Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   4 * Copyright(c) 2008 Mike Christie
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc.,
  17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18 *
  19 * Maintained at www.Open-FCoE.org
  20 */
  21
  22/*
  23 * Fibre Channel exchange and sequence handling.
  24 */
  25
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
  30#include <linux/log2.h>
  31
  32#include <scsi/fc/fc_fc2.h>
  33
  34#include <scsi/libfc.h>
  35#include <scsi/fc_encode.h>
  36
  37#include "fc_libfc.h"
  38
  39u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  40EXPORT_SYMBOL(fc_cpu_mask);
  41static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  42static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  43static struct workqueue_struct *fc_exch_workqueue;
  44
  45/*
  46 * Structure and function definitions for managing Fibre Channel Exchanges
  47 * and Sequences.
  48 *
  49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  50 *
  51 * fc_exch_mgr holds the exchange state for an N port
  52 *
  53 * fc_exch holds state for one exchange and links to its active sequence.
  54 *
  55 * fc_seq holds the state for an individual sequence.
  56 */
  57
  58/**
  59 * struct fc_exch_pool - Per cpu exchange pool
  60 * @next_index:	  Next possible free exchange index
  61 * @total_exches: Total allocated exchanges
  62 * @lock:	  Exch pool lock
  63 * @ex_list:	  List of exchanges
  64 *
  65 * This structure manages per cpu exchanges in array of exchange pointers.
  66 * This array is allocated followed by struct fc_exch_pool memory for
  67 * assigned range of exchanges to per cpu pool.
  68 */
  69struct fc_exch_pool {
  70	spinlock_t	 lock;
  71	struct list_head ex_list;
  72	u16		 next_index;
  73	u16		 total_exches;
  74
  75	/* two cache of free slot in exch array */
  76	u16		 left;
  77	u16		 right;
  78} ____cacheline_aligned_in_smp;
  79
  80/**
  81 * struct fc_exch_mgr - The Exchange Manager (EM).
  82 * @class:	    Default class for new sequences
  83 * @kref:	    Reference counter
  84 * @min_xid:	    Minimum exchange ID
  85 * @max_xid:	    Maximum exchange ID
  86 * @ep_pool:	    Reserved exchange pointers
  87 * @pool_max_index: Max exch array index in exch pool
  88 * @pool:	    Per cpu exch pool
  89 * @stats:	    Statistics structure
  90 *
  91 * This structure is the center for creating exchanges and sequences.
  92 * It manages the allocation of exchange IDs.
  93 */
  94struct fc_exch_mgr {
  95	struct fc_exch_pool __percpu *pool;
  96	mempool_t	*ep_pool;
  97	struct fc_lport	*lport;
  98	enum fc_class	class;
  99	struct kref	kref;
 100	u16		min_xid;
 101	u16		max_xid;
 102	u16		pool_max_index;
 103
 104	struct {
 105		atomic_t no_free_exch;
 106		atomic_t no_free_exch_xid;
 107		atomic_t xid_not_found;
 108		atomic_t xid_busy;
 109		atomic_t seq_not_found;
 110		atomic_t non_bls_resp;
 111	} stats;
 112};
 113
 114/**
 115 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 116 * @ema_list: Exchange Manager Anchor list
 117 * @mp:	      Exchange Manager associated with this anchor
 118 * @match:    Routine to determine if this anchor's EM should be used
 119 *
 120 * When walking the list of anchors the match routine will be called
 121 * for each anchor to determine if that EM should be used. The last
 122 * anchor in the list will always match to handle any exchanges not
 123 * handled by other EMs. The non-default EMs would be added to the
 124 * anchor list by HW that provides offloads.
 125 */
 126struct fc_exch_mgr_anchor {
 127	struct list_head ema_list;
 128	struct fc_exch_mgr *mp;
 129	bool (*match)(struct fc_frame *);
 130};
 131
 132static void fc_exch_rrq(struct fc_exch *);
 133static void fc_seq_ls_acc(struct fc_frame *);
 134static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 135			  enum fc_els_rjt_explan);
 136static void fc_exch_els_rec(struct fc_frame *);
 137static void fc_exch_els_rrq(struct fc_frame *);
 138
 139/*
 140 * Internal implementation notes.
 141 *
 142 * The exchange manager is one by default in libfc but LLD may choose
 143 * to have one per CPU. The sequence manager is one per exchange manager
 144 * and currently never separated.
 145 *
 146 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 147 * assigned by the Sequence Initiator that shall be unique for a specific
 148 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 149 * qualified by exchange ID, which one might think it would be.
 150 * In practice this limits the number of open sequences and exchanges to 256
 151 * per session.	 For most targets we could treat this limit as per exchange.
 152 *
 153 * The exchange and its sequence are freed when the last sequence is received.
 154 * It's possible for the remote port to leave an exchange open without
 155 * sending any sequences.
 156 *
 157 * Notes on reference counts:
 158 *
 159 * Exchanges are reference counted and exchange gets freed when the reference
 160 * count becomes zero.
 161 *
 162 * Timeouts:
 163 * Sequences are timed out for E_D_TOV and R_A_TOV.
 164 *
 165 * Sequence event handling:
 166 *
 167 * The following events may occur on initiator sequences:
 168 *
 169 *	Send.
 170 *	    For now, the whole thing is sent.
 171 *	Receive ACK
 172 *	    This applies only to class F.
 173 *	    The sequence is marked complete.
 174 *	ULP completion.
 175 *	    The upper layer calls fc_exch_done() when done
 176 *	    with exchange and sequence tuple.
 177 *	RX-inferred completion.
 178 *	    When we receive the next sequence on the same exchange, we can
 179 *	    retire the previous sequence ID.  (XXX not implemented).
 180 *	Timeout.
 181 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 182 *	    E_D_TOV causes abort and calls upper layer response handler
 183 *	    with FC_EX_TIMEOUT error.
 184 *	Receive RJT
 185 *	    XXX defer.
 186 *	Send ABTS
 187 *	    On timeout.
 188 *
 189 * The following events may occur on recipient sequences:
 190 *
 191 *	Receive
 192 *	    Allocate sequence for first frame received.
 193 *	    Hold during receive handler.
 194 *	    Release when final frame received.
 195 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 196 *	Receive ABTS
 197 *	    Deallocate sequence
 198 *	Send RJT
 199 *	    Deallocate
 200 *
 201 * For now, we neglect conditions where only part of a sequence was
 202 * received or transmitted, or where out-of-order receipt is detected.
 203 */
 204
 205/*
 206 * Locking notes:
 207 *
 208 * The EM code run in a per-CPU worker thread.
 209 *
 210 * To protect against concurrency between a worker thread code and timers,
 211 * sequence allocation and deallocation must be locked.
 212 *  - exchange refcnt can be done atomicly without locks.
 213 *  - sequence allocation must be locked by exch lock.
 214 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 215 *    EM pool lock must be taken before the ex_lock.
 216 */
 217
 218/*
 219 * opcode names for debugging.
 220 */
 221static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 222
 223/**
 224 * fc_exch_name_lookup() - Lookup name by opcode
 225 * @op:	       Opcode to be looked up
 226 * @table:     Opcode/name table
 227 * @max_index: Index not to be exceeded
 228 *
 229 * This routine is used to determine a human-readable string identifying
 230 * a R_CTL opcode.
 231 */
 232static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 233					      unsigned int max_index)
 234{
 235	const char *name = NULL;
 236
 237	if (op < max_index)
 238		name = table[op];
 239	if (!name)
 240		name = "unknown";
 241	return name;
 242}
 243
 244/**
 245 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 246 * @op: The opcode to be looked up
 247 */
 248static const char *fc_exch_rctl_name(unsigned int op)
 249{
 250	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 251				   ARRAY_SIZE(fc_exch_rctl_names));
 252}
 253
 254/**
 255 * fc_exch_hold() - Increment an exchange's reference count
 256 * @ep: Echange to be held
 257 */
 258static inline void fc_exch_hold(struct fc_exch *ep)
 259{
 260	atomic_inc(&ep->ex_refcnt);
 261}
 262
 263/**
 264 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 265 *			 and determine SOF and EOF.
 266 * @ep:	   The exchange to that will use the header
 267 * @fp:	   The frame whose header is to be modified
 268 * @f_ctl: F_CTL bits that will be used for the frame header
 269 *
 270 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 271 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 272 */
 273static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 274			      u32 f_ctl)
 275{
 276	struct fc_frame_header *fh = fc_frame_header_get(fp);
 277	u16 fill;
 278
 279	fr_sof(fp) = ep->class;
 280	if (ep->seq.cnt)
 281		fr_sof(fp) = fc_sof_normal(ep->class);
 282
 283	if (f_ctl & FC_FC_END_SEQ) {
 284		fr_eof(fp) = FC_EOF_T;
 285		if (fc_sof_needs_ack(ep->class))
 286			fr_eof(fp) = FC_EOF_N;
 287		/*
 288		 * From F_CTL.
 289		 * The number of fill bytes to make the length a 4-byte
 290		 * multiple is the low order 2-bits of the f_ctl.
 291		 * The fill itself will have been cleared by the frame
 292		 * allocation.
 293		 * After this, the length will be even, as expected by
 294		 * the transport.
 295		 */
 296		fill = fr_len(fp) & 3;
 297		if (fill) {
 298			fill = 4 - fill;
 299			/* TODO, this may be a problem with fragmented skb */
 300			skb_put(fp_skb(fp), fill);
 301			hton24(fh->fh_f_ctl, f_ctl | fill);
 302		}
 303	} else {
 304		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 305		fr_eof(fp) = FC_EOF_N;
 306	}
 307
 308	/* Initialize remaining fh fields from fc_fill_fc_hdr */
 309	fh->fh_ox_id = htons(ep->oxid);
 310	fh->fh_rx_id = htons(ep->rxid);
 311	fh->fh_seq_id = ep->seq.id;
 312	fh->fh_seq_cnt = htons(ep->seq.cnt);
 313}
 314
 315/**
 316 * fc_exch_release() - Decrement an exchange's reference count
 317 * @ep: Exchange to be released
 318 *
 319 * If the reference count reaches zero and the exchange is complete,
 320 * it is freed.
 321 */
 322static void fc_exch_release(struct fc_exch *ep)
 323{
 324	struct fc_exch_mgr *mp;
 325
 326	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 327		mp = ep->em;
 328		if (ep->destructor)
 329			ep->destructor(&ep->seq, ep->arg);
 330		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 331		mempool_free(ep, mp->ep_pool);
 332	}
 333}
 334
 335/**
 336 * fc_exch_timer_cancel() - cancel exch timer
 337 * @ep:		The exchange whose timer to be canceled
 338 */
 339static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 340{
 341	if (cancel_delayed_work(&ep->timeout_work)) {
 342		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 343		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 344	}
 345}
 346
 347/**
 348 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 349 *				the exchange lock held
 350 * @ep:		The exchange whose timer will start
 351 * @timer_msec: The timeout period
 352 *
 353 * Used for upper level protocols to time out the exchange.
 354 * The timer is cancelled when it fires or when the exchange completes.
 355 */
 356static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 357					    unsigned int timer_msec)
 358{
 359	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 360		return;
 361
 362	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 363
 364	fc_exch_hold(ep);		/* hold for timer */
 365	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 366				msecs_to_jiffies(timer_msec))) {
 367		FC_EXCH_DBG(ep, "Exchange already queued\n");
 368		fc_exch_release(ep);
 369	}
 370}
 371
 372/**
 373 * fc_exch_timer_set() - Lock the exchange and set the timer
 374 * @ep:		The exchange whose timer will start
 375 * @timer_msec: The timeout period
 376 */
 377static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 378{
 379	spin_lock_bh(&ep->ex_lock);
 380	fc_exch_timer_set_locked(ep, timer_msec);
 381	spin_unlock_bh(&ep->ex_lock);
 382}
 383
 384/**
 385 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 386 * @ep: The exchange that is complete
 387 *
 388 * Note: May sleep if invoked from outside a response handler.
 389 */
 390static int fc_exch_done_locked(struct fc_exch *ep)
 391{
 392	int rc = 1;
 393
 394	/*
 395	 * We must check for completion in case there are two threads
 396	 * tyring to complete this. But the rrq code will reuse the
 397	 * ep, and in that case we only clear the resp and set it as
 398	 * complete, so it can be reused by the timer to send the rrq.
 399	 */
 400	if (ep->state & FC_EX_DONE)
 401		return rc;
 402	ep->esb_stat |= ESB_ST_COMPLETE;
 403
 404	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 405		ep->state |= FC_EX_DONE;
 406		fc_exch_timer_cancel(ep);
 407		rc = 0;
 408	}
 409	return rc;
 410}
 411
 412static struct fc_exch fc_quarantine_exch;
 413
 414/**
 415 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 416 * @pool:  Exchange Pool to get an exchange from
 417 * @index: Index of the exchange within the pool
 418 *
 419 * Use the index to get an exchange from within an exchange pool. exches
 420 * will point to an array of exchange pointers. The index will select
 421 * the exchange within the array.
 422 */
 423static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 424					      u16 index)
 425{
 426	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 427	return exches[index];
 428}
 429
 430/**
 431 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 432 * @pool:  The pool to assign the exchange to
 433 * @index: The index in the pool where the exchange will be assigned
 434 * @ep:	   The exchange to assign to the pool
 435 */
 436static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 437				   struct fc_exch *ep)
 438{
 439	((struct fc_exch **)(pool + 1))[index] = ep;
 440}
 441
 442/**
 443 * fc_exch_delete() - Delete an exchange
 444 * @ep: The exchange to be deleted
 445 */
 446static void fc_exch_delete(struct fc_exch *ep)
 447{
 448	struct fc_exch_pool *pool;
 449	u16 index;
 450
 451	pool = ep->pool;
 452	spin_lock_bh(&pool->lock);
 453	WARN_ON(pool->total_exches <= 0);
 454	pool->total_exches--;
 455
 456	/* update cache of free slot */
 457	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 458	if (!(ep->state & FC_EX_QUARANTINE)) {
 459		if (pool->left == FC_XID_UNKNOWN)
 460			pool->left = index;
 461		else if (pool->right == FC_XID_UNKNOWN)
 462			pool->right = index;
 463		else
 464			pool->next_index = index;
 465		fc_exch_ptr_set(pool, index, NULL);
 466	} else {
 467		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 468	}
 469	list_del(&ep->ex_list);
 470	spin_unlock_bh(&pool->lock);
 471	fc_exch_release(ep);	/* drop hold for exch in mp */
 472}
 473
 474static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 475			      struct fc_frame *fp)
 476{
 477	struct fc_exch *ep;
 478	struct fc_frame_header *fh = fc_frame_header_get(fp);
 479	int error = -ENXIO;
 480	u32 f_ctl;
 481	u8 fh_type = fh->fh_type;
 482
 483	ep = fc_seq_exch(sp);
 484
 485	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 486		fc_frame_free(fp);
 487		goto out;
 488	}
 489
 490	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 491
 492	f_ctl = ntoh24(fh->fh_f_ctl);
 493	fc_exch_setup_hdr(ep, fp, f_ctl);
 494	fr_encaps(fp) = ep->encaps;
 495
 496	/*
 497	 * update sequence count if this frame is carrying
 498	 * multiple FC frames when sequence offload is enabled
 499	 * by LLD.
 500	 */
 501	if (fr_max_payload(fp))
 502		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 503					fr_max_payload(fp));
 504	else
 505		sp->cnt++;
 506
 507	/*
 508	 * Send the frame.
 509	 */
 510	error = lport->tt.frame_send(lport, fp);
 511
 512	if (fh_type == FC_TYPE_BLS)
 513		goto out;
 514
 515	/*
 516	 * Update the exchange and sequence flags,
 517	 * assuming all frames for the sequence have been sent.
 518	 * We can only be called to send once for each sequence.
 519	 */
 520	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 521	if (f_ctl & FC_FC_SEQ_INIT)
 522		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 523out:
 524	return error;
 525}
 526
 527/**
 528 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 529 * @lport: The local port that the exchange will be sent on
 530 * @sp:	   The sequence to be sent
 531 * @fp:	   The frame to be sent on the exchange
 532 *
 533 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 534 * or indirectly by calling libfc_function_template.frame_send().
 535 */
 536int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 537{
 538	struct fc_exch *ep;
 539	int error;
 540	ep = fc_seq_exch(sp);
 541	spin_lock_bh(&ep->ex_lock);
 542	error = fc_seq_send_locked(lport, sp, fp);
 543	spin_unlock_bh(&ep->ex_lock);
 544	return error;
 545}
 546EXPORT_SYMBOL(fc_seq_send);
 547
 548/**
 549 * fc_seq_alloc() - Allocate a sequence for a given exchange
 550 * @ep:	    The exchange to allocate a new sequence for
 551 * @seq_id: The sequence ID to be used
 552 *
 553 * We don't support multiple originated sequences on the same exchange.
 554 * By implication, any previously originated sequence on this exchange
 555 * is complete, and we reallocate the same sequence.
 556 */
 557static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 558{
 559	struct fc_seq *sp;
 560
 561	sp = &ep->seq;
 562	sp->ssb_stat = 0;
 563	sp->cnt = 0;
 564	sp->id = seq_id;
 565	return sp;
 566}
 567
 568/**
 569 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 570 *				exchange as the supplied sequence
 571 * @sp: The sequence/exchange to get a new sequence for
 572 */
 573static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 574{
 575	struct fc_exch *ep = fc_seq_exch(sp);
 576
 577	sp = fc_seq_alloc(ep, ep->seq_id++);
 578	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 579		    ep->f_ctl, sp->id);
 580	return sp;
 581}
 582
 583/**
 584 * fc_seq_start_next() - Lock the exchange and get a new sequence
 585 *			 for a given sequence/exchange pair
 586 * @sp: The sequence/exchange to get a new exchange for
 587 */
 588struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 589{
 590	struct fc_exch *ep = fc_seq_exch(sp);
 591
 592	spin_lock_bh(&ep->ex_lock);
 593	sp = fc_seq_start_next_locked(sp);
 594	spin_unlock_bh(&ep->ex_lock);
 595
 596	return sp;
 597}
 598EXPORT_SYMBOL(fc_seq_start_next);
 599
 600/*
 601 * Set the response handler for the exchange associated with a sequence.
 602 *
 603 * Note: May sleep if invoked from outside a response handler.
 604 */
 605void fc_seq_set_resp(struct fc_seq *sp,
 606		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 607		     void *arg)
 608{
 609	struct fc_exch *ep = fc_seq_exch(sp);
 610	DEFINE_WAIT(wait);
 611
 612	spin_lock_bh(&ep->ex_lock);
 613	while (ep->resp_active && ep->resp_task != current) {
 614		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 615		spin_unlock_bh(&ep->ex_lock);
 616
 617		schedule();
 618
 619		spin_lock_bh(&ep->ex_lock);
 620	}
 621	finish_wait(&ep->resp_wq, &wait);
 622	ep->resp = resp;
 623	ep->arg = arg;
 624	spin_unlock_bh(&ep->ex_lock);
 625}
 626EXPORT_SYMBOL(fc_seq_set_resp);
 627
 628/**
 629 * fc_exch_abort_locked() - Abort an exchange
 630 * @ep:	The exchange to be aborted
 631 * @timer_msec: The period of time to wait before aborting
 632 *
 633 * Abort an exchange and sequence. Generally called because of a
 634 * exchange timeout or an abort from the upper layer.
 635 *
 636 * A timer_msec can be specified for abort timeout, if non-zero
 637 * timer_msec value is specified then exchange resp handler
 638 * will be called with timeout error if no response to abort.
 639 *
 640 * Locking notes:  Called with exch lock held
 641 *
 642 * Return value: 0 on success else error code
 643 */
 644static int fc_exch_abort_locked(struct fc_exch *ep,
 645				unsigned int timer_msec)
 646{
 647	struct fc_seq *sp;
 648	struct fc_frame *fp;
 649	int error;
 650
 651	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 652	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 653	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 654		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 655			    ep->esb_stat, ep->state);
 656		return -ENXIO;
 657	}
 658
 659	/*
 660	 * Send the abort on a new sequence if possible.
 661	 */
 662	sp = fc_seq_start_next_locked(&ep->seq);
 663	if (!sp)
 664		return -ENOMEM;
 665
 666	if (timer_msec)
 667		fc_exch_timer_set_locked(ep, timer_msec);
 668
 669	if (ep->sid) {
 670		/*
 671		 * Send an abort for the sequence that timed out.
 672		 */
 673		fp = fc_frame_alloc(ep->lp, 0);
 674		if (fp) {
 675			ep->esb_stat |= ESB_ST_SEQ_INIT;
 676			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 677				       FC_TYPE_BLS, FC_FC_END_SEQ |
 678				       FC_FC_SEQ_INIT, 0);
 679			error = fc_seq_send_locked(ep->lp, sp, fp);
 680		} else {
 681			error = -ENOBUFS;
 682		}
 683	} else {
 684		/*
 685		 * If not logged into the fabric, don't send ABTS but leave
 686		 * sequence active until next timeout.
 687		 */
 688		error = 0;
 689	}
 690	ep->esb_stat |= ESB_ST_ABNORMAL;
 691	return error;
 692}
 693
 694/**
 695 * fc_seq_exch_abort() - Abort an exchange and sequence
 696 * @req_sp:	The sequence to be aborted
 697 * @timer_msec: The period of time to wait before aborting
 698 *
 699 * Generally called because of a timeout or an abort from the upper layer.
 700 *
 701 * Return value: 0 on success else error code
 702 */
 703int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 704{
 705	struct fc_exch *ep;
 706	int error;
 707
 708	ep = fc_seq_exch(req_sp);
 709	spin_lock_bh(&ep->ex_lock);
 710	error = fc_exch_abort_locked(ep, timer_msec);
 711	spin_unlock_bh(&ep->ex_lock);
 712	return error;
 713}
 714
 715/**
 716 * fc_invoke_resp() - invoke ep->resp()
 717 *
 718 * Notes:
 719 * It is assumed that after initialization finished (this means the
 720 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 721 * modified only via fc_seq_set_resp(). This guarantees that none of these
 722 * two variables changes if ep->resp_active > 0.
 723 *
 724 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 725 * this function is invoked, the first spin_lock_bh() call in this function
 726 * will wait until fc_seq_set_resp() has finished modifying these variables.
 727 *
 728 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 729 * ep->resp() won't be invoked after fc_exch_done() has returned.
 730 *
 731 * The response handler itself may invoke fc_exch_done(), which will clear the
 732 * ep->resp pointer.
 733 *
 734 * Return value:
 735 * Returns true if and only if ep->resp has been invoked.
 736 */
 737static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 738			   struct fc_frame *fp)
 739{
 740	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 741	void *arg;
 742	bool res = false;
 743
 744	spin_lock_bh(&ep->ex_lock);
 745	ep->resp_active++;
 746	if (ep->resp_task != current)
 747		ep->resp_task = !ep->resp_task ? current : NULL;
 748	resp = ep->resp;
 749	arg = ep->arg;
 750	spin_unlock_bh(&ep->ex_lock);
 751
 752	if (resp) {
 753		resp(sp, fp, arg);
 754		res = true;
 755	}
 756
 757	spin_lock_bh(&ep->ex_lock);
 758	if (--ep->resp_active == 0)
 759		ep->resp_task = NULL;
 760	spin_unlock_bh(&ep->ex_lock);
 761
 762	if (ep->resp_active == 0)
 763		wake_up(&ep->resp_wq);
 764
 765	return res;
 766}
 767
 768/**
 769 * fc_exch_timeout() - Handle exchange timer expiration
 770 * @work: The work_struct identifying the exchange that timed out
 771 */
 772static void fc_exch_timeout(struct work_struct *work)
 773{
 774	struct fc_exch *ep = container_of(work, struct fc_exch,
 775					  timeout_work.work);
 776	struct fc_seq *sp = &ep->seq;
 777	u32 e_stat;
 778	int rc = 1;
 779
 780	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 781
 782	spin_lock_bh(&ep->ex_lock);
 783	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 784		goto unlock;
 785
 786	e_stat = ep->esb_stat;
 787	if (e_stat & ESB_ST_COMPLETE) {
 788		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 789		spin_unlock_bh(&ep->ex_lock);
 790		if (e_stat & ESB_ST_REC_QUAL)
 791			fc_exch_rrq(ep);
 792		goto done;
 793	} else {
 794		if (e_stat & ESB_ST_ABNORMAL)
 795			rc = fc_exch_done_locked(ep);
 796		spin_unlock_bh(&ep->ex_lock);
 797		if (!rc)
 798			fc_exch_delete(ep);
 799		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 800		fc_seq_set_resp(sp, NULL, ep->arg);
 801		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 802		goto done;
 803	}
 804unlock:
 805	spin_unlock_bh(&ep->ex_lock);
 806done:
 807	/*
 808	 * This release matches the hold taken when the timer was set.
 809	 */
 810	fc_exch_release(ep);
 811}
 812
 813/**
 814 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 815 * @lport: The local port that the exchange is for
 816 * @mp:	   The exchange manager that will allocate the exchange
 817 *
 818 * Returns pointer to allocated fc_exch with exch lock held.
 819 */
 820static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 821					struct fc_exch_mgr *mp)
 822{
 823	struct fc_exch *ep;
 824	unsigned int cpu;
 825	u16 index;
 826	struct fc_exch_pool *pool;
 827
 828	/* allocate memory for exchange */
 829	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 830	if (!ep) {
 831		atomic_inc(&mp->stats.no_free_exch);
 832		goto out;
 833	}
 834	memset(ep, 0, sizeof(*ep));
 835
 836	cpu = get_cpu();
 837	pool = per_cpu_ptr(mp->pool, cpu);
 838	spin_lock_bh(&pool->lock);
 839	put_cpu();
 840
 841	/* peek cache of free slot */
 842	if (pool->left != FC_XID_UNKNOWN) {
 843		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 844			index = pool->left;
 845			pool->left = FC_XID_UNKNOWN;
 846			goto hit;
 847		}
 848	}
 849	if (pool->right != FC_XID_UNKNOWN) {
 850		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 851			index = pool->right;
 852			pool->right = FC_XID_UNKNOWN;
 853			goto hit;
 854		}
 855	}
 856
 857	index = pool->next_index;
 858	/* allocate new exch from pool */
 859	while (fc_exch_ptr_get(pool, index)) {
 860		index = index == mp->pool_max_index ? 0 : index + 1;
 861		if (index == pool->next_index)
 862			goto err;
 863	}
 864	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 865hit:
 866	fc_exch_hold(ep);	/* hold for exch in mp */
 867	spin_lock_init(&ep->ex_lock);
 868	/*
 869	 * Hold exch lock for caller to prevent fc_exch_reset()
 870	 * from releasing exch	while fc_exch_alloc() caller is
 871	 * still working on exch.
 872	 */
 873	spin_lock_bh(&ep->ex_lock);
 874
 875	fc_exch_ptr_set(pool, index, ep);
 876	list_add_tail(&ep->ex_list, &pool->ex_list);
 877	fc_seq_alloc(ep, ep->seq_id++);
 878	pool->total_exches++;
 879	spin_unlock_bh(&pool->lock);
 880
 881	/*
 882	 *  update exchange
 883	 */
 884	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 885	ep->em = mp;
 886	ep->pool = pool;
 887	ep->lp = lport;
 888	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 889	ep->rxid = FC_XID_UNKNOWN;
 890	ep->class = mp->class;
 891	ep->resp_active = 0;
 892	init_waitqueue_head(&ep->resp_wq);
 893	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 894out:
 895	return ep;
 896err:
 897	spin_unlock_bh(&pool->lock);
 898	atomic_inc(&mp->stats.no_free_exch_xid);
 899	mempool_free(ep, mp->ep_pool);
 900	return NULL;
 901}
 902
 903/**
 904 * fc_exch_alloc() - Allocate an exchange from an EM on a
 905 *		     local port's list of EMs.
 906 * @lport: The local port that will own the exchange
 907 * @fp:	   The FC frame that the exchange will be for
 908 *
 909 * This function walks the list of exchange manager(EM)
 910 * anchors to select an EM for a new exchange allocation. The
 911 * EM is selected when a NULL match function pointer is encountered
 912 * or when a call to a match function returns true.
 913 */
 914static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 915				     struct fc_frame *fp)
 916{
 917	struct fc_exch_mgr_anchor *ema;
 918	struct fc_exch *ep;
 919
 920	list_for_each_entry(ema, &lport->ema_list, ema_list) {
 921		if (!ema->match || ema->match(fp)) {
 922			ep = fc_exch_em_alloc(lport, ema->mp);
 923			if (ep)
 924				return ep;
 925		}
 926	}
 927	return NULL;
 928}
 929
 930/**
 931 * fc_exch_find() - Lookup and hold an exchange
 932 * @mp:	 The exchange manager to lookup the exchange from
 933 * @xid: The XID of the exchange to look up
 934 */
 935static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 936{
 937	struct fc_lport *lport = mp->lport;
 938	struct fc_exch_pool *pool;
 939	struct fc_exch *ep = NULL;
 940	u16 cpu = xid & fc_cpu_mask;
 941
 942	if (xid == FC_XID_UNKNOWN)
 943		return NULL;
 944
 945	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 946		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 947		       lport->host->host_no, lport->port_id, xid, cpu);
 948		return NULL;
 949	}
 950
 951	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 952		pool = per_cpu_ptr(mp->pool, cpu);
 953		spin_lock_bh(&pool->lock);
 954		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 955		if (ep == &fc_quarantine_exch) {
 956			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 957			ep = NULL;
 958		}
 959		if (ep) {
 960			WARN_ON(ep->xid != xid);
 961			fc_exch_hold(ep);
 962		}
 963		spin_unlock_bh(&pool->lock);
 964	}
 965	return ep;
 966}
 967
 968
 969/**
 970 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 971 *		    the memory allocated for the related objects may be freed.
 972 * @sp: The sequence that has completed
 973 *
 974 * Note: May sleep if invoked from outside a response handler.
 975 */
 976void fc_exch_done(struct fc_seq *sp)
 977{
 978	struct fc_exch *ep = fc_seq_exch(sp);
 979	int rc;
 980
 981	spin_lock_bh(&ep->ex_lock);
 982	rc = fc_exch_done_locked(ep);
 983	spin_unlock_bh(&ep->ex_lock);
 984
 985	fc_seq_set_resp(sp, NULL, ep->arg);
 986	if (!rc)
 987		fc_exch_delete(ep);
 988}
 989EXPORT_SYMBOL(fc_exch_done);
 990
 991/**
 992 * fc_exch_resp() - Allocate a new exchange for a response frame
 993 * @lport: The local port that the exchange was for
 994 * @mp:	   The exchange manager to allocate the exchange from
 995 * @fp:	   The response frame
 996 *
 997 * Sets the responder ID in the frame header.
 998 */
 999static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
1000				    struct fc_exch_mgr *mp,
1001				    struct fc_frame *fp)
1002{
1003	struct fc_exch *ep;
1004	struct fc_frame_header *fh;
1005
1006	ep = fc_exch_alloc(lport, fp);
1007	if (ep) {
1008		ep->class = fc_frame_class(fp);
1009
1010		/*
1011		 * Set EX_CTX indicating we're responding on this exchange.
1012		 */
1013		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1014		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1015		fh = fc_frame_header_get(fp);
1016		ep->sid = ntoh24(fh->fh_d_id);
1017		ep->did = ntoh24(fh->fh_s_id);
1018		ep->oid = ep->did;
1019
1020		/*
1021		 * Allocated exchange has placed the XID in the
1022		 * originator field. Move it to the responder field,
1023		 * and set the originator XID from the frame.
1024		 */
1025		ep->rxid = ep->xid;
1026		ep->oxid = ntohs(fh->fh_ox_id);
1027		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1028		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1029			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1030
1031		fc_exch_hold(ep);	/* hold for caller */
1032		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1033	}
1034	return ep;
1035}
1036
1037/**
1038 * fc_seq_lookup_recip() - Find a sequence where the other end
1039 *			   originated the sequence
1040 * @lport: The local port that the frame was sent to
1041 * @mp:	   The Exchange Manager to lookup the exchange from
1042 * @fp:	   The frame associated with the sequence we're looking for
1043 *
1044 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1045 * on the ep that should be released by the caller.
1046 */
1047static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1048						 struct fc_exch_mgr *mp,
1049						 struct fc_frame *fp)
1050{
1051	struct fc_frame_header *fh = fc_frame_header_get(fp);
1052	struct fc_exch *ep = NULL;
1053	struct fc_seq *sp = NULL;
1054	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1055	u32 f_ctl;
1056	u16 xid;
1057
1058	f_ctl = ntoh24(fh->fh_f_ctl);
1059	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1060
1061	/*
1062	 * Lookup or create the exchange if we will be creating the sequence.
1063	 */
1064	if (f_ctl & FC_FC_EX_CTX) {
1065		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1066		ep = fc_exch_find(mp, xid);
1067		if (!ep) {
1068			atomic_inc(&mp->stats.xid_not_found);
1069			reject = FC_RJT_OX_ID;
1070			goto out;
1071		}
1072		if (ep->rxid == FC_XID_UNKNOWN)
1073			ep->rxid = ntohs(fh->fh_rx_id);
1074		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1075			reject = FC_RJT_OX_ID;
1076			goto rel;
1077		}
1078	} else {
1079		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1080
1081		/*
1082		 * Special case for MDS issuing an ELS TEST with a
1083		 * bad rxid of 0.
1084		 * XXX take this out once we do the proper reject.
1085		 */
1086		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1087		    fc_frame_payload_op(fp) == ELS_TEST) {
1088			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1089			xid = FC_XID_UNKNOWN;
1090		}
1091
1092		/*
1093		 * new sequence - find the exchange
1094		 */
1095		ep = fc_exch_find(mp, xid);
1096		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1097			if (ep) {
1098				atomic_inc(&mp->stats.xid_busy);
1099				reject = FC_RJT_RX_ID;
1100				goto rel;
1101			}
1102			ep = fc_exch_resp(lport, mp, fp);
1103			if (!ep) {
1104				reject = FC_RJT_EXCH_EST;	/* XXX */
1105				goto out;
1106			}
1107			xid = ep->xid;	/* get our XID */
1108		} else if (!ep) {
1109			atomic_inc(&mp->stats.xid_not_found);
1110			reject = FC_RJT_RX_ID;	/* XID not found */
1111			goto out;
1112		}
1113	}
1114
1115	spin_lock_bh(&ep->ex_lock);
1116	/*
1117	 * At this point, we have the exchange held.
1118	 * Find or create the sequence.
1119	 */
1120	if (fc_sof_is_init(fr_sof(fp))) {
1121		sp = &ep->seq;
1122		sp->ssb_stat |= SSB_ST_RESP;
1123		sp->id = fh->fh_seq_id;
1124	} else {
1125		sp = &ep->seq;
1126		if (sp->id != fh->fh_seq_id) {
1127			atomic_inc(&mp->stats.seq_not_found);
1128			if (f_ctl & FC_FC_END_SEQ) {
1129				/*
1130				 * Update sequence_id based on incoming last
1131				 * frame of sequence exchange. This is needed
1132				 * for FC target where DDP has been used
1133				 * on target where, stack is indicated only
1134				 * about last frame's (payload _header) header.
1135				 * Whereas "seq_id" which is part of
1136				 * frame_header is allocated by initiator
1137				 * which is totally different from "seq_id"
1138				 * allocated when XFER_RDY was sent by target.
1139				 * To avoid false -ve which results into not
1140				 * sending RSP, hence write request on other
1141				 * end never finishes.
1142				 */
1143				sp->ssb_stat |= SSB_ST_RESP;
1144				sp->id = fh->fh_seq_id;
1145			} else {
1146				spin_unlock_bh(&ep->ex_lock);
1147
1148				/* sequence/exch should exist */
1149				reject = FC_RJT_SEQ_ID;
1150				goto rel;
1151			}
1152		}
1153	}
1154	WARN_ON(ep != fc_seq_exch(sp));
1155
1156	if (f_ctl & FC_FC_SEQ_INIT)
1157		ep->esb_stat |= ESB_ST_SEQ_INIT;
1158	spin_unlock_bh(&ep->ex_lock);
1159
1160	fr_seq(fp) = sp;
1161out:
1162	return reject;
1163rel:
1164	fc_exch_done(&ep->seq);
1165	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1166	return reject;
1167}
1168
1169/**
1170 * fc_seq_lookup_orig() - Find a sequence where this end
1171 *			  originated the sequence
1172 * @mp:	   The Exchange Manager to lookup the exchange from
1173 * @fp:	   The frame associated with the sequence we're looking for
1174 *
1175 * Does not hold the sequence for the caller.
1176 */
1177static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1178					 struct fc_frame *fp)
1179{
1180	struct fc_frame_header *fh = fc_frame_header_get(fp);
1181	struct fc_exch *ep;
1182	struct fc_seq *sp = NULL;
1183	u32 f_ctl;
1184	u16 xid;
1185
1186	f_ctl = ntoh24(fh->fh_f_ctl);
1187	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1188	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1189	ep = fc_exch_find(mp, xid);
1190	if (!ep)
1191		return NULL;
1192	if (ep->seq.id == fh->fh_seq_id) {
1193		/*
1194		 * Save the RX_ID if we didn't previously know it.
1195		 */
1196		sp = &ep->seq;
1197		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1198		    ep->rxid == FC_XID_UNKNOWN) {
1199			ep->rxid = ntohs(fh->fh_rx_id);
1200		}
1201	}
1202	fc_exch_release(ep);
1203	return sp;
1204}
1205
1206/**
1207 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1208 * @ep:	     The exchange to set the addresses for
1209 * @orig_id: The originator's ID
1210 * @resp_id: The responder's ID
1211 *
1212 * Note this must be done before the first sequence of the exchange is sent.
1213 */
1214static void fc_exch_set_addr(struct fc_exch *ep,
1215			     u32 orig_id, u32 resp_id)
1216{
1217	ep->oid = orig_id;
1218	if (ep->esb_stat & ESB_ST_RESP) {
1219		ep->sid = resp_id;
1220		ep->did = orig_id;
1221	} else {
1222		ep->sid = orig_id;
1223		ep->did = resp_id;
1224	}
1225}
1226
1227/**
1228 * fc_seq_els_rsp_send() - Send an ELS response using information from
1229 *			   the existing sequence/exchange.
1230 * @fp:	      The received frame
1231 * @els_cmd:  The ELS command to be sent
1232 * @els_data: The ELS data to be sent
1233 *
1234 * The received frame is not freed.
1235 */
1236void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1237			 struct fc_seq_els_data *els_data)
1238{
1239	switch (els_cmd) {
1240	case ELS_LS_RJT:
1241		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1242		break;
1243	case ELS_LS_ACC:
1244		fc_seq_ls_acc(fp);
1245		break;
1246	case ELS_RRQ:
1247		fc_exch_els_rrq(fp);
1248		break;
1249	case ELS_REC:
1250		fc_exch_els_rec(fp);
1251		break;
1252	default:
1253		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1254	}
1255}
1256EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1257
1258/**
1259 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1260 * @sp:	     The sequence that is to be sent
1261 * @fp:	     The frame that will be sent on the sequence
1262 * @rctl:    The R_CTL information to be sent
1263 * @fh_type: The frame header type
1264 */
1265static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1266			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1267{
1268	u32 f_ctl;
1269	struct fc_exch *ep = fc_seq_exch(sp);
1270
1271	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1272	f_ctl |= ep->f_ctl;
1273	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1274	fc_seq_send_locked(ep->lp, sp, fp);
1275}
1276
1277/**
1278 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1279 * @sp:	   The sequence to send the ACK on
1280 * @rx_fp: The received frame that is being acknoledged
1281 *
1282 * Send ACK_1 (or equiv.) indicating we received something.
1283 */
1284static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1285{
1286	struct fc_frame *fp;
1287	struct fc_frame_header *rx_fh;
1288	struct fc_frame_header *fh;
1289	struct fc_exch *ep = fc_seq_exch(sp);
1290	struct fc_lport *lport = ep->lp;
1291	unsigned int f_ctl;
1292
1293	/*
1294	 * Don't send ACKs for class 3.
1295	 */
1296	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1297		fp = fc_frame_alloc(lport, 0);
1298		if (!fp) {
1299			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1300			return;
1301		}
1302
1303		fh = fc_frame_header_get(fp);
1304		fh->fh_r_ctl = FC_RCTL_ACK_1;
1305		fh->fh_type = FC_TYPE_BLS;
1306
1307		/*
1308		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1309		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1310		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1311		 * Last ACK uses bits 7-6 (continue sequence),
1312		 * bits 5-4 are meaningful (what kind of ACK to use).
1313		 */
1314		rx_fh = fc_frame_header_get(rx_fp);
1315		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1316		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1317			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1318			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1319			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1320		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1321		hton24(fh->fh_f_ctl, f_ctl);
1322
1323		fc_exch_setup_hdr(ep, fp, f_ctl);
1324		fh->fh_seq_id = rx_fh->fh_seq_id;
1325		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1326		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1327
1328		fr_sof(fp) = fr_sof(rx_fp);
1329		if (f_ctl & FC_FC_END_SEQ)
1330			fr_eof(fp) = FC_EOF_T;
1331		else
1332			fr_eof(fp) = FC_EOF_N;
1333
1334		lport->tt.frame_send(lport, fp);
1335	}
1336}
1337
1338/**
1339 * fc_exch_send_ba_rjt() - Send BLS Reject
1340 * @rx_fp:  The frame being rejected
1341 * @reason: The reason the frame is being rejected
1342 * @explan: The explanation for the rejection
1343 *
1344 * This is for rejecting BA_ABTS only.
1345 */
1346static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1347				enum fc_ba_rjt_reason reason,
1348				enum fc_ba_rjt_explan explan)
1349{
1350	struct fc_frame *fp;
1351	struct fc_frame_header *rx_fh;
1352	struct fc_frame_header *fh;
1353	struct fc_ba_rjt *rp;
1354	struct fc_seq *sp;
1355	struct fc_lport *lport;
1356	unsigned int f_ctl;
1357
1358	lport = fr_dev(rx_fp);
1359	sp = fr_seq(rx_fp);
1360	fp = fc_frame_alloc(lport, sizeof(*rp));
1361	if (!fp) {
1362		FC_EXCH_DBG(fc_seq_exch(sp),
1363			     "Drop BA_RJT request, out of memory\n");
1364		return;
1365	}
1366	fh = fc_frame_header_get(fp);
1367	rx_fh = fc_frame_header_get(rx_fp);
1368
1369	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1370
1371	rp = fc_frame_payload_get(fp, sizeof(*rp));
1372	rp->br_reason = reason;
1373	rp->br_explan = explan;
1374
1375	/*
1376	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1377	 */
1378	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1379	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1380	fh->fh_ox_id = rx_fh->fh_ox_id;
1381	fh->fh_rx_id = rx_fh->fh_rx_id;
1382	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1383	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1384	fh->fh_type = FC_TYPE_BLS;
1385
1386	/*
1387	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1388	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1389	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1390	 * Last ACK uses bits 7-6 (continue sequence),
1391	 * bits 5-4 are meaningful (what kind of ACK to use).
1392	 * Always set LAST_SEQ, END_SEQ.
1393	 */
1394	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1395	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1396		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1397		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1398	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1399	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1400	f_ctl &= ~FC_FC_FIRST_SEQ;
1401	hton24(fh->fh_f_ctl, f_ctl);
1402
1403	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1404	fr_eof(fp) = FC_EOF_T;
1405	if (fc_sof_needs_ack(fr_sof(fp)))
1406		fr_eof(fp) = FC_EOF_N;
1407
1408	lport->tt.frame_send(lport, fp);
1409}
1410
1411/**
1412 * fc_exch_recv_abts() - Handle an incoming ABTS
1413 * @ep:	   The exchange the abort was on
1414 * @rx_fp: The ABTS frame
1415 *
1416 * This would be for target mode usually, but could be due to lost
1417 * FCP transfer ready, confirm or RRQ. We always handle this as an
1418 * exchange abort, ignoring the parameter.
1419 */
1420static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1421{
1422	struct fc_frame *fp;
1423	struct fc_ba_acc *ap;
1424	struct fc_frame_header *fh;
1425	struct fc_seq *sp;
1426
1427	if (!ep)
1428		goto reject;
1429
1430	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1431	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1432	if (!fp) {
1433		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1434		goto free;
1435	}
1436
1437	spin_lock_bh(&ep->ex_lock);
1438	if (ep->esb_stat & ESB_ST_COMPLETE) {
1439		spin_unlock_bh(&ep->ex_lock);
1440		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1441		fc_frame_free(fp);
1442		goto reject;
1443	}
1444	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1445		ep->esb_stat |= ESB_ST_REC_QUAL;
1446		fc_exch_hold(ep);		/* hold for REC_QUAL */
1447	}
1448	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1449	fh = fc_frame_header_get(fp);
1450	ap = fc_frame_payload_get(fp, sizeof(*ap));
1451	memset(ap, 0, sizeof(*ap));
1452	sp = &ep->seq;
1453	ap->ba_high_seq_cnt = htons(0xffff);
1454	if (sp->ssb_stat & SSB_ST_RESP) {
1455		ap->ba_seq_id = sp->id;
1456		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1457		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1458		ap->ba_low_seq_cnt = htons(sp->cnt);
1459	}
1460	sp = fc_seq_start_next_locked(sp);
1461	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1462	ep->esb_stat |= ESB_ST_ABNORMAL;
1463	spin_unlock_bh(&ep->ex_lock);
1464
1465free:
1466	fc_frame_free(rx_fp);
1467	return;
1468
1469reject:
1470	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1471	goto free;
1472}
1473
1474/**
1475 * fc_seq_assign() - Assign exchange and sequence for incoming request
1476 * @lport: The local port that received the request
1477 * @fp:    The request frame
1478 *
1479 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1480 * A reference will be held on the exchange/sequence for the caller, which
1481 * must call fc_seq_release().
1482 */
1483struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1484{
1485	struct fc_exch_mgr_anchor *ema;
1486
1487	WARN_ON(lport != fr_dev(fp));
1488	WARN_ON(fr_seq(fp));
1489	fr_seq(fp) = NULL;
1490
1491	list_for_each_entry(ema, &lport->ema_list, ema_list)
1492		if ((!ema->match || ema->match(fp)) &&
1493		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1494			break;
1495	return fr_seq(fp);
1496}
1497EXPORT_SYMBOL(fc_seq_assign);
1498
1499/**
1500 * fc_seq_release() - Release the hold
1501 * @sp:    The sequence.
1502 */
1503void fc_seq_release(struct fc_seq *sp)
1504{
1505	fc_exch_release(fc_seq_exch(sp));
1506}
1507EXPORT_SYMBOL(fc_seq_release);
1508
1509/**
1510 * fc_exch_recv_req() - Handler for an incoming request
1511 * @lport: The local port that received the request
1512 * @mp:	   The EM that the exchange is on
1513 * @fp:	   The request frame
1514 *
1515 * This is used when the other end is originating the exchange
1516 * and the sequence.
1517 */
1518static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1519			     struct fc_frame *fp)
1520{
1521	struct fc_frame_header *fh = fc_frame_header_get(fp);
1522	struct fc_seq *sp = NULL;
1523	struct fc_exch *ep = NULL;
1524	enum fc_pf_rjt_reason reject;
1525
1526	/* We can have the wrong fc_lport at this point with NPIV, which is a
1527	 * problem now that we know a new exchange needs to be allocated
1528	 */
1529	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1530	if (!lport) {
1531		fc_frame_free(fp);
1532		return;
1533	}
1534	fr_dev(fp) = lport;
1535
1536	BUG_ON(fr_seq(fp));		/* XXX remove later */
1537
1538	/*
1539	 * If the RX_ID is 0xffff, don't allocate an exchange.
1540	 * The upper-level protocol may request one later, if needed.
1541	 */
1542	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1543		return fc_lport_recv(lport, fp);
1544
1545	reject = fc_seq_lookup_recip(lport, mp, fp);
1546	if (reject == FC_RJT_NONE) {
1547		sp = fr_seq(fp);	/* sequence will be held */
1548		ep = fc_seq_exch(sp);
1549		fc_seq_send_ack(sp, fp);
1550		ep->encaps = fr_encaps(fp);
1551
1552		/*
1553		 * Call the receive function.
1554		 *
1555		 * The receive function may allocate a new sequence
1556		 * over the old one, so we shouldn't change the
1557		 * sequence after this.
1558		 *
1559		 * The frame will be freed by the receive function.
1560		 * If new exch resp handler is valid then call that
1561		 * first.
1562		 */
1563		if (!fc_invoke_resp(ep, sp, fp))
1564			fc_lport_recv(lport, fp);
1565		fc_exch_release(ep);	/* release from lookup */
1566	} else {
1567		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1568			     reject);
1569		fc_frame_free(fp);
1570	}
1571}
1572
1573/**
1574 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1575 *			     end is the originator of the sequence that is a
1576 *			     response to our initial exchange
1577 * @mp: The EM that the exchange is on
1578 * @fp: The response frame
1579 */
1580static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1581{
1582	struct fc_frame_header *fh = fc_frame_header_get(fp);
1583	struct fc_seq *sp;
1584	struct fc_exch *ep;
1585	enum fc_sof sof;
1586	u32 f_ctl;
1587	int rc;
1588
1589	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1590	if (!ep) {
1591		atomic_inc(&mp->stats.xid_not_found);
1592		goto out;
1593	}
1594	if (ep->esb_stat & ESB_ST_COMPLETE) {
1595		atomic_inc(&mp->stats.xid_not_found);
1596		goto rel;
1597	}
1598	if (ep->rxid == FC_XID_UNKNOWN)
1599		ep->rxid = ntohs(fh->fh_rx_id);
1600	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1601		atomic_inc(&mp->stats.xid_not_found);
1602		goto rel;
1603	}
1604	if (ep->did != ntoh24(fh->fh_s_id) &&
1605	    ep->did != FC_FID_FLOGI) {
1606		atomic_inc(&mp->stats.xid_not_found);
1607		goto rel;
1608	}
1609	sof = fr_sof(fp);
1610	sp = &ep->seq;
1611	if (fc_sof_is_init(sof)) {
1612		sp->ssb_stat |= SSB_ST_RESP;
1613		sp->id = fh->fh_seq_id;
1614	}
1615
1616	f_ctl = ntoh24(fh->fh_f_ctl);
1617	fr_seq(fp) = sp;
1618
1619	spin_lock_bh(&ep->ex_lock);
1620	if (f_ctl & FC_FC_SEQ_INIT)
1621		ep->esb_stat |= ESB_ST_SEQ_INIT;
1622	spin_unlock_bh(&ep->ex_lock);
1623
1624	if (fc_sof_needs_ack(sof))
1625		fc_seq_send_ack(sp, fp);
1626
1627	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1628	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1629	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1630		spin_lock_bh(&ep->ex_lock);
1631		rc = fc_exch_done_locked(ep);
1632		WARN_ON(fc_seq_exch(sp) != ep);
1633		spin_unlock_bh(&ep->ex_lock);
1634		if (!rc)
1635			fc_exch_delete(ep);
1636	}
1637
1638	/*
1639	 * Call the receive function.
1640	 * The sequence is held (has a refcnt) for us,
1641	 * but not for the receive function.
1642	 *
1643	 * The receive function may allocate a new sequence
1644	 * over the old one, so we shouldn't change the
1645	 * sequence after this.
1646	 *
1647	 * The frame will be freed by the receive function.
1648	 * If new exch resp handler is valid then call that
1649	 * first.
1650	 */
1651	if (!fc_invoke_resp(ep, sp, fp))
1652		fc_frame_free(fp);
1653
1654	fc_exch_release(ep);
1655	return;
1656rel:
1657	fc_exch_release(ep);
1658out:
1659	fc_frame_free(fp);
1660}
1661
1662/**
1663 * fc_exch_recv_resp() - Handler for a sequence where other end is
1664 *			 responding to our sequence
1665 * @mp: The EM that the exchange is on
1666 * @fp: The response frame
1667 */
1668static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1669{
1670	struct fc_seq *sp;
1671
1672	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1673
1674	if (!sp)
1675		atomic_inc(&mp->stats.xid_not_found);
1676	else
1677		atomic_inc(&mp->stats.non_bls_resp);
1678
1679	fc_frame_free(fp);
1680}
1681
1682/**
1683 * fc_exch_abts_resp() - Handler for a response to an ABT
1684 * @ep: The exchange that the frame is on
1685 * @fp: The response frame
1686 *
1687 * This response would be to an ABTS cancelling an exchange or sequence.
1688 * The response can be either BA_ACC or BA_RJT
1689 */
1690static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1691{
1692	struct fc_frame_header *fh;
1693	struct fc_ba_acc *ap;
1694	struct fc_seq *sp;
1695	u16 low;
1696	u16 high;
1697	int rc = 1, has_rec = 0;
1698
1699	fh = fc_frame_header_get(fp);
1700	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1701		    fc_exch_rctl_name(fh->fh_r_ctl));
1702
1703	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1704		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1705		fc_exch_release(ep);	/* release from pending timer hold */
1706	}
1707
1708	spin_lock_bh(&ep->ex_lock);
1709	switch (fh->fh_r_ctl) {
1710	case FC_RCTL_BA_ACC:
1711		ap = fc_frame_payload_get(fp, sizeof(*ap));
1712		if (!ap)
1713			break;
1714
1715		/*
1716		 * Decide whether to establish a Recovery Qualifier.
1717		 * We do this if there is a non-empty SEQ_CNT range and
1718		 * SEQ_ID is the same as the one we aborted.
1719		 */
1720		low = ntohs(ap->ba_low_seq_cnt);
1721		high = ntohs(ap->ba_high_seq_cnt);
1722		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1723		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1724		     ap->ba_seq_id == ep->seq_id) && low != high) {
1725			ep->esb_stat |= ESB_ST_REC_QUAL;
1726			fc_exch_hold(ep);  /* hold for recovery qualifier */
1727			has_rec = 1;
1728		}
1729		break;
1730	case FC_RCTL_BA_RJT:
1731		break;
1732	default:
1733		break;
1734	}
1735
1736	/* do we need to do some other checks here. Can we reuse more of
1737	 * fc_exch_recv_seq_resp
1738	 */
1739	sp = &ep->seq;
1740	/*
1741	 * do we want to check END_SEQ as well as LAST_SEQ here?
1742	 */
1743	if (ep->fh_type != FC_TYPE_FCP &&
1744	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1745		rc = fc_exch_done_locked(ep);
1746	spin_unlock_bh(&ep->ex_lock);
1747
1748	fc_exch_hold(ep);
1749	if (!rc)
1750		fc_exch_delete(ep);
1751	if (!fc_invoke_resp(ep, sp, fp))
1752		fc_frame_free(fp);
1753	if (has_rec)
1754		fc_exch_timer_set(ep, ep->r_a_tov);
1755	fc_exch_release(ep);
1756}
1757
1758/**
1759 * fc_exch_recv_bls() - Handler for a BLS sequence
1760 * @mp: The EM that the exchange is on
1761 * @fp: The request frame
1762 *
1763 * The BLS frame is always a sequence initiated by the remote side.
1764 * We may be either the originator or recipient of the exchange.
1765 */
1766static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1767{
1768	struct fc_frame_header *fh;
1769	struct fc_exch *ep;
1770	u32 f_ctl;
1771
1772	fh = fc_frame_header_get(fp);
1773	f_ctl = ntoh24(fh->fh_f_ctl);
1774	fr_seq(fp) = NULL;
1775
1776	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1777			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1778	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1779		spin_lock_bh(&ep->ex_lock);
1780		ep->esb_stat |= ESB_ST_SEQ_INIT;
1781		spin_unlock_bh(&ep->ex_lock);
1782	}
1783	if (f_ctl & FC_FC_SEQ_CTX) {
1784		/*
1785		 * A response to a sequence we initiated.
1786		 * This should only be ACKs for class 2 or F.
1787		 */
1788		switch (fh->fh_r_ctl) {
1789		case FC_RCTL_ACK_1:
1790		case FC_RCTL_ACK_0:
1791			break;
1792		default:
1793			if (ep)
1794				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1795					    fh->fh_r_ctl,
1796					    fc_exch_rctl_name(fh->fh_r_ctl));
1797			break;
1798		}
1799		fc_frame_free(fp);
1800	} else {
1801		switch (fh->fh_r_ctl) {
1802		case FC_RCTL_BA_RJT:
1803		case FC_RCTL_BA_ACC:
1804			if (ep)
1805				fc_exch_abts_resp(ep, fp);
1806			else
1807				fc_frame_free(fp);
1808			break;
1809		case FC_RCTL_BA_ABTS:
1810			if (ep)
1811				fc_exch_recv_abts(ep, fp);
1812			else
1813				fc_frame_free(fp);
1814			break;
1815		default:			/* ignore junk */
1816			fc_frame_free(fp);
1817			break;
1818		}
1819	}
1820	if (ep)
1821		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1822}
1823
1824/**
1825 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1826 * @rx_fp: The received frame, not freed here.
1827 *
1828 * If this fails due to allocation or transmit congestion, assume the
1829 * originator will repeat the sequence.
1830 */
1831static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1832{
1833	struct fc_lport *lport;
1834	struct fc_els_ls_acc *acc;
1835	struct fc_frame *fp;
1836	struct fc_seq *sp;
1837
1838	lport = fr_dev(rx_fp);
1839	sp = fr_seq(rx_fp);
1840	fp = fc_frame_alloc(lport, sizeof(*acc));
1841	if (!fp) {
1842		FC_EXCH_DBG(fc_seq_exch(sp),
1843			    "exch: drop LS_ACC, out of memory\n");
1844		return;
1845	}
1846	acc = fc_frame_payload_get(fp, sizeof(*acc));
1847	memset(acc, 0, sizeof(*acc));
1848	acc->la_cmd = ELS_LS_ACC;
1849	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1850	lport->tt.frame_send(lport, fp);
1851}
1852
1853/**
1854 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1855 * @rx_fp: The received frame, not freed here.
1856 * @reason: The reason the sequence is being rejected
1857 * @explan: The explanation for the rejection
1858 *
1859 * If this fails due to allocation or transmit congestion, assume the
1860 * originator will repeat the sequence.
1861 */
1862static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1863			  enum fc_els_rjt_explan explan)
1864{
1865	struct fc_lport *lport;
1866	struct fc_els_ls_rjt *rjt;
1867	struct fc_frame *fp;
1868	struct fc_seq *sp;
1869
1870	lport = fr_dev(rx_fp);
1871	sp = fr_seq(rx_fp);
1872	fp = fc_frame_alloc(lport, sizeof(*rjt));
1873	if (!fp) {
1874		FC_EXCH_DBG(fc_seq_exch(sp),
1875			    "exch: drop LS_ACC, out of memory\n");
1876		return;
1877	}
1878	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1879	memset(rjt, 0, sizeof(*rjt));
1880	rjt->er_cmd = ELS_LS_RJT;
1881	rjt->er_reason = reason;
1882	rjt->er_explan = explan;
1883	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1884	lport->tt.frame_send(lport, fp);
1885}
1886
1887/**
1888 * fc_exch_reset() - Reset an exchange
1889 * @ep: The exchange to be reset
1890 *
1891 * Note: May sleep if invoked from outside a response handler.
1892 */
1893static void fc_exch_reset(struct fc_exch *ep)
1894{
1895	struct fc_seq *sp;
1896	int rc = 1;
1897
1898	spin_lock_bh(&ep->ex_lock);
1899	ep->state |= FC_EX_RST_CLEANUP;
1900	fc_exch_timer_cancel(ep);
1901	if (ep->esb_stat & ESB_ST_REC_QUAL)
1902		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1903	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1904	sp = &ep->seq;
1905	rc = fc_exch_done_locked(ep);
1906	spin_unlock_bh(&ep->ex_lock);
1907
1908	fc_exch_hold(ep);
1909
1910	if (!rc)
1911		fc_exch_delete(ep);
1912
1913	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1914	fc_seq_set_resp(sp, NULL, ep->arg);
1915	fc_exch_release(ep);
1916}
1917
1918/**
1919 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1920 * @lport: The local port that the exchange pool is on
1921 * @pool:  The exchange pool to be reset
1922 * @sid:   The source ID
1923 * @did:   The destination ID
1924 *
1925 * Resets a per cpu exches pool, releasing all of its sequences
1926 * and exchanges. If sid is non-zero then reset only exchanges
1927 * we sourced from the local port's FID. If did is non-zero then
1928 * only reset exchanges destined for the local port's FID.
1929 */
1930static void fc_exch_pool_reset(struct fc_lport *lport,
1931			       struct fc_exch_pool *pool,
1932			       u32 sid, u32 did)
1933{
1934	struct fc_exch *ep;
1935	struct fc_exch *next;
1936
1937	spin_lock_bh(&pool->lock);
1938restart:
1939	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1940		if ((lport == ep->lp) &&
1941		    (sid == 0 || sid == ep->sid) &&
1942		    (did == 0 || did == ep->did)) {
1943			fc_exch_hold(ep);
1944			spin_unlock_bh(&pool->lock);
1945
1946			fc_exch_reset(ep);
1947
1948			fc_exch_release(ep);
1949			spin_lock_bh(&pool->lock);
1950
1951			/*
1952			 * must restart loop incase while lock
1953			 * was down multiple eps were released.
1954			 */
1955			goto restart;
1956		}
1957	}
1958	pool->next_index = 0;
1959	pool->left = FC_XID_UNKNOWN;
1960	pool->right = FC_XID_UNKNOWN;
1961	spin_unlock_bh(&pool->lock);
1962}
1963
1964/**
1965 * fc_exch_mgr_reset() - Reset all EMs of a local port
1966 * @lport: The local port whose EMs are to be reset
1967 * @sid:   The source ID
1968 * @did:   The destination ID
1969 *
1970 * Reset all EMs associated with a given local port. Release all
1971 * sequences and exchanges. If sid is non-zero then reset only the
1972 * exchanges sent from the local port's FID. If did is non-zero then
1973 * reset only exchanges destined for the local port's FID.
1974 */
1975void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1976{
1977	struct fc_exch_mgr_anchor *ema;
1978	unsigned int cpu;
1979
1980	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1981		for_each_possible_cpu(cpu)
1982			fc_exch_pool_reset(lport,
1983					   per_cpu_ptr(ema->mp->pool, cpu),
1984					   sid, did);
1985	}
1986}
1987EXPORT_SYMBOL(fc_exch_mgr_reset);
1988
1989/**
1990 * fc_exch_lookup() - find an exchange
1991 * @lport: The local port
1992 * @xid: The exchange ID
1993 *
1994 * Returns exchange pointer with hold for caller, or NULL if not found.
1995 */
1996static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1997{
1998	struct fc_exch_mgr_anchor *ema;
1999
2000	list_for_each_entry(ema, &lport->ema_list, ema_list)
2001		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2002			return fc_exch_find(ema->mp, xid);
2003	return NULL;
2004}
2005
2006/**
2007 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2008 * @rfp: The REC frame, not freed here.
2009 *
2010 * Note that the requesting port may be different than the S_ID in the request.
2011 */
2012static void fc_exch_els_rec(struct fc_frame *rfp)
2013{
2014	struct fc_lport *lport;
2015	struct fc_frame *fp;
2016	struct fc_exch *ep;
2017	struct fc_els_rec *rp;
2018	struct fc_els_rec_acc *acc;
2019	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2020	enum fc_els_rjt_explan explan;
2021	u32 sid;
2022	u16 xid, rxid, oxid;
2023
2024	lport = fr_dev(rfp);
2025	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2026	explan = ELS_EXPL_INV_LEN;
2027	if (!rp)
2028		goto reject;
2029	sid = ntoh24(rp->rec_s_id);
2030	rxid = ntohs(rp->rec_rx_id);
2031	oxid = ntohs(rp->rec_ox_id);
2032
2033	explan = ELS_EXPL_OXID_RXID;
2034	if (sid == fc_host_port_id(lport->host))
2035		xid = oxid;
2036	else
2037		xid = rxid;
2038	if (xid == FC_XID_UNKNOWN) {
2039		FC_LPORT_DBG(lport,
2040			     "REC request from %x: invalid rxid %x oxid %x\n",
2041			     sid, rxid, oxid);
2042		goto reject;
2043	}
2044	ep = fc_exch_lookup(lport, xid);
2045	if (!ep) {
2046		FC_LPORT_DBG(lport,
2047			     "REC request from %x: rxid %x oxid %x not found\n",
2048			     sid, rxid, oxid);
2049		goto reject;
2050	}
2051	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2052		    sid, rxid, oxid);
2053	if (ep->oid != sid || oxid != ep->oxid)
2054		goto rel;
2055	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2056		goto rel;
2057	fp = fc_frame_alloc(lport, sizeof(*acc));
2058	if (!fp) {
2059		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2060		goto out;
2061	}
2062
2063	acc = fc_frame_payload_get(fp, sizeof(*acc));
2064	memset(acc, 0, sizeof(*acc));
2065	acc->reca_cmd = ELS_LS_ACC;
2066	acc->reca_ox_id = rp->rec_ox_id;
2067	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2068	acc->reca_rx_id = htons(ep->rxid);
2069	if (ep->sid == ep->oid)
2070		hton24(acc->reca_rfid, ep->did);
2071	else
2072		hton24(acc->reca_rfid, ep->sid);
2073	acc->reca_fc4value = htonl(ep->seq.rec_data);
2074	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2075						 ESB_ST_SEQ_INIT |
2076						 ESB_ST_COMPLETE));
2077	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2078	lport->tt.frame_send(lport, fp);
2079out:
2080	fc_exch_release(ep);
2081	return;
2082
2083rel:
2084	fc_exch_release(ep);
2085reject:
2086	fc_seq_ls_rjt(rfp, reason, explan);
2087}
2088
2089/**
2090 * fc_exch_rrq_resp() - Handler for RRQ responses
2091 * @sp:	 The sequence that the RRQ is on
2092 * @fp:	 The RRQ frame
2093 * @arg: The exchange that the RRQ is on
2094 *
2095 * TODO: fix error handler.
2096 */
2097static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2098{
2099	struct fc_exch *aborted_ep = arg;
2100	unsigned int op;
2101
2102	if (IS_ERR(fp)) {
2103		int err = PTR_ERR(fp);
2104
2105		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2106			goto cleanup;
2107		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2108			    "frame error %d\n", err);
2109		return;
2110	}
2111
2112	op = fc_frame_payload_op(fp);
2113	fc_frame_free(fp);
2114
2115	switch (op) {
2116	case ELS_LS_RJT:
2117		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2118		/* fall through */
2119	case ELS_LS_ACC:
2120		goto cleanup;
2121	default:
2122		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2123			    op);
2124		return;
2125	}
2126
2127cleanup:
2128	fc_exch_done(&aborted_ep->seq);
2129	/* drop hold for rec qual */
2130	fc_exch_release(aborted_ep);
2131}
2132
2133
2134/**
2135 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2136 * @lport:	The local port to send the frame on
2137 * @fp:		The frame to be sent
2138 * @resp:	The response handler for this request
2139 * @destructor: The destructor for the exchange
2140 * @arg:	The argument to be passed to the response handler
2141 * @timer_msec: The timeout period for the exchange
2142 *
2143 * The exchange response handler is set in this routine to resp()
2144 * function pointer. It can be called in two scenarios: if a timeout
2145 * occurs or if a response frame is received for the exchange. The
2146 * fc_frame pointer in response handler will also indicate timeout
2147 * as error using IS_ERR related macros.
2148 *
2149 * The exchange destructor handler is also set in this routine.
2150 * The destructor handler is invoked by EM layer when exchange
2151 * is about to free, this can be used by caller to free its
2152 * resources along with exchange free.
2153 *
2154 * The arg is passed back to resp and destructor handler.
2155 *
2156 * The timeout value (in msec) for an exchange is set if non zero
2157 * timer_msec argument is specified. The timer is canceled when
2158 * it fires or when the exchange is done. The exchange timeout handler
2159 * is registered by EM layer.
2160 *
2161 * The frame pointer with some of the header's fields must be
2162 * filled before calling this routine, those fields are:
2163 *
2164 * - routing control
2165 * - FC port did
2166 * - FC port sid
2167 * - FC header type
2168 * - frame control
2169 * - parameter or relative offset
2170 */
2171struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2172				struct fc_frame *fp,
2173				void (*resp)(struct fc_seq *,
2174					     struct fc_frame *fp,
2175					     void *arg),
2176				void (*destructor)(struct fc_seq *, void *),
2177				void *arg, u32 timer_msec)
2178{
2179	struct fc_exch *ep;
2180	struct fc_seq *sp = NULL;
2181	struct fc_frame_header *fh;
2182	struct fc_fcp_pkt *fsp = NULL;
2183	int rc = 1;
2184
2185	ep = fc_exch_alloc(lport, fp);
2186	if (!ep) {
2187		fc_frame_free(fp);
2188		return NULL;
2189	}
2190	ep->esb_stat |= ESB_ST_SEQ_INIT;
2191	fh = fc_frame_header_get(fp);
2192	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2193	ep->resp = resp;
2194	ep->destructor = destructor;
2195	ep->arg = arg;
2196	ep->r_a_tov = lport->r_a_tov;
2197	ep->lp = lport;
2198	sp = &ep->seq;
2199
2200	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2201	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2202	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2203	sp->cnt++;
2204
2205	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2206		fsp = fr_fsp(fp);
2207		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2208	}
2209
2210	if (unlikely(lport->tt.frame_send(lport, fp)))
2211		goto err;
2212
2213	if (timer_msec)
2214		fc_exch_timer_set_locked(ep, timer_msec);
2215	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2216
2217	if (ep->f_ctl & FC_FC_SEQ_INIT)
2218		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2219	spin_unlock_bh(&ep->ex_lock);
2220	return sp;
2221err:
2222	if (fsp)
2223		fc_fcp_ddp_done(fsp);
2224	rc = fc_exch_done_locked(ep);
2225	spin_unlock_bh(&ep->ex_lock);
2226	if (!rc)
2227		fc_exch_delete(ep);
2228	return NULL;
2229}
2230EXPORT_SYMBOL(fc_exch_seq_send);
2231
2232/**
2233 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2234 * @ep: The exchange to send the RRQ on
2235 *
2236 * This tells the remote port to stop blocking the use of
2237 * the exchange and the seq_cnt range.
2238 */
2239static void fc_exch_rrq(struct fc_exch *ep)
2240{
2241	struct fc_lport *lport;
2242	struct fc_els_rrq *rrq;
2243	struct fc_frame *fp;
2244	u32 did;
2245
2246	lport = ep->lp;
2247
2248	fp = fc_frame_alloc(lport, sizeof(*rrq));
2249	if (!fp)
2250		goto retry;
2251
2252	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2253	memset(rrq, 0, sizeof(*rrq));
2254	rrq->rrq_cmd = ELS_RRQ;
2255	hton24(rrq->rrq_s_id, ep->sid);
2256	rrq->rrq_ox_id = htons(ep->oxid);
2257	rrq->rrq_rx_id = htons(ep->rxid);
2258
2259	did = ep->did;
2260	if (ep->esb_stat & ESB_ST_RESP)
2261		did = ep->sid;
2262
2263	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2264		       lport->port_id, FC_TYPE_ELS,
2265		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2266
2267	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2268			     lport->e_d_tov))
2269		return;
2270
2271retry:
2272	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2273	spin_lock_bh(&ep->ex_lock);
2274	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2275		spin_unlock_bh(&ep->ex_lock);
2276		/* drop hold for rec qual */
2277		fc_exch_release(ep);
2278		return;
2279	}
2280	ep->esb_stat |= ESB_ST_REC_QUAL;
2281	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2282	spin_unlock_bh(&ep->ex_lock);
2283}
2284
2285/**
2286 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2287 * @fp: The RRQ frame, not freed here.
2288 */
2289static void fc_exch_els_rrq(struct fc_frame *fp)
2290{
2291	struct fc_lport *lport;
2292	struct fc_exch *ep = NULL;	/* request or subject exchange */
2293	struct fc_els_rrq *rp;
2294	u32 sid;
2295	u16 xid;
2296	enum fc_els_rjt_explan explan;
2297
2298	lport = fr_dev(fp);
2299	rp = fc_frame_payload_get(fp, sizeof(*rp));
2300	explan = ELS_EXPL_INV_LEN;
2301	if (!rp)
2302		goto reject;
2303
2304	/*
2305	 * lookup subject exchange.
2306	 */
2307	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2308	xid = fc_host_port_id(lport->host) == sid ?
2309			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2310	ep = fc_exch_lookup(lport, xid);
2311	explan = ELS_EXPL_OXID_RXID;
2312	if (!ep)
2313		goto reject;
2314	spin_lock_bh(&ep->ex_lock);
2315	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2316		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2317	if (ep->oxid != ntohs(rp->rrq_ox_id))
2318		goto unlock_reject;
2319	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2320	    ep->rxid != FC_XID_UNKNOWN)
2321		goto unlock_reject;
2322	explan = ELS_EXPL_SID;
2323	if (ep->sid != sid)
2324		goto unlock_reject;
2325
2326	/*
2327	 * Clear Recovery Qualifier state, and cancel timer if complete.
2328	 */
2329	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2330		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2331		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2332	}
2333	if (ep->esb_stat & ESB_ST_COMPLETE)
2334		fc_exch_timer_cancel(ep);
2335
2336	spin_unlock_bh(&ep->ex_lock);
2337
2338	/*
2339	 * Send LS_ACC.
2340	 */
2341	fc_seq_ls_acc(fp);
2342	goto out;
2343
2344unlock_reject:
2345	spin_unlock_bh(&ep->ex_lock);
2346reject:
2347	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2348out:
2349	if (ep)
2350		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2351}
2352
2353/**
2354 * fc_exch_update_stats() - update exches stats to lport
2355 * @lport: The local port to update exchange manager stats
2356 */
2357void fc_exch_update_stats(struct fc_lport *lport)
2358{
2359	struct fc_host_statistics *st;
2360	struct fc_exch_mgr_anchor *ema;
2361	struct fc_exch_mgr *mp;
2362
2363	st = &lport->host_stats;
2364
2365	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2366		mp = ema->mp;
2367		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2368		st->fc_no_free_exch_xid +=
2369				atomic_read(&mp->stats.no_free_exch_xid);
2370		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2371		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2372		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2373		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2374	}
2375}
2376EXPORT_SYMBOL(fc_exch_update_stats);
2377
2378/**
2379 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2380 * @lport: The local port to add the exchange manager to
2381 * @mp:	   The exchange manager to be added to the local port
2382 * @match: The match routine that indicates when this EM should be used
2383 */
2384struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2385					   struct fc_exch_mgr *mp,
2386					   bool (*match)(struct fc_frame *))
2387{
2388	struct fc_exch_mgr_anchor *ema;
2389
2390	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2391	if (!ema)
2392		return ema;
2393
2394	ema->mp = mp;
2395	ema->match = match;
2396	/* add EM anchor to EM anchors list */
2397	list_add_tail(&ema->ema_list, &lport->ema_list);
2398	kref_get(&mp->kref);
2399	return ema;
2400}
2401EXPORT_SYMBOL(fc_exch_mgr_add);
2402
2403/**
2404 * fc_exch_mgr_destroy() - Destroy an exchange manager
2405 * @kref: The reference to the EM to be destroyed
2406 */
2407static void fc_exch_mgr_destroy(struct kref *kref)
2408{
2409	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2410
2411	mempool_destroy(mp->ep_pool);
2412	free_percpu(mp->pool);
2413	kfree(mp);
2414}
2415
2416/**
2417 * fc_exch_mgr_del() - Delete an EM from a local port's list
2418 * @ema: The exchange manager anchor identifying the EM to be deleted
2419 */
2420void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2421{
2422	/* remove EM anchor from EM anchors list */
2423	list_del(&ema->ema_list);
2424	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2425	kfree(ema);
2426}
2427EXPORT_SYMBOL(fc_exch_mgr_del);
2428
2429/**
2430 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2431 * @src: Source lport to clone exchange managers from
2432 * @dst: New lport that takes references to all the exchange managers
2433 */
2434int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2435{
2436	struct fc_exch_mgr_anchor *ema, *tmp;
2437
2438	list_for_each_entry(ema, &src->ema_list, ema_list) {
2439		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2440			goto err;
2441	}
2442	return 0;
2443err:
2444	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2445		fc_exch_mgr_del(ema);
2446	return -ENOMEM;
2447}
2448EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2449
2450/**
2451 * fc_exch_mgr_alloc() - Allocate an exchange manager
2452 * @lport:   The local port that the new EM will be associated with
2453 * @class:   The default FC class for new exchanges
2454 * @min_xid: The minimum XID for exchanges from the new EM
2455 * @max_xid: The maximum XID for exchanges from the new EM
2456 * @match:   The match routine for the new EM
2457 */
2458struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2459				      enum fc_class class,
2460				      u16 min_xid, u16 max_xid,
2461				      bool (*match)(struct fc_frame *))
2462{
2463	struct fc_exch_mgr *mp;
2464	u16 pool_exch_range;
2465	size_t pool_size;
2466	unsigned int cpu;
2467	struct fc_exch_pool *pool;
2468
2469	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2470	    (min_xid & fc_cpu_mask) != 0) {
2471		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2472			     min_xid, max_xid);
2473		return NULL;
2474	}
2475
2476	/*
2477	 * allocate memory for EM
2478	 */
2479	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2480	if (!mp)
2481		return NULL;
2482
2483	mp->class = class;
2484	mp->lport = lport;
2485	/* adjust em exch xid range for offload */
2486	mp->min_xid = min_xid;
2487
2488       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2489	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2490		sizeof(struct fc_exch *);
2491	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2492		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2493			min_xid - 1;
2494	} else {
2495		mp->max_xid = max_xid;
2496		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2497			(fc_cpu_mask + 1);
2498	}
2499
2500	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2501	if (!mp->ep_pool)
2502		goto free_mp;
2503
2504	/*
2505	 * Setup per cpu exch pool with entire exchange id range equally
2506	 * divided across all cpus. The exch pointers array memory is
2507	 * allocated for exch range per pool.
2508	 */
2509	mp->pool_max_index = pool_exch_range - 1;
2510
2511	/*
2512	 * Allocate and initialize per cpu exch pool
2513	 */
2514	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2515	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2516	if (!mp->pool)
2517		goto free_mempool;
2518	for_each_possible_cpu(cpu) {
2519		pool = per_cpu_ptr(mp->pool, cpu);
2520		pool->next_index = 0;
2521		pool->left = FC_XID_UNKNOWN;
2522		pool->right = FC_XID_UNKNOWN;
2523		spin_lock_init(&pool->lock);
2524		INIT_LIST_HEAD(&pool->ex_list);
2525	}
2526
2527	kref_init(&mp->kref);
2528	if (!fc_exch_mgr_add(lport, mp, match)) {
2529		free_percpu(mp->pool);
2530		goto free_mempool;
2531	}
2532
2533	/*
2534	 * Above kref_init() sets mp->kref to 1 and then
2535	 * call to fc_exch_mgr_add incremented mp->kref again,
2536	 * so adjust that extra increment.
2537	 */
2538	kref_put(&mp->kref, fc_exch_mgr_destroy);
2539	return mp;
2540
2541free_mempool:
2542	mempool_destroy(mp->ep_pool);
2543free_mp:
2544	kfree(mp);
2545	return NULL;
2546}
2547EXPORT_SYMBOL(fc_exch_mgr_alloc);
2548
2549/**
2550 * fc_exch_mgr_free() - Free all exchange managers on a local port
2551 * @lport: The local port whose EMs are to be freed
2552 */
2553void fc_exch_mgr_free(struct fc_lport *lport)
2554{
2555	struct fc_exch_mgr_anchor *ema, *next;
2556
2557	flush_workqueue(fc_exch_workqueue);
2558	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2559		fc_exch_mgr_del(ema);
2560}
2561EXPORT_SYMBOL(fc_exch_mgr_free);
2562
2563/**
2564 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2565 * upon 'xid'.
2566 * @f_ctl: f_ctl
2567 * @lport: The local port the frame was received on
2568 * @fh: The received frame header
2569 */
2570static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2571					      struct fc_lport *lport,
2572					      struct fc_frame_header *fh)
2573{
2574	struct fc_exch_mgr_anchor *ema;
2575	u16 xid;
2576
2577	if (f_ctl & FC_FC_EX_CTX)
2578		xid = ntohs(fh->fh_ox_id);
2579	else {
2580		xid = ntohs(fh->fh_rx_id);
2581		if (xid == FC_XID_UNKNOWN)
2582			return list_entry(lport->ema_list.prev,
2583					  typeof(*ema), ema_list);
2584	}
2585
2586	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2587		if ((xid >= ema->mp->min_xid) &&
2588		    (xid <= ema->mp->max_xid))
2589			return ema;
2590	}
2591	return NULL;
2592}
2593/**
2594 * fc_exch_recv() - Handler for received frames
2595 * @lport: The local port the frame was received on
2596 * @fp:	The received frame
2597 */
2598void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2599{
2600	struct fc_frame_header *fh = fc_frame_header_get(fp);
2601	struct fc_exch_mgr_anchor *ema;
2602	u32 f_ctl;
2603
2604	/* lport lock ? */
2605	if (!lport || lport->state == LPORT_ST_DISABLED) {
2606		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2607			     "has not been initialized correctly\n");
2608		fc_frame_free(fp);
2609		return;
2610	}
2611
2612	f_ctl = ntoh24(fh->fh_f_ctl);
2613	ema = fc_find_ema(f_ctl, lport, fh);
2614	if (!ema) {
2615		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2616				    "fc_ctl <0x%x>, xid <0x%x>\n",
2617				     f_ctl,
2618				     (f_ctl & FC_FC_EX_CTX) ?
2619				     ntohs(fh->fh_ox_id) :
2620				     ntohs(fh->fh_rx_id));
2621		fc_frame_free(fp);
2622		return;
2623	}
2624
2625	/*
2626	 * If frame is marked invalid, just drop it.
2627	 */
2628	switch (fr_eof(fp)) {
2629	case FC_EOF_T:
2630		if (f_ctl & FC_FC_END_SEQ)
2631			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2632		/* fall through */
2633	case FC_EOF_N:
2634		if (fh->fh_type == FC_TYPE_BLS)
2635			fc_exch_recv_bls(ema->mp, fp);
2636		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2637			 FC_FC_EX_CTX)
2638			fc_exch_recv_seq_resp(ema->mp, fp);
2639		else if (f_ctl & FC_FC_SEQ_CTX)
2640			fc_exch_recv_resp(ema->mp, fp);
2641		else	/* no EX_CTX and no SEQ_CTX */
2642			fc_exch_recv_req(lport, ema->mp, fp);
2643		break;
2644	default:
2645		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2646			     fr_eof(fp));
2647		fc_frame_free(fp);
2648	}
2649}
2650EXPORT_SYMBOL(fc_exch_recv);
2651
2652/**
2653 * fc_exch_init() - Initialize the exchange layer for a local port
2654 * @lport: The local port to initialize the exchange layer for
2655 */
2656int fc_exch_init(struct fc_lport *lport)
2657{
2658	if (!lport->tt.exch_mgr_reset)
2659		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2660
2661	return 0;
2662}
2663EXPORT_SYMBOL(fc_exch_init);
2664
2665/**
2666 * fc_setup_exch_mgr() - Setup an exchange manager
2667 */
2668int fc_setup_exch_mgr(void)
2669{
2670	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2671					 0, SLAB_HWCACHE_ALIGN, NULL);
2672	if (!fc_em_cachep)
2673		return -ENOMEM;
2674
2675	/*
2676	 * Initialize fc_cpu_mask and fc_cpu_order. The
2677	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2678	 * to order of 2's * power and order is stored
2679	 * in fc_cpu_order as this is later required in
2680	 * mapping between an exch id and exch array index
2681	 * in per cpu exch pool.
2682	 *
2683	 * This round up is required to align fc_cpu_mask
2684	 * to exchange id's lower bits such that all incoming
2685	 * frames of an exchange gets delivered to the same
2686	 * cpu on which exchange originated by simple bitwise
2687	 * AND operation between fc_cpu_mask and exchange id.
2688	 */
2689	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2690	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2691
2692	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2693	if (!fc_exch_workqueue)
2694		goto err;
2695	return 0;
2696err:
2697	kmem_cache_destroy(fc_em_cachep);
2698	return -ENOMEM;
2699}
2700
2701/**
2702 * fc_destroy_exch_mgr() - Destroy an exchange manager
2703 */
2704void fc_destroy_exch_mgr(void)
2705{
2706	destroy_workqueue(fc_exch_workqueue);
2707	kmem_cache_destroy(fc_em_cachep);
2708}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
  23#include <scsi/fc_encode.h>
  24
  25#include "fc_libfc.h"
  26
  27u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  28EXPORT_SYMBOL(fc_cpu_mask);
  29static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  30static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  31static struct workqueue_struct *fc_exch_workqueue;
  32
  33/*
  34 * Structure and function definitions for managing Fibre Channel Exchanges
  35 * and Sequences.
  36 *
  37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  38 *
  39 * fc_exch_mgr holds the exchange state for an N port
  40 *
  41 * fc_exch holds state for one exchange and links to its active sequence.
  42 *
  43 * fc_seq holds the state for an individual sequence.
  44 */
  45
  46/**
  47 * struct fc_exch_pool - Per cpu exchange pool
  48 * @next_index:	  Next possible free exchange index
  49 * @total_exches: Total allocated exchanges
  50 * @lock:	  Exch pool lock
  51 * @ex_list:	  List of exchanges
  52 *
  53 * This structure manages per cpu exchanges in array of exchange pointers.
  54 * This array is allocated followed by struct fc_exch_pool memory for
  55 * assigned range of exchanges to per cpu pool.
  56 */
  57struct fc_exch_pool {
  58	spinlock_t	 lock;
  59	struct list_head ex_list;
  60	u16		 next_index;
  61	u16		 total_exches;
  62
  63	/* two cache of free slot in exch array */
  64	u16		 left;
  65	u16		 right;
  66} ____cacheline_aligned_in_smp;
  67
  68/**
  69 * struct fc_exch_mgr - The Exchange Manager (EM).
  70 * @class:	    Default class for new sequences
  71 * @kref:	    Reference counter
  72 * @min_xid:	    Minimum exchange ID
  73 * @max_xid:	    Maximum exchange ID
  74 * @ep_pool:	    Reserved exchange pointers
  75 * @pool_max_index: Max exch array index in exch pool
  76 * @pool:	    Per cpu exch pool
  77 * @stats:	    Statistics structure
  78 *
  79 * This structure is the center for creating exchanges and sequences.
  80 * It manages the allocation of exchange IDs.
  81 */
  82struct fc_exch_mgr {
  83	struct fc_exch_pool __percpu *pool;
  84	mempool_t	*ep_pool;
  85	struct fc_lport	*lport;
  86	enum fc_class	class;
  87	struct kref	kref;
  88	u16		min_xid;
  89	u16		max_xid;
  90	u16		pool_max_index;
  91
  92	struct {
  93		atomic_t no_free_exch;
  94		atomic_t no_free_exch_xid;
  95		atomic_t xid_not_found;
  96		atomic_t xid_busy;
  97		atomic_t seq_not_found;
  98		atomic_t non_bls_resp;
  99	} stats;
 100};
 101
 102/**
 103 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 104 * @ema_list: Exchange Manager Anchor list
 105 * @mp:	      Exchange Manager associated with this anchor
 106 * @match:    Routine to determine if this anchor's EM should be used
 107 *
 108 * When walking the list of anchors the match routine will be called
 109 * for each anchor to determine if that EM should be used. The last
 110 * anchor in the list will always match to handle any exchanges not
 111 * handled by other EMs. The non-default EMs would be added to the
 112 * anchor list by HW that provides offloads.
 113 */
 114struct fc_exch_mgr_anchor {
 115	struct list_head ema_list;
 116	struct fc_exch_mgr *mp;
 117	bool (*match)(struct fc_frame *);
 118};
 119
 120static void fc_exch_rrq(struct fc_exch *);
 121static void fc_seq_ls_acc(struct fc_frame *);
 122static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 123			  enum fc_els_rjt_explan);
 124static void fc_exch_els_rec(struct fc_frame *);
 125static void fc_exch_els_rrq(struct fc_frame *);
 126
 127/*
 128 * Internal implementation notes.
 129 *
 130 * The exchange manager is one by default in libfc but LLD may choose
 131 * to have one per CPU. The sequence manager is one per exchange manager
 132 * and currently never separated.
 133 *
 134 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 135 * assigned by the Sequence Initiator that shall be unique for a specific
 136 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 137 * qualified by exchange ID, which one might think it would be.
 138 * In practice this limits the number of open sequences and exchanges to 256
 139 * per session.	 For most targets we could treat this limit as per exchange.
 140 *
 141 * The exchange and its sequence are freed when the last sequence is received.
 142 * It's possible for the remote port to leave an exchange open without
 143 * sending any sequences.
 144 *
 145 * Notes on reference counts:
 146 *
 147 * Exchanges are reference counted and exchange gets freed when the reference
 148 * count becomes zero.
 149 *
 150 * Timeouts:
 151 * Sequences are timed out for E_D_TOV and R_A_TOV.
 152 *
 153 * Sequence event handling:
 154 *
 155 * The following events may occur on initiator sequences:
 156 *
 157 *	Send.
 158 *	    For now, the whole thing is sent.
 159 *	Receive ACK
 160 *	    This applies only to class F.
 161 *	    The sequence is marked complete.
 162 *	ULP completion.
 163 *	    The upper layer calls fc_exch_done() when done
 164 *	    with exchange and sequence tuple.
 165 *	RX-inferred completion.
 166 *	    When we receive the next sequence on the same exchange, we can
 167 *	    retire the previous sequence ID.  (XXX not implemented).
 168 *	Timeout.
 169 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 170 *	    E_D_TOV causes abort and calls upper layer response handler
 171 *	    with FC_EX_TIMEOUT error.
 172 *	Receive RJT
 173 *	    XXX defer.
 174 *	Send ABTS
 175 *	    On timeout.
 176 *
 177 * The following events may occur on recipient sequences:
 178 *
 179 *	Receive
 180 *	    Allocate sequence for first frame received.
 181 *	    Hold during receive handler.
 182 *	    Release when final frame received.
 183 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 184 *	Receive ABTS
 185 *	    Deallocate sequence
 186 *	Send RJT
 187 *	    Deallocate
 188 *
 189 * For now, we neglect conditions where only part of a sequence was
 190 * received or transmitted, or where out-of-order receipt is detected.
 191 */
 192
 193/*
 194 * Locking notes:
 195 *
 196 * The EM code run in a per-CPU worker thread.
 197 *
 198 * To protect against concurrency between a worker thread code and timers,
 199 * sequence allocation and deallocation must be locked.
 200 *  - exchange refcnt can be done atomicly without locks.
 201 *  - sequence allocation must be locked by exch lock.
 202 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 203 *    EM pool lock must be taken before the ex_lock.
 204 */
 205
 206/*
 207 * opcode names for debugging.
 208 */
 209static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 210
 211/**
 212 * fc_exch_name_lookup() - Lookup name by opcode
 213 * @op:	       Opcode to be looked up
 214 * @table:     Opcode/name table
 215 * @max_index: Index not to be exceeded
 216 *
 217 * This routine is used to determine a human-readable string identifying
 218 * a R_CTL opcode.
 219 */
 220static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 221					      unsigned int max_index)
 222{
 223	const char *name = NULL;
 224
 225	if (op < max_index)
 226		name = table[op];
 227	if (!name)
 228		name = "unknown";
 229	return name;
 230}
 231
 232/**
 233 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 234 * @op: The opcode to be looked up
 235 */
 236static const char *fc_exch_rctl_name(unsigned int op)
 237{
 238	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 239				   ARRAY_SIZE(fc_exch_rctl_names));
 240}
 241
 242/**
 243 * fc_exch_hold() - Increment an exchange's reference count
 244 * @ep: Echange to be held
 245 */
 246static inline void fc_exch_hold(struct fc_exch *ep)
 247{
 248	atomic_inc(&ep->ex_refcnt);
 249}
 250
 251/**
 252 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 253 *			 and determine SOF and EOF.
 254 * @ep:	   The exchange to that will use the header
 255 * @fp:	   The frame whose header is to be modified
 256 * @f_ctl: F_CTL bits that will be used for the frame header
 257 *
 258 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 259 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 260 */
 261static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 262			      u32 f_ctl)
 263{
 264	struct fc_frame_header *fh = fc_frame_header_get(fp);
 265	u16 fill;
 266
 267	fr_sof(fp) = ep->class;
 268	if (ep->seq.cnt)
 269		fr_sof(fp) = fc_sof_normal(ep->class);
 270
 271	if (f_ctl & FC_FC_END_SEQ) {
 272		fr_eof(fp) = FC_EOF_T;
 273		if (fc_sof_needs_ack(ep->class))
 274			fr_eof(fp) = FC_EOF_N;
 275		/*
 276		 * From F_CTL.
 277		 * The number of fill bytes to make the length a 4-byte
 278		 * multiple is the low order 2-bits of the f_ctl.
 279		 * The fill itself will have been cleared by the frame
 280		 * allocation.
 281		 * After this, the length will be even, as expected by
 282		 * the transport.
 283		 */
 284		fill = fr_len(fp) & 3;
 285		if (fill) {
 286			fill = 4 - fill;
 287			/* TODO, this may be a problem with fragmented skb */
 288			skb_put(fp_skb(fp), fill);
 289			hton24(fh->fh_f_ctl, f_ctl | fill);
 290		}
 291	} else {
 292		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 293		fr_eof(fp) = FC_EOF_N;
 294	}
 295
 296	/* Initialize remaining fh fields from fc_fill_fc_hdr */
 297	fh->fh_ox_id = htons(ep->oxid);
 298	fh->fh_rx_id = htons(ep->rxid);
 299	fh->fh_seq_id = ep->seq.id;
 300	fh->fh_seq_cnt = htons(ep->seq.cnt);
 301}
 302
 303/**
 304 * fc_exch_release() - Decrement an exchange's reference count
 305 * @ep: Exchange to be released
 306 *
 307 * If the reference count reaches zero and the exchange is complete,
 308 * it is freed.
 309 */
 310static void fc_exch_release(struct fc_exch *ep)
 311{
 312	struct fc_exch_mgr *mp;
 313
 314	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 315		mp = ep->em;
 316		if (ep->destructor)
 317			ep->destructor(&ep->seq, ep->arg);
 318		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 319		mempool_free(ep, mp->ep_pool);
 320	}
 321}
 322
 323/**
 324 * fc_exch_timer_cancel() - cancel exch timer
 325 * @ep:		The exchange whose timer to be canceled
 326 */
 327static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 328{
 329	if (cancel_delayed_work(&ep->timeout_work)) {
 330		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 331		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 332	}
 333}
 334
 335/**
 336 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 337 *				the exchange lock held
 338 * @ep:		The exchange whose timer will start
 339 * @timer_msec: The timeout period
 340 *
 341 * Used for upper level protocols to time out the exchange.
 342 * The timer is cancelled when it fires or when the exchange completes.
 343 */
 344static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 345					    unsigned int timer_msec)
 346{
 347	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 348		return;
 349
 350	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 351
 352	fc_exch_hold(ep);		/* hold for timer */
 353	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 354				msecs_to_jiffies(timer_msec))) {
 355		FC_EXCH_DBG(ep, "Exchange already queued\n");
 356		fc_exch_release(ep);
 357	}
 358}
 359
 360/**
 361 * fc_exch_timer_set() - Lock the exchange and set the timer
 362 * @ep:		The exchange whose timer will start
 363 * @timer_msec: The timeout period
 364 */
 365static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 366{
 367	spin_lock_bh(&ep->ex_lock);
 368	fc_exch_timer_set_locked(ep, timer_msec);
 369	spin_unlock_bh(&ep->ex_lock);
 370}
 371
 372/**
 373 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 374 * @ep: The exchange that is complete
 375 *
 376 * Note: May sleep if invoked from outside a response handler.
 377 */
 378static int fc_exch_done_locked(struct fc_exch *ep)
 379{
 380	int rc = 1;
 381
 382	/*
 383	 * We must check for completion in case there are two threads
 384	 * tyring to complete this. But the rrq code will reuse the
 385	 * ep, and in that case we only clear the resp and set it as
 386	 * complete, so it can be reused by the timer to send the rrq.
 387	 */
 388	if (ep->state & FC_EX_DONE)
 389		return rc;
 390	ep->esb_stat |= ESB_ST_COMPLETE;
 391
 392	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 393		ep->state |= FC_EX_DONE;
 394		fc_exch_timer_cancel(ep);
 395		rc = 0;
 396	}
 397	return rc;
 398}
 399
 400static struct fc_exch fc_quarantine_exch;
 401
 402/**
 403 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 404 * @pool:  Exchange Pool to get an exchange from
 405 * @index: Index of the exchange within the pool
 406 *
 407 * Use the index to get an exchange from within an exchange pool. exches
 408 * will point to an array of exchange pointers. The index will select
 409 * the exchange within the array.
 410 */
 411static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 412					      u16 index)
 413{
 414	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 415	return exches[index];
 416}
 417
 418/**
 419 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 420 * @pool:  The pool to assign the exchange to
 421 * @index: The index in the pool where the exchange will be assigned
 422 * @ep:	   The exchange to assign to the pool
 423 */
 424static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 425				   struct fc_exch *ep)
 426{
 427	((struct fc_exch **)(pool + 1))[index] = ep;
 428}
 429
 430/**
 431 * fc_exch_delete() - Delete an exchange
 432 * @ep: The exchange to be deleted
 433 */
 434static void fc_exch_delete(struct fc_exch *ep)
 435{
 436	struct fc_exch_pool *pool;
 437	u16 index;
 438
 439	pool = ep->pool;
 440	spin_lock_bh(&pool->lock);
 441	WARN_ON(pool->total_exches <= 0);
 442	pool->total_exches--;
 443
 444	/* update cache of free slot */
 445	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 446	if (!(ep->state & FC_EX_QUARANTINE)) {
 447		if (pool->left == FC_XID_UNKNOWN)
 448			pool->left = index;
 449		else if (pool->right == FC_XID_UNKNOWN)
 450			pool->right = index;
 451		else
 452			pool->next_index = index;
 453		fc_exch_ptr_set(pool, index, NULL);
 454	} else {
 455		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 456	}
 457	list_del(&ep->ex_list);
 458	spin_unlock_bh(&pool->lock);
 459	fc_exch_release(ep);	/* drop hold for exch in mp */
 460}
 461
 462static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 463			      struct fc_frame *fp)
 464{
 465	struct fc_exch *ep;
 466	struct fc_frame_header *fh = fc_frame_header_get(fp);
 467	int error = -ENXIO;
 468	u32 f_ctl;
 469	u8 fh_type = fh->fh_type;
 470
 471	ep = fc_seq_exch(sp);
 472
 473	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 474		fc_frame_free(fp);
 475		goto out;
 476	}
 477
 478	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 479
 480	f_ctl = ntoh24(fh->fh_f_ctl);
 481	fc_exch_setup_hdr(ep, fp, f_ctl);
 482	fr_encaps(fp) = ep->encaps;
 483
 484	/*
 485	 * update sequence count if this frame is carrying
 486	 * multiple FC frames when sequence offload is enabled
 487	 * by LLD.
 488	 */
 489	if (fr_max_payload(fp))
 490		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 491					fr_max_payload(fp));
 492	else
 493		sp->cnt++;
 494
 495	/*
 496	 * Send the frame.
 497	 */
 498	error = lport->tt.frame_send(lport, fp);
 499
 500	if (fh_type == FC_TYPE_BLS)
 501		goto out;
 502
 503	/*
 504	 * Update the exchange and sequence flags,
 505	 * assuming all frames for the sequence have been sent.
 506	 * We can only be called to send once for each sequence.
 507	 */
 508	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 509	if (f_ctl & FC_FC_SEQ_INIT)
 510		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 511out:
 512	return error;
 513}
 514
 515/**
 516 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 517 * @lport: The local port that the exchange will be sent on
 518 * @sp:	   The sequence to be sent
 519 * @fp:	   The frame to be sent on the exchange
 520 *
 521 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 522 * or indirectly by calling libfc_function_template.frame_send().
 523 */
 524int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 525{
 526	struct fc_exch *ep;
 527	int error;
 528	ep = fc_seq_exch(sp);
 529	spin_lock_bh(&ep->ex_lock);
 530	error = fc_seq_send_locked(lport, sp, fp);
 531	spin_unlock_bh(&ep->ex_lock);
 532	return error;
 533}
 534EXPORT_SYMBOL(fc_seq_send);
 535
 536/**
 537 * fc_seq_alloc() - Allocate a sequence for a given exchange
 538 * @ep:	    The exchange to allocate a new sequence for
 539 * @seq_id: The sequence ID to be used
 540 *
 541 * We don't support multiple originated sequences on the same exchange.
 542 * By implication, any previously originated sequence on this exchange
 543 * is complete, and we reallocate the same sequence.
 544 */
 545static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 546{
 547	struct fc_seq *sp;
 548
 549	sp = &ep->seq;
 550	sp->ssb_stat = 0;
 551	sp->cnt = 0;
 552	sp->id = seq_id;
 553	return sp;
 554}
 555
 556/**
 557 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 558 *				exchange as the supplied sequence
 559 * @sp: The sequence/exchange to get a new sequence for
 560 */
 561static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 562{
 563	struct fc_exch *ep = fc_seq_exch(sp);
 564
 565	sp = fc_seq_alloc(ep, ep->seq_id++);
 566	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 567		    ep->f_ctl, sp->id);
 568	return sp;
 569}
 570
 571/**
 572 * fc_seq_start_next() - Lock the exchange and get a new sequence
 573 *			 for a given sequence/exchange pair
 574 * @sp: The sequence/exchange to get a new exchange for
 575 */
 576struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 577{
 578	struct fc_exch *ep = fc_seq_exch(sp);
 579
 580	spin_lock_bh(&ep->ex_lock);
 581	sp = fc_seq_start_next_locked(sp);
 582	spin_unlock_bh(&ep->ex_lock);
 583
 584	return sp;
 585}
 586EXPORT_SYMBOL(fc_seq_start_next);
 587
 588/*
 589 * Set the response handler for the exchange associated with a sequence.
 590 *
 591 * Note: May sleep if invoked from outside a response handler.
 592 */
 593void fc_seq_set_resp(struct fc_seq *sp,
 594		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 595		     void *arg)
 596{
 597	struct fc_exch *ep = fc_seq_exch(sp);
 598	DEFINE_WAIT(wait);
 599
 600	spin_lock_bh(&ep->ex_lock);
 601	while (ep->resp_active && ep->resp_task != current) {
 602		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 603		spin_unlock_bh(&ep->ex_lock);
 604
 605		schedule();
 606
 607		spin_lock_bh(&ep->ex_lock);
 608	}
 609	finish_wait(&ep->resp_wq, &wait);
 610	ep->resp = resp;
 611	ep->arg = arg;
 612	spin_unlock_bh(&ep->ex_lock);
 613}
 614EXPORT_SYMBOL(fc_seq_set_resp);
 615
 616/**
 617 * fc_exch_abort_locked() - Abort an exchange
 618 * @ep:	The exchange to be aborted
 619 * @timer_msec: The period of time to wait before aborting
 620 *
 621 * Abort an exchange and sequence. Generally called because of a
 622 * exchange timeout or an abort from the upper layer.
 623 *
 624 * A timer_msec can be specified for abort timeout, if non-zero
 625 * timer_msec value is specified then exchange resp handler
 626 * will be called with timeout error if no response to abort.
 627 *
 628 * Locking notes:  Called with exch lock held
 629 *
 630 * Return value: 0 on success else error code
 631 */
 632static int fc_exch_abort_locked(struct fc_exch *ep,
 633				unsigned int timer_msec)
 634{
 635	struct fc_seq *sp;
 636	struct fc_frame *fp;
 637	int error;
 638
 639	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 640	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 641	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 642		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 643			    ep->esb_stat, ep->state);
 644		return -ENXIO;
 645	}
 646
 647	/*
 648	 * Send the abort on a new sequence if possible.
 649	 */
 650	sp = fc_seq_start_next_locked(&ep->seq);
 651	if (!sp)
 652		return -ENOMEM;
 653
 654	if (timer_msec)
 655		fc_exch_timer_set_locked(ep, timer_msec);
 656
 657	if (ep->sid) {
 658		/*
 659		 * Send an abort for the sequence that timed out.
 660		 */
 661		fp = fc_frame_alloc(ep->lp, 0);
 662		if (fp) {
 663			ep->esb_stat |= ESB_ST_SEQ_INIT;
 664			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 665				       FC_TYPE_BLS, FC_FC_END_SEQ |
 666				       FC_FC_SEQ_INIT, 0);
 667			error = fc_seq_send_locked(ep->lp, sp, fp);
 668		} else {
 669			error = -ENOBUFS;
 670		}
 671	} else {
 672		/*
 673		 * If not logged into the fabric, don't send ABTS but leave
 674		 * sequence active until next timeout.
 675		 */
 676		error = 0;
 677	}
 678	ep->esb_stat |= ESB_ST_ABNORMAL;
 679	return error;
 680}
 681
 682/**
 683 * fc_seq_exch_abort() - Abort an exchange and sequence
 684 * @req_sp:	The sequence to be aborted
 685 * @timer_msec: The period of time to wait before aborting
 686 *
 687 * Generally called because of a timeout or an abort from the upper layer.
 688 *
 689 * Return value: 0 on success else error code
 690 */
 691int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 692{
 693	struct fc_exch *ep;
 694	int error;
 695
 696	ep = fc_seq_exch(req_sp);
 697	spin_lock_bh(&ep->ex_lock);
 698	error = fc_exch_abort_locked(ep, timer_msec);
 699	spin_unlock_bh(&ep->ex_lock);
 700	return error;
 701}
 702
 703/**
 704 * fc_invoke_resp() - invoke ep->resp()
 705 *
 706 * Notes:
 707 * It is assumed that after initialization finished (this means the
 708 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 709 * modified only via fc_seq_set_resp(). This guarantees that none of these
 710 * two variables changes if ep->resp_active > 0.
 711 *
 712 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 713 * this function is invoked, the first spin_lock_bh() call in this function
 714 * will wait until fc_seq_set_resp() has finished modifying these variables.
 715 *
 716 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 717 * ep->resp() won't be invoked after fc_exch_done() has returned.
 718 *
 719 * The response handler itself may invoke fc_exch_done(), which will clear the
 720 * ep->resp pointer.
 721 *
 722 * Return value:
 723 * Returns true if and only if ep->resp has been invoked.
 724 */
 725static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 726			   struct fc_frame *fp)
 727{
 728	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 729	void *arg;
 730	bool res = false;
 731
 732	spin_lock_bh(&ep->ex_lock);
 733	ep->resp_active++;
 734	if (ep->resp_task != current)
 735		ep->resp_task = !ep->resp_task ? current : NULL;
 736	resp = ep->resp;
 737	arg = ep->arg;
 738	spin_unlock_bh(&ep->ex_lock);
 739
 740	if (resp) {
 741		resp(sp, fp, arg);
 742		res = true;
 743	}
 744
 745	spin_lock_bh(&ep->ex_lock);
 746	if (--ep->resp_active == 0)
 747		ep->resp_task = NULL;
 748	spin_unlock_bh(&ep->ex_lock);
 749
 750	if (ep->resp_active == 0)
 751		wake_up(&ep->resp_wq);
 752
 753	return res;
 754}
 755
 756/**
 757 * fc_exch_timeout() - Handle exchange timer expiration
 758 * @work: The work_struct identifying the exchange that timed out
 759 */
 760static void fc_exch_timeout(struct work_struct *work)
 761{
 762	struct fc_exch *ep = container_of(work, struct fc_exch,
 763					  timeout_work.work);
 764	struct fc_seq *sp = &ep->seq;
 765	u32 e_stat;
 766	int rc = 1;
 767
 768	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 769
 770	spin_lock_bh(&ep->ex_lock);
 771	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 772		goto unlock;
 773
 774	e_stat = ep->esb_stat;
 775	if (e_stat & ESB_ST_COMPLETE) {
 776		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 777		spin_unlock_bh(&ep->ex_lock);
 778		if (e_stat & ESB_ST_REC_QUAL)
 779			fc_exch_rrq(ep);
 780		goto done;
 781	} else {
 782		if (e_stat & ESB_ST_ABNORMAL)
 783			rc = fc_exch_done_locked(ep);
 784		spin_unlock_bh(&ep->ex_lock);
 785		if (!rc)
 786			fc_exch_delete(ep);
 787		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 788		fc_seq_set_resp(sp, NULL, ep->arg);
 789		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 790		goto done;
 791	}
 792unlock:
 793	spin_unlock_bh(&ep->ex_lock);
 794done:
 795	/*
 796	 * This release matches the hold taken when the timer was set.
 797	 */
 798	fc_exch_release(ep);
 799}
 800
 801/**
 802 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 803 * @lport: The local port that the exchange is for
 804 * @mp:	   The exchange manager that will allocate the exchange
 805 *
 806 * Returns pointer to allocated fc_exch with exch lock held.
 807 */
 808static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 809					struct fc_exch_mgr *mp)
 810{
 811	struct fc_exch *ep;
 812	unsigned int cpu;
 813	u16 index;
 814	struct fc_exch_pool *pool;
 815
 816	/* allocate memory for exchange */
 817	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 818	if (!ep) {
 819		atomic_inc(&mp->stats.no_free_exch);
 820		goto out;
 821	}
 822	memset(ep, 0, sizeof(*ep));
 823
 824	cpu = get_cpu();
 825	pool = per_cpu_ptr(mp->pool, cpu);
 826	spin_lock_bh(&pool->lock);
 827	put_cpu();
 828
 829	/* peek cache of free slot */
 830	if (pool->left != FC_XID_UNKNOWN) {
 831		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 832			index = pool->left;
 833			pool->left = FC_XID_UNKNOWN;
 834			goto hit;
 835		}
 836	}
 837	if (pool->right != FC_XID_UNKNOWN) {
 838		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 839			index = pool->right;
 840			pool->right = FC_XID_UNKNOWN;
 841			goto hit;
 842		}
 843	}
 844
 845	index = pool->next_index;
 846	/* allocate new exch from pool */
 847	while (fc_exch_ptr_get(pool, index)) {
 848		index = index == mp->pool_max_index ? 0 : index + 1;
 849		if (index == pool->next_index)
 850			goto err;
 851	}
 852	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 853hit:
 854	fc_exch_hold(ep);	/* hold for exch in mp */
 855	spin_lock_init(&ep->ex_lock);
 856	/*
 857	 * Hold exch lock for caller to prevent fc_exch_reset()
 858	 * from releasing exch	while fc_exch_alloc() caller is
 859	 * still working on exch.
 860	 */
 861	spin_lock_bh(&ep->ex_lock);
 862
 863	fc_exch_ptr_set(pool, index, ep);
 864	list_add_tail(&ep->ex_list, &pool->ex_list);
 865	fc_seq_alloc(ep, ep->seq_id++);
 866	pool->total_exches++;
 867	spin_unlock_bh(&pool->lock);
 868
 869	/*
 870	 *  update exchange
 871	 */
 872	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 873	ep->em = mp;
 874	ep->pool = pool;
 875	ep->lp = lport;
 876	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 877	ep->rxid = FC_XID_UNKNOWN;
 878	ep->class = mp->class;
 879	ep->resp_active = 0;
 880	init_waitqueue_head(&ep->resp_wq);
 881	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 882out:
 883	return ep;
 884err:
 885	spin_unlock_bh(&pool->lock);
 886	atomic_inc(&mp->stats.no_free_exch_xid);
 887	mempool_free(ep, mp->ep_pool);
 888	return NULL;
 889}
 890
 891/**
 892 * fc_exch_alloc() - Allocate an exchange from an EM on a
 893 *		     local port's list of EMs.
 894 * @lport: The local port that will own the exchange
 895 * @fp:	   The FC frame that the exchange will be for
 896 *
 897 * This function walks the list of exchange manager(EM)
 898 * anchors to select an EM for a new exchange allocation. The
 899 * EM is selected when a NULL match function pointer is encountered
 900 * or when a call to a match function returns true.
 901 */
 902static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 903				     struct fc_frame *fp)
 904{
 905	struct fc_exch_mgr_anchor *ema;
 906	struct fc_exch *ep;
 907
 908	list_for_each_entry(ema, &lport->ema_list, ema_list) {
 909		if (!ema->match || ema->match(fp)) {
 910			ep = fc_exch_em_alloc(lport, ema->mp);
 911			if (ep)
 912				return ep;
 913		}
 914	}
 915	return NULL;
 916}
 917
 918/**
 919 * fc_exch_find() - Lookup and hold an exchange
 920 * @mp:	 The exchange manager to lookup the exchange from
 921 * @xid: The XID of the exchange to look up
 922 */
 923static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 924{
 925	struct fc_lport *lport = mp->lport;
 926	struct fc_exch_pool *pool;
 927	struct fc_exch *ep = NULL;
 928	u16 cpu = xid & fc_cpu_mask;
 929
 930	if (xid == FC_XID_UNKNOWN)
 931		return NULL;
 932
 933	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 934		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 935		       lport->host->host_no, lport->port_id, xid, cpu);
 936		return NULL;
 937	}
 938
 939	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 940		pool = per_cpu_ptr(mp->pool, cpu);
 941		spin_lock_bh(&pool->lock);
 942		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 943		if (ep == &fc_quarantine_exch) {
 944			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 945			ep = NULL;
 946		}
 947		if (ep) {
 948			WARN_ON(ep->xid != xid);
 949			fc_exch_hold(ep);
 950		}
 951		spin_unlock_bh(&pool->lock);
 952	}
 953	return ep;
 954}
 955
 956
 957/**
 958 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 959 *		    the memory allocated for the related objects may be freed.
 960 * @sp: The sequence that has completed
 961 *
 962 * Note: May sleep if invoked from outside a response handler.
 963 */
 964void fc_exch_done(struct fc_seq *sp)
 965{
 966	struct fc_exch *ep = fc_seq_exch(sp);
 967	int rc;
 968
 969	spin_lock_bh(&ep->ex_lock);
 970	rc = fc_exch_done_locked(ep);
 971	spin_unlock_bh(&ep->ex_lock);
 972
 973	fc_seq_set_resp(sp, NULL, ep->arg);
 974	if (!rc)
 975		fc_exch_delete(ep);
 976}
 977EXPORT_SYMBOL(fc_exch_done);
 978
 979/**
 980 * fc_exch_resp() - Allocate a new exchange for a response frame
 981 * @lport: The local port that the exchange was for
 982 * @mp:	   The exchange manager to allocate the exchange from
 983 * @fp:	   The response frame
 984 *
 985 * Sets the responder ID in the frame header.
 986 */
 987static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 988				    struct fc_exch_mgr *mp,
 989				    struct fc_frame *fp)
 990{
 991	struct fc_exch *ep;
 992	struct fc_frame_header *fh;
 993
 994	ep = fc_exch_alloc(lport, fp);
 995	if (ep) {
 996		ep->class = fc_frame_class(fp);
 997
 998		/*
 999		 * Set EX_CTX indicating we're responding on this exchange.
1000		 */
1001		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1002		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1003		fh = fc_frame_header_get(fp);
1004		ep->sid = ntoh24(fh->fh_d_id);
1005		ep->did = ntoh24(fh->fh_s_id);
1006		ep->oid = ep->did;
1007
1008		/*
1009		 * Allocated exchange has placed the XID in the
1010		 * originator field. Move it to the responder field,
1011		 * and set the originator XID from the frame.
1012		 */
1013		ep->rxid = ep->xid;
1014		ep->oxid = ntohs(fh->fh_ox_id);
1015		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1016		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1017			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1018
1019		fc_exch_hold(ep);	/* hold for caller */
1020		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1021	}
1022	return ep;
1023}
1024
1025/**
1026 * fc_seq_lookup_recip() - Find a sequence where the other end
1027 *			   originated the sequence
1028 * @lport: The local port that the frame was sent to
1029 * @mp:	   The Exchange Manager to lookup the exchange from
1030 * @fp:	   The frame associated with the sequence we're looking for
1031 *
1032 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1033 * on the ep that should be released by the caller.
1034 */
1035static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1036						 struct fc_exch_mgr *mp,
1037						 struct fc_frame *fp)
1038{
1039	struct fc_frame_header *fh = fc_frame_header_get(fp);
1040	struct fc_exch *ep = NULL;
1041	struct fc_seq *sp = NULL;
1042	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1043	u32 f_ctl;
1044	u16 xid;
1045
1046	f_ctl = ntoh24(fh->fh_f_ctl);
1047	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1048
1049	/*
1050	 * Lookup or create the exchange if we will be creating the sequence.
1051	 */
1052	if (f_ctl & FC_FC_EX_CTX) {
1053		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1054		ep = fc_exch_find(mp, xid);
1055		if (!ep) {
1056			atomic_inc(&mp->stats.xid_not_found);
1057			reject = FC_RJT_OX_ID;
1058			goto out;
1059		}
1060		if (ep->rxid == FC_XID_UNKNOWN)
1061			ep->rxid = ntohs(fh->fh_rx_id);
1062		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1063			reject = FC_RJT_OX_ID;
1064			goto rel;
1065		}
1066	} else {
1067		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1068
1069		/*
1070		 * Special case for MDS issuing an ELS TEST with a
1071		 * bad rxid of 0.
1072		 * XXX take this out once we do the proper reject.
1073		 */
1074		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1075		    fc_frame_payload_op(fp) == ELS_TEST) {
1076			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1077			xid = FC_XID_UNKNOWN;
1078		}
1079
1080		/*
1081		 * new sequence - find the exchange
1082		 */
1083		ep = fc_exch_find(mp, xid);
1084		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1085			if (ep) {
1086				atomic_inc(&mp->stats.xid_busy);
1087				reject = FC_RJT_RX_ID;
1088				goto rel;
1089			}
1090			ep = fc_exch_resp(lport, mp, fp);
1091			if (!ep) {
1092				reject = FC_RJT_EXCH_EST;	/* XXX */
1093				goto out;
1094			}
1095			xid = ep->xid;	/* get our XID */
1096		} else if (!ep) {
1097			atomic_inc(&mp->stats.xid_not_found);
1098			reject = FC_RJT_RX_ID;	/* XID not found */
1099			goto out;
1100		}
1101	}
1102
1103	spin_lock_bh(&ep->ex_lock);
1104	/*
1105	 * At this point, we have the exchange held.
1106	 * Find or create the sequence.
1107	 */
1108	if (fc_sof_is_init(fr_sof(fp))) {
1109		sp = &ep->seq;
1110		sp->ssb_stat |= SSB_ST_RESP;
1111		sp->id = fh->fh_seq_id;
1112	} else {
1113		sp = &ep->seq;
1114		if (sp->id != fh->fh_seq_id) {
1115			atomic_inc(&mp->stats.seq_not_found);
1116			if (f_ctl & FC_FC_END_SEQ) {
1117				/*
1118				 * Update sequence_id based on incoming last
1119				 * frame of sequence exchange. This is needed
1120				 * for FC target where DDP has been used
1121				 * on target where, stack is indicated only
1122				 * about last frame's (payload _header) header.
1123				 * Whereas "seq_id" which is part of
1124				 * frame_header is allocated by initiator
1125				 * which is totally different from "seq_id"
1126				 * allocated when XFER_RDY was sent by target.
1127				 * To avoid false -ve which results into not
1128				 * sending RSP, hence write request on other
1129				 * end never finishes.
1130				 */
1131				sp->ssb_stat |= SSB_ST_RESP;
1132				sp->id = fh->fh_seq_id;
1133			} else {
1134				spin_unlock_bh(&ep->ex_lock);
1135
1136				/* sequence/exch should exist */
1137				reject = FC_RJT_SEQ_ID;
1138				goto rel;
1139			}
1140		}
1141	}
1142	WARN_ON(ep != fc_seq_exch(sp));
1143
1144	if (f_ctl & FC_FC_SEQ_INIT)
1145		ep->esb_stat |= ESB_ST_SEQ_INIT;
1146	spin_unlock_bh(&ep->ex_lock);
1147
1148	fr_seq(fp) = sp;
1149out:
1150	return reject;
1151rel:
1152	fc_exch_done(&ep->seq);
1153	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1154	return reject;
1155}
1156
1157/**
1158 * fc_seq_lookup_orig() - Find a sequence where this end
1159 *			  originated the sequence
1160 * @mp:	   The Exchange Manager to lookup the exchange from
1161 * @fp:	   The frame associated with the sequence we're looking for
1162 *
1163 * Does not hold the sequence for the caller.
1164 */
1165static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1166					 struct fc_frame *fp)
1167{
1168	struct fc_frame_header *fh = fc_frame_header_get(fp);
1169	struct fc_exch *ep;
1170	struct fc_seq *sp = NULL;
1171	u32 f_ctl;
1172	u16 xid;
1173
1174	f_ctl = ntoh24(fh->fh_f_ctl);
1175	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1176	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1177	ep = fc_exch_find(mp, xid);
1178	if (!ep)
1179		return NULL;
1180	if (ep->seq.id == fh->fh_seq_id) {
1181		/*
1182		 * Save the RX_ID if we didn't previously know it.
1183		 */
1184		sp = &ep->seq;
1185		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1186		    ep->rxid == FC_XID_UNKNOWN) {
1187			ep->rxid = ntohs(fh->fh_rx_id);
1188		}
1189	}
1190	fc_exch_release(ep);
1191	return sp;
1192}
1193
1194/**
1195 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1196 * @ep:	     The exchange to set the addresses for
1197 * @orig_id: The originator's ID
1198 * @resp_id: The responder's ID
1199 *
1200 * Note this must be done before the first sequence of the exchange is sent.
1201 */
1202static void fc_exch_set_addr(struct fc_exch *ep,
1203			     u32 orig_id, u32 resp_id)
1204{
1205	ep->oid = orig_id;
1206	if (ep->esb_stat & ESB_ST_RESP) {
1207		ep->sid = resp_id;
1208		ep->did = orig_id;
1209	} else {
1210		ep->sid = orig_id;
1211		ep->did = resp_id;
1212	}
1213}
1214
1215/**
1216 * fc_seq_els_rsp_send() - Send an ELS response using information from
1217 *			   the existing sequence/exchange.
1218 * @fp:	      The received frame
1219 * @els_cmd:  The ELS command to be sent
1220 * @els_data: The ELS data to be sent
1221 *
1222 * The received frame is not freed.
1223 */
1224void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1225			 struct fc_seq_els_data *els_data)
1226{
1227	switch (els_cmd) {
1228	case ELS_LS_RJT:
1229		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1230		break;
1231	case ELS_LS_ACC:
1232		fc_seq_ls_acc(fp);
1233		break;
1234	case ELS_RRQ:
1235		fc_exch_els_rrq(fp);
1236		break;
1237	case ELS_REC:
1238		fc_exch_els_rec(fp);
1239		break;
1240	default:
1241		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1242	}
1243}
1244EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1245
1246/**
1247 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1248 * @sp:	     The sequence that is to be sent
1249 * @fp:	     The frame that will be sent on the sequence
1250 * @rctl:    The R_CTL information to be sent
1251 * @fh_type: The frame header type
1252 */
1253static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1254			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1255{
1256	u32 f_ctl;
1257	struct fc_exch *ep = fc_seq_exch(sp);
1258
1259	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1260	f_ctl |= ep->f_ctl;
1261	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1262	fc_seq_send_locked(ep->lp, sp, fp);
1263}
1264
1265/**
1266 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1267 * @sp:	   The sequence to send the ACK on
1268 * @rx_fp: The received frame that is being acknoledged
1269 *
1270 * Send ACK_1 (or equiv.) indicating we received something.
1271 */
1272static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1273{
1274	struct fc_frame *fp;
1275	struct fc_frame_header *rx_fh;
1276	struct fc_frame_header *fh;
1277	struct fc_exch *ep = fc_seq_exch(sp);
1278	struct fc_lport *lport = ep->lp;
1279	unsigned int f_ctl;
1280
1281	/*
1282	 * Don't send ACKs for class 3.
1283	 */
1284	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1285		fp = fc_frame_alloc(lport, 0);
1286		if (!fp) {
1287			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1288			return;
1289		}
1290
1291		fh = fc_frame_header_get(fp);
1292		fh->fh_r_ctl = FC_RCTL_ACK_1;
1293		fh->fh_type = FC_TYPE_BLS;
1294
1295		/*
1296		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1297		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1298		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1299		 * Last ACK uses bits 7-6 (continue sequence),
1300		 * bits 5-4 are meaningful (what kind of ACK to use).
1301		 */
1302		rx_fh = fc_frame_header_get(rx_fp);
1303		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1304		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1305			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1306			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1307			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1308		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1309		hton24(fh->fh_f_ctl, f_ctl);
1310
1311		fc_exch_setup_hdr(ep, fp, f_ctl);
1312		fh->fh_seq_id = rx_fh->fh_seq_id;
1313		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1314		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1315
1316		fr_sof(fp) = fr_sof(rx_fp);
1317		if (f_ctl & FC_FC_END_SEQ)
1318			fr_eof(fp) = FC_EOF_T;
1319		else
1320			fr_eof(fp) = FC_EOF_N;
1321
1322		lport->tt.frame_send(lport, fp);
1323	}
1324}
1325
1326/**
1327 * fc_exch_send_ba_rjt() - Send BLS Reject
1328 * @rx_fp:  The frame being rejected
1329 * @reason: The reason the frame is being rejected
1330 * @explan: The explanation for the rejection
1331 *
1332 * This is for rejecting BA_ABTS only.
1333 */
1334static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1335				enum fc_ba_rjt_reason reason,
1336				enum fc_ba_rjt_explan explan)
1337{
1338	struct fc_frame *fp;
1339	struct fc_frame_header *rx_fh;
1340	struct fc_frame_header *fh;
1341	struct fc_ba_rjt *rp;
1342	struct fc_seq *sp;
1343	struct fc_lport *lport;
1344	unsigned int f_ctl;
1345
1346	lport = fr_dev(rx_fp);
1347	sp = fr_seq(rx_fp);
1348	fp = fc_frame_alloc(lport, sizeof(*rp));
1349	if (!fp) {
1350		FC_EXCH_DBG(fc_seq_exch(sp),
1351			     "Drop BA_RJT request, out of memory\n");
1352		return;
1353	}
1354	fh = fc_frame_header_get(fp);
1355	rx_fh = fc_frame_header_get(rx_fp);
1356
1357	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1358
1359	rp = fc_frame_payload_get(fp, sizeof(*rp));
1360	rp->br_reason = reason;
1361	rp->br_explan = explan;
1362
1363	/*
1364	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1365	 */
1366	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1367	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1368	fh->fh_ox_id = rx_fh->fh_ox_id;
1369	fh->fh_rx_id = rx_fh->fh_rx_id;
1370	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1371	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1372	fh->fh_type = FC_TYPE_BLS;
1373
1374	/*
1375	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1376	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1377	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1378	 * Last ACK uses bits 7-6 (continue sequence),
1379	 * bits 5-4 are meaningful (what kind of ACK to use).
1380	 * Always set LAST_SEQ, END_SEQ.
1381	 */
1382	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1383	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1384		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1385		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1386	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1387	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1388	f_ctl &= ~FC_FC_FIRST_SEQ;
1389	hton24(fh->fh_f_ctl, f_ctl);
1390
1391	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1392	fr_eof(fp) = FC_EOF_T;
1393	if (fc_sof_needs_ack(fr_sof(fp)))
1394		fr_eof(fp) = FC_EOF_N;
1395
1396	lport->tt.frame_send(lport, fp);
1397}
1398
1399/**
1400 * fc_exch_recv_abts() - Handle an incoming ABTS
1401 * @ep:	   The exchange the abort was on
1402 * @rx_fp: The ABTS frame
1403 *
1404 * This would be for target mode usually, but could be due to lost
1405 * FCP transfer ready, confirm or RRQ. We always handle this as an
1406 * exchange abort, ignoring the parameter.
1407 */
1408static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1409{
1410	struct fc_frame *fp;
1411	struct fc_ba_acc *ap;
1412	struct fc_frame_header *fh;
1413	struct fc_seq *sp;
1414
1415	if (!ep)
1416		goto reject;
1417
1418	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1419	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1420	if (!fp) {
1421		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1422		goto free;
1423	}
1424
1425	spin_lock_bh(&ep->ex_lock);
1426	if (ep->esb_stat & ESB_ST_COMPLETE) {
1427		spin_unlock_bh(&ep->ex_lock);
1428		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1429		fc_frame_free(fp);
1430		goto reject;
1431	}
1432	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1433		ep->esb_stat |= ESB_ST_REC_QUAL;
1434		fc_exch_hold(ep);		/* hold for REC_QUAL */
1435	}
1436	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1437	fh = fc_frame_header_get(fp);
1438	ap = fc_frame_payload_get(fp, sizeof(*ap));
1439	memset(ap, 0, sizeof(*ap));
1440	sp = &ep->seq;
1441	ap->ba_high_seq_cnt = htons(0xffff);
1442	if (sp->ssb_stat & SSB_ST_RESP) {
1443		ap->ba_seq_id = sp->id;
1444		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1445		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1446		ap->ba_low_seq_cnt = htons(sp->cnt);
1447	}
1448	sp = fc_seq_start_next_locked(sp);
1449	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1450	ep->esb_stat |= ESB_ST_ABNORMAL;
1451	spin_unlock_bh(&ep->ex_lock);
1452
1453free:
1454	fc_frame_free(rx_fp);
1455	return;
1456
1457reject:
1458	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1459	goto free;
1460}
1461
1462/**
1463 * fc_seq_assign() - Assign exchange and sequence for incoming request
1464 * @lport: The local port that received the request
1465 * @fp:    The request frame
1466 *
1467 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1468 * A reference will be held on the exchange/sequence for the caller, which
1469 * must call fc_seq_release().
1470 */
1471struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1472{
1473	struct fc_exch_mgr_anchor *ema;
1474
1475	WARN_ON(lport != fr_dev(fp));
1476	WARN_ON(fr_seq(fp));
1477	fr_seq(fp) = NULL;
1478
1479	list_for_each_entry(ema, &lport->ema_list, ema_list)
1480		if ((!ema->match || ema->match(fp)) &&
1481		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1482			break;
1483	return fr_seq(fp);
1484}
1485EXPORT_SYMBOL(fc_seq_assign);
1486
1487/**
1488 * fc_seq_release() - Release the hold
1489 * @sp:    The sequence.
1490 */
1491void fc_seq_release(struct fc_seq *sp)
1492{
1493	fc_exch_release(fc_seq_exch(sp));
1494}
1495EXPORT_SYMBOL(fc_seq_release);
1496
1497/**
1498 * fc_exch_recv_req() - Handler for an incoming request
1499 * @lport: The local port that received the request
1500 * @mp:	   The EM that the exchange is on
1501 * @fp:	   The request frame
1502 *
1503 * This is used when the other end is originating the exchange
1504 * and the sequence.
1505 */
1506static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1507			     struct fc_frame *fp)
1508{
1509	struct fc_frame_header *fh = fc_frame_header_get(fp);
1510	struct fc_seq *sp = NULL;
1511	struct fc_exch *ep = NULL;
1512	enum fc_pf_rjt_reason reject;
1513
1514	/* We can have the wrong fc_lport at this point with NPIV, which is a
1515	 * problem now that we know a new exchange needs to be allocated
1516	 */
1517	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1518	if (!lport) {
1519		fc_frame_free(fp);
1520		return;
1521	}
1522	fr_dev(fp) = lport;
1523
1524	BUG_ON(fr_seq(fp));		/* XXX remove later */
1525
1526	/*
1527	 * If the RX_ID is 0xffff, don't allocate an exchange.
1528	 * The upper-level protocol may request one later, if needed.
1529	 */
1530	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1531		return fc_lport_recv(lport, fp);
1532
1533	reject = fc_seq_lookup_recip(lport, mp, fp);
1534	if (reject == FC_RJT_NONE) {
1535		sp = fr_seq(fp);	/* sequence will be held */
1536		ep = fc_seq_exch(sp);
1537		fc_seq_send_ack(sp, fp);
1538		ep->encaps = fr_encaps(fp);
1539
1540		/*
1541		 * Call the receive function.
1542		 *
1543		 * The receive function may allocate a new sequence
1544		 * over the old one, so we shouldn't change the
1545		 * sequence after this.
1546		 *
1547		 * The frame will be freed by the receive function.
1548		 * If new exch resp handler is valid then call that
1549		 * first.
1550		 */
1551		if (!fc_invoke_resp(ep, sp, fp))
1552			fc_lport_recv(lport, fp);
1553		fc_exch_release(ep);	/* release from lookup */
1554	} else {
1555		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1556			     reject);
1557		fc_frame_free(fp);
1558	}
1559}
1560
1561/**
1562 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1563 *			     end is the originator of the sequence that is a
1564 *			     response to our initial exchange
1565 * @mp: The EM that the exchange is on
1566 * @fp: The response frame
1567 */
1568static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1569{
1570	struct fc_frame_header *fh = fc_frame_header_get(fp);
1571	struct fc_seq *sp;
1572	struct fc_exch *ep;
1573	enum fc_sof sof;
1574	u32 f_ctl;
1575	int rc;
1576
1577	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1578	if (!ep) {
1579		atomic_inc(&mp->stats.xid_not_found);
1580		goto out;
1581	}
1582	if (ep->esb_stat & ESB_ST_COMPLETE) {
1583		atomic_inc(&mp->stats.xid_not_found);
1584		goto rel;
1585	}
1586	if (ep->rxid == FC_XID_UNKNOWN)
1587		ep->rxid = ntohs(fh->fh_rx_id);
1588	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1589		atomic_inc(&mp->stats.xid_not_found);
1590		goto rel;
1591	}
1592	if (ep->did != ntoh24(fh->fh_s_id) &&
1593	    ep->did != FC_FID_FLOGI) {
1594		atomic_inc(&mp->stats.xid_not_found);
1595		goto rel;
1596	}
1597	sof = fr_sof(fp);
1598	sp = &ep->seq;
1599	if (fc_sof_is_init(sof)) {
1600		sp->ssb_stat |= SSB_ST_RESP;
1601		sp->id = fh->fh_seq_id;
1602	}
1603
1604	f_ctl = ntoh24(fh->fh_f_ctl);
1605	fr_seq(fp) = sp;
1606
1607	spin_lock_bh(&ep->ex_lock);
1608	if (f_ctl & FC_FC_SEQ_INIT)
1609		ep->esb_stat |= ESB_ST_SEQ_INIT;
1610	spin_unlock_bh(&ep->ex_lock);
1611
1612	if (fc_sof_needs_ack(sof))
1613		fc_seq_send_ack(sp, fp);
1614
1615	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1616	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1617	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1618		spin_lock_bh(&ep->ex_lock);
1619		rc = fc_exch_done_locked(ep);
1620		WARN_ON(fc_seq_exch(sp) != ep);
1621		spin_unlock_bh(&ep->ex_lock);
1622		if (!rc)
1623			fc_exch_delete(ep);
1624	}
1625
1626	/*
1627	 * Call the receive function.
1628	 * The sequence is held (has a refcnt) for us,
1629	 * but not for the receive function.
1630	 *
1631	 * The receive function may allocate a new sequence
1632	 * over the old one, so we shouldn't change the
1633	 * sequence after this.
1634	 *
1635	 * The frame will be freed by the receive function.
1636	 * If new exch resp handler is valid then call that
1637	 * first.
1638	 */
1639	if (!fc_invoke_resp(ep, sp, fp))
1640		fc_frame_free(fp);
1641
1642	fc_exch_release(ep);
1643	return;
1644rel:
1645	fc_exch_release(ep);
1646out:
1647	fc_frame_free(fp);
1648}
1649
1650/**
1651 * fc_exch_recv_resp() - Handler for a sequence where other end is
1652 *			 responding to our sequence
1653 * @mp: The EM that the exchange is on
1654 * @fp: The response frame
1655 */
1656static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1657{
1658	struct fc_seq *sp;
1659
1660	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1661
1662	if (!sp)
1663		atomic_inc(&mp->stats.xid_not_found);
1664	else
1665		atomic_inc(&mp->stats.non_bls_resp);
1666
1667	fc_frame_free(fp);
1668}
1669
1670/**
1671 * fc_exch_abts_resp() - Handler for a response to an ABT
1672 * @ep: The exchange that the frame is on
1673 * @fp: The response frame
1674 *
1675 * This response would be to an ABTS cancelling an exchange or sequence.
1676 * The response can be either BA_ACC or BA_RJT
1677 */
1678static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1679{
1680	struct fc_frame_header *fh;
1681	struct fc_ba_acc *ap;
1682	struct fc_seq *sp;
1683	u16 low;
1684	u16 high;
1685	int rc = 1, has_rec = 0;
1686
1687	fh = fc_frame_header_get(fp);
1688	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1689		    fc_exch_rctl_name(fh->fh_r_ctl));
1690
1691	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1692		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1693		fc_exch_release(ep);	/* release from pending timer hold */
1694	}
1695
1696	spin_lock_bh(&ep->ex_lock);
1697	switch (fh->fh_r_ctl) {
1698	case FC_RCTL_BA_ACC:
1699		ap = fc_frame_payload_get(fp, sizeof(*ap));
1700		if (!ap)
1701			break;
1702
1703		/*
1704		 * Decide whether to establish a Recovery Qualifier.
1705		 * We do this if there is a non-empty SEQ_CNT range and
1706		 * SEQ_ID is the same as the one we aborted.
1707		 */
1708		low = ntohs(ap->ba_low_seq_cnt);
1709		high = ntohs(ap->ba_high_seq_cnt);
1710		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1711		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1712		     ap->ba_seq_id == ep->seq_id) && low != high) {
1713			ep->esb_stat |= ESB_ST_REC_QUAL;
1714			fc_exch_hold(ep);  /* hold for recovery qualifier */
1715			has_rec = 1;
1716		}
1717		break;
1718	case FC_RCTL_BA_RJT:
1719		break;
1720	default:
1721		break;
1722	}
1723
1724	/* do we need to do some other checks here. Can we reuse more of
1725	 * fc_exch_recv_seq_resp
1726	 */
1727	sp = &ep->seq;
1728	/*
1729	 * do we want to check END_SEQ as well as LAST_SEQ here?
1730	 */
1731	if (ep->fh_type != FC_TYPE_FCP &&
1732	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1733		rc = fc_exch_done_locked(ep);
1734	spin_unlock_bh(&ep->ex_lock);
1735
1736	fc_exch_hold(ep);
1737	if (!rc)
1738		fc_exch_delete(ep);
1739	if (!fc_invoke_resp(ep, sp, fp))
1740		fc_frame_free(fp);
1741	if (has_rec)
1742		fc_exch_timer_set(ep, ep->r_a_tov);
1743	fc_exch_release(ep);
1744}
1745
1746/**
1747 * fc_exch_recv_bls() - Handler for a BLS sequence
1748 * @mp: The EM that the exchange is on
1749 * @fp: The request frame
1750 *
1751 * The BLS frame is always a sequence initiated by the remote side.
1752 * We may be either the originator or recipient of the exchange.
1753 */
1754static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1755{
1756	struct fc_frame_header *fh;
1757	struct fc_exch *ep;
1758	u32 f_ctl;
1759
1760	fh = fc_frame_header_get(fp);
1761	f_ctl = ntoh24(fh->fh_f_ctl);
1762	fr_seq(fp) = NULL;
1763
1764	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1765			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1766	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1767		spin_lock_bh(&ep->ex_lock);
1768		ep->esb_stat |= ESB_ST_SEQ_INIT;
1769		spin_unlock_bh(&ep->ex_lock);
1770	}
1771	if (f_ctl & FC_FC_SEQ_CTX) {
1772		/*
1773		 * A response to a sequence we initiated.
1774		 * This should only be ACKs for class 2 or F.
1775		 */
1776		switch (fh->fh_r_ctl) {
1777		case FC_RCTL_ACK_1:
1778		case FC_RCTL_ACK_0:
1779			break;
1780		default:
1781			if (ep)
1782				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1783					    fh->fh_r_ctl,
1784					    fc_exch_rctl_name(fh->fh_r_ctl));
1785			break;
1786		}
1787		fc_frame_free(fp);
1788	} else {
1789		switch (fh->fh_r_ctl) {
1790		case FC_RCTL_BA_RJT:
1791		case FC_RCTL_BA_ACC:
1792			if (ep)
1793				fc_exch_abts_resp(ep, fp);
1794			else
1795				fc_frame_free(fp);
1796			break;
1797		case FC_RCTL_BA_ABTS:
1798			if (ep)
1799				fc_exch_recv_abts(ep, fp);
1800			else
1801				fc_frame_free(fp);
1802			break;
1803		default:			/* ignore junk */
1804			fc_frame_free(fp);
1805			break;
1806		}
1807	}
1808	if (ep)
1809		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1810}
1811
1812/**
1813 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1814 * @rx_fp: The received frame, not freed here.
1815 *
1816 * If this fails due to allocation or transmit congestion, assume the
1817 * originator will repeat the sequence.
1818 */
1819static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1820{
1821	struct fc_lport *lport;
1822	struct fc_els_ls_acc *acc;
1823	struct fc_frame *fp;
1824	struct fc_seq *sp;
1825
1826	lport = fr_dev(rx_fp);
1827	sp = fr_seq(rx_fp);
1828	fp = fc_frame_alloc(lport, sizeof(*acc));
1829	if (!fp) {
1830		FC_EXCH_DBG(fc_seq_exch(sp),
1831			    "exch: drop LS_ACC, out of memory\n");
1832		return;
1833	}
1834	acc = fc_frame_payload_get(fp, sizeof(*acc));
1835	memset(acc, 0, sizeof(*acc));
1836	acc->la_cmd = ELS_LS_ACC;
1837	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1838	lport->tt.frame_send(lport, fp);
1839}
1840
1841/**
1842 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1843 * @rx_fp: The received frame, not freed here.
1844 * @reason: The reason the sequence is being rejected
1845 * @explan: The explanation for the rejection
1846 *
1847 * If this fails due to allocation or transmit congestion, assume the
1848 * originator will repeat the sequence.
1849 */
1850static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1851			  enum fc_els_rjt_explan explan)
1852{
1853	struct fc_lport *lport;
1854	struct fc_els_ls_rjt *rjt;
1855	struct fc_frame *fp;
1856	struct fc_seq *sp;
1857
1858	lport = fr_dev(rx_fp);
1859	sp = fr_seq(rx_fp);
1860	fp = fc_frame_alloc(lport, sizeof(*rjt));
1861	if (!fp) {
1862		FC_EXCH_DBG(fc_seq_exch(sp),
1863			    "exch: drop LS_ACC, out of memory\n");
1864		return;
1865	}
1866	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1867	memset(rjt, 0, sizeof(*rjt));
1868	rjt->er_cmd = ELS_LS_RJT;
1869	rjt->er_reason = reason;
1870	rjt->er_explan = explan;
1871	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1872	lport->tt.frame_send(lport, fp);
1873}
1874
1875/**
1876 * fc_exch_reset() - Reset an exchange
1877 * @ep: The exchange to be reset
1878 *
1879 * Note: May sleep if invoked from outside a response handler.
1880 */
1881static void fc_exch_reset(struct fc_exch *ep)
1882{
1883	struct fc_seq *sp;
1884	int rc = 1;
1885
1886	spin_lock_bh(&ep->ex_lock);
1887	ep->state |= FC_EX_RST_CLEANUP;
1888	fc_exch_timer_cancel(ep);
1889	if (ep->esb_stat & ESB_ST_REC_QUAL)
1890		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1891	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1892	sp = &ep->seq;
1893	rc = fc_exch_done_locked(ep);
1894	spin_unlock_bh(&ep->ex_lock);
1895
1896	fc_exch_hold(ep);
1897
1898	if (!rc)
1899		fc_exch_delete(ep);
1900
1901	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1902	fc_seq_set_resp(sp, NULL, ep->arg);
1903	fc_exch_release(ep);
1904}
1905
1906/**
1907 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1908 * @lport: The local port that the exchange pool is on
1909 * @pool:  The exchange pool to be reset
1910 * @sid:   The source ID
1911 * @did:   The destination ID
1912 *
1913 * Resets a per cpu exches pool, releasing all of its sequences
1914 * and exchanges. If sid is non-zero then reset only exchanges
1915 * we sourced from the local port's FID. If did is non-zero then
1916 * only reset exchanges destined for the local port's FID.
1917 */
1918static void fc_exch_pool_reset(struct fc_lport *lport,
1919			       struct fc_exch_pool *pool,
1920			       u32 sid, u32 did)
1921{
1922	struct fc_exch *ep;
1923	struct fc_exch *next;
1924
1925	spin_lock_bh(&pool->lock);
1926restart:
1927	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1928		if ((lport == ep->lp) &&
1929		    (sid == 0 || sid == ep->sid) &&
1930		    (did == 0 || did == ep->did)) {
1931			fc_exch_hold(ep);
1932			spin_unlock_bh(&pool->lock);
1933
1934			fc_exch_reset(ep);
1935
1936			fc_exch_release(ep);
1937			spin_lock_bh(&pool->lock);
1938
1939			/*
1940			 * must restart loop incase while lock
1941			 * was down multiple eps were released.
1942			 */
1943			goto restart;
1944		}
1945	}
1946	pool->next_index = 0;
1947	pool->left = FC_XID_UNKNOWN;
1948	pool->right = FC_XID_UNKNOWN;
1949	spin_unlock_bh(&pool->lock);
1950}
1951
1952/**
1953 * fc_exch_mgr_reset() - Reset all EMs of a local port
1954 * @lport: The local port whose EMs are to be reset
1955 * @sid:   The source ID
1956 * @did:   The destination ID
1957 *
1958 * Reset all EMs associated with a given local port. Release all
1959 * sequences and exchanges. If sid is non-zero then reset only the
1960 * exchanges sent from the local port's FID. If did is non-zero then
1961 * reset only exchanges destined for the local port's FID.
1962 */
1963void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1964{
1965	struct fc_exch_mgr_anchor *ema;
1966	unsigned int cpu;
1967
1968	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1969		for_each_possible_cpu(cpu)
1970			fc_exch_pool_reset(lport,
1971					   per_cpu_ptr(ema->mp->pool, cpu),
1972					   sid, did);
1973	}
1974}
1975EXPORT_SYMBOL(fc_exch_mgr_reset);
1976
1977/**
1978 * fc_exch_lookup() - find an exchange
1979 * @lport: The local port
1980 * @xid: The exchange ID
1981 *
1982 * Returns exchange pointer with hold for caller, or NULL if not found.
1983 */
1984static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1985{
1986	struct fc_exch_mgr_anchor *ema;
1987
1988	list_for_each_entry(ema, &lport->ema_list, ema_list)
1989		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1990			return fc_exch_find(ema->mp, xid);
1991	return NULL;
1992}
1993
1994/**
1995 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1996 * @rfp: The REC frame, not freed here.
1997 *
1998 * Note that the requesting port may be different than the S_ID in the request.
1999 */
2000static void fc_exch_els_rec(struct fc_frame *rfp)
2001{
2002	struct fc_lport *lport;
2003	struct fc_frame *fp;
2004	struct fc_exch *ep;
2005	struct fc_els_rec *rp;
2006	struct fc_els_rec_acc *acc;
2007	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2008	enum fc_els_rjt_explan explan;
2009	u32 sid;
2010	u16 xid, rxid, oxid;
2011
2012	lport = fr_dev(rfp);
2013	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2014	explan = ELS_EXPL_INV_LEN;
2015	if (!rp)
2016		goto reject;
2017	sid = ntoh24(rp->rec_s_id);
2018	rxid = ntohs(rp->rec_rx_id);
2019	oxid = ntohs(rp->rec_ox_id);
2020
2021	explan = ELS_EXPL_OXID_RXID;
2022	if (sid == fc_host_port_id(lport->host))
2023		xid = oxid;
2024	else
2025		xid = rxid;
2026	if (xid == FC_XID_UNKNOWN) {
2027		FC_LPORT_DBG(lport,
2028			     "REC request from %x: invalid rxid %x oxid %x\n",
2029			     sid, rxid, oxid);
2030		goto reject;
2031	}
2032	ep = fc_exch_lookup(lport, xid);
2033	if (!ep) {
2034		FC_LPORT_DBG(lport,
2035			     "REC request from %x: rxid %x oxid %x not found\n",
2036			     sid, rxid, oxid);
2037		goto reject;
2038	}
2039	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2040		    sid, rxid, oxid);
2041	if (ep->oid != sid || oxid != ep->oxid)
2042		goto rel;
2043	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2044		goto rel;
2045	fp = fc_frame_alloc(lport, sizeof(*acc));
2046	if (!fp) {
2047		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2048		goto out;
2049	}
2050
2051	acc = fc_frame_payload_get(fp, sizeof(*acc));
2052	memset(acc, 0, sizeof(*acc));
2053	acc->reca_cmd = ELS_LS_ACC;
2054	acc->reca_ox_id = rp->rec_ox_id;
2055	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2056	acc->reca_rx_id = htons(ep->rxid);
2057	if (ep->sid == ep->oid)
2058		hton24(acc->reca_rfid, ep->did);
2059	else
2060		hton24(acc->reca_rfid, ep->sid);
2061	acc->reca_fc4value = htonl(ep->seq.rec_data);
2062	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2063						 ESB_ST_SEQ_INIT |
2064						 ESB_ST_COMPLETE));
2065	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2066	lport->tt.frame_send(lport, fp);
2067out:
2068	fc_exch_release(ep);
2069	return;
2070
2071rel:
2072	fc_exch_release(ep);
2073reject:
2074	fc_seq_ls_rjt(rfp, reason, explan);
2075}
2076
2077/**
2078 * fc_exch_rrq_resp() - Handler for RRQ responses
2079 * @sp:	 The sequence that the RRQ is on
2080 * @fp:	 The RRQ frame
2081 * @arg: The exchange that the RRQ is on
2082 *
2083 * TODO: fix error handler.
2084 */
2085static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2086{
2087	struct fc_exch *aborted_ep = arg;
2088	unsigned int op;
2089
2090	if (IS_ERR(fp)) {
2091		int err = PTR_ERR(fp);
2092
2093		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2094			goto cleanup;
2095		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2096			    "frame error %d\n", err);
2097		return;
2098	}
2099
2100	op = fc_frame_payload_op(fp);
2101	fc_frame_free(fp);
2102
2103	switch (op) {
2104	case ELS_LS_RJT:
2105		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2106		/* fall through */
2107	case ELS_LS_ACC:
2108		goto cleanup;
2109	default:
2110		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2111			    op);
2112		return;
2113	}
2114
2115cleanup:
2116	fc_exch_done(&aborted_ep->seq);
2117	/* drop hold for rec qual */
2118	fc_exch_release(aborted_ep);
2119}
2120
2121
2122/**
2123 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2124 * @lport:	The local port to send the frame on
2125 * @fp:		The frame to be sent
2126 * @resp:	The response handler for this request
2127 * @destructor: The destructor for the exchange
2128 * @arg:	The argument to be passed to the response handler
2129 * @timer_msec: The timeout period for the exchange
2130 *
2131 * The exchange response handler is set in this routine to resp()
2132 * function pointer. It can be called in two scenarios: if a timeout
2133 * occurs or if a response frame is received for the exchange. The
2134 * fc_frame pointer in response handler will also indicate timeout
2135 * as error using IS_ERR related macros.
2136 *
2137 * The exchange destructor handler is also set in this routine.
2138 * The destructor handler is invoked by EM layer when exchange
2139 * is about to free, this can be used by caller to free its
2140 * resources along with exchange free.
2141 *
2142 * The arg is passed back to resp and destructor handler.
2143 *
2144 * The timeout value (in msec) for an exchange is set if non zero
2145 * timer_msec argument is specified. The timer is canceled when
2146 * it fires or when the exchange is done. The exchange timeout handler
2147 * is registered by EM layer.
2148 *
2149 * The frame pointer with some of the header's fields must be
2150 * filled before calling this routine, those fields are:
2151 *
2152 * - routing control
2153 * - FC port did
2154 * - FC port sid
2155 * - FC header type
2156 * - frame control
2157 * - parameter or relative offset
2158 */
2159struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2160				struct fc_frame *fp,
2161				void (*resp)(struct fc_seq *,
2162					     struct fc_frame *fp,
2163					     void *arg),
2164				void (*destructor)(struct fc_seq *, void *),
2165				void *arg, u32 timer_msec)
2166{
2167	struct fc_exch *ep;
2168	struct fc_seq *sp = NULL;
2169	struct fc_frame_header *fh;
2170	struct fc_fcp_pkt *fsp = NULL;
2171	int rc = 1;
2172
2173	ep = fc_exch_alloc(lport, fp);
2174	if (!ep) {
2175		fc_frame_free(fp);
2176		return NULL;
2177	}
2178	ep->esb_stat |= ESB_ST_SEQ_INIT;
2179	fh = fc_frame_header_get(fp);
2180	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2181	ep->resp = resp;
2182	ep->destructor = destructor;
2183	ep->arg = arg;
2184	ep->r_a_tov = lport->r_a_tov;
2185	ep->lp = lport;
2186	sp = &ep->seq;
2187
2188	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2189	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2190	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2191	sp->cnt++;
2192
2193	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2194		fsp = fr_fsp(fp);
2195		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2196	}
2197
2198	if (unlikely(lport->tt.frame_send(lport, fp)))
2199		goto err;
2200
2201	if (timer_msec)
2202		fc_exch_timer_set_locked(ep, timer_msec);
2203	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2204
2205	if (ep->f_ctl & FC_FC_SEQ_INIT)
2206		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2207	spin_unlock_bh(&ep->ex_lock);
2208	return sp;
2209err:
2210	if (fsp)
2211		fc_fcp_ddp_done(fsp);
2212	rc = fc_exch_done_locked(ep);
2213	spin_unlock_bh(&ep->ex_lock);
2214	if (!rc)
2215		fc_exch_delete(ep);
2216	return NULL;
2217}
2218EXPORT_SYMBOL(fc_exch_seq_send);
2219
2220/**
2221 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2222 * @ep: The exchange to send the RRQ on
2223 *
2224 * This tells the remote port to stop blocking the use of
2225 * the exchange and the seq_cnt range.
2226 */
2227static void fc_exch_rrq(struct fc_exch *ep)
2228{
2229	struct fc_lport *lport;
2230	struct fc_els_rrq *rrq;
2231	struct fc_frame *fp;
2232	u32 did;
2233
2234	lport = ep->lp;
2235
2236	fp = fc_frame_alloc(lport, sizeof(*rrq));
2237	if (!fp)
2238		goto retry;
2239
2240	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2241	memset(rrq, 0, sizeof(*rrq));
2242	rrq->rrq_cmd = ELS_RRQ;
2243	hton24(rrq->rrq_s_id, ep->sid);
2244	rrq->rrq_ox_id = htons(ep->oxid);
2245	rrq->rrq_rx_id = htons(ep->rxid);
2246
2247	did = ep->did;
2248	if (ep->esb_stat & ESB_ST_RESP)
2249		did = ep->sid;
2250
2251	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2252		       lport->port_id, FC_TYPE_ELS,
2253		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2254
2255	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2256			     lport->e_d_tov))
2257		return;
2258
2259retry:
2260	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2261	spin_lock_bh(&ep->ex_lock);
2262	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2263		spin_unlock_bh(&ep->ex_lock);
2264		/* drop hold for rec qual */
2265		fc_exch_release(ep);
2266		return;
2267	}
2268	ep->esb_stat |= ESB_ST_REC_QUAL;
2269	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2270	spin_unlock_bh(&ep->ex_lock);
2271}
2272
2273/**
2274 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2275 * @fp: The RRQ frame, not freed here.
2276 */
2277static void fc_exch_els_rrq(struct fc_frame *fp)
2278{
2279	struct fc_lport *lport;
2280	struct fc_exch *ep = NULL;	/* request or subject exchange */
2281	struct fc_els_rrq *rp;
2282	u32 sid;
2283	u16 xid;
2284	enum fc_els_rjt_explan explan;
2285
2286	lport = fr_dev(fp);
2287	rp = fc_frame_payload_get(fp, sizeof(*rp));
2288	explan = ELS_EXPL_INV_LEN;
2289	if (!rp)
2290		goto reject;
2291
2292	/*
2293	 * lookup subject exchange.
2294	 */
2295	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2296	xid = fc_host_port_id(lport->host) == sid ?
2297			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2298	ep = fc_exch_lookup(lport, xid);
2299	explan = ELS_EXPL_OXID_RXID;
2300	if (!ep)
2301		goto reject;
2302	spin_lock_bh(&ep->ex_lock);
2303	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2304		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2305	if (ep->oxid != ntohs(rp->rrq_ox_id))
2306		goto unlock_reject;
2307	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2308	    ep->rxid != FC_XID_UNKNOWN)
2309		goto unlock_reject;
2310	explan = ELS_EXPL_SID;
2311	if (ep->sid != sid)
2312		goto unlock_reject;
2313
2314	/*
2315	 * Clear Recovery Qualifier state, and cancel timer if complete.
2316	 */
2317	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2318		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2319		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2320	}
2321	if (ep->esb_stat & ESB_ST_COMPLETE)
2322		fc_exch_timer_cancel(ep);
2323
2324	spin_unlock_bh(&ep->ex_lock);
2325
2326	/*
2327	 * Send LS_ACC.
2328	 */
2329	fc_seq_ls_acc(fp);
2330	goto out;
2331
2332unlock_reject:
2333	spin_unlock_bh(&ep->ex_lock);
2334reject:
2335	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2336out:
2337	if (ep)
2338		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2339}
2340
2341/**
2342 * fc_exch_update_stats() - update exches stats to lport
2343 * @lport: The local port to update exchange manager stats
2344 */
2345void fc_exch_update_stats(struct fc_lport *lport)
2346{
2347	struct fc_host_statistics *st;
2348	struct fc_exch_mgr_anchor *ema;
2349	struct fc_exch_mgr *mp;
2350
2351	st = &lport->host_stats;
2352
2353	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2354		mp = ema->mp;
2355		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2356		st->fc_no_free_exch_xid +=
2357				atomic_read(&mp->stats.no_free_exch_xid);
2358		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2359		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2360		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2361		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2362	}
2363}
2364EXPORT_SYMBOL(fc_exch_update_stats);
2365
2366/**
2367 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2368 * @lport: The local port to add the exchange manager to
2369 * @mp:	   The exchange manager to be added to the local port
2370 * @match: The match routine that indicates when this EM should be used
2371 */
2372struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2373					   struct fc_exch_mgr *mp,
2374					   bool (*match)(struct fc_frame *))
2375{
2376	struct fc_exch_mgr_anchor *ema;
2377
2378	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2379	if (!ema)
2380		return ema;
2381
2382	ema->mp = mp;
2383	ema->match = match;
2384	/* add EM anchor to EM anchors list */
2385	list_add_tail(&ema->ema_list, &lport->ema_list);
2386	kref_get(&mp->kref);
2387	return ema;
2388}
2389EXPORT_SYMBOL(fc_exch_mgr_add);
2390
2391/**
2392 * fc_exch_mgr_destroy() - Destroy an exchange manager
2393 * @kref: The reference to the EM to be destroyed
2394 */
2395static void fc_exch_mgr_destroy(struct kref *kref)
2396{
2397	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2398
2399	mempool_destroy(mp->ep_pool);
2400	free_percpu(mp->pool);
2401	kfree(mp);
2402}
2403
2404/**
2405 * fc_exch_mgr_del() - Delete an EM from a local port's list
2406 * @ema: The exchange manager anchor identifying the EM to be deleted
2407 */
2408void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2409{
2410	/* remove EM anchor from EM anchors list */
2411	list_del(&ema->ema_list);
2412	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2413	kfree(ema);
2414}
2415EXPORT_SYMBOL(fc_exch_mgr_del);
2416
2417/**
2418 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2419 * @src: Source lport to clone exchange managers from
2420 * @dst: New lport that takes references to all the exchange managers
2421 */
2422int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2423{
2424	struct fc_exch_mgr_anchor *ema, *tmp;
2425
2426	list_for_each_entry(ema, &src->ema_list, ema_list) {
2427		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2428			goto err;
2429	}
2430	return 0;
2431err:
2432	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2433		fc_exch_mgr_del(ema);
2434	return -ENOMEM;
2435}
2436EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2437
2438/**
2439 * fc_exch_mgr_alloc() - Allocate an exchange manager
2440 * @lport:   The local port that the new EM will be associated with
2441 * @class:   The default FC class for new exchanges
2442 * @min_xid: The minimum XID for exchanges from the new EM
2443 * @max_xid: The maximum XID for exchanges from the new EM
2444 * @match:   The match routine for the new EM
2445 */
2446struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2447				      enum fc_class class,
2448				      u16 min_xid, u16 max_xid,
2449				      bool (*match)(struct fc_frame *))
2450{
2451	struct fc_exch_mgr *mp;
2452	u16 pool_exch_range;
2453	size_t pool_size;
2454	unsigned int cpu;
2455	struct fc_exch_pool *pool;
2456
2457	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2458	    (min_xid & fc_cpu_mask) != 0) {
2459		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2460			     min_xid, max_xid);
2461		return NULL;
2462	}
2463
2464	/*
2465	 * allocate memory for EM
2466	 */
2467	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2468	if (!mp)
2469		return NULL;
2470
2471	mp->class = class;
2472	mp->lport = lport;
2473	/* adjust em exch xid range for offload */
2474	mp->min_xid = min_xid;
2475
2476       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2477	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2478		sizeof(struct fc_exch *);
2479	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2480		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2481			min_xid - 1;
2482	} else {
2483		mp->max_xid = max_xid;
2484		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2485			(fc_cpu_mask + 1);
2486	}
2487
2488	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2489	if (!mp->ep_pool)
2490		goto free_mp;
2491
2492	/*
2493	 * Setup per cpu exch pool with entire exchange id range equally
2494	 * divided across all cpus. The exch pointers array memory is
2495	 * allocated for exch range per pool.
2496	 */
2497	mp->pool_max_index = pool_exch_range - 1;
2498
2499	/*
2500	 * Allocate and initialize per cpu exch pool
2501	 */
2502	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2503	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2504	if (!mp->pool)
2505		goto free_mempool;
2506	for_each_possible_cpu(cpu) {
2507		pool = per_cpu_ptr(mp->pool, cpu);
2508		pool->next_index = 0;
2509		pool->left = FC_XID_UNKNOWN;
2510		pool->right = FC_XID_UNKNOWN;
2511		spin_lock_init(&pool->lock);
2512		INIT_LIST_HEAD(&pool->ex_list);
2513	}
2514
2515	kref_init(&mp->kref);
2516	if (!fc_exch_mgr_add(lport, mp, match)) {
2517		free_percpu(mp->pool);
2518		goto free_mempool;
2519	}
2520
2521	/*
2522	 * Above kref_init() sets mp->kref to 1 and then
2523	 * call to fc_exch_mgr_add incremented mp->kref again,
2524	 * so adjust that extra increment.
2525	 */
2526	kref_put(&mp->kref, fc_exch_mgr_destroy);
2527	return mp;
2528
2529free_mempool:
2530	mempool_destroy(mp->ep_pool);
2531free_mp:
2532	kfree(mp);
2533	return NULL;
2534}
2535EXPORT_SYMBOL(fc_exch_mgr_alloc);
2536
2537/**
2538 * fc_exch_mgr_free() - Free all exchange managers on a local port
2539 * @lport: The local port whose EMs are to be freed
2540 */
2541void fc_exch_mgr_free(struct fc_lport *lport)
2542{
2543	struct fc_exch_mgr_anchor *ema, *next;
2544
2545	flush_workqueue(fc_exch_workqueue);
2546	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2547		fc_exch_mgr_del(ema);
2548}
2549EXPORT_SYMBOL(fc_exch_mgr_free);
2550
2551/**
2552 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2553 * upon 'xid'.
2554 * @f_ctl: f_ctl
2555 * @lport: The local port the frame was received on
2556 * @fh: The received frame header
2557 */
2558static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2559					      struct fc_lport *lport,
2560					      struct fc_frame_header *fh)
2561{
2562	struct fc_exch_mgr_anchor *ema;
2563	u16 xid;
2564
2565	if (f_ctl & FC_FC_EX_CTX)
2566		xid = ntohs(fh->fh_ox_id);
2567	else {
2568		xid = ntohs(fh->fh_rx_id);
2569		if (xid == FC_XID_UNKNOWN)
2570			return list_entry(lport->ema_list.prev,
2571					  typeof(*ema), ema_list);
2572	}
2573
2574	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2575		if ((xid >= ema->mp->min_xid) &&
2576		    (xid <= ema->mp->max_xid))
2577			return ema;
2578	}
2579	return NULL;
2580}
2581/**
2582 * fc_exch_recv() - Handler for received frames
2583 * @lport: The local port the frame was received on
2584 * @fp:	The received frame
2585 */
2586void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2587{
2588	struct fc_frame_header *fh = fc_frame_header_get(fp);
2589	struct fc_exch_mgr_anchor *ema;
2590	u32 f_ctl;
2591
2592	/* lport lock ? */
2593	if (!lport || lport->state == LPORT_ST_DISABLED) {
2594		FC_LIBFC_DBG("Receiving frames for an lport that "
2595			     "has not been initialized correctly\n");
2596		fc_frame_free(fp);
2597		return;
2598	}
2599
2600	f_ctl = ntoh24(fh->fh_f_ctl);
2601	ema = fc_find_ema(f_ctl, lport, fh);
2602	if (!ema) {
2603		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2604				    "fc_ctl <0x%x>, xid <0x%x>\n",
2605				     f_ctl,
2606				     (f_ctl & FC_FC_EX_CTX) ?
2607				     ntohs(fh->fh_ox_id) :
2608				     ntohs(fh->fh_rx_id));
2609		fc_frame_free(fp);
2610		return;
2611	}
2612
2613	/*
2614	 * If frame is marked invalid, just drop it.
2615	 */
2616	switch (fr_eof(fp)) {
2617	case FC_EOF_T:
2618		if (f_ctl & FC_FC_END_SEQ)
2619			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2620		/* fall through */
2621	case FC_EOF_N:
2622		if (fh->fh_type == FC_TYPE_BLS)
2623			fc_exch_recv_bls(ema->mp, fp);
2624		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2625			 FC_FC_EX_CTX)
2626			fc_exch_recv_seq_resp(ema->mp, fp);
2627		else if (f_ctl & FC_FC_SEQ_CTX)
2628			fc_exch_recv_resp(ema->mp, fp);
2629		else	/* no EX_CTX and no SEQ_CTX */
2630			fc_exch_recv_req(lport, ema->mp, fp);
2631		break;
2632	default:
2633		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2634			     fr_eof(fp));
2635		fc_frame_free(fp);
2636	}
2637}
2638EXPORT_SYMBOL(fc_exch_recv);
2639
2640/**
2641 * fc_exch_init() - Initialize the exchange layer for a local port
2642 * @lport: The local port to initialize the exchange layer for
2643 */
2644int fc_exch_init(struct fc_lport *lport)
2645{
2646	if (!lport->tt.exch_mgr_reset)
2647		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2648
2649	return 0;
2650}
2651EXPORT_SYMBOL(fc_exch_init);
2652
2653/**
2654 * fc_setup_exch_mgr() - Setup an exchange manager
2655 */
2656int fc_setup_exch_mgr(void)
2657{
2658	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2659					 0, SLAB_HWCACHE_ALIGN, NULL);
2660	if (!fc_em_cachep)
2661		return -ENOMEM;
2662
2663	/*
2664	 * Initialize fc_cpu_mask and fc_cpu_order. The
2665	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2666	 * to order of 2's * power and order is stored
2667	 * in fc_cpu_order as this is later required in
2668	 * mapping between an exch id and exch array index
2669	 * in per cpu exch pool.
2670	 *
2671	 * This round up is required to align fc_cpu_mask
2672	 * to exchange id's lower bits such that all incoming
2673	 * frames of an exchange gets delivered to the same
2674	 * cpu on which exchange originated by simple bitwise
2675	 * AND operation between fc_cpu_mask and exchange id.
2676	 */
2677	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2678	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2679
2680	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2681	if (!fc_exch_workqueue)
2682		goto err;
2683	return 0;
2684err:
2685	kmem_cache_destroy(fc_em_cachep);
2686	return -ENOMEM;
2687}
2688
2689/**
2690 * fc_destroy_exch_mgr() - Destroy an exchange manager
2691 */
2692void fc_destroy_exch_mgr(void)
2693{
2694	destroy_workqueue(fc_exch_workqueue);
2695	kmem_cache_destroy(fc_em_cachep);
2696}