Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  65
  66struct scrub_recover {
  67	atomic_t		refs;
  68	struct btrfs_bio	*bbio;
  69	u64			map_length;
  70};
  71
  72struct scrub_page {
  73	struct scrub_block	*sblock;
  74	struct page		*page;
  75	struct btrfs_device	*dev;
  76	struct list_head	list;
  77	u64			flags;  /* extent flags */
  78	u64			generation;
  79	u64			logical;
  80	u64			physical;
  81	u64			physical_for_dev_replace;
  82	atomic_t		refs;
  83	struct {
  84		unsigned int	mirror_num:8;
  85		unsigned int	have_csum:1;
  86		unsigned int	io_error:1;
  87	};
  88	u8			csum[BTRFS_CSUM_SIZE];
  89
  90	struct scrub_recover	*recover;
  91};
  92
  93struct scrub_bio {
  94	int			index;
  95	struct scrub_ctx	*sctx;
  96	struct btrfs_device	*dev;
  97	struct bio		*bio;
  98	int			err;
  99	u64			logical;
 100	u64			physical;
 101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
 102	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
 103#else
 104	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
 105#endif
 106	int			page_count;
 107	int			next_free;
 108	struct btrfs_work	work;
 109};
 110
 111struct scrub_block {
 112	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 113	int			page_count;
 114	atomic_t		outstanding_pages;
 115	atomic_t		refs; /* free mem on transition to zero */
 116	struct scrub_ctx	*sctx;
 117	struct scrub_parity	*sparity;
 118	struct {
 119		unsigned int	header_error:1;
 120		unsigned int	checksum_error:1;
 121		unsigned int	no_io_error_seen:1;
 122		unsigned int	generation_error:1; /* also sets header_error */
 123
 124		/* The following is for the data used to check parity */
 125		/* It is for the data with checksum */
 126		unsigned int	data_corrected:1;
 127	};
 128	struct btrfs_work	work;
 129};
 130
 131/* Used for the chunks with parity stripe such RAID5/6 */
 132struct scrub_parity {
 133	struct scrub_ctx	*sctx;
 134
 135	struct btrfs_device	*scrub_dev;
 136
 137	u64			logic_start;
 138
 139	u64			logic_end;
 140
 141	int			nsectors;
 142
 143	int			stripe_len;
 144
 145	atomic_t		refs;
 146
 147	struct list_head	spages;
 148
 149	/* Work of parity check and repair */
 150	struct btrfs_work	work;
 151
 152	/* Mark the parity blocks which have data */
 153	unsigned long		*dbitmap;
 154
 155	/*
 156	 * Mark the parity blocks which have data, but errors happen when
 157	 * read data or check data
 158	 */
 159	unsigned long		*ebitmap;
 160
 161	unsigned long		bitmap[0];
 162};
 163
 164struct scrub_wr_ctx {
 165	struct scrub_bio *wr_curr_bio;
 166	struct btrfs_device *tgtdev;
 167	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 168	atomic_t flush_all_writes;
 169	struct mutex wr_lock;
 170};
 171
 172struct scrub_ctx {
 173	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 174	struct btrfs_fs_info	*fs_info;
 175	int			first_free;
 176	int			curr;
 177	atomic_t		bios_in_flight;
 178	atomic_t		workers_pending;
 179	spinlock_t		list_lock;
 180	wait_queue_head_t	list_wait;
 181	u16			csum_size;
 182	struct list_head	csum_list;
 183	atomic_t		cancel_req;
 184	int			readonly;
 185	int			pages_per_rd_bio;
 186	u32			sectorsize;
 187	u32			nodesize;
 188
 189	int			is_dev_replace;
 190	struct scrub_wr_ctx	wr_ctx;
 191
 192	/*
 193	 * statistics
 194	 */
 195	struct btrfs_scrub_progress stat;
 196	spinlock_t		stat_lock;
 197
 198	/*
 199	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 200	 * decrement bios_in_flight and workers_pending and then do a wakeup
 201	 * on the list_wait wait queue. We must ensure the main scrub task
 202	 * doesn't free the scrub context before or while the workers are
 203	 * doing the wakeup() call.
 204	 */
 205	atomic_t                refs;
 206};
 207
 208struct scrub_fixup_nodatasum {
 209	struct scrub_ctx	*sctx;
 210	struct btrfs_device	*dev;
 211	u64			logical;
 212	struct btrfs_root	*root;
 213	struct btrfs_work	work;
 214	int			mirror_num;
 215};
 216
 217struct scrub_nocow_inode {
 218	u64			inum;
 219	u64			offset;
 220	u64			root;
 221	struct list_head	list;
 222};
 223
 224struct scrub_copy_nocow_ctx {
 225	struct scrub_ctx	*sctx;
 226	u64			logical;
 227	u64			len;
 228	int			mirror_num;
 229	u64			physical_for_dev_replace;
 230	struct list_head	inodes;
 231	struct btrfs_work	work;
 232};
 233
 234struct scrub_warning {
 235	struct btrfs_path	*path;
 236	u64			extent_item_size;
 
 
 237	const char		*errstr;
 238	sector_t		sector;
 239	u64			logical;
 240	struct btrfs_device	*dev;
 
 
 241};
 242
 243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 249				     struct scrub_block *sblocks_for_recheck);
 250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 251				struct scrub_block *sblock,
 252				int retry_failed_mirror);
 253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 
 
 
 
 
 
 
 
 254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 255					     struct scrub_block *sblock_good);
 
 256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 257					    struct scrub_block *sblock_good,
 258					    int page_num, int force_write);
 259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 261					   int page_num);
 262static int scrub_checksum_data(struct scrub_block *sblock);
 263static int scrub_checksum_tree_block(struct scrub_block *sblock);
 264static int scrub_checksum_super(struct scrub_block *sblock);
 265static void scrub_block_get(struct scrub_block *sblock);
 266static void scrub_block_put(struct scrub_block *sblock);
 267static void scrub_page_get(struct scrub_page *spage);
 268static void scrub_page_put(struct scrub_page *spage);
 269static void scrub_parity_get(struct scrub_parity *sparity);
 270static void scrub_parity_put(struct scrub_parity *sparity);
 271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 272				    struct scrub_page *spage);
 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 274		       u64 physical, struct btrfs_device *dev, u64 flags,
 275		       u64 gen, int mirror_num, u8 *csum, int force,
 276		       u64 physical_for_dev_replace);
 277static void scrub_bio_end_io(struct bio *bio);
 278static void scrub_bio_end_io_worker(struct btrfs_work *work);
 279static void scrub_block_complete(struct scrub_block *sblock);
 280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 281			       u64 extent_logical, u64 extent_len,
 282			       u64 *extent_physical,
 283			       struct btrfs_device **extent_dev,
 284			       int *extent_mirror_num);
 285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 286			      struct scrub_wr_ctx *wr_ctx,
 287			      struct btrfs_fs_info *fs_info,
 288			      struct btrfs_device *dev,
 289			      int is_dev_replace);
 290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 292				    struct scrub_page *spage);
 293static void scrub_wr_submit(struct scrub_ctx *sctx);
 294static void scrub_wr_bio_end_io(struct bio *bio);
 295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 296static int write_page_nocow(struct scrub_ctx *sctx,
 297			    u64 physical_for_dev_replace, struct page *page);
 298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 299				      struct scrub_copy_nocow_ctx *ctx);
 300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 301			    int mirror_num, u64 physical_for_dev_replace);
 302static void copy_nocow_pages_worker(struct btrfs_work *work);
 303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 305static void scrub_put_ctx(struct scrub_ctx *sctx);
 306
 307
 308static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 309{
 310	atomic_inc(&sctx->refs);
 311	atomic_inc(&sctx->bios_in_flight);
 312}
 313
 314static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 315{
 316	atomic_dec(&sctx->bios_in_flight);
 317	wake_up(&sctx->list_wait);
 318	scrub_put_ctx(sctx);
 319}
 320
 321static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 322{
 323	while (atomic_read(&fs_info->scrub_pause_req)) {
 324		mutex_unlock(&fs_info->scrub_lock);
 325		wait_event(fs_info->scrub_pause_wait,
 326		   atomic_read(&fs_info->scrub_pause_req) == 0);
 327		mutex_lock(&fs_info->scrub_lock);
 328	}
 329}
 330
 331static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 332{
 333	atomic_inc(&fs_info->scrubs_paused);
 334	wake_up(&fs_info->scrub_pause_wait);
 335}
 336
 337static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 338{
 339	mutex_lock(&fs_info->scrub_lock);
 340	__scrub_blocked_if_needed(fs_info);
 341	atomic_dec(&fs_info->scrubs_paused);
 342	mutex_unlock(&fs_info->scrub_lock);
 343
 344	wake_up(&fs_info->scrub_pause_wait);
 345}
 346
 347static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 348{
 349	scrub_pause_on(fs_info);
 350	scrub_pause_off(fs_info);
 351}
 352
 353/*
 354 * used for workers that require transaction commits (i.e., for the
 355 * NOCOW case)
 356 */
 357static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 358{
 359	struct btrfs_fs_info *fs_info = sctx->fs_info;
 360
 361	atomic_inc(&sctx->refs);
 362	/*
 363	 * increment scrubs_running to prevent cancel requests from
 364	 * completing as long as a worker is running. we must also
 365	 * increment scrubs_paused to prevent deadlocking on pause
 366	 * requests used for transactions commits (as the worker uses a
 367	 * transaction context). it is safe to regard the worker
 368	 * as paused for all matters practical. effectively, we only
 369	 * avoid cancellation requests from completing.
 370	 */
 371	mutex_lock(&fs_info->scrub_lock);
 372	atomic_inc(&fs_info->scrubs_running);
 373	atomic_inc(&fs_info->scrubs_paused);
 374	mutex_unlock(&fs_info->scrub_lock);
 375
 376	/*
 377	 * check if @scrubs_running=@scrubs_paused condition
 378	 * inside wait_event() is not an atomic operation.
 379	 * which means we may inc/dec @scrub_running/paused
 380	 * at any time. Let's wake up @scrub_pause_wait as
 381	 * much as we can to let commit transaction blocked less.
 382	 */
 383	wake_up(&fs_info->scrub_pause_wait);
 384
 385	atomic_inc(&sctx->workers_pending);
 386}
 387
 388/* used for workers that require transaction commits */
 389static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 390{
 391	struct btrfs_fs_info *fs_info = sctx->fs_info;
 392
 393	/*
 394	 * see scrub_pending_trans_workers_inc() why we're pretending
 395	 * to be paused in the scrub counters
 396	 */
 397	mutex_lock(&fs_info->scrub_lock);
 398	atomic_dec(&fs_info->scrubs_running);
 399	atomic_dec(&fs_info->scrubs_paused);
 400	mutex_unlock(&fs_info->scrub_lock);
 401	atomic_dec(&sctx->workers_pending);
 402	wake_up(&fs_info->scrub_pause_wait);
 403	wake_up(&sctx->list_wait);
 404	scrub_put_ctx(sctx);
 405}
 406
 407static void scrub_free_csums(struct scrub_ctx *sctx)
 408{
 409	while (!list_empty(&sctx->csum_list)) {
 410		struct btrfs_ordered_sum *sum;
 411		sum = list_first_entry(&sctx->csum_list,
 412				       struct btrfs_ordered_sum, list);
 413		list_del(&sum->list);
 414		kfree(sum);
 415	}
 416}
 417
 418static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 419{
 420	int i;
 421
 422	if (!sctx)
 423		return;
 424
 425	scrub_free_wr_ctx(&sctx->wr_ctx);
 426
 427	/* this can happen when scrub is cancelled */
 428	if (sctx->curr != -1) {
 429		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 430
 431		for (i = 0; i < sbio->page_count; i++) {
 432			WARN_ON(!sbio->pagev[i]->page);
 
 433			scrub_block_put(sbio->pagev[i]->sblock);
 434		}
 435		bio_put(sbio->bio);
 436	}
 437
 438	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 439		struct scrub_bio *sbio = sctx->bios[i];
 440
 441		if (!sbio)
 442			break;
 443		kfree(sbio);
 444	}
 445
 446	scrub_free_csums(sctx);
 447	kfree(sctx);
 448}
 449
 450static void scrub_put_ctx(struct scrub_ctx *sctx)
 451{
 452	if (atomic_dec_and_test(&sctx->refs))
 453		scrub_free_ctx(sctx);
 454}
 455
 456static noinline_for_stack
 457struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 458{
 459	struct scrub_ctx *sctx;
 460	int		i;
 461	struct btrfs_fs_info *fs_info = dev->fs_info;
 462	int ret;
 463
 464	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 465	if (!sctx)
 
 
 466		goto nomem;
 467	atomic_set(&sctx->refs, 1);
 468	sctx->is_dev_replace = is_dev_replace;
 469	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 470	sctx->curr = -1;
 471	sctx->fs_info = dev->fs_info;
 472	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 473		struct scrub_bio *sbio;
 474
 475		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 476		if (!sbio)
 477			goto nomem;
 478		sctx->bios[i] = sbio;
 479
 480		sbio->index = i;
 481		sbio->sctx = sctx;
 482		sbio->page_count = 0;
 483		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 484				scrub_bio_end_io_worker, NULL, NULL);
 485
 486		if (i != SCRUB_BIOS_PER_SCTX - 1)
 487			sctx->bios[i]->next_free = i + 1;
 488		else
 489			sctx->bios[i]->next_free = -1;
 490	}
 491	sctx->first_free = 0;
 492	sctx->nodesize = fs_info->nodesize;
 493	sctx->sectorsize = fs_info->sectorsize;
 494	atomic_set(&sctx->bios_in_flight, 0);
 495	atomic_set(&sctx->workers_pending, 0);
 496	atomic_set(&sctx->cancel_req, 0);
 497	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 498	INIT_LIST_HEAD(&sctx->csum_list);
 499
 500	spin_lock_init(&sctx->list_lock);
 501	spin_lock_init(&sctx->stat_lock);
 502	init_waitqueue_head(&sctx->list_wait);
 503
 504	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 505				 fs_info->dev_replace.tgtdev, is_dev_replace);
 506	if (ret) {
 507		scrub_free_ctx(sctx);
 508		return ERR_PTR(ret);
 509	}
 510	return sctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 511
 512nomem:
 513	scrub_free_ctx(sctx);
 514	return ERR_PTR(-ENOMEM);
 515}
 516
 517static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 518				     void *warn_ctx)
 519{
 520	u64 isize;
 521	u32 nlink;
 522	int ret;
 523	int i;
 524	struct extent_buffer *eb;
 525	struct btrfs_inode_item *inode_item;
 526	struct scrub_warning *swarn = warn_ctx;
 527	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 528	struct inode_fs_paths *ipath = NULL;
 529	struct btrfs_root *local_root;
 530	struct btrfs_key root_key;
 531	struct btrfs_key key;
 532
 533	root_key.objectid = root;
 534	root_key.type = BTRFS_ROOT_ITEM_KEY;
 535	root_key.offset = (u64)-1;
 536	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 537	if (IS_ERR(local_root)) {
 538		ret = PTR_ERR(local_root);
 539		goto err;
 540	}
 541
 542	/*
 543	 * this makes the path point to (inum INODE_ITEM ioff)
 544	 */
 545	key.objectid = inum;
 546	key.type = BTRFS_INODE_ITEM_KEY;
 547	key.offset = 0;
 548
 549	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 550	if (ret) {
 551		btrfs_release_path(swarn->path);
 552		goto err;
 553	}
 554
 555	eb = swarn->path->nodes[0];
 556	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 557					struct btrfs_inode_item);
 558	isize = btrfs_inode_size(eb, inode_item);
 559	nlink = btrfs_inode_nlink(eb, inode_item);
 560	btrfs_release_path(swarn->path);
 561
 562	ipath = init_ipath(4096, local_root, swarn->path);
 563	if (IS_ERR(ipath)) {
 564		ret = PTR_ERR(ipath);
 565		ipath = NULL;
 566		goto err;
 567	}
 568	ret = paths_from_inode(inum, ipath);
 569
 570	if (ret < 0)
 571		goto err;
 572
 573	/*
 574	 * we deliberately ignore the bit ipath might have been too small to
 575	 * hold all of the paths here
 576	 */
 577	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 578		btrfs_warn_in_rcu(fs_info,
 579				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 580				  swarn->errstr, swarn->logical,
 581				  rcu_str_deref(swarn->dev->name),
 582				  (unsigned long long)swarn->sector,
 583				  root, inum, offset,
 584				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 585				  (char *)(unsigned long)ipath->fspath->val[i]);
 586
 587	free_ipath(ipath);
 588	return 0;
 589
 590err:
 591	btrfs_warn_in_rcu(fs_info,
 592			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 593			  swarn->errstr, swarn->logical,
 594			  rcu_str_deref(swarn->dev->name),
 595			  (unsigned long long)swarn->sector,
 596			  root, inum, offset, ret);
 597
 598	free_ipath(ipath);
 599	return 0;
 600}
 601
 602static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 603{
 604	struct btrfs_device *dev;
 605	struct btrfs_fs_info *fs_info;
 606	struct btrfs_path *path;
 607	struct btrfs_key found_key;
 608	struct extent_buffer *eb;
 609	struct btrfs_extent_item *ei;
 610	struct scrub_warning swarn;
 611	unsigned long ptr = 0;
 612	u64 extent_item_pos;
 613	u64 flags = 0;
 614	u64 ref_root;
 615	u32 item_size;
 616	u8 ref_level = 0;
 617	int ret;
 618
 619	WARN_ON(sblock->page_count < 1);
 620	dev = sblock->pagev[0]->dev;
 621	fs_info = sblock->sctx->fs_info;
 
 622
 623	path = btrfs_alloc_path();
 624	if (!path)
 625		return;
 626
 627	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 628	swarn.logical = sblock->pagev[0]->logical;
 
 
 
 629	swarn.errstr = errstr;
 630	swarn.dev = NULL;
 
 
 631
 632	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 633				  &flags);
 
 
 634	if (ret < 0)
 635		goto out;
 636
 637	extent_item_pos = swarn.logical - found_key.objectid;
 638	swarn.extent_item_size = found_key.offset;
 639
 640	eb = path->nodes[0];
 641	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 642	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 
 643
 644	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 645		do {
 646			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 647						      item_size, &ref_root,
 648						      &ref_level);
 649			btrfs_warn_in_rcu(fs_info,
 650				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
 651				errstr, swarn.logical,
 652				rcu_str_deref(dev->name),
 653				(unsigned long long)swarn.sector,
 654				ref_level ? "node" : "leaf",
 655				ret < 0 ? -1 : ref_level,
 656				ret < 0 ? -1 : ref_root);
 657		} while (ret != 1);
 658		btrfs_release_path(path);
 659	} else {
 660		btrfs_release_path(path);
 661		swarn.path = path;
 662		swarn.dev = dev;
 663		iterate_extent_inodes(fs_info, found_key.objectid,
 664					extent_item_pos, 1,
 665					scrub_print_warning_inode, &swarn);
 666	}
 667
 668out:
 669	btrfs_free_path(path);
 
 
 670}
 671
 672static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 673{
 674	struct page *page = NULL;
 675	unsigned long index;
 676	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 677	int ret;
 678	int corrected = 0;
 679	struct btrfs_key key;
 680	struct inode *inode = NULL;
 681	struct btrfs_fs_info *fs_info;
 682	u64 end = offset + PAGE_SIZE - 1;
 683	struct btrfs_root *local_root;
 684	int srcu_index;
 685
 686	key.objectid = root;
 687	key.type = BTRFS_ROOT_ITEM_KEY;
 688	key.offset = (u64)-1;
 689
 690	fs_info = fixup->root->fs_info;
 691	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 692
 693	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 694	if (IS_ERR(local_root)) {
 695		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 696		return PTR_ERR(local_root);
 697	}
 698
 699	key.type = BTRFS_INODE_ITEM_KEY;
 700	key.objectid = inum;
 701	key.offset = 0;
 702	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 703	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 704	if (IS_ERR(inode))
 705		return PTR_ERR(inode);
 706
 707	index = offset >> PAGE_SHIFT;
 708
 709	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 710	if (!page) {
 711		ret = -ENOMEM;
 712		goto out;
 713	}
 714
 715	if (PageUptodate(page)) {
 
 716		if (PageDirty(page)) {
 717			/*
 718			 * we need to write the data to the defect sector. the
 719			 * data that was in that sector is not in memory,
 720			 * because the page was modified. we must not write the
 721			 * modified page to that sector.
 722			 *
 723			 * TODO: what could be done here: wait for the delalloc
 724			 *       runner to write out that page (might involve
 725			 *       COW) and see whether the sector is still
 726			 *       referenced afterwards.
 727			 *
 728			 * For the meantime, we'll treat this error
 729			 * incorrectable, although there is a chance that a
 730			 * later scrub will find the bad sector again and that
 731			 * there's no dirty page in memory, then.
 732			 */
 733			ret = -EIO;
 734			goto out;
 735		}
 736		ret = repair_io_failure(inode, offset, PAGE_SIZE,
 
 737					fixup->logical, page,
 738					offset - page_offset(page),
 739					fixup->mirror_num);
 740		unlock_page(page);
 741		corrected = !ret;
 742	} else {
 743		/*
 744		 * we need to get good data first. the general readpage path
 745		 * will call repair_io_failure for us, we just have to make
 746		 * sure we read the bad mirror.
 747		 */
 748		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 749					EXTENT_DAMAGED);
 750		if (ret) {
 751			/* set_extent_bits should give proper error */
 752			WARN_ON(ret > 0);
 753			if (ret > 0)
 754				ret = -EFAULT;
 755			goto out;
 756		}
 757
 758		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 759						btrfs_get_extent,
 760						fixup->mirror_num);
 761		wait_on_page_locked(page);
 762
 763		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 764						end, EXTENT_DAMAGED, 0, NULL);
 765		if (!corrected)
 766			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 767						EXTENT_DAMAGED);
 768	}
 769
 770out:
 771	if (page)
 772		put_page(page);
 773
 774	iput(inode);
 775
 776	if (ret < 0)
 777		return ret;
 778
 779	if (ret == 0 && corrected) {
 780		/*
 781		 * we only need to call readpage for one of the inodes belonging
 782		 * to this extent. so make iterate_extent_inodes stop
 783		 */
 784		return 1;
 785	}
 786
 787	return -EIO;
 788}
 789
 790static void scrub_fixup_nodatasum(struct btrfs_work *work)
 791{
 792	struct btrfs_fs_info *fs_info;
 793	int ret;
 794	struct scrub_fixup_nodatasum *fixup;
 795	struct scrub_ctx *sctx;
 796	struct btrfs_trans_handle *trans = NULL;
 
 797	struct btrfs_path *path;
 798	int uncorrectable = 0;
 799
 800	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 801	sctx = fixup->sctx;
 802	fs_info = fixup->root->fs_info;
 803
 804	path = btrfs_alloc_path();
 805	if (!path) {
 806		spin_lock(&sctx->stat_lock);
 807		++sctx->stat.malloc_errors;
 808		spin_unlock(&sctx->stat_lock);
 809		uncorrectable = 1;
 810		goto out;
 811	}
 812
 813	trans = btrfs_join_transaction(fixup->root);
 814	if (IS_ERR(trans)) {
 815		uncorrectable = 1;
 816		goto out;
 817	}
 818
 819	/*
 820	 * the idea is to trigger a regular read through the standard path. we
 821	 * read a page from the (failed) logical address by specifying the
 822	 * corresponding copynum of the failed sector. thus, that readpage is
 823	 * expected to fail.
 824	 * that is the point where on-the-fly error correction will kick in
 825	 * (once it's finished) and rewrite the failed sector if a good copy
 826	 * can be found.
 827	 */
 828	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
 829					  scrub_fixup_readpage, fixup);
 
 830	if (ret < 0) {
 831		uncorrectable = 1;
 832		goto out;
 833	}
 834	WARN_ON(ret != 1);
 835
 836	spin_lock(&sctx->stat_lock);
 837	++sctx->stat.corrected_errors;
 838	spin_unlock(&sctx->stat_lock);
 839
 840out:
 841	if (trans && !IS_ERR(trans))
 842		btrfs_end_transaction(trans);
 843	if (uncorrectable) {
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.uncorrectable_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		btrfs_dev_replace_stats_inc(
 848			&fs_info->dev_replace.num_uncorrectable_read_errors);
 849		btrfs_err_rl_in_rcu(fs_info,
 850		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
 851			fixup->logical, rcu_str_deref(fixup->dev->name));
 852	}
 853
 854	btrfs_free_path(path);
 855	kfree(fixup);
 856
 857	scrub_pending_trans_workers_dec(sctx);
 858}
 859
 860static inline void scrub_get_recover(struct scrub_recover *recover)
 861{
 862	atomic_inc(&recover->refs);
 863}
 864
 865static inline void scrub_put_recover(struct scrub_recover *recover)
 866{
 867	if (atomic_dec_and_test(&recover->refs)) {
 868		btrfs_put_bbio(recover->bbio);
 869		kfree(recover);
 870	}
 871}
 872
 873/*
 874 * scrub_handle_errored_block gets called when either verification of the
 875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 876 * case, this function handles all pages in the bio, even though only one
 877 * may be bad.
 878 * The goal of this function is to repair the errored block by using the
 879 * contents of one of the mirrors.
 880 */
 881static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 882{
 883	struct scrub_ctx *sctx = sblock_to_check->sctx;
 884	struct btrfs_device *dev;
 885	struct btrfs_fs_info *fs_info;
 886	u64 length;
 887	u64 logical;
 
 888	unsigned int failed_mirror_index;
 889	unsigned int is_metadata;
 890	unsigned int have_csum;
 
 891	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 892	struct scrub_block *sblock_bad;
 893	int ret;
 894	int mirror_index;
 895	int page_num;
 896	int success;
 897	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 898				      DEFAULT_RATELIMIT_BURST);
 899
 900	BUG_ON(sblock_to_check->page_count < 1);
 901	fs_info = sctx->fs_info;
 902	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 903		/*
 904		 * if we find an error in a super block, we just report it.
 905		 * They will get written with the next transaction commit
 906		 * anyway
 907		 */
 908		spin_lock(&sctx->stat_lock);
 909		++sctx->stat.super_errors;
 910		spin_unlock(&sctx->stat_lock);
 911		return 0;
 912	}
 913	length = sblock_to_check->page_count * PAGE_SIZE;
 914	logical = sblock_to_check->pagev[0]->logical;
 915	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 916	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 917	is_metadata = !(sblock_to_check->pagev[0]->flags &
 
 918			BTRFS_EXTENT_FLAG_DATA);
 919	have_csum = sblock_to_check->pagev[0]->have_csum;
 920	dev = sblock_to_check->pagev[0]->dev;
 921
 922	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 923		sblocks_for_recheck = NULL;
 924		goto nodatasum_case;
 925	}
 926
 927	/*
 928	 * read all mirrors one after the other. This includes to
 929	 * re-read the extent or metadata block that failed (that was
 930	 * the cause that this fixup code is called) another time,
 931	 * page by page this time in order to know which pages
 932	 * caused I/O errors and which ones are good (for all mirrors).
 933	 * It is the goal to handle the situation when more than one
 934	 * mirror contains I/O errors, but the errors do not
 935	 * overlap, i.e. the data can be repaired by selecting the
 936	 * pages from those mirrors without I/O error on the
 937	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 938	 * would be that mirror #1 has an I/O error on the first page,
 939	 * the second page is good, and mirror #2 has an I/O error on
 940	 * the second page, but the first page is good.
 941	 * Then the first page of the first mirror can be repaired by
 942	 * taking the first page of the second mirror, and the
 943	 * second page of the second mirror can be repaired by
 944	 * copying the contents of the 2nd page of the 1st mirror.
 945	 * One more note: if the pages of one mirror contain I/O
 946	 * errors, the checksum cannot be verified. In order to get
 947	 * the best data for repairing, the first attempt is to find
 948	 * a mirror without I/O errors and with a validated checksum.
 949	 * Only if this is not possible, the pages are picked from
 950	 * mirrors with I/O errors without considering the checksum.
 951	 * If the latter is the case, at the end, the checksum of the
 952	 * repaired area is verified in order to correctly maintain
 953	 * the statistics.
 954	 */
 955
 956	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 957				      sizeof(*sblocks_for_recheck), GFP_NOFS);
 
 958	if (!sblocks_for_recheck) {
 959		spin_lock(&sctx->stat_lock);
 960		sctx->stat.malloc_errors++;
 961		sctx->stat.read_errors++;
 962		sctx->stat.uncorrectable_errors++;
 963		spin_unlock(&sctx->stat_lock);
 964		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 
 965		goto out;
 966	}
 967
 968	/* setup the context, map the logical blocks and alloc the pages */
 969	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 
 970	if (ret) {
 971		spin_lock(&sctx->stat_lock);
 972		sctx->stat.read_errors++;
 973		sctx->stat.uncorrectable_errors++;
 974		spin_unlock(&sctx->stat_lock);
 975		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 
 976		goto out;
 977	}
 978	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 979	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 980
 981	/* build and submit the bios for the failed mirror, check checksums */
 982	scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
 
 
 
 
 
 
 
 
 983
 984	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 985	    sblock_bad->no_io_error_seen) {
 986		/*
 987		 * the error disappeared after reading page by page, or
 988		 * the area was part of a huge bio and other parts of the
 989		 * bio caused I/O errors, or the block layer merged several
 990		 * read requests into one and the error is caused by a
 991		 * different bio (usually one of the two latter cases is
 992		 * the cause)
 993		 */
 994		spin_lock(&sctx->stat_lock);
 995		sctx->stat.unverified_errors++;
 996		sblock_to_check->data_corrected = 1;
 997		spin_unlock(&sctx->stat_lock);
 998
 999		if (sctx->is_dev_replace)
1000			scrub_write_block_to_dev_replace(sblock_bad);
1001		goto out;
1002	}
1003
1004	if (!sblock_bad->no_io_error_seen) {
1005		spin_lock(&sctx->stat_lock);
1006		sctx->stat.read_errors++;
1007		spin_unlock(&sctx->stat_lock);
1008		if (__ratelimit(&_rs))
1009			scrub_print_warning("i/o error", sblock_to_check);
1010		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 
1011	} else if (sblock_bad->checksum_error) {
1012		spin_lock(&sctx->stat_lock);
1013		sctx->stat.csum_errors++;
1014		spin_unlock(&sctx->stat_lock);
1015		if (__ratelimit(&_rs))
1016			scrub_print_warning("checksum error", sblock_to_check);
1017		btrfs_dev_stat_inc_and_print(dev,
1018					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019	} else if (sblock_bad->header_error) {
1020		spin_lock(&sctx->stat_lock);
1021		sctx->stat.verify_errors++;
1022		spin_unlock(&sctx->stat_lock);
1023		if (__ratelimit(&_rs))
1024			scrub_print_warning("checksum/header error",
1025					    sblock_to_check);
1026		if (sblock_bad->generation_error)
1027			btrfs_dev_stat_inc_and_print(dev,
1028				BTRFS_DEV_STAT_GENERATION_ERRS);
1029		else
1030			btrfs_dev_stat_inc_and_print(dev,
1031				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032	}
1033
1034	if (sctx->readonly) {
1035		ASSERT(!sctx->is_dev_replace);
1036		goto out;
1037	}
1038
1039	if (!is_metadata && !have_csum) {
1040		struct scrub_fixup_nodatasum *fixup_nodatasum;
1041
1042		WARN_ON(sctx->is_dev_replace);
1043
1044nodatasum_case:
1045
1046		/*
1047		 * !is_metadata and !have_csum, this means that the data
1048		 * might not be COWed, that it might be modified
1049		 * concurrently. The general strategy to work on the
1050		 * commit root does not help in the case when COW is not
1051		 * used.
1052		 */
1053		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054		if (!fixup_nodatasum)
1055			goto did_not_correct_error;
1056		fixup_nodatasum->sctx = sctx;
1057		fixup_nodatasum->dev = dev;
1058		fixup_nodatasum->logical = logical;
1059		fixup_nodatasum->root = fs_info->extent_root;
1060		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061		scrub_pending_trans_workers_inc(sctx);
1062		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063				scrub_fixup_nodatasum, NULL, NULL);
1064		btrfs_queue_work(fs_info->scrub_workers,
1065				 &fixup_nodatasum->work);
 
 
 
 
 
 
 
 
 
 
 
 
1066		goto out;
1067	}
1068
1069	/*
1070	 * now build and submit the bios for the other mirrors, check
1071	 * checksums.
1072	 * First try to pick the mirror which is completely without I/O
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073	 * errors and also does not have a checksum error.
1074	 * If one is found, and if a checksum is present, the full block
1075	 * that is known to contain an error is rewritten. Afterwards
1076	 * the block is known to be corrected.
1077	 * If a mirror is found which is completely correct, and no
1078	 * checksum is present, only those pages are rewritten that had
1079	 * an I/O error in the block to be repaired, since it cannot be
1080	 * determined, which copy of the other pages is better (and it
1081	 * could happen otherwise that a correct page would be
1082	 * overwritten by a bad one).
1083	 */
1084	for (mirror_index = 0;
1085	     mirror_index < BTRFS_MAX_MIRRORS &&
1086	     sblocks_for_recheck[mirror_index].page_count > 0;
1087	     mirror_index++) {
1088		struct scrub_block *sblock_other;
1089
1090		if (mirror_index == failed_mirror_index)
1091			continue;
1092		sblock_other = sblocks_for_recheck + mirror_index;
1093
1094		/* build and submit the bios, check checksums */
1095		scrub_recheck_block(fs_info, sblock_other, 0);
1096
1097		if (!sblock_other->header_error &&
1098		    !sblock_other->checksum_error &&
1099		    sblock_other->no_io_error_seen) {
1100			if (sctx->is_dev_replace) {
1101				scrub_write_block_to_dev_replace(sblock_other);
 
 
 
 
1102				goto corrected_error;
1103			} else {
1104				ret = scrub_repair_block_from_good_copy(
1105						sblock_bad, sblock_other);
1106				if (!ret)
1107					goto corrected_error;
1108			}
1109		}
1110	}
1111
1112	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113		goto did_not_correct_error;
1114
1115	/*
1116	 * In case of I/O errors in the area that is supposed to be
1117	 * repaired, continue by picking good copies of those pages.
1118	 * Select the good pages from mirrors to rewrite bad pages from
1119	 * the area to fix. Afterwards verify the checksum of the block
1120	 * that is supposed to be repaired. This verification step is
1121	 * only done for the purpose of statistic counting and for the
1122	 * final scrub report, whether errors remain.
1123	 * A perfect algorithm could make use of the checksum and try
1124	 * all possible combinations of pages from the different mirrors
1125	 * until the checksum verification succeeds. For example, when
1126	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127	 * of mirror #2 is readable but the final checksum test fails,
1128	 * then the 2nd page of mirror #3 could be tried, whether now
1129	 * the final checksum succeeds. But this would be a rare
1130	 * exception and is therefore not implemented. At least it is
1131	 * avoided that the good copy is overwritten.
1132	 * A more useful improvement would be to pick the sectors
1133	 * without I/O error based on sector sizes (512 bytes on legacy
1134	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135	 * mirror could be repaired by taking 512 byte of a different
1136	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137	 * area are unreadable.
1138	 */
 
 
 
 
 
1139	success = 1;
1140	for (page_num = 0; page_num < sblock_bad->page_count;
1141	     page_num++) {
1142		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143		struct scrub_block *sblock_other = NULL;
1144
1145		/* skip no-io-error page in scrub */
1146		if (!page_bad->io_error && !sctx->is_dev_replace)
1147			continue;
1148
1149		/* try to find no-io-error page in mirrors */
1150		if (page_bad->io_error) {
1151			for (mirror_index = 0;
1152			     mirror_index < BTRFS_MAX_MIRRORS &&
1153			     sblocks_for_recheck[mirror_index].page_count > 0;
1154			     mirror_index++) {
1155				if (!sblocks_for_recheck[mirror_index].
1156				    pagev[page_num]->io_error) {
1157					sblock_other = sblocks_for_recheck +
1158						       mirror_index;
1159					break;
 
 
 
 
1160				}
1161			}
1162			if (!sblock_other)
1163				success = 0;
1164		}
1165
1166		if (sctx->is_dev_replace) {
1167			/*
1168			 * did not find a mirror to fetch the page
1169			 * from. scrub_write_page_to_dev_replace()
1170			 * handles this case (page->io_error), by
1171			 * filling the block with zeros before
1172			 * submitting the write request
1173			 */
1174			if (!sblock_other)
1175				sblock_other = sblock_bad;
1176
1177			if (scrub_write_page_to_dev_replace(sblock_other,
1178							    page_num) != 0) {
1179				btrfs_dev_replace_stats_inc(
1180					&fs_info->dev_replace.num_write_errors);
1181				success = 0;
1182			}
1183		} else if (sblock_other) {
1184			ret = scrub_repair_page_from_good_copy(sblock_bad,
1185							       sblock_other,
1186							       page_num, 0);
1187			if (0 == ret)
1188				page_bad->io_error = 0;
1189			else
1190				success = 0;
1191		}
1192	}
1193
1194	if (success && !sctx->is_dev_replace) {
1195		if (is_metadata || have_csum) {
1196			/*
1197			 * need to verify the checksum now that all
1198			 * sectors on disk are repaired (the write
1199			 * request for data to be repaired is on its way).
1200			 * Just be lazy and use scrub_recheck_block()
1201			 * which re-reads the data before the checksum
1202			 * is verified, but most likely the data comes out
1203			 * of the page cache.
1204			 */
1205			scrub_recheck_block(fs_info, sblock_bad, 1);
1206			if (!sblock_bad->header_error &&
 
 
1207			    !sblock_bad->checksum_error &&
1208			    sblock_bad->no_io_error_seen)
1209				goto corrected_error;
1210			else
1211				goto did_not_correct_error;
1212		} else {
1213corrected_error:
1214			spin_lock(&sctx->stat_lock);
1215			sctx->stat.corrected_errors++;
1216			sblock_to_check->data_corrected = 1;
1217			spin_unlock(&sctx->stat_lock);
1218			btrfs_err_rl_in_rcu(fs_info,
1219				"fixed up error at logical %llu on dev %s",
1220				logical, rcu_str_deref(dev->name));
1221		}
1222	} else {
1223did_not_correct_error:
1224		spin_lock(&sctx->stat_lock);
1225		sctx->stat.uncorrectable_errors++;
1226		spin_unlock(&sctx->stat_lock);
1227		btrfs_err_rl_in_rcu(fs_info,
1228			"unable to fixup (regular) error at logical %llu on dev %s",
1229			logical, rcu_str_deref(dev->name));
 
1230	}
1231
1232out:
1233	if (sblocks_for_recheck) {
1234		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1235		     mirror_index++) {
1236			struct scrub_block *sblock = sblocks_for_recheck +
1237						     mirror_index;
1238			struct scrub_recover *recover;
1239			int page_index;
1240
1241			for (page_index = 0; page_index < sblock->page_count;
1242			     page_index++) {
1243				sblock->pagev[page_index]->sblock = NULL;
1244				recover = sblock->pagev[page_index]->recover;
1245				if (recover) {
1246					scrub_put_recover(recover);
1247					sblock->pagev[page_index]->recover =
1248									NULL;
1249				}
1250				scrub_page_put(sblock->pagev[page_index]);
1251			}
1252		}
1253		kfree(sblocks_for_recheck);
1254	}
1255
1256	return 0;
1257}
1258
1259static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260{
1261	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1262		return 2;
1263	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1264		return 3;
1265	else
1266		return (int)bbio->num_stripes;
1267}
1268
1269static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1270						 u64 *raid_map,
1271						 u64 mapped_length,
1272						 int nstripes, int mirror,
1273						 int *stripe_index,
1274						 u64 *stripe_offset)
1275{
1276	int i;
1277
1278	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279		/* RAID5/6 */
1280		for (i = 0; i < nstripes; i++) {
1281			if (raid_map[i] == RAID6_Q_STRIPE ||
1282			    raid_map[i] == RAID5_P_STRIPE)
1283				continue;
1284
1285			if (logical >= raid_map[i] &&
1286			    logical < raid_map[i] + mapped_length)
1287				break;
1288		}
1289
1290		*stripe_index = i;
1291		*stripe_offset = logical - raid_map[i];
1292	} else {
1293		/* The other RAID type */
1294		*stripe_index = mirror;
1295		*stripe_offset = 0;
1296	}
1297}
1298
1299static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300				     struct scrub_block *sblocks_for_recheck)
1301{
1302	struct scrub_ctx *sctx = original_sblock->sctx;
1303	struct btrfs_fs_info *fs_info = sctx->fs_info;
1304	u64 length = original_sblock->page_count * PAGE_SIZE;
1305	u64 logical = original_sblock->pagev[0]->logical;
1306	u64 generation = original_sblock->pagev[0]->generation;
1307	u64 flags = original_sblock->pagev[0]->flags;
1308	u64 have_csum = original_sblock->pagev[0]->have_csum;
1309	struct scrub_recover *recover;
1310	struct btrfs_bio *bbio;
1311	u64 sublen;
1312	u64 mapped_length;
1313	u64 stripe_offset;
1314	int stripe_index;
1315	int page_index = 0;
1316	int mirror_index;
1317	int nmirrors;
1318	int ret;
1319
1320	/*
1321	 * note: the two members refs and outstanding_pages
1322	 * are not used (and not set) in the blocks that are used for
1323	 * the recheck procedure
1324	 */
1325
 
1326	while (length > 0) {
1327		sublen = min_t(u64, length, PAGE_SIZE);
1328		mapped_length = sublen;
1329		bbio = NULL;
1330
1331		/*
1332		 * with a length of PAGE_SIZE, each returned stripe
1333		 * represents one mirror
1334		 */
1335		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1336				logical, &mapped_length, &bbio, 0, 1);
1337		if (ret || !bbio || mapped_length < sublen) {
1338			btrfs_put_bbio(bbio);
1339			return -EIO;
1340		}
1341
1342		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1343		if (!recover) {
1344			btrfs_put_bbio(bbio);
1345			return -ENOMEM;
1346		}
1347
1348		atomic_set(&recover->refs, 1);
1349		recover->bbio = bbio;
1350		recover->map_length = mapped_length;
1351
1352		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1353
1354		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1355
1356		for (mirror_index = 0; mirror_index < nmirrors;
1357		     mirror_index++) {
1358			struct scrub_block *sblock;
1359			struct scrub_page *page;
1360
1361			sblock = sblocks_for_recheck + mirror_index;
1362			sblock->sctx = sctx;
1363
1364			page = kzalloc(sizeof(*page), GFP_NOFS);
1365			if (!page) {
1366leave_nomem:
1367				spin_lock(&sctx->stat_lock);
1368				sctx->stat.malloc_errors++;
1369				spin_unlock(&sctx->stat_lock);
1370				scrub_put_recover(recover);
1371				return -ENOMEM;
1372			}
1373			scrub_page_get(page);
1374			sblock->pagev[page_index] = page;
1375			page->sblock = sblock;
1376			page->flags = flags;
1377			page->generation = generation;
1378			page->logical = logical;
1379			page->have_csum = have_csum;
1380			if (have_csum)
1381				memcpy(page->csum,
1382				       original_sblock->pagev[0]->csum,
1383				       sctx->csum_size);
1384
1385			scrub_stripe_index_and_offset(logical,
1386						      bbio->map_type,
1387						      bbio->raid_map,
1388						      mapped_length,
1389						      bbio->num_stripes -
1390						      bbio->num_tgtdevs,
1391						      mirror_index,
1392						      &stripe_index,
1393						      &stripe_offset);
1394			page->physical = bbio->stripes[stripe_index].physical +
1395					 stripe_offset;
1396			page->dev = bbio->stripes[stripe_index].dev;
1397
1398			BUG_ON(page_index >= original_sblock->page_count);
1399			page->physical_for_dev_replace =
1400				original_sblock->pagev[page_index]->
1401				physical_for_dev_replace;
1402			/* for missing devices, dev->bdev is NULL */
 
1403			page->mirror_num = mirror_index + 1;
1404			sblock->page_count++;
1405			page->page = alloc_page(GFP_NOFS);
1406			if (!page->page)
1407				goto leave_nomem;
1408
1409			scrub_get_recover(recover);
1410			page->recover = recover;
 
 
1411		}
1412		scrub_put_recover(recover);
1413		length -= sublen;
1414		logical += sublen;
1415		page_index++;
1416	}
1417
1418	return 0;
1419}
1420
1421struct scrub_bio_ret {
1422	struct completion event;
1423	int error;
1424};
1425
1426static void scrub_bio_wait_endio(struct bio *bio)
1427{
1428	struct scrub_bio_ret *ret = bio->bi_private;
1429
1430	ret->error = bio->bi_error;
1431	complete(&ret->event);
1432}
1433
1434static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1435{
1436	return page->recover &&
1437	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1438}
1439
1440static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1441					struct bio *bio,
1442					struct scrub_page *page)
1443{
1444	struct scrub_bio_ret done;
1445	int ret;
1446
1447	init_completion(&done.event);
1448	done.error = 0;
1449	bio->bi_iter.bi_sector = page->logical >> 9;
1450	bio->bi_private = &done;
1451	bio->bi_end_io = scrub_bio_wait_endio;
1452
1453	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1454				    page->recover->map_length,
1455				    page->mirror_num, 0);
1456	if (ret)
1457		return ret;
1458
1459	wait_for_completion(&done.event);
1460	if (done.error)
1461		return -EIO;
1462
1463	return 0;
1464}
1465
1466/*
1467 * this function will check the on disk data for checksum errors, header
1468 * errors and read I/O errors. If any I/O errors happen, the exact pages
1469 * which are errored are marked as being bad. The goal is to enable scrub
1470 * to take those pages that are not errored from all the mirrors so that
1471 * the pages that are errored in the just handled mirror can be repaired.
1472 */
1473static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1474				struct scrub_block *sblock,
1475				int retry_failed_mirror)
 
1476{
1477	int page_num;
1478
1479	sblock->no_io_error_seen = 1;
 
 
1480
1481	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482		struct bio *bio;
1483		struct scrub_page *page = sblock->pagev[page_num];
 
 
1484
1485		if (page->dev->bdev == NULL) {
1486			page->io_error = 1;
1487			sblock->no_io_error_seen = 0;
1488			continue;
1489		}
1490
1491		WARN_ON(!page->page);
1492		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1493		if (!bio) {
1494			page->io_error = 1;
1495			sblock->no_io_error_seen = 0;
1496			continue;
1497		}
1498		bio->bi_bdev = page->dev->bdev;
 
 
 
1499
1500		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1501		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1502			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1503				sblock->no_io_error_seen = 0;
1504		} else {
1505			bio->bi_iter.bi_sector = page->physical >> 9;
1506			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1507
1508			if (btrfsic_submit_bio_wait(bio))
1509				sblock->no_io_error_seen = 0;
1510		}
 
1511
 
 
 
 
 
 
1512		bio_put(bio);
1513	}
1514
1515	if (sblock->no_io_error_seen)
1516		scrub_recheck_block_checksum(sblock);
 
 
 
 
1517}
1518
1519static inline int scrub_check_fsid(u8 fsid[],
1520				   struct scrub_page *spage)
 
 
 
1521{
1522	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523	int ret;
 
 
 
1524
1525	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526	return !ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527}
1528
1529static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530{
1531	sblock->header_error = 0;
1532	sblock->checksum_error = 0;
1533	sblock->generation_error = 0;
1534
1535	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536		scrub_checksum_data(sblock);
1537	else
1538		scrub_checksum_tree_block(sblock);
1539}
1540
1541static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542					     struct scrub_block *sblock_good)
 
1543{
1544	int page_num;
1545	int ret = 0;
1546
1547	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548		int ret_sub;
1549
1550		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551							   sblock_good,
1552							   page_num, 1);
 
1553		if (ret_sub)
1554			ret = ret_sub;
1555	}
1556
1557	return ret;
1558}
1559
1560static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561					    struct scrub_block *sblock_good,
1562					    int page_num, int force_write)
1563{
1564	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1567
1568	BUG_ON(page_bad->page == NULL);
1569	BUG_ON(page_good->page == NULL);
1570	if (force_write || sblock_bad->header_error ||
1571	    sblock_bad->checksum_error || page_bad->io_error) {
1572		struct bio *bio;
1573		int ret;
 
1574
1575		if (!page_bad->dev->bdev) {
1576			btrfs_warn_rl(fs_info,
1577				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1578			return -EIO;
1579		}
1580
1581		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582		if (!bio)
1583			return -EIO;
1584		bio->bi_bdev = page_bad->dev->bdev;
1585		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 
1587
1588		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1589		if (PAGE_SIZE != ret) {
1590			bio_put(bio);
1591			return -EIO;
1592		}
 
1593
1594		if (btrfsic_submit_bio_wait(bio)) {
 
 
1595			btrfs_dev_stat_inc_and_print(page_bad->dev,
1596				BTRFS_DEV_STAT_WRITE_ERRS);
1597			btrfs_dev_replace_stats_inc(
1598				&fs_info->dev_replace.num_write_errors);
1599			bio_put(bio);
1600			return -EIO;
1601		}
1602		bio_put(bio);
1603	}
1604
1605	return 0;
1606}
1607
1608static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609{
1610	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1611	int page_num;
1612
1613	/*
1614	 * This block is used for the check of the parity on the source device,
1615	 * so the data needn't be written into the destination device.
1616	 */
1617	if (sblock->sparity)
1618		return;
1619
1620	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1621		int ret;
1622
1623		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1624		if (ret)
1625			btrfs_dev_replace_stats_inc(
1626				&fs_info->dev_replace.num_write_errors);
1627	}
1628}
1629
1630static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631					   int page_num)
1632{
1633	struct scrub_page *spage = sblock->pagev[page_num];
1634
1635	BUG_ON(spage->page == NULL);
1636	if (spage->io_error) {
1637		void *mapped_buffer = kmap_atomic(spage->page);
1638
1639		memset(mapped_buffer, 0, PAGE_SIZE);
1640		flush_dcache_page(spage->page);
1641		kunmap_atomic(mapped_buffer);
1642	}
1643	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644}
1645
1646static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647				    struct scrub_page *spage)
1648{
1649	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650	struct scrub_bio *sbio;
1651	int ret;
1652
1653	mutex_lock(&wr_ctx->wr_lock);
1654again:
1655	if (!wr_ctx->wr_curr_bio) {
1656		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657					      GFP_KERNEL);
1658		if (!wr_ctx->wr_curr_bio) {
1659			mutex_unlock(&wr_ctx->wr_lock);
1660			return -ENOMEM;
1661		}
1662		wr_ctx->wr_curr_bio->sctx = sctx;
1663		wr_ctx->wr_curr_bio->page_count = 0;
1664	}
1665	sbio = wr_ctx->wr_curr_bio;
1666	if (sbio->page_count == 0) {
1667		struct bio *bio;
1668
1669		sbio->physical = spage->physical_for_dev_replace;
1670		sbio->logical = spage->logical;
1671		sbio->dev = wr_ctx->tgtdev;
1672		bio = sbio->bio;
1673		if (!bio) {
1674			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675					wr_ctx->pages_per_wr_bio);
1676			if (!bio) {
1677				mutex_unlock(&wr_ctx->wr_lock);
1678				return -ENOMEM;
1679			}
1680			sbio->bio = bio;
1681		}
1682
1683		bio->bi_private = sbio;
1684		bio->bi_end_io = scrub_wr_bio_end_io;
1685		bio->bi_bdev = sbio->dev->bdev;
1686		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1688		sbio->err = 0;
1689	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1690		   spage->physical_for_dev_replace ||
1691		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1692		   spage->logical) {
1693		scrub_wr_submit(sctx);
1694		goto again;
1695	}
1696
1697	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1698	if (ret != PAGE_SIZE) {
1699		if (sbio->page_count < 1) {
1700			bio_put(sbio->bio);
1701			sbio->bio = NULL;
1702			mutex_unlock(&wr_ctx->wr_lock);
1703			return -EIO;
1704		}
1705		scrub_wr_submit(sctx);
1706		goto again;
1707	}
1708
1709	sbio->pagev[sbio->page_count] = spage;
1710	scrub_page_get(spage);
1711	sbio->page_count++;
1712	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1713		scrub_wr_submit(sctx);
1714	mutex_unlock(&wr_ctx->wr_lock);
1715
1716	return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
1720{
1721	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1722	struct scrub_bio *sbio;
1723
1724	if (!wr_ctx->wr_curr_bio)
1725		return;
1726
1727	sbio = wr_ctx->wr_curr_bio;
1728	wr_ctx->wr_curr_bio = NULL;
1729	WARN_ON(!sbio->bio->bi_bdev);
1730	scrub_pending_bio_inc(sctx);
1731	/* process all writes in a single worker thread. Then the block layer
1732	 * orders the requests before sending them to the driver which
1733	 * doubled the write performance on spinning disks when measured
1734	 * with Linux 3.5 */
1735	btrfsic_submit_bio(sbio->bio);
1736}
1737
1738static void scrub_wr_bio_end_io(struct bio *bio)
1739{
1740	struct scrub_bio *sbio = bio->bi_private;
1741	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1742
1743	sbio->err = bio->bi_error;
1744	sbio->bio = bio;
1745
1746	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1747			 scrub_wr_bio_end_io_worker, NULL, NULL);
1748	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749}
1750
1751static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1752{
1753	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1754	struct scrub_ctx *sctx = sbio->sctx;
1755	int i;
1756
1757	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1758	if (sbio->err) {
1759		struct btrfs_dev_replace *dev_replace =
1760			&sbio->sctx->fs_info->dev_replace;
1761
1762		for (i = 0; i < sbio->page_count; i++) {
1763			struct scrub_page *spage = sbio->pagev[i];
1764
1765			spage->io_error = 1;
1766			btrfs_dev_replace_stats_inc(&dev_replace->
1767						    num_write_errors);
1768		}
1769	}
1770
1771	for (i = 0; i < sbio->page_count; i++)
1772		scrub_page_put(sbio->pagev[i]);
1773
1774	bio_put(sbio->bio);
1775	kfree(sbio);
1776	scrub_pending_bio_dec(sctx);
1777}
1778
1779static int scrub_checksum(struct scrub_block *sblock)
1780{
1781	u64 flags;
1782	int ret;
1783
1784	/*
1785	 * No need to initialize these stats currently,
1786	 * because this function only use return value
1787	 * instead of these stats value.
1788	 *
1789	 * Todo:
1790	 * always use stats
1791	 */
1792	sblock->header_error = 0;
1793	sblock->generation_error = 0;
1794	sblock->checksum_error = 0;
1795
1796	WARN_ON(sblock->page_count < 1);
1797	flags = sblock->pagev[0]->flags;
1798	ret = 0;
1799	if (flags & BTRFS_EXTENT_FLAG_DATA)
1800		ret = scrub_checksum_data(sblock);
1801	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802		ret = scrub_checksum_tree_block(sblock);
1803	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804		(void)scrub_checksum_super(sblock);
1805	else
1806		WARN_ON(1);
1807	if (ret)
1808		scrub_handle_errored_block(sblock);
1809
1810	return ret;
1811}
1812
1813static int scrub_checksum_data(struct scrub_block *sblock)
1814{
1815	struct scrub_ctx *sctx = sblock->sctx;
1816	u8 csum[BTRFS_CSUM_SIZE];
1817	u8 *on_disk_csum;
1818	struct page *page;
1819	void *buffer;
1820	u32 crc = ~(u32)0;
 
 
1821	u64 len;
1822	int index;
1823
1824	BUG_ON(sblock->page_count < 1);
1825	if (!sblock->pagev[0]->have_csum)
1826		return 0;
1827
1828	on_disk_csum = sblock->pagev[0]->csum;
1829	page = sblock->pagev[0]->page;
1830	buffer = kmap_atomic(page);
1831
1832	len = sctx->sectorsize;
1833	index = 0;
1834	for (;;) {
1835		u64 l = min_t(u64, len, PAGE_SIZE);
1836
1837		crc = btrfs_csum_data(buffer, crc, l);
1838		kunmap_atomic(buffer);
1839		len -= l;
1840		if (len == 0)
1841			break;
1842		index++;
1843		BUG_ON(index >= sblock->page_count);
1844		BUG_ON(!sblock->pagev[index]->page);
1845		page = sblock->pagev[index]->page;
1846		buffer = kmap_atomic(page);
1847	}
1848
1849	btrfs_csum_final(crc, csum);
1850	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1851		sblock->checksum_error = 1;
1852
1853	return sblock->checksum_error;
1854}
1855
1856static int scrub_checksum_tree_block(struct scrub_block *sblock)
1857{
1858	struct scrub_ctx *sctx = sblock->sctx;
1859	struct btrfs_header *h;
1860	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
1861	u8 calculated_csum[BTRFS_CSUM_SIZE];
1862	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863	struct page *page;
1864	void *mapped_buffer;
1865	u64 mapped_size;
1866	void *p;
1867	u32 crc = ~(u32)0;
 
 
1868	u64 len;
1869	int index;
1870
1871	BUG_ON(sblock->page_count < 1);
1872	page = sblock->pagev[0]->page;
1873	mapped_buffer = kmap_atomic(page);
1874	h = (struct btrfs_header *)mapped_buffer;
1875	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876
1877	/*
1878	 * we don't use the getter functions here, as we
1879	 * a) don't have an extent buffer and
1880	 * b) the page is already kmapped
1881	 */
1882	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883		sblock->header_error = 1;
1884
1885	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886		sblock->header_error = 1;
1887		sblock->generation_error = 1;
1888	}
1889
1890	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891		sblock->header_error = 1;
 
 
 
1892
1893	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894		   BTRFS_UUID_SIZE))
1895		sblock->header_error = 1;
1896
1897	len = sctx->nodesize - BTRFS_CSUM_SIZE;
 
1898	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900	index = 0;
1901	for (;;) {
1902		u64 l = min_t(u64, len, mapped_size);
1903
1904		crc = btrfs_csum_data(p, crc, l);
1905		kunmap_atomic(mapped_buffer);
1906		len -= l;
1907		if (len == 0)
1908			break;
1909		index++;
1910		BUG_ON(index >= sblock->page_count);
1911		BUG_ON(!sblock->pagev[index]->page);
1912		page = sblock->pagev[index]->page;
1913		mapped_buffer = kmap_atomic(page);
1914		mapped_size = PAGE_SIZE;
1915		p = mapped_buffer;
1916	}
1917
1918	btrfs_csum_final(crc, calculated_csum);
1919	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920		sblock->checksum_error = 1;
1921
1922	return sblock->header_error || sblock->checksum_error;
1923}
1924
1925static int scrub_checksum_super(struct scrub_block *sblock)
1926{
1927	struct btrfs_super_block *s;
1928	struct scrub_ctx *sctx = sblock->sctx;
 
 
1929	u8 calculated_csum[BTRFS_CSUM_SIZE];
1930	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931	struct page *page;
1932	void *mapped_buffer;
1933	u64 mapped_size;
1934	void *p;
1935	u32 crc = ~(u32)0;
1936	int fail_gen = 0;
1937	int fail_cor = 0;
1938	u64 len;
1939	int index;
1940
1941	BUG_ON(sblock->page_count < 1);
1942	page = sblock->pagev[0]->page;
1943	mapped_buffer = kmap_atomic(page);
1944	s = (struct btrfs_super_block *)mapped_buffer;
1945	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946
1947	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948		++fail_cor;
1949
1950	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951		++fail_gen;
1952
1953	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954		++fail_cor;
1955
1956	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959	index = 0;
1960	for (;;) {
1961		u64 l = min_t(u64, len, mapped_size);
1962
1963		crc = btrfs_csum_data(p, crc, l);
1964		kunmap_atomic(mapped_buffer);
1965		len -= l;
1966		if (len == 0)
1967			break;
1968		index++;
1969		BUG_ON(index >= sblock->page_count);
1970		BUG_ON(!sblock->pagev[index]->page);
1971		page = sblock->pagev[index]->page;
1972		mapped_buffer = kmap_atomic(page);
1973		mapped_size = PAGE_SIZE;
1974		p = mapped_buffer;
1975	}
1976
1977	btrfs_csum_final(crc, calculated_csum);
1978	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979		++fail_cor;
1980
1981	if (fail_cor + fail_gen) {
1982		/*
1983		 * if we find an error in a super block, we just report it.
1984		 * They will get written with the next transaction commit
1985		 * anyway
1986		 */
1987		spin_lock(&sctx->stat_lock);
1988		++sctx->stat.super_errors;
1989		spin_unlock(&sctx->stat_lock);
1990		if (fail_cor)
1991			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993		else
1994			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995				BTRFS_DEV_STAT_GENERATION_ERRS);
1996	}
1997
1998	return fail_cor + fail_gen;
1999}
2000
2001static void scrub_block_get(struct scrub_block *sblock)
2002{
2003	atomic_inc(&sblock->refs);
2004}
2005
2006static void scrub_block_put(struct scrub_block *sblock)
2007{
2008	if (atomic_dec_and_test(&sblock->refs)) {
2009		int i;
2010
2011		if (sblock->sparity)
2012			scrub_parity_put(sblock->sparity);
2013
2014		for (i = 0; i < sblock->page_count; i++)
2015			scrub_page_put(sblock->pagev[i]);
 
2016		kfree(sblock);
2017	}
2018}
2019
2020static void scrub_page_get(struct scrub_page *spage)
2021{
2022	atomic_inc(&spage->refs);
2023}
2024
2025static void scrub_page_put(struct scrub_page *spage)
2026{
2027	if (atomic_dec_and_test(&spage->refs)) {
2028		if (spage->page)
2029			__free_page(spage->page);
2030		kfree(spage);
2031	}
2032}
2033
2034static void scrub_submit(struct scrub_ctx *sctx)
2035{
2036	struct scrub_bio *sbio;
2037
2038	if (sctx->curr == -1)
2039		return;
2040
2041	sbio = sctx->bios[sctx->curr];
2042	sctx->curr = -1;
2043	scrub_pending_bio_inc(sctx);
2044	btrfsic_submit_bio(sbio->bio);
 
2045}
2046
2047static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048				    struct scrub_page *spage)
2049{
2050	struct scrub_block *sblock = spage->sblock;
2051	struct scrub_bio *sbio;
2052	int ret;
2053
2054again:
2055	/*
2056	 * grab a fresh bio or wait for one to become available
2057	 */
2058	while (sctx->curr == -1) {
2059		spin_lock(&sctx->list_lock);
2060		sctx->curr = sctx->first_free;
2061		if (sctx->curr != -1) {
2062			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063			sctx->bios[sctx->curr]->next_free = -1;
2064			sctx->bios[sctx->curr]->page_count = 0;
2065			spin_unlock(&sctx->list_lock);
2066		} else {
2067			spin_unlock(&sctx->list_lock);
2068			wait_event(sctx->list_wait, sctx->first_free != -1);
2069		}
2070	}
2071	sbio = sctx->bios[sctx->curr];
2072	if (sbio->page_count == 0) {
2073		struct bio *bio;
2074
2075		sbio->physical = spage->physical;
2076		sbio->logical = spage->logical;
2077		sbio->dev = spage->dev;
2078		bio = sbio->bio;
2079		if (!bio) {
2080			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081					sctx->pages_per_rd_bio);
2082			if (!bio)
2083				return -ENOMEM;
2084			sbio->bio = bio;
2085		}
2086
2087		bio->bi_private = sbio;
2088		bio->bi_end_io = scrub_bio_end_io;
2089		bio->bi_bdev = sbio->dev->bdev;
2090		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092		sbio->err = 0;
2093	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2094		   spage->physical ||
2095		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2096		   spage->logical ||
2097		   sbio->dev != spage->dev) {
2098		scrub_submit(sctx);
2099		goto again;
2100	}
2101
2102	sbio->pagev[sbio->page_count] = spage;
2103	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2104	if (ret != PAGE_SIZE) {
2105		if (sbio->page_count < 1) {
2106			bio_put(sbio->bio);
2107			sbio->bio = NULL;
2108			return -EIO;
2109		}
2110		scrub_submit(sctx);
2111		goto again;
2112	}
2113
2114	scrub_block_get(sblock); /* one for the page added to the bio */
2115	atomic_inc(&sblock->outstanding_pages);
2116	sbio->page_count++;
2117	if (sbio->page_count == sctx->pages_per_rd_bio)
2118		scrub_submit(sctx);
2119
2120	return 0;
2121}
2122
2123static void scrub_missing_raid56_end_io(struct bio *bio)
2124{
2125	struct scrub_block *sblock = bio->bi_private;
2126	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2127
2128	if (bio->bi_error)
2129		sblock->no_io_error_seen = 0;
2130
2131	bio_put(bio);
2132
2133	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2134}
2135
2136static void scrub_missing_raid56_worker(struct btrfs_work *work)
2137{
2138	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2139	struct scrub_ctx *sctx = sblock->sctx;
2140	struct btrfs_fs_info *fs_info = sctx->fs_info;
2141	u64 logical;
2142	struct btrfs_device *dev;
2143
2144	logical = sblock->pagev[0]->logical;
2145	dev = sblock->pagev[0]->dev;
2146
2147	if (sblock->no_io_error_seen)
2148		scrub_recheck_block_checksum(sblock);
2149
2150	if (!sblock->no_io_error_seen) {
2151		spin_lock(&sctx->stat_lock);
2152		sctx->stat.read_errors++;
2153		spin_unlock(&sctx->stat_lock);
2154		btrfs_err_rl_in_rcu(fs_info,
2155			"IO error rebuilding logical %llu for dev %s",
2156			logical, rcu_str_deref(dev->name));
2157	} else if (sblock->header_error || sblock->checksum_error) {
2158		spin_lock(&sctx->stat_lock);
2159		sctx->stat.uncorrectable_errors++;
2160		spin_unlock(&sctx->stat_lock);
2161		btrfs_err_rl_in_rcu(fs_info,
2162			"failed to rebuild valid logical %llu for dev %s",
2163			logical, rcu_str_deref(dev->name));
2164	} else {
2165		scrub_write_block_to_dev_replace(sblock);
2166	}
2167
2168	scrub_block_put(sblock);
2169
2170	if (sctx->is_dev_replace &&
2171	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2172		mutex_lock(&sctx->wr_ctx.wr_lock);
2173		scrub_wr_submit(sctx);
2174		mutex_unlock(&sctx->wr_ctx.wr_lock);
2175	}
2176
2177	scrub_pending_bio_dec(sctx);
2178}
2179
2180static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2181{
2182	struct scrub_ctx *sctx = sblock->sctx;
2183	struct btrfs_fs_info *fs_info = sctx->fs_info;
2184	u64 length = sblock->page_count * PAGE_SIZE;
2185	u64 logical = sblock->pagev[0]->logical;
2186	struct btrfs_bio *bbio = NULL;
2187	struct bio *bio;
2188	struct btrfs_raid_bio *rbio;
2189	int ret;
2190	int i;
2191
2192	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2193			&length, &bbio, 0, 1);
2194	if (ret || !bbio || !bbio->raid_map)
2195		goto bbio_out;
2196
2197	if (WARN_ON(!sctx->is_dev_replace ||
2198		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2199		/*
2200		 * We shouldn't be scrubbing a missing device. Even for dev
2201		 * replace, we should only get here for RAID 5/6. We either
2202		 * managed to mount something with no mirrors remaining or
2203		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2204		 */
2205		goto bbio_out;
2206	}
2207
2208	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2209	if (!bio)
2210		goto bbio_out;
2211
2212	bio->bi_iter.bi_sector = logical >> 9;
2213	bio->bi_private = sblock;
2214	bio->bi_end_io = scrub_missing_raid56_end_io;
2215
2216	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2217	if (!rbio)
2218		goto rbio_out;
2219
2220	for (i = 0; i < sblock->page_count; i++) {
2221		struct scrub_page *spage = sblock->pagev[i];
2222
2223		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2224	}
2225
2226	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2227			scrub_missing_raid56_worker, NULL, NULL);
2228	scrub_block_get(sblock);
2229	scrub_pending_bio_inc(sctx);
2230	raid56_submit_missing_rbio(rbio);
2231	return;
2232
2233rbio_out:
2234	bio_put(bio);
2235bbio_out:
2236	btrfs_put_bbio(bbio);
2237	spin_lock(&sctx->stat_lock);
2238	sctx->stat.malloc_errors++;
2239	spin_unlock(&sctx->stat_lock);
2240}
2241
2242static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2243		       u64 physical, struct btrfs_device *dev, u64 flags,
2244		       u64 gen, int mirror_num, u8 *csum, int force,
2245		       u64 physical_for_dev_replace)
2246{
2247	struct scrub_block *sblock;
2248	int index;
2249
2250	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2251	if (!sblock) {
2252		spin_lock(&sctx->stat_lock);
2253		sctx->stat.malloc_errors++;
2254		spin_unlock(&sctx->stat_lock);
2255		return -ENOMEM;
2256	}
2257
2258	/* one ref inside this function, plus one for each page added to
2259	 * a bio later on */
2260	atomic_set(&sblock->refs, 1);
2261	sblock->sctx = sctx;
2262	sblock->no_io_error_seen = 1;
2263
2264	for (index = 0; len > 0; index++) {
2265		struct scrub_page *spage;
2266		u64 l = min_t(u64, len, PAGE_SIZE);
2267
2268		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2269		if (!spage) {
2270leave_nomem:
2271			spin_lock(&sctx->stat_lock);
2272			sctx->stat.malloc_errors++;
2273			spin_unlock(&sctx->stat_lock);
2274			scrub_block_put(sblock);
 
 
 
 
2275			return -ENOMEM;
2276		}
2277		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2278		scrub_page_get(spage);
2279		sblock->pagev[index] = spage;
2280		spage->sblock = sblock;
2281		spage->dev = dev;
2282		spage->flags = flags;
2283		spage->generation = gen;
2284		spage->logical = logical;
2285		spage->physical = physical;
2286		spage->physical_for_dev_replace = physical_for_dev_replace;
2287		spage->mirror_num = mirror_num;
2288		if (csum) {
2289			spage->have_csum = 1;
2290			memcpy(spage->csum, csum, sctx->csum_size);
2291		} else {
2292			spage->have_csum = 0;
2293		}
2294		sblock->page_count++;
2295		spage->page = alloc_page(GFP_KERNEL);
2296		if (!spage->page)
2297			goto leave_nomem;
2298		len -= l;
2299		logical += l;
2300		physical += l;
2301		physical_for_dev_replace += l;
2302	}
2303
2304	WARN_ON(sblock->page_count == 0);
2305	if (dev->missing) {
2306		/*
2307		 * This case should only be hit for RAID 5/6 device replace. See
2308		 * the comment in scrub_missing_raid56_pages() for details.
2309		 */
2310		scrub_missing_raid56_pages(sblock);
2311	} else {
2312		for (index = 0; index < sblock->page_count; index++) {
2313			struct scrub_page *spage = sblock->pagev[index];
2314			int ret;
2315
2316			ret = scrub_add_page_to_rd_bio(sctx, spage);
2317			if (ret) {
2318				scrub_block_put(sblock);
2319				return ret;
2320			}
2321		}
2322
2323		if (force)
2324			scrub_submit(sctx);
 
 
 
2325	}
2326
 
 
 
2327	/* last one frees, either here or in bio completion for last page */
2328	scrub_block_put(sblock);
2329	return 0;
2330}
2331
2332static void scrub_bio_end_io(struct bio *bio)
2333{
2334	struct scrub_bio *sbio = bio->bi_private;
2335	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 
2336
2337	sbio->err = bio->bi_error;
2338	sbio->bio = bio;
2339
2340	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2341}
2342
2343static void scrub_bio_end_io_worker(struct btrfs_work *work)
2344{
2345	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2346	struct scrub_ctx *sctx = sbio->sctx;
2347	int i;
2348
2349	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2350	if (sbio->err) {
2351		for (i = 0; i < sbio->page_count; i++) {
2352			struct scrub_page *spage = sbio->pagev[i];
2353
2354			spage->io_error = 1;
2355			spage->sblock->no_io_error_seen = 0;
2356		}
2357	}
2358
2359	/* now complete the scrub_block items that have all pages completed */
2360	for (i = 0; i < sbio->page_count; i++) {
2361		struct scrub_page *spage = sbio->pagev[i];
2362		struct scrub_block *sblock = spage->sblock;
2363
2364		if (atomic_dec_and_test(&sblock->outstanding_pages))
2365			scrub_block_complete(sblock);
2366		scrub_block_put(sblock);
2367	}
2368
2369	bio_put(sbio->bio);
2370	sbio->bio = NULL;
2371	spin_lock(&sctx->list_lock);
2372	sbio->next_free = sctx->first_free;
2373	sctx->first_free = sbio->index;
2374	spin_unlock(&sctx->list_lock);
2375
2376	if (sctx->is_dev_replace &&
2377	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2378		mutex_lock(&sctx->wr_ctx.wr_lock);
2379		scrub_wr_submit(sctx);
2380		mutex_unlock(&sctx->wr_ctx.wr_lock);
2381	}
2382
2383	scrub_pending_bio_dec(sctx);
2384}
2385
2386static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2387				       unsigned long *bitmap,
2388				       u64 start, u64 len)
2389{
2390	u32 offset;
2391	int nsectors;
2392	int sectorsize = sparity->sctx->fs_info->sectorsize;
2393
2394	if (len >= sparity->stripe_len) {
2395		bitmap_set(bitmap, 0, sparity->nsectors);
2396		return;
2397	}
2398
2399	start -= sparity->logic_start;
2400	start = div_u64_rem(start, sparity->stripe_len, &offset);
2401	offset /= sectorsize;
2402	nsectors = (int)len / sectorsize;
2403
2404	if (offset + nsectors <= sparity->nsectors) {
2405		bitmap_set(bitmap, offset, nsectors);
2406		return;
 
 
 
2407	}
2408
2409	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2410	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2411}
2412
2413static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2414						   u64 start, u64 len)
2415{
2416	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2417}
2418
2419static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2420						  u64 start, u64 len)
2421{
2422	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2423}
2424
2425static void scrub_block_complete(struct scrub_block *sblock)
2426{
2427	int corrupted = 0;
2428
2429	if (!sblock->no_io_error_seen) {
2430		corrupted = 1;
2431		scrub_handle_errored_block(sblock);
2432	} else {
2433		/*
2434		 * if has checksum error, write via repair mechanism in
2435		 * dev replace case, otherwise write here in dev replace
2436		 * case.
2437		 */
2438		corrupted = scrub_checksum(sblock);
2439		if (!corrupted && sblock->sctx->is_dev_replace)
2440			scrub_write_block_to_dev_replace(sblock);
2441	}
2442
2443	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2444		u64 start = sblock->pagev[0]->logical;
2445		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2446			  PAGE_SIZE;
2447
2448		scrub_parity_mark_sectors_error(sblock->sparity,
2449						start, end - start);
2450	}
2451}
2452
2453static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 
2454{
2455	struct btrfs_ordered_sum *sum = NULL;
2456	unsigned long index;
 
2457	unsigned long num_sectors;
2458
2459	while (!list_empty(&sctx->csum_list)) {
2460		sum = list_first_entry(&sctx->csum_list,
2461				       struct btrfs_ordered_sum, list);
2462		if (sum->bytenr > logical)
2463			return 0;
2464		if (sum->bytenr + sum->len > logical)
2465			break;
2466
2467		++sctx->stat.csum_discards;
2468		list_del(&sum->list);
2469		kfree(sum);
2470		sum = NULL;
2471	}
2472	if (!sum)
2473		return 0;
2474
2475	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2476	num_sectors = sum->len / sctx->sectorsize;
2477	memcpy(csum, sum->sums + index, sctx->csum_size);
2478	if (index == num_sectors - 1) {
 
 
 
 
 
2479		list_del(&sum->list);
2480		kfree(sum);
2481	}
2482	return 1;
2483}
2484
2485/* scrub extent tries to collect up to 64 kB for each bio */
2486static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2487			u64 physical, struct btrfs_device *dev, u64 flags,
2488			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2489{
2490	int ret;
2491	u8 csum[BTRFS_CSUM_SIZE];
2492	u32 blocksize;
2493
2494	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2495		blocksize = sctx->sectorsize;
2496		spin_lock(&sctx->stat_lock);
2497		sctx->stat.data_extents_scrubbed++;
2498		sctx->stat.data_bytes_scrubbed += len;
2499		spin_unlock(&sctx->stat_lock);
2500	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2501		blocksize = sctx->nodesize;
2502		spin_lock(&sctx->stat_lock);
2503		sctx->stat.tree_extents_scrubbed++;
2504		sctx->stat.tree_bytes_scrubbed += len;
2505		spin_unlock(&sctx->stat_lock);
 
2506	} else {
2507		blocksize = sctx->sectorsize;
2508		WARN_ON(1);
2509	}
2510
2511	while (len) {
2512		u64 l = min_t(u64, len, blocksize);
2513		int have_csum = 0;
2514
2515		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2516			/* push csums to sbio */
2517			have_csum = scrub_find_csum(sctx, logical, csum);
2518			if (have_csum == 0)
2519				++sctx->stat.no_csum;
2520			if (sctx->is_dev_replace && !have_csum) {
2521				ret = copy_nocow_pages(sctx, logical, l,
2522						       mirror_num,
2523						      physical_for_dev_replace);
2524				goto behind_scrub_pages;
2525			}
2526		}
2527		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2528				  mirror_num, have_csum ? csum : NULL, 0,
2529				  physical_for_dev_replace);
2530behind_scrub_pages:
2531		if (ret)
2532			return ret;
2533		len -= l;
2534		logical += l;
2535		physical += l;
2536		physical_for_dev_replace += l;
2537	}
2538	return 0;
2539}
2540
2541static int scrub_pages_for_parity(struct scrub_parity *sparity,
2542				  u64 logical, u64 len,
2543				  u64 physical, struct btrfs_device *dev,
2544				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2545{
2546	struct scrub_ctx *sctx = sparity->sctx;
2547	struct scrub_block *sblock;
2548	int index;
2549
2550	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2551	if (!sblock) {
2552		spin_lock(&sctx->stat_lock);
2553		sctx->stat.malloc_errors++;
2554		spin_unlock(&sctx->stat_lock);
2555		return -ENOMEM;
2556	}
2557
2558	/* one ref inside this function, plus one for each page added to
2559	 * a bio later on */
2560	atomic_set(&sblock->refs, 1);
2561	sblock->sctx = sctx;
2562	sblock->no_io_error_seen = 1;
2563	sblock->sparity = sparity;
2564	scrub_parity_get(sparity);
2565
2566	for (index = 0; len > 0; index++) {
2567		struct scrub_page *spage;
2568		u64 l = min_t(u64, len, PAGE_SIZE);
2569
2570		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2571		if (!spage) {
2572leave_nomem:
2573			spin_lock(&sctx->stat_lock);
2574			sctx->stat.malloc_errors++;
2575			spin_unlock(&sctx->stat_lock);
2576			scrub_block_put(sblock);
2577			return -ENOMEM;
2578		}
2579		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2580		/* For scrub block */
2581		scrub_page_get(spage);
2582		sblock->pagev[index] = spage;
2583		/* For scrub parity */
2584		scrub_page_get(spage);
2585		list_add_tail(&spage->list, &sparity->spages);
2586		spage->sblock = sblock;
2587		spage->dev = dev;
2588		spage->flags = flags;
2589		spage->generation = gen;
2590		spage->logical = logical;
2591		spage->physical = physical;
2592		spage->mirror_num = mirror_num;
2593		if (csum) {
2594			spage->have_csum = 1;
2595			memcpy(spage->csum, csum, sctx->csum_size);
2596		} else {
2597			spage->have_csum = 0;
2598		}
2599		sblock->page_count++;
2600		spage->page = alloc_page(GFP_KERNEL);
2601		if (!spage->page)
2602			goto leave_nomem;
2603		len -= l;
2604		logical += l;
2605		physical += l;
2606	}
2607
2608	WARN_ON(sblock->page_count == 0);
2609	for (index = 0; index < sblock->page_count; index++) {
2610		struct scrub_page *spage = sblock->pagev[index];
2611		int ret;
2612
2613		ret = scrub_add_page_to_rd_bio(sctx, spage);
2614		if (ret) {
2615			scrub_block_put(sblock);
2616			return ret;
2617		}
2618	}
2619
2620	/* last one frees, either here or in bio completion for last page */
2621	scrub_block_put(sblock);
2622	return 0;
2623}
2624
2625static int scrub_extent_for_parity(struct scrub_parity *sparity,
2626				   u64 logical, u64 len,
2627				   u64 physical, struct btrfs_device *dev,
2628				   u64 flags, u64 gen, int mirror_num)
2629{
2630	struct scrub_ctx *sctx = sparity->sctx;
2631	int ret;
2632	u8 csum[BTRFS_CSUM_SIZE];
2633	u32 blocksize;
2634
2635	if (dev->missing) {
2636		scrub_parity_mark_sectors_error(sparity, logical, len);
2637		return 0;
2638	}
2639
2640	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641		blocksize = sctx->sectorsize;
2642	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2643		blocksize = sctx->nodesize;
2644	} else {
2645		blocksize = sctx->sectorsize;
2646		WARN_ON(1);
2647	}
2648
2649	while (len) {
2650		u64 l = min_t(u64, len, blocksize);
2651		int have_csum = 0;
2652
2653		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2654			/* push csums to sbio */
2655			have_csum = scrub_find_csum(sctx, logical, csum);
2656			if (have_csum == 0)
2657				goto skip;
2658		}
2659		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2660					     flags, gen, mirror_num,
2661					     have_csum ? csum : NULL);
2662		if (ret)
2663			return ret;
2664skip:
2665		len -= l;
2666		logical += l;
2667		physical += l;
2668	}
2669	return 0;
2670}
2671
2672/*
2673 * Given a physical address, this will calculate it's
2674 * logical offset. if this is a parity stripe, it will return
2675 * the most left data stripe's logical offset.
2676 *
2677 * return 0 if it is a data stripe, 1 means parity stripe.
2678 */
2679static int get_raid56_logic_offset(u64 physical, int num,
2680				   struct map_lookup *map, u64 *offset,
2681				   u64 *stripe_start)
2682{
2683	int i;
2684	int j = 0;
2685	u64 stripe_nr;
2686	u64 last_offset;
2687	u32 stripe_index;
2688	u32 rot;
2689
2690	last_offset = (physical - map->stripes[num].physical) *
2691		      nr_data_stripes(map);
2692	if (stripe_start)
2693		*stripe_start = last_offset;
2694
2695	*offset = last_offset;
2696	for (i = 0; i < nr_data_stripes(map); i++) {
2697		*offset = last_offset + i * map->stripe_len;
2698
2699		stripe_nr = div_u64(*offset, map->stripe_len);
2700		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2701
2702		/* Work out the disk rotation on this stripe-set */
2703		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2704		/* calculate which stripe this data locates */
2705		rot += i;
2706		stripe_index = rot % map->num_stripes;
2707		if (stripe_index == num)
2708			return 0;
2709		if (stripe_index < num)
2710			j++;
2711	}
2712	*offset = last_offset + j * map->stripe_len;
2713	return 1;
2714}
2715
2716static void scrub_free_parity(struct scrub_parity *sparity)
2717{
2718	struct scrub_ctx *sctx = sparity->sctx;
2719	struct scrub_page *curr, *next;
2720	int nbits;
2721
2722	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2723	if (nbits) {
2724		spin_lock(&sctx->stat_lock);
2725		sctx->stat.read_errors += nbits;
2726		sctx->stat.uncorrectable_errors += nbits;
2727		spin_unlock(&sctx->stat_lock);
2728	}
2729
2730	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2731		list_del_init(&curr->list);
2732		scrub_page_put(curr);
2733	}
2734
2735	kfree(sparity);
2736}
2737
2738static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2739{
2740	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2741						    work);
2742	struct scrub_ctx *sctx = sparity->sctx;
2743
2744	scrub_free_parity(sparity);
2745	scrub_pending_bio_dec(sctx);
2746}
2747
2748static void scrub_parity_bio_endio(struct bio *bio)
2749{
2750	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2751	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2752
2753	if (bio->bi_error)
2754		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2755			  sparity->nsectors);
2756
2757	bio_put(bio);
2758
2759	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2760			scrub_parity_bio_endio_worker, NULL, NULL);
2761	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2762}
2763
2764static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2765{
2766	struct scrub_ctx *sctx = sparity->sctx;
2767	struct btrfs_fs_info *fs_info = sctx->fs_info;
2768	struct bio *bio;
2769	struct btrfs_raid_bio *rbio;
2770	struct scrub_page *spage;
2771	struct btrfs_bio *bbio = NULL;
2772	u64 length;
2773	int ret;
2774
2775	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2776			   sparity->nsectors))
2777		goto out;
2778
2779	length = sparity->logic_end - sparity->logic_start;
2780	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781			       &length, &bbio, 0, 1);
2782	if (ret || !bbio || !bbio->raid_map)
2783		goto bbio_out;
2784
2785	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		goto bbio_out;
2788
2789	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2790	bio->bi_private = sparity;
2791	bio->bi_end_io = scrub_parity_bio_endio;
2792
2793	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2794					      length, sparity->scrub_dev,
2795					      sparity->dbitmap,
2796					      sparity->nsectors);
2797	if (!rbio)
2798		goto rbio_out;
2799
2800	list_for_each_entry(spage, &sparity->spages, list)
2801		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2802
2803	scrub_pending_bio_inc(sctx);
2804	raid56_parity_submit_scrub_rbio(rbio);
2805	return;
2806
2807rbio_out:
2808	bio_put(bio);
2809bbio_out:
2810	btrfs_put_bbio(bbio);
2811	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2812		  sparity->nsectors);
2813	spin_lock(&sctx->stat_lock);
2814	sctx->stat.malloc_errors++;
2815	spin_unlock(&sctx->stat_lock);
2816out:
2817	scrub_free_parity(sparity);
2818}
2819
2820static inline int scrub_calc_parity_bitmap_len(int nsectors)
2821{
2822	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2823}
2824
2825static void scrub_parity_get(struct scrub_parity *sparity)
2826{
2827	atomic_inc(&sparity->refs);
2828}
2829
2830static void scrub_parity_put(struct scrub_parity *sparity)
2831{
2832	if (!atomic_dec_and_test(&sparity->refs))
2833		return;
2834
2835	scrub_parity_check_and_repair(sparity);
2836}
2837
2838static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2839						  struct map_lookup *map,
2840						  struct btrfs_device *sdev,
2841						  struct btrfs_path *path,
2842						  u64 logic_start,
2843						  u64 logic_end)
2844{
2845	struct btrfs_fs_info *fs_info = sctx->fs_info;
2846	struct btrfs_root *root = fs_info->extent_root;
2847	struct btrfs_root *csum_root = fs_info->csum_root;
2848	struct btrfs_extent_item *extent;
2849	struct btrfs_bio *bbio = NULL;
2850	u64 flags;
2851	int ret;
2852	int slot;
2853	struct extent_buffer *l;
2854	struct btrfs_key key;
2855	u64 generation;
2856	u64 extent_logical;
2857	u64 extent_physical;
2858	u64 extent_len;
2859	u64 mapped_length;
2860	struct btrfs_device *extent_dev;
2861	struct scrub_parity *sparity;
2862	int nsectors;
2863	int bitmap_len;
2864	int extent_mirror_num;
2865	int stop_loop = 0;
2866
2867	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2868	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2869	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2870			  GFP_NOFS);
2871	if (!sparity) {
2872		spin_lock(&sctx->stat_lock);
2873		sctx->stat.malloc_errors++;
2874		spin_unlock(&sctx->stat_lock);
2875		return -ENOMEM;
2876	}
2877
2878	sparity->stripe_len = map->stripe_len;
2879	sparity->nsectors = nsectors;
2880	sparity->sctx = sctx;
2881	sparity->scrub_dev = sdev;
2882	sparity->logic_start = logic_start;
2883	sparity->logic_end = logic_end;
2884	atomic_set(&sparity->refs, 1);
2885	INIT_LIST_HEAD(&sparity->spages);
2886	sparity->dbitmap = sparity->bitmap;
2887	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2888
2889	ret = 0;
2890	while (logic_start < logic_end) {
2891		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2892			key.type = BTRFS_METADATA_ITEM_KEY;
2893		else
2894			key.type = BTRFS_EXTENT_ITEM_KEY;
2895		key.objectid = logic_start;
2896		key.offset = (u64)-1;
2897
2898		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899		if (ret < 0)
2900			goto out;
2901
2902		if (ret > 0) {
2903			ret = btrfs_previous_extent_item(root, path, 0);
2904			if (ret < 0)
2905				goto out;
2906			if (ret > 0) {
2907				btrfs_release_path(path);
2908				ret = btrfs_search_slot(NULL, root, &key,
2909							path, 0, 0);
2910				if (ret < 0)
2911					goto out;
2912			}
2913		}
2914
2915		stop_loop = 0;
2916		while (1) {
2917			u64 bytes;
2918
2919			l = path->nodes[0];
2920			slot = path->slots[0];
2921			if (slot >= btrfs_header_nritems(l)) {
2922				ret = btrfs_next_leaf(root, path);
2923				if (ret == 0)
2924					continue;
2925				if (ret < 0)
2926					goto out;
2927
2928				stop_loop = 1;
2929				break;
2930			}
2931			btrfs_item_key_to_cpu(l, &key, slot);
2932
2933			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2934			    key.type != BTRFS_METADATA_ITEM_KEY)
2935				goto next;
2936
2937			if (key.type == BTRFS_METADATA_ITEM_KEY)
2938				bytes = fs_info->nodesize;
2939			else
2940				bytes = key.offset;
2941
2942			if (key.objectid + bytes <= logic_start)
2943				goto next;
2944
2945			if (key.objectid >= logic_end) {
2946				stop_loop = 1;
2947				break;
2948			}
2949
2950			while (key.objectid >= logic_start + map->stripe_len)
2951				logic_start += map->stripe_len;
2952
2953			extent = btrfs_item_ptr(l, slot,
2954						struct btrfs_extent_item);
2955			flags = btrfs_extent_flags(l, extent);
2956			generation = btrfs_extent_generation(l, extent);
2957
2958			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2959			    (key.objectid < logic_start ||
2960			     key.objectid + bytes >
2961			     logic_start + map->stripe_len)) {
2962				btrfs_err(fs_info,
2963					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964					  key.objectid, logic_start);
2965				spin_lock(&sctx->stat_lock);
2966				sctx->stat.uncorrectable_errors++;
2967				spin_unlock(&sctx->stat_lock);
2968				goto next;
2969			}
2970again:
2971			extent_logical = key.objectid;
2972			extent_len = bytes;
2973
2974			if (extent_logical < logic_start) {
2975				extent_len -= logic_start - extent_logical;
2976				extent_logical = logic_start;
2977			}
2978
2979			if (extent_logical + extent_len >
2980			    logic_start + map->stripe_len)
2981				extent_len = logic_start + map->stripe_len -
2982					     extent_logical;
2983
2984			scrub_parity_mark_sectors_data(sparity, extent_logical,
2985						       extent_len);
2986
2987			mapped_length = extent_len;
2988			bbio = NULL;
2989			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2990					extent_logical, &mapped_length, &bbio,
2991					0);
2992			if (!ret) {
2993				if (!bbio || mapped_length < extent_len)
2994					ret = -EIO;
2995			}
2996			if (ret) {
2997				btrfs_put_bbio(bbio);
2998				goto out;
2999			}
3000			extent_physical = bbio->stripes[0].physical;
3001			extent_mirror_num = bbio->mirror_num;
3002			extent_dev = bbio->stripes[0].dev;
3003			btrfs_put_bbio(bbio);
3004
3005			ret = btrfs_lookup_csums_range(csum_root,
3006						extent_logical,
3007						extent_logical + extent_len - 1,
3008						&sctx->csum_list, 1);
3009			if (ret)
3010				goto out;
3011
3012			ret = scrub_extent_for_parity(sparity, extent_logical,
3013						      extent_len,
3014						      extent_physical,
3015						      extent_dev, flags,
3016						      generation,
3017						      extent_mirror_num);
3018
3019			scrub_free_csums(sctx);
3020
3021			if (ret)
3022				goto out;
3023
3024			if (extent_logical + extent_len <
3025			    key.objectid + bytes) {
3026				logic_start += map->stripe_len;
3027
3028				if (logic_start >= logic_end) {
3029					stop_loop = 1;
3030					break;
3031				}
3032
3033				if (logic_start < key.objectid + bytes) {
3034					cond_resched();
3035					goto again;
3036				}
3037			}
3038next:
3039			path->slots[0]++;
3040		}
3041
3042		btrfs_release_path(path);
3043
3044		if (stop_loop)
3045			break;
3046
3047		logic_start += map->stripe_len;
3048	}
3049out:
3050	if (ret < 0)
3051		scrub_parity_mark_sectors_error(sparity, logic_start,
3052						logic_end - logic_start);
3053	scrub_parity_put(sparity);
3054	scrub_submit(sctx);
3055	mutex_lock(&sctx->wr_ctx.wr_lock);
3056	scrub_wr_submit(sctx);
3057	mutex_unlock(&sctx->wr_ctx.wr_lock);
3058
3059	btrfs_release_path(path);
3060	return ret < 0 ? ret : 0;
3061}
3062
3063static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3064					   struct map_lookup *map,
3065					   struct btrfs_device *scrub_dev,
3066					   int num, u64 base, u64 length,
3067					   int is_dev_replace)
3068{
3069	struct btrfs_path *path, *ppath;
3070	struct btrfs_fs_info *fs_info = sctx->fs_info;
3071	struct btrfs_root *root = fs_info->extent_root;
3072	struct btrfs_root *csum_root = fs_info->csum_root;
3073	struct btrfs_extent_item *extent;
3074	struct blk_plug plug;
3075	u64 flags;
3076	int ret;
3077	int slot;
 
3078	u64 nstripes;
3079	struct extent_buffer *l;
 
3080	u64 physical;
3081	u64 logical;
3082	u64 logic_end;
3083	u64 physical_end;
3084	u64 generation;
3085	int mirror_num;
3086	struct reada_control *reada1;
3087	struct reada_control *reada2;
3088	struct btrfs_key key;
3089	struct btrfs_key key_end;
 
3090	u64 increment = map->stripe_len;
3091	u64 offset;
3092	u64 extent_logical;
3093	u64 extent_physical;
3094	u64 extent_len;
3095	u64 stripe_logical;
3096	u64 stripe_end;
3097	struct btrfs_device *extent_dev;
3098	int extent_mirror_num;
3099	int stop_loop = 0;
3100
3101	physical = map->stripes[num].physical;
3102	offset = 0;
3103	nstripes = div_u64(length, map->stripe_len);
3104	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3105		offset = map->stripe_len * num;
3106		increment = map->stripe_len * map->num_stripes;
3107		mirror_num = 1;
3108	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3109		int factor = map->num_stripes / map->sub_stripes;
3110		offset = map->stripe_len * (num / map->sub_stripes);
3111		increment = map->stripe_len * factor;
3112		mirror_num = num % map->sub_stripes + 1;
3113	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3114		increment = map->stripe_len;
3115		mirror_num = num % map->num_stripes + 1;
3116	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3117		increment = map->stripe_len;
3118		mirror_num = num % map->num_stripes + 1;
3119	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3120		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3121		increment = map->stripe_len * nr_data_stripes(map);
3122		mirror_num = 1;
3123	} else {
3124		increment = map->stripe_len;
3125		mirror_num = 1;
3126	}
3127
3128	path = btrfs_alloc_path();
3129	if (!path)
3130		return -ENOMEM;
3131
3132	ppath = btrfs_alloc_path();
3133	if (!ppath) {
3134		btrfs_free_path(path);
3135		return -ENOMEM;
3136	}
3137
3138	/*
3139	 * work on commit root. The related disk blocks are static as
3140	 * long as COW is applied. This means, it is save to rewrite
3141	 * them to repair disk errors without any race conditions
3142	 */
3143	path->search_commit_root = 1;
3144	path->skip_locking = 1;
3145
3146	ppath->search_commit_root = 1;
3147	ppath->skip_locking = 1;
3148	/*
3149	 * trigger the readahead for extent tree csum tree and wait for
3150	 * completion. During readahead, the scrub is officially paused
3151	 * to not hold off transaction commits
3152	 */
3153	logical = base + offset;
3154	physical_end = physical + nstripes * map->stripe_len;
3155	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3156		get_raid56_logic_offset(physical_end, num,
3157					map, &logic_end, NULL);
3158		logic_end += base;
3159	} else {
3160		logic_end = logical + increment * nstripes;
3161	}
3162	wait_event(sctx->list_wait,
3163		   atomic_read(&sctx->bios_in_flight) == 0);
3164	scrub_blocked_if_needed(fs_info);
3165
3166	/* FIXME it might be better to start readahead at commit root */
3167	key.objectid = logical;
3168	key.type = BTRFS_EXTENT_ITEM_KEY;
3169	key.offset = (u64)0;
3170	key_end.objectid = logic_end;
3171	key_end.type = BTRFS_METADATA_ITEM_KEY;
3172	key_end.offset = (u64)-1;
3173	reada1 = btrfs_reada_add(root, &key, &key_end);
3174
3175	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3176	key.type = BTRFS_EXTENT_CSUM_KEY;
3177	key.offset = logical;
3178	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3179	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3180	key_end.offset = logic_end;
3181	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3182
3183	if (!IS_ERR(reada1))
3184		btrfs_reada_wait(reada1);
3185	if (!IS_ERR(reada2))
3186		btrfs_reada_wait(reada2);
3187
 
 
 
 
 
 
 
 
 
 
3188
3189	/*
3190	 * collect all data csums for the stripe to avoid seeking during
3191	 * the scrub. This might currently (crc32) end up to be about 1MB
3192	 */
3193	blk_start_plug(&plug);
3194
3195	/*
3196	 * now find all extents for each stripe and scrub them
3197	 */
 
 
3198	ret = 0;
3199	while (physical < physical_end) {
3200		/*
3201		 * canceled?
3202		 */
3203		if (atomic_read(&fs_info->scrub_cancel_req) ||
3204		    atomic_read(&sctx->cancel_req)) {
3205			ret = -ECANCELED;
3206			goto out;
3207		}
3208		/*
3209		 * check to see if we have to pause
3210		 */
3211		if (atomic_read(&fs_info->scrub_pause_req)) {
3212			/* push queued extents */
3213			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3214			scrub_submit(sctx);
3215			mutex_lock(&sctx->wr_ctx.wr_lock);
3216			scrub_wr_submit(sctx);
3217			mutex_unlock(&sctx->wr_ctx.wr_lock);
3218			wait_event(sctx->list_wait,
3219				   atomic_read(&sctx->bios_in_flight) == 0);
3220			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3221			scrub_blocked_if_needed(fs_info);
3222		}
3223
3224		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3225			ret = get_raid56_logic_offset(physical, num, map,
3226						      &logical,
3227						      &stripe_logical);
3228			logical += base;
3229			if (ret) {
3230				/* it is parity strip */
3231				stripe_logical += base;
3232				stripe_end = stripe_logical + increment;
3233				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3234							  ppath, stripe_logical,
3235							  stripe_end);
3236				if (ret)
3237					goto out;
3238				goto skip;
3239			}
3240		}
3241
3242		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3243			key.type = BTRFS_METADATA_ITEM_KEY;
3244		else
3245			key.type = BTRFS_EXTENT_ITEM_KEY;
3246		key.objectid = logical;
3247		key.offset = (u64)-1;
 
3248
3249		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3250		if (ret < 0)
3251			goto out;
3252
3253		if (ret > 0) {
3254			ret = btrfs_previous_extent_item(root, path, 0);
 
3255			if (ret < 0)
3256				goto out;
3257			if (ret > 0) {
3258				/* there's no smaller item, so stick with the
3259				 * larger one */
3260				btrfs_release_path(path);
3261				ret = btrfs_search_slot(NULL, root, &key,
3262							path, 0, 0);
3263				if (ret < 0)
3264					goto out;
3265			}
3266		}
3267
3268		stop_loop = 0;
3269		while (1) {
3270			u64 bytes;
3271
3272			l = path->nodes[0];
3273			slot = path->slots[0];
3274			if (slot >= btrfs_header_nritems(l)) {
3275				ret = btrfs_next_leaf(root, path);
3276				if (ret == 0)
3277					continue;
3278				if (ret < 0)
3279					goto out;
3280
3281				stop_loop = 1;
3282				break;
3283			}
3284			btrfs_item_key_to_cpu(l, &key, slot);
3285
3286			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3287			    key.type != BTRFS_METADATA_ITEM_KEY)
3288				goto next;
3289
3290			if (key.type == BTRFS_METADATA_ITEM_KEY)
3291				bytes = fs_info->nodesize;
3292			else
3293				bytes = key.offset;
3294
3295			if (key.objectid + bytes <= logical)
3296				goto next;
3297
3298			if (key.objectid >= logical + map->stripe_len) {
3299				/* out of this device extent */
3300				if (key.objectid >= logic_end)
3301					stop_loop = 1;
3302				break;
3303			}
3304
3305			extent = btrfs_item_ptr(l, slot,
3306						struct btrfs_extent_item);
3307			flags = btrfs_extent_flags(l, extent);
3308			generation = btrfs_extent_generation(l, extent);
3309
3310			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3311			    (key.objectid < logical ||
3312			     key.objectid + bytes >
3313			     logical + map->stripe_len)) {
3314				btrfs_err(fs_info,
3315					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3316				       key.objectid, logical);
3317				spin_lock(&sctx->stat_lock);
3318				sctx->stat.uncorrectable_errors++;
3319				spin_unlock(&sctx->stat_lock);
3320				goto next;
3321			}
3322
3323again:
3324			extent_logical = key.objectid;
3325			extent_len = bytes;
3326
3327			/*
3328			 * trim extent to this stripe
3329			 */
3330			if (extent_logical < logical) {
3331				extent_len -= logical - extent_logical;
3332				extent_logical = logical;
3333			}
3334			if (extent_logical + extent_len >
3335			    logical + map->stripe_len) {
3336				extent_len = logical + map->stripe_len -
3337					     extent_logical;
3338			}
3339
3340			extent_physical = extent_logical - logical + physical;
3341			extent_dev = scrub_dev;
3342			extent_mirror_num = mirror_num;
3343			if (is_dev_replace)
3344				scrub_remap_extent(fs_info, extent_logical,
3345						   extent_len, &extent_physical,
3346						   &extent_dev,
3347						   &extent_mirror_num);
3348
3349			ret = btrfs_lookup_csums_range(csum_root,
3350						       extent_logical,
3351						       extent_logical +
3352						       extent_len - 1,
3353						       &sctx->csum_list, 1);
3354			if (ret)
3355				goto out;
3356
3357			ret = scrub_extent(sctx, extent_logical, extent_len,
3358					   extent_physical, extent_dev, flags,
3359					   generation, extent_mirror_num,
3360					   extent_logical - logical + physical);
3361
3362			scrub_free_csums(sctx);
3363
3364			if (ret)
3365				goto out;
3366
3367			if (extent_logical + extent_len <
3368			    key.objectid + bytes) {
3369				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3370					/*
3371					 * loop until we find next data stripe
3372					 * or we have finished all stripes.
3373					 */
3374loop:
3375					physical += map->stripe_len;
3376					ret = get_raid56_logic_offset(physical,
3377							num, map, &logical,
3378							&stripe_logical);
3379					logical += base;
3380
3381					if (ret && physical < physical_end) {
3382						stripe_logical += base;
3383						stripe_end = stripe_logical +
3384								increment;
3385						ret = scrub_raid56_parity(sctx,
3386							map, scrub_dev, ppath,
3387							stripe_logical,
3388							stripe_end);
3389						if (ret)
3390							goto out;
3391						goto loop;
3392					}
3393				} else {
3394					physical += map->stripe_len;
3395					logical += increment;
3396				}
3397				if (logical < key.objectid + bytes) {
3398					cond_resched();
3399					goto again;
3400				}
3401
3402				if (physical >= physical_end) {
3403					stop_loop = 1;
3404					break;
3405				}
3406			}
3407next:
3408			path->slots[0]++;
3409		}
3410		btrfs_release_path(path);
3411skip:
3412		logical += increment;
3413		physical += map->stripe_len;
3414		spin_lock(&sctx->stat_lock);
3415		if (stop_loop)
3416			sctx->stat.last_physical = map->stripes[num].physical +
3417						   length;
3418		else
3419			sctx->stat.last_physical = physical;
3420		spin_unlock(&sctx->stat_lock);
3421		if (stop_loop)
3422			break;
3423	}
3424out:
3425	/* push queued extents */
3426	scrub_submit(sctx);
3427	mutex_lock(&sctx->wr_ctx.wr_lock);
3428	scrub_wr_submit(sctx);
3429	mutex_unlock(&sctx->wr_ctx.wr_lock);
3430
 
3431	blk_finish_plug(&plug);
3432	btrfs_free_path(path);
3433	btrfs_free_path(ppath);
3434	return ret < 0 ? ret : 0;
3435}
3436
3437static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3438					  struct btrfs_device *scrub_dev,
3439					  u64 chunk_offset, u64 length,
3440					  u64 dev_offset,
3441					  struct btrfs_block_group_cache *cache,
3442					  int is_dev_replace)
3443{
3444	struct btrfs_fs_info *fs_info = sctx->fs_info;
3445	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3446	struct map_lookup *map;
3447	struct extent_map *em;
3448	int i;
3449	int ret = 0;
3450
3451	read_lock(&map_tree->map_tree.lock);
3452	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3453	read_unlock(&map_tree->map_tree.lock);
3454
3455	if (!em) {
3456		/*
3457		 * Might have been an unused block group deleted by the cleaner
3458		 * kthread or relocation.
3459		 */
3460		spin_lock(&cache->lock);
3461		if (!cache->removed)
3462			ret = -EINVAL;
3463		spin_unlock(&cache->lock);
3464
3465		return ret;
3466	}
3467
3468	map = em->map_lookup;
3469	if (em->start != chunk_offset)
3470		goto out;
3471
3472	if (em->len < length)
3473		goto out;
3474
3475	for (i = 0; i < map->num_stripes; ++i) {
3476		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3477		    map->stripes[i].physical == dev_offset) {
3478			ret = scrub_stripe(sctx, map, scrub_dev, i,
3479					   chunk_offset, length,
3480					   is_dev_replace);
3481			if (ret)
3482				goto out;
3483		}
3484	}
3485out:
3486	free_extent_map(em);
3487
3488	return ret;
3489}
3490
3491static noinline_for_stack
3492int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3493			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3494			   int is_dev_replace)
3495{
3496	struct btrfs_dev_extent *dev_extent = NULL;
3497	struct btrfs_path *path;
3498	struct btrfs_fs_info *fs_info = sctx->fs_info;
3499	struct btrfs_root *root = fs_info->dev_root;
3500	u64 length;
 
 
3501	u64 chunk_offset;
3502	int ret = 0;
3503	int ro_set;
3504	int slot;
3505	struct extent_buffer *l;
3506	struct btrfs_key key;
3507	struct btrfs_key found_key;
3508	struct btrfs_block_group_cache *cache;
3509	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3510
3511	path = btrfs_alloc_path();
3512	if (!path)
3513		return -ENOMEM;
3514
3515	path->reada = READA_FORWARD;
3516	path->search_commit_root = 1;
3517	path->skip_locking = 1;
3518
3519	key.objectid = scrub_dev->devid;
3520	key.offset = 0ull;
3521	key.type = BTRFS_DEV_EXTENT_KEY;
3522
 
3523	while (1) {
3524		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3525		if (ret < 0)
3526			break;
3527		if (ret > 0) {
3528			if (path->slots[0] >=
3529			    btrfs_header_nritems(path->nodes[0])) {
3530				ret = btrfs_next_leaf(root, path);
3531				if (ret < 0)
3532					break;
3533				if (ret > 0) {
3534					ret = 0;
3535					break;
3536				}
3537			} else {
3538				ret = 0;
3539			}
3540		}
3541
3542		l = path->nodes[0];
3543		slot = path->slots[0];
3544
3545		btrfs_item_key_to_cpu(l, &found_key, slot);
3546
3547		if (found_key.objectid != scrub_dev->devid)
3548			break;
3549
3550		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3551			break;
3552
3553		if (found_key.offset >= end)
3554			break;
3555
3556		if (found_key.offset < key.offset)
3557			break;
3558
3559		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3560		length = btrfs_dev_extent_length(l, dev_extent);
3561
3562		if (found_key.offset + length <= start)
3563			goto skip;
 
 
 
3564
 
 
3565		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3566
3567		/*
3568		 * get a reference on the corresponding block group to prevent
3569		 * the chunk from going away while we scrub it
3570		 */
3571		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572
3573		/* some chunks are removed but not committed to disk yet,
3574		 * continue scrubbing */
3575		if (!cache)
3576			goto skip;
3577
3578		/*
3579		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3580		 * to avoid deadlock caused by:
3581		 * btrfs_inc_block_group_ro()
3582		 * -> btrfs_wait_for_commit()
3583		 * -> btrfs_commit_transaction()
3584		 * -> btrfs_scrub_pause()
3585		 */
3586		scrub_pause_on(fs_info);
3587		ret = btrfs_inc_block_group_ro(root, cache);
3588		if (!ret && is_dev_replace) {
3589			/*
3590			 * If we are doing a device replace wait for any tasks
3591			 * that started dellaloc right before we set the block
3592			 * group to RO mode, as they might have just allocated
3593			 * an extent from it or decided they could do a nocow
3594			 * write. And if any such tasks did that, wait for their
3595			 * ordered extents to complete and then commit the
3596			 * current transaction, so that we can later see the new
3597			 * extent items in the extent tree - the ordered extents
3598			 * create delayed data references (for cow writes) when
3599			 * they complete, which will be run and insert the
3600			 * corresponding extent items into the extent tree when
3601			 * we commit the transaction they used when running
3602			 * inode.c:btrfs_finish_ordered_io(). We later use
3603			 * the commit root of the extent tree to find extents
3604			 * to copy from the srcdev into the tgtdev, and we don't
3605			 * want to miss any new extents.
3606			 */
3607			btrfs_wait_block_group_reservations(cache);
3608			btrfs_wait_nocow_writers(cache);
3609			ret = btrfs_wait_ordered_roots(fs_info, -1,
3610						       cache->key.objectid,
3611						       cache->key.offset);
3612			if (ret > 0) {
3613				struct btrfs_trans_handle *trans;
3614
3615				trans = btrfs_join_transaction(root);
3616				if (IS_ERR(trans))
3617					ret = PTR_ERR(trans);
3618				else
3619					ret = btrfs_commit_transaction(trans);
3620				if (ret) {
3621					scrub_pause_off(fs_info);
3622					btrfs_put_block_group(cache);
3623					break;
3624				}
3625			}
3626		}
3627		scrub_pause_off(fs_info);
3628
3629		if (ret == 0) {
3630			ro_set = 1;
3631		} else if (ret == -ENOSPC) {
3632			/*
3633			 * btrfs_inc_block_group_ro return -ENOSPC when it
3634			 * failed in creating new chunk for metadata.
3635			 * It is not a problem for scrub/replace, because
3636			 * metadata are always cowed, and our scrub paused
3637			 * commit_transactions.
3638			 */
3639			ro_set = 0;
3640		} else {
3641			btrfs_warn(fs_info,
3642				   "failed setting block group ro, ret=%d\n",
3643				   ret);
3644			btrfs_put_block_group(cache);
3645			break;
3646		}
3647
3648		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3649		dev_replace->cursor_right = found_key.offset + length;
3650		dev_replace->cursor_left = found_key.offset;
3651		dev_replace->item_needs_writeback = 1;
3652		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3653		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3654				  found_key.offset, cache, is_dev_replace);
3655
3656		/*
3657		 * flush, submit all pending read and write bios, afterwards
3658		 * wait for them.
3659		 * Note that in the dev replace case, a read request causes
3660		 * write requests that are submitted in the read completion
3661		 * worker. Therefore in the current situation, it is required
3662		 * that all write requests are flushed, so that all read and
3663		 * write requests are really completed when bios_in_flight
3664		 * changes to 0.
3665		 */
3666		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3667		scrub_submit(sctx);
3668		mutex_lock(&sctx->wr_ctx.wr_lock);
3669		scrub_wr_submit(sctx);
3670		mutex_unlock(&sctx->wr_ctx.wr_lock);
3671
3672		wait_event(sctx->list_wait,
3673			   atomic_read(&sctx->bios_in_flight) == 0);
3674
3675		scrub_pause_on(fs_info);
3676
3677		/*
3678		 * must be called before we decrease @scrub_paused.
3679		 * make sure we don't block transaction commit while
3680		 * we are waiting pending workers finished.
3681		 */
3682		wait_event(sctx->list_wait,
3683			   atomic_read(&sctx->workers_pending) == 0);
3684		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3685
3686		scrub_pause_off(fs_info);
3687
3688		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3689		dev_replace->cursor_left = dev_replace->cursor_right;
3690		dev_replace->item_needs_writeback = 1;
3691		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3692
3693		if (ro_set)
3694			btrfs_dec_block_group_ro(cache);
3695
3696		/*
3697		 * We might have prevented the cleaner kthread from deleting
3698		 * this block group if it was already unused because we raced
3699		 * and set it to RO mode first. So add it back to the unused
3700		 * list, otherwise it might not ever be deleted unless a manual
3701		 * balance is triggered or it becomes used and unused again.
3702		 */
3703		spin_lock(&cache->lock);
3704		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3705		    btrfs_block_group_used(&cache->item) == 0) {
3706			spin_unlock(&cache->lock);
3707			spin_lock(&fs_info->unused_bgs_lock);
3708			if (list_empty(&cache->bg_list)) {
3709				btrfs_get_block_group(cache);
3710				list_add_tail(&cache->bg_list,
3711					      &fs_info->unused_bgs);
3712			}
3713			spin_unlock(&fs_info->unused_bgs_lock);
3714		} else {
3715			spin_unlock(&cache->lock);
3716		}
3717
3718		btrfs_put_block_group(cache);
3719		if (ret)
3720			break;
3721		if (is_dev_replace &&
3722		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3723			ret = -EIO;
3724			break;
3725		}
3726		if (sctx->stat.malloc_errors > 0) {
3727			ret = -ENOMEM;
3728			break;
3729		}
3730skip:
3731		key.offset = found_key.offset + length;
3732		btrfs_release_path(path);
3733	}
3734
3735	btrfs_free_path(path);
3736
3737	return ret;
 
 
 
 
3738}
3739
3740static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3741					   struct btrfs_device *scrub_dev)
3742{
3743	int	i;
3744	u64	bytenr;
3745	u64	gen;
3746	int	ret;
3747	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
3748
3749	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750		return -EIO;
3751
3752	/* Seed devices of a new filesystem has their own generation. */
3753	if (scrub_dev->fs_devices != fs_info->fs_devices)
3754		gen = scrub_dev->generation;
3755	else
3756		gen = fs_info->last_trans_committed;
3757
3758	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3759		bytenr = btrfs_sb_offset(i);
3760		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3761		    scrub_dev->commit_total_bytes)
3762			break;
3763
3764		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3765				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3766				  NULL, 1, bytenr);
3767		if (ret)
3768			return ret;
3769	}
3770	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3771
3772	return 0;
3773}
3774
3775/*
3776 * get a reference count on fs_info->scrub_workers. start worker if necessary
3777 */
3778static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3779						int is_dev_replace)
3780{
3781	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3782	int max_active = fs_info->thread_pool_size;
3783
 
3784	if (fs_info->scrub_workers_refcnt == 0) {
3785		if (is_dev_replace)
3786			fs_info->scrub_workers =
3787				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3788						      1, 4);
3789		else
3790			fs_info->scrub_workers =
3791				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3792						      max_active, 4);
3793		if (!fs_info->scrub_workers)
3794			goto fail_scrub_workers;
3795
3796		fs_info->scrub_wr_completion_workers =
3797			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3798					      max_active, 2);
3799		if (!fs_info->scrub_wr_completion_workers)
3800			goto fail_scrub_wr_completion_workers;
3801
3802		fs_info->scrub_nocow_workers =
3803			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3804		if (!fs_info->scrub_nocow_workers)
3805			goto fail_scrub_nocow_workers;
3806		fs_info->scrub_parity_workers =
3807			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3808					      max_active, 2);
3809		if (!fs_info->scrub_parity_workers)
3810			goto fail_scrub_parity_workers;
3811	}
3812	++fs_info->scrub_workers_refcnt;
3813	return 0;
 
3814
3815fail_scrub_parity_workers:
3816	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3817fail_scrub_nocow_workers:
3818	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3819fail_scrub_wr_completion_workers:
3820	btrfs_destroy_workqueue(fs_info->scrub_workers);
3821fail_scrub_workers:
3822	return -ENOMEM;
3823}
3824
3825static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3826{
3827	if (--fs_info->scrub_workers_refcnt == 0) {
3828		btrfs_destroy_workqueue(fs_info->scrub_workers);
3829		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3830		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3831		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3832	}
3833	WARN_ON(fs_info->scrub_workers_refcnt < 0);
 
3834}
3835
3836int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3837		    u64 end, struct btrfs_scrub_progress *progress,
3838		    int readonly, int is_dev_replace)
3839{
3840	struct scrub_ctx *sctx;
 
3841	int ret;
3842	struct btrfs_device *dev;
3843	struct rcu_string *name;
3844
3845	if (btrfs_fs_closing(fs_info))
3846		return -EINVAL;
3847
3848	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
 
 
 
 
 
 
 
 
 
 
3849		/*
3850		 * in this case scrub is unable to calculate the checksum
3851		 * the way scrub is implemented. Do not handle this
3852		 * situation at all because it won't ever happen.
3853		 */
3854		btrfs_err(fs_info,
3855			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3856		       fs_info->nodesize,
3857		       BTRFS_STRIPE_LEN);
3858		return -EINVAL;
3859	}
3860
3861	if (fs_info->sectorsize != PAGE_SIZE) {
3862		/* not supported for data w/o checksums */
3863		btrfs_err_rl(fs_info,
3864			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3865		       fs_info->sectorsize, PAGE_SIZE);
3866		return -EINVAL;
3867	}
3868
3869	if (fs_info->nodesize >
3870	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3871	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3872		/*
3873		 * would exhaust the array bounds of pagev member in
3874		 * struct scrub_block
3875		 */
3876		btrfs_err(fs_info,
3877			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3878		       fs_info->nodesize,
3879		       SCRUB_MAX_PAGES_PER_BLOCK,
3880		       fs_info->sectorsize,
3881		       SCRUB_MAX_PAGES_PER_BLOCK);
3882		return -EINVAL;
3883	}
3884
 
 
 
3885
3886	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3887	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3888	if (!dev || (dev->missing && !is_dev_replace)) {
3889		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
3890		return -ENODEV;
3891	}
3892
3893	if (!is_dev_replace && !readonly && !dev->writeable) {
3894		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3895		rcu_read_lock();
3896		name = rcu_dereference(dev->name);
3897		btrfs_err(fs_info, "scrub: device %s is not writable",
3898			  name->str);
3899		rcu_read_unlock();
3900		return -EROFS;
3901	}
3902
3903	mutex_lock(&fs_info->scrub_lock);
3904	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3905		mutex_unlock(&fs_info->scrub_lock);
3906		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907		return -EIO;
3908	}
3909
3910	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3911	if (dev->scrub_device ||
3912	    (!is_dev_replace &&
3913	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3914		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3915		mutex_unlock(&fs_info->scrub_lock);
3916		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3917		return -EINPROGRESS;
 
3918	}
3919	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3920
3921	ret = scrub_workers_get(fs_info, is_dev_replace);
3922	if (ret) {
3923		mutex_unlock(&fs_info->scrub_lock);
3924		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925		return ret;
 
3926	}
3927
3928	sctx = scrub_setup_ctx(dev, is_dev_replace);
3929	if (IS_ERR(sctx)) {
3930		mutex_unlock(&fs_info->scrub_lock);
3931		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932		scrub_workers_put(fs_info);
3933		return PTR_ERR(sctx);
3934	}
3935	sctx->readonly = readonly;
3936	dev->scrub_device = sctx;
3937	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938
3939	/*
3940	 * checking @scrub_pause_req here, we can avoid
3941	 * race between committing transaction and scrubbing.
3942	 */
3943	__scrub_blocked_if_needed(fs_info);
3944	atomic_inc(&fs_info->scrubs_running);
3945	mutex_unlock(&fs_info->scrub_lock);
 
3946
3947	if (!is_dev_replace) {
3948		/*
3949		 * by holding device list mutex, we can
3950		 * kick off writing super in log tree sync.
3951		 */
3952		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3953		ret = scrub_supers(sctx, dev);
3954		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3955	}
3956
3957	if (!ret)
3958		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3959					     is_dev_replace);
3960
3961	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3962	atomic_dec(&fs_info->scrubs_running);
3963	wake_up(&fs_info->scrub_pause_wait);
3964
3965	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3966
3967	if (progress)
3968		memcpy(progress, &sctx->stat, sizeof(*progress));
3969
3970	mutex_lock(&fs_info->scrub_lock);
3971	dev->scrub_device = NULL;
3972	scrub_workers_put(fs_info);
3973	mutex_unlock(&fs_info->scrub_lock);
3974
3975	scrub_put_ctx(sctx);
 
3976
3977	return ret;
3978}
3979
3980void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3981{
 
 
3982	mutex_lock(&fs_info->scrub_lock);
3983	atomic_inc(&fs_info->scrub_pause_req);
3984	while (atomic_read(&fs_info->scrubs_paused) !=
3985	       atomic_read(&fs_info->scrubs_running)) {
3986		mutex_unlock(&fs_info->scrub_lock);
3987		wait_event(fs_info->scrub_pause_wait,
3988			   atomic_read(&fs_info->scrubs_paused) ==
3989			   atomic_read(&fs_info->scrubs_running));
3990		mutex_lock(&fs_info->scrub_lock);
3991	}
3992	mutex_unlock(&fs_info->scrub_lock);
3993}
3994
3995void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3996{
 
 
3997	atomic_dec(&fs_info->scrub_pause_req);
3998	wake_up(&fs_info->scrub_pause_wait);
3999}
4000
4001int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
4002{
 
4003	mutex_lock(&fs_info->scrub_lock);
4004	if (!atomic_read(&fs_info->scrubs_running)) {
4005		mutex_unlock(&fs_info->scrub_lock);
4006		return -ENOTCONN;
4007	}
4008
4009	atomic_inc(&fs_info->scrub_cancel_req);
4010	while (atomic_read(&fs_info->scrubs_running)) {
4011		mutex_unlock(&fs_info->scrub_lock);
4012		wait_event(fs_info->scrub_pause_wait,
4013			   atomic_read(&fs_info->scrubs_running) == 0);
4014		mutex_lock(&fs_info->scrub_lock);
4015	}
4016	atomic_dec(&fs_info->scrub_cancel_req);
4017	mutex_unlock(&fs_info->scrub_lock);
4018
4019	return 0;
4020}
4021
4022int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4023			   struct btrfs_device *dev)
4024{
4025	struct scrub_ctx *sctx;
 
 
 
 
 
 
4026
4027	mutex_lock(&fs_info->scrub_lock);
4028	sctx = dev->scrub_device;
4029	if (!sctx) {
4030		mutex_unlock(&fs_info->scrub_lock);
4031		return -ENOTCONN;
4032	}
4033	atomic_inc(&sctx->cancel_req);
4034	while (dev->scrub_device) {
4035		mutex_unlock(&fs_info->scrub_lock);
4036		wait_event(fs_info->scrub_pause_wait,
4037			   dev->scrub_device == NULL);
4038		mutex_lock(&fs_info->scrub_lock);
4039	}
4040	mutex_unlock(&fs_info->scrub_lock);
4041
4042	return 0;
4043}
4044
4045int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046			 struct btrfs_scrub_progress *progress)
4047{
 
4048	struct btrfs_device *dev;
4049	struct scrub_ctx *sctx = NULL;
4050
4051	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4052	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4053	if (dev)
4054		sctx = dev->scrub_device;
4055	if (sctx)
4056		memcpy(progress, &sctx->stat, sizeof(*progress));
4057	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058
4059	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4060}
4061
4062static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4063			       u64 extent_logical, u64 extent_len,
4064			       u64 *extent_physical,
4065			       struct btrfs_device **extent_dev,
4066			       int *extent_mirror_num)
4067{
4068	u64 mapped_length;
4069	struct btrfs_bio *bbio = NULL;
4070	int ret;
4071
4072	mapped_length = extent_len;
4073	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4074			      &mapped_length, &bbio, 0);
4075	if (ret || !bbio || mapped_length < extent_len ||
4076	    !bbio->stripes[0].dev->bdev) {
4077		btrfs_put_bbio(bbio);
4078		return;
4079	}
4080
4081	*extent_physical = bbio->stripes[0].physical;
4082	*extent_mirror_num = bbio->mirror_num;
4083	*extent_dev = bbio->stripes[0].dev;
4084	btrfs_put_bbio(bbio);
4085}
4086
4087static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4088			      struct scrub_wr_ctx *wr_ctx,
4089			      struct btrfs_fs_info *fs_info,
4090			      struct btrfs_device *dev,
4091			      int is_dev_replace)
4092{
4093	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4094
4095	mutex_init(&wr_ctx->wr_lock);
4096	wr_ctx->wr_curr_bio = NULL;
4097	if (!is_dev_replace)
4098		return 0;
4099
4100	WARN_ON(!dev->bdev);
4101	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4102	wr_ctx->tgtdev = dev;
4103	atomic_set(&wr_ctx->flush_all_writes, 0);
4104	return 0;
4105}
4106
4107static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4108{
4109	mutex_lock(&wr_ctx->wr_lock);
4110	kfree(wr_ctx->wr_curr_bio);
4111	wr_ctx->wr_curr_bio = NULL;
4112	mutex_unlock(&wr_ctx->wr_lock);
4113}
4114
4115static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4116			    int mirror_num, u64 physical_for_dev_replace)
4117{
4118	struct scrub_copy_nocow_ctx *nocow_ctx;
4119	struct btrfs_fs_info *fs_info = sctx->fs_info;
4120
4121	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4122	if (!nocow_ctx) {
4123		spin_lock(&sctx->stat_lock);
4124		sctx->stat.malloc_errors++;
4125		spin_unlock(&sctx->stat_lock);
4126		return -ENOMEM;
4127	}
4128
4129	scrub_pending_trans_workers_inc(sctx);
4130
4131	nocow_ctx->sctx = sctx;
4132	nocow_ctx->logical = logical;
4133	nocow_ctx->len = len;
4134	nocow_ctx->mirror_num = mirror_num;
4135	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4136	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4137			copy_nocow_pages_worker, NULL, NULL);
4138	INIT_LIST_HEAD(&nocow_ctx->inodes);
4139	btrfs_queue_work(fs_info->scrub_nocow_workers,
4140			 &nocow_ctx->work);
4141
4142	return 0;
4143}
4144
4145static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4146{
4147	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4148	struct scrub_nocow_inode *nocow_inode;
4149
4150	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4151	if (!nocow_inode)
4152		return -ENOMEM;
4153	nocow_inode->inum = inum;
4154	nocow_inode->offset = offset;
4155	nocow_inode->root = root;
4156	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4157	return 0;
4158}
4159
4160#define COPY_COMPLETE 1
4161
4162static void copy_nocow_pages_worker(struct btrfs_work *work)
4163{
4164	struct scrub_copy_nocow_ctx *nocow_ctx =
4165		container_of(work, struct scrub_copy_nocow_ctx, work);
4166	struct scrub_ctx *sctx = nocow_ctx->sctx;
4167	struct btrfs_fs_info *fs_info = sctx->fs_info;
4168	struct btrfs_root *root = fs_info->extent_root;
4169	u64 logical = nocow_ctx->logical;
4170	u64 len = nocow_ctx->len;
4171	int mirror_num = nocow_ctx->mirror_num;
4172	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173	int ret;
4174	struct btrfs_trans_handle *trans = NULL;
4175	struct btrfs_path *path;
4176	int not_written = 0;
4177
4178	path = btrfs_alloc_path();
4179	if (!path) {
4180		spin_lock(&sctx->stat_lock);
4181		sctx->stat.malloc_errors++;
4182		spin_unlock(&sctx->stat_lock);
4183		not_written = 1;
4184		goto out;
4185	}
4186
4187	trans = btrfs_join_transaction(root);
4188	if (IS_ERR(trans)) {
4189		not_written = 1;
4190		goto out;
4191	}
4192
4193	ret = iterate_inodes_from_logical(logical, fs_info, path,
4194					  record_inode_for_nocow, nocow_ctx);
4195	if (ret != 0 && ret != -ENOENT) {
4196		btrfs_warn(fs_info,
4197			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4198			   logical, physical_for_dev_replace, len, mirror_num,
4199			   ret);
4200		not_written = 1;
4201		goto out;
4202	}
4203
4204	btrfs_end_transaction(trans);
4205	trans = NULL;
4206	while (!list_empty(&nocow_ctx->inodes)) {
4207		struct scrub_nocow_inode *entry;
4208		entry = list_first_entry(&nocow_ctx->inodes,
4209					 struct scrub_nocow_inode,
4210					 list);
4211		list_del_init(&entry->list);
4212		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4213						 entry->root, nocow_ctx);
4214		kfree(entry);
4215		if (ret == COPY_COMPLETE) {
4216			ret = 0;
4217			break;
4218		} else if (ret) {
4219			break;
4220		}
4221	}
4222out:
4223	while (!list_empty(&nocow_ctx->inodes)) {
4224		struct scrub_nocow_inode *entry;
4225		entry = list_first_entry(&nocow_ctx->inodes,
4226					 struct scrub_nocow_inode,
4227					 list);
4228		list_del_init(&entry->list);
4229		kfree(entry);
4230	}
4231	if (trans && !IS_ERR(trans))
4232		btrfs_end_transaction(trans);
4233	if (not_written)
4234		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4235					    num_uncorrectable_read_errors);
4236
4237	btrfs_free_path(path);
4238	kfree(nocow_ctx);
4239
4240	scrub_pending_trans_workers_dec(sctx);
4241}
4242
4243static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4244				 u64 logical)
4245{
4246	struct extent_state *cached_state = NULL;
4247	struct btrfs_ordered_extent *ordered;
4248	struct extent_io_tree *io_tree;
4249	struct extent_map *em;
4250	u64 lockstart = start, lockend = start + len - 1;
4251	int ret = 0;
4252
4253	io_tree = &BTRFS_I(inode)->io_tree;
4254
4255	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4256	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4257	if (ordered) {
4258		btrfs_put_ordered_extent(ordered);
4259		ret = 1;
4260		goto out_unlock;
4261	}
4262
4263	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4264	if (IS_ERR(em)) {
4265		ret = PTR_ERR(em);
4266		goto out_unlock;
4267	}
4268
4269	/*
4270	 * This extent does not actually cover the logical extent anymore,
4271	 * move on to the next inode.
4272	 */
4273	if (em->block_start > logical ||
4274	    em->block_start + em->block_len < logical + len) {
4275		free_extent_map(em);
4276		ret = 1;
4277		goto out_unlock;
4278	}
4279	free_extent_map(em);
4280
4281out_unlock:
4282	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4283			     GFP_NOFS);
4284	return ret;
4285}
4286
4287static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4288				      struct scrub_copy_nocow_ctx *nocow_ctx)
4289{
4290	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4291	struct btrfs_key key;
4292	struct inode *inode;
4293	struct page *page;
4294	struct btrfs_root *local_root;
4295	struct extent_io_tree *io_tree;
4296	u64 physical_for_dev_replace;
4297	u64 nocow_ctx_logical;
4298	u64 len = nocow_ctx->len;
4299	unsigned long index;
4300	int srcu_index;
4301	int ret = 0;
4302	int err = 0;
4303
4304	key.objectid = root;
4305	key.type = BTRFS_ROOT_ITEM_KEY;
4306	key.offset = (u64)-1;
4307
4308	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4309
4310	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4311	if (IS_ERR(local_root)) {
4312		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4313		return PTR_ERR(local_root);
4314	}
4315
4316	key.type = BTRFS_INODE_ITEM_KEY;
4317	key.objectid = inum;
4318	key.offset = 0;
4319	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4320	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4321	if (IS_ERR(inode))
4322		return PTR_ERR(inode);
4323
4324	/* Avoid truncate/dio/punch hole.. */
4325	inode_lock(inode);
4326	inode_dio_wait(inode);
4327
4328	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4329	io_tree = &BTRFS_I(inode)->io_tree;
4330	nocow_ctx_logical = nocow_ctx->logical;
4331
4332	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4333	if (ret) {
4334		ret = ret > 0 ? 0 : ret;
4335		goto out;
4336	}
 
 
4337
4338	while (len >= PAGE_SIZE) {
4339		index = offset >> PAGE_SHIFT;
4340again:
4341		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4342		if (!page) {
4343			btrfs_err(fs_info, "find_or_create_page() failed");
4344			ret = -ENOMEM;
4345			goto out;
4346		}
4347
4348		if (PageUptodate(page)) {
4349			if (PageDirty(page))
4350				goto next_page;
4351		} else {
4352			ClearPageError(page);
4353			err = extent_read_full_page(io_tree, page,
4354							   btrfs_get_extent,
4355							   nocow_ctx->mirror_num);
4356			if (err) {
4357				ret = err;
4358				goto next_page;
4359			}
4360
4361			lock_page(page);
4362			/*
4363			 * If the page has been remove from the page cache,
4364			 * the data on it is meaningless, because it may be
4365			 * old one, the new data may be written into the new
4366			 * page in the page cache.
4367			 */
4368			if (page->mapping != inode->i_mapping) {
4369				unlock_page(page);
4370				put_page(page);
4371				goto again;
4372			}
4373			if (!PageUptodate(page)) {
4374				ret = -EIO;
4375				goto next_page;
4376			}
4377		}
4378
4379		ret = check_extent_to_block(inode, offset, len,
4380					    nocow_ctx_logical);
4381		if (ret) {
4382			ret = ret > 0 ? 0 : ret;
4383			goto next_page;
4384		}
4385
4386		err = write_page_nocow(nocow_ctx->sctx,
4387				       physical_for_dev_replace, page);
4388		if (err)
4389			ret = err;
4390next_page:
4391		unlock_page(page);
4392		put_page(page);
4393
4394		if (ret)
4395			break;
4396
4397		offset += PAGE_SIZE;
4398		physical_for_dev_replace += PAGE_SIZE;
4399		nocow_ctx_logical += PAGE_SIZE;
4400		len -= PAGE_SIZE;
4401	}
4402	ret = COPY_COMPLETE;
4403out:
4404	inode_unlock(inode);
4405	iput(inode);
4406	return ret;
4407}
4408
4409static int write_page_nocow(struct scrub_ctx *sctx,
4410			    u64 physical_for_dev_replace, struct page *page)
4411{
4412	struct bio *bio;
4413	struct btrfs_device *dev;
4414	int ret;
4415
4416	dev = sctx->wr_ctx.tgtdev;
4417	if (!dev)
4418		return -EIO;
4419	if (!dev->bdev) {
4420		btrfs_warn_rl(dev->fs_info,
4421			"scrub write_page_nocow(bdev == NULL) is unexpected");
4422		return -EIO;
4423	}
4424	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4425	if (!bio) {
4426		spin_lock(&sctx->stat_lock);
4427		sctx->stat.malloc_errors++;
4428		spin_unlock(&sctx->stat_lock);
4429		return -ENOMEM;
4430	}
4431	bio->bi_iter.bi_size = 0;
4432	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4433	bio->bi_bdev = dev->bdev;
4434	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4435	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4436	if (ret != PAGE_SIZE) {
4437leave_with_eio:
4438		bio_put(bio);
4439		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4440		return -EIO;
4441	}
4442
4443	if (btrfsic_submit_bio_wait(bio))
4444		goto leave_with_eio;
4445
4446	bio_put(bio);
4447	return 0;
4448}
v3.5.6
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
 
  28#include "check-integrity.h"
  29#include "rcu-string.h"
 
  30
  31/*
  32 * This is only the first step towards a full-features scrub. It reads all
  33 * extent and super block and verifies the checksums. In case a bad checksum
  34 * is found or the extent cannot be read, good data will be written back if
  35 * any can be found.
  36 *
  37 * Future enhancements:
  38 *  - In case an unrepairable extent is encountered, track which files are
  39 *    affected and report them
  40 *  - track and record media errors, throw out bad devices
  41 *  - add a mode to also read unallocated space
  42 */
  43
  44struct scrub_block;
  45struct scrub_dev;
  46
  47#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
  48#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
 
 
 
 
 
 
 
 
 
 
 
 
 
  49#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  50
 
 
 
 
 
 
  51struct scrub_page {
  52	struct scrub_block	*sblock;
  53	struct page		*page;
  54	struct btrfs_device	*dev;
 
  55	u64			flags;  /* extent flags */
  56	u64			generation;
  57	u64			logical;
  58	u64			physical;
 
 
  59	struct {
  60		unsigned int	mirror_num:8;
  61		unsigned int	have_csum:1;
  62		unsigned int	io_error:1;
  63	};
  64	u8			csum[BTRFS_CSUM_SIZE];
 
 
  65};
  66
  67struct scrub_bio {
  68	int			index;
  69	struct scrub_dev	*sdev;
 
  70	struct bio		*bio;
  71	int			err;
  72	u64			logical;
  73	u64			physical;
  74	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
 
 
 
 
  75	int			page_count;
  76	int			next_free;
  77	struct btrfs_work	work;
  78};
  79
  80struct scrub_block {
  81	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
  82	int			page_count;
  83	atomic_t		outstanding_pages;
  84	atomic_t		ref_count; /* free mem on transition to zero */
  85	struct scrub_dev	*sdev;
 
  86	struct {
  87		unsigned int	header_error:1;
  88		unsigned int	checksum_error:1;
  89		unsigned int	no_io_error_seen:1;
  90		unsigned int	generation_error:1; /* also sets header_error */
 
 
 
 
  91	};
 
  92};
  93
  94struct scrub_dev {
  95	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
  96	struct btrfs_device	*dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97	int			first_free;
  98	int			curr;
  99	atomic_t		in_flight;
 100	atomic_t		fixup_cnt;
 101	spinlock_t		list_lock;
 102	wait_queue_head_t	list_wait;
 103	u16			csum_size;
 104	struct list_head	csum_list;
 105	atomic_t		cancel_req;
 106	int			readonly;
 107	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
 108	u32			sectorsize;
 109	u32			nodesize;
 110	u32			leafsize;
 
 
 
 111	/*
 112	 * statistics
 113	 */
 114	struct btrfs_scrub_progress stat;
 115	spinlock_t		stat_lock;
 
 
 
 
 
 
 
 
 
 116};
 117
 118struct scrub_fixup_nodatasum {
 119	struct scrub_dev	*sdev;
 
 120	u64			logical;
 121	struct btrfs_root	*root;
 122	struct btrfs_work	work;
 123	int			mirror_num;
 124};
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126struct scrub_warning {
 127	struct btrfs_path	*path;
 128	u64			extent_item_size;
 129	char			*scratch_buf;
 130	char			*msg_buf;
 131	const char		*errstr;
 132	sector_t		sector;
 133	u64			logical;
 134	struct btrfs_device	*dev;
 135	int			msg_bufsize;
 136	int			scratch_bufsize;
 137};
 138
 139
 
 
 
 140static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 141static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 142				     struct btrfs_mapping_tree *map_tree,
 143				     u64 length, u64 logical,
 144				     struct scrub_block *sblock);
 145static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
 146			       struct scrub_block *sblock, int is_metadata,
 147			       int have_csum, u8 *csum, u64 generation,
 148			       u16 csum_size);
 149static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 150					 struct scrub_block *sblock,
 151					 int is_metadata, int have_csum,
 152					 const u8 *csum, u64 generation,
 153					 u16 csum_size);
 154static void scrub_complete_bio_end_io(struct bio *bio, int err);
 155static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 156					     struct scrub_block *sblock_good,
 157					     int force_write);
 158static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 159					    struct scrub_block *sblock_good,
 160					    int page_num, int force_write);
 
 
 
 161static int scrub_checksum_data(struct scrub_block *sblock);
 162static int scrub_checksum_tree_block(struct scrub_block *sblock);
 163static int scrub_checksum_super(struct scrub_block *sblock);
 164static void scrub_block_get(struct scrub_block *sblock);
 165static void scrub_block_put(struct scrub_block *sblock);
 166static int scrub_add_page_to_bio(struct scrub_dev *sdev,
 167				 struct scrub_page *spage);
 168static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
 169		       u64 physical, u64 flags, u64 gen, int mirror_num,
 170		       u8 *csum, int force);
 171static void scrub_bio_end_io(struct bio *bio, int err);
 
 
 
 
 
 172static void scrub_bio_end_io_worker(struct btrfs_work *work);
 173static void scrub_block_complete(struct scrub_block *sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174
 
 
 
 
 
 175
 176static void scrub_free_csums(struct scrub_dev *sdev)
 177{
 178	while (!list_empty(&sdev->csum_list)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179		struct btrfs_ordered_sum *sum;
 180		sum = list_first_entry(&sdev->csum_list,
 181				       struct btrfs_ordered_sum, list);
 182		list_del(&sum->list);
 183		kfree(sum);
 184	}
 185}
 186
 187static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
 188{
 189	int i;
 190
 191	if (!sdev)
 192		return;
 193
 
 
 194	/* this can happen when scrub is cancelled */
 195	if (sdev->curr != -1) {
 196		struct scrub_bio *sbio = sdev->bios[sdev->curr];
 197
 198		for (i = 0; i < sbio->page_count; i++) {
 199			BUG_ON(!sbio->pagev[i]);
 200			BUG_ON(!sbio->pagev[i]->page);
 201			scrub_block_put(sbio->pagev[i]->sblock);
 202		}
 203		bio_put(sbio->bio);
 204	}
 205
 206	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 207		struct scrub_bio *sbio = sdev->bios[i];
 208
 209		if (!sbio)
 210			break;
 211		kfree(sbio);
 212	}
 213
 214	scrub_free_csums(sdev);
 215	kfree(sdev);
 
 
 
 
 
 
 216}
 217
 218static noinline_for_stack
 219struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
 220{
 221	struct scrub_dev *sdev;
 222	int		i;
 223	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 224	int pages_per_bio;
 225
 226	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
 227			      bio_get_nr_vecs(dev->bdev));
 228	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
 229	if (!sdev)
 230		goto nomem;
 231	sdev->dev = dev;
 232	sdev->pages_per_bio = pages_per_bio;
 233	sdev->curr = -1;
 234	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 
 
 235		struct scrub_bio *sbio;
 236
 237		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 238		if (!sbio)
 239			goto nomem;
 240		sdev->bios[i] = sbio;
 241
 242		sbio->index = i;
 243		sbio->sdev = sdev;
 244		sbio->page_count = 0;
 245		sbio->work.func = scrub_bio_end_io_worker;
 
 246
 247		if (i != SCRUB_BIOS_PER_DEV-1)
 248			sdev->bios[i]->next_free = i + 1;
 249		else
 250			sdev->bios[i]->next_free = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251	}
 252	sdev->first_free = 0;
 253	sdev->nodesize = dev->dev_root->nodesize;
 254	sdev->leafsize = dev->dev_root->leafsize;
 255	sdev->sectorsize = dev->dev_root->sectorsize;
 256	atomic_set(&sdev->in_flight, 0);
 257	atomic_set(&sdev->fixup_cnt, 0);
 258	atomic_set(&sdev->cancel_req, 0);
 259	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 260	INIT_LIST_HEAD(&sdev->csum_list);
 261
 262	spin_lock_init(&sdev->list_lock);
 263	spin_lock_init(&sdev->stat_lock);
 264	init_waitqueue_head(&sdev->list_wait);
 265	return sdev;
 266
 267nomem:
 268	scrub_free_dev(sdev);
 269	return ERR_PTR(-ENOMEM);
 270}
 271
 272static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
 
 273{
 274	u64 isize;
 275	u32 nlink;
 276	int ret;
 277	int i;
 278	struct extent_buffer *eb;
 279	struct btrfs_inode_item *inode_item;
 280	struct scrub_warning *swarn = ctx;
 281	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 282	struct inode_fs_paths *ipath = NULL;
 283	struct btrfs_root *local_root;
 284	struct btrfs_key root_key;
 
 285
 286	root_key.objectid = root;
 287	root_key.type = BTRFS_ROOT_ITEM_KEY;
 288	root_key.offset = (u64)-1;
 289	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 290	if (IS_ERR(local_root)) {
 291		ret = PTR_ERR(local_root);
 292		goto err;
 293	}
 294
 295	ret = inode_item_info(inum, 0, local_root, swarn->path);
 
 
 
 
 
 
 
 296	if (ret) {
 297		btrfs_release_path(swarn->path);
 298		goto err;
 299	}
 300
 301	eb = swarn->path->nodes[0];
 302	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 303					struct btrfs_inode_item);
 304	isize = btrfs_inode_size(eb, inode_item);
 305	nlink = btrfs_inode_nlink(eb, inode_item);
 306	btrfs_release_path(swarn->path);
 307
 308	ipath = init_ipath(4096, local_root, swarn->path);
 309	if (IS_ERR(ipath)) {
 310		ret = PTR_ERR(ipath);
 311		ipath = NULL;
 312		goto err;
 313	}
 314	ret = paths_from_inode(inum, ipath);
 315
 316	if (ret < 0)
 317		goto err;
 318
 319	/*
 320	 * we deliberately ignore the bit ipath might have been too small to
 321	 * hold all of the paths here
 322	 */
 323	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 324		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 325			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 326			"length %llu, links %u (path: %s)\n", swarn->errstr,
 327			swarn->logical, rcu_str_deref(swarn->dev->name),
 328			(unsigned long long)swarn->sector, root, inum, offset,
 329			min(isize - offset, (u64)PAGE_SIZE), nlink,
 330			(char *)(unsigned long)ipath->fspath->val[i]);
 
 331
 332	free_ipath(ipath);
 333	return 0;
 334
 335err:
 336	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 337		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 338		"resolving failed with ret=%d\n", swarn->errstr,
 339		swarn->logical, rcu_str_deref(swarn->dev->name),
 340		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 341
 342	free_ipath(ipath);
 343	return 0;
 344}
 345
 346static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 347{
 348	struct btrfs_device *dev = sblock->sdev->dev;
 349	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 350	struct btrfs_path *path;
 351	struct btrfs_key found_key;
 352	struct extent_buffer *eb;
 353	struct btrfs_extent_item *ei;
 354	struct scrub_warning swarn;
 
 
 
 
 355	u32 item_size;
 
 356	int ret;
 357	u64 ref_root;
 358	u8 ref_level;
 359	unsigned long ptr = 0;
 360	const int bufsize = 4096;
 361	u64 extent_item_pos;
 362
 363	path = btrfs_alloc_path();
 
 
 364
 365	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 366	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 367	BUG_ON(sblock->page_count < 1);
 368	swarn.sector = (sblock->pagev[0].physical) >> 9;
 369	swarn.logical = sblock->pagev[0].logical;
 370	swarn.errstr = errstr;
 371	swarn.dev = dev;
 372	swarn.msg_bufsize = bufsize;
 373	swarn.scratch_bufsize = bufsize;
 374
 375	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 376		goto out;
 377
 378	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
 379	if (ret < 0)
 380		goto out;
 381
 382	extent_item_pos = swarn.logical - found_key.objectid;
 383	swarn.extent_item_size = found_key.offset;
 384
 385	eb = path->nodes[0];
 386	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 387	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 388	btrfs_release_path(path);
 389
 390	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 391		do {
 392			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 393							&ref_root, &ref_level);
 394			printk_in_rcu(KERN_WARNING
 395				"btrfs: %s at logical %llu on dev %s, "
 396				"sector %llu: metadata %s (level %d) in tree "
 397				"%llu\n", errstr, swarn.logical,
 398				rcu_str_deref(dev->name),
 399				(unsigned long long)swarn.sector,
 400				ref_level ? "node" : "leaf",
 401				ret < 0 ? -1 : ref_level,
 402				ret < 0 ? -1 : ref_root);
 403		} while (ret != 1);
 
 404	} else {
 
 405		swarn.path = path;
 
 406		iterate_extent_inodes(fs_info, found_key.objectid,
 407					extent_item_pos, 1,
 408					scrub_print_warning_inode, &swarn);
 409	}
 410
 411out:
 412	btrfs_free_path(path);
 413	kfree(swarn.scratch_buf);
 414	kfree(swarn.msg_buf);
 415}
 416
 417static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
 418{
 419	struct page *page = NULL;
 420	unsigned long index;
 421	struct scrub_fixup_nodatasum *fixup = ctx;
 422	int ret;
 423	int corrected = 0;
 424	struct btrfs_key key;
 425	struct inode *inode = NULL;
 
 426	u64 end = offset + PAGE_SIZE - 1;
 427	struct btrfs_root *local_root;
 
 428
 429	key.objectid = root;
 430	key.type = BTRFS_ROOT_ITEM_KEY;
 431	key.offset = (u64)-1;
 432	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
 433	if (IS_ERR(local_root))
 
 
 
 
 
 434		return PTR_ERR(local_root);
 
 435
 436	key.type = BTRFS_INODE_ITEM_KEY;
 437	key.objectid = inum;
 438	key.offset = 0;
 439	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
 
 440	if (IS_ERR(inode))
 441		return PTR_ERR(inode);
 442
 443	index = offset >> PAGE_CACHE_SHIFT;
 444
 445	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 446	if (!page) {
 447		ret = -ENOMEM;
 448		goto out;
 449	}
 450
 451	if (PageUptodate(page)) {
 452		struct btrfs_mapping_tree *map_tree;
 453		if (PageDirty(page)) {
 454			/*
 455			 * we need to write the data to the defect sector. the
 456			 * data that was in that sector is not in memory,
 457			 * because the page was modified. we must not write the
 458			 * modified page to that sector.
 459			 *
 460			 * TODO: what could be done here: wait for the delalloc
 461			 *       runner to write out that page (might involve
 462			 *       COW) and see whether the sector is still
 463			 *       referenced afterwards.
 464			 *
 465			 * For the meantime, we'll treat this error
 466			 * incorrectable, although there is a chance that a
 467			 * later scrub will find the bad sector again and that
 468			 * there's no dirty page in memory, then.
 469			 */
 470			ret = -EIO;
 471			goto out;
 472		}
 473		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
 474		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
 475					fixup->logical, page,
 
 476					fixup->mirror_num);
 477		unlock_page(page);
 478		corrected = !ret;
 479	} else {
 480		/*
 481		 * we need to get good data first. the general readpage path
 482		 * will call repair_io_failure for us, we just have to make
 483		 * sure we read the bad mirror.
 484		 */
 485		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 486					EXTENT_DAMAGED, GFP_NOFS);
 487		if (ret) {
 488			/* set_extent_bits should give proper error */
 489			WARN_ON(ret > 0);
 490			if (ret > 0)
 491				ret = -EFAULT;
 492			goto out;
 493		}
 494
 495		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 496						btrfs_get_extent,
 497						fixup->mirror_num);
 498		wait_on_page_locked(page);
 499
 500		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 501						end, EXTENT_DAMAGED, 0, NULL);
 502		if (!corrected)
 503			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 504						EXTENT_DAMAGED, GFP_NOFS);
 505	}
 506
 507out:
 508	if (page)
 509		put_page(page);
 510	if (inode)
 511		iput(inode);
 512
 513	if (ret < 0)
 514		return ret;
 515
 516	if (ret == 0 && corrected) {
 517		/*
 518		 * we only need to call readpage for one of the inodes belonging
 519		 * to this extent. so make iterate_extent_inodes stop
 520		 */
 521		return 1;
 522	}
 523
 524	return -EIO;
 525}
 526
 527static void scrub_fixup_nodatasum(struct btrfs_work *work)
 528{
 
 529	int ret;
 530	struct scrub_fixup_nodatasum *fixup;
 531	struct scrub_dev *sdev;
 532	struct btrfs_trans_handle *trans = NULL;
 533	struct btrfs_fs_info *fs_info;
 534	struct btrfs_path *path;
 535	int uncorrectable = 0;
 536
 537	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 538	sdev = fixup->sdev;
 539	fs_info = fixup->root->fs_info;
 540
 541	path = btrfs_alloc_path();
 542	if (!path) {
 543		spin_lock(&sdev->stat_lock);
 544		++sdev->stat.malloc_errors;
 545		spin_unlock(&sdev->stat_lock);
 546		uncorrectable = 1;
 547		goto out;
 548	}
 549
 550	trans = btrfs_join_transaction(fixup->root);
 551	if (IS_ERR(trans)) {
 552		uncorrectable = 1;
 553		goto out;
 554	}
 555
 556	/*
 557	 * the idea is to trigger a regular read through the standard path. we
 558	 * read a page from the (failed) logical address by specifying the
 559	 * corresponding copynum of the failed sector. thus, that readpage is
 560	 * expected to fail.
 561	 * that is the point where on-the-fly error correction will kick in
 562	 * (once it's finished) and rewrite the failed sector if a good copy
 563	 * can be found.
 564	 */
 565	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 566						path, scrub_fixup_readpage,
 567						fixup);
 568	if (ret < 0) {
 569		uncorrectable = 1;
 570		goto out;
 571	}
 572	WARN_ON(ret != 1);
 573
 574	spin_lock(&sdev->stat_lock);
 575	++sdev->stat.corrected_errors;
 576	spin_unlock(&sdev->stat_lock);
 577
 578out:
 579	if (trans && !IS_ERR(trans))
 580		btrfs_end_transaction(trans, fixup->root);
 581	if (uncorrectable) {
 582		spin_lock(&sdev->stat_lock);
 583		++sdev->stat.uncorrectable_errors;
 584		spin_unlock(&sdev->stat_lock);
 585
 586		printk_ratelimited_in_rcu(KERN_ERR
 587			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 588			(unsigned long long)fixup->logical,
 589			rcu_str_deref(sdev->dev->name));
 590	}
 591
 592	btrfs_free_path(path);
 593	kfree(fixup);
 594
 595	/* see caller why we're pretending to be paused in the scrub counters */
 596	mutex_lock(&fs_info->scrub_lock);
 597	atomic_dec(&fs_info->scrubs_running);
 598	atomic_dec(&fs_info->scrubs_paused);
 599	mutex_unlock(&fs_info->scrub_lock);
 600	atomic_dec(&sdev->fixup_cnt);
 601	wake_up(&fs_info->scrub_pause_wait);
 602	wake_up(&sdev->list_wait);
 
 
 
 
 
 
 603}
 604
 605/*
 606 * scrub_handle_errored_block gets called when either verification of the
 607 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 608 * case, this function handles all pages in the bio, even though only one
 609 * may be bad.
 610 * The goal of this function is to repair the errored block by using the
 611 * contents of one of the mirrors.
 612 */
 613static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 614{
 615	struct scrub_dev *sdev = sblock_to_check->sdev;
 
 616	struct btrfs_fs_info *fs_info;
 617	u64 length;
 618	u64 logical;
 619	u64 generation;
 620	unsigned int failed_mirror_index;
 621	unsigned int is_metadata;
 622	unsigned int have_csum;
 623	u8 *csum;
 624	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 625	struct scrub_block *sblock_bad;
 626	int ret;
 627	int mirror_index;
 628	int page_num;
 629	int success;
 630	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 631				      DEFAULT_RATELIMIT_BURST);
 632
 633	BUG_ON(sblock_to_check->page_count < 1);
 634	fs_info = sdev->dev->dev_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 635	length = sblock_to_check->page_count * PAGE_SIZE;
 636	logical = sblock_to_check->pagev[0].logical;
 637	generation = sblock_to_check->pagev[0].generation;
 638	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
 639	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
 640	is_metadata = !(sblock_to_check->pagev[0].flags &
 641			BTRFS_EXTENT_FLAG_DATA);
 642	have_csum = sblock_to_check->pagev[0].have_csum;
 643	csum = sblock_to_check->pagev[0].csum;
 
 
 
 
 
 644
 645	/*
 646	 * read all mirrors one after the other. This includes to
 647	 * re-read the extent or metadata block that failed (that was
 648	 * the cause that this fixup code is called) another time,
 649	 * page by page this time in order to know which pages
 650	 * caused I/O errors and which ones are good (for all mirrors).
 651	 * It is the goal to handle the situation when more than one
 652	 * mirror contains I/O errors, but the errors do not
 653	 * overlap, i.e. the data can be repaired by selecting the
 654	 * pages from those mirrors without I/O error on the
 655	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 656	 * would be that mirror #1 has an I/O error on the first page,
 657	 * the second page is good, and mirror #2 has an I/O error on
 658	 * the second page, but the first page is good.
 659	 * Then the first page of the first mirror can be repaired by
 660	 * taking the first page of the second mirror, and the
 661	 * second page of the second mirror can be repaired by
 662	 * copying the contents of the 2nd page of the 1st mirror.
 663	 * One more note: if the pages of one mirror contain I/O
 664	 * errors, the checksum cannot be verified. In order to get
 665	 * the best data for repairing, the first attempt is to find
 666	 * a mirror without I/O errors and with a validated checksum.
 667	 * Only if this is not possible, the pages are picked from
 668	 * mirrors with I/O errors without considering the checksum.
 669	 * If the latter is the case, at the end, the checksum of the
 670	 * repaired area is verified in order to correctly maintain
 671	 * the statistics.
 672	 */
 673
 674	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 675				     sizeof(*sblocks_for_recheck),
 676				     GFP_NOFS);
 677	if (!sblocks_for_recheck) {
 678		spin_lock(&sdev->stat_lock);
 679		sdev->stat.malloc_errors++;
 680		sdev->stat.read_errors++;
 681		sdev->stat.uncorrectable_errors++;
 682		spin_unlock(&sdev->stat_lock);
 683		btrfs_dev_stat_inc_and_print(sdev->dev,
 684					     BTRFS_DEV_STAT_READ_ERRS);
 685		goto out;
 686	}
 687
 688	/* setup the context, map the logical blocks and alloc the pages */
 689	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
 690					logical, sblocks_for_recheck);
 691	if (ret) {
 692		spin_lock(&sdev->stat_lock);
 693		sdev->stat.read_errors++;
 694		sdev->stat.uncorrectable_errors++;
 695		spin_unlock(&sdev->stat_lock);
 696		btrfs_dev_stat_inc_and_print(sdev->dev,
 697					     BTRFS_DEV_STAT_READ_ERRS);
 698		goto out;
 699	}
 700	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 701	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 702
 703	/* build and submit the bios for the failed mirror, check checksums */
 704	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 705				  csum, generation, sdev->csum_size);
 706	if (ret) {
 707		spin_lock(&sdev->stat_lock);
 708		sdev->stat.read_errors++;
 709		sdev->stat.uncorrectable_errors++;
 710		spin_unlock(&sdev->stat_lock);
 711		btrfs_dev_stat_inc_and_print(sdev->dev,
 712					     BTRFS_DEV_STAT_READ_ERRS);
 713		goto out;
 714	}
 715
 716	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 717	    sblock_bad->no_io_error_seen) {
 718		/*
 719		 * the error disappeared after reading page by page, or
 720		 * the area was part of a huge bio and other parts of the
 721		 * bio caused I/O errors, or the block layer merged several
 722		 * read requests into one and the error is caused by a
 723		 * different bio (usually one of the two latter cases is
 724		 * the cause)
 725		 */
 726		spin_lock(&sdev->stat_lock);
 727		sdev->stat.unverified_errors++;
 728		spin_unlock(&sdev->stat_lock);
 
 729
 
 
 730		goto out;
 731	}
 732
 733	if (!sblock_bad->no_io_error_seen) {
 734		spin_lock(&sdev->stat_lock);
 735		sdev->stat.read_errors++;
 736		spin_unlock(&sdev->stat_lock);
 737		if (__ratelimit(&_rs))
 738			scrub_print_warning("i/o error", sblock_to_check);
 739		btrfs_dev_stat_inc_and_print(sdev->dev,
 740					     BTRFS_DEV_STAT_READ_ERRS);
 741	} else if (sblock_bad->checksum_error) {
 742		spin_lock(&sdev->stat_lock);
 743		sdev->stat.csum_errors++;
 744		spin_unlock(&sdev->stat_lock);
 745		if (__ratelimit(&_rs))
 746			scrub_print_warning("checksum error", sblock_to_check);
 747		btrfs_dev_stat_inc_and_print(sdev->dev,
 748					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 749	} else if (sblock_bad->header_error) {
 750		spin_lock(&sdev->stat_lock);
 751		sdev->stat.verify_errors++;
 752		spin_unlock(&sdev->stat_lock);
 753		if (__ratelimit(&_rs))
 754			scrub_print_warning("checksum/header error",
 755					    sblock_to_check);
 756		if (sblock_bad->generation_error)
 757			btrfs_dev_stat_inc_and_print(sdev->dev,
 758				BTRFS_DEV_STAT_GENERATION_ERRS);
 759		else
 760			btrfs_dev_stat_inc_and_print(sdev->dev,
 761				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 762	}
 763
 764	if (sdev->readonly)
 765		goto did_not_correct_error;
 
 
 766
 767	if (!is_metadata && !have_csum) {
 768		struct scrub_fixup_nodatasum *fixup_nodatasum;
 769
 
 
 
 
 770		/*
 771		 * !is_metadata and !have_csum, this means that the data
 772		 * might not be COW'ed, that it might be modified
 773		 * concurrently. The general strategy to work on the
 774		 * commit root does not help in the case when COW is not
 775		 * used.
 776		 */
 777		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 778		if (!fixup_nodatasum)
 779			goto did_not_correct_error;
 780		fixup_nodatasum->sdev = sdev;
 
 781		fixup_nodatasum->logical = logical;
 782		fixup_nodatasum->root = fs_info->extent_root;
 783		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
 784		/*
 785		 * increment scrubs_running to prevent cancel requests from
 786		 * completing as long as a fixup worker is running. we must also
 787		 * increment scrubs_paused to prevent deadlocking on pause
 788		 * requests used for transactions commits (as the worker uses a
 789		 * transaction context). it is safe to regard the fixup worker
 790		 * as paused for all matters practical. effectively, we only
 791		 * avoid cancellation requests from completing.
 792		 */
 793		mutex_lock(&fs_info->scrub_lock);
 794		atomic_inc(&fs_info->scrubs_running);
 795		atomic_inc(&fs_info->scrubs_paused);
 796		mutex_unlock(&fs_info->scrub_lock);
 797		atomic_inc(&sdev->fixup_cnt);
 798		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
 799		btrfs_queue_worker(&fs_info->scrub_workers,
 800				   &fixup_nodatasum->work);
 801		goto out;
 802	}
 803
 804	/*
 805	 * now build and submit the bios for the other mirrors, check
 806	 * checksums
 807	 */
 808	for (mirror_index = 0;
 809	     mirror_index < BTRFS_MAX_MIRRORS &&
 810	     sblocks_for_recheck[mirror_index].page_count > 0;
 811	     mirror_index++) {
 812		if (mirror_index == failed_mirror_index)
 813			continue;
 814
 815		/* build and submit the bios, check checksums */
 816		ret = scrub_recheck_block(fs_info,
 817					  sblocks_for_recheck + mirror_index,
 818					  is_metadata, have_csum, csum,
 819					  generation, sdev->csum_size);
 820		if (ret)
 821			goto did_not_correct_error;
 822	}
 823
 824	/*
 825	 * first try to pick the mirror which is completely without I/O
 826	 * errors and also does not have a checksum error.
 827	 * If one is found, and if a checksum is present, the full block
 828	 * that is known to contain an error is rewritten. Afterwards
 829	 * the block is known to be corrected.
 830	 * If a mirror is found which is completely correct, and no
 831	 * checksum is present, only those pages are rewritten that had
 832	 * an I/O error in the block to be repaired, since it cannot be
 833	 * determined, which copy of the other pages is better (and it
 834	 * could happen otherwise that a correct page would be
 835	 * overwritten by a bad one).
 836	 */
 837	for (mirror_index = 0;
 838	     mirror_index < BTRFS_MAX_MIRRORS &&
 839	     sblocks_for_recheck[mirror_index].page_count > 0;
 840	     mirror_index++) {
 841		struct scrub_block *sblock_other = sblocks_for_recheck +
 842						   mirror_index;
 
 
 
 
 
 
 843
 844		if (!sblock_other->header_error &&
 845		    !sblock_other->checksum_error &&
 846		    sblock_other->no_io_error_seen) {
 847			int force_write = is_metadata || have_csum;
 848
 849			ret = scrub_repair_block_from_good_copy(sblock_bad,
 850								sblock_other,
 851								force_write);
 852			if (0 == ret)
 853				goto corrected_error;
 
 
 
 
 
 
 854		}
 855	}
 856
 
 
 
 857	/*
 858	 * in case of I/O errors in the area that is supposed to be
 859	 * repaired, continue by picking good copies of those pages.
 860	 * Select the good pages from mirrors to rewrite bad pages from
 861	 * the area to fix. Afterwards verify the checksum of the block
 862	 * that is supposed to be repaired. This verification step is
 863	 * only done for the purpose of statistic counting and for the
 864	 * final scrub report, whether errors remain.
 865	 * A perfect algorithm could make use of the checksum and try
 866	 * all possible combinations of pages from the different mirrors
 867	 * until the checksum verification succeeds. For example, when
 868	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
 869	 * of mirror #2 is readable but the final checksum test fails,
 870	 * then the 2nd page of mirror #3 could be tried, whether now
 871	 * the final checksum succeedes. But this would be a rare
 872	 * exception and is therefore not implemented. At least it is
 873	 * avoided that the good copy is overwritten.
 874	 * A more useful improvement would be to pick the sectors
 875	 * without I/O error based on sector sizes (512 bytes on legacy
 876	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
 877	 * mirror could be repaired by taking 512 byte of a different
 878	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
 879	 * area are unreadable.
 880	 */
 881
 882	/* can only fix I/O errors from here on */
 883	if (sblock_bad->no_io_error_seen)
 884		goto did_not_correct_error;
 885
 886	success = 1;
 887	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 888		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
 
 
 889
 890		if (!page_bad->io_error)
 
 891			continue;
 892
 893		for (mirror_index = 0;
 894		     mirror_index < BTRFS_MAX_MIRRORS &&
 895		     sblocks_for_recheck[mirror_index].page_count > 0;
 896		     mirror_index++) {
 897			struct scrub_block *sblock_other = sblocks_for_recheck +
 898							   mirror_index;
 899			struct scrub_page *page_other = sblock_other->pagev +
 900							page_num;
 901
 902			if (!page_other->io_error) {
 903				ret = scrub_repair_page_from_good_copy(
 904					sblock_bad, sblock_other, page_num, 0);
 905				if (0 == ret) {
 906					page_bad->io_error = 0;
 907					break; /* succeeded for this page */
 908				}
 909			}
 
 
 910		}
 911
 912		if (page_bad->io_error) {
 913			/* did not find a mirror to copy the page from */
 914			success = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915		}
 916	}
 917
 918	if (success) {
 919		if (is_metadata || have_csum) {
 920			/*
 921			 * need to verify the checksum now that all
 922			 * sectors on disk are repaired (the write
 923			 * request for data to be repaired is on its way).
 924			 * Just be lazy and use scrub_recheck_block()
 925			 * which re-reads the data before the checksum
 926			 * is verified, but most likely the data comes out
 927			 * of the page cache.
 928			 */
 929			ret = scrub_recheck_block(fs_info, sblock_bad,
 930						  is_metadata, have_csum, csum,
 931						  generation, sdev->csum_size);
 932			if (!ret && !sblock_bad->header_error &&
 933			    !sblock_bad->checksum_error &&
 934			    sblock_bad->no_io_error_seen)
 935				goto corrected_error;
 936			else
 937				goto did_not_correct_error;
 938		} else {
 939corrected_error:
 940			spin_lock(&sdev->stat_lock);
 941			sdev->stat.corrected_errors++;
 942			spin_unlock(&sdev->stat_lock);
 943			printk_ratelimited_in_rcu(KERN_ERR
 944				"btrfs: fixed up error at logical %llu on dev %s\n",
 945				(unsigned long long)logical,
 946				rcu_str_deref(sdev->dev->name));
 947		}
 948	} else {
 949did_not_correct_error:
 950		spin_lock(&sdev->stat_lock);
 951		sdev->stat.uncorrectable_errors++;
 952		spin_unlock(&sdev->stat_lock);
 953		printk_ratelimited_in_rcu(KERN_ERR
 954			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
 955			(unsigned long long)logical,
 956			rcu_str_deref(sdev->dev->name));
 957	}
 958
 959out:
 960	if (sblocks_for_recheck) {
 961		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
 962		     mirror_index++) {
 963			struct scrub_block *sblock = sblocks_for_recheck +
 964						     mirror_index;
 
 965			int page_index;
 966
 967			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
 968			     page_index++)
 969				if (sblock->pagev[page_index].page)
 970					__free_page(
 971						sblock->pagev[page_index].page);
 
 
 
 
 
 
 972		}
 973		kfree(sblocks_for_recheck);
 974	}
 975
 976	return 0;
 977}
 978
 979static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 980				     struct btrfs_mapping_tree *map_tree,
 981				     u64 length, u64 logical,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982				     struct scrub_block *sblocks_for_recheck)
 983{
 984	int page_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	int mirror_index;
 
 986	int ret;
 987
 988	/*
 989	 * note: the three members sdev, ref_count and outstanding_pages
 990	 * are not used (and not set) in the blocks that are used for
 991	 * the recheck procedure
 992	 */
 993
 994	page_index = 0;
 995	while (length > 0) {
 996		u64 sublen = min_t(u64, length, PAGE_SIZE);
 997		u64 mapped_length = sublen;
 998		struct btrfs_bio *bbio = NULL;
 999
1000		/*
1001		 * with a length of PAGE_SIZE, each returned stripe
1002		 * represents one mirror
1003		 */
1004		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1005				      &bbio, 0);
1006		if (ret || !bbio || mapped_length < sublen) {
1007			kfree(bbio);
1008			return -EIO;
1009		}
1010
1011		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1012		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
1013		     mirror_index++) {
1014			struct scrub_block *sblock;
1015			struct scrub_page *page;
1016
1017			if (mirror_index >= BTRFS_MAX_MIRRORS)
1018				continue;
1019
1020			sblock = sblocks_for_recheck + mirror_index;
1021			page = sblock->pagev + page_index;
 
 
 
 
 
 
 
 
 
 
 
 
1022			page->logical = logical;
1023			page->physical = bbio->stripes[mirror_index].physical;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024			/* for missing devices, dev->bdev is NULL */
1025			page->dev = bbio->stripes[mirror_index].dev;
1026			page->mirror_num = mirror_index + 1;
 
1027			page->page = alloc_page(GFP_NOFS);
1028			if (!page->page) {
1029				spin_lock(&sdev->stat_lock);
1030				sdev->stat.malloc_errors++;
1031				spin_unlock(&sdev->stat_lock);
1032				return -ENOMEM;
1033			}
1034			sblock->page_count++;
1035		}
1036		kfree(bbio);
1037		length -= sublen;
1038		logical += sublen;
1039		page_index++;
1040	}
1041
1042	return 0;
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045/*
1046 * this function will check the on disk data for checksum errors, header
1047 * errors and read I/O errors. If any I/O errors happen, the exact pages
1048 * which are errored are marked as being bad. The goal is to enable scrub
1049 * to take those pages that are not errored from all the mirrors so that
1050 * the pages that are errored in the just handled mirror can be repaired.
1051 */
1052static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1053			       struct scrub_block *sblock, int is_metadata,
1054			       int have_csum, u8 *csum, u64 generation,
1055			       u16 csum_size)
1056{
1057	int page_num;
1058
1059	sblock->no_io_error_seen = 1;
1060	sblock->header_error = 0;
1061	sblock->checksum_error = 0;
1062
1063	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1064		struct bio *bio;
1065		int ret;
1066		struct scrub_page *page = sblock->pagev + page_num;
1067		DECLARE_COMPLETION_ONSTACK(complete);
1068
1069		if (page->dev->bdev == NULL) {
1070			page->io_error = 1;
1071			sblock->no_io_error_seen = 0;
1072			continue;
1073		}
1074
1075		BUG_ON(!page->page);
1076		bio = bio_alloc(GFP_NOFS, 1);
1077		if (!bio)
1078			return -EIO;
 
 
 
1079		bio->bi_bdev = page->dev->bdev;
1080		bio->bi_sector = page->physical >> 9;
1081		bio->bi_end_io = scrub_complete_bio_end_io;
1082		bio->bi_private = &complete;
1083
1084		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1085		if (PAGE_SIZE != ret) {
1086			bio_put(bio);
1087			return -EIO;
 
 
 
 
 
 
1088		}
1089		btrfsic_submit_bio(READ, bio);
1090
1091		/* this will also unplug the queue */
1092		wait_for_completion(&complete);
1093
1094		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1095		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1096			sblock->no_io_error_seen = 0;
1097		bio_put(bio);
1098	}
1099
1100	if (sblock->no_io_error_seen)
1101		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1102					     have_csum, csum, generation,
1103					     csum_size);
1104
1105	return 0;
1106}
1107
1108static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1109					 struct scrub_block *sblock,
1110					 int is_metadata, int have_csum,
1111					 const u8 *csum, u64 generation,
1112					 u16 csum_size)
1113{
1114	int page_num;
1115	u8 calculated_csum[BTRFS_CSUM_SIZE];
1116	u32 crc = ~(u32)0;
1117	struct btrfs_root *root = fs_info->extent_root;
1118	void *mapped_buffer;
1119
1120	BUG_ON(!sblock->pagev[0].page);
1121	if (is_metadata) {
1122		struct btrfs_header *h;
1123
1124		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1125		h = (struct btrfs_header *)mapped_buffer;
1126
1127		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1128		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1129		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1130			   BTRFS_UUID_SIZE)) {
1131			sblock->header_error = 1;
1132		} else if (generation != le64_to_cpu(h->generation)) {
1133			sblock->header_error = 1;
1134			sblock->generation_error = 1;
1135		}
1136		csum = h->csum;
1137	} else {
1138		if (!have_csum)
1139			return;
1140
1141		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1142	}
1143
1144	for (page_num = 0;;) {
1145		if (page_num == 0 && is_metadata)
1146			crc = btrfs_csum_data(root,
1147				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1148				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1149		else
1150			crc = btrfs_csum_data(root, mapped_buffer, crc,
1151					      PAGE_SIZE);
1152
1153		kunmap_atomic(mapped_buffer);
1154		page_num++;
1155		if (page_num >= sblock->page_count)
1156			break;
1157		BUG_ON(!sblock->pagev[page_num].page);
1158
1159		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1160	}
1161
1162	btrfs_csum_final(crc, calculated_csum);
1163	if (memcmp(calculated_csum, csum, csum_size))
1164		sblock->checksum_error = 1;
1165}
1166
1167static void scrub_complete_bio_end_io(struct bio *bio, int err)
1168{
1169	complete((struct completion *)bio->bi_private);
 
 
 
 
 
 
 
1170}
1171
1172static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1173					     struct scrub_block *sblock_good,
1174					     int force_write)
1175{
1176	int page_num;
1177	int ret = 0;
1178
1179	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1180		int ret_sub;
1181
1182		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1183							   sblock_good,
1184							   page_num,
1185							   force_write);
1186		if (ret_sub)
1187			ret = ret_sub;
1188	}
1189
1190	return ret;
1191}
1192
1193static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1194					    struct scrub_block *sblock_good,
1195					    int page_num, int force_write)
1196{
1197	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1198	struct scrub_page *page_good = sblock_good->pagev + page_num;
 
1199
1200	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1201	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1202	if (force_write || sblock_bad->header_error ||
1203	    sblock_bad->checksum_error || page_bad->io_error) {
1204		struct bio *bio;
1205		int ret;
1206		DECLARE_COMPLETION_ONSTACK(complete);
1207
1208		bio = bio_alloc(GFP_NOFS, 1);
 
 
 
 
 
 
1209		if (!bio)
1210			return -EIO;
1211		bio->bi_bdev = page_bad->dev->bdev;
1212		bio->bi_sector = page_bad->physical >> 9;
1213		bio->bi_end_io = scrub_complete_bio_end_io;
1214		bio->bi_private = &complete;
1215
1216		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1217		if (PAGE_SIZE != ret) {
1218			bio_put(bio);
1219			return -EIO;
1220		}
1221		btrfsic_submit_bio(WRITE, bio);
1222
1223		/* this will also unplug the queue */
1224		wait_for_completion(&complete);
1225		if (!bio_flagged(bio, BIO_UPTODATE)) {
1226			btrfs_dev_stat_inc_and_print(page_bad->dev,
1227				BTRFS_DEV_STAT_WRITE_ERRS);
 
 
1228			bio_put(bio);
1229			return -EIO;
1230		}
1231		bio_put(bio);
1232	}
1233
1234	return 0;
1235}
1236
1237static void scrub_checksum(struct scrub_block *sblock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238{
1239	u64 flags;
1240	int ret;
1241
1242	BUG_ON(sblock->page_count < 1);
1243	flags = sblock->pagev[0].flags;
 
 
 
 
 
 
 
 
 
 
 
 
1244	ret = 0;
1245	if (flags & BTRFS_EXTENT_FLAG_DATA)
1246		ret = scrub_checksum_data(sblock);
1247	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1248		ret = scrub_checksum_tree_block(sblock);
1249	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1250		(void)scrub_checksum_super(sblock);
1251	else
1252		WARN_ON(1);
1253	if (ret)
1254		scrub_handle_errored_block(sblock);
 
 
1255}
1256
1257static int scrub_checksum_data(struct scrub_block *sblock)
1258{
1259	struct scrub_dev *sdev = sblock->sdev;
1260	u8 csum[BTRFS_CSUM_SIZE];
1261	u8 *on_disk_csum;
1262	struct page *page;
1263	void *buffer;
1264	u32 crc = ~(u32)0;
1265	int fail = 0;
1266	struct btrfs_root *root = sdev->dev->dev_root;
1267	u64 len;
1268	int index;
1269
1270	BUG_ON(sblock->page_count < 1);
1271	if (!sblock->pagev[0].have_csum)
1272		return 0;
1273
1274	on_disk_csum = sblock->pagev[0].csum;
1275	page = sblock->pagev[0].page;
1276	buffer = kmap_atomic(page);
1277
1278	len = sdev->sectorsize;
1279	index = 0;
1280	for (;;) {
1281		u64 l = min_t(u64, len, PAGE_SIZE);
1282
1283		crc = btrfs_csum_data(root, buffer, crc, l);
1284		kunmap_atomic(buffer);
1285		len -= l;
1286		if (len == 0)
1287			break;
1288		index++;
1289		BUG_ON(index >= sblock->page_count);
1290		BUG_ON(!sblock->pagev[index].page);
1291		page = sblock->pagev[index].page;
1292		buffer = kmap_atomic(page);
1293	}
1294
1295	btrfs_csum_final(crc, csum);
1296	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1297		fail = 1;
1298
1299	return fail;
1300}
1301
1302static int scrub_checksum_tree_block(struct scrub_block *sblock)
1303{
1304	struct scrub_dev *sdev = sblock->sdev;
1305	struct btrfs_header *h;
1306	struct btrfs_root *root = sdev->dev->dev_root;
1307	struct btrfs_fs_info *fs_info = root->fs_info;
1308	u8 calculated_csum[BTRFS_CSUM_SIZE];
1309	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1310	struct page *page;
1311	void *mapped_buffer;
1312	u64 mapped_size;
1313	void *p;
1314	u32 crc = ~(u32)0;
1315	int fail = 0;
1316	int crc_fail = 0;
1317	u64 len;
1318	int index;
1319
1320	BUG_ON(sblock->page_count < 1);
1321	page = sblock->pagev[0].page;
1322	mapped_buffer = kmap_atomic(page);
1323	h = (struct btrfs_header *)mapped_buffer;
1324	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1325
1326	/*
1327	 * we don't use the getter functions here, as we
1328	 * a) don't have an extent buffer and
1329	 * b) the page is already kmapped
1330	 */
 
 
1331
1332	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1333		++fail;
 
 
1334
1335	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1336		++fail;
1337
1338	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1339		++fail;
1340
1341	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1342		   BTRFS_UUID_SIZE))
1343		++fail;
1344
1345	BUG_ON(sdev->nodesize != sdev->leafsize);
1346	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1347	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1348	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1349	index = 0;
1350	for (;;) {
1351		u64 l = min_t(u64, len, mapped_size);
1352
1353		crc = btrfs_csum_data(root, p, crc, l);
1354		kunmap_atomic(mapped_buffer);
1355		len -= l;
1356		if (len == 0)
1357			break;
1358		index++;
1359		BUG_ON(index >= sblock->page_count);
1360		BUG_ON(!sblock->pagev[index].page);
1361		page = sblock->pagev[index].page;
1362		mapped_buffer = kmap_atomic(page);
1363		mapped_size = PAGE_SIZE;
1364		p = mapped_buffer;
1365	}
1366
1367	btrfs_csum_final(crc, calculated_csum);
1368	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1369		++crc_fail;
1370
1371	return fail || crc_fail;
1372}
1373
1374static int scrub_checksum_super(struct scrub_block *sblock)
1375{
1376	struct btrfs_super_block *s;
1377	struct scrub_dev *sdev = sblock->sdev;
1378	struct btrfs_root *root = sdev->dev->dev_root;
1379	struct btrfs_fs_info *fs_info = root->fs_info;
1380	u8 calculated_csum[BTRFS_CSUM_SIZE];
1381	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1382	struct page *page;
1383	void *mapped_buffer;
1384	u64 mapped_size;
1385	void *p;
1386	u32 crc = ~(u32)0;
1387	int fail_gen = 0;
1388	int fail_cor = 0;
1389	u64 len;
1390	int index;
1391
1392	BUG_ON(sblock->page_count < 1);
1393	page = sblock->pagev[0].page;
1394	mapped_buffer = kmap_atomic(page);
1395	s = (struct btrfs_super_block *)mapped_buffer;
1396	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1397
1398	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1399		++fail_cor;
1400
1401	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1402		++fail_gen;
1403
1404	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1405		++fail_cor;
1406
1407	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1408	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1409	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1410	index = 0;
1411	for (;;) {
1412		u64 l = min_t(u64, len, mapped_size);
1413
1414		crc = btrfs_csum_data(root, p, crc, l);
1415		kunmap_atomic(mapped_buffer);
1416		len -= l;
1417		if (len == 0)
1418			break;
1419		index++;
1420		BUG_ON(index >= sblock->page_count);
1421		BUG_ON(!sblock->pagev[index].page);
1422		page = sblock->pagev[index].page;
1423		mapped_buffer = kmap_atomic(page);
1424		mapped_size = PAGE_SIZE;
1425		p = mapped_buffer;
1426	}
1427
1428	btrfs_csum_final(crc, calculated_csum);
1429	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1430		++fail_cor;
1431
1432	if (fail_cor + fail_gen) {
1433		/*
1434		 * if we find an error in a super block, we just report it.
1435		 * They will get written with the next transaction commit
1436		 * anyway
1437		 */
1438		spin_lock(&sdev->stat_lock);
1439		++sdev->stat.super_errors;
1440		spin_unlock(&sdev->stat_lock);
1441		if (fail_cor)
1442			btrfs_dev_stat_inc_and_print(sdev->dev,
1443				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1444		else
1445			btrfs_dev_stat_inc_and_print(sdev->dev,
1446				BTRFS_DEV_STAT_GENERATION_ERRS);
1447	}
1448
1449	return fail_cor + fail_gen;
1450}
1451
1452static void scrub_block_get(struct scrub_block *sblock)
1453{
1454	atomic_inc(&sblock->ref_count);
1455}
1456
1457static void scrub_block_put(struct scrub_block *sblock)
1458{
1459	if (atomic_dec_and_test(&sblock->ref_count)) {
1460		int i;
1461
 
 
 
1462		for (i = 0; i < sblock->page_count; i++)
1463			if (sblock->pagev[i].page)
1464				__free_page(sblock->pagev[i].page);
1465		kfree(sblock);
1466	}
1467}
1468
1469static void scrub_submit(struct scrub_dev *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470{
1471	struct scrub_bio *sbio;
1472
1473	if (sdev->curr == -1)
1474		return;
1475
1476	sbio = sdev->bios[sdev->curr];
1477	sdev->curr = -1;
1478	atomic_inc(&sdev->in_flight);
1479
1480	btrfsic_submit_bio(READ, sbio->bio);
1481}
1482
1483static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1484				 struct scrub_page *spage)
1485{
1486	struct scrub_block *sblock = spage->sblock;
1487	struct scrub_bio *sbio;
1488	int ret;
1489
1490again:
1491	/*
1492	 * grab a fresh bio or wait for one to become available
1493	 */
1494	while (sdev->curr == -1) {
1495		spin_lock(&sdev->list_lock);
1496		sdev->curr = sdev->first_free;
1497		if (sdev->curr != -1) {
1498			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1499			sdev->bios[sdev->curr]->next_free = -1;
1500			sdev->bios[sdev->curr]->page_count = 0;
1501			spin_unlock(&sdev->list_lock);
1502		} else {
1503			spin_unlock(&sdev->list_lock);
1504			wait_event(sdev->list_wait, sdev->first_free != -1);
1505		}
1506	}
1507	sbio = sdev->bios[sdev->curr];
1508	if (sbio->page_count == 0) {
1509		struct bio *bio;
1510
1511		sbio->physical = spage->physical;
1512		sbio->logical = spage->logical;
 
1513		bio = sbio->bio;
1514		if (!bio) {
1515			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
 
1516			if (!bio)
1517				return -ENOMEM;
1518			sbio->bio = bio;
1519		}
1520
1521		bio->bi_private = sbio;
1522		bio->bi_end_io = scrub_bio_end_io;
1523		bio->bi_bdev = sdev->dev->bdev;
1524		bio->bi_sector = spage->physical >> 9;
 
1525		sbio->err = 0;
1526	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1527		   spage->physical ||
1528		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1529		   spage->logical) {
1530		scrub_submit(sdev);
 
1531		goto again;
1532	}
1533
1534	sbio->pagev[sbio->page_count] = spage;
1535	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1536	if (ret != PAGE_SIZE) {
1537		if (sbio->page_count < 1) {
1538			bio_put(sbio->bio);
1539			sbio->bio = NULL;
1540			return -EIO;
1541		}
1542		scrub_submit(sdev);
1543		goto again;
1544	}
1545
1546	scrub_block_get(sblock); /* one for the added page */
1547	atomic_inc(&sblock->outstanding_pages);
1548	sbio->page_count++;
1549	if (sbio->page_count == sdev->pages_per_bio)
1550		scrub_submit(sdev);
1551
1552	return 0;
1553}
1554
1555static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1556		       u64 physical, u64 flags, u64 gen, int mirror_num,
1557		       u8 *csum, int force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558{
1559	struct scrub_block *sblock;
1560	int index;
1561
1562	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1563	if (!sblock) {
1564		spin_lock(&sdev->stat_lock);
1565		sdev->stat.malloc_errors++;
1566		spin_unlock(&sdev->stat_lock);
1567		return -ENOMEM;
1568	}
1569
1570	/* one ref inside this function, plus one for each page later on */
1571	atomic_set(&sblock->ref_count, 1);
1572	sblock->sdev = sdev;
 
1573	sblock->no_io_error_seen = 1;
1574
1575	for (index = 0; len > 0; index++) {
1576		struct scrub_page *spage = sblock->pagev + index;
1577		u64 l = min_t(u64, len, PAGE_SIZE);
1578
1579		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1580		spage->page = alloc_page(GFP_NOFS);
1581		if (!spage->page) {
1582			spin_lock(&sdev->stat_lock);
1583			sdev->stat.malloc_errors++;
1584			spin_unlock(&sdev->stat_lock);
1585			while (index > 0) {
1586				index--;
1587				__free_page(sblock->pagev[index].page);
1588			}
1589			kfree(sblock);
1590			return -ENOMEM;
1591		}
 
 
 
1592		spage->sblock = sblock;
1593		spage->dev = sdev->dev;
1594		spage->flags = flags;
1595		spage->generation = gen;
1596		spage->logical = logical;
1597		spage->physical = physical;
 
1598		spage->mirror_num = mirror_num;
1599		if (csum) {
1600			spage->have_csum = 1;
1601			memcpy(spage->csum, csum, sdev->csum_size);
1602		} else {
1603			spage->have_csum = 0;
1604		}
1605		sblock->page_count++;
 
 
 
1606		len -= l;
1607		logical += l;
1608		physical += l;
 
1609	}
1610
1611	BUG_ON(sblock->page_count == 0);
1612	for (index = 0; index < sblock->page_count; index++) {
1613		struct scrub_page *spage = sblock->pagev + index;
1614		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615
1616		ret = scrub_add_page_to_bio(sdev, spage);
1617		if (ret) {
1618			scrub_block_put(sblock);
1619			return ret;
1620		}
1621	}
1622
1623	if (force)
1624		scrub_submit(sdev);
1625
1626	/* last one frees, either here or in bio completion for last page */
1627	scrub_block_put(sblock);
1628	return 0;
1629}
1630
1631static void scrub_bio_end_io(struct bio *bio, int err)
1632{
1633	struct scrub_bio *sbio = bio->bi_private;
1634	struct scrub_dev *sdev = sbio->sdev;
1635	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1636
1637	sbio->err = err;
1638	sbio->bio = bio;
1639
1640	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1641}
1642
1643static void scrub_bio_end_io_worker(struct btrfs_work *work)
1644{
1645	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1646	struct scrub_dev *sdev = sbio->sdev;
1647	int i;
1648
1649	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1650	if (sbio->err) {
1651		for (i = 0; i < sbio->page_count; i++) {
1652			struct scrub_page *spage = sbio->pagev[i];
1653
1654			spage->io_error = 1;
1655			spage->sblock->no_io_error_seen = 0;
1656		}
1657	}
1658
1659	/* now complete the scrub_block items that have all pages completed */
1660	for (i = 0; i < sbio->page_count; i++) {
1661		struct scrub_page *spage = sbio->pagev[i];
1662		struct scrub_block *sblock = spage->sblock;
1663
1664		if (atomic_dec_and_test(&sblock->outstanding_pages))
1665			scrub_block_complete(sblock);
1666		scrub_block_put(sblock);
1667	}
1668
1669	if (sbio->err) {
1670		/* what is this good for??? */
1671		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1672		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1673		sbio->bio->bi_phys_segments = 0;
1674		sbio->bio->bi_idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675
1676		for (i = 0; i < sbio->page_count; i++) {
1677			struct bio_vec *bi;
1678			bi = &sbio->bio->bi_io_vec[i];
1679			bi->bv_offset = 0;
1680			bi->bv_len = PAGE_SIZE;
1681		}
1682	}
1683
1684	bio_put(sbio->bio);
1685	sbio->bio = NULL;
1686	spin_lock(&sdev->list_lock);
1687	sbio->next_free = sdev->first_free;
1688	sdev->first_free = sbio->index;
1689	spin_unlock(&sdev->list_lock);
1690	atomic_dec(&sdev->in_flight);
1691	wake_up(&sdev->list_wait);
 
 
 
 
 
 
1692}
1693
1694static void scrub_block_complete(struct scrub_block *sblock)
1695{
1696	if (!sblock->no_io_error_seen)
 
 
 
1697		scrub_handle_errored_block(sblock);
1698	else
1699		scrub_checksum(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700}
1701
1702static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1703			   u8 *csum)
1704{
1705	struct btrfs_ordered_sum *sum = NULL;
1706	int ret = 0;
1707	unsigned long i;
1708	unsigned long num_sectors;
1709
1710	while (!list_empty(&sdev->csum_list)) {
1711		sum = list_first_entry(&sdev->csum_list,
1712				       struct btrfs_ordered_sum, list);
1713		if (sum->bytenr > logical)
1714			return 0;
1715		if (sum->bytenr + sum->len > logical)
1716			break;
1717
1718		++sdev->stat.csum_discards;
1719		list_del(&sum->list);
1720		kfree(sum);
1721		sum = NULL;
1722	}
1723	if (!sum)
1724		return 0;
1725
1726	num_sectors = sum->len / sdev->sectorsize;
1727	for (i = 0; i < num_sectors; ++i) {
1728		if (sum->sums[i].bytenr == logical) {
1729			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1730			ret = 1;
1731			break;
1732		}
1733	}
1734	if (ret && i == num_sectors - 1) {
1735		list_del(&sum->list);
1736		kfree(sum);
1737	}
1738	return ret;
1739}
1740
1741/* scrub extent tries to collect up to 64 kB for each bio */
1742static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1743			u64 physical, u64 flags, u64 gen, int mirror_num)
 
1744{
1745	int ret;
1746	u8 csum[BTRFS_CSUM_SIZE];
1747	u32 blocksize;
1748
1749	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1750		blocksize = sdev->sectorsize;
1751		spin_lock(&sdev->stat_lock);
1752		sdev->stat.data_extents_scrubbed++;
1753		sdev->stat.data_bytes_scrubbed += len;
1754		spin_unlock(&sdev->stat_lock);
1755	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1756		BUG_ON(sdev->nodesize != sdev->leafsize);
1757		blocksize = sdev->nodesize;
1758		spin_lock(&sdev->stat_lock);
1759		sdev->stat.tree_extents_scrubbed++;
1760		sdev->stat.tree_bytes_scrubbed += len;
1761		spin_unlock(&sdev->stat_lock);
1762	} else {
1763		blocksize = sdev->sectorsize;
1764		BUG_ON(1);
1765	}
1766
1767	while (len) {
1768		u64 l = min_t(u64, len, blocksize);
1769		int have_csum = 0;
1770
1771		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1772			/* push csums to sbio */
1773			have_csum = scrub_find_csum(sdev, logical, l, csum);
1774			if (have_csum == 0)
1775				++sdev->stat.no_csum;
 
 
 
 
 
 
1776		}
1777		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1778				  mirror_num, have_csum ? csum : NULL, 0);
 
 
1779		if (ret)
1780			return ret;
1781		len -= l;
1782		logical += l;
1783		physical += l;
 
1784	}
1785	return 0;
1786}
1787
1788static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1789	struct map_lookup *map, int num, u64 base, u64 length)
 
 
1790{
1791	struct btrfs_path *path;
1792	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793	struct btrfs_root *root = fs_info->extent_root;
1794	struct btrfs_root *csum_root = fs_info->csum_root;
1795	struct btrfs_extent_item *extent;
1796	struct blk_plug plug;
1797	u64 flags;
1798	int ret;
1799	int slot;
1800	int i;
1801	u64 nstripes;
1802	struct extent_buffer *l;
1803	struct btrfs_key key;
1804	u64 physical;
1805	u64 logical;
 
 
1806	u64 generation;
1807	int mirror_num;
1808	struct reada_control *reada1;
1809	struct reada_control *reada2;
1810	struct btrfs_key key_start;
1811	struct btrfs_key key_end;
1812
1813	u64 increment = map->stripe_len;
1814	u64 offset;
 
 
 
 
 
 
 
 
1815
1816	nstripes = length;
1817	offset = 0;
1818	do_div(nstripes, map->stripe_len);
1819	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1820		offset = map->stripe_len * num;
1821		increment = map->stripe_len * map->num_stripes;
1822		mirror_num = 1;
1823	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1824		int factor = map->num_stripes / map->sub_stripes;
1825		offset = map->stripe_len * (num / map->sub_stripes);
1826		increment = map->stripe_len * factor;
1827		mirror_num = num % map->sub_stripes + 1;
1828	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1829		increment = map->stripe_len;
1830		mirror_num = num % map->num_stripes + 1;
1831	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1832		increment = map->stripe_len;
1833		mirror_num = num % map->num_stripes + 1;
 
 
 
 
1834	} else {
1835		increment = map->stripe_len;
1836		mirror_num = 1;
1837	}
1838
1839	path = btrfs_alloc_path();
1840	if (!path)
1841		return -ENOMEM;
1842
 
 
 
 
 
 
1843	/*
1844	 * work on commit root. The related disk blocks are static as
1845	 * long as COW is applied. This means, it is save to rewrite
1846	 * them to repair disk errors without any race conditions
1847	 */
1848	path->search_commit_root = 1;
1849	path->skip_locking = 1;
1850
 
 
1851	/*
1852	 * trigger the readahead for extent tree csum tree and wait for
1853	 * completion. During readahead, the scrub is officially paused
1854	 * to not hold off transaction commits
1855	 */
1856	logical = base + offset;
1857
1858	wait_event(sdev->list_wait,
1859		   atomic_read(&sdev->in_flight) == 0);
1860	atomic_inc(&fs_info->scrubs_paused);
1861	wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
1862
1863	/* FIXME it might be better to start readahead at commit root */
1864	key_start.objectid = logical;
1865	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1866	key_start.offset = (u64)0;
1867	key_end.objectid = base + offset + nstripes * increment;
1868	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1869	key_end.offset = (u64)0;
1870	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1871
1872	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1873	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1874	key_start.offset = logical;
1875	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1876	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1877	key_end.offset = base + offset + nstripes * increment;
1878	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1879
1880	if (!IS_ERR(reada1))
1881		btrfs_reada_wait(reada1);
1882	if (!IS_ERR(reada2))
1883		btrfs_reada_wait(reada2);
1884
1885	mutex_lock(&fs_info->scrub_lock);
1886	while (atomic_read(&fs_info->scrub_pause_req)) {
1887		mutex_unlock(&fs_info->scrub_lock);
1888		wait_event(fs_info->scrub_pause_wait,
1889		   atomic_read(&fs_info->scrub_pause_req) == 0);
1890		mutex_lock(&fs_info->scrub_lock);
1891	}
1892	atomic_dec(&fs_info->scrubs_paused);
1893	mutex_unlock(&fs_info->scrub_lock);
1894	wake_up(&fs_info->scrub_pause_wait);
1895
1896	/*
1897	 * collect all data csums for the stripe to avoid seeking during
1898	 * the scrub. This might currently (crc32) end up to be about 1MB
1899	 */
1900	blk_start_plug(&plug);
1901
1902	/*
1903	 * now find all extents for each stripe and scrub them
1904	 */
1905	logical = base + offset;
1906	physical = map->stripes[num].physical;
1907	ret = 0;
1908	for (i = 0; i < nstripes; ++i) {
1909		/*
1910		 * canceled?
1911		 */
1912		if (atomic_read(&fs_info->scrub_cancel_req) ||
1913		    atomic_read(&sdev->cancel_req)) {
1914			ret = -ECANCELED;
1915			goto out;
1916		}
1917		/*
1918		 * check to see if we have to pause
1919		 */
1920		if (atomic_read(&fs_info->scrub_pause_req)) {
1921			/* push queued extents */
1922			scrub_submit(sdev);
1923			wait_event(sdev->list_wait,
1924				   atomic_read(&sdev->in_flight) == 0);
1925			atomic_inc(&fs_info->scrubs_paused);
1926			wake_up(&fs_info->scrub_pause_wait);
1927			mutex_lock(&fs_info->scrub_lock);
1928			while (atomic_read(&fs_info->scrub_pause_req)) {
1929				mutex_unlock(&fs_info->scrub_lock);
1930				wait_event(fs_info->scrub_pause_wait,
1931				   atomic_read(&fs_info->scrub_pause_req) == 0);
1932				mutex_lock(&fs_info->scrub_lock);
1933			}
1934			atomic_dec(&fs_info->scrubs_paused);
1935			mutex_unlock(&fs_info->scrub_lock);
1936			wake_up(&fs_info->scrub_pause_wait);
1937		}
1938
1939		ret = btrfs_lookup_csums_range(csum_root, logical,
1940					       logical + map->stripe_len - 1,
1941					       &sdev->csum_list, 1);
1942		if (ret)
1943			goto out;
 
 
 
 
 
 
1944
 
 
 
 
1945		key.objectid = logical;
1946		key.type = BTRFS_EXTENT_ITEM_KEY;
1947		key.offset = (u64)0;
1948
1949		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1950		if (ret < 0)
1951			goto out;
 
1952		if (ret > 0) {
1953			ret = btrfs_previous_item(root, path, 0,
1954						  BTRFS_EXTENT_ITEM_KEY);
1955			if (ret < 0)
1956				goto out;
1957			if (ret > 0) {
1958				/* there's no smaller item, so stick with the
1959				 * larger one */
1960				btrfs_release_path(path);
1961				ret = btrfs_search_slot(NULL, root, &key,
1962							path, 0, 0);
1963				if (ret < 0)
1964					goto out;
1965			}
1966		}
1967
 
1968		while (1) {
 
 
1969			l = path->nodes[0];
1970			slot = path->slots[0];
1971			if (slot >= btrfs_header_nritems(l)) {
1972				ret = btrfs_next_leaf(root, path);
1973				if (ret == 0)
1974					continue;
1975				if (ret < 0)
1976					goto out;
1977
 
1978				break;
1979			}
1980			btrfs_item_key_to_cpu(l, &key, slot);
1981
1982			if (key.objectid + key.offset <= logical)
 
1983				goto next;
1984
1985			if (key.objectid >= logical + map->stripe_len)
1986				break;
 
 
1987
1988			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1989				goto next;
1990
 
 
 
 
 
 
 
1991			extent = btrfs_item_ptr(l, slot,
1992						struct btrfs_extent_item);
1993			flags = btrfs_extent_flags(l, extent);
1994			generation = btrfs_extent_generation(l, extent);
1995
1996			if (key.objectid < logical &&
1997			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1998				printk(KERN_ERR
1999				       "btrfs scrub: tree block %llu spanning "
2000				       "stripes, ignored. logical=%llu\n",
2001				       (unsigned long long)key.objectid,
2002				       (unsigned long long)logical);
 
 
 
2003				goto next;
2004			}
2005
 
 
 
 
2006			/*
2007			 * trim extent to this stripe
2008			 */
2009			if (key.objectid < logical) {
2010				key.offset -= logical - key.objectid;
2011				key.objectid = logical;
2012			}
2013			if (key.objectid + key.offset >
2014			    logical + map->stripe_len) {
2015				key.offset = logical + map->stripe_len -
2016					     key.objectid;
2017			}
2018
2019			ret = scrub_extent(sdev, key.objectid, key.offset,
2020					   key.objectid - logical + physical,
2021					   flags, generation, mirror_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022			if (ret)
2023				goto out;
2024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025next:
2026			path->slots[0]++;
2027		}
2028		btrfs_release_path(path);
 
2029		logical += increment;
2030		physical += map->stripe_len;
2031		spin_lock(&sdev->stat_lock);
2032		sdev->stat.last_physical = physical;
2033		spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
2034	}
 
2035	/* push queued extents */
2036	scrub_submit(sdev);
 
 
 
2037
2038out:
2039	blk_finish_plug(&plug);
2040	btrfs_free_path(path);
 
2041	return ret < 0 ? ret : 0;
2042}
2043
2044static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2045	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2046	u64 dev_offset)
 
 
 
2047{
2048	struct btrfs_mapping_tree *map_tree =
2049		&sdev->dev->dev_root->fs_info->mapping_tree;
2050	struct map_lookup *map;
2051	struct extent_map *em;
2052	int i;
2053	int ret = -EINVAL;
2054
2055	read_lock(&map_tree->map_tree.lock);
2056	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2057	read_unlock(&map_tree->map_tree.lock);
2058
2059	if (!em)
2060		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
2061
2062	map = (struct map_lookup *)em->bdev;
2063	if (em->start != chunk_offset)
2064		goto out;
2065
2066	if (em->len < length)
2067		goto out;
2068
2069	for (i = 0; i < map->num_stripes; ++i) {
2070		if (map->stripes[i].dev == sdev->dev &&
2071		    map->stripes[i].physical == dev_offset) {
2072			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
 
 
2073			if (ret)
2074				goto out;
2075		}
2076	}
2077out:
2078	free_extent_map(em);
2079
2080	return ret;
2081}
2082
2083static noinline_for_stack
2084int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
 
 
2085{
2086	struct btrfs_dev_extent *dev_extent = NULL;
2087	struct btrfs_path *path;
2088	struct btrfs_root *root = sdev->dev->dev_root;
2089	struct btrfs_fs_info *fs_info = root->fs_info;
2090	u64 length;
2091	u64 chunk_tree;
2092	u64 chunk_objectid;
2093	u64 chunk_offset;
2094	int ret;
 
2095	int slot;
2096	struct extent_buffer *l;
2097	struct btrfs_key key;
2098	struct btrfs_key found_key;
2099	struct btrfs_block_group_cache *cache;
 
2100
2101	path = btrfs_alloc_path();
2102	if (!path)
2103		return -ENOMEM;
2104
2105	path->reada = 2;
2106	path->search_commit_root = 1;
2107	path->skip_locking = 1;
2108
2109	key.objectid = sdev->dev->devid;
2110	key.offset = 0ull;
2111	key.type = BTRFS_DEV_EXTENT_KEY;
2112
2113
2114	while (1) {
2115		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2116		if (ret < 0)
2117			break;
2118		if (ret > 0) {
2119			if (path->slots[0] >=
2120			    btrfs_header_nritems(path->nodes[0])) {
2121				ret = btrfs_next_leaf(root, path);
2122				if (ret)
 
 
 
2123					break;
 
 
 
2124			}
2125		}
2126
2127		l = path->nodes[0];
2128		slot = path->slots[0];
2129
2130		btrfs_item_key_to_cpu(l, &found_key, slot);
2131
2132		if (found_key.objectid != sdev->dev->devid)
2133			break;
2134
2135		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2136			break;
2137
2138		if (found_key.offset >= end)
2139			break;
2140
2141		if (found_key.offset < key.offset)
2142			break;
2143
2144		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2145		length = btrfs_dev_extent_length(l, dev_extent);
2146
2147		if (found_key.offset + length <= start) {
2148			key.offset = found_key.offset + length;
2149			btrfs_release_path(path);
2150			continue;
2151		}
2152
2153		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2154		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2155		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2156
2157		/*
2158		 * get a reference on the corresponding block group to prevent
2159		 * the chunk from going away while we scrub it
2160		 */
2161		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2162		if (!cache) {
2163			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164			break;
2165		}
2166		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2167				  chunk_offset, length, found_key.offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168		btrfs_put_block_group(cache);
2169		if (ret)
2170			break;
2171
 
 
 
 
 
 
 
 
 
2172		key.offset = found_key.offset + length;
2173		btrfs_release_path(path);
2174	}
2175
2176	btrfs_free_path(path);
2177
2178	/*
2179	 * ret can still be 1 from search_slot or next_leaf,
2180	 * that's not an error
2181	 */
2182	return ret < 0 ? ret : 0;
2183}
2184
2185static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
 
2186{
2187	int	i;
2188	u64	bytenr;
2189	u64	gen;
2190	int	ret;
2191	struct btrfs_device *device = sdev->dev;
2192	struct btrfs_root *root = device->dev_root;
2193
2194	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2195		return -EIO;
2196
2197	gen = root->fs_info->last_trans_committed;
 
 
 
 
2198
2199	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2200		bytenr = btrfs_sb_offset(i);
2201		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
 
2202			break;
2203
2204		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2205				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
 
2206		if (ret)
2207			return ret;
2208	}
2209	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2210
2211	return 0;
2212}
2213
2214/*
2215 * get a reference count on fs_info->scrub_workers. start worker if necessary
2216 */
2217static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
 
2218{
2219	struct btrfs_fs_info *fs_info = root->fs_info;
2220	int ret = 0;
2221
2222	mutex_lock(&fs_info->scrub_lock);
2223	if (fs_info->scrub_workers_refcnt == 0) {
2224		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2225			   fs_info->thread_pool_size, &fs_info->generic_worker);
2226		fs_info->scrub_workers.idle_thresh = 4;
2227		ret = btrfs_start_workers(&fs_info->scrub_workers);
2228		if (ret)
2229			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230	}
2231	++fs_info->scrub_workers_refcnt;
2232out:
2233	mutex_unlock(&fs_info->scrub_lock);
2234
2235	return ret;
2236}
2237
2238static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2239{
2240	struct btrfs_fs_info *fs_info = root->fs_info;
2241
2242	mutex_lock(&fs_info->scrub_lock);
2243	if (--fs_info->scrub_workers_refcnt == 0)
2244		btrfs_stop_workers(&fs_info->scrub_workers);
 
 
 
 
 
 
 
 
2245	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2246	mutex_unlock(&fs_info->scrub_lock);
2247}
2248
2249
2250int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2251		    struct btrfs_scrub_progress *progress, int readonly)
2252{
2253	struct scrub_dev *sdev;
2254	struct btrfs_fs_info *fs_info = root->fs_info;
2255	int ret;
2256	struct btrfs_device *dev;
 
2257
2258	if (btrfs_fs_closing(root->fs_info))
2259		return -EINVAL;
2260
2261	/*
2262	 * check some assumptions
2263	 */
2264	if (root->nodesize != root->leafsize) {
2265		printk(KERN_ERR
2266		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2267		       root->nodesize, root->leafsize);
2268		return -EINVAL;
2269	}
2270
2271	if (root->nodesize > BTRFS_STRIPE_LEN) {
2272		/*
2273		 * in this case scrub is unable to calculate the checksum
2274		 * the way scrub is implemented. Do not handle this
2275		 * situation at all because it won't ever happen.
2276		 */
2277		printk(KERN_ERR
2278		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2279		       root->nodesize, BTRFS_STRIPE_LEN);
 
2280		return -EINVAL;
2281	}
2282
2283	if (root->sectorsize != PAGE_SIZE) {
2284		/* not supported for data w/o checksums */
2285		printk(KERN_ERR
2286		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2287		       root->sectorsize, (unsigned long long)PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288		return -EINVAL;
2289	}
2290
2291	ret = scrub_workers_get(root);
2292	if (ret)
2293		return ret;
2294
2295	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2296	dev = btrfs_find_device(root, devid, NULL, NULL);
2297	if (!dev || dev->missing) {
2298		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2299		scrub_workers_put(root);
2300		return -ENODEV;
2301	}
 
 
 
 
 
 
 
 
 
 
 
2302	mutex_lock(&fs_info->scrub_lock);
 
 
 
 
 
2303
2304	if (!dev->in_fs_metadata) {
 
 
 
 
2305		mutex_unlock(&fs_info->scrub_lock);
2306		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2307		scrub_workers_put(root);
2308		return -ENODEV;
2309	}
 
2310
2311	if (dev->scrub_device) {
 
2312		mutex_unlock(&fs_info->scrub_lock);
2313		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2314		scrub_workers_put(root);
2315		return -EINPROGRESS;
2316	}
2317	sdev = scrub_setup_dev(dev);
2318	if (IS_ERR(sdev)) {
 
2319		mutex_unlock(&fs_info->scrub_lock);
2320		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2321		scrub_workers_put(root);
2322		return PTR_ERR(sdev);
2323	}
2324	sdev->readonly = readonly;
2325	dev->scrub_device = sdev;
 
2326
 
 
 
 
 
2327	atomic_inc(&fs_info->scrubs_running);
2328	mutex_unlock(&fs_info->scrub_lock);
2329	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2330
2331	down_read(&fs_info->scrub_super_lock);
2332	ret = scrub_supers(sdev);
2333	up_read(&fs_info->scrub_super_lock);
 
 
 
 
 
 
2334
2335	if (!ret)
2336		ret = scrub_enumerate_chunks(sdev, start, end);
 
2337
2338	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2339	atomic_dec(&fs_info->scrubs_running);
2340	wake_up(&fs_info->scrub_pause_wait);
2341
2342	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2343
2344	if (progress)
2345		memcpy(progress, &sdev->stat, sizeof(*progress));
2346
2347	mutex_lock(&fs_info->scrub_lock);
2348	dev->scrub_device = NULL;
 
2349	mutex_unlock(&fs_info->scrub_lock);
2350
2351	scrub_free_dev(sdev);
2352	scrub_workers_put(root);
2353
2354	return ret;
2355}
2356
2357void btrfs_scrub_pause(struct btrfs_root *root)
2358{
2359	struct btrfs_fs_info *fs_info = root->fs_info;
2360
2361	mutex_lock(&fs_info->scrub_lock);
2362	atomic_inc(&fs_info->scrub_pause_req);
2363	while (atomic_read(&fs_info->scrubs_paused) !=
2364	       atomic_read(&fs_info->scrubs_running)) {
2365		mutex_unlock(&fs_info->scrub_lock);
2366		wait_event(fs_info->scrub_pause_wait,
2367			   atomic_read(&fs_info->scrubs_paused) ==
2368			   atomic_read(&fs_info->scrubs_running));
2369		mutex_lock(&fs_info->scrub_lock);
2370	}
2371	mutex_unlock(&fs_info->scrub_lock);
2372}
2373
2374void btrfs_scrub_continue(struct btrfs_root *root)
2375{
2376	struct btrfs_fs_info *fs_info = root->fs_info;
2377
2378	atomic_dec(&fs_info->scrub_pause_req);
2379	wake_up(&fs_info->scrub_pause_wait);
2380}
2381
2382void btrfs_scrub_pause_super(struct btrfs_root *root)
2383{
2384	down_write(&root->fs_info->scrub_super_lock);
2385}
2386
2387void btrfs_scrub_continue_super(struct btrfs_root *root)
2388{
2389	up_write(&root->fs_info->scrub_super_lock);
2390}
2391
2392int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2393{
2394
2395	mutex_lock(&fs_info->scrub_lock);
2396	if (!atomic_read(&fs_info->scrubs_running)) {
2397		mutex_unlock(&fs_info->scrub_lock);
2398		return -ENOTCONN;
2399	}
2400
2401	atomic_inc(&fs_info->scrub_cancel_req);
2402	while (atomic_read(&fs_info->scrubs_running)) {
2403		mutex_unlock(&fs_info->scrub_lock);
2404		wait_event(fs_info->scrub_pause_wait,
2405			   atomic_read(&fs_info->scrubs_running) == 0);
2406		mutex_lock(&fs_info->scrub_lock);
2407	}
2408	atomic_dec(&fs_info->scrub_cancel_req);
2409	mutex_unlock(&fs_info->scrub_lock);
2410
2411	return 0;
2412}
2413
2414int btrfs_scrub_cancel(struct btrfs_root *root)
 
2415{
2416	return __btrfs_scrub_cancel(root->fs_info);
2417}
2418
2419int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2420{
2421	struct btrfs_fs_info *fs_info = root->fs_info;
2422	struct scrub_dev *sdev;
2423
2424	mutex_lock(&fs_info->scrub_lock);
2425	sdev = dev->scrub_device;
2426	if (!sdev) {
2427		mutex_unlock(&fs_info->scrub_lock);
2428		return -ENOTCONN;
2429	}
2430	atomic_inc(&sdev->cancel_req);
2431	while (dev->scrub_device) {
2432		mutex_unlock(&fs_info->scrub_lock);
2433		wait_event(fs_info->scrub_pause_wait,
2434			   dev->scrub_device == NULL);
2435		mutex_lock(&fs_info->scrub_lock);
2436	}
2437	mutex_unlock(&fs_info->scrub_lock);
2438
2439	return 0;
2440}
2441
2442int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
 
2443{
2444	struct btrfs_fs_info *fs_info = root->fs_info;
2445	struct btrfs_device *dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447
2448	/*
2449	 * we have to hold the device_list_mutex here so the device
2450	 * does not go away in cancel_dev. FIXME: find a better solution
2451	 */
2452	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2453	dev = btrfs_find_device(root, devid, NULL, NULL);
2454	if (!dev) {
2455		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2456		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457	}
2458	ret = btrfs_scrub_cancel_dev(root, dev);
2459	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461	return ret;
2462}
2463
2464int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2465			 struct btrfs_scrub_progress *progress)
2466{
 
2467	struct btrfs_device *dev;
2468	struct scrub_dev *sdev = NULL;
2469
2470	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2471	dev = btrfs_find_device(root, devid, NULL, NULL);
2472	if (dev)
2473		sdev = dev->scrub_device;
2474	if (sdev)
2475		memcpy(progress, &sdev->stat, sizeof(*progress));
2476	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477
2478	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
 
2479}