Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <linux/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a, b)	(-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a, b)	(-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)		(-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)		(-EINVAL)
  93#endif
  94#ifndef MPX_ENABLE_MANAGEMENT
  95# define MPX_ENABLE_MANAGEMENT()	(-EINVAL)
  96#endif
  97#ifndef MPX_DISABLE_MANAGEMENT
  98# define MPX_DISABLE_MANAGEMENT()	(-EINVAL)
  99#endif
 100#ifndef GET_FP_MODE
 101# define GET_FP_MODE(a)		(-EINVAL)
 102#endif
 103#ifndef SET_FP_MODE
 104# define SET_FP_MODE(a,b)	(-EINVAL)
 105#endif
 106
 107/*
 108 * this is where the system-wide overflow UID and GID are defined, for
 109 * architectures that now have 32-bit UID/GID but didn't in the past
 110 */
 111
 112int overflowuid = DEFAULT_OVERFLOWUID;
 113int overflowgid = DEFAULT_OVERFLOWGID;
 114
 115EXPORT_SYMBOL(overflowuid);
 116EXPORT_SYMBOL(overflowgid);
 117
 118/*
 119 * the same as above, but for filesystems which can only store a 16-bit
 120 * UID and GID. as such, this is needed on all architectures
 121 */
 122
 123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 125
 126EXPORT_SYMBOL(fs_overflowuid);
 127EXPORT_SYMBOL(fs_overflowgid);
 128
 129/*
 130 * Returns true if current's euid is same as p's uid or euid,
 131 * or has CAP_SYS_NICE to p's user_ns.
 132 *
 133 * Called with rcu_read_lock, creds are safe
 134 */
 135static bool set_one_prio_perm(struct task_struct *p)
 136{
 137	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 138
 139	if (uid_eq(pcred->uid,  cred->euid) ||
 140	    uid_eq(pcred->euid, cred->euid))
 141		return true;
 142	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 143		return true;
 144	return false;
 145}
 146
 147/*
 148 * set the priority of a task
 149 * - the caller must hold the RCU read lock
 150 */
 151static int set_one_prio(struct task_struct *p, int niceval, int error)
 152{
 153	int no_nice;
 154
 155	if (!set_one_prio_perm(p)) {
 156		error = -EPERM;
 157		goto out;
 158	}
 159	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 160		error = -EACCES;
 161		goto out;
 162	}
 163	no_nice = security_task_setnice(p, niceval);
 164	if (no_nice) {
 165		error = no_nice;
 166		goto out;
 167	}
 168	if (error == -ESRCH)
 169		error = 0;
 170	set_user_nice(p, niceval);
 171out:
 172	return error;
 173}
 174
 175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 176{
 177	struct task_struct *g, *p;
 178	struct user_struct *user;
 179	const struct cred *cred = current_cred();
 180	int error = -EINVAL;
 181	struct pid *pgrp;
 182	kuid_t uid;
 183
 184	if (which > PRIO_USER || which < PRIO_PROCESS)
 185		goto out;
 186
 187	/* normalize: avoid signed division (rounding problems) */
 188	error = -ESRCH;
 189	if (niceval < MIN_NICE)
 190		niceval = MIN_NICE;
 191	if (niceval > MAX_NICE)
 192		niceval = MAX_NICE;
 193
 194	rcu_read_lock();
 195	read_lock(&tasklist_lock);
 196	switch (which) {
 197	case PRIO_PROCESS:
 198		if (who)
 199			p = find_task_by_vpid(who);
 200		else
 201			p = current;
 202		if (p)
 203			error = set_one_prio(p, niceval, error);
 204		break;
 205	case PRIO_PGRP:
 206		if (who)
 207			pgrp = find_vpid(who);
 208		else
 209			pgrp = task_pgrp(current);
 210		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 211			error = set_one_prio(p, niceval, error);
 212		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 213		break;
 214	case PRIO_USER:
 215		uid = make_kuid(cred->user_ns, who);
 216		user = cred->user;
 217		if (!who)
 218			uid = cred->uid;
 219		else if (!uid_eq(uid, cred->uid)) {
 220			user = find_user(uid);
 221			if (!user)
 222				goto out_unlock;	/* No processes for this user */
 223		}
 224		do_each_thread(g, p) {
 225			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 226				error = set_one_prio(p, niceval, error);
 227		} while_each_thread(g, p);
 228		if (!uid_eq(uid, cred->uid))
 229			free_uid(user);		/* For find_user() */
 230		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231	}
 232out_unlock:
 233	read_unlock(&tasklist_lock);
 234	rcu_read_unlock();
 235out:
 236	return error;
 237}
 238
 239/*
 240 * Ugh. To avoid negative return values, "getpriority()" will
 241 * not return the normal nice-value, but a negated value that
 242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 243 * to stay compatible.
 244 */
 245SYSCALL_DEFINE2(getpriority, int, which, int, who)
 246{
 247	struct task_struct *g, *p;
 248	struct user_struct *user;
 249	const struct cred *cred = current_cred();
 250	long niceval, retval = -ESRCH;
 251	struct pid *pgrp;
 252	kuid_t uid;
 253
 254	if (which > PRIO_USER || which < PRIO_PROCESS)
 255		return -EINVAL;
 256
 257	rcu_read_lock();
 258	read_lock(&tasklist_lock);
 259	switch (which) {
 260	case PRIO_PROCESS:
 261		if (who)
 262			p = find_task_by_vpid(who);
 263		else
 264			p = current;
 265		if (p) {
 266			niceval = nice_to_rlimit(task_nice(p));
 267			if (niceval > retval)
 268				retval = niceval;
 269		}
 270		break;
 271	case PRIO_PGRP:
 272		if (who)
 273			pgrp = find_vpid(who);
 274		else
 275			pgrp = task_pgrp(current);
 276		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 277			niceval = nice_to_rlimit(task_nice(p));
 278			if (niceval > retval)
 279				retval = niceval;
 280		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 281		break;
 282	case PRIO_USER:
 283		uid = make_kuid(cred->user_ns, who);
 284		user = cred->user;
 285		if (!who)
 286			uid = cred->uid;
 287		else if (!uid_eq(uid, cred->uid)) {
 288			user = find_user(uid);
 289			if (!user)
 290				goto out_unlock;	/* No processes for this user */
 291		}
 292		do_each_thread(g, p) {
 293			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 294				niceval = nice_to_rlimit(task_nice(p));
 295				if (niceval > retval)
 296					retval = niceval;
 297			}
 298		} while_each_thread(g, p);
 299		if (!uid_eq(uid, cred->uid))
 300			free_uid(user);		/* for find_user() */
 301		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302	}
 303out_unlock:
 304	read_unlock(&tasklist_lock);
 305	rcu_read_unlock();
 306
 307	return retval;
 308}
 309
 310/*
 311 * Unprivileged users may change the real gid to the effective gid
 312 * or vice versa.  (BSD-style)
 313 *
 314 * If you set the real gid at all, or set the effective gid to a value not
 315 * equal to the real gid, then the saved gid is set to the new effective gid.
 316 *
 317 * This makes it possible for a setgid program to completely drop its
 318 * privileges, which is often a useful assertion to make when you are doing
 319 * a security audit over a program.
 320 *
 321 * The general idea is that a program which uses just setregid() will be
 322 * 100% compatible with BSD.  A program which uses just setgid() will be
 323 * 100% compatible with POSIX with saved IDs.
 324 *
 325 * SMP: There are not races, the GIDs are checked only by filesystem
 326 *      operations (as far as semantic preservation is concerned).
 327 */
 328#ifdef CONFIG_MULTIUSER
 329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 330{
 331	struct user_namespace *ns = current_user_ns();
 332	const struct cred *old;
 333	struct cred *new;
 334	int retval;
 335	kgid_t krgid, kegid;
 336
 337	krgid = make_kgid(ns, rgid);
 338	kegid = make_kgid(ns, egid);
 339
 340	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 341		return -EINVAL;
 342	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 343		return -EINVAL;
 344
 345	new = prepare_creds();
 346	if (!new)
 347		return -ENOMEM;
 348	old = current_cred();
 349
 350	retval = -EPERM;
 351	if (rgid != (gid_t) -1) {
 352		if (gid_eq(old->gid, krgid) ||
 353		    gid_eq(old->egid, krgid) ||
 354		    ns_capable(old->user_ns, CAP_SETGID))
 355			new->gid = krgid;
 356		else
 357			goto error;
 358	}
 359	if (egid != (gid_t) -1) {
 360		if (gid_eq(old->gid, kegid) ||
 361		    gid_eq(old->egid, kegid) ||
 362		    gid_eq(old->sgid, kegid) ||
 363		    ns_capable(old->user_ns, CAP_SETGID))
 364			new->egid = kegid;
 365		else
 366			goto error;
 367	}
 368
 369	if (rgid != (gid_t) -1 ||
 370	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 371		new->sgid = new->egid;
 372	new->fsgid = new->egid;
 373
 374	return commit_creds(new);
 375
 376error:
 377	abort_creds(new);
 378	return retval;
 379}
 380
 381/*
 382 * setgid() is implemented like SysV w/ SAVED_IDS
 383 *
 384 * SMP: Same implicit races as above.
 385 */
 386SYSCALL_DEFINE1(setgid, gid_t, gid)
 387{
 388	struct user_namespace *ns = current_user_ns();
 389	const struct cred *old;
 390	struct cred *new;
 391	int retval;
 392	kgid_t kgid;
 393
 394	kgid = make_kgid(ns, gid);
 395	if (!gid_valid(kgid))
 396		return -EINVAL;
 397
 398	new = prepare_creds();
 399	if (!new)
 400		return -ENOMEM;
 401	old = current_cred();
 402
 403	retval = -EPERM;
 404	if (ns_capable(old->user_ns, CAP_SETGID))
 405		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 406	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 407		new->egid = new->fsgid = kgid;
 408	else
 409		goto error;
 410
 411	return commit_creds(new);
 412
 413error:
 414	abort_creds(new);
 415	return retval;
 416}
 417
 418/*
 419 * change the user struct in a credentials set to match the new UID
 420 */
 421static int set_user(struct cred *new)
 422{
 423	struct user_struct *new_user;
 424
 425	new_user = alloc_uid(new->uid);
 426	if (!new_user)
 427		return -EAGAIN;
 428
 429	/*
 430	 * We don't fail in case of NPROC limit excess here because too many
 431	 * poorly written programs don't check set*uid() return code, assuming
 432	 * it never fails if called by root.  We may still enforce NPROC limit
 433	 * for programs doing set*uid()+execve() by harmlessly deferring the
 434	 * failure to the execve() stage.
 435	 */
 436	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 437			new_user != INIT_USER)
 438		current->flags |= PF_NPROC_EXCEEDED;
 439	else
 440		current->flags &= ~PF_NPROC_EXCEEDED;
 441
 442	free_uid(new->user);
 443	new->user = new_user;
 444	return 0;
 445}
 446
 447/*
 448 * Unprivileged users may change the real uid to the effective uid
 449 * or vice versa.  (BSD-style)
 450 *
 451 * If you set the real uid at all, or set the effective uid to a value not
 452 * equal to the real uid, then the saved uid is set to the new effective uid.
 453 *
 454 * This makes it possible for a setuid program to completely drop its
 455 * privileges, which is often a useful assertion to make when you are doing
 456 * a security audit over a program.
 457 *
 458 * The general idea is that a program which uses just setreuid() will be
 459 * 100% compatible with BSD.  A program which uses just setuid() will be
 460 * 100% compatible with POSIX with saved IDs.
 461 */
 462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 463{
 464	struct user_namespace *ns = current_user_ns();
 465	const struct cred *old;
 466	struct cred *new;
 467	int retval;
 468	kuid_t kruid, keuid;
 469
 470	kruid = make_kuid(ns, ruid);
 471	keuid = make_kuid(ns, euid);
 472
 473	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 474		return -EINVAL;
 475	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 476		return -EINVAL;
 477
 478	new = prepare_creds();
 479	if (!new)
 480		return -ENOMEM;
 481	old = current_cred();
 482
 483	retval = -EPERM;
 484	if (ruid != (uid_t) -1) {
 485		new->uid = kruid;
 486		if (!uid_eq(old->uid, kruid) &&
 487		    !uid_eq(old->euid, kruid) &&
 488		    !ns_capable(old->user_ns, CAP_SETUID))
 489			goto error;
 490	}
 491
 492	if (euid != (uid_t) -1) {
 493		new->euid = keuid;
 494		if (!uid_eq(old->uid, keuid) &&
 495		    !uid_eq(old->euid, keuid) &&
 496		    !uid_eq(old->suid, keuid) &&
 497		    !ns_capable(old->user_ns, CAP_SETUID))
 498			goto error;
 499	}
 500
 501	if (!uid_eq(new->uid, old->uid)) {
 502		retval = set_user(new);
 503		if (retval < 0)
 504			goto error;
 505	}
 506	if (ruid != (uid_t) -1 ||
 507	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 508		new->suid = new->euid;
 509	new->fsuid = new->euid;
 510
 511	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 512	if (retval < 0)
 513		goto error;
 514
 515	return commit_creds(new);
 516
 517error:
 518	abort_creds(new);
 519	return retval;
 520}
 521
 522/*
 523 * setuid() is implemented like SysV with SAVED_IDS
 524 *
 525 * Note that SAVED_ID's is deficient in that a setuid root program
 526 * like sendmail, for example, cannot set its uid to be a normal
 527 * user and then switch back, because if you're root, setuid() sets
 528 * the saved uid too.  If you don't like this, blame the bright people
 529 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 530 * will allow a root program to temporarily drop privileges and be able to
 531 * regain them by swapping the real and effective uid.
 532 */
 533SYSCALL_DEFINE1(setuid, uid_t, uid)
 534{
 535	struct user_namespace *ns = current_user_ns();
 536	const struct cred *old;
 537	struct cred *new;
 538	int retval;
 539	kuid_t kuid;
 540
 541	kuid = make_kuid(ns, uid);
 542	if (!uid_valid(kuid))
 543		return -EINVAL;
 544
 545	new = prepare_creds();
 546	if (!new)
 547		return -ENOMEM;
 548	old = current_cred();
 549
 550	retval = -EPERM;
 551	if (ns_capable(old->user_ns, CAP_SETUID)) {
 552		new->suid = new->uid = kuid;
 553		if (!uid_eq(kuid, old->uid)) {
 554			retval = set_user(new);
 555			if (retval < 0)
 556				goto error;
 557		}
 558	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 559		goto error;
 560	}
 561
 562	new->fsuid = new->euid = kuid;
 563
 564	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 565	if (retval < 0)
 566		goto error;
 567
 568	return commit_creds(new);
 569
 570error:
 571	abort_creds(new);
 572	return retval;
 573}
 574
 575
 576/*
 577 * This function implements a generic ability to update ruid, euid,
 578 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 579 */
 580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 581{
 582	struct user_namespace *ns = current_user_ns();
 583	const struct cred *old;
 584	struct cred *new;
 585	int retval;
 586	kuid_t kruid, keuid, ksuid;
 587
 588	kruid = make_kuid(ns, ruid);
 589	keuid = make_kuid(ns, euid);
 590	ksuid = make_kuid(ns, suid);
 591
 592	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 593		return -EINVAL;
 594
 595	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 596		return -EINVAL;
 597
 598	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 599		return -EINVAL;
 600
 601	new = prepare_creds();
 602	if (!new)
 603		return -ENOMEM;
 604
 605	old = current_cred();
 606
 607	retval = -EPERM;
 608	if (!ns_capable(old->user_ns, CAP_SETUID)) {
 609		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 610		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 611			goto error;
 612		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 613		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 614			goto error;
 615		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 616		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 617			goto error;
 618	}
 619
 620	if (ruid != (uid_t) -1) {
 621		new->uid = kruid;
 622		if (!uid_eq(kruid, old->uid)) {
 623			retval = set_user(new);
 624			if (retval < 0)
 625				goto error;
 626		}
 627	}
 628	if (euid != (uid_t) -1)
 629		new->euid = keuid;
 630	if (suid != (uid_t) -1)
 631		new->suid = ksuid;
 632	new->fsuid = new->euid;
 633
 634	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 635	if (retval < 0)
 636		goto error;
 637
 638	return commit_creds(new);
 639
 640error:
 641	abort_creds(new);
 642	return retval;
 643}
 644
 645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 646{
 647	const struct cred *cred = current_cred();
 648	int retval;
 649	uid_t ruid, euid, suid;
 650
 651	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 652	euid = from_kuid_munged(cred->user_ns, cred->euid);
 653	suid = from_kuid_munged(cred->user_ns, cred->suid);
 654
 655	retval = put_user(ruid, ruidp);
 656	if (!retval) {
 657		retval = put_user(euid, euidp);
 658		if (!retval)
 659			return put_user(suid, suidp);
 660	}
 661	return retval;
 662}
 663
 664/*
 665 * Same as above, but for rgid, egid, sgid.
 666 */
 667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 668{
 669	struct user_namespace *ns = current_user_ns();
 670	const struct cred *old;
 671	struct cred *new;
 672	int retval;
 673	kgid_t krgid, kegid, ksgid;
 674
 675	krgid = make_kgid(ns, rgid);
 676	kegid = make_kgid(ns, egid);
 677	ksgid = make_kgid(ns, sgid);
 678
 679	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 680		return -EINVAL;
 681	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 682		return -EINVAL;
 683	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 684		return -EINVAL;
 685
 686	new = prepare_creds();
 687	if (!new)
 688		return -ENOMEM;
 689	old = current_cred();
 690
 691	retval = -EPERM;
 692	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 693		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 694		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 695			goto error;
 696		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 697		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 698			goto error;
 699		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 700		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 701			goto error;
 702	}
 703
 704	if (rgid != (gid_t) -1)
 705		new->gid = krgid;
 706	if (egid != (gid_t) -1)
 707		new->egid = kegid;
 708	if (sgid != (gid_t) -1)
 709		new->sgid = ksgid;
 710	new->fsgid = new->egid;
 711
 712	return commit_creds(new);
 713
 714error:
 715	abort_creds(new);
 716	return retval;
 717}
 718
 719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 720{
 721	const struct cred *cred = current_cred();
 722	int retval;
 723	gid_t rgid, egid, sgid;
 724
 725	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 726	egid = from_kgid_munged(cred->user_ns, cred->egid);
 727	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 728
 729	retval = put_user(rgid, rgidp);
 730	if (!retval) {
 731		retval = put_user(egid, egidp);
 732		if (!retval)
 733			retval = put_user(sgid, sgidp);
 734	}
 735
 736	return retval;
 737}
 738
 739
 740/*
 741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 743 * whatever uid it wants to). It normally shadows "euid", except when
 744 * explicitly set by setfsuid() or for access..
 745 */
 746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 747{
 748	const struct cred *old;
 749	struct cred *new;
 750	uid_t old_fsuid;
 751	kuid_t kuid;
 752
 753	old = current_cred();
 754	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 755
 756	kuid = make_kuid(old->user_ns, uid);
 757	if (!uid_valid(kuid))
 758		return old_fsuid;
 759
 760	new = prepare_creds();
 761	if (!new)
 762		return old_fsuid;
 763
 764	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 765	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 766	    ns_capable(old->user_ns, CAP_SETUID)) {
 767		if (!uid_eq(kuid, old->fsuid)) {
 768			new->fsuid = kuid;
 769			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 770				goto change_okay;
 771		}
 772	}
 773
 774	abort_creds(new);
 775	return old_fsuid;
 776
 777change_okay:
 778	commit_creds(new);
 779	return old_fsuid;
 780}
 781
 782/*
 783 * Samma på svenska..
 784 */
 785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 786{
 787	const struct cred *old;
 788	struct cred *new;
 789	gid_t old_fsgid;
 790	kgid_t kgid;
 791
 792	old = current_cred();
 793	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 794
 795	kgid = make_kgid(old->user_ns, gid);
 796	if (!gid_valid(kgid))
 797		return old_fsgid;
 798
 799	new = prepare_creds();
 800	if (!new)
 801		return old_fsgid;
 802
 803	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 804	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 805	    ns_capable(old->user_ns, CAP_SETGID)) {
 806		if (!gid_eq(kgid, old->fsgid)) {
 807			new->fsgid = kgid;
 808			goto change_okay;
 809		}
 810	}
 811
 812	abort_creds(new);
 813	return old_fsgid;
 814
 815change_okay:
 816	commit_creds(new);
 817	return old_fsgid;
 818}
 819#endif /* CONFIG_MULTIUSER */
 820
 821/**
 822 * sys_getpid - return the thread group id of the current process
 823 *
 824 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 825 * the pid are identical unless CLONE_THREAD was specified on clone() in
 826 * which case the tgid is the same in all threads of the same group.
 827 *
 828 * This is SMP safe as current->tgid does not change.
 829 */
 830SYSCALL_DEFINE0(getpid)
 831{
 832	return task_tgid_vnr(current);
 833}
 834
 835/* Thread ID - the internal kernel "pid" */
 836SYSCALL_DEFINE0(gettid)
 837{
 838	return task_pid_vnr(current);
 839}
 840
 841/*
 842 * Accessing ->real_parent is not SMP-safe, it could
 843 * change from under us. However, we can use a stale
 844 * value of ->real_parent under rcu_read_lock(), see
 845 * release_task()->call_rcu(delayed_put_task_struct).
 846 */
 847SYSCALL_DEFINE0(getppid)
 848{
 849	int pid;
 850
 851	rcu_read_lock();
 852	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 853	rcu_read_unlock();
 854
 855	return pid;
 856}
 857
 858SYSCALL_DEFINE0(getuid)
 859{
 860	/* Only we change this so SMP safe */
 861	return from_kuid_munged(current_user_ns(), current_uid());
 862}
 863
 864SYSCALL_DEFINE0(geteuid)
 865{
 866	/* Only we change this so SMP safe */
 867	return from_kuid_munged(current_user_ns(), current_euid());
 868}
 869
 870SYSCALL_DEFINE0(getgid)
 871{
 872	/* Only we change this so SMP safe */
 873	return from_kgid_munged(current_user_ns(), current_gid());
 874}
 875
 876SYSCALL_DEFINE0(getegid)
 877{
 878	/* Only we change this so SMP safe */
 879	return from_kgid_munged(current_user_ns(), current_egid());
 880}
 881
 882void do_sys_times(struct tms *tms)
 883{
 884	cputime_t tgutime, tgstime, cutime, cstime;
 885
 
 886	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 887	cutime = current->signal->cutime;
 888	cstime = current->signal->cstime;
 
 889	tms->tms_utime = cputime_to_clock_t(tgutime);
 890	tms->tms_stime = cputime_to_clock_t(tgstime);
 891	tms->tms_cutime = cputime_to_clock_t(cutime);
 892	tms->tms_cstime = cputime_to_clock_t(cstime);
 893}
 894
 895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 896{
 897	if (tbuf) {
 898		struct tms tmp;
 899
 900		do_sys_times(&tmp);
 901		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 902			return -EFAULT;
 903	}
 904	force_successful_syscall_return();
 905	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 906}
 907
 908/*
 909 * This needs some heavy checking ...
 910 * I just haven't the stomach for it. I also don't fully
 911 * understand sessions/pgrp etc. Let somebody who does explain it.
 912 *
 913 * OK, I think I have the protection semantics right.... this is really
 914 * only important on a multi-user system anyway, to make sure one user
 915 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 916 *
 917 * !PF_FORKNOEXEC check to conform completely to POSIX.
 918 */
 919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 920{
 921	struct task_struct *p;
 922	struct task_struct *group_leader = current->group_leader;
 923	struct pid *pgrp;
 924	int err;
 925
 926	if (!pid)
 927		pid = task_pid_vnr(group_leader);
 928	if (!pgid)
 929		pgid = pid;
 930	if (pgid < 0)
 931		return -EINVAL;
 932	rcu_read_lock();
 933
 934	/* From this point forward we keep holding onto the tasklist lock
 935	 * so that our parent does not change from under us. -DaveM
 936	 */
 937	write_lock_irq(&tasklist_lock);
 938
 939	err = -ESRCH;
 940	p = find_task_by_vpid(pid);
 941	if (!p)
 942		goto out;
 943
 944	err = -EINVAL;
 945	if (!thread_group_leader(p))
 946		goto out;
 947
 948	if (same_thread_group(p->real_parent, group_leader)) {
 949		err = -EPERM;
 950		if (task_session(p) != task_session(group_leader))
 951			goto out;
 952		err = -EACCES;
 953		if (!(p->flags & PF_FORKNOEXEC))
 954			goto out;
 955	} else {
 956		err = -ESRCH;
 957		if (p != group_leader)
 958			goto out;
 959	}
 960
 961	err = -EPERM;
 962	if (p->signal->leader)
 963		goto out;
 964
 965	pgrp = task_pid(p);
 966	if (pgid != pid) {
 967		struct task_struct *g;
 968
 969		pgrp = find_vpid(pgid);
 970		g = pid_task(pgrp, PIDTYPE_PGID);
 971		if (!g || task_session(g) != task_session(group_leader))
 972			goto out;
 973	}
 974
 975	err = security_task_setpgid(p, pgid);
 976	if (err)
 977		goto out;
 978
 979	if (task_pgrp(p) != pgrp)
 980		change_pid(p, PIDTYPE_PGID, pgrp);
 981
 982	err = 0;
 983out:
 984	/* All paths lead to here, thus we are safe. -DaveM */
 985	write_unlock_irq(&tasklist_lock);
 986	rcu_read_unlock();
 987	return err;
 988}
 989
 990SYSCALL_DEFINE1(getpgid, pid_t, pid)
 991{
 992	struct task_struct *p;
 993	struct pid *grp;
 994	int retval;
 995
 996	rcu_read_lock();
 997	if (!pid)
 998		grp = task_pgrp(current);
 999	else {
1000		retval = -ESRCH;
1001		p = find_task_by_vpid(pid);
1002		if (!p)
1003			goto out;
1004		grp = task_pgrp(p);
1005		if (!grp)
1006			goto out;
1007
1008		retval = security_task_getpgid(p);
1009		if (retval)
1010			goto out;
1011	}
1012	retval = pid_vnr(grp);
1013out:
1014	rcu_read_unlock();
1015	return retval;
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022	return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029	struct task_struct *p;
1030	struct pid *sid;
1031	int retval;
1032
1033	rcu_read_lock();
1034	if (!pid)
1035		sid = task_session(current);
1036	else {
1037		retval = -ESRCH;
1038		p = find_task_by_vpid(pid);
1039		if (!p)
1040			goto out;
1041		sid = task_session(p);
1042		if (!sid)
1043			goto out;
1044
1045		retval = security_task_getsid(p);
1046		if (retval)
1047			goto out;
1048	}
1049	retval = pid_vnr(sid);
1050out:
1051	rcu_read_unlock();
1052	return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057	struct task_struct *curr = current->group_leader;
1058
1059	if (task_session(curr) != pid)
1060		change_pid(curr, PIDTYPE_SID, pid);
1061
1062	if (task_pgrp(curr) != pid)
1063		change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068	struct task_struct *group_leader = current->group_leader;
1069	struct pid *sid = task_pid(group_leader);
1070	pid_t session = pid_vnr(sid);
1071	int err = -EPERM;
1072
1073	write_lock_irq(&tasklist_lock);
1074	/* Fail if I am already a session leader */
1075	if (group_leader->signal->leader)
1076		goto out;
1077
1078	/* Fail if a process group id already exists that equals the
1079	 * proposed session id.
1080	 */
1081	if (pid_task(sid, PIDTYPE_PGID))
1082		goto out;
1083
1084	group_leader->signal->leader = 1;
1085	set_special_pids(sid);
1086
1087	proc_clear_tty(group_leader);
1088
1089	err = session;
1090out:
1091	write_unlock_irq(&tasklist_lock);
1092	if (err > 0) {
1093		proc_sid_connector(group_leader);
1094		sched_autogroup_create_attach(group_leader);
1095	}
1096	return err;
1097}
1098
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103	(personality(current->personality) == PER_LINUX32 && \
1104	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105		      sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name)	0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117	int ret = 0;
1118
1119	if (current->personality & UNAME26) {
1120		const char *rest = UTS_RELEASE;
1121		char buf[65] = { 0 };
1122		int ndots = 0;
1123		unsigned v;
1124		size_t copy;
1125
1126		while (*rest) {
1127			if (*rest == '.' && ++ndots >= 3)
1128				break;
1129			if (!isdigit(*rest) && *rest != '.')
1130				break;
1131			rest++;
1132		}
1133		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134		copy = clamp_t(size_t, len, 1, sizeof(buf));
1135		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136		ret = copy_to_user(release, buf, copy + 1);
1137	}
1138	return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143	int errno = 0;
1144
1145	down_read(&uts_sem);
1146	if (copy_to_user(name, utsname(), sizeof *name))
1147		errno = -EFAULT;
1148	up_read(&uts_sem);
1149
1150	if (!errno && override_release(name->release, sizeof(name->release)))
1151		errno = -EFAULT;
1152	if (!errno && override_architecture(name))
1153		errno = -EFAULT;
1154	return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163	int error = 0;
1164
1165	if (!name)
1166		return -EFAULT;
1167
1168	down_read(&uts_sem);
1169	if (copy_to_user(name, utsname(), sizeof(*name)))
1170		error = -EFAULT;
1171	up_read(&uts_sem);
1172
1173	if (!error && override_release(name->release, sizeof(name->release)))
1174		error = -EFAULT;
1175	if (!error && override_architecture(name))
1176		error = -EFAULT;
1177	return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182	int error;
1183
1184	if (!name)
1185		return -EFAULT;
1186	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187		return -EFAULT;
1188
1189	down_read(&uts_sem);
1190	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191			       __OLD_UTS_LEN);
1192	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194				__OLD_UTS_LEN);
1195	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196	error |= __copy_to_user(&name->release, &utsname()->release,
1197				__OLD_UTS_LEN);
1198	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199	error |= __copy_to_user(&name->version, &utsname()->version,
1200				__OLD_UTS_LEN);
1201	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202	error |= __copy_to_user(&name->machine, &utsname()->machine,
1203				__OLD_UTS_LEN);
1204	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205	up_read(&uts_sem);
1206
1207	if (!error && override_architecture(name))
1208		error = -EFAULT;
1209	if (!error && override_release(name->release, sizeof(name->release)))
1210		error = -EFAULT;
1211	return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217	int errno;
1218	char tmp[__NEW_UTS_LEN];
1219
1220	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221		return -EPERM;
1222
1223	if (len < 0 || len > __NEW_UTS_LEN)
1224		return -EINVAL;
1225	down_write(&uts_sem);
1226	errno = -EFAULT;
1227	if (!copy_from_user(tmp, name, len)) {
1228		struct new_utsname *u = utsname();
1229
1230		memcpy(u->nodename, tmp, len);
1231		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232		errno = 0;
1233		uts_proc_notify(UTS_PROC_HOSTNAME);
1234	}
1235	up_write(&uts_sem);
1236	return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243	int i, errno;
1244	struct new_utsname *u;
1245
1246	if (len < 0)
1247		return -EINVAL;
1248	down_read(&uts_sem);
1249	u = utsname();
1250	i = 1 + strlen(u->nodename);
1251	if (i > len)
1252		i = len;
1253	errno = 0;
1254	if (copy_to_user(name, u->nodename, i))
1255		errno = -EFAULT;
1256	up_read(&uts_sem);
1257	return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268	int errno;
1269	char tmp[__NEW_UTS_LEN];
1270
1271	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272		return -EPERM;
1273	if (len < 0 || len > __NEW_UTS_LEN)
1274		return -EINVAL;
1275
1276	down_write(&uts_sem);
1277	errno = -EFAULT;
1278	if (!copy_from_user(tmp, name, len)) {
1279		struct new_utsname *u = utsname();
1280
1281		memcpy(u->domainname, tmp, len);
1282		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283		errno = 0;
1284		uts_proc_notify(UTS_PROC_DOMAINNAME);
1285	}
1286	up_write(&uts_sem);
1287	return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292	struct rlimit value;
1293	int ret;
1294
1295	ret = do_prlimit(current, resource, NULL, &value);
1296	if (!ret)
1297		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299	return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 *	Back compatibility for getrlimit. Needed for some apps.
1306 */
 
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308		struct rlimit __user *, rlim)
1309{
1310	struct rlimit x;
1311	if (resource >= RLIM_NLIMITS)
1312		return -EINVAL;
1313
1314	task_lock(current->group_leader);
1315	x = current->signal->rlim[resource];
1316	task_unlock(current->group_leader);
1317	if (x.rlim_cur > 0x7FFFFFFF)
1318		x.rlim_cur = 0x7FFFFFFF;
1319	if (x.rlim_max > 0x7FFFFFFF)
1320		x.rlim_max = 0x7FFFFFFF;
1321	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329	return rlim64 >= ULONG_MAX;
1330#else
1331	return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337	if (rlim->rlim_cur == RLIM_INFINITY)
1338		rlim64->rlim_cur = RLIM64_INFINITY;
1339	else
1340		rlim64->rlim_cur = rlim->rlim_cur;
1341	if (rlim->rlim_max == RLIM_INFINITY)
1342		rlim64->rlim_max = RLIM64_INFINITY;
1343	else
1344		rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349	if (rlim64_is_infinity(rlim64->rlim_cur))
1350		rlim->rlim_cur = RLIM_INFINITY;
1351	else
1352		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353	if (rlim64_is_infinity(rlim64->rlim_max))
1354		rlim->rlim_max = RLIM_INFINITY;
1355	else
1356		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361		struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363	struct rlimit *rlim;
1364	int retval = 0;
1365
1366	if (resource >= RLIM_NLIMITS)
1367		return -EINVAL;
1368	if (new_rlim) {
1369		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370			return -EINVAL;
1371		if (resource == RLIMIT_NOFILE &&
1372				new_rlim->rlim_max > sysctl_nr_open)
1373			return -EPERM;
1374	}
1375
1376	/* protect tsk->signal and tsk->sighand from disappearing */
1377	read_lock(&tasklist_lock);
1378	if (!tsk->sighand) {
1379		retval = -ESRCH;
1380		goto out;
1381	}
1382
1383	rlim = tsk->signal->rlim + resource;
1384	task_lock(tsk->group_leader);
1385	if (new_rlim) {
1386		/* Keep the capable check against init_user_ns until
1387		   cgroups can contain all limits */
1388		if (new_rlim->rlim_max > rlim->rlim_max &&
1389				!capable(CAP_SYS_RESOURCE))
1390			retval = -EPERM;
1391		if (!retval)
1392			retval = security_task_setrlimit(tsk->group_leader,
1393					resource, new_rlim);
1394		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395			/*
1396			 * The caller is asking for an immediate RLIMIT_CPU
1397			 * expiry.  But we use the zero value to mean "it was
1398			 * never set".  So let's cheat and make it one second
1399			 * instead
1400			 */
1401			new_rlim->rlim_cur = 1;
1402		}
1403	}
1404	if (!retval) {
1405		if (old_rlim)
1406			*old_rlim = *rlim;
1407		if (new_rlim)
1408			*rlim = *new_rlim;
1409	}
1410	task_unlock(tsk->group_leader);
1411
1412	/*
1413	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1414	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1415	 * very long-standing error, and fixing it now risks breakage of
1416	 * applications, so we live with it
1417	 */
1418	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419	     new_rlim->rlim_cur != RLIM_INFINITY &&
1420	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1421		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1422out:
1423	read_unlock(&tasklist_lock);
1424	return retval;
1425}
1426
1427/* rcu lock must be held */
1428static int check_prlimit_permission(struct task_struct *task)
1429{
1430	const struct cred *cred = current_cred(), *tcred;
1431
1432	if (current == task)
1433		return 0;
1434
1435	tcred = __task_cred(task);
1436	if (uid_eq(cred->uid, tcred->euid) &&
1437	    uid_eq(cred->uid, tcred->suid) &&
1438	    uid_eq(cred->uid, tcred->uid)  &&
1439	    gid_eq(cred->gid, tcred->egid) &&
1440	    gid_eq(cred->gid, tcred->sgid) &&
1441	    gid_eq(cred->gid, tcred->gid))
1442		return 0;
1443	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1444		return 0;
1445
1446	return -EPERM;
1447}
1448
1449SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1450		const struct rlimit64 __user *, new_rlim,
1451		struct rlimit64 __user *, old_rlim)
1452{
1453	struct rlimit64 old64, new64;
1454	struct rlimit old, new;
1455	struct task_struct *tsk;
1456	int ret;
1457
1458	if (new_rlim) {
1459		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1460			return -EFAULT;
1461		rlim64_to_rlim(&new64, &new);
1462	}
1463
1464	rcu_read_lock();
1465	tsk = pid ? find_task_by_vpid(pid) : current;
1466	if (!tsk) {
1467		rcu_read_unlock();
1468		return -ESRCH;
1469	}
1470	ret = check_prlimit_permission(tsk);
1471	if (ret) {
1472		rcu_read_unlock();
1473		return ret;
1474	}
1475	get_task_struct(tsk);
1476	rcu_read_unlock();
1477
1478	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1479			old_rlim ? &old : NULL);
1480
1481	if (!ret && old_rlim) {
1482		rlim_to_rlim64(&old, &old64);
1483		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1484			ret = -EFAULT;
1485	}
1486
1487	put_task_struct(tsk);
1488	return ret;
1489}
1490
1491SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1492{
1493	struct rlimit new_rlim;
1494
1495	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1496		return -EFAULT;
1497	return do_prlimit(current, resource, &new_rlim, NULL);
1498}
1499
1500/*
1501 * It would make sense to put struct rusage in the task_struct,
1502 * except that would make the task_struct be *really big*.  After
1503 * task_struct gets moved into malloc'ed memory, it would
1504 * make sense to do this.  It will make moving the rest of the information
1505 * a lot simpler!  (Which we're not doing right now because we're not
1506 * measuring them yet).
1507 *
1508 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1509 * races with threads incrementing their own counters.  But since word
1510 * reads are atomic, we either get new values or old values and we don't
1511 * care which for the sums.  We always take the siglock to protect reading
1512 * the c* fields from p->signal from races with exit.c updating those
1513 * fields when reaping, so a sample either gets all the additions of a
1514 * given child after it's reaped, or none so this sample is before reaping.
1515 *
1516 * Locking:
1517 * We need to take the siglock for CHILDEREN, SELF and BOTH
1518 * for  the cases current multithreaded, non-current single threaded
1519 * non-current multithreaded.  Thread traversal is now safe with
1520 * the siglock held.
1521 * Strictly speaking, we donot need to take the siglock if we are current and
1522 * single threaded,  as no one else can take our signal_struct away, no one
1523 * else can  reap the  children to update signal->c* counters, and no one else
1524 * can race with the signal-> fields. If we do not take any lock, the
1525 * signal-> fields could be read out of order while another thread was just
1526 * exiting. So we should  place a read memory barrier when we avoid the lock.
1527 * On the writer side,  write memory barrier is implied in  __exit_signal
1528 * as __exit_signal releases  the siglock spinlock after updating the signal->
1529 * fields. But we don't do this yet to keep things simple.
1530 *
1531 */
1532
1533static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1534{
1535	r->ru_nvcsw += t->nvcsw;
1536	r->ru_nivcsw += t->nivcsw;
1537	r->ru_minflt += t->min_flt;
1538	r->ru_majflt += t->maj_flt;
1539	r->ru_inblock += task_io_get_inblock(t);
1540	r->ru_oublock += task_io_get_oublock(t);
1541}
1542
1543static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1544{
1545	struct task_struct *t;
1546	unsigned long flags;
1547	cputime_t tgutime, tgstime, utime, stime;
1548	unsigned long maxrss = 0;
1549
1550	memset((char *)r, 0, sizeof (*r));
1551	utime = stime = 0;
1552
1553	if (who == RUSAGE_THREAD) {
1554		task_cputime_adjusted(current, &utime, &stime);
1555		accumulate_thread_rusage(p, r);
1556		maxrss = p->signal->maxrss;
1557		goto out;
1558	}
1559
1560	if (!lock_task_sighand(p, &flags))
1561		return;
1562
1563	switch (who) {
1564	case RUSAGE_BOTH:
1565	case RUSAGE_CHILDREN:
1566		utime = p->signal->cutime;
1567		stime = p->signal->cstime;
1568		r->ru_nvcsw = p->signal->cnvcsw;
1569		r->ru_nivcsw = p->signal->cnivcsw;
1570		r->ru_minflt = p->signal->cmin_flt;
1571		r->ru_majflt = p->signal->cmaj_flt;
1572		r->ru_inblock = p->signal->cinblock;
1573		r->ru_oublock = p->signal->coublock;
1574		maxrss = p->signal->cmaxrss;
1575
1576		if (who == RUSAGE_CHILDREN)
1577			break;
1578
1579	case RUSAGE_SELF:
1580		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1581		utime += tgutime;
1582		stime += tgstime;
1583		r->ru_nvcsw += p->signal->nvcsw;
1584		r->ru_nivcsw += p->signal->nivcsw;
1585		r->ru_minflt += p->signal->min_flt;
1586		r->ru_majflt += p->signal->maj_flt;
1587		r->ru_inblock += p->signal->inblock;
1588		r->ru_oublock += p->signal->oublock;
1589		if (maxrss < p->signal->maxrss)
1590			maxrss = p->signal->maxrss;
1591		t = p;
1592		do {
1593			accumulate_thread_rusage(t, r);
1594		} while_each_thread(p, t);
1595		break;
1596
1597	default:
1598		BUG();
1599	}
1600	unlock_task_sighand(p, &flags);
1601
1602out:
1603	cputime_to_timeval(utime, &r->ru_utime);
1604	cputime_to_timeval(stime, &r->ru_stime);
1605
1606	if (who != RUSAGE_CHILDREN) {
1607		struct mm_struct *mm = get_task_mm(p);
1608
1609		if (mm) {
1610			setmax_mm_hiwater_rss(&maxrss, mm);
1611			mmput(mm);
1612		}
1613	}
1614	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1615}
1616
1617int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1618{
1619	struct rusage r;
1620
1621	k_getrusage(p, who, &r);
1622	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1623}
1624
1625SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1626{
1627	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1628	    who != RUSAGE_THREAD)
1629		return -EINVAL;
1630	return getrusage(current, who, ru);
1631}
1632
1633#ifdef CONFIG_COMPAT
1634COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1635{
1636	struct rusage r;
1637
1638	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1639	    who != RUSAGE_THREAD)
1640		return -EINVAL;
1641
1642	k_getrusage(current, who, &r);
1643	return put_compat_rusage(&r, ru);
1644}
1645#endif
1646
1647SYSCALL_DEFINE1(umask, int, mask)
1648{
1649	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1650	return mask;
1651}
1652
1653static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1654{
1655	struct fd exe;
1656	struct file *old_exe, *exe_file;
1657	struct inode *inode;
1658	int err;
1659
1660	exe = fdget(fd);
1661	if (!exe.file)
1662		return -EBADF;
1663
1664	inode = file_inode(exe.file);
1665
1666	/*
1667	 * Because the original mm->exe_file points to executable file, make
1668	 * sure that this one is executable as well, to avoid breaking an
1669	 * overall picture.
1670	 */
1671	err = -EACCES;
1672	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
 
1673		goto exit;
1674
1675	err = inode_permission(inode, MAY_EXEC);
1676	if (err)
1677		goto exit;
1678
 
 
1679	/*
1680	 * Forbid mm->exe_file change if old file still mapped.
1681	 */
1682	exe_file = get_mm_exe_file(mm);
1683	err = -EBUSY;
1684	if (exe_file) {
1685		struct vm_area_struct *vma;
1686
1687		down_read(&mm->mmap_sem);
1688		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1689			if (!vma->vm_file)
1690				continue;
1691			if (path_equal(&vma->vm_file->f_path,
1692				       &exe_file->f_path))
1693				goto exit_err;
1694		}
1695
1696		up_read(&mm->mmap_sem);
1697		fput(exe_file);
1698	}
1699
1700	err = 0;
1701	/* set the new file, lockless */
1702	get_file(exe.file);
1703	old_exe = xchg(&mm->exe_file, exe.file);
1704	if (old_exe)
1705		fput(old_exe);
1706exit:
1707	fdput(exe);
1708	return err;
1709exit_err:
1710	up_read(&mm->mmap_sem);
1711	fput(exe_file);
1712	goto exit;
1713}
1714
1715/*
1716 * WARNING: we don't require any capability here so be very careful
1717 * in what is allowed for modification from userspace.
1718 */
1719static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1720{
1721	unsigned long mmap_max_addr = TASK_SIZE;
1722	struct mm_struct *mm = current->mm;
1723	int error = -EINVAL, i;
1724
1725	static const unsigned char offsets[] = {
1726		offsetof(struct prctl_mm_map, start_code),
1727		offsetof(struct prctl_mm_map, end_code),
1728		offsetof(struct prctl_mm_map, start_data),
1729		offsetof(struct prctl_mm_map, end_data),
1730		offsetof(struct prctl_mm_map, start_brk),
1731		offsetof(struct prctl_mm_map, brk),
1732		offsetof(struct prctl_mm_map, start_stack),
1733		offsetof(struct prctl_mm_map, arg_start),
1734		offsetof(struct prctl_mm_map, arg_end),
1735		offsetof(struct prctl_mm_map, env_start),
1736		offsetof(struct prctl_mm_map, env_end),
1737	};
1738
1739	/*
1740	 * Make sure the members are not somewhere outside
1741	 * of allowed address space.
1742	 */
1743	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1744		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1745
1746		if ((unsigned long)val >= mmap_max_addr ||
1747		    (unsigned long)val < mmap_min_addr)
1748			goto out;
1749	}
1750
1751	/*
1752	 * Make sure the pairs are ordered.
1753	 */
1754#define __prctl_check_order(__m1, __op, __m2)				\
1755	((unsigned long)prctl_map->__m1 __op				\
1756	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1757	error  = __prctl_check_order(start_code, <, end_code);
1758	error |= __prctl_check_order(start_data, <, end_data);
1759	error |= __prctl_check_order(start_brk, <=, brk);
1760	error |= __prctl_check_order(arg_start, <=, arg_end);
1761	error |= __prctl_check_order(env_start, <=, env_end);
1762	if (error)
1763		goto out;
1764#undef __prctl_check_order
1765
1766	error = -EINVAL;
1767
1768	/*
1769	 * @brk should be after @end_data in traditional maps.
1770	 */
1771	if (prctl_map->start_brk <= prctl_map->end_data ||
1772	    prctl_map->brk <= prctl_map->end_data)
1773		goto out;
1774
1775	/*
1776	 * Neither we should allow to override limits if they set.
1777	 */
1778	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1779			      prctl_map->start_brk, prctl_map->end_data,
1780			      prctl_map->start_data))
1781			goto out;
1782
1783	/*
1784	 * Someone is trying to cheat the auxv vector.
1785	 */
1786	if (prctl_map->auxv_size) {
1787		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1788			goto out;
1789	}
1790
1791	/*
1792	 * Finally, make sure the caller has the rights to
1793	 * change /proc/pid/exe link: only local root should
1794	 * be allowed to.
 
1795	 */
1796	if (prctl_map->exe_fd != (u32)-1) {
1797		struct user_namespace *ns = current_user_ns();
1798		const struct cred *cred = current_cred();
1799
1800		if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1801		    !gid_eq(cred->gid, make_kgid(ns, 0)))
1802			goto out;
1803	}
1804
1805	error = 0;
1806out:
1807	return error;
1808}
1809
1810#ifdef CONFIG_CHECKPOINT_RESTORE
1811static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1812{
1813	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1814	unsigned long user_auxv[AT_VECTOR_SIZE];
1815	struct mm_struct *mm = current->mm;
1816	int error;
1817
1818	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1819	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1820
1821	if (opt == PR_SET_MM_MAP_SIZE)
1822		return put_user((unsigned int)sizeof(prctl_map),
1823				(unsigned int __user *)addr);
1824
1825	if (data_size != sizeof(prctl_map))
1826		return -EINVAL;
1827
1828	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1829		return -EFAULT;
1830
1831	error = validate_prctl_map(&prctl_map);
1832	if (error)
1833		return error;
1834
1835	if (prctl_map.auxv_size) {
1836		memset(user_auxv, 0, sizeof(user_auxv));
1837		if (copy_from_user(user_auxv,
1838				   (const void __user *)prctl_map.auxv,
1839				   prctl_map.auxv_size))
1840			return -EFAULT;
1841
1842		/* Last entry must be AT_NULL as specification requires */
1843		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1844		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1845	}
1846
1847	if (prctl_map.exe_fd != (u32)-1) {
1848		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1849		if (error)
1850			return error;
1851	}
1852
1853	down_write(&mm->mmap_sem);
1854
1855	/*
1856	 * We don't validate if these members are pointing to
1857	 * real present VMAs because application may have correspond
1858	 * VMAs already unmapped and kernel uses these members for statistics
1859	 * output in procfs mostly, except
1860	 *
1861	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
1862	 *    for VMAs when updating these memvers so anything wrong written
1863	 *    here cause kernel to swear at userspace program but won't lead
1864	 *    to any problem in kernel itself
1865	 */
1866
1867	mm->start_code	= prctl_map.start_code;
1868	mm->end_code	= prctl_map.end_code;
1869	mm->start_data	= prctl_map.start_data;
1870	mm->end_data	= prctl_map.end_data;
1871	mm->start_brk	= prctl_map.start_brk;
1872	mm->brk		= prctl_map.brk;
1873	mm->start_stack	= prctl_map.start_stack;
1874	mm->arg_start	= prctl_map.arg_start;
1875	mm->arg_end	= prctl_map.arg_end;
1876	mm->env_start	= prctl_map.env_start;
1877	mm->env_end	= prctl_map.env_end;
1878
1879	/*
1880	 * Note this update of @saved_auxv is lockless thus
1881	 * if someone reads this member in procfs while we're
1882	 * updating -- it may get partly updated results. It's
1883	 * known and acceptable trade off: we leave it as is to
1884	 * not introduce additional locks here making the kernel
1885	 * more complex.
1886	 */
1887	if (prctl_map.auxv_size)
1888		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1889
 
 
 
1890	up_write(&mm->mmap_sem);
1891	return 0;
1892}
1893#endif /* CONFIG_CHECKPOINT_RESTORE */
1894
1895static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1896			  unsigned long len)
1897{
1898	/*
1899	 * This doesn't move the auxiliary vector itself since it's pinned to
1900	 * mm_struct, but it permits filling the vector with new values.  It's
1901	 * up to the caller to provide sane values here, otherwise userspace
1902	 * tools which use this vector might be unhappy.
1903	 */
1904	unsigned long user_auxv[AT_VECTOR_SIZE];
1905
1906	if (len > sizeof(user_auxv))
1907		return -EINVAL;
1908
1909	if (copy_from_user(user_auxv, (const void __user *)addr, len))
1910		return -EFAULT;
1911
1912	/* Make sure the last entry is always AT_NULL */
1913	user_auxv[AT_VECTOR_SIZE - 2] = 0;
1914	user_auxv[AT_VECTOR_SIZE - 1] = 0;
1915
1916	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1917
1918	task_lock(current);
1919	memcpy(mm->saved_auxv, user_auxv, len);
1920	task_unlock(current);
1921
1922	return 0;
 
 
1923}
1924
1925static int prctl_set_mm(int opt, unsigned long addr,
1926			unsigned long arg4, unsigned long arg5)
1927{
 
1928	struct mm_struct *mm = current->mm;
1929	struct prctl_mm_map prctl_map;
1930	struct vm_area_struct *vma;
1931	int error;
1932
1933	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1934			      opt != PR_SET_MM_MAP &&
1935			      opt != PR_SET_MM_MAP_SIZE)))
1936		return -EINVAL;
1937
1938#ifdef CONFIG_CHECKPOINT_RESTORE
1939	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1940		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1941#endif
1942
1943	if (!capable(CAP_SYS_RESOURCE))
1944		return -EPERM;
1945
1946	if (opt == PR_SET_MM_EXE_FILE)
1947		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1948
1949	if (opt == PR_SET_MM_AUXV)
1950		return prctl_set_auxv(mm, addr, arg4);
1951
1952	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1953		return -EINVAL;
1954
1955	error = -EINVAL;
1956
1957	down_write(&mm->mmap_sem);
1958	vma = find_vma(mm, addr);
1959
1960	prctl_map.start_code	= mm->start_code;
1961	prctl_map.end_code	= mm->end_code;
1962	prctl_map.start_data	= mm->start_data;
1963	prctl_map.end_data	= mm->end_data;
1964	prctl_map.start_brk	= mm->start_brk;
1965	prctl_map.brk		= mm->brk;
1966	prctl_map.start_stack	= mm->start_stack;
1967	prctl_map.arg_start	= mm->arg_start;
1968	prctl_map.arg_end	= mm->arg_end;
1969	prctl_map.env_start	= mm->env_start;
1970	prctl_map.env_end	= mm->env_end;
1971	prctl_map.auxv		= NULL;
1972	prctl_map.auxv_size	= 0;
1973	prctl_map.exe_fd	= -1;
1974
1975	switch (opt) {
1976	case PR_SET_MM_START_CODE:
1977		prctl_map.start_code = addr;
1978		break;
1979	case PR_SET_MM_END_CODE:
1980		prctl_map.end_code = addr;
1981		break;
1982	case PR_SET_MM_START_DATA:
1983		prctl_map.start_data = addr;
1984		break;
1985	case PR_SET_MM_END_DATA:
1986		prctl_map.end_data = addr;
1987		break;
1988	case PR_SET_MM_START_STACK:
1989		prctl_map.start_stack = addr;
1990		break;
 
1991	case PR_SET_MM_START_BRK:
1992		prctl_map.start_brk = addr;
 
 
 
 
 
 
 
 
1993		break;
 
1994	case PR_SET_MM_BRK:
1995		prctl_map.brk = addr;
1996		break;
1997	case PR_SET_MM_ARG_START:
1998		prctl_map.arg_start = addr;
1999		break;
2000	case PR_SET_MM_ARG_END:
2001		prctl_map.arg_end = addr;
2002		break;
2003	case PR_SET_MM_ENV_START:
2004		prctl_map.env_start = addr;
2005		break;
2006	case PR_SET_MM_ENV_END:
2007		prctl_map.env_end = addr;
2008		break;
2009	default:
2010		goto out;
2011	}
2012
2013	error = validate_prctl_map(&prctl_map);
2014	if (error)
2015		goto out;
 
 
 
 
2016
2017	switch (opt) {
2018	/*
2019	 * If command line arguments and environment
2020	 * are placed somewhere else on stack, we can
2021	 * set them up here, ARG_START/END to setup
2022	 * command line argumets and ENV_START/END
2023	 * for environment.
2024	 */
2025	case PR_SET_MM_START_STACK:
2026	case PR_SET_MM_ARG_START:
2027	case PR_SET_MM_ARG_END:
2028	case PR_SET_MM_ENV_START:
2029	case PR_SET_MM_ENV_END:
2030		if (!vma) {
2031			error = -EFAULT;
2032			goto out;
2033		}
2034	}
 
 
 
 
 
 
 
 
 
 
2035
2036	mm->start_code	= prctl_map.start_code;
2037	mm->end_code	= prctl_map.end_code;
2038	mm->start_data	= prctl_map.start_data;
2039	mm->end_data	= prctl_map.end_data;
2040	mm->start_brk	= prctl_map.start_brk;
2041	mm->brk		= prctl_map.brk;
2042	mm->start_stack	= prctl_map.start_stack;
2043	mm->arg_start	= prctl_map.arg_start;
2044	mm->arg_end	= prctl_map.arg_end;
2045	mm->env_start	= prctl_map.env_start;
2046	mm->env_end	= prctl_map.env_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047
2048	error = 0;
2049out:
2050	up_write(&mm->mmap_sem);
2051	return error;
2052}
2053
2054#ifdef CONFIG_CHECKPOINT_RESTORE
2055static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2056{
2057	return put_user(me->clear_child_tid, tid_addr);
2058}
2059#else
2060static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2061{
2062	return -EINVAL;
2063}
2064#endif
2065
2066SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2067		unsigned long, arg4, unsigned long, arg5)
2068{
2069	struct task_struct *me = current;
2070	unsigned char comm[sizeof(me->comm)];
2071	long error;
2072
2073	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2074	if (error != -ENOSYS)
2075		return error;
2076
2077	error = 0;
2078	switch (option) {
2079	case PR_SET_PDEATHSIG:
2080		if (!valid_signal(arg2)) {
2081			error = -EINVAL;
2082			break;
2083		}
2084		me->pdeath_signal = arg2;
2085		break;
2086	case PR_GET_PDEATHSIG:
2087		error = put_user(me->pdeath_signal, (int __user *)arg2);
2088		break;
2089	case PR_GET_DUMPABLE:
2090		error = get_dumpable(me->mm);
2091		break;
2092	case PR_SET_DUMPABLE:
2093		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2094			error = -EINVAL;
2095			break;
2096		}
2097		set_dumpable(me->mm, arg2);
2098		break;
2099
2100	case PR_SET_UNALIGN:
2101		error = SET_UNALIGN_CTL(me, arg2);
2102		break;
2103	case PR_GET_UNALIGN:
2104		error = GET_UNALIGN_CTL(me, arg2);
2105		break;
2106	case PR_SET_FPEMU:
2107		error = SET_FPEMU_CTL(me, arg2);
2108		break;
2109	case PR_GET_FPEMU:
2110		error = GET_FPEMU_CTL(me, arg2);
2111		break;
2112	case PR_SET_FPEXC:
2113		error = SET_FPEXC_CTL(me, arg2);
2114		break;
2115	case PR_GET_FPEXC:
2116		error = GET_FPEXC_CTL(me, arg2);
2117		break;
2118	case PR_GET_TIMING:
2119		error = PR_TIMING_STATISTICAL;
2120		break;
2121	case PR_SET_TIMING:
2122		if (arg2 != PR_TIMING_STATISTICAL)
2123			error = -EINVAL;
2124		break;
2125	case PR_SET_NAME:
2126		comm[sizeof(me->comm) - 1] = 0;
2127		if (strncpy_from_user(comm, (char __user *)arg2,
2128				      sizeof(me->comm) - 1) < 0)
2129			return -EFAULT;
2130		set_task_comm(me, comm);
2131		proc_comm_connector(me);
2132		break;
2133	case PR_GET_NAME:
2134		get_task_comm(comm, me);
2135		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2136			return -EFAULT;
2137		break;
2138	case PR_GET_ENDIAN:
2139		error = GET_ENDIAN(me, arg2);
2140		break;
2141	case PR_SET_ENDIAN:
2142		error = SET_ENDIAN(me, arg2);
2143		break;
2144	case PR_GET_SECCOMP:
2145		error = prctl_get_seccomp();
2146		break;
2147	case PR_SET_SECCOMP:
2148		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2149		break;
2150	case PR_GET_TSC:
2151		error = GET_TSC_CTL(arg2);
2152		break;
2153	case PR_SET_TSC:
2154		error = SET_TSC_CTL(arg2);
2155		break;
2156	case PR_TASK_PERF_EVENTS_DISABLE:
2157		error = perf_event_task_disable();
2158		break;
2159	case PR_TASK_PERF_EVENTS_ENABLE:
2160		error = perf_event_task_enable();
2161		break;
2162	case PR_GET_TIMERSLACK:
2163		if (current->timer_slack_ns > ULONG_MAX)
2164			error = ULONG_MAX;
2165		else
2166			error = current->timer_slack_ns;
2167		break;
2168	case PR_SET_TIMERSLACK:
2169		if (arg2 <= 0)
2170			current->timer_slack_ns =
2171					current->default_timer_slack_ns;
2172		else
2173			current->timer_slack_ns = arg2;
2174		break;
2175	case PR_MCE_KILL:
2176		if (arg4 | arg5)
2177			return -EINVAL;
2178		switch (arg2) {
2179		case PR_MCE_KILL_CLEAR:
2180			if (arg3 != 0)
2181				return -EINVAL;
2182			current->flags &= ~PF_MCE_PROCESS;
2183			break;
2184		case PR_MCE_KILL_SET:
2185			current->flags |= PF_MCE_PROCESS;
2186			if (arg3 == PR_MCE_KILL_EARLY)
2187				current->flags |= PF_MCE_EARLY;
2188			else if (arg3 == PR_MCE_KILL_LATE)
2189				current->flags &= ~PF_MCE_EARLY;
2190			else if (arg3 == PR_MCE_KILL_DEFAULT)
2191				current->flags &=
2192						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2193			else
2194				return -EINVAL;
2195			break;
2196		default:
2197			return -EINVAL;
2198		}
2199		break;
2200	case PR_MCE_KILL_GET:
2201		if (arg2 | arg3 | arg4 | arg5)
2202			return -EINVAL;
2203		if (current->flags & PF_MCE_PROCESS)
2204			error = (current->flags & PF_MCE_EARLY) ?
2205				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2206		else
2207			error = PR_MCE_KILL_DEFAULT;
2208		break;
2209	case PR_SET_MM:
2210		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2211		break;
2212	case PR_GET_TID_ADDRESS:
2213		error = prctl_get_tid_address(me, (int __user **)arg2);
2214		break;
2215	case PR_SET_CHILD_SUBREAPER:
2216		me->signal->is_child_subreaper = !!arg2;
2217		break;
2218	case PR_GET_CHILD_SUBREAPER:
2219		error = put_user(me->signal->is_child_subreaper,
2220				 (int __user *)arg2);
2221		break;
2222	case PR_SET_NO_NEW_PRIVS:
2223		if (arg2 != 1 || arg3 || arg4 || arg5)
2224			return -EINVAL;
2225
2226		task_set_no_new_privs(current);
2227		break;
2228	case PR_GET_NO_NEW_PRIVS:
2229		if (arg2 || arg3 || arg4 || arg5)
2230			return -EINVAL;
2231		return task_no_new_privs(current) ? 1 : 0;
2232	case PR_GET_THP_DISABLE:
2233		if (arg2 || arg3 || arg4 || arg5)
2234			return -EINVAL;
2235		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2236		break;
2237	case PR_SET_THP_DISABLE:
2238		if (arg3 || arg4 || arg5)
2239			return -EINVAL;
2240		if (down_write_killable(&me->mm->mmap_sem))
2241			return -EINTR;
2242		if (arg2)
2243			me->mm->def_flags |= VM_NOHUGEPAGE;
2244		else
2245			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2246		up_write(&me->mm->mmap_sem);
2247		break;
2248	case PR_MPX_ENABLE_MANAGEMENT:
2249		if (arg2 || arg3 || arg4 || arg5)
2250			return -EINVAL;
2251		error = MPX_ENABLE_MANAGEMENT();
2252		break;
2253	case PR_MPX_DISABLE_MANAGEMENT:
2254		if (arg2 || arg3 || arg4 || arg5)
2255			return -EINVAL;
2256		error = MPX_DISABLE_MANAGEMENT();
2257		break;
2258	case PR_SET_FP_MODE:
2259		error = SET_FP_MODE(me, arg2);
2260		break;
2261	case PR_GET_FP_MODE:
2262		error = GET_FP_MODE(me);
2263		break;
2264	default:
2265		error = -EINVAL;
2266		break;
2267	}
2268	return error;
2269}
2270
2271SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2272		struct getcpu_cache __user *, unused)
2273{
2274	int err = 0;
2275	int cpu = raw_smp_processor_id();
2276
2277	if (cpup)
2278		err |= put_user(cpu, cpup);
2279	if (nodep)
2280		err |= put_user(cpu_to_node(cpu), nodep);
2281	return err ? -EFAULT : 0;
2282}
2283
2284/**
2285 * do_sysinfo - fill in sysinfo struct
2286 * @info: pointer to buffer to fill
2287 */
2288static int do_sysinfo(struct sysinfo *info)
2289{
2290	unsigned long mem_total, sav_total;
2291	unsigned int mem_unit, bitcount;
2292	struct timespec tp;
2293
2294	memset(info, 0, sizeof(struct sysinfo));
2295
2296	get_monotonic_boottime(&tp);
2297	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2298
2299	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2300
2301	info->procs = nr_threads;
2302
2303	si_meminfo(info);
2304	si_swapinfo(info);
2305
2306	/*
2307	 * If the sum of all the available memory (i.e. ram + swap)
2308	 * is less than can be stored in a 32 bit unsigned long then
2309	 * we can be binary compatible with 2.2.x kernels.  If not,
2310	 * well, in that case 2.2.x was broken anyways...
2311	 *
2312	 *  -Erik Andersen <andersee@debian.org>
2313	 */
2314
2315	mem_total = info->totalram + info->totalswap;
2316	if (mem_total < info->totalram || mem_total < info->totalswap)
2317		goto out;
2318	bitcount = 0;
2319	mem_unit = info->mem_unit;
2320	while (mem_unit > 1) {
2321		bitcount++;
2322		mem_unit >>= 1;
2323		sav_total = mem_total;
2324		mem_total <<= 1;
2325		if (mem_total < sav_total)
2326			goto out;
2327	}
2328
2329	/*
2330	 * If mem_total did not overflow, multiply all memory values by
2331	 * info->mem_unit and set it to 1.  This leaves things compatible
2332	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2333	 * kernels...
2334	 */
2335
2336	info->mem_unit = 1;
2337	info->totalram <<= bitcount;
2338	info->freeram <<= bitcount;
2339	info->sharedram <<= bitcount;
2340	info->bufferram <<= bitcount;
2341	info->totalswap <<= bitcount;
2342	info->freeswap <<= bitcount;
2343	info->totalhigh <<= bitcount;
2344	info->freehigh <<= bitcount;
2345
2346out:
2347	return 0;
2348}
2349
2350SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2351{
2352	struct sysinfo val;
2353
2354	do_sysinfo(&val);
2355
2356	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2357		return -EFAULT;
2358
2359	return 0;
2360}
2361
2362#ifdef CONFIG_COMPAT
2363struct compat_sysinfo {
2364	s32 uptime;
2365	u32 loads[3];
2366	u32 totalram;
2367	u32 freeram;
2368	u32 sharedram;
2369	u32 bufferram;
2370	u32 totalswap;
2371	u32 freeswap;
2372	u16 procs;
2373	u16 pad;
2374	u32 totalhigh;
2375	u32 freehigh;
2376	u32 mem_unit;
2377	char _f[20-2*sizeof(u32)-sizeof(int)];
2378};
2379
2380COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2381{
2382	struct sysinfo s;
2383
2384	do_sysinfo(&s);
2385
2386	/* Check to see if any memory value is too large for 32-bit and scale
2387	 *  down if needed
2388	 */
2389	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2390		int bitcount = 0;
2391
2392		while (s.mem_unit < PAGE_SIZE) {
2393			s.mem_unit <<= 1;
2394			bitcount++;
2395		}
2396
2397		s.totalram >>= bitcount;
2398		s.freeram >>= bitcount;
2399		s.sharedram >>= bitcount;
2400		s.bufferram >>= bitcount;
2401		s.totalswap >>= bitcount;
2402		s.freeswap >>= bitcount;
2403		s.totalhigh >>= bitcount;
2404		s.freehigh >>= bitcount;
2405	}
2406
2407	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2408	    __put_user(s.uptime, &info->uptime) ||
2409	    __put_user(s.loads[0], &info->loads[0]) ||
2410	    __put_user(s.loads[1], &info->loads[1]) ||
2411	    __put_user(s.loads[2], &info->loads[2]) ||
2412	    __put_user(s.totalram, &info->totalram) ||
2413	    __put_user(s.freeram, &info->freeram) ||
2414	    __put_user(s.sharedram, &info->sharedram) ||
2415	    __put_user(s.bufferram, &info->bufferram) ||
2416	    __put_user(s.totalswap, &info->totalswap) ||
2417	    __put_user(s.freeswap, &info->freeswap) ||
2418	    __put_user(s.procs, &info->procs) ||
2419	    __put_user(s.totalhigh, &info->totalhigh) ||
2420	    __put_user(s.freehigh, &info->freehigh) ||
2421	    __put_user(s.mem_unit, &info->mem_unit))
2422		return -EFAULT;
2423
2424	return 0;
2425}
2426#endif /* CONFIG_COMPAT */
v3.15
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a,b)	(-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a,b)	(-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a,b)	(-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a,b)	(-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a,b)	(-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a,b)	(-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a,b)	(-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a,b)	(-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)		(-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)		(-EINVAL)
  93#endif
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95/*
  96 * this is where the system-wide overflow UID and GID are defined, for
  97 * architectures that now have 32-bit UID/GID but didn't in the past
  98 */
  99
 100int overflowuid = DEFAULT_OVERFLOWUID;
 101int overflowgid = DEFAULT_OVERFLOWGID;
 102
 103EXPORT_SYMBOL(overflowuid);
 104EXPORT_SYMBOL(overflowgid);
 105
 106/*
 107 * the same as above, but for filesystems which can only store a 16-bit
 108 * UID and GID. as such, this is needed on all architectures
 109 */
 110
 111int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 112int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 113
 114EXPORT_SYMBOL(fs_overflowuid);
 115EXPORT_SYMBOL(fs_overflowgid);
 116
 117/*
 118 * Returns true if current's euid is same as p's uid or euid,
 119 * or has CAP_SYS_NICE to p's user_ns.
 120 *
 121 * Called with rcu_read_lock, creds are safe
 122 */
 123static bool set_one_prio_perm(struct task_struct *p)
 124{
 125	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 126
 127	if (uid_eq(pcred->uid,  cred->euid) ||
 128	    uid_eq(pcred->euid, cred->euid))
 129		return true;
 130	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 131		return true;
 132	return false;
 133}
 134
 135/*
 136 * set the priority of a task
 137 * - the caller must hold the RCU read lock
 138 */
 139static int set_one_prio(struct task_struct *p, int niceval, int error)
 140{
 141	int no_nice;
 142
 143	if (!set_one_prio_perm(p)) {
 144		error = -EPERM;
 145		goto out;
 146	}
 147	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 148		error = -EACCES;
 149		goto out;
 150	}
 151	no_nice = security_task_setnice(p, niceval);
 152	if (no_nice) {
 153		error = no_nice;
 154		goto out;
 155	}
 156	if (error == -ESRCH)
 157		error = 0;
 158	set_user_nice(p, niceval);
 159out:
 160	return error;
 161}
 162
 163SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 164{
 165	struct task_struct *g, *p;
 166	struct user_struct *user;
 167	const struct cred *cred = current_cred();
 168	int error = -EINVAL;
 169	struct pid *pgrp;
 170	kuid_t uid;
 171
 172	if (which > PRIO_USER || which < PRIO_PROCESS)
 173		goto out;
 174
 175	/* normalize: avoid signed division (rounding problems) */
 176	error = -ESRCH;
 177	if (niceval < MIN_NICE)
 178		niceval = MIN_NICE;
 179	if (niceval > MAX_NICE)
 180		niceval = MAX_NICE;
 181
 182	rcu_read_lock();
 183	read_lock(&tasklist_lock);
 184	switch (which) {
 185		case PRIO_PROCESS:
 186			if (who)
 187				p = find_task_by_vpid(who);
 188			else
 189				p = current;
 190			if (p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191				error = set_one_prio(p, niceval, error);
 192			break;
 193		case PRIO_PGRP:
 194			if (who)
 195				pgrp = find_vpid(who);
 196			else
 197				pgrp = task_pgrp(current);
 198			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 199				error = set_one_prio(p, niceval, error);
 200			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 201			break;
 202		case PRIO_USER:
 203			uid = make_kuid(cred->user_ns, who);
 204			user = cred->user;
 205			if (!who)
 206				uid = cred->uid;
 207			else if (!uid_eq(uid, cred->uid) &&
 208				 !(user = find_user(uid)))
 209				goto out_unlock;	/* No processes for this user */
 210
 211			do_each_thread(g, p) {
 212				if (uid_eq(task_uid(p), uid))
 213					error = set_one_prio(p, niceval, error);
 214			} while_each_thread(g, p);
 215			if (!uid_eq(uid, cred->uid))
 216				free_uid(user);		/* For find_user() */
 217			break;
 218	}
 219out_unlock:
 220	read_unlock(&tasklist_lock);
 221	rcu_read_unlock();
 222out:
 223	return error;
 224}
 225
 226/*
 227 * Ugh. To avoid negative return values, "getpriority()" will
 228 * not return the normal nice-value, but a negated value that
 229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 230 * to stay compatible.
 231 */
 232SYSCALL_DEFINE2(getpriority, int, which, int, who)
 233{
 234	struct task_struct *g, *p;
 235	struct user_struct *user;
 236	const struct cred *cred = current_cred();
 237	long niceval, retval = -ESRCH;
 238	struct pid *pgrp;
 239	kuid_t uid;
 240
 241	if (which > PRIO_USER || which < PRIO_PROCESS)
 242		return -EINVAL;
 243
 244	rcu_read_lock();
 245	read_lock(&tasklist_lock);
 246	switch (which) {
 247		case PRIO_PROCESS:
 248			if (who)
 249				p = find_task_by_vpid(who);
 250			else
 251				p = current;
 252			if (p) {
 253				niceval = 20 - task_nice(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254				if (niceval > retval)
 255					retval = niceval;
 256			}
 257			break;
 258		case PRIO_PGRP:
 259			if (who)
 260				pgrp = find_vpid(who);
 261			else
 262				pgrp = task_pgrp(current);
 263			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 264				niceval = 20 - task_nice(p);
 265				if (niceval > retval)
 266					retval = niceval;
 267			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 268			break;
 269		case PRIO_USER:
 270			uid = make_kuid(cred->user_ns, who);
 271			user = cred->user;
 272			if (!who)
 273				uid = cred->uid;
 274			else if (!uid_eq(uid, cred->uid) &&
 275				 !(user = find_user(uid)))
 276				goto out_unlock;	/* No processes for this user */
 277
 278			do_each_thread(g, p) {
 279				if (uid_eq(task_uid(p), uid)) {
 280					niceval = 20 - task_nice(p);
 281					if (niceval > retval)
 282						retval = niceval;
 283				}
 284			} while_each_thread(g, p);
 285			if (!uid_eq(uid, cred->uid))
 286				free_uid(user);		/* for find_user() */
 287			break;
 288	}
 289out_unlock:
 290	read_unlock(&tasklist_lock);
 291	rcu_read_unlock();
 292
 293	return retval;
 294}
 295
 296/*
 297 * Unprivileged users may change the real gid to the effective gid
 298 * or vice versa.  (BSD-style)
 299 *
 300 * If you set the real gid at all, or set the effective gid to a value not
 301 * equal to the real gid, then the saved gid is set to the new effective gid.
 302 *
 303 * This makes it possible for a setgid program to completely drop its
 304 * privileges, which is often a useful assertion to make when you are doing
 305 * a security audit over a program.
 306 *
 307 * The general idea is that a program which uses just setregid() will be
 308 * 100% compatible with BSD.  A program which uses just setgid() will be
 309 * 100% compatible with POSIX with saved IDs. 
 310 *
 311 * SMP: There are not races, the GIDs are checked only by filesystem
 312 *      operations (as far as semantic preservation is concerned).
 313 */
 
 314SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 315{
 316	struct user_namespace *ns = current_user_ns();
 317	const struct cred *old;
 318	struct cred *new;
 319	int retval;
 320	kgid_t krgid, kegid;
 321
 322	krgid = make_kgid(ns, rgid);
 323	kegid = make_kgid(ns, egid);
 324
 325	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 326		return -EINVAL;
 327	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 328		return -EINVAL;
 329
 330	new = prepare_creds();
 331	if (!new)
 332		return -ENOMEM;
 333	old = current_cred();
 334
 335	retval = -EPERM;
 336	if (rgid != (gid_t) -1) {
 337		if (gid_eq(old->gid, krgid) ||
 338		    gid_eq(old->egid, krgid) ||
 339		    ns_capable(old->user_ns, CAP_SETGID))
 340			new->gid = krgid;
 341		else
 342			goto error;
 343	}
 344	if (egid != (gid_t) -1) {
 345		if (gid_eq(old->gid, kegid) ||
 346		    gid_eq(old->egid, kegid) ||
 347		    gid_eq(old->sgid, kegid) ||
 348		    ns_capable(old->user_ns, CAP_SETGID))
 349			new->egid = kegid;
 350		else
 351			goto error;
 352	}
 353
 354	if (rgid != (gid_t) -1 ||
 355	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 356		new->sgid = new->egid;
 357	new->fsgid = new->egid;
 358
 359	return commit_creds(new);
 360
 361error:
 362	abort_creds(new);
 363	return retval;
 364}
 365
 366/*
 367 * setgid() is implemented like SysV w/ SAVED_IDS 
 368 *
 369 * SMP: Same implicit races as above.
 370 */
 371SYSCALL_DEFINE1(setgid, gid_t, gid)
 372{
 373	struct user_namespace *ns = current_user_ns();
 374	const struct cred *old;
 375	struct cred *new;
 376	int retval;
 377	kgid_t kgid;
 378
 379	kgid = make_kgid(ns, gid);
 380	if (!gid_valid(kgid))
 381		return -EINVAL;
 382
 383	new = prepare_creds();
 384	if (!new)
 385		return -ENOMEM;
 386	old = current_cred();
 387
 388	retval = -EPERM;
 389	if (ns_capable(old->user_ns, CAP_SETGID))
 390		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 391	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 392		new->egid = new->fsgid = kgid;
 393	else
 394		goto error;
 395
 396	return commit_creds(new);
 397
 398error:
 399	abort_creds(new);
 400	return retval;
 401}
 402
 403/*
 404 * change the user struct in a credentials set to match the new UID
 405 */
 406static int set_user(struct cred *new)
 407{
 408	struct user_struct *new_user;
 409
 410	new_user = alloc_uid(new->uid);
 411	if (!new_user)
 412		return -EAGAIN;
 413
 414	/*
 415	 * We don't fail in case of NPROC limit excess here because too many
 416	 * poorly written programs don't check set*uid() return code, assuming
 417	 * it never fails if called by root.  We may still enforce NPROC limit
 418	 * for programs doing set*uid()+execve() by harmlessly deferring the
 419	 * failure to the execve() stage.
 420	 */
 421	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 422			new_user != INIT_USER)
 423		current->flags |= PF_NPROC_EXCEEDED;
 424	else
 425		current->flags &= ~PF_NPROC_EXCEEDED;
 426
 427	free_uid(new->user);
 428	new->user = new_user;
 429	return 0;
 430}
 431
 432/*
 433 * Unprivileged users may change the real uid to the effective uid
 434 * or vice versa.  (BSD-style)
 435 *
 436 * If you set the real uid at all, or set the effective uid to a value not
 437 * equal to the real uid, then the saved uid is set to the new effective uid.
 438 *
 439 * This makes it possible for a setuid program to completely drop its
 440 * privileges, which is often a useful assertion to make when you are doing
 441 * a security audit over a program.
 442 *
 443 * The general idea is that a program which uses just setreuid() will be
 444 * 100% compatible with BSD.  A program which uses just setuid() will be
 445 * 100% compatible with POSIX with saved IDs. 
 446 */
 447SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 448{
 449	struct user_namespace *ns = current_user_ns();
 450	const struct cred *old;
 451	struct cred *new;
 452	int retval;
 453	kuid_t kruid, keuid;
 454
 455	kruid = make_kuid(ns, ruid);
 456	keuid = make_kuid(ns, euid);
 457
 458	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 459		return -EINVAL;
 460	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 461		return -EINVAL;
 462
 463	new = prepare_creds();
 464	if (!new)
 465		return -ENOMEM;
 466	old = current_cred();
 467
 468	retval = -EPERM;
 469	if (ruid != (uid_t) -1) {
 470		new->uid = kruid;
 471		if (!uid_eq(old->uid, kruid) &&
 472		    !uid_eq(old->euid, kruid) &&
 473		    !ns_capable(old->user_ns, CAP_SETUID))
 474			goto error;
 475	}
 476
 477	if (euid != (uid_t) -1) {
 478		new->euid = keuid;
 479		if (!uid_eq(old->uid, keuid) &&
 480		    !uid_eq(old->euid, keuid) &&
 481		    !uid_eq(old->suid, keuid) &&
 482		    !ns_capable(old->user_ns, CAP_SETUID))
 483			goto error;
 484	}
 485
 486	if (!uid_eq(new->uid, old->uid)) {
 487		retval = set_user(new);
 488		if (retval < 0)
 489			goto error;
 490	}
 491	if (ruid != (uid_t) -1 ||
 492	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 493		new->suid = new->euid;
 494	new->fsuid = new->euid;
 495
 496	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 497	if (retval < 0)
 498		goto error;
 499
 500	return commit_creds(new);
 501
 502error:
 503	abort_creds(new);
 504	return retval;
 505}
 506		
 507/*
 508 * setuid() is implemented like SysV with SAVED_IDS 
 509 * 
 510 * Note that SAVED_ID's is deficient in that a setuid root program
 511 * like sendmail, for example, cannot set its uid to be a normal 
 512 * user and then switch back, because if you're root, setuid() sets
 513 * the saved uid too.  If you don't like this, blame the bright people
 514 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 515 * will allow a root program to temporarily drop privileges and be able to
 516 * regain them by swapping the real and effective uid.  
 517 */
 518SYSCALL_DEFINE1(setuid, uid_t, uid)
 519{
 520	struct user_namespace *ns = current_user_ns();
 521	const struct cred *old;
 522	struct cred *new;
 523	int retval;
 524	kuid_t kuid;
 525
 526	kuid = make_kuid(ns, uid);
 527	if (!uid_valid(kuid))
 528		return -EINVAL;
 529
 530	new = prepare_creds();
 531	if (!new)
 532		return -ENOMEM;
 533	old = current_cred();
 534
 535	retval = -EPERM;
 536	if (ns_capable(old->user_ns, CAP_SETUID)) {
 537		new->suid = new->uid = kuid;
 538		if (!uid_eq(kuid, old->uid)) {
 539			retval = set_user(new);
 540			if (retval < 0)
 541				goto error;
 542		}
 543	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 544		goto error;
 545	}
 546
 547	new->fsuid = new->euid = kuid;
 548
 549	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 550	if (retval < 0)
 551		goto error;
 552
 553	return commit_creds(new);
 554
 555error:
 556	abort_creds(new);
 557	return retval;
 558}
 559
 560
 561/*
 562 * This function implements a generic ability to update ruid, euid,
 563 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 564 */
 565SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 566{
 567	struct user_namespace *ns = current_user_ns();
 568	const struct cred *old;
 569	struct cred *new;
 570	int retval;
 571	kuid_t kruid, keuid, ksuid;
 572
 573	kruid = make_kuid(ns, ruid);
 574	keuid = make_kuid(ns, euid);
 575	ksuid = make_kuid(ns, suid);
 576
 577	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 578		return -EINVAL;
 579
 580	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 581		return -EINVAL;
 582
 583	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 584		return -EINVAL;
 585
 586	new = prepare_creds();
 587	if (!new)
 588		return -ENOMEM;
 589
 590	old = current_cred();
 591
 592	retval = -EPERM;
 593	if (!ns_capable(old->user_ns, CAP_SETUID)) {
 594		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 595		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 596			goto error;
 597		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 598		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 599			goto error;
 600		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 601		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 602			goto error;
 603	}
 604
 605	if (ruid != (uid_t) -1) {
 606		new->uid = kruid;
 607		if (!uid_eq(kruid, old->uid)) {
 608			retval = set_user(new);
 609			if (retval < 0)
 610				goto error;
 611		}
 612	}
 613	if (euid != (uid_t) -1)
 614		new->euid = keuid;
 615	if (suid != (uid_t) -1)
 616		new->suid = ksuid;
 617	new->fsuid = new->euid;
 618
 619	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 620	if (retval < 0)
 621		goto error;
 622
 623	return commit_creds(new);
 624
 625error:
 626	abort_creds(new);
 627	return retval;
 628}
 629
 630SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 631{
 632	const struct cred *cred = current_cred();
 633	int retval;
 634	uid_t ruid, euid, suid;
 635
 636	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 637	euid = from_kuid_munged(cred->user_ns, cred->euid);
 638	suid = from_kuid_munged(cred->user_ns, cred->suid);
 639
 640	if (!(retval   = put_user(ruid, ruidp)) &&
 641	    !(retval   = put_user(euid, euidp)))
 642		retval = put_user(suid, suidp);
 643
 
 
 644	return retval;
 645}
 646
 647/*
 648 * Same as above, but for rgid, egid, sgid.
 649 */
 650SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 651{
 652	struct user_namespace *ns = current_user_ns();
 653	const struct cred *old;
 654	struct cred *new;
 655	int retval;
 656	kgid_t krgid, kegid, ksgid;
 657
 658	krgid = make_kgid(ns, rgid);
 659	kegid = make_kgid(ns, egid);
 660	ksgid = make_kgid(ns, sgid);
 661
 662	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 663		return -EINVAL;
 664	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 665		return -EINVAL;
 666	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 667		return -EINVAL;
 668
 669	new = prepare_creds();
 670	if (!new)
 671		return -ENOMEM;
 672	old = current_cred();
 673
 674	retval = -EPERM;
 675	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 676		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 677		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 678			goto error;
 679		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 680		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 681			goto error;
 682		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 683		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 684			goto error;
 685	}
 686
 687	if (rgid != (gid_t) -1)
 688		new->gid = krgid;
 689	if (egid != (gid_t) -1)
 690		new->egid = kegid;
 691	if (sgid != (gid_t) -1)
 692		new->sgid = ksgid;
 693	new->fsgid = new->egid;
 694
 695	return commit_creds(new);
 696
 697error:
 698	abort_creds(new);
 699	return retval;
 700}
 701
 702SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 703{
 704	const struct cred *cred = current_cred();
 705	int retval;
 706	gid_t rgid, egid, sgid;
 707
 708	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 709	egid = from_kgid_munged(cred->user_ns, cred->egid);
 710	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 711
 712	if (!(retval   = put_user(rgid, rgidp)) &&
 713	    !(retval   = put_user(egid, egidp)))
 714		retval = put_user(sgid, sgidp);
 
 
 
 715
 716	return retval;
 717}
 718
 719
 720/*
 721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 723 * whatever uid it wants to). It normally shadows "euid", except when
 724 * explicitly set by setfsuid() or for access..
 725 */
 726SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 727{
 728	const struct cred *old;
 729	struct cred *new;
 730	uid_t old_fsuid;
 731	kuid_t kuid;
 732
 733	old = current_cred();
 734	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 735
 736	kuid = make_kuid(old->user_ns, uid);
 737	if (!uid_valid(kuid))
 738		return old_fsuid;
 739
 740	new = prepare_creds();
 741	if (!new)
 742		return old_fsuid;
 743
 744	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 745	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 746	    ns_capable(old->user_ns, CAP_SETUID)) {
 747		if (!uid_eq(kuid, old->fsuid)) {
 748			new->fsuid = kuid;
 749			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 750				goto change_okay;
 751		}
 752	}
 753
 754	abort_creds(new);
 755	return old_fsuid;
 756
 757change_okay:
 758	commit_creds(new);
 759	return old_fsuid;
 760}
 761
 762/*
 763 * Samma på svenska..
 764 */
 765SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 766{
 767	const struct cred *old;
 768	struct cred *new;
 769	gid_t old_fsgid;
 770	kgid_t kgid;
 771
 772	old = current_cred();
 773	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 774
 775	kgid = make_kgid(old->user_ns, gid);
 776	if (!gid_valid(kgid))
 777		return old_fsgid;
 778
 779	new = prepare_creds();
 780	if (!new)
 781		return old_fsgid;
 782
 783	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 784	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 785	    ns_capable(old->user_ns, CAP_SETGID)) {
 786		if (!gid_eq(kgid, old->fsgid)) {
 787			new->fsgid = kgid;
 788			goto change_okay;
 789		}
 790	}
 791
 792	abort_creds(new);
 793	return old_fsgid;
 794
 795change_okay:
 796	commit_creds(new);
 797	return old_fsgid;
 798}
 
 799
 800/**
 801 * sys_getpid - return the thread group id of the current process
 802 *
 803 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 804 * the pid are identical unless CLONE_THREAD was specified on clone() in
 805 * which case the tgid is the same in all threads of the same group.
 806 *
 807 * This is SMP safe as current->tgid does not change.
 808 */
 809SYSCALL_DEFINE0(getpid)
 810{
 811	return task_tgid_vnr(current);
 812}
 813
 814/* Thread ID - the internal kernel "pid" */
 815SYSCALL_DEFINE0(gettid)
 816{
 817	return task_pid_vnr(current);
 818}
 819
 820/*
 821 * Accessing ->real_parent is not SMP-safe, it could
 822 * change from under us. However, we can use a stale
 823 * value of ->real_parent under rcu_read_lock(), see
 824 * release_task()->call_rcu(delayed_put_task_struct).
 825 */
 826SYSCALL_DEFINE0(getppid)
 827{
 828	int pid;
 829
 830	rcu_read_lock();
 831	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 832	rcu_read_unlock();
 833
 834	return pid;
 835}
 836
 837SYSCALL_DEFINE0(getuid)
 838{
 839	/* Only we change this so SMP safe */
 840	return from_kuid_munged(current_user_ns(), current_uid());
 841}
 842
 843SYSCALL_DEFINE0(geteuid)
 844{
 845	/* Only we change this so SMP safe */
 846	return from_kuid_munged(current_user_ns(), current_euid());
 847}
 848
 849SYSCALL_DEFINE0(getgid)
 850{
 851	/* Only we change this so SMP safe */
 852	return from_kgid_munged(current_user_ns(), current_gid());
 853}
 854
 855SYSCALL_DEFINE0(getegid)
 856{
 857	/* Only we change this so SMP safe */
 858	return from_kgid_munged(current_user_ns(), current_egid());
 859}
 860
 861void do_sys_times(struct tms *tms)
 862{
 863	cputime_t tgutime, tgstime, cutime, cstime;
 864
 865	spin_lock_irq(&current->sighand->siglock);
 866	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 867	cutime = current->signal->cutime;
 868	cstime = current->signal->cstime;
 869	spin_unlock_irq(&current->sighand->siglock);
 870	tms->tms_utime = cputime_to_clock_t(tgutime);
 871	tms->tms_stime = cputime_to_clock_t(tgstime);
 872	tms->tms_cutime = cputime_to_clock_t(cutime);
 873	tms->tms_cstime = cputime_to_clock_t(cstime);
 874}
 875
 876SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 877{
 878	if (tbuf) {
 879		struct tms tmp;
 880
 881		do_sys_times(&tmp);
 882		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 883			return -EFAULT;
 884	}
 885	force_successful_syscall_return();
 886	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 887}
 888
 889/*
 890 * This needs some heavy checking ...
 891 * I just haven't the stomach for it. I also don't fully
 892 * understand sessions/pgrp etc. Let somebody who does explain it.
 893 *
 894 * OK, I think I have the protection semantics right.... this is really
 895 * only important on a multi-user system anyway, to make sure one user
 896 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 897 *
 898 * !PF_FORKNOEXEC check to conform completely to POSIX.
 899 */
 900SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 901{
 902	struct task_struct *p;
 903	struct task_struct *group_leader = current->group_leader;
 904	struct pid *pgrp;
 905	int err;
 906
 907	if (!pid)
 908		pid = task_pid_vnr(group_leader);
 909	if (!pgid)
 910		pgid = pid;
 911	if (pgid < 0)
 912		return -EINVAL;
 913	rcu_read_lock();
 914
 915	/* From this point forward we keep holding onto the tasklist lock
 916	 * so that our parent does not change from under us. -DaveM
 917	 */
 918	write_lock_irq(&tasklist_lock);
 919
 920	err = -ESRCH;
 921	p = find_task_by_vpid(pid);
 922	if (!p)
 923		goto out;
 924
 925	err = -EINVAL;
 926	if (!thread_group_leader(p))
 927		goto out;
 928
 929	if (same_thread_group(p->real_parent, group_leader)) {
 930		err = -EPERM;
 931		if (task_session(p) != task_session(group_leader))
 932			goto out;
 933		err = -EACCES;
 934		if (!(p->flags & PF_FORKNOEXEC))
 935			goto out;
 936	} else {
 937		err = -ESRCH;
 938		if (p != group_leader)
 939			goto out;
 940	}
 941
 942	err = -EPERM;
 943	if (p->signal->leader)
 944		goto out;
 945
 946	pgrp = task_pid(p);
 947	if (pgid != pid) {
 948		struct task_struct *g;
 949
 950		pgrp = find_vpid(pgid);
 951		g = pid_task(pgrp, PIDTYPE_PGID);
 952		if (!g || task_session(g) != task_session(group_leader))
 953			goto out;
 954	}
 955
 956	err = security_task_setpgid(p, pgid);
 957	if (err)
 958		goto out;
 959
 960	if (task_pgrp(p) != pgrp)
 961		change_pid(p, PIDTYPE_PGID, pgrp);
 962
 963	err = 0;
 964out:
 965	/* All paths lead to here, thus we are safe. -DaveM */
 966	write_unlock_irq(&tasklist_lock);
 967	rcu_read_unlock();
 968	return err;
 969}
 970
 971SYSCALL_DEFINE1(getpgid, pid_t, pid)
 972{
 973	struct task_struct *p;
 974	struct pid *grp;
 975	int retval;
 976
 977	rcu_read_lock();
 978	if (!pid)
 979		grp = task_pgrp(current);
 980	else {
 981		retval = -ESRCH;
 982		p = find_task_by_vpid(pid);
 983		if (!p)
 984			goto out;
 985		grp = task_pgrp(p);
 986		if (!grp)
 987			goto out;
 988
 989		retval = security_task_getpgid(p);
 990		if (retval)
 991			goto out;
 992	}
 993	retval = pid_vnr(grp);
 994out:
 995	rcu_read_unlock();
 996	return retval;
 997}
 998
 999#ifdef __ARCH_WANT_SYS_GETPGRP
1000
1001SYSCALL_DEFINE0(getpgrp)
1002{
1003	return sys_getpgid(0);
1004}
1005
1006#endif
1007
1008SYSCALL_DEFINE1(getsid, pid_t, pid)
1009{
1010	struct task_struct *p;
1011	struct pid *sid;
1012	int retval;
1013
1014	rcu_read_lock();
1015	if (!pid)
1016		sid = task_session(current);
1017	else {
1018		retval = -ESRCH;
1019		p = find_task_by_vpid(pid);
1020		if (!p)
1021			goto out;
1022		sid = task_session(p);
1023		if (!sid)
1024			goto out;
1025
1026		retval = security_task_getsid(p);
1027		if (retval)
1028			goto out;
1029	}
1030	retval = pid_vnr(sid);
1031out:
1032	rcu_read_unlock();
1033	return retval;
1034}
1035
1036static void set_special_pids(struct pid *pid)
1037{
1038	struct task_struct *curr = current->group_leader;
1039
1040	if (task_session(curr) != pid)
1041		change_pid(curr, PIDTYPE_SID, pid);
1042
1043	if (task_pgrp(curr) != pid)
1044		change_pid(curr, PIDTYPE_PGID, pid);
1045}
1046
1047SYSCALL_DEFINE0(setsid)
1048{
1049	struct task_struct *group_leader = current->group_leader;
1050	struct pid *sid = task_pid(group_leader);
1051	pid_t session = pid_vnr(sid);
1052	int err = -EPERM;
1053
1054	write_lock_irq(&tasklist_lock);
1055	/* Fail if I am already a session leader */
1056	if (group_leader->signal->leader)
1057		goto out;
1058
1059	/* Fail if a process group id already exists that equals the
1060	 * proposed session id.
1061	 */
1062	if (pid_task(sid, PIDTYPE_PGID))
1063		goto out;
1064
1065	group_leader->signal->leader = 1;
1066	set_special_pids(sid);
1067
1068	proc_clear_tty(group_leader);
1069
1070	err = session;
1071out:
1072	write_unlock_irq(&tasklist_lock);
1073	if (err > 0) {
1074		proc_sid_connector(group_leader);
1075		sched_autogroup_create_attach(group_leader);
1076	}
1077	return err;
1078}
1079
1080DECLARE_RWSEM(uts_sem);
1081
1082#ifdef COMPAT_UTS_MACHINE
1083#define override_architecture(name) \
1084	(personality(current->personality) == PER_LINUX32 && \
1085	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1086		      sizeof(COMPAT_UTS_MACHINE)))
1087#else
1088#define override_architecture(name)	0
1089#endif
1090
1091/*
1092 * Work around broken programs that cannot handle "Linux 3.0".
1093 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
 
1094 */
1095static int override_release(char __user *release, size_t len)
1096{
1097	int ret = 0;
1098
1099	if (current->personality & UNAME26) {
1100		const char *rest = UTS_RELEASE;
1101		char buf[65] = { 0 };
1102		int ndots = 0;
1103		unsigned v;
1104		size_t copy;
1105
1106		while (*rest) {
1107			if (*rest == '.' && ++ndots >= 3)
1108				break;
1109			if (!isdigit(*rest) && *rest != '.')
1110				break;
1111			rest++;
1112		}
1113		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1114		copy = clamp_t(size_t, len, 1, sizeof(buf));
1115		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1116		ret = copy_to_user(release, buf, copy + 1);
1117	}
1118	return ret;
1119}
1120
1121SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1122{
1123	int errno = 0;
1124
1125	down_read(&uts_sem);
1126	if (copy_to_user(name, utsname(), sizeof *name))
1127		errno = -EFAULT;
1128	up_read(&uts_sem);
1129
1130	if (!errno && override_release(name->release, sizeof(name->release)))
1131		errno = -EFAULT;
1132	if (!errno && override_architecture(name))
1133		errno = -EFAULT;
1134	return errno;
1135}
1136
1137#ifdef __ARCH_WANT_SYS_OLD_UNAME
1138/*
1139 * Old cruft
1140 */
1141SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1142{
1143	int error = 0;
1144
1145	if (!name)
1146		return -EFAULT;
1147
1148	down_read(&uts_sem);
1149	if (copy_to_user(name, utsname(), sizeof(*name)))
1150		error = -EFAULT;
1151	up_read(&uts_sem);
1152
1153	if (!error && override_release(name->release, sizeof(name->release)))
1154		error = -EFAULT;
1155	if (!error && override_architecture(name))
1156		error = -EFAULT;
1157	return error;
1158}
1159
1160SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1161{
1162	int error;
1163
1164	if (!name)
1165		return -EFAULT;
1166	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1167		return -EFAULT;
1168
1169	down_read(&uts_sem);
1170	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1171			       __OLD_UTS_LEN);
1172	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1173	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1174				__OLD_UTS_LEN);
1175	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1176	error |= __copy_to_user(&name->release, &utsname()->release,
1177				__OLD_UTS_LEN);
1178	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1179	error |= __copy_to_user(&name->version, &utsname()->version,
1180				__OLD_UTS_LEN);
1181	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1182	error |= __copy_to_user(&name->machine, &utsname()->machine,
1183				__OLD_UTS_LEN);
1184	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1185	up_read(&uts_sem);
1186
1187	if (!error && override_architecture(name))
1188		error = -EFAULT;
1189	if (!error && override_release(name->release, sizeof(name->release)))
1190		error = -EFAULT;
1191	return error ? -EFAULT : 0;
1192}
1193#endif
1194
1195SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1196{
1197	int errno;
1198	char tmp[__NEW_UTS_LEN];
1199
1200	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1201		return -EPERM;
1202
1203	if (len < 0 || len > __NEW_UTS_LEN)
1204		return -EINVAL;
1205	down_write(&uts_sem);
1206	errno = -EFAULT;
1207	if (!copy_from_user(tmp, name, len)) {
1208		struct new_utsname *u = utsname();
1209
1210		memcpy(u->nodename, tmp, len);
1211		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1212		errno = 0;
1213		uts_proc_notify(UTS_PROC_HOSTNAME);
1214	}
1215	up_write(&uts_sem);
1216	return errno;
1217}
1218
1219#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220
1221SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1222{
1223	int i, errno;
1224	struct new_utsname *u;
1225
1226	if (len < 0)
1227		return -EINVAL;
1228	down_read(&uts_sem);
1229	u = utsname();
1230	i = 1 + strlen(u->nodename);
1231	if (i > len)
1232		i = len;
1233	errno = 0;
1234	if (copy_to_user(name, u->nodename, i))
1235		errno = -EFAULT;
1236	up_read(&uts_sem);
1237	return errno;
1238}
1239
1240#endif
1241
1242/*
1243 * Only setdomainname; getdomainname can be implemented by calling
1244 * uname()
1245 */
1246SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1247{
1248	int errno;
1249	char tmp[__NEW_UTS_LEN];
1250
1251	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1252		return -EPERM;
1253	if (len < 0 || len > __NEW_UTS_LEN)
1254		return -EINVAL;
1255
1256	down_write(&uts_sem);
1257	errno = -EFAULT;
1258	if (!copy_from_user(tmp, name, len)) {
1259		struct new_utsname *u = utsname();
1260
1261		memcpy(u->domainname, tmp, len);
1262		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1263		errno = 0;
1264		uts_proc_notify(UTS_PROC_DOMAINNAME);
1265	}
1266	up_write(&uts_sem);
1267	return errno;
1268}
1269
1270SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1271{
1272	struct rlimit value;
1273	int ret;
1274
1275	ret = do_prlimit(current, resource, NULL, &value);
1276	if (!ret)
1277		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1278
1279	return ret;
1280}
1281
1282#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1283
1284/*
1285 *	Back compatibility for getrlimit. Needed for some apps.
1286 */
1287 
1288SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1289		struct rlimit __user *, rlim)
1290{
1291	struct rlimit x;
1292	if (resource >= RLIM_NLIMITS)
1293		return -EINVAL;
1294
1295	task_lock(current->group_leader);
1296	x = current->signal->rlim[resource];
1297	task_unlock(current->group_leader);
1298	if (x.rlim_cur > 0x7FFFFFFF)
1299		x.rlim_cur = 0x7FFFFFFF;
1300	if (x.rlim_max > 0x7FFFFFFF)
1301		x.rlim_max = 0x7FFFFFFF;
1302	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1303}
1304
1305#endif
1306
1307static inline bool rlim64_is_infinity(__u64 rlim64)
1308{
1309#if BITS_PER_LONG < 64
1310	return rlim64 >= ULONG_MAX;
1311#else
1312	return rlim64 == RLIM64_INFINITY;
1313#endif
1314}
1315
1316static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1317{
1318	if (rlim->rlim_cur == RLIM_INFINITY)
1319		rlim64->rlim_cur = RLIM64_INFINITY;
1320	else
1321		rlim64->rlim_cur = rlim->rlim_cur;
1322	if (rlim->rlim_max == RLIM_INFINITY)
1323		rlim64->rlim_max = RLIM64_INFINITY;
1324	else
1325		rlim64->rlim_max = rlim->rlim_max;
1326}
1327
1328static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1329{
1330	if (rlim64_is_infinity(rlim64->rlim_cur))
1331		rlim->rlim_cur = RLIM_INFINITY;
1332	else
1333		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1334	if (rlim64_is_infinity(rlim64->rlim_max))
1335		rlim->rlim_max = RLIM_INFINITY;
1336	else
1337		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1338}
1339
1340/* make sure you are allowed to change @tsk limits before calling this */
1341int do_prlimit(struct task_struct *tsk, unsigned int resource,
1342		struct rlimit *new_rlim, struct rlimit *old_rlim)
1343{
1344	struct rlimit *rlim;
1345	int retval = 0;
1346
1347	if (resource >= RLIM_NLIMITS)
1348		return -EINVAL;
1349	if (new_rlim) {
1350		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1351			return -EINVAL;
1352		if (resource == RLIMIT_NOFILE &&
1353				new_rlim->rlim_max > sysctl_nr_open)
1354			return -EPERM;
1355	}
1356
1357	/* protect tsk->signal and tsk->sighand from disappearing */
1358	read_lock(&tasklist_lock);
1359	if (!tsk->sighand) {
1360		retval = -ESRCH;
1361		goto out;
1362	}
1363
1364	rlim = tsk->signal->rlim + resource;
1365	task_lock(tsk->group_leader);
1366	if (new_rlim) {
1367		/* Keep the capable check against init_user_ns until
1368		   cgroups can contain all limits */
1369		if (new_rlim->rlim_max > rlim->rlim_max &&
1370				!capable(CAP_SYS_RESOURCE))
1371			retval = -EPERM;
1372		if (!retval)
1373			retval = security_task_setrlimit(tsk->group_leader,
1374					resource, new_rlim);
1375		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1376			/*
1377			 * The caller is asking for an immediate RLIMIT_CPU
1378			 * expiry.  But we use the zero value to mean "it was
1379			 * never set".  So let's cheat and make it one second
1380			 * instead
1381			 */
1382			new_rlim->rlim_cur = 1;
1383		}
1384	}
1385	if (!retval) {
1386		if (old_rlim)
1387			*old_rlim = *rlim;
1388		if (new_rlim)
1389			*rlim = *new_rlim;
1390	}
1391	task_unlock(tsk->group_leader);
1392
1393	/*
1394	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1395	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1396	 * very long-standing error, and fixing it now risks breakage of
1397	 * applications, so we live with it
1398	 */
1399	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1400			 new_rlim->rlim_cur != RLIM_INFINITY)
 
1401		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1402out:
1403	read_unlock(&tasklist_lock);
1404	return retval;
1405}
1406
1407/* rcu lock must be held */
1408static int check_prlimit_permission(struct task_struct *task)
1409{
1410	const struct cred *cred = current_cred(), *tcred;
1411
1412	if (current == task)
1413		return 0;
1414
1415	tcred = __task_cred(task);
1416	if (uid_eq(cred->uid, tcred->euid) &&
1417	    uid_eq(cred->uid, tcred->suid) &&
1418	    uid_eq(cred->uid, tcred->uid)  &&
1419	    gid_eq(cred->gid, tcred->egid) &&
1420	    gid_eq(cred->gid, tcred->sgid) &&
1421	    gid_eq(cred->gid, tcred->gid))
1422		return 0;
1423	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1424		return 0;
1425
1426	return -EPERM;
1427}
1428
1429SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430		const struct rlimit64 __user *, new_rlim,
1431		struct rlimit64 __user *, old_rlim)
1432{
1433	struct rlimit64 old64, new64;
1434	struct rlimit old, new;
1435	struct task_struct *tsk;
1436	int ret;
1437
1438	if (new_rlim) {
1439		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440			return -EFAULT;
1441		rlim64_to_rlim(&new64, &new);
1442	}
1443
1444	rcu_read_lock();
1445	tsk = pid ? find_task_by_vpid(pid) : current;
1446	if (!tsk) {
1447		rcu_read_unlock();
1448		return -ESRCH;
1449	}
1450	ret = check_prlimit_permission(tsk);
1451	if (ret) {
1452		rcu_read_unlock();
1453		return ret;
1454	}
1455	get_task_struct(tsk);
1456	rcu_read_unlock();
1457
1458	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459			old_rlim ? &old : NULL);
1460
1461	if (!ret && old_rlim) {
1462		rlim_to_rlim64(&old, &old64);
1463		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464			ret = -EFAULT;
1465	}
1466
1467	put_task_struct(tsk);
1468	return ret;
1469}
1470
1471SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472{
1473	struct rlimit new_rlim;
1474
1475	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476		return -EFAULT;
1477	return do_prlimit(current, resource, &new_rlim, NULL);
1478}
1479
1480/*
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*.  After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this.  It will make moving the rest of the information
1485 * a lot simpler!  (Which we're not doing right now because we're not
1486 * measuring them yet).
1487 *
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters.  But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums.  We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
1495 *
1496 * Locking:
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for  the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded.  Thread traversal is now safe with
1500 * the siglock held.
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded,  as no one else can take our signal_struct away, no one
1503 * else can  reap the  children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should  place a read memory barrier when we avoid the lock.
1507 * On the writer side,  write memory barrier is implied in  __exit_signal
1508 * as __exit_signal releases  the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
1510 *
1511 */
1512
1513static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1514{
1515	r->ru_nvcsw += t->nvcsw;
1516	r->ru_nivcsw += t->nivcsw;
1517	r->ru_minflt += t->min_flt;
1518	r->ru_majflt += t->maj_flt;
1519	r->ru_inblock += task_io_get_inblock(t);
1520	r->ru_oublock += task_io_get_oublock(t);
1521}
1522
1523static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524{
1525	struct task_struct *t;
1526	unsigned long flags;
1527	cputime_t tgutime, tgstime, utime, stime;
1528	unsigned long maxrss = 0;
1529
1530	memset((char *) r, 0, sizeof *r);
1531	utime = stime = 0;
1532
1533	if (who == RUSAGE_THREAD) {
1534		task_cputime_adjusted(current, &utime, &stime);
1535		accumulate_thread_rusage(p, r);
1536		maxrss = p->signal->maxrss;
1537		goto out;
1538	}
1539
1540	if (!lock_task_sighand(p, &flags))
1541		return;
1542
1543	switch (who) {
1544		case RUSAGE_BOTH:
1545		case RUSAGE_CHILDREN:
1546			utime = p->signal->cutime;
1547			stime = p->signal->cstime;
1548			r->ru_nvcsw = p->signal->cnvcsw;
1549			r->ru_nivcsw = p->signal->cnivcsw;
1550			r->ru_minflt = p->signal->cmin_flt;
1551			r->ru_majflt = p->signal->cmaj_flt;
1552			r->ru_inblock = p->signal->cinblock;
1553			r->ru_oublock = p->signal->coublock;
1554			maxrss = p->signal->cmaxrss;
1555
1556			if (who == RUSAGE_CHILDREN)
1557				break;
1558
1559		case RUSAGE_SELF:
1560			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1561			utime += tgutime;
1562			stime += tgstime;
1563			r->ru_nvcsw += p->signal->nvcsw;
1564			r->ru_nivcsw += p->signal->nivcsw;
1565			r->ru_minflt += p->signal->min_flt;
1566			r->ru_majflt += p->signal->maj_flt;
1567			r->ru_inblock += p->signal->inblock;
1568			r->ru_oublock += p->signal->oublock;
1569			if (maxrss < p->signal->maxrss)
1570				maxrss = p->signal->maxrss;
1571			t = p;
1572			do {
1573				accumulate_thread_rusage(t, r);
1574			} while_each_thread(p, t);
1575			break;
1576
1577		default:
1578			BUG();
1579	}
1580	unlock_task_sighand(p, &flags);
1581
1582out:
1583	cputime_to_timeval(utime, &r->ru_utime);
1584	cputime_to_timeval(stime, &r->ru_stime);
1585
1586	if (who != RUSAGE_CHILDREN) {
1587		struct mm_struct *mm = get_task_mm(p);
 
1588		if (mm) {
1589			setmax_mm_hiwater_rss(&maxrss, mm);
1590			mmput(mm);
1591		}
1592	}
1593	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1594}
1595
1596int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1597{
1598	struct rusage r;
 
1599	k_getrusage(p, who, &r);
1600	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1601}
1602
1603SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1604{
1605	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1606	    who != RUSAGE_THREAD)
1607		return -EINVAL;
1608	return getrusage(current, who, ru);
1609}
1610
1611#ifdef CONFIG_COMPAT
1612COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1613{
1614	struct rusage r;
1615
1616	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1617	    who != RUSAGE_THREAD)
1618		return -EINVAL;
1619
1620	k_getrusage(current, who, &r);
1621	return put_compat_rusage(&r, ru);
1622}
1623#endif
1624
1625SYSCALL_DEFINE1(umask, int, mask)
1626{
1627	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1628	return mask;
1629}
1630
1631static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1632{
1633	struct fd exe;
 
1634	struct inode *inode;
1635	int err;
1636
1637	exe = fdget(fd);
1638	if (!exe.file)
1639		return -EBADF;
1640
1641	inode = file_inode(exe.file);
1642
1643	/*
1644	 * Because the original mm->exe_file points to executable file, make
1645	 * sure that this one is executable as well, to avoid breaking an
1646	 * overall picture.
1647	 */
1648	err = -EACCES;
1649	if (!S_ISREG(inode->i_mode)	||
1650	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1651		goto exit;
1652
1653	err = inode_permission(inode, MAY_EXEC);
1654	if (err)
1655		goto exit;
1656
1657	down_write(&mm->mmap_sem);
1658
1659	/*
1660	 * Forbid mm->exe_file change if old file still mapped.
1661	 */
 
1662	err = -EBUSY;
1663	if (mm->exe_file) {
1664		struct vm_area_struct *vma;
1665
1666		for (vma = mm->mmap; vma; vma = vma->vm_next)
1667			if (vma->vm_file &&
1668			    path_equal(&vma->vm_file->f_path,
1669				       &mm->exe_file->f_path))
1670				goto exit_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671	}
1672
1673	/*
1674	 * The symlink can be changed only once, just to disallow arbitrary
1675	 * transitions malicious software might bring in. This means one
1676	 * could make a snapshot over all processes running and monitor
1677	 * /proc/pid/exe changes to notice unusual activity if needed.
1678	 */
1679	err = -EPERM;
1680	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1681		goto exit_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682
1683	err = 0;
1684	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1685exit_unlock:
1686	up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688exit:
1689	fdput(exe);
1690	return err;
1691}
1692
1693static int prctl_set_mm(int opt, unsigned long addr,
1694			unsigned long arg4, unsigned long arg5)
1695{
1696	unsigned long rlim = rlimit(RLIMIT_DATA);
1697	struct mm_struct *mm = current->mm;
 
1698	struct vm_area_struct *vma;
1699	int error;
1700
1701	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
 
 
1702		return -EINVAL;
1703
 
 
 
 
 
1704	if (!capable(CAP_SYS_RESOURCE))
1705		return -EPERM;
1706
1707	if (opt == PR_SET_MM_EXE_FILE)
1708		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1709
 
 
 
1710	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1711		return -EINVAL;
1712
1713	error = -EINVAL;
1714
1715	down_read(&mm->mmap_sem);
1716	vma = find_vma(mm, addr);
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718	switch (opt) {
1719	case PR_SET_MM_START_CODE:
1720		mm->start_code = addr;
1721		break;
1722	case PR_SET_MM_END_CODE:
1723		mm->end_code = addr;
1724		break;
1725	case PR_SET_MM_START_DATA:
1726		mm->start_data = addr;
1727		break;
1728	case PR_SET_MM_END_DATA:
1729		mm->end_data = addr;
 
 
 
1730		break;
1731
1732	case PR_SET_MM_START_BRK:
1733		if (addr <= mm->end_data)
1734			goto out;
1735
1736		if (rlim < RLIM_INFINITY &&
1737		    (mm->brk - addr) +
1738		    (mm->end_data - mm->start_data) > rlim)
1739			goto out;
1740
1741		mm->start_brk = addr;
1742		break;
1743
1744	case PR_SET_MM_BRK:
1745		if (addr <= mm->end_data)
1746			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748		if (rlim < RLIM_INFINITY &&
1749		    (addr - mm->start_brk) +
1750		    (mm->end_data - mm->start_data) > rlim)
1751			goto out;
1752
1753		mm->brk = addr;
1754		break;
1755
 
1756	/*
1757	 * If command line arguments and environment
1758	 * are placed somewhere else on stack, we can
1759	 * set them up here, ARG_START/END to setup
1760	 * command line argumets and ENV_START/END
1761	 * for environment.
1762	 */
1763	case PR_SET_MM_START_STACK:
1764	case PR_SET_MM_ARG_START:
1765	case PR_SET_MM_ARG_END:
1766	case PR_SET_MM_ENV_START:
1767	case PR_SET_MM_ENV_END:
1768		if (!vma) {
1769			error = -EFAULT;
1770			goto out;
1771		}
1772		if (opt == PR_SET_MM_START_STACK)
1773			mm->start_stack = addr;
1774		else if (opt == PR_SET_MM_ARG_START)
1775			mm->arg_start = addr;
1776		else if (opt == PR_SET_MM_ARG_END)
1777			mm->arg_end = addr;
1778		else if (opt == PR_SET_MM_ENV_START)
1779			mm->env_start = addr;
1780		else if (opt == PR_SET_MM_ENV_END)
1781			mm->env_end = addr;
1782		break;
1783
1784	/*
1785	 * This doesn't move auxiliary vector itself
1786	 * since it's pinned to mm_struct, but allow
1787	 * to fill vector with new values. It's up
1788	 * to a caller to provide sane values here
1789	 * otherwise user space tools which use this
1790	 * vector might be unhappy.
1791	 */
1792	case PR_SET_MM_AUXV: {
1793		unsigned long user_auxv[AT_VECTOR_SIZE];
1794
1795		if (arg4 > sizeof(user_auxv))
1796			goto out;
1797		up_read(&mm->mmap_sem);
1798
1799		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1800			return -EFAULT;
1801
1802		/* Make sure the last entry is always AT_NULL */
1803		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1804		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1805
1806		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1807
1808		task_lock(current);
1809		memcpy(mm->saved_auxv, user_auxv, arg4);
1810		task_unlock(current);
1811
1812		return 0;
1813	}
1814	default:
1815		goto out;
1816	}
1817
1818	error = 0;
1819out:
1820	up_read(&mm->mmap_sem);
1821	return error;
1822}
1823
1824#ifdef CONFIG_CHECKPOINT_RESTORE
1825static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1826{
1827	return put_user(me->clear_child_tid, tid_addr);
1828}
1829#else
1830static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1831{
1832	return -EINVAL;
1833}
1834#endif
1835
1836SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1837		unsigned long, arg4, unsigned long, arg5)
1838{
1839	struct task_struct *me = current;
1840	unsigned char comm[sizeof(me->comm)];
1841	long error;
1842
1843	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1844	if (error != -ENOSYS)
1845		return error;
1846
1847	error = 0;
1848	switch (option) {
1849	case PR_SET_PDEATHSIG:
1850		if (!valid_signal(arg2)) {
1851			error = -EINVAL;
1852			break;
1853		}
1854		me->pdeath_signal = arg2;
1855		break;
1856	case PR_GET_PDEATHSIG:
1857		error = put_user(me->pdeath_signal, (int __user *)arg2);
1858		break;
1859	case PR_GET_DUMPABLE:
1860		error = get_dumpable(me->mm);
1861		break;
1862	case PR_SET_DUMPABLE:
1863		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1864			error = -EINVAL;
1865			break;
1866		}
1867		set_dumpable(me->mm, arg2);
1868		break;
1869
1870	case PR_SET_UNALIGN:
1871		error = SET_UNALIGN_CTL(me, arg2);
1872		break;
1873	case PR_GET_UNALIGN:
1874		error = GET_UNALIGN_CTL(me, arg2);
1875		break;
1876	case PR_SET_FPEMU:
1877		error = SET_FPEMU_CTL(me, arg2);
1878		break;
1879	case PR_GET_FPEMU:
1880		error = GET_FPEMU_CTL(me, arg2);
1881		break;
1882	case PR_SET_FPEXC:
1883		error = SET_FPEXC_CTL(me, arg2);
1884		break;
1885	case PR_GET_FPEXC:
1886		error = GET_FPEXC_CTL(me, arg2);
1887		break;
1888	case PR_GET_TIMING:
1889		error = PR_TIMING_STATISTICAL;
1890		break;
1891	case PR_SET_TIMING:
1892		if (arg2 != PR_TIMING_STATISTICAL)
1893			error = -EINVAL;
1894		break;
1895	case PR_SET_NAME:
1896		comm[sizeof(me->comm) - 1] = 0;
1897		if (strncpy_from_user(comm, (char __user *)arg2,
1898				      sizeof(me->comm) - 1) < 0)
1899			return -EFAULT;
1900		set_task_comm(me, comm);
1901		proc_comm_connector(me);
1902		break;
1903	case PR_GET_NAME:
1904		get_task_comm(comm, me);
1905		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1906			return -EFAULT;
1907		break;
1908	case PR_GET_ENDIAN:
1909		error = GET_ENDIAN(me, arg2);
1910		break;
1911	case PR_SET_ENDIAN:
1912		error = SET_ENDIAN(me, arg2);
1913		break;
1914	case PR_GET_SECCOMP:
1915		error = prctl_get_seccomp();
1916		break;
1917	case PR_SET_SECCOMP:
1918		error = prctl_set_seccomp(arg2, (char __user *)arg3);
1919		break;
1920	case PR_GET_TSC:
1921		error = GET_TSC_CTL(arg2);
1922		break;
1923	case PR_SET_TSC:
1924		error = SET_TSC_CTL(arg2);
1925		break;
1926	case PR_TASK_PERF_EVENTS_DISABLE:
1927		error = perf_event_task_disable();
1928		break;
1929	case PR_TASK_PERF_EVENTS_ENABLE:
1930		error = perf_event_task_enable();
1931		break;
1932	case PR_GET_TIMERSLACK:
1933		error = current->timer_slack_ns;
 
 
 
1934		break;
1935	case PR_SET_TIMERSLACK:
1936		if (arg2 <= 0)
1937			current->timer_slack_ns =
1938					current->default_timer_slack_ns;
1939		else
1940			current->timer_slack_ns = arg2;
1941		break;
1942	case PR_MCE_KILL:
1943		if (arg4 | arg5)
1944			return -EINVAL;
1945		switch (arg2) {
1946		case PR_MCE_KILL_CLEAR:
1947			if (arg3 != 0)
1948				return -EINVAL;
1949			current->flags &= ~PF_MCE_PROCESS;
1950			break;
1951		case PR_MCE_KILL_SET:
1952			current->flags |= PF_MCE_PROCESS;
1953			if (arg3 == PR_MCE_KILL_EARLY)
1954				current->flags |= PF_MCE_EARLY;
1955			else if (arg3 == PR_MCE_KILL_LATE)
1956				current->flags &= ~PF_MCE_EARLY;
1957			else if (arg3 == PR_MCE_KILL_DEFAULT)
1958				current->flags &=
1959						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1960			else
1961				return -EINVAL;
1962			break;
1963		default:
1964			return -EINVAL;
1965		}
1966		break;
1967	case PR_MCE_KILL_GET:
1968		if (arg2 | arg3 | arg4 | arg5)
1969			return -EINVAL;
1970		if (current->flags & PF_MCE_PROCESS)
1971			error = (current->flags & PF_MCE_EARLY) ?
1972				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1973		else
1974			error = PR_MCE_KILL_DEFAULT;
1975		break;
1976	case PR_SET_MM:
1977		error = prctl_set_mm(arg2, arg3, arg4, arg5);
1978		break;
1979	case PR_GET_TID_ADDRESS:
1980		error = prctl_get_tid_address(me, (int __user **)arg2);
1981		break;
1982	case PR_SET_CHILD_SUBREAPER:
1983		me->signal->is_child_subreaper = !!arg2;
1984		break;
1985	case PR_GET_CHILD_SUBREAPER:
1986		error = put_user(me->signal->is_child_subreaper,
1987				 (int __user *)arg2);
1988		break;
1989	case PR_SET_NO_NEW_PRIVS:
1990		if (arg2 != 1 || arg3 || arg4 || arg5)
1991			return -EINVAL;
1992
1993		current->no_new_privs = 1;
1994		break;
1995	case PR_GET_NO_NEW_PRIVS:
1996		if (arg2 || arg3 || arg4 || arg5)
1997			return -EINVAL;
1998		return current->no_new_privs ? 1 : 0;
1999	case PR_GET_THP_DISABLE:
2000		if (arg2 || arg3 || arg4 || arg5)
2001			return -EINVAL;
2002		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2003		break;
2004	case PR_SET_THP_DISABLE:
2005		if (arg3 || arg4 || arg5)
2006			return -EINVAL;
2007		down_write(&me->mm->mmap_sem);
 
2008		if (arg2)
2009			me->mm->def_flags |= VM_NOHUGEPAGE;
2010		else
2011			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2012		up_write(&me->mm->mmap_sem);
2013		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	default:
2015		error = -EINVAL;
2016		break;
2017	}
2018	return error;
2019}
2020
2021SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2022		struct getcpu_cache __user *, unused)
2023{
2024	int err = 0;
2025	int cpu = raw_smp_processor_id();
 
2026	if (cpup)
2027		err |= put_user(cpu, cpup);
2028	if (nodep)
2029		err |= put_user(cpu_to_node(cpu), nodep);
2030	return err ? -EFAULT : 0;
2031}
2032
2033/**
2034 * do_sysinfo - fill in sysinfo struct
2035 * @info: pointer to buffer to fill
2036 */
2037static int do_sysinfo(struct sysinfo *info)
2038{
2039	unsigned long mem_total, sav_total;
2040	unsigned int mem_unit, bitcount;
2041	struct timespec tp;
2042
2043	memset(info, 0, sizeof(struct sysinfo));
2044
2045	get_monotonic_boottime(&tp);
2046	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2047
2048	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2049
2050	info->procs = nr_threads;
2051
2052	si_meminfo(info);
2053	si_swapinfo(info);
2054
2055	/*
2056	 * If the sum of all the available memory (i.e. ram + swap)
2057	 * is less than can be stored in a 32 bit unsigned long then
2058	 * we can be binary compatible with 2.2.x kernels.  If not,
2059	 * well, in that case 2.2.x was broken anyways...
2060	 *
2061	 *  -Erik Andersen <andersee@debian.org>
2062	 */
2063
2064	mem_total = info->totalram + info->totalswap;
2065	if (mem_total < info->totalram || mem_total < info->totalswap)
2066		goto out;
2067	bitcount = 0;
2068	mem_unit = info->mem_unit;
2069	while (mem_unit > 1) {
2070		bitcount++;
2071		mem_unit >>= 1;
2072		sav_total = mem_total;
2073		mem_total <<= 1;
2074		if (mem_total < sav_total)
2075			goto out;
2076	}
2077
2078	/*
2079	 * If mem_total did not overflow, multiply all memory values by
2080	 * info->mem_unit and set it to 1.  This leaves things compatible
2081	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2082	 * kernels...
2083	 */
2084
2085	info->mem_unit = 1;
2086	info->totalram <<= bitcount;
2087	info->freeram <<= bitcount;
2088	info->sharedram <<= bitcount;
2089	info->bufferram <<= bitcount;
2090	info->totalswap <<= bitcount;
2091	info->freeswap <<= bitcount;
2092	info->totalhigh <<= bitcount;
2093	info->freehigh <<= bitcount;
2094
2095out:
2096	return 0;
2097}
2098
2099SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2100{
2101	struct sysinfo val;
2102
2103	do_sysinfo(&val);
2104
2105	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2106		return -EFAULT;
2107
2108	return 0;
2109}
2110
2111#ifdef CONFIG_COMPAT
2112struct compat_sysinfo {
2113	s32 uptime;
2114	u32 loads[3];
2115	u32 totalram;
2116	u32 freeram;
2117	u32 sharedram;
2118	u32 bufferram;
2119	u32 totalswap;
2120	u32 freeswap;
2121	u16 procs;
2122	u16 pad;
2123	u32 totalhigh;
2124	u32 freehigh;
2125	u32 mem_unit;
2126	char _f[20-2*sizeof(u32)-sizeof(int)];
2127};
2128
2129COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2130{
2131	struct sysinfo s;
2132
2133	do_sysinfo(&s);
2134
2135	/* Check to see if any memory value is too large for 32-bit and scale
2136	 *  down if needed
2137	 */
2138	if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2139		int bitcount = 0;
2140
2141		while (s.mem_unit < PAGE_SIZE) {
2142			s.mem_unit <<= 1;
2143			bitcount++;
2144		}
2145
2146		s.totalram >>= bitcount;
2147		s.freeram >>= bitcount;
2148		s.sharedram >>= bitcount;
2149		s.bufferram >>= bitcount;
2150		s.totalswap >>= bitcount;
2151		s.freeswap >>= bitcount;
2152		s.totalhigh >>= bitcount;
2153		s.freehigh >>= bitcount;
2154	}
2155
2156	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2157	    __put_user(s.uptime, &info->uptime) ||
2158	    __put_user(s.loads[0], &info->loads[0]) ||
2159	    __put_user(s.loads[1], &info->loads[1]) ||
2160	    __put_user(s.loads[2], &info->loads[2]) ||
2161	    __put_user(s.totalram, &info->totalram) ||
2162	    __put_user(s.freeram, &info->freeram) ||
2163	    __put_user(s.sharedram, &info->sharedram) ||
2164	    __put_user(s.bufferram, &info->bufferram) ||
2165	    __put_user(s.totalswap, &info->totalswap) ||
2166	    __put_user(s.freeswap, &info->freeswap) ||
2167	    __put_user(s.procs, &info->procs) ||
2168	    __put_user(s.totalhigh, &info->totalhigh) ||
2169	    __put_user(s.freehigh, &info->freehigh) ||
2170	    __put_user(s.mem_unit, &info->mem_unit))
2171		return -EFAULT;
2172
2173	return 0;
2174}
2175#endif /* CONFIG_COMPAT */