Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * linux/kernel/time/clockevents.c
  3 *
  4 * This file contains functions which manage clock event devices.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  9 *
 10 * This code is licenced under the GPL version 2. For details see
 11 * kernel-base/COPYING.
 12 */
 13
 14#include <linux/clockchips.h>
 15#include <linux/hrtimer.h>
 16#include <linux/init.h>
 17#include <linux/module.h>
 18#include <linux/smp.h>
 19#include <linux/device.h>
 20
 21#include "tick-internal.h"
 22
 23/* The registered clock event devices */
 24static LIST_HEAD(clockevent_devices);
 25static LIST_HEAD(clockevents_released);
 26/* Protection for the above */
 27static DEFINE_RAW_SPINLOCK(clockevents_lock);
 28/* Protection for unbind operations */
 29static DEFINE_MUTEX(clockevents_mutex);
 30
 31struct ce_unbind {
 32	struct clock_event_device *ce;
 33	int res;
 34};
 35
 36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
 37			bool ismax)
 38{
 39	u64 clc = (u64) latch << evt->shift;
 40	u64 rnd;
 41
 42	if (unlikely(!evt->mult)) {
 43		evt->mult = 1;
 44		WARN_ON(1);
 45	}
 46	rnd = (u64) evt->mult - 1;
 47
 48	/*
 49	 * Upper bound sanity check. If the backwards conversion is
 50	 * not equal latch, we know that the above shift overflowed.
 51	 */
 52	if ((clc >> evt->shift) != (u64)latch)
 53		clc = ~0ULL;
 54
 55	/*
 56	 * Scaled math oddities:
 57	 *
 58	 * For mult <= (1 << shift) we can safely add mult - 1 to
 59	 * prevent integer rounding loss. So the backwards conversion
 60	 * from nsec to device ticks will be correct.
 61	 *
 62	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
 63	 * need to be careful. Adding mult - 1 will result in a value
 64	 * which when converted back to device ticks can be larger
 65	 * than latch by up to (mult - 1) >> shift. For the min_delta
 66	 * calculation we still want to apply this in order to stay
 67	 * above the minimum device ticks limit. For the upper limit
 68	 * we would end up with a latch value larger than the upper
 69	 * limit of the device, so we omit the add to stay below the
 70	 * device upper boundary.
 71	 *
 72	 * Also omit the add if it would overflow the u64 boundary.
 73	 */
 74	if ((~0ULL - clc > rnd) &&
 75	    (!ismax || evt->mult <= (1ULL << evt->shift)))
 76		clc += rnd;
 77
 78	do_div(clc, evt->mult);
 79
 80	/* Deltas less than 1usec are pointless noise */
 81	return clc > 1000 ? clc : 1000;
 82}
 83
 84/**
 85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
 86 * @latch:	value to convert
 87 * @evt:	pointer to clock event device descriptor
 88 *
 89 * Math helper, returns latch value converted to nanoseconds (bound checked)
 90 */
 91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
 92{
 93	return cev_delta2ns(latch, evt, false);
 94}
 95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
 96
 97static int __clockevents_switch_state(struct clock_event_device *dev,
 98				      enum clock_event_state state)
 99{
100	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
101		return 0;
102
103	/* Transition with new state-specific callbacks */
104	switch (state) {
105	case CLOCK_EVT_STATE_DETACHED:
106		/* The clockevent device is getting replaced. Shut it down. */
107
108	case CLOCK_EVT_STATE_SHUTDOWN:
109		if (dev->set_state_shutdown)
110			return dev->set_state_shutdown(dev);
111		return 0;
112
113	case CLOCK_EVT_STATE_PERIODIC:
114		/* Core internal bug */
115		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
116			return -ENOSYS;
117		if (dev->set_state_periodic)
118			return dev->set_state_periodic(dev);
119		return 0;
120
121	case CLOCK_EVT_STATE_ONESHOT:
122		/* Core internal bug */
123		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
124			return -ENOSYS;
125		if (dev->set_state_oneshot)
126			return dev->set_state_oneshot(dev);
127		return 0;
128
129	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
130		/* Core internal bug */
131		if (WARN_ONCE(!clockevent_state_oneshot(dev),
132			      "Current state: %d\n",
133			      clockevent_get_state(dev)))
134			return -EINVAL;
135
136		if (dev->set_state_oneshot_stopped)
137			return dev->set_state_oneshot_stopped(dev);
138		else
139			return -ENOSYS;
140
141	default:
142		return -ENOSYS;
143	}
144}
145
146/**
147 * clockevents_switch_state - set the operating state of a clock event device
148 * @dev:	device to modify
149 * @state:	new state
150 *
151 * Must be called with interrupts disabled !
152 */
153void clockevents_switch_state(struct clock_event_device *dev,
154			      enum clock_event_state state)
155{
156	if (clockevent_get_state(dev) != state) {
157		if (__clockevents_switch_state(dev, state))
158			return;
159
160		clockevent_set_state(dev, state);
161
162		/*
163		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164		 * on it, so fix it up and emit a warning:
165		 */
166		if (clockevent_state_oneshot(dev)) {
167			if (unlikely(!dev->mult)) {
168				dev->mult = 1;
169				WARN_ON(1);
170			}
171		}
172	}
173}
174
175/**
176 * clockevents_shutdown - shutdown the device and clear next_event
177 * @dev:	device to shutdown
178 */
179void clockevents_shutdown(struct clock_event_device *dev)
180{
181	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182	dev->next_event = KTIME_MAX;
183}
184
185/**
186 * clockevents_tick_resume -	Resume the tick device before using it again
187 * @dev:			device to resume
188 */
189int clockevents_tick_resume(struct clock_event_device *dev)
190{
191	int ret = 0;
192
193	if (dev->tick_resume)
194		ret = dev->tick_resume(dev);
195
196	return ret;
197}
198
199#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200
201/* Limit min_delta to a jiffie */
202#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
203
204/**
205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
206 * @dev:       device to increase the minimum delta
207 *
208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209 */
210static int clockevents_increase_min_delta(struct clock_event_device *dev)
211{
212	/* Nothing to do if we already reached the limit */
213	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214		printk_deferred(KERN_WARNING
215				"CE: Reprogramming failure. Giving up\n");
216		dev->next_event = KTIME_MAX;
217		return -ETIME;
218	}
219
220	if (dev->min_delta_ns < 5000)
221		dev->min_delta_ns = 5000;
222	else
223		dev->min_delta_ns += dev->min_delta_ns >> 1;
224
225	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226		dev->min_delta_ns = MIN_DELTA_LIMIT;
227
228	printk_deferred(KERN_WARNING
229			"CE: %s increased min_delta_ns to %llu nsec\n",
230			dev->name ? dev->name : "?",
231			(unsigned long long) dev->min_delta_ns);
232	return 0;
233}
234
235/**
236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
237 * @dev:	device to program
238 *
239 * Returns 0 on success, -ETIME when the retry loop failed.
240 */
241static int clockevents_program_min_delta(struct clock_event_device *dev)
242{
243	unsigned long long clc;
244	int64_t delta;
245	int i;
246
247	for (i = 0;;) {
248		delta = dev->min_delta_ns;
249		dev->next_event = ktime_add_ns(ktime_get(), delta);
250
251		if (clockevent_state_shutdown(dev))
252			return 0;
253
254		dev->retries++;
255		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256		if (dev->set_next_event((unsigned long) clc, dev) == 0)
257			return 0;
258
259		if (++i > 2) {
260			/*
261			 * We tried 3 times to program the device with the
262			 * given min_delta_ns. Try to increase the minimum
263			 * delta, if that fails as well get out of here.
264			 */
265			if (clockevents_increase_min_delta(dev))
266				return -ETIME;
267			i = 0;
268		}
269	}
270}
271
272#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273
274/**
275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
276 * @dev:	device to program
277 *
278 * Returns 0 on success, -ETIME when the retry loop failed.
279 */
280static int clockevents_program_min_delta(struct clock_event_device *dev)
281{
282	unsigned long long clc;
283	int64_t delta;
284
285	delta = dev->min_delta_ns;
286	dev->next_event = ktime_add_ns(ktime_get(), delta);
287
288	if (clockevent_state_shutdown(dev))
289		return 0;
290
291	dev->retries++;
292	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
293	return dev->set_next_event((unsigned long) clc, dev);
294}
295
296#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
297
298/**
299 * clockevents_program_event - Reprogram the clock event device.
300 * @dev:	device to program
301 * @expires:	absolute expiry time (monotonic clock)
302 * @force:	program minimum delay if expires can not be set
303 *
304 * Returns 0 on success, -ETIME when the event is in the past.
305 */
306int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
307			      bool force)
308{
309	unsigned long long clc;
310	int64_t delta;
311	int rc;
312
313	if (unlikely(expires < 0)) {
314		WARN_ON_ONCE(1);
315		return -ETIME;
316	}
317
318	dev->next_event = expires;
319
320	if (clockevent_state_shutdown(dev))
321		return 0;
322
323	/* We must be in ONESHOT state here */
324	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
325		  clockevent_get_state(dev));
326
327	/* Shortcut for clockevent devices that can deal with ktime. */
328	if (dev->features & CLOCK_EVT_FEAT_KTIME)
329		return dev->set_next_ktime(expires, dev);
330
331	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
332	if (delta <= 0)
333		return force ? clockevents_program_min_delta(dev) : -ETIME;
334
335	delta = min(delta, (int64_t) dev->max_delta_ns);
336	delta = max(delta, (int64_t) dev->min_delta_ns);
337
338	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
339	rc = dev->set_next_event((unsigned long) clc, dev);
340
341	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
342}
343
344/*
345 * Called after a notify add to make devices available which were
346 * released from the notifier call.
347 */
348static void clockevents_notify_released(void)
349{
350	struct clock_event_device *dev;
351
352	while (!list_empty(&clockevents_released)) {
353		dev = list_entry(clockevents_released.next,
354				 struct clock_event_device, list);
355		list_del(&dev->list);
356		list_add(&dev->list, &clockevent_devices);
357		tick_check_new_device(dev);
358	}
359}
360
361/*
362 * Try to install a replacement clock event device
363 */
364static int clockevents_replace(struct clock_event_device *ced)
365{
366	struct clock_event_device *dev, *newdev = NULL;
367
368	list_for_each_entry(dev, &clockevent_devices, list) {
369		if (dev == ced || !clockevent_state_detached(dev))
370			continue;
371
372		if (!tick_check_replacement(newdev, dev))
373			continue;
374
375		if (!try_module_get(dev->owner))
376			continue;
377
378		if (newdev)
379			module_put(newdev->owner);
380		newdev = dev;
381	}
382	if (newdev) {
383		tick_install_replacement(newdev);
384		list_del_init(&ced->list);
385	}
386	return newdev ? 0 : -EBUSY;
387}
388
389/*
390 * Called with clockevents_mutex and clockevents_lock held
391 */
392static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
393{
394	/* Fast track. Device is unused */
395	if (clockevent_state_detached(ced)) {
396		list_del_init(&ced->list);
397		return 0;
398	}
399
400	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
401}
402
403/*
404 * SMP function call to unbind a device
405 */
406static void __clockevents_unbind(void *arg)
407{
408	struct ce_unbind *cu = arg;
409	int res;
410
411	raw_spin_lock(&clockevents_lock);
412	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
413	if (res == -EAGAIN)
414		res = clockevents_replace(cu->ce);
415	cu->res = res;
416	raw_spin_unlock(&clockevents_lock);
417}
418
419/*
420 * Issues smp function call to unbind a per cpu device. Called with
421 * clockevents_mutex held.
422 */
423static int clockevents_unbind(struct clock_event_device *ced, int cpu)
424{
425	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
426
427	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
428	return cu.res;
429}
430
431/*
432 * Unbind a clockevents device.
433 */
434int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
435{
436	int ret;
437
438	mutex_lock(&clockevents_mutex);
439	ret = clockevents_unbind(ced, cpu);
440	mutex_unlock(&clockevents_mutex);
441	return ret;
442}
443EXPORT_SYMBOL_GPL(clockevents_unbind_device);
444
445/**
446 * clockevents_register_device - register a clock event device
447 * @dev:	device to register
448 */
449void clockevents_register_device(struct clock_event_device *dev)
450{
451	unsigned long flags;
452
453	/* Initialize state to DETACHED */
454	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
455
456	if (!dev->cpumask) {
457		WARN_ON(num_possible_cpus() > 1);
458		dev->cpumask = cpumask_of(smp_processor_id());
459	}
460
461	raw_spin_lock_irqsave(&clockevents_lock, flags);
462
463	list_add(&dev->list, &clockevent_devices);
464	tick_check_new_device(dev);
465	clockevents_notify_released();
466
467	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
468}
469EXPORT_SYMBOL_GPL(clockevents_register_device);
470
471void clockevents_config(struct clock_event_device *dev, u32 freq)
472{
473	u64 sec;
474
475	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
476		return;
477
478	/*
479	 * Calculate the maximum number of seconds we can sleep. Limit
480	 * to 10 minutes for hardware which can program more than
481	 * 32bit ticks so we still get reasonable conversion values.
482	 */
483	sec = dev->max_delta_ticks;
484	do_div(sec, freq);
485	if (!sec)
486		sec = 1;
487	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
488		sec = 600;
489
490	clockevents_calc_mult_shift(dev, freq, sec);
491	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
492	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
493}
494
495/**
496 * clockevents_config_and_register - Configure and register a clock event device
497 * @dev:	device to register
498 * @freq:	The clock frequency
499 * @min_delta:	The minimum clock ticks to program in oneshot mode
500 * @max_delta:	The maximum clock ticks to program in oneshot mode
501 *
502 * min/max_delta can be 0 for devices which do not support oneshot mode.
503 */
504void clockevents_config_and_register(struct clock_event_device *dev,
505				     u32 freq, unsigned long min_delta,
506				     unsigned long max_delta)
507{
508	dev->min_delta_ticks = min_delta;
509	dev->max_delta_ticks = max_delta;
510	clockevents_config(dev, freq);
511	clockevents_register_device(dev);
512}
513EXPORT_SYMBOL_GPL(clockevents_config_and_register);
514
515int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
516{
517	clockevents_config(dev, freq);
518
519	if (clockevent_state_oneshot(dev))
520		return clockevents_program_event(dev, dev->next_event, false);
521
522	if (clockevent_state_periodic(dev))
523		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
524
525	return 0;
526}
527
528/**
529 * clockevents_update_freq - Update frequency and reprogram a clock event device.
530 * @dev:	device to modify
531 * @freq:	new device frequency
532 *
533 * Reconfigure and reprogram a clock event device in oneshot
534 * mode. Must be called on the cpu for which the device delivers per
535 * cpu timer events. If called for the broadcast device the core takes
536 * care of serialization.
537 *
538 * Returns 0 on success, -ETIME when the event is in the past.
539 */
540int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
541{
542	unsigned long flags;
543	int ret;
544
545	local_irq_save(flags);
546	ret = tick_broadcast_update_freq(dev, freq);
547	if (ret == -ENODEV)
548		ret = __clockevents_update_freq(dev, freq);
549	local_irq_restore(flags);
550	return ret;
551}
552
553/*
554 * Noop handler when we shut down an event device
555 */
556void clockevents_handle_noop(struct clock_event_device *dev)
557{
558}
559
560/**
561 * clockevents_exchange_device - release and request clock devices
562 * @old:	device to release (can be NULL)
563 * @new:	device to request (can be NULL)
564 *
565 * Called from various tick functions with clockevents_lock held and
566 * interrupts disabled.
567 */
568void clockevents_exchange_device(struct clock_event_device *old,
569				 struct clock_event_device *new)
570{
 
 
 
571	/*
572	 * Caller releases a clock event device. We queue it into the
573	 * released list and do a notify add later.
574	 */
575	if (old) {
576		module_put(old->owner);
577		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
578		list_del(&old->list);
579		list_add(&old->list, &clockevents_released);
580	}
581
582	if (new) {
583		BUG_ON(!clockevent_state_detached(new));
584		clockevents_shutdown(new);
585	}
 
586}
587
588/**
589 * clockevents_suspend - suspend clock devices
590 */
591void clockevents_suspend(void)
592{
593	struct clock_event_device *dev;
594
595	list_for_each_entry_reverse(dev, &clockevent_devices, list)
596		if (dev->suspend && !clockevent_state_detached(dev))
597			dev->suspend(dev);
598}
599
600/**
601 * clockevents_resume - resume clock devices
602 */
603void clockevents_resume(void)
604{
605	struct clock_event_device *dev;
606
607	list_for_each_entry(dev, &clockevent_devices, list)
608		if (dev->resume && !clockevent_state_detached(dev))
609			dev->resume(dev);
610}
611
612#ifdef CONFIG_HOTPLUG_CPU
613/**
614 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
 
615 */
616void tick_cleanup_dead_cpu(int cpu)
617{
618	struct clock_event_device *dev, *tmp;
619	unsigned long flags;
 
620
621	raw_spin_lock_irqsave(&clockevents_lock, flags);
622
623	tick_shutdown_broadcast_oneshot(cpu);
624	tick_shutdown_broadcast(cpu);
625	tick_shutdown(cpu);
626	/*
627	 * Unregister the clock event devices which were
628	 * released from the users in the notify chain.
629	 */
630	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
631		list_del(&dev->list);
632	/*
633	 * Now check whether the CPU has left unused per cpu devices
634	 */
635	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
636		if (cpumask_test_cpu(cpu, dev->cpumask) &&
637		    cpumask_weight(dev->cpumask) == 1 &&
638		    !tick_is_broadcast_device(dev)) {
639			BUG_ON(!clockevent_state_detached(dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640			list_del(&dev->list);
 
 
 
 
 
 
 
 
 
 
 
641		}
 
 
 
642	}
643	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
 
644}
645#endif
646
647#ifdef CONFIG_SYSFS
648static struct bus_type clockevents_subsys = {
649	.name		= "clockevents",
650	.dev_name       = "clockevent",
651};
652
653static DEFINE_PER_CPU(struct device, tick_percpu_dev);
654static struct tick_device *tick_get_tick_dev(struct device *dev);
655
656static ssize_t sysfs_show_current_tick_dev(struct device *dev,
657					   struct device_attribute *attr,
658					   char *buf)
659{
660	struct tick_device *td;
661	ssize_t count = 0;
662
663	raw_spin_lock_irq(&clockevents_lock);
664	td = tick_get_tick_dev(dev);
665	if (td && td->evtdev)
666		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
667	raw_spin_unlock_irq(&clockevents_lock);
668	return count;
669}
670static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
671
672/* We don't support the abomination of removable broadcast devices */
673static ssize_t sysfs_unbind_tick_dev(struct device *dev,
674				     struct device_attribute *attr,
675				     const char *buf, size_t count)
676{
677	char name[CS_NAME_LEN];
678	ssize_t ret = sysfs_get_uname(buf, name, count);
679	struct clock_event_device *ce;
680
681	if (ret < 0)
682		return ret;
683
684	ret = -ENODEV;
685	mutex_lock(&clockevents_mutex);
686	raw_spin_lock_irq(&clockevents_lock);
687	list_for_each_entry(ce, &clockevent_devices, list) {
688		if (!strcmp(ce->name, name)) {
689			ret = __clockevents_try_unbind(ce, dev->id);
690			break;
691		}
692	}
693	raw_spin_unlock_irq(&clockevents_lock);
694	/*
695	 * We hold clockevents_mutex, so ce can't go away
696	 */
697	if (ret == -EAGAIN)
698		ret = clockevents_unbind(ce, dev->id);
699	mutex_unlock(&clockevents_mutex);
700	return ret ? ret : count;
701}
702static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
703
704#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
705static struct device tick_bc_dev = {
706	.init_name	= "broadcast",
707	.id		= 0,
708	.bus		= &clockevents_subsys,
709};
710
711static struct tick_device *tick_get_tick_dev(struct device *dev)
712{
713	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
714		&per_cpu(tick_cpu_device, dev->id);
715}
716
717static __init int tick_broadcast_init_sysfs(void)
718{
719	int err = device_register(&tick_bc_dev);
720
721	if (!err)
722		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
723	return err;
724}
725#else
726static struct tick_device *tick_get_tick_dev(struct device *dev)
727{
728	return &per_cpu(tick_cpu_device, dev->id);
729}
730static inline int tick_broadcast_init_sysfs(void) { return 0; }
731#endif
732
733static int __init tick_init_sysfs(void)
734{
735	int cpu;
736
737	for_each_possible_cpu(cpu) {
738		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
739		int err;
740
741		dev->id = cpu;
742		dev->bus = &clockevents_subsys;
743		err = device_register(dev);
744		if (!err)
745			err = device_create_file(dev, &dev_attr_current_device);
746		if (!err)
747			err = device_create_file(dev, &dev_attr_unbind_device);
748		if (err)
749			return err;
750	}
751	return tick_broadcast_init_sysfs();
752}
753
754static int __init clockevents_init_sysfs(void)
755{
756	int err = subsys_system_register(&clockevents_subsys, NULL);
757
758	if (!err)
759		err = tick_init_sysfs();
760	return err;
761}
762device_initcall(clockevents_init_sysfs);
763#endif /* SYSFS */
v3.15
  1/*
  2 * linux/kernel/time/clockevents.c
  3 *
  4 * This file contains functions which manage clock event devices.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  9 *
 10 * This code is licenced under the GPL version 2. For details see
 11 * kernel-base/COPYING.
 12 */
 13
 14#include <linux/clockchips.h>
 15#include <linux/hrtimer.h>
 16#include <linux/init.h>
 17#include <linux/module.h>
 18#include <linux/smp.h>
 19#include <linux/device.h>
 20
 21#include "tick-internal.h"
 22
 23/* The registered clock event devices */
 24static LIST_HEAD(clockevent_devices);
 25static LIST_HEAD(clockevents_released);
 26/* Protection for the above */
 27static DEFINE_RAW_SPINLOCK(clockevents_lock);
 28/* Protection for unbind operations */
 29static DEFINE_MUTEX(clockevents_mutex);
 30
 31struct ce_unbind {
 32	struct clock_event_device *ce;
 33	int res;
 34};
 35
 36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
 37			bool ismax)
 38{
 39	u64 clc = (u64) latch << evt->shift;
 40	u64 rnd;
 41
 42	if (unlikely(!evt->mult)) {
 43		evt->mult = 1;
 44		WARN_ON(1);
 45	}
 46	rnd = (u64) evt->mult - 1;
 47
 48	/*
 49	 * Upper bound sanity check. If the backwards conversion is
 50	 * not equal latch, we know that the above shift overflowed.
 51	 */
 52	if ((clc >> evt->shift) != (u64)latch)
 53		clc = ~0ULL;
 54
 55	/*
 56	 * Scaled math oddities:
 57	 *
 58	 * For mult <= (1 << shift) we can safely add mult - 1 to
 59	 * prevent integer rounding loss. So the backwards conversion
 60	 * from nsec to device ticks will be correct.
 61	 *
 62	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
 63	 * need to be careful. Adding mult - 1 will result in a value
 64	 * which when converted back to device ticks can be larger
 65	 * than latch by up to (mult - 1) >> shift. For the min_delta
 66	 * calculation we still want to apply this in order to stay
 67	 * above the minimum device ticks limit. For the upper limit
 68	 * we would end up with a latch value larger than the upper
 69	 * limit of the device, so we omit the add to stay below the
 70	 * device upper boundary.
 71	 *
 72	 * Also omit the add if it would overflow the u64 boundary.
 73	 */
 74	if ((~0ULL - clc > rnd) &&
 75	    (!ismax || evt->mult <= (1U << evt->shift)))
 76		clc += rnd;
 77
 78	do_div(clc, evt->mult);
 79
 80	/* Deltas less than 1usec are pointless noise */
 81	return clc > 1000 ? clc : 1000;
 82}
 83
 84/**
 85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
 86 * @latch:	value to convert
 87 * @evt:	pointer to clock event device descriptor
 88 *
 89 * Math helper, returns latch value converted to nanoseconds (bound checked)
 90 */
 91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
 92{
 93	return cev_delta2ns(latch, evt, false);
 94}
 95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
 96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97/**
 98 * clockevents_set_mode - set the operating mode of a clock event device
 99 * @dev:	device to modify
100 * @mode:	new mode
101 *
102 * Must be called with interrupts disabled !
103 */
104void clockevents_set_mode(struct clock_event_device *dev,
105				 enum clock_event_mode mode)
106{
107	if (dev->mode != mode) {
108		dev->set_mode(mode, dev);
109		dev->mode = mode;
 
 
110
111		/*
112		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
113		 * on it, so fix it up and emit a warning:
114		 */
115		if (mode == CLOCK_EVT_MODE_ONESHOT) {
116			if (unlikely(!dev->mult)) {
117				dev->mult = 1;
118				WARN_ON(1);
119			}
120		}
121	}
122}
123
124/**
125 * clockevents_shutdown - shutdown the device and clear next_event
126 * @dev:	device to shutdown
127 */
128void clockevents_shutdown(struct clock_event_device *dev)
129{
130	clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
131	dev->next_event.tv64 = KTIME_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132}
133
134#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
135
136/* Limit min_delta to a jiffie */
137#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
138
139/**
140 * clockevents_increase_min_delta - raise minimum delta of a clock event device
141 * @dev:       device to increase the minimum delta
142 *
143 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
144 */
145static int clockevents_increase_min_delta(struct clock_event_device *dev)
146{
147	/* Nothing to do if we already reached the limit */
148	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
149		printk(KERN_WARNING "CE: Reprogramming failure. Giving up\n");
150		dev->next_event.tv64 = KTIME_MAX;
 
151		return -ETIME;
152	}
153
154	if (dev->min_delta_ns < 5000)
155		dev->min_delta_ns = 5000;
156	else
157		dev->min_delta_ns += dev->min_delta_ns >> 1;
158
159	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
160		dev->min_delta_ns = MIN_DELTA_LIMIT;
161
162	printk(KERN_WARNING "CE: %s increased min_delta_ns to %llu nsec\n",
163	       dev->name ? dev->name : "?",
164	       (unsigned long long) dev->min_delta_ns);
 
165	return 0;
166}
167
168/**
169 * clockevents_program_min_delta - Set clock event device to the minimum delay.
170 * @dev:	device to program
171 *
172 * Returns 0 on success, -ETIME when the retry loop failed.
173 */
174static int clockevents_program_min_delta(struct clock_event_device *dev)
175{
176	unsigned long long clc;
177	int64_t delta;
178	int i;
179
180	for (i = 0;;) {
181		delta = dev->min_delta_ns;
182		dev->next_event = ktime_add_ns(ktime_get(), delta);
183
184		if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
185			return 0;
186
187		dev->retries++;
188		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
189		if (dev->set_next_event((unsigned long) clc, dev) == 0)
190			return 0;
191
192		if (++i > 2) {
193			/*
194			 * We tried 3 times to program the device with the
195			 * given min_delta_ns. Try to increase the minimum
196			 * delta, if that fails as well get out of here.
197			 */
198			if (clockevents_increase_min_delta(dev))
199				return -ETIME;
200			i = 0;
201		}
202	}
203}
204
205#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
206
207/**
208 * clockevents_program_min_delta - Set clock event device to the minimum delay.
209 * @dev:	device to program
210 *
211 * Returns 0 on success, -ETIME when the retry loop failed.
212 */
213static int clockevents_program_min_delta(struct clock_event_device *dev)
214{
215	unsigned long long clc;
216	int64_t delta;
217
218	delta = dev->min_delta_ns;
219	dev->next_event = ktime_add_ns(ktime_get(), delta);
220
221	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
222		return 0;
223
224	dev->retries++;
225	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
226	return dev->set_next_event((unsigned long) clc, dev);
227}
228
229#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
230
231/**
232 * clockevents_program_event - Reprogram the clock event device.
233 * @dev:	device to program
234 * @expires:	absolute expiry time (monotonic clock)
235 * @force:	program minimum delay if expires can not be set
236 *
237 * Returns 0 on success, -ETIME when the event is in the past.
238 */
239int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
240			      bool force)
241{
242	unsigned long long clc;
243	int64_t delta;
244	int rc;
245
246	if (unlikely(expires.tv64 < 0)) {
247		WARN_ON_ONCE(1);
248		return -ETIME;
249	}
250
251	dev->next_event = expires;
252
253	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
254		return 0;
255
 
 
 
 
256	/* Shortcut for clockevent devices that can deal with ktime. */
257	if (dev->features & CLOCK_EVT_FEAT_KTIME)
258		return dev->set_next_ktime(expires, dev);
259
260	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
261	if (delta <= 0)
262		return force ? clockevents_program_min_delta(dev) : -ETIME;
263
264	delta = min(delta, (int64_t) dev->max_delta_ns);
265	delta = max(delta, (int64_t) dev->min_delta_ns);
266
267	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
268	rc = dev->set_next_event((unsigned long) clc, dev);
269
270	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
271}
272
273/*
274 * Called after a notify add to make devices available which were
275 * released from the notifier call.
276 */
277static void clockevents_notify_released(void)
278{
279	struct clock_event_device *dev;
280
281	while (!list_empty(&clockevents_released)) {
282		dev = list_entry(clockevents_released.next,
283				 struct clock_event_device, list);
284		list_del(&dev->list);
285		list_add(&dev->list, &clockevent_devices);
286		tick_check_new_device(dev);
287	}
288}
289
290/*
291 * Try to install a replacement clock event device
292 */
293static int clockevents_replace(struct clock_event_device *ced)
294{
295	struct clock_event_device *dev, *newdev = NULL;
296
297	list_for_each_entry(dev, &clockevent_devices, list) {
298		if (dev == ced || dev->mode != CLOCK_EVT_MODE_UNUSED)
299			continue;
300
301		if (!tick_check_replacement(newdev, dev))
302			continue;
303
304		if (!try_module_get(dev->owner))
305			continue;
306
307		if (newdev)
308			module_put(newdev->owner);
309		newdev = dev;
310	}
311	if (newdev) {
312		tick_install_replacement(newdev);
313		list_del_init(&ced->list);
314	}
315	return newdev ? 0 : -EBUSY;
316}
317
318/*
319 * Called with clockevents_mutex and clockevents_lock held
320 */
321static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
322{
323	/* Fast track. Device is unused */
324	if (ced->mode == CLOCK_EVT_MODE_UNUSED) {
325		list_del_init(&ced->list);
326		return 0;
327	}
328
329	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
330}
331
332/*
333 * SMP function call to unbind a device
334 */
335static void __clockevents_unbind(void *arg)
336{
337	struct ce_unbind *cu = arg;
338	int res;
339
340	raw_spin_lock(&clockevents_lock);
341	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
342	if (res == -EAGAIN)
343		res = clockevents_replace(cu->ce);
344	cu->res = res;
345	raw_spin_unlock(&clockevents_lock);
346}
347
348/*
349 * Issues smp function call to unbind a per cpu device. Called with
350 * clockevents_mutex held.
351 */
352static int clockevents_unbind(struct clock_event_device *ced, int cpu)
353{
354	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
355
356	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
357	return cu.res;
358}
359
360/*
361 * Unbind a clockevents device.
362 */
363int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
364{
365	int ret;
366
367	mutex_lock(&clockevents_mutex);
368	ret = clockevents_unbind(ced, cpu);
369	mutex_unlock(&clockevents_mutex);
370	return ret;
371}
372EXPORT_SYMBOL_GPL(clockevents_unbind);
373
374/**
375 * clockevents_register_device - register a clock event device
376 * @dev:	device to register
377 */
378void clockevents_register_device(struct clock_event_device *dev)
379{
380	unsigned long flags;
381
382	BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
 
 
383	if (!dev->cpumask) {
384		WARN_ON(num_possible_cpus() > 1);
385		dev->cpumask = cpumask_of(smp_processor_id());
386	}
387
388	raw_spin_lock_irqsave(&clockevents_lock, flags);
389
390	list_add(&dev->list, &clockevent_devices);
391	tick_check_new_device(dev);
392	clockevents_notify_released();
393
394	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
395}
396EXPORT_SYMBOL_GPL(clockevents_register_device);
397
398void clockevents_config(struct clock_event_device *dev, u32 freq)
399{
400	u64 sec;
401
402	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
403		return;
404
405	/*
406	 * Calculate the maximum number of seconds we can sleep. Limit
407	 * to 10 minutes for hardware which can program more than
408	 * 32bit ticks so we still get reasonable conversion values.
409	 */
410	sec = dev->max_delta_ticks;
411	do_div(sec, freq);
412	if (!sec)
413		sec = 1;
414	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
415		sec = 600;
416
417	clockevents_calc_mult_shift(dev, freq, sec);
418	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
419	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
420}
421
422/**
423 * clockevents_config_and_register - Configure and register a clock event device
424 * @dev:	device to register
425 * @freq:	The clock frequency
426 * @min_delta:	The minimum clock ticks to program in oneshot mode
427 * @max_delta:	The maximum clock ticks to program in oneshot mode
428 *
429 * min/max_delta can be 0 for devices which do not support oneshot mode.
430 */
431void clockevents_config_and_register(struct clock_event_device *dev,
432				     u32 freq, unsigned long min_delta,
433				     unsigned long max_delta)
434{
435	dev->min_delta_ticks = min_delta;
436	dev->max_delta_ticks = max_delta;
437	clockevents_config(dev, freq);
438	clockevents_register_device(dev);
439}
440EXPORT_SYMBOL_GPL(clockevents_config_and_register);
441
442int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
443{
444	clockevents_config(dev, freq);
445
446	if (dev->mode == CLOCK_EVT_MODE_ONESHOT)
447		return clockevents_program_event(dev, dev->next_event, false);
448
449	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
450		dev->set_mode(CLOCK_EVT_MODE_PERIODIC, dev);
451
452	return 0;
453}
454
455/**
456 * clockevents_update_freq - Update frequency and reprogram a clock event device.
457 * @dev:	device to modify
458 * @freq:	new device frequency
459 *
460 * Reconfigure and reprogram a clock event device in oneshot
461 * mode. Must be called on the cpu for which the device delivers per
462 * cpu timer events. If called for the broadcast device the core takes
463 * care of serialization.
464 *
465 * Returns 0 on success, -ETIME when the event is in the past.
466 */
467int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
468{
469	unsigned long flags;
470	int ret;
471
472	local_irq_save(flags);
473	ret = tick_broadcast_update_freq(dev, freq);
474	if (ret == -ENODEV)
475		ret = __clockevents_update_freq(dev, freq);
476	local_irq_restore(flags);
477	return ret;
478}
479
480/*
481 * Noop handler when we shut down an event device
482 */
483void clockevents_handle_noop(struct clock_event_device *dev)
484{
485}
486
487/**
488 * clockevents_exchange_device - release and request clock devices
489 * @old:	device to release (can be NULL)
490 * @new:	device to request (can be NULL)
491 *
492 * Called from the notifier chain. clockevents_lock is held already
 
493 */
494void clockevents_exchange_device(struct clock_event_device *old,
495				 struct clock_event_device *new)
496{
497	unsigned long flags;
498
499	local_irq_save(flags);
500	/*
501	 * Caller releases a clock event device. We queue it into the
502	 * released list and do a notify add later.
503	 */
504	if (old) {
505		module_put(old->owner);
506		clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
507		list_del(&old->list);
508		list_add(&old->list, &clockevents_released);
509	}
510
511	if (new) {
512		BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
513		clockevents_shutdown(new);
514	}
515	local_irq_restore(flags);
516}
517
518/**
519 * clockevents_suspend - suspend clock devices
520 */
521void clockevents_suspend(void)
522{
523	struct clock_event_device *dev;
524
525	list_for_each_entry_reverse(dev, &clockevent_devices, list)
526		if (dev->suspend)
527			dev->suspend(dev);
528}
529
530/**
531 * clockevents_resume - resume clock devices
532 */
533void clockevents_resume(void)
534{
535	struct clock_event_device *dev;
536
537	list_for_each_entry(dev, &clockevent_devices, list)
538		if (dev->resume)
539			dev->resume(dev);
540}
541
542#ifdef CONFIG_GENERIC_CLOCKEVENTS
543/**
544 * clockevents_notify - notification about relevant events
545 * Returns 0 on success, any other value on error
546 */
547int clockevents_notify(unsigned long reason, void *arg)
548{
549	struct clock_event_device *dev, *tmp;
550	unsigned long flags;
551	int cpu, ret = 0;
552
553	raw_spin_lock_irqsave(&clockevents_lock, flags);
554
555	switch (reason) {
556	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
557	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
558	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
559		tick_broadcast_on_off(reason, arg);
560		break;
561
562	case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
563	case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
564		ret = tick_broadcast_oneshot_control(reason);
565		break;
566
567	case CLOCK_EVT_NOTIFY_CPU_DYING:
568		tick_handover_do_timer(arg);
569		break;
570
571	case CLOCK_EVT_NOTIFY_SUSPEND:
572		tick_suspend();
573		tick_suspend_broadcast();
574		break;
575
576	case CLOCK_EVT_NOTIFY_RESUME:
577		tick_resume();
578		break;
579
580	case CLOCK_EVT_NOTIFY_CPU_DEAD:
581		tick_shutdown_broadcast_oneshot(arg);
582		tick_shutdown_broadcast(arg);
583		tick_shutdown(arg);
584		/*
585		 * Unregister the clock event devices which were
586		 * released from the users in the notify chain.
587		 */
588		list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
589			list_del(&dev->list);
590		/*
591		 * Now check whether the CPU has left unused per cpu devices
592		 */
593		cpu = *((int *)arg);
594		list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
595			if (cpumask_test_cpu(cpu, dev->cpumask) &&
596			    cpumask_weight(dev->cpumask) == 1 &&
597			    !tick_is_broadcast_device(dev)) {
598				BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
599				list_del(&dev->list);
600			}
601		}
602		break;
603	default:
604		break;
605	}
606	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
607	return ret;
608}
609EXPORT_SYMBOL_GPL(clockevents_notify);
610
611#ifdef CONFIG_SYSFS
612struct bus_type clockevents_subsys = {
613	.name		= "clockevents",
614	.dev_name       = "clockevent",
615};
616
617static DEFINE_PER_CPU(struct device, tick_percpu_dev);
618static struct tick_device *tick_get_tick_dev(struct device *dev);
619
620static ssize_t sysfs_show_current_tick_dev(struct device *dev,
621					   struct device_attribute *attr,
622					   char *buf)
623{
624	struct tick_device *td;
625	ssize_t count = 0;
626
627	raw_spin_lock_irq(&clockevents_lock);
628	td = tick_get_tick_dev(dev);
629	if (td && td->evtdev)
630		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
631	raw_spin_unlock_irq(&clockevents_lock);
632	return count;
633}
634static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
635
636/* We don't support the abomination of removable broadcast devices */
637static ssize_t sysfs_unbind_tick_dev(struct device *dev,
638				     struct device_attribute *attr,
639				     const char *buf, size_t count)
640{
641	char name[CS_NAME_LEN];
642	ssize_t ret = sysfs_get_uname(buf, name, count);
643	struct clock_event_device *ce;
644
645	if (ret < 0)
646		return ret;
647
648	ret = -ENODEV;
649	mutex_lock(&clockevents_mutex);
650	raw_spin_lock_irq(&clockevents_lock);
651	list_for_each_entry(ce, &clockevent_devices, list) {
652		if (!strcmp(ce->name, name)) {
653			ret = __clockevents_try_unbind(ce, dev->id);
654			break;
655		}
656	}
657	raw_spin_unlock_irq(&clockevents_lock);
658	/*
659	 * We hold clockevents_mutex, so ce can't go away
660	 */
661	if (ret == -EAGAIN)
662		ret = clockevents_unbind(ce, dev->id);
663	mutex_unlock(&clockevents_mutex);
664	return ret ? ret : count;
665}
666static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
667
668#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
669static struct device tick_bc_dev = {
670	.init_name	= "broadcast",
671	.id		= 0,
672	.bus		= &clockevents_subsys,
673};
674
675static struct tick_device *tick_get_tick_dev(struct device *dev)
676{
677	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
678		&per_cpu(tick_cpu_device, dev->id);
679}
680
681static __init int tick_broadcast_init_sysfs(void)
682{
683	int err = device_register(&tick_bc_dev);
684
685	if (!err)
686		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
687	return err;
688}
689#else
690static struct tick_device *tick_get_tick_dev(struct device *dev)
691{
692	return &per_cpu(tick_cpu_device, dev->id);
693}
694static inline int tick_broadcast_init_sysfs(void) { return 0; }
695#endif
696
697static int __init tick_init_sysfs(void)
698{
699	int cpu;
700
701	for_each_possible_cpu(cpu) {
702		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
703		int err;
704
705		dev->id = cpu;
706		dev->bus = &clockevents_subsys;
707		err = device_register(dev);
708		if (!err)
709			err = device_create_file(dev, &dev_attr_current_device);
710		if (!err)
711			err = device_create_file(dev, &dev_attr_unbind_device);
712		if (err)
713			return err;
714	}
715	return tick_broadcast_init_sysfs();
716}
717
718static int __init clockevents_init_sysfs(void)
719{
720	int err = subsys_system_register(&clockevents_subsys, NULL);
721
722	if (!err)
723		err = tick_init_sysfs();
724	return err;
725}
726device_initcall(clockevents_init_sysfs);
727#endif /* SYSFS */
728
729#endif /* GENERIC_CLOCK_EVENTS */