Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  65
  66struct scrub_recover {
  67	atomic_t		refs;
  68	struct btrfs_bio	*bbio;
  69	u64			map_length;
  70};
  71
  72struct scrub_page {
  73	struct scrub_block	*sblock;
  74	struct page		*page;
  75	struct btrfs_device	*dev;
  76	struct list_head	list;
  77	u64			flags;  /* extent flags */
  78	u64			generation;
  79	u64			logical;
  80	u64			physical;
  81	u64			physical_for_dev_replace;
  82	atomic_t		refs;
  83	struct {
  84		unsigned int	mirror_num:8;
  85		unsigned int	have_csum:1;
  86		unsigned int	io_error:1;
  87	};
  88	u8			csum[BTRFS_CSUM_SIZE];
  89
  90	struct scrub_recover	*recover;
  91};
  92
  93struct scrub_bio {
  94	int			index;
  95	struct scrub_ctx	*sctx;
  96	struct btrfs_device	*dev;
  97	struct bio		*bio;
  98	int			err;
  99	u64			logical;
 100	u64			physical;
 101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
 102	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
 103#else
 104	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
 105#endif
 106	int			page_count;
 107	int			next_free;
 108	struct btrfs_work	work;
 109};
 110
 111struct scrub_block {
 112	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 113	int			page_count;
 114	atomic_t		outstanding_pages;
 115	atomic_t		refs; /* free mem on transition to zero */
 116	struct scrub_ctx	*sctx;
 117	struct scrub_parity	*sparity;
 118	struct {
 119		unsigned int	header_error:1;
 120		unsigned int	checksum_error:1;
 121		unsigned int	no_io_error_seen:1;
 122		unsigned int	generation_error:1; /* also sets header_error */
 123
 124		/* The following is for the data used to check parity */
 125		/* It is for the data with checksum */
 126		unsigned int	data_corrected:1;
 127	};
 128	struct btrfs_work	work;
 129};
 130
 131/* Used for the chunks with parity stripe such RAID5/6 */
 132struct scrub_parity {
 133	struct scrub_ctx	*sctx;
 134
 135	struct btrfs_device	*scrub_dev;
 136
 137	u64			logic_start;
 138
 139	u64			logic_end;
 140
 141	int			nsectors;
 142
 143	int			stripe_len;
 144
 145	atomic_t		refs;
 146
 147	struct list_head	spages;
 148
 149	/* Work of parity check and repair */
 150	struct btrfs_work	work;
 151
 152	/* Mark the parity blocks which have data */
 153	unsigned long		*dbitmap;
 154
 155	/*
 156	 * Mark the parity blocks which have data, but errors happen when
 157	 * read data or check data
 158	 */
 159	unsigned long		*ebitmap;
 160
 161	unsigned long		bitmap[0];
 162};
 163
 164struct scrub_wr_ctx {
 165	struct scrub_bio *wr_curr_bio;
 166	struct btrfs_device *tgtdev;
 167	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 168	atomic_t flush_all_writes;
 169	struct mutex wr_lock;
 170};
 171
 172struct scrub_ctx {
 173	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 174	struct btrfs_fs_info	*fs_info;
 175	int			first_free;
 176	int			curr;
 177	atomic_t		bios_in_flight;
 178	atomic_t		workers_pending;
 179	spinlock_t		list_lock;
 180	wait_queue_head_t	list_wait;
 181	u16			csum_size;
 182	struct list_head	csum_list;
 183	atomic_t		cancel_req;
 184	int			readonly;
 185	int			pages_per_rd_bio;
 186	u32			sectorsize;
 187	u32			nodesize;
 
 188
 189	int			is_dev_replace;
 190	struct scrub_wr_ctx	wr_ctx;
 191
 192	/*
 193	 * statistics
 194	 */
 195	struct btrfs_scrub_progress stat;
 196	spinlock_t		stat_lock;
 197
 198	/*
 199	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 200	 * decrement bios_in_flight and workers_pending and then do a wakeup
 201	 * on the list_wait wait queue. We must ensure the main scrub task
 202	 * doesn't free the scrub context before or while the workers are
 203	 * doing the wakeup() call.
 204	 */
 205	atomic_t                refs;
 206};
 207
 208struct scrub_fixup_nodatasum {
 209	struct scrub_ctx	*sctx;
 210	struct btrfs_device	*dev;
 211	u64			logical;
 212	struct btrfs_root	*root;
 213	struct btrfs_work	work;
 214	int			mirror_num;
 215};
 216
 217struct scrub_nocow_inode {
 218	u64			inum;
 219	u64			offset;
 220	u64			root;
 221	struct list_head	list;
 222};
 223
 224struct scrub_copy_nocow_ctx {
 225	struct scrub_ctx	*sctx;
 226	u64			logical;
 227	u64			len;
 228	int			mirror_num;
 229	u64			physical_for_dev_replace;
 230	struct list_head	inodes;
 231	struct btrfs_work	work;
 232};
 233
 234struct scrub_warning {
 235	struct btrfs_path	*path;
 236	u64			extent_item_size;
 
 
 237	const char		*errstr;
 238	sector_t		sector;
 239	u64			logical;
 240	struct btrfs_device	*dev;
 
 
 241};
 242
 
 243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 
 
 
 249				     struct scrub_block *sblocks_for_recheck);
 250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 251				struct scrub_block *sblock,
 252				int retry_failed_mirror);
 253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 
 
 
 
 
 254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 255					     struct scrub_block *sblock_good);
 
 256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 257					    struct scrub_block *sblock_good,
 258					    int page_num, int force_write);
 259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 261					   int page_num);
 262static int scrub_checksum_data(struct scrub_block *sblock);
 263static int scrub_checksum_tree_block(struct scrub_block *sblock);
 264static int scrub_checksum_super(struct scrub_block *sblock);
 265static void scrub_block_get(struct scrub_block *sblock);
 266static void scrub_block_put(struct scrub_block *sblock);
 267static void scrub_page_get(struct scrub_page *spage);
 268static void scrub_page_put(struct scrub_page *spage);
 269static void scrub_parity_get(struct scrub_parity *sparity);
 270static void scrub_parity_put(struct scrub_parity *sparity);
 271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 272				    struct scrub_page *spage);
 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 274		       u64 physical, struct btrfs_device *dev, u64 flags,
 275		       u64 gen, int mirror_num, u8 *csum, int force,
 276		       u64 physical_for_dev_replace);
 277static void scrub_bio_end_io(struct bio *bio);
 278static void scrub_bio_end_io_worker(struct btrfs_work *work);
 279static void scrub_block_complete(struct scrub_block *sblock);
 280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 281			       u64 extent_logical, u64 extent_len,
 282			       u64 *extent_physical,
 283			       struct btrfs_device **extent_dev,
 284			       int *extent_mirror_num);
 285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 286			      struct scrub_wr_ctx *wr_ctx,
 287			      struct btrfs_fs_info *fs_info,
 288			      struct btrfs_device *dev,
 289			      int is_dev_replace);
 290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 292				    struct scrub_page *spage);
 293static void scrub_wr_submit(struct scrub_ctx *sctx);
 294static void scrub_wr_bio_end_io(struct bio *bio);
 295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 296static int write_page_nocow(struct scrub_ctx *sctx,
 297			    u64 physical_for_dev_replace, struct page *page);
 298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 299				      struct scrub_copy_nocow_ctx *ctx);
 300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 301			    int mirror_num, u64 physical_for_dev_replace);
 302static void copy_nocow_pages_worker(struct btrfs_work *work);
 303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 305static void scrub_put_ctx(struct scrub_ctx *sctx);
 306
 307
 308static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 309{
 310	atomic_inc(&sctx->refs);
 311	atomic_inc(&sctx->bios_in_flight);
 312}
 313
 314static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 315{
 316	atomic_dec(&sctx->bios_in_flight);
 317	wake_up(&sctx->list_wait);
 318	scrub_put_ctx(sctx);
 319}
 320
 321static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 322{
 323	while (atomic_read(&fs_info->scrub_pause_req)) {
 324		mutex_unlock(&fs_info->scrub_lock);
 325		wait_event(fs_info->scrub_pause_wait,
 326		   atomic_read(&fs_info->scrub_pause_req) == 0);
 327		mutex_lock(&fs_info->scrub_lock);
 328	}
 329}
 330
 331static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 332{
 333	atomic_inc(&fs_info->scrubs_paused);
 334	wake_up(&fs_info->scrub_pause_wait);
 335}
 336
 337static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 338{
 339	mutex_lock(&fs_info->scrub_lock);
 340	__scrub_blocked_if_needed(fs_info);
 341	atomic_dec(&fs_info->scrubs_paused);
 342	mutex_unlock(&fs_info->scrub_lock);
 343
 344	wake_up(&fs_info->scrub_pause_wait);
 345}
 346
 347static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 348{
 349	scrub_pause_on(fs_info);
 350	scrub_pause_off(fs_info);
 351}
 352
 353/*
 354 * used for workers that require transaction commits (i.e., for the
 355 * NOCOW case)
 356 */
 357static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 358{
 359	struct btrfs_fs_info *fs_info = sctx->fs_info;
 360
 361	atomic_inc(&sctx->refs);
 362	/*
 363	 * increment scrubs_running to prevent cancel requests from
 364	 * completing as long as a worker is running. we must also
 365	 * increment scrubs_paused to prevent deadlocking on pause
 366	 * requests used for transactions commits (as the worker uses a
 367	 * transaction context). it is safe to regard the worker
 368	 * as paused for all matters practical. effectively, we only
 369	 * avoid cancellation requests from completing.
 370	 */
 371	mutex_lock(&fs_info->scrub_lock);
 372	atomic_inc(&fs_info->scrubs_running);
 373	atomic_inc(&fs_info->scrubs_paused);
 374	mutex_unlock(&fs_info->scrub_lock);
 375
 376	/*
 377	 * check if @scrubs_running=@scrubs_paused condition
 378	 * inside wait_event() is not an atomic operation.
 379	 * which means we may inc/dec @scrub_running/paused
 380	 * at any time. Let's wake up @scrub_pause_wait as
 381	 * much as we can to let commit transaction blocked less.
 382	 */
 383	wake_up(&fs_info->scrub_pause_wait);
 384
 385	atomic_inc(&sctx->workers_pending);
 386}
 387
 388/* used for workers that require transaction commits */
 389static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 390{
 391	struct btrfs_fs_info *fs_info = sctx->fs_info;
 392
 393	/*
 394	 * see scrub_pending_trans_workers_inc() why we're pretending
 395	 * to be paused in the scrub counters
 396	 */
 397	mutex_lock(&fs_info->scrub_lock);
 398	atomic_dec(&fs_info->scrubs_running);
 399	atomic_dec(&fs_info->scrubs_paused);
 400	mutex_unlock(&fs_info->scrub_lock);
 401	atomic_dec(&sctx->workers_pending);
 402	wake_up(&fs_info->scrub_pause_wait);
 403	wake_up(&sctx->list_wait);
 404	scrub_put_ctx(sctx);
 405}
 406
 407static void scrub_free_csums(struct scrub_ctx *sctx)
 408{
 409	while (!list_empty(&sctx->csum_list)) {
 410		struct btrfs_ordered_sum *sum;
 411		sum = list_first_entry(&sctx->csum_list,
 412				       struct btrfs_ordered_sum, list);
 413		list_del(&sum->list);
 414		kfree(sum);
 415	}
 416}
 417
 418static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 419{
 420	int i;
 421
 422	if (!sctx)
 423		return;
 424
 425	scrub_free_wr_ctx(&sctx->wr_ctx);
 426
 427	/* this can happen when scrub is cancelled */
 428	if (sctx->curr != -1) {
 429		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 430
 431		for (i = 0; i < sbio->page_count; i++) {
 432			WARN_ON(!sbio->pagev[i]->page);
 433			scrub_block_put(sbio->pagev[i]->sblock);
 434		}
 435		bio_put(sbio->bio);
 436	}
 437
 438	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 439		struct scrub_bio *sbio = sctx->bios[i];
 440
 441		if (!sbio)
 442			break;
 443		kfree(sbio);
 444	}
 445
 446	scrub_free_csums(sctx);
 447	kfree(sctx);
 448}
 449
 450static void scrub_put_ctx(struct scrub_ctx *sctx)
 451{
 452	if (atomic_dec_and_test(&sctx->refs))
 453		scrub_free_ctx(sctx);
 454}
 455
 456static noinline_for_stack
 457struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 458{
 459	struct scrub_ctx *sctx;
 460	int		i;
 461	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 462	int ret;
 463
 464	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 465	if (!sctx)
 466		goto nomem;
 467	atomic_set(&sctx->refs, 1);
 468	sctx->is_dev_replace = is_dev_replace;
 469	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 470	sctx->curr = -1;
 471	sctx->fs_info = dev->fs_info;
 472	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 473		struct scrub_bio *sbio;
 474
 475		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 476		if (!sbio)
 477			goto nomem;
 478		sctx->bios[i] = sbio;
 479
 480		sbio->index = i;
 481		sbio->sctx = sctx;
 482		sbio->page_count = 0;
 483		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 484				scrub_bio_end_io_worker, NULL, NULL);
 485
 486		if (i != SCRUB_BIOS_PER_SCTX - 1)
 487			sctx->bios[i]->next_free = i + 1;
 488		else
 489			sctx->bios[i]->next_free = -1;
 490	}
 491	sctx->first_free = 0;
 492	sctx->nodesize = fs_info->nodesize;
 493	sctx->sectorsize = fs_info->sectorsize;
 
 494	atomic_set(&sctx->bios_in_flight, 0);
 495	atomic_set(&sctx->workers_pending, 0);
 496	atomic_set(&sctx->cancel_req, 0);
 497	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 498	INIT_LIST_HEAD(&sctx->csum_list);
 499
 500	spin_lock_init(&sctx->list_lock);
 501	spin_lock_init(&sctx->stat_lock);
 502	init_waitqueue_head(&sctx->list_wait);
 503
 504	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 505				 fs_info->dev_replace.tgtdev, is_dev_replace);
 506	if (ret) {
 507		scrub_free_ctx(sctx);
 508		return ERR_PTR(ret);
 509	}
 510	return sctx;
 511
 512nomem:
 513	scrub_free_ctx(sctx);
 514	return ERR_PTR(-ENOMEM);
 515}
 516
 517static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 518				     void *warn_ctx)
 519{
 520	u64 isize;
 521	u32 nlink;
 522	int ret;
 523	int i;
 524	struct extent_buffer *eb;
 525	struct btrfs_inode_item *inode_item;
 526	struct scrub_warning *swarn = warn_ctx;
 527	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 528	struct inode_fs_paths *ipath = NULL;
 529	struct btrfs_root *local_root;
 530	struct btrfs_key root_key;
 531	struct btrfs_key key;
 532
 533	root_key.objectid = root;
 534	root_key.type = BTRFS_ROOT_ITEM_KEY;
 535	root_key.offset = (u64)-1;
 536	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 537	if (IS_ERR(local_root)) {
 538		ret = PTR_ERR(local_root);
 539		goto err;
 540	}
 541
 542	/*
 543	 * this makes the path point to (inum INODE_ITEM ioff)
 544	 */
 545	key.objectid = inum;
 546	key.type = BTRFS_INODE_ITEM_KEY;
 547	key.offset = 0;
 548
 549	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 550	if (ret) {
 551		btrfs_release_path(swarn->path);
 552		goto err;
 553	}
 554
 555	eb = swarn->path->nodes[0];
 556	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 557					struct btrfs_inode_item);
 558	isize = btrfs_inode_size(eb, inode_item);
 559	nlink = btrfs_inode_nlink(eb, inode_item);
 560	btrfs_release_path(swarn->path);
 561
 562	ipath = init_ipath(4096, local_root, swarn->path);
 563	if (IS_ERR(ipath)) {
 564		ret = PTR_ERR(ipath);
 565		ipath = NULL;
 566		goto err;
 567	}
 568	ret = paths_from_inode(inum, ipath);
 569
 570	if (ret < 0)
 571		goto err;
 572
 573	/*
 574	 * we deliberately ignore the bit ipath might have been too small to
 575	 * hold all of the paths here
 576	 */
 577	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 578		btrfs_warn_in_rcu(fs_info,
 579				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 580				  swarn->errstr, swarn->logical,
 581				  rcu_str_deref(swarn->dev->name),
 582				  (unsigned long long)swarn->sector,
 583				  root, inum, offset,
 584				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 585				  (char *)(unsigned long)ipath->fspath->val[i]);
 586
 587	free_ipath(ipath);
 588	return 0;
 589
 590err:
 591	btrfs_warn_in_rcu(fs_info,
 592			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 593			  swarn->errstr, swarn->logical,
 594			  rcu_str_deref(swarn->dev->name),
 595			  (unsigned long long)swarn->sector,
 596			  root, inum, offset, ret);
 597
 598	free_ipath(ipath);
 599	return 0;
 600}
 601
 602static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 603{
 604	struct btrfs_device *dev;
 605	struct btrfs_fs_info *fs_info;
 606	struct btrfs_path *path;
 607	struct btrfs_key found_key;
 608	struct extent_buffer *eb;
 609	struct btrfs_extent_item *ei;
 610	struct scrub_warning swarn;
 611	unsigned long ptr = 0;
 612	u64 extent_item_pos;
 613	u64 flags = 0;
 614	u64 ref_root;
 615	u32 item_size;
 616	u8 ref_level = 0;
 
 617	int ret;
 618
 619	WARN_ON(sblock->page_count < 1);
 620	dev = sblock->pagev[0]->dev;
 621	fs_info = sblock->sctx->fs_info;
 622
 623	path = btrfs_alloc_path();
 624	if (!path)
 625		return;
 626
 
 
 627	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 628	swarn.logical = sblock->pagev[0]->logical;
 629	swarn.errstr = errstr;
 630	swarn.dev = NULL;
 
 
 
 
 
 631
 632	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 633				  &flags);
 634	if (ret < 0)
 635		goto out;
 636
 637	extent_item_pos = swarn.logical - found_key.objectid;
 638	swarn.extent_item_size = found_key.offset;
 639
 640	eb = path->nodes[0];
 641	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 642	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 643
 644	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 645		do {
 646			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 647						      item_size, &ref_root,
 648						      &ref_level);
 649			btrfs_warn_in_rcu(fs_info,
 650				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
 651				errstr, swarn.logical,
 652				rcu_str_deref(dev->name),
 653				(unsigned long long)swarn.sector,
 654				ref_level ? "node" : "leaf",
 655				ret < 0 ? -1 : ref_level,
 656				ret < 0 ? -1 : ref_root);
 657		} while (ret != 1);
 658		btrfs_release_path(path);
 659	} else {
 660		btrfs_release_path(path);
 661		swarn.path = path;
 662		swarn.dev = dev;
 663		iterate_extent_inodes(fs_info, found_key.objectid,
 664					extent_item_pos, 1,
 665					scrub_print_warning_inode, &swarn);
 666	}
 667
 668out:
 669	btrfs_free_path(path);
 
 
 670}
 671
 672static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 673{
 674	struct page *page = NULL;
 675	unsigned long index;
 676	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 677	int ret;
 678	int corrected = 0;
 679	struct btrfs_key key;
 680	struct inode *inode = NULL;
 681	struct btrfs_fs_info *fs_info;
 682	u64 end = offset + PAGE_SIZE - 1;
 683	struct btrfs_root *local_root;
 684	int srcu_index;
 685
 686	key.objectid = root;
 687	key.type = BTRFS_ROOT_ITEM_KEY;
 688	key.offset = (u64)-1;
 689
 690	fs_info = fixup->root->fs_info;
 691	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 692
 693	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 694	if (IS_ERR(local_root)) {
 695		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 696		return PTR_ERR(local_root);
 697	}
 698
 699	key.type = BTRFS_INODE_ITEM_KEY;
 700	key.objectid = inum;
 701	key.offset = 0;
 702	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 703	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 704	if (IS_ERR(inode))
 705		return PTR_ERR(inode);
 706
 707	index = offset >> PAGE_SHIFT;
 708
 709	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 710	if (!page) {
 711		ret = -ENOMEM;
 712		goto out;
 713	}
 714
 715	if (PageUptodate(page)) {
 716		if (PageDirty(page)) {
 717			/*
 718			 * we need to write the data to the defect sector. the
 719			 * data that was in that sector is not in memory,
 720			 * because the page was modified. we must not write the
 721			 * modified page to that sector.
 722			 *
 723			 * TODO: what could be done here: wait for the delalloc
 724			 *       runner to write out that page (might involve
 725			 *       COW) and see whether the sector is still
 726			 *       referenced afterwards.
 727			 *
 728			 * For the meantime, we'll treat this error
 729			 * incorrectable, although there is a chance that a
 730			 * later scrub will find the bad sector again and that
 731			 * there's no dirty page in memory, then.
 732			 */
 733			ret = -EIO;
 734			goto out;
 735		}
 736		ret = repair_io_failure(inode, offset, PAGE_SIZE,
 
 737					fixup->logical, page,
 738					offset - page_offset(page),
 739					fixup->mirror_num);
 740		unlock_page(page);
 741		corrected = !ret;
 742	} else {
 743		/*
 744		 * we need to get good data first. the general readpage path
 745		 * will call repair_io_failure for us, we just have to make
 746		 * sure we read the bad mirror.
 747		 */
 748		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 749					EXTENT_DAMAGED);
 750		if (ret) {
 751			/* set_extent_bits should give proper error */
 752			WARN_ON(ret > 0);
 753			if (ret > 0)
 754				ret = -EFAULT;
 755			goto out;
 756		}
 757
 758		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 759						btrfs_get_extent,
 760						fixup->mirror_num);
 761		wait_on_page_locked(page);
 762
 763		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 764						end, EXTENT_DAMAGED, 0, NULL);
 765		if (!corrected)
 766			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 767						EXTENT_DAMAGED);
 768	}
 769
 770out:
 771	if (page)
 772		put_page(page);
 773
 774	iput(inode);
 775
 776	if (ret < 0)
 777		return ret;
 778
 779	if (ret == 0 && corrected) {
 780		/*
 781		 * we only need to call readpage for one of the inodes belonging
 782		 * to this extent. so make iterate_extent_inodes stop
 783		 */
 784		return 1;
 785	}
 786
 787	return -EIO;
 788}
 789
 790static void scrub_fixup_nodatasum(struct btrfs_work *work)
 791{
 792	struct btrfs_fs_info *fs_info;
 793	int ret;
 794	struct scrub_fixup_nodatasum *fixup;
 795	struct scrub_ctx *sctx;
 796	struct btrfs_trans_handle *trans = NULL;
 797	struct btrfs_path *path;
 798	int uncorrectable = 0;
 799
 800	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 801	sctx = fixup->sctx;
 802	fs_info = fixup->root->fs_info;
 803
 804	path = btrfs_alloc_path();
 805	if (!path) {
 806		spin_lock(&sctx->stat_lock);
 807		++sctx->stat.malloc_errors;
 808		spin_unlock(&sctx->stat_lock);
 809		uncorrectable = 1;
 810		goto out;
 811	}
 812
 813	trans = btrfs_join_transaction(fixup->root);
 814	if (IS_ERR(trans)) {
 815		uncorrectable = 1;
 816		goto out;
 817	}
 818
 819	/*
 820	 * the idea is to trigger a regular read through the standard path. we
 821	 * read a page from the (failed) logical address by specifying the
 822	 * corresponding copynum of the failed sector. thus, that readpage is
 823	 * expected to fail.
 824	 * that is the point where on-the-fly error correction will kick in
 825	 * (once it's finished) and rewrite the failed sector if a good copy
 826	 * can be found.
 827	 */
 828	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
 829					  scrub_fixup_readpage, fixup);
 
 830	if (ret < 0) {
 831		uncorrectable = 1;
 832		goto out;
 833	}
 834	WARN_ON(ret != 1);
 835
 836	spin_lock(&sctx->stat_lock);
 837	++sctx->stat.corrected_errors;
 838	spin_unlock(&sctx->stat_lock);
 839
 840out:
 841	if (trans && !IS_ERR(trans))
 842		btrfs_end_transaction(trans);
 843	if (uncorrectable) {
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.uncorrectable_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		btrfs_dev_replace_stats_inc(
 848			&fs_info->dev_replace.num_uncorrectable_read_errors);
 849		btrfs_err_rl_in_rcu(fs_info,
 850		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
 
 851			fixup->logical, rcu_str_deref(fixup->dev->name));
 852	}
 853
 854	btrfs_free_path(path);
 855	kfree(fixup);
 856
 857	scrub_pending_trans_workers_dec(sctx);
 858}
 859
 860static inline void scrub_get_recover(struct scrub_recover *recover)
 861{
 862	atomic_inc(&recover->refs);
 863}
 864
 865static inline void scrub_put_recover(struct scrub_recover *recover)
 866{
 867	if (atomic_dec_and_test(&recover->refs)) {
 868		btrfs_put_bbio(recover->bbio);
 869		kfree(recover);
 870	}
 871}
 872
 873/*
 874 * scrub_handle_errored_block gets called when either verification of the
 875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 876 * case, this function handles all pages in the bio, even though only one
 877 * may be bad.
 878 * The goal of this function is to repair the errored block by using the
 879 * contents of one of the mirrors.
 880 */
 881static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 882{
 883	struct scrub_ctx *sctx = sblock_to_check->sctx;
 884	struct btrfs_device *dev;
 885	struct btrfs_fs_info *fs_info;
 886	u64 length;
 887	u64 logical;
 
 888	unsigned int failed_mirror_index;
 889	unsigned int is_metadata;
 890	unsigned int have_csum;
 
 891	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 892	struct scrub_block *sblock_bad;
 893	int ret;
 894	int mirror_index;
 895	int page_num;
 896	int success;
 897	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 898				      DEFAULT_RATELIMIT_BURST);
 899
 900	BUG_ON(sblock_to_check->page_count < 1);
 901	fs_info = sctx->fs_info;
 902	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 903		/*
 904		 * if we find an error in a super block, we just report it.
 905		 * They will get written with the next transaction commit
 906		 * anyway
 907		 */
 908		spin_lock(&sctx->stat_lock);
 909		++sctx->stat.super_errors;
 910		spin_unlock(&sctx->stat_lock);
 911		return 0;
 912	}
 913	length = sblock_to_check->page_count * PAGE_SIZE;
 914	logical = sblock_to_check->pagev[0]->logical;
 
 915	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 916	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 917	is_metadata = !(sblock_to_check->pagev[0]->flags &
 918			BTRFS_EXTENT_FLAG_DATA);
 919	have_csum = sblock_to_check->pagev[0]->have_csum;
 
 920	dev = sblock_to_check->pagev[0]->dev;
 921
 922	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 923		sblocks_for_recheck = NULL;
 924		goto nodatasum_case;
 925	}
 926
 927	/*
 928	 * read all mirrors one after the other. This includes to
 929	 * re-read the extent or metadata block that failed (that was
 930	 * the cause that this fixup code is called) another time,
 931	 * page by page this time in order to know which pages
 932	 * caused I/O errors and which ones are good (for all mirrors).
 933	 * It is the goal to handle the situation when more than one
 934	 * mirror contains I/O errors, but the errors do not
 935	 * overlap, i.e. the data can be repaired by selecting the
 936	 * pages from those mirrors without I/O error on the
 937	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 938	 * would be that mirror #1 has an I/O error on the first page,
 939	 * the second page is good, and mirror #2 has an I/O error on
 940	 * the second page, but the first page is good.
 941	 * Then the first page of the first mirror can be repaired by
 942	 * taking the first page of the second mirror, and the
 943	 * second page of the second mirror can be repaired by
 944	 * copying the contents of the 2nd page of the 1st mirror.
 945	 * One more note: if the pages of one mirror contain I/O
 946	 * errors, the checksum cannot be verified. In order to get
 947	 * the best data for repairing, the first attempt is to find
 948	 * a mirror without I/O errors and with a validated checksum.
 949	 * Only if this is not possible, the pages are picked from
 950	 * mirrors with I/O errors without considering the checksum.
 951	 * If the latter is the case, at the end, the checksum of the
 952	 * repaired area is verified in order to correctly maintain
 953	 * the statistics.
 954	 */
 955
 956	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 957				      sizeof(*sblocks_for_recheck), GFP_NOFS);
 
 958	if (!sblocks_for_recheck) {
 959		spin_lock(&sctx->stat_lock);
 960		sctx->stat.malloc_errors++;
 961		sctx->stat.read_errors++;
 962		sctx->stat.uncorrectable_errors++;
 963		spin_unlock(&sctx->stat_lock);
 964		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 965		goto out;
 966	}
 967
 968	/* setup the context, map the logical blocks and alloc the pages */
 969	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 
 970	if (ret) {
 971		spin_lock(&sctx->stat_lock);
 972		sctx->stat.read_errors++;
 973		sctx->stat.uncorrectable_errors++;
 974		spin_unlock(&sctx->stat_lock);
 975		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 976		goto out;
 977	}
 978	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 979	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 980
 981	/* build and submit the bios for the failed mirror, check checksums */
 982	scrub_recheck_block(fs_info, sblock_bad, 1);
 
 983
 984	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 985	    sblock_bad->no_io_error_seen) {
 986		/*
 987		 * the error disappeared after reading page by page, or
 988		 * the area was part of a huge bio and other parts of the
 989		 * bio caused I/O errors, or the block layer merged several
 990		 * read requests into one and the error is caused by a
 991		 * different bio (usually one of the two latter cases is
 992		 * the cause)
 993		 */
 994		spin_lock(&sctx->stat_lock);
 995		sctx->stat.unverified_errors++;
 996		sblock_to_check->data_corrected = 1;
 997		spin_unlock(&sctx->stat_lock);
 998
 999		if (sctx->is_dev_replace)
1000			scrub_write_block_to_dev_replace(sblock_bad);
1001		goto out;
1002	}
1003
1004	if (!sblock_bad->no_io_error_seen) {
1005		spin_lock(&sctx->stat_lock);
1006		sctx->stat.read_errors++;
1007		spin_unlock(&sctx->stat_lock);
1008		if (__ratelimit(&_rs))
1009			scrub_print_warning("i/o error", sblock_to_check);
1010		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011	} else if (sblock_bad->checksum_error) {
1012		spin_lock(&sctx->stat_lock);
1013		sctx->stat.csum_errors++;
1014		spin_unlock(&sctx->stat_lock);
1015		if (__ratelimit(&_rs))
1016			scrub_print_warning("checksum error", sblock_to_check);
1017		btrfs_dev_stat_inc_and_print(dev,
1018					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019	} else if (sblock_bad->header_error) {
1020		spin_lock(&sctx->stat_lock);
1021		sctx->stat.verify_errors++;
1022		spin_unlock(&sctx->stat_lock);
1023		if (__ratelimit(&_rs))
1024			scrub_print_warning("checksum/header error",
1025					    sblock_to_check);
1026		if (sblock_bad->generation_error)
1027			btrfs_dev_stat_inc_and_print(dev,
1028				BTRFS_DEV_STAT_GENERATION_ERRS);
1029		else
1030			btrfs_dev_stat_inc_and_print(dev,
1031				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032	}
1033
1034	if (sctx->readonly) {
1035		ASSERT(!sctx->is_dev_replace);
1036		goto out;
1037	}
1038
1039	if (!is_metadata && !have_csum) {
1040		struct scrub_fixup_nodatasum *fixup_nodatasum;
1041
1042		WARN_ON(sctx->is_dev_replace);
1043
1044nodatasum_case:
 
1045
1046		/*
1047		 * !is_metadata and !have_csum, this means that the data
1048		 * might not be COWed, that it might be modified
1049		 * concurrently. The general strategy to work on the
1050		 * commit root does not help in the case when COW is not
1051		 * used.
1052		 */
1053		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054		if (!fixup_nodatasum)
1055			goto did_not_correct_error;
1056		fixup_nodatasum->sctx = sctx;
1057		fixup_nodatasum->dev = dev;
1058		fixup_nodatasum->logical = logical;
1059		fixup_nodatasum->root = fs_info->extent_root;
1060		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061		scrub_pending_trans_workers_inc(sctx);
1062		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063				scrub_fixup_nodatasum, NULL, NULL);
1064		btrfs_queue_work(fs_info->scrub_workers,
1065				 &fixup_nodatasum->work);
1066		goto out;
1067	}
1068
1069	/*
1070	 * now build and submit the bios for the other mirrors, check
1071	 * checksums.
1072	 * First try to pick the mirror which is completely without I/O
1073	 * errors and also does not have a checksum error.
1074	 * If one is found, and if a checksum is present, the full block
1075	 * that is known to contain an error is rewritten. Afterwards
1076	 * the block is known to be corrected.
1077	 * If a mirror is found which is completely correct, and no
1078	 * checksum is present, only those pages are rewritten that had
1079	 * an I/O error in the block to be repaired, since it cannot be
1080	 * determined, which copy of the other pages is better (and it
1081	 * could happen otherwise that a correct page would be
1082	 * overwritten by a bad one).
1083	 */
1084	for (mirror_index = 0;
1085	     mirror_index < BTRFS_MAX_MIRRORS &&
1086	     sblocks_for_recheck[mirror_index].page_count > 0;
1087	     mirror_index++) {
1088		struct scrub_block *sblock_other;
1089
1090		if (mirror_index == failed_mirror_index)
1091			continue;
1092		sblock_other = sblocks_for_recheck + mirror_index;
1093
1094		/* build and submit the bios, check checksums */
1095		scrub_recheck_block(fs_info, sblock_other, 0);
 
 
1096
1097		if (!sblock_other->header_error &&
1098		    !sblock_other->checksum_error &&
1099		    sblock_other->no_io_error_seen) {
1100			if (sctx->is_dev_replace) {
1101				scrub_write_block_to_dev_replace(sblock_other);
1102				goto corrected_error;
1103			} else {
 
 
1104				ret = scrub_repair_block_from_good_copy(
1105						sblock_bad, sblock_other);
1106				if (!ret)
1107					goto corrected_error;
1108			}
 
 
1109		}
1110	}
1111
1112	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113		goto did_not_correct_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115	/*
 
1116	 * In case of I/O errors in the area that is supposed to be
1117	 * repaired, continue by picking good copies of those pages.
1118	 * Select the good pages from mirrors to rewrite bad pages from
1119	 * the area to fix. Afterwards verify the checksum of the block
1120	 * that is supposed to be repaired. This verification step is
1121	 * only done for the purpose of statistic counting and for the
1122	 * final scrub report, whether errors remain.
1123	 * A perfect algorithm could make use of the checksum and try
1124	 * all possible combinations of pages from the different mirrors
1125	 * until the checksum verification succeeds. For example, when
1126	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127	 * of mirror #2 is readable but the final checksum test fails,
1128	 * then the 2nd page of mirror #3 could be tried, whether now
1129	 * the final checksum succeeds. But this would be a rare
1130	 * exception and is therefore not implemented. At least it is
1131	 * avoided that the good copy is overwritten.
1132	 * A more useful improvement would be to pick the sectors
1133	 * without I/O error based on sector sizes (512 bytes on legacy
1134	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135	 * mirror could be repaired by taking 512 byte of a different
1136	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137	 * area are unreadable.
1138	 */
 
 
 
 
 
1139	success = 1;
1140	for (page_num = 0; page_num < sblock_bad->page_count;
1141	     page_num++) {
1142		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143		struct scrub_block *sblock_other = NULL;
1144
1145		/* skip no-io-error page in scrub */
1146		if (!page_bad->io_error && !sctx->is_dev_replace)
1147			continue;
1148
1149		/* try to find no-io-error page in mirrors */
1150		if (page_bad->io_error) {
1151			for (mirror_index = 0;
1152			     mirror_index < BTRFS_MAX_MIRRORS &&
1153			     sblocks_for_recheck[mirror_index].page_count > 0;
1154			     mirror_index++) {
1155				if (!sblocks_for_recheck[mirror_index].
1156				    pagev[page_num]->io_error) {
1157					sblock_other = sblocks_for_recheck +
1158						       mirror_index;
1159					break;
 
 
 
 
1160				}
1161			}
1162			if (!sblock_other)
1163				success = 0;
1164		}
1165
1166		if (sctx->is_dev_replace) {
1167			/*
1168			 * did not find a mirror to fetch the page
1169			 * from. scrub_write_page_to_dev_replace()
1170			 * handles this case (page->io_error), by
1171			 * filling the block with zeros before
1172			 * submitting the write request
1173			 */
1174			if (!sblock_other)
1175				sblock_other = sblock_bad;
1176
1177			if (scrub_write_page_to_dev_replace(sblock_other,
1178							    page_num) != 0) {
1179				btrfs_dev_replace_stats_inc(
1180					&fs_info->dev_replace.num_write_errors);
1181				success = 0;
1182			}
1183		} else if (sblock_other) {
1184			ret = scrub_repair_page_from_good_copy(sblock_bad,
1185							       sblock_other,
1186							       page_num, 0);
1187			if (0 == ret)
1188				page_bad->io_error = 0;
1189			else
1190				success = 0;
1191		}
1192	}
1193
1194	if (success && !sctx->is_dev_replace) {
1195		if (is_metadata || have_csum) {
1196			/*
1197			 * need to verify the checksum now that all
1198			 * sectors on disk are repaired (the write
1199			 * request for data to be repaired is on its way).
1200			 * Just be lazy and use scrub_recheck_block()
1201			 * which re-reads the data before the checksum
1202			 * is verified, but most likely the data comes out
1203			 * of the page cache.
1204			 */
1205			scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
1206			if (!sblock_bad->header_error &&
1207			    !sblock_bad->checksum_error &&
1208			    sblock_bad->no_io_error_seen)
1209				goto corrected_error;
1210			else
1211				goto did_not_correct_error;
1212		} else {
1213corrected_error:
1214			spin_lock(&sctx->stat_lock);
1215			sctx->stat.corrected_errors++;
1216			sblock_to_check->data_corrected = 1;
1217			spin_unlock(&sctx->stat_lock);
1218			btrfs_err_rl_in_rcu(fs_info,
1219				"fixed up error at logical %llu on dev %s",
1220				logical, rcu_str_deref(dev->name));
1221		}
1222	} else {
1223did_not_correct_error:
1224		spin_lock(&sctx->stat_lock);
1225		sctx->stat.uncorrectable_errors++;
1226		spin_unlock(&sctx->stat_lock);
1227		btrfs_err_rl_in_rcu(fs_info,
1228			"unable to fixup (regular) error at logical %llu on dev %s",
1229			logical, rcu_str_deref(dev->name));
1230	}
1231
1232out:
1233	if (sblocks_for_recheck) {
1234		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1235		     mirror_index++) {
1236			struct scrub_block *sblock = sblocks_for_recheck +
1237						     mirror_index;
1238			struct scrub_recover *recover;
1239			int page_index;
1240
1241			for (page_index = 0; page_index < sblock->page_count;
1242			     page_index++) {
1243				sblock->pagev[page_index]->sblock = NULL;
1244				recover = sblock->pagev[page_index]->recover;
1245				if (recover) {
1246					scrub_put_recover(recover);
1247					sblock->pagev[page_index]->recover =
1248									NULL;
1249				}
1250				scrub_page_put(sblock->pagev[page_index]);
1251			}
1252		}
1253		kfree(sblocks_for_recheck);
1254	}
1255
1256	return 0;
1257}
1258
1259static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260{
1261	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1262		return 2;
1263	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1264		return 3;
1265	else
1266		return (int)bbio->num_stripes;
1267}
1268
1269static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1270						 u64 *raid_map,
1271						 u64 mapped_length,
1272						 int nstripes, int mirror,
1273						 int *stripe_index,
1274						 u64 *stripe_offset)
1275{
1276	int i;
1277
1278	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279		/* RAID5/6 */
1280		for (i = 0; i < nstripes; i++) {
1281			if (raid_map[i] == RAID6_Q_STRIPE ||
1282			    raid_map[i] == RAID5_P_STRIPE)
1283				continue;
1284
1285			if (logical >= raid_map[i] &&
1286			    logical < raid_map[i] + mapped_length)
1287				break;
1288		}
1289
1290		*stripe_index = i;
1291		*stripe_offset = logical - raid_map[i];
1292	} else {
1293		/* The other RAID type */
1294		*stripe_index = mirror;
1295		*stripe_offset = 0;
1296	}
1297}
1298
1299static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300				     struct scrub_block *sblocks_for_recheck)
1301{
1302	struct scrub_ctx *sctx = original_sblock->sctx;
1303	struct btrfs_fs_info *fs_info = sctx->fs_info;
1304	u64 length = original_sblock->page_count * PAGE_SIZE;
1305	u64 logical = original_sblock->pagev[0]->logical;
1306	u64 generation = original_sblock->pagev[0]->generation;
1307	u64 flags = original_sblock->pagev[0]->flags;
1308	u64 have_csum = original_sblock->pagev[0]->have_csum;
1309	struct scrub_recover *recover;
1310	struct btrfs_bio *bbio;
1311	u64 sublen;
1312	u64 mapped_length;
1313	u64 stripe_offset;
1314	int stripe_index;
1315	int page_index = 0;
1316	int mirror_index;
1317	int nmirrors;
1318	int ret;
1319
1320	/*
1321	 * note: the two members refs and outstanding_pages
1322	 * are not used (and not set) in the blocks that are used for
1323	 * the recheck procedure
1324	 */
1325
 
1326	while (length > 0) {
1327		sublen = min_t(u64, length, PAGE_SIZE);
1328		mapped_length = sublen;
1329		bbio = NULL;
1330
1331		/*
1332		 * with a length of PAGE_SIZE, each returned stripe
1333		 * represents one mirror
1334		 */
1335		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1336				logical, &mapped_length, &bbio, 0, 1);
1337		if (ret || !bbio || mapped_length < sublen) {
1338			btrfs_put_bbio(bbio);
1339			return -EIO;
1340		}
1341
1342		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1343		if (!recover) {
1344			btrfs_put_bbio(bbio);
1345			return -ENOMEM;
1346		}
1347
1348		atomic_set(&recover->refs, 1);
1349		recover->bbio = bbio;
1350		recover->map_length = mapped_length;
1351
1352		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1353
1354		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1355
1356		for (mirror_index = 0; mirror_index < nmirrors;
1357		     mirror_index++) {
1358			struct scrub_block *sblock;
1359			struct scrub_page *page;
1360
 
 
 
1361			sblock = sblocks_for_recheck + mirror_index;
1362			sblock->sctx = sctx;
1363
1364			page = kzalloc(sizeof(*page), GFP_NOFS);
1365			if (!page) {
1366leave_nomem:
1367				spin_lock(&sctx->stat_lock);
1368				sctx->stat.malloc_errors++;
1369				spin_unlock(&sctx->stat_lock);
1370				scrub_put_recover(recover);
1371				return -ENOMEM;
1372			}
1373			scrub_page_get(page);
1374			sblock->pagev[page_index] = page;
1375			page->sblock = sblock;
1376			page->flags = flags;
1377			page->generation = generation;
1378			page->logical = logical;
1379			page->have_csum = have_csum;
1380			if (have_csum)
1381				memcpy(page->csum,
1382				       original_sblock->pagev[0]->csum,
1383				       sctx->csum_size);
1384
1385			scrub_stripe_index_and_offset(logical,
1386						      bbio->map_type,
1387						      bbio->raid_map,
1388						      mapped_length,
1389						      bbio->num_stripes -
1390						      bbio->num_tgtdevs,
1391						      mirror_index,
1392						      &stripe_index,
1393						      &stripe_offset);
1394			page->physical = bbio->stripes[stripe_index].physical +
1395					 stripe_offset;
1396			page->dev = bbio->stripes[stripe_index].dev;
1397
1398			BUG_ON(page_index >= original_sblock->page_count);
1399			page->physical_for_dev_replace =
1400				original_sblock->pagev[page_index]->
1401				physical_for_dev_replace;
1402			/* for missing devices, dev->bdev is NULL */
 
1403			page->mirror_num = mirror_index + 1;
1404			sblock->page_count++;
1405			page->page = alloc_page(GFP_NOFS);
1406			if (!page->page)
1407				goto leave_nomem;
1408
1409			scrub_get_recover(recover);
1410			page->recover = recover;
1411		}
1412		scrub_put_recover(recover);
1413		length -= sublen;
1414		logical += sublen;
1415		page_index++;
1416	}
1417
1418	return 0;
1419}
1420
1421struct scrub_bio_ret {
1422	struct completion event;
1423	int error;
1424};
1425
1426static void scrub_bio_wait_endio(struct bio *bio)
1427{
1428	struct scrub_bio_ret *ret = bio->bi_private;
1429
1430	ret->error = bio->bi_error;
1431	complete(&ret->event);
1432}
1433
1434static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1435{
1436	return page->recover &&
1437	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1438}
1439
1440static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1441					struct bio *bio,
1442					struct scrub_page *page)
1443{
1444	struct scrub_bio_ret done;
1445	int ret;
1446
1447	init_completion(&done.event);
1448	done.error = 0;
1449	bio->bi_iter.bi_sector = page->logical >> 9;
1450	bio->bi_private = &done;
1451	bio->bi_end_io = scrub_bio_wait_endio;
1452
1453	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1454				    page->recover->map_length,
1455				    page->mirror_num, 0);
1456	if (ret)
1457		return ret;
1458
1459	wait_for_completion(&done.event);
1460	if (done.error)
1461		return -EIO;
1462
1463	return 0;
1464}
1465
1466/*
1467 * this function will check the on disk data for checksum errors, header
1468 * errors and read I/O errors. If any I/O errors happen, the exact pages
1469 * which are errored are marked as being bad. The goal is to enable scrub
1470 * to take those pages that are not errored from all the mirrors so that
1471 * the pages that are errored in the just handled mirror can be repaired.
1472 */
1473static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1474				struct scrub_block *sblock,
1475				int retry_failed_mirror)
 
1476{
1477	int page_num;
1478
1479	sblock->no_io_error_seen = 1;
 
 
1480
1481	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482		struct bio *bio;
1483		struct scrub_page *page = sblock->pagev[page_num];
1484
1485		if (page->dev->bdev == NULL) {
1486			page->io_error = 1;
1487			sblock->no_io_error_seen = 0;
1488			continue;
1489		}
1490
1491		WARN_ON(!page->page);
1492		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1493		if (!bio) {
1494			page->io_error = 1;
1495			sblock->no_io_error_seen = 0;
1496			continue;
1497		}
1498		bio->bi_bdev = page->dev->bdev;
 
1499
1500		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1501		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1502			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1503				sblock->no_io_error_seen = 0;
1504		} else {
1505			bio->bi_iter.bi_sector = page->physical >> 9;
1506			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1507
1508			if (btrfsic_submit_bio_wait(bio))
1509				sblock->no_io_error_seen = 0;
1510		}
1511
1512		bio_put(bio);
1513	}
1514
1515	if (sblock->no_io_error_seen)
1516		scrub_recheck_block_checksum(sblock);
 
 
 
 
1517}
1518
1519static inline int scrub_check_fsid(u8 fsid[],
1520				   struct scrub_page *spage)
 
 
 
1521{
1522	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523	int ret;
 
 
1524
1525	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526	return !ret;
1527}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528
1529static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530{
1531	sblock->header_error = 0;
1532	sblock->checksum_error = 0;
1533	sblock->generation_error = 0;
1534
1535	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536		scrub_checksum_data(sblock);
1537	else
1538		scrub_checksum_tree_block(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539}
1540
1541static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542					     struct scrub_block *sblock_good)
 
1543{
1544	int page_num;
1545	int ret = 0;
1546
1547	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548		int ret_sub;
1549
1550		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551							   sblock_good,
1552							   page_num, 1);
 
1553		if (ret_sub)
1554			ret = ret_sub;
1555	}
1556
1557	return ret;
1558}
1559
1560static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561					    struct scrub_block *sblock_good,
1562					    int page_num, int force_write)
1563{
1564	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1567
1568	BUG_ON(page_bad->page == NULL);
1569	BUG_ON(page_good->page == NULL);
1570	if (force_write || sblock_bad->header_error ||
1571	    sblock_bad->checksum_error || page_bad->io_error) {
1572		struct bio *bio;
1573		int ret;
1574
1575		if (!page_bad->dev->bdev) {
1576			btrfs_warn_rl(fs_info,
1577				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
 
1578			return -EIO;
1579		}
1580
1581		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582		if (!bio)
1583			return -EIO;
1584		bio->bi_bdev = page_bad->dev->bdev;
1585		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1587
1588		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1589		if (PAGE_SIZE != ret) {
1590			bio_put(bio);
1591			return -EIO;
1592		}
1593
1594		if (btrfsic_submit_bio_wait(bio)) {
1595			btrfs_dev_stat_inc_and_print(page_bad->dev,
1596				BTRFS_DEV_STAT_WRITE_ERRS);
1597			btrfs_dev_replace_stats_inc(
1598				&fs_info->dev_replace.num_write_errors);
 
1599			bio_put(bio);
1600			return -EIO;
1601		}
1602		bio_put(bio);
1603	}
1604
1605	return 0;
1606}
1607
1608static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609{
1610	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1611	int page_num;
1612
1613	/*
1614	 * This block is used for the check of the parity on the source device,
1615	 * so the data needn't be written into the destination device.
1616	 */
1617	if (sblock->sparity)
1618		return;
1619
1620	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1621		int ret;
1622
1623		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1624		if (ret)
1625			btrfs_dev_replace_stats_inc(
1626				&fs_info->dev_replace.num_write_errors);
 
1627	}
1628}
1629
1630static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631					   int page_num)
1632{
1633	struct scrub_page *spage = sblock->pagev[page_num];
1634
1635	BUG_ON(spage->page == NULL);
1636	if (spage->io_error) {
1637		void *mapped_buffer = kmap_atomic(spage->page);
1638
1639		memset(mapped_buffer, 0, PAGE_SIZE);
1640		flush_dcache_page(spage->page);
1641		kunmap_atomic(mapped_buffer);
1642	}
1643	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644}
1645
1646static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647				    struct scrub_page *spage)
1648{
1649	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650	struct scrub_bio *sbio;
1651	int ret;
1652
1653	mutex_lock(&wr_ctx->wr_lock);
1654again:
1655	if (!wr_ctx->wr_curr_bio) {
1656		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657					      GFP_KERNEL);
1658		if (!wr_ctx->wr_curr_bio) {
1659			mutex_unlock(&wr_ctx->wr_lock);
1660			return -ENOMEM;
1661		}
1662		wr_ctx->wr_curr_bio->sctx = sctx;
1663		wr_ctx->wr_curr_bio->page_count = 0;
1664	}
1665	sbio = wr_ctx->wr_curr_bio;
1666	if (sbio->page_count == 0) {
1667		struct bio *bio;
1668
1669		sbio->physical = spage->physical_for_dev_replace;
1670		sbio->logical = spage->logical;
1671		sbio->dev = wr_ctx->tgtdev;
1672		bio = sbio->bio;
1673		if (!bio) {
1674			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675					wr_ctx->pages_per_wr_bio);
1676			if (!bio) {
1677				mutex_unlock(&wr_ctx->wr_lock);
1678				return -ENOMEM;
1679			}
1680			sbio->bio = bio;
1681		}
1682
1683		bio->bi_private = sbio;
1684		bio->bi_end_io = scrub_wr_bio_end_io;
1685		bio->bi_bdev = sbio->dev->bdev;
1686		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1688		sbio->err = 0;
1689	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1690		   spage->physical_for_dev_replace ||
1691		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1692		   spage->logical) {
1693		scrub_wr_submit(sctx);
1694		goto again;
1695	}
1696
1697	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1698	if (ret != PAGE_SIZE) {
1699		if (sbio->page_count < 1) {
1700			bio_put(sbio->bio);
1701			sbio->bio = NULL;
1702			mutex_unlock(&wr_ctx->wr_lock);
1703			return -EIO;
1704		}
1705		scrub_wr_submit(sctx);
1706		goto again;
1707	}
1708
1709	sbio->pagev[sbio->page_count] = spage;
1710	scrub_page_get(spage);
1711	sbio->page_count++;
1712	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1713		scrub_wr_submit(sctx);
1714	mutex_unlock(&wr_ctx->wr_lock);
1715
1716	return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
1720{
1721	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1722	struct scrub_bio *sbio;
1723
1724	if (!wr_ctx->wr_curr_bio)
1725		return;
1726
1727	sbio = wr_ctx->wr_curr_bio;
1728	wr_ctx->wr_curr_bio = NULL;
1729	WARN_ON(!sbio->bio->bi_bdev);
1730	scrub_pending_bio_inc(sctx);
1731	/* process all writes in a single worker thread. Then the block layer
1732	 * orders the requests before sending them to the driver which
1733	 * doubled the write performance on spinning disks when measured
1734	 * with Linux 3.5 */
1735	btrfsic_submit_bio(sbio->bio);
1736}
1737
1738static void scrub_wr_bio_end_io(struct bio *bio)
1739{
1740	struct scrub_bio *sbio = bio->bi_private;
1741	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1742
1743	sbio->err = bio->bi_error;
1744	sbio->bio = bio;
1745
1746	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1747			 scrub_wr_bio_end_io_worker, NULL, NULL);
1748	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749}
1750
1751static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1752{
1753	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1754	struct scrub_ctx *sctx = sbio->sctx;
1755	int i;
1756
1757	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1758	if (sbio->err) {
1759		struct btrfs_dev_replace *dev_replace =
1760			&sbio->sctx->fs_info->dev_replace;
1761
1762		for (i = 0; i < sbio->page_count; i++) {
1763			struct scrub_page *spage = sbio->pagev[i];
1764
1765			spage->io_error = 1;
1766			btrfs_dev_replace_stats_inc(&dev_replace->
1767						    num_write_errors);
1768		}
1769	}
1770
1771	for (i = 0; i < sbio->page_count; i++)
1772		scrub_page_put(sbio->pagev[i]);
1773
1774	bio_put(sbio->bio);
1775	kfree(sbio);
1776	scrub_pending_bio_dec(sctx);
1777}
1778
1779static int scrub_checksum(struct scrub_block *sblock)
1780{
1781	u64 flags;
1782	int ret;
1783
1784	/*
1785	 * No need to initialize these stats currently,
1786	 * because this function only use return value
1787	 * instead of these stats value.
1788	 *
1789	 * Todo:
1790	 * always use stats
1791	 */
1792	sblock->header_error = 0;
1793	sblock->generation_error = 0;
1794	sblock->checksum_error = 0;
1795
1796	WARN_ON(sblock->page_count < 1);
1797	flags = sblock->pagev[0]->flags;
1798	ret = 0;
1799	if (flags & BTRFS_EXTENT_FLAG_DATA)
1800		ret = scrub_checksum_data(sblock);
1801	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802		ret = scrub_checksum_tree_block(sblock);
1803	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804		(void)scrub_checksum_super(sblock);
1805	else
1806		WARN_ON(1);
1807	if (ret)
1808		scrub_handle_errored_block(sblock);
1809
1810	return ret;
1811}
1812
1813static int scrub_checksum_data(struct scrub_block *sblock)
1814{
1815	struct scrub_ctx *sctx = sblock->sctx;
1816	u8 csum[BTRFS_CSUM_SIZE];
1817	u8 *on_disk_csum;
1818	struct page *page;
1819	void *buffer;
1820	u32 crc = ~(u32)0;
 
1821	u64 len;
1822	int index;
1823
1824	BUG_ON(sblock->page_count < 1);
1825	if (!sblock->pagev[0]->have_csum)
1826		return 0;
1827
1828	on_disk_csum = sblock->pagev[0]->csum;
1829	page = sblock->pagev[0]->page;
1830	buffer = kmap_atomic(page);
1831
1832	len = sctx->sectorsize;
1833	index = 0;
1834	for (;;) {
1835		u64 l = min_t(u64, len, PAGE_SIZE);
1836
1837		crc = btrfs_csum_data(buffer, crc, l);
1838		kunmap_atomic(buffer);
1839		len -= l;
1840		if (len == 0)
1841			break;
1842		index++;
1843		BUG_ON(index >= sblock->page_count);
1844		BUG_ON(!sblock->pagev[index]->page);
1845		page = sblock->pagev[index]->page;
1846		buffer = kmap_atomic(page);
1847	}
1848
1849	btrfs_csum_final(crc, csum);
1850	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1851		sblock->checksum_error = 1;
1852
1853	return sblock->checksum_error;
1854}
1855
1856static int scrub_checksum_tree_block(struct scrub_block *sblock)
1857{
1858	struct scrub_ctx *sctx = sblock->sctx;
1859	struct btrfs_header *h;
1860	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
1861	u8 calculated_csum[BTRFS_CSUM_SIZE];
1862	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863	struct page *page;
1864	void *mapped_buffer;
1865	u64 mapped_size;
1866	void *p;
1867	u32 crc = ~(u32)0;
 
 
1868	u64 len;
1869	int index;
1870
1871	BUG_ON(sblock->page_count < 1);
1872	page = sblock->pagev[0]->page;
1873	mapped_buffer = kmap_atomic(page);
1874	h = (struct btrfs_header *)mapped_buffer;
1875	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876
1877	/*
1878	 * we don't use the getter functions here, as we
1879	 * a) don't have an extent buffer and
1880	 * b) the page is already kmapped
1881	 */
 
1882	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883		sblock->header_error = 1;
1884
1885	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886		sblock->header_error = 1;
1887		sblock->generation_error = 1;
1888	}
1889
1890	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891		sblock->header_error = 1;
1892
1893	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894		   BTRFS_UUID_SIZE))
1895		sblock->header_error = 1;
1896
 
1897	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900	index = 0;
1901	for (;;) {
1902		u64 l = min_t(u64, len, mapped_size);
1903
1904		crc = btrfs_csum_data(p, crc, l);
1905		kunmap_atomic(mapped_buffer);
1906		len -= l;
1907		if (len == 0)
1908			break;
1909		index++;
1910		BUG_ON(index >= sblock->page_count);
1911		BUG_ON(!sblock->pagev[index]->page);
1912		page = sblock->pagev[index]->page;
1913		mapped_buffer = kmap_atomic(page);
1914		mapped_size = PAGE_SIZE;
1915		p = mapped_buffer;
1916	}
1917
1918	btrfs_csum_final(crc, calculated_csum);
1919	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920		sblock->checksum_error = 1;
1921
1922	return sblock->header_error || sblock->checksum_error;
1923}
1924
1925static int scrub_checksum_super(struct scrub_block *sblock)
1926{
1927	struct btrfs_super_block *s;
1928	struct scrub_ctx *sctx = sblock->sctx;
 
 
1929	u8 calculated_csum[BTRFS_CSUM_SIZE];
1930	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931	struct page *page;
1932	void *mapped_buffer;
1933	u64 mapped_size;
1934	void *p;
1935	u32 crc = ~(u32)0;
1936	int fail_gen = 0;
1937	int fail_cor = 0;
1938	u64 len;
1939	int index;
1940
1941	BUG_ON(sblock->page_count < 1);
1942	page = sblock->pagev[0]->page;
1943	mapped_buffer = kmap_atomic(page);
1944	s = (struct btrfs_super_block *)mapped_buffer;
1945	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946
1947	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948		++fail_cor;
1949
1950	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951		++fail_gen;
1952
1953	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954		++fail_cor;
1955
1956	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959	index = 0;
1960	for (;;) {
1961		u64 l = min_t(u64, len, mapped_size);
1962
1963		crc = btrfs_csum_data(p, crc, l);
1964		kunmap_atomic(mapped_buffer);
1965		len -= l;
1966		if (len == 0)
1967			break;
1968		index++;
1969		BUG_ON(index >= sblock->page_count);
1970		BUG_ON(!sblock->pagev[index]->page);
1971		page = sblock->pagev[index]->page;
1972		mapped_buffer = kmap_atomic(page);
1973		mapped_size = PAGE_SIZE;
1974		p = mapped_buffer;
1975	}
1976
1977	btrfs_csum_final(crc, calculated_csum);
1978	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979		++fail_cor;
1980
1981	if (fail_cor + fail_gen) {
1982		/*
1983		 * if we find an error in a super block, we just report it.
1984		 * They will get written with the next transaction commit
1985		 * anyway
1986		 */
1987		spin_lock(&sctx->stat_lock);
1988		++sctx->stat.super_errors;
1989		spin_unlock(&sctx->stat_lock);
1990		if (fail_cor)
1991			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993		else
1994			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995				BTRFS_DEV_STAT_GENERATION_ERRS);
1996	}
1997
1998	return fail_cor + fail_gen;
1999}
2000
2001static void scrub_block_get(struct scrub_block *sblock)
2002{
2003	atomic_inc(&sblock->refs);
2004}
2005
2006static void scrub_block_put(struct scrub_block *sblock)
2007{
2008	if (atomic_dec_and_test(&sblock->refs)) {
2009		int i;
2010
2011		if (sblock->sparity)
2012			scrub_parity_put(sblock->sparity);
2013
2014		for (i = 0; i < sblock->page_count; i++)
2015			scrub_page_put(sblock->pagev[i]);
2016		kfree(sblock);
2017	}
2018}
2019
2020static void scrub_page_get(struct scrub_page *spage)
2021{
2022	atomic_inc(&spage->refs);
2023}
2024
2025static void scrub_page_put(struct scrub_page *spage)
2026{
2027	if (atomic_dec_and_test(&spage->refs)) {
2028		if (spage->page)
2029			__free_page(spage->page);
2030		kfree(spage);
2031	}
2032}
2033
2034static void scrub_submit(struct scrub_ctx *sctx)
2035{
2036	struct scrub_bio *sbio;
2037
2038	if (sctx->curr == -1)
2039		return;
2040
2041	sbio = sctx->bios[sctx->curr];
2042	sctx->curr = -1;
2043	scrub_pending_bio_inc(sctx);
2044	btrfsic_submit_bio(sbio->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045}
2046
2047static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048				    struct scrub_page *spage)
2049{
2050	struct scrub_block *sblock = spage->sblock;
2051	struct scrub_bio *sbio;
2052	int ret;
2053
2054again:
2055	/*
2056	 * grab a fresh bio or wait for one to become available
2057	 */
2058	while (sctx->curr == -1) {
2059		spin_lock(&sctx->list_lock);
2060		sctx->curr = sctx->first_free;
2061		if (sctx->curr != -1) {
2062			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063			sctx->bios[sctx->curr]->next_free = -1;
2064			sctx->bios[sctx->curr]->page_count = 0;
2065			spin_unlock(&sctx->list_lock);
2066		} else {
2067			spin_unlock(&sctx->list_lock);
2068			wait_event(sctx->list_wait, sctx->first_free != -1);
2069		}
2070	}
2071	sbio = sctx->bios[sctx->curr];
2072	if (sbio->page_count == 0) {
2073		struct bio *bio;
2074
2075		sbio->physical = spage->physical;
2076		sbio->logical = spage->logical;
2077		sbio->dev = spage->dev;
2078		bio = sbio->bio;
2079		if (!bio) {
2080			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081					sctx->pages_per_rd_bio);
2082			if (!bio)
2083				return -ENOMEM;
2084			sbio->bio = bio;
2085		}
2086
2087		bio->bi_private = sbio;
2088		bio->bi_end_io = scrub_bio_end_io;
2089		bio->bi_bdev = sbio->dev->bdev;
2090		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092		sbio->err = 0;
2093	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2094		   spage->physical ||
2095		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2096		   spage->logical ||
2097		   sbio->dev != spage->dev) {
2098		scrub_submit(sctx);
2099		goto again;
2100	}
2101
2102	sbio->pagev[sbio->page_count] = spage;
2103	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2104	if (ret != PAGE_SIZE) {
2105		if (sbio->page_count < 1) {
2106			bio_put(sbio->bio);
2107			sbio->bio = NULL;
2108			return -EIO;
2109		}
2110		scrub_submit(sctx);
2111		goto again;
2112	}
2113
2114	scrub_block_get(sblock); /* one for the page added to the bio */
2115	atomic_inc(&sblock->outstanding_pages);
2116	sbio->page_count++;
2117	if (sbio->page_count == sctx->pages_per_rd_bio)
2118		scrub_submit(sctx);
2119
2120	return 0;
2121}
2122
2123static void scrub_missing_raid56_end_io(struct bio *bio)
2124{
2125	struct scrub_block *sblock = bio->bi_private;
2126	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2127
2128	if (bio->bi_error)
2129		sblock->no_io_error_seen = 0;
2130
2131	bio_put(bio);
2132
2133	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2134}
2135
2136static void scrub_missing_raid56_worker(struct btrfs_work *work)
2137{
2138	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2139	struct scrub_ctx *sctx = sblock->sctx;
2140	struct btrfs_fs_info *fs_info = sctx->fs_info;
2141	u64 logical;
2142	struct btrfs_device *dev;
2143
2144	logical = sblock->pagev[0]->logical;
2145	dev = sblock->pagev[0]->dev;
2146
2147	if (sblock->no_io_error_seen)
2148		scrub_recheck_block_checksum(sblock);
2149
2150	if (!sblock->no_io_error_seen) {
2151		spin_lock(&sctx->stat_lock);
2152		sctx->stat.read_errors++;
2153		spin_unlock(&sctx->stat_lock);
2154		btrfs_err_rl_in_rcu(fs_info,
2155			"IO error rebuilding logical %llu for dev %s",
2156			logical, rcu_str_deref(dev->name));
2157	} else if (sblock->header_error || sblock->checksum_error) {
2158		spin_lock(&sctx->stat_lock);
2159		sctx->stat.uncorrectable_errors++;
2160		spin_unlock(&sctx->stat_lock);
2161		btrfs_err_rl_in_rcu(fs_info,
2162			"failed to rebuild valid logical %llu for dev %s",
2163			logical, rcu_str_deref(dev->name));
2164	} else {
2165		scrub_write_block_to_dev_replace(sblock);
2166	}
2167
2168	scrub_block_put(sblock);
2169
2170	if (sctx->is_dev_replace &&
2171	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2172		mutex_lock(&sctx->wr_ctx.wr_lock);
2173		scrub_wr_submit(sctx);
2174		mutex_unlock(&sctx->wr_ctx.wr_lock);
2175	}
2176
2177	scrub_pending_bio_dec(sctx);
2178}
2179
2180static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2181{
2182	struct scrub_ctx *sctx = sblock->sctx;
2183	struct btrfs_fs_info *fs_info = sctx->fs_info;
2184	u64 length = sblock->page_count * PAGE_SIZE;
2185	u64 logical = sblock->pagev[0]->logical;
2186	struct btrfs_bio *bbio = NULL;
2187	struct bio *bio;
2188	struct btrfs_raid_bio *rbio;
2189	int ret;
2190	int i;
2191
2192	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2193			&length, &bbio, 0, 1);
2194	if (ret || !bbio || !bbio->raid_map)
2195		goto bbio_out;
2196
2197	if (WARN_ON(!sctx->is_dev_replace ||
2198		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2199		/*
2200		 * We shouldn't be scrubbing a missing device. Even for dev
2201		 * replace, we should only get here for RAID 5/6. We either
2202		 * managed to mount something with no mirrors remaining or
2203		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2204		 */
2205		goto bbio_out;
2206	}
2207
2208	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2209	if (!bio)
2210		goto bbio_out;
2211
2212	bio->bi_iter.bi_sector = logical >> 9;
2213	bio->bi_private = sblock;
2214	bio->bi_end_io = scrub_missing_raid56_end_io;
2215
2216	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2217	if (!rbio)
2218		goto rbio_out;
2219
2220	for (i = 0; i < sblock->page_count; i++) {
2221		struct scrub_page *spage = sblock->pagev[i];
2222
2223		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2224	}
2225
2226	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2227			scrub_missing_raid56_worker, NULL, NULL);
2228	scrub_block_get(sblock);
2229	scrub_pending_bio_inc(sctx);
2230	raid56_submit_missing_rbio(rbio);
2231	return;
2232
2233rbio_out:
2234	bio_put(bio);
2235bbio_out:
2236	btrfs_put_bbio(bbio);
2237	spin_lock(&sctx->stat_lock);
2238	sctx->stat.malloc_errors++;
2239	spin_unlock(&sctx->stat_lock);
2240}
2241
2242static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2243		       u64 physical, struct btrfs_device *dev, u64 flags,
2244		       u64 gen, int mirror_num, u8 *csum, int force,
2245		       u64 physical_for_dev_replace)
2246{
2247	struct scrub_block *sblock;
2248	int index;
2249
2250	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2251	if (!sblock) {
2252		spin_lock(&sctx->stat_lock);
2253		sctx->stat.malloc_errors++;
2254		spin_unlock(&sctx->stat_lock);
2255		return -ENOMEM;
2256	}
2257
2258	/* one ref inside this function, plus one for each page added to
2259	 * a bio later on */
2260	atomic_set(&sblock->refs, 1);
2261	sblock->sctx = sctx;
2262	sblock->no_io_error_seen = 1;
2263
2264	for (index = 0; len > 0; index++) {
2265		struct scrub_page *spage;
2266		u64 l = min_t(u64, len, PAGE_SIZE);
2267
2268		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2269		if (!spage) {
2270leave_nomem:
2271			spin_lock(&sctx->stat_lock);
2272			sctx->stat.malloc_errors++;
2273			spin_unlock(&sctx->stat_lock);
2274			scrub_block_put(sblock);
2275			return -ENOMEM;
2276		}
2277		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2278		scrub_page_get(spage);
2279		sblock->pagev[index] = spage;
2280		spage->sblock = sblock;
2281		spage->dev = dev;
2282		spage->flags = flags;
2283		spage->generation = gen;
2284		spage->logical = logical;
2285		spage->physical = physical;
2286		spage->physical_for_dev_replace = physical_for_dev_replace;
2287		spage->mirror_num = mirror_num;
2288		if (csum) {
2289			spage->have_csum = 1;
2290			memcpy(spage->csum, csum, sctx->csum_size);
2291		} else {
2292			spage->have_csum = 0;
2293		}
2294		sblock->page_count++;
2295		spage->page = alloc_page(GFP_KERNEL);
2296		if (!spage->page)
2297			goto leave_nomem;
2298		len -= l;
2299		logical += l;
2300		physical += l;
2301		physical_for_dev_replace += l;
2302	}
2303
2304	WARN_ON(sblock->page_count == 0);
2305	if (dev->missing) {
2306		/*
2307		 * This case should only be hit for RAID 5/6 device replace. See
2308		 * the comment in scrub_missing_raid56_pages() for details.
2309		 */
2310		scrub_missing_raid56_pages(sblock);
2311	} else {
2312		for (index = 0; index < sblock->page_count; index++) {
2313			struct scrub_page *spage = sblock->pagev[index];
2314			int ret;
2315
2316			ret = scrub_add_page_to_rd_bio(sctx, spage);
2317			if (ret) {
2318				scrub_block_put(sblock);
2319				return ret;
2320			}
2321		}
2322
2323		if (force)
2324			scrub_submit(sctx);
 
 
 
2325	}
2326
 
 
 
2327	/* last one frees, either here or in bio completion for last page */
2328	scrub_block_put(sblock);
2329	return 0;
2330}
2331
2332static void scrub_bio_end_io(struct bio *bio)
2333{
2334	struct scrub_bio *sbio = bio->bi_private;
2335	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2336
2337	sbio->err = bio->bi_error;
2338	sbio->bio = bio;
2339
2340	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2341}
2342
2343static void scrub_bio_end_io_worker(struct btrfs_work *work)
2344{
2345	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2346	struct scrub_ctx *sctx = sbio->sctx;
2347	int i;
2348
2349	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2350	if (sbio->err) {
2351		for (i = 0; i < sbio->page_count; i++) {
2352			struct scrub_page *spage = sbio->pagev[i];
2353
2354			spage->io_error = 1;
2355			spage->sblock->no_io_error_seen = 0;
2356		}
2357	}
2358
2359	/* now complete the scrub_block items that have all pages completed */
2360	for (i = 0; i < sbio->page_count; i++) {
2361		struct scrub_page *spage = sbio->pagev[i];
2362		struct scrub_block *sblock = spage->sblock;
2363
2364		if (atomic_dec_and_test(&sblock->outstanding_pages))
2365			scrub_block_complete(sblock);
2366		scrub_block_put(sblock);
2367	}
2368
2369	bio_put(sbio->bio);
2370	sbio->bio = NULL;
2371	spin_lock(&sctx->list_lock);
2372	sbio->next_free = sctx->first_free;
2373	sctx->first_free = sbio->index;
2374	spin_unlock(&sctx->list_lock);
2375
2376	if (sctx->is_dev_replace &&
2377	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2378		mutex_lock(&sctx->wr_ctx.wr_lock);
2379		scrub_wr_submit(sctx);
2380		mutex_unlock(&sctx->wr_ctx.wr_lock);
2381	}
2382
2383	scrub_pending_bio_dec(sctx);
2384}
2385
2386static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2387				       unsigned long *bitmap,
2388				       u64 start, u64 len)
2389{
2390	u32 offset;
2391	int nsectors;
2392	int sectorsize = sparity->sctx->fs_info->sectorsize;
2393
2394	if (len >= sparity->stripe_len) {
2395		bitmap_set(bitmap, 0, sparity->nsectors);
2396		return;
2397	}
2398
2399	start -= sparity->logic_start;
2400	start = div_u64_rem(start, sparity->stripe_len, &offset);
2401	offset /= sectorsize;
2402	nsectors = (int)len / sectorsize;
2403
2404	if (offset + nsectors <= sparity->nsectors) {
2405		bitmap_set(bitmap, offset, nsectors);
2406		return;
2407	}
2408
2409	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2410	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2411}
2412
2413static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2414						   u64 start, u64 len)
2415{
2416	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2417}
2418
2419static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2420						  u64 start, u64 len)
2421{
2422	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2423}
2424
2425static void scrub_block_complete(struct scrub_block *sblock)
2426{
2427	int corrupted = 0;
2428
2429	if (!sblock->no_io_error_seen) {
2430		corrupted = 1;
2431		scrub_handle_errored_block(sblock);
2432	} else {
2433		/*
2434		 * if has checksum error, write via repair mechanism in
2435		 * dev replace case, otherwise write here in dev replace
2436		 * case.
2437		 */
2438		corrupted = scrub_checksum(sblock);
2439		if (!corrupted && sblock->sctx->is_dev_replace)
2440			scrub_write_block_to_dev_replace(sblock);
2441	}
2442
2443	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2444		u64 start = sblock->pagev[0]->logical;
2445		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2446			  PAGE_SIZE;
2447
2448		scrub_parity_mark_sectors_error(sblock->sparity,
2449						start, end - start);
2450	}
2451}
2452
2453static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 
2454{
2455	struct btrfs_ordered_sum *sum = NULL;
2456	unsigned long index;
2457	unsigned long num_sectors;
2458
2459	while (!list_empty(&sctx->csum_list)) {
2460		sum = list_first_entry(&sctx->csum_list,
2461				       struct btrfs_ordered_sum, list);
2462		if (sum->bytenr > logical)
2463			return 0;
2464		if (sum->bytenr + sum->len > logical)
2465			break;
2466
2467		++sctx->stat.csum_discards;
2468		list_del(&sum->list);
2469		kfree(sum);
2470		sum = NULL;
2471	}
2472	if (!sum)
2473		return 0;
2474
2475	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2476	num_sectors = sum->len / sctx->sectorsize;
2477	memcpy(csum, sum->sums + index, sctx->csum_size);
2478	if (index == num_sectors - 1) {
2479		list_del(&sum->list);
2480		kfree(sum);
2481	}
2482	return 1;
2483}
2484
2485/* scrub extent tries to collect up to 64 kB for each bio */
2486static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2487			u64 physical, struct btrfs_device *dev, u64 flags,
2488			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2489{
2490	int ret;
2491	u8 csum[BTRFS_CSUM_SIZE];
2492	u32 blocksize;
2493
2494	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2495		blocksize = sctx->sectorsize;
2496		spin_lock(&sctx->stat_lock);
2497		sctx->stat.data_extents_scrubbed++;
2498		sctx->stat.data_bytes_scrubbed += len;
2499		spin_unlock(&sctx->stat_lock);
2500	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 
2501		blocksize = sctx->nodesize;
2502		spin_lock(&sctx->stat_lock);
2503		sctx->stat.tree_extents_scrubbed++;
2504		sctx->stat.tree_bytes_scrubbed += len;
2505		spin_unlock(&sctx->stat_lock);
2506	} else {
2507		blocksize = sctx->sectorsize;
2508		WARN_ON(1);
2509	}
2510
2511	while (len) {
2512		u64 l = min_t(u64, len, blocksize);
2513		int have_csum = 0;
2514
2515		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2516			/* push csums to sbio */
2517			have_csum = scrub_find_csum(sctx, logical, csum);
2518			if (have_csum == 0)
2519				++sctx->stat.no_csum;
2520			if (sctx->is_dev_replace && !have_csum) {
2521				ret = copy_nocow_pages(sctx, logical, l,
2522						       mirror_num,
2523						      physical_for_dev_replace);
2524				goto behind_scrub_pages;
2525			}
2526		}
2527		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2528				  mirror_num, have_csum ? csum : NULL, 0,
2529				  physical_for_dev_replace);
2530behind_scrub_pages:
2531		if (ret)
2532			return ret;
2533		len -= l;
2534		logical += l;
2535		physical += l;
2536		physical_for_dev_replace += l;
2537	}
2538	return 0;
2539}
2540
2541static int scrub_pages_for_parity(struct scrub_parity *sparity,
2542				  u64 logical, u64 len,
2543				  u64 physical, struct btrfs_device *dev,
2544				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2545{
2546	struct scrub_ctx *sctx = sparity->sctx;
2547	struct scrub_block *sblock;
2548	int index;
2549
2550	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2551	if (!sblock) {
2552		spin_lock(&sctx->stat_lock);
2553		sctx->stat.malloc_errors++;
2554		spin_unlock(&sctx->stat_lock);
2555		return -ENOMEM;
2556	}
2557
2558	/* one ref inside this function, plus one for each page added to
2559	 * a bio later on */
2560	atomic_set(&sblock->refs, 1);
2561	sblock->sctx = sctx;
2562	sblock->no_io_error_seen = 1;
2563	sblock->sparity = sparity;
2564	scrub_parity_get(sparity);
2565
2566	for (index = 0; len > 0; index++) {
2567		struct scrub_page *spage;
2568		u64 l = min_t(u64, len, PAGE_SIZE);
2569
2570		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2571		if (!spage) {
2572leave_nomem:
2573			spin_lock(&sctx->stat_lock);
2574			sctx->stat.malloc_errors++;
2575			spin_unlock(&sctx->stat_lock);
2576			scrub_block_put(sblock);
2577			return -ENOMEM;
2578		}
2579		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2580		/* For scrub block */
2581		scrub_page_get(spage);
2582		sblock->pagev[index] = spage;
2583		/* For scrub parity */
2584		scrub_page_get(spage);
2585		list_add_tail(&spage->list, &sparity->spages);
2586		spage->sblock = sblock;
2587		spage->dev = dev;
2588		spage->flags = flags;
2589		spage->generation = gen;
2590		spage->logical = logical;
2591		spage->physical = physical;
2592		spage->mirror_num = mirror_num;
2593		if (csum) {
2594			spage->have_csum = 1;
2595			memcpy(spage->csum, csum, sctx->csum_size);
2596		} else {
2597			spage->have_csum = 0;
2598		}
2599		sblock->page_count++;
2600		spage->page = alloc_page(GFP_KERNEL);
2601		if (!spage->page)
2602			goto leave_nomem;
2603		len -= l;
2604		logical += l;
2605		physical += l;
2606	}
2607
2608	WARN_ON(sblock->page_count == 0);
2609	for (index = 0; index < sblock->page_count; index++) {
2610		struct scrub_page *spage = sblock->pagev[index];
2611		int ret;
2612
2613		ret = scrub_add_page_to_rd_bio(sctx, spage);
2614		if (ret) {
2615			scrub_block_put(sblock);
2616			return ret;
2617		}
2618	}
2619
2620	/* last one frees, either here or in bio completion for last page */
2621	scrub_block_put(sblock);
2622	return 0;
2623}
2624
2625static int scrub_extent_for_parity(struct scrub_parity *sparity,
2626				   u64 logical, u64 len,
2627				   u64 physical, struct btrfs_device *dev,
2628				   u64 flags, u64 gen, int mirror_num)
2629{
2630	struct scrub_ctx *sctx = sparity->sctx;
2631	int ret;
2632	u8 csum[BTRFS_CSUM_SIZE];
2633	u32 blocksize;
2634
2635	if (dev->missing) {
2636		scrub_parity_mark_sectors_error(sparity, logical, len);
2637		return 0;
2638	}
2639
2640	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641		blocksize = sctx->sectorsize;
2642	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2643		blocksize = sctx->nodesize;
2644	} else {
2645		blocksize = sctx->sectorsize;
2646		WARN_ON(1);
2647	}
2648
2649	while (len) {
2650		u64 l = min_t(u64, len, blocksize);
2651		int have_csum = 0;
2652
2653		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2654			/* push csums to sbio */
2655			have_csum = scrub_find_csum(sctx, logical, csum);
2656			if (have_csum == 0)
2657				goto skip;
2658		}
2659		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2660					     flags, gen, mirror_num,
2661					     have_csum ? csum : NULL);
2662		if (ret)
2663			return ret;
2664skip:
2665		len -= l;
2666		logical += l;
2667		physical += l;
2668	}
2669	return 0;
2670}
2671
2672/*
2673 * Given a physical address, this will calculate it's
2674 * logical offset. if this is a parity stripe, it will return
2675 * the most left data stripe's logical offset.
2676 *
2677 * return 0 if it is a data stripe, 1 means parity stripe.
2678 */
2679static int get_raid56_logic_offset(u64 physical, int num,
2680				   struct map_lookup *map, u64 *offset,
2681				   u64 *stripe_start)
2682{
2683	int i;
2684	int j = 0;
2685	u64 stripe_nr;
2686	u64 last_offset;
2687	u32 stripe_index;
2688	u32 rot;
2689
2690	last_offset = (physical - map->stripes[num].physical) *
2691		      nr_data_stripes(map);
2692	if (stripe_start)
2693		*stripe_start = last_offset;
2694
2695	*offset = last_offset;
2696	for (i = 0; i < nr_data_stripes(map); i++) {
2697		*offset = last_offset + i * map->stripe_len;
2698
2699		stripe_nr = div_u64(*offset, map->stripe_len);
2700		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
 
2701
2702		/* Work out the disk rotation on this stripe-set */
2703		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2704		/* calculate which stripe this data locates */
2705		rot += i;
2706		stripe_index = rot % map->num_stripes;
2707		if (stripe_index == num)
2708			return 0;
2709		if (stripe_index < num)
2710			j++;
2711	}
2712	*offset = last_offset + j * map->stripe_len;
2713	return 1;
2714}
2715
2716static void scrub_free_parity(struct scrub_parity *sparity)
2717{
2718	struct scrub_ctx *sctx = sparity->sctx;
2719	struct scrub_page *curr, *next;
2720	int nbits;
2721
2722	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2723	if (nbits) {
2724		spin_lock(&sctx->stat_lock);
2725		sctx->stat.read_errors += nbits;
2726		sctx->stat.uncorrectable_errors += nbits;
2727		spin_unlock(&sctx->stat_lock);
2728	}
2729
2730	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2731		list_del_init(&curr->list);
2732		scrub_page_put(curr);
2733	}
2734
2735	kfree(sparity);
2736}
2737
2738static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2739{
2740	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2741						    work);
2742	struct scrub_ctx *sctx = sparity->sctx;
2743
2744	scrub_free_parity(sparity);
2745	scrub_pending_bio_dec(sctx);
2746}
2747
2748static void scrub_parity_bio_endio(struct bio *bio)
2749{
2750	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2751	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2752
2753	if (bio->bi_error)
2754		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2755			  sparity->nsectors);
2756
2757	bio_put(bio);
2758
2759	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2760			scrub_parity_bio_endio_worker, NULL, NULL);
2761	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2762}
2763
2764static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2765{
2766	struct scrub_ctx *sctx = sparity->sctx;
2767	struct btrfs_fs_info *fs_info = sctx->fs_info;
2768	struct bio *bio;
2769	struct btrfs_raid_bio *rbio;
2770	struct scrub_page *spage;
2771	struct btrfs_bio *bbio = NULL;
2772	u64 length;
2773	int ret;
2774
2775	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2776			   sparity->nsectors))
2777		goto out;
2778
2779	length = sparity->logic_end - sparity->logic_start;
2780	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781			       &length, &bbio, 0, 1);
2782	if (ret || !bbio || !bbio->raid_map)
2783		goto bbio_out;
2784
2785	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		goto bbio_out;
2788
2789	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2790	bio->bi_private = sparity;
2791	bio->bi_end_io = scrub_parity_bio_endio;
2792
2793	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2794					      length, sparity->scrub_dev,
2795					      sparity->dbitmap,
2796					      sparity->nsectors);
2797	if (!rbio)
2798		goto rbio_out;
2799
2800	list_for_each_entry(spage, &sparity->spages, list)
2801		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2802
2803	scrub_pending_bio_inc(sctx);
2804	raid56_parity_submit_scrub_rbio(rbio);
2805	return;
2806
2807rbio_out:
2808	bio_put(bio);
2809bbio_out:
2810	btrfs_put_bbio(bbio);
2811	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2812		  sparity->nsectors);
2813	spin_lock(&sctx->stat_lock);
2814	sctx->stat.malloc_errors++;
2815	spin_unlock(&sctx->stat_lock);
2816out:
2817	scrub_free_parity(sparity);
2818}
2819
2820static inline int scrub_calc_parity_bitmap_len(int nsectors)
2821{
2822	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2823}
2824
2825static void scrub_parity_get(struct scrub_parity *sparity)
2826{
2827	atomic_inc(&sparity->refs);
2828}
2829
2830static void scrub_parity_put(struct scrub_parity *sparity)
2831{
2832	if (!atomic_dec_and_test(&sparity->refs))
2833		return;
2834
2835	scrub_parity_check_and_repair(sparity);
2836}
2837
2838static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2839						  struct map_lookup *map,
2840						  struct btrfs_device *sdev,
2841						  struct btrfs_path *path,
2842						  u64 logic_start,
2843						  u64 logic_end)
2844{
2845	struct btrfs_fs_info *fs_info = sctx->fs_info;
2846	struct btrfs_root *root = fs_info->extent_root;
2847	struct btrfs_root *csum_root = fs_info->csum_root;
2848	struct btrfs_extent_item *extent;
2849	struct btrfs_bio *bbio = NULL;
2850	u64 flags;
2851	int ret;
2852	int slot;
2853	struct extent_buffer *l;
2854	struct btrfs_key key;
2855	u64 generation;
2856	u64 extent_logical;
2857	u64 extent_physical;
2858	u64 extent_len;
2859	u64 mapped_length;
2860	struct btrfs_device *extent_dev;
2861	struct scrub_parity *sparity;
2862	int nsectors;
2863	int bitmap_len;
2864	int extent_mirror_num;
2865	int stop_loop = 0;
2866
2867	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2868	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2869	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2870			  GFP_NOFS);
2871	if (!sparity) {
2872		spin_lock(&sctx->stat_lock);
2873		sctx->stat.malloc_errors++;
2874		spin_unlock(&sctx->stat_lock);
2875		return -ENOMEM;
2876	}
2877
2878	sparity->stripe_len = map->stripe_len;
2879	sparity->nsectors = nsectors;
2880	sparity->sctx = sctx;
2881	sparity->scrub_dev = sdev;
2882	sparity->logic_start = logic_start;
2883	sparity->logic_end = logic_end;
2884	atomic_set(&sparity->refs, 1);
2885	INIT_LIST_HEAD(&sparity->spages);
2886	sparity->dbitmap = sparity->bitmap;
2887	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2888
2889	ret = 0;
2890	while (logic_start < logic_end) {
2891		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2892			key.type = BTRFS_METADATA_ITEM_KEY;
2893		else
2894			key.type = BTRFS_EXTENT_ITEM_KEY;
2895		key.objectid = logic_start;
2896		key.offset = (u64)-1;
2897
2898		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899		if (ret < 0)
2900			goto out;
2901
2902		if (ret > 0) {
2903			ret = btrfs_previous_extent_item(root, path, 0);
2904			if (ret < 0)
2905				goto out;
2906			if (ret > 0) {
2907				btrfs_release_path(path);
2908				ret = btrfs_search_slot(NULL, root, &key,
2909							path, 0, 0);
2910				if (ret < 0)
2911					goto out;
2912			}
2913		}
2914
2915		stop_loop = 0;
2916		while (1) {
2917			u64 bytes;
2918
2919			l = path->nodes[0];
2920			slot = path->slots[0];
2921			if (slot >= btrfs_header_nritems(l)) {
2922				ret = btrfs_next_leaf(root, path);
2923				if (ret == 0)
2924					continue;
2925				if (ret < 0)
2926					goto out;
2927
2928				stop_loop = 1;
2929				break;
2930			}
2931			btrfs_item_key_to_cpu(l, &key, slot);
2932
2933			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2934			    key.type != BTRFS_METADATA_ITEM_KEY)
2935				goto next;
2936
2937			if (key.type == BTRFS_METADATA_ITEM_KEY)
2938				bytes = fs_info->nodesize;
2939			else
2940				bytes = key.offset;
2941
2942			if (key.objectid + bytes <= logic_start)
2943				goto next;
2944
2945			if (key.objectid >= logic_end) {
2946				stop_loop = 1;
2947				break;
2948			}
2949
2950			while (key.objectid >= logic_start + map->stripe_len)
2951				logic_start += map->stripe_len;
2952
2953			extent = btrfs_item_ptr(l, slot,
2954						struct btrfs_extent_item);
2955			flags = btrfs_extent_flags(l, extent);
2956			generation = btrfs_extent_generation(l, extent);
2957
2958			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2959			    (key.objectid < logic_start ||
2960			     key.objectid + bytes >
2961			     logic_start + map->stripe_len)) {
2962				btrfs_err(fs_info,
2963					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964					  key.objectid, logic_start);
2965				spin_lock(&sctx->stat_lock);
2966				sctx->stat.uncorrectable_errors++;
2967				spin_unlock(&sctx->stat_lock);
2968				goto next;
2969			}
2970again:
2971			extent_logical = key.objectid;
2972			extent_len = bytes;
2973
2974			if (extent_logical < logic_start) {
2975				extent_len -= logic_start - extent_logical;
2976				extent_logical = logic_start;
2977			}
2978
2979			if (extent_logical + extent_len >
2980			    logic_start + map->stripe_len)
2981				extent_len = logic_start + map->stripe_len -
2982					     extent_logical;
2983
2984			scrub_parity_mark_sectors_data(sparity, extent_logical,
2985						       extent_len);
2986
2987			mapped_length = extent_len;
2988			bbio = NULL;
2989			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2990					extent_logical, &mapped_length, &bbio,
2991					0);
2992			if (!ret) {
2993				if (!bbio || mapped_length < extent_len)
2994					ret = -EIO;
2995			}
2996			if (ret) {
2997				btrfs_put_bbio(bbio);
2998				goto out;
2999			}
3000			extent_physical = bbio->stripes[0].physical;
3001			extent_mirror_num = bbio->mirror_num;
3002			extent_dev = bbio->stripes[0].dev;
3003			btrfs_put_bbio(bbio);
3004
3005			ret = btrfs_lookup_csums_range(csum_root,
3006						extent_logical,
3007						extent_logical + extent_len - 1,
3008						&sctx->csum_list, 1);
3009			if (ret)
3010				goto out;
3011
3012			ret = scrub_extent_for_parity(sparity, extent_logical,
3013						      extent_len,
3014						      extent_physical,
3015						      extent_dev, flags,
3016						      generation,
3017						      extent_mirror_num);
3018
3019			scrub_free_csums(sctx);
3020
3021			if (ret)
3022				goto out;
3023
3024			if (extent_logical + extent_len <
3025			    key.objectid + bytes) {
3026				logic_start += map->stripe_len;
3027
3028				if (logic_start >= logic_end) {
3029					stop_loop = 1;
3030					break;
3031				}
3032
3033				if (logic_start < key.objectid + bytes) {
3034					cond_resched();
3035					goto again;
3036				}
3037			}
3038next:
3039			path->slots[0]++;
3040		}
3041
3042		btrfs_release_path(path);
3043
3044		if (stop_loop)
3045			break;
3046
3047		logic_start += map->stripe_len;
3048	}
3049out:
3050	if (ret < 0)
3051		scrub_parity_mark_sectors_error(sparity, logic_start,
3052						logic_end - logic_start);
3053	scrub_parity_put(sparity);
3054	scrub_submit(sctx);
3055	mutex_lock(&sctx->wr_ctx.wr_lock);
3056	scrub_wr_submit(sctx);
3057	mutex_unlock(&sctx->wr_ctx.wr_lock);
3058
3059	btrfs_release_path(path);
3060	return ret < 0 ? ret : 0;
3061}
3062
3063static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3064					   struct map_lookup *map,
3065					   struct btrfs_device *scrub_dev,
3066					   int num, u64 base, u64 length,
3067					   int is_dev_replace)
3068{
3069	struct btrfs_path *path, *ppath;
3070	struct btrfs_fs_info *fs_info = sctx->fs_info;
3071	struct btrfs_root *root = fs_info->extent_root;
3072	struct btrfs_root *csum_root = fs_info->csum_root;
3073	struct btrfs_extent_item *extent;
3074	struct blk_plug plug;
3075	u64 flags;
3076	int ret;
3077	int slot;
3078	u64 nstripes;
3079	struct extent_buffer *l;
 
3080	u64 physical;
3081	u64 logical;
3082	u64 logic_end;
3083	u64 physical_end;
3084	u64 generation;
3085	int mirror_num;
3086	struct reada_control *reada1;
3087	struct reada_control *reada2;
3088	struct btrfs_key key;
3089	struct btrfs_key key_end;
3090	u64 increment = map->stripe_len;
3091	u64 offset;
3092	u64 extent_logical;
3093	u64 extent_physical;
3094	u64 extent_len;
3095	u64 stripe_logical;
3096	u64 stripe_end;
3097	struct btrfs_device *extent_dev;
3098	int extent_mirror_num;
3099	int stop_loop = 0;
3100
 
3101	physical = map->stripes[num].physical;
3102	offset = 0;
3103	nstripes = div_u64(length, map->stripe_len);
3104	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3105		offset = map->stripe_len * num;
3106		increment = map->stripe_len * map->num_stripes;
3107		mirror_num = 1;
3108	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3109		int factor = map->num_stripes / map->sub_stripes;
3110		offset = map->stripe_len * (num / map->sub_stripes);
3111		increment = map->stripe_len * factor;
3112		mirror_num = num % map->sub_stripes + 1;
3113	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3114		increment = map->stripe_len;
3115		mirror_num = num % map->num_stripes + 1;
3116	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3117		increment = map->stripe_len;
3118		mirror_num = num % map->num_stripes + 1;
3119	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3120		get_raid56_logic_offset(physical, num, map, &offset, NULL);
 
3121		increment = map->stripe_len * nr_data_stripes(map);
3122		mirror_num = 1;
3123	} else {
3124		increment = map->stripe_len;
3125		mirror_num = 1;
3126	}
3127
3128	path = btrfs_alloc_path();
3129	if (!path)
3130		return -ENOMEM;
3131
3132	ppath = btrfs_alloc_path();
3133	if (!ppath) {
3134		btrfs_free_path(path);
3135		return -ENOMEM;
3136	}
3137
3138	/*
3139	 * work on commit root. The related disk blocks are static as
3140	 * long as COW is applied. This means, it is save to rewrite
3141	 * them to repair disk errors without any race conditions
3142	 */
3143	path->search_commit_root = 1;
3144	path->skip_locking = 1;
3145
3146	ppath->search_commit_root = 1;
3147	ppath->skip_locking = 1;
3148	/*
3149	 * trigger the readahead for extent tree csum tree and wait for
3150	 * completion. During readahead, the scrub is officially paused
3151	 * to not hold off transaction commits
3152	 */
3153	logical = base + offset;
3154	physical_end = physical + nstripes * map->stripe_len;
3155	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
3156		get_raid56_logic_offset(physical_end, num,
3157					map, &logic_end, NULL);
3158		logic_end += base;
3159	} else {
3160		logic_end = logical + increment * nstripes;
3161	}
3162	wait_event(sctx->list_wait,
3163		   atomic_read(&sctx->bios_in_flight) == 0);
3164	scrub_blocked_if_needed(fs_info);
3165
3166	/* FIXME it might be better to start readahead at commit root */
3167	key.objectid = logical;
3168	key.type = BTRFS_EXTENT_ITEM_KEY;
3169	key.offset = (u64)0;
3170	key_end.objectid = logic_end;
3171	key_end.type = BTRFS_METADATA_ITEM_KEY;
3172	key_end.offset = (u64)-1;
3173	reada1 = btrfs_reada_add(root, &key, &key_end);
3174
3175	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3176	key.type = BTRFS_EXTENT_CSUM_KEY;
3177	key.offset = logical;
3178	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3179	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3180	key_end.offset = logic_end;
3181	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3182
3183	if (!IS_ERR(reada1))
3184		btrfs_reada_wait(reada1);
3185	if (!IS_ERR(reada2))
3186		btrfs_reada_wait(reada2);
3187
3188
3189	/*
3190	 * collect all data csums for the stripe to avoid seeking during
3191	 * the scrub. This might currently (crc32) end up to be about 1MB
3192	 */
3193	blk_start_plug(&plug);
3194
3195	/*
3196	 * now find all extents for each stripe and scrub them
3197	 */
3198	ret = 0;
3199	while (physical < physical_end) {
 
 
 
 
 
 
 
 
 
3200		/*
3201		 * canceled?
3202		 */
3203		if (atomic_read(&fs_info->scrub_cancel_req) ||
3204		    atomic_read(&sctx->cancel_req)) {
3205			ret = -ECANCELED;
3206			goto out;
3207		}
3208		/*
3209		 * check to see if we have to pause
3210		 */
3211		if (atomic_read(&fs_info->scrub_pause_req)) {
3212			/* push queued extents */
3213			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3214			scrub_submit(sctx);
3215			mutex_lock(&sctx->wr_ctx.wr_lock);
3216			scrub_wr_submit(sctx);
3217			mutex_unlock(&sctx->wr_ctx.wr_lock);
3218			wait_event(sctx->list_wait,
3219				   atomic_read(&sctx->bios_in_flight) == 0);
3220			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3221			scrub_blocked_if_needed(fs_info);
3222		}
3223
3224		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3225			ret = get_raid56_logic_offset(physical, num, map,
3226						      &logical,
3227						      &stripe_logical);
3228			logical += base;
3229			if (ret) {
3230				/* it is parity strip */
3231				stripe_logical += base;
3232				stripe_end = stripe_logical + increment;
3233				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3234							  ppath, stripe_logical,
3235							  stripe_end);
3236				if (ret)
3237					goto out;
3238				goto skip;
3239			}
3240		}
3241
3242		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3243			key.type = BTRFS_METADATA_ITEM_KEY;
3244		else
3245			key.type = BTRFS_EXTENT_ITEM_KEY;
3246		key.objectid = logical;
3247		key.offset = (u64)-1;
3248
3249		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3250		if (ret < 0)
3251			goto out;
3252
3253		if (ret > 0) {
3254			ret = btrfs_previous_extent_item(root, path, 0);
3255			if (ret < 0)
3256				goto out;
3257			if (ret > 0) {
3258				/* there's no smaller item, so stick with the
3259				 * larger one */
3260				btrfs_release_path(path);
3261				ret = btrfs_search_slot(NULL, root, &key,
3262							path, 0, 0);
3263				if (ret < 0)
3264					goto out;
3265			}
3266		}
3267
3268		stop_loop = 0;
3269		while (1) {
3270			u64 bytes;
3271
3272			l = path->nodes[0];
3273			slot = path->slots[0];
3274			if (slot >= btrfs_header_nritems(l)) {
3275				ret = btrfs_next_leaf(root, path);
3276				if (ret == 0)
3277					continue;
3278				if (ret < 0)
3279					goto out;
3280
3281				stop_loop = 1;
3282				break;
3283			}
3284			btrfs_item_key_to_cpu(l, &key, slot);
3285
3286			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3287			    key.type != BTRFS_METADATA_ITEM_KEY)
3288				goto next;
3289
3290			if (key.type == BTRFS_METADATA_ITEM_KEY)
3291				bytes = fs_info->nodesize;
3292			else
3293				bytes = key.offset;
3294
3295			if (key.objectid + bytes <= logical)
3296				goto next;
3297
 
 
 
 
3298			if (key.objectid >= logical + map->stripe_len) {
3299				/* out of this device extent */
3300				if (key.objectid >= logic_end)
3301					stop_loop = 1;
3302				break;
3303			}
3304
3305			extent = btrfs_item_ptr(l, slot,
3306						struct btrfs_extent_item);
3307			flags = btrfs_extent_flags(l, extent);
3308			generation = btrfs_extent_generation(l, extent);
3309
3310			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3311			    (key.objectid < logical ||
3312			     key.objectid + bytes >
3313			     logical + map->stripe_len)) {
3314				btrfs_err(fs_info,
3315					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
 
3316				       key.objectid, logical);
3317				spin_lock(&sctx->stat_lock);
3318				sctx->stat.uncorrectable_errors++;
3319				spin_unlock(&sctx->stat_lock);
3320				goto next;
3321			}
3322
3323again:
3324			extent_logical = key.objectid;
3325			extent_len = bytes;
3326
3327			/*
3328			 * trim extent to this stripe
3329			 */
3330			if (extent_logical < logical) {
3331				extent_len -= logical - extent_logical;
3332				extent_logical = logical;
3333			}
3334			if (extent_logical + extent_len >
3335			    logical + map->stripe_len) {
3336				extent_len = logical + map->stripe_len -
3337					     extent_logical;
3338			}
3339
3340			extent_physical = extent_logical - logical + physical;
3341			extent_dev = scrub_dev;
3342			extent_mirror_num = mirror_num;
3343			if (is_dev_replace)
3344				scrub_remap_extent(fs_info, extent_logical,
3345						   extent_len, &extent_physical,
3346						   &extent_dev,
3347						   &extent_mirror_num);
3348
3349			ret = btrfs_lookup_csums_range(csum_root,
3350						       extent_logical,
3351						       extent_logical +
3352						       extent_len - 1,
3353						       &sctx->csum_list, 1);
3354			if (ret)
3355				goto out;
3356
3357			ret = scrub_extent(sctx, extent_logical, extent_len,
3358					   extent_physical, extent_dev, flags,
3359					   generation, extent_mirror_num,
3360					   extent_logical - logical + physical);
3361
3362			scrub_free_csums(sctx);
3363
3364			if (ret)
3365				goto out;
3366
 
3367			if (extent_logical + extent_len <
3368			    key.objectid + bytes) {
3369				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
3370					/*
3371					 * loop until we find next data stripe
3372					 * or we have finished all stripes.
3373					 */
3374loop:
3375					physical += map->stripe_len;
3376					ret = get_raid56_logic_offset(physical,
3377							num, map, &logical,
3378							&stripe_logical);
3379					logical += base;
3380
3381					if (ret && physical < physical_end) {
3382						stripe_logical += base;
3383						stripe_end = stripe_logical +
3384								increment;
3385						ret = scrub_raid56_parity(sctx,
3386							map, scrub_dev, ppath,
3387							stripe_logical,
3388							stripe_end);
3389						if (ret)
3390							goto out;
3391						goto loop;
3392					}
3393				} else {
3394					physical += map->stripe_len;
3395					logical += increment;
3396				}
3397				if (logical < key.objectid + bytes) {
3398					cond_resched();
3399					goto again;
3400				}
3401
3402				if (physical >= physical_end) {
3403					stop_loop = 1;
3404					break;
3405				}
3406			}
3407next:
3408			path->slots[0]++;
3409		}
3410		btrfs_release_path(path);
3411skip:
3412		logical += increment;
3413		physical += map->stripe_len;
3414		spin_lock(&sctx->stat_lock);
3415		if (stop_loop)
3416			sctx->stat.last_physical = map->stripes[num].physical +
3417						   length;
3418		else
3419			sctx->stat.last_physical = physical;
3420		spin_unlock(&sctx->stat_lock);
3421		if (stop_loop)
3422			break;
3423	}
3424out:
3425	/* push queued extents */
3426	scrub_submit(sctx);
3427	mutex_lock(&sctx->wr_ctx.wr_lock);
3428	scrub_wr_submit(sctx);
3429	mutex_unlock(&sctx->wr_ctx.wr_lock);
3430
3431	blk_finish_plug(&plug);
3432	btrfs_free_path(path);
3433	btrfs_free_path(ppath);
3434	return ret < 0 ? ret : 0;
3435}
3436
3437static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3438					  struct btrfs_device *scrub_dev,
 
3439					  u64 chunk_offset, u64 length,
3440					  u64 dev_offset,
3441					  struct btrfs_block_group_cache *cache,
3442					  int is_dev_replace)
3443{
3444	struct btrfs_fs_info *fs_info = sctx->fs_info;
3445	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3446	struct map_lookup *map;
3447	struct extent_map *em;
3448	int i;
3449	int ret = 0;
3450
3451	read_lock(&map_tree->map_tree.lock);
3452	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3453	read_unlock(&map_tree->map_tree.lock);
3454
3455	if (!em) {
3456		/*
3457		 * Might have been an unused block group deleted by the cleaner
3458		 * kthread or relocation.
3459		 */
3460		spin_lock(&cache->lock);
3461		if (!cache->removed)
3462			ret = -EINVAL;
3463		spin_unlock(&cache->lock);
3464
3465		return ret;
3466	}
3467
3468	map = em->map_lookup;
3469	if (em->start != chunk_offset)
3470		goto out;
3471
3472	if (em->len < length)
3473		goto out;
3474
3475	for (i = 0; i < map->num_stripes; ++i) {
3476		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3477		    map->stripes[i].physical == dev_offset) {
3478			ret = scrub_stripe(sctx, map, scrub_dev, i,
3479					   chunk_offset, length,
3480					   is_dev_replace);
3481			if (ret)
3482				goto out;
3483		}
3484	}
3485out:
3486	free_extent_map(em);
3487
3488	return ret;
3489}
3490
3491static noinline_for_stack
3492int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3493			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3494			   int is_dev_replace)
3495{
3496	struct btrfs_dev_extent *dev_extent = NULL;
3497	struct btrfs_path *path;
3498	struct btrfs_fs_info *fs_info = sctx->fs_info;
3499	struct btrfs_root *root = fs_info->dev_root;
3500	u64 length;
 
 
3501	u64 chunk_offset;
3502	int ret = 0;
3503	int ro_set;
3504	int slot;
3505	struct extent_buffer *l;
3506	struct btrfs_key key;
3507	struct btrfs_key found_key;
3508	struct btrfs_block_group_cache *cache;
3509	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3510
3511	path = btrfs_alloc_path();
3512	if (!path)
3513		return -ENOMEM;
3514
3515	path->reada = READA_FORWARD;
3516	path->search_commit_root = 1;
3517	path->skip_locking = 1;
3518
3519	key.objectid = scrub_dev->devid;
3520	key.offset = 0ull;
3521	key.type = BTRFS_DEV_EXTENT_KEY;
3522
3523	while (1) {
3524		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3525		if (ret < 0)
3526			break;
3527		if (ret > 0) {
3528			if (path->slots[0] >=
3529			    btrfs_header_nritems(path->nodes[0])) {
3530				ret = btrfs_next_leaf(root, path);
3531				if (ret < 0)
3532					break;
3533				if (ret > 0) {
3534					ret = 0;
3535					break;
3536				}
3537			} else {
3538				ret = 0;
3539			}
3540		}
3541
3542		l = path->nodes[0];
3543		slot = path->slots[0];
3544
3545		btrfs_item_key_to_cpu(l, &found_key, slot);
3546
3547		if (found_key.objectid != scrub_dev->devid)
3548			break;
3549
3550		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3551			break;
3552
3553		if (found_key.offset >= end)
3554			break;
3555
3556		if (found_key.offset < key.offset)
3557			break;
3558
3559		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3560		length = btrfs_dev_extent_length(l, dev_extent);
3561
3562		if (found_key.offset + length <= start)
3563			goto skip;
 
 
 
3564
 
 
3565		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3566
3567		/*
3568		 * get a reference on the corresponding block group to prevent
3569		 * the chunk from going away while we scrub it
3570		 */
3571		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572
3573		/* some chunks are removed but not committed to disk yet,
3574		 * continue scrubbing */
3575		if (!cache)
3576			goto skip;
3577
3578		/*
3579		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3580		 * to avoid deadlock caused by:
3581		 * btrfs_inc_block_group_ro()
3582		 * -> btrfs_wait_for_commit()
3583		 * -> btrfs_commit_transaction()
3584		 * -> btrfs_scrub_pause()
3585		 */
3586		scrub_pause_on(fs_info);
3587		ret = btrfs_inc_block_group_ro(root, cache);
3588		if (!ret && is_dev_replace) {
3589			/*
3590			 * If we are doing a device replace wait for any tasks
3591			 * that started dellaloc right before we set the block
3592			 * group to RO mode, as they might have just allocated
3593			 * an extent from it or decided they could do a nocow
3594			 * write. And if any such tasks did that, wait for their
3595			 * ordered extents to complete and then commit the
3596			 * current transaction, so that we can later see the new
3597			 * extent items in the extent tree - the ordered extents
3598			 * create delayed data references (for cow writes) when
3599			 * they complete, which will be run and insert the
3600			 * corresponding extent items into the extent tree when
3601			 * we commit the transaction they used when running
3602			 * inode.c:btrfs_finish_ordered_io(). We later use
3603			 * the commit root of the extent tree to find extents
3604			 * to copy from the srcdev into the tgtdev, and we don't
3605			 * want to miss any new extents.
3606			 */
3607			btrfs_wait_block_group_reservations(cache);
3608			btrfs_wait_nocow_writers(cache);
3609			ret = btrfs_wait_ordered_roots(fs_info, -1,
3610						       cache->key.objectid,
3611						       cache->key.offset);
3612			if (ret > 0) {
3613				struct btrfs_trans_handle *trans;
3614
3615				trans = btrfs_join_transaction(root);
3616				if (IS_ERR(trans))
3617					ret = PTR_ERR(trans);
3618				else
3619					ret = btrfs_commit_transaction(trans);
3620				if (ret) {
3621					scrub_pause_off(fs_info);
3622					btrfs_put_block_group(cache);
3623					break;
3624				}
3625			}
3626		}
3627		scrub_pause_off(fs_info);
3628
3629		if (ret == 0) {
3630			ro_set = 1;
3631		} else if (ret == -ENOSPC) {
3632			/*
3633			 * btrfs_inc_block_group_ro return -ENOSPC when it
3634			 * failed in creating new chunk for metadata.
3635			 * It is not a problem for scrub/replace, because
3636			 * metadata are always cowed, and our scrub paused
3637			 * commit_transactions.
3638			 */
3639			ro_set = 0;
3640		} else {
3641			btrfs_warn(fs_info,
3642				   "failed setting block group ro, ret=%d\n",
3643				   ret);
3644			btrfs_put_block_group(cache);
3645			break;
3646		}
3647
3648		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3649		dev_replace->cursor_right = found_key.offset + length;
3650		dev_replace->cursor_left = found_key.offset;
3651		dev_replace->item_needs_writeback = 1;
3652		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3653		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3654				  found_key.offset, cache, is_dev_replace);
3655
3656		/*
3657		 * flush, submit all pending read and write bios, afterwards
3658		 * wait for them.
3659		 * Note that in the dev replace case, a read request causes
3660		 * write requests that are submitted in the read completion
3661		 * worker. Therefore in the current situation, it is required
3662		 * that all write requests are flushed, so that all read and
3663		 * write requests are really completed when bios_in_flight
3664		 * changes to 0.
3665		 */
3666		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3667		scrub_submit(sctx);
3668		mutex_lock(&sctx->wr_ctx.wr_lock);
3669		scrub_wr_submit(sctx);
3670		mutex_unlock(&sctx->wr_ctx.wr_lock);
3671
3672		wait_event(sctx->list_wait,
3673			   atomic_read(&sctx->bios_in_flight) == 0);
3674
3675		scrub_pause_on(fs_info);
3676
3677		/*
3678		 * must be called before we decrease @scrub_paused.
3679		 * make sure we don't block transaction commit while
3680		 * we are waiting pending workers finished.
3681		 */
3682		wait_event(sctx->list_wait,
3683			   atomic_read(&sctx->workers_pending) == 0);
3684		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3685
3686		scrub_pause_off(fs_info);
3687
3688		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3689		dev_replace->cursor_left = dev_replace->cursor_right;
3690		dev_replace->item_needs_writeback = 1;
3691		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3692
3693		if (ro_set)
3694			btrfs_dec_block_group_ro(cache);
3695
3696		/*
3697		 * We might have prevented the cleaner kthread from deleting
3698		 * this block group if it was already unused because we raced
3699		 * and set it to RO mode first. So add it back to the unused
3700		 * list, otherwise it might not ever be deleted unless a manual
3701		 * balance is triggered or it becomes used and unused again.
3702		 */
3703		spin_lock(&cache->lock);
3704		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3705		    btrfs_block_group_used(&cache->item) == 0) {
3706			spin_unlock(&cache->lock);
3707			spin_lock(&fs_info->unused_bgs_lock);
3708			if (list_empty(&cache->bg_list)) {
3709				btrfs_get_block_group(cache);
3710				list_add_tail(&cache->bg_list,
3711					      &fs_info->unused_bgs);
3712			}
3713			spin_unlock(&fs_info->unused_bgs_lock);
3714		} else {
3715			spin_unlock(&cache->lock);
3716		}
3717
3718		btrfs_put_block_group(cache);
3719		if (ret)
3720			break;
3721		if (is_dev_replace &&
3722		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3723			ret = -EIO;
3724			break;
3725		}
3726		if (sctx->stat.malloc_errors > 0) {
3727			ret = -ENOMEM;
3728			break;
3729		}
3730skip:
 
 
 
3731		key.offset = found_key.offset + length;
3732		btrfs_release_path(path);
3733	}
3734
3735	btrfs_free_path(path);
3736
3737	return ret;
 
 
 
 
3738}
3739
3740static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3741					   struct btrfs_device *scrub_dev)
3742{
3743	int	i;
3744	u64	bytenr;
3745	u64	gen;
3746	int	ret;
3747	struct btrfs_fs_info *fs_info = sctx->fs_info;
3748
3749	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750		return -EIO;
3751
3752	/* Seed devices of a new filesystem has their own generation. */
3753	if (scrub_dev->fs_devices != fs_info->fs_devices)
3754		gen = scrub_dev->generation;
3755	else
3756		gen = fs_info->last_trans_committed;
3757
3758	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3759		bytenr = btrfs_sb_offset(i);
3760		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3761		    scrub_dev->commit_total_bytes)
3762			break;
3763
3764		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3765				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3766				  NULL, 1, bytenr);
3767		if (ret)
3768			return ret;
3769	}
3770	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3771
3772	return 0;
3773}
3774
3775/*
3776 * get a reference count on fs_info->scrub_workers. start worker if necessary
3777 */
3778static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3779						int is_dev_replace)
3780{
3781	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
 
3782	int max_active = fs_info->thread_pool_size;
3783
3784	if (fs_info->scrub_workers_refcnt == 0) {
3785		if (is_dev_replace)
3786			fs_info->scrub_workers =
3787				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3788						      1, 4);
3789		else
3790			fs_info->scrub_workers =
3791				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3792						      max_active, 4);
3793		if (!fs_info->scrub_workers)
3794			goto fail_scrub_workers;
3795
 
3796		fs_info->scrub_wr_completion_workers =
3797			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3798					      max_active, 2);
3799		if (!fs_info->scrub_wr_completion_workers)
3800			goto fail_scrub_wr_completion_workers;
3801
 
3802		fs_info->scrub_nocow_workers =
3803			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3804		if (!fs_info->scrub_nocow_workers)
3805			goto fail_scrub_nocow_workers;
3806		fs_info->scrub_parity_workers =
3807			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3808					      max_active, 2);
3809		if (!fs_info->scrub_parity_workers)
3810			goto fail_scrub_parity_workers;
3811	}
3812	++fs_info->scrub_workers_refcnt;
3813	return 0;
3814
3815fail_scrub_parity_workers:
3816	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3817fail_scrub_nocow_workers:
3818	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3819fail_scrub_wr_completion_workers:
3820	btrfs_destroy_workqueue(fs_info->scrub_workers);
3821fail_scrub_workers:
3822	return -ENOMEM;
3823}
3824
3825static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3826{
3827	if (--fs_info->scrub_workers_refcnt == 0) {
3828		btrfs_destroy_workqueue(fs_info->scrub_workers);
3829		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3830		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3831		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3832	}
3833	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3834}
3835
3836int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3837		    u64 end, struct btrfs_scrub_progress *progress,
3838		    int readonly, int is_dev_replace)
3839{
3840	struct scrub_ctx *sctx;
3841	int ret;
3842	struct btrfs_device *dev;
3843	struct rcu_string *name;
3844
3845	if (btrfs_fs_closing(fs_info))
3846		return -EINVAL;
3847
3848	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
 
 
 
 
 
 
 
 
 
 
 
3849		/*
3850		 * in this case scrub is unable to calculate the checksum
3851		 * the way scrub is implemented. Do not handle this
3852		 * situation at all because it won't ever happen.
3853		 */
3854		btrfs_err(fs_info,
3855			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3856		       fs_info->nodesize,
3857		       BTRFS_STRIPE_LEN);
3858		return -EINVAL;
3859	}
3860
3861	if (fs_info->sectorsize != PAGE_SIZE) {
3862		/* not supported for data w/o checksums */
3863		btrfs_err_rl(fs_info,
3864			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3865		       fs_info->sectorsize, PAGE_SIZE);
 
3866		return -EINVAL;
3867	}
3868
3869	if (fs_info->nodesize >
3870	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3871	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
 
3872		/*
3873		 * would exhaust the array bounds of pagev member in
3874		 * struct scrub_block
3875		 */
3876		btrfs_err(fs_info,
3877			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3878		       fs_info->nodesize,
3879		       SCRUB_MAX_PAGES_PER_BLOCK,
3880		       fs_info->sectorsize,
3881		       SCRUB_MAX_PAGES_PER_BLOCK);
3882		return -EINVAL;
3883	}
3884
3885
3886	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3887	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3888	if (!dev || (dev->missing && !is_dev_replace)) {
3889		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890		return -ENODEV;
3891	}
3892
3893	if (!is_dev_replace && !readonly && !dev->writeable) {
3894		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3895		rcu_read_lock();
3896		name = rcu_dereference(dev->name);
3897		btrfs_err(fs_info, "scrub: device %s is not writable",
3898			  name->str);
3899		rcu_read_unlock();
3900		return -EROFS;
3901	}
3902
3903	mutex_lock(&fs_info->scrub_lock);
3904	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3905		mutex_unlock(&fs_info->scrub_lock);
3906		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907		return -EIO;
3908	}
3909
3910	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3911	if (dev->scrub_device ||
3912	    (!is_dev_replace &&
3913	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3914		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3915		mutex_unlock(&fs_info->scrub_lock);
3916		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3917		return -EINPROGRESS;
3918	}
3919	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3920
3921	ret = scrub_workers_get(fs_info, is_dev_replace);
3922	if (ret) {
3923		mutex_unlock(&fs_info->scrub_lock);
3924		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925		return ret;
3926	}
3927
3928	sctx = scrub_setup_ctx(dev, is_dev_replace);
3929	if (IS_ERR(sctx)) {
3930		mutex_unlock(&fs_info->scrub_lock);
3931		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932		scrub_workers_put(fs_info);
3933		return PTR_ERR(sctx);
3934	}
3935	sctx->readonly = readonly;
3936	dev->scrub_device = sctx;
3937	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938
3939	/*
3940	 * checking @scrub_pause_req here, we can avoid
3941	 * race between committing transaction and scrubbing.
3942	 */
3943	__scrub_blocked_if_needed(fs_info);
3944	atomic_inc(&fs_info->scrubs_running);
3945	mutex_unlock(&fs_info->scrub_lock);
3946
3947	if (!is_dev_replace) {
3948		/*
3949		 * by holding device list mutex, we can
3950		 * kick off writing super in log tree sync.
3951		 */
3952		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3953		ret = scrub_supers(sctx, dev);
3954		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3955	}
3956
3957	if (!ret)
3958		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3959					     is_dev_replace);
3960
3961	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3962	atomic_dec(&fs_info->scrubs_running);
3963	wake_up(&fs_info->scrub_pause_wait);
3964
3965	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3966
3967	if (progress)
3968		memcpy(progress, &sctx->stat, sizeof(*progress));
3969
3970	mutex_lock(&fs_info->scrub_lock);
3971	dev->scrub_device = NULL;
3972	scrub_workers_put(fs_info);
3973	mutex_unlock(&fs_info->scrub_lock);
3974
3975	scrub_put_ctx(sctx);
3976
3977	return ret;
3978}
3979
3980void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3981{
 
 
3982	mutex_lock(&fs_info->scrub_lock);
3983	atomic_inc(&fs_info->scrub_pause_req);
3984	while (atomic_read(&fs_info->scrubs_paused) !=
3985	       atomic_read(&fs_info->scrubs_running)) {
3986		mutex_unlock(&fs_info->scrub_lock);
3987		wait_event(fs_info->scrub_pause_wait,
3988			   atomic_read(&fs_info->scrubs_paused) ==
3989			   atomic_read(&fs_info->scrubs_running));
3990		mutex_lock(&fs_info->scrub_lock);
3991	}
3992	mutex_unlock(&fs_info->scrub_lock);
3993}
3994
3995void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3996{
 
 
3997	atomic_dec(&fs_info->scrub_pause_req);
3998	wake_up(&fs_info->scrub_pause_wait);
3999}
4000
4001int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4002{
4003	mutex_lock(&fs_info->scrub_lock);
4004	if (!atomic_read(&fs_info->scrubs_running)) {
4005		mutex_unlock(&fs_info->scrub_lock);
4006		return -ENOTCONN;
4007	}
4008
4009	atomic_inc(&fs_info->scrub_cancel_req);
4010	while (atomic_read(&fs_info->scrubs_running)) {
4011		mutex_unlock(&fs_info->scrub_lock);
4012		wait_event(fs_info->scrub_pause_wait,
4013			   atomic_read(&fs_info->scrubs_running) == 0);
4014		mutex_lock(&fs_info->scrub_lock);
4015	}
4016	atomic_dec(&fs_info->scrub_cancel_req);
4017	mutex_unlock(&fs_info->scrub_lock);
4018
4019	return 0;
4020}
4021
4022int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4023			   struct btrfs_device *dev)
4024{
4025	struct scrub_ctx *sctx;
4026
4027	mutex_lock(&fs_info->scrub_lock);
4028	sctx = dev->scrub_device;
4029	if (!sctx) {
4030		mutex_unlock(&fs_info->scrub_lock);
4031		return -ENOTCONN;
4032	}
4033	atomic_inc(&sctx->cancel_req);
4034	while (dev->scrub_device) {
4035		mutex_unlock(&fs_info->scrub_lock);
4036		wait_event(fs_info->scrub_pause_wait,
4037			   dev->scrub_device == NULL);
4038		mutex_lock(&fs_info->scrub_lock);
4039	}
4040	mutex_unlock(&fs_info->scrub_lock);
4041
4042	return 0;
4043}
4044
4045int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046			 struct btrfs_scrub_progress *progress)
4047{
4048	struct btrfs_device *dev;
4049	struct scrub_ctx *sctx = NULL;
4050
4051	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4052	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4053	if (dev)
4054		sctx = dev->scrub_device;
4055	if (sctx)
4056		memcpy(progress, &sctx->stat, sizeof(*progress));
4057	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058
4059	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4060}
4061
4062static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4063			       u64 extent_logical, u64 extent_len,
4064			       u64 *extent_physical,
4065			       struct btrfs_device **extent_dev,
4066			       int *extent_mirror_num)
4067{
4068	u64 mapped_length;
4069	struct btrfs_bio *bbio = NULL;
4070	int ret;
4071
4072	mapped_length = extent_len;
4073	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4074			      &mapped_length, &bbio, 0);
4075	if (ret || !bbio || mapped_length < extent_len ||
4076	    !bbio->stripes[0].dev->bdev) {
4077		btrfs_put_bbio(bbio);
4078		return;
4079	}
4080
4081	*extent_physical = bbio->stripes[0].physical;
4082	*extent_mirror_num = bbio->mirror_num;
4083	*extent_dev = bbio->stripes[0].dev;
4084	btrfs_put_bbio(bbio);
4085}
4086
4087static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4088			      struct scrub_wr_ctx *wr_ctx,
4089			      struct btrfs_fs_info *fs_info,
4090			      struct btrfs_device *dev,
4091			      int is_dev_replace)
4092{
4093	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4094
4095	mutex_init(&wr_ctx->wr_lock);
4096	wr_ctx->wr_curr_bio = NULL;
4097	if (!is_dev_replace)
4098		return 0;
4099
4100	WARN_ON(!dev->bdev);
4101	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 
4102	wr_ctx->tgtdev = dev;
4103	atomic_set(&wr_ctx->flush_all_writes, 0);
4104	return 0;
4105}
4106
4107static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4108{
4109	mutex_lock(&wr_ctx->wr_lock);
4110	kfree(wr_ctx->wr_curr_bio);
4111	wr_ctx->wr_curr_bio = NULL;
4112	mutex_unlock(&wr_ctx->wr_lock);
4113}
4114
4115static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4116			    int mirror_num, u64 physical_for_dev_replace)
4117{
4118	struct scrub_copy_nocow_ctx *nocow_ctx;
4119	struct btrfs_fs_info *fs_info = sctx->fs_info;
4120
4121	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4122	if (!nocow_ctx) {
4123		spin_lock(&sctx->stat_lock);
4124		sctx->stat.malloc_errors++;
4125		spin_unlock(&sctx->stat_lock);
4126		return -ENOMEM;
4127	}
4128
4129	scrub_pending_trans_workers_inc(sctx);
4130
4131	nocow_ctx->sctx = sctx;
4132	nocow_ctx->logical = logical;
4133	nocow_ctx->len = len;
4134	nocow_ctx->mirror_num = mirror_num;
4135	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4136	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4137			copy_nocow_pages_worker, NULL, NULL);
4138	INIT_LIST_HEAD(&nocow_ctx->inodes);
4139	btrfs_queue_work(fs_info->scrub_nocow_workers,
4140			 &nocow_ctx->work);
4141
4142	return 0;
4143}
4144
4145static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4146{
4147	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4148	struct scrub_nocow_inode *nocow_inode;
4149
4150	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4151	if (!nocow_inode)
4152		return -ENOMEM;
4153	nocow_inode->inum = inum;
4154	nocow_inode->offset = offset;
4155	nocow_inode->root = root;
4156	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4157	return 0;
4158}
4159
4160#define COPY_COMPLETE 1
4161
4162static void copy_nocow_pages_worker(struct btrfs_work *work)
4163{
4164	struct scrub_copy_nocow_ctx *nocow_ctx =
4165		container_of(work, struct scrub_copy_nocow_ctx, work);
4166	struct scrub_ctx *sctx = nocow_ctx->sctx;
4167	struct btrfs_fs_info *fs_info = sctx->fs_info;
4168	struct btrfs_root *root = fs_info->extent_root;
4169	u64 logical = nocow_ctx->logical;
4170	u64 len = nocow_ctx->len;
4171	int mirror_num = nocow_ctx->mirror_num;
4172	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173	int ret;
4174	struct btrfs_trans_handle *trans = NULL;
 
4175	struct btrfs_path *path;
 
4176	int not_written = 0;
4177
 
 
 
4178	path = btrfs_alloc_path();
4179	if (!path) {
4180		spin_lock(&sctx->stat_lock);
4181		sctx->stat.malloc_errors++;
4182		spin_unlock(&sctx->stat_lock);
4183		not_written = 1;
4184		goto out;
4185	}
4186
4187	trans = btrfs_join_transaction(root);
4188	if (IS_ERR(trans)) {
4189		not_written = 1;
4190		goto out;
4191	}
4192
4193	ret = iterate_inodes_from_logical(logical, fs_info, path,
4194					  record_inode_for_nocow, nocow_ctx);
4195	if (ret != 0 && ret != -ENOENT) {
4196		btrfs_warn(fs_info,
4197			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4198			   logical, physical_for_dev_replace, len, mirror_num,
4199			   ret);
4200		not_written = 1;
4201		goto out;
4202	}
4203
4204	btrfs_end_transaction(trans);
4205	trans = NULL;
4206	while (!list_empty(&nocow_ctx->inodes)) {
4207		struct scrub_nocow_inode *entry;
4208		entry = list_first_entry(&nocow_ctx->inodes,
4209					 struct scrub_nocow_inode,
4210					 list);
4211		list_del_init(&entry->list);
4212		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4213						 entry->root, nocow_ctx);
4214		kfree(entry);
4215		if (ret == COPY_COMPLETE) {
4216			ret = 0;
4217			break;
4218		} else if (ret) {
4219			break;
4220		}
4221	}
4222out:
4223	while (!list_empty(&nocow_ctx->inodes)) {
4224		struct scrub_nocow_inode *entry;
4225		entry = list_first_entry(&nocow_ctx->inodes,
4226					 struct scrub_nocow_inode,
4227					 list);
4228		list_del_init(&entry->list);
4229		kfree(entry);
4230	}
4231	if (trans && !IS_ERR(trans))
4232		btrfs_end_transaction(trans);
4233	if (not_written)
4234		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4235					    num_uncorrectable_read_errors);
4236
4237	btrfs_free_path(path);
4238	kfree(nocow_ctx);
4239
4240	scrub_pending_trans_workers_dec(sctx);
4241}
4242
4243static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4244				 u64 logical)
4245{
4246	struct extent_state *cached_state = NULL;
4247	struct btrfs_ordered_extent *ordered;
4248	struct extent_io_tree *io_tree;
4249	struct extent_map *em;
4250	u64 lockstart = start, lockend = start + len - 1;
4251	int ret = 0;
4252
4253	io_tree = &BTRFS_I(inode)->io_tree;
4254
4255	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4256	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4257	if (ordered) {
4258		btrfs_put_ordered_extent(ordered);
4259		ret = 1;
4260		goto out_unlock;
4261	}
4262
4263	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4264	if (IS_ERR(em)) {
4265		ret = PTR_ERR(em);
4266		goto out_unlock;
4267	}
4268
4269	/*
4270	 * This extent does not actually cover the logical extent anymore,
4271	 * move on to the next inode.
4272	 */
4273	if (em->block_start > logical ||
4274	    em->block_start + em->block_len < logical + len) {
4275		free_extent_map(em);
4276		ret = 1;
4277		goto out_unlock;
4278	}
4279	free_extent_map(em);
4280
4281out_unlock:
4282	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4283			     GFP_NOFS);
4284	return ret;
4285}
4286
4287static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4288				      struct scrub_copy_nocow_ctx *nocow_ctx)
4289{
4290	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4291	struct btrfs_key key;
4292	struct inode *inode;
4293	struct page *page;
4294	struct btrfs_root *local_root;
 
 
 
4295	struct extent_io_tree *io_tree;
4296	u64 physical_for_dev_replace;
4297	u64 nocow_ctx_logical;
4298	u64 len = nocow_ctx->len;
 
4299	unsigned long index;
4300	int srcu_index;
4301	int ret = 0;
4302	int err = 0;
4303
4304	key.objectid = root;
4305	key.type = BTRFS_ROOT_ITEM_KEY;
4306	key.offset = (u64)-1;
4307
4308	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4309
4310	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4311	if (IS_ERR(local_root)) {
4312		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4313		return PTR_ERR(local_root);
4314	}
4315
4316	key.type = BTRFS_INODE_ITEM_KEY;
4317	key.objectid = inum;
4318	key.offset = 0;
4319	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4320	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4321	if (IS_ERR(inode))
4322		return PTR_ERR(inode);
4323
4324	/* Avoid truncate/dio/punch hole.. */
4325	inode_lock(inode);
4326	inode_dio_wait(inode);
4327
4328	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4329	io_tree = &BTRFS_I(inode)->io_tree;
4330	nocow_ctx_logical = nocow_ctx->logical;
4331
4332	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4333	if (ret) {
4334		ret = ret > 0 ? 0 : ret;
4335		goto out;
 
 
 
 
 
 
 
4336	}
4337
4338	while (len >= PAGE_SIZE) {
4339		index = offset >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
4340again:
4341		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4342		if (!page) {
4343			btrfs_err(fs_info, "find_or_create_page() failed");
4344			ret = -ENOMEM;
4345			goto out;
4346		}
4347
4348		if (PageUptodate(page)) {
4349			if (PageDirty(page))
4350				goto next_page;
4351		} else {
4352			ClearPageError(page);
4353			err = extent_read_full_page(io_tree, page,
4354							   btrfs_get_extent,
4355							   nocow_ctx->mirror_num);
4356			if (err) {
4357				ret = err;
4358				goto next_page;
4359			}
4360
4361			lock_page(page);
4362			/*
4363			 * If the page has been remove from the page cache,
4364			 * the data on it is meaningless, because it may be
4365			 * old one, the new data may be written into the new
4366			 * page in the page cache.
4367			 */
4368			if (page->mapping != inode->i_mapping) {
4369				unlock_page(page);
4370				put_page(page);
4371				goto again;
4372			}
4373			if (!PageUptodate(page)) {
4374				ret = -EIO;
4375				goto next_page;
4376			}
4377		}
4378
4379		ret = check_extent_to_block(inode, offset, len,
4380					    nocow_ctx_logical);
4381		if (ret) {
4382			ret = ret > 0 ? 0 : ret;
4383			goto next_page;
4384		}
4385
4386		err = write_page_nocow(nocow_ctx->sctx,
4387				       physical_for_dev_replace, page);
4388		if (err)
4389			ret = err;
4390next_page:
4391		unlock_page(page);
4392		put_page(page);
4393
4394		if (ret)
4395			break;
4396
4397		offset += PAGE_SIZE;
4398		physical_for_dev_replace += PAGE_SIZE;
4399		nocow_ctx_logical += PAGE_SIZE;
4400		len -= PAGE_SIZE;
4401	}
4402	ret = COPY_COMPLETE;
 
 
 
4403out:
4404	inode_unlock(inode);
4405	iput(inode);
4406	return ret;
4407}
4408
4409static int write_page_nocow(struct scrub_ctx *sctx,
4410			    u64 physical_for_dev_replace, struct page *page)
4411{
4412	struct bio *bio;
4413	struct btrfs_device *dev;
4414	int ret;
4415
4416	dev = sctx->wr_ctx.tgtdev;
4417	if (!dev)
4418		return -EIO;
4419	if (!dev->bdev) {
4420		btrfs_warn_rl(dev->fs_info,
4421			"scrub write_page_nocow(bdev == NULL) is unexpected");
4422		return -EIO;
4423	}
4424	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4425	if (!bio) {
4426		spin_lock(&sctx->stat_lock);
4427		sctx->stat.malloc_errors++;
4428		spin_unlock(&sctx->stat_lock);
4429		return -ENOMEM;
4430	}
4431	bio->bi_iter.bi_size = 0;
4432	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4433	bio->bi_bdev = dev->bdev;
4434	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4435	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4436	if (ret != PAGE_SIZE) {
4437leave_with_eio:
4438		bio_put(bio);
4439		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4440		return -EIO;
4441	}
4442
4443	if (btrfsic_submit_bio_wait(bio))
4444		goto leave_with_eio;
4445
4446	bio_put(bio);
4447	return 0;
4448}
v3.15
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  65
 
 
 
 
 
 
  66struct scrub_page {
  67	struct scrub_block	*sblock;
  68	struct page		*page;
  69	struct btrfs_device	*dev;
 
  70	u64			flags;  /* extent flags */
  71	u64			generation;
  72	u64			logical;
  73	u64			physical;
  74	u64			physical_for_dev_replace;
  75	atomic_t		ref_count;
  76	struct {
  77		unsigned int	mirror_num:8;
  78		unsigned int	have_csum:1;
  79		unsigned int	io_error:1;
  80	};
  81	u8			csum[BTRFS_CSUM_SIZE];
 
 
  82};
  83
  84struct scrub_bio {
  85	int			index;
  86	struct scrub_ctx	*sctx;
  87	struct btrfs_device	*dev;
  88	struct bio		*bio;
  89	int			err;
  90	u64			logical;
  91	u64			physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97	int			page_count;
  98	int			next_free;
  99	struct btrfs_work	work;
 100};
 101
 102struct scrub_block {
 103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104	int			page_count;
 105	atomic_t		outstanding_pages;
 106	atomic_t		ref_count; /* free mem on transition to zero */
 107	struct scrub_ctx	*sctx;
 
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 
 
 
 
 113	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114};
 115
 116struct scrub_wr_ctx {
 117	struct scrub_bio *wr_curr_bio;
 118	struct btrfs_device *tgtdev;
 119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 120	atomic_t flush_all_writes;
 121	struct mutex wr_lock;
 122};
 123
 124struct scrub_ctx {
 125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 126	struct btrfs_root	*dev_root;
 127	int			first_free;
 128	int			curr;
 129	atomic_t		bios_in_flight;
 130	atomic_t		workers_pending;
 131	spinlock_t		list_lock;
 132	wait_queue_head_t	list_wait;
 133	u16			csum_size;
 134	struct list_head	csum_list;
 135	atomic_t		cancel_req;
 136	int			readonly;
 137	int			pages_per_rd_bio;
 138	u32			sectorsize;
 139	u32			nodesize;
 140	u32			leafsize;
 141
 142	int			is_dev_replace;
 143	struct scrub_wr_ctx	wr_ctx;
 144
 145	/*
 146	 * statistics
 147	 */
 148	struct btrfs_scrub_progress stat;
 149	spinlock_t		stat_lock;
 
 
 
 
 
 
 
 
 
 150};
 151
 152struct scrub_fixup_nodatasum {
 153	struct scrub_ctx	*sctx;
 154	struct btrfs_device	*dev;
 155	u64			logical;
 156	struct btrfs_root	*root;
 157	struct btrfs_work	work;
 158	int			mirror_num;
 159};
 160
 161struct scrub_nocow_inode {
 162	u64			inum;
 163	u64			offset;
 164	u64			root;
 165	struct list_head	list;
 166};
 167
 168struct scrub_copy_nocow_ctx {
 169	struct scrub_ctx	*sctx;
 170	u64			logical;
 171	u64			len;
 172	int			mirror_num;
 173	u64			physical_for_dev_replace;
 174	struct list_head	inodes;
 175	struct btrfs_work	work;
 176};
 177
 178struct scrub_warning {
 179	struct btrfs_path	*path;
 180	u64			extent_item_size;
 181	char			*scratch_buf;
 182	char			*msg_buf;
 183	const char		*errstr;
 184	sector_t		sector;
 185	u64			logical;
 186	struct btrfs_device	*dev;
 187	int			msg_bufsize;
 188	int			scratch_bufsize;
 189};
 190
 191
 192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
 198				     struct btrfs_fs_info *fs_info,
 199				     struct scrub_block *original_sblock,
 200				     u64 length, u64 logical,
 201				     struct scrub_block *sblocks_for_recheck);
 202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 203				struct scrub_block *sblock, int is_metadata,
 204				int have_csum, u8 *csum, u64 generation,
 205				u16 csum_size);
 206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 207					 struct scrub_block *sblock,
 208					 int is_metadata, int have_csum,
 209					 const u8 *csum, u64 generation,
 210					 u16 csum_size);
 211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 212					     struct scrub_block *sblock_good,
 213					     int force_write);
 214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 215					    struct scrub_block *sblock_good,
 216					    int page_num, int force_write);
 217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 219					   int page_num);
 220static int scrub_checksum_data(struct scrub_block *sblock);
 221static int scrub_checksum_tree_block(struct scrub_block *sblock);
 222static int scrub_checksum_super(struct scrub_block *sblock);
 223static void scrub_block_get(struct scrub_block *sblock);
 224static void scrub_block_put(struct scrub_block *sblock);
 225static void scrub_page_get(struct scrub_page *spage);
 226static void scrub_page_put(struct scrub_page *spage);
 
 
 227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 228				    struct scrub_page *spage);
 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 230		       u64 physical, struct btrfs_device *dev, u64 flags,
 231		       u64 gen, int mirror_num, u8 *csum, int force,
 232		       u64 physical_for_dev_replace);
 233static void scrub_bio_end_io(struct bio *bio, int err);
 234static void scrub_bio_end_io_worker(struct btrfs_work *work);
 235static void scrub_block_complete(struct scrub_block *sblock);
 236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 237			       u64 extent_logical, u64 extent_len,
 238			       u64 *extent_physical,
 239			       struct btrfs_device **extent_dev,
 240			       int *extent_mirror_num);
 241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 242			      struct scrub_wr_ctx *wr_ctx,
 243			      struct btrfs_fs_info *fs_info,
 244			      struct btrfs_device *dev,
 245			      int is_dev_replace);
 246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio, int err);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static int write_page_nocow(struct scrub_ctx *sctx,
 253			    u64 physical_for_dev_replace, struct page *page);
 254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 255				      struct scrub_copy_nocow_ctx *ctx);
 256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 257			    int mirror_num, u64 physical_for_dev_replace);
 258static void copy_nocow_pages_worker(struct btrfs_work *work);
 259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 
 261
 262
 263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 264{
 
 265	atomic_inc(&sctx->bios_in_flight);
 266}
 267
 268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 269{
 270	atomic_dec(&sctx->bios_in_flight);
 271	wake_up(&sctx->list_wait);
 
 272}
 273
 274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 275{
 276	while (atomic_read(&fs_info->scrub_pause_req)) {
 277		mutex_unlock(&fs_info->scrub_lock);
 278		wait_event(fs_info->scrub_pause_wait,
 279		   atomic_read(&fs_info->scrub_pause_req) == 0);
 280		mutex_lock(&fs_info->scrub_lock);
 281	}
 282}
 283
 284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 285{
 286	atomic_inc(&fs_info->scrubs_paused);
 287	wake_up(&fs_info->scrub_pause_wait);
 
 288
 
 
 289	mutex_lock(&fs_info->scrub_lock);
 290	__scrub_blocked_if_needed(fs_info);
 291	atomic_dec(&fs_info->scrubs_paused);
 292	mutex_unlock(&fs_info->scrub_lock);
 293
 294	wake_up(&fs_info->scrub_pause_wait);
 295}
 296
 
 
 
 
 
 
 297/*
 298 * used for workers that require transaction commits (i.e., for the
 299 * NOCOW case)
 300 */
 301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 302{
 303	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 304
 
 305	/*
 306	 * increment scrubs_running to prevent cancel requests from
 307	 * completing as long as a worker is running. we must also
 308	 * increment scrubs_paused to prevent deadlocking on pause
 309	 * requests used for transactions commits (as the worker uses a
 310	 * transaction context). it is safe to regard the worker
 311	 * as paused for all matters practical. effectively, we only
 312	 * avoid cancellation requests from completing.
 313	 */
 314	mutex_lock(&fs_info->scrub_lock);
 315	atomic_inc(&fs_info->scrubs_running);
 316	atomic_inc(&fs_info->scrubs_paused);
 317	mutex_unlock(&fs_info->scrub_lock);
 318
 319	/*
 320	 * check if @scrubs_running=@scrubs_paused condition
 321	 * inside wait_event() is not an atomic operation.
 322	 * which means we may inc/dec @scrub_running/paused
 323	 * at any time. Let's wake up @scrub_pause_wait as
 324	 * much as we can to let commit transaction blocked less.
 325	 */
 326	wake_up(&fs_info->scrub_pause_wait);
 327
 328	atomic_inc(&sctx->workers_pending);
 329}
 330
 331/* used for workers that require transaction commits */
 332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 333{
 334	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 335
 336	/*
 337	 * see scrub_pending_trans_workers_inc() why we're pretending
 338	 * to be paused in the scrub counters
 339	 */
 340	mutex_lock(&fs_info->scrub_lock);
 341	atomic_dec(&fs_info->scrubs_running);
 342	atomic_dec(&fs_info->scrubs_paused);
 343	mutex_unlock(&fs_info->scrub_lock);
 344	atomic_dec(&sctx->workers_pending);
 345	wake_up(&fs_info->scrub_pause_wait);
 346	wake_up(&sctx->list_wait);
 
 347}
 348
 349static void scrub_free_csums(struct scrub_ctx *sctx)
 350{
 351	while (!list_empty(&sctx->csum_list)) {
 352		struct btrfs_ordered_sum *sum;
 353		sum = list_first_entry(&sctx->csum_list,
 354				       struct btrfs_ordered_sum, list);
 355		list_del(&sum->list);
 356		kfree(sum);
 357	}
 358}
 359
 360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 361{
 362	int i;
 363
 364	if (!sctx)
 365		return;
 366
 367	scrub_free_wr_ctx(&sctx->wr_ctx);
 368
 369	/* this can happen when scrub is cancelled */
 370	if (sctx->curr != -1) {
 371		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 372
 373		for (i = 0; i < sbio->page_count; i++) {
 374			WARN_ON(!sbio->pagev[i]->page);
 375			scrub_block_put(sbio->pagev[i]->sblock);
 376		}
 377		bio_put(sbio->bio);
 378	}
 379
 380	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 381		struct scrub_bio *sbio = sctx->bios[i];
 382
 383		if (!sbio)
 384			break;
 385		kfree(sbio);
 386	}
 387
 388	scrub_free_csums(sctx);
 389	kfree(sctx);
 390}
 391
 
 
 
 
 
 
 392static noinline_for_stack
 393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 394{
 395	struct scrub_ctx *sctx;
 396	int		i;
 397	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 398	int pages_per_rd_bio;
 399	int ret;
 400
 401	/*
 402	 * the setting of pages_per_rd_bio is correct for scrub but might
 403	 * be wrong for the dev_replace code where we might read from
 404	 * different devices in the initial huge bios. However, that
 405	 * code is able to correctly handle the case when adding a page
 406	 * to a bio fails.
 407	 */
 408	if (dev->bdev)
 409		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
 410					 bio_get_nr_vecs(dev->bdev));
 411	else
 412		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 413	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
 414	if (!sctx)
 415		goto nomem;
 
 416	sctx->is_dev_replace = is_dev_replace;
 417	sctx->pages_per_rd_bio = pages_per_rd_bio;
 418	sctx->curr = -1;
 419	sctx->dev_root = dev->dev_root;
 420	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 421		struct scrub_bio *sbio;
 422
 423		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 424		if (!sbio)
 425			goto nomem;
 426		sctx->bios[i] = sbio;
 427
 428		sbio->index = i;
 429		sbio->sctx = sctx;
 430		sbio->page_count = 0;
 431		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
 432				NULL, NULL);
 433
 434		if (i != SCRUB_BIOS_PER_SCTX - 1)
 435			sctx->bios[i]->next_free = i + 1;
 436		else
 437			sctx->bios[i]->next_free = -1;
 438	}
 439	sctx->first_free = 0;
 440	sctx->nodesize = dev->dev_root->nodesize;
 441	sctx->leafsize = dev->dev_root->leafsize;
 442	sctx->sectorsize = dev->dev_root->sectorsize;
 443	atomic_set(&sctx->bios_in_flight, 0);
 444	atomic_set(&sctx->workers_pending, 0);
 445	atomic_set(&sctx->cancel_req, 0);
 446	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 447	INIT_LIST_HEAD(&sctx->csum_list);
 448
 449	spin_lock_init(&sctx->list_lock);
 450	spin_lock_init(&sctx->stat_lock);
 451	init_waitqueue_head(&sctx->list_wait);
 452
 453	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 454				 fs_info->dev_replace.tgtdev, is_dev_replace);
 455	if (ret) {
 456		scrub_free_ctx(sctx);
 457		return ERR_PTR(ret);
 458	}
 459	return sctx;
 460
 461nomem:
 462	scrub_free_ctx(sctx);
 463	return ERR_PTR(-ENOMEM);
 464}
 465
 466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 467				     void *warn_ctx)
 468{
 469	u64 isize;
 470	u32 nlink;
 471	int ret;
 472	int i;
 473	struct extent_buffer *eb;
 474	struct btrfs_inode_item *inode_item;
 475	struct scrub_warning *swarn = warn_ctx;
 476	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 477	struct inode_fs_paths *ipath = NULL;
 478	struct btrfs_root *local_root;
 479	struct btrfs_key root_key;
 
 480
 481	root_key.objectid = root;
 482	root_key.type = BTRFS_ROOT_ITEM_KEY;
 483	root_key.offset = (u64)-1;
 484	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 485	if (IS_ERR(local_root)) {
 486		ret = PTR_ERR(local_root);
 487		goto err;
 488	}
 489
 490	ret = inode_item_info(inum, 0, local_root, swarn->path);
 
 
 
 
 
 
 
 491	if (ret) {
 492		btrfs_release_path(swarn->path);
 493		goto err;
 494	}
 495
 496	eb = swarn->path->nodes[0];
 497	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 498					struct btrfs_inode_item);
 499	isize = btrfs_inode_size(eb, inode_item);
 500	nlink = btrfs_inode_nlink(eb, inode_item);
 501	btrfs_release_path(swarn->path);
 502
 503	ipath = init_ipath(4096, local_root, swarn->path);
 504	if (IS_ERR(ipath)) {
 505		ret = PTR_ERR(ipath);
 506		ipath = NULL;
 507		goto err;
 508	}
 509	ret = paths_from_inode(inum, ipath);
 510
 511	if (ret < 0)
 512		goto err;
 513
 514	/*
 515	 * we deliberately ignore the bit ipath might have been too small to
 516	 * hold all of the paths here
 517	 */
 518	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 519		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 520			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 521			"length %llu, links %u (path: %s)\n", swarn->errstr,
 522			swarn->logical, rcu_str_deref(swarn->dev->name),
 523			(unsigned long long)swarn->sector, root, inum, offset,
 524			min(isize - offset, (u64)PAGE_SIZE), nlink,
 525			(char *)(unsigned long)ipath->fspath->val[i]);
 
 526
 527	free_ipath(ipath);
 528	return 0;
 529
 530err:
 531	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 532		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 533		"resolving failed with ret=%d\n", swarn->errstr,
 534		swarn->logical, rcu_str_deref(swarn->dev->name),
 535		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 536
 537	free_ipath(ipath);
 538	return 0;
 539}
 540
 541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 542{
 543	struct btrfs_device *dev;
 544	struct btrfs_fs_info *fs_info;
 545	struct btrfs_path *path;
 546	struct btrfs_key found_key;
 547	struct extent_buffer *eb;
 548	struct btrfs_extent_item *ei;
 549	struct scrub_warning swarn;
 550	unsigned long ptr = 0;
 551	u64 extent_item_pos;
 552	u64 flags = 0;
 553	u64 ref_root;
 554	u32 item_size;
 555	u8 ref_level;
 556	const int bufsize = 4096;
 557	int ret;
 558
 559	WARN_ON(sblock->page_count < 1);
 560	dev = sblock->pagev[0]->dev;
 561	fs_info = sblock->sctx->dev_root->fs_info;
 562
 563	path = btrfs_alloc_path();
 
 
 564
 565	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 566	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 567	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 568	swarn.logical = sblock->pagev[0]->logical;
 569	swarn.errstr = errstr;
 570	swarn.dev = NULL;
 571	swarn.msg_bufsize = bufsize;
 572	swarn.scratch_bufsize = bufsize;
 573
 574	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 575		goto out;
 576
 577	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 578				  &flags);
 579	if (ret < 0)
 580		goto out;
 581
 582	extent_item_pos = swarn.logical - found_key.objectid;
 583	swarn.extent_item_size = found_key.offset;
 584
 585	eb = path->nodes[0];
 586	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 587	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 588
 589	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 590		do {
 591			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 592							&ref_root, &ref_level);
 593			printk_in_rcu(KERN_WARNING
 594				"BTRFS: %s at logical %llu on dev %s, "
 595				"sector %llu: metadata %s (level %d) in tree "
 596				"%llu\n", errstr, swarn.logical,
 597				rcu_str_deref(dev->name),
 598				(unsigned long long)swarn.sector,
 599				ref_level ? "node" : "leaf",
 600				ret < 0 ? -1 : ref_level,
 601				ret < 0 ? -1 : ref_root);
 602		} while (ret != 1);
 603		btrfs_release_path(path);
 604	} else {
 605		btrfs_release_path(path);
 606		swarn.path = path;
 607		swarn.dev = dev;
 608		iterate_extent_inodes(fs_info, found_key.objectid,
 609					extent_item_pos, 1,
 610					scrub_print_warning_inode, &swarn);
 611	}
 612
 613out:
 614	btrfs_free_path(path);
 615	kfree(swarn.scratch_buf);
 616	kfree(swarn.msg_buf);
 617}
 618
 619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 620{
 621	struct page *page = NULL;
 622	unsigned long index;
 623	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 624	int ret;
 625	int corrected = 0;
 626	struct btrfs_key key;
 627	struct inode *inode = NULL;
 628	struct btrfs_fs_info *fs_info;
 629	u64 end = offset + PAGE_SIZE - 1;
 630	struct btrfs_root *local_root;
 631	int srcu_index;
 632
 633	key.objectid = root;
 634	key.type = BTRFS_ROOT_ITEM_KEY;
 635	key.offset = (u64)-1;
 636
 637	fs_info = fixup->root->fs_info;
 638	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 639
 640	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 641	if (IS_ERR(local_root)) {
 642		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 643		return PTR_ERR(local_root);
 644	}
 645
 646	key.type = BTRFS_INODE_ITEM_KEY;
 647	key.objectid = inum;
 648	key.offset = 0;
 649	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 650	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 651	if (IS_ERR(inode))
 652		return PTR_ERR(inode);
 653
 654	index = offset >> PAGE_CACHE_SHIFT;
 655
 656	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 657	if (!page) {
 658		ret = -ENOMEM;
 659		goto out;
 660	}
 661
 662	if (PageUptodate(page)) {
 663		if (PageDirty(page)) {
 664			/*
 665			 * we need to write the data to the defect sector. the
 666			 * data that was in that sector is not in memory,
 667			 * because the page was modified. we must not write the
 668			 * modified page to that sector.
 669			 *
 670			 * TODO: what could be done here: wait for the delalloc
 671			 *       runner to write out that page (might involve
 672			 *       COW) and see whether the sector is still
 673			 *       referenced afterwards.
 674			 *
 675			 * For the meantime, we'll treat this error
 676			 * incorrectable, although there is a chance that a
 677			 * later scrub will find the bad sector again and that
 678			 * there's no dirty page in memory, then.
 679			 */
 680			ret = -EIO;
 681			goto out;
 682		}
 683		fs_info = BTRFS_I(inode)->root->fs_info;
 684		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
 685					fixup->logical, page,
 
 686					fixup->mirror_num);
 687		unlock_page(page);
 688		corrected = !ret;
 689	} else {
 690		/*
 691		 * we need to get good data first. the general readpage path
 692		 * will call repair_io_failure for us, we just have to make
 693		 * sure we read the bad mirror.
 694		 */
 695		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 696					EXTENT_DAMAGED, GFP_NOFS);
 697		if (ret) {
 698			/* set_extent_bits should give proper error */
 699			WARN_ON(ret > 0);
 700			if (ret > 0)
 701				ret = -EFAULT;
 702			goto out;
 703		}
 704
 705		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 706						btrfs_get_extent,
 707						fixup->mirror_num);
 708		wait_on_page_locked(page);
 709
 710		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 711						end, EXTENT_DAMAGED, 0, NULL);
 712		if (!corrected)
 713			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 714						EXTENT_DAMAGED, GFP_NOFS);
 715	}
 716
 717out:
 718	if (page)
 719		put_page(page);
 720	if (inode)
 721		iput(inode);
 722
 723	if (ret < 0)
 724		return ret;
 725
 726	if (ret == 0 && corrected) {
 727		/*
 728		 * we only need to call readpage for one of the inodes belonging
 729		 * to this extent. so make iterate_extent_inodes stop
 730		 */
 731		return 1;
 732	}
 733
 734	return -EIO;
 735}
 736
 737static void scrub_fixup_nodatasum(struct btrfs_work *work)
 738{
 
 739	int ret;
 740	struct scrub_fixup_nodatasum *fixup;
 741	struct scrub_ctx *sctx;
 742	struct btrfs_trans_handle *trans = NULL;
 743	struct btrfs_path *path;
 744	int uncorrectable = 0;
 745
 746	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 747	sctx = fixup->sctx;
 
 748
 749	path = btrfs_alloc_path();
 750	if (!path) {
 751		spin_lock(&sctx->stat_lock);
 752		++sctx->stat.malloc_errors;
 753		spin_unlock(&sctx->stat_lock);
 754		uncorrectable = 1;
 755		goto out;
 756	}
 757
 758	trans = btrfs_join_transaction(fixup->root);
 759	if (IS_ERR(trans)) {
 760		uncorrectable = 1;
 761		goto out;
 762	}
 763
 764	/*
 765	 * the idea is to trigger a regular read through the standard path. we
 766	 * read a page from the (failed) logical address by specifying the
 767	 * corresponding copynum of the failed sector. thus, that readpage is
 768	 * expected to fail.
 769	 * that is the point where on-the-fly error correction will kick in
 770	 * (once it's finished) and rewrite the failed sector if a good copy
 771	 * can be found.
 772	 */
 773	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 774						path, scrub_fixup_readpage,
 775						fixup);
 776	if (ret < 0) {
 777		uncorrectable = 1;
 778		goto out;
 779	}
 780	WARN_ON(ret != 1);
 781
 782	spin_lock(&sctx->stat_lock);
 783	++sctx->stat.corrected_errors;
 784	spin_unlock(&sctx->stat_lock);
 785
 786out:
 787	if (trans && !IS_ERR(trans))
 788		btrfs_end_transaction(trans, fixup->root);
 789	if (uncorrectable) {
 790		spin_lock(&sctx->stat_lock);
 791		++sctx->stat.uncorrectable_errors;
 792		spin_unlock(&sctx->stat_lock);
 793		btrfs_dev_replace_stats_inc(
 794			&sctx->dev_root->fs_info->dev_replace.
 795			num_uncorrectable_read_errors);
 796		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
 797		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 798			fixup->logical, rcu_str_deref(fixup->dev->name));
 799	}
 800
 801	btrfs_free_path(path);
 802	kfree(fixup);
 803
 804	scrub_pending_trans_workers_dec(sctx);
 805}
 806
 
 
 
 
 
 
 
 
 
 
 
 
 
 807/*
 808 * scrub_handle_errored_block gets called when either verification of the
 809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 810 * case, this function handles all pages in the bio, even though only one
 811 * may be bad.
 812 * The goal of this function is to repair the errored block by using the
 813 * contents of one of the mirrors.
 814 */
 815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 816{
 817	struct scrub_ctx *sctx = sblock_to_check->sctx;
 818	struct btrfs_device *dev;
 819	struct btrfs_fs_info *fs_info;
 820	u64 length;
 821	u64 logical;
 822	u64 generation;
 823	unsigned int failed_mirror_index;
 824	unsigned int is_metadata;
 825	unsigned int have_csum;
 826	u8 *csum;
 827	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 828	struct scrub_block *sblock_bad;
 829	int ret;
 830	int mirror_index;
 831	int page_num;
 832	int success;
 833	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 834				      DEFAULT_RATELIMIT_BURST);
 835
 836	BUG_ON(sblock_to_check->page_count < 1);
 837	fs_info = sctx->dev_root->fs_info;
 838	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 839		/*
 840		 * if we find an error in a super block, we just report it.
 841		 * They will get written with the next transaction commit
 842		 * anyway
 843		 */
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.super_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		return 0;
 848	}
 849	length = sblock_to_check->page_count * PAGE_SIZE;
 850	logical = sblock_to_check->pagev[0]->logical;
 851	generation = sblock_to_check->pagev[0]->generation;
 852	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 853	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 854	is_metadata = !(sblock_to_check->pagev[0]->flags &
 855			BTRFS_EXTENT_FLAG_DATA);
 856	have_csum = sblock_to_check->pagev[0]->have_csum;
 857	csum = sblock_to_check->pagev[0]->csum;
 858	dev = sblock_to_check->pagev[0]->dev;
 859
 860	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 861		sblocks_for_recheck = NULL;
 862		goto nodatasum_case;
 863	}
 864
 865	/*
 866	 * read all mirrors one after the other. This includes to
 867	 * re-read the extent or metadata block that failed (that was
 868	 * the cause that this fixup code is called) another time,
 869	 * page by page this time in order to know which pages
 870	 * caused I/O errors and which ones are good (for all mirrors).
 871	 * It is the goal to handle the situation when more than one
 872	 * mirror contains I/O errors, but the errors do not
 873	 * overlap, i.e. the data can be repaired by selecting the
 874	 * pages from those mirrors without I/O error on the
 875	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 876	 * would be that mirror #1 has an I/O error on the first page,
 877	 * the second page is good, and mirror #2 has an I/O error on
 878	 * the second page, but the first page is good.
 879	 * Then the first page of the first mirror can be repaired by
 880	 * taking the first page of the second mirror, and the
 881	 * second page of the second mirror can be repaired by
 882	 * copying the contents of the 2nd page of the 1st mirror.
 883	 * One more note: if the pages of one mirror contain I/O
 884	 * errors, the checksum cannot be verified. In order to get
 885	 * the best data for repairing, the first attempt is to find
 886	 * a mirror without I/O errors and with a validated checksum.
 887	 * Only if this is not possible, the pages are picked from
 888	 * mirrors with I/O errors without considering the checksum.
 889	 * If the latter is the case, at the end, the checksum of the
 890	 * repaired area is verified in order to correctly maintain
 891	 * the statistics.
 892	 */
 893
 894	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 895				     sizeof(*sblocks_for_recheck),
 896				     GFP_NOFS);
 897	if (!sblocks_for_recheck) {
 898		spin_lock(&sctx->stat_lock);
 899		sctx->stat.malloc_errors++;
 900		sctx->stat.read_errors++;
 901		sctx->stat.uncorrectable_errors++;
 902		spin_unlock(&sctx->stat_lock);
 903		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 904		goto out;
 905	}
 906
 907	/* setup the context, map the logical blocks and alloc the pages */
 908	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
 909					logical, sblocks_for_recheck);
 910	if (ret) {
 911		spin_lock(&sctx->stat_lock);
 912		sctx->stat.read_errors++;
 913		sctx->stat.uncorrectable_errors++;
 914		spin_unlock(&sctx->stat_lock);
 915		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 916		goto out;
 917	}
 918	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 919	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 920
 921	/* build and submit the bios for the failed mirror, check checksums */
 922	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 923			    csum, generation, sctx->csum_size);
 924
 925	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 926	    sblock_bad->no_io_error_seen) {
 927		/*
 928		 * the error disappeared after reading page by page, or
 929		 * the area was part of a huge bio and other parts of the
 930		 * bio caused I/O errors, or the block layer merged several
 931		 * read requests into one and the error is caused by a
 932		 * different bio (usually one of the two latter cases is
 933		 * the cause)
 934		 */
 935		spin_lock(&sctx->stat_lock);
 936		sctx->stat.unverified_errors++;
 
 937		spin_unlock(&sctx->stat_lock);
 938
 939		if (sctx->is_dev_replace)
 940			scrub_write_block_to_dev_replace(sblock_bad);
 941		goto out;
 942	}
 943
 944	if (!sblock_bad->no_io_error_seen) {
 945		spin_lock(&sctx->stat_lock);
 946		sctx->stat.read_errors++;
 947		spin_unlock(&sctx->stat_lock);
 948		if (__ratelimit(&_rs))
 949			scrub_print_warning("i/o error", sblock_to_check);
 950		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 951	} else if (sblock_bad->checksum_error) {
 952		spin_lock(&sctx->stat_lock);
 953		sctx->stat.csum_errors++;
 954		spin_unlock(&sctx->stat_lock);
 955		if (__ratelimit(&_rs))
 956			scrub_print_warning("checksum error", sblock_to_check);
 957		btrfs_dev_stat_inc_and_print(dev,
 958					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 959	} else if (sblock_bad->header_error) {
 960		spin_lock(&sctx->stat_lock);
 961		sctx->stat.verify_errors++;
 962		spin_unlock(&sctx->stat_lock);
 963		if (__ratelimit(&_rs))
 964			scrub_print_warning("checksum/header error",
 965					    sblock_to_check);
 966		if (sblock_bad->generation_error)
 967			btrfs_dev_stat_inc_and_print(dev,
 968				BTRFS_DEV_STAT_GENERATION_ERRS);
 969		else
 970			btrfs_dev_stat_inc_and_print(dev,
 971				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 972	}
 973
 974	if (sctx->readonly) {
 975		ASSERT(!sctx->is_dev_replace);
 976		goto out;
 977	}
 978
 979	if (!is_metadata && !have_csum) {
 980		struct scrub_fixup_nodatasum *fixup_nodatasum;
 981
 
 
 982nodatasum_case:
 983		WARN_ON(sctx->is_dev_replace);
 984
 985		/*
 986		 * !is_metadata and !have_csum, this means that the data
 987		 * might not be COW'ed, that it might be modified
 988		 * concurrently. The general strategy to work on the
 989		 * commit root does not help in the case when COW is not
 990		 * used.
 991		 */
 992		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 993		if (!fixup_nodatasum)
 994			goto did_not_correct_error;
 995		fixup_nodatasum->sctx = sctx;
 996		fixup_nodatasum->dev = dev;
 997		fixup_nodatasum->logical = logical;
 998		fixup_nodatasum->root = fs_info->extent_root;
 999		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000		scrub_pending_trans_workers_inc(sctx);
1001		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002				NULL, NULL);
1003		btrfs_queue_work(fs_info->scrub_workers,
1004				 &fixup_nodatasum->work);
1005		goto out;
1006	}
1007
1008	/*
1009	 * now build and submit the bios for the other mirrors, check
1010	 * checksums.
1011	 * First try to pick the mirror which is completely without I/O
1012	 * errors and also does not have a checksum error.
1013	 * If one is found, and if a checksum is present, the full block
1014	 * that is known to contain an error is rewritten. Afterwards
1015	 * the block is known to be corrected.
1016	 * If a mirror is found which is completely correct, and no
1017	 * checksum is present, only those pages are rewritten that had
1018	 * an I/O error in the block to be repaired, since it cannot be
1019	 * determined, which copy of the other pages is better (and it
1020	 * could happen otherwise that a correct page would be
1021	 * overwritten by a bad one).
1022	 */
1023	for (mirror_index = 0;
1024	     mirror_index < BTRFS_MAX_MIRRORS &&
1025	     sblocks_for_recheck[mirror_index].page_count > 0;
1026	     mirror_index++) {
1027		struct scrub_block *sblock_other;
1028
1029		if (mirror_index == failed_mirror_index)
1030			continue;
1031		sblock_other = sblocks_for_recheck + mirror_index;
1032
1033		/* build and submit the bios, check checksums */
1034		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035				    have_csum, csum, generation,
1036				    sctx->csum_size);
1037
1038		if (!sblock_other->header_error &&
1039		    !sblock_other->checksum_error &&
1040		    sblock_other->no_io_error_seen) {
1041			if (sctx->is_dev_replace) {
1042				scrub_write_block_to_dev_replace(sblock_other);
 
1043			} else {
1044				int force_write = is_metadata || have_csum;
1045
1046				ret = scrub_repair_block_from_good_copy(
1047						sblock_bad, sblock_other,
1048						force_write);
 
1049			}
1050			if (0 == ret)
1051				goto corrected_error;
1052		}
1053	}
1054
1055	/*
1056	 * for dev_replace, pick good pages and write to the target device.
1057	 */
1058	if (sctx->is_dev_replace) {
1059		success = 1;
1060		for (page_num = 0; page_num < sblock_bad->page_count;
1061		     page_num++) {
1062			int sub_success;
1063
1064			sub_success = 0;
1065			for (mirror_index = 0;
1066			     mirror_index < BTRFS_MAX_MIRRORS &&
1067			     sblocks_for_recheck[mirror_index].page_count > 0;
1068			     mirror_index++) {
1069				struct scrub_block *sblock_other =
1070					sblocks_for_recheck + mirror_index;
1071				struct scrub_page *page_other =
1072					sblock_other->pagev[page_num];
1073
1074				if (!page_other->io_error) {
1075					ret = scrub_write_page_to_dev_replace(
1076							sblock_other, page_num);
1077					if (ret == 0) {
1078						/* succeeded for this page */
1079						sub_success = 1;
1080						break;
1081					} else {
1082						btrfs_dev_replace_stats_inc(
1083							&sctx->dev_root->
1084							fs_info->dev_replace.
1085							num_write_errors);
1086					}
1087				}
1088			}
1089
1090			if (!sub_success) {
1091				/*
1092				 * did not find a mirror to fetch the page
1093				 * from. scrub_write_page_to_dev_replace()
1094				 * handles this case (page->io_error), by
1095				 * filling the block with zeros before
1096				 * submitting the write request
1097				 */
1098				success = 0;
1099				ret = scrub_write_page_to_dev_replace(
1100						sblock_bad, page_num);
1101				if (ret)
1102					btrfs_dev_replace_stats_inc(
1103						&sctx->dev_root->fs_info->
1104						dev_replace.num_write_errors);
1105			}
1106		}
1107
1108		goto out;
1109	}
1110
1111	/*
1112	 * for regular scrub, repair those pages that are errored.
1113	 * In case of I/O errors in the area that is supposed to be
1114	 * repaired, continue by picking good copies of those pages.
1115	 * Select the good pages from mirrors to rewrite bad pages from
1116	 * the area to fix. Afterwards verify the checksum of the block
1117	 * that is supposed to be repaired. This verification step is
1118	 * only done for the purpose of statistic counting and for the
1119	 * final scrub report, whether errors remain.
1120	 * A perfect algorithm could make use of the checksum and try
1121	 * all possible combinations of pages from the different mirrors
1122	 * until the checksum verification succeeds. For example, when
1123	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124	 * of mirror #2 is readable but the final checksum test fails,
1125	 * then the 2nd page of mirror #3 could be tried, whether now
1126	 * the final checksum succeedes. But this would be a rare
1127	 * exception and is therefore not implemented. At least it is
1128	 * avoided that the good copy is overwritten.
1129	 * A more useful improvement would be to pick the sectors
1130	 * without I/O error based on sector sizes (512 bytes on legacy
1131	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132	 * mirror could be repaired by taking 512 byte of a different
1133	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134	 * area are unreadable.
1135	 */
1136
1137	/* can only fix I/O errors from here on */
1138	if (sblock_bad->no_io_error_seen)
1139		goto did_not_correct_error;
1140
1141	success = 1;
1142	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 
1143		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
 
1144
1145		if (!page_bad->io_error)
 
1146			continue;
1147
1148		for (mirror_index = 0;
1149		     mirror_index < BTRFS_MAX_MIRRORS &&
1150		     sblocks_for_recheck[mirror_index].page_count > 0;
1151		     mirror_index++) {
1152			struct scrub_block *sblock_other = sblocks_for_recheck +
1153							   mirror_index;
1154			struct scrub_page *page_other = sblock_other->pagev[
1155							page_num];
1156
1157			if (!page_other->io_error) {
1158				ret = scrub_repair_page_from_good_copy(
1159					sblock_bad, sblock_other, page_num, 0);
1160				if (0 == ret) {
1161					page_bad->io_error = 0;
1162					break; /* succeeded for this page */
1163				}
1164			}
 
 
1165		}
1166
1167		if (page_bad->io_error) {
1168			/* did not find a mirror to copy the page from */
1169			success = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170		}
1171	}
1172
1173	if (success) {
1174		if (is_metadata || have_csum) {
1175			/*
1176			 * need to verify the checksum now that all
1177			 * sectors on disk are repaired (the write
1178			 * request for data to be repaired is on its way).
1179			 * Just be lazy and use scrub_recheck_block()
1180			 * which re-reads the data before the checksum
1181			 * is verified, but most likely the data comes out
1182			 * of the page cache.
1183			 */
1184			scrub_recheck_block(fs_info, sblock_bad,
1185					    is_metadata, have_csum, csum,
1186					    generation, sctx->csum_size);
1187			if (!sblock_bad->header_error &&
1188			    !sblock_bad->checksum_error &&
1189			    sblock_bad->no_io_error_seen)
1190				goto corrected_error;
1191			else
1192				goto did_not_correct_error;
1193		} else {
1194corrected_error:
1195			spin_lock(&sctx->stat_lock);
1196			sctx->stat.corrected_errors++;
 
1197			spin_unlock(&sctx->stat_lock);
1198			printk_ratelimited_in_rcu(KERN_ERR
1199				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200				logical, rcu_str_deref(dev->name));
1201		}
1202	} else {
1203did_not_correct_error:
1204		spin_lock(&sctx->stat_lock);
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		printk_ratelimited_in_rcu(KERN_ERR
1208			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209			logical, rcu_str_deref(dev->name));
1210	}
1211
1212out:
1213	if (sblocks_for_recheck) {
1214		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215		     mirror_index++) {
1216			struct scrub_block *sblock = sblocks_for_recheck +
1217						     mirror_index;
 
1218			int page_index;
1219
1220			for (page_index = 0; page_index < sblock->page_count;
1221			     page_index++) {
1222				sblock->pagev[page_index]->sblock = NULL;
 
 
 
 
 
 
1223				scrub_page_put(sblock->pagev[page_index]);
1224			}
1225		}
1226		kfree(sblocks_for_recheck);
1227	}
1228
1229	return 0;
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233				     struct btrfs_fs_info *fs_info,
1234				     struct scrub_block *original_sblock,
1235				     u64 length, u64 logical,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236				     struct scrub_block *sblocks_for_recheck)
1237{
1238	int page_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
1239	int mirror_index;
 
1240	int ret;
1241
1242	/*
1243	 * note: the two members ref_count and outstanding_pages
1244	 * are not used (and not set) in the blocks that are used for
1245	 * the recheck procedure
1246	 */
1247
1248	page_index = 0;
1249	while (length > 0) {
1250		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251		u64 mapped_length = sublen;
1252		struct btrfs_bio *bbio = NULL;
1253
1254		/*
1255		 * with a length of PAGE_SIZE, each returned stripe
1256		 * represents one mirror
1257		 */
1258		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259				      &mapped_length, &bbio, 0);
1260		if (ret || !bbio || mapped_length < sublen) {
1261			kfree(bbio);
1262			return -EIO;
1263		}
1264
1265		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
1267		     mirror_index++) {
1268			struct scrub_block *sblock;
1269			struct scrub_page *page;
1270
1271			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272				continue;
1273
1274			sblock = sblocks_for_recheck + mirror_index;
1275			sblock->sctx = sctx;
 
1276			page = kzalloc(sizeof(*page), GFP_NOFS);
1277			if (!page) {
1278leave_nomem:
1279				spin_lock(&sctx->stat_lock);
1280				sctx->stat.malloc_errors++;
1281				spin_unlock(&sctx->stat_lock);
1282				kfree(bbio);
1283				return -ENOMEM;
1284			}
1285			scrub_page_get(page);
1286			sblock->pagev[page_index] = page;
 
 
 
1287			page->logical = logical;
1288			page->physical = bbio->stripes[mirror_index].physical;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289			BUG_ON(page_index >= original_sblock->page_count);
1290			page->physical_for_dev_replace =
1291				original_sblock->pagev[page_index]->
1292				physical_for_dev_replace;
1293			/* for missing devices, dev->bdev is NULL */
1294			page->dev = bbio->stripes[mirror_index].dev;
1295			page->mirror_num = mirror_index + 1;
1296			sblock->page_count++;
1297			page->page = alloc_page(GFP_NOFS);
1298			if (!page->page)
1299				goto leave_nomem;
 
 
 
1300		}
1301		kfree(bbio);
1302		length -= sublen;
1303		logical += sublen;
1304		page_index++;
1305	}
1306
1307	return 0;
1308}
1309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318				struct scrub_block *sblock, int is_metadata,
1319				int have_csum, u8 *csum, u64 generation,
1320				u16 csum_size)
1321{
1322	int page_num;
1323
1324	sblock->no_io_error_seen = 1;
1325	sblock->header_error = 0;
1326	sblock->checksum_error = 0;
1327
1328	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329		struct bio *bio;
1330		struct scrub_page *page = sblock->pagev[page_num];
1331
1332		if (page->dev->bdev == NULL) {
1333			page->io_error = 1;
1334			sblock->no_io_error_seen = 0;
1335			continue;
1336		}
1337
1338		WARN_ON(!page->page);
1339		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340		if (!bio) {
1341			page->io_error = 1;
1342			sblock->no_io_error_seen = 0;
1343			continue;
1344		}
1345		bio->bi_bdev = page->dev->bdev;
1346		bio->bi_iter.bi_sector = page->physical >> 9;
1347
1348		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349		if (btrfsic_submit_bio_wait(READ, bio))
1350			sblock->no_io_error_seen = 0;
 
 
 
 
 
 
 
 
1351
1352		bio_put(bio);
1353	}
1354
1355	if (sblock->no_io_error_seen)
1356		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357					     have_csum, csum, generation,
1358					     csum_size);
1359
1360	return;
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364					 struct scrub_block *sblock,
1365					 int is_metadata, int have_csum,
1366					 const u8 *csum, u64 generation,
1367					 u16 csum_size)
1368{
1369	int page_num;
1370	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371	u32 crc = ~(u32)0;
1372	void *mapped_buffer;
1373
1374	WARN_ON(!sblock->pagev[0]->page);
1375	if (is_metadata) {
1376		struct btrfs_header *h;
1377
1378		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379		h = (struct btrfs_header *)mapped_buffer;
1380
1381		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384			   BTRFS_UUID_SIZE)) {
1385			sblock->header_error = 1;
1386		} else if (generation != btrfs_stack_header_generation(h)) {
1387			sblock->header_error = 1;
1388			sblock->generation_error = 1;
1389		}
1390		csum = h->csum;
1391	} else {
1392		if (!have_csum)
1393			return;
1394
1395		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396	}
 
 
 
1397
1398	for (page_num = 0;;) {
1399		if (page_num == 0 && is_metadata)
1400			crc = btrfs_csum_data(
1401				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403		else
1404			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406		kunmap_atomic(mapped_buffer);
1407		page_num++;
1408		if (page_num >= sblock->page_count)
1409			break;
1410		WARN_ON(!sblock->pagev[page_num]->page);
1411
1412		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413	}
1414
1415	btrfs_csum_final(crc, calculated_csum);
1416	if (memcmp(calculated_csum, csum, csum_size))
1417		sblock->checksum_error = 1;
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421					     struct scrub_block *sblock_good,
1422					     int force_write)
1423{
1424	int page_num;
1425	int ret = 0;
1426
1427	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428		int ret_sub;
1429
1430		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431							   sblock_good,
1432							   page_num,
1433							   force_write);
1434		if (ret_sub)
1435			ret = ret_sub;
1436	}
1437
1438	return ret;
1439}
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442					    struct scrub_block *sblock_good,
1443					    int page_num, int force_write)
1444{
1445	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446	struct scrub_page *page_good = sblock_good->pagev[page_num];
 
1447
1448	BUG_ON(page_bad->page == NULL);
1449	BUG_ON(page_good->page == NULL);
1450	if (force_write || sblock_bad->header_error ||
1451	    sblock_bad->checksum_error || page_bad->io_error) {
1452		struct bio *bio;
1453		int ret;
1454
1455		if (!page_bad->dev->bdev) {
1456			printk_ratelimited(KERN_WARNING "BTRFS: "
1457				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458				"is unexpected!\n");
1459			return -EIO;
1460		}
1461
1462		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463		if (!bio)
1464			return -EIO;
1465		bio->bi_bdev = page_bad->dev->bdev;
1466		bio->bi_iter.bi_sector = page_bad->physical >> 9;
 
1467
1468		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469		if (PAGE_SIZE != ret) {
1470			bio_put(bio);
1471			return -EIO;
1472		}
1473
1474		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476				BTRFS_DEV_STAT_WRITE_ERRS);
1477			btrfs_dev_replace_stats_inc(
1478				&sblock_bad->sctx->dev_root->fs_info->
1479				dev_replace.num_write_errors);
1480			bio_put(bio);
1481			return -EIO;
1482		}
1483		bio_put(bio);
1484	}
1485
1486	return 0;
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490{
 
1491	int page_num;
1492
 
 
 
 
 
 
 
1493	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494		int ret;
1495
1496		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497		if (ret)
1498			btrfs_dev_replace_stats_inc(
1499				&sblock->sctx->dev_root->fs_info->dev_replace.
1500				num_write_errors);
1501	}
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505					   int page_num)
1506{
1507	struct scrub_page *spage = sblock->pagev[page_num];
1508
1509	BUG_ON(spage->page == NULL);
1510	if (spage->io_error) {
1511		void *mapped_buffer = kmap_atomic(spage->page);
1512
1513		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514		flush_dcache_page(spage->page);
1515		kunmap_atomic(mapped_buffer);
1516	}
1517	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521				    struct scrub_page *spage)
1522{
1523	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524	struct scrub_bio *sbio;
1525	int ret;
1526
1527	mutex_lock(&wr_ctx->wr_lock);
1528again:
1529	if (!wr_ctx->wr_curr_bio) {
1530		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531					      GFP_NOFS);
1532		if (!wr_ctx->wr_curr_bio) {
1533			mutex_unlock(&wr_ctx->wr_lock);
1534			return -ENOMEM;
1535		}
1536		wr_ctx->wr_curr_bio->sctx = sctx;
1537		wr_ctx->wr_curr_bio->page_count = 0;
1538	}
1539	sbio = wr_ctx->wr_curr_bio;
1540	if (sbio->page_count == 0) {
1541		struct bio *bio;
1542
1543		sbio->physical = spage->physical_for_dev_replace;
1544		sbio->logical = spage->logical;
1545		sbio->dev = wr_ctx->tgtdev;
1546		bio = sbio->bio;
1547		if (!bio) {
1548			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
 
1549			if (!bio) {
1550				mutex_unlock(&wr_ctx->wr_lock);
1551				return -ENOMEM;
1552			}
1553			sbio->bio = bio;
1554		}
1555
1556		bio->bi_private = sbio;
1557		bio->bi_end_io = scrub_wr_bio_end_io;
1558		bio->bi_bdev = sbio->dev->bdev;
1559		bio->bi_iter.bi_sector = sbio->physical >> 9;
 
1560		sbio->err = 0;
1561	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562		   spage->physical_for_dev_replace ||
1563		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564		   spage->logical) {
1565		scrub_wr_submit(sctx);
1566		goto again;
1567	}
1568
1569	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570	if (ret != PAGE_SIZE) {
1571		if (sbio->page_count < 1) {
1572			bio_put(sbio->bio);
1573			sbio->bio = NULL;
1574			mutex_unlock(&wr_ctx->wr_lock);
1575			return -EIO;
1576		}
1577		scrub_wr_submit(sctx);
1578		goto again;
1579	}
1580
1581	sbio->pagev[sbio->page_count] = spage;
1582	scrub_page_get(spage);
1583	sbio->page_count++;
1584	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585		scrub_wr_submit(sctx);
1586	mutex_unlock(&wr_ctx->wr_lock);
1587
1588	return 0;
1589}
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594	struct scrub_bio *sbio;
1595
1596	if (!wr_ctx->wr_curr_bio)
1597		return;
1598
1599	sbio = wr_ctx->wr_curr_bio;
1600	wr_ctx->wr_curr_bio = NULL;
1601	WARN_ON(!sbio->bio->bi_bdev);
1602	scrub_pending_bio_inc(sctx);
1603	/* process all writes in a single worker thread. Then the block layer
1604	 * orders the requests before sending them to the driver which
1605	 * doubled the write performance on spinning disks when measured
1606	 * with Linux 3.5 */
1607	btrfsic_submit_bio(WRITE, sbio->bio);
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612	struct scrub_bio *sbio = bio->bi_private;
1613	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615	sbio->err = err;
1616	sbio->bio = bio;
1617
1618	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
 
1619	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625	struct scrub_ctx *sctx = sbio->sctx;
1626	int i;
1627
1628	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629	if (sbio->err) {
1630		struct btrfs_dev_replace *dev_replace =
1631			&sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633		for (i = 0; i < sbio->page_count; i++) {
1634			struct scrub_page *spage = sbio->pagev[i];
1635
1636			spage->io_error = 1;
1637			btrfs_dev_replace_stats_inc(&dev_replace->
1638						    num_write_errors);
1639		}
1640	}
1641
1642	for (i = 0; i < sbio->page_count; i++)
1643		scrub_page_put(sbio->pagev[i]);
1644
1645	bio_put(sbio->bio);
1646	kfree(sbio);
1647	scrub_pending_bio_dec(sctx);
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
1651{
1652	u64 flags;
1653	int ret;
1654
 
 
 
 
 
 
 
 
 
 
 
 
1655	WARN_ON(sblock->page_count < 1);
1656	flags = sblock->pagev[0]->flags;
1657	ret = 0;
1658	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659		ret = scrub_checksum_data(sblock);
1660	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661		ret = scrub_checksum_tree_block(sblock);
1662	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663		(void)scrub_checksum_super(sblock);
1664	else
1665		WARN_ON(1);
1666	if (ret)
1667		scrub_handle_errored_block(sblock);
1668
1669	return ret;
1670}
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674	struct scrub_ctx *sctx = sblock->sctx;
1675	u8 csum[BTRFS_CSUM_SIZE];
1676	u8 *on_disk_csum;
1677	struct page *page;
1678	void *buffer;
1679	u32 crc = ~(u32)0;
1680	int fail = 0;
1681	u64 len;
1682	int index;
1683
1684	BUG_ON(sblock->page_count < 1);
1685	if (!sblock->pagev[0]->have_csum)
1686		return 0;
1687
1688	on_disk_csum = sblock->pagev[0]->csum;
1689	page = sblock->pagev[0]->page;
1690	buffer = kmap_atomic(page);
1691
1692	len = sctx->sectorsize;
1693	index = 0;
1694	for (;;) {
1695		u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697		crc = btrfs_csum_data(buffer, crc, l);
1698		kunmap_atomic(buffer);
1699		len -= l;
1700		if (len == 0)
1701			break;
1702		index++;
1703		BUG_ON(index >= sblock->page_count);
1704		BUG_ON(!sblock->pagev[index]->page);
1705		page = sblock->pagev[index]->page;
1706		buffer = kmap_atomic(page);
1707	}
1708
1709	btrfs_csum_final(crc, csum);
1710	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711		fail = 1;
1712
1713	return fail;
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717{
1718	struct scrub_ctx *sctx = sblock->sctx;
1719	struct btrfs_header *h;
1720	struct btrfs_root *root = sctx->dev_root;
1721	struct btrfs_fs_info *fs_info = root->fs_info;
1722	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724	struct page *page;
1725	void *mapped_buffer;
1726	u64 mapped_size;
1727	void *p;
1728	u32 crc = ~(u32)0;
1729	int fail = 0;
1730	int crc_fail = 0;
1731	u64 len;
1732	int index;
1733
1734	BUG_ON(sblock->page_count < 1);
1735	page = sblock->pagev[0]->page;
1736	mapped_buffer = kmap_atomic(page);
1737	h = (struct btrfs_header *)mapped_buffer;
1738	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740	/*
1741	 * we don't use the getter functions here, as we
1742	 * a) don't have an extent buffer and
1743	 * b) the page is already kmapped
1744	 */
1745
1746	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747		++fail;
1748
1749	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750		++fail;
 
 
1751
1752	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753		++fail;
1754
1755	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756		   BTRFS_UUID_SIZE))
1757		++fail;
1758
1759	WARN_ON(sctx->nodesize != sctx->leafsize);
1760	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763	index = 0;
1764	for (;;) {
1765		u64 l = min_t(u64, len, mapped_size);
1766
1767		crc = btrfs_csum_data(p, crc, l);
1768		kunmap_atomic(mapped_buffer);
1769		len -= l;
1770		if (len == 0)
1771			break;
1772		index++;
1773		BUG_ON(index >= sblock->page_count);
1774		BUG_ON(!sblock->pagev[index]->page);
1775		page = sblock->pagev[index]->page;
1776		mapped_buffer = kmap_atomic(page);
1777		mapped_size = PAGE_SIZE;
1778		p = mapped_buffer;
1779	}
1780
1781	btrfs_csum_final(crc, calculated_csum);
1782	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783		++crc_fail;
1784
1785	return fail || crc_fail;
1786}
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790	struct btrfs_super_block *s;
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_root *root = sctx->dev_root;
1793	struct btrfs_fs_info *fs_info = root->fs_info;
1794	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796	struct page *page;
1797	void *mapped_buffer;
1798	u64 mapped_size;
1799	void *p;
1800	u32 crc = ~(u32)0;
1801	int fail_gen = 0;
1802	int fail_cor = 0;
1803	u64 len;
1804	int index;
1805
1806	BUG_ON(sblock->page_count < 1);
1807	page = sblock->pagev[0]->page;
1808	mapped_buffer = kmap_atomic(page);
1809	s = (struct btrfs_super_block *)mapped_buffer;
1810	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813		++fail_cor;
1814
1815	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816		++fail_gen;
1817
1818	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819		++fail_cor;
1820
1821	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824	index = 0;
1825	for (;;) {
1826		u64 l = min_t(u64, len, mapped_size);
1827
1828		crc = btrfs_csum_data(p, crc, l);
1829		kunmap_atomic(mapped_buffer);
1830		len -= l;
1831		if (len == 0)
1832			break;
1833		index++;
1834		BUG_ON(index >= sblock->page_count);
1835		BUG_ON(!sblock->pagev[index]->page);
1836		page = sblock->pagev[index]->page;
1837		mapped_buffer = kmap_atomic(page);
1838		mapped_size = PAGE_SIZE;
1839		p = mapped_buffer;
1840	}
1841
1842	btrfs_csum_final(crc, calculated_csum);
1843	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844		++fail_cor;
1845
1846	if (fail_cor + fail_gen) {
1847		/*
1848		 * if we find an error in a super block, we just report it.
1849		 * They will get written with the next transaction commit
1850		 * anyway
1851		 */
1852		spin_lock(&sctx->stat_lock);
1853		++sctx->stat.super_errors;
1854		spin_unlock(&sctx->stat_lock);
1855		if (fail_cor)
1856			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858		else
1859			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860				BTRFS_DEV_STAT_GENERATION_ERRS);
1861	}
1862
1863	return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868	atomic_inc(&sblock->ref_count);
1869}
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873	if (atomic_dec_and_test(&sblock->ref_count)) {
1874		int i;
1875
 
 
 
1876		for (i = 0; i < sblock->page_count; i++)
1877			scrub_page_put(sblock->pagev[i]);
1878		kfree(sblock);
1879	}
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
1883{
1884	atomic_inc(&spage->ref_count);
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
1888{
1889	if (atomic_dec_and_test(&spage->ref_count)) {
1890		if (spage->page)
1891			__free_page(spage->page);
1892		kfree(spage);
1893	}
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898	struct scrub_bio *sbio;
1899
1900	if (sctx->curr == -1)
1901		return;
1902
1903	sbio = sctx->bios[sctx->curr];
1904	sctx->curr = -1;
1905	scrub_pending_bio_inc(sctx);
1906
1907	if (!sbio->bio->bi_bdev) {
1908		/*
1909		 * this case should not happen. If btrfs_map_block() is
1910		 * wrong, it could happen for dev-replace operations on
1911		 * missing devices when no mirrors are available, but in
1912		 * this case it should already fail the mount.
1913		 * This case is handled correctly (but _very_ slowly).
1914		 */
1915		printk_ratelimited(KERN_WARNING
1916			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917		bio_endio(sbio->bio, -EIO);
1918	} else {
1919		btrfsic_submit_bio(READ, sbio->bio);
1920	}
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924				    struct scrub_page *spage)
1925{
1926	struct scrub_block *sblock = spage->sblock;
1927	struct scrub_bio *sbio;
1928	int ret;
1929
1930again:
1931	/*
1932	 * grab a fresh bio or wait for one to become available
1933	 */
1934	while (sctx->curr == -1) {
1935		spin_lock(&sctx->list_lock);
1936		sctx->curr = sctx->first_free;
1937		if (sctx->curr != -1) {
1938			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939			sctx->bios[sctx->curr]->next_free = -1;
1940			sctx->bios[sctx->curr]->page_count = 0;
1941			spin_unlock(&sctx->list_lock);
1942		} else {
1943			spin_unlock(&sctx->list_lock);
1944			wait_event(sctx->list_wait, sctx->first_free != -1);
1945		}
1946	}
1947	sbio = sctx->bios[sctx->curr];
1948	if (sbio->page_count == 0) {
1949		struct bio *bio;
1950
1951		sbio->physical = spage->physical;
1952		sbio->logical = spage->logical;
1953		sbio->dev = spage->dev;
1954		bio = sbio->bio;
1955		if (!bio) {
1956			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
 
1957			if (!bio)
1958				return -ENOMEM;
1959			sbio->bio = bio;
1960		}
1961
1962		bio->bi_private = sbio;
1963		bio->bi_end_io = scrub_bio_end_io;
1964		bio->bi_bdev = sbio->dev->bdev;
1965		bio->bi_iter.bi_sector = sbio->physical >> 9;
 
1966		sbio->err = 0;
1967	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968		   spage->physical ||
1969		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970		   spage->logical ||
1971		   sbio->dev != spage->dev) {
1972		scrub_submit(sctx);
1973		goto again;
1974	}
1975
1976	sbio->pagev[sbio->page_count] = spage;
1977	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978	if (ret != PAGE_SIZE) {
1979		if (sbio->page_count < 1) {
1980			bio_put(sbio->bio);
1981			sbio->bio = NULL;
1982			return -EIO;
1983		}
1984		scrub_submit(sctx);
1985		goto again;
1986	}
1987
1988	scrub_block_get(sblock); /* one for the page added to the bio */
1989	atomic_inc(&sblock->outstanding_pages);
1990	sbio->page_count++;
1991	if (sbio->page_count == sctx->pages_per_rd_bio)
1992		scrub_submit(sctx);
1993
1994	return 0;
1995}
1996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998		       u64 physical, struct btrfs_device *dev, u64 flags,
1999		       u64 gen, int mirror_num, u8 *csum, int force,
2000		       u64 physical_for_dev_replace)
2001{
2002	struct scrub_block *sblock;
2003	int index;
2004
2005	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006	if (!sblock) {
2007		spin_lock(&sctx->stat_lock);
2008		sctx->stat.malloc_errors++;
2009		spin_unlock(&sctx->stat_lock);
2010		return -ENOMEM;
2011	}
2012
2013	/* one ref inside this function, plus one for each page added to
2014	 * a bio later on */
2015	atomic_set(&sblock->ref_count, 1);
2016	sblock->sctx = sctx;
2017	sblock->no_io_error_seen = 1;
2018
2019	for (index = 0; len > 0; index++) {
2020		struct scrub_page *spage;
2021		u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024		if (!spage) {
2025leave_nomem:
2026			spin_lock(&sctx->stat_lock);
2027			sctx->stat.malloc_errors++;
2028			spin_unlock(&sctx->stat_lock);
2029			scrub_block_put(sblock);
2030			return -ENOMEM;
2031		}
2032		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033		scrub_page_get(spage);
2034		sblock->pagev[index] = spage;
2035		spage->sblock = sblock;
2036		spage->dev = dev;
2037		spage->flags = flags;
2038		spage->generation = gen;
2039		spage->logical = logical;
2040		spage->physical = physical;
2041		spage->physical_for_dev_replace = physical_for_dev_replace;
2042		spage->mirror_num = mirror_num;
2043		if (csum) {
2044			spage->have_csum = 1;
2045			memcpy(spage->csum, csum, sctx->csum_size);
2046		} else {
2047			spage->have_csum = 0;
2048		}
2049		sblock->page_count++;
2050		spage->page = alloc_page(GFP_NOFS);
2051		if (!spage->page)
2052			goto leave_nomem;
2053		len -= l;
2054		logical += l;
2055		physical += l;
2056		physical_for_dev_replace += l;
2057	}
2058
2059	WARN_ON(sblock->page_count == 0);
2060	for (index = 0; index < sblock->page_count; index++) {
2061		struct scrub_page *spage = sblock->pagev[index];
2062		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063
2064		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065		if (ret) {
2066			scrub_block_put(sblock);
2067			return ret;
2068		}
2069	}
2070
2071	if (force)
2072		scrub_submit(sctx);
2073
2074	/* last one frees, either here or in bio completion for last page */
2075	scrub_block_put(sblock);
2076	return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081	struct scrub_bio *sbio = bio->bi_private;
2082	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084	sbio->err = err;
2085	sbio->bio = bio;
2086
2087	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093	struct scrub_ctx *sctx = sbio->sctx;
2094	int i;
2095
2096	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097	if (sbio->err) {
2098		for (i = 0; i < sbio->page_count; i++) {
2099			struct scrub_page *spage = sbio->pagev[i];
2100
2101			spage->io_error = 1;
2102			spage->sblock->no_io_error_seen = 0;
2103		}
2104	}
2105
2106	/* now complete the scrub_block items that have all pages completed */
2107	for (i = 0; i < sbio->page_count; i++) {
2108		struct scrub_page *spage = sbio->pagev[i];
2109		struct scrub_block *sblock = spage->sblock;
2110
2111		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112			scrub_block_complete(sblock);
2113		scrub_block_put(sblock);
2114	}
2115
2116	bio_put(sbio->bio);
2117	sbio->bio = NULL;
2118	spin_lock(&sctx->list_lock);
2119	sbio->next_free = sctx->first_free;
2120	sctx->first_free = sbio->index;
2121	spin_unlock(&sctx->list_lock);
2122
2123	if (sctx->is_dev_replace &&
2124	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125		mutex_lock(&sctx->wr_ctx.wr_lock);
2126		scrub_wr_submit(sctx);
2127		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128	}
2129
2130	scrub_pending_bio_dec(sctx);
2131}
2132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133static void scrub_block_complete(struct scrub_block *sblock)
2134{
 
 
2135	if (!sblock->no_io_error_seen) {
 
2136		scrub_handle_errored_block(sblock);
2137	} else {
2138		/*
2139		 * if has checksum error, write via repair mechanism in
2140		 * dev replace case, otherwise write here in dev replace
2141		 * case.
2142		 */
2143		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
 
2144			scrub_write_block_to_dev_replace(sblock);
2145	}
 
 
 
 
 
 
 
 
 
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149			   u8 *csum)
2150{
2151	struct btrfs_ordered_sum *sum = NULL;
2152	unsigned long index;
2153	unsigned long num_sectors;
2154
2155	while (!list_empty(&sctx->csum_list)) {
2156		sum = list_first_entry(&sctx->csum_list,
2157				       struct btrfs_ordered_sum, list);
2158		if (sum->bytenr > logical)
2159			return 0;
2160		if (sum->bytenr + sum->len > logical)
2161			break;
2162
2163		++sctx->stat.csum_discards;
2164		list_del(&sum->list);
2165		kfree(sum);
2166		sum = NULL;
2167	}
2168	if (!sum)
2169		return 0;
2170
2171	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172	num_sectors = sum->len / sctx->sectorsize;
2173	memcpy(csum, sum->sums + index, sctx->csum_size);
2174	if (index == num_sectors - 1) {
2175		list_del(&sum->list);
2176		kfree(sum);
2177	}
2178	return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183			u64 physical, struct btrfs_device *dev, u64 flags,
2184			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185{
2186	int ret;
2187	u8 csum[BTRFS_CSUM_SIZE];
2188	u32 blocksize;
2189
2190	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191		blocksize = sctx->sectorsize;
2192		spin_lock(&sctx->stat_lock);
2193		sctx->stat.data_extents_scrubbed++;
2194		sctx->stat.data_bytes_scrubbed += len;
2195		spin_unlock(&sctx->stat_lock);
2196	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197		WARN_ON(sctx->nodesize != sctx->leafsize);
2198		blocksize = sctx->nodesize;
2199		spin_lock(&sctx->stat_lock);
2200		sctx->stat.tree_extents_scrubbed++;
2201		sctx->stat.tree_bytes_scrubbed += len;
2202		spin_unlock(&sctx->stat_lock);
2203	} else {
2204		blocksize = sctx->sectorsize;
2205		WARN_ON(1);
2206	}
2207
2208	while (len) {
2209		u64 l = min_t(u64, len, blocksize);
2210		int have_csum = 0;
2211
2212		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213			/* push csums to sbio */
2214			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215			if (have_csum == 0)
2216				++sctx->stat.no_csum;
2217			if (sctx->is_dev_replace && !have_csum) {
2218				ret = copy_nocow_pages(sctx, logical, l,
2219						       mirror_num,
2220						      physical_for_dev_replace);
2221				goto behind_scrub_pages;
2222			}
2223		}
2224		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225				  mirror_num, have_csum ? csum : NULL, 0,
2226				  physical_for_dev_replace);
2227behind_scrub_pages:
2228		if (ret)
2229			return ret;
2230		len -= l;
2231		logical += l;
2232		physical += l;
2233		physical_for_dev_replace += l;
2234	}
2235	return 0;
2236}
2237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238/*
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2242 *
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2244 */
2245static int get_raid56_logic_offset(u64 physical, int num,
2246				   struct map_lookup *map, u64 *offset)
 
2247{
2248	int i;
2249	int j = 0;
2250	u64 stripe_nr;
2251	u64 last_offset;
2252	int stripe_index;
2253	int rot;
2254
2255	last_offset = (physical - map->stripes[num].physical) *
2256		      nr_data_stripes(map);
 
 
 
2257	*offset = last_offset;
2258	for (i = 0; i < nr_data_stripes(map); i++) {
2259		*offset = last_offset + i * map->stripe_len;
2260
2261		stripe_nr = *offset;
2262		do_div(stripe_nr, map->stripe_len);
2263		do_div(stripe_nr, nr_data_stripes(map));
2264
2265		/* Work out the disk rotation on this stripe-set */
2266		rot = do_div(stripe_nr, map->num_stripes);
2267		/* calculate which stripe this data locates */
2268		rot += i;
2269		stripe_index = rot % map->num_stripes;
2270		if (stripe_index == num)
2271			return 0;
2272		if (stripe_index < num)
2273			j++;
2274	}
2275	*offset = last_offset + j * map->stripe_len;
2276	return 1;
2277}
2278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280					   struct map_lookup *map,
2281					   struct btrfs_device *scrub_dev,
2282					   int num, u64 base, u64 length,
2283					   int is_dev_replace)
2284{
2285	struct btrfs_path *path;
2286	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287	struct btrfs_root *root = fs_info->extent_root;
2288	struct btrfs_root *csum_root = fs_info->csum_root;
2289	struct btrfs_extent_item *extent;
2290	struct blk_plug plug;
2291	u64 flags;
2292	int ret;
2293	int slot;
2294	u64 nstripes;
2295	struct extent_buffer *l;
2296	struct btrfs_key key;
2297	u64 physical;
2298	u64 logical;
2299	u64 logic_end;
2300	u64 physical_end;
2301	u64 generation;
2302	int mirror_num;
2303	struct reada_control *reada1;
2304	struct reada_control *reada2;
2305	struct btrfs_key key_start;
2306	struct btrfs_key key_end;
2307	u64 increment = map->stripe_len;
2308	u64 offset;
2309	u64 extent_logical;
2310	u64 extent_physical;
2311	u64 extent_len;
 
 
2312	struct btrfs_device *extent_dev;
2313	int extent_mirror_num;
2314	int stop_loop = 0;
2315
2316	nstripes = length;
2317	physical = map->stripes[num].physical;
2318	offset = 0;
2319	do_div(nstripes, map->stripe_len);
2320	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321		offset = map->stripe_len * num;
2322		increment = map->stripe_len * map->num_stripes;
2323		mirror_num = 1;
2324	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325		int factor = map->num_stripes / map->sub_stripes;
2326		offset = map->stripe_len * (num / map->sub_stripes);
2327		increment = map->stripe_len * factor;
2328		mirror_num = num % map->sub_stripes + 1;
2329	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330		increment = map->stripe_len;
2331		mirror_num = num % map->num_stripes + 1;
2332	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333		increment = map->stripe_len;
2334		mirror_num = num % map->num_stripes + 1;
2335	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336				BTRFS_BLOCK_GROUP_RAID6)) {
2337		get_raid56_logic_offset(physical, num, map, &offset);
2338		increment = map->stripe_len * nr_data_stripes(map);
2339		mirror_num = 1;
2340	} else {
2341		increment = map->stripe_len;
2342		mirror_num = 1;
2343	}
2344
2345	path = btrfs_alloc_path();
2346	if (!path)
2347		return -ENOMEM;
2348
 
 
 
 
 
 
2349	/*
2350	 * work on commit root. The related disk blocks are static as
2351	 * long as COW is applied. This means, it is save to rewrite
2352	 * them to repair disk errors without any race conditions
2353	 */
2354	path->search_commit_root = 1;
2355	path->skip_locking = 1;
2356
 
 
2357	/*
2358	 * trigger the readahead for extent tree csum tree and wait for
2359	 * completion. During readahead, the scrub is officially paused
2360	 * to not hold off transaction commits
2361	 */
2362	logical = base + offset;
2363	physical_end = physical + nstripes * map->stripe_len;
2364	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365			 BTRFS_BLOCK_GROUP_RAID6)) {
2366		get_raid56_logic_offset(physical_end, num,
2367					map, &logic_end);
2368		logic_end += base;
2369	} else {
2370		logic_end = logical + increment * nstripes;
2371	}
2372	wait_event(sctx->list_wait,
2373		   atomic_read(&sctx->bios_in_flight) == 0);
2374	scrub_blocked_if_needed(fs_info);
2375
2376	/* FIXME it might be better to start readahead at commit root */
2377	key_start.objectid = logical;
2378	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379	key_start.offset = (u64)0;
2380	key_end.objectid = logic_end;
2381	key_end.type = BTRFS_METADATA_ITEM_KEY;
2382	key_end.offset = (u64)-1;
2383	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384
2385	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387	key_start.offset = logical;
2388	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390	key_end.offset = logic_end;
2391	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392
2393	if (!IS_ERR(reada1))
2394		btrfs_reada_wait(reada1);
2395	if (!IS_ERR(reada2))
2396		btrfs_reada_wait(reada2);
2397
2398
2399	/*
2400	 * collect all data csums for the stripe to avoid seeking during
2401	 * the scrub. This might currently (crc32) end up to be about 1MB
2402	 */
2403	blk_start_plug(&plug);
2404
2405	/*
2406	 * now find all extents for each stripe and scrub them
2407	 */
2408	ret = 0;
2409	while (physical < physical_end) {
2410		/* for raid56, we skip parity stripe */
2411		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412				BTRFS_BLOCK_GROUP_RAID6)) {
2413			ret = get_raid56_logic_offset(physical, num,
2414					map, &logical);
2415			logical += base;
2416			if (ret)
2417				goto skip;
2418		}
2419		/*
2420		 * canceled?
2421		 */
2422		if (atomic_read(&fs_info->scrub_cancel_req) ||
2423		    atomic_read(&sctx->cancel_req)) {
2424			ret = -ECANCELED;
2425			goto out;
2426		}
2427		/*
2428		 * check to see if we have to pause
2429		 */
2430		if (atomic_read(&fs_info->scrub_pause_req)) {
2431			/* push queued extents */
2432			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433			scrub_submit(sctx);
2434			mutex_lock(&sctx->wr_ctx.wr_lock);
2435			scrub_wr_submit(sctx);
2436			mutex_unlock(&sctx->wr_ctx.wr_lock);
2437			wait_event(sctx->list_wait,
2438				   atomic_read(&sctx->bios_in_flight) == 0);
2439			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440			scrub_blocked_if_needed(fs_info);
2441		}
2442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444			key.type = BTRFS_METADATA_ITEM_KEY;
2445		else
2446			key.type = BTRFS_EXTENT_ITEM_KEY;
2447		key.objectid = logical;
2448		key.offset = (u64)-1;
2449
2450		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451		if (ret < 0)
2452			goto out;
2453
2454		if (ret > 0) {
2455			ret = btrfs_previous_extent_item(root, path, 0);
2456			if (ret < 0)
2457				goto out;
2458			if (ret > 0) {
2459				/* there's no smaller item, so stick with the
2460				 * larger one */
2461				btrfs_release_path(path);
2462				ret = btrfs_search_slot(NULL, root, &key,
2463							path, 0, 0);
2464				if (ret < 0)
2465					goto out;
2466			}
2467		}
2468
2469		stop_loop = 0;
2470		while (1) {
2471			u64 bytes;
2472
2473			l = path->nodes[0];
2474			slot = path->slots[0];
2475			if (slot >= btrfs_header_nritems(l)) {
2476				ret = btrfs_next_leaf(root, path);
2477				if (ret == 0)
2478					continue;
2479				if (ret < 0)
2480					goto out;
2481
2482				stop_loop = 1;
2483				break;
2484			}
2485			btrfs_item_key_to_cpu(l, &key, slot);
2486
 
 
 
 
2487			if (key.type == BTRFS_METADATA_ITEM_KEY)
2488				bytes = root->leafsize;
2489			else
2490				bytes = key.offset;
2491
2492			if (key.objectid + bytes <= logical)
2493				goto next;
2494
2495			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496			    key.type != BTRFS_METADATA_ITEM_KEY)
2497				goto next;
2498
2499			if (key.objectid >= logical + map->stripe_len) {
2500				/* out of this device extent */
2501				if (key.objectid >= logic_end)
2502					stop_loop = 1;
2503				break;
2504			}
2505
2506			extent = btrfs_item_ptr(l, slot,
2507						struct btrfs_extent_item);
2508			flags = btrfs_extent_flags(l, extent);
2509			generation = btrfs_extent_generation(l, extent);
2510
2511			if (key.objectid < logical &&
2512			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
 
 
2513				btrfs_err(fs_info,
2514					   "scrub: tree block %llu spanning "
2515					   "stripes, ignored. logical=%llu",
2516				       key.objectid, logical);
 
 
 
2517				goto next;
2518			}
2519
2520again:
2521			extent_logical = key.objectid;
2522			extent_len = bytes;
2523
2524			/*
2525			 * trim extent to this stripe
2526			 */
2527			if (extent_logical < logical) {
2528				extent_len -= logical - extent_logical;
2529				extent_logical = logical;
2530			}
2531			if (extent_logical + extent_len >
2532			    logical + map->stripe_len) {
2533				extent_len = logical + map->stripe_len -
2534					     extent_logical;
2535			}
2536
2537			extent_physical = extent_logical - logical + physical;
2538			extent_dev = scrub_dev;
2539			extent_mirror_num = mirror_num;
2540			if (is_dev_replace)
2541				scrub_remap_extent(fs_info, extent_logical,
2542						   extent_len, &extent_physical,
2543						   &extent_dev,
2544						   &extent_mirror_num);
2545
2546			ret = btrfs_lookup_csums_range(csum_root, logical,
2547						logical + map->stripe_len - 1,
2548						&sctx->csum_list, 1);
 
 
2549			if (ret)
2550				goto out;
2551
2552			ret = scrub_extent(sctx, extent_logical, extent_len,
2553					   extent_physical, extent_dev, flags,
2554					   generation, extent_mirror_num,
2555					   extent_logical - logical + physical);
 
 
 
2556			if (ret)
2557				goto out;
2558
2559			scrub_free_csums(sctx);
2560			if (extent_logical + extent_len <
2561			    key.objectid + bytes) {
2562				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563					BTRFS_BLOCK_GROUP_RAID6)) {
2564					/*
2565					 * loop until we find next data stripe
2566					 * or we have finished all stripes.
2567					 */
2568					do {
2569						physical += map->stripe_len;
2570						ret = get_raid56_logic_offset(
2571								physical, num,
2572								map, &logical);
2573						logical += base;
2574					} while (physical < physical_end && ret);
 
 
 
 
 
 
 
 
 
 
 
 
2575				} else {
2576					physical += map->stripe_len;
2577					logical += increment;
2578				}
2579				if (logical < key.objectid + bytes) {
2580					cond_resched();
2581					goto again;
2582				}
2583
2584				if (physical >= physical_end) {
2585					stop_loop = 1;
2586					break;
2587				}
2588			}
2589next:
2590			path->slots[0]++;
2591		}
2592		btrfs_release_path(path);
2593skip:
2594		logical += increment;
2595		physical += map->stripe_len;
2596		spin_lock(&sctx->stat_lock);
2597		if (stop_loop)
2598			sctx->stat.last_physical = map->stripes[num].physical +
2599						   length;
2600		else
2601			sctx->stat.last_physical = physical;
2602		spin_unlock(&sctx->stat_lock);
2603		if (stop_loop)
2604			break;
2605	}
2606out:
2607	/* push queued extents */
2608	scrub_submit(sctx);
2609	mutex_lock(&sctx->wr_ctx.wr_lock);
2610	scrub_wr_submit(sctx);
2611	mutex_unlock(&sctx->wr_ctx.wr_lock);
2612
2613	blk_finish_plug(&plug);
2614	btrfs_free_path(path);
 
2615	return ret < 0 ? ret : 0;
2616}
2617
2618static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2619					  struct btrfs_device *scrub_dev,
2620					  u64 chunk_tree, u64 chunk_objectid,
2621					  u64 chunk_offset, u64 length,
2622					  u64 dev_offset, int is_dev_replace)
 
 
2623{
2624	struct btrfs_mapping_tree *map_tree =
2625		&sctx->dev_root->fs_info->mapping_tree;
2626	struct map_lookup *map;
2627	struct extent_map *em;
2628	int i;
2629	int ret = 0;
2630
2631	read_lock(&map_tree->map_tree.lock);
2632	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633	read_unlock(&map_tree->map_tree.lock);
2634
2635	if (!em)
2636		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
2637
2638	map = (struct map_lookup *)em->bdev;
2639	if (em->start != chunk_offset)
2640		goto out;
2641
2642	if (em->len < length)
2643		goto out;
2644
2645	for (i = 0; i < map->num_stripes; ++i) {
2646		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647		    map->stripes[i].physical == dev_offset) {
2648			ret = scrub_stripe(sctx, map, scrub_dev, i,
2649					   chunk_offset, length,
2650					   is_dev_replace);
2651			if (ret)
2652				goto out;
2653		}
2654	}
2655out:
2656	free_extent_map(em);
2657
2658	return ret;
2659}
2660
2661static noinline_for_stack
2662int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2664			   int is_dev_replace)
2665{
2666	struct btrfs_dev_extent *dev_extent = NULL;
2667	struct btrfs_path *path;
2668	struct btrfs_root *root = sctx->dev_root;
2669	struct btrfs_fs_info *fs_info = root->fs_info;
2670	u64 length;
2671	u64 chunk_tree;
2672	u64 chunk_objectid;
2673	u64 chunk_offset;
2674	int ret;
 
2675	int slot;
2676	struct extent_buffer *l;
2677	struct btrfs_key key;
2678	struct btrfs_key found_key;
2679	struct btrfs_block_group_cache *cache;
2680	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681
2682	path = btrfs_alloc_path();
2683	if (!path)
2684		return -ENOMEM;
2685
2686	path->reada = 2;
2687	path->search_commit_root = 1;
2688	path->skip_locking = 1;
2689
2690	key.objectid = scrub_dev->devid;
2691	key.offset = 0ull;
2692	key.type = BTRFS_DEV_EXTENT_KEY;
2693
2694	while (1) {
2695		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696		if (ret < 0)
2697			break;
2698		if (ret > 0) {
2699			if (path->slots[0] >=
2700			    btrfs_header_nritems(path->nodes[0])) {
2701				ret = btrfs_next_leaf(root, path);
2702				if (ret)
 
 
 
2703					break;
 
 
 
2704			}
2705		}
2706
2707		l = path->nodes[0];
2708		slot = path->slots[0];
2709
2710		btrfs_item_key_to_cpu(l, &found_key, slot);
2711
2712		if (found_key.objectid != scrub_dev->devid)
2713			break;
2714
2715		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716			break;
2717
2718		if (found_key.offset >= end)
2719			break;
2720
2721		if (found_key.offset < key.offset)
2722			break;
2723
2724		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725		length = btrfs_dev_extent_length(l, dev_extent);
2726
2727		if (found_key.offset + length <= start) {
2728			key.offset = found_key.offset + length;
2729			btrfs_release_path(path);
2730			continue;
2731		}
2732
2733		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736
2737		/*
2738		 * get a reference on the corresponding block group to prevent
2739		 * the chunk from going away while we scrub it
2740		 */
2741		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742		if (!cache) {
2743			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744			break;
2745		}
 
 
2746		dev_replace->cursor_right = found_key.offset + length;
2747		dev_replace->cursor_left = found_key.offset;
2748		dev_replace->item_needs_writeback = 1;
2749		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750				  chunk_offset, length, found_key.offset,
2751				  is_dev_replace);
2752
2753		/*
2754		 * flush, submit all pending read and write bios, afterwards
2755		 * wait for them.
2756		 * Note that in the dev replace case, a read request causes
2757		 * write requests that are submitted in the read completion
2758		 * worker. Therefore in the current situation, it is required
2759		 * that all write requests are flushed, so that all read and
2760		 * write requests are really completed when bios_in_flight
2761		 * changes to 0.
2762		 */
2763		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764		scrub_submit(sctx);
2765		mutex_lock(&sctx->wr_ctx.wr_lock);
2766		scrub_wr_submit(sctx);
2767		mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769		wait_event(sctx->list_wait,
2770			   atomic_read(&sctx->bios_in_flight) == 0);
2771		atomic_inc(&fs_info->scrubs_paused);
2772		wake_up(&fs_info->scrub_pause_wait);
2773
2774		/*
2775		 * must be called before we decrease @scrub_paused.
2776		 * make sure we don't block transaction commit while
2777		 * we are waiting pending workers finished.
2778		 */
2779		wait_event(sctx->list_wait,
2780			   atomic_read(&sctx->workers_pending) == 0);
2781		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2782
2783		mutex_lock(&fs_info->scrub_lock);
2784		__scrub_blocked_if_needed(fs_info);
2785		atomic_dec(&fs_info->scrubs_paused);
2786		mutex_unlock(&fs_info->scrub_lock);
2787		wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788
2789		btrfs_put_block_group(cache);
2790		if (ret)
2791			break;
2792		if (is_dev_replace &&
2793		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2794			ret = -EIO;
2795			break;
2796		}
2797		if (sctx->stat.malloc_errors > 0) {
2798			ret = -ENOMEM;
2799			break;
2800		}
2801
2802		dev_replace->cursor_left = dev_replace->cursor_right;
2803		dev_replace->item_needs_writeback = 1;
2804
2805		key.offset = found_key.offset + length;
2806		btrfs_release_path(path);
2807	}
2808
2809	btrfs_free_path(path);
2810
2811	/*
2812	 * ret can still be 1 from search_slot or next_leaf,
2813	 * that's not an error
2814	 */
2815	return ret < 0 ? ret : 0;
2816}
2817
2818static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819					   struct btrfs_device *scrub_dev)
2820{
2821	int	i;
2822	u64	bytenr;
2823	u64	gen;
2824	int	ret;
2825	struct btrfs_root *root = sctx->dev_root;
2826
2827	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828		return -EIO;
2829
2830	gen = root->fs_info->last_trans_committed;
 
 
 
 
2831
2832	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833		bytenr = btrfs_sb_offset(i);
2834		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
 
2835			break;
2836
2837		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839				  NULL, 1, bytenr);
2840		if (ret)
2841			return ret;
2842	}
2843	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844
2845	return 0;
2846}
2847
2848/*
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2850 */
2851static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852						int is_dev_replace)
2853{
2854	int ret = 0;
2855	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856	int max_active = fs_info->thread_pool_size;
2857
2858	if (fs_info->scrub_workers_refcnt == 0) {
2859		if (is_dev_replace)
2860			fs_info->scrub_workers =
2861				btrfs_alloc_workqueue("btrfs-scrub", flags,
2862						      1, 4);
2863		else
2864			fs_info->scrub_workers =
2865				btrfs_alloc_workqueue("btrfs-scrub", flags,
2866						      max_active, 4);
2867		if (!fs_info->scrub_workers) {
2868			ret = -ENOMEM;
2869			goto out;
2870		}
2871		fs_info->scrub_wr_completion_workers =
2872			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873					      max_active, 2);
2874		if (!fs_info->scrub_wr_completion_workers) {
2875			ret = -ENOMEM;
2876			goto out;
2877		}
2878		fs_info->scrub_nocow_workers =
2879			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880		if (!fs_info->scrub_nocow_workers) {
2881			ret = -ENOMEM;
2882			goto out;
2883		}
 
 
 
2884	}
2885	++fs_info->scrub_workers_refcnt;
2886out:
2887	return ret;
 
 
 
 
 
 
 
 
2888}
2889
2890static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891{
2892	if (--fs_info->scrub_workers_refcnt == 0) {
2893		btrfs_destroy_workqueue(fs_info->scrub_workers);
2894		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
 
2896	}
2897	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898}
2899
2900int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901		    u64 end, struct btrfs_scrub_progress *progress,
2902		    int readonly, int is_dev_replace)
2903{
2904	struct scrub_ctx *sctx;
2905	int ret;
2906	struct btrfs_device *dev;
 
2907
2908	if (btrfs_fs_closing(fs_info))
2909		return -EINVAL;
2910
2911	/*
2912	 * check some assumptions
2913	 */
2914	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915		btrfs_err(fs_info,
2916			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917		       fs_info->chunk_root->nodesize,
2918		       fs_info->chunk_root->leafsize);
2919		return -EINVAL;
2920	}
2921
2922	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923		/*
2924		 * in this case scrub is unable to calculate the checksum
2925		 * the way scrub is implemented. Do not handle this
2926		 * situation at all because it won't ever happen.
2927		 */
2928		btrfs_err(fs_info,
2929			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
 
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935		/* not supported for data w/o checksums */
2936		btrfs_err(fs_info,
2937			   "scrub: size assumption sectorsize != PAGE_SIZE "
2938			   "(%d != %lu) fails",
2939		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940		return -EINVAL;
2941	}
2942
2943	if (fs_info->chunk_root->nodesize >
2944	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945	    fs_info->chunk_root->sectorsize >
2946	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947		/*
2948		 * would exhaust the array bounds of pagev member in
2949		 * struct scrub_block
2950		 */
2951		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953		       fs_info->chunk_root->nodesize,
2954		       SCRUB_MAX_PAGES_PER_BLOCK,
2955		       fs_info->chunk_root->sectorsize,
2956		       SCRUB_MAX_PAGES_PER_BLOCK);
2957		return -EINVAL;
2958	}
2959
2960
2961	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963	if (!dev || (dev->missing && !is_dev_replace)) {
2964		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965		return -ENODEV;
2966	}
2967
 
 
 
 
 
 
 
 
 
 
2968	mutex_lock(&fs_info->scrub_lock);
2969	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2970		mutex_unlock(&fs_info->scrub_lock);
2971		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972		return -EIO;
2973	}
2974
2975	btrfs_dev_replace_lock(&fs_info->dev_replace);
2976	if (dev->scrub_device ||
2977	    (!is_dev_replace &&
2978	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980		mutex_unlock(&fs_info->scrub_lock);
2981		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982		return -EINPROGRESS;
2983	}
2984	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986	ret = scrub_workers_get(fs_info, is_dev_replace);
2987	if (ret) {
2988		mutex_unlock(&fs_info->scrub_lock);
2989		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990		return ret;
2991	}
2992
2993	sctx = scrub_setup_ctx(dev, is_dev_replace);
2994	if (IS_ERR(sctx)) {
2995		mutex_unlock(&fs_info->scrub_lock);
2996		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997		scrub_workers_put(fs_info);
2998		return PTR_ERR(sctx);
2999	}
3000	sctx->readonly = readonly;
3001	dev->scrub_device = sctx;
3002	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004	/*
3005	 * checking @scrub_pause_req here, we can avoid
3006	 * race between committing transaction and scrubbing.
3007	 */
3008	__scrub_blocked_if_needed(fs_info);
3009	atomic_inc(&fs_info->scrubs_running);
3010	mutex_unlock(&fs_info->scrub_lock);
3011
3012	if (!is_dev_replace) {
3013		/*
3014		 * by holding device list mutex, we can
3015		 * kick off writing super in log tree sync.
3016		 */
3017		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018		ret = scrub_supers(sctx, dev);
3019		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020	}
3021
3022	if (!ret)
3023		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024					     is_dev_replace);
3025
3026	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027	atomic_dec(&fs_info->scrubs_running);
3028	wake_up(&fs_info->scrub_pause_wait);
3029
3030	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032	if (progress)
3033		memcpy(progress, &sctx->stat, sizeof(*progress));
3034
3035	mutex_lock(&fs_info->scrub_lock);
3036	dev->scrub_device = NULL;
3037	scrub_workers_put(fs_info);
3038	mutex_unlock(&fs_info->scrub_lock);
3039
3040	scrub_free_ctx(sctx);
3041
3042	return ret;
3043}
3044
3045void btrfs_scrub_pause(struct btrfs_root *root)
3046{
3047	struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_root *root)
3063{
3064	struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066	atomic_dec(&fs_info->scrub_pause_req);
3067	wake_up(&fs_info->scrub_pause_wait);
3068}
3069
3070int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071{
3072	mutex_lock(&fs_info->scrub_lock);
3073	if (!atomic_read(&fs_info->scrubs_running)) {
3074		mutex_unlock(&fs_info->scrub_lock);
3075		return -ENOTCONN;
3076	}
3077
3078	atomic_inc(&fs_info->scrub_cancel_req);
3079	while (atomic_read(&fs_info->scrubs_running)) {
3080		mutex_unlock(&fs_info->scrub_lock);
3081		wait_event(fs_info->scrub_pause_wait,
3082			   atomic_read(&fs_info->scrubs_running) == 0);
3083		mutex_lock(&fs_info->scrub_lock);
3084	}
3085	atomic_dec(&fs_info->scrub_cancel_req);
3086	mutex_unlock(&fs_info->scrub_lock);
3087
3088	return 0;
3089}
3090
3091int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092			   struct btrfs_device *dev)
3093{
3094	struct scrub_ctx *sctx;
3095
3096	mutex_lock(&fs_info->scrub_lock);
3097	sctx = dev->scrub_device;
3098	if (!sctx) {
3099		mutex_unlock(&fs_info->scrub_lock);
3100		return -ENOTCONN;
3101	}
3102	atomic_inc(&sctx->cancel_req);
3103	while (dev->scrub_device) {
3104		mutex_unlock(&fs_info->scrub_lock);
3105		wait_event(fs_info->scrub_pause_wait,
3106			   dev->scrub_device == NULL);
3107		mutex_lock(&fs_info->scrub_lock);
3108	}
3109	mutex_unlock(&fs_info->scrub_lock);
3110
3111	return 0;
3112}
3113
3114int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115			 struct btrfs_scrub_progress *progress)
3116{
3117	struct btrfs_device *dev;
3118	struct scrub_ctx *sctx = NULL;
3119
3120	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122	if (dev)
3123		sctx = dev->scrub_device;
3124	if (sctx)
3125		memcpy(progress, &sctx->stat, sizeof(*progress));
3126	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129}
3130
3131static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132			       u64 extent_logical, u64 extent_len,
3133			       u64 *extent_physical,
3134			       struct btrfs_device **extent_dev,
3135			       int *extent_mirror_num)
3136{
3137	u64 mapped_length;
3138	struct btrfs_bio *bbio = NULL;
3139	int ret;
3140
3141	mapped_length = extent_len;
3142	ret = btrfs_map_block(fs_info, READ, extent_logical,
3143			      &mapped_length, &bbio, 0);
3144	if (ret || !bbio || mapped_length < extent_len ||
3145	    !bbio->stripes[0].dev->bdev) {
3146		kfree(bbio);
3147		return;
3148	}
3149
3150	*extent_physical = bbio->stripes[0].physical;
3151	*extent_mirror_num = bbio->mirror_num;
3152	*extent_dev = bbio->stripes[0].dev;
3153	kfree(bbio);
3154}
3155
3156static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157			      struct scrub_wr_ctx *wr_ctx,
3158			      struct btrfs_fs_info *fs_info,
3159			      struct btrfs_device *dev,
3160			      int is_dev_replace)
3161{
3162	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164	mutex_init(&wr_ctx->wr_lock);
3165	wr_ctx->wr_curr_bio = NULL;
3166	if (!is_dev_replace)
3167		return 0;
3168
3169	WARN_ON(!dev->bdev);
3170	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171					 bio_get_nr_vecs(dev->bdev));
3172	wr_ctx->tgtdev = dev;
3173	atomic_set(&wr_ctx->flush_all_writes, 0);
3174	return 0;
3175}
3176
3177static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178{
3179	mutex_lock(&wr_ctx->wr_lock);
3180	kfree(wr_ctx->wr_curr_bio);
3181	wr_ctx->wr_curr_bio = NULL;
3182	mutex_unlock(&wr_ctx->wr_lock);
3183}
3184
3185static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186			    int mirror_num, u64 physical_for_dev_replace)
3187{
3188	struct scrub_copy_nocow_ctx *nocow_ctx;
3189	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192	if (!nocow_ctx) {
3193		spin_lock(&sctx->stat_lock);
3194		sctx->stat.malloc_errors++;
3195		spin_unlock(&sctx->stat_lock);
3196		return -ENOMEM;
3197	}
3198
3199	scrub_pending_trans_workers_inc(sctx);
3200
3201	nocow_ctx->sctx = sctx;
3202	nocow_ctx->logical = logical;
3203	nocow_ctx->len = len;
3204	nocow_ctx->mirror_num = mirror_num;
3205	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
 
3207	INIT_LIST_HEAD(&nocow_ctx->inodes);
3208	btrfs_queue_work(fs_info->scrub_nocow_workers,
3209			 &nocow_ctx->work);
3210
3211	return 0;
3212}
3213
3214static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215{
3216	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217	struct scrub_nocow_inode *nocow_inode;
3218
3219	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220	if (!nocow_inode)
3221		return -ENOMEM;
3222	nocow_inode->inum = inum;
3223	nocow_inode->offset = offset;
3224	nocow_inode->root = root;
3225	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226	return 0;
3227}
3228
3229#define COPY_COMPLETE 1
3230
3231static void copy_nocow_pages_worker(struct btrfs_work *work)
3232{
3233	struct scrub_copy_nocow_ctx *nocow_ctx =
3234		container_of(work, struct scrub_copy_nocow_ctx, work);
3235	struct scrub_ctx *sctx = nocow_ctx->sctx;
 
 
3236	u64 logical = nocow_ctx->logical;
3237	u64 len = nocow_ctx->len;
3238	int mirror_num = nocow_ctx->mirror_num;
3239	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240	int ret;
3241	struct btrfs_trans_handle *trans = NULL;
3242	struct btrfs_fs_info *fs_info;
3243	struct btrfs_path *path;
3244	struct btrfs_root *root;
3245	int not_written = 0;
3246
3247	fs_info = sctx->dev_root->fs_info;
3248	root = fs_info->extent_root;
3249
3250	path = btrfs_alloc_path();
3251	if (!path) {
3252		spin_lock(&sctx->stat_lock);
3253		sctx->stat.malloc_errors++;
3254		spin_unlock(&sctx->stat_lock);
3255		not_written = 1;
3256		goto out;
3257	}
3258
3259	trans = btrfs_join_transaction(root);
3260	if (IS_ERR(trans)) {
3261		not_written = 1;
3262		goto out;
3263	}
3264
3265	ret = iterate_inodes_from_logical(logical, fs_info, path,
3266					  record_inode_for_nocow, nocow_ctx);
3267	if (ret != 0 && ret != -ENOENT) {
3268		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269			"phys %llu, len %llu, mir %u, ret %d",
3270			logical, physical_for_dev_replace, len, mirror_num,
3271			ret);
3272		not_written = 1;
3273		goto out;
3274	}
3275
3276	btrfs_end_transaction(trans, root);
3277	trans = NULL;
3278	while (!list_empty(&nocow_ctx->inodes)) {
3279		struct scrub_nocow_inode *entry;
3280		entry = list_first_entry(&nocow_ctx->inodes,
3281					 struct scrub_nocow_inode,
3282					 list);
3283		list_del_init(&entry->list);
3284		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285						 entry->root, nocow_ctx);
3286		kfree(entry);
3287		if (ret == COPY_COMPLETE) {
3288			ret = 0;
3289			break;
3290		} else if (ret) {
3291			break;
3292		}
3293	}
3294out:
3295	while (!list_empty(&nocow_ctx->inodes)) {
3296		struct scrub_nocow_inode *entry;
3297		entry = list_first_entry(&nocow_ctx->inodes,
3298					 struct scrub_nocow_inode,
3299					 list);
3300		list_del_init(&entry->list);
3301		kfree(entry);
3302	}
3303	if (trans && !IS_ERR(trans))
3304		btrfs_end_transaction(trans, root);
3305	if (not_written)
3306		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307					    num_uncorrectable_read_errors);
3308
3309	btrfs_free_path(path);
3310	kfree(nocow_ctx);
3311
3312	scrub_pending_trans_workers_dec(sctx);
3313}
3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316				      struct scrub_copy_nocow_ctx *nocow_ctx)
3317{
3318	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319	struct btrfs_key key;
3320	struct inode *inode;
3321	struct page *page;
3322	struct btrfs_root *local_root;
3323	struct btrfs_ordered_extent *ordered;
3324	struct extent_map *em;
3325	struct extent_state *cached_state = NULL;
3326	struct extent_io_tree *io_tree;
3327	u64 physical_for_dev_replace;
 
3328	u64 len = nocow_ctx->len;
3329	u64 lockstart = offset, lockend = offset + len - 1;
3330	unsigned long index;
3331	int srcu_index;
3332	int ret = 0;
3333	int err = 0;
3334
3335	key.objectid = root;
3336	key.type = BTRFS_ROOT_ITEM_KEY;
3337	key.offset = (u64)-1;
3338
3339	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342	if (IS_ERR(local_root)) {
3343		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344		return PTR_ERR(local_root);
3345	}
3346
3347	key.type = BTRFS_INODE_ITEM_KEY;
3348	key.objectid = inum;
3349	key.offset = 0;
3350	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352	if (IS_ERR(inode))
3353		return PTR_ERR(inode);
3354
3355	/* Avoid truncate/dio/punch hole.. */
3356	mutex_lock(&inode->i_mutex);
3357	inode_dio_wait(inode);
3358
3359	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360	io_tree = &BTRFS_I(inode)->io_tree;
 
3361
3362	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364	if (ordered) {
3365		btrfs_put_ordered_extent(ordered);
3366		goto out_unlock;
3367	}
3368
3369	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370	if (IS_ERR(em)) {
3371		ret = PTR_ERR(em);
3372		goto out_unlock;
3373	}
3374
3375	/*
3376	 * This extent does not actually cover the logical extent anymore,
3377	 * move on to the next inode.
3378	 */
3379	if (em->block_start > nocow_ctx->logical ||
3380	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3381		free_extent_map(em);
3382		goto out_unlock;
3383	}
3384	free_extent_map(em);
3385
3386	while (len >= PAGE_CACHE_SIZE) {
3387		index = offset >> PAGE_CACHE_SHIFT;
3388again:
3389		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390		if (!page) {
3391			btrfs_err(fs_info, "find_or_create_page() failed");
3392			ret = -ENOMEM;
3393			goto out;
3394		}
3395
3396		if (PageUptodate(page)) {
3397			if (PageDirty(page))
3398				goto next_page;
3399		} else {
3400			ClearPageError(page);
3401			err = extent_read_full_page_nolock(io_tree, page,
3402							   btrfs_get_extent,
3403							   nocow_ctx->mirror_num);
3404			if (err) {
3405				ret = err;
3406				goto next_page;
3407			}
3408
3409			lock_page(page);
3410			/*
3411			 * If the page has been remove from the page cache,
3412			 * the data on it is meaningless, because it may be
3413			 * old one, the new data may be written into the new
3414			 * page in the page cache.
3415			 */
3416			if (page->mapping != inode->i_mapping) {
3417				unlock_page(page);
3418				page_cache_release(page);
3419				goto again;
3420			}
3421			if (!PageUptodate(page)) {
3422				ret = -EIO;
3423				goto next_page;
3424			}
3425		}
 
 
 
 
 
 
 
 
3426		err = write_page_nocow(nocow_ctx->sctx,
3427				       physical_for_dev_replace, page);
3428		if (err)
3429			ret = err;
3430next_page:
3431		unlock_page(page);
3432		page_cache_release(page);
3433
3434		if (ret)
3435			break;
3436
3437		offset += PAGE_CACHE_SIZE;
3438		physical_for_dev_replace += PAGE_CACHE_SIZE;
3439		len -= PAGE_CACHE_SIZE;
 
3440	}
3441	ret = COPY_COMPLETE;
3442out_unlock:
3443	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444			     GFP_NOFS);
3445out:
3446	mutex_unlock(&inode->i_mutex);
3447	iput(inode);
3448	return ret;
3449}
3450
3451static int write_page_nocow(struct scrub_ctx *sctx,
3452			    u64 physical_for_dev_replace, struct page *page)
3453{
3454	struct bio *bio;
3455	struct btrfs_device *dev;
3456	int ret;
3457
3458	dev = sctx->wr_ctx.tgtdev;
3459	if (!dev)
3460		return -EIO;
3461	if (!dev->bdev) {
3462		printk_ratelimited(KERN_WARNING
3463			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464		return -EIO;
3465	}
3466	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467	if (!bio) {
3468		spin_lock(&sctx->stat_lock);
3469		sctx->stat.malloc_errors++;
3470		spin_unlock(&sctx->stat_lock);
3471		return -ENOMEM;
3472	}
3473	bio->bi_iter.bi_size = 0;
3474	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475	bio->bi_bdev = dev->bdev;
3476	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477	if (ret != PAGE_CACHE_SIZE) {
 
3478leave_with_eio:
3479		bio_put(bio);
3480		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481		return -EIO;
3482	}
3483
3484	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485		goto leave_with_eio;
3486
3487	bio_put(bio);
3488	return 0;
3489}