Loading...
1/*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/ratelimit.h>
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
25#include "transaction.h"
26#include "backref.h"
27#include "extent_io.h"
28#include "dev-replace.h"
29#include "check-integrity.h"
30#include "rcu-string.h"
31#include "raid56.h"
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46struct scrub_block;
47struct scrub_ctx;
48
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66struct scrub_recover {
67 atomic_t refs;
68 struct btrfs_bio *bbio;
69 u64 map_length;
70};
71
72struct scrub_page {
73 struct scrub_block *sblock;
74 struct page *page;
75 struct btrfs_device *dev;
76 struct list_head list;
77 u64 flags; /* extent flags */
78 u64 generation;
79 u64 logical;
80 u64 physical;
81 u64 physical_for_dev_replace;
82 atomic_t refs;
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
88 u8 csum[BTRFS_CSUM_SIZE];
89
90 struct scrub_recover *recover;
91};
92
93struct scrub_bio {
94 int index;
95 struct scrub_ctx *sctx;
96 struct btrfs_device *dev;
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103#else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105#endif
106 int page_count;
107 int next_free;
108 struct btrfs_work work;
109};
110
111struct scrub_block {
112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 int page_count;
114 atomic_t outstanding_pages;
115 atomic_t refs; /* free mem on transition to zero */
116 struct scrub_ctx *sctx;
117 struct scrub_parity *sparity;
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
122 unsigned int generation_error:1; /* also sets header_error */
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
127 };
128 struct btrfs_work work;
129};
130
131/* Used for the chunks with parity stripe such RAID5/6 */
132struct scrub_parity {
133 struct scrub_ctx *sctx;
134
135 struct btrfs_device *scrub_dev;
136
137 u64 logic_start;
138
139 u64 logic_end;
140
141 int nsectors;
142
143 int stripe_len;
144
145 atomic_t refs;
146
147 struct list_head spages;
148
149 /* Work of parity check and repair */
150 struct btrfs_work work;
151
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap;
154
155 /*
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
158 */
159 unsigned long *ebitmap;
160
161 unsigned long bitmap[0];
162};
163
164struct scrub_wr_ctx {
165 struct scrub_bio *wr_curr_bio;
166 struct btrfs_device *tgtdev;
167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes;
169 struct mutex wr_lock;
170};
171
172struct scrub_ctx {
173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
174 struct btrfs_fs_info *fs_info;
175 int first_free;
176 int curr;
177 atomic_t bios_in_flight;
178 atomic_t workers_pending;
179 spinlock_t list_lock;
180 wait_queue_head_t list_wait;
181 u16 csum_size;
182 struct list_head csum_list;
183 atomic_t cancel_req;
184 int readonly;
185 int pages_per_rd_bio;
186 u32 sectorsize;
187 u32 nodesize;
188
189 int is_dev_replace;
190 struct scrub_wr_ctx wr_ctx;
191
192 /*
193 * statistics
194 */
195 struct btrfs_scrub_progress stat;
196 spinlock_t stat_lock;
197
198 /*
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
204 */
205 atomic_t refs;
206};
207
208struct scrub_fixup_nodatasum {
209 struct scrub_ctx *sctx;
210 struct btrfs_device *dev;
211 u64 logical;
212 struct btrfs_root *root;
213 struct btrfs_work work;
214 int mirror_num;
215};
216
217struct scrub_nocow_inode {
218 u64 inum;
219 u64 offset;
220 u64 root;
221 struct list_head list;
222};
223
224struct scrub_copy_nocow_ctx {
225 struct scrub_ctx *sctx;
226 u64 logical;
227 u64 len;
228 int mirror_num;
229 u64 physical_for_dev_replace;
230 struct list_head inodes;
231 struct btrfs_work work;
232};
233
234struct scrub_warning {
235 struct btrfs_path *path;
236 u64 extent_item_size;
237 const char *errstr;
238 sector_t sector;
239 u64 logical;
240 struct btrfs_device *dev;
241};
242
243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 struct scrub_block *sblocks_for_recheck);
250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 struct scrub_block *sblock,
252 int retry_failed_mirror);
253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 struct scrub_block *sblock_good);
256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 struct scrub_block *sblock_good,
258 int page_num, int force_write);
259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 int page_num);
262static int scrub_checksum_data(struct scrub_block *sblock);
263static int scrub_checksum_tree_block(struct scrub_block *sblock);
264static int scrub_checksum_super(struct scrub_block *sblock);
265static void scrub_block_get(struct scrub_block *sblock);
266static void scrub_block_put(struct scrub_block *sblock);
267static void scrub_page_get(struct scrub_page *spage);
268static void scrub_page_put(struct scrub_page *spage);
269static void scrub_parity_get(struct scrub_parity *sparity);
270static void scrub_parity_put(struct scrub_parity *sparity);
271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 struct scrub_page *spage);
273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 u64 physical, struct btrfs_device *dev, u64 flags,
275 u64 gen, int mirror_num, u8 *csum, int force,
276 u64 physical_for_dev_replace);
277static void scrub_bio_end_io(struct bio *bio);
278static void scrub_bio_end_io_worker(struct btrfs_work *work);
279static void scrub_block_complete(struct scrub_block *sblock);
280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 u64 extent_logical, u64 extent_len,
282 u64 *extent_physical,
283 struct btrfs_device **extent_dev,
284 int *extent_mirror_num);
285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 struct scrub_wr_ctx *wr_ctx,
287 struct btrfs_fs_info *fs_info,
288 struct btrfs_device *dev,
289 int is_dev_replace);
290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 struct scrub_page *spage);
293static void scrub_wr_submit(struct scrub_ctx *sctx);
294static void scrub_wr_bio_end_io(struct bio *bio);
295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296static int write_page_nocow(struct scrub_ctx *sctx,
297 u64 physical_for_dev_replace, struct page *page);
298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299 struct scrub_copy_nocow_ctx *ctx);
300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 int mirror_num, u64 physical_for_dev_replace);
302static void copy_nocow_pages_worker(struct btrfs_work *work);
303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305static void scrub_put_ctx(struct scrub_ctx *sctx);
306
307
308static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309{
310 atomic_inc(&sctx->refs);
311 atomic_inc(&sctx->bios_in_flight);
312}
313
314static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315{
316 atomic_dec(&sctx->bios_in_flight);
317 wake_up(&sctx->list_wait);
318 scrub_put_ctx(sctx);
319}
320
321static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322{
323 while (atomic_read(&fs_info->scrub_pause_req)) {
324 mutex_unlock(&fs_info->scrub_lock);
325 wait_event(fs_info->scrub_pause_wait,
326 atomic_read(&fs_info->scrub_pause_req) == 0);
327 mutex_lock(&fs_info->scrub_lock);
328 }
329}
330
331static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332{
333 atomic_inc(&fs_info->scrubs_paused);
334 wake_up(&fs_info->scrub_pause_wait);
335}
336
337static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338{
339 mutex_lock(&fs_info->scrub_lock);
340 __scrub_blocked_if_needed(fs_info);
341 atomic_dec(&fs_info->scrubs_paused);
342 mutex_unlock(&fs_info->scrub_lock);
343
344 wake_up(&fs_info->scrub_pause_wait);
345}
346
347static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348{
349 scrub_pause_on(fs_info);
350 scrub_pause_off(fs_info);
351}
352
353/*
354 * used for workers that require transaction commits (i.e., for the
355 * NOCOW case)
356 */
357static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358{
359 struct btrfs_fs_info *fs_info = sctx->fs_info;
360
361 atomic_inc(&sctx->refs);
362 /*
363 * increment scrubs_running to prevent cancel requests from
364 * completing as long as a worker is running. we must also
365 * increment scrubs_paused to prevent deadlocking on pause
366 * requests used for transactions commits (as the worker uses a
367 * transaction context). it is safe to regard the worker
368 * as paused for all matters practical. effectively, we only
369 * avoid cancellation requests from completing.
370 */
371 mutex_lock(&fs_info->scrub_lock);
372 atomic_inc(&fs_info->scrubs_running);
373 atomic_inc(&fs_info->scrubs_paused);
374 mutex_unlock(&fs_info->scrub_lock);
375
376 /*
377 * check if @scrubs_running=@scrubs_paused condition
378 * inside wait_event() is not an atomic operation.
379 * which means we may inc/dec @scrub_running/paused
380 * at any time. Let's wake up @scrub_pause_wait as
381 * much as we can to let commit transaction blocked less.
382 */
383 wake_up(&fs_info->scrub_pause_wait);
384
385 atomic_inc(&sctx->workers_pending);
386}
387
388/* used for workers that require transaction commits */
389static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390{
391 struct btrfs_fs_info *fs_info = sctx->fs_info;
392
393 /*
394 * see scrub_pending_trans_workers_inc() why we're pretending
395 * to be paused in the scrub counters
396 */
397 mutex_lock(&fs_info->scrub_lock);
398 atomic_dec(&fs_info->scrubs_running);
399 atomic_dec(&fs_info->scrubs_paused);
400 mutex_unlock(&fs_info->scrub_lock);
401 atomic_dec(&sctx->workers_pending);
402 wake_up(&fs_info->scrub_pause_wait);
403 wake_up(&sctx->list_wait);
404 scrub_put_ctx(sctx);
405}
406
407static void scrub_free_csums(struct scrub_ctx *sctx)
408{
409 while (!list_empty(&sctx->csum_list)) {
410 struct btrfs_ordered_sum *sum;
411 sum = list_first_entry(&sctx->csum_list,
412 struct btrfs_ordered_sum, list);
413 list_del(&sum->list);
414 kfree(sum);
415 }
416}
417
418static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
419{
420 int i;
421
422 if (!sctx)
423 return;
424
425 scrub_free_wr_ctx(&sctx->wr_ctx);
426
427 /* this can happen when scrub is cancelled */
428 if (sctx->curr != -1) {
429 struct scrub_bio *sbio = sctx->bios[sctx->curr];
430
431 for (i = 0; i < sbio->page_count; i++) {
432 WARN_ON(!sbio->pagev[i]->page);
433 scrub_block_put(sbio->pagev[i]->sblock);
434 }
435 bio_put(sbio->bio);
436 }
437
438 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439 struct scrub_bio *sbio = sctx->bios[i];
440
441 if (!sbio)
442 break;
443 kfree(sbio);
444 }
445
446 scrub_free_csums(sctx);
447 kfree(sctx);
448}
449
450static void scrub_put_ctx(struct scrub_ctx *sctx)
451{
452 if (atomic_dec_and_test(&sctx->refs))
453 scrub_free_ctx(sctx);
454}
455
456static noinline_for_stack
457struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
458{
459 struct scrub_ctx *sctx;
460 int i;
461 struct btrfs_fs_info *fs_info = dev->fs_info;
462 int ret;
463
464 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465 if (!sctx)
466 goto nomem;
467 atomic_set(&sctx->refs, 1);
468 sctx->is_dev_replace = is_dev_replace;
469 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470 sctx->curr = -1;
471 sctx->fs_info = dev->fs_info;
472 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
473 struct scrub_bio *sbio;
474
475 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
476 if (!sbio)
477 goto nomem;
478 sctx->bios[i] = sbio;
479
480 sbio->index = i;
481 sbio->sctx = sctx;
482 sbio->page_count = 0;
483 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 scrub_bio_end_io_worker, NULL, NULL);
485
486 if (i != SCRUB_BIOS_PER_SCTX - 1)
487 sctx->bios[i]->next_free = i + 1;
488 else
489 sctx->bios[i]->next_free = -1;
490 }
491 sctx->first_free = 0;
492 sctx->nodesize = fs_info->nodesize;
493 sctx->sectorsize = fs_info->sectorsize;
494 atomic_set(&sctx->bios_in_flight, 0);
495 atomic_set(&sctx->workers_pending, 0);
496 atomic_set(&sctx->cancel_req, 0);
497 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 INIT_LIST_HEAD(&sctx->csum_list);
499
500 spin_lock_init(&sctx->list_lock);
501 spin_lock_init(&sctx->stat_lock);
502 init_waitqueue_head(&sctx->list_wait);
503
504 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 fs_info->dev_replace.tgtdev, is_dev_replace);
506 if (ret) {
507 scrub_free_ctx(sctx);
508 return ERR_PTR(ret);
509 }
510 return sctx;
511
512nomem:
513 scrub_free_ctx(sctx);
514 return ERR_PTR(-ENOMEM);
515}
516
517static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 void *warn_ctx)
519{
520 u64 isize;
521 u32 nlink;
522 int ret;
523 int i;
524 struct extent_buffer *eb;
525 struct btrfs_inode_item *inode_item;
526 struct scrub_warning *swarn = warn_ctx;
527 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
528 struct inode_fs_paths *ipath = NULL;
529 struct btrfs_root *local_root;
530 struct btrfs_key root_key;
531 struct btrfs_key key;
532
533 root_key.objectid = root;
534 root_key.type = BTRFS_ROOT_ITEM_KEY;
535 root_key.offset = (u64)-1;
536 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 if (IS_ERR(local_root)) {
538 ret = PTR_ERR(local_root);
539 goto err;
540 }
541
542 /*
543 * this makes the path point to (inum INODE_ITEM ioff)
544 */
545 key.objectid = inum;
546 key.type = BTRFS_INODE_ITEM_KEY;
547 key.offset = 0;
548
549 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 if (ret) {
551 btrfs_release_path(swarn->path);
552 goto err;
553 }
554
555 eb = swarn->path->nodes[0];
556 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 struct btrfs_inode_item);
558 isize = btrfs_inode_size(eb, inode_item);
559 nlink = btrfs_inode_nlink(eb, inode_item);
560 btrfs_release_path(swarn->path);
561
562 ipath = init_ipath(4096, local_root, swarn->path);
563 if (IS_ERR(ipath)) {
564 ret = PTR_ERR(ipath);
565 ipath = NULL;
566 goto err;
567 }
568 ret = paths_from_inode(inum, ipath);
569
570 if (ret < 0)
571 goto err;
572
573 /*
574 * we deliberately ignore the bit ipath might have been too small to
575 * hold all of the paths here
576 */
577 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578 btrfs_warn_in_rcu(fs_info,
579 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
580 swarn->errstr, swarn->logical,
581 rcu_str_deref(swarn->dev->name),
582 (unsigned long long)swarn->sector,
583 root, inum, offset,
584 min(isize - offset, (u64)PAGE_SIZE), nlink,
585 (char *)(unsigned long)ipath->fspath->val[i]);
586
587 free_ipath(ipath);
588 return 0;
589
590err:
591 btrfs_warn_in_rcu(fs_info,
592 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
593 swarn->errstr, swarn->logical,
594 rcu_str_deref(swarn->dev->name),
595 (unsigned long long)swarn->sector,
596 root, inum, offset, ret);
597
598 free_ipath(ipath);
599 return 0;
600}
601
602static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
603{
604 struct btrfs_device *dev;
605 struct btrfs_fs_info *fs_info;
606 struct btrfs_path *path;
607 struct btrfs_key found_key;
608 struct extent_buffer *eb;
609 struct btrfs_extent_item *ei;
610 struct scrub_warning swarn;
611 unsigned long ptr = 0;
612 u64 extent_item_pos;
613 u64 flags = 0;
614 u64 ref_root;
615 u32 item_size;
616 u8 ref_level = 0;
617 int ret;
618
619 WARN_ON(sblock->page_count < 1);
620 dev = sblock->pagev[0]->dev;
621 fs_info = sblock->sctx->fs_info;
622
623 path = btrfs_alloc_path();
624 if (!path)
625 return;
626
627 swarn.sector = (sblock->pagev[0]->physical) >> 9;
628 swarn.logical = sblock->pagev[0]->logical;
629 swarn.errstr = errstr;
630 swarn.dev = NULL;
631
632 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
633 &flags);
634 if (ret < 0)
635 goto out;
636
637 extent_item_pos = swarn.logical - found_key.objectid;
638 swarn.extent_item_size = found_key.offset;
639
640 eb = path->nodes[0];
641 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
642 item_size = btrfs_item_size_nr(eb, path->slots[0]);
643
644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
645 do {
646 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
647 item_size, &ref_root,
648 &ref_level);
649 btrfs_warn_in_rcu(fs_info,
650 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
651 errstr, swarn.logical,
652 rcu_str_deref(dev->name),
653 (unsigned long long)swarn.sector,
654 ref_level ? "node" : "leaf",
655 ret < 0 ? -1 : ref_level,
656 ret < 0 ? -1 : ref_root);
657 } while (ret != 1);
658 btrfs_release_path(path);
659 } else {
660 btrfs_release_path(path);
661 swarn.path = path;
662 swarn.dev = dev;
663 iterate_extent_inodes(fs_info, found_key.objectid,
664 extent_item_pos, 1,
665 scrub_print_warning_inode, &swarn);
666 }
667
668out:
669 btrfs_free_path(path);
670}
671
672static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
673{
674 struct page *page = NULL;
675 unsigned long index;
676 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
677 int ret;
678 int corrected = 0;
679 struct btrfs_key key;
680 struct inode *inode = NULL;
681 struct btrfs_fs_info *fs_info;
682 u64 end = offset + PAGE_SIZE - 1;
683 struct btrfs_root *local_root;
684 int srcu_index;
685
686 key.objectid = root;
687 key.type = BTRFS_ROOT_ITEM_KEY;
688 key.offset = (u64)-1;
689
690 fs_info = fixup->root->fs_info;
691 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
692
693 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
694 if (IS_ERR(local_root)) {
695 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
696 return PTR_ERR(local_root);
697 }
698
699 key.type = BTRFS_INODE_ITEM_KEY;
700 key.objectid = inum;
701 key.offset = 0;
702 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
703 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
704 if (IS_ERR(inode))
705 return PTR_ERR(inode);
706
707 index = offset >> PAGE_SHIFT;
708
709 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
710 if (!page) {
711 ret = -ENOMEM;
712 goto out;
713 }
714
715 if (PageUptodate(page)) {
716 if (PageDirty(page)) {
717 /*
718 * we need to write the data to the defect sector. the
719 * data that was in that sector is not in memory,
720 * because the page was modified. we must not write the
721 * modified page to that sector.
722 *
723 * TODO: what could be done here: wait for the delalloc
724 * runner to write out that page (might involve
725 * COW) and see whether the sector is still
726 * referenced afterwards.
727 *
728 * For the meantime, we'll treat this error
729 * incorrectable, although there is a chance that a
730 * later scrub will find the bad sector again and that
731 * there's no dirty page in memory, then.
732 */
733 ret = -EIO;
734 goto out;
735 }
736 ret = repair_io_failure(inode, offset, PAGE_SIZE,
737 fixup->logical, page,
738 offset - page_offset(page),
739 fixup->mirror_num);
740 unlock_page(page);
741 corrected = !ret;
742 } else {
743 /*
744 * we need to get good data first. the general readpage path
745 * will call repair_io_failure for us, we just have to make
746 * sure we read the bad mirror.
747 */
748 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
749 EXTENT_DAMAGED);
750 if (ret) {
751 /* set_extent_bits should give proper error */
752 WARN_ON(ret > 0);
753 if (ret > 0)
754 ret = -EFAULT;
755 goto out;
756 }
757
758 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
759 btrfs_get_extent,
760 fixup->mirror_num);
761 wait_on_page_locked(page);
762
763 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
764 end, EXTENT_DAMAGED, 0, NULL);
765 if (!corrected)
766 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
767 EXTENT_DAMAGED);
768 }
769
770out:
771 if (page)
772 put_page(page);
773
774 iput(inode);
775
776 if (ret < 0)
777 return ret;
778
779 if (ret == 0 && corrected) {
780 /*
781 * we only need to call readpage for one of the inodes belonging
782 * to this extent. so make iterate_extent_inodes stop
783 */
784 return 1;
785 }
786
787 return -EIO;
788}
789
790static void scrub_fixup_nodatasum(struct btrfs_work *work)
791{
792 struct btrfs_fs_info *fs_info;
793 int ret;
794 struct scrub_fixup_nodatasum *fixup;
795 struct scrub_ctx *sctx;
796 struct btrfs_trans_handle *trans = NULL;
797 struct btrfs_path *path;
798 int uncorrectable = 0;
799
800 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
801 sctx = fixup->sctx;
802 fs_info = fixup->root->fs_info;
803
804 path = btrfs_alloc_path();
805 if (!path) {
806 spin_lock(&sctx->stat_lock);
807 ++sctx->stat.malloc_errors;
808 spin_unlock(&sctx->stat_lock);
809 uncorrectable = 1;
810 goto out;
811 }
812
813 trans = btrfs_join_transaction(fixup->root);
814 if (IS_ERR(trans)) {
815 uncorrectable = 1;
816 goto out;
817 }
818
819 /*
820 * the idea is to trigger a regular read through the standard path. we
821 * read a page from the (failed) logical address by specifying the
822 * corresponding copynum of the failed sector. thus, that readpage is
823 * expected to fail.
824 * that is the point where on-the-fly error correction will kick in
825 * (once it's finished) and rewrite the failed sector if a good copy
826 * can be found.
827 */
828 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
829 scrub_fixup_readpage, fixup);
830 if (ret < 0) {
831 uncorrectable = 1;
832 goto out;
833 }
834 WARN_ON(ret != 1);
835
836 spin_lock(&sctx->stat_lock);
837 ++sctx->stat.corrected_errors;
838 spin_unlock(&sctx->stat_lock);
839
840out:
841 if (trans && !IS_ERR(trans))
842 btrfs_end_transaction(trans);
843 if (uncorrectable) {
844 spin_lock(&sctx->stat_lock);
845 ++sctx->stat.uncorrectable_errors;
846 spin_unlock(&sctx->stat_lock);
847 btrfs_dev_replace_stats_inc(
848 &fs_info->dev_replace.num_uncorrectable_read_errors);
849 btrfs_err_rl_in_rcu(fs_info,
850 "unable to fixup (nodatasum) error at logical %llu on dev %s",
851 fixup->logical, rcu_str_deref(fixup->dev->name));
852 }
853
854 btrfs_free_path(path);
855 kfree(fixup);
856
857 scrub_pending_trans_workers_dec(sctx);
858}
859
860static inline void scrub_get_recover(struct scrub_recover *recover)
861{
862 atomic_inc(&recover->refs);
863}
864
865static inline void scrub_put_recover(struct scrub_recover *recover)
866{
867 if (atomic_dec_and_test(&recover->refs)) {
868 btrfs_put_bbio(recover->bbio);
869 kfree(recover);
870 }
871}
872
873/*
874 * scrub_handle_errored_block gets called when either verification of the
875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
876 * case, this function handles all pages in the bio, even though only one
877 * may be bad.
878 * The goal of this function is to repair the errored block by using the
879 * contents of one of the mirrors.
880 */
881static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
882{
883 struct scrub_ctx *sctx = sblock_to_check->sctx;
884 struct btrfs_device *dev;
885 struct btrfs_fs_info *fs_info;
886 u64 length;
887 u64 logical;
888 unsigned int failed_mirror_index;
889 unsigned int is_metadata;
890 unsigned int have_csum;
891 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
892 struct scrub_block *sblock_bad;
893 int ret;
894 int mirror_index;
895 int page_num;
896 int success;
897 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
898 DEFAULT_RATELIMIT_BURST);
899
900 BUG_ON(sblock_to_check->page_count < 1);
901 fs_info = sctx->fs_info;
902 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
903 /*
904 * if we find an error in a super block, we just report it.
905 * They will get written with the next transaction commit
906 * anyway
907 */
908 spin_lock(&sctx->stat_lock);
909 ++sctx->stat.super_errors;
910 spin_unlock(&sctx->stat_lock);
911 return 0;
912 }
913 length = sblock_to_check->page_count * PAGE_SIZE;
914 logical = sblock_to_check->pagev[0]->logical;
915 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
916 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
917 is_metadata = !(sblock_to_check->pagev[0]->flags &
918 BTRFS_EXTENT_FLAG_DATA);
919 have_csum = sblock_to_check->pagev[0]->have_csum;
920 dev = sblock_to_check->pagev[0]->dev;
921
922 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
923 sblocks_for_recheck = NULL;
924 goto nodatasum_case;
925 }
926
927 /*
928 * read all mirrors one after the other. This includes to
929 * re-read the extent or metadata block that failed (that was
930 * the cause that this fixup code is called) another time,
931 * page by page this time in order to know which pages
932 * caused I/O errors and which ones are good (for all mirrors).
933 * It is the goal to handle the situation when more than one
934 * mirror contains I/O errors, but the errors do not
935 * overlap, i.e. the data can be repaired by selecting the
936 * pages from those mirrors without I/O error on the
937 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
938 * would be that mirror #1 has an I/O error on the first page,
939 * the second page is good, and mirror #2 has an I/O error on
940 * the second page, but the first page is good.
941 * Then the first page of the first mirror can be repaired by
942 * taking the first page of the second mirror, and the
943 * second page of the second mirror can be repaired by
944 * copying the contents of the 2nd page of the 1st mirror.
945 * One more note: if the pages of one mirror contain I/O
946 * errors, the checksum cannot be verified. In order to get
947 * the best data for repairing, the first attempt is to find
948 * a mirror without I/O errors and with a validated checksum.
949 * Only if this is not possible, the pages are picked from
950 * mirrors with I/O errors without considering the checksum.
951 * If the latter is the case, at the end, the checksum of the
952 * repaired area is verified in order to correctly maintain
953 * the statistics.
954 */
955
956 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
957 sizeof(*sblocks_for_recheck), GFP_NOFS);
958 if (!sblocks_for_recheck) {
959 spin_lock(&sctx->stat_lock);
960 sctx->stat.malloc_errors++;
961 sctx->stat.read_errors++;
962 sctx->stat.uncorrectable_errors++;
963 spin_unlock(&sctx->stat_lock);
964 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
965 goto out;
966 }
967
968 /* setup the context, map the logical blocks and alloc the pages */
969 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
970 if (ret) {
971 spin_lock(&sctx->stat_lock);
972 sctx->stat.read_errors++;
973 sctx->stat.uncorrectable_errors++;
974 spin_unlock(&sctx->stat_lock);
975 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 goto out;
977 }
978 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
979 sblock_bad = sblocks_for_recheck + failed_mirror_index;
980
981 /* build and submit the bios for the failed mirror, check checksums */
982 scrub_recheck_block(fs_info, sblock_bad, 1);
983
984 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
985 sblock_bad->no_io_error_seen) {
986 /*
987 * the error disappeared after reading page by page, or
988 * the area was part of a huge bio and other parts of the
989 * bio caused I/O errors, or the block layer merged several
990 * read requests into one and the error is caused by a
991 * different bio (usually one of the two latter cases is
992 * the cause)
993 */
994 spin_lock(&sctx->stat_lock);
995 sctx->stat.unverified_errors++;
996 sblock_to_check->data_corrected = 1;
997 spin_unlock(&sctx->stat_lock);
998
999 if (sctx->is_dev_replace)
1000 scrub_write_block_to_dev_replace(sblock_bad);
1001 goto out;
1002 }
1003
1004 if (!sblock_bad->no_io_error_seen) {
1005 spin_lock(&sctx->stat_lock);
1006 sctx->stat.read_errors++;
1007 spin_unlock(&sctx->stat_lock);
1008 if (__ratelimit(&_rs))
1009 scrub_print_warning("i/o error", sblock_to_check);
1010 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011 } else if (sblock_bad->checksum_error) {
1012 spin_lock(&sctx->stat_lock);
1013 sctx->stat.csum_errors++;
1014 spin_unlock(&sctx->stat_lock);
1015 if (__ratelimit(&_rs))
1016 scrub_print_warning("checksum error", sblock_to_check);
1017 btrfs_dev_stat_inc_and_print(dev,
1018 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019 } else if (sblock_bad->header_error) {
1020 spin_lock(&sctx->stat_lock);
1021 sctx->stat.verify_errors++;
1022 spin_unlock(&sctx->stat_lock);
1023 if (__ratelimit(&_rs))
1024 scrub_print_warning("checksum/header error",
1025 sblock_to_check);
1026 if (sblock_bad->generation_error)
1027 btrfs_dev_stat_inc_and_print(dev,
1028 BTRFS_DEV_STAT_GENERATION_ERRS);
1029 else
1030 btrfs_dev_stat_inc_and_print(dev,
1031 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032 }
1033
1034 if (sctx->readonly) {
1035 ASSERT(!sctx->is_dev_replace);
1036 goto out;
1037 }
1038
1039 if (!is_metadata && !have_csum) {
1040 struct scrub_fixup_nodatasum *fixup_nodatasum;
1041
1042 WARN_ON(sctx->is_dev_replace);
1043
1044nodatasum_case:
1045
1046 /*
1047 * !is_metadata and !have_csum, this means that the data
1048 * might not be COWed, that it might be modified
1049 * concurrently. The general strategy to work on the
1050 * commit root does not help in the case when COW is not
1051 * used.
1052 */
1053 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054 if (!fixup_nodatasum)
1055 goto did_not_correct_error;
1056 fixup_nodatasum->sctx = sctx;
1057 fixup_nodatasum->dev = dev;
1058 fixup_nodatasum->logical = logical;
1059 fixup_nodatasum->root = fs_info->extent_root;
1060 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061 scrub_pending_trans_workers_inc(sctx);
1062 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063 scrub_fixup_nodatasum, NULL, NULL);
1064 btrfs_queue_work(fs_info->scrub_workers,
1065 &fixup_nodatasum->work);
1066 goto out;
1067 }
1068
1069 /*
1070 * now build and submit the bios for the other mirrors, check
1071 * checksums.
1072 * First try to pick the mirror which is completely without I/O
1073 * errors and also does not have a checksum error.
1074 * If one is found, and if a checksum is present, the full block
1075 * that is known to contain an error is rewritten. Afterwards
1076 * the block is known to be corrected.
1077 * If a mirror is found which is completely correct, and no
1078 * checksum is present, only those pages are rewritten that had
1079 * an I/O error in the block to be repaired, since it cannot be
1080 * determined, which copy of the other pages is better (and it
1081 * could happen otherwise that a correct page would be
1082 * overwritten by a bad one).
1083 */
1084 for (mirror_index = 0;
1085 mirror_index < BTRFS_MAX_MIRRORS &&
1086 sblocks_for_recheck[mirror_index].page_count > 0;
1087 mirror_index++) {
1088 struct scrub_block *sblock_other;
1089
1090 if (mirror_index == failed_mirror_index)
1091 continue;
1092 sblock_other = sblocks_for_recheck + mirror_index;
1093
1094 /* build and submit the bios, check checksums */
1095 scrub_recheck_block(fs_info, sblock_other, 0);
1096
1097 if (!sblock_other->header_error &&
1098 !sblock_other->checksum_error &&
1099 sblock_other->no_io_error_seen) {
1100 if (sctx->is_dev_replace) {
1101 scrub_write_block_to_dev_replace(sblock_other);
1102 goto corrected_error;
1103 } else {
1104 ret = scrub_repair_block_from_good_copy(
1105 sblock_bad, sblock_other);
1106 if (!ret)
1107 goto corrected_error;
1108 }
1109 }
1110 }
1111
1112 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113 goto did_not_correct_error;
1114
1115 /*
1116 * In case of I/O errors in the area that is supposed to be
1117 * repaired, continue by picking good copies of those pages.
1118 * Select the good pages from mirrors to rewrite bad pages from
1119 * the area to fix. Afterwards verify the checksum of the block
1120 * that is supposed to be repaired. This verification step is
1121 * only done for the purpose of statistic counting and for the
1122 * final scrub report, whether errors remain.
1123 * A perfect algorithm could make use of the checksum and try
1124 * all possible combinations of pages from the different mirrors
1125 * until the checksum verification succeeds. For example, when
1126 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127 * of mirror #2 is readable but the final checksum test fails,
1128 * then the 2nd page of mirror #3 could be tried, whether now
1129 * the final checksum succeeds. But this would be a rare
1130 * exception and is therefore not implemented. At least it is
1131 * avoided that the good copy is overwritten.
1132 * A more useful improvement would be to pick the sectors
1133 * without I/O error based on sector sizes (512 bytes on legacy
1134 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135 * mirror could be repaired by taking 512 byte of a different
1136 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137 * area are unreadable.
1138 */
1139 success = 1;
1140 for (page_num = 0; page_num < sblock_bad->page_count;
1141 page_num++) {
1142 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143 struct scrub_block *sblock_other = NULL;
1144
1145 /* skip no-io-error page in scrub */
1146 if (!page_bad->io_error && !sctx->is_dev_replace)
1147 continue;
1148
1149 /* try to find no-io-error page in mirrors */
1150 if (page_bad->io_error) {
1151 for (mirror_index = 0;
1152 mirror_index < BTRFS_MAX_MIRRORS &&
1153 sblocks_for_recheck[mirror_index].page_count > 0;
1154 mirror_index++) {
1155 if (!sblocks_for_recheck[mirror_index].
1156 pagev[page_num]->io_error) {
1157 sblock_other = sblocks_for_recheck +
1158 mirror_index;
1159 break;
1160 }
1161 }
1162 if (!sblock_other)
1163 success = 0;
1164 }
1165
1166 if (sctx->is_dev_replace) {
1167 /*
1168 * did not find a mirror to fetch the page
1169 * from. scrub_write_page_to_dev_replace()
1170 * handles this case (page->io_error), by
1171 * filling the block with zeros before
1172 * submitting the write request
1173 */
1174 if (!sblock_other)
1175 sblock_other = sblock_bad;
1176
1177 if (scrub_write_page_to_dev_replace(sblock_other,
1178 page_num) != 0) {
1179 btrfs_dev_replace_stats_inc(
1180 &fs_info->dev_replace.num_write_errors);
1181 success = 0;
1182 }
1183 } else if (sblock_other) {
1184 ret = scrub_repair_page_from_good_copy(sblock_bad,
1185 sblock_other,
1186 page_num, 0);
1187 if (0 == ret)
1188 page_bad->io_error = 0;
1189 else
1190 success = 0;
1191 }
1192 }
1193
1194 if (success && !sctx->is_dev_replace) {
1195 if (is_metadata || have_csum) {
1196 /*
1197 * need to verify the checksum now that all
1198 * sectors on disk are repaired (the write
1199 * request for data to be repaired is on its way).
1200 * Just be lazy and use scrub_recheck_block()
1201 * which re-reads the data before the checksum
1202 * is verified, but most likely the data comes out
1203 * of the page cache.
1204 */
1205 scrub_recheck_block(fs_info, sblock_bad, 1);
1206 if (!sblock_bad->header_error &&
1207 !sblock_bad->checksum_error &&
1208 sblock_bad->no_io_error_seen)
1209 goto corrected_error;
1210 else
1211 goto did_not_correct_error;
1212 } else {
1213corrected_error:
1214 spin_lock(&sctx->stat_lock);
1215 sctx->stat.corrected_errors++;
1216 sblock_to_check->data_corrected = 1;
1217 spin_unlock(&sctx->stat_lock);
1218 btrfs_err_rl_in_rcu(fs_info,
1219 "fixed up error at logical %llu on dev %s",
1220 logical, rcu_str_deref(dev->name));
1221 }
1222 } else {
1223did_not_correct_error:
1224 spin_lock(&sctx->stat_lock);
1225 sctx->stat.uncorrectable_errors++;
1226 spin_unlock(&sctx->stat_lock);
1227 btrfs_err_rl_in_rcu(fs_info,
1228 "unable to fixup (regular) error at logical %llu on dev %s",
1229 logical, rcu_str_deref(dev->name));
1230 }
1231
1232out:
1233 if (sblocks_for_recheck) {
1234 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1235 mirror_index++) {
1236 struct scrub_block *sblock = sblocks_for_recheck +
1237 mirror_index;
1238 struct scrub_recover *recover;
1239 int page_index;
1240
1241 for (page_index = 0; page_index < sblock->page_count;
1242 page_index++) {
1243 sblock->pagev[page_index]->sblock = NULL;
1244 recover = sblock->pagev[page_index]->recover;
1245 if (recover) {
1246 scrub_put_recover(recover);
1247 sblock->pagev[page_index]->recover =
1248 NULL;
1249 }
1250 scrub_page_put(sblock->pagev[page_index]);
1251 }
1252 }
1253 kfree(sblocks_for_recheck);
1254 }
1255
1256 return 0;
1257}
1258
1259static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260{
1261 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1262 return 2;
1263 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1264 return 3;
1265 else
1266 return (int)bbio->num_stripes;
1267}
1268
1269static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1270 u64 *raid_map,
1271 u64 mapped_length,
1272 int nstripes, int mirror,
1273 int *stripe_index,
1274 u64 *stripe_offset)
1275{
1276 int i;
1277
1278 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279 /* RAID5/6 */
1280 for (i = 0; i < nstripes; i++) {
1281 if (raid_map[i] == RAID6_Q_STRIPE ||
1282 raid_map[i] == RAID5_P_STRIPE)
1283 continue;
1284
1285 if (logical >= raid_map[i] &&
1286 logical < raid_map[i] + mapped_length)
1287 break;
1288 }
1289
1290 *stripe_index = i;
1291 *stripe_offset = logical - raid_map[i];
1292 } else {
1293 /* The other RAID type */
1294 *stripe_index = mirror;
1295 *stripe_offset = 0;
1296 }
1297}
1298
1299static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300 struct scrub_block *sblocks_for_recheck)
1301{
1302 struct scrub_ctx *sctx = original_sblock->sctx;
1303 struct btrfs_fs_info *fs_info = sctx->fs_info;
1304 u64 length = original_sblock->page_count * PAGE_SIZE;
1305 u64 logical = original_sblock->pagev[0]->logical;
1306 u64 generation = original_sblock->pagev[0]->generation;
1307 u64 flags = original_sblock->pagev[0]->flags;
1308 u64 have_csum = original_sblock->pagev[0]->have_csum;
1309 struct scrub_recover *recover;
1310 struct btrfs_bio *bbio;
1311 u64 sublen;
1312 u64 mapped_length;
1313 u64 stripe_offset;
1314 int stripe_index;
1315 int page_index = 0;
1316 int mirror_index;
1317 int nmirrors;
1318 int ret;
1319
1320 /*
1321 * note: the two members refs and outstanding_pages
1322 * are not used (and not set) in the blocks that are used for
1323 * the recheck procedure
1324 */
1325
1326 while (length > 0) {
1327 sublen = min_t(u64, length, PAGE_SIZE);
1328 mapped_length = sublen;
1329 bbio = NULL;
1330
1331 /*
1332 * with a length of PAGE_SIZE, each returned stripe
1333 * represents one mirror
1334 */
1335 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1336 logical, &mapped_length, &bbio, 0, 1);
1337 if (ret || !bbio || mapped_length < sublen) {
1338 btrfs_put_bbio(bbio);
1339 return -EIO;
1340 }
1341
1342 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1343 if (!recover) {
1344 btrfs_put_bbio(bbio);
1345 return -ENOMEM;
1346 }
1347
1348 atomic_set(&recover->refs, 1);
1349 recover->bbio = bbio;
1350 recover->map_length = mapped_length;
1351
1352 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1353
1354 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1355
1356 for (mirror_index = 0; mirror_index < nmirrors;
1357 mirror_index++) {
1358 struct scrub_block *sblock;
1359 struct scrub_page *page;
1360
1361 sblock = sblocks_for_recheck + mirror_index;
1362 sblock->sctx = sctx;
1363
1364 page = kzalloc(sizeof(*page), GFP_NOFS);
1365 if (!page) {
1366leave_nomem:
1367 spin_lock(&sctx->stat_lock);
1368 sctx->stat.malloc_errors++;
1369 spin_unlock(&sctx->stat_lock);
1370 scrub_put_recover(recover);
1371 return -ENOMEM;
1372 }
1373 scrub_page_get(page);
1374 sblock->pagev[page_index] = page;
1375 page->sblock = sblock;
1376 page->flags = flags;
1377 page->generation = generation;
1378 page->logical = logical;
1379 page->have_csum = have_csum;
1380 if (have_csum)
1381 memcpy(page->csum,
1382 original_sblock->pagev[0]->csum,
1383 sctx->csum_size);
1384
1385 scrub_stripe_index_and_offset(logical,
1386 bbio->map_type,
1387 bbio->raid_map,
1388 mapped_length,
1389 bbio->num_stripes -
1390 bbio->num_tgtdevs,
1391 mirror_index,
1392 &stripe_index,
1393 &stripe_offset);
1394 page->physical = bbio->stripes[stripe_index].physical +
1395 stripe_offset;
1396 page->dev = bbio->stripes[stripe_index].dev;
1397
1398 BUG_ON(page_index >= original_sblock->page_count);
1399 page->physical_for_dev_replace =
1400 original_sblock->pagev[page_index]->
1401 physical_for_dev_replace;
1402 /* for missing devices, dev->bdev is NULL */
1403 page->mirror_num = mirror_index + 1;
1404 sblock->page_count++;
1405 page->page = alloc_page(GFP_NOFS);
1406 if (!page->page)
1407 goto leave_nomem;
1408
1409 scrub_get_recover(recover);
1410 page->recover = recover;
1411 }
1412 scrub_put_recover(recover);
1413 length -= sublen;
1414 logical += sublen;
1415 page_index++;
1416 }
1417
1418 return 0;
1419}
1420
1421struct scrub_bio_ret {
1422 struct completion event;
1423 int error;
1424};
1425
1426static void scrub_bio_wait_endio(struct bio *bio)
1427{
1428 struct scrub_bio_ret *ret = bio->bi_private;
1429
1430 ret->error = bio->bi_error;
1431 complete(&ret->event);
1432}
1433
1434static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1435{
1436 return page->recover &&
1437 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1438}
1439
1440static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1441 struct bio *bio,
1442 struct scrub_page *page)
1443{
1444 struct scrub_bio_ret done;
1445 int ret;
1446
1447 init_completion(&done.event);
1448 done.error = 0;
1449 bio->bi_iter.bi_sector = page->logical >> 9;
1450 bio->bi_private = &done;
1451 bio->bi_end_io = scrub_bio_wait_endio;
1452
1453 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1454 page->recover->map_length,
1455 page->mirror_num, 0);
1456 if (ret)
1457 return ret;
1458
1459 wait_for_completion(&done.event);
1460 if (done.error)
1461 return -EIO;
1462
1463 return 0;
1464}
1465
1466/*
1467 * this function will check the on disk data for checksum errors, header
1468 * errors and read I/O errors. If any I/O errors happen, the exact pages
1469 * which are errored are marked as being bad. The goal is to enable scrub
1470 * to take those pages that are not errored from all the mirrors so that
1471 * the pages that are errored in the just handled mirror can be repaired.
1472 */
1473static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1474 struct scrub_block *sblock,
1475 int retry_failed_mirror)
1476{
1477 int page_num;
1478
1479 sblock->no_io_error_seen = 1;
1480
1481 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482 struct bio *bio;
1483 struct scrub_page *page = sblock->pagev[page_num];
1484
1485 if (page->dev->bdev == NULL) {
1486 page->io_error = 1;
1487 sblock->no_io_error_seen = 0;
1488 continue;
1489 }
1490
1491 WARN_ON(!page->page);
1492 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1493 if (!bio) {
1494 page->io_error = 1;
1495 sblock->no_io_error_seen = 0;
1496 continue;
1497 }
1498 bio->bi_bdev = page->dev->bdev;
1499
1500 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1501 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1502 if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1503 sblock->no_io_error_seen = 0;
1504 } else {
1505 bio->bi_iter.bi_sector = page->physical >> 9;
1506 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1507
1508 if (btrfsic_submit_bio_wait(bio))
1509 sblock->no_io_error_seen = 0;
1510 }
1511
1512 bio_put(bio);
1513 }
1514
1515 if (sblock->no_io_error_seen)
1516 scrub_recheck_block_checksum(sblock);
1517}
1518
1519static inline int scrub_check_fsid(u8 fsid[],
1520 struct scrub_page *spage)
1521{
1522 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523 int ret;
1524
1525 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526 return !ret;
1527}
1528
1529static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530{
1531 sblock->header_error = 0;
1532 sblock->checksum_error = 0;
1533 sblock->generation_error = 0;
1534
1535 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536 scrub_checksum_data(sblock);
1537 else
1538 scrub_checksum_tree_block(sblock);
1539}
1540
1541static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542 struct scrub_block *sblock_good)
1543{
1544 int page_num;
1545 int ret = 0;
1546
1547 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548 int ret_sub;
1549
1550 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551 sblock_good,
1552 page_num, 1);
1553 if (ret_sub)
1554 ret = ret_sub;
1555 }
1556
1557 return ret;
1558}
1559
1560static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561 struct scrub_block *sblock_good,
1562 int page_num, int force_write)
1563{
1564 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565 struct scrub_page *page_good = sblock_good->pagev[page_num];
1566 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1567
1568 BUG_ON(page_bad->page == NULL);
1569 BUG_ON(page_good->page == NULL);
1570 if (force_write || sblock_bad->header_error ||
1571 sblock_bad->checksum_error || page_bad->io_error) {
1572 struct bio *bio;
1573 int ret;
1574
1575 if (!page_bad->dev->bdev) {
1576 btrfs_warn_rl(fs_info,
1577 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1578 return -EIO;
1579 }
1580
1581 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 if (!bio)
1583 return -EIO;
1584 bio->bi_bdev = page_bad->dev->bdev;
1585 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1587
1588 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1589 if (PAGE_SIZE != ret) {
1590 bio_put(bio);
1591 return -EIO;
1592 }
1593
1594 if (btrfsic_submit_bio_wait(bio)) {
1595 btrfs_dev_stat_inc_and_print(page_bad->dev,
1596 BTRFS_DEV_STAT_WRITE_ERRS);
1597 btrfs_dev_replace_stats_inc(
1598 &fs_info->dev_replace.num_write_errors);
1599 bio_put(bio);
1600 return -EIO;
1601 }
1602 bio_put(bio);
1603 }
1604
1605 return 0;
1606}
1607
1608static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609{
1610 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1611 int page_num;
1612
1613 /*
1614 * This block is used for the check of the parity on the source device,
1615 * so the data needn't be written into the destination device.
1616 */
1617 if (sblock->sparity)
1618 return;
1619
1620 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1621 int ret;
1622
1623 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1624 if (ret)
1625 btrfs_dev_replace_stats_inc(
1626 &fs_info->dev_replace.num_write_errors);
1627 }
1628}
1629
1630static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631 int page_num)
1632{
1633 struct scrub_page *spage = sblock->pagev[page_num];
1634
1635 BUG_ON(spage->page == NULL);
1636 if (spage->io_error) {
1637 void *mapped_buffer = kmap_atomic(spage->page);
1638
1639 memset(mapped_buffer, 0, PAGE_SIZE);
1640 flush_dcache_page(spage->page);
1641 kunmap_atomic(mapped_buffer);
1642 }
1643 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644}
1645
1646static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647 struct scrub_page *spage)
1648{
1649 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650 struct scrub_bio *sbio;
1651 int ret;
1652
1653 mutex_lock(&wr_ctx->wr_lock);
1654again:
1655 if (!wr_ctx->wr_curr_bio) {
1656 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657 GFP_KERNEL);
1658 if (!wr_ctx->wr_curr_bio) {
1659 mutex_unlock(&wr_ctx->wr_lock);
1660 return -ENOMEM;
1661 }
1662 wr_ctx->wr_curr_bio->sctx = sctx;
1663 wr_ctx->wr_curr_bio->page_count = 0;
1664 }
1665 sbio = wr_ctx->wr_curr_bio;
1666 if (sbio->page_count == 0) {
1667 struct bio *bio;
1668
1669 sbio->physical = spage->physical_for_dev_replace;
1670 sbio->logical = spage->logical;
1671 sbio->dev = wr_ctx->tgtdev;
1672 bio = sbio->bio;
1673 if (!bio) {
1674 bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675 wr_ctx->pages_per_wr_bio);
1676 if (!bio) {
1677 mutex_unlock(&wr_ctx->wr_lock);
1678 return -ENOMEM;
1679 }
1680 sbio->bio = bio;
1681 }
1682
1683 bio->bi_private = sbio;
1684 bio->bi_end_io = scrub_wr_bio_end_io;
1685 bio->bi_bdev = sbio->dev->bdev;
1686 bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1688 sbio->err = 0;
1689 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1690 spage->physical_for_dev_replace ||
1691 sbio->logical + sbio->page_count * PAGE_SIZE !=
1692 spage->logical) {
1693 scrub_wr_submit(sctx);
1694 goto again;
1695 }
1696
1697 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1698 if (ret != PAGE_SIZE) {
1699 if (sbio->page_count < 1) {
1700 bio_put(sbio->bio);
1701 sbio->bio = NULL;
1702 mutex_unlock(&wr_ctx->wr_lock);
1703 return -EIO;
1704 }
1705 scrub_wr_submit(sctx);
1706 goto again;
1707 }
1708
1709 sbio->pagev[sbio->page_count] = spage;
1710 scrub_page_get(spage);
1711 sbio->page_count++;
1712 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1713 scrub_wr_submit(sctx);
1714 mutex_unlock(&wr_ctx->wr_lock);
1715
1716 return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
1720{
1721 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1722 struct scrub_bio *sbio;
1723
1724 if (!wr_ctx->wr_curr_bio)
1725 return;
1726
1727 sbio = wr_ctx->wr_curr_bio;
1728 wr_ctx->wr_curr_bio = NULL;
1729 WARN_ON(!sbio->bio->bi_bdev);
1730 scrub_pending_bio_inc(sctx);
1731 /* process all writes in a single worker thread. Then the block layer
1732 * orders the requests before sending them to the driver which
1733 * doubled the write performance on spinning disks when measured
1734 * with Linux 3.5 */
1735 btrfsic_submit_bio(sbio->bio);
1736}
1737
1738static void scrub_wr_bio_end_io(struct bio *bio)
1739{
1740 struct scrub_bio *sbio = bio->bi_private;
1741 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1742
1743 sbio->err = bio->bi_error;
1744 sbio->bio = bio;
1745
1746 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1747 scrub_wr_bio_end_io_worker, NULL, NULL);
1748 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749}
1750
1751static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1752{
1753 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1754 struct scrub_ctx *sctx = sbio->sctx;
1755 int i;
1756
1757 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1758 if (sbio->err) {
1759 struct btrfs_dev_replace *dev_replace =
1760 &sbio->sctx->fs_info->dev_replace;
1761
1762 for (i = 0; i < sbio->page_count; i++) {
1763 struct scrub_page *spage = sbio->pagev[i];
1764
1765 spage->io_error = 1;
1766 btrfs_dev_replace_stats_inc(&dev_replace->
1767 num_write_errors);
1768 }
1769 }
1770
1771 for (i = 0; i < sbio->page_count; i++)
1772 scrub_page_put(sbio->pagev[i]);
1773
1774 bio_put(sbio->bio);
1775 kfree(sbio);
1776 scrub_pending_bio_dec(sctx);
1777}
1778
1779static int scrub_checksum(struct scrub_block *sblock)
1780{
1781 u64 flags;
1782 int ret;
1783
1784 /*
1785 * No need to initialize these stats currently,
1786 * because this function only use return value
1787 * instead of these stats value.
1788 *
1789 * Todo:
1790 * always use stats
1791 */
1792 sblock->header_error = 0;
1793 sblock->generation_error = 0;
1794 sblock->checksum_error = 0;
1795
1796 WARN_ON(sblock->page_count < 1);
1797 flags = sblock->pagev[0]->flags;
1798 ret = 0;
1799 if (flags & BTRFS_EXTENT_FLAG_DATA)
1800 ret = scrub_checksum_data(sblock);
1801 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802 ret = scrub_checksum_tree_block(sblock);
1803 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804 (void)scrub_checksum_super(sblock);
1805 else
1806 WARN_ON(1);
1807 if (ret)
1808 scrub_handle_errored_block(sblock);
1809
1810 return ret;
1811}
1812
1813static int scrub_checksum_data(struct scrub_block *sblock)
1814{
1815 struct scrub_ctx *sctx = sblock->sctx;
1816 u8 csum[BTRFS_CSUM_SIZE];
1817 u8 *on_disk_csum;
1818 struct page *page;
1819 void *buffer;
1820 u32 crc = ~(u32)0;
1821 u64 len;
1822 int index;
1823
1824 BUG_ON(sblock->page_count < 1);
1825 if (!sblock->pagev[0]->have_csum)
1826 return 0;
1827
1828 on_disk_csum = sblock->pagev[0]->csum;
1829 page = sblock->pagev[0]->page;
1830 buffer = kmap_atomic(page);
1831
1832 len = sctx->sectorsize;
1833 index = 0;
1834 for (;;) {
1835 u64 l = min_t(u64, len, PAGE_SIZE);
1836
1837 crc = btrfs_csum_data(buffer, crc, l);
1838 kunmap_atomic(buffer);
1839 len -= l;
1840 if (len == 0)
1841 break;
1842 index++;
1843 BUG_ON(index >= sblock->page_count);
1844 BUG_ON(!sblock->pagev[index]->page);
1845 page = sblock->pagev[index]->page;
1846 buffer = kmap_atomic(page);
1847 }
1848
1849 btrfs_csum_final(crc, csum);
1850 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1851 sblock->checksum_error = 1;
1852
1853 return sblock->checksum_error;
1854}
1855
1856static int scrub_checksum_tree_block(struct scrub_block *sblock)
1857{
1858 struct scrub_ctx *sctx = sblock->sctx;
1859 struct btrfs_header *h;
1860 struct btrfs_fs_info *fs_info = sctx->fs_info;
1861 u8 calculated_csum[BTRFS_CSUM_SIZE];
1862 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863 struct page *page;
1864 void *mapped_buffer;
1865 u64 mapped_size;
1866 void *p;
1867 u32 crc = ~(u32)0;
1868 u64 len;
1869 int index;
1870
1871 BUG_ON(sblock->page_count < 1);
1872 page = sblock->pagev[0]->page;
1873 mapped_buffer = kmap_atomic(page);
1874 h = (struct btrfs_header *)mapped_buffer;
1875 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876
1877 /*
1878 * we don't use the getter functions here, as we
1879 * a) don't have an extent buffer and
1880 * b) the page is already kmapped
1881 */
1882 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883 sblock->header_error = 1;
1884
1885 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886 sblock->header_error = 1;
1887 sblock->generation_error = 1;
1888 }
1889
1890 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891 sblock->header_error = 1;
1892
1893 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894 BTRFS_UUID_SIZE))
1895 sblock->header_error = 1;
1896
1897 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900 index = 0;
1901 for (;;) {
1902 u64 l = min_t(u64, len, mapped_size);
1903
1904 crc = btrfs_csum_data(p, crc, l);
1905 kunmap_atomic(mapped_buffer);
1906 len -= l;
1907 if (len == 0)
1908 break;
1909 index++;
1910 BUG_ON(index >= sblock->page_count);
1911 BUG_ON(!sblock->pagev[index]->page);
1912 page = sblock->pagev[index]->page;
1913 mapped_buffer = kmap_atomic(page);
1914 mapped_size = PAGE_SIZE;
1915 p = mapped_buffer;
1916 }
1917
1918 btrfs_csum_final(crc, calculated_csum);
1919 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920 sblock->checksum_error = 1;
1921
1922 return sblock->header_error || sblock->checksum_error;
1923}
1924
1925static int scrub_checksum_super(struct scrub_block *sblock)
1926{
1927 struct btrfs_super_block *s;
1928 struct scrub_ctx *sctx = sblock->sctx;
1929 u8 calculated_csum[BTRFS_CSUM_SIZE];
1930 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931 struct page *page;
1932 void *mapped_buffer;
1933 u64 mapped_size;
1934 void *p;
1935 u32 crc = ~(u32)0;
1936 int fail_gen = 0;
1937 int fail_cor = 0;
1938 u64 len;
1939 int index;
1940
1941 BUG_ON(sblock->page_count < 1);
1942 page = sblock->pagev[0]->page;
1943 mapped_buffer = kmap_atomic(page);
1944 s = (struct btrfs_super_block *)mapped_buffer;
1945 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946
1947 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948 ++fail_cor;
1949
1950 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951 ++fail_gen;
1952
1953 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954 ++fail_cor;
1955
1956 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959 index = 0;
1960 for (;;) {
1961 u64 l = min_t(u64, len, mapped_size);
1962
1963 crc = btrfs_csum_data(p, crc, l);
1964 kunmap_atomic(mapped_buffer);
1965 len -= l;
1966 if (len == 0)
1967 break;
1968 index++;
1969 BUG_ON(index >= sblock->page_count);
1970 BUG_ON(!sblock->pagev[index]->page);
1971 page = sblock->pagev[index]->page;
1972 mapped_buffer = kmap_atomic(page);
1973 mapped_size = PAGE_SIZE;
1974 p = mapped_buffer;
1975 }
1976
1977 btrfs_csum_final(crc, calculated_csum);
1978 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979 ++fail_cor;
1980
1981 if (fail_cor + fail_gen) {
1982 /*
1983 * if we find an error in a super block, we just report it.
1984 * They will get written with the next transaction commit
1985 * anyway
1986 */
1987 spin_lock(&sctx->stat_lock);
1988 ++sctx->stat.super_errors;
1989 spin_unlock(&sctx->stat_lock);
1990 if (fail_cor)
1991 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993 else
1994 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995 BTRFS_DEV_STAT_GENERATION_ERRS);
1996 }
1997
1998 return fail_cor + fail_gen;
1999}
2000
2001static void scrub_block_get(struct scrub_block *sblock)
2002{
2003 atomic_inc(&sblock->refs);
2004}
2005
2006static void scrub_block_put(struct scrub_block *sblock)
2007{
2008 if (atomic_dec_and_test(&sblock->refs)) {
2009 int i;
2010
2011 if (sblock->sparity)
2012 scrub_parity_put(sblock->sparity);
2013
2014 for (i = 0; i < sblock->page_count; i++)
2015 scrub_page_put(sblock->pagev[i]);
2016 kfree(sblock);
2017 }
2018}
2019
2020static void scrub_page_get(struct scrub_page *spage)
2021{
2022 atomic_inc(&spage->refs);
2023}
2024
2025static void scrub_page_put(struct scrub_page *spage)
2026{
2027 if (atomic_dec_and_test(&spage->refs)) {
2028 if (spage->page)
2029 __free_page(spage->page);
2030 kfree(spage);
2031 }
2032}
2033
2034static void scrub_submit(struct scrub_ctx *sctx)
2035{
2036 struct scrub_bio *sbio;
2037
2038 if (sctx->curr == -1)
2039 return;
2040
2041 sbio = sctx->bios[sctx->curr];
2042 sctx->curr = -1;
2043 scrub_pending_bio_inc(sctx);
2044 btrfsic_submit_bio(sbio->bio);
2045}
2046
2047static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048 struct scrub_page *spage)
2049{
2050 struct scrub_block *sblock = spage->sblock;
2051 struct scrub_bio *sbio;
2052 int ret;
2053
2054again:
2055 /*
2056 * grab a fresh bio or wait for one to become available
2057 */
2058 while (sctx->curr == -1) {
2059 spin_lock(&sctx->list_lock);
2060 sctx->curr = sctx->first_free;
2061 if (sctx->curr != -1) {
2062 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063 sctx->bios[sctx->curr]->next_free = -1;
2064 sctx->bios[sctx->curr]->page_count = 0;
2065 spin_unlock(&sctx->list_lock);
2066 } else {
2067 spin_unlock(&sctx->list_lock);
2068 wait_event(sctx->list_wait, sctx->first_free != -1);
2069 }
2070 }
2071 sbio = sctx->bios[sctx->curr];
2072 if (sbio->page_count == 0) {
2073 struct bio *bio;
2074
2075 sbio->physical = spage->physical;
2076 sbio->logical = spage->logical;
2077 sbio->dev = spage->dev;
2078 bio = sbio->bio;
2079 if (!bio) {
2080 bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081 sctx->pages_per_rd_bio);
2082 if (!bio)
2083 return -ENOMEM;
2084 sbio->bio = bio;
2085 }
2086
2087 bio->bi_private = sbio;
2088 bio->bi_end_io = scrub_bio_end_io;
2089 bio->bi_bdev = sbio->dev->bdev;
2090 bio->bi_iter.bi_sector = sbio->physical >> 9;
2091 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092 sbio->err = 0;
2093 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2094 spage->physical ||
2095 sbio->logical + sbio->page_count * PAGE_SIZE !=
2096 spage->logical ||
2097 sbio->dev != spage->dev) {
2098 scrub_submit(sctx);
2099 goto again;
2100 }
2101
2102 sbio->pagev[sbio->page_count] = spage;
2103 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2104 if (ret != PAGE_SIZE) {
2105 if (sbio->page_count < 1) {
2106 bio_put(sbio->bio);
2107 sbio->bio = NULL;
2108 return -EIO;
2109 }
2110 scrub_submit(sctx);
2111 goto again;
2112 }
2113
2114 scrub_block_get(sblock); /* one for the page added to the bio */
2115 atomic_inc(&sblock->outstanding_pages);
2116 sbio->page_count++;
2117 if (sbio->page_count == sctx->pages_per_rd_bio)
2118 scrub_submit(sctx);
2119
2120 return 0;
2121}
2122
2123static void scrub_missing_raid56_end_io(struct bio *bio)
2124{
2125 struct scrub_block *sblock = bio->bi_private;
2126 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2127
2128 if (bio->bi_error)
2129 sblock->no_io_error_seen = 0;
2130
2131 bio_put(bio);
2132
2133 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2134}
2135
2136static void scrub_missing_raid56_worker(struct btrfs_work *work)
2137{
2138 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2139 struct scrub_ctx *sctx = sblock->sctx;
2140 struct btrfs_fs_info *fs_info = sctx->fs_info;
2141 u64 logical;
2142 struct btrfs_device *dev;
2143
2144 logical = sblock->pagev[0]->logical;
2145 dev = sblock->pagev[0]->dev;
2146
2147 if (sblock->no_io_error_seen)
2148 scrub_recheck_block_checksum(sblock);
2149
2150 if (!sblock->no_io_error_seen) {
2151 spin_lock(&sctx->stat_lock);
2152 sctx->stat.read_errors++;
2153 spin_unlock(&sctx->stat_lock);
2154 btrfs_err_rl_in_rcu(fs_info,
2155 "IO error rebuilding logical %llu for dev %s",
2156 logical, rcu_str_deref(dev->name));
2157 } else if (sblock->header_error || sblock->checksum_error) {
2158 spin_lock(&sctx->stat_lock);
2159 sctx->stat.uncorrectable_errors++;
2160 spin_unlock(&sctx->stat_lock);
2161 btrfs_err_rl_in_rcu(fs_info,
2162 "failed to rebuild valid logical %llu for dev %s",
2163 logical, rcu_str_deref(dev->name));
2164 } else {
2165 scrub_write_block_to_dev_replace(sblock);
2166 }
2167
2168 scrub_block_put(sblock);
2169
2170 if (sctx->is_dev_replace &&
2171 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2172 mutex_lock(&sctx->wr_ctx.wr_lock);
2173 scrub_wr_submit(sctx);
2174 mutex_unlock(&sctx->wr_ctx.wr_lock);
2175 }
2176
2177 scrub_pending_bio_dec(sctx);
2178}
2179
2180static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2181{
2182 struct scrub_ctx *sctx = sblock->sctx;
2183 struct btrfs_fs_info *fs_info = sctx->fs_info;
2184 u64 length = sblock->page_count * PAGE_SIZE;
2185 u64 logical = sblock->pagev[0]->logical;
2186 struct btrfs_bio *bbio = NULL;
2187 struct bio *bio;
2188 struct btrfs_raid_bio *rbio;
2189 int ret;
2190 int i;
2191
2192 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2193 &length, &bbio, 0, 1);
2194 if (ret || !bbio || !bbio->raid_map)
2195 goto bbio_out;
2196
2197 if (WARN_ON(!sctx->is_dev_replace ||
2198 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2199 /*
2200 * We shouldn't be scrubbing a missing device. Even for dev
2201 * replace, we should only get here for RAID 5/6. We either
2202 * managed to mount something with no mirrors remaining or
2203 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2204 */
2205 goto bbio_out;
2206 }
2207
2208 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2209 if (!bio)
2210 goto bbio_out;
2211
2212 bio->bi_iter.bi_sector = logical >> 9;
2213 bio->bi_private = sblock;
2214 bio->bi_end_io = scrub_missing_raid56_end_io;
2215
2216 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2217 if (!rbio)
2218 goto rbio_out;
2219
2220 for (i = 0; i < sblock->page_count; i++) {
2221 struct scrub_page *spage = sblock->pagev[i];
2222
2223 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2224 }
2225
2226 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2227 scrub_missing_raid56_worker, NULL, NULL);
2228 scrub_block_get(sblock);
2229 scrub_pending_bio_inc(sctx);
2230 raid56_submit_missing_rbio(rbio);
2231 return;
2232
2233rbio_out:
2234 bio_put(bio);
2235bbio_out:
2236 btrfs_put_bbio(bbio);
2237 spin_lock(&sctx->stat_lock);
2238 sctx->stat.malloc_errors++;
2239 spin_unlock(&sctx->stat_lock);
2240}
2241
2242static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2243 u64 physical, struct btrfs_device *dev, u64 flags,
2244 u64 gen, int mirror_num, u8 *csum, int force,
2245 u64 physical_for_dev_replace)
2246{
2247 struct scrub_block *sblock;
2248 int index;
2249
2250 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2251 if (!sblock) {
2252 spin_lock(&sctx->stat_lock);
2253 sctx->stat.malloc_errors++;
2254 spin_unlock(&sctx->stat_lock);
2255 return -ENOMEM;
2256 }
2257
2258 /* one ref inside this function, plus one for each page added to
2259 * a bio later on */
2260 atomic_set(&sblock->refs, 1);
2261 sblock->sctx = sctx;
2262 sblock->no_io_error_seen = 1;
2263
2264 for (index = 0; len > 0; index++) {
2265 struct scrub_page *spage;
2266 u64 l = min_t(u64, len, PAGE_SIZE);
2267
2268 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2269 if (!spage) {
2270leave_nomem:
2271 spin_lock(&sctx->stat_lock);
2272 sctx->stat.malloc_errors++;
2273 spin_unlock(&sctx->stat_lock);
2274 scrub_block_put(sblock);
2275 return -ENOMEM;
2276 }
2277 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2278 scrub_page_get(spage);
2279 sblock->pagev[index] = spage;
2280 spage->sblock = sblock;
2281 spage->dev = dev;
2282 spage->flags = flags;
2283 spage->generation = gen;
2284 spage->logical = logical;
2285 spage->physical = physical;
2286 spage->physical_for_dev_replace = physical_for_dev_replace;
2287 spage->mirror_num = mirror_num;
2288 if (csum) {
2289 spage->have_csum = 1;
2290 memcpy(spage->csum, csum, sctx->csum_size);
2291 } else {
2292 spage->have_csum = 0;
2293 }
2294 sblock->page_count++;
2295 spage->page = alloc_page(GFP_KERNEL);
2296 if (!spage->page)
2297 goto leave_nomem;
2298 len -= l;
2299 logical += l;
2300 physical += l;
2301 physical_for_dev_replace += l;
2302 }
2303
2304 WARN_ON(sblock->page_count == 0);
2305 if (dev->missing) {
2306 /*
2307 * This case should only be hit for RAID 5/6 device replace. See
2308 * the comment in scrub_missing_raid56_pages() for details.
2309 */
2310 scrub_missing_raid56_pages(sblock);
2311 } else {
2312 for (index = 0; index < sblock->page_count; index++) {
2313 struct scrub_page *spage = sblock->pagev[index];
2314 int ret;
2315
2316 ret = scrub_add_page_to_rd_bio(sctx, spage);
2317 if (ret) {
2318 scrub_block_put(sblock);
2319 return ret;
2320 }
2321 }
2322
2323 if (force)
2324 scrub_submit(sctx);
2325 }
2326
2327 /* last one frees, either here or in bio completion for last page */
2328 scrub_block_put(sblock);
2329 return 0;
2330}
2331
2332static void scrub_bio_end_io(struct bio *bio)
2333{
2334 struct scrub_bio *sbio = bio->bi_private;
2335 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2336
2337 sbio->err = bio->bi_error;
2338 sbio->bio = bio;
2339
2340 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2341}
2342
2343static void scrub_bio_end_io_worker(struct btrfs_work *work)
2344{
2345 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2346 struct scrub_ctx *sctx = sbio->sctx;
2347 int i;
2348
2349 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2350 if (sbio->err) {
2351 for (i = 0; i < sbio->page_count; i++) {
2352 struct scrub_page *spage = sbio->pagev[i];
2353
2354 spage->io_error = 1;
2355 spage->sblock->no_io_error_seen = 0;
2356 }
2357 }
2358
2359 /* now complete the scrub_block items that have all pages completed */
2360 for (i = 0; i < sbio->page_count; i++) {
2361 struct scrub_page *spage = sbio->pagev[i];
2362 struct scrub_block *sblock = spage->sblock;
2363
2364 if (atomic_dec_and_test(&sblock->outstanding_pages))
2365 scrub_block_complete(sblock);
2366 scrub_block_put(sblock);
2367 }
2368
2369 bio_put(sbio->bio);
2370 sbio->bio = NULL;
2371 spin_lock(&sctx->list_lock);
2372 sbio->next_free = sctx->first_free;
2373 sctx->first_free = sbio->index;
2374 spin_unlock(&sctx->list_lock);
2375
2376 if (sctx->is_dev_replace &&
2377 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2378 mutex_lock(&sctx->wr_ctx.wr_lock);
2379 scrub_wr_submit(sctx);
2380 mutex_unlock(&sctx->wr_ctx.wr_lock);
2381 }
2382
2383 scrub_pending_bio_dec(sctx);
2384}
2385
2386static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2387 unsigned long *bitmap,
2388 u64 start, u64 len)
2389{
2390 u32 offset;
2391 int nsectors;
2392 int sectorsize = sparity->sctx->fs_info->sectorsize;
2393
2394 if (len >= sparity->stripe_len) {
2395 bitmap_set(bitmap, 0, sparity->nsectors);
2396 return;
2397 }
2398
2399 start -= sparity->logic_start;
2400 start = div_u64_rem(start, sparity->stripe_len, &offset);
2401 offset /= sectorsize;
2402 nsectors = (int)len / sectorsize;
2403
2404 if (offset + nsectors <= sparity->nsectors) {
2405 bitmap_set(bitmap, offset, nsectors);
2406 return;
2407 }
2408
2409 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2410 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2411}
2412
2413static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2414 u64 start, u64 len)
2415{
2416 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2417}
2418
2419static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2420 u64 start, u64 len)
2421{
2422 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2423}
2424
2425static void scrub_block_complete(struct scrub_block *sblock)
2426{
2427 int corrupted = 0;
2428
2429 if (!sblock->no_io_error_seen) {
2430 corrupted = 1;
2431 scrub_handle_errored_block(sblock);
2432 } else {
2433 /*
2434 * if has checksum error, write via repair mechanism in
2435 * dev replace case, otherwise write here in dev replace
2436 * case.
2437 */
2438 corrupted = scrub_checksum(sblock);
2439 if (!corrupted && sblock->sctx->is_dev_replace)
2440 scrub_write_block_to_dev_replace(sblock);
2441 }
2442
2443 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2444 u64 start = sblock->pagev[0]->logical;
2445 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2446 PAGE_SIZE;
2447
2448 scrub_parity_mark_sectors_error(sblock->sparity,
2449 start, end - start);
2450 }
2451}
2452
2453static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2454{
2455 struct btrfs_ordered_sum *sum = NULL;
2456 unsigned long index;
2457 unsigned long num_sectors;
2458
2459 while (!list_empty(&sctx->csum_list)) {
2460 sum = list_first_entry(&sctx->csum_list,
2461 struct btrfs_ordered_sum, list);
2462 if (sum->bytenr > logical)
2463 return 0;
2464 if (sum->bytenr + sum->len > logical)
2465 break;
2466
2467 ++sctx->stat.csum_discards;
2468 list_del(&sum->list);
2469 kfree(sum);
2470 sum = NULL;
2471 }
2472 if (!sum)
2473 return 0;
2474
2475 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2476 num_sectors = sum->len / sctx->sectorsize;
2477 memcpy(csum, sum->sums + index, sctx->csum_size);
2478 if (index == num_sectors - 1) {
2479 list_del(&sum->list);
2480 kfree(sum);
2481 }
2482 return 1;
2483}
2484
2485/* scrub extent tries to collect up to 64 kB for each bio */
2486static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2487 u64 physical, struct btrfs_device *dev, u64 flags,
2488 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2489{
2490 int ret;
2491 u8 csum[BTRFS_CSUM_SIZE];
2492 u32 blocksize;
2493
2494 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2495 blocksize = sctx->sectorsize;
2496 spin_lock(&sctx->stat_lock);
2497 sctx->stat.data_extents_scrubbed++;
2498 sctx->stat.data_bytes_scrubbed += len;
2499 spin_unlock(&sctx->stat_lock);
2500 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2501 blocksize = sctx->nodesize;
2502 spin_lock(&sctx->stat_lock);
2503 sctx->stat.tree_extents_scrubbed++;
2504 sctx->stat.tree_bytes_scrubbed += len;
2505 spin_unlock(&sctx->stat_lock);
2506 } else {
2507 blocksize = sctx->sectorsize;
2508 WARN_ON(1);
2509 }
2510
2511 while (len) {
2512 u64 l = min_t(u64, len, blocksize);
2513 int have_csum = 0;
2514
2515 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2516 /* push csums to sbio */
2517 have_csum = scrub_find_csum(sctx, logical, csum);
2518 if (have_csum == 0)
2519 ++sctx->stat.no_csum;
2520 if (sctx->is_dev_replace && !have_csum) {
2521 ret = copy_nocow_pages(sctx, logical, l,
2522 mirror_num,
2523 physical_for_dev_replace);
2524 goto behind_scrub_pages;
2525 }
2526 }
2527 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2528 mirror_num, have_csum ? csum : NULL, 0,
2529 physical_for_dev_replace);
2530behind_scrub_pages:
2531 if (ret)
2532 return ret;
2533 len -= l;
2534 logical += l;
2535 physical += l;
2536 physical_for_dev_replace += l;
2537 }
2538 return 0;
2539}
2540
2541static int scrub_pages_for_parity(struct scrub_parity *sparity,
2542 u64 logical, u64 len,
2543 u64 physical, struct btrfs_device *dev,
2544 u64 flags, u64 gen, int mirror_num, u8 *csum)
2545{
2546 struct scrub_ctx *sctx = sparity->sctx;
2547 struct scrub_block *sblock;
2548 int index;
2549
2550 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2551 if (!sblock) {
2552 spin_lock(&sctx->stat_lock);
2553 sctx->stat.malloc_errors++;
2554 spin_unlock(&sctx->stat_lock);
2555 return -ENOMEM;
2556 }
2557
2558 /* one ref inside this function, plus one for each page added to
2559 * a bio later on */
2560 atomic_set(&sblock->refs, 1);
2561 sblock->sctx = sctx;
2562 sblock->no_io_error_seen = 1;
2563 sblock->sparity = sparity;
2564 scrub_parity_get(sparity);
2565
2566 for (index = 0; len > 0; index++) {
2567 struct scrub_page *spage;
2568 u64 l = min_t(u64, len, PAGE_SIZE);
2569
2570 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2571 if (!spage) {
2572leave_nomem:
2573 spin_lock(&sctx->stat_lock);
2574 sctx->stat.malloc_errors++;
2575 spin_unlock(&sctx->stat_lock);
2576 scrub_block_put(sblock);
2577 return -ENOMEM;
2578 }
2579 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2580 /* For scrub block */
2581 scrub_page_get(spage);
2582 sblock->pagev[index] = spage;
2583 /* For scrub parity */
2584 scrub_page_get(spage);
2585 list_add_tail(&spage->list, &sparity->spages);
2586 spage->sblock = sblock;
2587 spage->dev = dev;
2588 spage->flags = flags;
2589 spage->generation = gen;
2590 spage->logical = logical;
2591 spage->physical = physical;
2592 spage->mirror_num = mirror_num;
2593 if (csum) {
2594 spage->have_csum = 1;
2595 memcpy(spage->csum, csum, sctx->csum_size);
2596 } else {
2597 spage->have_csum = 0;
2598 }
2599 sblock->page_count++;
2600 spage->page = alloc_page(GFP_KERNEL);
2601 if (!spage->page)
2602 goto leave_nomem;
2603 len -= l;
2604 logical += l;
2605 physical += l;
2606 }
2607
2608 WARN_ON(sblock->page_count == 0);
2609 for (index = 0; index < sblock->page_count; index++) {
2610 struct scrub_page *spage = sblock->pagev[index];
2611 int ret;
2612
2613 ret = scrub_add_page_to_rd_bio(sctx, spage);
2614 if (ret) {
2615 scrub_block_put(sblock);
2616 return ret;
2617 }
2618 }
2619
2620 /* last one frees, either here or in bio completion for last page */
2621 scrub_block_put(sblock);
2622 return 0;
2623}
2624
2625static int scrub_extent_for_parity(struct scrub_parity *sparity,
2626 u64 logical, u64 len,
2627 u64 physical, struct btrfs_device *dev,
2628 u64 flags, u64 gen, int mirror_num)
2629{
2630 struct scrub_ctx *sctx = sparity->sctx;
2631 int ret;
2632 u8 csum[BTRFS_CSUM_SIZE];
2633 u32 blocksize;
2634
2635 if (dev->missing) {
2636 scrub_parity_mark_sectors_error(sparity, logical, len);
2637 return 0;
2638 }
2639
2640 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641 blocksize = sctx->sectorsize;
2642 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2643 blocksize = sctx->nodesize;
2644 } else {
2645 blocksize = sctx->sectorsize;
2646 WARN_ON(1);
2647 }
2648
2649 while (len) {
2650 u64 l = min_t(u64, len, blocksize);
2651 int have_csum = 0;
2652
2653 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2654 /* push csums to sbio */
2655 have_csum = scrub_find_csum(sctx, logical, csum);
2656 if (have_csum == 0)
2657 goto skip;
2658 }
2659 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2660 flags, gen, mirror_num,
2661 have_csum ? csum : NULL);
2662 if (ret)
2663 return ret;
2664skip:
2665 len -= l;
2666 logical += l;
2667 physical += l;
2668 }
2669 return 0;
2670}
2671
2672/*
2673 * Given a physical address, this will calculate it's
2674 * logical offset. if this is a parity stripe, it will return
2675 * the most left data stripe's logical offset.
2676 *
2677 * return 0 if it is a data stripe, 1 means parity stripe.
2678 */
2679static int get_raid56_logic_offset(u64 physical, int num,
2680 struct map_lookup *map, u64 *offset,
2681 u64 *stripe_start)
2682{
2683 int i;
2684 int j = 0;
2685 u64 stripe_nr;
2686 u64 last_offset;
2687 u32 stripe_index;
2688 u32 rot;
2689
2690 last_offset = (physical - map->stripes[num].physical) *
2691 nr_data_stripes(map);
2692 if (stripe_start)
2693 *stripe_start = last_offset;
2694
2695 *offset = last_offset;
2696 for (i = 0; i < nr_data_stripes(map); i++) {
2697 *offset = last_offset + i * map->stripe_len;
2698
2699 stripe_nr = div_u64(*offset, map->stripe_len);
2700 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2701
2702 /* Work out the disk rotation on this stripe-set */
2703 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2704 /* calculate which stripe this data locates */
2705 rot += i;
2706 stripe_index = rot % map->num_stripes;
2707 if (stripe_index == num)
2708 return 0;
2709 if (stripe_index < num)
2710 j++;
2711 }
2712 *offset = last_offset + j * map->stripe_len;
2713 return 1;
2714}
2715
2716static void scrub_free_parity(struct scrub_parity *sparity)
2717{
2718 struct scrub_ctx *sctx = sparity->sctx;
2719 struct scrub_page *curr, *next;
2720 int nbits;
2721
2722 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2723 if (nbits) {
2724 spin_lock(&sctx->stat_lock);
2725 sctx->stat.read_errors += nbits;
2726 sctx->stat.uncorrectable_errors += nbits;
2727 spin_unlock(&sctx->stat_lock);
2728 }
2729
2730 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2731 list_del_init(&curr->list);
2732 scrub_page_put(curr);
2733 }
2734
2735 kfree(sparity);
2736}
2737
2738static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2739{
2740 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2741 work);
2742 struct scrub_ctx *sctx = sparity->sctx;
2743
2744 scrub_free_parity(sparity);
2745 scrub_pending_bio_dec(sctx);
2746}
2747
2748static void scrub_parity_bio_endio(struct bio *bio)
2749{
2750 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2751 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2752
2753 if (bio->bi_error)
2754 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2755 sparity->nsectors);
2756
2757 bio_put(bio);
2758
2759 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2760 scrub_parity_bio_endio_worker, NULL, NULL);
2761 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2762}
2763
2764static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2765{
2766 struct scrub_ctx *sctx = sparity->sctx;
2767 struct btrfs_fs_info *fs_info = sctx->fs_info;
2768 struct bio *bio;
2769 struct btrfs_raid_bio *rbio;
2770 struct scrub_page *spage;
2771 struct btrfs_bio *bbio = NULL;
2772 u64 length;
2773 int ret;
2774
2775 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2776 sparity->nsectors))
2777 goto out;
2778
2779 length = sparity->logic_end - sparity->logic_start;
2780 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781 &length, &bbio, 0, 1);
2782 if (ret || !bbio || !bbio->raid_map)
2783 goto bbio_out;
2784
2785 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2786 if (!bio)
2787 goto bbio_out;
2788
2789 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2790 bio->bi_private = sparity;
2791 bio->bi_end_io = scrub_parity_bio_endio;
2792
2793 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2794 length, sparity->scrub_dev,
2795 sparity->dbitmap,
2796 sparity->nsectors);
2797 if (!rbio)
2798 goto rbio_out;
2799
2800 list_for_each_entry(spage, &sparity->spages, list)
2801 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2802
2803 scrub_pending_bio_inc(sctx);
2804 raid56_parity_submit_scrub_rbio(rbio);
2805 return;
2806
2807rbio_out:
2808 bio_put(bio);
2809bbio_out:
2810 btrfs_put_bbio(bbio);
2811 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2812 sparity->nsectors);
2813 spin_lock(&sctx->stat_lock);
2814 sctx->stat.malloc_errors++;
2815 spin_unlock(&sctx->stat_lock);
2816out:
2817 scrub_free_parity(sparity);
2818}
2819
2820static inline int scrub_calc_parity_bitmap_len(int nsectors)
2821{
2822 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2823}
2824
2825static void scrub_parity_get(struct scrub_parity *sparity)
2826{
2827 atomic_inc(&sparity->refs);
2828}
2829
2830static void scrub_parity_put(struct scrub_parity *sparity)
2831{
2832 if (!atomic_dec_and_test(&sparity->refs))
2833 return;
2834
2835 scrub_parity_check_and_repair(sparity);
2836}
2837
2838static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2839 struct map_lookup *map,
2840 struct btrfs_device *sdev,
2841 struct btrfs_path *path,
2842 u64 logic_start,
2843 u64 logic_end)
2844{
2845 struct btrfs_fs_info *fs_info = sctx->fs_info;
2846 struct btrfs_root *root = fs_info->extent_root;
2847 struct btrfs_root *csum_root = fs_info->csum_root;
2848 struct btrfs_extent_item *extent;
2849 struct btrfs_bio *bbio = NULL;
2850 u64 flags;
2851 int ret;
2852 int slot;
2853 struct extent_buffer *l;
2854 struct btrfs_key key;
2855 u64 generation;
2856 u64 extent_logical;
2857 u64 extent_physical;
2858 u64 extent_len;
2859 u64 mapped_length;
2860 struct btrfs_device *extent_dev;
2861 struct scrub_parity *sparity;
2862 int nsectors;
2863 int bitmap_len;
2864 int extent_mirror_num;
2865 int stop_loop = 0;
2866
2867 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2868 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2869 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2870 GFP_NOFS);
2871 if (!sparity) {
2872 spin_lock(&sctx->stat_lock);
2873 sctx->stat.malloc_errors++;
2874 spin_unlock(&sctx->stat_lock);
2875 return -ENOMEM;
2876 }
2877
2878 sparity->stripe_len = map->stripe_len;
2879 sparity->nsectors = nsectors;
2880 sparity->sctx = sctx;
2881 sparity->scrub_dev = sdev;
2882 sparity->logic_start = logic_start;
2883 sparity->logic_end = logic_end;
2884 atomic_set(&sparity->refs, 1);
2885 INIT_LIST_HEAD(&sparity->spages);
2886 sparity->dbitmap = sparity->bitmap;
2887 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2888
2889 ret = 0;
2890 while (logic_start < logic_end) {
2891 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2892 key.type = BTRFS_METADATA_ITEM_KEY;
2893 else
2894 key.type = BTRFS_EXTENT_ITEM_KEY;
2895 key.objectid = logic_start;
2896 key.offset = (u64)-1;
2897
2898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899 if (ret < 0)
2900 goto out;
2901
2902 if (ret > 0) {
2903 ret = btrfs_previous_extent_item(root, path, 0);
2904 if (ret < 0)
2905 goto out;
2906 if (ret > 0) {
2907 btrfs_release_path(path);
2908 ret = btrfs_search_slot(NULL, root, &key,
2909 path, 0, 0);
2910 if (ret < 0)
2911 goto out;
2912 }
2913 }
2914
2915 stop_loop = 0;
2916 while (1) {
2917 u64 bytes;
2918
2919 l = path->nodes[0];
2920 slot = path->slots[0];
2921 if (slot >= btrfs_header_nritems(l)) {
2922 ret = btrfs_next_leaf(root, path);
2923 if (ret == 0)
2924 continue;
2925 if (ret < 0)
2926 goto out;
2927
2928 stop_loop = 1;
2929 break;
2930 }
2931 btrfs_item_key_to_cpu(l, &key, slot);
2932
2933 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2934 key.type != BTRFS_METADATA_ITEM_KEY)
2935 goto next;
2936
2937 if (key.type == BTRFS_METADATA_ITEM_KEY)
2938 bytes = fs_info->nodesize;
2939 else
2940 bytes = key.offset;
2941
2942 if (key.objectid + bytes <= logic_start)
2943 goto next;
2944
2945 if (key.objectid >= logic_end) {
2946 stop_loop = 1;
2947 break;
2948 }
2949
2950 while (key.objectid >= logic_start + map->stripe_len)
2951 logic_start += map->stripe_len;
2952
2953 extent = btrfs_item_ptr(l, slot,
2954 struct btrfs_extent_item);
2955 flags = btrfs_extent_flags(l, extent);
2956 generation = btrfs_extent_generation(l, extent);
2957
2958 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2959 (key.objectid < logic_start ||
2960 key.objectid + bytes >
2961 logic_start + map->stripe_len)) {
2962 btrfs_err(fs_info,
2963 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964 key.objectid, logic_start);
2965 spin_lock(&sctx->stat_lock);
2966 sctx->stat.uncorrectable_errors++;
2967 spin_unlock(&sctx->stat_lock);
2968 goto next;
2969 }
2970again:
2971 extent_logical = key.objectid;
2972 extent_len = bytes;
2973
2974 if (extent_logical < logic_start) {
2975 extent_len -= logic_start - extent_logical;
2976 extent_logical = logic_start;
2977 }
2978
2979 if (extent_logical + extent_len >
2980 logic_start + map->stripe_len)
2981 extent_len = logic_start + map->stripe_len -
2982 extent_logical;
2983
2984 scrub_parity_mark_sectors_data(sparity, extent_logical,
2985 extent_len);
2986
2987 mapped_length = extent_len;
2988 bbio = NULL;
2989 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2990 extent_logical, &mapped_length, &bbio,
2991 0);
2992 if (!ret) {
2993 if (!bbio || mapped_length < extent_len)
2994 ret = -EIO;
2995 }
2996 if (ret) {
2997 btrfs_put_bbio(bbio);
2998 goto out;
2999 }
3000 extent_physical = bbio->stripes[0].physical;
3001 extent_mirror_num = bbio->mirror_num;
3002 extent_dev = bbio->stripes[0].dev;
3003 btrfs_put_bbio(bbio);
3004
3005 ret = btrfs_lookup_csums_range(csum_root,
3006 extent_logical,
3007 extent_logical + extent_len - 1,
3008 &sctx->csum_list, 1);
3009 if (ret)
3010 goto out;
3011
3012 ret = scrub_extent_for_parity(sparity, extent_logical,
3013 extent_len,
3014 extent_physical,
3015 extent_dev, flags,
3016 generation,
3017 extent_mirror_num);
3018
3019 scrub_free_csums(sctx);
3020
3021 if (ret)
3022 goto out;
3023
3024 if (extent_logical + extent_len <
3025 key.objectid + bytes) {
3026 logic_start += map->stripe_len;
3027
3028 if (logic_start >= logic_end) {
3029 stop_loop = 1;
3030 break;
3031 }
3032
3033 if (logic_start < key.objectid + bytes) {
3034 cond_resched();
3035 goto again;
3036 }
3037 }
3038next:
3039 path->slots[0]++;
3040 }
3041
3042 btrfs_release_path(path);
3043
3044 if (stop_loop)
3045 break;
3046
3047 logic_start += map->stripe_len;
3048 }
3049out:
3050 if (ret < 0)
3051 scrub_parity_mark_sectors_error(sparity, logic_start,
3052 logic_end - logic_start);
3053 scrub_parity_put(sparity);
3054 scrub_submit(sctx);
3055 mutex_lock(&sctx->wr_ctx.wr_lock);
3056 scrub_wr_submit(sctx);
3057 mutex_unlock(&sctx->wr_ctx.wr_lock);
3058
3059 btrfs_release_path(path);
3060 return ret < 0 ? ret : 0;
3061}
3062
3063static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3064 struct map_lookup *map,
3065 struct btrfs_device *scrub_dev,
3066 int num, u64 base, u64 length,
3067 int is_dev_replace)
3068{
3069 struct btrfs_path *path, *ppath;
3070 struct btrfs_fs_info *fs_info = sctx->fs_info;
3071 struct btrfs_root *root = fs_info->extent_root;
3072 struct btrfs_root *csum_root = fs_info->csum_root;
3073 struct btrfs_extent_item *extent;
3074 struct blk_plug plug;
3075 u64 flags;
3076 int ret;
3077 int slot;
3078 u64 nstripes;
3079 struct extent_buffer *l;
3080 u64 physical;
3081 u64 logical;
3082 u64 logic_end;
3083 u64 physical_end;
3084 u64 generation;
3085 int mirror_num;
3086 struct reada_control *reada1;
3087 struct reada_control *reada2;
3088 struct btrfs_key key;
3089 struct btrfs_key key_end;
3090 u64 increment = map->stripe_len;
3091 u64 offset;
3092 u64 extent_logical;
3093 u64 extent_physical;
3094 u64 extent_len;
3095 u64 stripe_logical;
3096 u64 stripe_end;
3097 struct btrfs_device *extent_dev;
3098 int extent_mirror_num;
3099 int stop_loop = 0;
3100
3101 physical = map->stripes[num].physical;
3102 offset = 0;
3103 nstripes = div_u64(length, map->stripe_len);
3104 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3105 offset = map->stripe_len * num;
3106 increment = map->stripe_len * map->num_stripes;
3107 mirror_num = 1;
3108 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3109 int factor = map->num_stripes / map->sub_stripes;
3110 offset = map->stripe_len * (num / map->sub_stripes);
3111 increment = map->stripe_len * factor;
3112 mirror_num = num % map->sub_stripes + 1;
3113 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3114 increment = map->stripe_len;
3115 mirror_num = num % map->num_stripes + 1;
3116 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3117 increment = map->stripe_len;
3118 mirror_num = num % map->num_stripes + 1;
3119 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3120 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3121 increment = map->stripe_len * nr_data_stripes(map);
3122 mirror_num = 1;
3123 } else {
3124 increment = map->stripe_len;
3125 mirror_num = 1;
3126 }
3127
3128 path = btrfs_alloc_path();
3129 if (!path)
3130 return -ENOMEM;
3131
3132 ppath = btrfs_alloc_path();
3133 if (!ppath) {
3134 btrfs_free_path(path);
3135 return -ENOMEM;
3136 }
3137
3138 /*
3139 * work on commit root. The related disk blocks are static as
3140 * long as COW is applied. This means, it is save to rewrite
3141 * them to repair disk errors without any race conditions
3142 */
3143 path->search_commit_root = 1;
3144 path->skip_locking = 1;
3145
3146 ppath->search_commit_root = 1;
3147 ppath->skip_locking = 1;
3148 /*
3149 * trigger the readahead for extent tree csum tree and wait for
3150 * completion. During readahead, the scrub is officially paused
3151 * to not hold off transaction commits
3152 */
3153 logical = base + offset;
3154 physical_end = physical + nstripes * map->stripe_len;
3155 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3156 get_raid56_logic_offset(physical_end, num,
3157 map, &logic_end, NULL);
3158 logic_end += base;
3159 } else {
3160 logic_end = logical + increment * nstripes;
3161 }
3162 wait_event(sctx->list_wait,
3163 atomic_read(&sctx->bios_in_flight) == 0);
3164 scrub_blocked_if_needed(fs_info);
3165
3166 /* FIXME it might be better to start readahead at commit root */
3167 key.objectid = logical;
3168 key.type = BTRFS_EXTENT_ITEM_KEY;
3169 key.offset = (u64)0;
3170 key_end.objectid = logic_end;
3171 key_end.type = BTRFS_METADATA_ITEM_KEY;
3172 key_end.offset = (u64)-1;
3173 reada1 = btrfs_reada_add(root, &key, &key_end);
3174
3175 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3176 key.type = BTRFS_EXTENT_CSUM_KEY;
3177 key.offset = logical;
3178 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3179 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3180 key_end.offset = logic_end;
3181 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3182
3183 if (!IS_ERR(reada1))
3184 btrfs_reada_wait(reada1);
3185 if (!IS_ERR(reada2))
3186 btrfs_reada_wait(reada2);
3187
3188
3189 /*
3190 * collect all data csums for the stripe to avoid seeking during
3191 * the scrub. This might currently (crc32) end up to be about 1MB
3192 */
3193 blk_start_plug(&plug);
3194
3195 /*
3196 * now find all extents for each stripe and scrub them
3197 */
3198 ret = 0;
3199 while (physical < physical_end) {
3200 /*
3201 * canceled?
3202 */
3203 if (atomic_read(&fs_info->scrub_cancel_req) ||
3204 atomic_read(&sctx->cancel_req)) {
3205 ret = -ECANCELED;
3206 goto out;
3207 }
3208 /*
3209 * check to see if we have to pause
3210 */
3211 if (atomic_read(&fs_info->scrub_pause_req)) {
3212 /* push queued extents */
3213 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3214 scrub_submit(sctx);
3215 mutex_lock(&sctx->wr_ctx.wr_lock);
3216 scrub_wr_submit(sctx);
3217 mutex_unlock(&sctx->wr_ctx.wr_lock);
3218 wait_event(sctx->list_wait,
3219 atomic_read(&sctx->bios_in_flight) == 0);
3220 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3221 scrub_blocked_if_needed(fs_info);
3222 }
3223
3224 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3225 ret = get_raid56_logic_offset(physical, num, map,
3226 &logical,
3227 &stripe_logical);
3228 logical += base;
3229 if (ret) {
3230 /* it is parity strip */
3231 stripe_logical += base;
3232 stripe_end = stripe_logical + increment;
3233 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3234 ppath, stripe_logical,
3235 stripe_end);
3236 if (ret)
3237 goto out;
3238 goto skip;
3239 }
3240 }
3241
3242 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3243 key.type = BTRFS_METADATA_ITEM_KEY;
3244 else
3245 key.type = BTRFS_EXTENT_ITEM_KEY;
3246 key.objectid = logical;
3247 key.offset = (u64)-1;
3248
3249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3250 if (ret < 0)
3251 goto out;
3252
3253 if (ret > 0) {
3254 ret = btrfs_previous_extent_item(root, path, 0);
3255 if (ret < 0)
3256 goto out;
3257 if (ret > 0) {
3258 /* there's no smaller item, so stick with the
3259 * larger one */
3260 btrfs_release_path(path);
3261 ret = btrfs_search_slot(NULL, root, &key,
3262 path, 0, 0);
3263 if (ret < 0)
3264 goto out;
3265 }
3266 }
3267
3268 stop_loop = 0;
3269 while (1) {
3270 u64 bytes;
3271
3272 l = path->nodes[0];
3273 slot = path->slots[0];
3274 if (slot >= btrfs_header_nritems(l)) {
3275 ret = btrfs_next_leaf(root, path);
3276 if (ret == 0)
3277 continue;
3278 if (ret < 0)
3279 goto out;
3280
3281 stop_loop = 1;
3282 break;
3283 }
3284 btrfs_item_key_to_cpu(l, &key, slot);
3285
3286 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3287 key.type != BTRFS_METADATA_ITEM_KEY)
3288 goto next;
3289
3290 if (key.type == BTRFS_METADATA_ITEM_KEY)
3291 bytes = fs_info->nodesize;
3292 else
3293 bytes = key.offset;
3294
3295 if (key.objectid + bytes <= logical)
3296 goto next;
3297
3298 if (key.objectid >= logical + map->stripe_len) {
3299 /* out of this device extent */
3300 if (key.objectid >= logic_end)
3301 stop_loop = 1;
3302 break;
3303 }
3304
3305 extent = btrfs_item_ptr(l, slot,
3306 struct btrfs_extent_item);
3307 flags = btrfs_extent_flags(l, extent);
3308 generation = btrfs_extent_generation(l, extent);
3309
3310 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3311 (key.objectid < logical ||
3312 key.objectid + bytes >
3313 logical + map->stripe_len)) {
3314 btrfs_err(fs_info,
3315 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3316 key.objectid, logical);
3317 spin_lock(&sctx->stat_lock);
3318 sctx->stat.uncorrectable_errors++;
3319 spin_unlock(&sctx->stat_lock);
3320 goto next;
3321 }
3322
3323again:
3324 extent_logical = key.objectid;
3325 extent_len = bytes;
3326
3327 /*
3328 * trim extent to this stripe
3329 */
3330 if (extent_logical < logical) {
3331 extent_len -= logical - extent_logical;
3332 extent_logical = logical;
3333 }
3334 if (extent_logical + extent_len >
3335 logical + map->stripe_len) {
3336 extent_len = logical + map->stripe_len -
3337 extent_logical;
3338 }
3339
3340 extent_physical = extent_logical - logical + physical;
3341 extent_dev = scrub_dev;
3342 extent_mirror_num = mirror_num;
3343 if (is_dev_replace)
3344 scrub_remap_extent(fs_info, extent_logical,
3345 extent_len, &extent_physical,
3346 &extent_dev,
3347 &extent_mirror_num);
3348
3349 ret = btrfs_lookup_csums_range(csum_root,
3350 extent_logical,
3351 extent_logical +
3352 extent_len - 1,
3353 &sctx->csum_list, 1);
3354 if (ret)
3355 goto out;
3356
3357 ret = scrub_extent(sctx, extent_logical, extent_len,
3358 extent_physical, extent_dev, flags,
3359 generation, extent_mirror_num,
3360 extent_logical - logical + physical);
3361
3362 scrub_free_csums(sctx);
3363
3364 if (ret)
3365 goto out;
3366
3367 if (extent_logical + extent_len <
3368 key.objectid + bytes) {
3369 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3370 /*
3371 * loop until we find next data stripe
3372 * or we have finished all stripes.
3373 */
3374loop:
3375 physical += map->stripe_len;
3376 ret = get_raid56_logic_offset(physical,
3377 num, map, &logical,
3378 &stripe_logical);
3379 logical += base;
3380
3381 if (ret && physical < physical_end) {
3382 stripe_logical += base;
3383 stripe_end = stripe_logical +
3384 increment;
3385 ret = scrub_raid56_parity(sctx,
3386 map, scrub_dev, ppath,
3387 stripe_logical,
3388 stripe_end);
3389 if (ret)
3390 goto out;
3391 goto loop;
3392 }
3393 } else {
3394 physical += map->stripe_len;
3395 logical += increment;
3396 }
3397 if (logical < key.objectid + bytes) {
3398 cond_resched();
3399 goto again;
3400 }
3401
3402 if (physical >= physical_end) {
3403 stop_loop = 1;
3404 break;
3405 }
3406 }
3407next:
3408 path->slots[0]++;
3409 }
3410 btrfs_release_path(path);
3411skip:
3412 logical += increment;
3413 physical += map->stripe_len;
3414 spin_lock(&sctx->stat_lock);
3415 if (stop_loop)
3416 sctx->stat.last_physical = map->stripes[num].physical +
3417 length;
3418 else
3419 sctx->stat.last_physical = physical;
3420 spin_unlock(&sctx->stat_lock);
3421 if (stop_loop)
3422 break;
3423 }
3424out:
3425 /* push queued extents */
3426 scrub_submit(sctx);
3427 mutex_lock(&sctx->wr_ctx.wr_lock);
3428 scrub_wr_submit(sctx);
3429 mutex_unlock(&sctx->wr_ctx.wr_lock);
3430
3431 blk_finish_plug(&plug);
3432 btrfs_free_path(path);
3433 btrfs_free_path(ppath);
3434 return ret < 0 ? ret : 0;
3435}
3436
3437static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3438 struct btrfs_device *scrub_dev,
3439 u64 chunk_offset, u64 length,
3440 u64 dev_offset,
3441 struct btrfs_block_group_cache *cache,
3442 int is_dev_replace)
3443{
3444 struct btrfs_fs_info *fs_info = sctx->fs_info;
3445 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3446 struct map_lookup *map;
3447 struct extent_map *em;
3448 int i;
3449 int ret = 0;
3450
3451 read_lock(&map_tree->map_tree.lock);
3452 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3453 read_unlock(&map_tree->map_tree.lock);
3454
3455 if (!em) {
3456 /*
3457 * Might have been an unused block group deleted by the cleaner
3458 * kthread or relocation.
3459 */
3460 spin_lock(&cache->lock);
3461 if (!cache->removed)
3462 ret = -EINVAL;
3463 spin_unlock(&cache->lock);
3464
3465 return ret;
3466 }
3467
3468 map = em->map_lookup;
3469 if (em->start != chunk_offset)
3470 goto out;
3471
3472 if (em->len < length)
3473 goto out;
3474
3475 for (i = 0; i < map->num_stripes; ++i) {
3476 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3477 map->stripes[i].physical == dev_offset) {
3478 ret = scrub_stripe(sctx, map, scrub_dev, i,
3479 chunk_offset, length,
3480 is_dev_replace);
3481 if (ret)
3482 goto out;
3483 }
3484 }
3485out:
3486 free_extent_map(em);
3487
3488 return ret;
3489}
3490
3491static noinline_for_stack
3492int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3493 struct btrfs_device *scrub_dev, u64 start, u64 end,
3494 int is_dev_replace)
3495{
3496 struct btrfs_dev_extent *dev_extent = NULL;
3497 struct btrfs_path *path;
3498 struct btrfs_fs_info *fs_info = sctx->fs_info;
3499 struct btrfs_root *root = fs_info->dev_root;
3500 u64 length;
3501 u64 chunk_offset;
3502 int ret = 0;
3503 int ro_set;
3504 int slot;
3505 struct extent_buffer *l;
3506 struct btrfs_key key;
3507 struct btrfs_key found_key;
3508 struct btrfs_block_group_cache *cache;
3509 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3510
3511 path = btrfs_alloc_path();
3512 if (!path)
3513 return -ENOMEM;
3514
3515 path->reada = READA_FORWARD;
3516 path->search_commit_root = 1;
3517 path->skip_locking = 1;
3518
3519 key.objectid = scrub_dev->devid;
3520 key.offset = 0ull;
3521 key.type = BTRFS_DEV_EXTENT_KEY;
3522
3523 while (1) {
3524 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3525 if (ret < 0)
3526 break;
3527 if (ret > 0) {
3528 if (path->slots[0] >=
3529 btrfs_header_nritems(path->nodes[0])) {
3530 ret = btrfs_next_leaf(root, path);
3531 if (ret < 0)
3532 break;
3533 if (ret > 0) {
3534 ret = 0;
3535 break;
3536 }
3537 } else {
3538 ret = 0;
3539 }
3540 }
3541
3542 l = path->nodes[0];
3543 slot = path->slots[0];
3544
3545 btrfs_item_key_to_cpu(l, &found_key, slot);
3546
3547 if (found_key.objectid != scrub_dev->devid)
3548 break;
3549
3550 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3551 break;
3552
3553 if (found_key.offset >= end)
3554 break;
3555
3556 if (found_key.offset < key.offset)
3557 break;
3558
3559 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3560 length = btrfs_dev_extent_length(l, dev_extent);
3561
3562 if (found_key.offset + length <= start)
3563 goto skip;
3564
3565 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3566
3567 /*
3568 * get a reference on the corresponding block group to prevent
3569 * the chunk from going away while we scrub it
3570 */
3571 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572
3573 /* some chunks are removed but not committed to disk yet,
3574 * continue scrubbing */
3575 if (!cache)
3576 goto skip;
3577
3578 /*
3579 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3580 * to avoid deadlock caused by:
3581 * btrfs_inc_block_group_ro()
3582 * -> btrfs_wait_for_commit()
3583 * -> btrfs_commit_transaction()
3584 * -> btrfs_scrub_pause()
3585 */
3586 scrub_pause_on(fs_info);
3587 ret = btrfs_inc_block_group_ro(root, cache);
3588 if (!ret && is_dev_replace) {
3589 /*
3590 * If we are doing a device replace wait for any tasks
3591 * that started dellaloc right before we set the block
3592 * group to RO mode, as they might have just allocated
3593 * an extent from it or decided they could do a nocow
3594 * write. And if any such tasks did that, wait for their
3595 * ordered extents to complete and then commit the
3596 * current transaction, so that we can later see the new
3597 * extent items in the extent tree - the ordered extents
3598 * create delayed data references (for cow writes) when
3599 * they complete, which will be run and insert the
3600 * corresponding extent items into the extent tree when
3601 * we commit the transaction they used when running
3602 * inode.c:btrfs_finish_ordered_io(). We later use
3603 * the commit root of the extent tree to find extents
3604 * to copy from the srcdev into the tgtdev, and we don't
3605 * want to miss any new extents.
3606 */
3607 btrfs_wait_block_group_reservations(cache);
3608 btrfs_wait_nocow_writers(cache);
3609 ret = btrfs_wait_ordered_roots(fs_info, -1,
3610 cache->key.objectid,
3611 cache->key.offset);
3612 if (ret > 0) {
3613 struct btrfs_trans_handle *trans;
3614
3615 trans = btrfs_join_transaction(root);
3616 if (IS_ERR(trans))
3617 ret = PTR_ERR(trans);
3618 else
3619 ret = btrfs_commit_transaction(trans);
3620 if (ret) {
3621 scrub_pause_off(fs_info);
3622 btrfs_put_block_group(cache);
3623 break;
3624 }
3625 }
3626 }
3627 scrub_pause_off(fs_info);
3628
3629 if (ret == 0) {
3630 ro_set = 1;
3631 } else if (ret == -ENOSPC) {
3632 /*
3633 * btrfs_inc_block_group_ro return -ENOSPC when it
3634 * failed in creating new chunk for metadata.
3635 * It is not a problem for scrub/replace, because
3636 * metadata are always cowed, and our scrub paused
3637 * commit_transactions.
3638 */
3639 ro_set = 0;
3640 } else {
3641 btrfs_warn(fs_info,
3642 "failed setting block group ro, ret=%d\n",
3643 ret);
3644 btrfs_put_block_group(cache);
3645 break;
3646 }
3647
3648 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3649 dev_replace->cursor_right = found_key.offset + length;
3650 dev_replace->cursor_left = found_key.offset;
3651 dev_replace->item_needs_writeback = 1;
3652 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3653 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3654 found_key.offset, cache, is_dev_replace);
3655
3656 /*
3657 * flush, submit all pending read and write bios, afterwards
3658 * wait for them.
3659 * Note that in the dev replace case, a read request causes
3660 * write requests that are submitted in the read completion
3661 * worker. Therefore in the current situation, it is required
3662 * that all write requests are flushed, so that all read and
3663 * write requests are really completed when bios_in_flight
3664 * changes to 0.
3665 */
3666 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3667 scrub_submit(sctx);
3668 mutex_lock(&sctx->wr_ctx.wr_lock);
3669 scrub_wr_submit(sctx);
3670 mutex_unlock(&sctx->wr_ctx.wr_lock);
3671
3672 wait_event(sctx->list_wait,
3673 atomic_read(&sctx->bios_in_flight) == 0);
3674
3675 scrub_pause_on(fs_info);
3676
3677 /*
3678 * must be called before we decrease @scrub_paused.
3679 * make sure we don't block transaction commit while
3680 * we are waiting pending workers finished.
3681 */
3682 wait_event(sctx->list_wait,
3683 atomic_read(&sctx->workers_pending) == 0);
3684 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3685
3686 scrub_pause_off(fs_info);
3687
3688 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3689 dev_replace->cursor_left = dev_replace->cursor_right;
3690 dev_replace->item_needs_writeback = 1;
3691 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3692
3693 if (ro_set)
3694 btrfs_dec_block_group_ro(cache);
3695
3696 /*
3697 * We might have prevented the cleaner kthread from deleting
3698 * this block group if it was already unused because we raced
3699 * and set it to RO mode first. So add it back to the unused
3700 * list, otherwise it might not ever be deleted unless a manual
3701 * balance is triggered or it becomes used and unused again.
3702 */
3703 spin_lock(&cache->lock);
3704 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3705 btrfs_block_group_used(&cache->item) == 0) {
3706 spin_unlock(&cache->lock);
3707 spin_lock(&fs_info->unused_bgs_lock);
3708 if (list_empty(&cache->bg_list)) {
3709 btrfs_get_block_group(cache);
3710 list_add_tail(&cache->bg_list,
3711 &fs_info->unused_bgs);
3712 }
3713 spin_unlock(&fs_info->unused_bgs_lock);
3714 } else {
3715 spin_unlock(&cache->lock);
3716 }
3717
3718 btrfs_put_block_group(cache);
3719 if (ret)
3720 break;
3721 if (is_dev_replace &&
3722 atomic64_read(&dev_replace->num_write_errors) > 0) {
3723 ret = -EIO;
3724 break;
3725 }
3726 if (sctx->stat.malloc_errors > 0) {
3727 ret = -ENOMEM;
3728 break;
3729 }
3730skip:
3731 key.offset = found_key.offset + length;
3732 btrfs_release_path(path);
3733 }
3734
3735 btrfs_free_path(path);
3736
3737 return ret;
3738}
3739
3740static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3741 struct btrfs_device *scrub_dev)
3742{
3743 int i;
3744 u64 bytenr;
3745 u64 gen;
3746 int ret;
3747 struct btrfs_fs_info *fs_info = sctx->fs_info;
3748
3749 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750 return -EIO;
3751
3752 /* Seed devices of a new filesystem has their own generation. */
3753 if (scrub_dev->fs_devices != fs_info->fs_devices)
3754 gen = scrub_dev->generation;
3755 else
3756 gen = fs_info->last_trans_committed;
3757
3758 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3759 bytenr = btrfs_sb_offset(i);
3760 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3761 scrub_dev->commit_total_bytes)
3762 break;
3763
3764 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3765 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3766 NULL, 1, bytenr);
3767 if (ret)
3768 return ret;
3769 }
3770 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3771
3772 return 0;
3773}
3774
3775/*
3776 * get a reference count on fs_info->scrub_workers. start worker if necessary
3777 */
3778static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3779 int is_dev_replace)
3780{
3781 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3782 int max_active = fs_info->thread_pool_size;
3783
3784 if (fs_info->scrub_workers_refcnt == 0) {
3785 if (is_dev_replace)
3786 fs_info->scrub_workers =
3787 btrfs_alloc_workqueue(fs_info, "scrub", flags,
3788 1, 4);
3789 else
3790 fs_info->scrub_workers =
3791 btrfs_alloc_workqueue(fs_info, "scrub", flags,
3792 max_active, 4);
3793 if (!fs_info->scrub_workers)
3794 goto fail_scrub_workers;
3795
3796 fs_info->scrub_wr_completion_workers =
3797 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3798 max_active, 2);
3799 if (!fs_info->scrub_wr_completion_workers)
3800 goto fail_scrub_wr_completion_workers;
3801
3802 fs_info->scrub_nocow_workers =
3803 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3804 if (!fs_info->scrub_nocow_workers)
3805 goto fail_scrub_nocow_workers;
3806 fs_info->scrub_parity_workers =
3807 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3808 max_active, 2);
3809 if (!fs_info->scrub_parity_workers)
3810 goto fail_scrub_parity_workers;
3811 }
3812 ++fs_info->scrub_workers_refcnt;
3813 return 0;
3814
3815fail_scrub_parity_workers:
3816 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3817fail_scrub_nocow_workers:
3818 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3819fail_scrub_wr_completion_workers:
3820 btrfs_destroy_workqueue(fs_info->scrub_workers);
3821fail_scrub_workers:
3822 return -ENOMEM;
3823}
3824
3825static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3826{
3827 if (--fs_info->scrub_workers_refcnt == 0) {
3828 btrfs_destroy_workqueue(fs_info->scrub_workers);
3829 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3830 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3831 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3832 }
3833 WARN_ON(fs_info->scrub_workers_refcnt < 0);
3834}
3835
3836int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3837 u64 end, struct btrfs_scrub_progress *progress,
3838 int readonly, int is_dev_replace)
3839{
3840 struct scrub_ctx *sctx;
3841 int ret;
3842 struct btrfs_device *dev;
3843 struct rcu_string *name;
3844
3845 if (btrfs_fs_closing(fs_info))
3846 return -EINVAL;
3847
3848 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3849 /*
3850 * in this case scrub is unable to calculate the checksum
3851 * the way scrub is implemented. Do not handle this
3852 * situation at all because it won't ever happen.
3853 */
3854 btrfs_err(fs_info,
3855 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3856 fs_info->nodesize,
3857 BTRFS_STRIPE_LEN);
3858 return -EINVAL;
3859 }
3860
3861 if (fs_info->sectorsize != PAGE_SIZE) {
3862 /* not supported for data w/o checksums */
3863 btrfs_err_rl(fs_info,
3864 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3865 fs_info->sectorsize, PAGE_SIZE);
3866 return -EINVAL;
3867 }
3868
3869 if (fs_info->nodesize >
3870 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3871 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3872 /*
3873 * would exhaust the array bounds of pagev member in
3874 * struct scrub_block
3875 */
3876 btrfs_err(fs_info,
3877 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3878 fs_info->nodesize,
3879 SCRUB_MAX_PAGES_PER_BLOCK,
3880 fs_info->sectorsize,
3881 SCRUB_MAX_PAGES_PER_BLOCK);
3882 return -EINVAL;
3883 }
3884
3885
3886 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3887 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3888 if (!dev || (dev->missing && !is_dev_replace)) {
3889 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890 return -ENODEV;
3891 }
3892
3893 if (!is_dev_replace && !readonly && !dev->writeable) {
3894 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3895 rcu_read_lock();
3896 name = rcu_dereference(dev->name);
3897 btrfs_err(fs_info, "scrub: device %s is not writable",
3898 name->str);
3899 rcu_read_unlock();
3900 return -EROFS;
3901 }
3902
3903 mutex_lock(&fs_info->scrub_lock);
3904 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3905 mutex_unlock(&fs_info->scrub_lock);
3906 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907 return -EIO;
3908 }
3909
3910 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3911 if (dev->scrub_device ||
3912 (!is_dev_replace &&
3913 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3914 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3915 mutex_unlock(&fs_info->scrub_lock);
3916 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3917 return -EINPROGRESS;
3918 }
3919 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3920
3921 ret = scrub_workers_get(fs_info, is_dev_replace);
3922 if (ret) {
3923 mutex_unlock(&fs_info->scrub_lock);
3924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925 return ret;
3926 }
3927
3928 sctx = scrub_setup_ctx(dev, is_dev_replace);
3929 if (IS_ERR(sctx)) {
3930 mutex_unlock(&fs_info->scrub_lock);
3931 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932 scrub_workers_put(fs_info);
3933 return PTR_ERR(sctx);
3934 }
3935 sctx->readonly = readonly;
3936 dev->scrub_device = sctx;
3937 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938
3939 /*
3940 * checking @scrub_pause_req here, we can avoid
3941 * race between committing transaction and scrubbing.
3942 */
3943 __scrub_blocked_if_needed(fs_info);
3944 atomic_inc(&fs_info->scrubs_running);
3945 mutex_unlock(&fs_info->scrub_lock);
3946
3947 if (!is_dev_replace) {
3948 /*
3949 * by holding device list mutex, we can
3950 * kick off writing super in log tree sync.
3951 */
3952 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3953 ret = scrub_supers(sctx, dev);
3954 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3955 }
3956
3957 if (!ret)
3958 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3959 is_dev_replace);
3960
3961 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3962 atomic_dec(&fs_info->scrubs_running);
3963 wake_up(&fs_info->scrub_pause_wait);
3964
3965 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3966
3967 if (progress)
3968 memcpy(progress, &sctx->stat, sizeof(*progress));
3969
3970 mutex_lock(&fs_info->scrub_lock);
3971 dev->scrub_device = NULL;
3972 scrub_workers_put(fs_info);
3973 mutex_unlock(&fs_info->scrub_lock);
3974
3975 scrub_put_ctx(sctx);
3976
3977 return ret;
3978}
3979
3980void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3981{
3982 mutex_lock(&fs_info->scrub_lock);
3983 atomic_inc(&fs_info->scrub_pause_req);
3984 while (atomic_read(&fs_info->scrubs_paused) !=
3985 atomic_read(&fs_info->scrubs_running)) {
3986 mutex_unlock(&fs_info->scrub_lock);
3987 wait_event(fs_info->scrub_pause_wait,
3988 atomic_read(&fs_info->scrubs_paused) ==
3989 atomic_read(&fs_info->scrubs_running));
3990 mutex_lock(&fs_info->scrub_lock);
3991 }
3992 mutex_unlock(&fs_info->scrub_lock);
3993}
3994
3995void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3996{
3997 atomic_dec(&fs_info->scrub_pause_req);
3998 wake_up(&fs_info->scrub_pause_wait);
3999}
4000
4001int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4002{
4003 mutex_lock(&fs_info->scrub_lock);
4004 if (!atomic_read(&fs_info->scrubs_running)) {
4005 mutex_unlock(&fs_info->scrub_lock);
4006 return -ENOTCONN;
4007 }
4008
4009 atomic_inc(&fs_info->scrub_cancel_req);
4010 while (atomic_read(&fs_info->scrubs_running)) {
4011 mutex_unlock(&fs_info->scrub_lock);
4012 wait_event(fs_info->scrub_pause_wait,
4013 atomic_read(&fs_info->scrubs_running) == 0);
4014 mutex_lock(&fs_info->scrub_lock);
4015 }
4016 atomic_dec(&fs_info->scrub_cancel_req);
4017 mutex_unlock(&fs_info->scrub_lock);
4018
4019 return 0;
4020}
4021
4022int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4023 struct btrfs_device *dev)
4024{
4025 struct scrub_ctx *sctx;
4026
4027 mutex_lock(&fs_info->scrub_lock);
4028 sctx = dev->scrub_device;
4029 if (!sctx) {
4030 mutex_unlock(&fs_info->scrub_lock);
4031 return -ENOTCONN;
4032 }
4033 atomic_inc(&sctx->cancel_req);
4034 while (dev->scrub_device) {
4035 mutex_unlock(&fs_info->scrub_lock);
4036 wait_event(fs_info->scrub_pause_wait,
4037 dev->scrub_device == NULL);
4038 mutex_lock(&fs_info->scrub_lock);
4039 }
4040 mutex_unlock(&fs_info->scrub_lock);
4041
4042 return 0;
4043}
4044
4045int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046 struct btrfs_scrub_progress *progress)
4047{
4048 struct btrfs_device *dev;
4049 struct scrub_ctx *sctx = NULL;
4050
4051 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4052 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4053 if (dev)
4054 sctx = dev->scrub_device;
4055 if (sctx)
4056 memcpy(progress, &sctx->stat, sizeof(*progress));
4057 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058
4059 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4060}
4061
4062static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4063 u64 extent_logical, u64 extent_len,
4064 u64 *extent_physical,
4065 struct btrfs_device **extent_dev,
4066 int *extent_mirror_num)
4067{
4068 u64 mapped_length;
4069 struct btrfs_bio *bbio = NULL;
4070 int ret;
4071
4072 mapped_length = extent_len;
4073 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4074 &mapped_length, &bbio, 0);
4075 if (ret || !bbio || mapped_length < extent_len ||
4076 !bbio->stripes[0].dev->bdev) {
4077 btrfs_put_bbio(bbio);
4078 return;
4079 }
4080
4081 *extent_physical = bbio->stripes[0].physical;
4082 *extent_mirror_num = bbio->mirror_num;
4083 *extent_dev = bbio->stripes[0].dev;
4084 btrfs_put_bbio(bbio);
4085}
4086
4087static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4088 struct scrub_wr_ctx *wr_ctx,
4089 struct btrfs_fs_info *fs_info,
4090 struct btrfs_device *dev,
4091 int is_dev_replace)
4092{
4093 WARN_ON(wr_ctx->wr_curr_bio != NULL);
4094
4095 mutex_init(&wr_ctx->wr_lock);
4096 wr_ctx->wr_curr_bio = NULL;
4097 if (!is_dev_replace)
4098 return 0;
4099
4100 WARN_ON(!dev->bdev);
4101 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4102 wr_ctx->tgtdev = dev;
4103 atomic_set(&wr_ctx->flush_all_writes, 0);
4104 return 0;
4105}
4106
4107static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4108{
4109 mutex_lock(&wr_ctx->wr_lock);
4110 kfree(wr_ctx->wr_curr_bio);
4111 wr_ctx->wr_curr_bio = NULL;
4112 mutex_unlock(&wr_ctx->wr_lock);
4113}
4114
4115static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4116 int mirror_num, u64 physical_for_dev_replace)
4117{
4118 struct scrub_copy_nocow_ctx *nocow_ctx;
4119 struct btrfs_fs_info *fs_info = sctx->fs_info;
4120
4121 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4122 if (!nocow_ctx) {
4123 spin_lock(&sctx->stat_lock);
4124 sctx->stat.malloc_errors++;
4125 spin_unlock(&sctx->stat_lock);
4126 return -ENOMEM;
4127 }
4128
4129 scrub_pending_trans_workers_inc(sctx);
4130
4131 nocow_ctx->sctx = sctx;
4132 nocow_ctx->logical = logical;
4133 nocow_ctx->len = len;
4134 nocow_ctx->mirror_num = mirror_num;
4135 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4136 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4137 copy_nocow_pages_worker, NULL, NULL);
4138 INIT_LIST_HEAD(&nocow_ctx->inodes);
4139 btrfs_queue_work(fs_info->scrub_nocow_workers,
4140 &nocow_ctx->work);
4141
4142 return 0;
4143}
4144
4145static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4146{
4147 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4148 struct scrub_nocow_inode *nocow_inode;
4149
4150 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4151 if (!nocow_inode)
4152 return -ENOMEM;
4153 nocow_inode->inum = inum;
4154 nocow_inode->offset = offset;
4155 nocow_inode->root = root;
4156 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4157 return 0;
4158}
4159
4160#define COPY_COMPLETE 1
4161
4162static void copy_nocow_pages_worker(struct btrfs_work *work)
4163{
4164 struct scrub_copy_nocow_ctx *nocow_ctx =
4165 container_of(work, struct scrub_copy_nocow_ctx, work);
4166 struct scrub_ctx *sctx = nocow_ctx->sctx;
4167 struct btrfs_fs_info *fs_info = sctx->fs_info;
4168 struct btrfs_root *root = fs_info->extent_root;
4169 u64 logical = nocow_ctx->logical;
4170 u64 len = nocow_ctx->len;
4171 int mirror_num = nocow_ctx->mirror_num;
4172 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173 int ret;
4174 struct btrfs_trans_handle *trans = NULL;
4175 struct btrfs_path *path;
4176 int not_written = 0;
4177
4178 path = btrfs_alloc_path();
4179 if (!path) {
4180 spin_lock(&sctx->stat_lock);
4181 sctx->stat.malloc_errors++;
4182 spin_unlock(&sctx->stat_lock);
4183 not_written = 1;
4184 goto out;
4185 }
4186
4187 trans = btrfs_join_transaction(root);
4188 if (IS_ERR(trans)) {
4189 not_written = 1;
4190 goto out;
4191 }
4192
4193 ret = iterate_inodes_from_logical(logical, fs_info, path,
4194 record_inode_for_nocow, nocow_ctx);
4195 if (ret != 0 && ret != -ENOENT) {
4196 btrfs_warn(fs_info,
4197 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4198 logical, physical_for_dev_replace, len, mirror_num,
4199 ret);
4200 not_written = 1;
4201 goto out;
4202 }
4203
4204 btrfs_end_transaction(trans);
4205 trans = NULL;
4206 while (!list_empty(&nocow_ctx->inodes)) {
4207 struct scrub_nocow_inode *entry;
4208 entry = list_first_entry(&nocow_ctx->inodes,
4209 struct scrub_nocow_inode,
4210 list);
4211 list_del_init(&entry->list);
4212 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4213 entry->root, nocow_ctx);
4214 kfree(entry);
4215 if (ret == COPY_COMPLETE) {
4216 ret = 0;
4217 break;
4218 } else if (ret) {
4219 break;
4220 }
4221 }
4222out:
4223 while (!list_empty(&nocow_ctx->inodes)) {
4224 struct scrub_nocow_inode *entry;
4225 entry = list_first_entry(&nocow_ctx->inodes,
4226 struct scrub_nocow_inode,
4227 list);
4228 list_del_init(&entry->list);
4229 kfree(entry);
4230 }
4231 if (trans && !IS_ERR(trans))
4232 btrfs_end_transaction(trans);
4233 if (not_written)
4234 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4235 num_uncorrectable_read_errors);
4236
4237 btrfs_free_path(path);
4238 kfree(nocow_ctx);
4239
4240 scrub_pending_trans_workers_dec(sctx);
4241}
4242
4243static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4244 u64 logical)
4245{
4246 struct extent_state *cached_state = NULL;
4247 struct btrfs_ordered_extent *ordered;
4248 struct extent_io_tree *io_tree;
4249 struct extent_map *em;
4250 u64 lockstart = start, lockend = start + len - 1;
4251 int ret = 0;
4252
4253 io_tree = &BTRFS_I(inode)->io_tree;
4254
4255 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4256 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4257 if (ordered) {
4258 btrfs_put_ordered_extent(ordered);
4259 ret = 1;
4260 goto out_unlock;
4261 }
4262
4263 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4264 if (IS_ERR(em)) {
4265 ret = PTR_ERR(em);
4266 goto out_unlock;
4267 }
4268
4269 /*
4270 * This extent does not actually cover the logical extent anymore,
4271 * move on to the next inode.
4272 */
4273 if (em->block_start > logical ||
4274 em->block_start + em->block_len < logical + len) {
4275 free_extent_map(em);
4276 ret = 1;
4277 goto out_unlock;
4278 }
4279 free_extent_map(em);
4280
4281out_unlock:
4282 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4283 GFP_NOFS);
4284 return ret;
4285}
4286
4287static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4288 struct scrub_copy_nocow_ctx *nocow_ctx)
4289{
4290 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4291 struct btrfs_key key;
4292 struct inode *inode;
4293 struct page *page;
4294 struct btrfs_root *local_root;
4295 struct extent_io_tree *io_tree;
4296 u64 physical_for_dev_replace;
4297 u64 nocow_ctx_logical;
4298 u64 len = nocow_ctx->len;
4299 unsigned long index;
4300 int srcu_index;
4301 int ret = 0;
4302 int err = 0;
4303
4304 key.objectid = root;
4305 key.type = BTRFS_ROOT_ITEM_KEY;
4306 key.offset = (u64)-1;
4307
4308 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4309
4310 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4311 if (IS_ERR(local_root)) {
4312 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4313 return PTR_ERR(local_root);
4314 }
4315
4316 key.type = BTRFS_INODE_ITEM_KEY;
4317 key.objectid = inum;
4318 key.offset = 0;
4319 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4320 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4321 if (IS_ERR(inode))
4322 return PTR_ERR(inode);
4323
4324 /* Avoid truncate/dio/punch hole.. */
4325 inode_lock(inode);
4326 inode_dio_wait(inode);
4327
4328 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4329 io_tree = &BTRFS_I(inode)->io_tree;
4330 nocow_ctx_logical = nocow_ctx->logical;
4331
4332 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4333 if (ret) {
4334 ret = ret > 0 ? 0 : ret;
4335 goto out;
4336 }
4337
4338 while (len >= PAGE_SIZE) {
4339 index = offset >> PAGE_SHIFT;
4340again:
4341 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4342 if (!page) {
4343 btrfs_err(fs_info, "find_or_create_page() failed");
4344 ret = -ENOMEM;
4345 goto out;
4346 }
4347
4348 if (PageUptodate(page)) {
4349 if (PageDirty(page))
4350 goto next_page;
4351 } else {
4352 ClearPageError(page);
4353 err = extent_read_full_page(io_tree, page,
4354 btrfs_get_extent,
4355 nocow_ctx->mirror_num);
4356 if (err) {
4357 ret = err;
4358 goto next_page;
4359 }
4360
4361 lock_page(page);
4362 /*
4363 * If the page has been remove from the page cache,
4364 * the data on it is meaningless, because it may be
4365 * old one, the new data may be written into the new
4366 * page in the page cache.
4367 */
4368 if (page->mapping != inode->i_mapping) {
4369 unlock_page(page);
4370 put_page(page);
4371 goto again;
4372 }
4373 if (!PageUptodate(page)) {
4374 ret = -EIO;
4375 goto next_page;
4376 }
4377 }
4378
4379 ret = check_extent_to_block(inode, offset, len,
4380 nocow_ctx_logical);
4381 if (ret) {
4382 ret = ret > 0 ? 0 : ret;
4383 goto next_page;
4384 }
4385
4386 err = write_page_nocow(nocow_ctx->sctx,
4387 physical_for_dev_replace, page);
4388 if (err)
4389 ret = err;
4390next_page:
4391 unlock_page(page);
4392 put_page(page);
4393
4394 if (ret)
4395 break;
4396
4397 offset += PAGE_SIZE;
4398 physical_for_dev_replace += PAGE_SIZE;
4399 nocow_ctx_logical += PAGE_SIZE;
4400 len -= PAGE_SIZE;
4401 }
4402 ret = COPY_COMPLETE;
4403out:
4404 inode_unlock(inode);
4405 iput(inode);
4406 return ret;
4407}
4408
4409static int write_page_nocow(struct scrub_ctx *sctx,
4410 u64 physical_for_dev_replace, struct page *page)
4411{
4412 struct bio *bio;
4413 struct btrfs_device *dev;
4414 int ret;
4415
4416 dev = sctx->wr_ctx.tgtdev;
4417 if (!dev)
4418 return -EIO;
4419 if (!dev->bdev) {
4420 btrfs_warn_rl(dev->fs_info,
4421 "scrub write_page_nocow(bdev == NULL) is unexpected");
4422 return -EIO;
4423 }
4424 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4425 if (!bio) {
4426 spin_lock(&sctx->stat_lock);
4427 sctx->stat.malloc_errors++;
4428 spin_unlock(&sctx->stat_lock);
4429 return -ENOMEM;
4430 }
4431 bio->bi_iter.bi_size = 0;
4432 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4433 bio->bi_bdev = dev->bdev;
4434 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4435 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4436 if (ret != PAGE_SIZE) {
4437leave_with_eio:
4438 bio_put(bio);
4439 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4440 return -EIO;
4441 }
4442
4443 if (btrfsic_submit_bio_wait(bio))
4444 goto leave_with_eio;
4445
4446 bio_put(bio);
4447 return 0;
4448}
1/*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/ratelimit.h>
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
25#include "transaction.h"
26#include "backref.h"
27#include "extent_io.h"
28#include "dev-replace.h"
29#include "check-integrity.h"
30#include "rcu-string.h"
31#include "raid56.h"
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46struct scrub_block;
47struct scrub_ctx;
48
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66struct scrub_page {
67 struct scrub_block *sblock;
68 struct page *page;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
71 u64 generation;
72 u64 logical;
73 u64 physical;
74 u64 physical_for_dev_replace;
75 atomic_t ref_count;
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
81 u8 csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85 int index;
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
97 int page_count;
98 int next_free;
99 struct btrfs_work work;
100};
101
102struct scrub_block {
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113 };
114};
115
116struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122};
123
124struct scrub_ctx {
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
127 int first_free;
128 int curr;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
136 int readonly;
137 int pages_per_rd_bio;
138 u32 sectorsize;
139 u32 nodesize;
140 u32 leafsize;
141
142 int is_dev_replace;
143 struct scrub_wr_ctx wr_ctx;
144
145 /*
146 * statistics
147 */
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
150};
151
152struct scrub_fixup_nodatasum {
153 struct scrub_ctx *sctx;
154 struct btrfs_device *dev;
155 u64 logical;
156 struct btrfs_root *root;
157 struct btrfs_work work;
158 int mirror_num;
159};
160
161struct scrub_nocow_inode {
162 u64 inum;
163 u64 offset;
164 u64 root;
165 struct list_head list;
166};
167
168struct scrub_copy_nocow_ctx {
169 struct scrub_ctx *sctx;
170 u64 logical;
171 u64 len;
172 int mirror_num;
173 u64 physical_for_dev_replace;
174 struct list_head inodes;
175 struct btrfs_work work;
176};
177
178struct scrub_warning {
179 struct btrfs_path *path;
180 u64 extent_item_size;
181 char *scratch_buf;
182 char *msg_buf;
183 const char *errstr;
184 sector_t sector;
185 u64 logical;
186 struct btrfs_device *dev;
187 int msg_bufsize;
188 int scratch_bufsize;
189};
190
191
192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 struct btrfs_fs_info *fs_info,
199 struct scrub_block *original_sblock,
200 u64 length, u64 logical,
201 struct scrub_block *sblocks_for_recheck);
202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 struct scrub_block *sblock, int is_metadata,
204 int have_csum, u8 *csum, u64 generation,
205 u16 csum_size);
206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 struct scrub_block *sblock,
208 int is_metadata, int have_csum,
209 const u8 *csum, u64 generation,
210 u16 csum_size);
211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 struct scrub_block *sblock_good,
213 int force_write);
214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 struct scrub_block *sblock_good,
216 int page_num, int force_write);
217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 int page_num);
220static int scrub_checksum_data(struct scrub_block *sblock);
221static int scrub_checksum_tree_block(struct scrub_block *sblock);
222static int scrub_checksum_super(struct scrub_block *sblock);
223static void scrub_block_get(struct scrub_block *sblock);
224static void scrub_block_put(struct scrub_block *sblock);
225static void scrub_page_get(struct scrub_page *spage);
226static void scrub_page_put(struct scrub_page *spage);
227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 struct scrub_page *spage);
229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230 u64 physical, struct btrfs_device *dev, u64 flags,
231 u64 gen, int mirror_num, u8 *csum, int force,
232 u64 physical_for_dev_replace);
233static void scrub_bio_end_io(struct bio *bio, int err);
234static void scrub_bio_end_io_worker(struct btrfs_work *work);
235static void scrub_block_complete(struct scrub_block *sblock);
236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 u64 extent_logical, u64 extent_len,
238 u64 *extent_physical,
239 struct btrfs_device **extent_dev,
240 int *extent_mirror_num);
241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 struct scrub_wr_ctx *wr_ctx,
243 struct btrfs_fs_info *fs_info,
244 struct btrfs_device *dev,
245 int is_dev_replace);
246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249static void scrub_wr_submit(struct scrub_ctx *sctx);
250static void scrub_wr_bio_end_io(struct bio *bio, int err);
251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252static int write_page_nocow(struct scrub_ctx *sctx,
253 u64 physical_for_dev_replace, struct page *page);
254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255 struct scrub_copy_nocow_ctx *ctx);
256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 int mirror_num, u64 physical_for_dev_replace);
258static void copy_nocow_pages_worker(struct btrfs_work *work);
259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
261
262
263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264{
265 atomic_inc(&sctx->bios_in_flight);
266}
267
268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269{
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
272}
273
274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275{
276 while (atomic_read(&fs_info->scrub_pause_req)) {
277 mutex_unlock(&fs_info->scrub_lock);
278 wait_event(fs_info->scrub_pause_wait,
279 atomic_read(&fs_info->scrub_pause_req) == 0);
280 mutex_lock(&fs_info->scrub_lock);
281 }
282}
283
284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285{
286 atomic_inc(&fs_info->scrubs_paused);
287 wake_up(&fs_info->scrub_pause_wait);
288
289 mutex_lock(&fs_info->scrub_lock);
290 __scrub_blocked_if_needed(fs_info);
291 atomic_dec(&fs_info->scrubs_paused);
292 mutex_unlock(&fs_info->scrub_lock);
293
294 wake_up(&fs_info->scrub_pause_wait);
295}
296
297/*
298 * used for workers that require transaction commits (i.e., for the
299 * NOCOW case)
300 */
301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302{
303 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304
305 /*
306 * increment scrubs_running to prevent cancel requests from
307 * completing as long as a worker is running. we must also
308 * increment scrubs_paused to prevent deadlocking on pause
309 * requests used for transactions commits (as the worker uses a
310 * transaction context). it is safe to regard the worker
311 * as paused for all matters practical. effectively, we only
312 * avoid cancellation requests from completing.
313 */
314 mutex_lock(&fs_info->scrub_lock);
315 atomic_inc(&fs_info->scrubs_running);
316 atomic_inc(&fs_info->scrubs_paused);
317 mutex_unlock(&fs_info->scrub_lock);
318
319 /*
320 * check if @scrubs_running=@scrubs_paused condition
321 * inside wait_event() is not an atomic operation.
322 * which means we may inc/dec @scrub_running/paused
323 * at any time. Let's wake up @scrub_pause_wait as
324 * much as we can to let commit transaction blocked less.
325 */
326 wake_up(&fs_info->scrub_pause_wait);
327
328 atomic_inc(&sctx->workers_pending);
329}
330
331/* used for workers that require transaction commits */
332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
333{
334 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
335
336 /*
337 * see scrub_pending_trans_workers_inc() why we're pretending
338 * to be paused in the scrub counters
339 */
340 mutex_lock(&fs_info->scrub_lock);
341 atomic_dec(&fs_info->scrubs_running);
342 atomic_dec(&fs_info->scrubs_paused);
343 mutex_unlock(&fs_info->scrub_lock);
344 atomic_dec(&sctx->workers_pending);
345 wake_up(&fs_info->scrub_pause_wait);
346 wake_up(&sctx->list_wait);
347}
348
349static void scrub_free_csums(struct scrub_ctx *sctx)
350{
351 while (!list_empty(&sctx->csum_list)) {
352 struct btrfs_ordered_sum *sum;
353 sum = list_first_entry(&sctx->csum_list,
354 struct btrfs_ordered_sum, list);
355 list_del(&sum->list);
356 kfree(sum);
357 }
358}
359
360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
361{
362 int i;
363
364 if (!sctx)
365 return;
366
367 scrub_free_wr_ctx(&sctx->wr_ctx);
368
369 /* this can happen when scrub is cancelled */
370 if (sctx->curr != -1) {
371 struct scrub_bio *sbio = sctx->bios[sctx->curr];
372
373 for (i = 0; i < sbio->page_count; i++) {
374 WARN_ON(!sbio->pagev[i]->page);
375 scrub_block_put(sbio->pagev[i]->sblock);
376 }
377 bio_put(sbio->bio);
378 }
379
380 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
381 struct scrub_bio *sbio = sctx->bios[i];
382
383 if (!sbio)
384 break;
385 kfree(sbio);
386 }
387
388 scrub_free_csums(sctx);
389 kfree(sctx);
390}
391
392static noinline_for_stack
393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
394{
395 struct scrub_ctx *sctx;
396 int i;
397 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
398 int pages_per_rd_bio;
399 int ret;
400
401 /*
402 * the setting of pages_per_rd_bio is correct for scrub but might
403 * be wrong for the dev_replace code where we might read from
404 * different devices in the initial huge bios. However, that
405 * code is able to correctly handle the case when adding a page
406 * to a bio fails.
407 */
408 if (dev->bdev)
409 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
410 bio_get_nr_vecs(dev->bdev));
411 else
412 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
413 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
414 if (!sctx)
415 goto nomem;
416 sctx->is_dev_replace = is_dev_replace;
417 sctx->pages_per_rd_bio = pages_per_rd_bio;
418 sctx->curr = -1;
419 sctx->dev_root = dev->dev_root;
420 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
421 struct scrub_bio *sbio;
422
423 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
424 if (!sbio)
425 goto nomem;
426 sctx->bios[i] = sbio;
427
428 sbio->index = i;
429 sbio->sctx = sctx;
430 sbio->page_count = 0;
431 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
432 NULL, NULL);
433
434 if (i != SCRUB_BIOS_PER_SCTX - 1)
435 sctx->bios[i]->next_free = i + 1;
436 else
437 sctx->bios[i]->next_free = -1;
438 }
439 sctx->first_free = 0;
440 sctx->nodesize = dev->dev_root->nodesize;
441 sctx->leafsize = dev->dev_root->leafsize;
442 sctx->sectorsize = dev->dev_root->sectorsize;
443 atomic_set(&sctx->bios_in_flight, 0);
444 atomic_set(&sctx->workers_pending, 0);
445 atomic_set(&sctx->cancel_req, 0);
446 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
447 INIT_LIST_HEAD(&sctx->csum_list);
448
449 spin_lock_init(&sctx->list_lock);
450 spin_lock_init(&sctx->stat_lock);
451 init_waitqueue_head(&sctx->list_wait);
452
453 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
454 fs_info->dev_replace.tgtdev, is_dev_replace);
455 if (ret) {
456 scrub_free_ctx(sctx);
457 return ERR_PTR(ret);
458 }
459 return sctx;
460
461nomem:
462 scrub_free_ctx(sctx);
463 return ERR_PTR(-ENOMEM);
464}
465
466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
467 void *warn_ctx)
468{
469 u64 isize;
470 u32 nlink;
471 int ret;
472 int i;
473 struct extent_buffer *eb;
474 struct btrfs_inode_item *inode_item;
475 struct scrub_warning *swarn = warn_ctx;
476 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
477 struct inode_fs_paths *ipath = NULL;
478 struct btrfs_root *local_root;
479 struct btrfs_key root_key;
480
481 root_key.objectid = root;
482 root_key.type = BTRFS_ROOT_ITEM_KEY;
483 root_key.offset = (u64)-1;
484 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
485 if (IS_ERR(local_root)) {
486 ret = PTR_ERR(local_root);
487 goto err;
488 }
489
490 ret = inode_item_info(inum, 0, local_root, swarn->path);
491 if (ret) {
492 btrfs_release_path(swarn->path);
493 goto err;
494 }
495
496 eb = swarn->path->nodes[0];
497 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
498 struct btrfs_inode_item);
499 isize = btrfs_inode_size(eb, inode_item);
500 nlink = btrfs_inode_nlink(eb, inode_item);
501 btrfs_release_path(swarn->path);
502
503 ipath = init_ipath(4096, local_root, swarn->path);
504 if (IS_ERR(ipath)) {
505 ret = PTR_ERR(ipath);
506 ipath = NULL;
507 goto err;
508 }
509 ret = paths_from_inode(inum, ipath);
510
511 if (ret < 0)
512 goto err;
513
514 /*
515 * we deliberately ignore the bit ipath might have been too small to
516 * hold all of the paths here
517 */
518 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
519 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
520 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
521 "length %llu, links %u (path: %s)\n", swarn->errstr,
522 swarn->logical, rcu_str_deref(swarn->dev->name),
523 (unsigned long long)swarn->sector, root, inum, offset,
524 min(isize - offset, (u64)PAGE_SIZE), nlink,
525 (char *)(unsigned long)ipath->fspath->val[i]);
526
527 free_ipath(ipath);
528 return 0;
529
530err:
531 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
532 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
533 "resolving failed with ret=%d\n", swarn->errstr,
534 swarn->logical, rcu_str_deref(swarn->dev->name),
535 (unsigned long long)swarn->sector, root, inum, offset, ret);
536
537 free_ipath(ipath);
538 return 0;
539}
540
541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
542{
543 struct btrfs_device *dev;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_path *path;
546 struct btrfs_key found_key;
547 struct extent_buffer *eb;
548 struct btrfs_extent_item *ei;
549 struct scrub_warning swarn;
550 unsigned long ptr = 0;
551 u64 extent_item_pos;
552 u64 flags = 0;
553 u64 ref_root;
554 u32 item_size;
555 u8 ref_level;
556 const int bufsize = 4096;
557 int ret;
558
559 WARN_ON(sblock->page_count < 1);
560 dev = sblock->pagev[0]->dev;
561 fs_info = sblock->sctx->dev_root->fs_info;
562
563 path = btrfs_alloc_path();
564
565 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
566 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
567 swarn.sector = (sblock->pagev[0]->physical) >> 9;
568 swarn.logical = sblock->pagev[0]->logical;
569 swarn.errstr = errstr;
570 swarn.dev = NULL;
571 swarn.msg_bufsize = bufsize;
572 swarn.scratch_bufsize = bufsize;
573
574 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
575 goto out;
576
577 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
578 &flags);
579 if (ret < 0)
580 goto out;
581
582 extent_item_pos = swarn.logical - found_key.objectid;
583 swarn.extent_item_size = found_key.offset;
584
585 eb = path->nodes[0];
586 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
587 item_size = btrfs_item_size_nr(eb, path->slots[0]);
588
589 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
590 do {
591 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
592 &ref_root, &ref_level);
593 printk_in_rcu(KERN_WARNING
594 "BTRFS: %s at logical %llu on dev %s, "
595 "sector %llu: metadata %s (level %d) in tree "
596 "%llu\n", errstr, swarn.logical,
597 rcu_str_deref(dev->name),
598 (unsigned long long)swarn.sector,
599 ref_level ? "node" : "leaf",
600 ret < 0 ? -1 : ref_level,
601 ret < 0 ? -1 : ref_root);
602 } while (ret != 1);
603 btrfs_release_path(path);
604 } else {
605 btrfs_release_path(path);
606 swarn.path = path;
607 swarn.dev = dev;
608 iterate_extent_inodes(fs_info, found_key.objectid,
609 extent_item_pos, 1,
610 scrub_print_warning_inode, &swarn);
611 }
612
613out:
614 btrfs_free_path(path);
615 kfree(swarn.scratch_buf);
616 kfree(swarn.msg_buf);
617}
618
619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
620{
621 struct page *page = NULL;
622 unsigned long index;
623 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
624 int ret;
625 int corrected = 0;
626 struct btrfs_key key;
627 struct inode *inode = NULL;
628 struct btrfs_fs_info *fs_info;
629 u64 end = offset + PAGE_SIZE - 1;
630 struct btrfs_root *local_root;
631 int srcu_index;
632
633 key.objectid = root;
634 key.type = BTRFS_ROOT_ITEM_KEY;
635 key.offset = (u64)-1;
636
637 fs_info = fixup->root->fs_info;
638 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
639
640 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
641 if (IS_ERR(local_root)) {
642 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
643 return PTR_ERR(local_root);
644 }
645
646 key.type = BTRFS_INODE_ITEM_KEY;
647 key.objectid = inum;
648 key.offset = 0;
649 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
650 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
651 if (IS_ERR(inode))
652 return PTR_ERR(inode);
653
654 index = offset >> PAGE_CACHE_SHIFT;
655
656 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
657 if (!page) {
658 ret = -ENOMEM;
659 goto out;
660 }
661
662 if (PageUptodate(page)) {
663 if (PageDirty(page)) {
664 /*
665 * we need to write the data to the defect sector. the
666 * data that was in that sector is not in memory,
667 * because the page was modified. we must not write the
668 * modified page to that sector.
669 *
670 * TODO: what could be done here: wait for the delalloc
671 * runner to write out that page (might involve
672 * COW) and see whether the sector is still
673 * referenced afterwards.
674 *
675 * For the meantime, we'll treat this error
676 * incorrectable, although there is a chance that a
677 * later scrub will find the bad sector again and that
678 * there's no dirty page in memory, then.
679 */
680 ret = -EIO;
681 goto out;
682 }
683 fs_info = BTRFS_I(inode)->root->fs_info;
684 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
685 fixup->logical, page,
686 fixup->mirror_num);
687 unlock_page(page);
688 corrected = !ret;
689 } else {
690 /*
691 * we need to get good data first. the general readpage path
692 * will call repair_io_failure for us, we just have to make
693 * sure we read the bad mirror.
694 */
695 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
696 EXTENT_DAMAGED, GFP_NOFS);
697 if (ret) {
698 /* set_extent_bits should give proper error */
699 WARN_ON(ret > 0);
700 if (ret > 0)
701 ret = -EFAULT;
702 goto out;
703 }
704
705 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
706 btrfs_get_extent,
707 fixup->mirror_num);
708 wait_on_page_locked(page);
709
710 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
711 end, EXTENT_DAMAGED, 0, NULL);
712 if (!corrected)
713 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
714 EXTENT_DAMAGED, GFP_NOFS);
715 }
716
717out:
718 if (page)
719 put_page(page);
720 if (inode)
721 iput(inode);
722
723 if (ret < 0)
724 return ret;
725
726 if (ret == 0 && corrected) {
727 /*
728 * we only need to call readpage for one of the inodes belonging
729 * to this extent. so make iterate_extent_inodes stop
730 */
731 return 1;
732 }
733
734 return -EIO;
735}
736
737static void scrub_fixup_nodatasum(struct btrfs_work *work)
738{
739 int ret;
740 struct scrub_fixup_nodatasum *fixup;
741 struct scrub_ctx *sctx;
742 struct btrfs_trans_handle *trans = NULL;
743 struct btrfs_path *path;
744 int uncorrectable = 0;
745
746 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
747 sctx = fixup->sctx;
748
749 path = btrfs_alloc_path();
750 if (!path) {
751 spin_lock(&sctx->stat_lock);
752 ++sctx->stat.malloc_errors;
753 spin_unlock(&sctx->stat_lock);
754 uncorrectable = 1;
755 goto out;
756 }
757
758 trans = btrfs_join_transaction(fixup->root);
759 if (IS_ERR(trans)) {
760 uncorrectable = 1;
761 goto out;
762 }
763
764 /*
765 * the idea is to trigger a regular read through the standard path. we
766 * read a page from the (failed) logical address by specifying the
767 * corresponding copynum of the failed sector. thus, that readpage is
768 * expected to fail.
769 * that is the point where on-the-fly error correction will kick in
770 * (once it's finished) and rewrite the failed sector if a good copy
771 * can be found.
772 */
773 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
774 path, scrub_fixup_readpage,
775 fixup);
776 if (ret < 0) {
777 uncorrectable = 1;
778 goto out;
779 }
780 WARN_ON(ret != 1);
781
782 spin_lock(&sctx->stat_lock);
783 ++sctx->stat.corrected_errors;
784 spin_unlock(&sctx->stat_lock);
785
786out:
787 if (trans && !IS_ERR(trans))
788 btrfs_end_transaction(trans, fixup->root);
789 if (uncorrectable) {
790 spin_lock(&sctx->stat_lock);
791 ++sctx->stat.uncorrectable_errors;
792 spin_unlock(&sctx->stat_lock);
793 btrfs_dev_replace_stats_inc(
794 &sctx->dev_root->fs_info->dev_replace.
795 num_uncorrectable_read_errors);
796 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
797 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
798 fixup->logical, rcu_str_deref(fixup->dev->name));
799 }
800
801 btrfs_free_path(path);
802 kfree(fixup);
803
804 scrub_pending_trans_workers_dec(sctx);
805}
806
807/*
808 * scrub_handle_errored_block gets called when either verification of the
809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
810 * case, this function handles all pages in the bio, even though only one
811 * may be bad.
812 * The goal of this function is to repair the errored block by using the
813 * contents of one of the mirrors.
814 */
815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
816{
817 struct scrub_ctx *sctx = sblock_to_check->sctx;
818 struct btrfs_device *dev;
819 struct btrfs_fs_info *fs_info;
820 u64 length;
821 u64 logical;
822 u64 generation;
823 unsigned int failed_mirror_index;
824 unsigned int is_metadata;
825 unsigned int have_csum;
826 u8 *csum;
827 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
828 struct scrub_block *sblock_bad;
829 int ret;
830 int mirror_index;
831 int page_num;
832 int success;
833 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
834 DEFAULT_RATELIMIT_BURST);
835
836 BUG_ON(sblock_to_check->page_count < 1);
837 fs_info = sctx->dev_root->fs_info;
838 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
839 /*
840 * if we find an error in a super block, we just report it.
841 * They will get written with the next transaction commit
842 * anyway
843 */
844 spin_lock(&sctx->stat_lock);
845 ++sctx->stat.super_errors;
846 spin_unlock(&sctx->stat_lock);
847 return 0;
848 }
849 length = sblock_to_check->page_count * PAGE_SIZE;
850 logical = sblock_to_check->pagev[0]->logical;
851 generation = sblock_to_check->pagev[0]->generation;
852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 is_metadata = !(sblock_to_check->pagev[0]->flags &
855 BTRFS_EXTENT_FLAG_DATA);
856 have_csum = sblock_to_check->pagev[0]->have_csum;
857 csum = sblock_to_check->pagev[0]->csum;
858 dev = sblock_to_check->pagev[0]->dev;
859
860 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
861 sblocks_for_recheck = NULL;
862 goto nodatasum_case;
863 }
864
865 /*
866 * read all mirrors one after the other. This includes to
867 * re-read the extent or metadata block that failed (that was
868 * the cause that this fixup code is called) another time,
869 * page by page this time in order to know which pages
870 * caused I/O errors and which ones are good (for all mirrors).
871 * It is the goal to handle the situation when more than one
872 * mirror contains I/O errors, but the errors do not
873 * overlap, i.e. the data can be repaired by selecting the
874 * pages from those mirrors without I/O error on the
875 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
876 * would be that mirror #1 has an I/O error on the first page,
877 * the second page is good, and mirror #2 has an I/O error on
878 * the second page, but the first page is good.
879 * Then the first page of the first mirror can be repaired by
880 * taking the first page of the second mirror, and the
881 * second page of the second mirror can be repaired by
882 * copying the contents of the 2nd page of the 1st mirror.
883 * One more note: if the pages of one mirror contain I/O
884 * errors, the checksum cannot be verified. In order to get
885 * the best data for repairing, the first attempt is to find
886 * a mirror without I/O errors and with a validated checksum.
887 * Only if this is not possible, the pages are picked from
888 * mirrors with I/O errors without considering the checksum.
889 * If the latter is the case, at the end, the checksum of the
890 * repaired area is verified in order to correctly maintain
891 * the statistics.
892 */
893
894 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
895 sizeof(*sblocks_for_recheck),
896 GFP_NOFS);
897 if (!sblocks_for_recheck) {
898 spin_lock(&sctx->stat_lock);
899 sctx->stat.malloc_errors++;
900 sctx->stat.read_errors++;
901 sctx->stat.uncorrectable_errors++;
902 spin_unlock(&sctx->stat_lock);
903 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
904 goto out;
905 }
906
907 /* setup the context, map the logical blocks and alloc the pages */
908 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
909 logical, sblocks_for_recheck);
910 if (ret) {
911 spin_lock(&sctx->stat_lock);
912 sctx->stat.read_errors++;
913 sctx->stat.uncorrectable_errors++;
914 spin_unlock(&sctx->stat_lock);
915 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
916 goto out;
917 }
918 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
919 sblock_bad = sblocks_for_recheck + failed_mirror_index;
920
921 /* build and submit the bios for the failed mirror, check checksums */
922 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
923 csum, generation, sctx->csum_size);
924
925 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
926 sblock_bad->no_io_error_seen) {
927 /*
928 * the error disappeared after reading page by page, or
929 * the area was part of a huge bio and other parts of the
930 * bio caused I/O errors, or the block layer merged several
931 * read requests into one and the error is caused by a
932 * different bio (usually one of the two latter cases is
933 * the cause)
934 */
935 spin_lock(&sctx->stat_lock);
936 sctx->stat.unverified_errors++;
937 spin_unlock(&sctx->stat_lock);
938
939 if (sctx->is_dev_replace)
940 scrub_write_block_to_dev_replace(sblock_bad);
941 goto out;
942 }
943
944 if (!sblock_bad->no_io_error_seen) {
945 spin_lock(&sctx->stat_lock);
946 sctx->stat.read_errors++;
947 spin_unlock(&sctx->stat_lock);
948 if (__ratelimit(&_rs))
949 scrub_print_warning("i/o error", sblock_to_check);
950 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
951 } else if (sblock_bad->checksum_error) {
952 spin_lock(&sctx->stat_lock);
953 sctx->stat.csum_errors++;
954 spin_unlock(&sctx->stat_lock);
955 if (__ratelimit(&_rs))
956 scrub_print_warning("checksum error", sblock_to_check);
957 btrfs_dev_stat_inc_and_print(dev,
958 BTRFS_DEV_STAT_CORRUPTION_ERRS);
959 } else if (sblock_bad->header_error) {
960 spin_lock(&sctx->stat_lock);
961 sctx->stat.verify_errors++;
962 spin_unlock(&sctx->stat_lock);
963 if (__ratelimit(&_rs))
964 scrub_print_warning("checksum/header error",
965 sblock_to_check);
966 if (sblock_bad->generation_error)
967 btrfs_dev_stat_inc_and_print(dev,
968 BTRFS_DEV_STAT_GENERATION_ERRS);
969 else
970 btrfs_dev_stat_inc_and_print(dev,
971 BTRFS_DEV_STAT_CORRUPTION_ERRS);
972 }
973
974 if (sctx->readonly) {
975 ASSERT(!sctx->is_dev_replace);
976 goto out;
977 }
978
979 if (!is_metadata && !have_csum) {
980 struct scrub_fixup_nodatasum *fixup_nodatasum;
981
982nodatasum_case:
983 WARN_ON(sctx->is_dev_replace);
984
985 /*
986 * !is_metadata and !have_csum, this means that the data
987 * might not be COW'ed, that it might be modified
988 * concurrently. The general strategy to work on the
989 * commit root does not help in the case when COW is not
990 * used.
991 */
992 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
993 if (!fixup_nodatasum)
994 goto did_not_correct_error;
995 fixup_nodatasum->sctx = sctx;
996 fixup_nodatasum->dev = dev;
997 fixup_nodatasum->logical = logical;
998 fixup_nodatasum->root = fs_info->extent_root;
999 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000 scrub_pending_trans_workers_inc(sctx);
1001 btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002 NULL, NULL);
1003 btrfs_queue_work(fs_info->scrub_workers,
1004 &fixup_nodatasum->work);
1005 goto out;
1006 }
1007
1008 /*
1009 * now build and submit the bios for the other mirrors, check
1010 * checksums.
1011 * First try to pick the mirror which is completely without I/O
1012 * errors and also does not have a checksum error.
1013 * If one is found, and if a checksum is present, the full block
1014 * that is known to contain an error is rewritten. Afterwards
1015 * the block is known to be corrected.
1016 * If a mirror is found which is completely correct, and no
1017 * checksum is present, only those pages are rewritten that had
1018 * an I/O error in the block to be repaired, since it cannot be
1019 * determined, which copy of the other pages is better (and it
1020 * could happen otherwise that a correct page would be
1021 * overwritten by a bad one).
1022 */
1023 for (mirror_index = 0;
1024 mirror_index < BTRFS_MAX_MIRRORS &&
1025 sblocks_for_recheck[mirror_index].page_count > 0;
1026 mirror_index++) {
1027 struct scrub_block *sblock_other;
1028
1029 if (mirror_index == failed_mirror_index)
1030 continue;
1031 sblock_other = sblocks_for_recheck + mirror_index;
1032
1033 /* build and submit the bios, check checksums */
1034 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035 have_csum, csum, generation,
1036 sctx->csum_size);
1037
1038 if (!sblock_other->header_error &&
1039 !sblock_other->checksum_error &&
1040 sblock_other->no_io_error_seen) {
1041 if (sctx->is_dev_replace) {
1042 scrub_write_block_to_dev_replace(sblock_other);
1043 } else {
1044 int force_write = is_metadata || have_csum;
1045
1046 ret = scrub_repair_block_from_good_copy(
1047 sblock_bad, sblock_other,
1048 force_write);
1049 }
1050 if (0 == ret)
1051 goto corrected_error;
1052 }
1053 }
1054
1055 /*
1056 * for dev_replace, pick good pages and write to the target device.
1057 */
1058 if (sctx->is_dev_replace) {
1059 success = 1;
1060 for (page_num = 0; page_num < sblock_bad->page_count;
1061 page_num++) {
1062 int sub_success;
1063
1064 sub_success = 0;
1065 for (mirror_index = 0;
1066 mirror_index < BTRFS_MAX_MIRRORS &&
1067 sblocks_for_recheck[mirror_index].page_count > 0;
1068 mirror_index++) {
1069 struct scrub_block *sblock_other =
1070 sblocks_for_recheck + mirror_index;
1071 struct scrub_page *page_other =
1072 sblock_other->pagev[page_num];
1073
1074 if (!page_other->io_error) {
1075 ret = scrub_write_page_to_dev_replace(
1076 sblock_other, page_num);
1077 if (ret == 0) {
1078 /* succeeded for this page */
1079 sub_success = 1;
1080 break;
1081 } else {
1082 btrfs_dev_replace_stats_inc(
1083 &sctx->dev_root->
1084 fs_info->dev_replace.
1085 num_write_errors);
1086 }
1087 }
1088 }
1089
1090 if (!sub_success) {
1091 /*
1092 * did not find a mirror to fetch the page
1093 * from. scrub_write_page_to_dev_replace()
1094 * handles this case (page->io_error), by
1095 * filling the block with zeros before
1096 * submitting the write request
1097 */
1098 success = 0;
1099 ret = scrub_write_page_to_dev_replace(
1100 sblock_bad, page_num);
1101 if (ret)
1102 btrfs_dev_replace_stats_inc(
1103 &sctx->dev_root->fs_info->
1104 dev_replace.num_write_errors);
1105 }
1106 }
1107
1108 goto out;
1109 }
1110
1111 /*
1112 * for regular scrub, repair those pages that are errored.
1113 * In case of I/O errors in the area that is supposed to be
1114 * repaired, continue by picking good copies of those pages.
1115 * Select the good pages from mirrors to rewrite bad pages from
1116 * the area to fix. Afterwards verify the checksum of the block
1117 * that is supposed to be repaired. This verification step is
1118 * only done for the purpose of statistic counting and for the
1119 * final scrub report, whether errors remain.
1120 * A perfect algorithm could make use of the checksum and try
1121 * all possible combinations of pages from the different mirrors
1122 * until the checksum verification succeeds. For example, when
1123 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124 * of mirror #2 is readable but the final checksum test fails,
1125 * then the 2nd page of mirror #3 could be tried, whether now
1126 * the final checksum succeedes. But this would be a rare
1127 * exception and is therefore not implemented. At least it is
1128 * avoided that the good copy is overwritten.
1129 * A more useful improvement would be to pick the sectors
1130 * without I/O error based on sector sizes (512 bytes on legacy
1131 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132 * mirror could be repaired by taking 512 byte of a different
1133 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134 * area are unreadable.
1135 */
1136
1137 /* can only fix I/O errors from here on */
1138 if (sblock_bad->no_io_error_seen)
1139 goto did_not_correct_error;
1140
1141 success = 1;
1142 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144
1145 if (!page_bad->io_error)
1146 continue;
1147
1148 for (mirror_index = 0;
1149 mirror_index < BTRFS_MAX_MIRRORS &&
1150 sblocks_for_recheck[mirror_index].page_count > 0;
1151 mirror_index++) {
1152 struct scrub_block *sblock_other = sblocks_for_recheck +
1153 mirror_index;
1154 struct scrub_page *page_other = sblock_other->pagev[
1155 page_num];
1156
1157 if (!page_other->io_error) {
1158 ret = scrub_repair_page_from_good_copy(
1159 sblock_bad, sblock_other, page_num, 0);
1160 if (0 == ret) {
1161 page_bad->io_error = 0;
1162 break; /* succeeded for this page */
1163 }
1164 }
1165 }
1166
1167 if (page_bad->io_error) {
1168 /* did not find a mirror to copy the page from */
1169 success = 0;
1170 }
1171 }
1172
1173 if (success) {
1174 if (is_metadata || have_csum) {
1175 /*
1176 * need to verify the checksum now that all
1177 * sectors on disk are repaired (the write
1178 * request for data to be repaired is on its way).
1179 * Just be lazy and use scrub_recheck_block()
1180 * which re-reads the data before the checksum
1181 * is verified, but most likely the data comes out
1182 * of the page cache.
1183 */
1184 scrub_recheck_block(fs_info, sblock_bad,
1185 is_metadata, have_csum, csum,
1186 generation, sctx->csum_size);
1187 if (!sblock_bad->header_error &&
1188 !sblock_bad->checksum_error &&
1189 sblock_bad->no_io_error_seen)
1190 goto corrected_error;
1191 else
1192 goto did_not_correct_error;
1193 } else {
1194corrected_error:
1195 spin_lock(&sctx->stat_lock);
1196 sctx->stat.corrected_errors++;
1197 spin_unlock(&sctx->stat_lock);
1198 printk_ratelimited_in_rcu(KERN_ERR
1199 "BTRFS: fixed up error at logical %llu on dev %s\n",
1200 logical, rcu_str_deref(dev->name));
1201 }
1202 } else {
1203did_not_correct_error:
1204 spin_lock(&sctx->stat_lock);
1205 sctx->stat.uncorrectable_errors++;
1206 spin_unlock(&sctx->stat_lock);
1207 printk_ratelimited_in_rcu(KERN_ERR
1208 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209 logical, rcu_str_deref(dev->name));
1210 }
1211
1212out:
1213 if (sblocks_for_recheck) {
1214 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215 mirror_index++) {
1216 struct scrub_block *sblock = sblocks_for_recheck +
1217 mirror_index;
1218 int page_index;
1219
1220 for (page_index = 0; page_index < sblock->page_count;
1221 page_index++) {
1222 sblock->pagev[page_index]->sblock = NULL;
1223 scrub_page_put(sblock->pagev[page_index]);
1224 }
1225 }
1226 kfree(sblocks_for_recheck);
1227 }
1228
1229 return 0;
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233 struct btrfs_fs_info *fs_info,
1234 struct scrub_block *original_sblock,
1235 u64 length, u64 logical,
1236 struct scrub_block *sblocks_for_recheck)
1237{
1238 int page_index;
1239 int mirror_index;
1240 int ret;
1241
1242 /*
1243 * note: the two members ref_count and outstanding_pages
1244 * are not used (and not set) in the blocks that are used for
1245 * the recheck procedure
1246 */
1247
1248 page_index = 0;
1249 while (length > 0) {
1250 u64 sublen = min_t(u64, length, PAGE_SIZE);
1251 u64 mapped_length = sublen;
1252 struct btrfs_bio *bbio = NULL;
1253
1254 /*
1255 * with a length of PAGE_SIZE, each returned stripe
1256 * represents one mirror
1257 */
1258 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259 &mapped_length, &bbio, 0);
1260 if (ret || !bbio || mapped_length < sublen) {
1261 kfree(bbio);
1262 return -EIO;
1263 }
1264
1265 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1267 mirror_index++) {
1268 struct scrub_block *sblock;
1269 struct scrub_page *page;
1270
1271 if (mirror_index >= BTRFS_MAX_MIRRORS)
1272 continue;
1273
1274 sblock = sblocks_for_recheck + mirror_index;
1275 sblock->sctx = sctx;
1276 page = kzalloc(sizeof(*page), GFP_NOFS);
1277 if (!page) {
1278leave_nomem:
1279 spin_lock(&sctx->stat_lock);
1280 sctx->stat.malloc_errors++;
1281 spin_unlock(&sctx->stat_lock);
1282 kfree(bbio);
1283 return -ENOMEM;
1284 }
1285 scrub_page_get(page);
1286 sblock->pagev[page_index] = page;
1287 page->logical = logical;
1288 page->physical = bbio->stripes[mirror_index].physical;
1289 BUG_ON(page_index >= original_sblock->page_count);
1290 page->physical_for_dev_replace =
1291 original_sblock->pagev[page_index]->
1292 physical_for_dev_replace;
1293 /* for missing devices, dev->bdev is NULL */
1294 page->dev = bbio->stripes[mirror_index].dev;
1295 page->mirror_num = mirror_index + 1;
1296 sblock->page_count++;
1297 page->page = alloc_page(GFP_NOFS);
1298 if (!page->page)
1299 goto leave_nomem;
1300 }
1301 kfree(bbio);
1302 length -= sublen;
1303 logical += sublen;
1304 page_index++;
1305 }
1306
1307 return 0;
1308}
1309
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318 struct scrub_block *sblock, int is_metadata,
1319 int have_csum, u8 *csum, u64 generation,
1320 u16 csum_size)
1321{
1322 int page_num;
1323
1324 sblock->no_io_error_seen = 1;
1325 sblock->header_error = 0;
1326 sblock->checksum_error = 0;
1327
1328 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329 struct bio *bio;
1330 struct scrub_page *page = sblock->pagev[page_num];
1331
1332 if (page->dev->bdev == NULL) {
1333 page->io_error = 1;
1334 sblock->no_io_error_seen = 0;
1335 continue;
1336 }
1337
1338 WARN_ON(!page->page);
1339 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340 if (!bio) {
1341 page->io_error = 1;
1342 sblock->no_io_error_seen = 0;
1343 continue;
1344 }
1345 bio->bi_bdev = page->dev->bdev;
1346 bio->bi_iter.bi_sector = page->physical >> 9;
1347
1348 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349 if (btrfsic_submit_bio_wait(READ, bio))
1350 sblock->no_io_error_seen = 0;
1351
1352 bio_put(bio);
1353 }
1354
1355 if (sblock->no_io_error_seen)
1356 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357 have_csum, csum, generation,
1358 csum_size);
1359
1360 return;
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364 struct scrub_block *sblock,
1365 int is_metadata, int have_csum,
1366 const u8 *csum, u64 generation,
1367 u16 csum_size)
1368{
1369 int page_num;
1370 u8 calculated_csum[BTRFS_CSUM_SIZE];
1371 u32 crc = ~(u32)0;
1372 void *mapped_buffer;
1373
1374 WARN_ON(!sblock->pagev[0]->page);
1375 if (is_metadata) {
1376 struct btrfs_header *h;
1377
1378 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379 h = (struct btrfs_header *)mapped_buffer;
1380
1381 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384 BTRFS_UUID_SIZE)) {
1385 sblock->header_error = 1;
1386 } else if (generation != btrfs_stack_header_generation(h)) {
1387 sblock->header_error = 1;
1388 sblock->generation_error = 1;
1389 }
1390 csum = h->csum;
1391 } else {
1392 if (!have_csum)
1393 return;
1394
1395 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396 }
1397
1398 for (page_num = 0;;) {
1399 if (page_num == 0 && is_metadata)
1400 crc = btrfs_csum_data(
1401 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403 else
1404 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406 kunmap_atomic(mapped_buffer);
1407 page_num++;
1408 if (page_num >= sblock->page_count)
1409 break;
1410 WARN_ON(!sblock->pagev[page_num]->page);
1411
1412 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413 }
1414
1415 btrfs_csum_final(crc, calculated_csum);
1416 if (memcmp(calculated_csum, csum, csum_size))
1417 sblock->checksum_error = 1;
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421 struct scrub_block *sblock_good,
1422 int force_write)
1423{
1424 int page_num;
1425 int ret = 0;
1426
1427 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428 int ret_sub;
1429
1430 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431 sblock_good,
1432 page_num,
1433 force_write);
1434 if (ret_sub)
1435 ret = ret_sub;
1436 }
1437
1438 return ret;
1439}
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442 struct scrub_block *sblock_good,
1443 int page_num, int force_write)
1444{
1445 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446 struct scrub_page *page_good = sblock_good->pagev[page_num];
1447
1448 BUG_ON(page_bad->page == NULL);
1449 BUG_ON(page_good->page == NULL);
1450 if (force_write || sblock_bad->header_error ||
1451 sblock_bad->checksum_error || page_bad->io_error) {
1452 struct bio *bio;
1453 int ret;
1454
1455 if (!page_bad->dev->bdev) {
1456 printk_ratelimited(KERN_WARNING "BTRFS: "
1457 "scrub_repair_page_from_good_copy(bdev == NULL) "
1458 "is unexpected!\n");
1459 return -EIO;
1460 }
1461
1462 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463 if (!bio)
1464 return -EIO;
1465 bio->bi_bdev = page_bad->dev->bdev;
1466 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1467
1468 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469 if (PAGE_SIZE != ret) {
1470 bio_put(bio);
1471 return -EIO;
1472 }
1473
1474 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475 btrfs_dev_stat_inc_and_print(page_bad->dev,
1476 BTRFS_DEV_STAT_WRITE_ERRS);
1477 btrfs_dev_replace_stats_inc(
1478 &sblock_bad->sctx->dev_root->fs_info->
1479 dev_replace.num_write_errors);
1480 bio_put(bio);
1481 return -EIO;
1482 }
1483 bio_put(bio);
1484 }
1485
1486 return 0;
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490{
1491 int page_num;
1492
1493 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494 int ret;
1495
1496 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497 if (ret)
1498 btrfs_dev_replace_stats_inc(
1499 &sblock->sctx->dev_root->fs_info->dev_replace.
1500 num_write_errors);
1501 }
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505 int page_num)
1506{
1507 struct scrub_page *spage = sblock->pagev[page_num];
1508
1509 BUG_ON(spage->page == NULL);
1510 if (spage->io_error) {
1511 void *mapped_buffer = kmap_atomic(spage->page);
1512
1513 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514 flush_dcache_page(spage->page);
1515 kunmap_atomic(mapped_buffer);
1516 }
1517 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521 struct scrub_page *spage)
1522{
1523 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524 struct scrub_bio *sbio;
1525 int ret;
1526
1527 mutex_lock(&wr_ctx->wr_lock);
1528again:
1529 if (!wr_ctx->wr_curr_bio) {
1530 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531 GFP_NOFS);
1532 if (!wr_ctx->wr_curr_bio) {
1533 mutex_unlock(&wr_ctx->wr_lock);
1534 return -ENOMEM;
1535 }
1536 wr_ctx->wr_curr_bio->sctx = sctx;
1537 wr_ctx->wr_curr_bio->page_count = 0;
1538 }
1539 sbio = wr_ctx->wr_curr_bio;
1540 if (sbio->page_count == 0) {
1541 struct bio *bio;
1542
1543 sbio->physical = spage->physical_for_dev_replace;
1544 sbio->logical = spage->logical;
1545 sbio->dev = wr_ctx->tgtdev;
1546 bio = sbio->bio;
1547 if (!bio) {
1548 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549 if (!bio) {
1550 mutex_unlock(&wr_ctx->wr_lock);
1551 return -ENOMEM;
1552 }
1553 sbio->bio = bio;
1554 }
1555
1556 bio->bi_private = sbio;
1557 bio->bi_end_io = scrub_wr_bio_end_io;
1558 bio->bi_bdev = sbio->dev->bdev;
1559 bio->bi_iter.bi_sector = sbio->physical >> 9;
1560 sbio->err = 0;
1561 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562 spage->physical_for_dev_replace ||
1563 sbio->logical + sbio->page_count * PAGE_SIZE !=
1564 spage->logical) {
1565 scrub_wr_submit(sctx);
1566 goto again;
1567 }
1568
1569 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570 if (ret != PAGE_SIZE) {
1571 if (sbio->page_count < 1) {
1572 bio_put(sbio->bio);
1573 sbio->bio = NULL;
1574 mutex_unlock(&wr_ctx->wr_lock);
1575 return -EIO;
1576 }
1577 scrub_wr_submit(sctx);
1578 goto again;
1579 }
1580
1581 sbio->pagev[sbio->page_count] = spage;
1582 scrub_page_get(spage);
1583 sbio->page_count++;
1584 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585 scrub_wr_submit(sctx);
1586 mutex_unlock(&wr_ctx->wr_lock);
1587
1588 return 0;
1589}
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594 struct scrub_bio *sbio;
1595
1596 if (!wr_ctx->wr_curr_bio)
1597 return;
1598
1599 sbio = wr_ctx->wr_curr_bio;
1600 wr_ctx->wr_curr_bio = NULL;
1601 WARN_ON(!sbio->bio->bi_bdev);
1602 scrub_pending_bio_inc(sctx);
1603 /* process all writes in a single worker thread. Then the block layer
1604 * orders the requests before sending them to the driver which
1605 * doubled the write performance on spinning disks when measured
1606 * with Linux 3.5 */
1607 btrfsic_submit_bio(WRITE, sbio->bio);
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612 struct scrub_bio *sbio = bio->bi_private;
1613 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615 sbio->err = err;
1616 sbio->bio = bio;
1617
1618 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625 struct scrub_ctx *sctx = sbio->sctx;
1626 int i;
1627
1628 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629 if (sbio->err) {
1630 struct btrfs_dev_replace *dev_replace =
1631 &sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633 for (i = 0; i < sbio->page_count; i++) {
1634 struct scrub_page *spage = sbio->pagev[i];
1635
1636 spage->io_error = 1;
1637 btrfs_dev_replace_stats_inc(&dev_replace->
1638 num_write_errors);
1639 }
1640 }
1641
1642 for (i = 0; i < sbio->page_count; i++)
1643 scrub_page_put(sbio->pagev[i]);
1644
1645 bio_put(sbio->bio);
1646 kfree(sbio);
1647 scrub_pending_bio_dec(sctx);
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
1651{
1652 u64 flags;
1653 int ret;
1654
1655 WARN_ON(sblock->page_count < 1);
1656 flags = sblock->pagev[0]->flags;
1657 ret = 0;
1658 if (flags & BTRFS_EXTENT_FLAG_DATA)
1659 ret = scrub_checksum_data(sblock);
1660 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661 ret = scrub_checksum_tree_block(sblock);
1662 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663 (void)scrub_checksum_super(sblock);
1664 else
1665 WARN_ON(1);
1666 if (ret)
1667 scrub_handle_errored_block(sblock);
1668
1669 return ret;
1670}
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674 struct scrub_ctx *sctx = sblock->sctx;
1675 u8 csum[BTRFS_CSUM_SIZE];
1676 u8 *on_disk_csum;
1677 struct page *page;
1678 void *buffer;
1679 u32 crc = ~(u32)0;
1680 int fail = 0;
1681 u64 len;
1682 int index;
1683
1684 BUG_ON(sblock->page_count < 1);
1685 if (!sblock->pagev[0]->have_csum)
1686 return 0;
1687
1688 on_disk_csum = sblock->pagev[0]->csum;
1689 page = sblock->pagev[0]->page;
1690 buffer = kmap_atomic(page);
1691
1692 len = sctx->sectorsize;
1693 index = 0;
1694 for (;;) {
1695 u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697 crc = btrfs_csum_data(buffer, crc, l);
1698 kunmap_atomic(buffer);
1699 len -= l;
1700 if (len == 0)
1701 break;
1702 index++;
1703 BUG_ON(index >= sblock->page_count);
1704 BUG_ON(!sblock->pagev[index]->page);
1705 page = sblock->pagev[index]->page;
1706 buffer = kmap_atomic(page);
1707 }
1708
1709 btrfs_csum_final(crc, csum);
1710 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711 fail = 1;
1712
1713 return fail;
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717{
1718 struct scrub_ctx *sctx = sblock->sctx;
1719 struct btrfs_header *h;
1720 struct btrfs_root *root = sctx->dev_root;
1721 struct btrfs_fs_info *fs_info = root->fs_info;
1722 u8 calculated_csum[BTRFS_CSUM_SIZE];
1723 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724 struct page *page;
1725 void *mapped_buffer;
1726 u64 mapped_size;
1727 void *p;
1728 u32 crc = ~(u32)0;
1729 int fail = 0;
1730 int crc_fail = 0;
1731 u64 len;
1732 int index;
1733
1734 BUG_ON(sblock->page_count < 1);
1735 page = sblock->pagev[0]->page;
1736 mapped_buffer = kmap_atomic(page);
1737 h = (struct btrfs_header *)mapped_buffer;
1738 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740 /*
1741 * we don't use the getter functions here, as we
1742 * a) don't have an extent buffer and
1743 * b) the page is already kmapped
1744 */
1745
1746 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747 ++fail;
1748
1749 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750 ++fail;
1751
1752 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753 ++fail;
1754
1755 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756 BTRFS_UUID_SIZE))
1757 ++fail;
1758
1759 WARN_ON(sctx->nodesize != sctx->leafsize);
1760 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763 index = 0;
1764 for (;;) {
1765 u64 l = min_t(u64, len, mapped_size);
1766
1767 crc = btrfs_csum_data(p, crc, l);
1768 kunmap_atomic(mapped_buffer);
1769 len -= l;
1770 if (len == 0)
1771 break;
1772 index++;
1773 BUG_ON(index >= sblock->page_count);
1774 BUG_ON(!sblock->pagev[index]->page);
1775 page = sblock->pagev[index]->page;
1776 mapped_buffer = kmap_atomic(page);
1777 mapped_size = PAGE_SIZE;
1778 p = mapped_buffer;
1779 }
1780
1781 btrfs_csum_final(crc, calculated_csum);
1782 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783 ++crc_fail;
1784
1785 return fail || crc_fail;
1786}
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790 struct btrfs_super_block *s;
1791 struct scrub_ctx *sctx = sblock->sctx;
1792 struct btrfs_root *root = sctx->dev_root;
1793 struct btrfs_fs_info *fs_info = root->fs_info;
1794 u8 calculated_csum[BTRFS_CSUM_SIZE];
1795 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796 struct page *page;
1797 void *mapped_buffer;
1798 u64 mapped_size;
1799 void *p;
1800 u32 crc = ~(u32)0;
1801 int fail_gen = 0;
1802 int fail_cor = 0;
1803 u64 len;
1804 int index;
1805
1806 BUG_ON(sblock->page_count < 1);
1807 page = sblock->pagev[0]->page;
1808 mapped_buffer = kmap_atomic(page);
1809 s = (struct btrfs_super_block *)mapped_buffer;
1810 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813 ++fail_cor;
1814
1815 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816 ++fail_gen;
1817
1818 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819 ++fail_cor;
1820
1821 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824 index = 0;
1825 for (;;) {
1826 u64 l = min_t(u64, len, mapped_size);
1827
1828 crc = btrfs_csum_data(p, crc, l);
1829 kunmap_atomic(mapped_buffer);
1830 len -= l;
1831 if (len == 0)
1832 break;
1833 index++;
1834 BUG_ON(index >= sblock->page_count);
1835 BUG_ON(!sblock->pagev[index]->page);
1836 page = sblock->pagev[index]->page;
1837 mapped_buffer = kmap_atomic(page);
1838 mapped_size = PAGE_SIZE;
1839 p = mapped_buffer;
1840 }
1841
1842 btrfs_csum_final(crc, calculated_csum);
1843 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844 ++fail_cor;
1845
1846 if (fail_cor + fail_gen) {
1847 /*
1848 * if we find an error in a super block, we just report it.
1849 * They will get written with the next transaction commit
1850 * anyway
1851 */
1852 spin_lock(&sctx->stat_lock);
1853 ++sctx->stat.super_errors;
1854 spin_unlock(&sctx->stat_lock);
1855 if (fail_cor)
1856 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858 else
1859 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860 BTRFS_DEV_STAT_GENERATION_ERRS);
1861 }
1862
1863 return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868 atomic_inc(&sblock->ref_count);
1869}
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873 if (atomic_dec_and_test(&sblock->ref_count)) {
1874 int i;
1875
1876 for (i = 0; i < sblock->page_count; i++)
1877 scrub_page_put(sblock->pagev[i]);
1878 kfree(sblock);
1879 }
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
1883{
1884 atomic_inc(&spage->ref_count);
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
1888{
1889 if (atomic_dec_and_test(&spage->ref_count)) {
1890 if (spage->page)
1891 __free_page(spage->page);
1892 kfree(spage);
1893 }
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898 struct scrub_bio *sbio;
1899
1900 if (sctx->curr == -1)
1901 return;
1902
1903 sbio = sctx->bios[sctx->curr];
1904 sctx->curr = -1;
1905 scrub_pending_bio_inc(sctx);
1906
1907 if (!sbio->bio->bi_bdev) {
1908 /*
1909 * this case should not happen. If btrfs_map_block() is
1910 * wrong, it could happen for dev-replace operations on
1911 * missing devices when no mirrors are available, but in
1912 * this case it should already fail the mount.
1913 * This case is handled correctly (but _very_ slowly).
1914 */
1915 printk_ratelimited(KERN_WARNING
1916 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917 bio_endio(sbio->bio, -EIO);
1918 } else {
1919 btrfsic_submit_bio(READ, sbio->bio);
1920 }
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924 struct scrub_page *spage)
1925{
1926 struct scrub_block *sblock = spage->sblock;
1927 struct scrub_bio *sbio;
1928 int ret;
1929
1930again:
1931 /*
1932 * grab a fresh bio or wait for one to become available
1933 */
1934 while (sctx->curr == -1) {
1935 spin_lock(&sctx->list_lock);
1936 sctx->curr = sctx->first_free;
1937 if (sctx->curr != -1) {
1938 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939 sctx->bios[sctx->curr]->next_free = -1;
1940 sctx->bios[sctx->curr]->page_count = 0;
1941 spin_unlock(&sctx->list_lock);
1942 } else {
1943 spin_unlock(&sctx->list_lock);
1944 wait_event(sctx->list_wait, sctx->first_free != -1);
1945 }
1946 }
1947 sbio = sctx->bios[sctx->curr];
1948 if (sbio->page_count == 0) {
1949 struct bio *bio;
1950
1951 sbio->physical = spage->physical;
1952 sbio->logical = spage->logical;
1953 sbio->dev = spage->dev;
1954 bio = sbio->bio;
1955 if (!bio) {
1956 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957 if (!bio)
1958 return -ENOMEM;
1959 sbio->bio = bio;
1960 }
1961
1962 bio->bi_private = sbio;
1963 bio->bi_end_io = scrub_bio_end_io;
1964 bio->bi_bdev = sbio->dev->bdev;
1965 bio->bi_iter.bi_sector = sbio->physical >> 9;
1966 sbio->err = 0;
1967 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968 spage->physical ||
1969 sbio->logical + sbio->page_count * PAGE_SIZE !=
1970 spage->logical ||
1971 sbio->dev != spage->dev) {
1972 scrub_submit(sctx);
1973 goto again;
1974 }
1975
1976 sbio->pagev[sbio->page_count] = spage;
1977 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978 if (ret != PAGE_SIZE) {
1979 if (sbio->page_count < 1) {
1980 bio_put(sbio->bio);
1981 sbio->bio = NULL;
1982 return -EIO;
1983 }
1984 scrub_submit(sctx);
1985 goto again;
1986 }
1987
1988 scrub_block_get(sblock); /* one for the page added to the bio */
1989 atomic_inc(&sblock->outstanding_pages);
1990 sbio->page_count++;
1991 if (sbio->page_count == sctx->pages_per_rd_bio)
1992 scrub_submit(sctx);
1993
1994 return 0;
1995}
1996
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998 u64 physical, struct btrfs_device *dev, u64 flags,
1999 u64 gen, int mirror_num, u8 *csum, int force,
2000 u64 physical_for_dev_replace)
2001{
2002 struct scrub_block *sblock;
2003 int index;
2004
2005 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006 if (!sblock) {
2007 spin_lock(&sctx->stat_lock);
2008 sctx->stat.malloc_errors++;
2009 spin_unlock(&sctx->stat_lock);
2010 return -ENOMEM;
2011 }
2012
2013 /* one ref inside this function, plus one for each page added to
2014 * a bio later on */
2015 atomic_set(&sblock->ref_count, 1);
2016 sblock->sctx = sctx;
2017 sblock->no_io_error_seen = 1;
2018
2019 for (index = 0; len > 0; index++) {
2020 struct scrub_page *spage;
2021 u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024 if (!spage) {
2025leave_nomem:
2026 spin_lock(&sctx->stat_lock);
2027 sctx->stat.malloc_errors++;
2028 spin_unlock(&sctx->stat_lock);
2029 scrub_block_put(sblock);
2030 return -ENOMEM;
2031 }
2032 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033 scrub_page_get(spage);
2034 sblock->pagev[index] = spage;
2035 spage->sblock = sblock;
2036 spage->dev = dev;
2037 spage->flags = flags;
2038 spage->generation = gen;
2039 spage->logical = logical;
2040 spage->physical = physical;
2041 spage->physical_for_dev_replace = physical_for_dev_replace;
2042 spage->mirror_num = mirror_num;
2043 if (csum) {
2044 spage->have_csum = 1;
2045 memcpy(spage->csum, csum, sctx->csum_size);
2046 } else {
2047 spage->have_csum = 0;
2048 }
2049 sblock->page_count++;
2050 spage->page = alloc_page(GFP_NOFS);
2051 if (!spage->page)
2052 goto leave_nomem;
2053 len -= l;
2054 logical += l;
2055 physical += l;
2056 physical_for_dev_replace += l;
2057 }
2058
2059 WARN_ON(sblock->page_count == 0);
2060 for (index = 0; index < sblock->page_count; index++) {
2061 struct scrub_page *spage = sblock->pagev[index];
2062 int ret;
2063
2064 ret = scrub_add_page_to_rd_bio(sctx, spage);
2065 if (ret) {
2066 scrub_block_put(sblock);
2067 return ret;
2068 }
2069 }
2070
2071 if (force)
2072 scrub_submit(sctx);
2073
2074 /* last one frees, either here or in bio completion for last page */
2075 scrub_block_put(sblock);
2076 return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081 struct scrub_bio *sbio = bio->bi_private;
2082 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084 sbio->err = err;
2085 sbio->bio = bio;
2086
2087 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093 struct scrub_ctx *sctx = sbio->sctx;
2094 int i;
2095
2096 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097 if (sbio->err) {
2098 for (i = 0; i < sbio->page_count; i++) {
2099 struct scrub_page *spage = sbio->pagev[i];
2100
2101 spage->io_error = 1;
2102 spage->sblock->no_io_error_seen = 0;
2103 }
2104 }
2105
2106 /* now complete the scrub_block items that have all pages completed */
2107 for (i = 0; i < sbio->page_count; i++) {
2108 struct scrub_page *spage = sbio->pagev[i];
2109 struct scrub_block *sblock = spage->sblock;
2110
2111 if (atomic_dec_and_test(&sblock->outstanding_pages))
2112 scrub_block_complete(sblock);
2113 scrub_block_put(sblock);
2114 }
2115
2116 bio_put(sbio->bio);
2117 sbio->bio = NULL;
2118 spin_lock(&sctx->list_lock);
2119 sbio->next_free = sctx->first_free;
2120 sctx->first_free = sbio->index;
2121 spin_unlock(&sctx->list_lock);
2122
2123 if (sctx->is_dev_replace &&
2124 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125 mutex_lock(&sctx->wr_ctx.wr_lock);
2126 scrub_wr_submit(sctx);
2127 mutex_unlock(&sctx->wr_ctx.wr_lock);
2128 }
2129
2130 scrub_pending_bio_dec(sctx);
2131}
2132
2133static void scrub_block_complete(struct scrub_block *sblock)
2134{
2135 if (!sblock->no_io_error_seen) {
2136 scrub_handle_errored_block(sblock);
2137 } else {
2138 /*
2139 * if has checksum error, write via repair mechanism in
2140 * dev replace case, otherwise write here in dev replace
2141 * case.
2142 */
2143 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2144 scrub_write_block_to_dev_replace(sblock);
2145 }
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149 u8 *csum)
2150{
2151 struct btrfs_ordered_sum *sum = NULL;
2152 unsigned long index;
2153 unsigned long num_sectors;
2154
2155 while (!list_empty(&sctx->csum_list)) {
2156 sum = list_first_entry(&sctx->csum_list,
2157 struct btrfs_ordered_sum, list);
2158 if (sum->bytenr > logical)
2159 return 0;
2160 if (sum->bytenr + sum->len > logical)
2161 break;
2162
2163 ++sctx->stat.csum_discards;
2164 list_del(&sum->list);
2165 kfree(sum);
2166 sum = NULL;
2167 }
2168 if (!sum)
2169 return 0;
2170
2171 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172 num_sectors = sum->len / sctx->sectorsize;
2173 memcpy(csum, sum->sums + index, sctx->csum_size);
2174 if (index == num_sectors - 1) {
2175 list_del(&sum->list);
2176 kfree(sum);
2177 }
2178 return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183 u64 physical, struct btrfs_device *dev, u64 flags,
2184 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185{
2186 int ret;
2187 u8 csum[BTRFS_CSUM_SIZE];
2188 u32 blocksize;
2189
2190 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191 blocksize = sctx->sectorsize;
2192 spin_lock(&sctx->stat_lock);
2193 sctx->stat.data_extents_scrubbed++;
2194 sctx->stat.data_bytes_scrubbed += len;
2195 spin_unlock(&sctx->stat_lock);
2196 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197 WARN_ON(sctx->nodesize != sctx->leafsize);
2198 blocksize = sctx->nodesize;
2199 spin_lock(&sctx->stat_lock);
2200 sctx->stat.tree_extents_scrubbed++;
2201 sctx->stat.tree_bytes_scrubbed += len;
2202 spin_unlock(&sctx->stat_lock);
2203 } else {
2204 blocksize = sctx->sectorsize;
2205 WARN_ON(1);
2206 }
2207
2208 while (len) {
2209 u64 l = min_t(u64, len, blocksize);
2210 int have_csum = 0;
2211
2212 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213 /* push csums to sbio */
2214 have_csum = scrub_find_csum(sctx, logical, l, csum);
2215 if (have_csum == 0)
2216 ++sctx->stat.no_csum;
2217 if (sctx->is_dev_replace && !have_csum) {
2218 ret = copy_nocow_pages(sctx, logical, l,
2219 mirror_num,
2220 physical_for_dev_replace);
2221 goto behind_scrub_pages;
2222 }
2223 }
2224 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225 mirror_num, have_csum ? csum : NULL, 0,
2226 physical_for_dev_replace);
2227behind_scrub_pages:
2228 if (ret)
2229 return ret;
2230 len -= l;
2231 logical += l;
2232 physical += l;
2233 physical_for_dev_replace += l;
2234 }
2235 return 0;
2236}
2237
2238/*
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2242 *
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2244 */
2245static int get_raid56_logic_offset(u64 physical, int num,
2246 struct map_lookup *map, u64 *offset)
2247{
2248 int i;
2249 int j = 0;
2250 u64 stripe_nr;
2251 u64 last_offset;
2252 int stripe_index;
2253 int rot;
2254
2255 last_offset = (physical - map->stripes[num].physical) *
2256 nr_data_stripes(map);
2257 *offset = last_offset;
2258 for (i = 0; i < nr_data_stripes(map); i++) {
2259 *offset = last_offset + i * map->stripe_len;
2260
2261 stripe_nr = *offset;
2262 do_div(stripe_nr, map->stripe_len);
2263 do_div(stripe_nr, nr_data_stripes(map));
2264
2265 /* Work out the disk rotation on this stripe-set */
2266 rot = do_div(stripe_nr, map->num_stripes);
2267 /* calculate which stripe this data locates */
2268 rot += i;
2269 stripe_index = rot % map->num_stripes;
2270 if (stripe_index == num)
2271 return 0;
2272 if (stripe_index < num)
2273 j++;
2274 }
2275 *offset = last_offset + j * map->stripe_len;
2276 return 1;
2277}
2278
2279static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280 struct map_lookup *map,
2281 struct btrfs_device *scrub_dev,
2282 int num, u64 base, u64 length,
2283 int is_dev_replace)
2284{
2285 struct btrfs_path *path;
2286 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287 struct btrfs_root *root = fs_info->extent_root;
2288 struct btrfs_root *csum_root = fs_info->csum_root;
2289 struct btrfs_extent_item *extent;
2290 struct blk_plug plug;
2291 u64 flags;
2292 int ret;
2293 int slot;
2294 u64 nstripes;
2295 struct extent_buffer *l;
2296 struct btrfs_key key;
2297 u64 physical;
2298 u64 logical;
2299 u64 logic_end;
2300 u64 physical_end;
2301 u64 generation;
2302 int mirror_num;
2303 struct reada_control *reada1;
2304 struct reada_control *reada2;
2305 struct btrfs_key key_start;
2306 struct btrfs_key key_end;
2307 u64 increment = map->stripe_len;
2308 u64 offset;
2309 u64 extent_logical;
2310 u64 extent_physical;
2311 u64 extent_len;
2312 struct btrfs_device *extent_dev;
2313 int extent_mirror_num;
2314 int stop_loop = 0;
2315
2316 nstripes = length;
2317 physical = map->stripes[num].physical;
2318 offset = 0;
2319 do_div(nstripes, map->stripe_len);
2320 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321 offset = map->stripe_len * num;
2322 increment = map->stripe_len * map->num_stripes;
2323 mirror_num = 1;
2324 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325 int factor = map->num_stripes / map->sub_stripes;
2326 offset = map->stripe_len * (num / map->sub_stripes);
2327 increment = map->stripe_len * factor;
2328 mirror_num = num % map->sub_stripes + 1;
2329 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330 increment = map->stripe_len;
2331 mirror_num = num % map->num_stripes + 1;
2332 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333 increment = map->stripe_len;
2334 mirror_num = num % map->num_stripes + 1;
2335 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336 BTRFS_BLOCK_GROUP_RAID6)) {
2337 get_raid56_logic_offset(physical, num, map, &offset);
2338 increment = map->stripe_len * nr_data_stripes(map);
2339 mirror_num = 1;
2340 } else {
2341 increment = map->stripe_len;
2342 mirror_num = 1;
2343 }
2344
2345 path = btrfs_alloc_path();
2346 if (!path)
2347 return -ENOMEM;
2348
2349 /*
2350 * work on commit root. The related disk blocks are static as
2351 * long as COW is applied. This means, it is save to rewrite
2352 * them to repair disk errors without any race conditions
2353 */
2354 path->search_commit_root = 1;
2355 path->skip_locking = 1;
2356
2357 /*
2358 * trigger the readahead for extent tree csum tree and wait for
2359 * completion. During readahead, the scrub is officially paused
2360 * to not hold off transaction commits
2361 */
2362 logical = base + offset;
2363 physical_end = physical + nstripes * map->stripe_len;
2364 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365 BTRFS_BLOCK_GROUP_RAID6)) {
2366 get_raid56_logic_offset(physical_end, num,
2367 map, &logic_end);
2368 logic_end += base;
2369 } else {
2370 logic_end = logical + increment * nstripes;
2371 }
2372 wait_event(sctx->list_wait,
2373 atomic_read(&sctx->bios_in_flight) == 0);
2374 scrub_blocked_if_needed(fs_info);
2375
2376 /* FIXME it might be better to start readahead at commit root */
2377 key_start.objectid = logical;
2378 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379 key_start.offset = (u64)0;
2380 key_end.objectid = logic_end;
2381 key_end.type = BTRFS_METADATA_ITEM_KEY;
2382 key_end.offset = (u64)-1;
2383 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384
2385 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387 key_start.offset = logical;
2388 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390 key_end.offset = logic_end;
2391 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392
2393 if (!IS_ERR(reada1))
2394 btrfs_reada_wait(reada1);
2395 if (!IS_ERR(reada2))
2396 btrfs_reada_wait(reada2);
2397
2398
2399 /*
2400 * collect all data csums for the stripe to avoid seeking during
2401 * the scrub. This might currently (crc32) end up to be about 1MB
2402 */
2403 blk_start_plug(&plug);
2404
2405 /*
2406 * now find all extents for each stripe and scrub them
2407 */
2408 ret = 0;
2409 while (physical < physical_end) {
2410 /* for raid56, we skip parity stripe */
2411 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412 BTRFS_BLOCK_GROUP_RAID6)) {
2413 ret = get_raid56_logic_offset(physical, num,
2414 map, &logical);
2415 logical += base;
2416 if (ret)
2417 goto skip;
2418 }
2419 /*
2420 * canceled?
2421 */
2422 if (atomic_read(&fs_info->scrub_cancel_req) ||
2423 atomic_read(&sctx->cancel_req)) {
2424 ret = -ECANCELED;
2425 goto out;
2426 }
2427 /*
2428 * check to see if we have to pause
2429 */
2430 if (atomic_read(&fs_info->scrub_pause_req)) {
2431 /* push queued extents */
2432 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433 scrub_submit(sctx);
2434 mutex_lock(&sctx->wr_ctx.wr_lock);
2435 scrub_wr_submit(sctx);
2436 mutex_unlock(&sctx->wr_ctx.wr_lock);
2437 wait_event(sctx->list_wait,
2438 atomic_read(&sctx->bios_in_flight) == 0);
2439 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440 scrub_blocked_if_needed(fs_info);
2441 }
2442
2443 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444 key.type = BTRFS_METADATA_ITEM_KEY;
2445 else
2446 key.type = BTRFS_EXTENT_ITEM_KEY;
2447 key.objectid = logical;
2448 key.offset = (u64)-1;
2449
2450 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451 if (ret < 0)
2452 goto out;
2453
2454 if (ret > 0) {
2455 ret = btrfs_previous_extent_item(root, path, 0);
2456 if (ret < 0)
2457 goto out;
2458 if (ret > 0) {
2459 /* there's no smaller item, so stick with the
2460 * larger one */
2461 btrfs_release_path(path);
2462 ret = btrfs_search_slot(NULL, root, &key,
2463 path, 0, 0);
2464 if (ret < 0)
2465 goto out;
2466 }
2467 }
2468
2469 stop_loop = 0;
2470 while (1) {
2471 u64 bytes;
2472
2473 l = path->nodes[0];
2474 slot = path->slots[0];
2475 if (slot >= btrfs_header_nritems(l)) {
2476 ret = btrfs_next_leaf(root, path);
2477 if (ret == 0)
2478 continue;
2479 if (ret < 0)
2480 goto out;
2481
2482 stop_loop = 1;
2483 break;
2484 }
2485 btrfs_item_key_to_cpu(l, &key, slot);
2486
2487 if (key.type == BTRFS_METADATA_ITEM_KEY)
2488 bytes = root->leafsize;
2489 else
2490 bytes = key.offset;
2491
2492 if (key.objectid + bytes <= logical)
2493 goto next;
2494
2495 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496 key.type != BTRFS_METADATA_ITEM_KEY)
2497 goto next;
2498
2499 if (key.objectid >= logical + map->stripe_len) {
2500 /* out of this device extent */
2501 if (key.objectid >= logic_end)
2502 stop_loop = 1;
2503 break;
2504 }
2505
2506 extent = btrfs_item_ptr(l, slot,
2507 struct btrfs_extent_item);
2508 flags = btrfs_extent_flags(l, extent);
2509 generation = btrfs_extent_generation(l, extent);
2510
2511 if (key.objectid < logical &&
2512 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2513 btrfs_err(fs_info,
2514 "scrub: tree block %llu spanning "
2515 "stripes, ignored. logical=%llu",
2516 key.objectid, logical);
2517 goto next;
2518 }
2519
2520again:
2521 extent_logical = key.objectid;
2522 extent_len = bytes;
2523
2524 /*
2525 * trim extent to this stripe
2526 */
2527 if (extent_logical < logical) {
2528 extent_len -= logical - extent_logical;
2529 extent_logical = logical;
2530 }
2531 if (extent_logical + extent_len >
2532 logical + map->stripe_len) {
2533 extent_len = logical + map->stripe_len -
2534 extent_logical;
2535 }
2536
2537 extent_physical = extent_logical - logical + physical;
2538 extent_dev = scrub_dev;
2539 extent_mirror_num = mirror_num;
2540 if (is_dev_replace)
2541 scrub_remap_extent(fs_info, extent_logical,
2542 extent_len, &extent_physical,
2543 &extent_dev,
2544 &extent_mirror_num);
2545
2546 ret = btrfs_lookup_csums_range(csum_root, logical,
2547 logical + map->stripe_len - 1,
2548 &sctx->csum_list, 1);
2549 if (ret)
2550 goto out;
2551
2552 ret = scrub_extent(sctx, extent_logical, extent_len,
2553 extent_physical, extent_dev, flags,
2554 generation, extent_mirror_num,
2555 extent_logical - logical + physical);
2556 if (ret)
2557 goto out;
2558
2559 scrub_free_csums(sctx);
2560 if (extent_logical + extent_len <
2561 key.objectid + bytes) {
2562 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563 BTRFS_BLOCK_GROUP_RAID6)) {
2564 /*
2565 * loop until we find next data stripe
2566 * or we have finished all stripes.
2567 */
2568 do {
2569 physical += map->stripe_len;
2570 ret = get_raid56_logic_offset(
2571 physical, num,
2572 map, &logical);
2573 logical += base;
2574 } while (physical < physical_end && ret);
2575 } else {
2576 physical += map->stripe_len;
2577 logical += increment;
2578 }
2579 if (logical < key.objectid + bytes) {
2580 cond_resched();
2581 goto again;
2582 }
2583
2584 if (physical >= physical_end) {
2585 stop_loop = 1;
2586 break;
2587 }
2588 }
2589next:
2590 path->slots[0]++;
2591 }
2592 btrfs_release_path(path);
2593skip:
2594 logical += increment;
2595 physical += map->stripe_len;
2596 spin_lock(&sctx->stat_lock);
2597 if (stop_loop)
2598 sctx->stat.last_physical = map->stripes[num].physical +
2599 length;
2600 else
2601 sctx->stat.last_physical = physical;
2602 spin_unlock(&sctx->stat_lock);
2603 if (stop_loop)
2604 break;
2605 }
2606out:
2607 /* push queued extents */
2608 scrub_submit(sctx);
2609 mutex_lock(&sctx->wr_ctx.wr_lock);
2610 scrub_wr_submit(sctx);
2611 mutex_unlock(&sctx->wr_ctx.wr_lock);
2612
2613 blk_finish_plug(&plug);
2614 btrfs_free_path(path);
2615 return ret < 0 ? ret : 0;
2616}
2617
2618static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2619 struct btrfs_device *scrub_dev,
2620 u64 chunk_tree, u64 chunk_objectid,
2621 u64 chunk_offset, u64 length,
2622 u64 dev_offset, int is_dev_replace)
2623{
2624 struct btrfs_mapping_tree *map_tree =
2625 &sctx->dev_root->fs_info->mapping_tree;
2626 struct map_lookup *map;
2627 struct extent_map *em;
2628 int i;
2629 int ret = 0;
2630
2631 read_lock(&map_tree->map_tree.lock);
2632 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633 read_unlock(&map_tree->map_tree.lock);
2634
2635 if (!em)
2636 return -EINVAL;
2637
2638 map = (struct map_lookup *)em->bdev;
2639 if (em->start != chunk_offset)
2640 goto out;
2641
2642 if (em->len < length)
2643 goto out;
2644
2645 for (i = 0; i < map->num_stripes; ++i) {
2646 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647 map->stripes[i].physical == dev_offset) {
2648 ret = scrub_stripe(sctx, map, scrub_dev, i,
2649 chunk_offset, length,
2650 is_dev_replace);
2651 if (ret)
2652 goto out;
2653 }
2654 }
2655out:
2656 free_extent_map(em);
2657
2658 return ret;
2659}
2660
2661static noinline_for_stack
2662int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663 struct btrfs_device *scrub_dev, u64 start, u64 end,
2664 int is_dev_replace)
2665{
2666 struct btrfs_dev_extent *dev_extent = NULL;
2667 struct btrfs_path *path;
2668 struct btrfs_root *root = sctx->dev_root;
2669 struct btrfs_fs_info *fs_info = root->fs_info;
2670 u64 length;
2671 u64 chunk_tree;
2672 u64 chunk_objectid;
2673 u64 chunk_offset;
2674 int ret;
2675 int slot;
2676 struct extent_buffer *l;
2677 struct btrfs_key key;
2678 struct btrfs_key found_key;
2679 struct btrfs_block_group_cache *cache;
2680 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681
2682 path = btrfs_alloc_path();
2683 if (!path)
2684 return -ENOMEM;
2685
2686 path->reada = 2;
2687 path->search_commit_root = 1;
2688 path->skip_locking = 1;
2689
2690 key.objectid = scrub_dev->devid;
2691 key.offset = 0ull;
2692 key.type = BTRFS_DEV_EXTENT_KEY;
2693
2694 while (1) {
2695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696 if (ret < 0)
2697 break;
2698 if (ret > 0) {
2699 if (path->slots[0] >=
2700 btrfs_header_nritems(path->nodes[0])) {
2701 ret = btrfs_next_leaf(root, path);
2702 if (ret)
2703 break;
2704 }
2705 }
2706
2707 l = path->nodes[0];
2708 slot = path->slots[0];
2709
2710 btrfs_item_key_to_cpu(l, &found_key, slot);
2711
2712 if (found_key.objectid != scrub_dev->devid)
2713 break;
2714
2715 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716 break;
2717
2718 if (found_key.offset >= end)
2719 break;
2720
2721 if (found_key.offset < key.offset)
2722 break;
2723
2724 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725 length = btrfs_dev_extent_length(l, dev_extent);
2726
2727 if (found_key.offset + length <= start) {
2728 key.offset = found_key.offset + length;
2729 btrfs_release_path(path);
2730 continue;
2731 }
2732
2733 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736
2737 /*
2738 * get a reference on the corresponding block group to prevent
2739 * the chunk from going away while we scrub it
2740 */
2741 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742 if (!cache) {
2743 ret = -ENOENT;
2744 break;
2745 }
2746 dev_replace->cursor_right = found_key.offset + length;
2747 dev_replace->cursor_left = found_key.offset;
2748 dev_replace->item_needs_writeback = 1;
2749 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750 chunk_offset, length, found_key.offset,
2751 is_dev_replace);
2752
2753 /*
2754 * flush, submit all pending read and write bios, afterwards
2755 * wait for them.
2756 * Note that in the dev replace case, a read request causes
2757 * write requests that are submitted in the read completion
2758 * worker. Therefore in the current situation, it is required
2759 * that all write requests are flushed, so that all read and
2760 * write requests are really completed when bios_in_flight
2761 * changes to 0.
2762 */
2763 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764 scrub_submit(sctx);
2765 mutex_lock(&sctx->wr_ctx.wr_lock);
2766 scrub_wr_submit(sctx);
2767 mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769 wait_event(sctx->list_wait,
2770 atomic_read(&sctx->bios_in_flight) == 0);
2771 atomic_inc(&fs_info->scrubs_paused);
2772 wake_up(&fs_info->scrub_pause_wait);
2773
2774 /*
2775 * must be called before we decrease @scrub_paused.
2776 * make sure we don't block transaction commit while
2777 * we are waiting pending workers finished.
2778 */
2779 wait_event(sctx->list_wait,
2780 atomic_read(&sctx->workers_pending) == 0);
2781 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2782
2783 mutex_lock(&fs_info->scrub_lock);
2784 __scrub_blocked_if_needed(fs_info);
2785 atomic_dec(&fs_info->scrubs_paused);
2786 mutex_unlock(&fs_info->scrub_lock);
2787 wake_up(&fs_info->scrub_pause_wait);
2788
2789 btrfs_put_block_group(cache);
2790 if (ret)
2791 break;
2792 if (is_dev_replace &&
2793 atomic64_read(&dev_replace->num_write_errors) > 0) {
2794 ret = -EIO;
2795 break;
2796 }
2797 if (sctx->stat.malloc_errors > 0) {
2798 ret = -ENOMEM;
2799 break;
2800 }
2801
2802 dev_replace->cursor_left = dev_replace->cursor_right;
2803 dev_replace->item_needs_writeback = 1;
2804
2805 key.offset = found_key.offset + length;
2806 btrfs_release_path(path);
2807 }
2808
2809 btrfs_free_path(path);
2810
2811 /*
2812 * ret can still be 1 from search_slot or next_leaf,
2813 * that's not an error
2814 */
2815 return ret < 0 ? ret : 0;
2816}
2817
2818static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819 struct btrfs_device *scrub_dev)
2820{
2821 int i;
2822 u64 bytenr;
2823 u64 gen;
2824 int ret;
2825 struct btrfs_root *root = sctx->dev_root;
2826
2827 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828 return -EIO;
2829
2830 gen = root->fs_info->last_trans_committed;
2831
2832 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833 bytenr = btrfs_sb_offset(i);
2834 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2835 break;
2836
2837 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839 NULL, 1, bytenr);
2840 if (ret)
2841 return ret;
2842 }
2843 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844
2845 return 0;
2846}
2847
2848/*
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2850 */
2851static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852 int is_dev_replace)
2853{
2854 int ret = 0;
2855 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856 int max_active = fs_info->thread_pool_size;
2857
2858 if (fs_info->scrub_workers_refcnt == 0) {
2859 if (is_dev_replace)
2860 fs_info->scrub_workers =
2861 btrfs_alloc_workqueue("btrfs-scrub", flags,
2862 1, 4);
2863 else
2864 fs_info->scrub_workers =
2865 btrfs_alloc_workqueue("btrfs-scrub", flags,
2866 max_active, 4);
2867 if (!fs_info->scrub_workers) {
2868 ret = -ENOMEM;
2869 goto out;
2870 }
2871 fs_info->scrub_wr_completion_workers =
2872 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873 max_active, 2);
2874 if (!fs_info->scrub_wr_completion_workers) {
2875 ret = -ENOMEM;
2876 goto out;
2877 }
2878 fs_info->scrub_nocow_workers =
2879 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880 if (!fs_info->scrub_nocow_workers) {
2881 ret = -ENOMEM;
2882 goto out;
2883 }
2884 }
2885 ++fs_info->scrub_workers_refcnt;
2886out:
2887 return ret;
2888}
2889
2890static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891{
2892 if (--fs_info->scrub_workers_refcnt == 0) {
2893 btrfs_destroy_workqueue(fs_info->scrub_workers);
2894 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2896 }
2897 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898}
2899
2900int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901 u64 end, struct btrfs_scrub_progress *progress,
2902 int readonly, int is_dev_replace)
2903{
2904 struct scrub_ctx *sctx;
2905 int ret;
2906 struct btrfs_device *dev;
2907
2908 if (btrfs_fs_closing(fs_info))
2909 return -EINVAL;
2910
2911 /*
2912 * check some assumptions
2913 */
2914 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915 btrfs_err(fs_info,
2916 "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917 fs_info->chunk_root->nodesize,
2918 fs_info->chunk_root->leafsize);
2919 return -EINVAL;
2920 }
2921
2922 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923 /*
2924 * in this case scrub is unable to calculate the checksum
2925 * the way scrub is implemented. Do not handle this
2926 * situation at all because it won't ever happen.
2927 */
2928 btrfs_err(fs_info,
2929 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2931 return -EINVAL;
2932 }
2933
2934 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935 /* not supported for data w/o checksums */
2936 btrfs_err(fs_info,
2937 "scrub: size assumption sectorsize != PAGE_SIZE "
2938 "(%d != %lu) fails",
2939 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940 return -EINVAL;
2941 }
2942
2943 if (fs_info->chunk_root->nodesize >
2944 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945 fs_info->chunk_root->sectorsize >
2946 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947 /*
2948 * would exhaust the array bounds of pagev member in
2949 * struct scrub_block
2950 */
2951 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953 fs_info->chunk_root->nodesize,
2954 SCRUB_MAX_PAGES_PER_BLOCK,
2955 fs_info->chunk_root->sectorsize,
2956 SCRUB_MAX_PAGES_PER_BLOCK);
2957 return -EINVAL;
2958 }
2959
2960
2961 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963 if (!dev || (dev->missing && !is_dev_replace)) {
2964 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965 return -ENODEV;
2966 }
2967
2968 mutex_lock(&fs_info->scrub_lock);
2969 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2970 mutex_unlock(&fs_info->scrub_lock);
2971 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972 return -EIO;
2973 }
2974
2975 btrfs_dev_replace_lock(&fs_info->dev_replace);
2976 if (dev->scrub_device ||
2977 (!is_dev_replace &&
2978 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980 mutex_unlock(&fs_info->scrub_lock);
2981 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982 return -EINPROGRESS;
2983 }
2984 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986 ret = scrub_workers_get(fs_info, is_dev_replace);
2987 if (ret) {
2988 mutex_unlock(&fs_info->scrub_lock);
2989 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990 return ret;
2991 }
2992
2993 sctx = scrub_setup_ctx(dev, is_dev_replace);
2994 if (IS_ERR(sctx)) {
2995 mutex_unlock(&fs_info->scrub_lock);
2996 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997 scrub_workers_put(fs_info);
2998 return PTR_ERR(sctx);
2999 }
3000 sctx->readonly = readonly;
3001 dev->scrub_device = sctx;
3002 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004 /*
3005 * checking @scrub_pause_req here, we can avoid
3006 * race between committing transaction and scrubbing.
3007 */
3008 __scrub_blocked_if_needed(fs_info);
3009 atomic_inc(&fs_info->scrubs_running);
3010 mutex_unlock(&fs_info->scrub_lock);
3011
3012 if (!is_dev_replace) {
3013 /*
3014 * by holding device list mutex, we can
3015 * kick off writing super in log tree sync.
3016 */
3017 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018 ret = scrub_supers(sctx, dev);
3019 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020 }
3021
3022 if (!ret)
3023 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024 is_dev_replace);
3025
3026 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027 atomic_dec(&fs_info->scrubs_running);
3028 wake_up(&fs_info->scrub_pause_wait);
3029
3030 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032 if (progress)
3033 memcpy(progress, &sctx->stat, sizeof(*progress));
3034
3035 mutex_lock(&fs_info->scrub_lock);
3036 dev->scrub_device = NULL;
3037 scrub_workers_put(fs_info);
3038 mutex_unlock(&fs_info->scrub_lock);
3039
3040 scrub_free_ctx(sctx);
3041
3042 return ret;
3043}
3044
3045void btrfs_scrub_pause(struct btrfs_root *root)
3046{
3047 struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049 mutex_lock(&fs_info->scrub_lock);
3050 atomic_inc(&fs_info->scrub_pause_req);
3051 while (atomic_read(&fs_info->scrubs_paused) !=
3052 atomic_read(&fs_info->scrubs_running)) {
3053 mutex_unlock(&fs_info->scrub_lock);
3054 wait_event(fs_info->scrub_pause_wait,
3055 atomic_read(&fs_info->scrubs_paused) ==
3056 atomic_read(&fs_info->scrubs_running));
3057 mutex_lock(&fs_info->scrub_lock);
3058 }
3059 mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_root *root)
3063{
3064 struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066 atomic_dec(&fs_info->scrub_pause_req);
3067 wake_up(&fs_info->scrub_pause_wait);
3068}
3069
3070int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071{
3072 mutex_lock(&fs_info->scrub_lock);
3073 if (!atomic_read(&fs_info->scrubs_running)) {
3074 mutex_unlock(&fs_info->scrub_lock);
3075 return -ENOTCONN;
3076 }
3077
3078 atomic_inc(&fs_info->scrub_cancel_req);
3079 while (atomic_read(&fs_info->scrubs_running)) {
3080 mutex_unlock(&fs_info->scrub_lock);
3081 wait_event(fs_info->scrub_pause_wait,
3082 atomic_read(&fs_info->scrubs_running) == 0);
3083 mutex_lock(&fs_info->scrub_lock);
3084 }
3085 atomic_dec(&fs_info->scrub_cancel_req);
3086 mutex_unlock(&fs_info->scrub_lock);
3087
3088 return 0;
3089}
3090
3091int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092 struct btrfs_device *dev)
3093{
3094 struct scrub_ctx *sctx;
3095
3096 mutex_lock(&fs_info->scrub_lock);
3097 sctx = dev->scrub_device;
3098 if (!sctx) {
3099 mutex_unlock(&fs_info->scrub_lock);
3100 return -ENOTCONN;
3101 }
3102 atomic_inc(&sctx->cancel_req);
3103 while (dev->scrub_device) {
3104 mutex_unlock(&fs_info->scrub_lock);
3105 wait_event(fs_info->scrub_pause_wait,
3106 dev->scrub_device == NULL);
3107 mutex_lock(&fs_info->scrub_lock);
3108 }
3109 mutex_unlock(&fs_info->scrub_lock);
3110
3111 return 0;
3112}
3113
3114int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115 struct btrfs_scrub_progress *progress)
3116{
3117 struct btrfs_device *dev;
3118 struct scrub_ctx *sctx = NULL;
3119
3120 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122 if (dev)
3123 sctx = dev->scrub_device;
3124 if (sctx)
3125 memcpy(progress, &sctx->stat, sizeof(*progress));
3126 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129}
3130
3131static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132 u64 extent_logical, u64 extent_len,
3133 u64 *extent_physical,
3134 struct btrfs_device **extent_dev,
3135 int *extent_mirror_num)
3136{
3137 u64 mapped_length;
3138 struct btrfs_bio *bbio = NULL;
3139 int ret;
3140
3141 mapped_length = extent_len;
3142 ret = btrfs_map_block(fs_info, READ, extent_logical,
3143 &mapped_length, &bbio, 0);
3144 if (ret || !bbio || mapped_length < extent_len ||
3145 !bbio->stripes[0].dev->bdev) {
3146 kfree(bbio);
3147 return;
3148 }
3149
3150 *extent_physical = bbio->stripes[0].physical;
3151 *extent_mirror_num = bbio->mirror_num;
3152 *extent_dev = bbio->stripes[0].dev;
3153 kfree(bbio);
3154}
3155
3156static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157 struct scrub_wr_ctx *wr_ctx,
3158 struct btrfs_fs_info *fs_info,
3159 struct btrfs_device *dev,
3160 int is_dev_replace)
3161{
3162 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164 mutex_init(&wr_ctx->wr_lock);
3165 wr_ctx->wr_curr_bio = NULL;
3166 if (!is_dev_replace)
3167 return 0;
3168
3169 WARN_ON(!dev->bdev);
3170 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171 bio_get_nr_vecs(dev->bdev));
3172 wr_ctx->tgtdev = dev;
3173 atomic_set(&wr_ctx->flush_all_writes, 0);
3174 return 0;
3175}
3176
3177static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178{
3179 mutex_lock(&wr_ctx->wr_lock);
3180 kfree(wr_ctx->wr_curr_bio);
3181 wr_ctx->wr_curr_bio = NULL;
3182 mutex_unlock(&wr_ctx->wr_lock);
3183}
3184
3185static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186 int mirror_num, u64 physical_for_dev_replace)
3187{
3188 struct scrub_copy_nocow_ctx *nocow_ctx;
3189 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192 if (!nocow_ctx) {
3193 spin_lock(&sctx->stat_lock);
3194 sctx->stat.malloc_errors++;
3195 spin_unlock(&sctx->stat_lock);
3196 return -ENOMEM;
3197 }
3198
3199 scrub_pending_trans_workers_inc(sctx);
3200
3201 nocow_ctx->sctx = sctx;
3202 nocow_ctx->logical = logical;
3203 nocow_ctx->len = len;
3204 nocow_ctx->mirror_num = mirror_num;
3205 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206 btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207 INIT_LIST_HEAD(&nocow_ctx->inodes);
3208 btrfs_queue_work(fs_info->scrub_nocow_workers,
3209 &nocow_ctx->work);
3210
3211 return 0;
3212}
3213
3214static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215{
3216 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217 struct scrub_nocow_inode *nocow_inode;
3218
3219 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220 if (!nocow_inode)
3221 return -ENOMEM;
3222 nocow_inode->inum = inum;
3223 nocow_inode->offset = offset;
3224 nocow_inode->root = root;
3225 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226 return 0;
3227}
3228
3229#define COPY_COMPLETE 1
3230
3231static void copy_nocow_pages_worker(struct btrfs_work *work)
3232{
3233 struct scrub_copy_nocow_ctx *nocow_ctx =
3234 container_of(work, struct scrub_copy_nocow_ctx, work);
3235 struct scrub_ctx *sctx = nocow_ctx->sctx;
3236 u64 logical = nocow_ctx->logical;
3237 u64 len = nocow_ctx->len;
3238 int mirror_num = nocow_ctx->mirror_num;
3239 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240 int ret;
3241 struct btrfs_trans_handle *trans = NULL;
3242 struct btrfs_fs_info *fs_info;
3243 struct btrfs_path *path;
3244 struct btrfs_root *root;
3245 int not_written = 0;
3246
3247 fs_info = sctx->dev_root->fs_info;
3248 root = fs_info->extent_root;
3249
3250 path = btrfs_alloc_path();
3251 if (!path) {
3252 spin_lock(&sctx->stat_lock);
3253 sctx->stat.malloc_errors++;
3254 spin_unlock(&sctx->stat_lock);
3255 not_written = 1;
3256 goto out;
3257 }
3258
3259 trans = btrfs_join_transaction(root);
3260 if (IS_ERR(trans)) {
3261 not_written = 1;
3262 goto out;
3263 }
3264
3265 ret = iterate_inodes_from_logical(logical, fs_info, path,
3266 record_inode_for_nocow, nocow_ctx);
3267 if (ret != 0 && ret != -ENOENT) {
3268 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269 "phys %llu, len %llu, mir %u, ret %d",
3270 logical, physical_for_dev_replace, len, mirror_num,
3271 ret);
3272 not_written = 1;
3273 goto out;
3274 }
3275
3276 btrfs_end_transaction(trans, root);
3277 trans = NULL;
3278 while (!list_empty(&nocow_ctx->inodes)) {
3279 struct scrub_nocow_inode *entry;
3280 entry = list_first_entry(&nocow_ctx->inodes,
3281 struct scrub_nocow_inode,
3282 list);
3283 list_del_init(&entry->list);
3284 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285 entry->root, nocow_ctx);
3286 kfree(entry);
3287 if (ret == COPY_COMPLETE) {
3288 ret = 0;
3289 break;
3290 } else if (ret) {
3291 break;
3292 }
3293 }
3294out:
3295 while (!list_empty(&nocow_ctx->inodes)) {
3296 struct scrub_nocow_inode *entry;
3297 entry = list_first_entry(&nocow_ctx->inodes,
3298 struct scrub_nocow_inode,
3299 list);
3300 list_del_init(&entry->list);
3301 kfree(entry);
3302 }
3303 if (trans && !IS_ERR(trans))
3304 btrfs_end_transaction(trans, root);
3305 if (not_written)
3306 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307 num_uncorrectable_read_errors);
3308
3309 btrfs_free_path(path);
3310 kfree(nocow_ctx);
3311
3312 scrub_pending_trans_workers_dec(sctx);
3313}
3314
3315static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316 struct scrub_copy_nocow_ctx *nocow_ctx)
3317{
3318 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319 struct btrfs_key key;
3320 struct inode *inode;
3321 struct page *page;
3322 struct btrfs_root *local_root;
3323 struct btrfs_ordered_extent *ordered;
3324 struct extent_map *em;
3325 struct extent_state *cached_state = NULL;
3326 struct extent_io_tree *io_tree;
3327 u64 physical_for_dev_replace;
3328 u64 len = nocow_ctx->len;
3329 u64 lockstart = offset, lockend = offset + len - 1;
3330 unsigned long index;
3331 int srcu_index;
3332 int ret = 0;
3333 int err = 0;
3334
3335 key.objectid = root;
3336 key.type = BTRFS_ROOT_ITEM_KEY;
3337 key.offset = (u64)-1;
3338
3339 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342 if (IS_ERR(local_root)) {
3343 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344 return PTR_ERR(local_root);
3345 }
3346
3347 key.type = BTRFS_INODE_ITEM_KEY;
3348 key.objectid = inum;
3349 key.offset = 0;
3350 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352 if (IS_ERR(inode))
3353 return PTR_ERR(inode);
3354
3355 /* Avoid truncate/dio/punch hole.. */
3356 mutex_lock(&inode->i_mutex);
3357 inode_dio_wait(inode);
3358
3359 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360 io_tree = &BTRFS_I(inode)->io_tree;
3361
3362 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364 if (ordered) {
3365 btrfs_put_ordered_extent(ordered);
3366 goto out_unlock;
3367 }
3368
3369 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370 if (IS_ERR(em)) {
3371 ret = PTR_ERR(em);
3372 goto out_unlock;
3373 }
3374
3375 /*
3376 * This extent does not actually cover the logical extent anymore,
3377 * move on to the next inode.
3378 */
3379 if (em->block_start > nocow_ctx->logical ||
3380 em->block_start + em->block_len < nocow_ctx->logical + len) {
3381 free_extent_map(em);
3382 goto out_unlock;
3383 }
3384 free_extent_map(em);
3385
3386 while (len >= PAGE_CACHE_SIZE) {
3387 index = offset >> PAGE_CACHE_SHIFT;
3388again:
3389 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390 if (!page) {
3391 btrfs_err(fs_info, "find_or_create_page() failed");
3392 ret = -ENOMEM;
3393 goto out;
3394 }
3395
3396 if (PageUptodate(page)) {
3397 if (PageDirty(page))
3398 goto next_page;
3399 } else {
3400 ClearPageError(page);
3401 err = extent_read_full_page_nolock(io_tree, page,
3402 btrfs_get_extent,
3403 nocow_ctx->mirror_num);
3404 if (err) {
3405 ret = err;
3406 goto next_page;
3407 }
3408
3409 lock_page(page);
3410 /*
3411 * If the page has been remove from the page cache,
3412 * the data on it is meaningless, because it may be
3413 * old one, the new data may be written into the new
3414 * page in the page cache.
3415 */
3416 if (page->mapping != inode->i_mapping) {
3417 unlock_page(page);
3418 page_cache_release(page);
3419 goto again;
3420 }
3421 if (!PageUptodate(page)) {
3422 ret = -EIO;
3423 goto next_page;
3424 }
3425 }
3426 err = write_page_nocow(nocow_ctx->sctx,
3427 physical_for_dev_replace, page);
3428 if (err)
3429 ret = err;
3430next_page:
3431 unlock_page(page);
3432 page_cache_release(page);
3433
3434 if (ret)
3435 break;
3436
3437 offset += PAGE_CACHE_SIZE;
3438 physical_for_dev_replace += PAGE_CACHE_SIZE;
3439 len -= PAGE_CACHE_SIZE;
3440 }
3441 ret = COPY_COMPLETE;
3442out_unlock:
3443 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444 GFP_NOFS);
3445out:
3446 mutex_unlock(&inode->i_mutex);
3447 iput(inode);
3448 return ret;
3449}
3450
3451static int write_page_nocow(struct scrub_ctx *sctx,
3452 u64 physical_for_dev_replace, struct page *page)
3453{
3454 struct bio *bio;
3455 struct btrfs_device *dev;
3456 int ret;
3457
3458 dev = sctx->wr_ctx.tgtdev;
3459 if (!dev)
3460 return -EIO;
3461 if (!dev->bdev) {
3462 printk_ratelimited(KERN_WARNING
3463 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464 return -EIO;
3465 }
3466 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467 if (!bio) {
3468 spin_lock(&sctx->stat_lock);
3469 sctx->stat.malloc_errors++;
3470 spin_unlock(&sctx->stat_lock);
3471 return -ENOMEM;
3472 }
3473 bio->bi_iter.bi_size = 0;
3474 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475 bio->bi_bdev = dev->bdev;
3476 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477 if (ret != PAGE_CACHE_SIZE) {
3478leave_with_eio:
3479 bio_put(bio);
3480 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481 return -EIO;
3482 }
3483
3484 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485 goto leave_with_eio;
3486
3487 bio_put(bio);
3488 return 0;
3489}