Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
 
 
 
 
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
 
 
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/ioport.h>
 
 
  25#include <linux/irq.h>
 
 
 
 
 
 
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/platform_device.h>
  29#include <linux/pm_domain.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sh_timer.h>
  32#include <linux/slab.h>
  33#include <linux/spinlock.h>
  34
  35struct sh_cmt_device;
  36
  37/*
  38 * The CMT comes in 5 different identified flavours, depending not only on the
  39 * SoC but also on the particular instance. The following table lists the main
  40 * characteristics of those flavours.
  41 *
  42 *			16B	32B	32B-F	48B	48B-2
  43 * -----------------------------------------------------------------------------
  44 * Channels		2	1/4	1	6	2/8
  45 * Control Width	16	16	16	16	32
  46 * Counter Width	16	32	32	32/48	32/48
  47 * Shared Start/Stop	Y	Y	Y	Y	N
  48 *
  49 * The 48-bit gen2 version has a per-channel start/stop register located in the
  50 * channel registers block. All other versions have a shared start/stop register
  51 * located in the global space.
  52 *
  53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  54 * infers the start/stop bit position in the control register and the channel
  55 * registers block address. Some CMT instances have a subset of channels
  56 * available, in which case the index in the documentation doesn't match the
  57 * "real" index as implemented in hardware. This is for instance the case with
  58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  59 * in the documentation but using start/stop bit 5 and having its registers
  60 * block at 0x60.
  61 *
  62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  64 */
  65
  66enum sh_cmt_model {
  67	SH_CMT_16BIT,
  68	SH_CMT_32BIT,
  69	SH_CMT_32BIT_FAST,
  70	SH_CMT_48BIT,
  71	SH_CMT_48BIT_GEN2,
  72};
  73
  74struct sh_cmt_info {
  75	enum sh_cmt_model model;
  76
 
 
 
 
  77	unsigned long width; /* 16 or 32 bit version of hardware block */
  78	unsigned long overflow_bit;
  79	unsigned long clear_bits;
 
 
  80
  81	/* callbacks for CMSTR and CMCSR access */
  82	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  83	void (*write_control)(void __iomem *base, unsigned long offs,
  84			      unsigned long value);
  85
  86	/* callbacks for CMCNT and CMCOR access */
  87	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  88	void (*write_count)(void __iomem *base, unsigned long offs,
  89			    unsigned long value);
  90};
  91
  92struct sh_cmt_channel {
  93	struct sh_cmt_device *cmt;
  94
  95	unsigned int index;	/* Index in the documentation */
  96	unsigned int hwidx;	/* Real hardware index */
  97
  98	void __iomem *iostart;
  99	void __iomem *ioctrl;
 100
 101	unsigned int timer_bit;
 102	unsigned long flags;
 103	unsigned long match_value;
 104	unsigned long next_match_value;
 105	unsigned long max_match_value;
 106	unsigned long rate;
 107	raw_spinlock_t lock;
 108	struct clock_event_device ced;
 109	struct clocksource cs;
 110	unsigned long total_cycles;
 111	bool cs_enabled;
 112};
 113
 114struct sh_cmt_device {
 115	struct platform_device *pdev;
 116
 117	const struct sh_cmt_info *info;
 118
 119	void __iomem *mapbase;
 120	struct clk *clk;
 121
 122	raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124	struct sh_cmt_channel *channels;
 125	unsigned int num_channels;
 126	unsigned int hw_channels;
 127
 128	bool has_clockevent;
 129	bool has_clocksource;
 
 
 130};
 131
 132#define SH_CMT16_CMCSR_CMF		(1 << 7)
 133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF		(1 << 15)
 141#define SH_CMT32_CMCSR_OVF		(1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 143#define SH_CMT32_CMCSR_STTF		(1 << 12)
 144#define SH_CMT32_CMCSR_STPF		(1 << 11)
 145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 146#define SH_CMT32_CMCSR_CMS		(1 << 9)
 147#define SH_CMT32_CMCSR_CMM		(1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 159
 160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162	return ioread16(base + (offs << 1));
 163}
 164
 165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167	return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 171			   unsigned long value)
 172{
 173	iowrite16(value, base + (offs << 1));
 174}
 175
 176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 177			   unsigned long value)
 178{
 179	iowrite32(value, base + (offs << 2));
 180}
 181
 182static const struct sh_cmt_info sh_cmt_info[] = {
 183	[SH_CMT_16BIT] = {
 184		.model = SH_CMT_16BIT,
 185		.width = 16,
 186		.overflow_bit = SH_CMT16_CMCSR_CMF,
 187		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 188		.read_control = sh_cmt_read16,
 189		.write_control = sh_cmt_write16,
 190		.read_count = sh_cmt_read16,
 191		.write_count = sh_cmt_write16,
 192	},
 193	[SH_CMT_32BIT] = {
 194		.model = SH_CMT_32BIT,
 195		.width = 32,
 196		.overflow_bit = SH_CMT32_CMCSR_CMF,
 197		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 198		.read_control = sh_cmt_read16,
 199		.write_control = sh_cmt_write16,
 200		.read_count = sh_cmt_read32,
 201		.write_count = sh_cmt_write32,
 202	},
 203	[SH_CMT_32BIT_FAST] = {
 204		.model = SH_CMT_32BIT_FAST,
 205		.width = 32,
 206		.overflow_bit = SH_CMT32_CMCSR_CMF,
 207		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 208		.read_control = sh_cmt_read16,
 209		.write_control = sh_cmt_write16,
 210		.read_count = sh_cmt_read32,
 211		.write_count = sh_cmt_write32,
 212	},
 213	[SH_CMT_48BIT] = {
 214		.model = SH_CMT_48BIT,
 215		.width = 32,
 216		.overflow_bit = SH_CMT32_CMCSR_CMF,
 217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218		.read_control = sh_cmt_read32,
 219		.write_control = sh_cmt_write32,
 220		.read_count = sh_cmt_read32,
 221		.write_count = sh_cmt_write32,
 222	},
 223	[SH_CMT_48BIT_GEN2] = {
 224		.model = SH_CMT_48BIT_GEN2,
 225		.width = 32,
 226		.overflow_bit = SH_CMT32_CMCSR_CMF,
 227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228		.read_control = sh_cmt_read32,
 229		.write_control = sh_cmt_write32,
 230		.read_count = sh_cmt_read32,
 231		.write_count = sh_cmt_write32,
 232	},
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 240{
 241	if (ch->iostart)
 242		return ch->cmt->info->read_control(ch->iostart, 0);
 243	else
 244		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 245}
 246
 247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 248				      unsigned long value)
 249{
 250	if (ch->iostart)
 251		ch->cmt->info->write_control(ch->iostart, 0, value);
 252	else
 253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 254}
 255
 256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 257{
 258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 262				      unsigned long value)
 263{
 264	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 265}
 266
 267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 
 268{
 269	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 270}
 271
 272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 273				      unsigned long value)
 274{
 275	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 276}
 277
 278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 279				      unsigned long value)
 280{
 281	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 282}
 283
 284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 285					int *has_wrapped)
 286{
 287	unsigned long v1, v2, v3;
 288	int o1, o2;
 289
 290	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 291
 292	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 293	do {
 294		o2 = o1;
 295		v1 = sh_cmt_read_cmcnt(ch);
 296		v2 = sh_cmt_read_cmcnt(ch);
 297		v3 = sh_cmt_read_cmcnt(ch);
 298		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 299	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 300			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 301
 302	*has_wrapped = o1;
 303	return v2;
 304}
 305
 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 
 
 307{
 
 308	unsigned long flags, value;
 309
 310	/* start stop register shared by multiple timer channels */
 311	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 312	value = sh_cmt_read_cmstr(ch);
 313
 314	if (start)
 315		value |= 1 << ch->timer_bit;
 316	else
 317		value &= ~(1 << ch->timer_bit);
 318
 319	sh_cmt_write_cmstr(ch, value);
 320	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 321}
 322
 323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
 324{
 325	int k, ret;
 326
 327	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 328	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 329
 330	/* enable clock */
 331	ret = clk_enable(ch->cmt->clk);
 332	if (ret) {
 333		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 334			ch->index);
 335		goto err0;
 336	}
 337
 338	/* make sure channel is disabled */
 339	sh_cmt_start_stop_ch(ch, 0);
 340
 341	/* configure channel, periodic mode and maximum timeout */
 342	if (ch->cmt->info->width == 16) {
 343		*rate = clk_get_rate(ch->cmt->clk) / 512;
 344		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 345				   SH_CMT16_CMCSR_CKS512);
 346	} else {
 347		*rate = clk_get_rate(ch->cmt->clk) / 8;
 348		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 349				   SH_CMT32_CMCSR_CMTOUT_IE |
 350				   SH_CMT32_CMCSR_CMR_IRQ |
 351				   SH_CMT32_CMCSR_CKS_RCLK8);
 352	}
 353
 354	sh_cmt_write_cmcor(ch, 0xffffffff);
 355	sh_cmt_write_cmcnt(ch, 0);
 356
 357	/*
 358	 * According to the sh73a0 user's manual, as CMCNT can be operated
 359	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 360	 * modifying CMCNT register; two RCLK cycles are necessary before
 361	 * this register is either read or any modification of the value
 362	 * it holds is reflected in the LSI's actual operation.
 363	 *
 364	 * While at it, we're supposed to clear out the CMCNT as of this
 365	 * moment, so make sure it's processed properly here.  This will
 366	 * take RCLKx2 at maximum.
 367	 */
 368	for (k = 0; k < 100; k++) {
 369		if (!sh_cmt_read_cmcnt(ch))
 370			break;
 371		udelay(1);
 372	}
 373
 374	if (sh_cmt_read_cmcnt(ch)) {
 375		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 376			ch->index);
 377		ret = -ETIMEDOUT;
 378		goto err1;
 379	}
 380
 381	/* enable channel */
 382	sh_cmt_start_stop_ch(ch, 1);
 383	return 0;
 384 err1:
 385	/* stop clock */
 386	clk_disable(ch->cmt->clk);
 387
 388 err0:
 389	return ret;
 390}
 391
 392static void sh_cmt_disable(struct sh_cmt_channel *ch)
 393{
 394	/* disable channel */
 395	sh_cmt_start_stop_ch(ch, 0);
 396
 397	/* disable interrupts in CMT block */
 398	sh_cmt_write_cmcsr(ch, 0);
 399
 400	/* stop clock */
 401	clk_disable(ch->cmt->clk);
 402
 403	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 404	pm_runtime_put(&ch->cmt->pdev->dev);
 405}
 406
 407/* private flags */
 408#define FLAG_CLOCKEVENT (1 << 0)
 409#define FLAG_CLOCKSOURCE (1 << 1)
 410#define FLAG_REPROGRAM (1 << 2)
 411#define FLAG_SKIPEVENT (1 << 3)
 412#define FLAG_IRQCONTEXT (1 << 4)
 413
 414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 415					      int absolute)
 416{
 417	unsigned long new_match;
 418	unsigned long value = ch->next_match_value;
 419	unsigned long delay = 0;
 420	unsigned long now = 0;
 421	int has_wrapped;
 422
 423	now = sh_cmt_get_counter(ch, &has_wrapped);
 424	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 425
 426	if (has_wrapped) {
 427		/* we're competing with the interrupt handler.
 428		 *  -> let the interrupt handler reprogram the timer.
 429		 *  -> interrupt number two handles the event.
 430		 */
 431		ch->flags |= FLAG_SKIPEVENT;
 432		return;
 433	}
 434
 435	if (absolute)
 436		now = 0;
 437
 438	do {
 439		/* reprogram the timer hardware,
 440		 * but don't save the new match value yet.
 441		 */
 442		new_match = now + value + delay;
 443		if (new_match > ch->max_match_value)
 444			new_match = ch->max_match_value;
 445
 446		sh_cmt_write_cmcor(ch, new_match);
 447
 448		now = sh_cmt_get_counter(ch, &has_wrapped);
 449		if (has_wrapped && (new_match > ch->match_value)) {
 450			/* we are changing to a greater match value,
 451			 * so this wrap must be caused by the counter
 452			 * matching the old value.
 453			 * -> first interrupt reprograms the timer.
 454			 * -> interrupt number two handles the event.
 455			 */
 456			ch->flags |= FLAG_SKIPEVENT;
 457			break;
 458		}
 459
 460		if (has_wrapped) {
 461			/* we are changing to a smaller match value,
 462			 * so the wrap must be caused by the counter
 463			 * matching the new value.
 464			 * -> save programmed match value.
 465			 * -> let isr handle the event.
 466			 */
 467			ch->match_value = new_match;
 468			break;
 469		}
 470
 471		/* be safe: verify hardware settings */
 472		if (now < new_match) {
 473			/* timer value is below match value, all good.
 474			 * this makes sure we won't miss any match events.
 475			 * -> save programmed match value.
 476			 * -> let isr handle the event.
 477			 */
 478			ch->match_value = new_match;
 479			break;
 480		}
 481
 482		/* the counter has reached a value greater
 483		 * than our new match value. and since the
 484		 * has_wrapped flag isn't set we must have
 485		 * programmed a too close event.
 486		 * -> increase delay and retry.
 487		 */
 488		if (delay)
 489			delay <<= 1;
 490		else
 491			delay = 1;
 492
 493		if (!delay)
 494			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 495				 ch->index);
 496
 497	} while (delay);
 498}
 499
 500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 501{
 502	if (delta > ch->max_match_value)
 503		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 504			 ch->index);
 505
 506	ch->next_match_value = delta;
 507	sh_cmt_clock_event_program_verify(ch, 0);
 508}
 509
 510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512	unsigned long flags;
 513
 514	raw_spin_lock_irqsave(&ch->lock, flags);
 515	__sh_cmt_set_next(ch, delta);
 516	raw_spin_unlock_irqrestore(&ch->lock, flags);
 517}
 518
 519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 520{
 521	struct sh_cmt_channel *ch = dev_id;
 522
 523	/* clear flags */
 524	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 525			   ch->cmt->info->clear_bits);
 526
 527	/* update clock source counter to begin with if enabled
 528	 * the wrap flag should be cleared by the timer specific
 529	 * isr before we end up here.
 530	 */
 531	if (ch->flags & FLAG_CLOCKSOURCE)
 532		ch->total_cycles += ch->match_value + 1;
 533
 534	if (!(ch->flags & FLAG_REPROGRAM))
 535		ch->next_match_value = ch->max_match_value;
 536
 537	ch->flags |= FLAG_IRQCONTEXT;
 538
 539	if (ch->flags & FLAG_CLOCKEVENT) {
 540		if (!(ch->flags & FLAG_SKIPEVENT)) {
 541			if (clockevent_state_oneshot(&ch->ced)) {
 542				ch->next_match_value = ch->max_match_value;
 543				ch->flags |= FLAG_REPROGRAM;
 544			}
 545
 546			ch->ced.event_handler(&ch->ced);
 547		}
 548	}
 549
 550	ch->flags &= ~FLAG_SKIPEVENT;
 551
 552	if (ch->flags & FLAG_REPROGRAM) {
 553		ch->flags &= ~FLAG_REPROGRAM;
 554		sh_cmt_clock_event_program_verify(ch, 1);
 555
 556		if (ch->flags & FLAG_CLOCKEVENT)
 557			if ((clockevent_state_shutdown(&ch->ced))
 558			    || (ch->match_value == ch->next_match_value))
 559				ch->flags &= ~FLAG_REPROGRAM;
 560	}
 561
 562	ch->flags &= ~FLAG_IRQCONTEXT;
 563
 564	return IRQ_HANDLED;
 565}
 566
 567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 568{
 569	int ret = 0;
 570	unsigned long flags;
 571
 572	raw_spin_lock_irqsave(&ch->lock, flags);
 573
 574	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 575		ret = sh_cmt_enable(ch, &ch->rate);
 576
 577	if (ret)
 578		goto out;
 579	ch->flags |= flag;
 580
 581	/* setup timeout if no clockevent */
 582	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 583		__sh_cmt_set_next(ch, ch->max_match_value);
 584 out:
 585	raw_spin_unlock_irqrestore(&ch->lock, flags);
 586
 587	return ret;
 588}
 589
 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 591{
 592	unsigned long flags;
 593	unsigned long f;
 594
 595	raw_spin_lock_irqsave(&ch->lock, flags);
 596
 597	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 598	ch->flags &= ~flag;
 599
 600	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 601		sh_cmt_disable(ch);
 602
 603	/* adjust the timeout to maximum if only clocksource left */
 604	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 605		__sh_cmt_set_next(ch, ch->max_match_value);
 606
 607	raw_spin_unlock_irqrestore(&ch->lock, flags);
 608}
 609
 610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 611{
 612	return container_of(cs, struct sh_cmt_channel, cs);
 613}
 614
 615static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 616{
 617	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 618	unsigned long flags, raw;
 619	unsigned long value;
 620	int has_wrapped;
 621
 622	raw_spin_lock_irqsave(&ch->lock, flags);
 623	value = ch->total_cycles;
 624	raw = sh_cmt_get_counter(ch, &has_wrapped);
 625
 626	if (unlikely(has_wrapped))
 627		raw += ch->match_value + 1;
 628	raw_spin_unlock_irqrestore(&ch->lock, flags);
 629
 630	return value + raw;
 631}
 632
 633static int sh_cmt_clocksource_enable(struct clocksource *cs)
 634{
 635	int ret;
 636	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 637
 638	WARN_ON(ch->cs_enabled);
 639
 640	ch->total_cycles = 0;
 641
 642	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 643	if (!ret) {
 644		__clocksource_update_freq_hz(cs, ch->rate);
 645		ch->cs_enabled = true;
 646	}
 647	return ret;
 648}
 649
 650static void sh_cmt_clocksource_disable(struct clocksource *cs)
 651{
 652	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 653
 654	WARN_ON(!ch->cs_enabled);
 655
 656	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657	ch->cs_enabled = false;
 658}
 659
 660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 661{
 662	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664	if (!ch->cs_enabled)
 665		return;
 666
 667	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 668	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 669}
 670
 671static void sh_cmt_clocksource_resume(struct clocksource *cs)
 672{
 673	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 674
 675	if (!ch->cs_enabled)
 676		return;
 677
 678	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 679	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 680}
 681
 682static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 683				       const char *name)
 684{
 685	struct clocksource *cs = &ch->cs;
 686
 687	cs->name = name;
 688	cs->rating = 125;
 689	cs->read = sh_cmt_clocksource_read;
 690	cs->enable = sh_cmt_clocksource_enable;
 691	cs->disable = sh_cmt_clocksource_disable;
 692	cs->suspend = sh_cmt_clocksource_suspend;
 693	cs->resume = sh_cmt_clocksource_resume;
 694	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 695	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 696
 697	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 698		 ch->index);
 699
 700	/* Register with dummy 1 Hz value, gets updated in ->enable() */
 701	clocksource_register_hz(cs, 1);
 702	return 0;
 703}
 704
 705static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 706{
 707	return container_of(ced, struct sh_cmt_channel, ced);
 708}
 709
 710static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 711{
 712	struct clock_event_device *ced = &ch->ced;
 713
 714	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 715
 716	/* TODO: calculate good shift from rate and counter bit width */
 717
 718	ced->shift = 32;
 719	ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
 720	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 721	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 722
 723	if (periodic)
 724		sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
 725	else
 726		sh_cmt_set_next(ch, ch->max_match_value);
 727}
 728
 729static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 730{
 731	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 732
 733	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 734	return 0;
 735}
 736
 737static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 738					int periodic)
 739{
 740	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 741
 742	/* deal with old setting first */
 743	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 744		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 745
 746	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 747		 ch->index, periodic ? "periodic" : "oneshot");
 748	sh_cmt_clock_event_start(ch, periodic);
 749	return 0;
 750}
 751
 752static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 753{
 754	return sh_cmt_clock_event_set_state(ced, 0);
 755}
 756
 757static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 758{
 759	return sh_cmt_clock_event_set_state(ced, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 760}
 761
 762static int sh_cmt_clock_event_next(unsigned long delta,
 763				   struct clock_event_device *ced)
 764{
 765	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767	BUG_ON(!clockevent_state_oneshot(ced));
 768	if (likely(ch->flags & FLAG_IRQCONTEXT))
 769		ch->next_match_value = delta - 1;
 770	else
 771		sh_cmt_set_next(ch, delta - 1);
 772
 773	return 0;
 774}
 775
 776static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 777{
 778	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 779
 780	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 781	clk_unprepare(ch->cmt->clk);
 782}
 783
 784static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 785{
 786	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 787
 788	clk_prepare(ch->cmt->clk);
 789	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 790}
 791
 792static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 793				      const char *name)
 794{
 795	struct clock_event_device *ced = &ch->ced;
 796	int irq;
 797	int ret;
 798
 799	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 800	if (irq < 0) {
 801		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 802			ch->index);
 803		return irq;
 804	}
 805
 806	ret = request_irq(irq, sh_cmt_interrupt,
 807			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 808			  dev_name(&ch->cmt->pdev->dev), ch);
 809	if (ret) {
 810		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 811			ch->index, irq);
 812		return ret;
 813	}
 814
 815	ced->name = name;
 816	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 817	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 818	ced->rating = 125;
 819	ced->cpumask = cpu_possible_mask;
 820	ced->set_next_event = sh_cmt_clock_event_next;
 821	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 822	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 823	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 824	ced->suspend = sh_cmt_clock_event_suspend;
 825	ced->resume = sh_cmt_clock_event_resume;
 826
 827	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 828		 ch->index);
 829	clockevents_register_device(ced);
 830
 831	return 0;
 832}
 833
 834static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 835			   bool clockevent, bool clocksource)
 
 836{
 837	int ret;
 
 838
 839	if (clockevent) {
 840		ch->cmt->has_clockevent = true;
 841		ret = sh_cmt_register_clockevent(ch, name);
 842		if (ret < 0)
 843			return ret;
 844	}
 845
 846	if (clocksource) {
 847		ch->cmt->has_clocksource = true;
 848		sh_cmt_register_clocksource(ch, name);
 849	}
 850
 851	return 0;
 852}
 853
 854static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 855				unsigned int hwidx, bool clockevent,
 856				bool clocksource, struct sh_cmt_device *cmt)
 857{
 858	int ret;
 859
 860	/* Skip unused channels. */
 861	if (!clockevent && !clocksource)
 862		return 0;
 863
 864	ch->cmt = cmt;
 865	ch->index = index;
 866	ch->hwidx = hwidx;
 867
 868	/*
 869	 * Compute the address of the channel control register block. For the
 870	 * timers with a per-channel start/stop register, compute its address
 871	 * as well.
 872	 */
 873	switch (cmt->info->model) {
 874	case SH_CMT_16BIT:
 875		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 876		break;
 877	case SH_CMT_32BIT:
 878	case SH_CMT_48BIT:
 879		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 880		break;
 881	case SH_CMT_32BIT_FAST:
 882		/*
 883		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
 884		 * is located at offset 0x40 instead of 0x60 for some reason.
 885		 */
 886		ch->ioctrl = cmt->mapbase + 0x40;
 887		break;
 888	case SH_CMT_48BIT_GEN2:
 889		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 890		ch->ioctrl = ch->iostart + 0x10;
 891		break;
 892	}
 893
 894	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 895		ch->max_match_value = ~0;
 896	else
 897		ch->max_match_value = (1 << cmt->info->width) - 1;
 898
 899	ch->match_value = ch->max_match_value;
 900	raw_spin_lock_init(&ch->lock);
 901
 902	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
 903
 904	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 905			      clockevent, clocksource);
 906	if (ret) {
 907		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 908			ch->index);
 909		return ret;
 910	}
 911	ch->cs_enabled = false;
 912
 913	return 0;
 914}
 915
 916static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 917{
 918	struct resource *mem;
 919
 920	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 921	if (!mem) {
 922		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 923		return -ENXIO;
 924	}
 925
 926	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 927	if (cmt->mapbase == NULL) {
 928		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 929		return -ENXIO;
 
 930	}
 931
 932	return 0;
 933}
 934
 935static const struct platform_device_id sh_cmt_id_table[] = {
 936	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 937	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 938	{ }
 939};
 940MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 941
 942static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 943	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
 944	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
 945	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 946	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
 947	{ }
 948};
 949MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 950
 951static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
 952{
 953	struct device_node *np = cmt->pdev->dev.of_node;
 954
 955	return of_property_read_u32(np, "renesas,channels-mask",
 956				    &cmt->hw_channels);
 957}
 958
 959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 960{
 961	unsigned int mask;
 962	unsigned int i;
 963	int ret;
 964
 965	cmt->pdev = pdev;
 966	raw_spin_lock_init(&cmt->lock);
 967
 968	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 969		const struct of_device_id *id;
 970
 971		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
 972		cmt->info = id->data;
 
 
 
 
 
 
 
 
 
 
 
 973
 974		ret = sh_cmt_parse_dt(cmt);
 975		if (ret < 0)
 976			return ret;
 977	} else if (pdev->dev.platform_data) {
 978		struct sh_timer_config *cfg = pdev->dev.platform_data;
 979		const struct platform_device_id *id = pdev->id_entry;
 980
 981		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 982		cmt->hw_channels = cfg->channels_mask;
 
 
 983	} else {
 984		dev_err(&cmt->pdev->dev, "missing platform data\n");
 985		return -ENXIO;
 986	}
 987
 988	/* Get hold of clock. */
 989	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 990	if (IS_ERR(cmt->clk)) {
 991		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 992		return PTR_ERR(cmt->clk);
 
 
 
 
 
 
 
 993	}
 994
 995	ret = clk_prepare(cmt->clk);
 996	if (ret < 0)
 997		goto err_clk_put;
 
 998
 999	/* Map the memory resource(s). */
1000	ret = sh_cmt_map_memory(cmt);
1001	if (ret < 0)
1002		goto err_clk_unprepare;
1003
1004	/* Allocate and setup the channels. */
1005	cmt->num_channels = hweight8(cmt->hw_channels);
1006	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1007				GFP_KERNEL);
1008	if (cmt->channels == NULL) {
1009		ret = -ENOMEM;
1010		goto err_unmap;
1011	}
 
1012
1013	/*
1014	 * Use the first channel as a clock event device and the second channel
1015	 * as a clock source. If only one channel is available use it for both.
1016	 */
1017	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1018		unsigned int hwidx = ffs(mask) - 1;
1019		bool clocksource = i == 1 || cmt->num_channels == 1;
1020		bool clockevent = i == 0;
1021
1022		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1023					   clockevent, clocksource, cmt);
1024		if (ret < 0)
1025			goto err_unmap;
1026
1027		mask &= ~(1 << hwidx);
1028	}
1029
1030	platform_set_drvdata(pdev, cmt);
1031
1032	return 0;
1033
1034err_unmap:
1035	kfree(cmt->channels);
1036	iounmap(cmt->mapbase);
1037err_clk_unprepare:
1038	clk_unprepare(cmt->clk);
1039err_clk_put:
1040	clk_put(cmt->clk);
 
1041	return ret;
1042}
1043
1044static int sh_cmt_probe(struct platform_device *pdev)
1045{
1046	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
 
1047	int ret;
1048
1049	if (!is_early_platform_device(pdev)) {
1050		pm_runtime_set_active(&pdev->dev);
1051		pm_runtime_enable(&pdev->dev);
1052	}
1053
1054	if (cmt) {
1055		dev_info(&pdev->dev, "kept as earlytimer\n");
1056		goto out;
1057	}
1058
1059	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1060	if (cmt == NULL)
 
1061		return -ENOMEM;
 
1062
1063	ret = sh_cmt_setup(cmt, pdev);
1064	if (ret) {
1065		kfree(cmt);
1066		pm_runtime_idle(&pdev->dev);
1067		return ret;
1068	}
1069	if (is_early_platform_device(pdev))
1070		return 0;
1071
1072 out:
1073	if (cmt->has_clockevent || cmt->has_clocksource)
1074		pm_runtime_irq_safe(&pdev->dev);
1075	else
1076		pm_runtime_idle(&pdev->dev);
1077
1078	return 0;
1079}
1080
1081static int sh_cmt_remove(struct platform_device *pdev)
1082{
1083	return -EBUSY; /* cannot unregister clockevent and clocksource */
1084}
1085
1086static struct platform_driver sh_cmt_device_driver = {
1087	.probe		= sh_cmt_probe,
1088	.remove		= sh_cmt_remove,
1089	.driver		= {
1090		.name	= "sh_cmt",
1091		.of_match_table = of_match_ptr(sh_cmt_of_table),
1092	},
1093	.id_table	= sh_cmt_id_table,
1094};
1095
1096static int __init sh_cmt_init(void)
1097{
1098	return platform_driver_register(&sh_cmt_device_driver);
1099}
1100
1101static void __exit sh_cmt_exit(void)
1102{
1103	platform_driver_unregister(&sh_cmt_device_driver);
1104}
1105
1106early_platform_init("earlytimer", &sh_cmt_device_driver);
1107subsys_initcall(sh_cmt_init);
1108module_exit(sh_cmt_exit);
1109
1110MODULE_AUTHOR("Magnus Damm");
1111MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1112MODULE_LICENSE("GPL v2");
v3.15
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 
 
 
 
 
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 
 
 35#include <linux/pm_domain.h>
 36#include <linux/pm_runtime.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37
 38struct sh_cmt_priv {
 39	void __iomem *mapbase;
 40	void __iomem *mapbase_str;
 41	struct clk *clk;
 42	unsigned long width; /* 16 or 32 bit version of hardware block */
 43	unsigned long overflow_bit;
 44	unsigned long clear_bits;
 45	struct irqaction irqaction;
 46	struct platform_device *pdev;
 47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48	unsigned long flags;
 49	unsigned long match_value;
 50	unsigned long next_match_value;
 51	unsigned long max_match_value;
 52	unsigned long rate;
 53	raw_spinlock_t lock;
 54	struct clock_event_device ced;
 55	struct clocksource cs;
 56	unsigned long total_cycles;
 57	bool cs_enabled;
 
 58
 59	/* callbacks for CMSTR and CMCSR access */
 60	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
 61	void (*write_control)(void __iomem *base, unsigned long offs,
 62			      unsigned long value);
 
 
 
 
 
 
 
 
 
 63
 64	/* callbacks for CMCNT and CMCOR access */
 65	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
 66	void (*write_count)(void __iomem *base, unsigned long offs,
 67			    unsigned long value);
 68};
 69
 70/* Examples of supported CMT timer register layouts and I/O access widths:
 71 *
 72 * "16-bit counter and 16-bit control" as found on sh7263:
 73 * CMSTR 0xfffec000 16-bit
 74 * CMCSR 0xfffec002 16-bit
 75 * CMCNT 0xfffec004 16-bit
 76 * CMCOR 0xfffec006 16-bit
 77 *
 78 * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
 79 * CMSTR 0xffca0000 16-bit
 80 * CMCSR 0xffca0060 16-bit
 81 * CMCNT 0xffca0064 32-bit
 82 * CMCOR 0xffca0068 32-bit
 83 *
 84 * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
 85 * CMSTR 0xffca0500 32-bit
 86 * CMCSR 0xffca0510 32-bit
 87 * CMCNT 0xffca0514 32-bit
 88 * CMCOR 0xffca0518 32-bit
 89 */
 
 
 
 
 
 
 
 90
 91static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 92{
 93	return ioread16(base + (offs << 1));
 94}
 95
 96static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 97{
 98	return ioread32(base + (offs << 2));
 99}
100
101static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102			   unsigned long value)
103{
104	iowrite16(value, base + (offs << 1));
105}
106
107static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108			   unsigned long value)
109{
110	iowrite32(value, base + (offs << 2));
111}
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113#define CMCSR 0 /* channel register */
114#define CMCNT 1 /* channel register */
115#define CMCOR 2 /* channel register */
116
117static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
118{
119	return p->read_control(p->mapbase_str, 0);
 
 
 
120}
121
122static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
 
123{
124	return p->read_control(p->mapbase, CMCSR);
 
 
 
125}
126
127static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128{
129	return p->read_count(p->mapbase, CMCNT);
130}
131
132static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133				      unsigned long value)
134{
135	p->write_control(p->mapbase_str, 0, value);
136}
137
138static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139				      unsigned long value)
140{
141	p->write_control(p->mapbase, CMCSR, value);
142}
143
144static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145				      unsigned long value)
146{
147	p->write_count(p->mapbase, CMCNT, value);
148}
149
150static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151				      unsigned long value)
152{
153	p->write_count(p->mapbase, CMCOR, value);
154}
155
156static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157					int *has_wrapped)
158{
159	unsigned long v1, v2, v3;
160	int o1, o2;
161
162	o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163
164	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
165	do {
166		o2 = o1;
167		v1 = sh_cmt_read_cmcnt(p);
168		v2 = sh_cmt_read_cmcnt(p);
169		v3 = sh_cmt_read_cmcnt(p);
170		o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173
174	*has_wrapped = o1;
175	return v2;
176}
177
178static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179
180static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181{
182	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183	unsigned long flags, value;
184
185	/* start stop register shared by multiple timer channels */
186	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187	value = sh_cmt_read_cmstr(p);
188
189	if (start)
190		value |= 1 << cfg->timer_bit;
191	else
192		value &= ~(1 << cfg->timer_bit);
193
194	sh_cmt_write_cmstr(p, value);
195	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196}
197
198static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199{
200	int k, ret;
201
202	pm_runtime_get_sync(&p->pdev->dev);
203	dev_pm_syscore_device(&p->pdev->dev, true);
204
205	/* enable clock */
206	ret = clk_enable(p->clk);
207	if (ret) {
208		dev_err(&p->pdev->dev, "cannot enable clock\n");
 
209		goto err0;
210	}
211
212	/* make sure channel is disabled */
213	sh_cmt_start_stop_ch(p, 0);
214
215	/* configure channel, periodic mode and maximum timeout */
216	if (p->width == 16) {
217		*rate = clk_get_rate(p->clk) / 512;
218		sh_cmt_write_cmcsr(p, 0x43);
 
219	} else {
220		*rate = clk_get_rate(p->clk) / 8;
221		sh_cmt_write_cmcsr(p, 0x01a4);
 
 
 
222	}
223
224	sh_cmt_write_cmcor(p, 0xffffffff);
225	sh_cmt_write_cmcnt(p, 0);
226
227	/*
228	 * According to the sh73a0 user's manual, as CMCNT can be operated
229	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
230	 * modifying CMCNT register; two RCLK cycles are necessary before
231	 * this register is either read or any modification of the value
232	 * it holds is reflected in the LSI's actual operation.
233	 *
234	 * While at it, we're supposed to clear out the CMCNT as of this
235	 * moment, so make sure it's processed properly here.  This will
236	 * take RCLKx2 at maximum.
237	 */
238	for (k = 0; k < 100; k++) {
239		if (!sh_cmt_read_cmcnt(p))
240			break;
241		udelay(1);
242	}
243
244	if (sh_cmt_read_cmcnt(p)) {
245		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
 
246		ret = -ETIMEDOUT;
247		goto err1;
248	}
249
250	/* enable channel */
251	sh_cmt_start_stop_ch(p, 1);
252	return 0;
253 err1:
254	/* stop clock */
255	clk_disable(p->clk);
256
257 err0:
258	return ret;
259}
260
261static void sh_cmt_disable(struct sh_cmt_priv *p)
262{
263	/* disable channel */
264	sh_cmt_start_stop_ch(p, 0);
265
266	/* disable interrupts in CMT block */
267	sh_cmt_write_cmcsr(p, 0);
268
269	/* stop clock */
270	clk_disable(p->clk);
271
272	dev_pm_syscore_device(&p->pdev->dev, false);
273	pm_runtime_put(&p->pdev->dev);
274}
275
276/* private flags */
277#define FLAG_CLOCKEVENT (1 << 0)
278#define FLAG_CLOCKSOURCE (1 << 1)
279#define FLAG_REPROGRAM (1 << 2)
280#define FLAG_SKIPEVENT (1 << 3)
281#define FLAG_IRQCONTEXT (1 << 4)
282
283static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284					      int absolute)
285{
286	unsigned long new_match;
287	unsigned long value = p->next_match_value;
288	unsigned long delay = 0;
289	unsigned long now = 0;
290	int has_wrapped;
291
292	now = sh_cmt_get_counter(p, &has_wrapped);
293	p->flags |= FLAG_REPROGRAM; /* force reprogram */
294
295	if (has_wrapped) {
296		/* we're competing with the interrupt handler.
297		 *  -> let the interrupt handler reprogram the timer.
298		 *  -> interrupt number two handles the event.
299		 */
300		p->flags |= FLAG_SKIPEVENT;
301		return;
302	}
303
304	if (absolute)
305		now = 0;
306
307	do {
308		/* reprogram the timer hardware,
309		 * but don't save the new match value yet.
310		 */
311		new_match = now + value + delay;
312		if (new_match > p->max_match_value)
313			new_match = p->max_match_value;
314
315		sh_cmt_write_cmcor(p, new_match);
316
317		now = sh_cmt_get_counter(p, &has_wrapped);
318		if (has_wrapped && (new_match > p->match_value)) {
319			/* we are changing to a greater match value,
320			 * so this wrap must be caused by the counter
321			 * matching the old value.
322			 * -> first interrupt reprograms the timer.
323			 * -> interrupt number two handles the event.
324			 */
325			p->flags |= FLAG_SKIPEVENT;
326			break;
327		}
328
329		if (has_wrapped) {
330			/* we are changing to a smaller match value,
331			 * so the wrap must be caused by the counter
332			 * matching the new value.
333			 * -> save programmed match value.
334			 * -> let isr handle the event.
335			 */
336			p->match_value = new_match;
337			break;
338		}
339
340		/* be safe: verify hardware settings */
341		if (now < new_match) {
342			/* timer value is below match value, all good.
343			 * this makes sure we won't miss any match events.
344			 * -> save programmed match value.
345			 * -> let isr handle the event.
346			 */
347			p->match_value = new_match;
348			break;
349		}
350
351		/* the counter has reached a value greater
352		 * than our new match value. and since the
353		 * has_wrapped flag isn't set we must have
354		 * programmed a too close event.
355		 * -> increase delay and retry.
356		 */
357		if (delay)
358			delay <<= 1;
359		else
360			delay = 1;
361
362		if (!delay)
363			dev_warn(&p->pdev->dev, "too long delay\n");
 
364
365	} while (delay);
366}
367
368static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369{
370	if (delta > p->max_match_value)
371		dev_warn(&p->pdev->dev, "delta out of range\n");
 
372
373	p->next_match_value = delta;
374	sh_cmt_clock_event_program_verify(p, 0);
375}
376
377static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378{
379	unsigned long flags;
380
381	raw_spin_lock_irqsave(&p->lock, flags);
382	__sh_cmt_set_next(p, delta);
383	raw_spin_unlock_irqrestore(&p->lock, flags);
384}
385
386static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387{
388	struct sh_cmt_priv *p = dev_id;
389
390	/* clear flags */
391	sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
 
392
393	/* update clock source counter to begin with if enabled
394	 * the wrap flag should be cleared by the timer specific
395	 * isr before we end up here.
396	 */
397	if (p->flags & FLAG_CLOCKSOURCE)
398		p->total_cycles += p->match_value + 1;
399
400	if (!(p->flags & FLAG_REPROGRAM))
401		p->next_match_value = p->max_match_value;
402
403	p->flags |= FLAG_IRQCONTEXT;
404
405	if (p->flags & FLAG_CLOCKEVENT) {
406		if (!(p->flags & FLAG_SKIPEVENT)) {
407			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408				p->next_match_value = p->max_match_value;
409				p->flags |= FLAG_REPROGRAM;
410			}
411
412			p->ced.event_handler(&p->ced);
413		}
414	}
415
416	p->flags &= ~FLAG_SKIPEVENT;
417
418	if (p->flags & FLAG_REPROGRAM) {
419		p->flags &= ~FLAG_REPROGRAM;
420		sh_cmt_clock_event_program_verify(p, 1);
421
422		if (p->flags & FLAG_CLOCKEVENT)
423			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424			    || (p->match_value == p->next_match_value))
425				p->flags &= ~FLAG_REPROGRAM;
426	}
427
428	p->flags &= ~FLAG_IRQCONTEXT;
429
430	return IRQ_HANDLED;
431}
432
433static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434{
435	int ret = 0;
436	unsigned long flags;
437
438	raw_spin_lock_irqsave(&p->lock, flags);
439
440	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441		ret = sh_cmt_enable(p, &p->rate);
442
443	if (ret)
444		goto out;
445	p->flags |= flag;
446
447	/* setup timeout if no clockevent */
448	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449		__sh_cmt_set_next(p, p->max_match_value);
450 out:
451	raw_spin_unlock_irqrestore(&p->lock, flags);
452
453	return ret;
454}
455
456static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457{
458	unsigned long flags;
459	unsigned long f;
460
461	raw_spin_lock_irqsave(&p->lock, flags);
462
463	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464	p->flags &= ~flag;
465
466	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467		sh_cmt_disable(p);
468
469	/* adjust the timeout to maximum if only clocksource left */
470	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471		__sh_cmt_set_next(p, p->max_match_value);
472
473	raw_spin_unlock_irqrestore(&p->lock, flags);
474}
475
476static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477{
478	return container_of(cs, struct sh_cmt_priv, cs);
479}
480
481static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482{
483	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484	unsigned long flags, raw;
485	unsigned long value;
486	int has_wrapped;
487
488	raw_spin_lock_irqsave(&p->lock, flags);
489	value = p->total_cycles;
490	raw = sh_cmt_get_counter(p, &has_wrapped);
491
492	if (unlikely(has_wrapped))
493		raw += p->match_value + 1;
494	raw_spin_unlock_irqrestore(&p->lock, flags);
495
496	return value + raw;
497}
498
499static int sh_cmt_clocksource_enable(struct clocksource *cs)
500{
501	int ret;
502	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
503
504	WARN_ON(p->cs_enabled);
505
506	p->total_cycles = 0;
507
508	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509	if (!ret) {
510		__clocksource_updatefreq_hz(cs, p->rate);
511		p->cs_enabled = true;
512	}
513	return ret;
514}
515
516static void sh_cmt_clocksource_disable(struct clocksource *cs)
517{
518	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519
520	WARN_ON(!p->cs_enabled);
521
522	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523	p->cs_enabled = false;
524}
525
526static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527{
528	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529
530	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531	pm_genpd_syscore_poweroff(&p->pdev->dev);
 
 
 
532}
533
534static void sh_cmt_clocksource_resume(struct clocksource *cs)
535{
536	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
537
538	pm_genpd_syscore_poweron(&p->pdev->dev);
539	sh_cmt_start(p, FLAG_CLOCKSOURCE);
 
 
 
540}
541
542static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543				       char *name, unsigned long rating)
544{
545	struct clocksource *cs = &p->cs;
546
547	cs->name = name;
548	cs->rating = rating;
549	cs->read = sh_cmt_clocksource_read;
550	cs->enable = sh_cmt_clocksource_enable;
551	cs->disable = sh_cmt_clocksource_disable;
552	cs->suspend = sh_cmt_clocksource_suspend;
553	cs->resume = sh_cmt_clocksource_resume;
554	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556
557	dev_info(&p->pdev->dev, "used as clock source\n");
 
558
559	/* Register with dummy 1 Hz value, gets updated in ->enable() */
560	clocksource_register_hz(cs, 1);
561	return 0;
562}
563
564static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565{
566	return container_of(ced, struct sh_cmt_priv, ced);
567}
568
569static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570{
571	struct clock_event_device *ced = &p->ced;
572
573	sh_cmt_start(p, FLAG_CLOCKEVENT);
574
575	/* TODO: calculate good shift from rate and counter bit width */
576
577	ced->shift = 32;
578	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581
582	if (periodic)
583		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584	else
585		sh_cmt_set_next(p, p->max_match_value);
 
 
 
 
 
 
 
 
586}
587
588static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589				    struct clock_event_device *ced)
590{
591	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592
593	/* deal with old setting first */
594	switch (ced->mode) {
595	case CLOCK_EVT_MODE_PERIODIC:
596	case CLOCK_EVT_MODE_ONESHOT:
597		sh_cmt_stop(p, FLAG_CLOCKEVENT);
598		break;
599	default:
600		break;
601	}
 
 
 
 
 
602
603	switch (mode) {
604	case CLOCK_EVT_MODE_PERIODIC:
605		dev_info(&p->pdev->dev, "used for periodic clock events\n");
606		sh_cmt_clock_event_start(p, 1);
607		break;
608	case CLOCK_EVT_MODE_ONESHOT:
609		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610		sh_cmt_clock_event_start(p, 0);
611		break;
612	case CLOCK_EVT_MODE_SHUTDOWN:
613	case CLOCK_EVT_MODE_UNUSED:
614		sh_cmt_stop(p, FLAG_CLOCKEVENT);
615		break;
616	default:
617		break;
618	}
619}
620
621static int sh_cmt_clock_event_next(unsigned long delta,
622				   struct clock_event_device *ced)
623{
624	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625
626	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627	if (likely(p->flags & FLAG_IRQCONTEXT))
628		p->next_match_value = delta - 1;
629	else
630		sh_cmt_set_next(p, delta - 1);
631
632	return 0;
633}
634
635static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636{
637	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
638
639	pm_genpd_syscore_poweroff(&p->pdev->dev);
640	clk_unprepare(p->clk);
641}
642
643static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
644{
645	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
646
647	clk_prepare(p->clk);
648	pm_genpd_syscore_poweron(&p->pdev->dev);
649}
650
651static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
652				       char *name, unsigned long rating)
653{
654	struct clock_event_device *ced = &p->ced;
 
 
 
 
 
 
 
 
 
655
656	memset(ced, 0, sizeof(*ced));
 
 
 
 
 
 
 
657
658	ced->name = name;
659	ced->features = CLOCK_EVT_FEAT_PERIODIC;
660	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
661	ced->rating = rating;
662	ced->cpumask = cpumask_of(0);
663	ced->set_next_event = sh_cmt_clock_event_next;
664	ced->set_mode = sh_cmt_clock_event_mode;
 
 
665	ced->suspend = sh_cmt_clock_event_suspend;
666	ced->resume = sh_cmt_clock_event_resume;
667
668	dev_info(&p->pdev->dev, "used for clock events\n");
 
669	clockevents_register_device(ced);
 
 
670}
671
672static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
673			   unsigned long clockevent_rating,
674			   unsigned long clocksource_rating)
675{
676	if (clockevent_rating)
677		sh_cmt_register_clockevent(p, name, clockevent_rating);
678
679	if (clocksource_rating)
680		sh_cmt_register_clocksource(p, name, clocksource_rating);
 
 
 
 
 
 
 
 
 
681
682	return 0;
683}
684
685static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
 
 
686{
687	struct sh_timer_config *cfg = pdev->dev.platform_data;
688	struct resource *res, *res2;
689	int irq, ret;
690	ret = -ENXIO;
 
691
692	memset(p, 0, sizeof(*p));
693	p->pdev = pdev;
 
694
695	if (!cfg) {
696		dev_err(&p->pdev->dev, "missing platform data\n");
697		goto err0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698	}
699
700	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
701	if (!res) {
702		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
703		goto err0;
 
 
 
 
 
 
 
 
 
 
 
 
704	}
 
705
706	/* optional resource for the shared timer start/stop register */
707	res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
708
709	irq = platform_get_irq(p->pdev, 0);
710	if (irq < 0) {
711		dev_err(&p->pdev->dev, "failed to get irq\n");
712		goto err0;
 
 
 
 
713	}
714
715	/* map memory, let mapbase point to our channel */
716	p->mapbase = ioremap_nocache(res->start, resource_size(res));
717	if (p->mapbase == NULL) {
718		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
719		goto err0;
720	}
721
722	/* map second resource for CMSTR */
723	p->mapbase_str = ioremap_nocache(res2 ? res2->start :
724					 res->start - cfg->channel_offset,
725					 res2 ? resource_size(res2) : 2);
726	if (p->mapbase_str == NULL) {
727		dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
728		goto err1;
729	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730
731	/* request irq using setup_irq() (too early for request_irq()) */
732	p->irqaction.name = dev_name(&p->pdev->dev);
733	p->irqaction.handler = sh_cmt_interrupt;
734	p->irqaction.dev_id = p;
735	p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
736
737	/* get hold of clock */
738	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
739	if (IS_ERR(p->clk)) {
740		dev_err(&p->pdev->dev, "cannot get clock\n");
741		ret = PTR_ERR(p->clk);
742		goto err2;
743	}
744
745	ret = clk_prepare(p->clk);
746	if (ret < 0)
747		goto err3;
 
 
 
748
749	if (res2 && (resource_size(res2) == 4)) {
750		/* assume both CMSTR and CMCSR to be 32-bit */
751		p->read_control = sh_cmt_read32;
752		p->write_control = sh_cmt_write32;
753	} else {
754		p->read_control = sh_cmt_read16;
755		p->write_control = sh_cmt_write16;
756	}
757
758	if (resource_size(res) == 6) {
759		p->width = 16;
760		p->read_count = sh_cmt_read16;
761		p->write_count = sh_cmt_write16;
762		p->overflow_bit = 0x80;
763		p->clear_bits = ~0x80;
764	} else {
765		p->width = 32;
766		p->read_count = sh_cmt_read32;
767		p->write_count = sh_cmt_write32;
768		p->overflow_bit = 0x8000;
769		p->clear_bits = ~0xc000;
770	}
771
772	if (p->width == (sizeof(p->max_match_value) * 8))
773		p->max_match_value = ~0;
774	else
775		p->max_match_value = (1 << p->width) - 1;
776
777	p->match_value = p->max_match_value;
778	raw_spin_lock_init(&p->lock);
 
 
779
780	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
781			      cfg->clockevent_rating,
782			      cfg->clocksource_rating);
783	if (ret) {
784		dev_err(&p->pdev->dev, "registration failed\n");
785		goto err4;
 
786	}
787	p->cs_enabled = false;
788
789	ret = setup_irq(irq, &p->irqaction);
790	if (ret) {
791		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
792		goto err4;
 
 
 
 
 
 
 
 
 
 
 
793	}
794
795	platform_set_drvdata(pdev, p);
796
797	return 0;
798err4:
799	clk_unprepare(p->clk);
800err3:
801	clk_put(p->clk);
802err2:
803	iounmap(p->mapbase_str);
804err1:
805	iounmap(p->mapbase);
806err0:
807	return ret;
808}
809
810static int sh_cmt_probe(struct platform_device *pdev)
811{
812	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
813	struct sh_timer_config *cfg = pdev->dev.platform_data;
814	int ret;
815
816	if (!is_early_platform_device(pdev)) {
817		pm_runtime_set_active(&pdev->dev);
818		pm_runtime_enable(&pdev->dev);
819	}
820
821	if (p) {
822		dev_info(&pdev->dev, "kept as earlytimer\n");
823		goto out;
824	}
825
826	p = kmalloc(sizeof(*p), GFP_KERNEL);
827	if (p == NULL) {
828		dev_err(&pdev->dev, "failed to allocate driver data\n");
829		return -ENOMEM;
830	}
831
832	ret = sh_cmt_setup(p, pdev);
833	if (ret) {
834		kfree(p);
835		pm_runtime_idle(&pdev->dev);
836		return ret;
837	}
838	if (is_early_platform_device(pdev))
839		return 0;
840
841 out:
842	if (cfg->clockevent_rating || cfg->clocksource_rating)
843		pm_runtime_irq_safe(&pdev->dev);
844	else
845		pm_runtime_idle(&pdev->dev);
846
847	return 0;
848}
849
850static int sh_cmt_remove(struct platform_device *pdev)
851{
852	return -EBUSY; /* cannot unregister clockevent and clocksource */
853}
854
855static struct platform_driver sh_cmt_device_driver = {
856	.probe		= sh_cmt_probe,
857	.remove		= sh_cmt_remove,
858	.driver		= {
859		.name	= "sh_cmt",
860	}
 
 
861};
862
863static int __init sh_cmt_init(void)
864{
865	return platform_driver_register(&sh_cmt_device_driver);
866}
867
868static void __exit sh_cmt_exit(void)
869{
870	platform_driver_unregister(&sh_cmt_device_driver);
871}
872
873early_platform_init("earlytimer", &sh_cmt_device_driver);
874subsys_initcall(sh_cmt_init);
875module_exit(sh_cmt_exit);
876
877MODULE_AUTHOR("Magnus Damm");
878MODULE_DESCRIPTION("SuperH CMT Timer Driver");
879MODULE_LICENSE("GPL v2");