint Command
1590 *     completes, so software needs to handle that case too.
1591 *
1592 * This function should protect against the TD enqueueing code ringing the
1593 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1594 * It also needs to account for multiple cancellations on happening at the same
1595 * time for the same endpoint.
1596 *
1597 * Note that this function can be called in any context, or so says
1598 * usb_hcd_unlink_urb()
1599 */
1600static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1601{
1602	unsigned long flags;
1603	int ret, i;
1604	u32 temp;
1605	struct xhci_hcd *xhci;
1606	struct urb_priv	*urb_priv;
1607	struct xhci_td *td;
1608	unsigned int ep_index;
1609	struct xhci_ring *ep_ring;
1610	struct xhci_virt_ep *ep;
1611	struct xhci_command *command;
1612	struct xhci_virt_device *vdev;
1613
1614	xhci = hcd_to_xhci(hcd);
1615	spin_lock_irqsave(&xhci->lock, flags);
1616
1617	trace_xhci_urb_dequeue(urb);
1618
1619	/* Make sure the URB hasn't completed or been unlinked already */
1620	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1621	if (ret)
1622		goto done;
1623
1624	/* give back URB now if we can't queue it for cancel */
1625	vdev = xhci->devs[urb->dev->slot_id];
1626	urb_priv = urb->hcpriv;
1627	if (!vdev || !urb_priv)
1628		goto err_giveback;
1629
1630	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631	ep = &vdev->eps[ep_index];
1632	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633	if (!ep || !ep_ring)
1634		goto err_giveback;
1635
1636	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1637	temp = readl(&xhci->op_regs->status);
1638	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1639		xhci_hc_died(xhci);
1640		goto done;
1641	}
1642
1643	/*
1644	 * check ring is not re-allocated since URB was enqueued. If it is, then
1645	 * make sure none of the ring related pointers in this URB private data
1646	 * are touched, such as td_list, otherwise we overwrite freed data
1647	 */
1648	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1649		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1650		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1651			td = &urb_priv->td[i];
1652			if (!list_empty(&td->cancelled_td_list))
1653				list_del_init(&td->cancelled_td_list);
1654		}
1655		goto err_giveback;
1656	}
1657
1658	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1659		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660				"HC halted, freeing TD manually.");
1661		for (i = urb_priv->num_tds_done;
1662		     i < urb_priv->num_tds;
 
1663		     i++) {
1664			td = &urb_priv->td[i];
1665			if (!list_empty(&td->td_list))
1666				list_del_init(&td->td_list);
1667			if (!list_empty(&td->cancelled_td_list))
1668				list_del_init(&td->cancelled_td_list);
1669		}
1670		goto err_giveback;
 
 
 
 
 
1671	}
1672
1673	i = urb_priv->num_tds_done;
1674	if (i < urb_priv->num_tds)
 
 
 
 
 
 
 
 
 
1675		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1676				"Cancel URB %p, dev %s, ep 0x%x, "
1677				"starting at offset 0x%llx",
1678				urb, urb->dev->devpath,
1679				urb->ep->desc.bEndpointAddress,
1680				(unsigned long long) xhci_trb_virt_to_dma(
1681					urb_priv->td[i].start_seg,
1682					urb_priv->td[i].first_trb));
1683
1684	for (; i < urb_priv->num_tds; i++) {
1685		td = &urb_priv->td[i];
1686		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1687	}
1688
1689	/* Queue a stop endpoint command, but only if this is
1690	 * the first cancellation to be handled.
1691	 */
1692	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1693		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1694		if (!command) {
1695			ret = -ENOMEM;
1696			goto done;
1697		}
1698		ep->ep_state |= EP_STOP_CMD_PENDING;
 
1699		ep->stop_cmd_timer.expires = jiffies +
1700			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1701		add_timer(&ep->stop_cmd_timer);
1702		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1703					 ep_index, 0);
1704		xhci_ring_cmd_db(xhci);
1705	}
1706done:
1707	spin_unlock_irqrestore(&xhci->lock, flags);
1708	return ret;
1709
1710err_giveback:
1711	if (urb_priv)
1712		xhci_urb_free_priv(urb_priv);
1713	usb_hcd_unlink_urb_from_ep(hcd, urb);
1714	spin_unlock_irqrestore(&xhci->lock, flags);
1715	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1716	return ret;
1717}
1718
1719/* Drop an endpoint from a new bandwidth configuration for this device.
1720 * Only one call to this function is allowed per endpoint before
1721 * check_bandwidth() or reset_bandwidth() must be called.
1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723 * add the endpoint to the schedule with possibly new parameters denoted by a
1724 * different endpoint descriptor in usb_host_endpoint.
1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726 * not allowed.
1727 *
1728 * The USB core will not allow URBs to be queued to an endpoint that is being
1729 * disabled, so there's no need for mutual exclusion to protect
1730 * the xhci->devs[slot_id] structure.
1731 */
1732static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733		struct usb_host_endpoint *ep)
1734{
1735	struct xhci_hcd *xhci;
1736	struct xhci_container_ctx *in_ctx, *out_ctx;
1737	struct xhci_input_control_ctx *ctrl_ctx;
1738	unsigned int ep_index;
1739	struct xhci_ep_ctx *ep_ctx;
1740	u32 drop_flag;
1741	u32 new_add_flags, new_drop_flags;
1742	int ret;
1743
1744	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745	if (ret <= 0)
1746		return ret;
1747	xhci = hcd_to_xhci(hcd);
1748	if (xhci->xhc_state & XHCI_STATE_DYING)
1749		return -ENODEV;
1750
1751	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1752	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1753	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1754		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1755				__func__, drop_flag);
1756		return 0;
1757	}
1758
1759	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1760	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1761	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762	if (!ctrl_ctx) {
1763		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764				__func__);
1765		return 0;
1766	}
1767
1768	ep_index = xhci_get_endpoint_index(&ep->desc);
1769	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1770	/* If the HC already knows the endpoint is disabled,
1771	 * or the HCD has noted it is disabled, ignore this request
1772	 */
1773	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1774	    le32_to_cpu(ctrl_ctx->drop_flags) &
1775	    xhci_get_endpoint_flag(&ep->desc)) {
1776		/* Do not warn when called after a usb_device_reset */
1777		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1778			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1779				  __func__, ep);
1780		return 0;
1781	}
1782
1783	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1784	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1787	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788
1789	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1790
1791	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1792
1793	if (xhci->quirks & XHCI_MTK_HOST)
1794		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1795
1796	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1797			(unsigned int) ep->desc.bEndpointAddress,
1798			udev->slot_id,
1799			(unsigned int) new_drop_flags,
1800			(unsigned int) new_add_flags);
1801	return 0;
1802}
1803
1804/* Add an endpoint to a new possible bandwidth configuration for this device.
1805 * Only one call to this function is allowed per endpoint before
1806 * check_bandwidth() or reset_bandwidth() must be called.
1807 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1808 * add the endpoint to the schedule with possibly new parameters denoted by a
1809 * different endpoint descriptor in usb_host_endpoint.
1810 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1811 * not allowed.
1812 *
1813 * The USB core will not allow URBs to be queued to an endpoint until the
1814 * configuration or alt setting is installed in the device, so there's no need
1815 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1816 */
1817static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1818		struct usb_host_endpoint *ep)
1819{
1820	struct xhci_hcd *xhci;
1821	struct xhci_container_ctx *in_ctx;
1822	unsigned int ep_index;
1823	struct xhci_input_control_ctx *ctrl_ctx;
1824	struct xhci_ep_ctx *ep_ctx;
1825	u32 added_ctxs;
1826	u32 new_add_flags, new_drop_flags;
1827	struct xhci_virt_device *virt_dev;
1828	int ret = 0;
1829
1830	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831	if (ret <= 0) {
1832		/* So we won't queue a reset ep command for a root hub */
1833		ep->hcpriv = NULL;
1834		return ret;
1835	}
1836	xhci = hcd_to_xhci(hcd);
1837	if (xhci->xhc_state & XHCI_STATE_DYING)
1838		return -ENODEV;
1839
1840	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1841	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1842		/* FIXME when we have to issue an evaluate endpoint command to
1843		 * deal with ep0 max packet size changing once we get the
1844		 * descriptors
1845		 */
1846		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1847				__func__, added_ctxs);
1848		return 0;
1849	}
1850
1851	virt_dev = xhci->devs[udev->slot_id];
1852	in_ctx = virt_dev->in_ctx;
1853	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1854	if (!ctrl_ctx) {
1855		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856				__func__);
1857		return 0;
1858	}
1859
1860	ep_index = xhci_get_endpoint_index(&ep->desc);
1861	/* If this endpoint is already in use, and the upper layers are trying
1862	 * to add it again without dropping it, reject the addition.
1863	 */
1864	if (virt_dev->eps[ep_index].ring &&
1865			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1866		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1867				"without dropping it.\n",
1868				(unsigned int) ep->desc.bEndpointAddress);
1869		return -EINVAL;
1870	}
1871
1872	/* If the HCD has already noted the endpoint is enabled,
1873	 * ignore this request.
1874	 */
1875	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1876		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1877				__func__, ep);
1878		return 0;
1879	}
1880
1881	/*
1882	 * Configuration and alternate setting changes must be done in
1883	 * process context, not interrupt context (or so documenation
1884	 * for usb_set_interface() and usb_set_configuration() claim).
1885	 */
1886	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1887		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1888				__func__, ep->desc.bEndpointAddress);
1889		return -ENOMEM;
1890	}
1891
1892	if (xhci->quirks & XHCI_MTK_HOST) {
1893		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1894		if (ret < 0) {
1895			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1896			virt_dev->eps[ep_index].new_ring = NULL;
1897			return ret;
1898		}
1899	}
1900
1901	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1902	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1903
1904	/* If xhci_endpoint_disable() was called for this endpoint, but the
1905	 * xHC hasn't been notified yet through the check_bandwidth() call,
1906	 * this re-adds a new state for the endpoint from the new endpoint
1907	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1908	 * drop flags alone.
1909	 */
1910	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1911
1912	/* Store the usb_device pointer for later use */
1913	ep->hcpriv = udev;
1914
1915	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1916	trace_xhci_add_endpoint(ep_ctx);
1917
1918	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1919
1920	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1921			(unsigned int) ep->desc.bEndpointAddress,
1922			udev->slot_id,
1923			(unsigned int) new_drop_flags,
1924			(unsigned int) new_add_flags);
1925	return 0;
1926}
1927
1928static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1929{
1930	struct xhci_input_control_ctx *ctrl_ctx;
1931	struct xhci_ep_ctx *ep_ctx;
1932	struct xhci_slot_ctx *slot_ctx;
1933	int i;
1934
1935	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1936	if (!ctrl_ctx) {
1937		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938				__func__);
1939		return;
1940	}
1941
1942	/* When a device's add flag and drop flag are zero, any subsequent
1943	 * configure endpoint command will leave that endpoint's state
1944	 * untouched.  Make sure we don't leave any old state in the input
1945	 * endpoint contexts.
1946	 */
1947	ctrl_ctx->drop_flags = 0;
1948	ctrl_ctx->add_flags = 0;
1949	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1950	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1951	/* Endpoint 0 is always valid */
1952	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1953	for (i = 1; i < 31; i++) {
1954		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1955		ep_ctx->ep_info = 0;
1956		ep_ctx->ep_info2 = 0;
1957		ep_ctx->deq = 0;
1958		ep_ctx->tx_info = 0;
1959	}
1960}
1961
1962static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1963		struct usb_device *udev, u32 *cmd_status)
1964{
1965	int ret;
1966
1967	switch (*cmd_status) {
1968	case COMP_COMMAND_ABORTED:
1969	case COMP_COMMAND_RING_STOPPED:
1970		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1971		ret = -ETIME;
1972		break;
1973	case COMP_RESOURCE_ERROR:
1974		dev_warn(&udev->dev,
1975			 "Not enough host controller resources for new device state.\n");
1976		ret = -ENOMEM;
1977		/* FIXME: can we allocate more resources for the HC? */
1978		break;
1979	case COMP_BANDWIDTH_ERROR:
1980	case COMP_SECONDARY_BANDWIDTH_ERROR:
1981		dev_warn(&udev->dev,
1982			 "Not enough bandwidth for new device state.\n");
1983		ret = -ENOSPC;
1984		/* FIXME: can we go back to the old state? */
1985		break;
1986	case COMP_TRB_ERROR:
1987		/* the HCD set up something wrong */
1988		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1989				"add flag = 1, "
1990				"and endpoint is not disabled.\n");
1991		ret = -EINVAL;
1992		break;
1993	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1994		dev_warn(&udev->dev,
1995			 "ERROR: Incompatible device for endpoint configure command.\n");
1996		ret = -ENODEV;
1997		break;
1998	case COMP_SUCCESS:
1999		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2000				"Successful Endpoint Configure command");
2001		ret = 0;
2002		break;
2003	default:
2004		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2005				*cmd_status);
2006		ret = -EINVAL;
2007		break;
2008	}
2009	return ret;
2010}
2011
2012static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2013		struct usb_device *udev, u32 *cmd_status)
2014{
2015	int ret;
 
2016
2017	switch (*cmd_status) {
2018	case COMP_COMMAND_ABORTED:
2019	case COMP_COMMAND_RING_STOPPED:
2020		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2021		ret = -ETIME;
2022		break;
2023	case COMP_PARAMETER_ERROR:
2024		dev_warn(&udev->dev,
2025			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2026		ret = -EINVAL;
2027		break;
2028	case COMP_SLOT_NOT_ENABLED_ERROR:
2029		dev_warn(&udev->dev,
2030			"WARN: slot not enabled for evaluate context command.\n");
2031		ret = -EINVAL;
2032		break;
2033	case COMP_CONTEXT_STATE_ERROR:
2034		dev_warn(&udev->dev,
2035			"WARN: invalid context state for evaluate context command.\n");
 
2036		ret = -EINVAL;
2037		break;
2038	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2039		dev_warn(&udev->dev,
2040			"ERROR: Incompatible device for evaluate context command.\n");
2041		ret = -ENODEV;
2042		break;
2043	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2044		/* Max Exit Latency too large error */
2045		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2046		ret = -EINVAL;
2047		break;
2048	case COMP_SUCCESS:
2049		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2050				"Successful evaluate context command");
2051		ret = 0;
2052		break;
2053	default:
2054		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2055			*cmd_status);
2056		ret = -EINVAL;
2057		break;
2058	}
2059	return ret;
2060}
2061
2062static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2063		struct xhci_input_control_ctx *ctrl_ctx)
2064{
2065	u32 valid_add_flags;
2066	u32 valid_drop_flags;
2067
2068	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2069	 * (bit 1).  The default control endpoint is added during the Address
2070	 * Device command and is never removed until the slot is disabled.
2071	 */
2072	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2073	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2074
2075	/* Use hweight32 to count the number of ones in the add flags, or
2076	 * number of endpoints added.  Don't count endpoints that are changed
2077	 * (both added and dropped).
2078	 */
2079	return hweight32(valid_add_flags) -
2080		hweight32(valid_add_flags & valid_drop_flags);
2081}
2082
2083static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2084		struct xhci_input_control_ctx *ctrl_ctx)
2085{
2086	u32 valid_add_flags;
2087	u32 valid_drop_flags;
2088
2089	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2090	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2091
2092	return hweight32(valid_drop_flags) -
2093		hweight32(valid_add_flags & valid_drop_flags);
2094}
2095
2096/*
2097 * We need to reserve the new number of endpoints before the configure endpoint
2098 * command completes.  We can't subtract the dropped endpoints from the number
2099 * of active endpoints until the command completes because we can oversubscribe
2100 * the host in this case:
2101 *
2102 *  - the first configure endpoint command drops more endpoints than it adds
2103 *  - a second configure endpoint command that adds more endpoints is queued
2104 *  - the first configure endpoint command fails, so the config is unchanged
2105 *  - the second command may succeed, even though there isn't enough resources
2106 *
2107 * Must be called with xhci->lock held.
2108 */
2109static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2110		struct xhci_input_control_ctx *ctrl_ctx)
2111{
2112	u32 added_eps;
2113
2114	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2115	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2116		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2117				"Not enough ep ctxs: "
2118				"%u active, need to add %u, limit is %u.",
2119				xhci->num_active_eps, added_eps,
2120				xhci->limit_active_eps);
2121		return -ENOMEM;
2122	}
2123	xhci->num_active_eps += added_eps;
2124	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125			"Adding %u ep ctxs, %u now active.", added_eps,
2126			xhci->num_active_eps);
2127	return 0;
2128}
2129
2130/*
2131 * The configure endpoint was failed by the xHC for some other reason, so we
2132 * need to revert the resources that failed configuration would have used.
2133 *
2134 * Must be called with xhci->lock held.
2135 */
2136static void xhci_free_host_resources(struct xhci_hcd *xhci,
2137		struct xhci_input_control_ctx *ctrl_ctx)
2138{
2139	u32 num_failed_eps;
2140
2141	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2142	xhci->num_active_eps -= num_failed_eps;
2143	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144			"Removing %u failed ep ctxs, %u now active.",
2145			num_failed_eps,
2146			xhci->num_active_eps);
2147}
2148
2149/*
2150 * Now that the command has completed, clean up the active endpoint count by
2151 * subtracting out the endpoints that were dropped (but not changed).
2152 *
2153 * Must be called with xhci->lock held.
2154 */
2155static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2156		struct xhci_input_control_ctx *ctrl_ctx)
2157{
2158	u32 num_dropped_eps;
2159
2160	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2161	xhci->num_active_eps -= num_dropped_eps;
2162	if (num_dropped_eps)
2163		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164				"Removing %u dropped ep ctxs, %u now active.",
2165				num_dropped_eps,
2166				xhci->num_active_eps);
2167}
2168
2169static unsigned int xhci_get_block_size(struct usb_device *udev)
2170{
2171	switch (udev->speed) {
2172	case USB_SPEED_LOW:
2173	case USB_SPEED_FULL:
2174		return FS_BLOCK;
2175	case USB_SPEED_HIGH:
2176		return HS_BLOCK;
2177	case USB_SPEED_SUPER:
2178	case USB_SPEED_SUPER_PLUS:
2179		return SS_BLOCK;
2180	case USB_SPEED_UNKNOWN:
2181	case USB_SPEED_WIRELESS:
2182	default:
2183		/* Should never happen */
2184		return 1;
2185	}
2186}
2187
2188static unsigned int
2189xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2190{
2191	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2192		return LS_OVERHEAD;
2193	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2194		return FS_OVERHEAD;
2195	return HS_OVERHEAD;
2196}
2197
2198/* If we are changing a LS/FS device under a HS hub,
2199 * make sure (if we are activating a new TT) that the HS bus has enough
2200 * bandwidth for this new TT.
2201 */
2202static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2203		struct xhci_virt_device *virt_dev,
2204		int old_active_eps)
2205{
2206	struct xhci_interval_bw_table *bw_table;
2207	struct xhci_tt_bw_info *tt_info;
2208
2209	/* Find the bandwidth table for the root port this TT is attached to. */
2210	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2211	tt_info = virt_dev->tt_info;
2212	/* If this TT already had active endpoints, the bandwidth for this TT
2213	 * has already been added.  Removing all periodic endpoints (and thus
2214	 * making the TT enactive) will only decrease the bandwidth used.
2215	 */
2216	if (old_active_eps)
2217		return 0;
2218	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2219		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2220			return -ENOMEM;
2221		return 0;
2222	}
2223	/* Not sure why we would have no new active endpoints...
2224	 *
2225	 * Maybe because of an Evaluate Context change for a hub update or a
2226	 * control endpoint 0 max packet size change?
2227	 * FIXME: skip the bandwidth calculation in that case.
2228	 */
2229	return 0;
2230}
2231
2232static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2233		struct xhci_virt_device *virt_dev)
2234{
2235	unsigned int bw_reserved;
2236
2237	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2238	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2239		return -ENOMEM;
2240
2241	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2242	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2243		return -ENOMEM;
2244
2245	return 0;
2246}
2247
2248/*
2249 * This algorithm is a very conservative estimate of the worst-case scheduling
2250 * scenario for any one interval.  The hardware dynamically schedules the
2251 * packets, so we can't tell which microframe could be the limiting factor in
2252 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2253 *
2254 * Obviously, we can't solve an NP complete problem to find the minimum worst
2255 * case scenario.  Instead, we come up with an estimate that is no less than
2256 * the worst case bandwidth used for any one microframe, but may be an
2257 * over-estimate.
2258 *
2259 * We walk the requirements for each endpoint by interval, starting with the
2260 * smallest interval, and place packets in the schedule where there is only one
2261 * possible way to schedule packets for that interval.  In order to simplify
2262 * this algorithm, we record the largest max packet size for each interval, and
2263 * assume all packets will be that size.
2264 *
2265 * For interval 0, we obviously must schedule all packets for each interval.
2266 * The bandwidth for interval 0 is just the amount of data to be transmitted
2267 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2268 * the number of packets).
2269 *
2270 * For interval 1, we have two possible microframes to schedule those packets
2271 * in.  For this algorithm, if we can schedule the same number of packets for
2272 * each possible scheduling opportunity (each microframe), we will do so.  The
2273 * remaining number of packets will be saved to be transmitted in the gaps in
2274 * the next interval's scheduling sequence.
2275 *
2276 * As we move those remaining packets to be scheduled with interval 2 packets,
2277 * we have to double the number of remaining packets to transmit.  This is
2278 * because the intervals are actually powers of 2, and we would be transmitting
2279 * the previous interval's packets twice in this interval.  We also have to be
2280 * sure that when we look at the largest max packet size for this interval, we
2281 * also look at the largest max packet size for the remaining packets and take
2282 * the greater of the two.
2283 *
2284 * The algorithm continues to evenly distribute packets in each scheduling
2285 * opportunity, and push the remaining packets out, until we get to the last
2286 * interval.  Then those packets and their associated overhead are just added
2287 * to the bandwidth used.
2288 */
2289static int xhci_check_bw_table(struct xhci_hcd *xhci,
2290		struct xhci_virt_device *virt_dev,
2291		int old_active_eps)
2292{
2293	unsigned int bw_reserved;
2294	unsigned int max_bandwidth;
2295	unsigned int bw_used;
2296	unsigned int block_size;
2297	struct xhci_interval_bw_table *bw_table;
2298	unsigned int packet_size = 0;
2299	unsigned int overhead = 0;
2300	unsigned int packets_transmitted = 0;
2301	unsigned int packets_remaining = 0;
2302	unsigned int i;
2303
2304	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2305		return xhci_check_ss_bw(xhci, virt_dev);
2306
2307	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2308		max_bandwidth = HS_BW_LIMIT;
2309		/* Convert percent of bus BW reserved to blocks reserved */
2310		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2311	} else {
2312		max_bandwidth = FS_BW_LIMIT;
2313		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2314	}
2315
2316	bw_table = virt_dev->bw_table;
2317	/* We need to translate the max packet size and max ESIT payloads into
2318	 * the units the hardware uses.
2319	 */
2320	block_size = xhci_get_block_size(virt_dev->udev);
2321
2322	/* If we are manipulating a LS/FS device under a HS hub, double check
2323	 * that the HS bus has enough bandwidth if we are activing a new TT.
2324	 */
2325	if (virt_dev->tt_info) {
2326		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327				"Recalculating BW for rootport %u",
2328				virt_dev->real_port);
2329		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2330			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2331					"newly activated TT.\n");
2332			return -ENOMEM;
2333		}
2334		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335				"Recalculating BW for TT slot %u port %u",
2336				virt_dev->tt_info->slot_id,
2337				virt_dev->tt_info->ttport);
2338	} else {
2339		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340				"Recalculating BW for rootport %u",
2341				virt_dev->real_port);
2342	}
2343
2344	/* Add in how much bandwidth will be used for interval zero, or the
2345	 * rounded max ESIT payload + number of packets * largest overhead.
2346	 */
2347	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2348		bw_table->interval_bw[0].num_packets *
2349		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2350
2351	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2352		unsigned int bw_added;
2353		unsigned int largest_mps;
2354		unsigned int interval_overhead;
2355
2356		/*
2357		 * How many packets could we transmit in this interval?
2358		 * If packets didn't fit in the previous interval, we will need
2359		 * to transmit that many packets twice within this interval.
2360		 */
2361		packets_remaining = 2 * packets_remaining +
2362			bw_table->interval_bw[i].num_packets;
2363
2364		/* Find the largest max packet size of this or the previous
2365		 * interval.
2366		 */
2367		if (list_empty(&bw_table->interval_bw[i].endpoints))
2368			largest_mps = 0;
2369		else {
2370			struct xhci_virt_ep *virt_ep;
2371			struct list_head *ep_entry;
2372
2373			ep_entry = bw_table->interval_bw[i].endpoints.next;
2374			virt_ep = list_entry(ep_entry,
2375					struct xhci_virt_ep, bw_endpoint_list);
2376			/* Convert to blocks, rounding up */
2377			largest_mps = DIV_ROUND_UP(
2378					virt_ep->bw_info.max_packet_size,
2379					block_size);
2380		}
2381		if (largest_mps > packet_size)
2382			packet_size = largest_mps;
2383
2384		/* Use the larger overhead of this or the previous interval. */
2385		interval_overhead = xhci_get_largest_overhead(
2386				&bw_table->interval_bw[i]);
2387		if (interval_overhead > overhead)
2388			overhead = interval_overhead;
2389
2390		/* How many packets can we evenly distribute across
2391		 * (1 << (i + 1)) possible scheduling opportunities?
2392		 */
2393		packets_transmitted = packets_remaining >> (i + 1);
2394
2395		/* Add in the bandwidth used for those scheduled packets */
2396		bw_added = packets_transmitted * (overhead + packet_size);
2397
2398		/* How many packets do we have remaining to transmit? */
2399		packets_remaining = packets_remaining % (1 << (i + 1));
2400
2401		/* What largest max packet size should those packets have? */
2402		/* If we've transmitted all packets, don't carry over the
2403		 * largest packet size.
2404		 */
2405		if (packets_remaining == 0) {
2406			packet_size = 0;
2407			overhead = 0;
2408		} else if (packets_transmitted > 0) {
2409			/* Otherwise if we do have remaining packets, and we've
2410			 * scheduled some packets in this interval, take the
2411			 * largest max packet size from endpoints with this
2412			 * interval.
2413			 */
2414			packet_size = largest_mps;
2415			overhead = interval_overhead;
2416		}
2417		/* Otherwise carry over packet_size and overhead from the last
2418		 * time we had a remainder.
2419		 */
2420		bw_used += bw_added;
2421		if (bw_used > max_bandwidth) {
2422			xhci_warn(xhci, "Not enough bandwidth. "
2423					"Proposed: %u, Max: %u\n",
2424				bw_used, max_bandwidth);
2425			return -ENOMEM;
2426		}
2427	}
2428	/*
2429	 * Ok, we know we have some packets left over after even-handedly
2430	 * scheduling interval 15.  We don't know which microframes they will
2431	 * fit into, so we over-schedule and say they will be scheduled every
2432	 * microframe.
2433	 */
2434	if (packets_remaining > 0)
2435		bw_used += overhead + packet_size;
2436
2437	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2438		unsigned int port_index = virt_dev->real_port - 1;
2439
2440		/* OK, we're manipulating a HS device attached to a
2441		 * root port bandwidth domain.  Include the number of active TTs
2442		 * in the bandwidth used.
2443		 */
2444		bw_used += TT_HS_OVERHEAD *
2445			xhci->rh_bw[port_index].num_active_tts;
2446	}
2447
2448	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2449		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2450		"Available: %u " "percent",
2451		bw_used, max_bandwidth, bw_reserved,
2452		(max_bandwidth - bw_used - bw_reserved) * 100 /
2453		max_bandwidth);
2454
2455	bw_used += bw_reserved;
2456	if (bw_used > max_bandwidth) {
2457		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2458				bw_used, max_bandwidth);
2459		return -ENOMEM;
2460	}
2461
2462	bw_table->bw_used = bw_used;
2463	return 0;
2464}
2465
2466static bool xhci_is_async_ep(unsigned int ep_type)
2467{
2468	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2469					ep_type != ISOC_IN_EP &&
2470					ep_type != INT_IN_EP);
2471}
2472
2473static bool xhci_is_sync_in_ep(unsigned int ep_type)
2474{
2475	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2476}
2477
2478static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2479{
2480	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2481
2482	if (ep_bw->ep_interval == 0)
2483		return SS_OVERHEAD_BURST +
2484			(ep_bw->mult * ep_bw->num_packets *
2485					(SS_OVERHEAD + mps));
2486	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2487				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2488				1 << ep_bw->ep_interval);
2489
2490}
2491
2492static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2493		struct xhci_bw_info *ep_bw,
2494		struct xhci_interval_bw_table *bw_table,
2495		struct usb_device *udev,
2496		struct xhci_virt_ep *virt_ep,
2497		struct xhci_tt_bw_info *tt_info)
2498{
2499	struct xhci_interval_bw	*interval_bw;
2500	int normalized_interval;
2501
2502	if (xhci_is_async_ep(ep_bw->type))
2503		return;
2504
2505	if (udev->speed >= USB_SPEED_SUPER) {
2506		if (xhci_is_sync_in_ep(ep_bw->type))
2507			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2508				xhci_get_ss_bw_consumed(ep_bw);
2509		else
2510			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2511				xhci_get_ss_bw_consumed(ep_bw);
2512		return;
2513	}
2514
2515	/* SuperSpeed endpoints never get added to intervals in the table, so
2516	 * this check is only valid for HS/FS/LS devices.
2517	 */
2518	if (list_empty(&virt_ep->bw_endpoint_list))
2519		return;
2520	/* For LS/FS devices, we need to translate the interval expressed in
2521	 * microframes to frames.
2522	 */
2523	if (udev->speed == USB_SPEED_HIGH)
2524		normalized_interval = ep_bw->ep_interval;
2525	else
2526		normalized_interval = ep_bw->ep_interval - 3;
2527
2528	if (normalized_interval == 0)
2529		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2530	interval_bw = &bw_table->interval_bw[normalized_interval];
2531	interval_bw->num_packets -= ep_bw->num_packets;
2532	switch (udev->speed) {
2533	case USB_SPEED_LOW:
2534		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2535		break;
2536	case USB_SPEED_FULL:
2537		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2538		break;
2539	case USB_SPEED_HIGH:
2540		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2541		break;
2542	case USB_SPEED_SUPER:
2543	case USB_SPEED_SUPER_PLUS:
2544	case USB_SPEED_UNKNOWN:
2545	case USB_SPEED_WIRELESS:
2546		/* Should never happen because only LS/FS/HS endpoints will get
2547		 * added to the endpoint list.
2548		 */
2549		return;
2550	}
2551	if (tt_info)
2552		tt_info->active_eps -= 1;
2553	list_del_init(&virt_ep->bw_endpoint_list);
2554}
2555
2556static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2557		struct xhci_bw_info *ep_bw,
2558		struct xhci_interval_bw_table *bw_table,
2559		struct usb_device *udev,
2560		struct xhci_virt_ep *virt_ep,
2561		struct xhci_tt_bw_info *tt_info)
2562{
2563	struct xhci_interval_bw	*interval_bw;
2564	struct xhci_virt_ep *smaller_ep;
2565	int normalized_interval;
2566
2567	if (xhci_is_async_ep(ep_bw->type))
2568		return;
2569
2570	if (udev->speed == USB_SPEED_SUPER) {
2571		if (xhci_is_sync_in_ep(ep_bw->type))
2572			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2573				xhci_get_ss_bw_consumed(ep_bw);
2574		else
2575			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2576				xhci_get_ss_bw_consumed(ep_bw);
2577		return;
2578	}
2579
2580	/* For LS/FS devices, we need to translate the interval expressed in
2581	 * microframes to frames.
2582	 */
2583	if (udev->speed == USB_SPEED_HIGH)
2584		normalized_interval = ep_bw->ep_interval;
2585	else
2586		normalized_interval = ep_bw->ep_interval - 3;
2587
2588	if (normalized_interval == 0)
2589		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2590	interval_bw = &bw_table->interval_bw[normalized_interval];
2591	interval_bw->num_packets += ep_bw->num_packets;
2592	switch (udev->speed) {
2593	case USB_SPEED_LOW:
2594		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2595		break;
2596	case USB_SPEED_FULL:
2597		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2598		break;
2599	case USB_SPEED_HIGH:
2600		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2601		break;
2602	case USB_SPEED_SUPER:
2603	case USB_SPEED_SUPER_PLUS:
2604	case USB_SPEED_UNKNOWN:
2605	case USB_SPEED_WIRELESS:
2606		/* Should never happen because only LS/FS/HS endpoints will get
2607		 * added to the endpoint list.
2608		 */
2609		return;
2610	}
2611
2612	if (tt_info)
2613		tt_info->active_eps += 1;
2614	/* Insert the endpoint into the list, largest max packet size first. */
2615	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2616			bw_endpoint_list) {
2617		if (ep_bw->max_packet_size >=
2618				smaller_ep->bw_info.max_packet_size) {
2619			/* Add the new ep before the smaller endpoint */
2620			list_add_tail(&virt_ep->bw_endpoint_list,
2621					&smaller_ep->bw_endpoint_list);
2622			return;
2623		}
2624	}
2625	/* Add the new endpoint at the end of the list. */
2626	list_add_tail(&virt_ep->bw_endpoint_list,
2627			&interval_bw->endpoints);
2628}
2629
2630void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2631		struct xhci_virt_device *virt_dev,
2632		int old_active_eps)
2633{
2634	struct xhci_root_port_bw_info *rh_bw_info;
2635	if (!virt_dev->tt_info)
2636		return;
2637
2638	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2639	if (old_active_eps == 0 &&
2640				virt_dev->tt_info->active_eps != 0) {
2641		rh_bw_info->num_active_tts += 1;
2642		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2643	} else if (old_active_eps != 0 &&
2644				virt_dev->tt_info->active_eps == 0) {
2645		rh_bw_info->num_active_tts -= 1;
2646		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647	}
2648}
2649
2650static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2651		struct xhci_virt_device *virt_dev,
2652		struct xhci_container_ctx *in_ctx)
2653{
2654	struct xhci_bw_info ep_bw_info[31];
2655	int i;
2656	struct xhci_input_control_ctx *ctrl_ctx;
2657	int old_active_eps = 0;
2658
2659	if (virt_dev->tt_info)
2660		old_active_eps = virt_dev->tt_info->active_eps;
2661
2662	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2663	if (!ctrl_ctx) {
2664		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665				__func__);
2666		return -ENOMEM;
2667	}
2668
2669	for (i = 0; i < 31; i++) {
2670		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2671			continue;
2672
2673		/* Make a copy of the BW info in case we need to revert this */
2674		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2675				sizeof(ep_bw_info[i]));
2676		/* Drop the endpoint from the interval table if the endpoint is
2677		 * being dropped or changed.
2678		 */
2679		if (EP_IS_DROPPED(ctrl_ctx, i))
2680			xhci_drop_ep_from_interval_table(xhci,
2681					&virt_dev->eps[i].bw_info,
2682					virt_dev->bw_table,
2683					virt_dev->udev,
2684					&virt_dev->eps[i],
2685					virt_dev->tt_info);
2686	}
2687	/* Overwrite the information stored in the endpoints' bw_info */
2688	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2689	for (i = 0; i < 31; i++) {
2690		/* Add any changed or added endpoints to the interval table */
2691		if (EP_IS_ADDED(ctrl_ctx, i))
2692			xhci_add_ep_to_interval_table(xhci,
2693					&virt_dev->eps[i].bw_info,
2694					virt_dev->bw_table,
2695					virt_dev->udev,
2696					&virt_dev->eps[i],
2697					virt_dev->tt_info);
2698	}
2699
2700	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2701		/* Ok, this fits in the bandwidth we have.
2702		 * Update the number of active TTs.
2703		 */
2704		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2705		return 0;
2706	}
2707
2708	/* We don't have enough bandwidth for this, revert the stored info. */
2709	for (i = 0; i < 31; i++) {
2710		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2711			continue;
2712
2713		/* Drop the new copies of any added or changed endpoints from
2714		 * the interval table.
2715		 */
2716		if (EP_IS_ADDED(ctrl_ctx, i)) {
2717			xhci_drop_ep_from_interval_table(xhci,
2718					&virt_dev->eps[i].bw_info,
2719					virt_dev->bw_table,
2720					virt_dev->udev,
2721					&virt_dev->eps[i],
2722					virt_dev->tt_info);
2723		}
2724		/* Revert the endpoint back to its old information */
2725		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2726				sizeof(ep_bw_info[i]));
2727		/* Add any changed or dropped endpoints back into the table */
2728		if (EP_IS_DROPPED(ctrl_ctx, i))
2729			xhci_add_ep_to_interval_table(xhci,
2730					&virt_dev->eps[i].bw_info,
2731					virt_dev->bw_table,
2732					virt_dev->udev,
2733					&virt_dev->eps[i],
2734					virt_dev->tt_info);
2735	}
2736	return -ENOMEM;
2737}
2738
2739
2740/* Issue a configure endpoint command or evaluate context command
2741 * and wait for it to finish.
2742 */
2743static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2744		struct usb_device *udev,
2745		struct xhci_command *command,
2746		bool ctx_change, bool must_succeed)
2747{
2748	int ret;
2749	unsigned long flags;
2750	struct xhci_input_control_ctx *ctrl_ctx;
2751	struct xhci_virt_device *virt_dev;
2752	struct xhci_slot_ctx *slot_ctx;
2753
2754	if (!command)
2755		return -EINVAL;
2756
2757	spin_lock_irqsave(&xhci->lock, flags);
2758
2759	if (xhci->xhc_state & XHCI_STATE_DYING) {
2760		spin_unlock_irqrestore(&xhci->lock, flags);
2761		return -ESHUTDOWN;
2762	}
2763
2764	virt_dev = xhci->devs[udev->slot_id];
2765
2766	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767	if (!ctrl_ctx) {
2768		spin_unlock_irqrestore(&xhci->lock, flags);
2769		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770				__func__);
2771		return -ENOMEM;
2772	}
2773
2774	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2775			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2776		spin_unlock_irqrestore(&xhci->lock, flags);
2777		xhci_warn(xhci, "Not enough host resources, "
2778				"active endpoint contexts = %u\n",
2779				xhci->num_active_eps);
2780		return -ENOMEM;
2781	}
2782	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2783	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2784		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2785			xhci_free_host_resources(xhci, ctrl_ctx);
2786		spin_unlock_irqrestore(&xhci->lock, flags);
2787		xhci_warn(xhci, "Not enough bandwidth\n");
2788		return -ENOMEM;
2789	}
2790
2791	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2792
2793	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2794	trace_xhci_configure_endpoint(slot_ctx);
2795
2796	if (!ctx_change)
2797		ret = xhci_queue_configure_endpoint(xhci, command,
2798				command->in_ctx->dma,
2799				udev->slot_id, must_succeed);
2800	else
2801		ret = xhci_queue_evaluate_context(xhci, command,
2802				command->in_ctx->dma,
2803				udev->slot_id, must_succeed);
2804	if (ret < 0) {
2805		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2806			xhci_free_host_resources(xhci, ctrl_ctx);
2807		spin_unlock_irqrestore(&xhci->lock, flags);
2808		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2809				"FIXME allocate a new ring segment");
2810		return -ENOMEM;
2811	}
2812	xhci_ring_cmd_db(xhci);
2813	spin_unlock_irqrestore(&xhci->lock, flags);
2814
2815	/* Wait for the configure endpoint command to complete */
2816	wait_for_completion(command->completion);
2817
2818	if (!ctx_change)
2819		ret = xhci_configure_endpoint_result(xhci, udev,
2820						     &command->status);
2821	else
2822		ret = xhci_evaluate_context_result(xhci, udev,
2823						   &command->status);
2824
2825	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2826		spin_lock_irqsave(&xhci->lock, flags);
2827		/* If the command failed, remove the reserved resources.
2828		 * Otherwise, clean up the estimate to include dropped eps.
2829		 */
2830		if (ret)
2831			xhci_free_host_resources(xhci, ctrl_ctx);
2832		else
2833			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2834		spin_unlock_irqrestore(&xhci->lock, flags);
2835	}
2836	return ret;
2837}
2838
2839static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2840	struct xhci_virt_device *vdev, int i)
2841{
2842	struct xhci_virt_ep *ep = &vdev->eps[i];
2843
2844	if (ep->ep_state & EP_HAS_STREAMS) {
2845		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2846				xhci_get_endpoint_address(i));
2847		xhci_free_stream_info(xhci, ep->stream_info);
2848		ep->stream_info = NULL;
2849		ep->ep_state &= ~EP_HAS_STREAMS;
2850	}
2851}
2852
2853/* Called after one or more calls to xhci_add_endpoint() or
2854 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2855 * to call xhci_reset_bandwidth().
2856 *
2857 * Since we are in the middle of changing either configuration or
2858 * installing a new alt setting, the USB core won't allow URBs to be
2859 * enqueued for any endpoint on the old config or interface.  Nothing
2860 * else should be touching the xhci->devs[slot_id] structure, so we
2861 * don't need to take the xhci->lock for manipulating that.
2862 */
2863static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864{
2865	int i;
2866	int ret = 0;
2867	struct xhci_hcd *xhci;
2868	struct xhci_virt_device	*virt_dev;
2869	struct xhci_input_control_ctx *ctrl_ctx;
2870	struct xhci_slot_ctx *slot_ctx;
2871	struct xhci_command *command;
2872
2873	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874	if (ret <= 0)
2875		return ret;
2876	xhci = hcd_to_xhci(hcd);
2877	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2878		(xhci->xhc_state & XHCI_STATE_REMOVING))
2879		return -ENODEV;
2880
2881	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882	virt_dev = xhci->devs[udev->slot_id];
2883
2884	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2885	if (!command)
2886		return -ENOMEM;
2887
2888	command->in_ctx = virt_dev->in_ctx;
2889
2890	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2891	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892	if (!ctrl_ctx) {
2893		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894				__func__);
2895		ret = -ENOMEM;
2896		goto command_cleanup;
2897	}
2898	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2900	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2901
2902	/* Don't issue the command if there's no endpoints to update. */
2903	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2904	    ctrl_ctx->drop_flags == 0) {
2905		ret = 0;
2906		goto command_cleanup;
2907	}
2908	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2909	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2910	for (i = 31; i >= 1; i--) {
2911		__le32 le32 = cpu_to_le32(BIT(i));
2912
2913		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2914		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2915			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2916			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2917			break;
2918		}
2919	}
 
 
 
2920
2921	ret = xhci_configure_endpoint(xhci, udev, command,
2922			false, false);
2923	if (ret)
2924		/* Callee should call reset_bandwidth() */
2925		goto command_cleanup;
2926
 
 
 
 
2927	/* Free any rings that were dropped, but not changed. */
2928	for (i = 1; i < 31; i++) {
2929		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2930		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2931			xhci_free_endpoint_ring(xhci, virt_dev, i);
2932			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2933		}
2934	}
2935	xhci_zero_in_ctx(xhci, virt_dev);
2936	/*
2937	 * Install any rings for completely new endpoints or changed endpoints,
2938	 * and free any old rings from changed endpoints.
2939	 */
2940	for (i = 1; i < 31; i++) {
2941		if (!virt_dev->eps[i].new_ring)
2942			continue;
2943		/* Only free the old ring if it exists.
2944		 * It may not if this is the first add of an endpoint.
2945		 */
2946		if (virt_dev->eps[i].ring) {
2947			xhci_free_endpoint_ring(xhci, virt_dev, i);
2948		}
2949		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2951		virt_dev->eps[i].new_ring = NULL;
2952	}
2953command_cleanup:
2954	kfree(command->completion);
2955	kfree(command);
2956
2957	return ret;
2958}
2959
2960static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961{
2962	struct xhci_hcd *xhci;
2963	struct xhci_virt_device	*virt_dev;
2964	int i, ret;
2965
2966	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967	if (ret <= 0)
2968		return;
2969	xhci = hcd_to_xhci(hcd);
2970
2971	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972	virt_dev = xhci->devs[udev->slot_id];
2973	/* Free any rings allocated for added endpoints */
2974	for (i = 0; i < 31; i++) {
2975		if (virt_dev->eps[i].new_ring) {
2976			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978			virt_dev->eps[i].new_ring = NULL;
2979		}
2980	}
2981	xhci_zero_in_ctx(xhci, virt_dev);
2982}
2983
2984static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985		struct xhci_container_ctx *in_ctx,
2986		struct xhci_container_ctx *out_ctx,
2987		struct xhci_input_control_ctx *ctrl_ctx,
2988		u32 add_flags, u32 drop_flags)
2989{
2990	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992	xhci_slot_copy(xhci, in_ctx, out_ctx);
2993	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
2994}
2995
2996static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997		unsigned int slot_id, unsigned int ep_index,
2998		struct xhci_dequeue_state *deq_state)
2999{
3000	struct xhci_input_control_ctx *ctrl_ctx;
3001	struct xhci_container_ctx *in_ctx;
3002	struct xhci_ep_ctx *ep_ctx;
3003	u32 added_ctxs;
3004	dma_addr_t addr;
3005
3006	in_ctx = xhci->devs[slot_id]->in_ctx;
3007	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008	if (!ctrl_ctx) {
3009		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010				__func__);
3011		return;
3012	}
3013
3014	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015			xhci->devs[slot_id]->out_ctx, ep_index);
3016	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018			deq_state->new_deq_ptr);
3019	if (addr == 0) {
3020		xhci_warn(xhci, "WARN Cannot submit config ep after "
3021				"reset ep command\n");
3022		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023				deq_state->new_deq_seg,
3024				deq_state->new_deq_ptr);
3025		return;
3026	}
3027	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028
3029	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032			added_ctxs, added_ctxs);
3033}
3034
3035void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3036			       unsigned int stream_id, struct xhci_td *td)
3037{
3038	struct xhci_dequeue_state deq_state;
 
3039	struct usb_device *udev = td->urb->dev;
3040
3041	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042			"Cleaning up stalled endpoint ring");
 
3043	/* We need to move the HW's dequeue pointer past this TD,
3044	 * or it will attempt to resend it on the next doorbell ring.
3045	 */
3046	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3047			ep_index, stream_id, td, &deq_state);
3048
3049	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050		return;
3051
3052	/* HW with the reset endpoint quirk will use the saved dequeue state to
3053	 * issue a configure endpoint command later.
3054	 */
3055	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057				"Queueing new dequeue state");
3058		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3059				ep_index, &deq_state);
3060	} else {
3061		/* Better hope no one uses the input context between now and the
3062		 * reset endpoint completion!
3063		 * XXX: No idea how this hardware will react when stream rings
3064		 * are enabled.
3065		 */
3066		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067				"Setting up input context for "
3068				"configure endpoint command");
3069		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3070				ep_index, &deq_state);
3071	}
3072}
3073
3074static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075				  struct usb_host_endpoint *host_ep)
3076{
3077	struct xhci_hcd		*xhci;
3078	struct xhci_virt_device	*vdev;
3079	struct xhci_virt_ep	*ep;
3080	struct usb_device	*udev;
3081	unsigned long		flags;
3082	unsigned int		ep_index;
3083
3084	xhci = hcd_to_xhci(hcd);
3085rescan:
3086	spin_lock_irqsave(&xhci->lock, flags);
3087
3088	udev = (struct usb_device *)host_ep->hcpriv;
3089	if (!udev || !udev->slot_id)
3090		goto done;
3091
3092	vdev = xhci->devs[udev->slot_id];
3093	if (!vdev)
3094		goto done;
3095
3096	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097	ep = &vdev->eps[ep_index];
3098	if (!ep)
3099		goto done;
3100
3101	/* wait for hub_tt_work to finish clearing hub TT */
3102	if (ep->ep_state & EP_CLEARING_TT) {
3103		spin_unlock_irqrestore(&xhci->lock, flags);
3104		schedule_timeout_uninterruptible(1);
3105		goto rescan;
3106	}
3107
3108	if (ep->ep_state)
3109		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110			 ep->ep_state);
3111done:
3112	host_ep->hcpriv = NULL;
3113	spin_unlock_irqrestore(&xhci->lock, flags);
3114}
3115
3116/*
3117 * Called after usb core issues a clear halt control message.
3118 * The host side of the halt should already be cleared by a reset endpoint
3119 * command issued when the STALL event was received.
3120 *
3121 * The reset endpoint command may only be issued to endpoints in the halted
3122 * state. For software that wishes to reset the data toggle or sequence number
3123 * of an endpoint that isn't in the halted state this function will issue a
3124 * configure endpoint command with the Drop and Add bits set for the target
3125 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3126 */
3127
3128static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129		struct usb_host_endpoint *host_ep)
3130{
3131	struct xhci_hcd *xhci;
3132	struct usb_device *udev;
3133	struct xhci_virt_device *vdev;
3134	struct xhci_virt_ep *ep;
3135	struct xhci_input_control_ctx *ctrl_ctx;
3136	struct xhci_command *stop_cmd, *cfg_cmd;
3137	unsigned int ep_index;
3138	unsigned long flags;
3139	u32 ep_flag;
3140	int err;
3141
3142	xhci = hcd_to_xhci(hcd);
3143	if (!host_ep->hcpriv)
3144		return;
3145	udev = (struct usb_device *) host_ep->hcpriv;
3146	vdev = xhci->devs[udev->slot_id];
3147
3148	/*
3149	 * vdev may be lost due to xHC restore error and re-initialization
3150	 * during S3/S4 resume. A new vdev will be allocated later by
3151	 * xhci_discover_or_reset_device()
3152	 */
3153	if (!udev->slot_id || !vdev)
3154		return;
3155	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156	ep = &vdev->eps[ep_index];
3157	if (!ep)
3158		return;
3159
3160	/* Bail out if toggle is already being cleared by a endpoint reset */
3161	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3163		return;
3164	}
3165	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167	    usb_endpoint_xfer_isoc(&host_ep->desc))
3168		return;
3169
3170	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171
3172	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173		return;
3174
3175	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176	if (!stop_cmd)
3177		return;
3178
3179	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180	if (!cfg_cmd)
3181		goto cleanup;
3182
3183	spin_lock_irqsave(&xhci->lock, flags);
3184
3185	/* block queuing new trbs and ringing ep doorbell */
3186	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187
3188	/*
3189	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3190	 * Driver is required to synchronously cancel all transfer request.
3191	 * Stop the endpoint to force xHC to update the output context
 
 
 
3192	 */
3193
3194	if (!list_empty(&ep->ring->td_list)) {
3195		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196		spin_unlock_irqrestore(&xhci->lock, flags);
3197		xhci_free_command(xhci, cfg_cmd);
3198		goto cleanup;
3199	}
3200
3201	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202					ep_index, 0);
3203	if (err < 0) {
3204		spin_unlock_irqrestore(&xhci->lock, flags);
3205		xhci_free_command(xhci, cfg_cmd);
3206		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207				__func__, err);
3208		goto cleanup;
3209	}
3210
3211	xhci_ring_cmd_db(xhci);
3212	spin_unlock_irqrestore(&xhci->lock, flags);
3213
3214	wait_for_completion(stop_cmd->completion);
3215
3216	spin_lock_irqsave(&xhci->lock, flags);
3217
3218	/* config ep command clears toggle if add and drop ep flags are set */
3219	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3220	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221					   ctrl_ctx, ep_flag, ep_flag);
3222	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223
3224	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225				      udev->slot_id, false);
3226	if (err < 0) {
3227		spin_unlock_irqrestore(&xhci->lock, flags);
3228		xhci_free_command(xhci, cfg_cmd);
3229		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230				__func__, err);
3231		goto cleanup;
3232	}
3233
3234	xhci_ring_cmd_db(xhci);
3235	spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237	wait_for_completion(cfg_cmd->completion);
3238
3239	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3240	xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242	xhci_free_command(xhci, stop_cmd);
3243}
3244
3245static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3246		struct usb_device *udev, struct usb_host_endpoint *ep,
3247		unsigned int slot_id)
3248{
3249	int ret;
3250	unsigned int ep_index;
3251	unsigned int ep_state;
3252
3253	if (!ep)
3254		return -EINVAL;
3255	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3256	if (ret <= 0)
3257		return -EINVAL;
3258	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3259		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3260				" descriptor for ep 0x%x does not support streams\n",
3261				ep->desc.bEndpointAddress);
3262		return -EINVAL;
3263	}
3264
3265	ep_index = xhci_get_endpoint_index(&ep->desc);
3266	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3267	if (ep_state & EP_HAS_STREAMS ||
3268			ep_state & EP_GETTING_STREAMS) {
3269		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3270				"already has streams set up.\n",
3271				ep->desc.bEndpointAddress);
3272		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3273				"dynamic stream context array reallocation.\n");
3274		return -EINVAL;
3275	}
3276	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3277		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3278				"endpoint 0x%x; URBs are pending.\n",
3279				ep->desc.bEndpointAddress);
3280		return -EINVAL;
3281	}
3282	return 0;
3283}
3284
3285static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3286		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3287{
3288	unsigned int max_streams;
3289
3290	/* The stream context array size must be a power of two */
3291	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3292	/*
3293	 * Find out how many primary stream array entries the host controller
3294	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3295	 * level page entries), but that's an optional feature for xHCI host
3296	 * controllers. xHCs must support at least 4 stream IDs.
3297	 */
3298	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3299	if (*num_stream_ctxs > max_streams) {
3300		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3301				max_streams);
3302		*num_stream_ctxs = max_streams;
3303		*num_streams = max_streams;
3304	}
3305}
3306
3307/* Returns an error code if one of the endpoint already has streams.
3308 * This does not change any data structures, it only checks and gathers
3309 * information.
3310 */
3311static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3312		struct usb_device *udev,
3313		struct usb_host_endpoint **eps, unsigned int num_eps,
3314		unsigned int *num_streams, u32 *changed_ep_bitmask)
3315{
3316	unsigned int max_streams;
3317	unsigned int endpoint_flag;
3318	int i;
3319	int ret;
3320
3321	for (i = 0; i < num_eps; i++) {
3322		ret = xhci_check_streams_endpoint(xhci, udev,
3323				eps[i], udev->slot_id);
3324		if (ret < 0)
3325			return ret;
3326
3327		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3328		if (max_streams < (*num_streams - 1)) {
3329			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3330					eps[i]->desc.bEndpointAddress,
3331					max_streams);
3332			*num_streams = max_streams+1;
3333		}
3334
3335		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3336		if (*changed_ep_bitmask & endpoint_flag)
3337			return -EINVAL;
3338		*changed_ep_bitmask |= endpoint_flag;
3339	}
3340	return 0;
3341}
3342
3343static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3344		struct usb_device *udev,
3345		struct usb_host_endpoint **eps, unsigned int num_eps)
3346{
3347	u32 changed_ep_bitmask = 0;
3348	unsigned int slot_id;
3349	unsigned int ep_index;
3350	unsigned int ep_state;
3351	int i;
3352
3353	slot_id = udev->slot_id;
3354	if (!xhci->devs[slot_id])
3355		return 0;
3356
3357	for (i = 0; i < num_eps; i++) {
3358		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360		/* Are streams already being freed for the endpoint? */
3361		if (ep_state & EP_GETTING_NO_STREAMS) {
3362			xhci_warn(xhci, "WARN Can't disable streams for "
3363					"endpoint 0x%x, "
3364					"streams are being disabled already\n",
3365					eps[i]->desc.bEndpointAddress);
3366			return 0;
3367		}
3368		/* Are there actually any streams to free? */
3369		if (!(ep_state & EP_HAS_STREAMS) &&
3370				!(ep_state & EP_GETTING_STREAMS)) {
3371			xhci_warn(xhci, "WARN Can't disable streams for "
3372					"endpoint 0x%x, "
3373					"streams are already disabled!\n",
3374					eps[i]->desc.bEndpointAddress);
3375			xhci_warn(xhci, "WARN xhci_free_streams() called "
3376					"with non-streams endpoint\n");
3377			return 0;
3378		}
3379		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3380	}
3381	return changed_ep_bitmask;
3382}
3383
3384/*
3385 * The USB device drivers use this function (through the HCD interface in USB
3386 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3387 * coordinate mass storage command queueing across multiple endpoints (basically
3388 * a stream ID == a task ID).
3389 *
3390 * Setting up streams involves allocating the same size stream context array
3391 * for each endpoint and issuing a configure endpoint command for all endpoints.
3392 *
3393 * Don't allow the call to succeed if one endpoint only supports one stream
3394 * (which means it doesn't support streams at all).
3395 *
3396 * Drivers may get less stream IDs than they asked for, if the host controller
3397 * hardware or endpoints claim they can't support the number of requested
3398 * stream IDs.
3399 */
3400static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3401		struct usb_host_endpoint **eps, unsigned int num_eps,
3402		unsigned int num_streams, gfp_t mem_flags)
3403{
3404	int i, ret;
3405	struct xhci_hcd *xhci;
3406	struct xhci_virt_device *vdev;
3407	struct xhci_command *config_cmd;
3408	struct xhci_input_control_ctx *ctrl_ctx;
3409	unsigned int ep_index;
3410	unsigned int num_stream_ctxs;
3411	unsigned int max_packet;
3412	unsigned long flags;
3413	u32 changed_ep_bitmask = 0;
3414
3415	if (!eps)
3416		return -EINVAL;
3417
3418	/* Add one to the number of streams requested to account for
3419	 * stream 0 that is reserved for xHCI usage.
3420	 */
3421	num_streams += 1;
3422	xhci = hcd_to_xhci(hcd);
3423	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3424			num_streams);
3425
3426	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3427	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3428			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3429		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3430		return -ENOSYS;
3431	}
3432
3433	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3434	if (!config_cmd)
 
3435		return -ENOMEM;
3436
3437	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3438	if (!ctrl_ctx) {
3439		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3440				__func__);
3441		xhci_free_command(xhci, config_cmd);
3442		return -ENOMEM;
3443	}
3444
3445	/* Check to make sure all endpoints are not already configured for
3446	 * streams.  While we're at it, find the maximum number of streams that
3447	 * all the endpoints will support and check for duplicate endpoints.
3448	 */
3449	spin_lock_irqsave(&xhci->lock, flags);
3450	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3451			num_eps, &num_streams, &changed_ep_bitmask);
3452	if (ret < 0) {
3453		xhci_free_command(xhci, config_cmd);
3454		spin_unlock_irqrestore(&xhci->lock, flags);
3455		return ret;
3456	}
3457	if (num_streams <= 1) {
3458		xhci_warn(xhci, "WARN: endpoints can't handle "
3459				"more than one stream.\n");
3460		xhci_free_command(xhci, config_cmd);
3461		spin_unlock_irqrestore(&xhci->lock, flags);
3462		return -EINVAL;
3463	}
3464	vdev = xhci->devs[udev->slot_id];
3465	/* Mark each endpoint as being in transition, so
3466	 * xhci_urb_enqueue() will reject all URBs.
3467	 */
3468	for (i = 0; i < num_eps; i++) {
3469		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3471	}
3472	spin_unlock_irqrestore(&xhci->lock, flags);
3473
3474	/* Setup internal data structures and allocate HW data structures for
3475	 * streams (but don't install the HW structures in the input context
3476	 * until we're sure all memory allocation succeeded).
3477	 */
3478	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3479	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3480			num_stream_ctxs, num_streams);
3481
3482	for (i = 0; i < num_eps; i++) {
3483		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3485		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3486				num_stream_ctxs,
3487				num_streams,
3488				max_packet, mem_flags);
3489		if (!vdev->eps[ep_index].stream_info)
3490			goto cleanup;
3491		/* Set maxPstreams in endpoint context and update deq ptr to
3492		 * point to stream context array. FIXME
3493		 */
3494	}
3495
3496	/* Set up the input context for a configure endpoint command. */
3497	for (i = 0; i < num_eps; i++) {
3498		struct xhci_ep_ctx *ep_ctx;
3499
3500		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3501		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3502
3503		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3504				vdev->out_ctx, ep_index);
3505		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3506				vdev->eps[ep_index].stream_info);
3507	}
3508	/* Tell the HW to drop its old copy of the endpoint context info
3509	 * and add the updated copy from the input context.
3510	 */
3511	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3512			vdev->out_ctx, ctrl_ctx,
3513			changed_ep_bitmask, changed_ep_bitmask);
3514
3515	/* Issue and wait for the configure endpoint command */
3516	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3517			false, false);
3518
3519	/* xHC rejected the configure endpoint command for some reason, so we
3520	 * leave the old ring intact and free our internal streams data
3521	 * structure.
3522	 */
3523	if (ret < 0)
3524		goto cleanup;
3525
3526	spin_lock_irqsave(&xhci->lock, flags);
3527	for (i = 0; i < num_eps; i++) {
3528		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3531			 udev->slot_id, ep_index);
3532		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3533	}
3534	xhci_free_command(xhci, config_cmd);
3535	spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537	/* Subtract 1 for stream 0, which drivers can't use */
3538	return num_streams - 1;
3539
3540cleanup:
3541	/* If it didn't work, free the streams! */
3542	for (i = 0; i < num_eps; i++) {
3543		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3544		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3545		vdev->eps[ep_index].stream_info = NULL;
3546		/* FIXME Unset maxPstreams in endpoint context and
3547		 * update deq ptr to point to normal string ring.
3548		 */
3549		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3550		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3551		xhci_endpoint_zero(xhci, vdev, eps[i]);
3552	}
3553	xhci_free_command(xhci, config_cmd);
3554	return -ENOMEM;
3555}
3556
3557/* Transition the endpoint from using streams to being a "normal" endpoint
3558 * without streams.
3559 *
3560 * Modify the endpoint context state, submit a configure endpoint command,
3561 * and free all endpoint rings for streams if that completes successfully.
3562 */
3563static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3564		struct usb_host_endpoint **eps, unsigned int num_eps,
3565		gfp_t mem_flags)
3566{
3567	int i, ret;
3568	struct xhci_hcd *xhci;
3569	struct xhci_virt_device *vdev;
3570	struct xhci_command *command;
3571	struct xhci_input_control_ctx *ctrl_ctx;
3572	unsigned int ep_index;
3573	unsigned long flags;
3574	u32 changed_ep_bitmask;
3575
3576	xhci = hcd_to_xhci(hcd);
3577	vdev = xhci->devs[udev->slot_id];
3578
3579	/* Set up a configure endpoint command to remove the streams rings */
3580	spin_lock_irqsave(&xhci->lock, flags);
3581	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3582			udev, eps, num_eps);
3583	if (changed_ep_bitmask == 0) {
3584		spin_unlock_irqrestore(&xhci->lock, flags);
3585		return -EINVAL;
3586	}
3587
3588	/* Use the xhci_command structure from the first endpoint.  We may have
3589	 * allocated too many, but the driver may call xhci_free_streams() for
3590	 * each endpoint it grouped into one call to xhci_alloc_streams().
3591	 */
3592	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3593	command = vdev->eps[ep_index].stream_info->free_streams_command;
3594	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3595	if (!ctrl_ctx) {
3596		spin_unlock_irqrestore(&xhci->lock, flags);
3597		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3598				__func__);
3599		return -EINVAL;
3600	}
3601
3602	for (i = 0; i < num_eps; i++) {
3603		struct xhci_ep_ctx *ep_ctx;
3604
3605		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3607		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3608			EP_GETTING_NO_STREAMS;
3609
3610		xhci_endpoint_copy(xhci, command->in_ctx,
3611				vdev->out_ctx, ep_index);
3612		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3613				&vdev->eps[ep_index]);
3614	}
3615	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3616			vdev->out_ctx, ctrl_ctx,
3617			changed_ep_bitmask, changed_ep_bitmask);
3618	spin_unlock_irqrestore(&xhci->lock, flags);
3619
3620	/* Issue and wait for the configure endpoint command,
3621	 * which must succeed.
3622	 */
3623	ret = xhci_configure_endpoint(xhci, udev, command,
3624			false, true);
3625
3626	/* xHC rejected the configure endpoint command for some reason, so we
3627	 * leave the streams rings intact.
3628	 */
3629	if (ret < 0)
3630		return ret;
3631
3632	spin_lock_irqsave(&xhci->lock, flags);
3633	for (i = 0; i < num_eps; i++) {
3634		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636		vdev->eps[ep_index].stream_info = NULL;
3637		/* FIXME Unset maxPstreams in endpoint context and
3638		 * update deq ptr to point to normal string ring.
3639		 */
3640		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3641		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642	}
3643	spin_unlock_irqrestore(&xhci->lock, flags);
3644
3645	return 0;
3646}
3647
3648/*
3649 * Deletes endpoint resources for endpoints that were active before a Reset
3650 * Device command, or a Disable Slot command.  The Reset Device command leaves
3651 * the control endpoint intact, whereas the Disable Slot command deletes it.
3652 *
3653 * Must be called with xhci->lock held.
3654 */
3655void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3656	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3657{
3658	int i;
3659	unsigned int num_dropped_eps = 0;
3660	unsigned int drop_flags = 0;
3661
3662	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3663		if (virt_dev->eps[i].ring) {
3664			drop_flags |= 1 << i;
3665			num_dropped_eps++;
3666		}
3667	}
3668	xhci->num_active_eps -= num_dropped_eps;
3669	if (num_dropped_eps)
3670		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671				"Dropped %u ep ctxs, flags = 0x%x, "
3672				"%u now active.",
3673				num_dropped_eps, drop_flags,
3674				xhci->num_active_eps);
3675}
3676
3677/*
3678 * This submits a Reset Device Command, which will set the device state to 0,
3679 * set the device address to 0, and disable all the endpoints except the default
3680 * control endpoint.  The USB core should come back and call
3681 * xhci_address_device(), and then re-set up the configuration.  If this is
3682 * called because of a usb_reset_and_verify_device(), then the old alternate
3683 * settings will be re-installed through the normal bandwidth allocation
3684 * functions.
3685 *
3686 * Wait for the Reset Device command to finish.  Remove all structures
3687 * associated with the endpoints that were disabled.  Clear the input device
3688 * structure? Reset the control endpoint 0 max packet size?
3689 *
3690 * If the virt_dev to be reset does not exist or does not match the udev,
3691 * it means the device is lost, possibly due to the xHC restore error and
3692 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3693 * re-allocate the device.
3694 */
3695static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3696		struct usb_device *udev)
3697{
3698	int ret, i;
3699	unsigned long flags;
3700	struct xhci_hcd *xhci;
3701	unsigned int slot_id;
3702	struct xhci_virt_device *virt_dev;
3703	struct xhci_command *reset_device_cmd;
 
3704	struct xhci_slot_ctx *slot_ctx;
3705	int old_active_eps = 0;
3706
3707	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3708	if (ret <= 0)
3709		return ret;
3710	xhci = hcd_to_xhci(hcd);
3711	slot_id = udev->slot_id;
3712	virt_dev = xhci->devs[slot_id];
3713	if (!virt_dev) {
3714		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715				"not exist. Re-allocate the device\n", slot_id);
3716		ret = xhci_alloc_dev(hcd, udev);
3717		if (ret == 1)
3718			return 0;
3719		else
3720			return -EINVAL;
3721	}
3722
3723	if (virt_dev->tt_info)
3724		old_active_eps = virt_dev->tt_info->active_eps;
3725
3726	if (virt_dev->udev != udev) {
3727		/* If the virt_dev and the udev does not match, this virt_dev
3728		 * may belong to another udev.
3729		 * Re-allocate the device.
3730		 */
3731		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3732				"not match the udev. Re-allocate the device\n",
3733				slot_id);
3734		ret = xhci_alloc_dev(hcd, udev);
3735		if (ret == 1)
3736			return 0;
3737		else
3738			return -EINVAL;
3739	}
3740
3741	/* If device is not setup, there is no point in resetting it */
3742	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3743	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3744						SLOT_STATE_DISABLED)
3745		return 0;
3746
3747	trace_xhci_discover_or_reset_device(slot_ctx);
3748
3749	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750	/* Allocate the command structure that holds the struct completion.
3751	 * Assume we're in process context, since the normal device reset
3752	 * process has to wait for the device anyway.  Storage devices are
3753	 * reset as part of error handling, so use GFP_NOIO instead of
3754	 * GFP_KERNEL.
3755	 */
3756	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757	if (!reset_device_cmd) {
3758		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759		return -ENOMEM;
3760	}
3761
3762	/* Attempt to submit the Reset Device command to the command ring */
3763	spin_lock_irqsave(&xhci->lock, flags);
3764
3765	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766	if (ret) {
3767		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768		spin_unlock_irqrestore(&xhci->lock, flags);
3769		goto command_cleanup;
3770	}
3771	xhci_ring_cmd_db(xhci);
3772	spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774	/* Wait for the Reset Device command to finish */
3775	wait_for_completion(reset_device_cmd->completion);
3776
3777	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778	 * unless we tried to reset a slot ID that wasn't enabled,
3779	 * or the device wasn't in the addressed or configured state.
3780	 */
3781	ret = reset_device_cmd->status;
3782	switch (ret) {
3783	case COMP_COMMAND_ABORTED:
3784	case COMP_COMMAND_RING_STOPPED:
3785		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786		ret = -ETIME;
3787		goto command_cleanup;
3788	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791				slot_id,
3792				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793		xhci_dbg(xhci, "Not freeing device rings.\n");
3794		/* Don't treat this as an error.  May change my mind later. */
3795		ret = 0;
3796		goto command_cleanup;
3797	case COMP_SUCCESS:
3798		xhci_dbg(xhci, "Successful reset device command.\n");
3799		break;
3800	default:
3801		if (xhci_is_vendor_info_code(xhci, ret))
3802			break;
3803		xhci_warn(xhci, "Unknown completion code %u for "
3804				"reset device command.\n", ret);
3805		ret = -EINVAL;
3806		goto command_cleanup;
3807	}
3808
3809	/* Free up host controller endpoint resources */
3810	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811		spin_lock_irqsave(&xhci->lock, flags);
3812		/* Don't delete the default control endpoint resources */
3813		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814		spin_unlock_irqrestore(&xhci->lock, flags);
3815	}
3816
3817	/* Everything but endpoint 0 is disabled, so free the rings. */
3818	for (i = 1; i < 31; i++) {
 
3819		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820
3821		if (ep->ep_state & EP_HAS_STREAMS) {
3822			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823					xhci_get_endpoint_address(i));
3824			xhci_free_stream_info(xhci, ep->stream_info);
3825			ep->stream_info = NULL;
3826			ep->ep_state &= ~EP_HAS_STREAMS;
3827		}
3828
3829		if (ep->ring) {
3830			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831			xhci_free_endpoint_ring(xhci, virt_dev, i);
3832		}
3833		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834			xhci_drop_ep_from_interval_table(xhci,
3835					&virt_dev->eps[i].bw_info,
3836					virt_dev->bw_table,
3837					udev,
3838					&virt_dev->eps[i],
3839					virt_dev->tt_info);
3840		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841	}
3842	/* If necessary, update the number of active TTs on this root port */
3843	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844	virt_dev->flags = 0;
 
 
3845	ret = 0;
3846
3847command_cleanup:
3848	xhci_free_command(xhci, reset_device_cmd);
3849	return ret;
3850}
3851
3852/*
3853 * At this point, the struct usb_device is about to go away, the device has
3854 * disconnected, and all traffic has been stopped and the endpoints have been
3855 * disabled.  Free any HC data structures associated with that device.
3856 */
3857static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858{
3859	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860	struct xhci_virt_device *virt_dev;
3861	struct xhci_slot_ctx *slot_ctx;
 
3862	int i, ret;
 
 
 
 
 
3863
3864#ifndef CONFIG_USB_DEFAULT_PERSIST
3865	/*
3866	 * We called pm_runtime_get_noresume when the device was attached.
3867	 * Decrement the counter here to allow controller to runtime suspend
3868	 * if no devices remain.
3869	 */
3870	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871		pm_runtime_put_noidle(hcd->self.controller);
3872#endif
3873
3874	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3875	/* If the host is halted due to driver unload, we still need to free the
3876	 * device.
3877	 */
3878	if (ret <= 0 && ret != -ENODEV)
 
3879		return;
 
3880
3881	virt_dev = xhci->devs[udev->slot_id];
3882	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883	trace_xhci_free_dev(slot_ctx);
3884
3885	/* Stop any wayward timer functions (which may grab the lock) */
3886	for (i = 0; i < 31; i++) {
3887		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3888		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3889	}
3890	virt_dev->udev = NULL;
3891	ret = xhci_disable_slot(xhci, udev->slot_id);
3892	if (ret)
3893		xhci_free_virt_device(xhci, udev->slot_id);
3894}
3895
3896int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897{
3898	struct xhci_command *command;
3899	unsigned long flags;
3900	u32 state;
3901	int ret = 0;
3902
3903	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3904	if (!command)
3905		return -ENOMEM;
3906
3907	xhci_debugfs_remove_slot(xhci, slot_id);
3908
3909	spin_lock_irqsave(&xhci->lock, flags);
3910	/* Don't disable the slot if the host controller is dead. */
3911	state = readl(&xhci->op_regs->status);
3912	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
3914		spin_unlock_irqrestore(&xhci->lock, flags);
3915		kfree(command);
3916		return -ENODEV;
3917	}
3918
3919	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920				slot_id);
3921	if (ret) {
3922		spin_unlock_irqrestore(&xhci->lock, flags);
3923		kfree(command);
3924		return ret;
3925	}
3926	xhci_ring_cmd_db(xhci);
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
 
 
 
 
3929}
3930
3931/*
3932 * Checks if we have enough host controller resources for the default control
3933 * endpoint.
3934 *
3935 * Must be called with xhci->lock held.
3936 */
3937static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3938{
3939	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3940		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3941				"Not enough ep ctxs: "
3942				"%u active, need to add 1, limit is %u.",
3943				xhci->num_active_eps, xhci->limit_active_eps);
3944		return -ENOMEM;
3945	}
3946	xhci->num_active_eps += 1;
3947	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948			"Adding 1 ep ctx, %u now active.",
3949			xhci->num_active_eps);
3950	return 0;
3951}
3952
3953
3954/*
3955 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3956 * timed out, or allocating memory failed.  Returns 1 on success.
3957 */
3958int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3959{
3960	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961	struct xhci_virt_device *vdev;
3962	struct xhci_slot_ctx *slot_ctx;
3963	unsigned long flags;
3964	int ret, slot_id;
3965	struct xhci_command *command;
3966
3967	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968	if (!command)
3969		return 0;
3970
 
 
3971	spin_lock_irqsave(&xhci->lock, flags);
3972	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3973	if (ret) {
3974		spin_unlock_irqrestore(&xhci->lock, flags);
 
3975		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3976		xhci_free_command(xhci, command);
3977		return 0;
3978	}
3979	xhci_ring_cmd_db(xhci);
3980	spin_unlock_irqrestore(&xhci->lock, flags);
3981
3982	wait_for_completion(command->completion);
3983	slot_id = command->slot_id;
 
3984
3985	if (!slot_id || command->status != COMP_SUCCESS) {
3986		xhci_err(xhci, "Error while assigning device slot ID\n");
3987		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3988				HCS_MAX_SLOTS(
3989					readl(&xhci->cap_regs->hcs_params1)));
3990		xhci_free_command(xhci, command);
3991		return 0;
3992	}
3993
3994	xhci_free_command(xhci, command);
3995
3996	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3997		spin_lock_irqsave(&xhci->lock, flags);
3998		ret = xhci_reserve_host_control_ep_resources(xhci);
3999		if (ret) {
4000			spin_unlock_irqrestore(&xhci->lock, flags);
4001			xhci_warn(xhci, "Not enough host resources, "
4002					"active endpoint contexts = %u\n",
4003					xhci->num_active_eps);
4004			goto disable_slot;
4005		}
4006		spin_unlock_irqrestore(&xhci->lock, flags);
4007	}
4008	/* Use GFP_NOIO, since this function can be called from
4009	 * xhci_discover_or_reset_device(), which may be called as part of
4010	 * mass storage driver error handling.
4011	 */
4012	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4013		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4014		goto disable_slot;
4015	}
4016	vdev = xhci->devs[slot_id];
4017	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4018	trace_xhci_alloc_dev(slot_ctx);
4019
4020	udev->slot_id = slot_id;
4021
4022	xhci_debugfs_create_slot(xhci, slot_id);
4023
4024#ifndef CONFIG_USB_DEFAULT_PERSIST
4025	/*
4026	 * If resetting upon resume, we can't put the controller into runtime
4027	 * suspend if there is a device attached.
4028	 */
4029	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4030		pm_runtime_get_noresume(hcd->self.controller);
4031#endif
4032
 
 
4033	/* Is this a LS or FS device under a HS hub? */
4034	/* Hub or peripherial? */
4035	return 1;
4036
4037disable_slot:
4038	ret = xhci_disable_slot(xhci, udev->slot_id);
4039	if (ret)
4040		xhci_free_virt_device(xhci, udev->slot_id);
4041
 
 
 
 
 
4042	return 0;
4043}
4044
4045/*
4046 * Issue an Address Device command and optionally send a corresponding
4047 * SetAddress request to the device.
4048 */
4049static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050			     enum xhci_setup_dev setup)
4051{
4052	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053	unsigned long flags;
4054	struct xhci_virt_device *virt_dev;
4055	int ret = 0;
4056	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057	struct xhci_slot_ctx *slot_ctx;
4058	struct xhci_input_control_ctx *ctrl_ctx;
4059	u64 temp_64;
4060	struct xhci_command *command = NULL;
4061
4062	mutex_lock(&xhci->mutex);
4063
4064	if (xhci->xhc_state) {	/* dying, removing or halted */
4065		ret = -ESHUTDOWN;
4066		goto out;
4067	}
4068
4069	if (!udev->slot_id) {
4070		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071				"Bad Slot ID %d", udev->slot_id);
4072		ret = -EINVAL;
4073		goto out;
4074	}
4075
4076	virt_dev = xhci->devs[udev->slot_id];
4077
4078	if (WARN_ON(!virt_dev)) {
4079		/*
4080		 * In plug/unplug torture test with an NEC controller,
4081		 * a zero-dereference was observed once due to virt_dev = 0.
4082		 * Print useful debug rather than crash if it is observed again!
4083		 */
4084		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085			udev->slot_id);
4086		ret = -EINVAL;
4087		goto out;
4088	}
4089	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090	trace_xhci_setup_device_slot(slot_ctx);
4091
4092	if (setup == SETUP_CONTEXT_ONLY) {
 
4093		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094		    SLOT_STATE_DEFAULT) {
4095			xhci_dbg(xhci, "Slot already in default state\n");
4096			goto out;
4097		}
4098	}
4099
4100	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101	if (!command) {
4102		ret = -ENOMEM;
4103		goto out;
4104	}
4105
4106	command->in_ctx = virt_dev->in_ctx;
4107
4108	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4109	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4110	if (!ctrl_ctx) {
4111		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4112				__func__);
4113		ret = -EINVAL;
4114		goto out;
4115	}
4116	/*
4117	 * If this is the first Set Address since device plug-in or
4118	 * virt_device realloaction after a resume with an xHCI power loss,
4119	 * then set up the slot context.
4120	 */
4121	if (!slot_ctx->dev_info)
4122		xhci_setup_addressable_virt_dev(xhci, udev);
4123	/* Otherwise, update the control endpoint ring enqueue pointer. */
4124	else
4125		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4126	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4127	ctrl_ctx->drop_flags = 0;
4128
 
 
4129	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4130				le32_to_cpu(slot_ctx->dev_info) >> 27);
4131
4132	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4133	spin_lock_irqsave(&xhci->lock, flags);
4134	trace_xhci_setup_device(virt_dev);
4135	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4136					udev->slot_id, setup);
4137	if (ret) {
4138		spin_unlock_irqrestore(&xhci->lock, flags);
4139		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140				"FIXME: allocate a command ring segment");
4141		goto out;
4142	}
4143	xhci_ring_cmd_db(xhci);
4144	spin_unlock_irqrestore(&xhci->lock, flags);
4145
4146	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4147	wait_for_completion(command->completion);
4148
4149	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4150	 * the SetAddress() "recovery interval" required by USB and aborting the
4151	 * command on a timeout.
4152	 */
4153	switch (command->status) {
4154	case COMP_COMMAND_ABORTED:
4155	case COMP_COMMAND_RING_STOPPED:
4156		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4157		ret = -ETIME;
4158		break;
4159	case COMP_CONTEXT_STATE_ERROR:
4160	case COMP_SLOT_NOT_ENABLED_ERROR:
4161		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4162			 act, udev->slot_id);
4163		ret = -EINVAL;
4164		break;
4165	case COMP_USB_TRANSACTION_ERROR:
4166		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4167
4168		mutex_unlock(&xhci->mutex);
4169		ret = xhci_disable_slot(xhci, udev->slot_id);
4170		if (!ret)
4171			xhci_alloc_dev(hcd, udev);
4172		kfree(command->completion);
4173		kfree(command);
4174		return -EPROTO;
4175	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4176		dev_warn(&udev->dev,
4177			 "ERROR: Incompatible device for setup %s command\n", act);
4178		ret = -ENODEV;
4179		break;
4180	case COMP_SUCCESS:
4181		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182			       "Successful setup %s command", act);
4183		break;
4184	default:
4185		xhci_err(xhci,
4186			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4187			 act, command->status);
 
 
4188		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4189		ret = -EINVAL;
4190		break;
4191	}
4192	if (ret)
4193		goto out;
4194	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4195	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4196			"Op regs DCBAA ptr = %#016llx", temp_64);
4197	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198		"Slot ID %d dcbaa entry @%p = %#016llx",
4199		udev->slot_id,
4200		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4201		(unsigned long long)
4202		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4203	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4204			"Output Context DMA address = %#08llx",
4205			(unsigned long long)virt_dev->out_ctx->dma);
 
 
4206	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4207				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
4208	/*
4209	 * USB core uses address 1 for the roothubs, so we add one to the
4210	 * address given back to us by the HC.
4211	 */
 
4212	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4213				le32_to_cpu(slot_ctx->dev_info) >> 27);
4214	/* Zero the input context control for later use */
4215	ctrl_ctx->add_flags = 0;
4216	ctrl_ctx->drop_flags = 0;
4217	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4218	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4219
4220	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221		       "Internal device address = %d",
4222		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223out:
4224	mutex_unlock(&xhci->mutex);
4225	if (command) {
4226		kfree(command->completion);
4227		kfree(command);
4228	}
4229	return ret;
4230}
4231
4232static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4233{
4234	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4235}
4236
4237static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4238{
4239	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4240}
4241
4242/*
4243 * Transfer the port index into real index in the HW port status
4244 * registers. Caculate offset between the port's PORTSC register
4245 * and port status base. Divide the number of per port register
4246 * to get the real index. The raw port number bases 1.
4247 */
4248int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4249{
4250	struct xhci_hub *rhub;
 
 
 
4251
4252	rhub = xhci_get_rhub(hcd);
4253	return rhub->ports[port1 - 1]->hw_portnum + 1;
 
 
 
 
 
4254}
4255
4256/*
4257 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4258 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4259 */
4260static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4261			struct usb_device *udev, u16 max_exit_latency)
4262{
4263	struct xhci_virt_device *virt_dev;
4264	struct xhci_command *command;
4265	struct xhci_input_control_ctx *ctrl_ctx;
4266	struct xhci_slot_ctx *slot_ctx;
4267	unsigned long flags;
4268	int ret;
4269
4270	spin_lock_irqsave(&xhci->lock, flags);
4271
4272	virt_dev = xhci->devs[udev->slot_id];
4273
4274	/*
4275	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4276	 * xHC was re-initialized. Exit latency will be set later after
4277	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4278	 */
4279
4280	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4281		spin_unlock_irqrestore(&xhci->lock, flags);
4282		return 0;
4283	}
4284
4285	/* Attempt to issue an Evaluate Context command to change the MEL. */
4286	command = xhci->lpm_command;
4287	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4288	if (!ctrl_ctx) {
4289		spin_unlock_irqrestore(&xhci->lock, flags);
4290		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4291				__func__);
4292		return -ENOMEM;
4293	}
4294
4295	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4296	spin_unlock_irqrestore(&xhci->lock, flags);
4297
4298	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4299	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4300	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4301	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4302	slot_ctx->dev_state = 0;
4303
4304	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4305			"Set up evaluate context for LPM MEL change.");
 
 
4306
4307	/* Issue and wait for the evaluate context command. */
4308	ret = xhci_configure_endpoint(xhci, udev, command,
4309			true, true);
 
 
4310
4311	if (!ret) {
4312		spin_lock_irqsave(&xhci->lock, flags);
4313		virt_dev->current_mel = max_exit_latency;
4314		spin_unlock_irqrestore(&xhci->lock, flags);
4315	}
4316	return ret;
4317}
4318
4319#ifdef CONFIG_PM
4320
4321/* BESL to HIRD Encoding array for USB2 LPM */
4322static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4323	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4324
4325/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4326static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4327					struct usb_device *udev)
4328{
4329	int u2del, besl, besl_host;
4330	int besl_device = 0;
4331	u32 field;
4332
4333	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4334	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4335
4336	if (field & USB_BESL_SUPPORT) {
4337		for (besl_host = 0; besl_host < 16; besl_host++) {
4338			if (xhci_besl_encoding[besl_host] >= u2del)
4339				break;
4340		}
4341		/* Use baseline BESL value as default */
4342		if (field & USB_BESL_BASELINE_VALID)
4343			besl_device = USB_GET_BESL_BASELINE(field);
4344		else if (field & USB_BESL_DEEP_VALID)
4345			besl_device = USB_GET_BESL_DEEP(field);
4346	} else {
4347		if (u2del <= 50)
4348			besl_host = 0;
4349		else
4350			besl_host = (u2del - 51) / 75 + 1;
4351	}
4352
4353	besl = besl_host + besl_device;
4354	if (besl > 15)
4355		besl = 15;
4356
4357	return besl;
4358}
4359
4360/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4361static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4362{
4363	u32 field;
4364	int l1;
4365	int besld = 0;
4366	int hirdm = 0;
4367
4368	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4369
4370	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4371	l1 = udev->l1_params.timeout / 256;
4372
4373	/* device has preferred BESLD */
4374	if (field & USB_BESL_DEEP_VALID) {
4375		besld = USB_GET_BESL_DEEP(field);
4376		hirdm = 1;
4377	}
4378
4379	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4380}
4381
4382static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4383			struct usb_device *udev, int enable)
4384{
4385	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4386	struct xhci_port **ports;
4387	__le32 __iomem	*pm_addr, *hlpm_addr;
4388	u32		pm_val, hlpm_val, field;
4389	unsigned int	port_num;
4390	unsigned long	flags;
4391	int		hird, exit_latency;
4392	int		ret;
4393
4394	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4395			!udev->lpm_capable)
4396		return -EPERM;
4397
4398	if (!udev->parent || udev->parent->parent ||
4399			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4400		return -EPERM;
4401
4402	if (udev->usb2_hw_lpm_capable != 1)
4403		return -EPERM;
4404
4405	spin_lock_irqsave(&xhci->lock, flags);
4406
4407	ports = xhci->usb2_rhub.ports;
4408	port_num = udev->portnum - 1;
4409	pm_addr = ports[port_num]->addr + PORTPMSC;
4410	pm_val = readl(pm_addr);
4411	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
 
4412
4413	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4414			enable ? "enable" : "disable", port_num + 1);
4415
4416	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4417		/* Host supports BESL timeout instead of HIRD */
4418		if (udev->usb2_hw_lpm_besl_capable) {
4419			/* if device doesn't have a preferred BESL value use a
4420			 * default one which works with mixed HIRD and BESL
4421			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4422			 */
4423			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4424			if ((field & USB_BESL_SUPPORT) &&
4425			    (field & USB_BESL_BASELINE_VALID))
4426				hird = USB_GET_BESL_BASELINE(field);
4427			else
4428				hird = udev->l1_params.besl;
4429
4430			exit_latency = xhci_besl_encoding[hird];
4431			spin_unlock_irqrestore(&xhci->lock, flags);
4432
4433			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4434			 * input context for link powermanagement evaluate
4435			 * context commands. It is protected by hcd->bandwidth
4436			 * mutex and is shared by all devices. We need to set
4437			 * the max ext latency in USB 2 BESL LPM as well, so
4438			 * use the same mutex and xhci_change_max_exit_latency()
4439			 */
4440			mutex_lock(hcd->bandwidth_mutex);
4441			ret = xhci_change_max_exit_latency(xhci, udev,
4442							   exit_latency);
4443			mutex_unlock(hcd->bandwidth_mutex);
4444
4445			if (ret < 0)
4446				return ret;
4447			spin_lock_irqsave(&xhci->lock, flags);
4448
4449			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4450			writel(hlpm_val, hlpm_addr);
4451			/* flush write */
4452			readl(hlpm_addr);
4453		} else {
4454			hird = xhci_calculate_hird_besl(xhci, udev);
4455		}
4456
4457		pm_val &= ~PORT_HIRD_MASK;
4458		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4459		writel(pm_val, pm_addr);
4460		pm_val = readl(pm_addr);
4461		pm_val |= PORT_HLE;
4462		writel(pm_val, pm_addr);
4463		/* flush write */
4464		readl(pm_addr);
4465	} else {
4466		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4467		writel(pm_val, pm_addr);
4468		/* flush write */
4469		readl(pm_addr);
4470		if (udev->usb2_hw_lpm_besl_capable) {
4471			spin_unlock_irqrestore(&xhci->lock, flags);
4472			mutex_lock(hcd->bandwidth_mutex);
4473			xhci_change_max_exit_latency(xhci, udev, 0);
4474			mutex_unlock(hcd->bandwidth_mutex);
4475			return 0;
4476		}
4477	}
4478
4479	spin_unlock_irqrestore(&xhci->lock, flags);
4480	return 0;
4481}
4482
4483/* check if a usb2 port supports a given extened capability protocol
4484 * only USB2 ports extended protocol capability values are cached.
4485 * Return 1 if capability is supported
4486 */
4487static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4488					   unsigned capability)
4489{
4490	u32 port_offset, port_count;
4491	int i;
4492
4493	for (i = 0; i < xhci->num_ext_caps; i++) {
4494		if (xhci->ext_caps[i] & capability) {
4495			/* port offsets starts at 1 */
4496			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4497			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4498			if (port >= port_offset &&
4499			    port < port_offset + port_count)
4500				return 1;
4501		}
4502	}
4503	return 0;
4504}
4505
4506static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4507{
4508	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4509	int		portnum = udev->portnum - 1;
4510
4511	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
 
4512		return 0;
4513
4514	/* we only support lpm for non-hub device connected to root hub yet */
4515	if (!udev->parent || udev->parent->parent ||
4516			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517		return 0;
4518
4519	if (xhci->hw_lpm_support == 1 &&
4520			xhci_check_usb2_port_capability(
4521				xhci, portnum, XHCI_HLC)) {
4522		udev->usb2_hw_lpm_capable = 1;
4523		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4524		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4525		if (xhci_check_usb2_port_capability(xhci, portnum,
4526					XHCI_BLC))
4527			udev->usb2_hw_lpm_besl_capable = 1;
4528	}
4529
4530	return 0;
4531}
4532
4533/*---------------------- USB 3.0 Link PM functions ------------------------*/
4534
4535/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4536static unsigned long long xhci_service_interval_to_ns(
4537		struct usb_endpoint_descriptor *desc)
4538{
4539	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4540}
4541
4542static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4543		enum usb3_link_state state)
4544{
4545	unsigned long long sel;
4546	unsigned long long pel;
4547	unsigned int max_sel_pel;
4548	char *state_name;
4549
4550	switch (state) {
4551	case USB3_LPM_U1:
4552		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4553		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4554		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4555		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4556		state_name = "U1";
4557		break;
4558	case USB3_LPM_U2:
4559		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4560		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4561		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4562		state_name = "U2";
4563		break;
4564	default:
4565		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4566				__func__);
4567		return USB3_LPM_DISABLED;
4568	}
4569
4570	if (sel <= max_sel_pel && pel <= max_sel_pel)
4571		return USB3_LPM_DEVICE_INITIATED;
4572
4573	if (sel > max_sel_pel)
4574		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4575				"due to long SEL %llu ms\n",
4576				state_name, sel);
4577	else
4578		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4579				"due to long PEL %llu ms\n",
4580				state_name, pel);
4581	return USB3_LPM_DISABLED;
4582}
4583
4584/* The U1 timeout should be the maximum of the following values:
4585 *  - For control endpoints, U1 system exit latency (SEL) * 3
4586 *  - For bulk endpoints, U1 SEL * 5
4587 *  - For interrupt endpoints:
4588 *    - Notification EPs, U1 SEL * 3
4589 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4590 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4591 */
4592static unsigned long long xhci_calculate_intel_u1_timeout(
4593		struct usb_device *udev,
4594		struct usb_endpoint_descriptor *desc)
4595{
4596	unsigned long long timeout_ns;
4597	int ep_type;
4598	int intr_type;
4599
4600	ep_type = usb_endpoint_type(desc);
4601	switch (ep_type) {
4602	case USB_ENDPOINT_XFER_CONTROL:
4603		timeout_ns = udev->u1_params.sel * 3;
4604		break;
4605	case USB_ENDPOINT_XFER_BULK:
4606		timeout_ns = udev->u1_params.sel * 5;
4607		break;
4608	case USB_ENDPOINT_XFER_INT:
4609		intr_type = usb_endpoint_interrupt_type(desc);
4610		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4611			timeout_ns = udev->u1_params.sel * 3;
4612			break;
4613		}
4614		/* Otherwise the calculation is the same as isoc eps */
4615		/* fall through */
4616	case USB_ENDPOINT_XFER_ISOC:
4617		timeout_ns = xhci_service_interval_to_ns(desc);
4618		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4619		if (timeout_ns < udev->u1_params.sel * 2)
4620			timeout_ns = udev->u1_params.sel * 2;
4621		break;
4622	default:
4623		return 0;
4624	}
4625
4626	return timeout_ns;
4627}
4628
4629/* Returns the hub-encoded U1 timeout value. */
4630static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4631		struct usb_device *udev,
4632		struct usb_endpoint_descriptor *desc)
4633{
4634	unsigned long long timeout_ns;
4635
4636	/* Prevent U1 if service interval is shorter than U1 exit latency */
4637	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4638		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4639			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4640			return USB3_LPM_DISABLED;
4641		}
4642	}
4643
4644	if (xhci->quirks & XHCI_INTEL_HOST)
4645		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4646	else
4647		timeout_ns = udev->u1_params.sel;
4648
4649	/* The U1 timeout is encoded in 1us intervals.
4650	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4651	 */
4652	if (timeout_ns == USB3_LPM_DISABLED)
4653		timeout_ns = 1;
4654	else
4655		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4656
4657	/* If the necessary timeout value is bigger than what we can set in the
4658	 * USB 3.0 hub, we have to disable hub-initiated U1.
4659	 */
4660	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4661		return timeout_ns;
4662	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4663			"due to long timeout %llu ms\n", timeout_ns);
4664	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4665}
4666
4667/* The U2 timeout should be the maximum of:
4668 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4669 *  - largest bInterval of any active periodic endpoint (to avoid going
4670 *    into lower power link states between intervals).
4671 *  - the U2 Exit Latency of the device
4672 */
4673static unsigned long long xhci_calculate_intel_u2_timeout(
4674		struct usb_device *udev,
4675		struct usb_endpoint_descriptor *desc)
4676{
4677	unsigned long long timeout_ns;
4678	unsigned long long u2_del_ns;
4679
4680	timeout_ns = 10 * 1000 * 1000;
4681
4682	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4683			(xhci_service_interval_to_ns(desc) > timeout_ns))
4684		timeout_ns = xhci_service_interval_to_ns(desc);
4685
4686	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4687	if (u2_del_ns > timeout_ns)
4688		timeout_ns = u2_del_ns;
4689
4690	return timeout_ns;
4691}
4692
4693/* Returns the hub-encoded U2 timeout value. */
4694static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4695		struct usb_device *udev,
4696		struct usb_endpoint_descriptor *desc)
4697{
4698	unsigned long long timeout_ns;
4699
4700	/* Prevent U2 if service interval is shorter than U2 exit latency */
4701	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4702		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4703			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4704			return USB3_LPM_DISABLED;
4705		}
4706	}
4707
4708	if (xhci->quirks & XHCI_INTEL_HOST)
4709		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4710	else
4711		timeout_ns = udev->u2_params.sel;
4712
4713	/* The U2 timeout is encoded in 256us intervals */
4714	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4715	/* If the necessary timeout value is bigger than what we can set in the
4716	 * USB 3.0 hub, we have to disable hub-initiated U2.
4717	 */
4718	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4719		return timeout_ns;
4720	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4721			"due to long timeout %llu ms\n", timeout_ns);
4722	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4723}
4724
4725static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4726		struct usb_device *udev,
4727		struct usb_endpoint_descriptor *desc,
4728		enum usb3_link_state state,
4729		u16 *timeout)
4730{
4731	if (state == USB3_LPM_U1)
4732		return xhci_calculate_u1_timeout(xhci, udev, desc);
4733	else if (state == USB3_LPM_U2)
4734		return xhci_calculate_u2_timeout(xhci, udev, desc);
4735
4736	return USB3_LPM_DISABLED;
4737}
4738
4739static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4740		struct usb_device *udev,
4741		struct usb_endpoint_descriptor *desc,
4742		enum usb3_link_state state,
4743		u16 *timeout)
4744{
4745	u16 alt_timeout;
4746
4747	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4748		desc, state, timeout);
4749
4750	/* If we found we can't enable hub-initiated LPM, and
4751	 * the U1 or U2 exit latency was too high to allow
4752	 * device-initiated LPM as well, then we will disable LPM
4753	 * for this device, so stop searching any further.
4754	 */
4755	if (alt_timeout == USB3_LPM_DISABLED) {
 
4756		*timeout = alt_timeout;
4757		return -E2BIG;
4758	}
4759	if (alt_timeout > *timeout)
4760		*timeout = alt_timeout;
4761	return 0;
4762}
4763
4764static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4765		struct usb_device *udev,
4766		struct usb_host_interface *alt,
4767		enum usb3_link_state state,
4768		u16 *timeout)
4769{
4770	int j;
4771
4772	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4773		if (xhci_update_timeout_for_endpoint(xhci, udev,
4774					&alt->endpoint[j].desc, state, timeout))
4775			return -E2BIG;
4776		continue;
4777	}
4778	return 0;
4779}
4780
4781static int xhci_check_intel_tier_policy(struct usb_device *udev,
4782		enum usb3_link_state state)
4783{
4784	struct usb_device *parent;
4785	unsigned int num_hubs;
4786
4787	if (state == USB3_LPM_U2)
4788		return 0;
4789
4790	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4791	for (parent = udev->parent, num_hubs = 0; parent->parent;
4792			parent = parent->parent)
4793		num_hubs++;
4794
4795	if (num_hubs < 2)
4796		return 0;
4797
4798	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4799			" below second-tier hub.\n");
4800	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4801			"to decrease power consumption.\n");
4802	return -E2BIG;
4803}
4804
4805static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806		struct usb_device *udev,
4807		enum usb3_link_state state)
4808{
4809	if (xhci->quirks & XHCI_INTEL_HOST)
4810		return xhci_check_intel_tier_policy(udev, state);
4811	else
4812		return 0;
4813}
4814
4815/* Returns the U1 or U2 timeout that should be enabled.
4816 * If the tier check or timeout setting functions return with a non-zero exit
4817 * code, that means the timeout value has been finalized and we shouldn't look
4818 * at any more endpoints.
4819 */
4820static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4821			struct usb_device *udev, enum usb3_link_state state)
4822{
4823	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4824	struct usb_host_config *config;
4825	char *state_name;
4826	int i;
4827	u16 timeout = USB3_LPM_DISABLED;
4828
4829	if (state == USB3_LPM_U1)
4830		state_name = "U1";
4831	else if (state == USB3_LPM_U2)
4832		state_name = "U2";
4833	else {
4834		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4835				state);
4836		return timeout;
4837	}
4838
4839	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4840		return timeout;
4841
4842	/* Gather some information about the currently installed configuration
4843	 * and alternate interface settings.
4844	 */
4845	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4846			state, &timeout))
4847		return timeout;
4848
4849	config = udev->actconfig;
4850	if (!config)
4851		return timeout;
4852
4853	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4854		struct usb_driver *driver;
4855		struct usb_interface *intf = config->interface[i];
4856
4857		if (!intf)
4858			continue;
4859
4860		/* Check if any currently bound drivers want hub-initiated LPM
4861		 * disabled.
4862		 */
4863		if (intf->dev.driver) {
4864			driver = to_usb_driver(intf->dev.driver);
4865			if (driver && driver->disable_hub_initiated_lpm) {
4866				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4867					state_name, driver->name);
4868				timeout = xhci_get_timeout_no_hub_lpm(udev,
4869								      state);
4870				if (timeout == USB3_LPM_DISABLED)
4871					return timeout;
4872			}
4873		}
4874
4875		/* Not sure how this could happen... */
4876		if (!intf->cur_altsetting)
4877			continue;
4878
4879		if (xhci_update_timeout_for_interface(xhci, udev,
4880					intf->cur_altsetting,
4881					state, &timeout))
4882			return timeout;
4883	}
4884	return timeout;
4885}
4886
4887static int calculate_max_exit_latency(struct usb_device *udev,
4888		enum usb3_link_state state_changed,
4889		u16 hub_encoded_timeout)
4890{
4891	unsigned long long u1_mel_us = 0;
4892	unsigned long long u2_mel_us = 0;
4893	unsigned long long mel_us = 0;
4894	bool disabling_u1;
4895	bool disabling_u2;
4896	bool enabling_u1;
4897	bool enabling_u2;
4898
4899	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4900			hub_encoded_timeout == USB3_LPM_DISABLED);
4901	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4902			hub_encoded_timeout == USB3_LPM_DISABLED);
4903
4904	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4905			hub_encoded_timeout != USB3_LPM_DISABLED);
4906	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4907			hub_encoded_timeout != USB3_LPM_DISABLED);
4908
4909	/* If U1 was already enabled and we're not disabling it,
4910	 * or we're going to enable U1, account for the U1 max exit latency.
4911	 */
4912	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4913			enabling_u1)
4914		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4915	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4916			enabling_u2)
4917		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4918
4919	if (u1_mel_us > u2_mel_us)
4920		mel_us = u1_mel_us;
4921	else
4922		mel_us = u2_mel_us;
4923	/* xHCI host controller max exit latency field is only 16 bits wide. */
4924	if (mel_us > MAX_EXIT) {
4925		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4926				"is too big.\n", mel_us);
4927		return -E2BIG;
4928	}
4929	return mel_us;
4930}
4931
4932/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4933static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4934			struct usb_device *udev, enum usb3_link_state state)
4935{
4936	struct xhci_hcd	*xhci;
4937	u16 hub_encoded_timeout;
4938	int mel;
4939	int ret;
4940
4941	xhci = hcd_to_xhci(hcd);
4942	/* The LPM timeout values are pretty host-controller specific, so don't
4943	 * enable hub-initiated timeouts unless the vendor has provided
4944	 * information about their timeout algorithm.
4945	 */
4946	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4947			!xhci->devs[udev->slot_id])
4948		return USB3_LPM_DISABLED;
4949
4950	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4951	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4952	if (mel < 0) {
4953		/* Max Exit Latency is too big, disable LPM. */
4954		hub_encoded_timeout = USB3_LPM_DISABLED;
4955		mel = 0;
4956	}
4957
4958	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4959	if (ret)
4960		return ret;
4961	return hub_encoded_timeout;
4962}
4963
4964static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4965			struct usb_device *udev, enum usb3_link_state state)
4966{
4967	struct xhci_hcd	*xhci;
4968	u16 mel;
4969
4970	xhci = hcd_to_xhci(hcd);
4971	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4972			!xhci->devs[udev->slot_id])
4973		return 0;
4974
4975	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4976	return xhci_change_max_exit_latency(xhci, udev, mel);
4977}
4978#else /* CONFIG_PM */
4979
4980static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4981				struct usb_device *udev, int enable)
4982{
4983	return 0;
4984}
4985
4986static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4987{
4988	return 0;
4989}
4990
4991static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4992			struct usb_device *udev, enum usb3_link_state state)
4993{
4994	return USB3_LPM_DISABLED;
4995}
4996
4997static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998			struct usb_device *udev, enum usb3_link_state state)
4999{
5000	return 0;
5001}
5002#endif	/* CONFIG_PM */
5003
5004/*-------------------------------------------------------------------------*/
5005
5006/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5007 * internal data structures for the device.
5008 */
5009static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5010			struct usb_tt *tt, gfp_t mem_flags)
5011{
5012	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5013	struct xhci_virt_device *vdev;
5014	struct xhci_command *config_cmd;
5015	struct xhci_input_control_ctx *ctrl_ctx;
5016	struct xhci_slot_ctx *slot_ctx;
5017	unsigned long flags;
5018	unsigned think_time;
5019	int ret;
5020
5021	/* Ignore root hubs */
5022	if (!hdev->parent)
5023		return 0;
5024
5025	vdev = xhci->devs[hdev->slot_id];
5026	if (!vdev) {
5027		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5028		return -EINVAL;
5029	}
5030
5031	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5032	if (!config_cmd)
5033		return -ENOMEM;
5034
5035	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5036	if (!ctrl_ctx) {
5037		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5038				__func__);
5039		xhci_free_command(xhci, config_cmd);
5040		return -ENOMEM;
5041	}
5042
5043	spin_lock_irqsave(&xhci->lock, flags);
5044	if (hdev->speed == USB_SPEED_HIGH &&
5045			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5046		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5047		xhci_free_command(xhci, config_cmd);
5048		spin_unlock_irqrestore(&xhci->lock, flags);
5049		return -ENOMEM;
5050	}
5051
5052	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5053	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5054	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5055	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5056	/*
5057	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5058	 * but it may be already set to 1 when setup an xHCI virtual
5059	 * device, so clear it anyway.
5060	 */
5061	if (tt->multi)
5062		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5063	else if (hdev->speed == USB_SPEED_FULL)
5064		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5065
5066	if (xhci->hci_version > 0x95) {
5067		xhci_dbg(xhci, "xHCI version %x needs hub "
5068				"TT think time and number of ports\n",
5069				(unsigned int) xhci->hci_version);
5070		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5071		/* Set TT think time - convert from ns to FS bit times.
5072		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5073		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5074		 *
5075		 * xHCI 1.0: this field shall be 0 if the device is not a
5076		 * High-spped hub.
5077		 */
5078		think_time = tt->think_time;
5079		if (think_time != 0)
5080			think_time = (think_time / 666) - 1;
5081		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5082			slot_ctx->tt_info |=
5083				cpu_to_le32(TT_THINK_TIME(think_time));
5084	} else {
5085		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5086				"TT think time or number of ports\n",
5087				(unsigned int) xhci->hci_version);
5088	}
5089	slot_ctx->dev_state = 0;
5090	spin_unlock_irqrestore(&xhci->lock, flags);
5091
5092	xhci_dbg(xhci, "Set up %s for hub device.\n",
5093			(xhci->hci_version > 0x95) ?
5094			"configure endpoint" : "evaluate context");
 
 
5095
5096	/* Issue and wait for the configure endpoint or
5097	 * evaluate context command.
5098	 */
5099	if (xhci->hci_version > 0x95)
5100		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101				false, false);
5102	else
5103		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104				true, false);
5105
 
 
 
5106	xhci_free_command(xhci, config_cmd);
5107	return ret;
5108}
5109
5110static int xhci_get_frame(struct usb_hcd *hcd)
5111{
5112	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113	/* EHCI mods by the periodic size.  Why? */
5114	return readl(&xhci->run_regs->microframe_index) >> 3;
5115}
5116
5117int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5118{
5119	struct xhci_hcd		*xhci;
5120	/*
5121	 * TODO: Check with DWC3 clients for sysdev according to
5122	 * quirks
5123	 */
5124	struct device		*dev = hcd->self.sysdev;
5125	unsigned int		minor_rev;
5126	int			retval;
5127
5128	/* Accept arbitrarily long scatter-gather lists */
5129	hcd->self.sg_tablesize = ~0;
5130
5131	/* support to build packet from discontinuous buffers */
5132	hcd->self.no_sg_constraint = 1;
5133
5134	/* XHCI controllers don't stop the ep queue on short packets :| */
5135	hcd->self.no_stop_on_short = 1;
5136
5137	xhci = hcd_to_xhci(hcd);
5138
5139	if (usb_hcd_is_primary_hcd(hcd)) {
5140		xhci->main_hcd = hcd;
5141		xhci->usb2_rhub.hcd = hcd;
5142		/* Mark the first roothub as being USB 2.0.
5143		 * The xHCI driver will register the USB 3.0 roothub.
5144		 */
5145		hcd->speed = HCD_USB2;
5146		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5147		/*
5148		 * USB 2.0 roothub under xHCI has an integrated TT,
5149		 * (rate matching hub) as opposed to having an OHCI/UHCI
5150		 * companion controller.
5151		 */
5152		hcd->has_tt = 1;
5153	} else {
5154		/*
5155		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5156		 * should return 0x31 for sbrn, or that the minor revision
5157		 * is a two digit BCD containig minor and sub-minor numbers.
5158		 * This was later clarified in xHCI 1.2.
5159		 *
5160		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5161		 * minor revision set to 0x1 instead of 0x10.
5162		 */
5163		if (xhci->usb3_rhub.min_rev == 0x1)
5164			minor_rev = 1;
5165		else
5166			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5167
5168		switch (minor_rev) {
5169		case 2:
5170			hcd->speed = HCD_USB32;
5171			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5172			hcd->self.root_hub->rx_lanes = 2;
5173			hcd->self.root_hub->tx_lanes = 2;
5174			break;
5175		case 1:
5176			hcd->speed = HCD_USB31;
5177			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178			break;
5179		}
5180		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5181			  minor_rev,
5182			  minor_rev ? "Enhanced " : "");
5183
5184		xhci->usb3_rhub.hcd = hcd;
5185		/* xHCI private pointer was set in xhci_pci_probe for the second
5186		 * registered roothub.
5187		 */
5188		return 0;
5189	}
5190
5191	mutex_init(&xhci->mutex);
5192	xhci->cap_regs = hcd->regs;
5193	xhci->op_regs = hcd->regs +
5194		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5195	xhci->run_regs = hcd->regs +
5196		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5197	/* Cache read-only capability registers */
5198	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5199	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5200	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5201	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5202	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5203	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5204	if (xhci->hci_version > 0x100)
5205		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
 
5206
5207	xhci->quirks |= quirks;
5208
5209	get_quirks(dev, xhci);
5210
5211	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5212	 * success event after a short transfer. This quirk will ignore such
5213	 * spurious event.
5214	 */
5215	if (xhci->hci_version > 0x96)
5216		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5217
5218	/* Make sure the HC is halted. */
5219	retval = xhci_halt(xhci);
5220	if (retval)
5221		return retval;
5222
5223	xhci_zero_64b_regs(xhci);
5224
5225	xhci_dbg(xhci, "Resetting HCD\n");
5226	/* Reset the internal HC memory state and registers. */
5227	retval = xhci_reset(xhci);
5228	if (retval)
5229		return retval;
5230	xhci_dbg(xhci, "Reset complete\n");
5231
5232	/*
5233	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5234	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5235	 * address memory pointers actually. So, this driver clears the AC64
5236	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5237	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5238	 */
5239	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5240		xhci->hcc_params &= ~BIT(0);
5241
5242	/* Set dma_mask and coherent_dma_mask to 64-bits,
5243	 * if xHC supports 64-bit addressing */
5244	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5245			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5246		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5247		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5248	} else {
5249		/*
5250		 * This is to avoid error in cases where a 32-bit USB
5251		 * controller is used on a 64-bit capable system.
5252		 */
5253		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5254		if (retval)
5255			return retval;
5256		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5257		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5258	}
5259
5260	xhci_dbg(xhci, "Calling HCD init\n");
5261	/* Initialize HCD and host controller data structures. */
5262	retval = xhci_init(hcd);
5263	if (retval)
5264		return retval;
5265	xhci_dbg(xhci, "Called HCD init\n");
5266
5267	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269
5270	return 0;
5271}
5272EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273
5274static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275		struct usb_host_endpoint *ep)
5276{
5277	struct xhci_hcd *xhci;
5278	struct usb_device *udev;
5279	unsigned int slot_id;
5280	unsigned int ep_index;
5281	unsigned long flags;
5282
5283	xhci = hcd_to_xhci(hcd);
5284
5285	spin_lock_irqsave(&xhci->lock, flags);
5286	udev = (struct usb_device *)ep->hcpriv;
5287	slot_id = udev->slot_id;
5288	ep_index = xhci_get_endpoint_index(&ep->desc);
5289
5290	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292	spin_unlock_irqrestore(&xhci->lock, flags);
5293}
5294
5295static const struct hc_driver xhci_hc_driver = {
5296	.description =		"xhci-hcd",
5297	.product_desc =		"xHCI Host Controller",
5298	.hcd_priv_size =	sizeof(struct xhci_hcd),
5299
5300	/*
5301	 * generic hardware linkage
5302	 */
5303	.irq =			xhci_irq,
5304	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
5305
5306	/*
5307	 * basic lifecycle operations
5308	 */
5309	.reset =		NULL, /* set in xhci_init_driver() */
5310	.start =		xhci_run,
5311	.stop =			xhci_stop,
5312	.shutdown =		xhci_shutdown,
5313
5314	/*
5315	 * managing i/o requests and associated device resources
5316	 */
5317	.map_urb_for_dma =      xhci_map_urb_for_dma,
5318	.urb_enqueue =		xhci_urb_enqueue,
5319	.urb_dequeue =		xhci_urb_dequeue,
5320	.alloc_dev =		xhci_alloc_dev,
5321	.free_dev =		xhci_free_dev,
5322	.alloc_streams =	xhci_alloc_streams,
5323	.free_streams =		xhci_free_streams,
5324	.add_endpoint =		xhci_add_endpoint,
5325	.drop_endpoint =	xhci_drop_endpoint,
5326	.endpoint_disable =	xhci_endpoint_disable,
5327	.endpoint_reset =	xhci_endpoint_reset,
5328	.check_bandwidth =	xhci_check_bandwidth,
5329	.reset_bandwidth =	xhci_reset_bandwidth,
5330	.address_device =	xhci_address_device,
5331	.enable_device =	xhci_enable_device,
5332	.update_hub_device =	xhci_update_hub_device,
5333	.reset_device =		xhci_discover_or_reset_device,
5334
5335	/*
5336	 * scheduling support
5337	 */
5338	.get_frame_number =	xhci_get_frame,
5339
5340	/*
5341	 * root hub support
5342	 */
5343	.hub_control =		xhci_hub_control,
5344	.hub_status_data =	xhci_hub_status_data,
5345	.bus_suspend =		xhci_bus_suspend,
5346	.bus_resume =		xhci_bus_resume,
5347	.get_resuming_ports =	xhci_get_resuming_ports,
5348
5349	/*
5350	 * call back when device connected and addressed
5351	 */
5352	.update_device =        xhci_update_device,
5353	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5354	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5355	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5356	.find_raw_port_number =	xhci_find_raw_port_number,
5357	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5358};
5359
5360void xhci_init_driver(struct hc_driver *drv,
5361		      const struct xhci_driver_overrides *over)
5362{
5363	BUG_ON(!over);
5364
5365	/* Copy the generic table to drv then apply the overrides */
5366	*drv = xhci_hc_driver;
5367
5368	if (over) {
5369		drv->hcd_priv_size += over->extra_priv_size;
5370		if (over->reset)
5371			drv->reset = over->reset;
5372		if (over->start)
5373			drv->start = over->start;
5374	}
5375}
5376EXPORT_SYMBOL_GPL(xhci_init_driver);
5377
5378MODULE_DESCRIPTION(DRIVER_DESC);
5379MODULE_AUTHOR(DRIVER_AUTHOR);
5380MODULE_LICENSE("GPL");
5381
5382static int __init xhci_hcd_init(void)
5383{
5384	/*
5385	 * Check the compiler generated sizes of structures that must be laid
5386	 * out in specific ways for hardware access.
5387	 */
5388	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5389	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5390	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5391	/* xhci_device_control has eight fields, and also
5392	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5393	 */
5394	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5395	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5396	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5397	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5398	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5399	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5400	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5401
5402	if (usb_disabled())
5403		return -ENODEV;
5404
5405	xhci_debugfs_create_root();
5406
5407	return 0;
5408}
5409
5410/*
5411 * If an init function is provided, an exit function must also be provided
5412 * to allow module unload.
5413 */
5414static void __exit xhci_hcd_fini(void)
5415{
5416	xhci_debugfs_remove_root();
5417}
5418
5419module_init(xhci_hcd_init);
5420module_exit(xhci_hcd_fini);