Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   4 * Copyright(c) 2008 Mike Christie
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc.,
  17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18 *
  19 * Maintained at www.Open-FCoE.org
  20 */
  21
  22/*
  23 * Fibre Channel exchange and sequence handling.
  24 */
  25
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
  30#include <linux/log2.h>
  31
  32#include <scsi/fc/fc_fc2.h>
  33
  34#include <scsi/libfc.h>
  35#include <scsi/fc_encode.h>
  36
  37#include "fc_libfc.h"
  38
  39u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  40EXPORT_SYMBOL(fc_cpu_mask);
  41static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  42static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  43static struct workqueue_struct *fc_exch_workqueue;
  44
  45/*
  46 * Structure and function definitions for managing Fibre Channel Exchanges
  47 * and Sequences.
  48 *
  49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  50 *
  51 * fc_exch_mgr holds the exchange state for an N port
  52 *
  53 * fc_exch holds state for one exchange and links to its active sequence.
  54 *
  55 * fc_seq holds the state for an individual sequence.
  56 */
  57
  58/**
  59 * struct fc_exch_pool - Per cpu exchange pool
  60 * @next_index:	  Next possible free exchange index
  61 * @total_exches: Total allocated exchanges
  62 * @lock:	  Exch pool lock
  63 * @ex_list:	  List of exchanges
  64 *
  65 * This structure manages per cpu exchanges in array of exchange pointers.
  66 * This array is allocated followed by struct fc_exch_pool memory for
  67 * assigned range of exchanges to per cpu pool.
  68 */
  69struct fc_exch_pool {
  70	spinlock_t	 lock;
  71	struct list_head ex_list;
  72	u16		 next_index;
  73	u16		 total_exches;
  74
  75	/* two cache of free slot in exch array */
  76	u16		 left;
  77	u16		 right;
  78} ____cacheline_aligned_in_smp;
  79
  80/**
  81 * struct fc_exch_mgr - The Exchange Manager (EM).
  82 * @class:	    Default class for new sequences
  83 * @kref:	    Reference counter
  84 * @min_xid:	    Minimum exchange ID
  85 * @max_xid:	    Maximum exchange ID
  86 * @ep_pool:	    Reserved exchange pointers
  87 * @pool_max_index: Max exch array index in exch pool
  88 * @pool:	    Per cpu exch pool
  89 * @stats:	    Statistics structure
  90 *
  91 * This structure is the center for creating exchanges and sequences.
  92 * It manages the allocation of exchange IDs.
  93 */
  94struct fc_exch_mgr {
  95	struct fc_exch_pool __percpu *pool;
  96	mempool_t	*ep_pool;
  97	struct fc_lport	*lport;
  98	enum fc_class	class;
  99	struct kref	kref;
 100	u16		min_xid;
 101	u16		max_xid;
 102	u16		pool_max_index;
 103
 
 
 
 
 
 104	struct {
 105		atomic_t no_free_exch;
 106		atomic_t no_free_exch_xid;
 107		atomic_t xid_not_found;
 108		atomic_t xid_busy;
 109		atomic_t seq_not_found;
 110		atomic_t non_bls_resp;
 111	} stats;
 112};
 113
 114/**
 115 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 116 * @ema_list: Exchange Manager Anchor list
 117 * @mp:	      Exchange Manager associated with this anchor
 118 * @match:    Routine to determine if this anchor's EM should be used
 119 *
 120 * When walking the list of anchors the match routine will be called
 121 * for each anchor to determine if that EM should be used. The last
 122 * anchor in the list will always match to handle any exchanges not
 123 * handled by other EMs. The non-default EMs would be added to the
 124 * anchor list by HW that provides offloads.
 125 */
 126struct fc_exch_mgr_anchor {
 127	struct list_head ema_list;
 128	struct fc_exch_mgr *mp;
 129	bool (*match)(struct fc_frame *);
 130};
 131
 132static void fc_exch_rrq(struct fc_exch *);
 133static void fc_seq_ls_acc(struct fc_frame *);
 134static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 135			  enum fc_els_rjt_explan);
 136static void fc_exch_els_rec(struct fc_frame *);
 137static void fc_exch_els_rrq(struct fc_frame *);
 138
 139/*
 140 * Internal implementation notes.
 141 *
 142 * The exchange manager is one by default in libfc but LLD may choose
 143 * to have one per CPU. The sequence manager is one per exchange manager
 144 * and currently never separated.
 145 *
 146 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 147 * assigned by the Sequence Initiator that shall be unique for a specific
 148 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 149 * qualified by exchange ID, which one might think it would be.
 150 * In practice this limits the number of open sequences and exchanges to 256
 151 * per session.	 For most targets we could treat this limit as per exchange.
 152 *
 153 * The exchange and its sequence are freed when the last sequence is received.
 154 * It's possible for the remote port to leave an exchange open without
 155 * sending any sequences.
 156 *
 157 * Notes on reference counts:
 158 *
 159 * Exchanges are reference counted and exchange gets freed when the reference
 160 * count becomes zero.
 161 *
 162 * Timeouts:
 163 * Sequences are timed out for E_D_TOV and R_A_TOV.
 164 *
 165 * Sequence event handling:
 166 *
 167 * The following events may occur on initiator sequences:
 168 *
 169 *	Send.
 170 *	    For now, the whole thing is sent.
 171 *	Receive ACK
 172 *	    This applies only to class F.
 173 *	    The sequence is marked complete.
 174 *	ULP completion.
 175 *	    The upper layer calls fc_exch_done() when done
 176 *	    with exchange and sequence tuple.
 177 *	RX-inferred completion.
 178 *	    When we receive the next sequence on the same exchange, we can
 179 *	    retire the previous sequence ID.  (XXX not implemented).
 180 *	Timeout.
 181 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 182 *	    E_D_TOV causes abort and calls upper layer response handler
 183 *	    with FC_EX_TIMEOUT error.
 184 *	Receive RJT
 185 *	    XXX defer.
 186 *	Send ABTS
 187 *	    On timeout.
 188 *
 189 * The following events may occur on recipient sequences:
 190 *
 191 *	Receive
 192 *	    Allocate sequence for first frame received.
 193 *	    Hold during receive handler.
 194 *	    Release when final frame received.
 195 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 196 *	Receive ABTS
 197 *	    Deallocate sequence
 198 *	Send RJT
 199 *	    Deallocate
 200 *
 201 * For now, we neglect conditions where only part of a sequence was
 202 * received or transmitted, or where out-of-order receipt is detected.
 203 */
 204
 205/*
 206 * Locking notes:
 207 *
 208 * The EM code run in a per-CPU worker thread.
 209 *
 210 * To protect against concurrency between a worker thread code and timers,
 211 * sequence allocation and deallocation must be locked.
 212 *  - exchange refcnt can be done atomicly without locks.
 213 *  - sequence allocation must be locked by exch lock.
 214 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 215 *    EM pool lock must be taken before the ex_lock.
 216 */
 217
 218/*
 219 * opcode names for debugging.
 220 */
 221static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 222
 223/**
 224 * fc_exch_name_lookup() - Lookup name by opcode
 225 * @op:	       Opcode to be looked up
 226 * @table:     Opcode/name table
 227 * @max_index: Index not to be exceeded
 228 *
 229 * This routine is used to determine a human-readable string identifying
 230 * a R_CTL opcode.
 231 */
 232static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 233					      unsigned int max_index)
 234{
 235	const char *name = NULL;
 236
 237	if (op < max_index)
 238		name = table[op];
 239	if (!name)
 240		name = "unknown";
 241	return name;
 242}
 243
 244/**
 245 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 246 * @op: The opcode to be looked up
 247 */
 248static const char *fc_exch_rctl_name(unsigned int op)
 249{
 250	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 251				   ARRAY_SIZE(fc_exch_rctl_names));
 252}
 253
 254/**
 255 * fc_exch_hold() - Increment an exchange's reference count
 256 * @ep: Echange to be held
 257 */
 258static inline void fc_exch_hold(struct fc_exch *ep)
 259{
 260	atomic_inc(&ep->ex_refcnt);
 261}
 262
 263/**
 264 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 265 *			 and determine SOF and EOF.
 266 * @ep:	   The exchange to that will use the header
 267 * @fp:	   The frame whose header is to be modified
 268 * @f_ctl: F_CTL bits that will be used for the frame header
 269 *
 270 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 271 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 272 */
 273static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 274			      u32 f_ctl)
 275{
 276	struct fc_frame_header *fh = fc_frame_header_get(fp);
 277	u16 fill;
 278
 279	fr_sof(fp) = ep->class;
 280	if (ep->seq.cnt)
 281		fr_sof(fp) = fc_sof_normal(ep->class);
 282
 283	if (f_ctl & FC_FC_END_SEQ) {
 284		fr_eof(fp) = FC_EOF_T;
 285		if (fc_sof_needs_ack(ep->class))
 286			fr_eof(fp) = FC_EOF_N;
 287		/*
 288		 * From F_CTL.
 289		 * The number of fill bytes to make the length a 4-byte
 290		 * multiple is the low order 2-bits of the f_ctl.
 291		 * The fill itself will have been cleared by the frame
 292		 * allocation.
 293		 * After this, the length will be even, as expected by
 294		 * the transport.
 295		 */
 296		fill = fr_len(fp) & 3;
 297		if (fill) {
 298			fill = 4 - fill;
 299			/* TODO, this may be a problem with fragmented skb */
 300			skb_put(fp_skb(fp), fill);
 301			hton24(fh->fh_f_ctl, f_ctl | fill);
 302		}
 303	} else {
 304		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 305		fr_eof(fp) = FC_EOF_N;
 306	}
 307
 308	/* Initialize remaining fh fields from fc_fill_fc_hdr */
 
 
 
 309	fh->fh_ox_id = htons(ep->oxid);
 310	fh->fh_rx_id = htons(ep->rxid);
 311	fh->fh_seq_id = ep->seq.id;
 312	fh->fh_seq_cnt = htons(ep->seq.cnt);
 313}
 314
 315/**
 316 * fc_exch_release() - Decrement an exchange's reference count
 317 * @ep: Exchange to be released
 318 *
 319 * If the reference count reaches zero and the exchange is complete,
 320 * it is freed.
 321 */
 322static void fc_exch_release(struct fc_exch *ep)
 323{
 324	struct fc_exch_mgr *mp;
 325
 326	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 327		mp = ep->em;
 328		if (ep->destructor)
 329			ep->destructor(&ep->seq, ep->arg);
 330		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 331		mempool_free(ep, mp->ep_pool);
 332	}
 333}
 334
 335/**
 336 * fc_exch_timer_cancel() - cancel exch timer
 337 * @ep:		The exchange whose timer to be canceled
 338 */
 339static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 340{
 341	if (cancel_delayed_work(&ep->timeout_work)) {
 342		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 343		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 344	}
 345}
 346
 347/**
 348 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 349 *				the exchange lock held
 350 * @ep:		The exchange whose timer will start
 351 * @timer_msec: The timeout period
 352 *
 353 * Used for upper level protocols to time out the exchange.
 354 * The timer is cancelled when it fires or when the exchange completes.
 355 */
 356static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 357					    unsigned int timer_msec)
 358{
 359	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 360		return;
 361
 362	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 363
 364	fc_exch_hold(ep);		/* hold for timer */
 365	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 366				msecs_to_jiffies(timer_msec))) {
 367		FC_EXCH_DBG(ep, "Exchange already queued\n");
 368		fc_exch_release(ep);
 369	}
 370}
 371
 372/**
 373 * fc_exch_timer_set() - Lock the exchange and set the timer
 374 * @ep:		The exchange whose timer will start
 375 * @timer_msec: The timeout period
 376 */
 377static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 378{
 379	spin_lock_bh(&ep->ex_lock);
 380	fc_exch_timer_set_locked(ep, timer_msec);
 381	spin_unlock_bh(&ep->ex_lock);
 382}
 383
 384/**
 385 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 386 * @ep: The exchange that is complete
 387 *
 388 * Note: May sleep if invoked from outside a response handler.
 389 */
 390static int fc_exch_done_locked(struct fc_exch *ep)
 391{
 392	int rc = 1;
 393
 394	/*
 395	 * We must check for completion in case there are two threads
 396	 * tyring to complete this. But the rrq code will reuse the
 397	 * ep, and in that case we only clear the resp and set it as
 398	 * complete, so it can be reused by the timer to send the rrq.
 399	 */
 
 400	if (ep->state & FC_EX_DONE)
 401		return rc;
 402	ep->esb_stat |= ESB_ST_COMPLETE;
 403
 404	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 405		ep->state |= FC_EX_DONE;
 406		fc_exch_timer_cancel(ep);
 
 407		rc = 0;
 408	}
 409	return rc;
 410}
 411
 412static struct fc_exch fc_quarantine_exch;
 413
 414/**
 415 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 416 * @pool:  Exchange Pool to get an exchange from
 417 * @index: Index of the exchange within the pool
 418 *
 419 * Use the index to get an exchange from within an exchange pool. exches
 420 * will point to an array of exchange pointers. The index will select
 421 * the exchange within the array.
 422 */
 423static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 424					      u16 index)
 425{
 426	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 427	return exches[index];
 428}
 429
 430/**
 431 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 432 * @pool:  The pool to assign the exchange to
 433 * @index: The index in the pool where the exchange will be assigned
 434 * @ep:	   The exchange to assign to the pool
 435 */
 436static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 437				   struct fc_exch *ep)
 438{
 439	((struct fc_exch **)(pool + 1))[index] = ep;
 440}
 441
 442/**
 443 * fc_exch_delete() - Delete an exchange
 444 * @ep: The exchange to be deleted
 445 */
 446static void fc_exch_delete(struct fc_exch *ep)
 447{
 448	struct fc_exch_pool *pool;
 449	u16 index;
 450
 451	pool = ep->pool;
 452	spin_lock_bh(&pool->lock);
 453	WARN_ON(pool->total_exches <= 0);
 454	pool->total_exches--;
 455
 456	/* update cache of free slot */
 457	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 458	if (!(ep->state & FC_EX_QUARANTINE)) {
 459		if (pool->left == FC_XID_UNKNOWN)
 460			pool->left = index;
 461		else if (pool->right == FC_XID_UNKNOWN)
 462			pool->right = index;
 463		else
 464			pool->next_index = index;
 465		fc_exch_ptr_set(pool, index, NULL);
 466	} else {
 467		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 468	}
 469	list_del(&ep->ex_list);
 470	spin_unlock_bh(&pool->lock);
 471	fc_exch_release(ep);	/* drop hold for exch in mp */
 472}
 473
 474static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 475			      struct fc_frame *fp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476{
 477	struct fc_exch *ep;
 478	struct fc_frame_header *fh = fc_frame_header_get(fp);
 479	int error = -ENXIO;
 480	u32 f_ctl;
 481	u8 fh_type = fh->fh_type;
 482
 483	ep = fc_seq_exch(sp);
 484
 485	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 486		fc_frame_free(fp);
 487		goto out;
 488	}
 489
 490	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 491
 492	f_ctl = ntoh24(fh->fh_f_ctl);
 493	fc_exch_setup_hdr(ep, fp, f_ctl);
 494	fr_encaps(fp) = ep->encaps;
 495
 496	/*
 497	 * update sequence count if this frame is carrying
 498	 * multiple FC frames when sequence offload is enabled
 499	 * by LLD.
 500	 */
 501	if (fr_max_payload(fp))
 502		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 503					fr_max_payload(fp));
 504	else
 505		sp->cnt++;
 506
 507	/*
 508	 * Send the frame.
 509	 */
 510	error = lport->tt.frame_send(lport, fp);
 511
 512	if (fh_type == FC_TYPE_BLS)
 513		goto out;
 514
 515	/*
 516	 * Update the exchange and sequence flags,
 517	 * assuming all frames for the sequence have been sent.
 518	 * We can only be called to send once for each sequence.
 519	 */
 
 520	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 521	if (f_ctl & FC_FC_SEQ_INIT)
 522		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 523out:
 524	return error;
 525}
 526
 527/**
 528 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 529 * @lport: The local port that the exchange will be sent on
 530 * @sp:	   The sequence to be sent
 531 * @fp:	   The frame to be sent on the exchange
 532 *
 533 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 534 * or indirectly by calling libfc_function_template.frame_send().
 535 */
 536int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 537{
 538	struct fc_exch *ep;
 539	int error;
 540	ep = fc_seq_exch(sp);
 541	spin_lock_bh(&ep->ex_lock);
 542	error = fc_seq_send_locked(lport, sp, fp);
 543	spin_unlock_bh(&ep->ex_lock);
 544	return error;
 545}
 546EXPORT_SYMBOL(fc_seq_send);
 547
 548/**
 549 * fc_seq_alloc() - Allocate a sequence for a given exchange
 550 * @ep:	    The exchange to allocate a new sequence for
 551 * @seq_id: The sequence ID to be used
 552 *
 553 * We don't support multiple originated sequences on the same exchange.
 554 * By implication, any previously originated sequence on this exchange
 555 * is complete, and we reallocate the same sequence.
 556 */
 557static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 558{
 559	struct fc_seq *sp;
 560
 561	sp = &ep->seq;
 562	sp->ssb_stat = 0;
 563	sp->cnt = 0;
 564	sp->id = seq_id;
 565	return sp;
 566}
 567
 568/**
 569 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 570 *				exchange as the supplied sequence
 571 * @sp: The sequence/exchange to get a new sequence for
 572 */
 573static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 574{
 575	struct fc_exch *ep = fc_seq_exch(sp);
 576
 577	sp = fc_seq_alloc(ep, ep->seq_id++);
 578	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 579		    ep->f_ctl, sp->id);
 580	return sp;
 581}
 582
 583/**
 584 * fc_seq_start_next() - Lock the exchange and get a new sequence
 585 *			 for a given sequence/exchange pair
 586 * @sp: The sequence/exchange to get a new exchange for
 587 */
 588struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 589{
 590	struct fc_exch *ep = fc_seq_exch(sp);
 591
 592	spin_lock_bh(&ep->ex_lock);
 593	sp = fc_seq_start_next_locked(sp);
 594	spin_unlock_bh(&ep->ex_lock);
 595
 596	return sp;
 597}
 598EXPORT_SYMBOL(fc_seq_start_next);
 599
 600/*
 601 * Set the response handler for the exchange associated with a sequence.
 602 *
 603 * Note: May sleep if invoked from outside a response handler.
 604 */
 605void fc_seq_set_resp(struct fc_seq *sp,
 606		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 607		     void *arg)
 
 608{
 609	struct fc_exch *ep = fc_seq_exch(sp);
 610	DEFINE_WAIT(wait);
 611
 612	spin_lock_bh(&ep->ex_lock);
 613	while (ep->resp_active && ep->resp_task != current) {
 614		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 615		spin_unlock_bh(&ep->ex_lock);
 616
 617		schedule();
 618
 619		spin_lock_bh(&ep->ex_lock);
 620	}
 621	finish_wait(&ep->resp_wq, &wait);
 622	ep->resp = resp;
 623	ep->arg = arg;
 624	spin_unlock_bh(&ep->ex_lock);
 625}
 626EXPORT_SYMBOL(fc_seq_set_resp);
 627
 628/**
 629 * fc_exch_abort_locked() - Abort an exchange
 630 * @ep:	The exchange to be aborted
 631 * @timer_msec: The period of time to wait before aborting
 632 *
 633 * Abort an exchange and sequence. Generally called because of a
 634 * exchange timeout or an abort from the upper layer.
 635 *
 636 * A timer_msec can be specified for abort timeout, if non-zero
 637 * timer_msec value is specified then exchange resp handler
 638 * will be called with timeout error if no response to abort.
 639 *
 640 * Locking notes:  Called with exch lock held
 641 *
 642 * Return value: 0 on success else error code
 643 */
 644static int fc_exch_abort_locked(struct fc_exch *ep,
 645				unsigned int timer_msec)
 646{
 647	struct fc_seq *sp;
 648	struct fc_frame *fp;
 649	int error;
 650
 651	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 652	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 653	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 654		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 655			    ep->esb_stat, ep->state);
 656		return -ENXIO;
 657	}
 658
 659	/*
 660	 * Send the abort on a new sequence if possible.
 661	 */
 662	sp = fc_seq_start_next_locked(&ep->seq);
 663	if (!sp)
 664		return -ENOMEM;
 665
 
 666	if (timer_msec)
 667		fc_exch_timer_set_locked(ep, timer_msec);
 668
 669	if (ep->sid) {
 670		/*
 671		 * Send an abort for the sequence that timed out.
 672		 */
 673		fp = fc_frame_alloc(ep->lp, 0);
 674		if (fp) {
 675			ep->esb_stat |= ESB_ST_SEQ_INIT;
 676			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 677				       FC_TYPE_BLS, FC_FC_END_SEQ |
 678				       FC_FC_SEQ_INIT, 0);
 679			error = fc_seq_send_locked(ep->lp, sp, fp);
 680		} else {
 681			error = -ENOBUFS;
 682		}
 683	} else {
 684		/*
 685		 * If not logged into the fabric, don't send ABTS but leave
 686		 * sequence active until next timeout.
 687		 */
 688		error = 0;
 689	}
 690	ep->esb_stat |= ESB_ST_ABNORMAL;
 691	return error;
 692}
 693
 694/**
 695 * fc_seq_exch_abort() - Abort an exchange and sequence
 696 * @req_sp:	The sequence to be aborted
 697 * @timer_msec: The period of time to wait before aborting
 698 *
 699 * Generally called because of a timeout or an abort from the upper layer.
 700 *
 701 * Return value: 0 on success else error code
 702 */
 703int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 
 704{
 705	struct fc_exch *ep;
 706	int error;
 707
 708	ep = fc_seq_exch(req_sp);
 709	spin_lock_bh(&ep->ex_lock);
 710	error = fc_exch_abort_locked(ep, timer_msec);
 711	spin_unlock_bh(&ep->ex_lock);
 712	return error;
 713}
 714
 715/**
 716 * fc_invoke_resp() - invoke ep->resp()
 717 *
 718 * Notes:
 719 * It is assumed that after initialization finished (this means the
 720 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 721 * modified only via fc_seq_set_resp(). This guarantees that none of these
 722 * two variables changes if ep->resp_active > 0.
 723 *
 724 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 725 * this function is invoked, the first spin_lock_bh() call in this function
 726 * will wait until fc_seq_set_resp() has finished modifying these variables.
 727 *
 728 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 729 * ep->resp() won't be invoked after fc_exch_done() has returned.
 730 *
 731 * The response handler itself may invoke fc_exch_done(), which will clear the
 732 * ep->resp pointer.
 733 *
 734 * Return value:
 735 * Returns true if and only if ep->resp has been invoked.
 736 */
 737static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 738			   struct fc_frame *fp)
 739{
 740	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 741	void *arg;
 742	bool res = false;
 743
 744	spin_lock_bh(&ep->ex_lock);
 745	ep->resp_active++;
 746	if (ep->resp_task != current)
 747		ep->resp_task = !ep->resp_task ? current : NULL;
 748	resp = ep->resp;
 749	arg = ep->arg;
 750	spin_unlock_bh(&ep->ex_lock);
 751
 752	if (resp) {
 753		resp(sp, fp, arg);
 754		res = true;
 755	}
 756
 757	spin_lock_bh(&ep->ex_lock);
 758	if (--ep->resp_active == 0)
 759		ep->resp_task = NULL;
 760	spin_unlock_bh(&ep->ex_lock);
 761
 762	if (ep->resp_active == 0)
 763		wake_up(&ep->resp_wq);
 764
 765	return res;
 766}
 767
 768/**
 769 * fc_exch_timeout() - Handle exchange timer expiration
 770 * @work: The work_struct identifying the exchange that timed out
 771 */
 772static void fc_exch_timeout(struct work_struct *work)
 773{
 774	struct fc_exch *ep = container_of(work, struct fc_exch,
 775					  timeout_work.work);
 776	struct fc_seq *sp = &ep->seq;
 
 
 777	u32 e_stat;
 778	int rc = 1;
 779
 780	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 781
 782	spin_lock_bh(&ep->ex_lock);
 783	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 784		goto unlock;
 785
 786	e_stat = ep->esb_stat;
 787	if (e_stat & ESB_ST_COMPLETE) {
 788		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 789		spin_unlock_bh(&ep->ex_lock);
 790		if (e_stat & ESB_ST_REC_QUAL)
 791			fc_exch_rrq(ep);
 792		goto done;
 793	} else {
 
 
 
 794		if (e_stat & ESB_ST_ABNORMAL)
 795			rc = fc_exch_done_locked(ep);
 796		spin_unlock_bh(&ep->ex_lock);
 797		if (!rc)
 798			fc_exch_delete(ep);
 799		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 800		fc_seq_set_resp(sp, NULL, ep->arg);
 801		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 802		goto done;
 803	}
 804unlock:
 805	spin_unlock_bh(&ep->ex_lock);
 806done:
 807	/*
 808	 * This release matches the hold taken when the timer was set.
 809	 */
 810	fc_exch_release(ep);
 811}
 812
 813/**
 814 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 815 * @lport: The local port that the exchange is for
 816 * @mp:	   The exchange manager that will allocate the exchange
 817 *
 818 * Returns pointer to allocated fc_exch with exch lock held.
 819 */
 820static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 821					struct fc_exch_mgr *mp)
 822{
 823	struct fc_exch *ep;
 824	unsigned int cpu;
 825	u16 index;
 826	struct fc_exch_pool *pool;
 827
 828	/* allocate memory for exchange */
 829	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 830	if (!ep) {
 831		atomic_inc(&mp->stats.no_free_exch);
 832		goto out;
 833	}
 834	memset(ep, 0, sizeof(*ep));
 835
 836	cpu = get_cpu();
 837	pool = per_cpu_ptr(mp->pool, cpu);
 838	spin_lock_bh(&pool->lock);
 839	put_cpu();
 840
 841	/* peek cache of free slot */
 842	if (pool->left != FC_XID_UNKNOWN) {
 843		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 844			index = pool->left;
 845			pool->left = FC_XID_UNKNOWN;
 846			goto hit;
 847		}
 848	}
 849	if (pool->right != FC_XID_UNKNOWN) {
 850		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 851			index = pool->right;
 852			pool->right = FC_XID_UNKNOWN;
 853			goto hit;
 854		}
 855	}
 856
 857	index = pool->next_index;
 858	/* allocate new exch from pool */
 859	while (fc_exch_ptr_get(pool, index)) {
 860		index = index == mp->pool_max_index ? 0 : index + 1;
 861		if (index == pool->next_index)
 862			goto err;
 863	}
 864	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 865hit:
 866	fc_exch_hold(ep);	/* hold for exch in mp */
 867	spin_lock_init(&ep->ex_lock);
 868	/*
 869	 * Hold exch lock for caller to prevent fc_exch_reset()
 870	 * from releasing exch	while fc_exch_alloc() caller is
 871	 * still working on exch.
 872	 */
 873	spin_lock_bh(&ep->ex_lock);
 874
 875	fc_exch_ptr_set(pool, index, ep);
 876	list_add_tail(&ep->ex_list, &pool->ex_list);
 877	fc_seq_alloc(ep, ep->seq_id++);
 878	pool->total_exches++;
 879	spin_unlock_bh(&pool->lock);
 880
 881	/*
 882	 *  update exchange
 883	 */
 884	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 885	ep->em = mp;
 886	ep->pool = pool;
 887	ep->lp = lport;
 888	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 889	ep->rxid = FC_XID_UNKNOWN;
 890	ep->class = mp->class;
 891	ep->resp_active = 0;
 892	init_waitqueue_head(&ep->resp_wq);
 893	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 894out:
 895	return ep;
 896err:
 897	spin_unlock_bh(&pool->lock);
 898	atomic_inc(&mp->stats.no_free_exch_xid);
 899	mempool_free(ep, mp->ep_pool);
 900	return NULL;
 901}
 902
 903/**
 904 * fc_exch_alloc() - Allocate an exchange from an EM on a
 905 *		     local port's list of EMs.
 906 * @lport: The local port that will own the exchange
 907 * @fp:	   The FC frame that the exchange will be for
 908 *
 909 * This function walks the list of exchange manager(EM)
 910 * anchors to select an EM for a new exchange allocation. The
 911 * EM is selected when a NULL match function pointer is encountered
 912 * or when a call to a match function returns true.
 913 */
 914static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 915				     struct fc_frame *fp)
 916{
 917	struct fc_exch_mgr_anchor *ema;
 918	struct fc_exch *ep;
 919
 920	list_for_each_entry(ema, &lport->ema_list, ema_list) {
 921		if (!ema->match || ema->match(fp)) {
 922			ep = fc_exch_em_alloc(lport, ema->mp);
 923			if (ep)
 924				return ep;
 925		}
 926	}
 927	return NULL;
 928}
 929
 930/**
 931 * fc_exch_find() - Lookup and hold an exchange
 932 * @mp:	 The exchange manager to lookup the exchange from
 933 * @xid: The XID of the exchange to look up
 934 */
 935static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 936{
 937	struct fc_lport *lport = mp->lport;
 938	struct fc_exch_pool *pool;
 939	struct fc_exch *ep = NULL;
 940	u16 cpu = xid & fc_cpu_mask;
 941
 942	if (xid == FC_XID_UNKNOWN)
 943		return NULL;
 944
 945	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 946		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 947		       lport->host->host_no, lport->port_id, xid, cpu);
 948		return NULL;
 949	}
 950
 951	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 952		pool = per_cpu_ptr(mp->pool, cpu);
 953		spin_lock_bh(&pool->lock);
 954		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 955		if (ep == &fc_quarantine_exch) {
 956			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 957			ep = NULL;
 958		}
 959		if (ep) {
 960			WARN_ON(ep->xid != xid);
 961			fc_exch_hold(ep);
 962		}
 963		spin_unlock_bh(&pool->lock);
 964	}
 965	return ep;
 966}
 967
 968
 969/**
 970 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 971 *		    the memory allocated for the related objects may be freed.
 972 * @sp: The sequence that has completed
 973 *
 974 * Note: May sleep if invoked from outside a response handler.
 975 */
 976void fc_exch_done(struct fc_seq *sp)
 977{
 978	struct fc_exch *ep = fc_seq_exch(sp);
 979	int rc;
 980
 981	spin_lock_bh(&ep->ex_lock);
 982	rc = fc_exch_done_locked(ep);
 983	spin_unlock_bh(&ep->ex_lock);
 984
 985	fc_seq_set_resp(sp, NULL, ep->arg);
 986	if (!rc)
 987		fc_exch_delete(ep);
 988}
 989EXPORT_SYMBOL(fc_exch_done);
 990
 991/**
 992 * fc_exch_resp() - Allocate a new exchange for a response frame
 993 * @lport: The local port that the exchange was for
 994 * @mp:	   The exchange manager to allocate the exchange from
 995 * @fp:	   The response frame
 996 *
 997 * Sets the responder ID in the frame header.
 998 */
 999static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
1000				    struct fc_exch_mgr *mp,
1001				    struct fc_frame *fp)
1002{
1003	struct fc_exch *ep;
1004	struct fc_frame_header *fh;
1005
1006	ep = fc_exch_alloc(lport, fp);
1007	if (ep) {
1008		ep->class = fc_frame_class(fp);
1009
1010		/*
1011		 * Set EX_CTX indicating we're responding on this exchange.
1012		 */
1013		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1014		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1015		fh = fc_frame_header_get(fp);
1016		ep->sid = ntoh24(fh->fh_d_id);
1017		ep->did = ntoh24(fh->fh_s_id);
1018		ep->oid = ep->did;
1019
1020		/*
1021		 * Allocated exchange has placed the XID in the
1022		 * originator field. Move it to the responder field,
1023		 * and set the originator XID from the frame.
1024		 */
1025		ep->rxid = ep->xid;
1026		ep->oxid = ntohs(fh->fh_ox_id);
1027		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1028		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1029			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1030
1031		fc_exch_hold(ep);	/* hold for caller */
1032		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1033	}
1034	return ep;
1035}
1036
1037/**
1038 * fc_seq_lookup_recip() - Find a sequence where the other end
1039 *			   originated the sequence
1040 * @lport: The local port that the frame was sent to
1041 * @mp:	   The Exchange Manager to lookup the exchange from
1042 * @fp:	   The frame associated with the sequence we're looking for
1043 *
1044 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1045 * on the ep that should be released by the caller.
1046 */
1047static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1048						 struct fc_exch_mgr *mp,
1049						 struct fc_frame *fp)
1050{
1051	struct fc_frame_header *fh = fc_frame_header_get(fp);
1052	struct fc_exch *ep = NULL;
1053	struct fc_seq *sp = NULL;
1054	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1055	u32 f_ctl;
1056	u16 xid;
1057
1058	f_ctl = ntoh24(fh->fh_f_ctl);
1059	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1060
1061	/*
1062	 * Lookup or create the exchange if we will be creating the sequence.
1063	 */
1064	if (f_ctl & FC_FC_EX_CTX) {
1065		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1066		ep = fc_exch_find(mp, xid);
1067		if (!ep) {
1068			atomic_inc(&mp->stats.xid_not_found);
1069			reject = FC_RJT_OX_ID;
1070			goto out;
1071		}
1072		if (ep->rxid == FC_XID_UNKNOWN)
1073			ep->rxid = ntohs(fh->fh_rx_id);
1074		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1075			reject = FC_RJT_OX_ID;
1076			goto rel;
1077		}
1078	} else {
1079		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1080
1081		/*
1082		 * Special case for MDS issuing an ELS TEST with a
1083		 * bad rxid of 0.
1084		 * XXX take this out once we do the proper reject.
1085		 */
1086		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1087		    fc_frame_payload_op(fp) == ELS_TEST) {
1088			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1089			xid = FC_XID_UNKNOWN;
1090		}
1091
1092		/*
1093		 * new sequence - find the exchange
1094		 */
1095		ep = fc_exch_find(mp, xid);
1096		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1097			if (ep) {
1098				atomic_inc(&mp->stats.xid_busy);
1099				reject = FC_RJT_RX_ID;
1100				goto rel;
1101			}
1102			ep = fc_exch_resp(lport, mp, fp);
1103			if (!ep) {
1104				reject = FC_RJT_EXCH_EST;	/* XXX */
1105				goto out;
1106			}
1107			xid = ep->xid;	/* get our XID */
1108		} else if (!ep) {
1109			atomic_inc(&mp->stats.xid_not_found);
1110			reject = FC_RJT_RX_ID;	/* XID not found */
1111			goto out;
1112		}
1113	}
1114
1115	spin_lock_bh(&ep->ex_lock);
1116	/*
1117	 * At this point, we have the exchange held.
1118	 * Find or create the sequence.
1119	 */
1120	if (fc_sof_is_init(fr_sof(fp))) {
1121		sp = &ep->seq;
1122		sp->ssb_stat |= SSB_ST_RESP;
1123		sp->id = fh->fh_seq_id;
1124	} else {
1125		sp = &ep->seq;
1126		if (sp->id != fh->fh_seq_id) {
1127			atomic_inc(&mp->stats.seq_not_found);
1128			if (f_ctl & FC_FC_END_SEQ) {
1129				/*
1130				 * Update sequence_id based on incoming last
1131				 * frame of sequence exchange. This is needed
1132				 * for FC target where DDP has been used
1133				 * on target where, stack is indicated only
1134				 * about last frame's (payload _header) header.
1135				 * Whereas "seq_id" which is part of
1136				 * frame_header is allocated by initiator
1137				 * which is totally different from "seq_id"
1138				 * allocated when XFER_RDY was sent by target.
1139				 * To avoid false -ve which results into not
1140				 * sending RSP, hence write request on other
1141				 * end never finishes.
1142				 */
 
1143				sp->ssb_stat |= SSB_ST_RESP;
1144				sp->id = fh->fh_seq_id;
1145			} else {
1146				spin_unlock_bh(&ep->ex_lock);
1147
1148				/* sequence/exch should exist */
1149				reject = FC_RJT_SEQ_ID;
1150				goto rel;
1151			}
1152		}
1153	}
1154	WARN_ON(ep != fc_seq_exch(sp));
1155
1156	if (f_ctl & FC_FC_SEQ_INIT)
1157		ep->esb_stat |= ESB_ST_SEQ_INIT;
1158	spin_unlock_bh(&ep->ex_lock);
1159
1160	fr_seq(fp) = sp;
1161out:
1162	return reject;
1163rel:
1164	fc_exch_done(&ep->seq);
1165	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1166	return reject;
1167}
1168
1169/**
1170 * fc_seq_lookup_orig() - Find a sequence where this end
1171 *			  originated the sequence
1172 * @mp:	   The Exchange Manager to lookup the exchange from
1173 * @fp:	   The frame associated with the sequence we're looking for
1174 *
1175 * Does not hold the sequence for the caller.
1176 */
1177static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1178					 struct fc_frame *fp)
1179{
1180	struct fc_frame_header *fh = fc_frame_header_get(fp);
1181	struct fc_exch *ep;
1182	struct fc_seq *sp = NULL;
1183	u32 f_ctl;
1184	u16 xid;
1185
1186	f_ctl = ntoh24(fh->fh_f_ctl);
1187	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1188	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1189	ep = fc_exch_find(mp, xid);
1190	if (!ep)
1191		return NULL;
1192	if (ep->seq.id == fh->fh_seq_id) {
1193		/*
1194		 * Save the RX_ID if we didn't previously know it.
1195		 */
1196		sp = &ep->seq;
1197		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1198		    ep->rxid == FC_XID_UNKNOWN) {
1199			ep->rxid = ntohs(fh->fh_rx_id);
1200		}
1201	}
1202	fc_exch_release(ep);
1203	return sp;
1204}
1205
1206/**
1207 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1208 * @ep:	     The exchange to set the addresses for
1209 * @orig_id: The originator's ID
1210 * @resp_id: The responder's ID
1211 *
1212 * Note this must be done before the first sequence of the exchange is sent.
1213 */
1214static void fc_exch_set_addr(struct fc_exch *ep,
1215			     u32 orig_id, u32 resp_id)
1216{
1217	ep->oid = orig_id;
1218	if (ep->esb_stat & ESB_ST_RESP) {
1219		ep->sid = resp_id;
1220		ep->did = orig_id;
1221	} else {
1222		ep->sid = orig_id;
1223		ep->did = resp_id;
1224	}
1225}
1226
1227/**
1228 * fc_seq_els_rsp_send() - Send an ELS response using information from
1229 *			   the existing sequence/exchange.
1230 * @fp:	      The received frame
1231 * @els_cmd:  The ELS command to be sent
1232 * @els_data: The ELS data to be sent
1233 *
1234 * The received frame is not freed.
1235 */
1236void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1237			 struct fc_seq_els_data *els_data)
1238{
1239	switch (els_cmd) {
1240	case ELS_LS_RJT:
1241		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1242		break;
1243	case ELS_LS_ACC:
1244		fc_seq_ls_acc(fp);
1245		break;
1246	case ELS_RRQ:
1247		fc_exch_els_rrq(fp);
1248		break;
1249	case ELS_REC:
1250		fc_exch_els_rec(fp);
1251		break;
1252	default:
1253		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1254	}
1255}
1256EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1257
1258/**
1259 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1260 * @sp:	     The sequence that is to be sent
1261 * @fp:	     The frame that will be sent on the sequence
1262 * @rctl:    The R_CTL information to be sent
1263 * @fh_type: The frame header type
1264 */
1265static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1266			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1267{
1268	u32 f_ctl;
1269	struct fc_exch *ep = fc_seq_exch(sp);
1270
1271	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1272	f_ctl |= ep->f_ctl;
1273	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1274	fc_seq_send_locked(ep->lp, sp, fp);
1275}
1276
1277/**
1278 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1279 * @sp:	   The sequence to send the ACK on
1280 * @rx_fp: The received frame that is being acknoledged
1281 *
1282 * Send ACK_1 (or equiv.) indicating we received something.
1283 */
1284static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1285{
1286	struct fc_frame *fp;
1287	struct fc_frame_header *rx_fh;
1288	struct fc_frame_header *fh;
1289	struct fc_exch *ep = fc_seq_exch(sp);
1290	struct fc_lport *lport = ep->lp;
1291	unsigned int f_ctl;
1292
1293	/*
1294	 * Don't send ACKs for class 3.
1295	 */
1296	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1297		fp = fc_frame_alloc(lport, 0);
1298		if (!fp) {
1299			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1300			return;
1301		}
1302
1303		fh = fc_frame_header_get(fp);
1304		fh->fh_r_ctl = FC_RCTL_ACK_1;
1305		fh->fh_type = FC_TYPE_BLS;
1306
1307		/*
1308		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1309		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1310		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1311		 * Last ACK uses bits 7-6 (continue sequence),
1312		 * bits 5-4 are meaningful (what kind of ACK to use).
1313		 */
1314		rx_fh = fc_frame_header_get(rx_fp);
1315		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1316		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1317			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1318			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1319			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1320		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1321		hton24(fh->fh_f_ctl, f_ctl);
1322
1323		fc_exch_setup_hdr(ep, fp, f_ctl);
1324		fh->fh_seq_id = rx_fh->fh_seq_id;
1325		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1326		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1327
1328		fr_sof(fp) = fr_sof(rx_fp);
1329		if (f_ctl & FC_FC_END_SEQ)
1330			fr_eof(fp) = FC_EOF_T;
1331		else
1332			fr_eof(fp) = FC_EOF_N;
1333
1334		lport->tt.frame_send(lport, fp);
1335	}
1336}
1337
1338/**
1339 * fc_exch_send_ba_rjt() - Send BLS Reject
1340 * @rx_fp:  The frame being rejected
1341 * @reason: The reason the frame is being rejected
1342 * @explan: The explanation for the rejection
1343 *
1344 * This is for rejecting BA_ABTS only.
1345 */
1346static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1347				enum fc_ba_rjt_reason reason,
1348				enum fc_ba_rjt_explan explan)
1349{
1350	struct fc_frame *fp;
1351	struct fc_frame_header *rx_fh;
1352	struct fc_frame_header *fh;
1353	struct fc_ba_rjt *rp;
1354	struct fc_seq *sp;
1355	struct fc_lport *lport;
1356	unsigned int f_ctl;
1357
1358	lport = fr_dev(rx_fp);
1359	sp = fr_seq(rx_fp);
1360	fp = fc_frame_alloc(lport, sizeof(*rp));
1361	if (!fp) {
1362		FC_EXCH_DBG(fc_seq_exch(sp),
1363			     "Drop BA_RJT request, out of memory\n");
1364		return;
1365	}
1366	fh = fc_frame_header_get(fp);
1367	rx_fh = fc_frame_header_get(rx_fp);
1368
1369	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1370
1371	rp = fc_frame_payload_get(fp, sizeof(*rp));
1372	rp->br_reason = reason;
1373	rp->br_explan = explan;
1374
1375	/*
1376	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1377	 */
1378	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1379	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1380	fh->fh_ox_id = rx_fh->fh_ox_id;
1381	fh->fh_rx_id = rx_fh->fh_rx_id;
1382	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1383	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1384	fh->fh_type = FC_TYPE_BLS;
1385
1386	/*
1387	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1388	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1389	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1390	 * Last ACK uses bits 7-6 (continue sequence),
1391	 * bits 5-4 are meaningful (what kind of ACK to use).
1392	 * Always set LAST_SEQ, END_SEQ.
1393	 */
1394	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1395	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1396		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1397		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1398	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1399	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1400	f_ctl &= ~FC_FC_FIRST_SEQ;
1401	hton24(fh->fh_f_ctl, f_ctl);
1402
1403	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1404	fr_eof(fp) = FC_EOF_T;
1405	if (fc_sof_needs_ack(fr_sof(fp)))
1406		fr_eof(fp) = FC_EOF_N;
1407
1408	lport->tt.frame_send(lport, fp);
1409}
1410
1411/**
1412 * fc_exch_recv_abts() - Handle an incoming ABTS
1413 * @ep:	   The exchange the abort was on
1414 * @rx_fp: The ABTS frame
1415 *
1416 * This would be for target mode usually, but could be due to lost
1417 * FCP transfer ready, confirm or RRQ. We always handle this as an
1418 * exchange abort, ignoring the parameter.
1419 */
1420static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1421{
1422	struct fc_frame *fp;
1423	struct fc_ba_acc *ap;
1424	struct fc_frame_header *fh;
1425	struct fc_seq *sp;
1426
1427	if (!ep)
1428		goto reject;
1429
1430	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1431	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1432	if (!fp) {
1433		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1434		goto free;
1435	}
1436
1437	spin_lock_bh(&ep->ex_lock);
1438	if (ep->esb_stat & ESB_ST_COMPLETE) {
1439		spin_unlock_bh(&ep->ex_lock);
1440		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1441		fc_frame_free(fp);
1442		goto reject;
1443	}
1444	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1445		ep->esb_stat |= ESB_ST_REC_QUAL;
1446		fc_exch_hold(ep);		/* hold for REC_QUAL */
1447	}
1448	fc_exch_timer_set_locked(ep, ep->r_a_tov);
 
 
 
 
 
 
1449	fh = fc_frame_header_get(fp);
1450	ap = fc_frame_payload_get(fp, sizeof(*ap));
1451	memset(ap, 0, sizeof(*ap));
1452	sp = &ep->seq;
1453	ap->ba_high_seq_cnt = htons(0xffff);
1454	if (sp->ssb_stat & SSB_ST_RESP) {
1455		ap->ba_seq_id = sp->id;
1456		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1457		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1458		ap->ba_low_seq_cnt = htons(sp->cnt);
1459	}
1460	sp = fc_seq_start_next_locked(sp);
1461	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1462	ep->esb_stat |= ESB_ST_ABNORMAL;
1463	spin_unlock_bh(&ep->ex_lock);
1464
1465free:
1466	fc_frame_free(rx_fp);
1467	return;
1468
1469reject:
1470	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1471	goto free;
 
1472}
1473
1474/**
1475 * fc_seq_assign() - Assign exchange and sequence for incoming request
1476 * @lport: The local port that received the request
1477 * @fp:    The request frame
1478 *
1479 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1480 * A reference will be held on the exchange/sequence for the caller, which
1481 * must call fc_seq_release().
1482 */
1483struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1484{
1485	struct fc_exch_mgr_anchor *ema;
1486
1487	WARN_ON(lport != fr_dev(fp));
1488	WARN_ON(fr_seq(fp));
1489	fr_seq(fp) = NULL;
1490
1491	list_for_each_entry(ema, &lport->ema_list, ema_list)
1492		if ((!ema->match || ema->match(fp)) &&
1493		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1494			break;
1495	return fr_seq(fp);
1496}
1497EXPORT_SYMBOL(fc_seq_assign);
1498
1499/**
1500 * fc_seq_release() - Release the hold
1501 * @sp:    The sequence.
1502 */
1503void fc_seq_release(struct fc_seq *sp)
1504{
1505	fc_exch_release(fc_seq_exch(sp));
1506}
1507EXPORT_SYMBOL(fc_seq_release);
1508
1509/**
1510 * fc_exch_recv_req() - Handler for an incoming request
1511 * @lport: The local port that received the request
1512 * @mp:	   The EM that the exchange is on
1513 * @fp:	   The request frame
1514 *
1515 * This is used when the other end is originating the exchange
1516 * and the sequence.
1517 */
1518static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1519			     struct fc_frame *fp)
1520{
1521	struct fc_frame_header *fh = fc_frame_header_get(fp);
1522	struct fc_seq *sp = NULL;
1523	struct fc_exch *ep = NULL;
1524	enum fc_pf_rjt_reason reject;
1525
1526	/* We can have the wrong fc_lport at this point with NPIV, which is a
1527	 * problem now that we know a new exchange needs to be allocated
1528	 */
1529	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1530	if (!lport) {
1531		fc_frame_free(fp);
1532		return;
1533	}
1534	fr_dev(fp) = lport;
1535
1536	BUG_ON(fr_seq(fp));		/* XXX remove later */
1537
1538	/*
1539	 * If the RX_ID is 0xffff, don't allocate an exchange.
1540	 * The upper-level protocol may request one later, if needed.
1541	 */
1542	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1543		return fc_lport_recv(lport, fp);
1544
1545	reject = fc_seq_lookup_recip(lport, mp, fp);
1546	if (reject == FC_RJT_NONE) {
1547		sp = fr_seq(fp);	/* sequence will be held */
1548		ep = fc_seq_exch(sp);
1549		fc_seq_send_ack(sp, fp);
1550		ep->encaps = fr_encaps(fp);
1551
1552		/*
1553		 * Call the receive function.
1554		 *
1555		 * The receive function may allocate a new sequence
1556		 * over the old one, so we shouldn't change the
1557		 * sequence after this.
1558		 *
1559		 * The frame will be freed by the receive function.
1560		 * If new exch resp handler is valid then call that
1561		 * first.
1562		 */
1563		if (!fc_invoke_resp(ep, sp, fp))
1564			fc_lport_recv(lport, fp);
 
 
1565		fc_exch_release(ep);	/* release from lookup */
1566	} else {
1567		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1568			     reject);
1569		fc_frame_free(fp);
1570	}
1571}
1572
1573/**
1574 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1575 *			     end is the originator of the sequence that is a
1576 *			     response to our initial exchange
1577 * @mp: The EM that the exchange is on
1578 * @fp: The response frame
1579 */
1580static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1581{
1582	struct fc_frame_header *fh = fc_frame_header_get(fp);
1583	struct fc_seq *sp;
1584	struct fc_exch *ep;
1585	enum fc_sof sof;
1586	u32 f_ctl;
 
 
1587	int rc;
1588
1589	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1590	if (!ep) {
1591		atomic_inc(&mp->stats.xid_not_found);
1592		goto out;
1593	}
1594	if (ep->esb_stat & ESB_ST_COMPLETE) {
1595		atomic_inc(&mp->stats.xid_not_found);
1596		goto rel;
1597	}
1598	if (ep->rxid == FC_XID_UNKNOWN)
1599		ep->rxid = ntohs(fh->fh_rx_id);
1600	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1601		atomic_inc(&mp->stats.xid_not_found);
1602		goto rel;
1603	}
1604	if (ep->did != ntoh24(fh->fh_s_id) &&
1605	    ep->did != FC_FID_FLOGI) {
1606		atomic_inc(&mp->stats.xid_not_found);
1607		goto rel;
1608	}
1609	sof = fr_sof(fp);
1610	sp = &ep->seq;
1611	if (fc_sof_is_init(sof)) {
1612		sp->ssb_stat |= SSB_ST_RESP;
1613		sp->id = fh->fh_seq_id;
 
 
 
1614	}
1615
1616	f_ctl = ntoh24(fh->fh_f_ctl);
1617	fr_seq(fp) = sp;
1618
1619	spin_lock_bh(&ep->ex_lock);
1620	if (f_ctl & FC_FC_SEQ_INIT)
1621		ep->esb_stat |= ESB_ST_SEQ_INIT;
1622	spin_unlock_bh(&ep->ex_lock);
1623
1624	if (fc_sof_needs_ack(sof))
1625		fc_seq_send_ack(sp, fp);
 
 
1626
1627	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1628	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1629	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1630		spin_lock_bh(&ep->ex_lock);
 
1631		rc = fc_exch_done_locked(ep);
1632		WARN_ON(fc_seq_exch(sp) != ep);
1633		spin_unlock_bh(&ep->ex_lock);
1634		if (!rc)
1635			fc_exch_delete(ep);
1636	}
1637
1638	/*
1639	 * Call the receive function.
1640	 * The sequence is held (has a refcnt) for us,
1641	 * but not for the receive function.
1642	 *
1643	 * The receive function may allocate a new sequence
1644	 * over the old one, so we shouldn't change the
1645	 * sequence after this.
1646	 *
1647	 * The frame will be freed by the receive function.
1648	 * If new exch resp handler is valid then call that
1649	 * first.
1650	 */
1651	if (!fc_invoke_resp(ep, sp, fp))
 
 
1652		fc_frame_free(fp);
1653
1654	fc_exch_release(ep);
1655	return;
1656rel:
1657	fc_exch_release(ep);
1658out:
1659	fc_frame_free(fp);
1660}
1661
1662/**
1663 * fc_exch_recv_resp() - Handler for a sequence where other end is
1664 *			 responding to our sequence
1665 * @mp: The EM that the exchange is on
1666 * @fp: The response frame
1667 */
1668static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1669{
1670	struct fc_seq *sp;
1671
1672	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1673
1674	if (!sp)
1675		atomic_inc(&mp->stats.xid_not_found);
1676	else
1677		atomic_inc(&mp->stats.non_bls_resp);
1678
1679	fc_frame_free(fp);
1680}
1681
1682/**
1683 * fc_exch_abts_resp() - Handler for a response to an ABT
1684 * @ep: The exchange that the frame is on
1685 * @fp: The response frame
1686 *
1687 * This response would be to an ABTS cancelling an exchange or sequence.
1688 * The response can be either BA_ACC or BA_RJT
1689 */
1690static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1691{
 
 
1692	struct fc_frame_header *fh;
1693	struct fc_ba_acc *ap;
1694	struct fc_seq *sp;
1695	u16 low;
1696	u16 high;
1697	int rc = 1, has_rec = 0;
1698
1699	fh = fc_frame_header_get(fp);
1700	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1701		    fc_exch_rctl_name(fh->fh_r_ctl));
1702
1703	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1704		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1705		fc_exch_release(ep);	/* release from pending timer hold */
1706	}
1707
1708	spin_lock_bh(&ep->ex_lock);
1709	switch (fh->fh_r_ctl) {
1710	case FC_RCTL_BA_ACC:
1711		ap = fc_frame_payload_get(fp, sizeof(*ap));
1712		if (!ap)
1713			break;
1714
1715		/*
1716		 * Decide whether to establish a Recovery Qualifier.
1717		 * We do this if there is a non-empty SEQ_CNT range and
1718		 * SEQ_ID is the same as the one we aborted.
1719		 */
1720		low = ntohs(ap->ba_low_seq_cnt);
1721		high = ntohs(ap->ba_high_seq_cnt);
1722		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1723		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1724		     ap->ba_seq_id == ep->seq_id) && low != high) {
1725			ep->esb_stat |= ESB_ST_REC_QUAL;
1726			fc_exch_hold(ep);  /* hold for recovery qualifier */
1727			has_rec = 1;
1728		}
1729		break;
1730	case FC_RCTL_BA_RJT:
1731		break;
1732	default:
1733		break;
1734	}
1735
 
 
 
1736	/* do we need to do some other checks here. Can we reuse more of
1737	 * fc_exch_recv_seq_resp
1738	 */
1739	sp = &ep->seq;
1740	/*
1741	 * do we want to check END_SEQ as well as LAST_SEQ here?
1742	 */
1743	if (ep->fh_type != FC_TYPE_FCP &&
1744	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1745		rc = fc_exch_done_locked(ep);
1746	spin_unlock_bh(&ep->ex_lock);
1747
1748	fc_exch_hold(ep);
1749	if (!rc)
1750		fc_exch_delete(ep);
1751	if (!fc_invoke_resp(ep, sp, fp))
 
 
 
1752		fc_frame_free(fp);
 
1753	if (has_rec)
1754		fc_exch_timer_set(ep, ep->r_a_tov);
1755	fc_exch_release(ep);
1756}
1757
1758/**
1759 * fc_exch_recv_bls() - Handler for a BLS sequence
1760 * @mp: The EM that the exchange is on
1761 * @fp: The request frame
1762 *
1763 * The BLS frame is always a sequence initiated by the remote side.
1764 * We may be either the originator or recipient of the exchange.
1765 */
1766static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1767{
1768	struct fc_frame_header *fh;
1769	struct fc_exch *ep;
1770	u32 f_ctl;
1771
1772	fh = fc_frame_header_get(fp);
1773	f_ctl = ntoh24(fh->fh_f_ctl);
1774	fr_seq(fp) = NULL;
1775
1776	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1777			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1778	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1779		spin_lock_bh(&ep->ex_lock);
1780		ep->esb_stat |= ESB_ST_SEQ_INIT;
1781		spin_unlock_bh(&ep->ex_lock);
1782	}
1783	if (f_ctl & FC_FC_SEQ_CTX) {
1784		/*
1785		 * A response to a sequence we initiated.
1786		 * This should only be ACKs for class 2 or F.
1787		 */
1788		switch (fh->fh_r_ctl) {
1789		case FC_RCTL_ACK_1:
1790		case FC_RCTL_ACK_0:
1791			break;
1792		default:
1793			if (ep)
1794				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1795					    fh->fh_r_ctl,
1796					    fc_exch_rctl_name(fh->fh_r_ctl));
1797			break;
1798		}
1799		fc_frame_free(fp);
1800	} else {
1801		switch (fh->fh_r_ctl) {
1802		case FC_RCTL_BA_RJT:
1803		case FC_RCTL_BA_ACC:
1804			if (ep)
1805				fc_exch_abts_resp(ep, fp);
1806			else
1807				fc_frame_free(fp);
1808			break;
1809		case FC_RCTL_BA_ABTS:
1810			if (ep)
1811				fc_exch_recv_abts(ep, fp);
1812			else
1813				fc_frame_free(fp);
1814			break;
1815		default:			/* ignore junk */
1816			fc_frame_free(fp);
1817			break;
1818		}
1819	}
1820	if (ep)
1821		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1822}
1823
1824/**
1825 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1826 * @rx_fp: The received frame, not freed here.
1827 *
1828 * If this fails due to allocation or transmit congestion, assume the
1829 * originator will repeat the sequence.
1830 */
1831static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1832{
1833	struct fc_lport *lport;
1834	struct fc_els_ls_acc *acc;
1835	struct fc_frame *fp;
1836	struct fc_seq *sp;
1837
1838	lport = fr_dev(rx_fp);
1839	sp = fr_seq(rx_fp);
1840	fp = fc_frame_alloc(lport, sizeof(*acc));
1841	if (!fp) {
1842		FC_EXCH_DBG(fc_seq_exch(sp),
1843			    "exch: drop LS_ACC, out of memory\n");
1844		return;
1845	}
1846	acc = fc_frame_payload_get(fp, sizeof(*acc));
1847	memset(acc, 0, sizeof(*acc));
1848	acc->la_cmd = ELS_LS_ACC;
1849	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1850	lport->tt.frame_send(lport, fp);
1851}
1852
1853/**
1854 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1855 * @rx_fp: The received frame, not freed here.
1856 * @reason: The reason the sequence is being rejected
1857 * @explan: The explanation for the rejection
1858 *
1859 * If this fails due to allocation or transmit congestion, assume the
1860 * originator will repeat the sequence.
1861 */
1862static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1863			  enum fc_els_rjt_explan explan)
1864{
1865	struct fc_lport *lport;
1866	struct fc_els_ls_rjt *rjt;
1867	struct fc_frame *fp;
1868	struct fc_seq *sp;
1869
1870	lport = fr_dev(rx_fp);
1871	sp = fr_seq(rx_fp);
1872	fp = fc_frame_alloc(lport, sizeof(*rjt));
1873	if (!fp) {
1874		FC_EXCH_DBG(fc_seq_exch(sp),
1875			    "exch: drop LS_ACC, out of memory\n");
1876		return;
1877	}
1878	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1879	memset(rjt, 0, sizeof(*rjt));
1880	rjt->er_cmd = ELS_LS_RJT;
1881	rjt->er_reason = reason;
1882	rjt->er_explan = explan;
1883	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1884	lport->tt.frame_send(lport, fp);
1885}
1886
1887/**
1888 * fc_exch_reset() - Reset an exchange
1889 * @ep: The exchange to be reset
1890 *
1891 * Note: May sleep if invoked from outside a response handler.
1892 */
1893static void fc_exch_reset(struct fc_exch *ep)
1894{
1895	struct fc_seq *sp;
 
 
1896	int rc = 1;
1897
1898	spin_lock_bh(&ep->ex_lock);
 
1899	ep->state |= FC_EX_RST_CLEANUP;
1900	fc_exch_timer_cancel(ep);
 
 
 
1901	if (ep->esb_stat & ESB_ST_REC_QUAL)
1902		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1903	ep->esb_stat &= ~ESB_ST_REC_QUAL;
 
1904	sp = &ep->seq;
1905	rc = fc_exch_done_locked(ep);
1906	spin_unlock_bh(&ep->ex_lock);
1907
1908	fc_exch_hold(ep);
1909
1910	if (!rc)
1911		fc_exch_delete(ep);
1912
1913	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1914	fc_seq_set_resp(sp, NULL, ep->arg);
1915	fc_exch_release(ep);
1916}
1917
1918/**
1919 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1920 * @lport: The local port that the exchange pool is on
1921 * @pool:  The exchange pool to be reset
1922 * @sid:   The source ID
1923 * @did:   The destination ID
1924 *
1925 * Resets a per cpu exches pool, releasing all of its sequences
1926 * and exchanges. If sid is non-zero then reset only exchanges
1927 * we sourced from the local port's FID. If did is non-zero then
1928 * only reset exchanges destined for the local port's FID.
1929 */
1930static void fc_exch_pool_reset(struct fc_lport *lport,
1931			       struct fc_exch_pool *pool,
1932			       u32 sid, u32 did)
1933{
1934	struct fc_exch *ep;
1935	struct fc_exch *next;
1936
1937	spin_lock_bh(&pool->lock);
1938restart:
1939	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1940		if ((lport == ep->lp) &&
1941		    (sid == 0 || sid == ep->sid) &&
1942		    (did == 0 || did == ep->did)) {
1943			fc_exch_hold(ep);
1944			spin_unlock_bh(&pool->lock);
1945
1946			fc_exch_reset(ep);
1947
1948			fc_exch_release(ep);
1949			spin_lock_bh(&pool->lock);
1950
1951			/*
1952			 * must restart loop incase while lock
1953			 * was down multiple eps were released.
1954			 */
1955			goto restart;
1956		}
1957	}
1958	pool->next_index = 0;
1959	pool->left = FC_XID_UNKNOWN;
1960	pool->right = FC_XID_UNKNOWN;
1961	spin_unlock_bh(&pool->lock);
1962}
1963
1964/**
1965 * fc_exch_mgr_reset() - Reset all EMs of a local port
1966 * @lport: The local port whose EMs are to be reset
1967 * @sid:   The source ID
1968 * @did:   The destination ID
1969 *
1970 * Reset all EMs associated with a given local port. Release all
1971 * sequences and exchanges. If sid is non-zero then reset only the
1972 * exchanges sent from the local port's FID. If did is non-zero then
1973 * reset only exchanges destined for the local port's FID.
1974 */
1975void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1976{
1977	struct fc_exch_mgr_anchor *ema;
1978	unsigned int cpu;
1979
1980	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1981		for_each_possible_cpu(cpu)
1982			fc_exch_pool_reset(lport,
1983					   per_cpu_ptr(ema->mp->pool, cpu),
1984					   sid, did);
1985	}
1986}
1987EXPORT_SYMBOL(fc_exch_mgr_reset);
1988
1989/**
1990 * fc_exch_lookup() - find an exchange
1991 * @lport: The local port
1992 * @xid: The exchange ID
1993 *
1994 * Returns exchange pointer with hold for caller, or NULL if not found.
1995 */
1996static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1997{
1998	struct fc_exch_mgr_anchor *ema;
1999
2000	list_for_each_entry(ema, &lport->ema_list, ema_list)
2001		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2002			return fc_exch_find(ema->mp, xid);
2003	return NULL;
2004}
2005
2006/**
2007 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2008 * @rfp: The REC frame, not freed here.
2009 *
2010 * Note that the requesting port may be different than the S_ID in the request.
2011 */
2012static void fc_exch_els_rec(struct fc_frame *rfp)
2013{
2014	struct fc_lport *lport;
2015	struct fc_frame *fp;
2016	struct fc_exch *ep;
2017	struct fc_els_rec *rp;
2018	struct fc_els_rec_acc *acc;
2019	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2020	enum fc_els_rjt_explan explan;
2021	u32 sid;
2022	u16 xid, rxid, oxid;
 
2023
2024	lport = fr_dev(rfp);
2025	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2026	explan = ELS_EXPL_INV_LEN;
2027	if (!rp)
2028		goto reject;
2029	sid = ntoh24(rp->rec_s_id);
2030	rxid = ntohs(rp->rec_rx_id);
2031	oxid = ntohs(rp->rec_ox_id);
2032
 
 
2033	explan = ELS_EXPL_OXID_RXID;
2034	if (sid == fc_host_port_id(lport->host))
2035		xid = oxid;
2036	else
2037		xid = rxid;
2038	if (xid == FC_XID_UNKNOWN) {
2039		FC_LPORT_DBG(lport,
2040			     "REC request from %x: invalid rxid %x oxid %x\n",
2041			     sid, rxid, oxid);
2042		goto reject;
2043	}
2044	ep = fc_exch_lookup(lport, xid);
2045	if (!ep) {
2046		FC_LPORT_DBG(lport,
2047			     "REC request from %x: rxid %x oxid %x not found\n",
2048			     sid, rxid, oxid);
2049		goto reject;
2050	}
2051	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2052		    sid, rxid, oxid);
2053	if (ep->oid != sid || oxid != ep->oxid)
2054		goto rel;
2055	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2056		goto rel;
2057	fp = fc_frame_alloc(lport, sizeof(*acc));
2058	if (!fp) {
2059		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2060		goto out;
2061	}
2062
2063	acc = fc_frame_payload_get(fp, sizeof(*acc));
2064	memset(acc, 0, sizeof(*acc));
2065	acc->reca_cmd = ELS_LS_ACC;
2066	acc->reca_ox_id = rp->rec_ox_id;
2067	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2068	acc->reca_rx_id = htons(ep->rxid);
2069	if (ep->sid == ep->oid)
2070		hton24(acc->reca_rfid, ep->did);
2071	else
2072		hton24(acc->reca_rfid, ep->sid);
2073	acc->reca_fc4value = htonl(ep->seq.rec_data);
2074	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2075						 ESB_ST_SEQ_INIT |
2076						 ESB_ST_COMPLETE));
2077	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2078	lport->tt.frame_send(lport, fp);
2079out:
2080	fc_exch_release(ep);
2081	return;
2082
2083rel:
2084	fc_exch_release(ep);
2085reject:
2086	fc_seq_ls_rjt(rfp, reason, explan);
2087}
2088
2089/**
2090 * fc_exch_rrq_resp() - Handler for RRQ responses
2091 * @sp:	 The sequence that the RRQ is on
2092 * @fp:	 The RRQ frame
2093 * @arg: The exchange that the RRQ is on
2094 *
2095 * TODO: fix error handler.
2096 */
2097static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2098{
2099	struct fc_exch *aborted_ep = arg;
2100	unsigned int op;
2101
2102	if (IS_ERR(fp)) {
2103		int err = PTR_ERR(fp);
2104
2105		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2106			goto cleanup;
2107		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2108			    "frame error %d\n", err);
2109		return;
2110	}
2111
2112	op = fc_frame_payload_op(fp);
2113	fc_frame_free(fp);
2114
2115	switch (op) {
2116	case ELS_LS_RJT:
2117		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2118		/* fall through */
2119	case ELS_LS_ACC:
2120		goto cleanup;
2121	default:
2122		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2123			    op);
2124		return;
2125	}
2126
2127cleanup:
2128	fc_exch_done(&aborted_ep->seq);
2129	/* drop hold for rec qual */
2130	fc_exch_release(aborted_ep);
2131}
2132
2133
2134/**
2135 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2136 * @lport:	The local port to send the frame on
2137 * @fp:		The frame to be sent
2138 * @resp:	The response handler for this request
2139 * @destructor: The destructor for the exchange
2140 * @arg:	The argument to be passed to the response handler
2141 * @timer_msec: The timeout period for the exchange
2142 *
2143 * The exchange response handler is set in this routine to resp()
2144 * function pointer. It can be called in two scenarios: if a timeout
2145 * occurs or if a response frame is received for the exchange. The
2146 * fc_frame pointer in response handler will also indicate timeout
2147 * as error using IS_ERR related macros.
2148 *
2149 * The exchange destructor handler is also set in this routine.
2150 * The destructor handler is invoked by EM layer when exchange
2151 * is about to free, this can be used by caller to free its
2152 * resources along with exchange free.
2153 *
2154 * The arg is passed back to resp and destructor handler.
2155 *
2156 * The timeout value (in msec) for an exchange is set if non zero
2157 * timer_msec argument is specified. The timer is canceled when
2158 * it fires or when the exchange is done. The exchange timeout handler
2159 * is registered by EM layer.
2160 *
2161 * The frame pointer with some of the header's fields must be
2162 * filled before calling this routine, those fields are:
2163 *
2164 * - routing control
2165 * - FC port did
2166 * - FC port sid
2167 * - FC header type
2168 * - frame control
2169 * - parameter or relative offset
2170 */
2171struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2172				struct fc_frame *fp,
2173				void (*resp)(struct fc_seq *,
2174					     struct fc_frame *fp,
2175					     void *arg),
2176				void (*destructor)(struct fc_seq *, void *),
2177				void *arg, u32 timer_msec)
 
2178{
2179	struct fc_exch *ep;
2180	struct fc_seq *sp = NULL;
2181	struct fc_frame_header *fh;
2182	struct fc_fcp_pkt *fsp = NULL;
2183	int rc = 1;
2184
2185	ep = fc_exch_alloc(lport, fp);
2186	if (!ep) {
2187		fc_frame_free(fp);
2188		return NULL;
2189	}
2190	ep->esb_stat |= ESB_ST_SEQ_INIT;
2191	fh = fc_frame_header_get(fp);
2192	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2193	ep->resp = resp;
2194	ep->destructor = destructor;
2195	ep->arg = arg;
2196	ep->r_a_tov = lport->r_a_tov;
2197	ep->lp = lport;
2198	sp = &ep->seq;
2199
2200	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2201	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2202	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2203	sp->cnt++;
2204
2205	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2206		fsp = fr_fsp(fp);
2207		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2208	}
2209
2210	if (unlikely(lport->tt.frame_send(lport, fp)))
2211		goto err;
2212
2213	if (timer_msec)
2214		fc_exch_timer_set_locked(ep, timer_msec);
2215	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2216
2217	if (ep->f_ctl & FC_FC_SEQ_INIT)
2218		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2219	spin_unlock_bh(&ep->ex_lock);
2220	return sp;
2221err:
2222	if (fsp)
2223		fc_fcp_ddp_done(fsp);
2224	rc = fc_exch_done_locked(ep);
2225	spin_unlock_bh(&ep->ex_lock);
2226	if (!rc)
2227		fc_exch_delete(ep);
2228	return NULL;
2229}
2230EXPORT_SYMBOL(fc_exch_seq_send);
2231
2232/**
2233 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2234 * @ep: The exchange to send the RRQ on
2235 *
2236 * This tells the remote port to stop blocking the use of
2237 * the exchange and the seq_cnt range.
2238 */
2239static void fc_exch_rrq(struct fc_exch *ep)
2240{
2241	struct fc_lport *lport;
2242	struct fc_els_rrq *rrq;
2243	struct fc_frame *fp;
2244	u32 did;
2245
2246	lport = ep->lp;
2247
2248	fp = fc_frame_alloc(lport, sizeof(*rrq));
2249	if (!fp)
2250		goto retry;
2251
2252	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2253	memset(rrq, 0, sizeof(*rrq));
2254	rrq->rrq_cmd = ELS_RRQ;
2255	hton24(rrq->rrq_s_id, ep->sid);
2256	rrq->rrq_ox_id = htons(ep->oxid);
2257	rrq->rrq_rx_id = htons(ep->rxid);
2258
2259	did = ep->did;
2260	if (ep->esb_stat & ESB_ST_RESP)
2261		did = ep->sid;
2262
2263	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2264		       lport->port_id, FC_TYPE_ELS,
2265		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2266
2267	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2268			     lport->e_d_tov))
2269		return;
2270
2271retry:
2272	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2273	spin_lock_bh(&ep->ex_lock);
2274	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2275		spin_unlock_bh(&ep->ex_lock);
2276		/* drop hold for rec qual */
2277		fc_exch_release(ep);
2278		return;
2279	}
2280	ep->esb_stat |= ESB_ST_REC_QUAL;
2281	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2282	spin_unlock_bh(&ep->ex_lock);
2283}
2284
2285/**
2286 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2287 * @fp: The RRQ frame, not freed here.
2288 */
2289static void fc_exch_els_rrq(struct fc_frame *fp)
2290{
2291	struct fc_lport *lport;
2292	struct fc_exch *ep = NULL;	/* request or subject exchange */
2293	struct fc_els_rrq *rp;
2294	u32 sid;
2295	u16 xid;
2296	enum fc_els_rjt_explan explan;
2297
2298	lport = fr_dev(fp);
2299	rp = fc_frame_payload_get(fp, sizeof(*rp));
2300	explan = ELS_EXPL_INV_LEN;
2301	if (!rp)
2302		goto reject;
2303
2304	/*
2305	 * lookup subject exchange.
2306	 */
2307	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2308	xid = fc_host_port_id(lport->host) == sid ?
2309			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2310	ep = fc_exch_lookup(lport, xid);
2311	explan = ELS_EXPL_OXID_RXID;
2312	if (!ep)
2313		goto reject;
2314	spin_lock_bh(&ep->ex_lock);
2315	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2316		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2317	if (ep->oxid != ntohs(rp->rrq_ox_id))
2318		goto unlock_reject;
2319	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2320	    ep->rxid != FC_XID_UNKNOWN)
2321		goto unlock_reject;
2322	explan = ELS_EXPL_SID;
2323	if (ep->sid != sid)
2324		goto unlock_reject;
2325
2326	/*
2327	 * Clear Recovery Qualifier state, and cancel timer if complete.
2328	 */
2329	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2330		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2331		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2332	}
2333	if (ep->esb_stat & ESB_ST_COMPLETE)
2334		fc_exch_timer_cancel(ep);
 
 
2335
2336	spin_unlock_bh(&ep->ex_lock);
2337
2338	/*
2339	 * Send LS_ACC.
2340	 */
2341	fc_seq_ls_acc(fp);
2342	goto out;
2343
2344unlock_reject:
2345	spin_unlock_bh(&ep->ex_lock);
2346reject:
2347	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2348out:
2349	if (ep)
2350		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2351}
2352
2353/**
2354 * fc_exch_update_stats() - update exches stats to lport
2355 * @lport: The local port to update exchange manager stats
2356 */
2357void fc_exch_update_stats(struct fc_lport *lport)
2358{
2359	struct fc_host_statistics *st;
2360	struct fc_exch_mgr_anchor *ema;
2361	struct fc_exch_mgr *mp;
2362
2363	st = &lport->host_stats;
2364
2365	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2366		mp = ema->mp;
2367		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2368		st->fc_no_free_exch_xid +=
2369				atomic_read(&mp->stats.no_free_exch_xid);
2370		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2371		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2372		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2373		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2374	}
2375}
2376EXPORT_SYMBOL(fc_exch_update_stats);
2377
2378/**
2379 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2380 * @lport: The local port to add the exchange manager to
2381 * @mp:	   The exchange manager to be added to the local port
2382 * @match: The match routine that indicates when this EM should be used
2383 */
2384struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2385					   struct fc_exch_mgr *mp,
2386					   bool (*match)(struct fc_frame *))
2387{
2388	struct fc_exch_mgr_anchor *ema;
2389
2390	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2391	if (!ema)
2392		return ema;
2393
2394	ema->mp = mp;
2395	ema->match = match;
2396	/* add EM anchor to EM anchors list */
2397	list_add_tail(&ema->ema_list, &lport->ema_list);
2398	kref_get(&mp->kref);
2399	return ema;
2400}
2401EXPORT_SYMBOL(fc_exch_mgr_add);
2402
2403/**
2404 * fc_exch_mgr_destroy() - Destroy an exchange manager
2405 * @kref: The reference to the EM to be destroyed
2406 */
2407static void fc_exch_mgr_destroy(struct kref *kref)
2408{
2409	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2410
2411	mempool_destroy(mp->ep_pool);
2412	free_percpu(mp->pool);
2413	kfree(mp);
2414}
2415
2416/**
2417 * fc_exch_mgr_del() - Delete an EM from a local port's list
2418 * @ema: The exchange manager anchor identifying the EM to be deleted
2419 */
2420void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2421{
2422	/* remove EM anchor from EM anchors list */
2423	list_del(&ema->ema_list);
2424	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2425	kfree(ema);
2426}
2427EXPORT_SYMBOL(fc_exch_mgr_del);
2428
2429/**
2430 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2431 * @src: Source lport to clone exchange managers from
2432 * @dst: New lport that takes references to all the exchange managers
2433 */
2434int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2435{
2436	struct fc_exch_mgr_anchor *ema, *tmp;
2437
2438	list_for_each_entry(ema, &src->ema_list, ema_list) {
2439		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2440			goto err;
2441	}
2442	return 0;
2443err:
2444	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2445		fc_exch_mgr_del(ema);
2446	return -ENOMEM;
2447}
2448EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2449
2450/**
2451 * fc_exch_mgr_alloc() - Allocate an exchange manager
2452 * @lport:   The local port that the new EM will be associated with
2453 * @class:   The default FC class for new exchanges
2454 * @min_xid: The minimum XID for exchanges from the new EM
2455 * @max_xid: The maximum XID for exchanges from the new EM
2456 * @match:   The match routine for the new EM
2457 */
2458struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2459				      enum fc_class class,
2460				      u16 min_xid, u16 max_xid,
2461				      bool (*match)(struct fc_frame *))
2462{
2463	struct fc_exch_mgr *mp;
2464	u16 pool_exch_range;
2465	size_t pool_size;
2466	unsigned int cpu;
2467	struct fc_exch_pool *pool;
2468
2469	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2470	    (min_xid & fc_cpu_mask) != 0) {
2471		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2472			     min_xid, max_xid);
2473		return NULL;
2474	}
2475
2476	/*
2477	 * allocate memory for EM
2478	 */
2479	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2480	if (!mp)
2481		return NULL;
2482
2483	mp->class = class;
2484	mp->lport = lport;
2485	/* adjust em exch xid range for offload */
2486	mp->min_xid = min_xid;
2487
2488       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2489	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2490		sizeof(struct fc_exch *);
2491	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2492		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2493			min_xid - 1;
2494	} else {
2495		mp->max_xid = max_xid;
2496		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2497			(fc_cpu_mask + 1);
2498	}
2499
2500	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2501	if (!mp->ep_pool)
2502		goto free_mp;
2503
2504	/*
2505	 * Setup per cpu exch pool with entire exchange id range equally
2506	 * divided across all cpus. The exch pointers array memory is
2507	 * allocated for exch range per pool.
2508	 */
2509	mp->pool_max_index = pool_exch_range - 1;
2510
2511	/*
2512	 * Allocate and initialize per cpu exch pool
2513	 */
2514	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2515	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2516	if (!mp->pool)
2517		goto free_mempool;
2518	for_each_possible_cpu(cpu) {
2519		pool = per_cpu_ptr(mp->pool, cpu);
2520		pool->next_index = 0;
2521		pool->left = FC_XID_UNKNOWN;
2522		pool->right = FC_XID_UNKNOWN;
2523		spin_lock_init(&pool->lock);
2524		INIT_LIST_HEAD(&pool->ex_list);
2525	}
2526
2527	kref_init(&mp->kref);
2528	if (!fc_exch_mgr_add(lport, mp, match)) {
2529		free_percpu(mp->pool);
2530		goto free_mempool;
2531	}
2532
2533	/*
2534	 * Above kref_init() sets mp->kref to 1 and then
2535	 * call to fc_exch_mgr_add incremented mp->kref again,
2536	 * so adjust that extra increment.
2537	 */
2538	kref_put(&mp->kref, fc_exch_mgr_destroy);
2539	return mp;
2540
2541free_mempool:
2542	mempool_destroy(mp->ep_pool);
2543free_mp:
2544	kfree(mp);
2545	return NULL;
2546}
2547EXPORT_SYMBOL(fc_exch_mgr_alloc);
2548
2549/**
2550 * fc_exch_mgr_free() - Free all exchange managers on a local port
2551 * @lport: The local port whose EMs are to be freed
2552 */
2553void fc_exch_mgr_free(struct fc_lport *lport)
2554{
2555	struct fc_exch_mgr_anchor *ema, *next;
2556
2557	flush_workqueue(fc_exch_workqueue);
2558	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2559		fc_exch_mgr_del(ema);
2560}
2561EXPORT_SYMBOL(fc_exch_mgr_free);
2562
2563/**
2564 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2565 * upon 'xid'.
2566 * @f_ctl: f_ctl
2567 * @lport: The local port the frame was received on
2568 * @fh: The received frame header
2569 */
2570static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2571					      struct fc_lport *lport,
2572					      struct fc_frame_header *fh)
2573{
2574	struct fc_exch_mgr_anchor *ema;
2575	u16 xid;
2576
2577	if (f_ctl & FC_FC_EX_CTX)
2578		xid = ntohs(fh->fh_ox_id);
2579	else {
2580		xid = ntohs(fh->fh_rx_id);
2581		if (xid == FC_XID_UNKNOWN)
2582			return list_entry(lport->ema_list.prev,
2583					  typeof(*ema), ema_list);
2584	}
2585
2586	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2587		if ((xid >= ema->mp->min_xid) &&
2588		    (xid <= ema->mp->max_xid))
2589			return ema;
2590	}
2591	return NULL;
2592}
2593/**
2594 * fc_exch_recv() - Handler for received frames
2595 * @lport: The local port the frame was received on
2596 * @fp:	The received frame
2597 */
2598void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2599{
2600	struct fc_frame_header *fh = fc_frame_header_get(fp);
2601	struct fc_exch_mgr_anchor *ema;
2602	u32 f_ctl;
2603
2604	/* lport lock ? */
2605	if (!lport || lport->state == LPORT_ST_DISABLED) {
2606		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2607			     "has not been initialized correctly\n");
2608		fc_frame_free(fp);
2609		return;
2610	}
2611
2612	f_ctl = ntoh24(fh->fh_f_ctl);
2613	ema = fc_find_ema(f_ctl, lport, fh);
2614	if (!ema) {
2615		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2616				    "fc_ctl <0x%x>, xid <0x%x>\n",
2617				     f_ctl,
2618				     (f_ctl & FC_FC_EX_CTX) ?
2619				     ntohs(fh->fh_ox_id) :
2620				     ntohs(fh->fh_rx_id));
2621		fc_frame_free(fp);
2622		return;
2623	}
2624
2625	/*
2626	 * If frame is marked invalid, just drop it.
2627	 */
2628	switch (fr_eof(fp)) {
2629	case FC_EOF_T:
2630		if (f_ctl & FC_FC_END_SEQ)
2631			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2632		/* fall through */
2633	case FC_EOF_N:
2634		if (fh->fh_type == FC_TYPE_BLS)
2635			fc_exch_recv_bls(ema->mp, fp);
2636		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2637			 FC_FC_EX_CTX)
2638			fc_exch_recv_seq_resp(ema->mp, fp);
2639		else if (f_ctl & FC_FC_SEQ_CTX)
2640			fc_exch_recv_resp(ema->mp, fp);
2641		else	/* no EX_CTX and no SEQ_CTX */
2642			fc_exch_recv_req(lport, ema->mp, fp);
2643		break;
2644	default:
2645		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2646			     fr_eof(fp));
2647		fc_frame_free(fp);
2648	}
2649}
2650EXPORT_SYMBOL(fc_exch_recv);
2651
2652/**
2653 * fc_exch_init() - Initialize the exchange layer for a local port
2654 * @lport: The local port to initialize the exchange layer for
2655 */
2656int fc_exch_init(struct fc_lport *lport)
2657{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658	if (!lport->tt.exch_mgr_reset)
2659		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2660
 
 
 
 
 
 
 
 
 
2661	return 0;
2662}
2663EXPORT_SYMBOL(fc_exch_init);
2664
2665/**
2666 * fc_setup_exch_mgr() - Setup an exchange manager
2667 */
2668int fc_setup_exch_mgr(void)
2669{
2670	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2671					 0, SLAB_HWCACHE_ALIGN, NULL);
2672	if (!fc_em_cachep)
2673		return -ENOMEM;
2674
2675	/*
2676	 * Initialize fc_cpu_mask and fc_cpu_order. The
2677	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2678	 * to order of 2's * power and order is stored
2679	 * in fc_cpu_order as this is later required in
2680	 * mapping between an exch id and exch array index
2681	 * in per cpu exch pool.
2682	 *
2683	 * This round up is required to align fc_cpu_mask
2684	 * to exchange id's lower bits such that all incoming
2685	 * frames of an exchange gets delivered to the same
2686	 * cpu on which exchange originated by simple bitwise
2687	 * AND operation between fc_cpu_mask and exchange id.
2688	 */
2689	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2690	fc_cpu_mask = (1 << fc_cpu_order) - 1;
 
 
 
 
 
2691
2692	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2693	if (!fc_exch_workqueue)
2694		goto err;
2695	return 0;
2696err:
2697	kmem_cache_destroy(fc_em_cachep);
2698	return -ENOMEM;
2699}
2700
2701/**
2702 * fc_destroy_exch_mgr() - Destroy an exchange manager
2703 */
2704void fc_destroy_exch_mgr(void)
2705{
2706	destroy_workqueue(fc_exch_workqueue);
2707	kmem_cache_destroy(fc_em_cachep);
2708}
v3.5.6
   1/*
   2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   4 * Copyright(c) 2008 Mike Christie
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc.,
  17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18 *
  19 * Maintained at www.Open-FCoE.org
  20 */
  21
  22/*
  23 * Fibre Channel exchange and sequence handling.
  24 */
  25
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
 
  30
  31#include <scsi/fc/fc_fc2.h>
  32
  33#include <scsi/libfc.h>
  34#include <scsi/fc_encode.h>
  35
  36#include "fc_libfc.h"
  37
  38u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  39EXPORT_SYMBOL(fc_cpu_mask);
  40static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  41static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  42static struct workqueue_struct *fc_exch_workqueue;
  43
  44/*
  45 * Structure and function definitions for managing Fibre Channel Exchanges
  46 * and Sequences.
  47 *
  48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  49 *
  50 * fc_exch_mgr holds the exchange state for an N port
  51 *
  52 * fc_exch holds state for one exchange and links to its active sequence.
  53 *
  54 * fc_seq holds the state for an individual sequence.
  55 */
  56
  57/**
  58 * struct fc_exch_pool - Per cpu exchange pool
  59 * @next_index:	  Next possible free exchange index
  60 * @total_exches: Total allocated exchanges
  61 * @lock:	  Exch pool lock
  62 * @ex_list:	  List of exchanges
  63 *
  64 * This structure manages per cpu exchanges in array of exchange pointers.
  65 * This array is allocated followed by struct fc_exch_pool memory for
  66 * assigned range of exchanges to per cpu pool.
  67 */
  68struct fc_exch_pool {
  69	spinlock_t	 lock;
  70	struct list_head ex_list;
  71	u16		 next_index;
  72	u16		 total_exches;
  73
  74	/* two cache of free slot in exch array */
  75	u16		 left;
  76	u16		 right;
  77} ____cacheline_aligned_in_smp;
  78
  79/**
  80 * struct fc_exch_mgr - The Exchange Manager (EM).
  81 * @class:	    Default class for new sequences
  82 * @kref:	    Reference counter
  83 * @min_xid:	    Minimum exchange ID
  84 * @max_xid:	    Maximum exchange ID
  85 * @ep_pool:	    Reserved exchange pointers
  86 * @pool_max_index: Max exch array index in exch pool
  87 * @pool:	    Per cpu exch pool
  88 * @stats:	    Statistics structure
  89 *
  90 * This structure is the center for creating exchanges and sequences.
  91 * It manages the allocation of exchange IDs.
  92 */
  93struct fc_exch_mgr {
  94	struct fc_exch_pool __percpu *pool;
  95	mempool_t	*ep_pool;
 
  96	enum fc_class	class;
  97	struct kref	kref;
  98	u16		min_xid;
  99	u16		max_xid;
 100	u16		pool_max_index;
 101
 102	/*
 103	 * currently exchange mgr stats are updated but not used.
 104	 * either stats can be expose via sysfs or remove them
 105	 * all together if not used XXX
 106	 */
 107	struct {
 108		atomic_t no_free_exch;
 109		atomic_t no_free_exch_xid;
 110		atomic_t xid_not_found;
 111		atomic_t xid_busy;
 112		atomic_t seq_not_found;
 113		atomic_t non_bls_resp;
 114	} stats;
 115};
 116
 117/**
 118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 119 * @ema_list: Exchange Manager Anchor list
 120 * @mp:	      Exchange Manager associated with this anchor
 121 * @match:    Routine to determine if this anchor's EM should be used
 122 *
 123 * When walking the list of anchors the match routine will be called
 124 * for each anchor to determine if that EM should be used. The last
 125 * anchor in the list will always match to handle any exchanges not
 126 * handled by other EMs. The non-default EMs would be added to the
 127 * anchor list by HW that provides FCoE offloads.
 128 */
 129struct fc_exch_mgr_anchor {
 130	struct list_head ema_list;
 131	struct fc_exch_mgr *mp;
 132	bool (*match)(struct fc_frame *);
 133};
 134
 135static void fc_exch_rrq(struct fc_exch *);
 136static void fc_seq_ls_acc(struct fc_frame *);
 137static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 138			  enum fc_els_rjt_explan);
 139static void fc_exch_els_rec(struct fc_frame *);
 140static void fc_exch_els_rrq(struct fc_frame *);
 141
 142/*
 143 * Internal implementation notes.
 144 *
 145 * The exchange manager is one by default in libfc but LLD may choose
 146 * to have one per CPU. The sequence manager is one per exchange manager
 147 * and currently never separated.
 148 *
 149 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 150 * assigned by the Sequence Initiator that shall be unique for a specific
 151 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 152 * qualified by exchange ID, which one might think it would be.
 153 * In practice this limits the number of open sequences and exchanges to 256
 154 * per session.	 For most targets we could treat this limit as per exchange.
 155 *
 156 * The exchange and its sequence are freed when the last sequence is received.
 157 * It's possible for the remote port to leave an exchange open without
 158 * sending any sequences.
 159 *
 160 * Notes on reference counts:
 161 *
 162 * Exchanges are reference counted and exchange gets freed when the reference
 163 * count becomes zero.
 164 *
 165 * Timeouts:
 166 * Sequences are timed out for E_D_TOV and R_A_TOV.
 167 *
 168 * Sequence event handling:
 169 *
 170 * The following events may occur on initiator sequences:
 171 *
 172 *	Send.
 173 *	    For now, the whole thing is sent.
 174 *	Receive ACK
 175 *	    This applies only to class F.
 176 *	    The sequence is marked complete.
 177 *	ULP completion.
 178 *	    The upper layer calls fc_exch_done() when done
 179 *	    with exchange and sequence tuple.
 180 *	RX-inferred completion.
 181 *	    When we receive the next sequence on the same exchange, we can
 182 *	    retire the previous sequence ID.  (XXX not implemented).
 183 *	Timeout.
 184 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 185 *	    E_D_TOV causes abort and calls upper layer response handler
 186 *	    with FC_EX_TIMEOUT error.
 187 *	Receive RJT
 188 *	    XXX defer.
 189 *	Send ABTS
 190 *	    On timeout.
 191 *
 192 * The following events may occur on recipient sequences:
 193 *
 194 *	Receive
 195 *	    Allocate sequence for first frame received.
 196 *	    Hold during receive handler.
 197 *	    Release when final frame received.
 198 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 199 *	Receive ABTS
 200 *	    Deallocate sequence
 201 *	Send RJT
 202 *	    Deallocate
 203 *
 204 * For now, we neglect conditions where only part of a sequence was
 205 * received or transmitted, or where out-of-order receipt is detected.
 206 */
 207
 208/*
 209 * Locking notes:
 210 *
 211 * The EM code run in a per-CPU worker thread.
 212 *
 213 * To protect against concurrency between a worker thread code and timers,
 214 * sequence allocation and deallocation must be locked.
 215 *  - exchange refcnt can be done atomicly without locks.
 216 *  - sequence allocation must be locked by exch lock.
 217 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 218 *    EM pool lock must be taken before the ex_lock.
 219 */
 220
 221/*
 222 * opcode names for debugging.
 223 */
 224static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 225
 226/**
 227 * fc_exch_name_lookup() - Lookup name by opcode
 228 * @op:	       Opcode to be looked up
 229 * @table:     Opcode/name table
 230 * @max_index: Index not to be exceeded
 231 *
 232 * This routine is used to determine a human-readable string identifying
 233 * a R_CTL opcode.
 234 */
 235static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 236					      unsigned int max_index)
 237{
 238	const char *name = NULL;
 239
 240	if (op < max_index)
 241		name = table[op];
 242	if (!name)
 243		name = "unknown";
 244	return name;
 245}
 246
 247/**
 248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 249 * @op: The opcode to be looked up
 250 */
 251static const char *fc_exch_rctl_name(unsigned int op)
 252{
 253	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 254				   ARRAY_SIZE(fc_exch_rctl_names));
 255}
 256
 257/**
 258 * fc_exch_hold() - Increment an exchange's reference count
 259 * @ep: Echange to be held
 260 */
 261static inline void fc_exch_hold(struct fc_exch *ep)
 262{
 263	atomic_inc(&ep->ex_refcnt);
 264}
 265
 266/**
 267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 268 *			 and determine SOF and EOF.
 269 * @ep:	   The exchange to that will use the header
 270 * @fp:	   The frame whose header is to be modified
 271 * @f_ctl: F_CTL bits that will be used for the frame header
 272 *
 273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 275 */
 276static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 277			      u32 f_ctl)
 278{
 279	struct fc_frame_header *fh = fc_frame_header_get(fp);
 280	u16 fill;
 281
 282	fr_sof(fp) = ep->class;
 283	if (ep->seq.cnt)
 284		fr_sof(fp) = fc_sof_normal(ep->class);
 285
 286	if (f_ctl & FC_FC_END_SEQ) {
 287		fr_eof(fp) = FC_EOF_T;
 288		if (fc_sof_needs_ack(ep->class))
 289			fr_eof(fp) = FC_EOF_N;
 290		/*
 291		 * From F_CTL.
 292		 * The number of fill bytes to make the length a 4-byte
 293		 * multiple is the low order 2-bits of the f_ctl.
 294		 * The fill itself will have been cleared by the frame
 295		 * allocation.
 296		 * After this, the length will be even, as expected by
 297		 * the transport.
 298		 */
 299		fill = fr_len(fp) & 3;
 300		if (fill) {
 301			fill = 4 - fill;
 302			/* TODO, this may be a problem with fragmented skb */
 303			skb_put(fp_skb(fp), fill);
 304			hton24(fh->fh_f_ctl, f_ctl | fill);
 305		}
 306	} else {
 307		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 308		fr_eof(fp) = FC_EOF_N;
 309	}
 310
 311	/*
 312	 * Initialize remainig fh fields
 313	 * from fc_fill_fc_hdr
 314	 */
 315	fh->fh_ox_id = htons(ep->oxid);
 316	fh->fh_rx_id = htons(ep->rxid);
 317	fh->fh_seq_id = ep->seq.id;
 318	fh->fh_seq_cnt = htons(ep->seq.cnt);
 319}
 320
 321/**
 322 * fc_exch_release() - Decrement an exchange's reference count
 323 * @ep: Exchange to be released
 324 *
 325 * If the reference count reaches zero and the exchange is complete,
 326 * it is freed.
 327 */
 328static void fc_exch_release(struct fc_exch *ep)
 329{
 330	struct fc_exch_mgr *mp;
 331
 332	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 333		mp = ep->em;
 334		if (ep->destructor)
 335			ep->destructor(&ep->seq, ep->arg);
 336		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 337		mempool_free(ep, mp->ep_pool);
 338	}
 339}
 340
 341/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 343 * @ep: The exchange that is complete
 
 
 344 */
 345static int fc_exch_done_locked(struct fc_exch *ep)
 346{
 347	int rc = 1;
 348
 349	/*
 350	 * We must check for completion in case there are two threads
 351	 * tyring to complete this. But the rrq code will reuse the
 352	 * ep, and in that case we only clear the resp and set it as
 353	 * complete, so it can be reused by the timer to send the rrq.
 354	 */
 355	ep->resp = NULL;
 356	if (ep->state & FC_EX_DONE)
 357		return rc;
 358	ep->esb_stat |= ESB_ST_COMPLETE;
 359
 360	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 361		ep->state |= FC_EX_DONE;
 362		if (cancel_delayed_work(&ep->timeout_work))
 363			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 364		rc = 0;
 365	}
 366	return rc;
 367}
 368
 
 
 369/**
 370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 371 * @pool:  Exchange Pool to get an exchange from
 372 * @index: Index of the exchange within the pool
 373 *
 374 * Use the index to get an exchange from within an exchange pool. exches
 375 * will point to an array of exchange pointers. The index will select
 376 * the exchange within the array.
 377 */
 378static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 379					      u16 index)
 380{
 381	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 382	return exches[index];
 383}
 384
 385/**
 386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 387 * @pool:  The pool to assign the exchange to
 388 * @index: The index in the pool where the exchange will be assigned
 389 * @ep:	   The exchange to assign to the pool
 390 */
 391static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 392				   struct fc_exch *ep)
 393{
 394	((struct fc_exch **)(pool + 1))[index] = ep;
 395}
 396
 397/**
 398 * fc_exch_delete() - Delete an exchange
 399 * @ep: The exchange to be deleted
 400 */
 401static void fc_exch_delete(struct fc_exch *ep)
 402{
 403	struct fc_exch_pool *pool;
 404	u16 index;
 405
 406	pool = ep->pool;
 407	spin_lock_bh(&pool->lock);
 408	WARN_ON(pool->total_exches <= 0);
 409	pool->total_exches--;
 410
 411	/* update cache of free slot */
 412	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 413	if (pool->left == FC_XID_UNKNOWN)
 414		pool->left = index;
 415	else if (pool->right == FC_XID_UNKNOWN)
 416		pool->right = index;
 417	else
 418		pool->next_index = index;
 419
 420	fc_exch_ptr_set(pool, index, NULL);
 
 
 
 421	list_del(&ep->ex_list);
 422	spin_unlock_bh(&pool->lock);
 423	fc_exch_release(ep);	/* drop hold for exch in mp */
 424}
 425
 426/**
 427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 428 *				the exchange lock held
 429 * @ep:		The exchange whose timer will start
 430 * @timer_msec: The timeout period
 431 *
 432 * Used for upper level protocols to time out the exchange.
 433 * The timer is cancelled when it fires or when the exchange completes.
 434 */
 435static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 436					    unsigned int timer_msec)
 437{
 438	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 439		return;
 440
 441	FC_EXCH_DBG(ep, "Exchange timer armed\n");
 442
 443	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 444			       msecs_to_jiffies(timer_msec)))
 445		fc_exch_hold(ep);		/* hold for timer */
 446}
 447
 448/**
 449 * fc_exch_timer_set() - Lock the exchange and set the timer
 450 * @ep:		The exchange whose timer will start
 451 * @timer_msec: The timeout period
 452 */
 453static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 454{
 455	spin_lock_bh(&ep->ex_lock);
 456	fc_exch_timer_set_locked(ep, timer_msec);
 457	spin_unlock_bh(&ep->ex_lock);
 458}
 459
 460/**
 461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 462 * @lport: The local port that the exchange will be sent on
 463 * @sp:	   The sequence to be sent
 464 * @fp:	   The frame to be sent on the exchange
 465 */
 466static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
 467		       struct fc_frame *fp)
 468{
 469	struct fc_exch *ep;
 470	struct fc_frame_header *fh = fc_frame_header_get(fp);
 471	int error;
 472	u32 f_ctl;
 473	u8 fh_type = fh->fh_type;
 474
 475	ep = fc_seq_exch(sp);
 476	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
 
 
 
 
 
 
 477
 478	f_ctl = ntoh24(fh->fh_f_ctl);
 479	fc_exch_setup_hdr(ep, fp, f_ctl);
 480	fr_encaps(fp) = ep->encaps;
 481
 482	/*
 483	 * update sequence count if this frame is carrying
 484	 * multiple FC frames when sequence offload is enabled
 485	 * by LLD.
 486	 */
 487	if (fr_max_payload(fp))
 488		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 489					fr_max_payload(fp));
 490	else
 491		sp->cnt++;
 492
 493	/*
 494	 * Send the frame.
 495	 */
 496	error = lport->tt.frame_send(lport, fp);
 497
 498	if (fh_type == FC_TYPE_BLS)
 499		return error;
 500
 501	/*
 502	 * Update the exchange and sequence flags,
 503	 * assuming all frames for the sequence have been sent.
 504	 * We can only be called to send once for each sequence.
 505	 */
 506	spin_lock_bh(&ep->ex_lock);
 507	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 508	if (f_ctl & FC_FC_SEQ_INIT)
 509		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510	spin_unlock_bh(&ep->ex_lock);
 511	return error;
 512}
 
 513
 514/**
 515 * fc_seq_alloc() - Allocate a sequence for a given exchange
 516 * @ep:	    The exchange to allocate a new sequence for
 517 * @seq_id: The sequence ID to be used
 518 *
 519 * We don't support multiple originated sequences on the same exchange.
 520 * By implication, any previously originated sequence on this exchange
 521 * is complete, and we reallocate the same sequence.
 522 */
 523static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 524{
 525	struct fc_seq *sp;
 526
 527	sp = &ep->seq;
 528	sp->ssb_stat = 0;
 529	sp->cnt = 0;
 530	sp->id = seq_id;
 531	return sp;
 532}
 533
 534/**
 535 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 536 *				exchange as the supplied sequence
 537 * @sp: The sequence/exchange to get a new sequence for
 538 */
 539static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 540{
 541	struct fc_exch *ep = fc_seq_exch(sp);
 542
 543	sp = fc_seq_alloc(ep, ep->seq_id++);
 544	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 545		    ep->f_ctl, sp->id);
 546	return sp;
 547}
 548
 549/**
 550 * fc_seq_start_next() - Lock the exchange and get a new sequence
 551 *			 for a given sequence/exchange pair
 552 * @sp: The sequence/exchange to get a new exchange for
 553 */
 554static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 555{
 556	struct fc_exch *ep = fc_seq_exch(sp);
 557
 558	spin_lock_bh(&ep->ex_lock);
 559	sp = fc_seq_start_next_locked(sp);
 560	spin_unlock_bh(&ep->ex_lock);
 561
 562	return sp;
 563}
 
 564
 565/*
 566 * Set the response handler for the exchange associated with a sequence.
 
 
 567 */
 568static void fc_seq_set_resp(struct fc_seq *sp,
 569			    void (*resp)(struct fc_seq *, struct fc_frame *,
 570					 void *),
 571			    void *arg)
 572{
 573	struct fc_exch *ep = fc_seq_exch(sp);
 
 574
 575	spin_lock_bh(&ep->ex_lock);
 
 
 
 
 
 
 
 
 
 576	ep->resp = resp;
 577	ep->arg = arg;
 578	spin_unlock_bh(&ep->ex_lock);
 579}
 
 580
 581/**
 582 * fc_exch_abort_locked() - Abort an exchange
 583 * @ep:	The exchange to be aborted
 584 * @timer_msec: The period of time to wait before aborting
 585 *
 
 
 
 
 
 
 
 586 * Locking notes:  Called with exch lock held
 587 *
 588 * Return value: 0 on success else error code
 589 */
 590static int fc_exch_abort_locked(struct fc_exch *ep,
 591				unsigned int timer_msec)
 592{
 593	struct fc_seq *sp;
 594	struct fc_frame *fp;
 595	int error;
 596
 
 597	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 598	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
 
 
 599		return -ENXIO;
 
 600
 601	/*
 602	 * Send the abort on a new sequence if possible.
 603	 */
 604	sp = fc_seq_start_next_locked(&ep->seq);
 605	if (!sp)
 606		return -ENOMEM;
 607
 608	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
 609	if (timer_msec)
 610		fc_exch_timer_set_locked(ep, timer_msec);
 611
 612	/*
 613	 * If not logged into the fabric, don't send ABTS but leave
 614	 * sequence active until next timeout.
 615	 */
 616	if (!ep->sid)
 617		return 0;
 618
 619	/*
 620	 * Send an abort for the sequence that timed out.
 621	 */
 622	fp = fc_frame_alloc(ep->lp, 0);
 623	if (fp) {
 624		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 625			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
 626		error = fc_seq_send(ep->lp, sp, fp);
 627	} else
 628		error = -ENOBUFS;
 
 
 
 
 
 629	return error;
 630}
 631
 632/**
 633 * fc_seq_exch_abort() - Abort an exchange and sequence
 634 * @req_sp:	The sequence to be aborted
 635 * @timer_msec: The period of time to wait before aborting
 636 *
 637 * Generally called because of a timeout or an abort from the upper layer.
 638 *
 639 * Return value: 0 on success else error code
 640 */
 641static int fc_seq_exch_abort(const struct fc_seq *req_sp,
 642			     unsigned int timer_msec)
 643{
 644	struct fc_exch *ep;
 645	int error;
 646
 647	ep = fc_seq_exch(req_sp);
 648	spin_lock_bh(&ep->ex_lock);
 649	error = fc_exch_abort_locked(ep, timer_msec);
 650	spin_unlock_bh(&ep->ex_lock);
 651	return error;
 652}
 653
 654/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655 * fc_exch_timeout() - Handle exchange timer expiration
 656 * @work: The work_struct identifying the exchange that timed out
 657 */
 658static void fc_exch_timeout(struct work_struct *work)
 659{
 660	struct fc_exch *ep = container_of(work, struct fc_exch,
 661					  timeout_work.work);
 662	struct fc_seq *sp = &ep->seq;
 663	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 664	void *arg;
 665	u32 e_stat;
 666	int rc = 1;
 667
 668	FC_EXCH_DBG(ep, "Exchange timed out\n");
 669
 670	spin_lock_bh(&ep->ex_lock);
 671	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 672		goto unlock;
 673
 674	e_stat = ep->esb_stat;
 675	if (e_stat & ESB_ST_COMPLETE) {
 676		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 677		spin_unlock_bh(&ep->ex_lock);
 678		if (e_stat & ESB_ST_REC_QUAL)
 679			fc_exch_rrq(ep);
 680		goto done;
 681	} else {
 682		resp = ep->resp;
 683		arg = ep->arg;
 684		ep->resp = NULL;
 685		if (e_stat & ESB_ST_ABNORMAL)
 686			rc = fc_exch_done_locked(ep);
 687		spin_unlock_bh(&ep->ex_lock);
 688		if (!rc)
 689			fc_exch_delete(ep);
 690		if (resp)
 691			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
 692		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 693		goto done;
 694	}
 695unlock:
 696	spin_unlock_bh(&ep->ex_lock);
 697done:
 698	/*
 699	 * This release matches the hold taken when the timer was set.
 700	 */
 701	fc_exch_release(ep);
 702}
 703
 704/**
 705 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 706 * @lport: The local port that the exchange is for
 707 * @mp:	   The exchange manager that will allocate the exchange
 708 *
 709 * Returns pointer to allocated fc_exch with exch lock held.
 710 */
 711static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 712					struct fc_exch_mgr *mp)
 713{
 714	struct fc_exch *ep;
 715	unsigned int cpu;
 716	u16 index;
 717	struct fc_exch_pool *pool;
 718
 719	/* allocate memory for exchange */
 720	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 721	if (!ep) {
 722		atomic_inc(&mp->stats.no_free_exch);
 723		goto out;
 724	}
 725	memset(ep, 0, sizeof(*ep));
 726
 727	cpu = get_cpu();
 728	pool = per_cpu_ptr(mp->pool, cpu);
 729	spin_lock_bh(&pool->lock);
 730	put_cpu();
 731
 732	/* peek cache of free slot */
 733	if (pool->left != FC_XID_UNKNOWN) {
 734		index = pool->left;
 735		pool->left = FC_XID_UNKNOWN;
 736		goto hit;
 
 
 737	}
 738	if (pool->right != FC_XID_UNKNOWN) {
 739		index = pool->right;
 740		pool->right = FC_XID_UNKNOWN;
 741		goto hit;
 
 
 742	}
 743
 744	index = pool->next_index;
 745	/* allocate new exch from pool */
 746	while (fc_exch_ptr_get(pool, index)) {
 747		index = index == mp->pool_max_index ? 0 : index + 1;
 748		if (index == pool->next_index)
 749			goto err;
 750	}
 751	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 752hit:
 753	fc_exch_hold(ep);	/* hold for exch in mp */
 754	spin_lock_init(&ep->ex_lock);
 755	/*
 756	 * Hold exch lock for caller to prevent fc_exch_reset()
 757	 * from releasing exch	while fc_exch_alloc() caller is
 758	 * still working on exch.
 759	 */
 760	spin_lock_bh(&ep->ex_lock);
 761
 762	fc_exch_ptr_set(pool, index, ep);
 763	list_add_tail(&ep->ex_list, &pool->ex_list);
 764	fc_seq_alloc(ep, ep->seq_id++);
 765	pool->total_exches++;
 766	spin_unlock_bh(&pool->lock);
 767
 768	/*
 769	 *  update exchange
 770	 */
 771	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 772	ep->em = mp;
 773	ep->pool = pool;
 774	ep->lp = lport;
 775	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 776	ep->rxid = FC_XID_UNKNOWN;
 777	ep->class = mp->class;
 
 
 778	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 779out:
 780	return ep;
 781err:
 782	spin_unlock_bh(&pool->lock);
 783	atomic_inc(&mp->stats.no_free_exch_xid);
 784	mempool_free(ep, mp->ep_pool);
 785	return NULL;
 786}
 787
 788/**
 789 * fc_exch_alloc() - Allocate an exchange from an EM on a
 790 *		     local port's list of EMs.
 791 * @lport: The local port that will own the exchange
 792 * @fp:	   The FC frame that the exchange will be for
 793 *
 794 * This function walks the list of exchange manager(EM)
 795 * anchors to select an EM for a new exchange allocation. The
 796 * EM is selected when a NULL match function pointer is encountered
 797 * or when a call to a match function returns true.
 798 */
 799static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 800					    struct fc_frame *fp)
 801{
 802	struct fc_exch_mgr_anchor *ema;
 
 803
 804	list_for_each_entry(ema, &lport->ema_list, ema_list)
 805		if (!ema->match || ema->match(fp))
 806			return fc_exch_em_alloc(lport, ema->mp);
 
 
 
 
 807	return NULL;
 808}
 809
 810/**
 811 * fc_exch_find() - Lookup and hold an exchange
 812 * @mp:	 The exchange manager to lookup the exchange from
 813 * @xid: The XID of the exchange to look up
 814 */
 815static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 816{
 
 817	struct fc_exch_pool *pool;
 818	struct fc_exch *ep = NULL;
 
 
 
 
 
 
 
 
 
 
 819
 820	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 821		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
 822		spin_lock_bh(&pool->lock);
 823		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 824		if (ep && ep->xid == xid)
 
 
 
 
 
 825			fc_exch_hold(ep);
 
 826		spin_unlock_bh(&pool->lock);
 827	}
 828	return ep;
 829}
 830
 831
 832/**
 833 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 834 *		    the memory allocated for the related objects may be freed.
 835 * @sp: The sequence that has completed
 
 
 836 */
 837static void fc_exch_done(struct fc_seq *sp)
 838{
 839	struct fc_exch *ep = fc_seq_exch(sp);
 840	int rc;
 841
 842	spin_lock_bh(&ep->ex_lock);
 843	rc = fc_exch_done_locked(ep);
 844	spin_unlock_bh(&ep->ex_lock);
 
 
 845	if (!rc)
 846		fc_exch_delete(ep);
 847}
 
 848
 849/**
 850 * fc_exch_resp() - Allocate a new exchange for a response frame
 851 * @lport: The local port that the exchange was for
 852 * @mp:	   The exchange manager to allocate the exchange from
 853 * @fp:	   The response frame
 854 *
 855 * Sets the responder ID in the frame header.
 856 */
 857static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 858				    struct fc_exch_mgr *mp,
 859				    struct fc_frame *fp)
 860{
 861	struct fc_exch *ep;
 862	struct fc_frame_header *fh;
 863
 864	ep = fc_exch_alloc(lport, fp);
 865	if (ep) {
 866		ep->class = fc_frame_class(fp);
 867
 868		/*
 869		 * Set EX_CTX indicating we're responding on this exchange.
 870		 */
 871		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
 872		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
 873		fh = fc_frame_header_get(fp);
 874		ep->sid = ntoh24(fh->fh_d_id);
 875		ep->did = ntoh24(fh->fh_s_id);
 876		ep->oid = ep->did;
 877
 878		/*
 879		 * Allocated exchange has placed the XID in the
 880		 * originator field. Move it to the responder field,
 881		 * and set the originator XID from the frame.
 882		 */
 883		ep->rxid = ep->xid;
 884		ep->oxid = ntohs(fh->fh_ox_id);
 885		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
 886		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
 887			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 888
 889		fc_exch_hold(ep);	/* hold for caller */
 890		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
 891	}
 892	return ep;
 893}
 894
 895/**
 896 * fc_seq_lookup_recip() - Find a sequence where the other end
 897 *			   originated the sequence
 898 * @lport: The local port that the frame was sent to
 899 * @mp:	   The Exchange Manager to lookup the exchange from
 900 * @fp:	   The frame associated with the sequence we're looking for
 901 *
 902 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
 903 * on the ep that should be released by the caller.
 904 */
 905static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
 906						 struct fc_exch_mgr *mp,
 907						 struct fc_frame *fp)
 908{
 909	struct fc_frame_header *fh = fc_frame_header_get(fp);
 910	struct fc_exch *ep = NULL;
 911	struct fc_seq *sp = NULL;
 912	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
 913	u32 f_ctl;
 914	u16 xid;
 915
 916	f_ctl = ntoh24(fh->fh_f_ctl);
 917	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
 918
 919	/*
 920	 * Lookup or create the exchange if we will be creating the sequence.
 921	 */
 922	if (f_ctl & FC_FC_EX_CTX) {
 923		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
 924		ep = fc_exch_find(mp, xid);
 925		if (!ep) {
 926			atomic_inc(&mp->stats.xid_not_found);
 927			reject = FC_RJT_OX_ID;
 928			goto out;
 929		}
 930		if (ep->rxid == FC_XID_UNKNOWN)
 931			ep->rxid = ntohs(fh->fh_rx_id);
 932		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
 933			reject = FC_RJT_OX_ID;
 934			goto rel;
 935		}
 936	} else {
 937		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
 938
 939		/*
 940		 * Special case for MDS issuing an ELS TEST with a
 941		 * bad rxid of 0.
 942		 * XXX take this out once we do the proper reject.
 943		 */
 944		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
 945		    fc_frame_payload_op(fp) == ELS_TEST) {
 946			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
 947			xid = FC_XID_UNKNOWN;
 948		}
 949
 950		/*
 951		 * new sequence - find the exchange
 952		 */
 953		ep = fc_exch_find(mp, xid);
 954		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
 955			if (ep) {
 956				atomic_inc(&mp->stats.xid_busy);
 957				reject = FC_RJT_RX_ID;
 958				goto rel;
 959			}
 960			ep = fc_exch_resp(lport, mp, fp);
 961			if (!ep) {
 962				reject = FC_RJT_EXCH_EST;	/* XXX */
 963				goto out;
 964			}
 965			xid = ep->xid;	/* get our XID */
 966		} else if (!ep) {
 967			atomic_inc(&mp->stats.xid_not_found);
 968			reject = FC_RJT_RX_ID;	/* XID not found */
 969			goto out;
 970		}
 971	}
 972
 
 973	/*
 974	 * At this point, we have the exchange held.
 975	 * Find or create the sequence.
 976	 */
 977	if (fc_sof_is_init(fr_sof(fp))) {
 978		sp = &ep->seq;
 979		sp->ssb_stat |= SSB_ST_RESP;
 980		sp->id = fh->fh_seq_id;
 981	} else {
 982		sp = &ep->seq;
 983		if (sp->id != fh->fh_seq_id) {
 984			atomic_inc(&mp->stats.seq_not_found);
 985			if (f_ctl & FC_FC_END_SEQ) {
 986				/*
 987				 * Update sequence_id based on incoming last
 988				 * frame of sequence exchange. This is needed
 989				 * for FCoE target where DDP has been used
 990				 * on target where, stack is indicated only
 991				 * about last frame's (payload _header) header.
 992				 * Whereas "seq_id" which is part of
 993				 * frame_header is allocated by initiator
 994				 * which is totally different from "seq_id"
 995				 * allocated when XFER_RDY was sent by target.
 996				 * To avoid false -ve which results into not
 997				 * sending RSP, hence write request on other
 998				 * end never finishes.
 999				 */
1000				spin_lock_bh(&ep->ex_lock);
1001				sp->ssb_stat |= SSB_ST_RESP;
1002				sp->id = fh->fh_seq_id;
 
1003				spin_unlock_bh(&ep->ex_lock);
1004			} else {
1005				/* sequence/exch should exist */
1006				reject = FC_RJT_SEQ_ID;
1007				goto rel;
1008			}
1009		}
1010	}
1011	WARN_ON(ep != fc_seq_exch(sp));
1012
1013	if (f_ctl & FC_FC_SEQ_INIT)
1014		ep->esb_stat |= ESB_ST_SEQ_INIT;
 
1015
1016	fr_seq(fp) = sp;
1017out:
1018	return reject;
1019rel:
1020	fc_exch_done(&ep->seq);
1021	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1022	return reject;
1023}
1024
1025/**
1026 * fc_seq_lookup_orig() - Find a sequence where this end
1027 *			  originated the sequence
1028 * @mp:	   The Exchange Manager to lookup the exchange from
1029 * @fp:	   The frame associated with the sequence we're looking for
1030 *
1031 * Does not hold the sequence for the caller.
1032 */
1033static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1034					 struct fc_frame *fp)
1035{
1036	struct fc_frame_header *fh = fc_frame_header_get(fp);
1037	struct fc_exch *ep;
1038	struct fc_seq *sp = NULL;
1039	u32 f_ctl;
1040	u16 xid;
1041
1042	f_ctl = ntoh24(fh->fh_f_ctl);
1043	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1044	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1045	ep = fc_exch_find(mp, xid);
1046	if (!ep)
1047		return NULL;
1048	if (ep->seq.id == fh->fh_seq_id) {
1049		/*
1050		 * Save the RX_ID if we didn't previously know it.
1051		 */
1052		sp = &ep->seq;
1053		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1054		    ep->rxid == FC_XID_UNKNOWN) {
1055			ep->rxid = ntohs(fh->fh_rx_id);
1056		}
1057	}
1058	fc_exch_release(ep);
1059	return sp;
1060}
1061
1062/**
1063 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1064 * @ep:	     The exchange to set the addresses for
1065 * @orig_id: The originator's ID
1066 * @resp_id: The responder's ID
1067 *
1068 * Note this must be done before the first sequence of the exchange is sent.
1069 */
1070static void fc_exch_set_addr(struct fc_exch *ep,
1071			     u32 orig_id, u32 resp_id)
1072{
1073	ep->oid = orig_id;
1074	if (ep->esb_stat & ESB_ST_RESP) {
1075		ep->sid = resp_id;
1076		ep->did = orig_id;
1077	} else {
1078		ep->sid = orig_id;
1079		ep->did = resp_id;
1080	}
1081}
1082
1083/**
1084 * fc_seq_els_rsp_send() - Send an ELS response using information from
1085 *			   the existing sequence/exchange.
1086 * @fp:	      The received frame
1087 * @els_cmd:  The ELS command to be sent
1088 * @els_data: The ELS data to be sent
1089 *
1090 * The received frame is not freed.
1091 */
1092static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1093				struct fc_seq_els_data *els_data)
1094{
1095	switch (els_cmd) {
1096	case ELS_LS_RJT:
1097		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1098		break;
1099	case ELS_LS_ACC:
1100		fc_seq_ls_acc(fp);
1101		break;
1102	case ELS_RRQ:
1103		fc_exch_els_rrq(fp);
1104		break;
1105	case ELS_REC:
1106		fc_exch_els_rec(fp);
1107		break;
1108	default:
1109		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1110	}
1111}
 
1112
1113/**
1114 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1115 * @sp:	     The sequence that is to be sent
1116 * @fp:	     The frame that will be sent on the sequence
1117 * @rctl:    The R_CTL information to be sent
1118 * @fh_type: The frame header type
1119 */
1120static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1121			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1122{
1123	u32 f_ctl;
1124	struct fc_exch *ep = fc_seq_exch(sp);
1125
1126	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1127	f_ctl |= ep->f_ctl;
1128	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1129	fc_seq_send(ep->lp, sp, fp);
1130}
1131
1132/**
1133 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1134 * @sp:	   The sequence to send the ACK on
1135 * @rx_fp: The received frame that is being acknoledged
1136 *
1137 * Send ACK_1 (or equiv.) indicating we received something.
1138 */
1139static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1140{
1141	struct fc_frame *fp;
1142	struct fc_frame_header *rx_fh;
1143	struct fc_frame_header *fh;
1144	struct fc_exch *ep = fc_seq_exch(sp);
1145	struct fc_lport *lport = ep->lp;
1146	unsigned int f_ctl;
1147
1148	/*
1149	 * Don't send ACKs for class 3.
1150	 */
1151	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1152		fp = fc_frame_alloc(lport, 0);
1153		if (!fp)
 
1154			return;
 
1155
1156		fh = fc_frame_header_get(fp);
1157		fh->fh_r_ctl = FC_RCTL_ACK_1;
1158		fh->fh_type = FC_TYPE_BLS;
1159
1160		/*
1161		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1162		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1163		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1164		 * Last ACK uses bits 7-6 (continue sequence),
1165		 * bits 5-4 are meaningful (what kind of ACK to use).
1166		 */
1167		rx_fh = fc_frame_header_get(rx_fp);
1168		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1169		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1170			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1171			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1172			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1173		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1174		hton24(fh->fh_f_ctl, f_ctl);
1175
1176		fc_exch_setup_hdr(ep, fp, f_ctl);
1177		fh->fh_seq_id = rx_fh->fh_seq_id;
1178		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1179		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1180
1181		fr_sof(fp) = fr_sof(rx_fp);
1182		if (f_ctl & FC_FC_END_SEQ)
1183			fr_eof(fp) = FC_EOF_T;
1184		else
1185			fr_eof(fp) = FC_EOF_N;
1186
1187		lport->tt.frame_send(lport, fp);
1188	}
1189}
1190
1191/**
1192 * fc_exch_send_ba_rjt() - Send BLS Reject
1193 * @rx_fp:  The frame being rejected
1194 * @reason: The reason the frame is being rejected
1195 * @explan: The explanation for the rejection
1196 *
1197 * This is for rejecting BA_ABTS only.
1198 */
1199static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1200				enum fc_ba_rjt_reason reason,
1201				enum fc_ba_rjt_explan explan)
1202{
1203	struct fc_frame *fp;
1204	struct fc_frame_header *rx_fh;
1205	struct fc_frame_header *fh;
1206	struct fc_ba_rjt *rp;
 
1207	struct fc_lport *lport;
1208	unsigned int f_ctl;
1209
1210	lport = fr_dev(rx_fp);
 
1211	fp = fc_frame_alloc(lport, sizeof(*rp));
1212	if (!fp)
 
 
1213		return;
 
1214	fh = fc_frame_header_get(fp);
1215	rx_fh = fc_frame_header_get(rx_fp);
1216
1217	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1218
1219	rp = fc_frame_payload_get(fp, sizeof(*rp));
1220	rp->br_reason = reason;
1221	rp->br_explan = explan;
1222
1223	/*
1224	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1225	 */
1226	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1227	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1228	fh->fh_ox_id = rx_fh->fh_ox_id;
1229	fh->fh_rx_id = rx_fh->fh_rx_id;
1230	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1231	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1232	fh->fh_type = FC_TYPE_BLS;
1233
1234	/*
1235	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1236	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1237	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1238	 * Last ACK uses bits 7-6 (continue sequence),
1239	 * bits 5-4 are meaningful (what kind of ACK to use).
1240	 * Always set LAST_SEQ, END_SEQ.
1241	 */
1242	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1243	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1244		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1245		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1246	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1247	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1248	f_ctl &= ~FC_FC_FIRST_SEQ;
1249	hton24(fh->fh_f_ctl, f_ctl);
1250
1251	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1252	fr_eof(fp) = FC_EOF_T;
1253	if (fc_sof_needs_ack(fr_sof(fp)))
1254		fr_eof(fp) = FC_EOF_N;
1255
1256	lport->tt.frame_send(lport, fp);
1257}
1258
1259/**
1260 * fc_exch_recv_abts() - Handle an incoming ABTS
1261 * @ep:	   The exchange the abort was on
1262 * @rx_fp: The ABTS frame
1263 *
1264 * This would be for target mode usually, but could be due to lost
1265 * FCP transfer ready, confirm or RRQ. We always handle this as an
1266 * exchange abort, ignoring the parameter.
1267 */
1268static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1269{
1270	struct fc_frame *fp;
1271	struct fc_ba_acc *ap;
1272	struct fc_frame_header *fh;
1273	struct fc_seq *sp;
1274
1275	if (!ep)
1276		goto reject;
 
 
 
 
 
 
 
 
1277	spin_lock_bh(&ep->ex_lock);
1278	if (ep->esb_stat & ESB_ST_COMPLETE) {
1279		spin_unlock_bh(&ep->ex_lock);
 
 
1280		goto reject;
1281	}
1282	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
 
1283		fc_exch_hold(ep);		/* hold for REC_QUAL */
1284	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1285	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1286
1287	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1288	if (!fp) {
1289		spin_unlock_bh(&ep->ex_lock);
1290		goto free;
1291	}
1292	fh = fc_frame_header_get(fp);
1293	ap = fc_frame_payload_get(fp, sizeof(*ap));
1294	memset(ap, 0, sizeof(*ap));
1295	sp = &ep->seq;
1296	ap->ba_high_seq_cnt = htons(0xffff);
1297	if (sp->ssb_stat & SSB_ST_RESP) {
1298		ap->ba_seq_id = sp->id;
1299		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1300		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1301		ap->ba_low_seq_cnt = htons(sp->cnt);
1302	}
1303	sp = fc_seq_start_next_locked(sp);
 
 
1304	spin_unlock_bh(&ep->ex_lock);
1305	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
 
1306	fc_frame_free(rx_fp);
1307	return;
1308
1309reject:
1310	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1311free:
1312	fc_frame_free(rx_fp);
1313}
1314
1315/**
1316 * fc_seq_assign() - Assign exchange and sequence for incoming request
1317 * @lport: The local port that received the request
1318 * @fp:    The request frame
1319 *
1320 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1321 * A reference will be held on the exchange/sequence for the caller, which
1322 * must call fc_seq_release().
1323 */
1324static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1325{
1326	struct fc_exch_mgr_anchor *ema;
1327
1328	WARN_ON(lport != fr_dev(fp));
1329	WARN_ON(fr_seq(fp));
1330	fr_seq(fp) = NULL;
1331
1332	list_for_each_entry(ema, &lport->ema_list, ema_list)
1333		if ((!ema->match || ema->match(fp)) &&
1334		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1335			break;
1336	return fr_seq(fp);
1337}
 
1338
1339/**
1340 * fc_seq_release() - Release the hold
1341 * @sp:    The sequence.
1342 */
1343static void fc_seq_release(struct fc_seq *sp)
1344{
1345	fc_exch_release(fc_seq_exch(sp));
1346}
 
1347
1348/**
1349 * fc_exch_recv_req() - Handler for an incoming request
1350 * @lport: The local port that received the request
1351 * @mp:	   The EM that the exchange is on
1352 * @fp:	   The request frame
1353 *
1354 * This is used when the other end is originating the exchange
1355 * and the sequence.
1356 */
1357static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1358			     struct fc_frame *fp)
1359{
1360	struct fc_frame_header *fh = fc_frame_header_get(fp);
1361	struct fc_seq *sp = NULL;
1362	struct fc_exch *ep = NULL;
1363	enum fc_pf_rjt_reason reject;
1364
1365	/* We can have the wrong fc_lport at this point with NPIV, which is a
1366	 * problem now that we know a new exchange needs to be allocated
1367	 */
1368	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1369	if (!lport) {
1370		fc_frame_free(fp);
1371		return;
1372	}
1373	fr_dev(fp) = lport;
1374
1375	BUG_ON(fr_seq(fp));		/* XXX remove later */
1376
1377	/*
1378	 * If the RX_ID is 0xffff, don't allocate an exchange.
1379	 * The upper-level protocol may request one later, if needed.
1380	 */
1381	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1382		return lport->tt.lport_recv(lport, fp);
1383
1384	reject = fc_seq_lookup_recip(lport, mp, fp);
1385	if (reject == FC_RJT_NONE) {
1386		sp = fr_seq(fp);	/* sequence will be held */
1387		ep = fc_seq_exch(sp);
1388		fc_seq_send_ack(sp, fp);
1389		ep->encaps = fr_encaps(fp);
1390
1391		/*
1392		 * Call the receive function.
1393		 *
1394		 * The receive function may allocate a new sequence
1395		 * over the old one, so we shouldn't change the
1396		 * sequence after this.
1397		 *
1398		 * The frame will be freed by the receive function.
1399		 * If new exch resp handler is valid then call that
1400		 * first.
1401		 */
1402		if (ep->resp)
1403			ep->resp(sp, fp, ep->arg);
1404		else
1405			lport->tt.lport_recv(lport, fp);
1406		fc_exch_release(ep);	/* release from lookup */
1407	} else {
1408		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1409			     reject);
1410		fc_frame_free(fp);
1411	}
1412}
1413
1414/**
1415 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1416 *			     end is the originator of the sequence that is a
1417 *			     response to our initial exchange
1418 * @mp: The EM that the exchange is on
1419 * @fp: The response frame
1420 */
1421static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1422{
1423	struct fc_frame_header *fh = fc_frame_header_get(fp);
1424	struct fc_seq *sp;
1425	struct fc_exch *ep;
1426	enum fc_sof sof;
1427	u32 f_ctl;
1428	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1429	void *ex_resp_arg;
1430	int rc;
1431
1432	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1433	if (!ep) {
1434		atomic_inc(&mp->stats.xid_not_found);
1435		goto out;
1436	}
1437	if (ep->esb_stat & ESB_ST_COMPLETE) {
1438		atomic_inc(&mp->stats.xid_not_found);
1439		goto rel;
1440	}
1441	if (ep->rxid == FC_XID_UNKNOWN)
1442		ep->rxid = ntohs(fh->fh_rx_id);
1443	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1444		atomic_inc(&mp->stats.xid_not_found);
1445		goto rel;
1446	}
1447	if (ep->did != ntoh24(fh->fh_s_id) &&
1448	    ep->did != FC_FID_FLOGI) {
1449		atomic_inc(&mp->stats.xid_not_found);
1450		goto rel;
1451	}
1452	sof = fr_sof(fp);
1453	sp = &ep->seq;
1454	if (fc_sof_is_init(sof)) {
1455		sp->ssb_stat |= SSB_ST_RESP;
1456		sp->id = fh->fh_seq_id;
1457	} else if (sp->id != fh->fh_seq_id) {
1458		atomic_inc(&mp->stats.seq_not_found);
1459		goto rel;
1460	}
1461
1462	f_ctl = ntoh24(fh->fh_f_ctl);
1463	fr_seq(fp) = sp;
 
 
1464	if (f_ctl & FC_FC_SEQ_INIT)
1465		ep->esb_stat |= ESB_ST_SEQ_INIT;
 
1466
1467	if (fc_sof_needs_ack(sof))
1468		fc_seq_send_ack(sp, fp);
1469	resp = ep->resp;
1470	ex_resp_arg = ep->arg;
1471
1472	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1473	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1474	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1475		spin_lock_bh(&ep->ex_lock);
1476		resp = ep->resp;
1477		rc = fc_exch_done_locked(ep);
1478		WARN_ON(fc_seq_exch(sp) != ep);
1479		spin_unlock_bh(&ep->ex_lock);
1480		if (!rc)
1481			fc_exch_delete(ep);
1482	}
1483
1484	/*
1485	 * Call the receive function.
1486	 * The sequence is held (has a refcnt) for us,
1487	 * but not for the receive function.
1488	 *
1489	 * The receive function may allocate a new sequence
1490	 * over the old one, so we shouldn't change the
1491	 * sequence after this.
1492	 *
1493	 * The frame will be freed by the receive function.
1494	 * If new exch resp handler is valid then call that
1495	 * first.
1496	 */
1497	if (resp)
1498		resp(sp, fp, ex_resp_arg);
1499	else
1500		fc_frame_free(fp);
 
1501	fc_exch_release(ep);
1502	return;
1503rel:
1504	fc_exch_release(ep);
1505out:
1506	fc_frame_free(fp);
1507}
1508
1509/**
1510 * fc_exch_recv_resp() - Handler for a sequence where other end is
1511 *			 responding to our sequence
1512 * @mp: The EM that the exchange is on
1513 * @fp: The response frame
1514 */
1515static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1516{
1517	struct fc_seq *sp;
1518
1519	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1520
1521	if (!sp)
1522		atomic_inc(&mp->stats.xid_not_found);
1523	else
1524		atomic_inc(&mp->stats.non_bls_resp);
1525
1526	fc_frame_free(fp);
1527}
1528
1529/**
1530 * fc_exch_abts_resp() - Handler for a response to an ABT
1531 * @ep: The exchange that the frame is on
1532 * @fp: The response frame
1533 *
1534 * This response would be to an ABTS cancelling an exchange or sequence.
1535 * The response can be either BA_ACC or BA_RJT
1536 */
1537static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1538{
1539	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1540	void *ex_resp_arg;
1541	struct fc_frame_header *fh;
1542	struct fc_ba_acc *ap;
1543	struct fc_seq *sp;
1544	u16 low;
1545	u16 high;
1546	int rc = 1, has_rec = 0;
1547
1548	fh = fc_frame_header_get(fp);
1549	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1550		    fc_exch_rctl_name(fh->fh_r_ctl));
1551
1552	if (cancel_delayed_work_sync(&ep->timeout_work))
 
1553		fc_exch_release(ep);	/* release from pending timer hold */
 
1554
1555	spin_lock_bh(&ep->ex_lock);
1556	switch (fh->fh_r_ctl) {
1557	case FC_RCTL_BA_ACC:
1558		ap = fc_frame_payload_get(fp, sizeof(*ap));
1559		if (!ap)
1560			break;
1561
1562		/*
1563		 * Decide whether to establish a Recovery Qualifier.
1564		 * We do this if there is a non-empty SEQ_CNT range and
1565		 * SEQ_ID is the same as the one we aborted.
1566		 */
1567		low = ntohs(ap->ba_low_seq_cnt);
1568		high = ntohs(ap->ba_high_seq_cnt);
1569		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1570		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1571		     ap->ba_seq_id == ep->seq_id) && low != high) {
1572			ep->esb_stat |= ESB_ST_REC_QUAL;
1573			fc_exch_hold(ep);  /* hold for recovery qualifier */
1574			has_rec = 1;
1575		}
1576		break;
1577	case FC_RCTL_BA_RJT:
1578		break;
1579	default:
1580		break;
1581	}
1582
1583	resp = ep->resp;
1584	ex_resp_arg = ep->arg;
1585
1586	/* do we need to do some other checks here. Can we reuse more of
1587	 * fc_exch_recv_seq_resp
1588	 */
1589	sp = &ep->seq;
1590	/*
1591	 * do we want to check END_SEQ as well as LAST_SEQ here?
1592	 */
1593	if (ep->fh_type != FC_TYPE_FCP &&
1594	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1595		rc = fc_exch_done_locked(ep);
1596	spin_unlock_bh(&ep->ex_lock);
 
 
1597	if (!rc)
1598		fc_exch_delete(ep);
1599
1600	if (resp)
1601		resp(sp, fp, ex_resp_arg);
1602	else
1603		fc_frame_free(fp);
1604
1605	if (has_rec)
1606		fc_exch_timer_set(ep, ep->r_a_tov);
1607
1608}
1609
1610/**
1611 * fc_exch_recv_bls() - Handler for a BLS sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The request frame
1614 *
1615 * The BLS frame is always a sequence initiated by the remote side.
1616 * We may be either the originator or recipient of the exchange.
1617 */
1618static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1619{
1620	struct fc_frame_header *fh;
1621	struct fc_exch *ep;
1622	u32 f_ctl;
1623
1624	fh = fc_frame_header_get(fp);
1625	f_ctl = ntoh24(fh->fh_f_ctl);
1626	fr_seq(fp) = NULL;
1627
1628	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1629			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1630	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1631		spin_lock_bh(&ep->ex_lock);
1632		ep->esb_stat |= ESB_ST_SEQ_INIT;
1633		spin_unlock_bh(&ep->ex_lock);
1634	}
1635	if (f_ctl & FC_FC_SEQ_CTX) {
1636		/*
1637		 * A response to a sequence we initiated.
1638		 * This should only be ACKs for class 2 or F.
1639		 */
1640		switch (fh->fh_r_ctl) {
1641		case FC_RCTL_ACK_1:
1642		case FC_RCTL_ACK_0:
1643			break;
1644		default:
1645			if (ep)
1646				FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1647					    fh->fh_r_ctl,
1648					    fc_exch_rctl_name(fh->fh_r_ctl));
1649			break;
1650		}
1651		fc_frame_free(fp);
1652	} else {
1653		switch (fh->fh_r_ctl) {
1654		case FC_RCTL_BA_RJT:
1655		case FC_RCTL_BA_ACC:
1656			if (ep)
1657				fc_exch_abts_resp(ep, fp);
1658			else
1659				fc_frame_free(fp);
1660			break;
1661		case FC_RCTL_BA_ABTS:
1662			fc_exch_recv_abts(ep, fp);
 
 
 
1663			break;
1664		default:			/* ignore junk */
1665			fc_frame_free(fp);
1666			break;
1667		}
1668	}
1669	if (ep)
1670		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1671}
1672
1673/**
1674 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1675 * @rx_fp: The received frame, not freed here.
1676 *
1677 * If this fails due to allocation or transmit congestion, assume the
1678 * originator will repeat the sequence.
1679 */
1680static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1681{
1682	struct fc_lport *lport;
1683	struct fc_els_ls_acc *acc;
1684	struct fc_frame *fp;
 
1685
1686	lport = fr_dev(rx_fp);
 
1687	fp = fc_frame_alloc(lport, sizeof(*acc));
1688	if (!fp)
 
 
1689		return;
 
1690	acc = fc_frame_payload_get(fp, sizeof(*acc));
1691	memset(acc, 0, sizeof(*acc));
1692	acc->la_cmd = ELS_LS_ACC;
1693	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1694	lport->tt.frame_send(lport, fp);
1695}
1696
1697/**
1698 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1699 * @rx_fp: The received frame, not freed here.
1700 * @reason: The reason the sequence is being rejected
1701 * @explan: The explanation for the rejection
1702 *
1703 * If this fails due to allocation or transmit congestion, assume the
1704 * originator will repeat the sequence.
1705 */
1706static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1707			  enum fc_els_rjt_explan explan)
1708{
1709	struct fc_lport *lport;
1710	struct fc_els_ls_rjt *rjt;
1711	struct fc_frame *fp;
 
1712
1713	lport = fr_dev(rx_fp);
 
1714	fp = fc_frame_alloc(lport, sizeof(*rjt));
1715	if (!fp)
 
 
1716		return;
 
1717	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1718	memset(rjt, 0, sizeof(*rjt));
1719	rjt->er_cmd = ELS_LS_RJT;
1720	rjt->er_reason = reason;
1721	rjt->er_explan = explan;
1722	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1723	lport->tt.frame_send(lport, fp);
1724}
1725
1726/**
1727 * fc_exch_reset() - Reset an exchange
1728 * @ep: The exchange to be reset
 
 
1729 */
1730static void fc_exch_reset(struct fc_exch *ep)
1731{
1732	struct fc_seq *sp;
1733	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1734	void *arg;
1735	int rc = 1;
1736
1737	spin_lock_bh(&ep->ex_lock);
1738	fc_exch_abort_locked(ep, 0);
1739	ep->state |= FC_EX_RST_CLEANUP;
1740	if (cancel_delayed_work(&ep->timeout_work))
1741		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1742	resp = ep->resp;
1743	ep->resp = NULL;
1744	if (ep->esb_stat & ESB_ST_REC_QUAL)
1745		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1746	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1747	arg = ep->arg;
1748	sp = &ep->seq;
1749	rc = fc_exch_done_locked(ep);
1750	spin_unlock_bh(&ep->ex_lock);
 
 
 
1751	if (!rc)
1752		fc_exch_delete(ep);
1753
1754	if (resp)
1755		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
 
1756}
1757
1758/**
1759 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1760 * @lport: The local port that the exchange pool is on
1761 * @pool:  The exchange pool to be reset
1762 * @sid:   The source ID
1763 * @did:   The destination ID
1764 *
1765 * Resets a per cpu exches pool, releasing all of its sequences
1766 * and exchanges. If sid is non-zero then reset only exchanges
1767 * we sourced from the local port's FID. If did is non-zero then
1768 * only reset exchanges destined for the local port's FID.
1769 */
1770static void fc_exch_pool_reset(struct fc_lport *lport,
1771			       struct fc_exch_pool *pool,
1772			       u32 sid, u32 did)
1773{
1774	struct fc_exch *ep;
1775	struct fc_exch *next;
1776
1777	spin_lock_bh(&pool->lock);
1778restart:
1779	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1780		if ((lport == ep->lp) &&
1781		    (sid == 0 || sid == ep->sid) &&
1782		    (did == 0 || did == ep->did)) {
1783			fc_exch_hold(ep);
1784			spin_unlock_bh(&pool->lock);
1785
1786			fc_exch_reset(ep);
1787
1788			fc_exch_release(ep);
1789			spin_lock_bh(&pool->lock);
1790
1791			/*
1792			 * must restart loop incase while lock
1793			 * was down multiple eps were released.
1794			 */
1795			goto restart;
1796		}
1797	}
1798	pool->next_index = 0;
1799	pool->left = FC_XID_UNKNOWN;
1800	pool->right = FC_XID_UNKNOWN;
1801	spin_unlock_bh(&pool->lock);
1802}
1803
1804/**
1805 * fc_exch_mgr_reset() - Reset all EMs of a local port
1806 * @lport: The local port whose EMs are to be reset
1807 * @sid:   The source ID
1808 * @did:   The destination ID
1809 *
1810 * Reset all EMs associated with a given local port. Release all
1811 * sequences and exchanges. If sid is non-zero then reset only the
1812 * exchanges sent from the local port's FID. If did is non-zero then
1813 * reset only exchanges destined for the local port's FID.
1814 */
1815void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1816{
1817	struct fc_exch_mgr_anchor *ema;
1818	unsigned int cpu;
1819
1820	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1821		for_each_possible_cpu(cpu)
1822			fc_exch_pool_reset(lport,
1823					   per_cpu_ptr(ema->mp->pool, cpu),
1824					   sid, did);
1825	}
1826}
1827EXPORT_SYMBOL(fc_exch_mgr_reset);
1828
1829/**
1830 * fc_exch_lookup() - find an exchange
1831 * @lport: The local port
1832 * @xid: The exchange ID
1833 *
1834 * Returns exchange pointer with hold for caller, or NULL if not found.
1835 */
1836static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1837{
1838	struct fc_exch_mgr_anchor *ema;
1839
1840	list_for_each_entry(ema, &lport->ema_list, ema_list)
1841		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1842			return fc_exch_find(ema->mp, xid);
1843	return NULL;
1844}
1845
1846/**
1847 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1848 * @rfp: The REC frame, not freed here.
1849 *
1850 * Note that the requesting port may be different than the S_ID in the request.
1851 */
1852static void fc_exch_els_rec(struct fc_frame *rfp)
1853{
1854	struct fc_lport *lport;
1855	struct fc_frame *fp;
1856	struct fc_exch *ep;
1857	struct fc_els_rec *rp;
1858	struct fc_els_rec_acc *acc;
1859	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1860	enum fc_els_rjt_explan explan;
1861	u32 sid;
1862	u16 rxid;
1863	u16 oxid;
1864
1865	lport = fr_dev(rfp);
1866	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1867	explan = ELS_EXPL_INV_LEN;
1868	if (!rp)
1869		goto reject;
1870	sid = ntoh24(rp->rec_s_id);
1871	rxid = ntohs(rp->rec_rx_id);
1872	oxid = ntohs(rp->rec_ox_id);
1873
1874	ep = fc_exch_lookup(lport,
1875			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1876	explan = ELS_EXPL_OXID_RXID;
1877	if (!ep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878		goto reject;
 
 
 
1879	if (ep->oid != sid || oxid != ep->oxid)
1880		goto rel;
1881	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1882		goto rel;
1883	fp = fc_frame_alloc(lport, sizeof(*acc));
1884	if (!fp)
 
1885		goto out;
 
1886
1887	acc = fc_frame_payload_get(fp, sizeof(*acc));
1888	memset(acc, 0, sizeof(*acc));
1889	acc->reca_cmd = ELS_LS_ACC;
1890	acc->reca_ox_id = rp->rec_ox_id;
1891	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1892	acc->reca_rx_id = htons(ep->rxid);
1893	if (ep->sid == ep->oid)
1894		hton24(acc->reca_rfid, ep->did);
1895	else
1896		hton24(acc->reca_rfid, ep->sid);
1897	acc->reca_fc4value = htonl(ep->seq.rec_data);
1898	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1899						 ESB_ST_SEQ_INIT |
1900						 ESB_ST_COMPLETE));
1901	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1902	lport->tt.frame_send(lport, fp);
1903out:
1904	fc_exch_release(ep);
1905	return;
1906
1907rel:
1908	fc_exch_release(ep);
1909reject:
1910	fc_seq_ls_rjt(rfp, reason, explan);
1911}
1912
1913/**
1914 * fc_exch_rrq_resp() - Handler for RRQ responses
1915 * @sp:	 The sequence that the RRQ is on
1916 * @fp:	 The RRQ frame
1917 * @arg: The exchange that the RRQ is on
1918 *
1919 * TODO: fix error handler.
1920 */
1921static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1922{
1923	struct fc_exch *aborted_ep = arg;
1924	unsigned int op;
1925
1926	if (IS_ERR(fp)) {
1927		int err = PTR_ERR(fp);
1928
1929		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1930			goto cleanup;
1931		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1932			    "frame error %d\n", err);
1933		return;
1934	}
1935
1936	op = fc_frame_payload_op(fp);
1937	fc_frame_free(fp);
1938
1939	switch (op) {
1940	case ELS_LS_RJT:
1941		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1942		/* fall through */
1943	case ELS_LS_ACC:
1944		goto cleanup;
1945	default:
1946		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1947			    "for RRQ", op);
1948		return;
1949	}
1950
1951cleanup:
1952	fc_exch_done(&aborted_ep->seq);
1953	/* drop hold for rec qual */
1954	fc_exch_release(aborted_ep);
1955}
1956
1957
1958/**
1959 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1960 * @lport:	The local port to send the frame on
1961 * @fp:		The frame to be sent
1962 * @resp:	The response handler for this request
1963 * @destructor: The destructor for the exchange
1964 * @arg:	The argument to be passed to the response handler
1965 * @timer_msec: The timeout period for the exchange
1966 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967 * The frame pointer with some of the header's fields must be
1968 * filled before calling this routine, those fields are:
1969 *
1970 * - routing control
1971 * - FC port did
1972 * - FC port sid
1973 * - FC header type
1974 * - frame control
1975 * - parameter or relative offset
1976 */
1977static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1978				       struct fc_frame *fp,
1979				       void (*resp)(struct fc_seq *,
1980						    struct fc_frame *fp,
1981						    void *arg),
1982				       void (*destructor)(struct fc_seq *,
1983							  void *),
1984				       void *arg, u32 timer_msec)
1985{
1986	struct fc_exch *ep;
1987	struct fc_seq *sp = NULL;
1988	struct fc_frame_header *fh;
1989	struct fc_fcp_pkt *fsp = NULL;
1990	int rc = 1;
1991
1992	ep = fc_exch_alloc(lport, fp);
1993	if (!ep) {
1994		fc_frame_free(fp);
1995		return NULL;
1996	}
1997	ep->esb_stat |= ESB_ST_SEQ_INIT;
1998	fh = fc_frame_header_get(fp);
1999	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2000	ep->resp = resp;
2001	ep->destructor = destructor;
2002	ep->arg = arg;
2003	ep->r_a_tov = FC_DEF_R_A_TOV;
2004	ep->lp = lport;
2005	sp = &ep->seq;
2006
2007	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2008	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2009	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2010	sp->cnt++;
2011
2012	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2013		fsp = fr_fsp(fp);
2014		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2015	}
2016
2017	if (unlikely(lport->tt.frame_send(lport, fp)))
2018		goto err;
2019
2020	if (timer_msec)
2021		fc_exch_timer_set_locked(ep, timer_msec);
2022	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2023
2024	if (ep->f_ctl & FC_FC_SEQ_INIT)
2025		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2026	spin_unlock_bh(&ep->ex_lock);
2027	return sp;
2028err:
2029	if (fsp)
2030		fc_fcp_ddp_done(fsp);
2031	rc = fc_exch_done_locked(ep);
2032	spin_unlock_bh(&ep->ex_lock);
2033	if (!rc)
2034		fc_exch_delete(ep);
2035	return NULL;
2036}
 
2037
2038/**
2039 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2040 * @ep: The exchange to send the RRQ on
2041 *
2042 * This tells the remote port to stop blocking the use of
2043 * the exchange and the seq_cnt range.
2044 */
2045static void fc_exch_rrq(struct fc_exch *ep)
2046{
2047	struct fc_lport *lport;
2048	struct fc_els_rrq *rrq;
2049	struct fc_frame *fp;
2050	u32 did;
2051
2052	lport = ep->lp;
2053
2054	fp = fc_frame_alloc(lport, sizeof(*rrq));
2055	if (!fp)
2056		goto retry;
2057
2058	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2059	memset(rrq, 0, sizeof(*rrq));
2060	rrq->rrq_cmd = ELS_RRQ;
2061	hton24(rrq->rrq_s_id, ep->sid);
2062	rrq->rrq_ox_id = htons(ep->oxid);
2063	rrq->rrq_rx_id = htons(ep->rxid);
2064
2065	did = ep->did;
2066	if (ep->esb_stat & ESB_ST_RESP)
2067		did = ep->sid;
2068
2069	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2070		       lport->port_id, FC_TYPE_ELS,
2071		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2072
2073	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2074			     lport->e_d_tov))
2075		return;
2076
2077retry:
 
2078	spin_lock_bh(&ep->ex_lock);
2079	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2080		spin_unlock_bh(&ep->ex_lock);
2081		/* drop hold for rec qual */
2082		fc_exch_release(ep);
2083		return;
2084	}
2085	ep->esb_stat |= ESB_ST_REC_QUAL;
2086	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2087	spin_unlock_bh(&ep->ex_lock);
2088}
2089
2090/**
2091 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2092 * @fp: The RRQ frame, not freed here.
2093 */
2094static void fc_exch_els_rrq(struct fc_frame *fp)
2095{
2096	struct fc_lport *lport;
2097	struct fc_exch *ep = NULL;	/* request or subject exchange */
2098	struct fc_els_rrq *rp;
2099	u32 sid;
2100	u16 xid;
2101	enum fc_els_rjt_explan explan;
2102
2103	lport = fr_dev(fp);
2104	rp = fc_frame_payload_get(fp, sizeof(*rp));
2105	explan = ELS_EXPL_INV_LEN;
2106	if (!rp)
2107		goto reject;
2108
2109	/*
2110	 * lookup subject exchange.
2111	 */
2112	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2113	xid = fc_host_port_id(lport->host) == sid ?
2114			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2115	ep = fc_exch_lookup(lport, xid);
2116	explan = ELS_EXPL_OXID_RXID;
2117	if (!ep)
2118		goto reject;
2119	spin_lock_bh(&ep->ex_lock);
 
 
2120	if (ep->oxid != ntohs(rp->rrq_ox_id))
2121		goto unlock_reject;
2122	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2123	    ep->rxid != FC_XID_UNKNOWN)
2124		goto unlock_reject;
2125	explan = ELS_EXPL_SID;
2126	if (ep->sid != sid)
2127		goto unlock_reject;
2128
2129	/*
2130	 * Clear Recovery Qualifier state, and cancel timer if complete.
2131	 */
2132	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2133		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2134		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2135	}
2136	if (ep->esb_stat & ESB_ST_COMPLETE) {
2137		if (cancel_delayed_work(&ep->timeout_work))
2138			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2139	}
2140
2141	spin_unlock_bh(&ep->ex_lock);
2142
2143	/*
2144	 * Send LS_ACC.
2145	 */
2146	fc_seq_ls_acc(fp);
2147	goto out;
2148
2149unlock_reject:
2150	spin_unlock_bh(&ep->ex_lock);
2151reject:
2152	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2153out:
2154	if (ep)
2155		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2156}
2157
2158/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2160 * @lport: The local port to add the exchange manager to
2161 * @mp:	   The exchange manager to be added to the local port
2162 * @match: The match routine that indicates when this EM should be used
2163 */
2164struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2165					   struct fc_exch_mgr *mp,
2166					   bool (*match)(struct fc_frame *))
2167{
2168	struct fc_exch_mgr_anchor *ema;
2169
2170	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2171	if (!ema)
2172		return ema;
2173
2174	ema->mp = mp;
2175	ema->match = match;
2176	/* add EM anchor to EM anchors list */
2177	list_add_tail(&ema->ema_list, &lport->ema_list);
2178	kref_get(&mp->kref);
2179	return ema;
2180}
2181EXPORT_SYMBOL(fc_exch_mgr_add);
2182
2183/**
2184 * fc_exch_mgr_destroy() - Destroy an exchange manager
2185 * @kref: The reference to the EM to be destroyed
2186 */
2187static void fc_exch_mgr_destroy(struct kref *kref)
2188{
2189	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2190
2191	mempool_destroy(mp->ep_pool);
2192	free_percpu(mp->pool);
2193	kfree(mp);
2194}
2195
2196/**
2197 * fc_exch_mgr_del() - Delete an EM from a local port's list
2198 * @ema: The exchange manager anchor identifying the EM to be deleted
2199 */
2200void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2201{
2202	/* remove EM anchor from EM anchors list */
2203	list_del(&ema->ema_list);
2204	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2205	kfree(ema);
2206}
2207EXPORT_SYMBOL(fc_exch_mgr_del);
2208
2209/**
2210 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2211 * @src: Source lport to clone exchange managers from
2212 * @dst: New lport that takes references to all the exchange managers
2213 */
2214int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2215{
2216	struct fc_exch_mgr_anchor *ema, *tmp;
2217
2218	list_for_each_entry(ema, &src->ema_list, ema_list) {
2219		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2220			goto err;
2221	}
2222	return 0;
2223err:
2224	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2225		fc_exch_mgr_del(ema);
2226	return -ENOMEM;
2227}
2228EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2229
2230/**
2231 * fc_exch_mgr_alloc() - Allocate an exchange manager
2232 * @lport:   The local port that the new EM will be associated with
2233 * @class:   The default FC class for new exchanges
2234 * @min_xid: The minimum XID for exchanges from the new EM
2235 * @max_xid: The maximum XID for exchanges from the new EM
2236 * @match:   The match routine for the new EM
2237 */
2238struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2239				      enum fc_class class,
2240				      u16 min_xid, u16 max_xid,
2241				      bool (*match)(struct fc_frame *))
2242{
2243	struct fc_exch_mgr *mp;
2244	u16 pool_exch_range;
2245	size_t pool_size;
2246	unsigned int cpu;
2247	struct fc_exch_pool *pool;
2248
2249	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2250	    (min_xid & fc_cpu_mask) != 0) {
2251		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2252			     min_xid, max_xid);
2253		return NULL;
2254	}
2255
2256	/*
2257	 * allocate memory for EM
2258	 */
2259	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2260	if (!mp)
2261		return NULL;
2262
2263	mp->class = class;
 
2264	/* adjust em exch xid range for offload */
2265	mp->min_xid = min_xid;
2266
2267       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2268	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2269		sizeof(struct fc_exch *);
2270	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2271		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2272			min_xid - 1;
2273	} else {
2274		mp->max_xid = max_xid;
2275		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2276			(fc_cpu_mask + 1);
2277	}
2278
2279	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2280	if (!mp->ep_pool)
2281		goto free_mp;
2282
2283	/*
2284	 * Setup per cpu exch pool with entire exchange id range equally
2285	 * divided across all cpus. The exch pointers array memory is
2286	 * allocated for exch range per pool.
2287	 */
2288	mp->pool_max_index = pool_exch_range - 1;
2289
2290	/*
2291	 * Allocate and initialize per cpu exch pool
2292	 */
2293	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2294	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2295	if (!mp->pool)
2296		goto free_mempool;
2297	for_each_possible_cpu(cpu) {
2298		pool = per_cpu_ptr(mp->pool, cpu);
2299		pool->next_index = 0;
2300		pool->left = FC_XID_UNKNOWN;
2301		pool->right = FC_XID_UNKNOWN;
2302		spin_lock_init(&pool->lock);
2303		INIT_LIST_HEAD(&pool->ex_list);
2304	}
2305
2306	kref_init(&mp->kref);
2307	if (!fc_exch_mgr_add(lport, mp, match)) {
2308		free_percpu(mp->pool);
2309		goto free_mempool;
2310	}
2311
2312	/*
2313	 * Above kref_init() sets mp->kref to 1 and then
2314	 * call to fc_exch_mgr_add incremented mp->kref again,
2315	 * so adjust that extra increment.
2316	 */
2317	kref_put(&mp->kref, fc_exch_mgr_destroy);
2318	return mp;
2319
2320free_mempool:
2321	mempool_destroy(mp->ep_pool);
2322free_mp:
2323	kfree(mp);
2324	return NULL;
2325}
2326EXPORT_SYMBOL(fc_exch_mgr_alloc);
2327
2328/**
2329 * fc_exch_mgr_free() - Free all exchange managers on a local port
2330 * @lport: The local port whose EMs are to be freed
2331 */
2332void fc_exch_mgr_free(struct fc_lport *lport)
2333{
2334	struct fc_exch_mgr_anchor *ema, *next;
2335
2336	flush_workqueue(fc_exch_workqueue);
2337	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2338		fc_exch_mgr_del(ema);
2339}
2340EXPORT_SYMBOL(fc_exch_mgr_free);
2341
2342/**
2343 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2344 * upon 'xid'.
2345 * @f_ctl: f_ctl
2346 * @lport: The local port the frame was received on
2347 * @fh: The received frame header
2348 */
2349static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2350					      struct fc_lport *lport,
2351					      struct fc_frame_header *fh)
2352{
2353	struct fc_exch_mgr_anchor *ema;
2354	u16 xid;
2355
2356	if (f_ctl & FC_FC_EX_CTX)
2357		xid = ntohs(fh->fh_ox_id);
2358	else {
2359		xid = ntohs(fh->fh_rx_id);
2360		if (xid == FC_XID_UNKNOWN)
2361			return list_entry(lport->ema_list.prev,
2362					  typeof(*ema), ema_list);
2363	}
2364
2365	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2366		if ((xid >= ema->mp->min_xid) &&
2367		    (xid <= ema->mp->max_xid))
2368			return ema;
2369	}
2370	return NULL;
2371}
2372/**
2373 * fc_exch_recv() - Handler for received frames
2374 * @lport: The local port the frame was received on
2375 * @fp:	The received frame
2376 */
2377void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2378{
2379	struct fc_frame_header *fh = fc_frame_header_get(fp);
2380	struct fc_exch_mgr_anchor *ema;
2381	u32 f_ctl;
2382
2383	/* lport lock ? */
2384	if (!lport || lport->state == LPORT_ST_DISABLED) {
2385		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2386			     "has not been initialized correctly\n");
2387		fc_frame_free(fp);
2388		return;
2389	}
2390
2391	f_ctl = ntoh24(fh->fh_f_ctl);
2392	ema = fc_find_ema(f_ctl, lport, fh);
2393	if (!ema) {
2394		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2395				    "fc_ctl <0x%x>, xid <0x%x>\n",
2396				     f_ctl,
2397				     (f_ctl & FC_FC_EX_CTX) ?
2398				     ntohs(fh->fh_ox_id) :
2399				     ntohs(fh->fh_rx_id));
2400		fc_frame_free(fp);
2401		return;
2402	}
2403
2404	/*
2405	 * If frame is marked invalid, just drop it.
2406	 */
2407	switch (fr_eof(fp)) {
2408	case FC_EOF_T:
2409		if (f_ctl & FC_FC_END_SEQ)
2410			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2411		/* fall through */
2412	case FC_EOF_N:
2413		if (fh->fh_type == FC_TYPE_BLS)
2414			fc_exch_recv_bls(ema->mp, fp);
2415		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2416			 FC_FC_EX_CTX)
2417			fc_exch_recv_seq_resp(ema->mp, fp);
2418		else if (f_ctl & FC_FC_SEQ_CTX)
2419			fc_exch_recv_resp(ema->mp, fp);
2420		else	/* no EX_CTX and no SEQ_CTX */
2421			fc_exch_recv_req(lport, ema->mp, fp);
2422		break;
2423	default:
2424		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2425			     fr_eof(fp));
2426		fc_frame_free(fp);
2427	}
2428}
2429EXPORT_SYMBOL(fc_exch_recv);
2430
2431/**
2432 * fc_exch_init() - Initialize the exchange layer for a local port
2433 * @lport: The local port to initialize the exchange layer for
2434 */
2435int fc_exch_init(struct fc_lport *lport)
2436{
2437	if (!lport->tt.seq_start_next)
2438		lport->tt.seq_start_next = fc_seq_start_next;
2439
2440	if (!lport->tt.seq_set_resp)
2441		lport->tt.seq_set_resp = fc_seq_set_resp;
2442
2443	if (!lport->tt.exch_seq_send)
2444		lport->tt.exch_seq_send = fc_exch_seq_send;
2445
2446	if (!lport->tt.seq_send)
2447		lport->tt.seq_send = fc_seq_send;
2448
2449	if (!lport->tt.seq_els_rsp_send)
2450		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2451
2452	if (!lport->tt.exch_done)
2453		lport->tt.exch_done = fc_exch_done;
2454
2455	if (!lport->tt.exch_mgr_reset)
2456		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2457
2458	if (!lport->tt.seq_exch_abort)
2459		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2460
2461	if (!lport->tt.seq_assign)
2462		lport->tt.seq_assign = fc_seq_assign;
2463
2464	if (!lport->tt.seq_release)
2465		lport->tt.seq_release = fc_seq_release;
2466
2467	return 0;
2468}
2469EXPORT_SYMBOL(fc_exch_init);
2470
2471/**
2472 * fc_setup_exch_mgr() - Setup an exchange manager
2473 */
2474int fc_setup_exch_mgr(void)
2475{
2476	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2477					 0, SLAB_HWCACHE_ALIGN, NULL);
2478	if (!fc_em_cachep)
2479		return -ENOMEM;
2480
2481	/*
2482	 * Initialize fc_cpu_mask and fc_cpu_order. The
2483	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2484	 * to order of 2's * power and order is stored
2485	 * in fc_cpu_order as this is later required in
2486	 * mapping between an exch id and exch array index
2487	 * in per cpu exch pool.
2488	 *
2489	 * This round up is required to align fc_cpu_mask
2490	 * to exchange id's lower bits such that all incoming
2491	 * frames of an exchange gets delivered to the same
2492	 * cpu on which exchange originated by simple bitwise
2493	 * AND operation between fc_cpu_mask and exchange id.
2494	 */
2495	fc_cpu_mask = 1;
2496	fc_cpu_order = 0;
2497	while (fc_cpu_mask < nr_cpu_ids) {
2498		fc_cpu_mask <<= 1;
2499		fc_cpu_order++;
2500	}
2501	fc_cpu_mask--;
2502
2503	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2504	if (!fc_exch_workqueue)
2505		goto err;
2506	return 0;
2507err:
2508	kmem_cache_destroy(fc_em_cachep);
2509	return -ENOMEM;
2510}
2511
2512/**
2513 * fc_destroy_exch_mgr() - Destroy an exchange manager
2514 */
2515void fc_destroy_exch_mgr(void)
2516{
2517	destroy_workqueue(fc_exch_workqueue);
2518	kmem_cache_destroy(fc_em_cachep);
2519}