Loading...
1/*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/ratelimit.h>
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
25#include "transaction.h"
26#include "backref.h"
27#include "extent_io.h"
28#include "dev-replace.h"
29#include "check-integrity.h"
30#include "rcu-string.h"
31#include "raid56.h"
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46struct scrub_block;
47struct scrub_ctx;
48
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66struct scrub_recover {
67 atomic_t refs;
68 struct btrfs_bio *bbio;
69 u64 map_length;
70};
71
72struct scrub_page {
73 struct scrub_block *sblock;
74 struct page *page;
75 struct btrfs_device *dev;
76 struct list_head list;
77 u64 flags; /* extent flags */
78 u64 generation;
79 u64 logical;
80 u64 physical;
81 u64 physical_for_dev_replace;
82 atomic_t refs;
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
88 u8 csum[BTRFS_CSUM_SIZE];
89
90 struct scrub_recover *recover;
91};
92
93struct scrub_bio {
94 int index;
95 struct scrub_ctx *sctx;
96 struct btrfs_device *dev;
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103#else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105#endif
106 int page_count;
107 int next_free;
108 struct btrfs_work work;
109};
110
111struct scrub_block {
112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 int page_count;
114 atomic_t outstanding_pages;
115 atomic_t refs; /* free mem on transition to zero */
116 struct scrub_ctx *sctx;
117 struct scrub_parity *sparity;
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
122 unsigned int generation_error:1; /* also sets header_error */
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
127 };
128 struct btrfs_work work;
129};
130
131/* Used for the chunks with parity stripe such RAID5/6 */
132struct scrub_parity {
133 struct scrub_ctx *sctx;
134
135 struct btrfs_device *scrub_dev;
136
137 u64 logic_start;
138
139 u64 logic_end;
140
141 int nsectors;
142
143 int stripe_len;
144
145 atomic_t refs;
146
147 struct list_head spages;
148
149 /* Work of parity check and repair */
150 struct btrfs_work work;
151
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap;
154
155 /*
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
158 */
159 unsigned long *ebitmap;
160
161 unsigned long bitmap[0];
162};
163
164struct scrub_wr_ctx {
165 struct scrub_bio *wr_curr_bio;
166 struct btrfs_device *tgtdev;
167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes;
169 struct mutex wr_lock;
170};
171
172struct scrub_ctx {
173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
174 struct btrfs_fs_info *fs_info;
175 int first_free;
176 int curr;
177 atomic_t bios_in_flight;
178 atomic_t workers_pending;
179 spinlock_t list_lock;
180 wait_queue_head_t list_wait;
181 u16 csum_size;
182 struct list_head csum_list;
183 atomic_t cancel_req;
184 int readonly;
185 int pages_per_rd_bio;
186 u32 sectorsize;
187 u32 nodesize;
188
189 int is_dev_replace;
190 struct scrub_wr_ctx wr_ctx;
191
192 /*
193 * statistics
194 */
195 struct btrfs_scrub_progress stat;
196 spinlock_t stat_lock;
197
198 /*
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
204 */
205 atomic_t refs;
206};
207
208struct scrub_fixup_nodatasum {
209 struct scrub_ctx *sctx;
210 struct btrfs_device *dev;
211 u64 logical;
212 struct btrfs_root *root;
213 struct btrfs_work work;
214 int mirror_num;
215};
216
217struct scrub_nocow_inode {
218 u64 inum;
219 u64 offset;
220 u64 root;
221 struct list_head list;
222};
223
224struct scrub_copy_nocow_ctx {
225 struct scrub_ctx *sctx;
226 u64 logical;
227 u64 len;
228 int mirror_num;
229 u64 physical_for_dev_replace;
230 struct list_head inodes;
231 struct btrfs_work work;
232};
233
234struct scrub_warning {
235 struct btrfs_path *path;
236 u64 extent_item_size;
237 const char *errstr;
238 sector_t sector;
239 u64 logical;
240 struct btrfs_device *dev;
241};
242
243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 struct scrub_block *sblocks_for_recheck);
250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 struct scrub_block *sblock,
252 int retry_failed_mirror);
253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 struct scrub_block *sblock_good);
256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 struct scrub_block *sblock_good,
258 int page_num, int force_write);
259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 int page_num);
262static int scrub_checksum_data(struct scrub_block *sblock);
263static int scrub_checksum_tree_block(struct scrub_block *sblock);
264static int scrub_checksum_super(struct scrub_block *sblock);
265static void scrub_block_get(struct scrub_block *sblock);
266static void scrub_block_put(struct scrub_block *sblock);
267static void scrub_page_get(struct scrub_page *spage);
268static void scrub_page_put(struct scrub_page *spage);
269static void scrub_parity_get(struct scrub_parity *sparity);
270static void scrub_parity_put(struct scrub_parity *sparity);
271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 struct scrub_page *spage);
273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 u64 physical, struct btrfs_device *dev, u64 flags,
275 u64 gen, int mirror_num, u8 *csum, int force,
276 u64 physical_for_dev_replace);
277static void scrub_bio_end_io(struct bio *bio);
278static void scrub_bio_end_io_worker(struct btrfs_work *work);
279static void scrub_block_complete(struct scrub_block *sblock);
280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 u64 extent_logical, u64 extent_len,
282 u64 *extent_physical,
283 struct btrfs_device **extent_dev,
284 int *extent_mirror_num);
285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 struct scrub_wr_ctx *wr_ctx,
287 struct btrfs_fs_info *fs_info,
288 struct btrfs_device *dev,
289 int is_dev_replace);
290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 struct scrub_page *spage);
293static void scrub_wr_submit(struct scrub_ctx *sctx);
294static void scrub_wr_bio_end_io(struct bio *bio);
295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296static int write_page_nocow(struct scrub_ctx *sctx,
297 u64 physical_for_dev_replace, struct page *page);
298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299 struct scrub_copy_nocow_ctx *ctx);
300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 int mirror_num, u64 physical_for_dev_replace);
302static void copy_nocow_pages_worker(struct btrfs_work *work);
303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305static void scrub_put_ctx(struct scrub_ctx *sctx);
306
307
308static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309{
310 atomic_inc(&sctx->refs);
311 atomic_inc(&sctx->bios_in_flight);
312}
313
314static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315{
316 atomic_dec(&sctx->bios_in_flight);
317 wake_up(&sctx->list_wait);
318 scrub_put_ctx(sctx);
319}
320
321static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322{
323 while (atomic_read(&fs_info->scrub_pause_req)) {
324 mutex_unlock(&fs_info->scrub_lock);
325 wait_event(fs_info->scrub_pause_wait,
326 atomic_read(&fs_info->scrub_pause_req) == 0);
327 mutex_lock(&fs_info->scrub_lock);
328 }
329}
330
331static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332{
333 atomic_inc(&fs_info->scrubs_paused);
334 wake_up(&fs_info->scrub_pause_wait);
335}
336
337static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338{
339 mutex_lock(&fs_info->scrub_lock);
340 __scrub_blocked_if_needed(fs_info);
341 atomic_dec(&fs_info->scrubs_paused);
342 mutex_unlock(&fs_info->scrub_lock);
343
344 wake_up(&fs_info->scrub_pause_wait);
345}
346
347static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348{
349 scrub_pause_on(fs_info);
350 scrub_pause_off(fs_info);
351}
352
353/*
354 * used for workers that require transaction commits (i.e., for the
355 * NOCOW case)
356 */
357static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358{
359 struct btrfs_fs_info *fs_info = sctx->fs_info;
360
361 atomic_inc(&sctx->refs);
362 /*
363 * increment scrubs_running to prevent cancel requests from
364 * completing as long as a worker is running. we must also
365 * increment scrubs_paused to prevent deadlocking on pause
366 * requests used for transactions commits (as the worker uses a
367 * transaction context). it is safe to regard the worker
368 * as paused for all matters practical. effectively, we only
369 * avoid cancellation requests from completing.
370 */
371 mutex_lock(&fs_info->scrub_lock);
372 atomic_inc(&fs_info->scrubs_running);
373 atomic_inc(&fs_info->scrubs_paused);
374 mutex_unlock(&fs_info->scrub_lock);
375
376 /*
377 * check if @scrubs_running=@scrubs_paused condition
378 * inside wait_event() is not an atomic operation.
379 * which means we may inc/dec @scrub_running/paused
380 * at any time. Let's wake up @scrub_pause_wait as
381 * much as we can to let commit transaction blocked less.
382 */
383 wake_up(&fs_info->scrub_pause_wait);
384
385 atomic_inc(&sctx->workers_pending);
386}
387
388/* used for workers that require transaction commits */
389static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390{
391 struct btrfs_fs_info *fs_info = sctx->fs_info;
392
393 /*
394 * see scrub_pending_trans_workers_inc() why we're pretending
395 * to be paused in the scrub counters
396 */
397 mutex_lock(&fs_info->scrub_lock);
398 atomic_dec(&fs_info->scrubs_running);
399 atomic_dec(&fs_info->scrubs_paused);
400 mutex_unlock(&fs_info->scrub_lock);
401 atomic_dec(&sctx->workers_pending);
402 wake_up(&fs_info->scrub_pause_wait);
403 wake_up(&sctx->list_wait);
404 scrub_put_ctx(sctx);
405}
406
407static void scrub_free_csums(struct scrub_ctx *sctx)
408{
409 while (!list_empty(&sctx->csum_list)) {
410 struct btrfs_ordered_sum *sum;
411 sum = list_first_entry(&sctx->csum_list,
412 struct btrfs_ordered_sum, list);
413 list_del(&sum->list);
414 kfree(sum);
415 }
416}
417
418static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
419{
420 int i;
421
422 if (!sctx)
423 return;
424
425 scrub_free_wr_ctx(&sctx->wr_ctx);
426
427 /* this can happen when scrub is cancelled */
428 if (sctx->curr != -1) {
429 struct scrub_bio *sbio = sctx->bios[sctx->curr];
430
431 for (i = 0; i < sbio->page_count; i++) {
432 WARN_ON(!sbio->pagev[i]->page);
433 scrub_block_put(sbio->pagev[i]->sblock);
434 }
435 bio_put(sbio->bio);
436 }
437
438 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439 struct scrub_bio *sbio = sctx->bios[i];
440
441 if (!sbio)
442 break;
443 kfree(sbio);
444 }
445
446 scrub_free_csums(sctx);
447 kfree(sctx);
448}
449
450static void scrub_put_ctx(struct scrub_ctx *sctx)
451{
452 if (atomic_dec_and_test(&sctx->refs))
453 scrub_free_ctx(sctx);
454}
455
456static noinline_for_stack
457struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
458{
459 struct scrub_ctx *sctx;
460 int i;
461 struct btrfs_fs_info *fs_info = dev->fs_info;
462 int ret;
463
464 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465 if (!sctx)
466 goto nomem;
467 atomic_set(&sctx->refs, 1);
468 sctx->is_dev_replace = is_dev_replace;
469 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470 sctx->curr = -1;
471 sctx->fs_info = dev->fs_info;
472 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
473 struct scrub_bio *sbio;
474
475 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
476 if (!sbio)
477 goto nomem;
478 sctx->bios[i] = sbio;
479
480 sbio->index = i;
481 sbio->sctx = sctx;
482 sbio->page_count = 0;
483 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 scrub_bio_end_io_worker, NULL, NULL);
485
486 if (i != SCRUB_BIOS_PER_SCTX - 1)
487 sctx->bios[i]->next_free = i + 1;
488 else
489 sctx->bios[i]->next_free = -1;
490 }
491 sctx->first_free = 0;
492 sctx->nodesize = fs_info->nodesize;
493 sctx->sectorsize = fs_info->sectorsize;
494 atomic_set(&sctx->bios_in_flight, 0);
495 atomic_set(&sctx->workers_pending, 0);
496 atomic_set(&sctx->cancel_req, 0);
497 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 INIT_LIST_HEAD(&sctx->csum_list);
499
500 spin_lock_init(&sctx->list_lock);
501 spin_lock_init(&sctx->stat_lock);
502 init_waitqueue_head(&sctx->list_wait);
503
504 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 fs_info->dev_replace.tgtdev, is_dev_replace);
506 if (ret) {
507 scrub_free_ctx(sctx);
508 return ERR_PTR(ret);
509 }
510 return sctx;
511
512nomem:
513 scrub_free_ctx(sctx);
514 return ERR_PTR(-ENOMEM);
515}
516
517static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 void *warn_ctx)
519{
520 u64 isize;
521 u32 nlink;
522 int ret;
523 int i;
524 struct extent_buffer *eb;
525 struct btrfs_inode_item *inode_item;
526 struct scrub_warning *swarn = warn_ctx;
527 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
528 struct inode_fs_paths *ipath = NULL;
529 struct btrfs_root *local_root;
530 struct btrfs_key root_key;
531 struct btrfs_key key;
532
533 root_key.objectid = root;
534 root_key.type = BTRFS_ROOT_ITEM_KEY;
535 root_key.offset = (u64)-1;
536 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 if (IS_ERR(local_root)) {
538 ret = PTR_ERR(local_root);
539 goto err;
540 }
541
542 /*
543 * this makes the path point to (inum INODE_ITEM ioff)
544 */
545 key.objectid = inum;
546 key.type = BTRFS_INODE_ITEM_KEY;
547 key.offset = 0;
548
549 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 if (ret) {
551 btrfs_release_path(swarn->path);
552 goto err;
553 }
554
555 eb = swarn->path->nodes[0];
556 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 struct btrfs_inode_item);
558 isize = btrfs_inode_size(eb, inode_item);
559 nlink = btrfs_inode_nlink(eb, inode_item);
560 btrfs_release_path(swarn->path);
561
562 ipath = init_ipath(4096, local_root, swarn->path);
563 if (IS_ERR(ipath)) {
564 ret = PTR_ERR(ipath);
565 ipath = NULL;
566 goto err;
567 }
568 ret = paths_from_inode(inum, ipath);
569
570 if (ret < 0)
571 goto err;
572
573 /*
574 * we deliberately ignore the bit ipath might have been too small to
575 * hold all of the paths here
576 */
577 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578 btrfs_warn_in_rcu(fs_info,
579 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
580 swarn->errstr, swarn->logical,
581 rcu_str_deref(swarn->dev->name),
582 (unsigned long long)swarn->sector,
583 root, inum, offset,
584 min(isize - offset, (u64)PAGE_SIZE), nlink,
585 (char *)(unsigned long)ipath->fspath->val[i]);
586
587 free_ipath(ipath);
588 return 0;
589
590err:
591 btrfs_warn_in_rcu(fs_info,
592 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
593 swarn->errstr, swarn->logical,
594 rcu_str_deref(swarn->dev->name),
595 (unsigned long long)swarn->sector,
596 root, inum, offset, ret);
597
598 free_ipath(ipath);
599 return 0;
600}
601
602static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
603{
604 struct btrfs_device *dev;
605 struct btrfs_fs_info *fs_info;
606 struct btrfs_path *path;
607 struct btrfs_key found_key;
608 struct extent_buffer *eb;
609 struct btrfs_extent_item *ei;
610 struct scrub_warning swarn;
611 unsigned long ptr = 0;
612 u64 extent_item_pos;
613 u64 flags = 0;
614 u64 ref_root;
615 u32 item_size;
616 u8 ref_level = 0;
617 int ret;
618
619 WARN_ON(sblock->page_count < 1);
620 dev = sblock->pagev[0]->dev;
621 fs_info = sblock->sctx->fs_info;
622
623 path = btrfs_alloc_path();
624 if (!path)
625 return;
626
627 swarn.sector = (sblock->pagev[0]->physical) >> 9;
628 swarn.logical = sblock->pagev[0]->logical;
629 swarn.errstr = errstr;
630 swarn.dev = NULL;
631
632 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
633 &flags);
634 if (ret < 0)
635 goto out;
636
637 extent_item_pos = swarn.logical - found_key.objectid;
638 swarn.extent_item_size = found_key.offset;
639
640 eb = path->nodes[0];
641 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
642 item_size = btrfs_item_size_nr(eb, path->slots[0]);
643
644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
645 do {
646 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
647 item_size, &ref_root,
648 &ref_level);
649 btrfs_warn_in_rcu(fs_info,
650 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
651 errstr, swarn.logical,
652 rcu_str_deref(dev->name),
653 (unsigned long long)swarn.sector,
654 ref_level ? "node" : "leaf",
655 ret < 0 ? -1 : ref_level,
656 ret < 0 ? -1 : ref_root);
657 } while (ret != 1);
658 btrfs_release_path(path);
659 } else {
660 btrfs_release_path(path);
661 swarn.path = path;
662 swarn.dev = dev;
663 iterate_extent_inodes(fs_info, found_key.objectid,
664 extent_item_pos, 1,
665 scrub_print_warning_inode, &swarn);
666 }
667
668out:
669 btrfs_free_path(path);
670}
671
672static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
673{
674 struct page *page = NULL;
675 unsigned long index;
676 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
677 int ret;
678 int corrected = 0;
679 struct btrfs_key key;
680 struct inode *inode = NULL;
681 struct btrfs_fs_info *fs_info;
682 u64 end = offset + PAGE_SIZE - 1;
683 struct btrfs_root *local_root;
684 int srcu_index;
685
686 key.objectid = root;
687 key.type = BTRFS_ROOT_ITEM_KEY;
688 key.offset = (u64)-1;
689
690 fs_info = fixup->root->fs_info;
691 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
692
693 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
694 if (IS_ERR(local_root)) {
695 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
696 return PTR_ERR(local_root);
697 }
698
699 key.type = BTRFS_INODE_ITEM_KEY;
700 key.objectid = inum;
701 key.offset = 0;
702 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
703 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
704 if (IS_ERR(inode))
705 return PTR_ERR(inode);
706
707 index = offset >> PAGE_SHIFT;
708
709 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
710 if (!page) {
711 ret = -ENOMEM;
712 goto out;
713 }
714
715 if (PageUptodate(page)) {
716 if (PageDirty(page)) {
717 /*
718 * we need to write the data to the defect sector. the
719 * data that was in that sector is not in memory,
720 * because the page was modified. we must not write the
721 * modified page to that sector.
722 *
723 * TODO: what could be done here: wait for the delalloc
724 * runner to write out that page (might involve
725 * COW) and see whether the sector is still
726 * referenced afterwards.
727 *
728 * For the meantime, we'll treat this error
729 * incorrectable, although there is a chance that a
730 * later scrub will find the bad sector again and that
731 * there's no dirty page in memory, then.
732 */
733 ret = -EIO;
734 goto out;
735 }
736 ret = repair_io_failure(inode, offset, PAGE_SIZE,
737 fixup->logical, page,
738 offset - page_offset(page),
739 fixup->mirror_num);
740 unlock_page(page);
741 corrected = !ret;
742 } else {
743 /*
744 * we need to get good data first. the general readpage path
745 * will call repair_io_failure for us, we just have to make
746 * sure we read the bad mirror.
747 */
748 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
749 EXTENT_DAMAGED);
750 if (ret) {
751 /* set_extent_bits should give proper error */
752 WARN_ON(ret > 0);
753 if (ret > 0)
754 ret = -EFAULT;
755 goto out;
756 }
757
758 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
759 btrfs_get_extent,
760 fixup->mirror_num);
761 wait_on_page_locked(page);
762
763 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
764 end, EXTENT_DAMAGED, 0, NULL);
765 if (!corrected)
766 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
767 EXTENT_DAMAGED);
768 }
769
770out:
771 if (page)
772 put_page(page);
773
774 iput(inode);
775
776 if (ret < 0)
777 return ret;
778
779 if (ret == 0 && corrected) {
780 /*
781 * we only need to call readpage for one of the inodes belonging
782 * to this extent. so make iterate_extent_inodes stop
783 */
784 return 1;
785 }
786
787 return -EIO;
788}
789
790static void scrub_fixup_nodatasum(struct btrfs_work *work)
791{
792 struct btrfs_fs_info *fs_info;
793 int ret;
794 struct scrub_fixup_nodatasum *fixup;
795 struct scrub_ctx *sctx;
796 struct btrfs_trans_handle *trans = NULL;
797 struct btrfs_path *path;
798 int uncorrectable = 0;
799
800 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
801 sctx = fixup->sctx;
802 fs_info = fixup->root->fs_info;
803
804 path = btrfs_alloc_path();
805 if (!path) {
806 spin_lock(&sctx->stat_lock);
807 ++sctx->stat.malloc_errors;
808 spin_unlock(&sctx->stat_lock);
809 uncorrectable = 1;
810 goto out;
811 }
812
813 trans = btrfs_join_transaction(fixup->root);
814 if (IS_ERR(trans)) {
815 uncorrectable = 1;
816 goto out;
817 }
818
819 /*
820 * the idea is to trigger a regular read through the standard path. we
821 * read a page from the (failed) logical address by specifying the
822 * corresponding copynum of the failed sector. thus, that readpage is
823 * expected to fail.
824 * that is the point where on-the-fly error correction will kick in
825 * (once it's finished) and rewrite the failed sector if a good copy
826 * can be found.
827 */
828 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
829 scrub_fixup_readpage, fixup);
830 if (ret < 0) {
831 uncorrectable = 1;
832 goto out;
833 }
834 WARN_ON(ret != 1);
835
836 spin_lock(&sctx->stat_lock);
837 ++sctx->stat.corrected_errors;
838 spin_unlock(&sctx->stat_lock);
839
840out:
841 if (trans && !IS_ERR(trans))
842 btrfs_end_transaction(trans);
843 if (uncorrectable) {
844 spin_lock(&sctx->stat_lock);
845 ++sctx->stat.uncorrectable_errors;
846 spin_unlock(&sctx->stat_lock);
847 btrfs_dev_replace_stats_inc(
848 &fs_info->dev_replace.num_uncorrectable_read_errors);
849 btrfs_err_rl_in_rcu(fs_info,
850 "unable to fixup (nodatasum) error at logical %llu on dev %s",
851 fixup->logical, rcu_str_deref(fixup->dev->name));
852 }
853
854 btrfs_free_path(path);
855 kfree(fixup);
856
857 scrub_pending_trans_workers_dec(sctx);
858}
859
860static inline void scrub_get_recover(struct scrub_recover *recover)
861{
862 atomic_inc(&recover->refs);
863}
864
865static inline void scrub_put_recover(struct scrub_recover *recover)
866{
867 if (atomic_dec_and_test(&recover->refs)) {
868 btrfs_put_bbio(recover->bbio);
869 kfree(recover);
870 }
871}
872
873/*
874 * scrub_handle_errored_block gets called when either verification of the
875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
876 * case, this function handles all pages in the bio, even though only one
877 * may be bad.
878 * The goal of this function is to repair the errored block by using the
879 * contents of one of the mirrors.
880 */
881static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
882{
883 struct scrub_ctx *sctx = sblock_to_check->sctx;
884 struct btrfs_device *dev;
885 struct btrfs_fs_info *fs_info;
886 u64 length;
887 u64 logical;
888 unsigned int failed_mirror_index;
889 unsigned int is_metadata;
890 unsigned int have_csum;
891 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
892 struct scrub_block *sblock_bad;
893 int ret;
894 int mirror_index;
895 int page_num;
896 int success;
897 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
898 DEFAULT_RATELIMIT_BURST);
899
900 BUG_ON(sblock_to_check->page_count < 1);
901 fs_info = sctx->fs_info;
902 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
903 /*
904 * if we find an error in a super block, we just report it.
905 * They will get written with the next transaction commit
906 * anyway
907 */
908 spin_lock(&sctx->stat_lock);
909 ++sctx->stat.super_errors;
910 spin_unlock(&sctx->stat_lock);
911 return 0;
912 }
913 length = sblock_to_check->page_count * PAGE_SIZE;
914 logical = sblock_to_check->pagev[0]->logical;
915 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
916 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
917 is_metadata = !(sblock_to_check->pagev[0]->flags &
918 BTRFS_EXTENT_FLAG_DATA);
919 have_csum = sblock_to_check->pagev[0]->have_csum;
920 dev = sblock_to_check->pagev[0]->dev;
921
922 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
923 sblocks_for_recheck = NULL;
924 goto nodatasum_case;
925 }
926
927 /*
928 * read all mirrors one after the other. This includes to
929 * re-read the extent or metadata block that failed (that was
930 * the cause that this fixup code is called) another time,
931 * page by page this time in order to know which pages
932 * caused I/O errors and which ones are good (for all mirrors).
933 * It is the goal to handle the situation when more than one
934 * mirror contains I/O errors, but the errors do not
935 * overlap, i.e. the data can be repaired by selecting the
936 * pages from those mirrors without I/O error on the
937 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
938 * would be that mirror #1 has an I/O error on the first page,
939 * the second page is good, and mirror #2 has an I/O error on
940 * the second page, but the first page is good.
941 * Then the first page of the first mirror can be repaired by
942 * taking the first page of the second mirror, and the
943 * second page of the second mirror can be repaired by
944 * copying the contents of the 2nd page of the 1st mirror.
945 * One more note: if the pages of one mirror contain I/O
946 * errors, the checksum cannot be verified. In order to get
947 * the best data for repairing, the first attempt is to find
948 * a mirror without I/O errors and with a validated checksum.
949 * Only if this is not possible, the pages are picked from
950 * mirrors with I/O errors without considering the checksum.
951 * If the latter is the case, at the end, the checksum of the
952 * repaired area is verified in order to correctly maintain
953 * the statistics.
954 */
955
956 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
957 sizeof(*sblocks_for_recheck), GFP_NOFS);
958 if (!sblocks_for_recheck) {
959 spin_lock(&sctx->stat_lock);
960 sctx->stat.malloc_errors++;
961 sctx->stat.read_errors++;
962 sctx->stat.uncorrectable_errors++;
963 spin_unlock(&sctx->stat_lock);
964 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
965 goto out;
966 }
967
968 /* setup the context, map the logical blocks and alloc the pages */
969 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
970 if (ret) {
971 spin_lock(&sctx->stat_lock);
972 sctx->stat.read_errors++;
973 sctx->stat.uncorrectable_errors++;
974 spin_unlock(&sctx->stat_lock);
975 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 goto out;
977 }
978 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
979 sblock_bad = sblocks_for_recheck + failed_mirror_index;
980
981 /* build and submit the bios for the failed mirror, check checksums */
982 scrub_recheck_block(fs_info, sblock_bad, 1);
983
984 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
985 sblock_bad->no_io_error_seen) {
986 /*
987 * the error disappeared after reading page by page, or
988 * the area was part of a huge bio and other parts of the
989 * bio caused I/O errors, or the block layer merged several
990 * read requests into one and the error is caused by a
991 * different bio (usually one of the two latter cases is
992 * the cause)
993 */
994 spin_lock(&sctx->stat_lock);
995 sctx->stat.unverified_errors++;
996 sblock_to_check->data_corrected = 1;
997 spin_unlock(&sctx->stat_lock);
998
999 if (sctx->is_dev_replace)
1000 scrub_write_block_to_dev_replace(sblock_bad);
1001 goto out;
1002 }
1003
1004 if (!sblock_bad->no_io_error_seen) {
1005 spin_lock(&sctx->stat_lock);
1006 sctx->stat.read_errors++;
1007 spin_unlock(&sctx->stat_lock);
1008 if (__ratelimit(&_rs))
1009 scrub_print_warning("i/o error", sblock_to_check);
1010 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011 } else if (sblock_bad->checksum_error) {
1012 spin_lock(&sctx->stat_lock);
1013 sctx->stat.csum_errors++;
1014 spin_unlock(&sctx->stat_lock);
1015 if (__ratelimit(&_rs))
1016 scrub_print_warning("checksum error", sblock_to_check);
1017 btrfs_dev_stat_inc_and_print(dev,
1018 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019 } else if (sblock_bad->header_error) {
1020 spin_lock(&sctx->stat_lock);
1021 sctx->stat.verify_errors++;
1022 spin_unlock(&sctx->stat_lock);
1023 if (__ratelimit(&_rs))
1024 scrub_print_warning("checksum/header error",
1025 sblock_to_check);
1026 if (sblock_bad->generation_error)
1027 btrfs_dev_stat_inc_and_print(dev,
1028 BTRFS_DEV_STAT_GENERATION_ERRS);
1029 else
1030 btrfs_dev_stat_inc_and_print(dev,
1031 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032 }
1033
1034 if (sctx->readonly) {
1035 ASSERT(!sctx->is_dev_replace);
1036 goto out;
1037 }
1038
1039 if (!is_metadata && !have_csum) {
1040 struct scrub_fixup_nodatasum *fixup_nodatasum;
1041
1042 WARN_ON(sctx->is_dev_replace);
1043
1044nodatasum_case:
1045
1046 /*
1047 * !is_metadata and !have_csum, this means that the data
1048 * might not be COWed, that it might be modified
1049 * concurrently. The general strategy to work on the
1050 * commit root does not help in the case when COW is not
1051 * used.
1052 */
1053 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054 if (!fixup_nodatasum)
1055 goto did_not_correct_error;
1056 fixup_nodatasum->sctx = sctx;
1057 fixup_nodatasum->dev = dev;
1058 fixup_nodatasum->logical = logical;
1059 fixup_nodatasum->root = fs_info->extent_root;
1060 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061 scrub_pending_trans_workers_inc(sctx);
1062 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063 scrub_fixup_nodatasum, NULL, NULL);
1064 btrfs_queue_work(fs_info->scrub_workers,
1065 &fixup_nodatasum->work);
1066 goto out;
1067 }
1068
1069 /*
1070 * now build and submit the bios for the other mirrors, check
1071 * checksums.
1072 * First try to pick the mirror which is completely without I/O
1073 * errors and also does not have a checksum error.
1074 * If one is found, and if a checksum is present, the full block
1075 * that is known to contain an error is rewritten. Afterwards
1076 * the block is known to be corrected.
1077 * If a mirror is found which is completely correct, and no
1078 * checksum is present, only those pages are rewritten that had
1079 * an I/O error in the block to be repaired, since it cannot be
1080 * determined, which copy of the other pages is better (and it
1081 * could happen otherwise that a correct page would be
1082 * overwritten by a bad one).
1083 */
1084 for (mirror_index = 0;
1085 mirror_index < BTRFS_MAX_MIRRORS &&
1086 sblocks_for_recheck[mirror_index].page_count > 0;
1087 mirror_index++) {
1088 struct scrub_block *sblock_other;
1089
1090 if (mirror_index == failed_mirror_index)
1091 continue;
1092 sblock_other = sblocks_for_recheck + mirror_index;
1093
1094 /* build and submit the bios, check checksums */
1095 scrub_recheck_block(fs_info, sblock_other, 0);
1096
1097 if (!sblock_other->header_error &&
1098 !sblock_other->checksum_error &&
1099 sblock_other->no_io_error_seen) {
1100 if (sctx->is_dev_replace) {
1101 scrub_write_block_to_dev_replace(sblock_other);
1102 goto corrected_error;
1103 } else {
1104 ret = scrub_repair_block_from_good_copy(
1105 sblock_bad, sblock_other);
1106 if (!ret)
1107 goto corrected_error;
1108 }
1109 }
1110 }
1111
1112 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113 goto did_not_correct_error;
1114
1115 /*
1116 * In case of I/O errors in the area that is supposed to be
1117 * repaired, continue by picking good copies of those pages.
1118 * Select the good pages from mirrors to rewrite bad pages from
1119 * the area to fix. Afterwards verify the checksum of the block
1120 * that is supposed to be repaired. This verification step is
1121 * only done for the purpose of statistic counting and for the
1122 * final scrub report, whether errors remain.
1123 * A perfect algorithm could make use of the checksum and try
1124 * all possible combinations of pages from the different mirrors
1125 * until the checksum verification succeeds. For example, when
1126 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127 * of mirror #2 is readable but the final checksum test fails,
1128 * then the 2nd page of mirror #3 could be tried, whether now
1129 * the final checksum succeeds. But this would be a rare
1130 * exception and is therefore not implemented. At least it is
1131 * avoided that the good copy is overwritten.
1132 * A more useful improvement would be to pick the sectors
1133 * without I/O error based on sector sizes (512 bytes on legacy
1134 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135 * mirror could be repaired by taking 512 byte of a different
1136 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137 * area are unreadable.
1138 */
1139 success = 1;
1140 for (page_num = 0; page_num < sblock_bad->page_count;
1141 page_num++) {
1142 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143 struct scrub_block *sblock_other = NULL;
1144
1145 /* skip no-io-error page in scrub */
1146 if (!page_bad->io_error && !sctx->is_dev_replace)
1147 continue;
1148
1149 /* try to find no-io-error page in mirrors */
1150 if (page_bad->io_error) {
1151 for (mirror_index = 0;
1152 mirror_index < BTRFS_MAX_MIRRORS &&
1153 sblocks_for_recheck[mirror_index].page_count > 0;
1154 mirror_index++) {
1155 if (!sblocks_for_recheck[mirror_index].
1156 pagev[page_num]->io_error) {
1157 sblock_other = sblocks_for_recheck +
1158 mirror_index;
1159 break;
1160 }
1161 }
1162 if (!sblock_other)
1163 success = 0;
1164 }
1165
1166 if (sctx->is_dev_replace) {
1167 /*
1168 * did not find a mirror to fetch the page
1169 * from. scrub_write_page_to_dev_replace()
1170 * handles this case (page->io_error), by
1171 * filling the block with zeros before
1172 * submitting the write request
1173 */
1174 if (!sblock_other)
1175 sblock_other = sblock_bad;
1176
1177 if (scrub_write_page_to_dev_replace(sblock_other,
1178 page_num) != 0) {
1179 btrfs_dev_replace_stats_inc(
1180 &fs_info->dev_replace.num_write_errors);
1181 success = 0;
1182 }
1183 } else if (sblock_other) {
1184 ret = scrub_repair_page_from_good_copy(sblock_bad,
1185 sblock_other,
1186 page_num, 0);
1187 if (0 == ret)
1188 page_bad->io_error = 0;
1189 else
1190 success = 0;
1191 }
1192 }
1193
1194 if (success && !sctx->is_dev_replace) {
1195 if (is_metadata || have_csum) {
1196 /*
1197 * need to verify the checksum now that all
1198 * sectors on disk are repaired (the write
1199 * request for data to be repaired is on its way).
1200 * Just be lazy and use scrub_recheck_block()
1201 * which re-reads the data before the checksum
1202 * is verified, but most likely the data comes out
1203 * of the page cache.
1204 */
1205 scrub_recheck_block(fs_info, sblock_bad, 1);
1206 if (!sblock_bad->header_error &&
1207 !sblock_bad->checksum_error &&
1208 sblock_bad->no_io_error_seen)
1209 goto corrected_error;
1210 else
1211 goto did_not_correct_error;
1212 } else {
1213corrected_error:
1214 spin_lock(&sctx->stat_lock);
1215 sctx->stat.corrected_errors++;
1216 sblock_to_check->data_corrected = 1;
1217 spin_unlock(&sctx->stat_lock);
1218 btrfs_err_rl_in_rcu(fs_info,
1219 "fixed up error at logical %llu on dev %s",
1220 logical, rcu_str_deref(dev->name));
1221 }
1222 } else {
1223did_not_correct_error:
1224 spin_lock(&sctx->stat_lock);
1225 sctx->stat.uncorrectable_errors++;
1226 spin_unlock(&sctx->stat_lock);
1227 btrfs_err_rl_in_rcu(fs_info,
1228 "unable to fixup (regular) error at logical %llu on dev %s",
1229 logical, rcu_str_deref(dev->name));
1230 }
1231
1232out:
1233 if (sblocks_for_recheck) {
1234 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1235 mirror_index++) {
1236 struct scrub_block *sblock = sblocks_for_recheck +
1237 mirror_index;
1238 struct scrub_recover *recover;
1239 int page_index;
1240
1241 for (page_index = 0; page_index < sblock->page_count;
1242 page_index++) {
1243 sblock->pagev[page_index]->sblock = NULL;
1244 recover = sblock->pagev[page_index]->recover;
1245 if (recover) {
1246 scrub_put_recover(recover);
1247 sblock->pagev[page_index]->recover =
1248 NULL;
1249 }
1250 scrub_page_put(sblock->pagev[page_index]);
1251 }
1252 }
1253 kfree(sblocks_for_recheck);
1254 }
1255
1256 return 0;
1257}
1258
1259static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260{
1261 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1262 return 2;
1263 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1264 return 3;
1265 else
1266 return (int)bbio->num_stripes;
1267}
1268
1269static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1270 u64 *raid_map,
1271 u64 mapped_length,
1272 int nstripes, int mirror,
1273 int *stripe_index,
1274 u64 *stripe_offset)
1275{
1276 int i;
1277
1278 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279 /* RAID5/6 */
1280 for (i = 0; i < nstripes; i++) {
1281 if (raid_map[i] == RAID6_Q_STRIPE ||
1282 raid_map[i] == RAID5_P_STRIPE)
1283 continue;
1284
1285 if (logical >= raid_map[i] &&
1286 logical < raid_map[i] + mapped_length)
1287 break;
1288 }
1289
1290 *stripe_index = i;
1291 *stripe_offset = logical - raid_map[i];
1292 } else {
1293 /* The other RAID type */
1294 *stripe_index = mirror;
1295 *stripe_offset = 0;
1296 }
1297}
1298
1299static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300 struct scrub_block *sblocks_for_recheck)
1301{
1302 struct scrub_ctx *sctx = original_sblock->sctx;
1303 struct btrfs_fs_info *fs_info = sctx->fs_info;
1304 u64 length = original_sblock->page_count * PAGE_SIZE;
1305 u64 logical = original_sblock->pagev[0]->logical;
1306 u64 generation = original_sblock->pagev[0]->generation;
1307 u64 flags = original_sblock->pagev[0]->flags;
1308 u64 have_csum = original_sblock->pagev[0]->have_csum;
1309 struct scrub_recover *recover;
1310 struct btrfs_bio *bbio;
1311 u64 sublen;
1312 u64 mapped_length;
1313 u64 stripe_offset;
1314 int stripe_index;
1315 int page_index = 0;
1316 int mirror_index;
1317 int nmirrors;
1318 int ret;
1319
1320 /*
1321 * note: the two members refs and outstanding_pages
1322 * are not used (and not set) in the blocks that are used for
1323 * the recheck procedure
1324 */
1325
1326 while (length > 0) {
1327 sublen = min_t(u64, length, PAGE_SIZE);
1328 mapped_length = sublen;
1329 bbio = NULL;
1330
1331 /*
1332 * with a length of PAGE_SIZE, each returned stripe
1333 * represents one mirror
1334 */
1335 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1336 logical, &mapped_length, &bbio, 0, 1);
1337 if (ret || !bbio || mapped_length < sublen) {
1338 btrfs_put_bbio(bbio);
1339 return -EIO;
1340 }
1341
1342 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1343 if (!recover) {
1344 btrfs_put_bbio(bbio);
1345 return -ENOMEM;
1346 }
1347
1348 atomic_set(&recover->refs, 1);
1349 recover->bbio = bbio;
1350 recover->map_length = mapped_length;
1351
1352 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1353
1354 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1355
1356 for (mirror_index = 0; mirror_index < nmirrors;
1357 mirror_index++) {
1358 struct scrub_block *sblock;
1359 struct scrub_page *page;
1360
1361 sblock = sblocks_for_recheck + mirror_index;
1362 sblock->sctx = sctx;
1363
1364 page = kzalloc(sizeof(*page), GFP_NOFS);
1365 if (!page) {
1366leave_nomem:
1367 spin_lock(&sctx->stat_lock);
1368 sctx->stat.malloc_errors++;
1369 spin_unlock(&sctx->stat_lock);
1370 scrub_put_recover(recover);
1371 return -ENOMEM;
1372 }
1373 scrub_page_get(page);
1374 sblock->pagev[page_index] = page;
1375 page->sblock = sblock;
1376 page->flags = flags;
1377 page->generation = generation;
1378 page->logical = logical;
1379 page->have_csum = have_csum;
1380 if (have_csum)
1381 memcpy(page->csum,
1382 original_sblock->pagev[0]->csum,
1383 sctx->csum_size);
1384
1385 scrub_stripe_index_and_offset(logical,
1386 bbio->map_type,
1387 bbio->raid_map,
1388 mapped_length,
1389 bbio->num_stripes -
1390 bbio->num_tgtdevs,
1391 mirror_index,
1392 &stripe_index,
1393 &stripe_offset);
1394 page->physical = bbio->stripes[stripe_index].physical +
1395 stripe_offset;
1396 page->dev = bbio->stripes[stripe_index].dev;
1397
1398 BUG_ON(page_index >= original_sblock->page_count);
1399 page->physical_for_dev_replace =
1400 original_sblock->pagev[page_index]->
1401 physical_for_dev_replace;
1402 /* for missing devices, dev->bdev is NULL */
1403 page->mirror_num = mirror_index + 1;
1404 sblock->page_count++;
1405 page->page = alloc_page(GFP_NOFS);
1406 if (!page->page)
1407 goto leave_nomem;
1408
1409 scrub_get_recover(recover);
1410 page->recover = recover;
1411 }
1412 scrub_put_recover(recover);
1413 length -= sublen;
1414 logical += sublen;
1415 page_index++;
1416 }
1417
1418 return 0;
1419}
1420
1421struct scrub_bio_ret {
1422 struct completion event;
1423 int error;
1424};
1425
1426static void scrub_bio_wait_endio(struct bio *bio)
1427{
1428 struct scrub_bio_ret *ret = bio->bi_private;
1429
1430 ret->error = bio->bi_error;
1431 complete(&ret->event);
1432}
1433
1434static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1435{
1436 return page->recover &&
1437 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1438}
1439
1440static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1441 struct bio *bio,
1442 struct scrub_page *page)
1443{
1444 struct scrub_bio_ret done;
1445 int ret;
1446
1447 init_completion(&done.event);
1448 done.error = 0;
1449 bio->bi_iter.bi_sector = page->logical >> 9;
1450 bio->bi_private = &done;
1451 bio->bi_end_io = scrub_bio_wait_endio;
1452
1453 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1454 page->recover->map_length,
1455 page->mirror_num, 0);
1456 if (ret)
1457 return ret;
1458
1459 wait_for_completion(&done.event);
1460 if (done.error)
1461 return -EIO;
1462
1463 return 0;
1464}
1465
1466/*
1467 * this function will check the on disk data for checksum errors, header
1468 * errors and read I/O errors. If any I/O errors happen, the exact pages
1469 * which are errored are marked as being bad. The goal is to enable scrub
1470 * to take those pages that are not errored from all the mirrors so that
1471 * the pages that are errored in the just handled mirror can be repaired.
1472 */
1473static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1474 struct scrub_block *sblock,
1475 int retry_failed_mirror)
1476{
1477 int page_num;
1478
1479 sblock->no_io_error_seen = 1;
1480
1481 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482 struct bio *bio;
1483 struct scrub_page *page = sblock->pagev[page_num];
1484
1485 if (page->dev->bdev == NULL) {
1486 page->io_error = 1;
1487 sblock->no_io_error_seen = 0;
1488 continue;
1489 }
1490
1491 WARN_ON(!page->page);
1492 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1493 if (!bio) {
1494 page->io_error = 1;
1495 sblock->no_io_error_seen = 0;
1496 continue;
1497 }
1498 bio->bi_bdev = page->dev->bdev;
1499
1500 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1501 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1502 if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1503 sblock->no_io_error_seen = 0;
1504 } else {
1505 bio->bi_iter.bi_sector = page->physical >> 9;
1506 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1507
1508 if (btrfsic_submit_bio_wait(bio))
1509 sblock->no_io_error_seen = 0;
1510 }
1511
1512 bio_put(bio);
1513 }
1514
1515 if (sblock->no_io_error_seen)
1516 scrub_recheck_block_checksum(sblock);
1517}
1518
1519static inline int scrub_check_fsid(u8 fsid[],
1520 struct scrub_page *spage)
1521{
1522 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523 int ret;
1524
1525 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526 return !ret;
1527}
1528
1529static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530{
1531 sblock->header_error = 0;
1532 sblock->checksum_error = 0;
1533 sblock->generation_error = 0;
1534
1535 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536 scrub_checksum_data(sblock);
1537 else
1538 scrub_checksum_tree_block(sblock);
1539}
1540
1541static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542 struct scrub_block *sblock_good)
1543{
1544 int page_num;
1545 int ret = 0;
1546
1547 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548 int ret_sub;
1549
1550 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551 sblock_good,
1552 page_num, 1);
1553 if (ret_sub)
1554 ret = ret_sub;
1555 }
1556
1557 return ret;
1558}
1559
1560static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561 struct scrub_block *sblock_good,
1562 int page_num, int force_write)
1563{
1564 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565 struct scrub_page *page_good = sblock_good->pagev[page_num];
1566 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1567
1568 BUG_ON(page_bad->page == NULL);
1569 BUG_ON(page_good->page == NULL);
1570 if (force_write || sblock_bad->header_error ||
1571 sblock_bad->checksum_error || page_bad->io_error) {
1572 struct bio *bio;
1573 int ret;
1574
1575 if (!page_bad->dev->bdev) {
1576 btrfs_warn_rl(fs_info,
1577 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1578 return -EIO;
1579 }
1580
1581 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 if (!bio)
1583 return -EIO;
1584 bio->bi_bdev = page_bad->dev->bdev;
1585 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1587
1588 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1589 if (PAGE_SIZE != ret) {
1590 bio_put(bio);
1591 return -EIO;
1592 }
1593
1594 if (btrfsic_submit_bio_wait(bio)) {
1595 btrfs_dev_stat_inc_and_print(page_bad->dev,
1596 BTRFS_DEV_STAT_WRITE_ERRS);
1597 btrfs_dev_replace_stats_inc(
1598 &fs_info->dev_replace.num_write_errors);
1599 bio_put(bio);
1600 return -EIO;
1601 }
1602 bio_put(bio);
1603 }
1604
1605 return 0;
1606}
1607
1608static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609{
1610 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1611 int page_num;
1612
1613 /*
1614 * This block is used for the check of the parity on the source device,
1615 * so the data needn't be written into the destination device.
1616 */
1617 if (sblock->sparity)
1618 return;
1619
1620 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1621 int ret;
1622
1623 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1624 if (ret)
1625 btrfs_dev_replace_stats_inc(
1626 &fs_info->dev_replace.num_write_errors);
1627 }
1628}
1629
1630static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631 int page_num)
1632{
1633 struct scrub_page *spage = sblock->pagev[page_num];
1634
1635 BUG_ON(spage->page == NULL);
1636 if (spage->io_error) {
1637 void *mapped_buffer = kmap_atomic(spage->page);
1638
1639 memset(mapped_buffer, 0, PAGE_SIZE);
1640 flush_dcache_page(spage->page);
1641 kunmap_atomic(mapped_buffer);
1642 }
1643 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644}
1645
1646static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647 struct scrub_page *spage)
1648{
1649 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650 struct scrub_bio *sbio;
1651 int ret;
1652
1653 mutex_lock(&wr_ctx->wr_lock);
1654again:
1655 if (!wr_ctx->wr_curr_bio) {
1656 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657 GFP_KERNEL);
1658 if (!wr_ctx->wr_curr_bio) {
1659 mutex_unlock(&wr_ctx->wr_lock);
1660 return -ENOMEM;
1661 }
1662 wr_ctx->wr_curr_bio->sctx = sctx;
1663 wr_ctx->wr_curr_bio->page_count = 0;
1664 }
1665 sbio = wr_ctx->wr_curr_bio;
1666 if (sbio->page_count == 0) {
1667 struct bio *bio;
1668
1669 sbio->physical = spage->physical_for_dev_replace;
1670 sbio->logical = spage->logical;
1671 sbio->dev = wr_ctx->tgtdev;
1672 bio = sbio->bio;
1673 if (!bio) {
1674 bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675 wr_ctx->pages_per_wr_bio);
1676 if (!bio) {
1677 mutex_unlock(&wr_ctx->wr_lock);
1678 return -ENOMEM;
1679 }
1680 sbio->bio = bio;
1681 }
1682
1683 bio->bi_private = sbio;
1684 bio->bi_end_io = scrub_wr_bio_end_io;
1685 bio->bi_bdev = sbio->dev->bdev;
1686 bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1688 sbio->err = 0;
1689 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1690 spage->physical_for_dev_replace ||
1691 sbio->logical + sbio->page_count * PAGE_SIZE !=
1692 spage->logical) {
1693 scrub_wr_submit(sctx);
1694 goto again;
1695 }
1696
1697 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1698 if (ret != PAGE_SIZE) {
1699 if (sbio->page_count < 1) {
1700 bio_put(sbio->bio);
1701 sbio->bio = NULL;
1702 mutex_unlock(&wr_ctx->wr_lock);
1703 return -EIO;
1704 }
1705 scrub_wr_submit(sctx);
1706 goto again;
1707 }
1708
1709 sbio->pagev[sbio->page_count] = spage;
1710 scrub_page_get(spage);
1711 sbio->page_count++;
1712 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1713 scrub_wr_submit(sctx);
1714 mutex_unlock(&wr_ctx->wr_lock);
1715
1716 return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
1720{
1721 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1722 struct scrub_bio *sbio;
1723
1724 if (!wr_ctx->wr_curr_bio)
1725 return;
1726
1727 sbio = wr_ctx->wr_curr_bio;
1728 wr_ctx->wr_curr_bio = NULL;
1729 WARN_ON(!sbio->bio->bi_bdev);
1730 scrub_pending_bio_inc(sctx);
1731 /* process all writes in a single worker thread. Then the block layer
1732 * orders the requests before sending them to the driver which
1733 * doubled the write performance on spinning disks when measured
1734 * with Linux 3.5 */
1735 btrfsic_submit_bio(sbio->bio);
1736}
1737
1738static void scrub_wr_bio_end_io(struct bio *bio)
1739{
1740 struct scrub_bio *sbio = bio->bi_private;
1741 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1742
1743 sbio->err = bio->bi_error;
1744 sbio->bio = bio;
1745
1746 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1747 scrub_wr_bio_end_io_worker, NULL, NULL);
1748 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749}
1750
1751static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1752{
1753 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1754 struct scrub_ctx *sctx = sbio->sctx;
1755 int i;
1756
1757 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1758 if (sbio->err) {
1759 struct btrfs_dev_replace *dev_replace =
1760 &sbio->sctx->fs_info->dev_replace;
1761
1762 for (i = 0; i < sbio->page_count; i++) {
1763 struct scrub_page *spage = sbio->pagev[i];
1764
1765 spage->io_error = 1;
1766 btrfs_dev_replace_stats_inc(&dev_replace->
1767 num_write_errors);
1768 }
1769 }
1770
1771 for (i = 0; i < sbio->page_count; i++)
1772 scrub_page_put(sbio->pagev[i]);
1773
1774 bio_put(sbio->bio);
1775 kfree(sbio);
1776 scrub_pending_bio_dec(sctx);
1777}
1778
1779static int scrub_checksum(struct scrub_block *sblock)
1780{
1781 u64 flags;
1782 int ret;
1783
1784 /*
1785 * No need to initialize these stats currently,
1786 * because this function only use return value
1787 * instead of these stats value.
1788 *
1789 * Todo:
1790 * always use stats
1791 */
1792 sblock->header_error = 0;
1793 sblock->generation_error = 0;
1794 sblock->checksum_error = 0;
1795
1796 WARN_ON(sblock->page_count < 1);
1797 flags = sblock->pagev[0]->flags;
1798 ret = 0;
1799 if (flags & BTRFS_EXTENT_FLAG_DATA)
1800 ret = scrub_checksum_data(sblock);
1801 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802 ret = scrub_checksum_tree_block(sblock);
1803 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804 (void)scrub_checksum_super(sblock);
1805 else
1806 WARN_ON(1);
1807 if (ret)
1808 scrub_handle_errored_block(sblock);
1809
1810 return ret;
1811}
1812
1813static int scrub_checksum_data(struct scrub_block *sblock)
1814{
1815 struct scrub_ctx *sctx = sblock->sctx;
1816 u8 csum[BTRFS_CSUM_SIZE];
1817 u8 *on_disk_csum;
1818 struct page *page;
1819 void *buffer;
1820 u32 crc = ~(u32)0;
1821 u64 len;
1822 int index;
1823
1824 BUG_ON(sblock->page_count < 1);
1825 if (!sblock->pagev[0]->have_csum)
1826 return 0;
1827
1828 on_disk_csum = sblock->pagev[0]->csum;
1829 page = sblock->pagev[0]->page;
1830 buffer = kmap_atomic(page);
1831
1832 len = sctx->sectorsize;
1833 index = 0;
1834 for (;;) {
1835 u64 l = min_t(u64, len, PAGE_SIZE);
1836
1837 crc = btrfs_csum_data(buffer, crc, l);
1838 kunmap_atomic(buffer);
1839 len -= l;
1840 if (len == 0)
1841 break;
1842 index++;
1843 BUG_ON(index >= sblock->page_count);
1844 BUG_ON(!sblock->pagev[index]->page);
1845 page = sblock->pagev[index]->page;
1846 buffer = kmap_atomic(page);
1847 }
1848
1849 btrfs_csum_final(crc, csum);
1850 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1851 sblock->checksum_error = 1;
1852
1853 return sblock->checksum_error;
1854}
1855
1856static int scrub_checksum_tree_block(struct scrub_block *sblock)
1857{
1858 struct scrub_ctx *sctx = sblock->sctx;
1859 struct btrfs_header *h;
1860 struct btrfs_fs_info *fs_info = sctx->fs_info;
1861 u8 calculated_csum[BTRFS_CSUM_SIZE];
1862 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863 struct page *page;
1864 void *mapped_buffer;
1865 u64 mapped_size;
1866 void *p;
1867 u32 crc = ~(u32)0;
1868 u64 len;
1869 int index;
1870
1871 BUG_ON(sblock->page_count < 1);
1872 page = sblock->pagev[0]->page;
1873 mapped_buffer = kmap_atomic(page);
1874 h = (struct btrfs_header *)mapped_buffer;
1875 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876
1877 /*
1878 * we don't use the getter functions here, as we
1879 * a) don't have an extent buffer and
1880 * b) the page is already kmapped
1881 */
1882 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883 sblock->header_error = 1;
1884
1885 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886 sblock->header_error = 1;
1887 sblock->generation_error = 1;
1888 }
1889
1890 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891 sblock->header_error = 1;
1892
1893 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894 BTRFS_UUID_SIZE))
1895 sblock->header_error = 1;
1896
1897 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900 index = 0;
1901 for (;;) {
1902 u64 l = min_t(u64, len, mapped_size);
1903
1904 crc = btrfs_csum_data(p, crc, l);
1905 kunmap_atomic(mapped_buffer);
1906 len -= l;
1907 if (len == 0)
1908 break;
1909 index++;
1910 BUG_ON(index >= sblock->page_count);
1911 BUG_ON(!sblock->pagev[index]->page);
1912 page = sblock->pagev[index]->page;
1913 mapped_buffer = kmap_atomic(page);
1914 mapped_size = PAGE_SIZE;
1915 p = mapped_buffer;
1916 }
1917
1918 btrfs_csum_final(crc, calculated_csum);
1919 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920 sblock->checksum_error = 1;
1921
1922 return sblock->header_error || sblock->checksum_error;
1923}
1924
1925static int scrub_checksum_super(struct scrub_block *sblock)
1926{
1927 struct btrfs_super_block *s;
1928 struct scrub_ctx *sctx = sblock->sctx;
1929 u8 calculated_csum[BTRFS_CSUM_SIZE];
1930 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931 struct page *page;
1932 void *mapped_buffer;
1933 u64 mapped_size;
1934 void *p;
1935 u32 crc = ~(u32)0;
1936 int fail_gen = 0;
1937 int fail_cor = 0;
1938 u64 len;
1939 int index;
1940
1941 BUG_ON(sblock->page_count < 1);
1942 page = sblock->pagev[0]->page;
1943 mapped_buffer = kmap_atomic(page);
1944 s = (struct btrfs_super_block *)mapped_buffer;
1945 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946
1947 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948 ++fail_cor;
1949
1950 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951 ++fail_gen;
1952
1953 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954 ++fail_cor;
1955
1956 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959 index = 0;
1960 for (;;) {
1961 u64 l = min_t(u64, len, mapped_size);
1962
1963 crc = btrfs_csum_data(p, crc, l);
1964 kunmap_atomic(mapped_buffer);
1965 len -= l;
1966 if (len == 0)
1967 break;
1968 index++;
1969 BUG_ON(index >= sblock->page_count);
1970 BUG_ON(!sblock->pagev[index]->page);
1971 page = sblock->pagev[index]->page;
1972 mapped_buffer = kmap_atomic(page);
1973 mapped_size = PAGE_SIZE;
1974 p = mapped_buffer;
1975 }
1976
1977 btrfs_csum_final(crc, calculated_csum);
1978 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979 ++fail_cor;
1980
1981 if (fail_cor + fail_gen) {
1982 /*
1983 * if we find an error in a super block, we just report it.
1984 * They will get written with the next transaction commit
1985 * anyway
1986 */
1987 spin_lock(&sctx->stat_lock);
1988 ++sctx->stat.super_errors;
1989 spin_unlock(&sctx->stat_lock);
1990 if (fail_cor)
1991 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993 else
1994 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995 BTRFS_DEV_STAT_GENERATION_ERRS);
1996 }
1997
1998 return fail_cor + fail_gen;
1999}
2000
2001static void scrub_block_get(struct scrub_block *sblock)
2002{
2003 atomic_inc(&sblock->refs);
2004}
2005
2006static void scrub_block_put(struct scrub_block *sblock)
2007{
2008 if (atomic_dec_and_test(&sblock->refs)) {
2009 int i;
2010
2011 if (sblock->sparity)
2012 scrub_parity_put(sblock->sparity);
2013
2014 for (i = 0; i < sblock->page_count; i++)
2015 scrub_page_put(sblock->pagev[i]);
2016 kfree(sblock);
2017 }
2018}
2019
2020static void scrub_page_get(struct scrub_page *spage)
2021{
2022 atomic_inc(&spage->refs);
2023}
2024
2025static void scrub_page_put(struct scrub_page *spage)
2026{
2027 if (atomic_dec_and_test(&spage->refs)) {
2028 if (spage->page)
2029 __free_page(spage->page);
2030 kfree(spage);
2031 }
2032}
2033
2034static void scrub_submit(struct scrub_ctx *sctx)
2035{
2036 struct scrub_bio *sbio;
2037
2038 if (sctx->curr == -1)
2039 return;
2040
2041 sbio = sctx->bios[sctx->curr];
2042 sctx->curr = -1;
2043 scrub_pending_bio_inc(sctx);
2044 btrfsic_submit_bio(sbio->bio);
2045}
2046
2047static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048 struct scrub_page *spage)
2049{
2050 struct scrub_block *sblock = spage->sblock;
2051 struct scrub_bio *sbio;
2052 int ret;
2053
2054again:
2055 /*
2056 * grab a fresh bio or wait for one to become available
2057 */
2058 while (sctx->curr == -1) {
2059 spin_lock(&sctx->list_lock);
2060 sctx->curr = sctx->first_free;
2061 if (sctx->curr != -1) {
2062 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063 sctx->bios[sctx->curr]->next_free = -1;
2064 sctx->bios[sctx->curr]->page_count = 0;
2065 spin_unlock(&sctx->list_lock);
2066 } else {
2067 spin_unlock(&sctx->list_lock);
2068 wait_event(sctx->list_wait, sctx->first_free != -1);
2069 }
2070 }
2071 sbio = sctx->bios[sctx->curr];
2072 if (sbio->page_count == 0) {
2073 struct bio *bio;
2074
2075 sbio->physical = spage->physical;
2076 sbio->logical = spage->logical;
2077 sbio->dev = spage->dev;
2078 bio = sbio->bio;
2079 if (!bio) {
2080 bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081 sctx->pages_per_rd_bio);
2082 if (!bio)
2083 return -ENOMEM;
2084 sbio->bio = bio;
2085 }
2086
2087 bio->bi_private = sbio;
2088 bio->bi_end_io = scrub_bio_end_io;
2089 bio->bi_bdev = sbio->dev->bdev;
2090 bio->bi_iter.bi_sector = sbio->physical >> 9;
2091 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092 sbio->err = 0;
2093 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2094 spage->physical ||
2095 sbio->logical + sbio->page_count * PAGE_SIZE !=
2096 spage->logical ||
2097 sbio->dev != spage->dev) {
2098 scrub_submit(sctx);
2099 goto again;
2100 }
2101
2102 sbio->pagev[sbio->page_count] = spage;
2103 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2104 if (ret != PAGE_SIZE) {
2105 if (sbio->page_count < 1) {
2106 bio_put(sbio->bio);
2107 sbio->bio = NULL;
2108 return -EIO;
2109 }
2110 scrub_submit(sctx);
2111 goto again;
2112 }
2113
2114 scrub_block_get(sblock); /* one for the page added to the bio */
2115 atomic_inc(&sblock->outstanding_pages);
2116 sbio->page_count++;
2117 if (sbio->page_count == sctx->pages_per_rd_bio)
2118 scrub_submit(sctx);
2119
2120 return 0;
2121}
2122
2123static void scrub_missing_raid56_end_io(struct bio *bio)
2124{
2125 struct scrub_block *sblock = bio->bi_private;
2126 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2127
2128 if (bio->bi_error)
2129 sblock->no_io_error_seen = 0;
2130
2131 bio_put(bio);
2132
2133 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2134}
2135
2136static void scrub_missing_raid56_worker(struct btrfs_work *work)
2137{
2138 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2139 struct scrub_ctx *sctx = sblock->sctx;
2140 struct btrfs_fs_info *fs_info = sctx->fs_info;
2141 u64 logical;
2142 struct btrfs_device *dev;
2143
2144 logical = sblock->pagev[0]->logical;
2145 dev = sblock->pagev[0]->dev;
2146
2147 if (sblock->no_io_error_seen)
2148 scrub_recheck_block_checksum(sblock);
2149
2150 if (!sblock->no_io_error_seen) {
2151 spin_lock(&sctx->stat_lock);
2152 sctx->stat.read_errors++;
2153 spin_unlock(&sctx->stat_lock);
2154 btrfs_err_rl_in_rcu(fs_info,
2155 "IO error rebuilding logical %llu for dev %s",
2156 logical, rcu_str_deref(dev->name));
2157 } else if (sblock->header_error || sblock->checksum_error) {
2158 spin_lock(&sctx->stat_lock);
2159 sctx->stat.uncorrectable_errors++;
2160 spin_unlock(&sctx->stat_lock);
2161 btrfs_err_rl_in_rcu(fs_info,
2162 "failed to rebuild valid logical %llu for dev %s",
2163 logical, rcu_str_deref(dev->name));
2164 } else {
2165 scrub_write_block_to_dev_replace(sblock);
2166 }
2167
2168 scrub_block_put(sblock);
2169
2170 if (sctx->is_dev_replace &&
2171 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2172 mutex_lock(&sctx->wr_ctx.wr_lock);
2173 scrub_wr_submit(sctx);
2174 mutex_unlock(&sctx->wr_ctx.wr_lock);
2175 }
2176
2177 scrub_pending_bio_dec(sctx);
2178}
2179
2180static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2181{
2182 struct scrub_ctx *sctx = sblock->sctx;
2183 struct btrfs_fs_info *fs_info = sctx->fs_info;
2184 u64 length = sblock->page_count * PAGE_SIZE;
2185 u64 logical = sblock->pagev[0]->logical;
2186 struct btrfs_bio *bbio = NULL;
2187 struct bio *bio;
2188 struct btrfs_raid_bio *rbio;
2189 int ret;
2190 int i;
2191
2192 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2193 &length, &bbio, 0, 1);
2194 if (ret || !bbio || !bbio->raid_map)
2195 goto bbio_out;
2196
2197 if (WARN_ON(!sctx->is_dev_replace ||
2198 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2199 /*
2200 * We shouldn't be scrubbing a missing device. Even for dev
2201 * replace, we should only get here for RAID 5/6. We either
2202 * managed to mount something with no mirrors remaining or
2203 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2204 */
2205 goto bbio_out;
2206 }
2207
2208 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2209 if (!bio)
2210 goto bbio_out;
2211
2212 bio->bi_iter.bi_sector = logical >> 9;
2213 bio->bi_private = sblock;
2214 bio->bi_end_io = scrub_missing_raid56_end_io;
2215
2216 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2217 if (!rbio)
2218 goto rbio_out;
2219
2220 for (i = 0; i < sblock->page_count; i++) {
2221 struct scrub_page *spage = sblock->pagev[i];
2222
2223 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2224 }
2225
2226 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2227 scrub_missing_raid56_worker, NULL, NULL);
2228 scrub_block_get(sblock);
2229 scrub_pending_bio_inc(sctx);
2230 raid56_submit_missing_rbio(rbio);
2231 return;
2232
2233rbio_out:
2234 bio_put(bio);
2235bbio_out:
2236 btrfs_put_bbio(bbio);
2237 spin_lock(&sctx->stat_lock);
2238 sctx->stat.malloc_errors++;
2239 spin_unlock(&sctx->stat_lock);
2240}
2241
2242static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2243 u64 physical, struct btrfs_device *dev, u64 flags,
2244 u64 gen, int mirror_num, u8 *csum, int force,
2245 u64 physical_for_dev_replace)
2246{
2247 struct scrub_block *sblock;
2248 int index;
2249
2250 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2251 if (!sblock) {
2252 spin_lock(&sctx->stat_lock);
2253 sctx->stat.malloc_errors++;
2254 spin_unlock(&sctx->stat_lock);
2255 return -ENOMEM;
2256 }
2257
2258 /* one ref inside this function, plus one for each page added to
2259 * a bio later on */
2260 atomic_set(&sblock->refs, 1);
2261 sblock->sctx = sctx;
2262 sblock->no_io_error_seen = 1;
2263
2264 for (index = 0; len > 0; index++) {
2265 struct scrub_page *spage;
2266 u64 l = min_t(u64, len, PAGE_SIZE);
2267
2268 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2269 if (!spage) {
2270leave_nomem:
2271 spin_lock(&sctx->stat_lock);
2272 sctx->stat.malloc_errors++;
2273 spin_unlock(&sctx->stat_lock);
2274 scrub_block_put(sblock);
2275 return -ENOMEM;
2276 }
2277 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2278 scrub_page_get(spage);
2279 sblock->pagev[index] = spage;
2280 spage->sblock = sblock;
2281 spage->dev = dev;
2282 spage->flags = flags;
2283 spage->generation = gen;
2284 spage->logical = logical;
2285 spage->physical = physical;
2286 spage->physical_for_dev_replace = physical_for_dev_replace;
2287 spage->mirror_num = mirror_num;
2288 if (csum) {
2289 spage->have_csum = 1;
2290 memcpy(spage->csum, csum, sctx->csum_size);
2291 } else {
2292 spage->have_csum = 0;
2293 }
2294 sblock->page_count++;
2295 spage->page = alloc_page(GFP_KERNEL);
2296 if (!spage->page)
2297 goto leave_nomem;
2298 len -= l;
2299 logical += l;
2300 physical += l;
2301 physical_for_dev_replace += l;
2302 }
2303
2304 WARN_ON(sblock->page_count == 0);
2305 if (dev->missing) {
2306 /*
2307 * This case should only be hit for RAID 5/6 device replace. See
2308 * the comment in scrub_missing_raid56_pages() for details.
2309 */
2310 scrub_missing_raid56_pages(sblock);
2311 } else {
2312 for (index = 0; index < sblock->page_count; index++) {
2313 struct scrub_page *spage = sblock->pagev[index];
2314 int ret;
2315
2316 ret = scrub_add_page_to_rd_bio(sctx, spage);
2317 if (ret) {
2318 scrub_block_put(sblock);
2319 return ret;
2320 }
2321 }
2322
2323 if (force)
2324 scrub_submit(sctx);
2325 }
2326
2327 /* last one frees, either here or in bio completion for last page */
2328 scrub_block_put(sblock);
2329 return 0;
2330}
2331
2332static void scrub_bio_end_io(struct bio *bio)
2333{
2334 struct scrub_bio *sbio = bio->bi_private;
2335 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2336
2337 sbio->err = bio->bi_error;
2338 sbio->bio = bio;
2339
2340 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2341}
2342
2343static void scrub_bio_end_io_worker(struct btrfs_work *work)
2344{
2345 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2346 struct scrub_ctx *sctx = sbio->sctx;
2347 int i;
2348
2349 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2350 if (sbio->err) {
2351 for (i = 0; i < sbio->page_count; i++) {
2352 struct scrub_page *spage = sbio->pagev[i];
2353
2354 spage->io_error = 1;
2355 spage->sblock->no_io_error_seen = 0;
2356 }
2357 }
2358
2359 /* now complete the scrub_block items that have all pages completed */
2360 for (i = 0; i < sbio->page_count; i++) {
2361 struct scrub_page *spage = sbio->pagev[i];
2362 struct scrub_block *sblock = spage->sblock;
2363
2364 if (atomic_dec_and_test(&sblock->outstanding_pages))
2365 scrub_block_complete(sblock);
2366 scrub_block_put(sblock);
2367 }
2368
2369 bio_put(sbio->bio);
2370 sbio->bio = NULL;
2371 spin_lock(&sctx->list_lock);
2372 sbio->next_free = sctx->first_free;
2373 sctx->first_free = sbio->index;
2374 spin_unlock(&sctx->list_lock);
2375
2376 if (sctx->is_dev_replace &&
2377 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2378 mutex_lock(&sctx->wr_ctx.wr_lock);
2379 scrub_wr_submit(sctx);
2380 mutex_unlock(&sctx->wr_ctx.wr_lock);
2381 }
2382
2383 scrub_pending_bio_dec(sctx);
2384}
2385
2386static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2387 unsigned long *bitmap,
2388 u64 start, u64 len)
2389{
2390 u32 offset;
2391 int nsectors;
2392 int sectorsize = sparity->sctx->fs_info->sectorsize;
2393
2394 if (len >= sparity->stripe_len) {
2395 bitmap_set(bitmap, 0, sparity->nsectors);
2396 return;
2397 }
2398
2399 start -= sparity->logic_start;
2400 start = div_u64_rem(start, sparity->stripe_len, &offset);
2401 offset /= sectorsize;
2402 nsectors = (int)len / sectorsize;
2403
2404 if (offset + nsectors <= sparity->nsectors) {
2405 bitmap_set(bitmap, offset, nsectors);
2406 return;
2407 }
2408
2409 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2410 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2411}
2412
2413static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2414 u64 start, u64 len)
2415{
2416 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2417}
2418
2419static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2420 u64 start, u64 len)
2421{
2422 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2423}
2424
2425static void scrub_block_complete(struct scrub_block *sblock)
2426{
2427 int corrupted = 0;
2428
2429 if (!sblock->no_io_error_seen) {
2430 corrupted = 1;
2431 scrub_handle_errored_block(sblock);
2432 } else {
2433 /*
2434 * if has checksum error, write via repair mechanism in
2435 * dev replace case, otherwise write here in dev replace
2436 * case.
2437 */
2438 corrupted = scrub_checksum(sblock);
2439 if (!corrupted && sblock->sctx->is_dev_replace)
2440 scrub_write_block_to_dev_replace(sblock);
2441 }
2442
2443 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2444 u64 start = sblock->pagev[0]->logical;
2445 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2446 PAGE_SIZE;
2447
2448 scrub_parity_mark_sectors_error(sblock->sparity,
2449 start, end - start);
2450 }
2451}
2452
2453static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2454{
2455 struct btrfs_ordered_sum *sum = NULL;
2456 unsigned long index;
2457 unsigned long num_sectors;
2458
2459 while (!list_empty(&sctx->csum_list)) {
2460 sum = list_first_entry(&sctx->csum_list,
2461 struct btrfs_ordered_sum, list);
2462 if (sum->bytenr > logical)
2463 return 0;
2464 if (sum->bytenr + sum->len > logical)
2465 break;
2466
2467 ++sctx->stat.csum_discards;
2468 list_del(&sum->list);
2469 kfree(sum);
2470 sum = NULL;
2471 }
2472 if (!sum)
2473 return 0;
2474
2475 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2476 num_sectors = sum->len / sctx->sectorsize;
2477 memcpy(csum, sum->sums + index, sctx->csum_size);
2478 if (index == num_sectors - 1) {
2479 list_del(&sum->list);
2480 kfree(sum);
2481 }
2482 return 1;
2483}
2484
2485/* scrub extent tries to collect up to 64 kB for each bio */
2486static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2487 u64 physical, struct btrfs_device *dev, u64 flags,
2488 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2489{
2490 int ret;
2491 u8 csum[BTRFS_CSUM_SIZE];
2492 u32 blocksize;
2493
2494 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2495 blocksize = sctx->sectorsize;
2496 spin_lock(&sctx->stat_lock);
2497 sctx->stat.data_extents_scrubbed++;
2498 sctx->stat.data_bytes_scrubbed += len;
2499 spin_unlock(&sctx->stat_lock);
2500 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2501 blocksize = sctx->nodesize;
2502 spin_lock(&sctx->stat_lock);
2503 sctx->stat.tree_extents_scrubbed++;
2504 sctx->stat.tree_bytes_scrubbed += len;
2505 spin_unlock(&sctx->stat_lock);
2506 } else {
2507 blocksize = sctx->sectorsize;
2508 WARN_ON(1);
2509 }
2510
2511 while (len) {
2512 u64 l = min_t(u64, len, blocksize);
2513 int have_csum = 0;
2514
2515 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2516 /* push csums to sbio */
2517 have_csum = scrub_find_csum(sctx, logical, csum);
2518 if (have_csum == 0)
2519 ++sctx->stat.no_csum;
2520 if (sctx->is_dev_replace && !have_csum) {
2521 ret = copy_nocow_pages(sctx, logical, l,
2522 mirror_num,
2523 physical_for_dev_replace);
2524 goto behind_scrub_pages;
2525 }
2526 }
2527 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2528 mirror_num, have_csum ? csum : NULL, 0,
2529 physical_for_dev_replace);
2530behind_scrub_pages:
2531 if (ret)
2532 return ret;
2533 len -= l;
2534 logical += l;
2535 physical += l;
2536 physical_for_dev_replace += l;
2537 }
2538 return 0;
2539}
2540
2541static int scrub_pages_for_parity(struct scrub_parity *sparity,
2542 u64 logical, u64 len,
2543 u64 physical, struct btrfs_device *dev,
2544 u64 flags, u64 gen, int mirror_num, u8 *csum)
2545{
2546 struct scrub_ctx *sctx = sparity->sctx;
2547 struct scrub_block *sblock;
2548 int index;
2549
2550 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2551 if (!sblock) {
2552 spin_lock(&sctx->stat_lock);
2553 sctx->stat.malloc_errors++;
2554 spin_unlock(&sctx->stat_lock);
2555 return -ENOMEM;
2556 }
2557
2558 /* one ref inside this function, plus one for each page added to
2559 * a bio later on */
2560 atomic_set(&sblock->refs, 1);
2561 sblock->sctx = sctx;
2562 sblock->no_io_error_seen = 1;
2563 sblock->sparity = sparity;
2564 scrub_parity_get(sparity);
2565
2566 for (index = 0; len > 0; index++) {
2567 struct scrub_page *spage;
2568 u64 l = min_t(u64, len, PAGE_SIZE);
2569
2570 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2571 if (!spage) {
2572leave_nomem:
2573 spin_lock(&sctx->stat_lock);
2574 sctx->stat.malloc_errors++;
2575 spin_unlock(&sctx->stat_lock);
2576 scrub_block_put(sblock);
2577 return -ENOMEM;
2578 }
2579 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2580 /* For scrub block */
2581 scrub_page_get(spage);
2582 sblock->pagev[index] = spage;
2583 /* For scrub parity */
2584 scrub_page_get(spage);
2585 list_add_tail(&spage->list, &sparity->spages);
2586 spage->sblock = sblock;
2587 spage->dev = dev;
2588 spage->flags = flags;
2589 spage->generation = gen;
2590 spage->logical = logical;
2591 spage->physical = physical;
2592 spage->mirror_num = mirror_num;
2593 if (csum) {
2594 spage->have_csum = 1;
2595 memcpy(spage->csum, csum, sctx->csum_size);
2596 } else {
2597 spage->have_csum = 0;
2598 }
2599 sblock->page_count++;
2600 spage->page = alloc_page(GFP_KERNEL);
2601 if (!spage->page)
2602 goto leave_nomem;
2603 len -= l;
2604 logical += l;
2605 physical += l;
2606 }
2607
2608 WARN_ON(sblock->page_count == 0);
2609 for (index = 0; index < sblock->page_count; index++) {
2610 struct scrub_page *spage = sblock->pagev[index];
2611 int ret;
2612
2613 ret = scrub_add_page_to_rd_bio(sctx, spage);
2614 if (ret) {
2615 scrub_block_put(sblock);
2616 return ret;
2617 }
2618 }
2619
2620 /* last one frees, either here or in bio completion for last page */
2621 scrub_block_put(sblock);
2622 return 0;
2623}
2624
2625static int scrub_extent_for_parity(struct scrub_parity *sparity,
2626 u64 logical, u64 len,
2627 u64 physical, struct btrfs_device *dev,
2628 u64 flags, u64 gen, int mirror_num)
2629{
2630 struct scrub_ctx *sctx = sparity->sctx;
2631 int ret;
2632 u8 csum[BTRFS_CSUM_SIZE];
2633 u32 blocksize;
2634
2635 if (dev->missing) {
2636 scrub_parity_mark_sectors_error(sparity, logical, len);
2637 return 0;
2638 }
2639
2640 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641 blocksize = sctx->sectorsize;
2642 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2643 blocksize = sctx->nodesize;
2644 } else {
2645 blocksize = sctx->sectorsize;
2646 WARN_ON(1);
2647 }
2648
2649 while (len) {
2650 u64 l = min_t(u64, len, blocksize);
2651 int have_csum = 0;
2652
2653 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2654 /* push csums to sbio */
2655 have_csum = scrub_find_csum(sctx, logical, csum);
2656 if (have_csum == 0)
2657 goto skip;
2658 }
2659 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2660 flags, gen, mirror_num,
2661 have_csum ? csum : NULL);
2662 if (ret)
2663 return ret;
2664skip:
2665 len -= l;
2666 logical += l;
2667 physical += l;
2668 }
2669 return 0;
2670}
2671
2672/*
2673 * Given a physical address, this will calculate it's
2674 * logical offset. if this is a parity stripe, it will return
2675 * the most left data stripe's logical offset.
2676 *
2677 * return 0 if it is a data stripe, 1 means parity stripe.
2678 */
2679static int get_raid56_logic_offset(u64 physical, int num,
2680 struct map_lookup *map, u64 *offset,
2681 u64 *stripe_start)
2682{
2683 int i;
2684 int j = 0;
2685 u64 stripe_nr;
2686 u64 last_offset;
2687 u32 stripe_index;
2688 u32 rot;
2689
2690 last_offset = (physical - map->stripes[num].physical) *
2691 nr_data_stripes(map);
2692 if (stripe_start)
2693 *stripe_start = last_offset;
2694
2695 *offset = last_offset;
2696 for (i = 0; i < nr_data_stripes(map); i++) {
2697 *offset = last_offset + i * map->stripe_len;
2698
2699 stripe_nr = div_u64(*offset, map->stripe_len);
2700 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2701
2702 /* Work out the disk rotation on this stripe-set */
2703 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2704 /* calculate which stripe this data locates */
2705 rot += i;
2706 stripe_index = rot % map->num_stripes;
2707 if (stripe_index == num)
2708 return 0;
2709 if (stripe_index < num)
2710 j++;
2711 }
2712 *offset = last_offset + j * map->stripe_len;
2713 return 1;
2714}
2715
2716static void scrub_free_parity(struct scrub_parity *sparity)
2717{
2718 struct scrub_ctx *sctx = sparity->sctx;
2719 struct scrub_page *curr, *next;
2720 int nbits;
2721
2722 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2723 if (nbits) {
2724 spin_lock(&sctx->stat_lock);
2725 sctx->stat.read_errors += nbits;
2726 sctx->stat.uncorrectable_errors += nbits;
2727 spin_unlock(&sctx->stat_lock);
2728 }
2729
2730 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2731 list_del_init(&curr->list);
2732 scrub_page_put(curr);
2733 }
2734
2735 kfree(sparity);
2736}
2737
2738static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2739{
2740 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2741 work);
2742 struct scrub_ctx *sctx = sparity->sctx;
2743
2744 scrub_free_parity(sparity);
2745 scrub_pending_bio_dec(sctx);
2746}
2747
2748static void scrub_parity_bio_endio(struct bio *bio)
2749{
2750 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2751 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2752
2753 if (bio->bi_error)
2754 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2755 sparity->nsectors);
2756
2757 bio_put(bio);
2758
2759 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2760 scrub_parity_bio_endio_worker, NULL, NULL);
2761 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2762}
2763
2764static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2765{
2766 struct scrub_ctx *sctx = sparity->sctx;
2767 struct btrfs_fs_info *fs_info = sctx->fs_info;
2768 struct bio *bio;
2769 struct btrfs_raid_bio *rbio;
2770 struct scrub_page *spage;
2771 struct btrfs_bio *bbio = NULL;
2772 u64 length;
2773 int ret;
2774
2775 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2776 sparity->nsectors))
2777 goto out;
2778
2779 length = sparity->logic_end - sparity->logic_start;
2780 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781 &length, &bbio, 0, 1);
2782 if (ret || !bbio || !bbio->raid_map)
2783 goto bbio_out;
2784
2785 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2786 if (!bio)
2787 goto bbio_out;
2788
2789 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2790 bio->bi_private = sparity;
2791 bio->bi_end_io = scrub_parity_bio_endio;
2792
2793 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2794 length, sparity->scrub_dev,
2795 sparity->dbitmap,
2796 sparity->nsectors);
2797 if (!rbio)
2798 goto rbio_out;
2799
2800 list_for_each_entry(spage, &sparity->spages, list)
2801 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2802
2803 scrub_pending_bio_inc(sctx);
2804 raid56_parity_submit_scrub_rbio(rbio);
2805 return;
2806
2807rbio_out:
2808 bio_put(bio);
2809bbio_out:
2810 btrfs_put_bbio(bbio);
2811 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2812 sparity->nsectors);
2813 spin_lock(&sctx->stat_lock);
2814 sctx->stat.malloc_errors++;
2815 spin_unlock(&sctx->stat_lock);
2816out:
2817 scrub_free_parity(sparity);
2818}
2819
2820static inline int scrub_calc_parity_bitmap_len(int nsectors)
2821{
2822 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2823}
2824
2825static void scrub_parity_get(struct scrub_parity *sparity)
2826{
2827 atomic_inc(&sparity->refs);
2828}
2829
2830static void scrub_parity_put(struct scrub_parity *sparity)
2831{
2832 if (!atomic_dec_and_test(&sparity->refs))
2833 return;
2834
2835 scrub_parity_check_and_repair(sparity);
2836}
2837
2838static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2839 struct map_lookup *map,
2840 struct btrfs_device *sdev,
2841 struct btrfs_path *path,
2842 u64 logic_start,
2843 u64 logic_end)
2844{
2845 struct btrfs_fs_info *fs_info = sctx->fs_info;
2846 struct btrfs_root *root = fs_info->extent_root;
2847 struct btrfs_root *csum_root = fs_info->csum_root;
2848 struct btrfs_extent_item *extent;
2849 struct btrfs_bio *bbio = NULL;
2850 u64 flags;
2851 int ret;
2852 int slot;
2853 struct extent_buffer *l;
2854 struct btrfs_key key;
2855 u64 generation;
2856 u64 extent_logical;
2857 u64 extent_physical;
2858 u64 extent_len;
2859 u64 mapped_length;
2860 struct btrfs_device *extent_dev;
2861 struct scrub_parity *sparity;
2862 int nsectors;
2863 int bitmap_len;
2864 int extent_mirror_num;
2865 int stop_loop = 0;
2866
2867 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2868 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2869 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2870 GFP_NOFS);
2871 if (!sparity) {
2872 spin_lock(&sctx->stat_lock);
2873 sctx->stat.malloc_errors++;
2874 spin_unlock(&sctx->stat_lock);
2875 return -ENOMEM;
2876 }
2877
2878 sparity->stripe_len = map->stripe_len;
2879 sparity->nsectors = nsectors;
2880 sparity->sctx = sctx;
2881 sparity->scrub_dev = sdev;
2882 sparity->logic_start = logic_start;
2883 sparity->logic_end = logic_end;
2884 atomic_set(&sparity->refs, 1);
2885 INIT_LIST_HEAD(&sparity->spages);
2886 sparity->dbitmap = sparity->bitmap;
2887 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2888
2889 ret = 0;
2890 while (logic_start < logic_end) {
2891 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2892 key.type = BTRFS_METADATA_ITEM_KEY;
2893 else
2894 key.type = BTRFS_EXTENT_ITEM_KEY;
2895 key.objectid = logic_start;
2896 key.offset = (u64)-1;
2897
2898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899 if (ret < 0)
2900 goto out;
2901
2902 if (ret > 0) {
2903 ret = btrfs_previous_extent_item(root, path, 0);
2904 if (ret < 0)
2905 goto out;
2906 if (ret > 0) {
2907 btrfs_release_path(path);
2908 ret = btrfs_search_slot(NULL, root, &key,
2909 path, 0, 0);
2910 if (ret < 0)
2911 goto out;
2912 }
2913 }
2914
2915 stop_loop = 0;
2916 while (1) {
2917 u64 bytes;
2918
2919 l = path->nodes[0];
2920 slot = path->slots[0];
2921 if (slot >= btrfs_header_nritems(l)) {
2922 ret = btrfs_next_leaf(root, path);
2923 if (ret == 0)
2924 continue;
2925 if (ret < 0)
2926 goto out;
2927
2928 stop_loop = 1;
2929 break;
2930 }
2931 btrfs_item_key_to_cpu(l, &key, slot);
2932
2933 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2934 key.type != BTRFS_METADATA_ITEM_KEY)
2935 goto next;
2936
2937 if (key.type == BTRFS_METADATA_ITEM_KEY)
2938 bytes = fs_info->nodesize;
2939 else
2940 bytes = key.offset;
2941
2942 if (key.objectid + bytes <= logic_start)
2943 goto next;
2944
2945 if (key.objectid >= logic_end) {
2946 stop_loop = 1;
2947 break;
2948 }
2949
2950 while (key.objectid >= logic_start + map->stripe_len)
2951 logic_start += map->stripe_len;
2952
2953 extent = btrfs_item_ptr(l, slot,
2954 struct btrfs_extent_item);
2955 flags = btrfs_extent_flags(l, extent);
2956 generation = btrfs_extent_generation(l, extent);
2957
2958 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2959 (key.objectid < logic_start ||
2960 key.objectid + bytes >
2961 logic_start + map->stripe_len)) {
2962 btrfs_err(fs_info,
2963 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964 key.objectid, logic_start);
2965 spin_lock(&sctx->stat_lock);
2966 sctx->stat.uncorrectable_errors++;
2967 spin_unlock(&sctx->stat_lock);
2968 goto next;
2969 }
2970again:
2971 extent_logical = key.objectid;
2972 extent_len = bytes;
2973
2974 if (extent_logical < logic_start) {
2975 extent_len -= logic_start - extent_logical;
2976 extent_logical = logic_start;
2977 }
2978
2979 if (extent_logical + extent_len >
2980 logic_start + map->stripe_len)
2981 extent_len = logic_start + map->stripe_len -
2982 extent_logical;
2983
2984 scrub_parity_mark_sectors_data(sparity, extent_logical,
2985 extent_len);
2986
2987 mapped_length = extent_len;
2988 bbio = NULL;
2989 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2990 extent_logical, &mapped_length, &bbio,
2991 0);
2992 if (!ret) {
2993 if (!bbio || mapped_length < extent_len)
2994 ret = -EIO;
2995 }
2996 if (ret) {
2997 btrfs_put_bbio(bbio);
2998 goto out;
2999 }
3000 extent_physical = bbio->stripes[0].physical;
3001 extent_mirror_num = bbio->mirror_num;
3002 extent_dev = bbio->stripes[0].dev;
3003 btrfs_put_bbio(bbio);
3004
3005 ret = btrfs_lookup_csums_range(csum_root,
3006 extent_logical,
3007 extent_logical + extent_len - 1,
3008 &sctx->csum_list, 1);
3009 if (ret)
3010 goto out;
3011
3012 ret = scrub_extent_for_parity(sparity, extent_logical,
3013 extent_len,
3014 extent_physical,
3015 extent_dev, flags,
3016 generation,
3017 extent_mirror_num);
3018
3019 scrub_free_csums(sctx);
3020
3021 if (ret)
3022 goto out;
3023
3024 if (extent_logical + extent_len <
3025 key.objectid + bytes) {
3026 logic_start += map->stripe_len;
3027
3028 if (logic_start >= logic_end) {
3029 stop_loop = 1;
3030 break;
3031 }
3032
3033 if (logic_start < key.objectid + bytes) {
3034 cond_resched();
3035 goto again;
3036 }
3037 }
3038next:
3039 path->slots[0]++;
3040 }
3041
3042 btrfs_release_path(path);
3043
3044 if (stop_loop)
3045 break;
3046
3047 logic_start += map->stripe_len;
3048 }
3049out:
3050 if (ret < 0)
3051 scrub_parity_mark_sectors_error(sparity, logic_start,
3052 logic_end - logic_start);
3053 scrub_parity_put(sparity);
3054 scrub_submit(sctx);
3055 mutex_lock(&sctx->wr_ctx.wr_lock);
3056 scrub_wr_submit(sctx);
3057 mutex_unlock(&sctx->wr_ctx.wr_lock);
3058
3059 btrfs_release_path(path);
3060 return ret < 0 ? ret : 0;
3061}
3062
3063static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3064 struct map_lookup *map,
3065 struct btrfs_device *scrub_dev,
3066 int num, u64 base, u64 length,
3067 int is_dev_replace)
3068{
3069 struct btrfs_path *path, *ppath;
3070 struct btrfs_fs_info *fs_info = sctx->fs_info;
3071 struct btrfs_root *root = fs_info->extent_root;
3072 struct btrfs_root *csum_root = fs_info->csum_root;
3073 struct btrfs_extent_item *extent;
3074 struct blk_plug plug;
3075 u64 flags;
3076 int ret;
3077 int slot;
3078 u64 nstripes;
3079 struct extent_buffer *l;
3080 u64 physical;
3081 u64 logical;
3082 u64 logic_end;
3083 u64 physical_end;
3084 u64 generation;
3085 int mirror_num;
3086 struct reada_control *reada1;
3087 struct reada_control *reada2;
3088 struct btrfs_key key;
3089 struct btrfs_key key_end;
3090 u64 increment = map->stripe_len;
3091 u64 offset;
3092 u64 extent_logical;
3093 u64 extent_physical;
3094 u64 extent_len;
3095 u64 stripe_logical;
3096 u64 stripe_end;
3097 struct btrfs_device *extent_dev;
3098 int extent_mirror_num;
3099 int stop_loop = 0;
3100
3101 physical = map->stripes[num].physical;
3102 offset = 0;
3103 nstripes = div_u64(length, map->stripe_len);
3104 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3105 offset = map->stripe_len * num;
3106 increment = map->stripe_len * map->num_stripes;
3107 mirror_num = 1;
3108 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3109 int factor = map->num_stripes / map->sub_stripes;
3110 offset = map->stripe_len * (num / map->sub_stripes);
3111 increment = map->stripe_len * factor;
3112 mirror_num = num % map->sub_stripes + 1;
3113 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3114 increment = map->stripe_len;
3115 mirror_num = num % map->num_stripes + 1;
3116 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3117 increment = map->stripe_len;
3118 mirror_num = num % map->num_stripes + 1;
3119 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3120 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3121 increment = map->stripe_len * nr_data_stripes(map);
3122 mirror_num = 1;
3123 } else {
3124 increment = map->stripe_len;
3125 mirror_num = 1;
3126 }
3127
3128 path = btrfs_alloc_path();
3129 if (!path)
3130 return -ENOMEM;
3131
3132 ppath = btrfs_alloc_path();
3133 if (!ppath) {
3134 btrfs_free_path(path);
3135 return -ENOMEM;
3136 }
3137
3138 /*
3139 * work on commit root. The related disk blocks are static as
3140 * long as COW is applied. This means, it is save to rewrite
3141 * them to repair disk errors without any race conditions
3142 */
3143 path->search_commit_root = 1;
3144 path->skip_locking = 1;
3145
3146 ppath->search_commit_root = 1;
3147 ppath->skip_locking = 1;
3148 /*
3149 * trigger the readahead for extent tree csum tree and wait for
3150 * completion. During readahead, the scrub is officially paused
3151 * to not hold off transaction commits
3152 */
3153 logical = base + offset;
3154 physical_end = physical + nstripes * map->stripe_len;
3155 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3156 get_raid56_logic_offset(physical_end, num,
3157 map, &logic_end, NULL);
3158 logic_end += base;
3159 } else {
3160 logic_end = logical + increment * nstripes;
3161 }
3162 wait_event(sctx->list_wait,
3163 atomic_read(&sctx->bios_in_flight) == 0);
3164 scrub_blocked_if_needed(fs_info);
3165
3166 /* FIXME it might be better to start readahead at commit root */
3167 key.objectid = logical;
3168 key.type = BTRFS_EXTENT_ITEM_KEY;
3169 key.offset = (u64)0;
3170 key_end.objectid = logic_end;
3171 key_end.type = BTRFS_METADATA_ITEM_KEY;
3172 key_end.offset = (u64)-1;
3173 reada1 = btrfs_reada_add(root, &key, &key_end);
3174
3175 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3176 key.type = BTRFS_EXTENT_CSUM_KEY;
3177 key.offset = logical;
3178 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3179 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3180 key_end.offset = logic_end;
3181 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3182
3183 if (!IS_ERR(reada1))
3184 btrfs_reada_wait(reada1);
3185 if (!IS_ERR(reada2))
3186 btrfs_reada_wait(reada2);
3187
3188
3189 /*
3190 * collect all data csums for the stripe to avoid seeking during
3191 * the scrub. This might currently (crc32) end up to be about 1MB
3192 */
3193 blk_start_plug(&plug);
3194
3195 /*
3196 * now find all extents for each stripe and scrub them
3197 */
3198 ret = 0;
3199 while (physical < physical_end) {
3200 /*
3201 * canceled?
3202 */
3203 if (atomic_read(&fs_info->scrub_cancel_req) ||
3204 atomic_read(&sctx->cancel_req)) {
3205 ret = -ECANCELED;
3206 goto out;
3207 }
3208 /*
3209 * check to see if we have to pause
3210 */
3211 if (atomic_read(&fs_info->scrub_pause_req)) {
3212 /* push queued extents */
3213 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3214 scrub_submit(sctx);
3215 mutex_lock(&sctx->wr_ctx.wr_lock);
3216 scrub_wr_submit(sctx);
3217 mutex_unlock(&sctx->wr_ctx.wr_lock);
3218 wait_event(sctx->list_wait,
3219 atomic_read(&sctx->bios_in_flight) == 0);
3220 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3221 scrub_blocked_if_needed(fs_info);
3222 }
3223
3224 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3225 ret = get_raid56_logic_offset(physical, num, map,
3226 &logical,
3227 &stripe_logical);
3228 logical += base;
3229 if (ret) {
3230 /* it is parity strip */
3231 stripe_logical += base;
3232 stripe_end = stripe_logical + increment;
3233 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3234 ppath, stripe_logical,
3235 stripe_end);
3236 if (ret)
3237 goto out;
3238 goto skip;
3239 }
3240 }
3241
3242 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3243 key.type = BTRFS_METADATA_ITEM_KEY;
3244 else
3245 key.type = BTRFS_EXTENT_ITEM_KEY;
3246 key.objectid = logical;
3247 key.offset = (u64)-1;
3248
3249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3250 if (ret < 0)
3251 goto out;
3252
3253 if (ret > 0) {
3254 ret = btrfs_previous_extent_item(root, path, 0);
3255 if (ret < 0)
3256 goto out;
3257 if (ret > 0) {
3258 /* there's no smaller item, so stick with the
3259 * larger one */
3260 btrfs_release_path(path);
3261 ret = btrfs_search_slot(NULL, root, &key,
3262 path, 0, 0);
3263 if (ret < 0)
3264 goto out;
3265 }
3266 }
3267
3268 stop_loop = 0;
3269 while (1) {
3270 u64 bytes;
3271
3272 l = path->nodes[0];
3273 slot = path->slots[0];
3274 if (slot >= btrfs_header_nritems(l)) {
3275 ret = btrfs_next_leaf(root, path);
3276 if (ret == 0)
3277 continue;
3278 if (ret < 0)
3279 goto out;
3280
3281 stop_loop = 1;
3282 break;
3283 }
3284 btrfs_item_key_to_cpu(l, &key, slot);
3285
3286 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3287 key.type != BTRFS_METADATA_ITEM_KEY)
3288 goto next;
3289
3290 if (key.type == BTRFS_METADATA_ITEM_KEY)
3291 bytes = fs_info->nodesize;
3292 else
3293 bytes = key.offset;
3294
3295 if (key.objectid + bytes <= logical)
3296 goto next;
3297
3298 if (key.objectid >= logical + map->stripe_len) {
3299 /* out of this device extent */
3300 if (key.objectid >= logic_end)
3301 stop_loop = 1;
3302 break;
3303 }
3304
3305 extent = btrfs_item_ptr(l, slot,
3306 struct btrfs_extent_item);
3307 flags = btrfs_extent_flags(l, extent);
3308 generation = btrfs_extent_generation(l, extent);
3309
3310 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3311 (key.objectid < logical ||
3312 key.objectid + bytes >
3313 logical + map->stripe_len)) {
3314 btrfs_err(fs_info,
3315 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3316 key.objectid, logical);
3317 spin_lock(&sctx->stat_lock);
3318 sctx->stat.uncorrectable_errors++;
3319 spin_unlock(&sctx->stat_lock);
3320 goto next;
3321 }
3322
3323again:
3324 extent_logical = key.objectid;
3325 extent_len = bytes;
3326
3327 /*
3328 * trim extent to this stripe
3329 */
3330 if (extent_logical < logical) {
3331 extent_len -= logical - extent_logical;
3332 extent_logical = logical;
3333 }
3334 if (extent_logical + extent_len >
3335 logical + map->stripe_len) {
3336 extent_len = logical + map->stripe_len -
3337 extent_logical;
3338 }
3339
3340 extent_physical = extent_logical - logical + physical;
3341 extent_dev = scrub_dev;
3342 extent_mirror_num = mirror_num;
3343 if (is_dev_replace)
3344 scrub_remap_extent(fs_info, extent_logical,
3345 extent_len, &extent_physical,
3346 &extent_dev,
3347 &extent_mirror_num);
3348
3349 ret = btrfs_lookup_csums_range(csum_root,
3350 extent_logical,
3351 extent_logical +
3352 extent_len - 1,
3353 &sctx->csum_list, 1);
3354 if (ret)
3355 goto out;
3356
3357 ret = scrub_extent(sctx, extent_logical, extent_len,
3358 extent_physical, extent_dev, flags,
3359 generation, extent_mirror_num,
3360 extent_logical - logical + physical);
3361
3362 scrub_free_csums(sctx);
3363
3364 if (ret)
3365 goto out;
3366
3367 if (extent_logical + extent_len <
3368 key.objectid + bytes) {
3369 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3370 /*
3371 * loop until we find next data stripe
3372 * or we have finished all stripes.
3373 */
3374loop:
3375 physical += map->stripe_len;
3376 ret = get_raid56_logic_offset(physical,
3377 num, map, &logical,
3378 &stripe_logical);
3379 logical += base;
3380
3381 if (ret && physical < physical_end) {
3382 stripe_logical += base;
3383 stripe_end = stripe_logical +
3384 increment;
3385 ret = scrub_raid56_parity(sctx,
3386 map, scrub_dev, ppath,
3387 stripe_logical,
3388 stripe_end);
3389 if (ret)
3390 goto out;
3391 goto loop;
3392 }
3393 } else {
3394 physical += map->stripe_len;
3395 logical += increment;
3396 }
3397 if (logical < key.objectid + bytes) {
3398 cond_resched();
3399 goto again;
3400 }
3401
3402 if (physical >= physical_end) {
3403 stop_loop = 1;
3404 break;
3405 }
3406 }
3407next:
3408 path->slots[0]++;
3409 }
3410 btrfs_release_path(path);
3411skip:
3412 logical += increment;
3413 physical += map->stripe_len;
3414 spin_lock(&sctx->stat_lock);
3415 if (stop_loop)
3416 sctx->stat.last_physical = map->stripes[num].physical +
3417 length;
3418 else
3419 sctx->stat.last_physical = physical;
3420 spin_unlock(&sctx->stat_lock);
3421 if (stop_loop)
3422 break;
3423 }
3424out:
3425 /* push queued extents */
3426 scrub_submit(sctx);
3427 mutex_lock(&sctx->wr_ctx.wr_lock);
3428 scrub_wr_submit(sctx);
3429 mutex_unlock(&sctx->wr_ctx.wr_lock);
3430
3431 blk_finish_plug(&plug);
3432 btrfs_free_path(path);
3433 btrfs_free_path(ppath);
3434 return ret < 0 ? ret : 0;
3435}
3436
3437static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3438 struct btrfs_device *scrub_dev,
3439 u64 chunk_offset, u64 length,
3440 u64 dev_offset,
3441 struct btrfs_block_group_cache *cache,
3442 int is_dev_replace)
3443{
3444 struct btrfs_fs_info *fs_info = sctx->fs_info;
3445 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3446 struct map_lookup *map;
3447 struct extent_map *em;
3448 int i;
3449 int ret = 0;
3450
3451 read_lock(&map_tree->map_tree.lock);
3452 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3453 read_unlock(&map_tree->map_tree.lock);
3454
3455 if (!em) {
3456 /*
3457 * Might have been an unused block group deleted by the cleaner
3458 * kthread or relocation.
3459 */
3460 spin_lock(&cache->lock);
3461 if (!cache->removed)
3462 ret = -EINVAL;
3463 spin_unlock(&cache->lock);
3464
3465 return ret;
3466 }
3467
3468 map = em->map_lookup;
3469 if (em->start != chunk_offset)
3470 goto out;
3471
3472 if (em->len < length)
3473 goto out;
3474
3475 for (i = 0; i < map->num_stripes; ++i) {
3476 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3477 map->stripes[i].physical == dev_offset) {
3478 ret = scrub_stripe(sctx, map, scrub_dev, i,
3479 chunk_offset, length,
3480 is_dev_replace);
3481 if (ret)
3482 goto out;
3483 }
3484 }
3485out:
3486 free_extent_map(em);
3487
3488 return ret;
3489}
3490
3491static noinline_for_stack
3492int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3493 struct btrfs_device *scrub_dev, u64 start, u64 end,
3494 int is_dev_replace)
3495{
3496 struct btrfs_dev_extent *dev_extent = NULL;
3497 struct btrfs_path *path;
3498 struct btrfs_fs_info *fs_info = sctx->fs_info;
3499 struct btrfs_root *root = fs_info->dev_root;
3500 u64 length;
3501 u64 chunk_offset;
3502 int ret = 0;
3503 int ro_set;
3504 int slot;
3505 struct extent_buffer *l;
3506 struct btrfs_key key;
3507 struct btrfs_key found_key;
3508 struct btrfs_block_group_cache *cache;
3509 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3510
3511 path = btrfs_alloc_path();
3512 if (!path)
3513 return -ENOMEM;
3514
3515 path->reada = READA_FORWARD;
3516 path->search_commit_root = 1;
3517 path->skip_locking = 1;
3518
3519 key.objectid = scrub_dev->devid;
3520 key.offset = 0ull;
3521 key.type = BTRFS_DEV_EXTENT_KEY;
3522
3523 while (1) {
3524 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3525 if (ret < 0)
3526 break;
3527 if (ret > 0) {
3528 if (path->slots[0] >=
3529 btrfs_header_nritems(path->nodes[0])) {
3530 ret = btrfs_next_leaf(root, path);
3531 if (ret < 0)
3532 break;
3533 if (ret > 0) {
3534 ret = 0;
3535 break;
3536 }
3537 } else {
3538 ret = 0;
3539 }
3540 }
3541
3542 l = path->nodes[0];
3543 slot = path->slots[0];
3544
3545 btrfs_item_key_to_cpu(l, &found_key, slot);
3546
3547 if (found_key.objectid != scrub_dev->devid)
3548 break;
3549
3550 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3551 break;
3552
3553 if (found_key.offset >= end)
3554 break;
3555
3556 if (found_key.offset < key.offset)
3557 break;
3558
3559 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3560 length = btrfs_dev_extent_length(l, dev_extent);
3561
3562 if (found_key.offset + length <= start)
3563 goto skip;
3564
3565 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3566
3567 /*
3568 * get a reference on the corresponding block group to prevent
3569 * the chunk from going away while we scrub it
3570 */
3571 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572
3573 /* some chunks are removed but not committed to disk yet,
3574 * continue scrubbing */
3575 if (!cache)
3576 goto skip;
3577
3578 /*
3579 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3580 * to avoid deadlock caused by:
3581 * btrfs_inc_block_group_ro()
3582 * -> btrfs_wait_for_commit()
3583 * -> btrfs_commit_transaction()
3584 * -> btrfs_scrub_pause()
3585 */
3586 scrub_pause_on(fs_info);
3587 ret = btrfs_inc_block_group_ro(root, cache);
3588 if (!ret && is_dev_replace) {
3589 /*
3590 * If we are doing a device replace wait for any tasks
3591 * that started dellaloc right before we set the block
3592 * group to RO mode, as they might have just allocated
3593 * an extent from it or decided they could do a nocow
3594 * write. And if any such tasks did that, wait for their
3595 * ordered extents to complete and then commit the
3596 * current transaction, so that we can later see the new
3597 * extent items in the extent tree - the ordered extents
3598 * create delayed data references (for cow writes) when
3599 * they complete, which will be run and insert the
3600 * corresponding extent items into the extent tree when
3601 * we commit the transaction they used when running
3602 * inode.c:btrfs_finish_ordered_io(). We later use
3603 * the commit root of the extent tree to find extents
3604 * to copy from the srcdev into the tgtdev, and we don't
3605 * want to miss any new extents.
3606 */
3607 btrfs_wait_block_group_reservations(cache);
3608 btrfs_wait_nocow_writers(cache);
3609 ret = btrfs_wait_ordered_roots(fs_info, -1,
3610 cache->key.objectid,
3611 cache->key.offset);
3612 if (ret > 0) {
3613 struct btrfs_trans_handle *trans;
3614
3615 trans = btrfs_join_transaction(root);
3616 if (IS_ERR(trans))
3617 ret = PTR_ERR(trans);
3618 else
3619 ret = btrfs_commit_transaction(trans);
3620 if (ret) {
3621 scrub_pause_off(fs_info);
3622 btrfs_put_block_group(cache);
3623 break;
3624 }
3625 }
3626 }
3627 scrub_pause_off(fs_info);
3628
3629 if (ret == 0) {
3630 ro_set = 1;
3631 } else if (ret == -ENOSPC) {
3632 /*
3633 * btrfs_inc_block_group_ro return -ENOSPC when it
3634 * failed in creating new chunk for metadata.
3635 * It is not a problem for scrub/replace, because
3636 * metadata are always cowed, and our scrub paused
3637 * commit_transactions.
3638 */
3639 ro_set = 0;
3640 } else {
3641 btrfs_warn(fs_info,
3642 "failed setting block group ro, ret=%d\n",
3643 ret);
3644 btrfs_put_block_group(cache);
3645 break;
3646 }
3647
3648 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3649 dev_replace->cursor_right = found_key.offset + length;
3650 dev_replace->cursor_left = found_key.offset;
3651 dev_replace->item_needs_writeback = 1;
3652 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3653 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3654 found_key.offset, cache, is_dev_replace);
3655
3656 /*
3657 * flush, submit all pending read and write bios, afterwards
3658 * wait for them.
3659 * Note that in the dev replace case, a read request causes
3660 * write requests that are submitted in the read completion
3661 * worker. Therefore in the current situation, it is required
3662 * that all write requests are flushed, so that all read and
3663 * write requests are really completed when bios_in_flight
3664 * changes to 0.
3665 */
3666 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3667 scrub_submit(sctx);
3668 mutex_lock(&sctx->wr_ctx.wr_lock);
3669 scrub_wr_submit(sctx);
3670 mutex_unlock(&sctx->wr_ctx.wr_lock);
3671
3672 wait_event(sctx->list_wait,
3673 atomic_read(&sctx->bios_in_flight) == 0);
3674
3675 scrub_pause_on(fs_info);
3676
3677 /*
3678 * must be called before we decrease @scrub_paused.
3679 * make sure we don't block transaction commit while
3680 * we are waiting pending workers finished.
3681 */
3682 wait_event(sctx->list_wait,
3683 atomic_read(&sctx->workers_pending) == 0);
3684 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3685
3686 scrub_pause_off(fs_info);
3687
3688 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3689 dev_replace->cursor_left = dev_replace->cursor_right;
3690 dev_replace->item_needs_writeback = 1;
3691 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3692
3693 if (ro_set)
3694 btrfs_dec_block_group_ro(cache);
3695
3696 /*
3697 * We might have prevented the cleaner kthread from deleting
3698 * this block group if it was already unused because we raced
3699 * and set it to RO mode first. So add it back to the unused
3700 * list, otherwise it might not ever be deleted unless a manual
3701 * balance is triggered or it becomes used and unused again.
3702 */
3703 spin_lock(&cache->lock);
3704 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3705 btrfs_block_group_used(&cache->item) == 0) {
3706 spin_unlock(&cache->lock);
3707 spin_lock(&fs_info->unused_bgs_lock);
3708 if (list_empty(&cache->bg_list)) {
3709 btrfs_get_block_group(cache);
3710 list_add_tail(&cache->bg_list,
3711 &fs_info->unused_bgs);
3712 }
3713 spin_unlock(&fs_info->unused_bgs_lock);
3714 } else {
3715 spin_unlock(&cache->lock);
3716 }
3717
3718 btrfs_put_block_group(cache);
3719 if (ret)
3720 break;
3721 if (is_dev_replace &&
3722 atomic64_read(&dev_replace->num_write_errors) > 0) {
3723 ret = -EIO;
3724 break;
3725 }
3726 if (sctx->stat.malloc_errors > 0) {
3727 ret = -ENOMEM;
3728 break;
3729 }
3730skip:
3731 key.offset = found_key.offset + length;
3732 btrfs_release_path(path);
3733 }
3734
3735 btrfs_free_path(path);
3736
3737 return ret;
3738}
3739
3740static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3741 struct btrfs_device *scrub_dev)
3742{
3743 int i;
3744 u64 bytenr;
3745 u64 gen;
3746 int ret;
3747 struct btrfs_fs_info *fs_info = sctx->fs_info;
3748
3749 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750 return -EIO;
3751
3752 /* Seed devices of a new filesystem has their own generation. */
3753 if (scrub_dev->fs_devices != fs_info->fs_devices)
3754 gen = scrub_dev->generation;
3755 else
3756 gen = fs_info->last_trans_committed;
3757
3758 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3759 bytenr = btrfs_sb_offset(i);
3760 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3761 scrub_dev->commit_total_bytes)
3762 break;
3763
3764 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3765 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3766 NULL, 1, bytenr);
3767 if (ret)
3768 return ret;
3769 }
3770 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3771
3772 return 0;
3773}
3774
3775/*
3776 * get a reference count on fs_info->scrub_workers. start worker if necessary
3777 */
3778static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3779 int is_dev_replace)
3780{
3781 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3782 int max_active = fs_info->thread_pool_size;
3783
3784 if (fs_info->scrub_workers_refcnt == 0) {
3785 if (is_dev_replace)
3786 fs_info->scrub_workers =
3787 btrfs_alloc_workqueue(fs_info, "scrub", flags,
3788 1, 4);
3789 else
3790 fs_info->scrub_workers =
3791 btrfs_alloc_workqueue(fs_info, "scrub", flags,
3792 max_active, 4);
3793 if (!fs_info->scrub_workers)
3794 goto fail_scrub_workers;
3795
3796 fs_info->scrub_wr_completion_workers =
3797 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3798 max_active, 2);
3799 if (!fs_info->scrub_wr_completion_workers)
3800 goto fail_scrub_wr_completion_workers;
3801
3802 fs_info->scrub_nocow_workers =
3803 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3804 if (!fs_info->scrub_nocow_workers)
3805 goto fail_scrub_nocow_workers;
3806 fs_info->scrub_parity_workers =
3807 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3808 max_active, 2);
3809 if (!fs_info->scrub_parity_workers)
3810 goto fail_scrub_parity_workers;
3811 }
3812 ++fs_info->scrub_workers_refcnt;
3813 return 0;
3814
3815fail_scrub_parity_workers:
3816 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3817fail_scrub_nocow_workers:
3818 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3819fail_scrub_wr_completion_workers:
3820 btrfs_destroy_workqueue(fs_info->scrub_workers);
3821fail_scrub_workers:
3822 return -ENOMEM;
3823}
3824
3825static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3826{
3827 if (--fs_info->scrub_workers_refcnt == 0) {
3828 btrfs_destroy_workqueue(fs_info->scrub_workers);
3829 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3830 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3831 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3832 }
3833 WARN_ON(fs_info->scrub_workers_refcnt < 0);
3834}
3835
3836int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3837 u64 end, struct btrfs_scrub_progress *progress,
3838 int readonly, int is_dev_replace)
3839{
3840 struct scrub_ctx *sctx;
3841 int ret;
3842 struct btrfs_device *dev;
3843 struct rcu_string *name;
3844
3845 if (btrfs_fs_closing(fs_info))
3846 return -EINVAL;
3847
3848 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3849 /*
3850 * in this case scrub is unable to calculate the checksum
3851 * the way scrub is implemented. Do not handle this
3852 * situation at all because it won't ever happen.
3853 */
3854 btrfs_err(fs_info,
3855 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3856 fs_info->nodesize,
3857 BTRFS_STRIPE_LEN);
3858 return -EINVAL;
3859 }
3860
3861 if (fs_info->sectorsize != PAGE_SIZE) {
3862 /* not supported for data w/o checksums */
3863 btrfs_err_rl(fs_info,
3864 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3865 fs_info->sectorsize, PAGE_SIZE);
3866 return -EINVAL;
3867 }
3868
3869 if (fs_info->nodesize >
3870 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3871 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3872 /*
3873 * would exhaust the array bounds of pagev member in
3874 * struct scrub_block
3875 */
3876 btrfs_err(fs_info,
3877 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3878 fs_info->nodesize,
3879 SCRUB_MAX_PAGES_PER_BLOCK,
3880 fs_info->sectorsize,
3881 SCRUB_MAX_PAGES_PER_BLOCK);
3882 return -EINVAL;
3883 }
3884
3885
3886 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3887 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3888 if (!dev || (dev->missing && !is_dev_replace)) {
3889 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890 return -ENODEV;
3891 }
3892
3893 if (!is_dev_replace && !readonly && !dev->writeable) {
3894 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3895 rcu_read_lock();
3896 name = rcu_dereference(dev->name);
3897 btrfs_err(fs_info, "scrub: device %s is not writable",
3898 name->str);
3899 rcu_read_unlock();
3900 return -EROFS;
3901 }
3902
3903 mutex_lock(&fs_info->scrub_lock);
3904 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3905 mutex_unlock(&fs_info->scrub_lock);
3906 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907 return -EIO;
3908 }
3909
3910 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3911 if (dev->scrub_device ||
3912 (!is_dev_replace &&
3913 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3914 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3915 mutex_unlock(&fs_info->scrub_lock);
3916 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3917 return -EINPROGRESS;
3918 }
3919 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3920
3921 ret = scrub_workers_get(fs_info, is_dev_replace);
3922 if (ret) {
3923 mutex_unlock(&fs_info->scrub_lock);
3924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925 return ret;
3926 }
3927
3928 sctx = scrub_setup_ctx(dev, is_dev_replace);
3929 if (IS_ERR(sctx)) {
3930 mutex_unlock(&fs_info->scrub_lock);
3931 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932 scrub_workers_put(fs_info);
3933 return PTR_ERR(sctx);
3934 }
3935 sctx->readonly = readonly;
3936 dev->scrub_device = sctx;
3937 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938
3939 /*
3940 * checking @scrub_pause_req here, we can avoid
3941 * race between committing transaction and scrubbing.
3942 */
3943 __scrub_blocked_if_needed(fs_info);
3944 atomic_inc(&fs_info->scrubs_running);
3945 mutex_unlock(&fs_info->scrub_lock);
3946
3947 if (!is_dev_replace) {
3948 /*
3949 * by holding device list mutex, we can
3950 * kick off writing super in log tree sync.
3951 */
3952 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3953 ret = scrub_supers(sctx, dev);
3954 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3955 }
3956
3957 if (!ret)
3958 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3959 is_dev_replace);
3960
3961 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3962 atomic_dec(&fs_info->scrubs_running);
3963 wake_up(&fs_info->scrub_pause_wait);
3964
3965 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3966
3967 if (progress)
3968 memcpy(progress, &sctx->stat, sizeof(*progress));
3969
3970 mutex_lock(&fs_info->scrub_lock);
3971 dev->scrub_device = NULL;
3972 scrub_workers_put(fs_info);
3973 mutex_unlock(&fs_info->scrub_lock);
3974
3975 scrub_put_ctx(sctx);
3976
3977 return ret;
3978}
3979
3980void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3981{
3982 mutex_lock(&fs_info->scrub_lock);
3983 atomic_inc(&fs_info->scrub_pause_req);
3984 while (atomic_read(&fs_info->scrubs_paused) !=
3985 atomic_read(&fs_info->scrubs_running)) {
3986 mutex_unlock(&fs_info->scrub_lock);
3987 wait_event(fs_info->scrub_pause_wait,
3988 atomic_read(&fs_info->scrubs_paused) ==
3989 atomic_read(&fs_info->scrubs_running));
3990 mutex_lock(&fs_info->scrub_lock);
3991 }
3992 mutex_unlock(&fs_info->scrub_lock);
3993}
3994
3995void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3996{
3997 atomic_dec(&fs_info->scrub_pause_req);
3998 wake_up(&fs_info->scrub_pause_wait);
3999}
4000
4001int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4002{
4003 mutex_lock(&fs_info->scrub_lock);
4004 if (!atomic_read(&fs_info->scrubs_running)) {
4005 mutex_unlock(&fs_info->scrub_lock);
4006 return -ENOTCONN;
4007 }
4008
4009 atomic_inc(&fs_info->scrub_cancel_req);
4010 while (atomic_read(&fs_info->scrubs_running)) {
4011 mutex_unlock(&fs_info->scrub_lock);
4012 wait_event(fs_info->scrub_pause_wait,
4013 atomic_read(&fs_info->scrubs_running) == 0);
4014 mutex_lock(&fs_info->scrub_lock);
4015 }
4016 atomic_dec(&fs_info->scrub_cancel_req);
4017 mutex_unlock(&fs_info->scrub_lock);
4018
4019 return 0;
4020}
4021
4022int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4023 struct btrfs_device *dev)
4024{
4025 struct scrub_ctx *sctx;
4026
4027 mutex_lock(&fs_info->scrub_lock);
4028 sctx = dev->scrub_device;
4029 if (!sctx) {
4030 mutex_unlock(&fs_info->scrub_lock);
4031 return -ENOTCONN;
4032 }
4033 atomic_inc(&sctx->cancel_req);
4034 while (dev->scrub_device) {
4035 mutex_unlock(&fs_info->scrub_lock);
4036 wait_event(fs_info->scrub_pause_wait,
4037 dev->scrub_device == NULL);
4038 mutex_lock(&fs_info->scrub_lock);
4039 }
4040 mutex_unlock(&fs_info->scrub_lock);
4041
4042 return 0;
4043}
4044
4045int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046 struct btrfs_scrub_progress *progress)
4047{
4048 struct btrfs_device *dev;
4049 struct scrub_ctx *sctx = NULL;
4050
4051 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4052 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4053 if (dev)
4054 sctx = dev->scrub_device;
4055 if (sctx)
4056 memcpy(progress, &sctx->stat, sizeof(*progress));
4057 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058
4059 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4060}
4061
4062static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4063 u64 extent_logical, u64 extent_len,
4064 u64 *extent_physical,
4065 struct btrfs_device **extent_dev,
4066 int *extent_mirror_num)
4067{
4068 u64 mapped_length;
4069 struct btrfs_bio *bbio = NULL;
4070 int ret;
4071
4072 mapped_length = extent_len;
4073 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4074 &mapped_length, &bbio, 0);
4075 if (ret || !bbio || mapped_length < extent_len ||
4076 !bbio->stripes[0].dev->bdev) {
4077 btrfs_put_bbio(bbio);
4078 return;
4079 }
4080
4081 *extent_physical = bbio->stripes[0].physical;
4082 *extent_mirror_num = bbio->mirror_num;
4083 *extent_dev = bbio->stripes[0].dev;
4084 btrfs_put_bbio(bbio);
4085}
4086
4087static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4088 struct scrub_wr_ctx *wr_ctx,
4089 struct btrfs_fs_info *fs_info,
4090 struct btrfs_device *dev,
4091 int is_dev_replace)
4092{
4093 WARN_ON(wr_ctx->wr_curr_bio != NULL);
4094
4095 mutex_init(&wr_ctx->wr_lock);
4096 wr_ctx->wr_curr_bio = NULL;
4097 if (!is_dev_replace)
4098 return 0;
4099
4100 WARN_ON(!dev->bdev);
4101 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4102 wr_ctx->tgtdev = dev;
4103 atomic_set(&wr_ctx->flush_all_writes, 0);
4104 return 0;
4105}
4106
4107static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4108{
4109 mutex_lock(&wr_ctx->wr_lock);
4110 kfree(wr_ctx->wr_curr_bio);
4111 wr_ctx->wr_curr_bio = NULL;
4112 mutex_unlock(&wr_ctx->wr_lock);
4113}
4114
4115static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4116 int mirror_num, u64 physical_for_dev_replace)
4117{
4118 struct scrub_copy_nocow_ctx *nocow_ctx;
4119 struct btrfs_fs_info *fs_info = sctx->fs_info;
4120
4121 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4122 if (!nocow_ctx) {
4123 spin_lock(&sctx->stat_lock);
4124 sctx->stat.malloc_errors++;
4125 spin_unlock(&sctx->stat_lock);
4126 return -ENOMEM;
4127 }
4128
4129 scrub_pending_trans_workers_inc(sctx);
4130
4131 nocow_ctx->sctx = sctx;
4132 nocow_ctx->logical = logical;
4133 nocow_ctx->len = len;
4134 nocow_ctx->mirror_num = mirror_num;
4135 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4136 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4137 copy_nocow_pages_worker, NULL, NULL);
4138 INIT_LIST_HEAD(&nocow_ctx->inodes);
4139 btrfs_queue_work(fs_info->scrub_nocow_workers,
4140 &nocow_ctx->work);
4141
4142 return 0;
4143}
4144
4145static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4146{
4147 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4148 struct scrub_nocow_inode *nocow_inode;
4149
4150 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4151 if (!nocow_inode)
4152 return -ENOMEM;
4153 nocow_inode->inum = inum;
4154 nocow_inode->offset = offset;
4155 nocow_inode->root = root;
4156 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4157 return 0;
4158}
4159
4160#define COPY_COMPLETE 1
4161
4162static void copy_nocow_pages_worker(struct btrfs_work *work)
4163{
4164 struct scrub_copy_nocow_ctx *nocow_ctx =
4165 container_of(work, struct scrub_copy_nocow_ctx, work);
4166 struct scrub_ctx *sctx = nocow_ctx->sctx;
4167 struct btrfs_fs_info *fs_info = sctx->fs_info;
4168 struct btrfs_root *root = fs_info->extent_root;
4169 u64 logical = nocow_ctx->logical;
4170 u64 len = nocow_ctx->len;
4171 int mirror_num = nocow_ctx->mirror_num;
4172 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173 int ret;
4174 struct btrfs_trans_handle *trans = NULL;
4175 struct btrfs_path *path;
4176 int not_written = 0;
4177
4178 path = btrfs_alloc_path();
4179 if (!path) {
4180 spin_lock(&sctx->stat_lock);
4181 sctx->stat.malloc_errors++;
4182 spin_unlock(&sctx->stat_lock);
4183 not_written = 1;
4184 goto out;
4185 }
4186
4187 trans = btrfs_join_transaction(root);
4188 if (IS_ERR(trans)) {
4189 not_written = 1;
4190 goto out;
4191 }
4192
4193 ret = iterate_inodes_from_logical(logical, fs_info, path,
4194 record_inode_for_nocow, nocow_ctx);
4195 if (ret != 0 && ret != -ENOENT) {
4196 btrfs_warn(fs_info,
4197 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4198 logical, physical_for_dev_replace, len, mirror_num,
4199 ret);
4200 not_written = 1;
4201 goto out;
4202 }
4203
4204 btrfs_end_transaction(trans);
4205 trans = NULL;
4206 while (!list_empty(&nocow_ctx->inodes)) {
4207 struct scrub_nocow_inode *entry;
4208 entry = list_first_entry(&nocow_ctx->inodes,
4209 struct scrub_nocow_inode,
4210 list);
4211 list_del_init(&entry->list);
4212 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4213 entry->root, nocow_ctx);
4214 kfree(entry);
4215 if (ret == COPY_COMPLETE) {
4216 ret = 0;
4217 break;
4218 } else if (ret) {
4219 break;
4220 }
4221 }
4222out:
4223 while (!list_empty(&nocow_ctx->inodes)) {
4224 struct scrub_nocow_inode *entry;
4225 entry = list_first_entry(&nocow_ctx->inodes,
4226 struct scrub_nocow_inode,
4227 list);
4228 list_del_init(&entry->list);
4229 kfree(entry);
4230 }
4231 if (trans && !IS_ERR(trans))
4232 btrfs_end_transaction(trans);
4233 if (not_written)
4234 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4235 num_uncorrectable_read_errors);
4236
4237 btrfs_free_path(path);
4238 kfree(nocow_ctx);
4239
4240 scrub_pending_trans_workers_dec(sctx);
4241}
4242
4243static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4244 u64 logical)
4245{
4246 struct extent_state *cached_state = NULL;
4247 struct btrfs_ordered_extent *ordered;
4248 struct extent_io_tree *io_tree;
4249 struct extent_map *em;
4250 u64 lockstart = start, lockend = start + len - 1;
4251 int ret = 0;
4252
4253 io_tree = &BTRFS_I(inode)->io_tree;
4254
4255 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4256 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4257 if (ordered) {
4258 btrfs_put_ordered_extent(ordered);
4259 ret = 1;
4260 goto out_unlock;
4261 }
4262
4263 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4264 if (IS_ERR(em)) {
4265 ret = PTR_ERR(em);
4266 goto out_unlock;
4267 }
4268
4269 /*
4270 * This extent does not actually cover the logical extent anymore,
4271 * move on to the next inode.
4272 */
4273 if (em->block_start > logical ||
4274 em->block_start + em->block_len < logical + len) {
4275 free_extent_map(em);
4276 ret = 1;
4277 goto out_unlock;
4278 }
4279 free_extent_map(em);
4280
4281out_unlock:
4282 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4283 GFP_NOFS);
4284 return ret;
4285}
4286
4287static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4288 struct scrub_copy_nocow_ctx *nocow_ctx)
4289{
4290 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4291 struct btrfs_key key;
4292 struct inode *inode;
4293 struct page *page;
4294 struct btrfs_root *local_root;
4295 struct extent_io_tree *io_tree;
4296 u64 physical_for_dev_replace;
4297 u64 nocow_ctx_logical;
4298 u64 len = nocow_ctx->len;
4299 unsigned long index;
4300 int srcu_index;
4301 int ret = 0;
4302 int err = 0;
4303
4304 key.objectid = root;
4305 key.type = BTRFS_ROOT_ITEM_KEY;
4306 key.offset = (u64)-1;
4307
4308 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4309
4310 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4311 if (IS_ERR(local_root)) {
4312 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4313 return PTR_ERR(local_root);
4314 }
4315
4316 key.type = BTRFS_INODE_ITEM_KEY;
4317 key.objectid = inum;
4318 key.offset = 0;
4319 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4320 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4321 if (IS_ERR(inode))
4322 return PTR_ERR(inode);
4323
4324 /* Avoid truncate/dio/punch hole.. */
4325 inode_lock(inode);
4326 inode_dio_wait(inode);
4327
4328 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4329 io_tree = &BTRFS_I(inode)->io_tree;
4330 nocow_ctx_logical = nocow_ctx->logical;
4331
4332 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4333 if (ret) {
4334 ret = ret > 0 ? 0 : ret;
4335 goto out;
4336 }
4337
4338 while (len >= PAGE_SIZE) {
4339 index = offset >> PAGE_SHIFT;
4340again:
4341 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4342 if (!page) {
4343 btrfs_err(fs_info, "find_or_create_page() failed");
4344 ret = -ENOMEM;
4345 goto out;
4346 }
4347
4348 if (PageUptodate(page)) {
4349 if (PageDirty(page))
4350 goto next_page;
4351 } else {
4352 ClearPageError(page);
4353 err = extent_read_full_page(io_tree, page,
4354 btrfs_get_extent,
4355 nocow_ctx->mirror_num);
4356 if (err) {
4357 ret = err;
4358 goto next_page;
4359 }
4360
4361 lock_page(page);
4362 /*
4363 * If the page has been remove from the page cache,
4364 * the data on it is meaningless, because it may be
4365 * old one, the new data may be written into the new
4366 * page in the page cache.
4367 */
4368 if (page->mapping != inode->i_mapping) {
4369 unlock_page(page);
4370 put_page(page);
4371 goto again;
4372 }
4373 if (!PageUptodate(page)) {
4374 ret = -EIO;
4375 goto next_page;
4376 }
4377 }
4378
4379 ret = check_extent_to_block(inode, offset, len,
4380 nocow_ctx_logical);
4381 if (ret) {
4382 ret = ret > 0 ? 0 : ret;
4383 goto next_page;
4384 }
4385
4386 err = write_page_nocow(nocow_ctx->sctx,
4387 physical_for_dev_replace, page);
4388 if (err)
4389 ret = err;
4390next_page:
4391 unlock_page(page);
4392 put_page(page);
4393
4394 if (ret)
4395 break;
4396
4397 offset += PAGE_SIZE;
4398 physical_for_dev_replace += PAGE_SIZE;
4399 nocow_ctx_logical += PAGE_SIZE;
4400 len -= PAGE_SIZE;
4401 }
4402 ret = COPY_COMPLETE;
4403out:
4404 inode_unlock(inode);
4405 iput(inode);
4406 return ret;
4407}
4408
4409static int write_page_nocow(struct scrub_ctx *sctx,
4410 u64 physical_for_dev_replace, struct page *page)
4411{
4412 struct bio *bio;
4413 struct btrfs_device *dev;
4414 int ret;
4415
4416 dev = sctx->wr_ctx.tgtdev;
4417 if (!dev)
4418 return -EIO;
4419 if (!dev->bdev) {
4420 btrfs_warn_rl(dev->fs_info,
4421 "scrub write_page_nocow(bdev == NULL) is unexpected");
4422 return -EIO;
4423 }
4424 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4425 if (!bio) {
4426 spin_lock(&sctx->stat_lock);
4427 sctx->stat.malloc_errors++;
4428 spin_unlock(&sctx->stat_lock);
4429 return -ENOMEM;
4430 }
4431 bio->bi_iter.bi_size = 0;
4432 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4433 bio->bi_bdev = dev->bdev;
4434 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4435 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4436 if (ret != PAGE_SIZE) {
4437leave_with_eio:
4438 bio_put(bio);
4439 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4440 return -EIO;
4441 }
4442
4443 if (btrfsic_submit_bio_wait(bio))
4444 goto leave_with_eio;
4445
4446 bio_put(bio);
4447 return 0;
4448}
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/ratelimit.h>
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
25#include "transaction.h"
26#include "backref.h"
27#include "extent_io.h"
28#include "check-integrity.h"
29#include "rcu-string.h"
30
31/*
32 * This is only the first step towards a full-features scrub. It reads all
33 * extent and super block and verifies the checksums. In case a bad checksum
34 * is found or the extent cannot be read, good data will be written back if
35 * any can be found.
36 *
37 * Future enhancements:
38 * - In case an unrepairable extent is encountered, track which files are
39 * affected and report them
40 * - track and record media errors, throw out bad devices
41 * - add a mode to also read unallocated space
42 */
43
44struct scrub_block;
45struct scrub_dev;
46
47#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
48#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
49#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
50
51struct scrub_page {
52 struct scrub_block *sblock;
53 struct page *page;
54 struct btrfs_device *dev;
55 u64 flags; /* extent flags */
56 u64 generation;
57 u64 logical;
58 u64 physical;
59 struct {
60 unsigned int mirror_num:8;
61 unsigned int have_csum:1;
62 unsigned int io_error:1;
63 };
64 u8 csum[BTRFS_CSUM_SIZE];
65};
66
67struct scrub_bio {
68 int index;
69 struct scrub_dev *sdev;
70 struct bio *bio;
71 int err;
72 u64 logical;
73 u64 physical;
74 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
75 int page_count;
76 int next_free;
77 struct btrfs_work work;
78};
79
80struct scrub_block {
81 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
82 int page_count;
83 atomic_t outstanding_pages;
84 atomic_t ref_count; /* free mem on transition to zero */
85 struct scrub_dev *sdev;
86 struct {
87 unsigned int header_error:1;
88 unsigned int checksum_error:1;
89 unsigned int no_io_error_seen:1;
90 unsigned int generation_error:1; /* also sets header_error */
91 };
92};
93
94struct scrub_dev {
95 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
96 struct btrfs_device *dev;
97 int first_free;
98 int curr;
99 atomic_t in_flight;
100 atomic_t fixup_cnt;
101 spinlock_t list_lock;
102 wait_queue_head_t list_wait;
103 u16 csum_size;
104 struct list_head csum_list;
105 atomic_t cancel_req;
106 int readonly;
107 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
108 u32 sectorsize;
109 u32 nodesize;
110 u32 leafsize;
111 /*
112 * statistics
113 */
114 struct btrfs_scrub_progress stat;
115 spinlock_t stat_lock;
116};
117
118struct scrub_fixup_nodatasum {
119 struct scrub_dev *sdev;
120 u64 logical;
121 struct btrfs_root *root;
122 struct btrfs_work work;
123 int mirror_num;
124};
125
126struct scrub_warning {
127 struct btrfs_path *path;
128 u64 extent_item_size;
129 char *scratch_buf;
130 char *msg_buf;
131 const char *errstr;
132 sector_t sector;
133 u64 logical;
134 struct btrfs_device *dev;
135 int msg_bufsize;
136 int scratch_bufsize;
137};
138
139
140static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
141static int scrub_setup_recheck_block(struct scrub_dev *sdev,
142 struct btrfs_mapping_tree *map_tree,
143 u64 length, u64 logical,
144 struct scrub_block *sblock);
145static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
146 struct scrub_block *sblock, int is_metadata,
147 int have_csum, u8 *csum, u64 generation,
148 u16 csum_size);
149static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
150 struct scrub_block *sblock,
151 int is_metadata, int have_csum,
152 const u8 *csum, u64 generation,
153 u16 csum_size);
154static void scrub_complete_bio_end_io(struct bio *bio, int err);
155static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
156 struct scrub_block *sblock_good,
157 int force_write);
158static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
159 struct scrub_block *sblock_good,
160 int page_num, int force_write);
161static int scrub_checksum_data(struct scrub_block *sblock);
162static int scrub_checksum_tree_block(struct scrub_block *sblock);
163static int scrub_checksum_super(struct scrub_block *sblock);
164static void scrub_block_get(struct scrub_block *sblock);
165static void scrub_block_put(struct scrub_block *sblock);
166static int scrub_add_page_to_bio(struct scrub_dev *sdev,
167 struct scrub_page *spage);
168static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
169 u64 physical, u64 flags, u64 gen, int mirror_num,
170 u8 *csum, int force);
171static void scrub_bio_end_io(struct bio *bio, int err);
172static void scrub_bio_end_io_worker(struct btrfs_work *work);
173static void scrub_block_complete(struct scrub_block *sblock);
174
175
176static void scrub_free_csums(struct scrub_dev *sdev)
177{
178 while (!list_empty(&sdev->csum_list)) {
179 struct btrfs_ordered_sum *sum;
180 sum = list_first_entry(&sdev->csum_list,
181 struct btrfs_ordered_sum, list);
182 list_del(&sum->list);
183 kfree(sum);
184 }
185}
186
187static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
188{
189 int i;
190
191 if (!sdev)
192 return;
193
194 /* this can happen when scrub is cancelled */
195 if (sdev->curr != -1) {
196 struct scrub_bio *sbio = sdev->bios[sdev->curr];
197
198 for (i = 0; i < sbio->page_count; i++) {
199 BUG_ON(!sbio->pagev[i]);
200 BUG_ON(!sbio->pagev[i]->page);
201 scrub_block_put(sbio->pagev[i]->sblock);
202 }
203 bio_put(sbio->bio);
204 }
205
206 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
207 struct scrub_bio *sbio = sdev->bios[i];
208
209 if (!sbio)
210 break;
211 kfree(sbio);
212 }
213
214 scrub_free_csums(sdev);
215 kfree(sdev);
216}
217
218static noinline_for_stack
219struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
220{
221 struct scrub_dev *sdev;
222 int i;
223 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
224 int pages_per_bio;
225
226 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
227 bio_get_nr_vecs(dev->bdev));
228 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
229 if (!sdev)
230 goto nomem;
231 sdev->dev = dev;
232 sdev->pages_per_bio = pages_per_bio;
233 sdev->curr = -1;
234 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
235 struct scrub_bio *sbio;
236
237 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
238 if (!sbio)
239 goto nomem;
240 sdev->bios[i] = sbio;
241
242 sbio->index = i;
243 sbio->sdev = sdev;
244 sbio->page_count = 0;
245 sbio->work.func = scrub_bio_end_io_worker;
246
247 if (i != SCRUB_BIOS_PER_DEV-1)
248 sdev->bios[i]->next_free = i + 1;
249 else
250 sdev->bios[i]->next_free = -1;
251 }
252 sdev->first_free = 0;
253 sdev->nodesize = dev->dev_root->nodesize;
254 sdev->leafsize = dev->dev_root->leafsize;
255 sdev->sectorsize = dev->dev_root->sectorsize;
256 atomic_set(&sdev->in_flight, 0);
257 atomic_set(&sdev->fixup_cnt, 0);
258 atomic_set(&sdev->cancel_req, 0);
259 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
260 INIT_LIST_HEAD(&sdev->csum_list);
261
262 spin_lock_init(&sdev->list_lock);
263 spin_lock_init(&sdev->stat_lock);
264 init_waitqueue_head(&sdev->list_wait);
265 return sdev;
266
267nomem:
268 scrub_free_dev(sdev);
269 return ERR_PTR(-ENOMEM);
270}
271
272static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
273{
274 u64 isize;
275 u32 nlink;
276 int ret;
277 int i;
278 struct extent_buffer *eb;
279 struct btrfs_inode_item *inode_item;
280 struct scrub_warning *swarn = ctx;
281 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
282 struct inode_fs_paths *ipath = NULL;
283 struct btrfs_root *local_root;
284 struct btrfs_key root_key;
285
286 root_key.objectid = root;
287 root_key.type = BTRFS_ROOT_ITEM_KEY;
288 root_key.offset = (u64)-1;
289 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
290 if (IS_ERR(local_root)) {
291 ret = PTR_ERR(local_root);
292 goto err;
293 }
294
295 ret = inode_item_info(inum, 0, local_root, swarn->path);
296 if (ret) {
297 btrfs_release_path(swarn->path);
298 goto err;
299 }
300
301 eb = swarn->path->nodes[0];
302 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
303 struct btrfs_inode_item);
304 isize = btrfs_inode_size(eb, inode_item);
305 nlink = btrfs_inode_nlink(eb, inode_item);
306 btrfs_release_path(swarn->path);
307
308 ipath = init_ipath(4096, local_root, swarn->path);
309 if (IS_ERR(ipath)) {
310 ret = PTR_ERR(ipath);
311 ipath = NULL;
312 goto err;
313 }
314 ret = paths_from_inode(inum, ipath);
315
316 if (ret < 0)
317 goto err;
318
319 /*
320 * we deliberately ignore the bit ipath might have been too small to
321 * hold all of the paths here
322 */
323 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
324 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
325 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
326 "length %llu, links %u (path: %s)\n", swarn->errstr,
327 swarn->logical, rcu_str_deref(swarn->dev->name),
328 (unsigned long long)swarn->sector, root, inum, offset,
329 min(isize - offset, (u64)PAGE_SIZE), nlink,
330 (char *)(unsigned long)ipath->fspath->val[i]);
331
332 free_ipath(ipath);
333 return 0;
334
335err:
336 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
337 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
338 "resolving failed with ret=%d\n", swarn->errstr,
339 swarn->logical, rcu_str_deref(swarn->dev->name),
340 (unsigned long long)swarn->sector, root, inum, offset, ret);
341
342 free_ipath(ipath);
343 return 0;
344}
345
346static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
347{
348 struct btrfs_device *dev = sblock->sdev->dev;
349 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
350 struct btrfs_path *path;
351 struct btrfs_key found_key;
352 struct extent_buffer *eb;
353 struct btrfs_extent_item *ei;
354 struct scrub_warning swarn;
355 u32 item_size;
356 int ret;
357 u64 ref_root;
358 u8 ref_level;
359 unsigned long ptr = 0;
360 const int bufsize = 4096;
361 u64 extent_item_pos;
362
363 path = btrfs_alloc_path();
364
365 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
366 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
367 BUG_ON(sblock->page_count < 1);
368 swarn.sector = (sblock->pagev[0].physical) >> 9;
369 swarn.logical = sblock->pagev[0].logical;
370 swarn.errstr = errstr;
371 swarn.dev = dev;
372 swarn.msg_bufsize = bufsize;
373 swarn.scratch_bufsize = bufsize;
374
375 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
376 goto out;
377
378 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
379 if (ret < 0)
380 goto out;
381
382 extent_item_pos = swarn.logical - found_key.objectid;
383 swarn.extent_item_size = found_key.offset;
384
385 eb = path->nodes[0];
386 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
387 item_size = btrfs_item_size_nr(eb, path->slots[0]);
388 btrfs_release_path(path);
389
390 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
391 do {
392 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
393 &ref_root, &ref_level);
394 printk_in_rcu(KERN_WARNING
395 "btrfs: %s at logical %llu on dev %s, "
396 "sector %llu: metadata %s (level %d) in tree "
397 "%llu\n", errstr, swarn.logical,
398 rcu_str_deref(dev->name),
399 (unsigned long long)swarn.sector,
400 ref_level ? "node" : "leaf",
401 ret < 0 ? -1 : ref_level,
402 ret < 0 ? -1 : ref_root);
403 } while (ret != 1);
404 } else {
405 swarn.path = path;
406 iterate_extent_inodes(fs_info, found_key.objectid,
407 extent_item_pos, 1,
408 scrub_print_warning_inode, &swarn);
409 }
410
411out:
412 btrfs_free_path(path);
413 kfree(swarn.scratch_buf);
414 kfree(swarn.msg_buf);
415}
416
417static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
418{
419 struct page *page = NULL;
420 unsigned long index;
421 struct scrub_fixup_nodatasum *fixup = ctx;
422 int ret;
423 int corrected = 0;
424 struct btrfs_key key;
425 struct inode *inode = NULL;
426 u64 end = offset + PAGE_SIZE - 1;
427 struct btrfs_root *local_root;
428
429 key.objectid = root;
430 key.type = BTRFS_ROOT_ITEM_KEY;
431 key.offset = (u64)-1;
432 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
433 if (IS_ERR(local_root))
434 return PTR_ERR(local_root);
435
436 key.type = BTRFS_INODE_ITEM_KEY;
437 key.objectid = inum;
438 key.offset = 0;
439 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
440 if (IS_ERR(inode))
441 return PTR_ERR(inode);
442
443 index = offset >> PAGE_CACHE_SHIFT;
444
445 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
446 if (!page) {
447 ret = -ENOMEM;
448 goto out;
449 }
450
451 if (PageUptodate(page)) {
452 struct btrfs_mapping_tree *map_tree;
453 if (PageDirty(page)) {
454 /*
455 * we need to write the data to the defect sector. the
456 * data that was in that sector is not in memory,
457 * because the page was modified. we must not write the
458 * modified page to that sector.
459 *
460 * TODO: what could be done here: wait for the delalloc
461 * runner to write out that page (might involve
462 * COW) and see whether the sector is still
463 * referenced afterwards.
464 *
465 * For the meantime, we'll treat this error
466 * incorrectable, although there is a chance that a
467 * later scrub will find the bad sector again and that
468 * there's no dirty page in memory, then.
469 */
470 ret = -EIO;
471 goto out;
472 }
473 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
474 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
475 fixup->logical, page,
476 fixup->mirror_num);
477 unlock_page(page);
478 corrected = !ret;
479 } else {
480 /*
481 * we need to get good data first. the general readpage path
482 * will call repair_io_failure for us, we just have to make
483 * sure we read the bad mirror.
484 */
485 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
486 EXTENT_DAMAGED, GFP_NOFS);
487 if (ret) {
488 /* set_extent_bits should give proper error */
489 WARN_ON(ret > 0);
490 if (ret > 0)
491 ret = -EFAULT;
492 goto out;
493 }
494
495 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
496 btrfs_get_extent,
497 fixup->mirror_num);
498 wait_on_page_locked(page);
499
500 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
501 end, EXTENT_DAMAGED, 0, NULL);
502 if (!corrected)
503 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
504 EXTENT_DAMAGED, GFP_NOFS);
505 }
506
507out:
508 if (page)
509 put_page(page);
510 if (inode)
511 iput(inode);
512
513 if (ret < 0)
514 return ret;
515
516 if (ret == 0 && corrected) {
517 /*
518 * we only need to call readpage for one of the inodes belonging
519 * to this extent. so make iterate_extent_inodes stop
520 */
521 return 1;
522 }
523
524 return -EIO;
525}
526
527static void scrub_fixup_nodatasum(struct btrfs_work *work)
528{
529 int ret;
530 struct scrub_fixup_nodatasum *fixup;
531 struct scrub_dev *sdev;
532 struct btrfs_trans_handle *trans = NULL;
533 struct btrfs_fs_info *fs_info;
534 struct btrfs_path *path;
535 int uncorrectable = 0;
536
537 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
538 sdev = fixup->sdev;
539 fs_info = fixup->root->fs_info;
540
541 path = btrfs_alloc_path();
542 if (!path) {
543 spin_lock(&sdev->stat_lock);
544 ++sdev->stat.malloc_errors;
545 spin_unlock(&sdev->stat_lock);
546 uncorrectable = 1;
547 goto out;
548 }
549
550 trans = btrfs_join_transaction(fixup->root);
551 if (IS_ERR(trans)) {
552 uncorrectable = 1;
553 goto out;
554 }
555
556 /*
557 * the idea is to trigger a regular read through the standard path. we
558 * read a page from the (failed) logical address by specifying the
559 * corresponding copynum of the failed sector. thus, that readpage is
560 * expected to fail.
561 * that is the point where on-the-fly error correction will kick in
562 * (once it's finished) and rewrite the failed sector if a good copy
563 * can be found.
564 */
565 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
566 path, scrub_fixup_readpage,
567 fixup);
568 if (ret < 0) {
569 uncorrectable = 1;
570 goto out;
571 }
572 WARN_ON(ret != 1);
573
574 spin_lock(&sdev->stat_lock);
575 ++sdev->stat.corrected_errors;
576 spin_unlock(&sdev->stat_lock);
577
578out:
579 if (trans && !IS_ERR(trans))
580 btrfs_end_transaction(trans, fixup->root);
581 if (uncorrectable) {
582 spin_lock(&sdev->stat_lock);
583 ++sdev->stat.uncorrectable_errors;
584 spin_unlock(&sdev->stat_lock);
585
586 printk_ratelimited_in_rcu(KERN_ERR
587 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
588 (unsigned long long)fixup->logical,
589 rcu_str_deref(sdev->dev->name));
590 }
591
592 btrfs_free_path(path);
593 kfree(fixup);
594
595 /* see caller why we're pretending to be paused in the scrub counters */
596 mutex_lock(&fs_info->scrub_lock);
597 atomic_dec(&fs_info->scrubs_running);
598 atomic_dec(&fs_info->scrubs_paused);
599 mutex_unlock(&fs_info->scrub_lock);
600 atomic_dec(&sdev->fixup_cnt);
601 wake_up(&fs_info->scrub_pause_wait);
602 wake_up(&sdev->list_wait);
603}
604
605/*
606 * scrub_handle_errored_block gets called when either verification of the
607 * pages failed or the bio failed to read, e.g. with EIO. In the latter
608 * case, this function handles all pages in the bio, even though only one
609 * may be bad.
610 * The goal of this function is to repair the errored block by using the
611 * contents of one of the mirrors.
612 */
613static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
614{
615 struct scrub_dev *sdev = sblock_to_check->sdev;
616 struct btrfs_fs_info *fs_info;
617 u64 length;
618 u64 logical;
619 u64 generation;
620 unsigned int failed_mirror_index;
621 unsigned int is_metadata;
622 unsigned int have_csum;
623 u8 *csum;
624 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
625 struct scrub_block *sblock_bad;
626 int ret;
627 int mirror_index;
628 int page_num;
629 int success;
630 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
631 DEFAULT_RATELIMIT_BURST);
632
633 BUG_ON(sblock_to_check->page_count < 1);
634 fs_info = sdev->dev->dev_root->fs_info;
635 length = sblock_to_check->page_count * PAGE_SIZE;
636 logical = sblock_to_check->pagev[0].logical;
637 generation = sblock_to_check->pagev[0].generation;
638 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
639 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
640 is_metadata = !(sblock_to_check->pagev[0].flags &
641 BTRFS_EXTENT_FLAG_DATA);
642 have_csum = sblock_to_check->pagev[0].have_csum;
643 csum = sblock_to_check->pagev[0].csum;
644
645 /*
646 * read all mirrors one after the other. This includes to
647 * re-read the extent or metadata block that failed (that was
648 * the cause that this fixup code is called) another time,
649 * page by page this time in order to know which pages
650 * caused I/O errors and which ones are good (for all mirrors).
651 * It is the goal to handle the situation when more than one
652 * mirror contains I/O errors, but the errors do not
653 * overlap, i.e. the data can be repaired by selecting the
654 * pages from those mirrors without I/O error on the
655 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
656 * would be that mirror #1 has an I/O error on the first page,
657 * the second page is good, and mirror #2 has an I/O error on
658 * the second page, but the first page is good.
659 * Then the first page of the first mirror can be repaired by
660 * taking the first page of the second mirror, and the
661 * second page of the second mirror can be repaired by
662 * copying the contents of the 2nd page of the 1st mirror.
663 * One more note: if the pages of one mirror contain I/O
664 * errors, the checksum cannot be verified. In order to get
665 * the best data for repairing, the first attempt is to find
666 * a mirror without I/O errors and with a validated checksum.
667 * Only if this is not possible, the pages are picked from
668 * mirrors with I/O errors without considering the checksum.
669 * If the latter is the case, at the end, the checksum of the
670 * repaired area is verified in order to correctly maintain
671 * the statistics.
672 */
673
674 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
675 sizeof(*sblocks_for_recheck),
676 GFP_NOFS);
677 if (!sblocks_for_recheck) {
678 spin_lock(&sdev->stat_lock);
679 sdev->stat.malloc_errors++;
680 sdev->stat.read_errors++;
681 sdev->stat.uncorrectable_errors++;
682 spin_unlock(&sdev->stat_lock);
683 btrfs_dev_stat_inc_and_print(sdev->dev,
684 BTRFS_DEV_STAT_READ_ERRS);
685 goto out;
686 }
687
688 /* setup the context, map the logical blocks and alloc the pages */
689 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
690 logical, sblocks_for_recheck);
691 if (ret) {
692 spin_lock(&sdev->stat_lock);
693 sdev->stat.read_errors++;
694 sdev->stat.uncorrectable_errors++;
695 spin_unlock(&sdev->stat_lock);
696 btrfs_dev_stat_inc_and_print(sdev->dev,
697 BTRFS_DEV_STAT_READ_ERRS);
698 goto out;
699 }
700 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
701 sblock_bad = sblocks_for_recheck + failed_mirror_index;
702
703 /* build and submit the bios for the failed mirror, check checksums */
704 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
705 csum, generation, sdev->csum_size);
706 if (ret) {
707 spin_lock(&sdev->stat_lock);
708 sdev->stat.read_errors++;
709 sdev->stat.uncorrectable_errors++;
710 spin_unlock(&sdev->stat_lock);
711 btrfs_dev_stat_inc_and_print(sdev->dev,
712 BTRFS_DEV_STAT_READ_ERRS);
713 goto out;
714 }
715
716 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
717 sblock_bad->no_io_error_seen) {
718 /*
719 * the error disappeared after reading page by page, or
720 * the area was part of a huge bio and other parts of the
721 * bio caused I/O errors, or the block layer merged several
722 * read requests into one and the error is caused by a
723 * different bio (usually one of the two latter cases is
724 * the cause)
725 */
726 spin_lock(&sdev->stat_lock);
727 sdev->stat.unverified_errors++;
728 spin_unlock(&sdev->stat_lock);
729
730 goto out;
731 }
732
733 if (!sblock_bad->no_io_error_seen) {
734 spin_lock(&sdev->stat_lock);
735 sdev->stat.read_errors++;
736 spin_unlock(&sdev->stat_lock);
737 if (__ratelimit(&_rs))
738 scrub_print_warning("i/o error", sblock_to_check);
739 btrfs_dev_stat_inc_and_print(sdev->dev,
740 BTRFS_DEV_STAT_READ_ERRS);
741 } else if (sblock_bad->checksum_error) {
742 spin_lock(&sdev->stat_lock);
743 sdev->stat.csum_errors++;
744 spin_unlock(&sdev->stat_lock);
745 if (__ratelimit(&_rs))
746 scrub_print_warning("checksum error", sblock_to_check);
747 btrfs_dev_stat_inc_and_print(sdev->dev,
748 BTRFS_DEV_STAT_CORRUPTION_ERRS);
749 } else if (sblock_bad->header_error) {
750 spin_lock(&sdev->stat_lock);
751 sdev->stat.verify_errors++;
752 spin_unlock(&sdev->stat_lock);
753 if (__ratelimit(&_rs))
754 scrub_print_warning("checksum/header error",
755 sblock_to_check);
756 if (sblock_bad->generation_error)
757 btrfs_dev_stat_inc_and_print(sdev->dev,
758 BTRFS_DEV_STAT_GENERATION_ERRS);
759 else
760 btrfs_dev_stat_inc_and_print(sdev->dev,
761 BTRFS_DEV_STAT_CORRUPTION_ERRS);
762 }
763
764 if (sdev->readonly)
765 goto did_not_correct_error;
766
767 if (!is_metadata && !have_csum) {
768 struct scrub_fixup_nodatasum *fixup_nodatasum;
769
770 /*
771 * !is_metadata and !have_csum, this means that the data
772 * might not be COW'ed, that it might be modified
773 * concurrently. The general strategy to work on the
774 * commit root does not help in the case when COW is not
775 * used.
776 */
777 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
778 if (!fixup_nodatasum)
779 goto did_not_correct_error;
780 fixup_nodatasum->sdev = sdev;
781 fixup_nodatasum->logical = logical;
782 fixup_nodatasum->root = fs_info->extent_root;
783 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
784 /*
785 * increment scrubs_running to prevent cancel requests from
786 * completing as long as a fixup worker is running. we must also
787 * increment scrubs_paused to prevent deadlocking on pause
788 * requests used for transactions commits (as the worker uses a
789 * transaction context). it is safe to regard the fixup worker
790 * as paused for all matters practical. effectively, we only
791 * avoid cancellation requests from completing.
792 */
793 mutex_lock(&fs_info->scrub_lock);
794 atomic_inc(&fs_info->scrubs_running);
795 atomic_inc(&fs_info->scrubs_paused);
796 mutex_unlock(&fs_info->scrub_lock);
797 atomic_inc(&sdev->fixup_cnt);
798 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
799 btrfs_queue_worker(&fs_info->scrub_workers,
800 &fixup_nodatasum->work);
801 goto out;
802 }
803
804 /*
805 * now build and submit the bios for the other mirrors, check
806 * checksums
807 */
808 for (mirror_index = 0;
809 mirror_index < BTRFS_MAX_MIRRORS &&
810 sblocks_for_recheck[mirror_index].page_count > 0;
811 mirror_index++) {
812 if (mirror_index == failed_mirror_index)
813 continue;
814
815 /* build and submit the bios, check checksums */
816 ret = scrub_recheck_block(fs_info,
817 sblocks_for_recheck + mirror_index,
818 is_metadata, have_csum, csum,
819 generation, sdev->csum_size);
820 if (ret)
821 goto did_not_correct_error;
822 }
823
824 /*
825 * first try to pick the mirror which is completely without I/O
826 * errors and also does not have a checksum error.
827 * If one is found, and if a checksum is present, the full block
828 * that is known to contain an error is rewritten. Afterwards
829 * the block is known to be corrected.
830 * If a mirror is found which is completely correct, and no
831 * checksum is present, only those pages are rewritten that had
832 * an I/O error in the block to be repaired, since it cannot be
833 * determined, which copy of the other pages is better (and it
834 * could happen otherwise that a correct page would be
835 * overwritten by a bad one).
836 */
837 for (mirror_index = 0;
838 mirror_index < BTRFS_MAX_MIRRORS &&
839 sblocks_for_recheck[mirror_index].page_count > 0;
840 mirror_index++) {
841 struct scrub_block *sblock_other = sblocks_for_recheck +
842 mirror_index;
843
844 if (!sblock_other->header_error &&
845 !sblock_other->checksum_error &&
846 sblock_other->no_io_error_seen) {
847 int force_write = is_metadata || have_csum;
848
849 ret = scrub_repair_block_from_good_copy(sblock_bad,
850 sblock_other,
851 force_write);
852 if (0 == ret)
853 goto corrected_error;
854 }
855 }
856
857 /*
858 * in case of I/O errors in the area that is supposed to be
859 * repaired, continue by picking good copies of those pages.
860 * Select the good pages from mirrors to rewrite bad pages from
861 * the area to fix. Afterwards verify the checksum of the block
862 * that is supposed to be repaired. This verification step is
863 * only done for the purpose of statistic counting and for the
864 * final scrub report, whether errors remain.
865 * A perfect algorithm could make use of the checksum and try
866 * all possible combinations of pages from the different mirrors
867 * until the checksum verification succeeds. For example, when
868 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
869 * of mirror #2 is readable but the final checksum test fails,
870 * then the 2nd page of mirror #3 could be tried, whether now
871 * the final checksum succeedes. But this would be a rare
872 * exception and is therefore not implemented. At least it is
873 * avoided that the good copy is overwritten.
874 * A more useful improvement would be to pick the sectors
875 * without I/O error based on sector sizes (512 bytes on legacy
876 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
877 * mirror could be repaired by taking 512 byte of a different
878 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
879 * area are unreadable.
880 */
881
882 /* can only fix I/O errors from here on */
883 if (sblock_bad->no_io_error_seen)
884 goto did_not_correct_error;
885
886 success = 1;
887 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
888 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
889
890 if (!page_bad->io_error)
891 continue;
892
893 for (mirror_index = 0;
894 mirror_index < BTRFS_MAX_MIRRORS &&
895 sblocks_for_recheck[mirror_index].page_count > 0;
896 mirror_index++) {
897 struct scrub_block *sblock_other = sblocks_for_recheck +
898 mirror_index;
899 struct scrub_page *page_other = sblock_other->pagev +
900 page_num;
901
902 if (!page_other->io_error) {
903 ret = scrub_repair_page_from_good_copy(
904 sblock_bad, sblock_other, page_num, 0);
905 if (0 == ret) {
906 page_bad->io_error = 0;
907 break; /* succeeded for this page */
908 }
909 }
910 }
911
912 if (page_bad->io_error) {
913 /* did not find a mirror to copy the page from */
914 success = 0;
915 }
916 }
917
918 if (success) {
919 if (is_metadata || have_csum) {
920 /*
921 * need to verify the checksum now that all
922 * sectors on disk are repaired (the write
923 * request for data to be repaired is on its way).
924 * Just be lazy and use scrub_recheck_block()
925 * which re-reads the data before the checksum
926 * is verified, but most likely the data comes out
927 * of the page cache.
928 */
929 ret = scrub_recheck_block(fs_info, sblock_bad,
930 is_metadata, have_csum, csum,
931 generation, sdev->csum_size);
932 if (!ret && !sblock_bad->header_error &&
933 !sblock_bad->checksum_error &&
934 sblock_bad->no_io_error_seen)
935 goto corrected_error;
936 else
937 goto did_not_correct_error;
938 } else {
939corrected_error:
940 spin_lock(&sdev->stat_lock);
941 sdev->stat.corrected_errors++;
942 spin_unlock(&sdev->stat_lock);
943 printk_ratelimited_in_rcu(KERN_ERR
944 "btrfs: fixed up error at logical %llu on dev %s\n",
945 (unsigned long long)logical,
946 rcu_str_deref(sdev->dev->name));
947 }
948 } else {
949did_not_correct_error:
950 spin_lock(&sdev->stat_lock);
951 sdev->stat.uncorrectable_errors++;
952 spin_unlock(&sdev->stat_lock);
953 printk_ratelimited_in_rcu(KERN_ERR
954 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
955 (unsigned long long)logical,
956 rcu_str_deref(sdev->dev->name));
957 }
958
959out:
960 if (sblocks_for_recheck) {
961 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
962 mirror_index++) {
963 struct scrub_block *sblock = sblocks_for_recheck +
964 mirror_index;
965 int page_index;
966
967 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
968 page_index++)
969 if (sblock->pagev[page_index].page)
970 __free_page(
971 sblock->pagev[page_index].page);
972 }
973 kfree(sblocks_for_recheck);
974 }
975
976 return 0;
977}
978
979static int scrub_setup_recheck_block(struct scrub_dev *sdev,
980 struct btrfs_mapping_tree *map_tree,
981 u64 length, u64 logical,
982 struct scrub_block *sblocks_for_recheck)
983{
984 int page_index;
985 int mirror_index;
986 int ret;
987
988 /*
989 * note: the three members sdev, ref_count and outstanding_pages
990 * are not used (and not set) in the blocks that are used for
991 * the recheck procedure
992 */
993
994 page_index = 0;
995 while (length > 0) {
996 u64 sublen = min_t(u64, length, PAGE_SIZE);
997 u64 mapped_length = sublen;
998 struct btrfs_bio *bbio = NULL;
999
1000 /*
1001 * with a length of PAGE_SIZE, each returned stripe
1002 * represents one mirror
1003 */
1004 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1005 &bbio, 0);
1006 if (ret || !bbio || mapped_length < sublen) {
1007 kfree(bbio);
1008 return -EIO;
1009 }
1010
1011 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1012 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1013 mirror_index++) {
1014 struct scrub_block *sblock;
1015 struct scrub_page *page;
1016
1017 if (mirror_index >= BTRFS_MAX_MIRRORS)
1018 continue;
1019
1020 sblock = sblocks_for_recheck + mirror_index;
1021 page = sblock->pagev + page_index;
1022 page->logical = logical;
1023 page->physical = bbio->stripes[mirror_index].physical;
1024 /* for missing devices, dev->bdev is NULL */
1025 page->dev = bbio->stripes[mirror_index].dev;
1026 page->mirror_num = mirror_index + 1;
1027 page->page = alloc_page(GFP_NOFS);
1028 if (!page->page) {
1029 spin_lock(&sdev->stat_lock);
1030 sdev->stat.malloc_errors++;
1031 spin_unlock(&sdev->stat_lock);
1032 return -ENOMEM;
1033 }
1034 sblock->page_count++;
1035 }
1036 kfree(bbio);
1037 length -= sublen;
1038 logical += sublen;
1039 page_index++;
1040 }
1041
1042 return 0;
1043}
1044
1045/*
1046 * this function will check the on disk data for checksum errors, header
1047 * errors and read I/O errors. If any I/O errors happen, the exact pages
1048 * which are errored are marked as being bad. The goal is to enable scrub
1049 * to take those pages that are not errored from all the mirrors so that
1050 * the pages that are errored in the just handled mirror can be repaired.
1051 */
1052static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1053 struct scrub_block *sblock, int is_metadata,
1054 int have_csum, u8 *csum, u64 generation,
1055 u16 csum_size)
1056{
1057 int page_num;
1058
1059 sblock->no_io_error_seen = 1;
1060 sblock->header_error = 0;
1061 sblock->checksum_error = 0;
1062
1063 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1064 struct bio *bio;
1065 int ret;
1066 struct scrub_page *page = sblock->pagev + page_num;
1067 DECLARE_COMPLETION_ONSTACK(complete);
1068
1069 if (page->dev->bdev == NULL) {
1070 page->io_error = 1;
1071 sblock->no_io_error_seen = 0;
1072 continue;
1073 }
1074
1075 BUG_ON(!page->page);
1076 bio = bio_alloc(GFP_NOFS, 1);
1077 if (!bio)
1078 return -EIO;
1079 bio->bi_bdev = page->dev->bdev;
1080 bio->bi_sector = page->physical >> 9;
1081 bio->bi_end_io = scrub_complete_bio_end_io;
1082 bio->bi_private = &complete;
1083
1084 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1085 if (PAGE_SIZE != ret) {
1086 bio_put(bio);
1087 return -EIO;
1088 }
1089 btrfsic_submit_bio(READ, bio);
1090
1091 /* this will also unplug the queue */
1092 wait_for_completion(&complete);
1093
1094 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1095 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1096 sblock->no_io_error_seen = 0;
1097 bio_put(bio);
1098 }
1099
1100 if (sblock->no_io_error_seen)
1101 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1102 have_csum, csum, generation,
1103 csum_size);
1104
1105 return 0;
1106}
1107
1108static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1109 struct scrub_block *sblock,
1110 int is_metadata, int have_csum,
1111 const u8 *csum, u64 generation,
1112 u16 csum_size)
1113{
1114 int page_num;
1115 u8 calculated_csum[BTRFS_CSUM_SIZE];
1116 u32 crc = ~(u32)0;
1117 struct btrfs_root *root = fs_info->extent_root;
1118 void *mapped_buffer;
1119
1120 BUG_ON(!sblock->pagev[0].page);
1121 if (is_metadata) {
1122 struct btrfs_header *h;
1123
1124 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1125 h = (struct btrfs_header *)mapped_buffer;
1126
1127 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1128 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1129 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1130 BTRFS_UUID_SIZE)) {
1131 sblock->header_error = 1;
1132 } else if (generation != le64_to_cpu(h->generation)) {
1133 sblock->header_error = 1;
1134 sblock->generation_error = 1;
1135 }
1136 csum = h->csum;
1137 } else {
1138 if (!have_csum)
1139 return;
1140
1141 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1142 }
1143
1144 for (page_num = 0;;) {
1145 if (page_num == 0 && is_metadata)
1146 crc = btrfs_csum_data(root,
1147 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1148 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1149 else
1150 crc = btrfs_csum_data(root, mapped_buffer, crc,
1151 PAGE_SIZE);
1152
1153 kunmap_atomic(mapped_buffer);
1154 page_num++;
1155 if (page_num >= sblock->page_count)
1156 break;
1157 BUG_ON(!sblock->pagev[page_num].page);
1158
1159 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1160 }
1161
1162 btrfs_csum_final(crc, calculated_csum);
1163 if (memcmp(calculated_csum, csum, csum_size))
1164 sblock->checksum_error = 1;
1165}
1166
1167static void scrub_complete_bio_end_io(struct bio *bio, int err)
1168{
1169 complete((struct completion *)bio->bi_private);
1170}
1171
1172static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1173 struct scrub_block *sblock_good,
1174 int force_write)
1175{
1176 int page_num;
1177 int ret = 0;
1178
1179 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1180 int ret_sub;
1181
1182 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1183 sblock_good,
1184 page_num,
1185 force_write);
1186 if (ret_sub)
1187 ret = ret_sub;
1188 }
1189
1190 return ret;
1191}
1192
1193static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1194 struct scrub_block *sblock_good,
1195 int page_num, int force_write)
1196{
1197 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1198 struct scrub_page *page_good = sblock_good->pagev + page_num;
1199
1200 BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1201 BUG_ON(sblock_good->pagev[page_num].page == NULL);
1202 if (force_write || sblock_bad->header_error ||
1203 sblock_bad->checksum_error || page_bad->io_error) {
1204 struct bio *bio;
1205 int ret;
1206 DECLARE_COMPLETION_ONSTACK(complete);
1207
1208 bio = bio_alloc(GFP_NOFS, 1);
1209 if (!bio)
1210 return -EIO;
1211 bio->bi_bdev = page_bad->dev->bdev;
1212 bio->bi_sector = page_bad->physical >> 9;
1213 bio->bi_end_io = scrub_complete_bio_end_io;
1214 bio->bi_private = &complete;
1215
1216 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1217 if (PAGE_SIZE != ret) {
1218 bio_put(bio);
1219 return -EIO;
1220 }
1221 btrfsic_submit_bio(WRITE, bio);
1222
1223 /* this will also unplug the queue */
1224 wait_for_completion(&complete);
1225 if (!bio_flagged(bio, BIO_UPTODATE)) {
1226 btrfs_dev_stat_inc_and_print(page_bad->dev,
1227 BTRFS_DEV_STAT_WRITE_ERRS);
1228 bio_put(bio);
1229 return -EIO;
1230 }
1231 bio_put(bio);
1232 }
1233
1234 return 0;
1235}
1236
1237static void scrub_checksum(struct scrub_block *sblock)
1238{
1239 u64 flags;
1240 int ret;
1241
1242 BUG_ON(sblock->page_count < 1);
1243 flags = sblock->pagev[0].flags;
1244 ret = 0;
1245 if (flags & BTRFS_EXTENT_FLAG_DATA)
1246 ret = scrub_checksum_data(sblock);
1247 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1248 ret = scrub_checksum_tree_block(sblock);
1249 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1250 (void)scrub_checksum_super(sblock);
1251 else
1252 WARN_ON(1);
1253 if (ret)
1254 scrub_handle_errored_block(sblock);
1255}
1256
1257static int scrub_checksum_data(struct scrub_block *sblock)
1258{
1259 struct scrub_dev *sdev = sblock->sdev;
1260 u8 csum[BTRFS_CSUM_SIZE];
1261 u8 *on_disk_csum;
1262 struct page *page;
1263 void *buffer;
1264 u32 crc = ~(u32)0;
1265 int fail = 0;
1266 struct btrfs_root *root = sdev->dev->dev_root;
1267 u64 len;
1268 int index;
1269
1270 BUG_ON(sblock->page_count < 1);
1271 if (!sblock->pagev[0].have_csum)
1272 return 0;
1273
1274 on_disk_csum = sblock->pagev[0].csum;
1275 page = sblock->pagev[0].page;
1276 buffer = kmap_atomic(page);
1277
1278 len = sdev->sectorsize;
1279 index = 0;
1280 for (;;) {
1281 u64 l = min_t(u64, len, PAGE_SIZE);
1282
1283 crc = btrfs_csum_data(root, buffer, crc, l);
1284 kunmap_atomic(buffer);
1285 len -= l;
1286 if (len == 0)
1287 break;
1288 index++;
1289 BUG_ON(index >= sblock->page_count);
1290 BUG_ON(!sblock->pagev[index].page);
1291 page = sblock->pagev[index].page;
1292 buffer = kmap_atomic(page);
1293 }
1294
1295 btrfs_csum_final(crc, csum);
1296 if (memcmp(csum, on_disk_csum, sdev->csum_size))
1297 fail = 1;
1298
1299 return fail;
1300}
1301
1302static int scrub_checksum_tree_block(struct scrub_block *sblock)
1303{
1304 struct scrub_dev *sdev = sblock->sdev;
1305 struct btrfs_header *h;
1306 struct btrfs_root *root = sdev->dev->dev_root;
1307 struct btrfs_fs_info *fs_info = root->fs_info;
1308 u8 calculated_csum[BTRFS_CSUM_SIZE];
1309 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1310 struct page *page;
1311 void *mapped_buffer;
1312 u64 mapped_size;
1313 void *p;
1314 u32 crc = ~(u32)0;
1315 int fail = 0;
1316 int crc_fail = 0;
1317 u64 len;
1318 int index;
1319
1320 BUG_ON(sblock->page_count < 1);
1321 page = sblock->pagev[0].page;
1322 mapped_buffer = kmap_atomic(page);
1323 h = (struct btrfs_header *)mapped_buffer;
1324 memcpy(on_disk_csum, h->csum, sdev->csum_size);
1325
1326 /*
1327 * we don't use the getter functions here, as we
1328 * a) don't have an extent buffer and
1329 * b) the page is already kmapped
1330 */
1331
1332 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1333 ++fail;
1334
1335 if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1336 ++fail;
1337
1338 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1339 ++fail;
1340
1341 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1342 BTRFS_UUID_SIZE))
1343 ++fail;
1344
1345 BUG_ON(sdev->nodesize != sdev->leafsize);
1346 len = sdev->nodesize - BTRFS_CSUM_SIZE;
1347 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1348 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1349 index = 0;
1350 for (;;) {
1351 u64 l = min_t(u64, len, mapped_size);
1352
1353 crc = btrfs_csum_data(root, p, crc, l);
1354 kunmap_atomic(mapped_buffer);
1355 len -= l;
1356 if (len == 0)
1357 break;
1358 index++;
1359 BUG_ON(index >= sblock->page_count);
1360 BUG_ON(!sblock->pagev[index].page);
1361 page = sblock->pagev[index].page;
1362 mapped_buffer = kmap_atomic(page);
1363 mapped_size = PAGE_SIZE;
1364 p = mapped_buffer;
1365 }
1366
1367 btrfs_csum_final(crc, calculated_csum);
1368 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1369 ++crc_fail;
1370
1371 return fail || crc_fail;
1372}
1373
1374static int scrub_checksum_super(struct scrub_block *sblock)
1375{
1376 struct btrfs_super_block *s;
1377 struct scrub_dev *sdev = sblock->sdev;
1378 struct btrfs_root *root = sdev->dev->dev_root;
1379 struct btrfs_fs_info *fs_info = root->fs_info;
1380 u8 calculated_csum[BTRFS_CSUM_SIZE];
1381 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1382 struct page *page;
1383 void *mapped_buffer;
1384 u64 mapped_size;
1385 void *p;
1386 u32 crc = ~(u32)0;
1387 int fail_gen = 0;
1388 int fail_cor = 0;
1389 u64 len;
1390 int index;
1391
1392 BUG_ON(sblock->page_count < 1);
1393 page = sblock->pagev[0].page;
1394 mapped_buffer = kmap_atomic(page);
1395 s = (struct btrfs_super_block *)mapped_buffer;
1396 memcpy(on_disk_csum, s->csum, sdev->csum_size);
1397
1398 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1399 ++fail_cor;
1400
1401 if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1402 ++fail_gen;
1403
1404 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1405 ++fail_cor;
1406
1407 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1408 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1409 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1410 index = 0;
1411 for (;;) {
1412 u64 l = min_t(u64, len, mapped_size);
1413
1414 crc = btrfs_csum_data(root, p, crc, l);
1415 kunmap_atomic(mapped_buffer);
1416 len -= l;
1417 if (len == 0)
1418 break;
1419 index++;
1420 BUG_ON(index >= sblock->page_count);
1421 BUG_ON(!sblock->pagev[index].page);
1422 page = sblock->pagev[index].page;
1423 mapped_buffer = kmap_atomic(page);
1424 mapped_size = PAGE_SIZE;
1425 p = mapped_buffer;
1426 }
1427
1428 btrfs_csum_final(crc, calculated_csum);
1429 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1430 ++fail_cor;
1431
1432 if (fail_cor + fail_gen) {
1433 /*
1434 * if we find an error in a super block, we just report it.
1435 * They will get written with the next transaction commit
1436 * anyway
1437 */
1438 spin_lock(&sdev->stat_lock);
1439 ++sdev->stat.super_errors;
1440 spin_unlock(&sdev->stat_lock);
1441 if (fail_cor)
1442 btrfs_dev_stat_inc_and_print(sdev->dev,
1443 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1444 else
1445 btrfs_dev_stat_inc_and_print(sdev->dev,
1446 BTRFS_DEV_STAT_GENERATION_ERRS);
1447 }
1448
1449 return fail_cor + fail_gen;
1450}
1451
1452static void scrub_block_get(struct scrub_block *sblock)
1453{
1454 atomic_inc(&sblock->ref_count);
1455}
1456
1457static void scrub_block_put(struct scrub_block *sblock)
1458{
1459 if (atomic_dec_and_test(&sblock->ref_count)) {
1460 int i;
1461
1462 for (i = 0; i < sblock->page_count; i++)
1463 if (sblock->pagev[i].page)
1464 __free_page(sblock->pagev[i].page);
1465 kfree(sblock);
1466 }
1467}
1468
1469static void scrub_submit(struct scrub_dev *sdev)
1470{
1471 struct scrub_bio *sbio;
1472
1473 if (sdev->curr == -1)
1474 return;
1475
1476 sbio = sdev->bios[sdev->curr];
1477 sdev->curr = -1;
1478 atomic_inc(&sdev->in_flight);
1479
1480 btrfsic_submit_bio(READ, sbio->bio);
1481}
1482
1483static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1484 struct scrub_page *spage)
1485{
1486 struct scrub_block *sblock = spage->sblock;
1487 struct scrub_bio *sbio;
1488 int ret;
1489
1490again:
1491 /*
1492 * grab a fresh bio or wait for one to become available
1493 */
1494 while (sdev->curr == -1) {
1495 spin_lock(&sdev->list_lock);
1496 sdev->curr = sdev->first_free;
1497 if (sdev->curr != -1) {
1498 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1499 sdev->bios[sdev->curr]->next_free = -1;
1500 sdev->bios[sdev->curr]->page_count = 0;
1501 spin_unlock(&sdev->list_lock);
1502 } else {
1503 spin_unlock(&sdev->list_lock);
1504 wait_event(sdev->list_wait, sdev->first_free != -1);
1505 }
1506 }
1507 sbio = sdev->bios[sdev->curr];
1508 if (sbio->page_count == 0) {
1509 struct bio *bio;
1510
1511 sbio->physical = spage->physical;
1512 sbio->logical = spage->logical;
1513 bio = sbio->bio;
1514 if (!bio) {
1515 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1516 if (!bio)
1517 return -ENOMEM;
1518 sbio->bio = bio;
1519 }
1520
1521 bio->bi_private = sbio;
1522 bio->bi_end_io = scrub_bio_end_io;
1523 bio->bi_bdev = sdev->dev->bdev;
1524 bio->bi_sector = spage->physical >> 9;
1525 sbio->err = 0;
1526 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1527 spage->physical ||
1528 sbio->logical + sbio->page_count * PAGE_SIZE !=
1529 spage->logical) {
1530 scrub_submit(sdev);
1531 goto again;
1532 }
1533
1534 sbio->pagev[sbio->page_count] = spage;
1535 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1536 if (ret != PAGE_SIZE) {
1537 if (sbio->page_count < 1) {
1538 bio_put(sbio->bio);
1539 sbio->bio = NULL;
1540 return -EIO;
1541 }
1542 scrub_submit(sdev);
1543 goto again;
1544 }
1545
1546 scrub_block_get(sblock); /* one for the added page */
1547 atomic_inc(&sblock->outstanding_pages);
1548 sbio->page_count++;
1549 if (sbio->page_count == sdev->pages_per_bio)
1550 scrub_submit(sdev);
1551
1552 return 0;
1553}
1554
1555static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1556 u64 physical, u64 flags, u64 gen, int mirror_num,
1557 u8 *csum, int force)
1558{
1559 struct scrub_block *sblock;
1560 int index;
1561
1562 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1563 if (!sblock) {
1564 spin_lock(&sdev->stat_lock);
1565 sdev->stat.malloc_errors++;
1566 spin_unlock(&sdev->stat_lock);
1567 return -ENOMEM;
1568 }
1569
1570 /* one ref inside this function, plus one for each page later on */
1571 atomic_set(&sblock->ref_count, 1);
1572 sblock->sdev = sdev;
1573 sblock->no_io_error_seen = 1;
1574
1575 for (index = 0; len > 0; index++) {
1576 struct scrub_page *spage = sblock->pagev + index;
1577 u64 l = min_t(u64, len, PAGE_SIZE);
1578
1579 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1580 spage->page = alloc_page(GFP_NOFS);
1581 if (!spage->page) {
1582 spin_lock(&sdev->stat_lock);
1583 sdev->stat.malloc_errors++;
1584 spin_unlock(&sdev->stat_lock);
1585 while (index > 0) {
1586 index--;
1587 __free_page(sblock->pagev[index].page);
1588 }
1589 kfree(sblock);
1590 return -ENOMEM;
1591 }
1592 spage->sblock = sblock;
1593 spage->dev = sdev->dev;
1594 spage->flags = flags;
1595 spage->generation = gen;
1596 spage->logical = logical;
1597 spage->physical = physical;
1598 spage->mirror_num = mirror_num;
1599 if (csum) {
1600 spage->have_csum = 1;
1601 memcpy(spage->csum, csum, sdev->csum_size);
1602 } else {
1603 spage->have_csum = 0;
1604 }
1605 sblock->page_count++;
1606 len -= l;
1607 logical += l;
1608 physical += l;
1609 }
1610
1611 BUG_ON(sblock->page_count == 0);
1612 for (index = 0; index < sblock->page_count; index++) {
1613 struct scrub_page *spage = sblock->pagev + index;
1614 int ret;
1615
1616 ret = scrub_add_page_to_bio(sdev, spage);
1617 if (ret) {
1618 scrub_block_put(sblock);
1619 return ret;
1620 }
1621 }
1622
1623 if (force)
1624 scrub_submit(sdev);
1625
1626 /* last one frees, either here or in bio completion for last page */
1627 scrub_block_put(sblock);
1628 return 0;
1629}
1630
1631static void scrub_bio_end_io(struct bio *bio, int err)
1632{
1633 struct scrub_bio *sbio = bio->bi_private;
1634 struct scrub_dev *sdev = sbio->sdev;
1635 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1636
1637 sbio->err = err;
1638 sbio->bio = bio;
1639
1640 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1641}
1642
1643static void scrub_bio_end_io_worker(struct btrfs_work *work)
1644{
1645 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1646 struct scrub_dev *sdev = sbio->sdev;
1647 int i;
1648
1649 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1650 if (sbio->err) {
1651 for (i = 0; i < sbio->page_count; i++) {
1652 struct scrub_page *spage = sbio->pagev[i];
1653
1654 spage->io_error = 1;
1655 spage->sblock->no_io_error_seen = 0;
1656 }
1657 }
1658
1659 /* now complete the scrub_block items that have all pages completed */
1660 for (i = 0; i < sbio->page_count; i++) {
1661 struct scrub_page *spage = sbio->pagev[i];
1662 struct scrub_block *sblock = spage->sblock;
1663
1664 if (atomic_dec_and_test(&sblock->outstanding_pages))
1665 scrub_block_complete(sblock);
1666 scrub_block_put(sblock);
1667 }
1668
1669 if (sbio->err) {
1670 /* what is this good for??? */
1671 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1672 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1673 sbio->bio->bi_phys_segments = 0;
1674 sbio->bio->bi_idx = 0;
1675
1676 for (i = 0; i < sbio->page_count; i++) {
1677 struct bio_vec *bi;
1678 bi = &sbio->bio->bi_io_vec[i];
1679 bi->bv_offset = 0;
1680 bi->bv_len = PAGE_SIZE;
1681 }
1682 }
1683
1684 bio_put(sbio->bio);
1685 sbio->bio = NULL;
1686 spin_lock(&sdev->list_lock);
1687 sbio->next_free = sdev->first_free;
1688 sdev->first_free = sbio->index;
1689 spin_unlock(&sdev->list_lock);
1690 atomic_dec(&sdev->in_flight);
1691 wake_up(&sdev->list_wait);
1692}
1693
1694static void scrub_block_complete(struct scrub_block *sblock)
1695{
1696 if (!sblock->no_io_error_seen)
1697 scrub_handle_errored_block(sblock);
1698 else
1699 scrub_checksum(sblock);
1700}
1701
1702static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1703 u8 *csum)
1704{
1705 struct btrfs_ordered_sum *sum = NULL;
1706 int ret = 0;
1707 unsigned long i;
1708 unsigned long num_sectors;
1709
1710 while (!list_empty(&sdev->csum_list)) {
1711 sum = list_first_entry(&sdev->csum_list,
1712 struct btrfs_ordered_sum, list);
1713 if (sum->bytenr > logical)
1714 return 0;
1715 if (sum->bytenr + sum->len > logical)
1716 break;
1717
1718 ++sdev->stat.csum_discards;
1719 list_del(&sum->list);
1720 kfree(sum);
1721 sum = NULL;
1722 }
1723 if (!sum)
1724 return 0;
1725
1726 num_sectors = sum->len / sdev->sectorsize;
1727 for (i = 0; i < num_sectors; ++i) {
1728 if (sum->sums[i].bytenr == logical) {
1729 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1730 ret = 1;
1731 break;
1732 }
1733 }
1734 if (ret && i == num_sectors - 1) {
1735 list_del(&sum->list);
1736 kfree(sum);
1737 }
1738 return ret;
1739}
1740
1741/* scrub extent tries to collect up to 64 kB for each bio */
1742static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1743 u64 physical, u64 flags, u64 gen, int mirror_num)
1744{
1745 int ret;
1746 u8 csum[BTRFS_CSUM_SIZE];
1747 u32 blocksize;
1748
1749 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1750 blocksize = sdev->sectorsize;
1751 spin_lock(&sdev->stat_lock);
1752 sdev->stat.data_extents_scrubbed++;
1753 sdev->stat.data_bytes_scrubbed += len;
1754 spin_unlock(&sdev->stat_lock);
1755 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1756 BUG_ON(sdev->nodesize != sdev->leafsize);
1757 blocksize = sdev->nodesize;
1758 spin_lock(&sdev->stat_lock);
1759 sdev->stat.tree_extents_scrubbed++;
1760 sdev->stat.tree_bytes_scrubbed += len;
1761 spin_unlock(&sdev->stat_lock);
1762 } else {
1763 blocksize = sdev->sectorsize;
1764 BUG_ON(1);
1765 }
1766
1767 while (len) {
1768 u64 l = min_t(u64, len, blocksize);
1769 int have_csum = 0;
1770
1771 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1772 /* push csums to sbio */
1773 have_csum = scrub_find_csum(sdev, logical, l, csum);
1774 if (have_csum == 0)
1775 ++sdev->stat.no_csum;
1776 }
1777 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1778 mirror_num, have_csum ? csum : NULL, 0);
1779 if (ret)
1780 return ret;
1781 len -= l;
1782 logical += l;
1783 physical += l;
1784 }
1785 return 0;
1786}
1787
1788static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1789 struct map_lookup *map, int num, u64 base, u64 length)
1790{
1791 struct btrfs_path *path;
1792 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1793 struct btrfs_root *root = fs_info->extent_root;
1794 struct btrfs_root *csum_root = fs_info->csum_root;
1795 struct btrfs_extent_item *extent;
1796 struct blk_plug plug;
1797 u64 flags;
1798 int ret;
1799 int slot;
1800 int i;
1801 u64 nstripes;
1802 struct extent_buffer *l;
1803 struct btrfs_key key;
1804 u64 physical;
1805 u64 logical;
1806 u64 generation;
1807 int mirror_num;
1808 struct reada_control *reada1;
1809 struct reada_control *reada2;
1810 struct btrfs_key key_start;
1811 struct btrfs_key key_end;
1812
1813 u64 increment = map->stripe_len;
1814 u64 offset;
1815
1816 nstripes = length;
1817 offset = 0;
1818 do_div(nstripes, map->stripe_len);
1819 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1820 offset = map->stripe_len * num;
1821 increment = map->stripe_len * map->num_stripes;
1822 mirror_num = 1;
1823 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1824 int factor = map->num_stripes / map->sub_stripes;
1825 offset = map->stripe_len * (num / map->sub_stripes);
1826 increment = map->stripe_len * factor;
1827 mirror_num = num % map->sub_stripes + 1;
1828 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1829 increment = map->stripe_len;
1830 mirror_num = num % map->num_stripes + 1;
1831 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1832 increment = map->stripe_len;
1833 mirror_num = num % map->num_stripes + 1;
1834 } else {
1835 increment = map->stripe_len;
1836 mirror_num = 1;
1837 }
1838
1839 path = btrfs_alloc_path();
1840 if (!path)
1841 return -ENOMEM;
1842
1843 /*
1844 * work on commit root. The related disk blocks are static as
1845 * long as COW is applied. This means, it is save to rewrite
1846 * them to repair disk errors without any race conditions
1847 */
1848 path->search_commit_root = 1;
1849 path->skip_locking = 1;
1850
1851 /*
1852 * trigger the readahead for extent tree csum tree and wait for
1853 * completion. During readahead, the scrub is officially paused
1854 * to not hold off transaction commits
1855 */
1856 logical = base + offset;
1857
1858 wait_event(sdev->list_wait,
1859 atomic_read(&sdev->in_flight) == 0);
1860 atomic_inc(&fs_info->scrubs_paused);
1861 wake_up(&fs_info->scrub_pause_wait);
1862
1863 /* FIXME it might be better to start readahead at commit root */
1864 key_start.objectid = logical;
1865 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1866 key_start.offset = (u64)0;
1867 key_end.objectid = base + offset + nstripes * increment;
1868 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1869 key_end.offset = (u64)0;
1870 reada1 = btrfs_reada_add(root, &key_start, &key_end);
1871
1872 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1873 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1874 key_start.offset = logical;
1875 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1876 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1877 key_end.offset = base + offset + nstripes * increment;
1878 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1879
1880 if (!IS_ERR(reada1))
1881 btrfs_reada_wait(reada1);
1882 if (!IS_ERR(reada2))
1883 btrfs_reada_wait(reada2);
1884
1885 mutex_lock(&fs_info->scrub_lock);
1886 while (atomic_read(&fs_info->scrub_pause_req)) {
1887 mutex_unlock(&fs_info->scrub_lock);
1888 wait_event(fs_info->scrub_pause_wait,
1889 atomic_read(&fs_info->scrub_pause_req) == 0);
1890 mutex_lock(&fs_info->scrub_lock);
1891 }
1892 atomic_dec(&fs_info->scrubs_paused);
1893 mutex_unlock(&fs_info->scrub_lock);
1894 wake_up(&fs_info->scrub_pause_wait);
1895
1896 /*
1897 * collect all data csums for the stripe to avoid seeking during
1898 * the scrub. This might currently (crc32) end up to be about 1MB
1899 */
1900 blk_start_plug(&plug);
1901
1902 /*
1903 * now find all extents for each stripe and scrub them
1904 */
1905 logical = base + offset;
1906 physical = map->stripes[num].physical;
1907 ret = 0;
1908 for (i = 0; i < nstripes; ++i) {
1909 /*
1910 * canceled?
1911 */
1912 if (atomic_read(&fs_info->scrub_cancel_req) ||
1913 atomic_read(&sdev->cancel_req)) {
1914 ret = -ECANCELED;
1915 goto out;
1916 }
1917 /*
1918 * check to see if we have to pause
1919 */
1920 if (atomic_read(&fs_info->scrub_pause_req)) {
1921 /* push queued extents */
1922 scrub_submit(sdev);
1923 wait_event(sdev->list_wait,
1924 atomic_read(&sdev->in_flight) == 0);
1925 atomic_inc(&fs_info->scrubs_paused);
1926 wake_up(&fs_info->scrub_pause_wait);
1927 mutex_lock(&fs_info->scrub_lock);
1928 while (atomic_read(&fs_info->scrub_pause_req)) {
1929 mutex_unlock(&fs_info->scrub_lock);
1930 wait_event(fs_info->scrub_pause_wait,
1931 atomic_read(&fs_info->scrub_pause_req) == 0);
1932 mutex_lock(&fs_info->scrub_lock);
1933 }
1934 atomic_dec(&fs_info->scrubs_paused);
1935 mutex_unlock(&fs_info->scrub_lock);
1936 wake_up(&fs_info->scrub_pause_wait);
1937 }
1938
1939 ret = btrfs_lookup_csums_range(csum_root, logical,
1940 logical + map->stripe_len - 1,
1941 &sdev->csum_list, 1);
1942 if (ret)
1943 goto out;
1944
1945 key.objectid = logical;
1946 key.type = BTRFS_EXTENT_ITEM_KEY;
1947 key.offset = (u64)0;
1948
1949 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1950 if (ret < 0)
1951 goto out;
1952 if (ret > 0) {
1953 ret = btrfs_previous_item(root, path, 0,
1954 BTRFS_EXTENT_ITEM_KEY);
1955 if (ret < 0)
1956 goto out;
1957 if (ret > 0) {
1958 /* there's no smaller item, so stick with the
1959 * larger one */
1960 btrfs_release_path(path);
1961 ret = btrfs_search_slot(NULL, root, &key,
1962 path, 0, 0);
1963 if (ret < 0)
1964 goto out;
1965 }
1966 }
1967
1968 while (1) {
1969 l = path->nodes[0];
1970 slot = path->slots[0];
1971 if (slot >= btrfs_header_nritems(l)) {
1972 ret = btrfs_next_leaf(root, path);
1973 if (ret == 0)
1974 continue;
1975 if (ret < 0)
1976 goto out;
1977
1978 break;
1979 }
1980 btrfs_item_key_to_cpu(l, &key, slot);
1981
1982 if (key.objectid + key.offset <= logical)
1983 goto next;
1984
1985 if (key.objectid >= logical + map->stripe_len)
1986 break;
1987
1988 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1989 goto next;
1990
1991 extent = btrfs_item_ptr(l, slot,
1992 struct btrfs_extent_item);
1993 flags = btrfs_extent_flags(l, extent);
1994 generation = btrfs_extent_generation(l, extent);
1995
1996 if (key.objectid < logical &&
1997 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1998 printk(KERN_ERR
1999 "btrfs scrub: tree block %llu spanning "
2000 "stripes, ignored. logical=%llu\n",
2001 (unsigned long long)key.objectid,
2002 (unsigned long long)logical);
2003 goto next;
2004 }
2005
2006 /*
2007 * trim extent to this stripe
2008 */
2009 if (key.objectid < logical) {
2010 key.offset -= logical - key.objectid;
2011 key.objectid = logical;
2012 }
2013 if (key.objectid + key.offset >
2014 logical + map->stripe_len) {
2015 key.offset = logical + map->stripe_len -
2016 key.objectid;
2017 }
2018
2019 ret = scrub_extent(sdev, key.objectid, key.offset,
2020 key.objectid - logical + physical,
2021 flags, generation, mirror_num);
2022 if (ret)
2023 goto out;
2024
2025next:
2026 path->slots[0]++;
2027 }
2028 btrfs_release_path(path);
2029 logical += increment;
2030 physical += map->stripe_len;
2031 spin_lock(&sdev->stat_lock);
2032 sdev->stat.last_physical = physical;
2033 spin_unlock(&sdev->stat_lock);
2034 }
2035 /* push queued extents */
2036 scrub_submit(sdev);
2037
2038out:
2039 blk_finish_plug(&plug);
2040 btrfs_free_path(path);
2041 return ret < 0 ? ret : 0;
2042}
2043
2044static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2045 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2046 u64 dev_offset)
2047{
2048 struct btrfs_mapping_tree *map_tree =
2049 &sdev->dev->dev_root->fs_info->mapping_tree;
2050 struct map_lookup *map;
2051 struct extent_map *em;
2052 int i;
2053 int ret = -EINVAL;
2054
2055 read_lock(&map_tree->map_tree.lock);
2056 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2057 read_unlock(&map_tree->map_tree.lock);
2058
2059 if (!em)
2060 return -EINVAL;
2061
2062 map = (struct map_lookup *)em->bdev;
2063 if (em->start != chunk_offset)
2064 goto out;
2065
2066 if (em->len < length)
2067 goto out;
2068
2069 for (i = 0; i < map->num_stripes; ++i) {
2070 if (map->stripes[i].dev == sdev->dev &&
2071 map->stripes[i].physical == dev_offset) {
2072 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2073 if (ret)
2074 goto out;
2075 }
2076 }
2077out:
2078 free_extent_map(em);
2079
2080 return ret;
2081}
2082
2083static noinline_for_stack
2084int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2085{
2086 struct btrfs_dev_extent *dev_extent = NULL;
2087 struct btrfs_path *path;
2088 struct btrfs_root *root = sdev->dev->dev_root;
2089 struct btrfs_fs_info *fs_info = root->fs_info;
2090 u64 length;
2091 u64 chunk_tree;
2092 u64 chunk_objectid;
2093 u64 chunk_offset;
2094 int ret;
2095 int slot;
2096 struct extent_buffer *l;
2097 struct btrfs_key key;
2098 struct btrfs_key found_key;
2099 struct btrfs_block_group_cache *cache;
2100
2101 path = btrfs_alloc_path();
2102 if (!path)
2103 return -ENOMEM;
2104
2105 path->reada = 2;
2106 path->search_commit_root = 1;
2107 path->skip_locking = 1;
2108
2109 key.objectid = sdev->dev->devid;
2110 key.offset = 0ull;
2111 key.type = BTRFS_DEV_EXTENT_KEY;
2112
2113
2114 while (1) {
2115 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2116 if (ret < 0)
2117 break;
2118 if (ret > 0) {
2119 if (path->slots[0] >=
2120 btrfs_header_nritems(path->nodes[0])) {
2121 ret = btrfs_next_leaf(root, path);
2122 if (ret)
2123 break;
2124 }
2125 }
2126
2127 l = path->nodes[0];
2128 slot = path->slots[0];
2129
2130 btrfs_item_key_to_cpu(l, &found_key, slot);
2131
2132 if (found_key.objectid != sdev->dev->devid)
2133 break;
2134
2135 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2136 break;
2137
2138 if (found_key.offset >= end)
2139 break;
2140
2141 if (found_key.offset < key.offset)
2142 break;
2143
2144 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2145 length = btrfs_dev_extent_length(l, dev_extent);
2146
2147 if (found_key.offset + length <= start) {
2148 key.offset = found_key.offset + length;
2149 btrfs_release_path(path);
2150 continue;
2151 }
2152
2153 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2154 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2155 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2156
2157 /*
2158 * get a reference on the corresponding block group to prevent
2159 * the chunk from going away while we scrub it
2160 */
2161 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2162 if (!cache) {
2163 ret = -ENOENT;
2164 break;
2165 }
2166 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2167 chunk_offset, length, found_key.offset);
2168 btrfs_put_block_group(cache);
2169 if (ret)
2170 break;
2171
2172 key.offset = found_key.offset + length;
2173 btrfs_release_path(path);
2174 }
2175
2176 btrfs_free_path(path);
2177
2178 /*
2179 * ret can still be 1 from search_slot or next_leaf,
2180 * that's not an error
2181 */
2182 return ret < 0 ? ret : 0;
2183}
2184
2185static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2186{
2187 int i;
2188 u64 bytenr;
2189 u64 gen;
2190 int ret;
2191 struct btrfs_device *device = sdev->dev;
2192 struct btrfs_root *root = device->dev_root;
2193
2194 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2195 return -EIO;
2196
2197 gen = root->fs_info->last_trans_committed;
2198
2199 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2200 bytenr = btrfs_sb_offset(i);
2201 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2202 break;
2203
2204 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2205 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2206 if (ret)
2207 return ret;
2208 }
2209 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2210
2211 return 0;
2212}
2213
2214/*
2215 * get a reference count on fs_info->scrub_workers. start worker if necessary
2216 */
2217static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2218{
2219 struct btrfs_fs_info *fs_info = root->fs_info;
2220 int ret = 0;
2221
2222 mutex_lock(&fs_info->scrub_lock);
2223 if (fs_info->scrub_workers_refcnt == 0) {
2224 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2225 fs_info->thread_pool_size, &fs_info->generic_worker);
2226 fs_info->scrub_workers.idle_thresh = 4;
2227 ret = btrfs_start_workers(&fs_info->scrub_workers);
2228 if (ret)
2229 goto out;
2230 }
2231 ++fs_info->scrub_workers_refcnt;
2232out:
2233 mutex_unlock(&fs_info->scrub_lock);
2234
2235 return ret;
2236}
2237
2238static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2239{
2240 struct btrfs_fs_info *fs_info = root->fs_info;
2241
2242 mutex_lock(&fs_info->scrub_lock);
2243 if (--fs_info->scrub_workers_refcnt == 0)
2244 btrfs_stop_workers(&fs_info->scrub_workers);
2245 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2246 mutex_unlock(&fs_info->scrub_lock);
2247}
2248
2249
2250int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2251 struct btrfs_scrub_progress *progress, int readonly)
2252{
2253 struct scrub_dev *sdev;
2254 struct btrfs_fs_info *fs_info = root->fs_info;
2255 int ret;
2256 struct btrfs_device *dev;
2257
2258 if (btrfs_fs_closing(root->fs_info))
2259 return -EINVAL;
2260
2261 /*
2262 * check some assumptions
2263 */
2264 if (root->nodesize != root->leafsize) {
2265 printk(KERN_ERR
2266 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2267 root->nodesize, root->leafsize);
2268 return -EINVAL;
2269 }
2270
2271 if (root->nodesize > BTRFS_STRIPE_LEN) {
2272 /*
2273 * in this case scrub is unable to calculate the checksum
2274 * the way scrub is implemented. Do not handle this
2275 * situation at all because it won't ever happen.
2276 */
2277 printk(KERN_ERR
2278 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2279 root->nodesize, BTRFS_STRIPE_LEN);
2280 return -EINVAL;
2281 }
2282
2283 if (root->sectorsize != PAGE_SIZE) {
2284 /* not supported for data w/o checksums */
2285 printk(KERN_ERR
2286 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2287 root->sectorsize, (unsigned long long)PAGE_SIZE);
2288 return -EINVAL;
2289 }
2290
2291 ret = scrub_workers_get(root);
2292 if (ret)
2293 return ret;
2294
2295 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2296 dev = btrfs_find_device(root, devid, NULL, NULL);
2297 if (!dev || dev->missing) {
2298 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2299 scrub_workers_put(root);
2300 return -ENODEV;
2301 }
2302 mutex_lock(&fs_info->scrub_lock);
2303
2304 if (!dev->in_fs_metadata) {
2305 mutex_unlock(&fs_info->scrub_lock);
2306 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2307 scrub_workers_put(root);
2308 return -ENODEV;
2309 }
2310
2311 if (dev->scrub_device) {
2312 mutex_unlock(&fs_info->scrub_lock);
2313 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2314 scrub_workers_put(root);
2315 return -EINPROGRESS;
2316 }
2317 sdev = scrub_setup_dev(dev);
2318 if (IS_ERR(sdev)) {
2319 mutex_unlock(&fs_info->scrub_lock);
2320 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2321 scrub_workers_put(root);
2322 return PTR_ERR(sdev);
2323 }
2324 sdev->readonly = readonly;
2325 dev->scrub_device = sdev;
2326
2327 atomic_inc(&fs_info->scrubs_running);
2328 mutex_unlock(&fs_info->scrub_lock);
2329 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2330
2331 down_read(&fs_info->scrub_super_lock);
2332 ret = scrub_supers(sdev);
2333 up_read(&fs_info->scrub_super_lock);
2334
2335 if (!ret)
2336 ret = scrub_enumerate_chunks(sdev, start, end);
2337
2338 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2339 atomic_dec(&fs_info->scrubs_running);
2340 wake_up(&fs_info->scrub_pause_wait);
2341
2342 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2343
2344 if (progress)
2345 memcpy(progress, &sdev->stat, sizeof(*progress));
2346
2347 mutex_lock(&fs_info->scrub_lock);
2348 dev->scrub_device = NULL;
2349 mutex_unlock(&fs_info->scrub_lock);
2350
2351 scrub_free_dev(sdev);
2352 scrub_workers_put(root);
2353
2354 return ret;
2355}
2356
2357void btrfs_scrub_pause(struct btrfs_root *root)
2358{
2359 struct btrfs_fs_info *fs_info = root->fs_info;
2360
2361 mutex_lock(&fs_info->scrub_lock);
2362 atomic_inc(&fs_info->scrub_pause_req);
2363 while (atomic_read(&fs_info->scrubs_paused) !=
2364 atomic_read(&fs_info->scrubs_running)) {
2365 mutex_unlock(&fs_info->scrub_lock);
2366 wait_event(fs_info->scrub_pause_wait,
2367 atomic_read(&fs_info->scrubs_paused) ==
2368 atomic_read(&fs_info->scrubs_running));
2369 mutex_lock(&fs_info->scrub_lock);
2370 }
2371 mutex_unlock(&fs_info->scrub_lock);
2372}
2373
2374void btrfs_scrub_continue(struct btrfs_root *root)
2375{
2376 struct btrfs_fs_info *fs_info = root->fs_info;
2377
2378 atomic_dec(&fs_info->scrub_pause_req);
2379 wake_up(&fs_info->scrub_pause_wait);
2380}
2381
2382void btrfs_scrub_pause_super(struct btrfs_root *root)
2383{
2384 down_write(&root->fs_info->scrub_super_lock);
2385}
2386
2387void btrfs_scrub_continue_super(struct btrfs_root *root)
2388{
2389 up_write(&root->fs_info->scrub_super_lock);
2390}
2391
2392int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2393{
2394
2395 mutex_lock(&fs_info->scrub_lock);
2396 if (!atomic_read(&fs_info->scrubs_running)) {
2397 mutex_unlock(&fs_info->scrub_lock);
2398 return -ENOTCONN;
2399 }
2400
2401 atomic_inc(&fs_info->scrub_cancel_req);
2402 while (atomic_read(&fs_info->scrubs_running)) {
2403 mutex_unlock(&fs_info->scrub_lock);
2404 wait_event(fs_info->scrub_pause_wait,
2405 atomic_read(&fs_info->scrubs_running) == 0);
2406 mutex_lock(&fs_info->scrub_lock);
2407 }
2408 atomic_dec(&fs_info->scrub_cancel_req);
2409 mutex_unlock(&fs_info->scrub_lock);
2410
2411 return 0;
2412}
2413
2414int btrfs_scrub_cancel(struct btrfs_root *root)
2415{
2416 return __btrfs_scrub_cancel(root->fs_info);
2417}
2418
2419int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2420{
2421 struct btrfs_fs_info *fs_info = root->fs_info;
2422 struct scrub_dev *sdev;
2423
2424 mutex_lock(&fs_info->scrub_lock);
2425 sdev = dev->scrub_device;
2426 if (!sdev) {
2427 mutex_unlock(&fs_info->scrub_lock);
2428 return -ENOTCONN;
2429 }
2430 atomic_inc(&sdev->cancel_req);
2431 while (dev->scrub_device) {
2432 mutex_unlock(&fs_info->scrub_lock);
2433 wait_event(fs_info->scrub_pause_wait,
2434 dev->scrub_device == NULL);
2435 mutex_lock(&fs_info->scrub_lock);
2436 }
2437 mutex_unlock(&fs_info->scrub_lock);
2438
2439 return 0;
2440}
2441
2442int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2443{
2444 struct btrfs_fs_info *fs_info = root->fs_info;
2445 struct btrfs_device *dev;
2446 int ret;
2447
2448 /*
2449 * we have to hold the device_list_mutex here so the device
2450 * does not go away in cancel_dev. FIXME: find a better solution
2451 */
2452 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2453 dev = btrfs_find_device(root, devid, NULL, NULL);
2454 if (!dev) {
2455 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2456 return -ENODEV;
2457 }
2458 ret = btrfs_scrub_cancel_dev(root, dev);
2459 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2460
2461 return ret;
2462}
2463
2464int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2465 struct btrfs_scrub_progress *progress)
2466{
2467 struct btrfs_device *dev;
2468 struct scrub_dev *sdev = NULL;
2469
2470 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2471 dev = btrfs_find_device(root, devid, NULL, NULL);
2472 if (dev)
2473 sdev = dev->scrub_device;
2474 if (sdev)
2475 memcpy(progress, &sdev->stat, sizeof(*progress));
2476 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2477
2478 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2479}