Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
 
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <linux/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a, b)	(-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a, b)	(-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)		(-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)		(-EINVAL)
  93#endif
  94#ifndef MPX_ENABLE_MANAGEMENT
  95# define MPX_ENABLE_MANAGEMENT()	(-EINVAL)
  96#endif
  97#ifndef MPX_DISABLE_MANAGEMENT
  98# define MPX_DISABLE_MANAGEMENT()	(-EINVAL)
  99#endif
 100#ifndef GET_FP_MODE
 101# define GET_FP_MODE(a)		(-EINVAL)
 102#endif
 103#ifndef SET_FP_MODE
 104# define SET_FP_MODE(a,b)	(-EINVAL)
 105#endif
 106
 107/*
 108 * this is where the system-wide overflow UID and GID are defined, for
 109 * architectures that now have 32-bit UID/GID but didn't in the past
 110 */
 111
 112int overflowuid = DEFAULT_OVERFLOWUID;
 113int overflowgid = DEFAULT_OVERFLOWGID;
 114
 
 115EXPORT_SYMBOL(overflowuid);
 116EXPORT_SYMBOL(overflowgid);
 
 117
 118/*
 119 * the same as above, but for filesystems which can only store a 16-bit
 120 * UID and GID. as such, this is needed on all architectures
 121 */
 122
 123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 125
 126EXPORT_SYMBOL(fs_overflowuid);
 127EXPORT_SYMBOL(fs_overflowgid);
 128
 129/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130 * Returns true if current's euid is same as p's uid or euid,
 131 * or has CAP_SYS_NICE to p's user_ns.
 132 *
 133 * Called with rcu_read_lock, creds are safe
 134 */
 135static bool set_one_prio_perm(struct task_struct *p)
 136{
 137	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 138
 139	if (uid_eq(pcred->uid,  cred->euid) ||
 140	    uid_eq(pcred->euid, cred->euid))
 
 141		return true;
 142	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 143		return true;
 144	return false;
 145}
 146
 147/*
 148 * set the priority of a task
 149 * - the caller must hold the RCU read lock
 150 */
 151static int set_one_prio(struct task_struct *p, int niceval, int error)
 152{
 153	int no_nice;
 154
 155	if (!set_one_prio_perm(p)) {
 156		error = -EPERM;
 157		goto out;
 158	}
 159	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 160		error = -EACCES;
 161		goto out;
 162	}
 163	no_nice = security_task_setnice(p, niceval);
 164	if (no_nice) {
 165		error = no_nice;
 166		goto out;
 167	}
 168	if (error == -ESRCH)
 169		error = 0;
 170	set_user_nice(p, niceval);
 171out:
 172	return error;
 173}
 174
 175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 176{
 177	struct task_struct *g, *p;
 178	struct user_struct *user;
 179	const struct cred *cred = current_cred();
 180	int error = -EINVAL;
 181	struct pid *pgrp;
 182	kuid_t uid;
 183
 184	if (which > PRIO_USER || which < PRIO_PROCESS)
 185		goto out;
 186
 187	/* normalize: avoid signed division (rounding problems) */
 188	error = -ESRCH;
 189	if (niceval < MIN_NICE)
 190		niceval = MIN_NICE;
 191	if (niceval > MAX_NICE)
 192		niceval = MAX_NICE;
 193
 194	rcu_read_lock();
 195	read_lock(&tasklist_lock);
 196	switch (which) {
 197	case PRIO_PROCESS:
 198		if (who)
 199			p = find_task_by_vpid(who);
 200		else
 201			p = current;
 202		if (p)
 203			error = set_one_prio(p, niceval, error);
 204		break;
 205	case PRIO_PGRP:
 206		if (who)
 207			pgrp = find_vpid(who);
 208		else
 209			pgrp = task_pgrp(current);
 210		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 211			error = set_one_prio(p, niceval, error);
 212		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 213		break;
 214	case PRIO_USER:
 215		uid = make_kuid(cred->user_ns, who);
 216		user = cred->user;
 217		if (!who)
 218			uid = cred->uid;
 219		else if (!uid_eq(uid, cred->uid)) {
 220			user = find_user(uid);
 221			if (!user)
 222				goto out_unlock;	/* No processes for this user */
 223		}
 224		do_each_thread(g, p) {
 225			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 226				error = set_one_prio(p, niceval, error);
 227		} while_each_thread(g, p);
 228		if (!uid_eq(uid, cred->uid))
 229			free_uid(user);		/* For find_user() */
 230		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231	}
 232out_unlock:
 233	read_unlock(&tasklist_lock);
 234	rcu_read_unlock();
 235out:
 236	return error;
 237}
 238
 239/*
 240 * Ugh. To avoid negative return values, "getpriority()" will
 241 * not return the normal nice-value, but a negated value that
 242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 243 * to stay compatible.
 244 */
 245SYSCALL_DEFINE2(getpriority, int, which, int, who)
 246{
 247	struct task_struct *g, *p;
 248	struct user_struct *user;
 249	const struct cred *cred = current_cred();
 250	long niceval, retval = -ESRCH;
 251	struct pid *pgrp;
 252	kuid_t uid;
 253
 254	if (which > PRIO_USER || which < PRIO_PROCESS)
 255		return -EINVAL;
 256
 257	rcu_read_lock();
 258	read_lock(&tasklist_lock);
 259	switch (which) {
 260	case PRIO_PROCESS:
 261		if (who)
 262			p = find_task_by_vpid(who);
 263		else
 264			p = current;
 265		if (p) {
 266			niceval = nice_to_rlimit(task_nice(p));
 267			if (niceval > retval)
 268				retval = niceval;
 269		}
 270		break;
 271	case PRIO_PGRP:
 272		if (who)
 273			pgrp = find_vpid(who);
 274		else
 275			pgrp = task_pgrp(current);
 276		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 277			niceval = nice_to_rlimit(task_nice(p));
 278			if (niceval > retval)
 279				retval = niceval;
 280		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 281		break;
 282	case PRIO_USER:
 283		uid = make_kuid(cred->user_ns, who);
 284		user = cred->user;
 285		if (!who)
 286			uid = cred->uid;
 287		else if (!uid_eq(uid, cred->uid)) {
 288			user = find_user(uid);
 289			if (!user)
 290				goto out_unlock;	/* No processes for this user */
 291		}
 292		do_each_thread(g, p) {
 293			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 294				niceval = nice_to_rlimit(task_nice(p));
 295				if (niceval > retval)
 296					retval = niceval;
 297			}
 298		} while_each_thread(g, p);
 299		if (!uid_eq(uid, cred->uid))
 300			free_uid(user);		/* for find_user() */
 301		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302	}
 303out_unlock:
 304	read_unlock(&tasklist_lock);
 305	rcu_read_unlock();
 306
 307	return retval;
 308}
 309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310/*
 311 * Unprivileged users may change the real gid to the effective gid
 312 * or vice versa.  (BSD-style)
 313 *
 314 * If you set the real gid at all, or set the effective gid to a value not
 315 * equal to the real gid, then the saved gid is set to the new effective gid.
 316 *
 317 * This makes it possible for a setgid program to completely drop its
 318 * privileges, which is often a useful assertion to make when you are doing
 319 * a security audit over a program.
 320 *
 321 * The general idea is that a program which uses just setregid() will be
 322 * 100% compatible with BSD.  A program which uses just setgid() will be
 323 * 100% compatible with POSIX with saved IDs.
 324 *
 325 * SMP: There are not races, the GIDs are checked only by filesystem
 326 *      operations (as far as semantic preservation is concerned).
 327 */
 328#ifdef CONFIG_MULTIUSER
 329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 330{
 331	struct user_namespace *ns = current_user_ns();
 332	const struct cred *old;
 333	struct cred *new;
 334	int retval;
 335	kgid_t krgid, kegid;
 336
 337	krgid = make_kgid(ns, rgid);
 338	kegid = make_kgid(ns, egid);
 339
 340	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 341		return -EINVAL;
 342	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 343		return -EINVAL;
 344
 345	new = prepare_creds();
 346	if (!new)
 347		return -ENOMEM;
 348	old = current_cred();
 349
 350	retval = -EPERM;
 351	if (rgid != (gid_t) -1) {
 352		if (gid_eq(old->gid, krgid) ||
 353		    gid_eq(old->egid, krgid) ||
 354		    ns_capable(old->user_ns, CAP_SETGID))
 355			new->gid = krgid;
 356		else
 357			goto error;
 358	}
 359	if (egid != (gid_t) -1) {
 360		if (gid_eq(old->gid, kegid) ||
 361		    gid_eq(old->egid, kegid) ||
 362		    gid_eq(old->sgid, kegid) ||
 363		    ns_capable(old->user_ns, CAP_SETGID))
 364			new->egid = kegid;
 365		else
 366			goto error;
 367	}
 368
 369	if (rgid != (gid_t) -1 ||
 370	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 371		new->sgid = new->egid;
 372	new->fsgid = new->egid;
 373
 374	return commit_creds(new);
 375
 376error:
 377	abort_creds(new);
 378	return retval;
 379}
 380
 381/*
 382 * setgid() is implemented like SysV w/ SAVED_IDS
 383 *
 384 * SMP: Same implicit races as above.
 385 */
 386SYSCALL_DEFINE1(setgid, gid_t, gid)
 387{
 388	struct user_namespace *ns = current_user_ns();
 389	const struct cred *old;
 390	struct cred *new;
 391	int retval;
 392	kgid_t kgid;
 393
 394	kgid = make_kgid(ns, gid);
 395	if (!gid_valid(kgid))
 396		return -EINVAL;
 397
 398	new = prepare_creds();
 399	if (!new)
 400		return -ENOMEM;
 401	old = current_cred();
 402
 403	retval = -EPERM;
 404	if (ns_capable(old->user_ns, CAP_SETGID))
 405		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 406	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 407		new->egid = new->fsgid = kgid;
 408	else
 409		goto error;
 410
 411	return commit_creds(new);
 412
 413error:
 414	abort_creds(new);
 415	return retval;
 416}
 417
 418/*
 419 * change the user struct in a credentials set to match the new UID
 420 */
 421static int set_user(struct cred *new)
 422{
 423	struct user_struct *new_user;
 424
 425	new_user = alloc_uid(new->uid);
 426	if (!new_user)
 427		return -EAGAIN;
 428
 429	/*
 430	 * We don't fail in case of NPROC limit excess here because too many
 431	 * poorly written programs don't check set*uid() return code, assuming
 432	 * it never fails if called by root.  We may still enforce NPROC limit
 433	 * for programs doing set*uid()+execve() by harmlessly deferring the
 434	 * failure to the execve() stage.
 435	 */
 436	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 437			new_user != INIT_USER)
 438		current->flags |= PF_NPROC_EXCEEDED;
 439	else
 440		current->flags &= ~PF_NPROC_EXCEEDED;
 441
 442	free_uid(new->user);
 443	new->user = new_user;
 444	return 0;
 445}
 446
 447/*
 448 * Unprivileged users may change the real uid to the effective uid
 449 * or vice versa.  (BSD-style)
 450 *
 451 * If you set the real uid at all, or set the effective uid to a value not
 452 * equal to the real uid, then the saved uid is set to the new effective uid.
 453 *
 454 * This makes it possible for a setuid program to completely drop its
 455 * privileges, which is often a useful assertion to make when you are doing
 456 * a security audit over a program.
 457 *
 458 * The general idea is that a program which uses just setreuid() will be
 459 * 100% compatible with BSD.  A program which uses just setuid() will be
 460 * 100% compatible with POSIX with saved IDs.
 461 */
 462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 463{
 464	struct user_namespace *ns = current_user_ns();
 465	const struct cred *old;
 466	struct cred *new;
 467	int retval;
 468	kuid_t kruid, keuid;
 469
 470	kruid = make_kuid(ns, ruid);
 471	keuid = make_kuid(ns, euid);
 472
 473	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 474		return -EINVAL;
 475	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 476		return -EINVAL;
 477
 478	new = prepare_creds();
 479	if (!new)
 480		return -ENOMEM;
 481	old = current_cred();
 482
 483	retval = -EPERM;
 484	if (ruid != (uid_t) -1) {
 485		new->uid = kruid;
 486		if (!uid_eq(old->uid, kruid) &&
 487		    !uid_eq(old->euid, kruid) &&
 488		    !ns_capable(old->user_ns, CAP_SETUID))
 489			goto error;
 490	}
 491
 492	if (euid != (uid_t) -1) {
 493		new->euid = keuid;
 494		if (!uid_eq(old->uid, keuid) &&
 495		    !uid_eq(old->euid, keuid) &&
 496		    !uid_eq(old->suid, keuid) &&
 497		    !ns_capable(old->user_ns, CAP_SETUID))
 498			goto error;
 499	}
 500
 501	if (!uid_eq(new->uid, old->uid)) {
 502		retval = set_user(new);
 503		if (retval < 0)
 504			goto error;
 505	}
 506	if (ruid != (uid_t) -1 ||
 507	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 508		new->suid = new->euid;
 509	new->fsuid = new->euid;
 510
 511	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 512	if (retval < 0)
 513		goto error;
 514
 515	return commit_creds(new);
 516
 517error:
 518	abort_creds(new);
 519	return retval;
 520}
 521
 522/*
 523 * setuid() is implemented like SysV with SAVED_IDS
 524 *
 525 * Note that SAVED_ID's is deficient in that a setuid root program
 526 * like sendmail, for example, cannot set its uid to be a normal
 527 * user and then switch back, because if you're root, setuid() sets
 528 * the saved uid too.  If you don't like this, blame the bright people
 529 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 530 * will allow a root program to temporarily drop privileges and be able to
 531 * regain them by swapping the real and effective uid.
 532 */
 533SYSCALL_DEFINE1(setuid, uid_t, uid)
 534{
 535	struct user_namespace *ns = current_user_ns();
 536	const struct cred *old;
 537	struct cred *new;
 538	int retval;
 539	kuid_t kuid;
 540
 541	kuid = make_kuid(ns, uid);
 542	if (!uid_valid(kuid))
 543		return -EINVAL;
 544
 545	new = prepare_creds();
 546	if (!new)
 547		return -ENOMEM;
 548	old = current_cred();
 549
 550	retval = -EPERM;
 551	if (ns_capable(old->user_ns, CAP_SETUID)) {
 552		new->suid = new->uid = kuid;
 553		if (!uid_eq(kuid, old->uid)) {
 554			retval = set_user(new);
 555			if (retval < 0)
 556				goto error;
 557		}
 558	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 559		goto error;
 560	}
 561
 562	new->fsuid = new->euid = kuid;
 563
 564	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 565	if (retval < 0)
 566		goto error;
 567
 568	return commit_creds(new);
 569
 570error:
 571	abort_creds(new);
 572	return retval;
 573}
 574
 575
 576/*
 577 * This function implements a generic ability to update ruid, euid,
 578 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 579 */
 580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 581{
 582	struct user_namespace *ns = current_user_ns();
 583	const struct cred *old;
 584	struct cred *new;
 585	int retval;
 586	kuid_t kruid, keuid, ksuid;
 587
 588	kruid = make_kuid(ns, ruid);
 589	keuid = make_kuid(ns, euid);
 590	ksuid = make_kuid(ns, suid);
 591
 592	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 593		return -EINVAL;
 594
 595	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 596		return -EINVAL;
 597
 598	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 599		return -EINVAL;
 600
 601	new = prepare_creds();
 602	if (!new)
 603		return -ENOMEM;
 604
 605	old = current_cred();
 606
 607	retval = -EPERM;
 608	if (!ns_capable(old->user_ns, CAP_SETUID)) {
 609		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 610		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 611			goto error;
 612		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 613		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 614			goto error;
 615		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 616		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 617			goto error;
 618	}
 619
 620	if (ruid != (uid_t) -1) {
 621		new->uid = kruid;
 622		if (!uid_eq(kruid, old->uid)) {
 623			retval = set_user(new);
 624			if (retval < 0)
 625				goto error;
 626		}
 627	}
 628	if (euid != (uid_t) -1)
 629		new->euid = keuid;
 630	if (suid != (uid_t) -1)
 631		new->suid = ksuid;
 632	new->fsuid = new->euid;
 633
 634	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 635	if (retval < 0)
 636		goto error;
 637
 638	return commit_creds(new);
 639
 640error:
 641	abort_creds(new);
 642	return retval;
 643}
 644
 645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 646{
 647	const struct cred *cred = current_cred();
 648	int retval;
 649	uid_t ruid, euid, suid;
 650
 651	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 652	euid = from_kuid_munged(cred->user_ns, cred->euid);
 653	suid = from_kuid_munged(cred->user_ns, cred->suid);
 654
 655	retval = put_user(ruid, ruidp);
 656	if (!retval) {
 657		retval = put_user(euid, euidp);
 658		if (!retval)
 659			return put_user(suid, suidp);
 660	}
 661	return retval;
 662}
 663
 664/*
 665 * Same as above, but for rgid, egid, sgid.
 666 */
 667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 668{
 669	struct user_namespace *ns = current_user_ns();
 670	const struct cred *old;
 671	struct cred *new;
 672	int retval;
 673	kgid_t krgid, kegid, ksgid;
 674
 675	krgid = make_kgid(ns, rgid);
 676	kegid = make_kgid(ns, egid);
 677	ksgid = make_kgid(ns, sgid);
 678
 679	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 680		return -EINVAL;
 681	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 682		return -EINVAL;
 683	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 684		return -EINVAL;
 685
 686	new = prepare_creds();
 687	if (!new)
 688		return -ENOMEM;
 689	old = current_cred();
 690
 691	retval = -EPERM;
 692	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 693		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 694		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 695			goto error;
 696		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 697		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 698			goto error;
 699		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 700		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 701			goto error;
 702	}
 703
 704	if (rgid != (gid_t) -1)
 705		new->gid = krgid;
 706	if (egid != (gid_t) -1)
 707		new->egid = kegid;
 708	if (sgid != (gid_t) -1)
 709		new->sgid = ksgid;
 710	new->fsgid = new->egid;
 711
 712	return commit_creds(new);
 713
 714error:
 715	abort_creds(new);
 716	return retval;
 717}
 718
 719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 720{
 721	const struct cred *cred = current_cred();
 722	int retval;
 723	gid_t rgid, egid, sgid;
 724
 725	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 726	egid = from_kgid_munged(cred->user_ns, cred->egid);
 727	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 728
 729	retval = put_user(rgid, rgidp);
 730	if (!retval) {
 731		retval = put_user(egid, egidp);
 732		if (!retval)
 733			retval = put_user(sgid, sgidp);
 734	}
 735
 736	return retval;
 737}
 738
 739
 740/*
 741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 743 * whatever uid it wants to). It normally shadows "euid", except when
 744 * explicitly set by setfsuid() or for access..
 745 */
 746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 747{
 748	const struct cred *old;
 749	struct cred *new;
 750	uid_t old_fsuid;
 751	kuid_t kuid;
 752
 753	old = current_cred();
 754	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 755
 756	kuid = make_kuid(old->user_ns, uid);
 757	if (!uid_valid(kuid))
 758		return old_fsuid;
 759
 760	new = prepare_creds();
 761	if (!new)
 762		return old_fsuid;
 
 
 763
 764	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 765	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 766	    ns_capable(old->user_ns, CAP_SETUID)) {
 767		if (!uid_eq(kuid, old->fsuid)) {
 768			new->fsuid = kuid;
 769			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 770				goto change_okay;
 771		}
 772	}
 773
 774	abort_creds(new);
 775	return old_fsuid;
 776
 777change_okay:
 778	commit_creds(new);
 779	return old_fsuid;
 780}
 781
 782/*
 783 * Samma på svenska..
 784 */
 785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 786{
 787	const struct cred *old;
 788	struct cred *new;
 789	gid_t old_fsgid;
 790	kgid_t kgid;
 791
 792	old = current_cred();
 793	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 794
 795	kgid = make_kgid(old->user_ns, gid);
 796	if (!gid_valid(kgid))
 797		return old_fsgid;
 798
 799	new = prepare_creds();
 800	if (!new)
 801		return old_fsgid;
 
 
 802
 803	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 804	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 805	    ns_capable(old->user_ns, CAP_SETGID)) {
 806		if (!gid_eq(kgid, old->fsgid)) {
 807			new->fsgid = kgid;
 808			goto change_okay;
 809		}
 810	}
 811
 812	abort_creds(new);
 813	return old_fsgid;
 814
 815change_okay:
 816	commit_creds(new);
 817	return old_fsgid;
 818}
 819#endif /* CONFIG_MULTIUSER */
 820
 821/**
 822 * sys_getpid - return the thread group id of the current process
 823 *
 824 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 825 * the pid are identical unless CLONE_THREAD was specified on clone() in
 826 * which case the tgid is the same in all threads of the same group.
 827 *
 828 * This is SMP safe as current->tgid does not change.
 829 */
 830SYSCALL_DEFINE0(getpid)
 831{
 832	return task_tgid_vnr(current);
 833}
 834
 835/* Thread ID - the internal kernel "pid" */
 836SYSCALL_DEFINE0(gettid)
 837{
 838	return task_pid_vnr(current);
 839}
 840
 841/*
 842 * Accessing ->real_parent is not SMP-safe, it could
 843 * change from under us. However, we can use a stale
 844 * value of ->real_parent under rcu_read_lock(), see
 845 * release_task()->call_rcu(delayed_put_task_struct).
 846 */
 847SYSCALL_DEFINE0(getppid)
 848{
 849	int pid;
 850
 851	rcu_read_lock();
 852	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 853	rcu_read_unlock();
 854
 855	return pid;
 856}
 857
 858SYSCALL_DEFINE0(getuid)
 859{
 860	/* Only we change this so SMP safe */
 861	return from_kuid_munged(current_user_ns(), current_uid());
 862}
 863
 864SYSCALL_DEFINE0(geteuid)
 865{
 866	/* Only we change this so SMP safe */
 867	return from_kuid_munged(current_user_ns(), current_euid());
 868}
 869
 870SYSCALL_DEFINE0(getgid)
 871{
 872	/* Only we change this so SMP safe */
 873	return from_kgid_munged(current_user_ns(), current_gid());
 874}
 875
 876SYSCALL_DEFINE0(getegid)
 877{
 878	/* Only we change this so SMP safe */
 879	return from_kgid_munged(current_user_ns(), current_egid());
 880}
 881
 882void do_sys_times(struct tms *tms)
 883{
 884	cputime_t tgutime, tgstime, cutime, cstime;
 885
 886	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 
 887	cutime = current->signal->cutime;
 888	cstime = current->signal->cstime;
 
 889	tms->tms_utime = cputime_to_clock_t(tgutime);
 890	tms->tms_stime = cputime_to_clock_t(tgstime);
 891	tms->tms_cutime = cputime_to_clock_t(cutime);
 892	tms->tms_cstime = cputime_to_clock_t(cstime);
 893}
 894
 895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 896{
 897	if (tbuf) {
 898		struct tms tmp;
 899
 900		do_sys_times(&tmp);
 901		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 902			return -EFAULT;
 903	}
 904	force_successful_syscall_return();
 905	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 906}
 907
 908/*
 909 * This needs some heavy checking ...
 910 * I just haven't the stomach for it. I also don't fully
 911 * understand sessions/pgrp etc. Let somebody who does explain it.
 912 *
 913 * OK, I think I have the protection semantics right.... this is really
 914 * only important on a multi-user system anyway, to make sure one user
 915 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 916 *
 917 * !PF_FORKNOEXEC check to conform completely to POSIX.
 
 918 */
 919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 920{
 921	struct task_struct *p;
 922	struct task_struct *group_leader = current->group_leader;
 923	struct pid *pgrp;
 924	int err;
 925
 926	if (!pid)
 927		pid = task_pid_vnr(group_leader);
 928	if (!pgid)
 929		pgid = pid;
 930	if (pgid < 0)
 931		return -EINVAL;
 932	rcu_read_lock();
 933
 934	/* From this point forward we keep holding onto the tasklist lock
 935	 * so that our parent does not change from under us. -DaveM
 936	 */
 937	write_lock_irq(&tasklist_lock);
 938
 939	err = -ESRCH;
 940	p = find_task_by_vpid(pid);
 941	if (!p)
 942		goto out;
 943
 944	err = -EINVAL;
 945	if (!thread_group_leader(p))
 946		goto out;
 947
 948	if (same_thread_group(p->real_parent, group_leader)) {
 949		err = -EPERM;
 950		if (task_session(p) != task_session(group_leader))
 951			goto out;
 952		err = -EACCES;
 953		if (!(p->flags & PF_FORKNOEXEC))
 954			goto out;
 955	} else {
 956		err = -ESRCH;
 957		if (p != group_leader)
 958			goto out;
 959	}
 960
 961	err = -EPERM;
 962	if (p->signal->leader)
 963		goto out;
 964
 965	pgrp = task_pid(p);
 966	if (pgid != pid) {
 967		struct task_struct *g;
 968
 969		pgrp = find_vpid(pgid);
 970		g = pid_task(pgrp, PIDTYPE_PGID);
 971		if (!g || task_session(g) != task_session(group_leader))
 972			goto out;
 973	}
 974
 975	err = security_task_setpgid(p, pgid);
 976	if (err)
 977		goto out;
 978
 979	if (task_pgrp(p) != pgrp)
 980		change_pid(p, PIDTYPE_PGID, pgrp);
 981
 982	err = 0;
 983out:
 984	/* All paths lead to here, thus we are safe. -DaveM */
 985	write_unlock_irq(&tasklist_lock);
 986	rcu_read_unlock();
 987	return err;
 988}
 989
 990SYSCALL_DEFINE1(getpgid, pid_t, pid)
 991{
 992	struct task_struct *p;
 993	struct pid *grp;
 994	int retval;
 995
 996	rcu_read_lock();
 997	if (!pid)
 998		grp = task_pgrp(current);
 999	else {
1000		retval = -ESRCH;
1001		p = find_task_by_vpid(pid);
1002		if (!p)
1003			goto out;
1004		grp = task_pgrp(p);
1005		if (!grp)
1006			goto out;
1007
1008		retval = security_task_getpgid(p);
1009		if (retval)
1010			goto out;
1011	}
1012	retval = pid_vnr(grp);
1013out:
1014	rcu_read_unlock();
1015	return retval;
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022	return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029	struct task_struct *p;
1030	struct pid *sid;
1031	int retval;
1032
1033	rcu_read_lock();
1034	if (!pid)
1035		sid = task_session(current);
1036	else {
1037		retval = -ESRCH;
1038		p = find_task_by_vpid(pid);
1039		if (!p)
1040			goto out;
1041		sid = task_session(p);
1042		if (!sid)
1043			goto out;
1044
1045		retval = security_task_getsid(p);
1046		if (retval)
1047			goto out;
1048	}
1049	retval = pid_vnr(sid);
1050out:
1051	rcu_read_unlock();
1052	return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057	struct task_struct *curr = current->group_leader;
1058
1059	if (task_session(curr) != pid)
1060		change_pid(curr, PIDTYPE_SID, pid);
1061
1062	if (task_pgrp(curr) != pid)
1063		change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068	struct task_struct *group_leader = current->group_leader;
1069	struct pid *sid = task_pid(group_leader);
1070	pid_t session = pid_vnr(sid);
1071	int err = -EPERM;
1072
1073	write_lock_irq(&tasklist_lock);
1074	/* Fail if I am already a session leader */
1075	if (group_leader->signal->leader)
1076		goto out;
1077
1078	/* Fail if a process group id already exists that equals the
1079	 * proposed session id.
1080	 */
1081	if (pid_task(sid, PIDTYPE_PGID))
1082		goto out;
1083
1084	group_leader->signal->leader = 1;
1085	set_special_pids(sid);
1086
1087	proc_clear_tty(group_leader);
1088
1089	err = session;
1090out:
1091	write_unlock_irq(&tasklist_lock);
1092	if (err > 0) {
1093		proc_sid_connector(group_leader);
1094		sched_autogroup_create_attach(group_leader);
1095	}
1096	return err;
1097}
1098
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103	(personality(current->personality) == PER_LINUX32 && \
1104	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105		      sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name)	0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117	int ret = 0;
 
1118
1119	if (current->personality & UNAME26) {
1120		const char *rest = UTS_RELEASE;
1121		char buf[65] = { 0 };
1122		int ndots = 0;
1123		unsigned v;
1124		size_t copy;
1125
1126		while (*rest) {
1127			if (*rest == '.' && ++ndots >= 3)
1128				break;
1129			if (!isdigit(*rest) && *rest != '.')
1130				break;
1131			rest++;
1132		}
1133		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134		copy = clamp_t(size_t, len, 1, sizeof(buf));
1135		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136		ret = copy_to_user(release, buf, copy + 1);
1137	}
1138	return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143	int errno = 0;
1144
1145	down_read(&uts_sem);
1146	if (copy_to_user(name, utsname(), sizeof *name))
1147		errno = -EFAULT;
1148	up_read(&uts_sem);
1149
1150	if (!errno && override_release(name->release, sizeof(name->release)))
1151		errno = -EFAULT;
1152	if (!errno && override_architecture(name))
1153		errno = -EFAULT;
1154	return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163	int error = 0;
1164
1165	if (!name)
1166		return -EFAULT;
1167
1168	down_read(&uts_sem);
1169	if (copy_to_user(name, utsname(), sizeof(*name)))
1170		error = -EFAULT;
1171	up_read(&uts_sem);
1172
1173	if (!error && override_release(name->release, sizeof(name->release)))
1174		error = -EFAULT;
1175	if (!error && override_architecture(name))
1176		error = -EFAULT;
1177	return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182	int error;
1183
1184	if (!name)
1185		return -EFAULT;
1186	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187		return -EFAULT;
1188
1189	down_read(&uts_sem);
1190	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191			       __OLD_UTS_LEN);
1192	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194				__OLD_UTS_LEN);
1195	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196	error |= __copy_to_user(&name->release, &utsname()->release,
1197				__OLD_UTS_LEN);
1198	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199	error |= __copy_to_user(&name->version, &utsname()->version,
1200				__OLD_UTS_LEN);
1201	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202	error |= __copy_to_user(&name->machine, &utsname()->machine,
1203				__OLD_UTS_LEN);
1204	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205	up_read(&uts_sem);
1206
1207	if (!error && override_architecture(name))
1208		error = -EFAULT;
1209	if (!error && override_release(name->release, sizeof(name->release)))
1210		error = -EFAULT;
1211	return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217	int errno;
1218	char tmp[__NEW_UTS_LEN];
1219
1220	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221		return -EPERM;
1222
1223	if (len < 0 || len > __NEW_UTS_LEN)
1224		return -EINVAL;
1225	down_write(&uts_sem);
1226	errno = -EFAULT;
1227	if (!copy_from_user(tmp, name, len)) {
1228		struct new_utsname *u = utsname();
1229
1230		memcpy(u->nodename, tmp, len);
1231		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232		errno = 0;
1233		uts_proc_notify(UTS_PROC_HOSTNAME);
1234	}
1235	up_write(&uts_sem);
1236	return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243	int i, errno;
1244	struct new_utsname *u;
1245
1246	if (len < 0)
1247		return -EINVAL;
1248	down_read(&uts_sem);
1249	u = utsname();
1250	i = 1 + strlen(u->nodename);
1251	if (i > len)
1252		i = len;
1253	errno = 0;
1254	if (copy_to_user(name, u->nodename, i))
1255		errno = -EFAULT;
1256	up_read(&uts_sem);
1257	return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268	int errno;
1269	char tmp[__NEW_UTS_LEN];
1270
1271	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272		return -EPERM;
1273	if (len < 0 || len > __NEW_UTS_LEN)
1274		return -EINVAL;
1275
1276	down_write(&uts_sem);
1277	errno = -EFAULT;
1278	if (!copy_from_user(tmp, name, len)) {
1279		struct new_utsname *u = utsname();
1280
1281		memcpy(u->domainname, tmp, len);
1282		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283		errno = 0;
1284		uts_proc_notify(UTS_PROC_DOMAINNAME);
1285	}
1286	up_write(&uts_sem);
1287	return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292	struct rlimit value;
1293	int ret;
1294
1295	ret = do_prlimit(current, resource, NULL, &value);
1296	if (!ret)
1297		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299	return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 *	Back compatibility for getrlimit. Needed for some apps.
1306 */
 
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308		struct rlimit __user *, rlim)
1309{
1310	struct rlimit x;
1311	if (resource >= RLIM_NLIMITS)
1312		return -EINVAL;
1313
1314	task_lock(current->group_leader);
1315	x = current->signal->rlim[resource];
1316	task_unlock(current->group_leader);
1317	if (x.rlim_cur > 0x7FFFFFFF)
1318		x.rlim_cur = 0x7FFFFFFF;
1319	if (x.rlim_max > 0x7FFFFFFF)
1320		x.rlim_max = 0x7FFFFFFF;
1321	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329	return rlim64 >= ULONG_MAX;
1330#else
1331	return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337	if (rlim->rlim_cur == RLIM_INFINITY)
1338		rlim64->rlim_cur = RLIM64_INFINITY;
1339	else
1340		rlim64->rlim_cur = rlim->rlim_cur;
1341	if (rlim->rlim_max == RLIM_INFINITY)
1342		rlim64->rlim_max = RLIM64_INFINITY;
1343	else
1344		rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349	if (rlim64_is_infinity(rlim64->rlim_cur))
1350		rlim->rlim_cur = RLIM_INFINITY;
1351	else
1352		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353	if (rlim64_is_infinity(rlim64->rlim_max))
1354		rlim->rlim_max = RLIM_INFINITY;
1355	else
1356		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361		struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363	struct rlimit *rlim;
1364	int retval = 0;
1365
1366	if (resource >= RLIM_NLIMITS)
1367		return -EINVAL;
1368	if (new_rlim) {
1369		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370			return -EINVAL;
1371		if (resource == RLIMIT_NOFILE &&
1372				new_rlim->rlim_max > sysctl_nr_open)
1373			return -EPERM;
1374	}
1375
1376	/* protect tsk->signal and tsk->sighand from disappearing */
1377	read_lock(&tasklist_lock);
1378	if (!tsk->sighand) {
1379		retval = -ESRCH;
1380		goto out;
1381	}
1382
1383	rlim = tsk->signal->rlim + resource;
1384	task_lock(tsk->group_leader);
1385	if (new_rlim) {
1386		/* Keep the capable check against init_user_ns until
1387		   cgroups can contain all limits */
1388		if (new_rlim->rlim_max > rlim->rlim_max &&
1389				!capable(CAP_SYS_RESOURCE))
1390			retval = -EPERM;
1391		if (!retval)
1392			retval = security_task_setrlimit(tsk->group_leader,
1393					resource, new_rlim);
1394		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395			/*
1396			 * The caller is asking for an immediate RLIMIT_CPU
1397			 * expiry.  But we use the zero value to mean "it was
1398			 * never set".  So let's cheat and make it one second
1399			 * instead
1400			 */
1401			new_rlim->rlim_cur = 1;
1402		}
1403	}
1404	if (!retval) {
1405		if (old_rlim)
1406			*old_rlim = *rlim;
1407		if (new_rlim)
1408			*rlim = *new_rlim;
1409	}
1410	task_unlock(tsk->group_leader);
1411
1412	/*
1413	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1414	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1415	 * very long-standing error, and fixing it now risks breakage of
1416	 * applications, so we live with it
1417	 */
1418	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419	     new_rlim->rlim_cur != RLIM_INFINITY &&
1420	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1421		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1422out:
1423	read_unlock(&tasklist_lock);
1424	return retval;
1425}
1426
1427/* rcu lock must be held */
1428static int check_prlimit_permission(struct task_struct *task)
1429{
1430	const struct cred *cred = current_cred(), *tcred;
1431
1432	if (current == task)
1433		return 0;
1434
1435	tcred = __task_cred(task);
1436	if (uid_eq(cred->uid, tcred->euid) &&
1437	    uid_eq(cred->uid, tcred->suid) &&
1438	    uid_eq(cred->uid, tcred->uid)  &&
1439	    gid_eq(cred->gid, tcred->egid) &&
1440	    gid_eq(cred->gid, tcred->sgid) &&
1441	    gid_eq(cred->gid, tcred->gid))
 
1442		return 0;
1443	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1444		return 0;
1445
1446	return -EPERM;
1447}
1448
1449SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1450		const struct rlimit64 __user *, new_rlim,
1451		struct rlimit64 __user *, old_rlim)
1452{
1453	struct rlimit64 old64, new64;
1454	struct rlimit old, new;
1455	struct task_struct *tsk;
1456	int ret;
1457
1458	if (new_rlim) {
1459		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1460			return -EFAULT;
1461		rlim64_to_rlim(&new64, &new);
1462	}
1463
1464	rcu_read_lock();
1465	tsk = pid ? find_task_by_vpid(pid) : current;
1466	if (!tsk) {
1467		rcu_read_unlock();
1468		return -ESRCH;
1469	}
1470	ret = check_prlimit_permission(tsk);
1471	if (ret) {
1472		rcu_read_unlock();
1473		return ret;
1474	}
1475	get_task_struct(tsk);
1476	rcu_read_unlock();
1477
1478	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1479			old_rlim ? &old : NULL);
1480
1481	if (!ret && old_rlim) {
1482		rlim_to_rlim64(&old, &old64);
1483		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1484			ret = -EFAULT;
1485	}
1486
1487	put_task_struct(tsk);
1488	return ret;
1489}
1490
1491SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1492{
1493	struct rlimit new_rlim;
1494
1495	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1496		return -EFAULT;
1497	return do_prlimit(current, resource, &new_rlim, NULL);
1498}
1499
1500/*
1501 * It would make sense to put struct rusage in the task_struct,
1502 * except that would make the task_struct be *really big*.  After
1503 * task_struct gets moved into malloc'ed memory, it would
1504 * make sense to do this.  It will make moving the rest of the information
1505 * a lot simpler!  (Which we're not doing right now because we're not
1506 * measuring them yet).
1507 *
1508 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1509 * races with threads incrementing their own counters.  But since word
1510 * reads are atomic, we either get new values or old values and we don't
1511 * care which for the sums.  We always take the siglock to protect reading
1512 * the c* fields from p->signal from races with exit.c updating those
1513 * fields when reaping, so a sample either gets all the additions of a
1514 * given child after it's reaped, or none so this sample is before reaping.
1515 *
1516 * Locking:
1517 * We need to take the siglock for CHILDEREN, SELF and BOTH
1518 * for  the cases current multithreaded, non-current single threaded
1519 * non-current multithreaded.  Thread traversal is now safe with
1520 * the siglock held.
1521 * Strictly speaking, we donot need to take the siglock if we are current and
1522 * single threaded,  as no one else can take our signal_struct away, no one
1523 * else can  reap the  children to update signal->c* counters, and no one else
1524 * can race with the signal-> fields. If we do not take any lock, the
1525 * signal-> fields could be read out of order while another thread was just
1526 * exiting. So we should  place a read memory barrier when we avoid the lock.
1527 * On the writer side,  write memory barrier is implied in  __exit_signal
1528 * as __exit_signal releases  the siglock spinlock after updating the signal->
1529 * fields. But we don't do this yet to keep things simple.
1530 *
1531 */
1532
1533static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1534{
1535	r->ru_nvcsw += t->nvcsw;
1536	r->ru_nivcsw += t->nivcsw;
1537	r->ru_minflt += t->min_flt;
1538	r->ru_majflt += t->maj_flt;
1539	r->ru_inblock += task_io_get_inblock(t);
1540	r->ru_oublock += task_io_get_oublock(t);
1541}
1542
1543static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1544{
1545	struct task_struct *t;
1546	unsigned long flags;
1547	cputime_t tgutime, tgstime, utime, stime;
1548	unsigned long maxrss = 0;
1549
1550	memset((char *)r, 0, sizeof (*r));
1551	utime = stime = 0;
1552
1553	if (who == RUSAGE_THREAD) {
1554		task_cputime_adjusted(current, &utime, &stime);
1555		accumulate_thread_rusage(p, r);
1556		maxrss = p->signal->maxrss;
1557		goto out;
1558	}
1559
1560	if (!lock_task_sighand(p, &flags))
1561		return;
1562
1563	switch (who) {
1564	case RUSAGE_BOTH:
1565	case RUSAGE_CHILDREN:
1566		utime = p->signal->cutime;
1567		stime = p->signal->cstime;
1568		r->ru_nvcsw = p->signal->cnvcsw;
1569		r->ru_nivcsw = p->signal->cnivcsw;
1570		r->ru_minflt = p->signal->cmin_flt;
1571		r->ru_majflt = p->signal->cmaj_flt;
1572		r->ru_inblock = p->signal->cinblock;
1573		r->ru_oublock = p->signal->coublock;
1574		maxrss = p->signal->cmaxrss;
1575
1576		if (who == RUSAGE_CHILDREN)
1577			break;
1578
1579	case RUSAGE_SELF:
1580		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1581		utime += tgutime;
1582		stime += tgstime;
1583		r->ru_nvcsw += p->signal->nvcsw;
1584		r->ru_nivcsw += p->signal->nivcsw;
1585		r->ru_minflt += p->signal->min_flt;
1586		r->ru_majflt += p->signal->maj_flt;
1587		r->ru_inblock += p->signal->inblock;
1588		r->ru_oublock += p->signal->oublock;
1589		if (maxrss < p->signal->maxrss)
1590			maxrss = p->signal->maxrss;
1591		t = p;
1592		do {
1593			accumulate_thread_rusage(t, r);
1594		} while_each_thread(p, t);
1595		break;
1596
1597	default:
1598		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599	}
1600	unlock_task_sighand(p, &flags);
1601
1602out:
1603	cputime_to_timeval(utime, &r->ru_utime);
1604	cputime_to_timeval(stime, &r->ru_stime);
1605
1606	if (who != RUSAGE_CHILDREN) {
1607		struct mm_struct *mm = get_task_mm(p);
1608
1609		if (mm) {
1610			setmax_mm_hiwater_rss(&maxrss, mm);
1611			mmput(mm);
1612		}
1613	}
1614	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1615}
1616
1617int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1618{
1619	struct rusage r;
1620
1621	k_getrusage(p, who, &r);
1622	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1623}
1624
1625SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1626{
1627	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1628	    who != RUSAGE_THREAD)
1629		return -EINVAL;
1630	return getrusage(current, who, ru);
1631}
1632
1633#ifdef CONFIG_COMPAT
1634COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1635{
1636	struct rusage r;
1637
1638	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1639	    who != RUSAGE_THREAD)
1640		return -EINVAL;
1641
1642	k_getrusage(current, who, &r);
1643	return put_compat_rusage(&r, ru);
1644}
1645#endif
1646
1647SYSCALL_DEFINE1(umask, int, mask)
1648{
1649	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1650	return mask;
1651}
1652
1653static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1654{
1655	struct fd exe;
1656	struct file *old_exe, *exe_file;
1657	struct inode *inode;
1658	int err;
1659
1660	exe = fdget(fd);
1661	if (!exe.file)
1662		return -EBADF;
1663
1664	inode = file_inode(exe.file);
1665
1666	/*
1667	 * Because the original mm->exe_file points to executable file, make
1668	 * sure that this one is executable as well, to avoid breaking an
1669	 * overall picture.
1670	 */
1671	err = -EACCES;
1672	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1673		goto exit;
1674
1675	err = inode_permission(inode, MAY_EXEC);
1676	if (err)
1677		goto exit;
1678
1679	/*
1680	 * Forbid mm->exe_file change if old file still mapped.
1681	 */
1682	exe_file = get_mm_exe_file(mm);
1683	err = -EBUSY;
1684	if (exe_file) {
1685		struct vm_area_struct *vma;
1686
1687		down_read(&mm->mmap_sem);
1688		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1689			if (!vma->vm_file)
1690				continue;
1691			if (path_equal(&vma->vm_file->f_path,
1692				       &exe_file->f_path))
1693				goto exit_err;
1694		}
1695
1696		up_read(&mm->mmap_sem);
1697		fput(exe_file);
1698	}
1699
1700	err = 0;
1701	/* set the new file, lockless */
1702	get_file(exe.file);
1703	old_exe = xchg(&mm->exe_file, exe.file);
1704	if (old_exe)
1705		fput(old_exe);
1706exit:
1707	fdput(exe);
1708	return err;
1709exit_err:
1710	up_read(&mm->mmap_sem);
1711	fput(exe_file);
1712	goto exit;
1713}
1714
1715/*
1716 * WARNING: we don't require any capability here so be very careful
1717 * in what is allowed for modification from userspace.
1718 */
1719static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1720{
1721	unsigned long mmap_max_addr = TASK_SIZE;
1722	struct mm_struct *mm = current->mm;
1723	int error = -EINVAL, i;
1724
1725	static const unsigned char offsets[] = {
1726		offsetof(struct prctl_mm_map, start_code),
1727		offsetof(struct prctl_mm_map, end_code),
1728		offsetof(struct prctl_mm_map, start_data),
1729		offsetof(struct prctl_mm_map, end_data),
1730		offsetof(struct prctl_mm_map, start_brk),
1731		offsetof(struct prctl_mm_map, brk),
1732		offsetof(struct prctl_mm_map, start_stack),
1733		offsetof(struct prctl_mm_map, arg_start),
1734		offsetof(struct prctl_mm_map, arg_end),
1735		offsetof(struct prctl_mm_map, env_start),
1736		offsetof(struct prctl_mm_map, env_end),
1737	};
1738
1739	/*
1740	 * Make sure the members are not somewhere outside
1741	 * of allowed address space.
1742	 */
1743	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1744		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1745
1746		if ((unsigned long)val >= mmap_max_addr ||
1747		    (unsigned long)val < mmap_min_addr)
1748			goto out;
1749	}
1750
1751	/*
1752	 * Make sure the pairs are ordered.
1753	 */
1754#define __prctl_check_order(__m1, __op, __m2)				\
1755	((unsigned long)prctl_map->__m1 __op				\
1756	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1757	error  = __prctl_check_order(start_code, <, end_code);
1758	error |= __prctl_check_order(start_data, <, end_data);
1759	error |= __prctl_check_order(start_brk, <=, brk);
1760	error |= __prctl_check_order(arg_start, <=, arg_end);
1761	error |= __prctl_check_order(env_start, <=, env_end);
1762	if (error)
1763		goto out;
1764#undef __prctl_check_order
1765
1766	error = -EINVAL;
1767
1768	/*
1769	 * @brk should be after @end_data in traditional maps.
1770	 */
1771	if (prctl_map->start_brk <= prctl_map->end_data ||
1772	    prctl_map->brk <= prctl_map->end_data)
1773		goto out;
1774
1775	/*
1776	 * Neither we should allow to override limits if they set.
1777	 */
1778	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1779			      prctl_map->start_brk, prctl_map->end_data,
1780			      prctl_map->start_data))
1781			goto out;
1782
1783	/*
1784	 * Someone is trying to cheat the auxv vector.
1785	 */
1786	if (prctl_map->auxv_size) {
1787		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1788			goto out;
1789	}
1790
1791	/*
1792	 * Finally, make sure the caller has the rights to
1793	 * change /proc/pid/exe link: only local root should
1794	 * be allowed to.
1795	 */
1796	if (prctl_map->exe_fd != (u32)-1) {
1797		struct user_namespace *ns = current_user_ns();
1798		const struct cred *cred = current_cred();
1799
1800		if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1801		    !gid_eq(cred->gid, make_kgid(ns, 0)))
1802			goto out;
1803	}
1804
1805	error = 0;
1806out:
1807	return error;
1808}
1809
1810#ifdef CONFIG_CHECKPOINT_RESTORE
1811static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1812{
1813	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1814	unsigned long user_auxv[AT_VECTOR_SIZE];
1815	struct mm_struct *mm = current->mm;
1816	int error;
1817
1818	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1819	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1820
1821	if (opt == PR_SET_MM_MAP_SIZE)
1822		return put_user((unsigned int)sizeof(prctl_map),
1823				(unsigned int __user *)addr);
1824
1825	if (data_size != sizeof(prctl_map))
1826		return -EINVAL;
1827
1828	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1829		return -EFAULT;
1830
1831	error = validate_prctl_map(&prctl_map);
1832	if (error)
1833		return error;
1834
1835	if (prctl_map.auxv_size) {
1836		memset(user_auxv, 0, sizeof(user_auxv));
1837		if (copy_from_user(user_auxv,
1838				   (const void __user *)prctl_map.auxv,
1839				   prctl_map.auxv_size))
1840			return -EFAULT;
1841
1842		/* Last entry must be AT_NULL as specification requires */
1843		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1844		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1845	}
1846
1847	if (prctl_map.exe_fd != (u32)-1) {
1848		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1849		if (error)
1850			return error;
1851	}
1852
1853	down_write(&mm->mmap_sem);
1854
1855	/*
1856	 * We don't validate if these members are pointing to
1857	 * real present VMAs because application may have correspond
1858	 * VMAs already unmapped and kernel uses these members for statistics
1859	 * output in procfs mostly, except
1860	 *
1861	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
1862	 *    for VMAs when updating these memvers so anything wrong written
1863	 *    here cause kernel to swear at userspace program but won't lead
1864	 *    to any problem in kernel itself
1865	 */
1866
1867	mm->start_code	= prctl_map.start_code;
1868	mm->end_code	= prctl_map.end_code;
1869	mm->start_data	= prctl_map.start_data;
1870	mm->end_data	= prctl_map.end_data;
1871	mm->start_brk	= prctl_map.start_brk;
1872	mm->brk		= prctl_map.brk;
1873	mm->start_stack	= prctl_map.start_stack;
1874	mm->arg_start	= prctl_map.arg_start;
1875	mm->arg_end	= prctl_map.arg_end;
1876	mm->env_start	= prctl_map.env_start;
1877	mm->env_end	= prctl_map.env_end;
1878
1879	/*
1880	 * Note this update of @saved_auxv is lockless thus
1881	 * if someone reads this member in procfs while we're
1882	 * updating -- it may get partly updated results. It's
1883	 * known and acceptable trade off: we leave it as is to
1884	 * not introduce additional locks here making the kernel
1885	 * more complex.
1886	 */
1887	if (prctl_map.auxv_size)
1888		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1889
1890	up_write(&mm->mmap_sem);
1891	return 0;
1892}
1893#endif /* CONFIG_CHECKPOINT_RESTORE */
1894
1895static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1896			  unsigned long len)
1897{
1898	/*
1899	 * This doesn't move the auxiliary vector itself since it's pinned to
1900	 * mm_struct, but it permits filling the vector with new values.  It's
1901	 * up to the caller to provide sane values here, otherwise userspace
1902	 * tools which use this vector might be unhappy.
1903	 */
1904	unsigned long user_auxv[AT_VECTOR_SIZE];
1905
1906	if (len > sizeof(user_auxv))
1907		return -EINVAL;
1908
1909	if (copy_from_user(user_auxv, (const void __user *)addr, len))
1910		return -EFAULT;
1911
1912	/* Make sure the last entry is always AT_NULL */
1913	user_auxv[AT_VECTOR_SIZE - 2] = 0;
1914	user_auxv[AT_VECTOR_SIZE - 1] = 0;
1915
1916	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1917
1918	task_lock(current);
1919	memcpy(mm->saved_auxv, user_auxv, len);
1920	task_unlock(current);
1921
1922	return 0;
1923}
1924
1925static int prctl_set_mm(int opt, unsigned long addr,
1926			unsigned long arg4, unsigned long arg5)
1927{
1928	struct mm_struct *mm = current->mm;
1929	struct prctl_mm_map prctl_map;
1930	struct vm_area_struct *vma;
1931	int error;
1932
1933	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1934			      opt != PR_SET_MM_MAP &&
1935			      opt != PR_SET_MM_MAP_SIZE)))
1936		return -EINVAL;
1937
1938#ifdef CONFIG_CHECKPOINT_RESTORE
1939	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1940		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1941#endif
1942
1943	if (!capable(CAP_SYS_RESOURCE))
1944		return -EPERM;
1945
1946	if (opt == PR_SET_MM_EXE_FILE)
1947		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1948
1949	if (opt == PR_SET_MM_AUXV)
1950		return prctl_set_auxv(mm, addr, arg4);
1951
1952	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1953		return -EINVAL;
1954
1955	error = -EINVAL;
1956
1957	down_write(&mm->mmap_sem);
1958	vma = find_vma(mm, addr);
1959
1960	prctl_map.start_code	= mm->start_code;
1961	prctl_map.end_code	= mm->end_code;
1962	prctl_map.start_data	= mm->start_data;
1963	prctl_map.end_data	= mm->end_data;
1964	prctl_map.start_brk	= mm->start_brk;
1965	prctl_map.brk		= mm->brk;
1966	prctl_map.start_stack	= mm->start_stack;
1967	prctl_map.arg_start	= mm->arg_start;
1968	prctl_map.arg_end	= mm->arg_end;
1969	prctl_map.env_start	= mm->env_start;
1970	prctl_map.env_end	= mm->env_end;
1971	prctl_map.auxv		= NULL;
1972	prctl_map.auxv_size	= 0;
1973	prctl_map.exe_fd	= -1;
1974
1975	switch (opt) {
1976	case PR_SET_MM_START_CODE:
1977		prctl_map.start_code = addr;
1978		break;
1979	case PR_SET_MM_END_CODE:
1980		prctl_map.end_code = addr;
1981		break;
1982	case PR_SET_MM_START_DATA:
1983		prctl_map.start_data = addr;
1984		break;
1985	case PR_SET_MM_END_DATA:
1986		prctl_map.end_data = addr;
1987		break;
1988	case PR_SET_MM_START_STACK:
1989		prctl_map.start_stack = addr;
1990		break;
1991	case PR_SET_MM_START_BRK:
1992		prctl_map.start_brk = addr;
1993		break;
1994	case PR_SET_MM_BRK:
1995		prctl_map.brk = addr;
1996		break;
1997	case PR_SET_MM_ARG_START:
1998		prctl_map.arg_start = addr;
1999		break;
2000	case PR_SET_MM_ARG_END:
2001		prctl_map.arg_end = addr;
2002		break;
2003	case PR_SET_MM_ENV_START:
2004		prctl_map.env_start = addr;
2005		break;
2006	case PR_SET_MM_ENV_END:
2007		prctl_map.env_end = addr;
2008		break;
2009	default:
2010		goto out;
2011	}
2012
2013	error = validate_prctl_map(&prctl_map);
2014	if (error)
2015		goto out;
2016
2017	switch (opt) {
2018	/*
2019	 * If command line arguments and environment
2020	 * are placed somewhere else on stack, we can
2021	 * set them up here, ARG_START/END to setup
2022	 * command line argumets and ENV_START/END
2023	 * for environment.
2024	 */
2025	case PR_SET_MM_START_STACK:
2026	case PR_SET_MM_ARG_START:
2027	case PR_SET_MM_ARG_END:
2028	case PR_SET_MM_ENV_START:
2029	case PR_SET_MM_ENV_END:
2030		if (!vma) {
2031			error = -EFAULT;
2032			goto out;
2033		}
2034	}
2035
2036	mm->start_code	= prctl_map.start_code;
2037	mm->end_code	= prctl_map.end_code;
2038	mm->start_data	= prctl_map.start_data;
2039	mm->end_data	= prctl_map.end_data;
2040	mm->start_brk	= prctl_map.start_brk;
2041	mm->brk		= prctl_map.brk;
2042	mm->start_stack	= prctl_map.start_stack;
2043	mm->arg_start	= prctl_map.arg_start;
2044	mm->arg_end	= prctl_map.arg_end;
2045	mm->env_start	= prctl_map.env_start;
2046	mm->env_end	= prctl_map.env_end;
2047
2048	error = 0;
2049out:
2050	up_write(&mm->mmap_sem);
2051	return error;
2052}
2053
2054#ifdef CONFIG_CHECKPOINT_RESTORE
2055static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2056{
2057	return put_user(me->clear_child_tid, tid_addr);
2058}
2059#else
2060static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2061{
2062	return -EINVAL;
2063}
2064#endif
2065
2066SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2067		unsigned long, arg4, unsigned long, arg5)
2068{
2069	struct task_struct *me = current;
2070	unsigned char comm[sizeof(me->comm)];
2071	long error;
2072
2073	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2074	if (error != -ENOSYS)
2075		return error;
2076
2077	error = 0;
2078	switch (option) {
2079	case PR_SET_PDEATHSIG:
2080		if (!valid_signal(arg2)) {
2081			error = -EINVAL;
 
 
 
 
2082			break;
2083		}
2084		me->pdeath_signal = arg2;
2085		break;
2086	case PR_GET_PDEATHSIG:
2087		error = put_user(me->pdeath_signal, (int __user *)arg2);
2088		break;
2089	case PR_GET_DUMPABLE:
2090		error = get_dumpable(me->mm);
2091		break;
2092	case PR_SET_DUMPABLE:
2093		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2094			error = -EINVAL;
 
2095			break;
2096		}
2097		set_dumpable(me->mm, arg2);
2098		break;
2099
2100	case PR_SET_UNALIGN:
2101		error = SET_UNALIGN_CTL(me, arg2);
2102		break;
2103	case PR_GET_UNALIGN:
2104		error = GET_UNALIGN_CTL(me, arg2);
2105		break;
2106	case PR_SET_FPEMU:
2107		error = SET_FPEMU_CTL(me, arg2);
2108		break;
2109	case PR_GET_FPEMU:
2110		error = GET_FPEMU_CTL(me, arg2);
2111		break;
2112	case PR_SET_FPEXC:
2113		error = SET_FPEXC_CTL(me, arg2);
2114		break;
2115	case PR_GET_FPEXC:
2116		error = GET_FPEXC_CTL(me, arg2);
2117		break;
2118	case PR_GET_TIMING:
2119		error = PR_TIMING_STATISTICAL;
2120		break;
2121	case PR_SET_TIMING:
2122		if (arg2 != PR_TIMING_STATISTICAL)
2123			error = -EINVAL;
2124		break;
2125	case PR_SET_NAME:
2126		comm[sizeof(me->comm) - 1] = 0;
2127		if (strncpy_from_user(comm, (char __user *)arg2,
2128				      sizeof(me->comm) - 1) < 0)
2129			return -EFAULT;
2130		set_task_comm(me, comm);
2131		proc_comm_connector(me);
2132		break;
2133	case PR_GET_NAME:
2134		get_task_comm(comm, me);
2135		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2136			return -EFAULT;
2137		break;
2138	case PR_GET_ENDIAN:
2139		error = GET_ENDIAN(me, arg2);
2140		break;
2141	case PR_SET_ENDIAN:
2142		error = SET_ENDIAN(me, arg2);
2143		break;
2144	case PR_GET_SECCOMP:
2145		error = prctl_get_seccomp();
2146		break;
2147	case PR_SET_SECCOMP:
2148		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2149		break;
2150	case PR_GET_TSC:
2151		error = GET_TSC_CTL(arg2);
2152		break;
2153	case PR_SET_TSC:
2154		error = SET_TSC_CTL(arg2);
2155		break;
2156	case PR_TASK_PERF_EVENTS_DISABLE:
2157		error = perf_event_task_disable();
2158		break;
2159	case PR_TASK_PERF_EVENTS_ENABLE:
2160		error = perf_event_task_enable();
2161		break;
2162	case PR_GET_TIMERSLACK:
2163		if (current->timer_slack_ns > ULONG_MAX)
2164			error = ULONG_MAX;
2165		else
 
2166			error = current->timer_slack_ns;
2167		break;
2168	case PR_SET_TIMERSLACK:
2169		if (arg2 <= 0)
2170			current->timer_slack_ns =
2171					current->default_timer_slack_ns;
2172		else
2173			current->timer_slack_ns = arg2;
2174		break;
2175	case PR_MCE_KILL:
2176		if (arg4 | arg5)
2177			return -EINVAL;
2178		switch (arg2) {
2179		case PR_MCE_KILL_CLEAR:
2180			if (arg3 != 0)
2181				return -EINVAL;
2182			current->flags &= ~PF_MCE_PROCESS;
2183			break;
2184		case PR_MCE_KILL_SET:
2185			current->flags |= PF_MCE_PROCESS;
2186			if (arg3 == PR_MCE_KILL_EARLY)
2187				current->flags |= PF_MCE_EARLY;
2188			else if (arg3 == PR_MCE_KILL_LATE)
2189				current->flags &= ~PF_MCE_EARLY;
2190			else if (arg3 == PR_MCE_KILL_DEFAULT)
2191				current->flags &=
 
 
 
 
 
 
 
 
 
2192						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2193			else
 
 
 
 
 
 
 
 
 
2194				return -EINVAL;
 
 
 
 
 
2195			break;
2196		default:
2197			return -EINVAL;
2198		}
2199		break;
2200	case PR_MCE_KILL_GET:
2201		if (arg2 | arg3 | arg4 | arg5)
2202			return -EINVAL;
2203		if (current->flags & PF_MCE_PROCESS)
2204			error = (current->flags & PF_MCE_EARLY) ?
2205				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2206		else
2207			error = PR_MCE_KILL_DEFAULT;
2208		break;
2209	case PR_SET_MM:
2210		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2211		break;
2212	case PR_GET_TID_ADDRESS:
2213		error = prctl_get_tid_address(me, (int __user **)arg2);
2214		break;
2215	case PR_SET_CHILD_SUBREAPER:
2216		me->signal->is_child_subreaper = !!arg2;
2217		break;
2218	case PR_GET_CHILD_SUBREAPER:
2219		error = put_user(me->signal->is_child_subreaper,
2220				 (int __user *)arg2);
2221		break;
2222	case PR_SET_NO_NEW_PRIVS:
2223		if (arg2 != 1 || arg3 || arg4 || arg5)
2224			return -EINVAL;
2225
2226		task_set_no_new_privs(current);
2227		break;
2228	case PR_GET_NO_NEW_PRIVS:
2229		if (arg2 || arg3 || arg4 || arg5)
2230			return -EINVAL;
2231		return task_no_new_privs(current) ? 1 : 0;
2232	case PR_GET_THP_DISABLE:
2233		if (arg2 || arg3 || arg4 || arg5)
2234			return -EINVAL;
2235		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2236		break;
2237	case PR_SET_THP_DISABLE:
2238		if (arg3 || arg4 || arg5)
2239			return -EINVAL;
2240		if (down_write_killable(&me->mm->mmap_sem))
2241			return -EINTR;
2242		if (arg2)
2243			me->mm->def_flags |= VM_NOHUGEPAGE;
2244		else
2245			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2246		up_write(&me->mm->mmap_sem);
2247		break;
2248	case PR_MPX_ENABLE_MANAGEMENT:
2249		if (arg2 || arg3 || arg4 || arg5)
2250			return -EINVAL;
2251		error = MPX_ENABLE_MANAGEMENT();
2252		break;
2253	case PR_MPX_DISABLE_MANAGEMENT:
2254		if (arg2 || arg3 || arg4 || arg5)
2255			return -EINVAL;
2256		error = MPX_DISABLE_MANAGEMENT();
2257		break;
2258	case PR_SET_FP_MODE:
2259		error = SET_FP_MODE(me, arg2);
2260		break;
2261	case PR_GET_FP_MODE:
2262		error = GET_FP_MODE(me);
2263		break;
2264	default:
2265		error = -EINVAL;
2266		break;
2267	}
2268	return error;
2269}
2270
2271SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2272		struct getcpu_cache __user *, unused)
2273{
2274	int err = 0;
2275	int cpu = raw_smp_processor_id();
2276
2277	if (cpup)
2278		err |= put_user(cpu, cpup);
2279	if (nodep)
2280		err |= put_user(cpu_to_node(cpu), nodep);
2281	return err ? -EFAULT : 0;
2282}
2283
 
 
 
 
 
 
 
2284/**
2285 * do_sysinfo - fill in sysinfo struct
2286 * @info: pointer to buffer to fill
 
 
 
2287 */
2288static int do_sysinfo(struct sysinfo *info)
2289{
2290	unsigned long mem_total, sav_total;
2291	unsigned int mem_unit, bitcount;
2292	struct timespec tp;
2293
2294	memset(info, 0, sizeof(struct sysinfo));
2295
2296	get_monotonic_boottime(&tp);
2297	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2298
2299	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2300
2301	info->procs = nr_threads;
2302
2303	si_meminfo(info);
2304	si_swapinfo(info);
2305
2306	/*
2307	 * If the sum of all the available memory (i.e. ram + swap)
2308	 * is less than can be stored in a 32 bit unsigned long then
2309	 * we can be binary compatible with 2.2.x kernels.  If not,
2310	 * well, in that case 2.2.x was broken anyways...
2311	 *
2312	 *  -Erik Andersen <andersee@debian.org>
2313	 */
2314
2315	mem_total = info->totalram + info->totalswap;
2316	if (mem_total < info->totalram || mem_total < info->totalswap)
 
2317		goto out;
2318	bitcount = 0;
2319	mem_unit = info->mem_unit;
2320	while (mem_unit > 1) {
2321		bitcount++;
2322		mem_unit >>= 1;
2323		sav_total = mem_total;
2324		mem_total <<= 1;
2325		if (mem_total < sav_total)
2326			goto out;
2327	}
2328
2329	/*
2330	 * If mem_total did not overflow, multiply all memory values by
2331	 * info->mem_unit and set it to 1.  This leaves things compatible
2332	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2333	 * kernels...
2334	 */
2335
2336	info->mem_unit = 1;
2337	info->totalram <<= bitcount;
2338	info->freeram <<= bitcount;
2339	info->sharedram <<= bitcount;
2340	info->bufferram <<= bitcount;
2341	info->totalswap <<= bitcount;
2342	info->freeswap <<= bitcount;
2343	info->totalhigh <<= bitcount;
2344	info->freehigh <<= bitcount;
2345
2346out:
2347	return 0;
2348}
2349
2350SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2351{
2352	struct sysinfo val;
2353
2354	do_sysinfo(&val);
2355
2356	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2357		return -EFAULT;
2358
2359	return 0;
2360}
2361
2362#ifdef CONFIG_COMPAT
2363struct compat_sysinfo {
2364	s32 uptime;
2365	u32 loads[3];
2366	u32 totalram;
2367	u32 freeram;
2368	u32 sharedram;
2369	u32 bufferram;
2370	u32 totalswap;
2371	u32 freeswap;
2372	u16 procs;
2373	u16 pad;
2374	u32 totalhigh;
2375	u32 freehigh;
2376	u32 mem_unit;
2377	char _f[20-2*sizeof(u32)-sizeof(int)];
2378};
2379
2380COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2381{
2382	struct sysinfo s;
2383
2384	do_sysinfo(&s);
2385
2386	/* Check to see if any memory value is too large for 32-bit and scale
2387	 *  down if needed
2388	 */
2389	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2390		int bitcount = 0;
2391
2392		while (s.mem_unit < PAGE_SIZE) {
2393			s.mem_unit <<= 1;
2394			bitcount++;
2395		}
2396
2397		s.totalram >>= bitcount;
2398		s.freeram >>= bitcount;
2399		s.sharedram >>= bitcount;
2400		s.bufferram >>= bitcount;
2401		s.totalswap >>= bitcount;
2402		s.freeswap >>= bitcount;
2403		s.totalhigh >>= bitcount;
2404		s.freehigh >>= bitcount;
2405	}
2406
2407	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2408	    __put_user(s.uptime, &info->uptime) ||
2409	    __put_user(s.loads[0], &info->loads[0]) ||
2410	    __put_user(s.loads[1], &info->loads[1]) ||
2411	    __put_user(s.loads[2], &info->loads[2]) ||
2412	    __put_user(s.totalram, &info->totalram) ||
2413	    __put_user(s.freeram, &info->freeram) ||
2414	    __put_user(s.sharedram, &info->sharedram) ||
2415	    __put_user(s.bufferram, &info->bufferram) ||
2416	    __put_user(s.totalswap, &info->totalswap) ||
2417	    __put_user(s.freeswap, &info->freeswap) ||
2418	    __put_user(s.procs, &info->procs) ||
2419	    __put_user(s.totalhigh, &info->totalhigh) ||
2420	    __put_user(s.freehigh, &info->freehigh) ||
2421	    __put_user(s.mem_unit, &info->mem_unit))
2422		return -EFAULT;
2423
2424	return 0;
2425}
2426#endif /* CONFIG_COMPAT */
v3.1
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
 
  15#include <linux/perf_event.h>
  16#include <linux/resource.h>
  17#include <linux/kernel.h>
  18#include <linux/kexec.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
 
 
  38#include <linux/gfp.h>
  39#include <linux/syscore_ops.h>
  40#include <linux/version.h>
  41#include <linux/ctype.h>
  42
  43#include <linux/compat.h>
  44#include <linux/syscalls.h>
  45#include <linux/kprobes.h>
  46#include <linux/user_namespace.h>
 
 
 
 
 
 
  47
  48#include <linux/kmsg_dump.h>
  49/* Move somewhere else to avoid recompiling? */
  50#include <generated/utsrelease.h>
  51
  52#include <asm/uaccess.h>
  53#include <asm/io.h>
  54#include <asm/unistd.h>
  55
  56#ifndef SET_UNALIGN_CTL
  57# define SET_UNALIGN_CTL(a,b)	(-EINVAL)
  58#endif
  59#ifndef GET_UNALIGN_CTL
  60# define GET_UNALIGN_CTL(a,b)	(-EINVAL)
  61#endif
  62#ifndef SET_FPEMU_CTL
  63# define SET_FPEMU_CTL(a,b)	(-EINVAL)
  64#endif
  65#ifndef GET_FPEMU_CTL
  66# define GET_FPEMU_CTL(a,b)	(-EINVAL)
  67#endif
  68#ifndef SET_FPEXC_CTL
  69# define SET_FPEXC_CTL(a,b)	(-EINVAL)
  70#endif
  71#ifndef GET_FPEXC_CTL
  72# define GET_FPEXC_CTL(a,b)	(-EINVAL)
  73#endif
  74#ifndef GET_ENDIAN
  75# define GET_ENDIAN(a,b)	(-EINVAL)
  76#endif
  77#ifndef SET_ENDIAN
  78# define SET_ENDIAN(a,b)	(-EINVAL)
  79#endif
  80#ifndef GET_TSC_CTL
  81# define GET_TSC_CTL(a)		(-EINVAL)
  82#endif
  83#ifndef SET_TSC_CTL
  84# define SET_TSC_CTL(a)		(-EINVAL)
  85#endif
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87/*
  88 * this is where the system-wide overflow UID and GID are defined, for
  89 * architectures that now have 32-bit UID/GID but didn't in the past
  90 */
  91
  92int overflowuid = DEFAULT_OVERFLOWUID;
  93int overflowgid = DEFAULT_OVERFLOWGID;
  94
  95#ifdef CONFIG_UID16
  96EXPORT_SYMBOL(overflowuid);
  97EXPORT_SYMBOL(overflowgid);
  98#endif
  99
 100/*
 101 * the same as above, but for filesystems which can only store a 16-bit
 102 * UID and GID. as such, this is needed on all architectures
 103 */
 104
 105int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 106int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 107
 108EXPORT_SYMBOL(fs_overflowuid);
 109EXPORT_SYMBOL(fs_overflowgid);
 110
 111/*
 112 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
 113 */
 114
 115int C_A_D = 1;
 116struct pid *cad_pid;
 117EXPORT_SYMBOL(cad_pid);
 118
 119/*
 120 * If set, this is used for preparing the system to power off.
 121 */
 122
 123void (*pm_power_off_prepare)(void);
 124
 125/*
 126 * Returns true if current's euid is same as p's uid or euid,
 127 * or has CAP_SYS_NICE to p's user_ns.
 128 *
 129 * Called with rcu_read_lock, creds are safe
 130 */
 131static bool set_one_prio_perm(struct task_struct *p)
 132{
 133	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 134
 135	if (pcred->user->user_ns == cred->user->user_ns &&
 136	    (pcred->uid  == cred->euid ||
 137	     pcred->euid == cred->euid))
 138		return true;
 139	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
 140		return true;
 141	return false;
 142}
 143
 144/*
 145 * set the priority of a task
 146 * - the caller must hold the RCU read lock
 147 */
 148static int set_one_prio(struct task_struct *p, int niceval, int error)
 149{
 150	int no_nice;
 151
 152	if (!set_one_prio_perm(p)) {
 153		error = -EPERM;
 154		goto out;
 155	}
 156	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 157		error = -EACCES;
 158		goto out;
 159	}
 160	no_nice = security_task_setnice(p, niceval);
 161	if (no_nice) {
 162		error = no_nice;
 163		goto out;
 164	}
 165	if (error == -ESRCH)
 166		error = 0;
 167	set_user_nice(p, niceval);
 168out:
 169	return error;
 170}
 171
 172SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 173{
 174	struct task_struct *g, *p;
 175	struct user_struct *user;
 176	const struct cred *cred = current_cred();
 177	int error = -EINVAL;
 178	struct pid *pgrp;
 
 179
 180	if (which > PRIO_USER || which < PRIO_PROCESS)
 181		goto out;
 182
 183	/* normalize: avoid signed division (rounding problems) */
 184	error = -ESRCH;
 185	if (niceval < -20)
 186		niceval = -20;
 187	if (niceval > 19)
 188		niceval = 19;
 189
 190	rcu_read_lock();
 191	read_lock(&tasklist_lock);
 192	switch (which) {
 193		case PRIO_PROCESS:
 194			if (who)
 195				p = find_task_by_vpid(who);
 196			else
 197				p = current;
 198			if (p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199				error = set_one_prio(p, niceval, error);
 200			break;
 201		case PRIO_PGRP:
 202			if (who)
 203				pgrp = find_vpid(who);
 204			else
 205				pgrp = task_pgrp(current);
 206			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 207				error = set_one_prio(p, niceval, error);
 208			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 209			break;
 210		case PRIO_USER:
 211			user = (struct user_struct *) cred->user;
 212			if (!who)
 213				who = cred->uid;
 214			else if ((who != cred->uid) &&
 215				 !(user = find_user(who)))
 216				goto out_unlock;	/* No processes for this user */
 217
 218			do_each_thread(g, p) {
 219				if (__task_cred(p)->uid == who)
 220					error = set_one_prio(p, niceval, error);
 221			} while_each_thread(g, p);
 222			if (who != cred->uid)
 223				free_uid(user);		/* For find_user() */
 224			break;
 225	}
 226out_unlock:
 227	read_unlock(&tasklist_lock);
 228	rcu_read_unlock();
 229out:
 230	return error;
 231}
 232
 233/*
 234 * Ugh. To avoid negative return values, "getpriority()" will
 235 * not return the normal nice-value, but a negated value that
 236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 237 * to stay compatible.
 238 */
 239SYSCALL_DEFINE2(getpriority, int, which, int, who)
 240{
 241	struct task_struct *g, *p;
 242	struct user_struct *user;
 243	const struct cred *cred = current_cred();
 244	long niceval, retval = -ESRCH;
 245	struct pid *pgrp;
 
 246
 247	if (which > PRIO_USER || which < PRIO_PROCESS)
 248		return -EINVAL;
 249
 250	rcu_read_lock();
 251	read_lock(&tasklist_lock);
 252	switch (which) {
 253		case PRIO_PROCESS:
 254			if (who)
 255				p = find_task_by_vpid(who);
 256			else
 257				p = current;
 258			if (p) {
 259				niceval = 20 - task_nice(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260				if (niceval > retval)
 261					retval = niceval;
 262			}
 263			break;
 264		case PRIO_PGRP:
 265			if (who)
 266				pgrp = find_vpid(who);
 267			else
 268				pgrp = task_pgrp(current);
 269			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 270				niceval = 20 - task_nice(p);
 271				if (niceval > retval)
 272					retval = niceval;
 273			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 274			break;
 275		case PRIO_USER:
 276			user = (struct user_struct *) cred->user;
 277			if (!who)
 278				who = cred->uid;
 279			else if ((who != cred->uid) &&
 280				 !(user = find_user(who)))
 281				goto out_unlock;	/* No processes for this user */
 282
 283			do_each_thread(g, p) {
 284				if (__task_cred(p)->uid == who) {
 285					niceval = 20 - task_nice(p);
 286					if (niceval > retval)
 287						retval = niceval;
 288				}
 289			} while_each_thread(g, p);
 290			if (who != cred->uid)
 291				free_uid(user);		/* for find_user() */
 292			break;
 293	}
 294out_unlock:
 295	read_unlock(&tasklist_lock);
 296	rcu_read_unlock();
 297
 298	return retval;
 299}
 300
 301/**
 302 *	emergency_restart - reboot the system
 303 *
 304 *	Without shutting down any hardware or taking any locks
 305 *	reboot the system.  This is called when we know we are in
 306 *	trouble so this is our best effort to reboot.  This is
 307 *	safe to call in interrupt context.
 308 */
 309void emergency_restart(void)
 310{
 311	kmsg_dump(KMSG_DUMP_EMERG);
 312	machine_emergency_restart();
 313}
 314EXPORT_SYMBOL_GPL(emergency_restart);
 315
 316void kernel_restart_prepare(char *cmd)
 317{
 318	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
 319	system_state = SYSTEM_RESTART;
 320	usermodehelper_disable();
 321	device_shutdown();
 322	syscore_shutdown();
 323}
 324
 325/**
 326 *	register_reboot_notifier - Register function to be called at reboot time
 327 *	@nb: Info about notifier function to be called
 328 *
 329 *	Registers a function with the list of functions
 330 *	to be called at reboot time.
 331 *
 332 *	Currently always returns zero, as blocking_notifier_chain_register()
 333 *	always returns zero.
 334 */
 335int register_reboot_notifier(struct notifier_block *nb)
 336{
 337	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
 338}
 339EXPORT_SYMBOL(register_reboot_notifier);
 340
 341/**
 342 *	unregister_reboot_notifier - Unregister previously registered reboot notifier
 343 *	@nb: Hook to be unregistered
 344 *
 345 *	Unregisters a previously registered reboot
 346 *	notifier function.
 347 *
 348 *	Returns zero on success, or %-ENOENT on failure.
 349 */
 350int unregister_reboot_notifier(struct notifier_block *nb)
 351{
 352	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
 353}
 354EXPORT_SYMBOL(unregister_reboot_notifier);
 355
 356/**
 357 *	kernel_restart - reboot the system
 358 *	@cmd: pointer to buffer containing command to execute for restart
 359 *		or %NULL
 360 *
 361 *	Shutdown everything and perform a clean reboot.
 362 *	This is not safe to call in interrupt context.
 363 */
 364void kernel_restart(char *cmd)
 365{
 366	kernel_restart_prepare(cmd);
 367	if (!cmd)
 368		printk(KERN_EMERG "Restarting system.\n");
 369	else
 370		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
 371	kmsg_dump(KMSG_DUMP_RESTART);
 372	machine_restart(cmd);
 373}
 374EXPORT_SYMBOL_GPL(kernel_restart);
 375
 376static void kernel_shutdown_prepare(enum system_states state)
 377{
 378	blocking_notifier_call_chain(&reboot_notifier_list,
 379		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
 380	system_state = state;
 381	usermodehelper_disable();
 382	device_shutdown();
 383}
 384/**
 385 *	kernel_halt - halt the system
 386 *
 387 *	Shutdown everything and perform a clean system halt.
 388 */
 389void kernel_halt(void)
 390{
 391	kernel_shutdown_prepare(SYSTEM_HALT);
 392	syscore_shutdown();
 393	printk(KERN_EMERG "System halted.\n");
 394	kmsg_dump(KMSG_DUMP_HALT);
 395	machine_halt();
 396}
 397
 398EXPORT_SYMBOL_GPL(kernel_halt);
 399
 400/**
 401 *	kernel_power_off - power_off the system
 402 *
 403 *	Shutdown everything and perform a clean system power_off.
 404 */
 405void kernel_power_off(void)
 406{
 407	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
 408	if (pm_power_off_prepare)
 409		pm_power_off_prepare();
 410	disable_nonboot_cpus();
 411	syscore_shutdown();
 412	printk(KERN_EMERG "Power down.\n");
 413	kmsg_dump(KMSG_DUMP_POWEROFF);
 414	machine_power_off();
 415}
 416EXPORT_SYMBOL_GPL(kernel_power_off);
 417
 418static DEFINE_MUTEX(reboot_mutex);
 419
 420/*
 421 * Reboot system call: for obvious reasons only root may call it,
 422 * and even root needs to set up some magic numbers in the registers
 423 * so that some mistake won't make this reboot the whole machine.
 424 * You can also set the meaning of the ctrl-alt-del-key here.
 425 *
 426 * reboot doesn't sync: do that yourself before calling this.
 427 */
 428SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
 429		void __user *, arg)
 430{
 431	char buffer[256];
 432	int ret = 0;
 433
 434	/* We only trust the superuser with rebooting the system. */
 435	if (!capable(CAP_SYS_BOOT))
 436		return -EPERM;
 437
 438	/* For safety, we require "magic" arguments. */
 439	if (magic1 != LINUX_REBOOT_MAGIC1 ||
 440	    (magic2 != LINUX_REBOOT_MAGIC2 &&
 441	                magic2 != LINUX_REBOOT_MAGIC2A &&
 442			magic2 != LINUX_REBOOT_MAGIC2B &&
 443	                magic2 != LINUX_REBOOT_MAGIC2C))
 444		return -EINVAL;
 445
 446	/* Instead of trying to make the power_off code look like
 447	 * halt when pm_power_off is not set do it the easy way.
 448	 */
 449	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
 450		cmd = LINUX_REBOOT_CMD_HALT;
 451
 452	mutex_lock(&reboot_mutex);
 453	switch (cmd) {
 454	case LINUX_REBOOT_CMD_RESTART:
 455		kernel_restart(NULL);
 456		break;
 457
 458	case LINUX_REBOOT_CMD_CAD_ON:
 459		C_A_D = 1;
 460		break;
 461
 462	case LINUX_REBOOT_CMD_CAD_OFF:
 463		C_A_D = 0;
 464		break;
 465
 466	case LINUX_REBOOT_CMD_HALT:
 467		kernel_halt();
 468		do_exit(0);
 469		panic("cannot halt");
 470
 471	case LINUX_REBOOT_CMD_POWER_OFF:
 472		kernel_power_off();
 473		do_exit(0);
 474		break;
 475
 476	case LINUX_REBOOT_CMD_RESTART2:
 477		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
 478			ret = -EFAULT;
 479			break;
 480		}
 481		buffer[sizeof(buffer) - 1] = '\0';
 482
 483		kernel_restart(buffer);
 484		break;
 485
 486#ifdef CONFIG_KEXEC
 487	case LINUX_REBOOT_CMD_KEXEC:
 488		ret = kernel_kexec();
 489		break;
 490#endif
 491
 492#ifdef CONFIG_HIBERNATION
 493	case LINUX_REBOOT_CMD_SW_SUSPEND:
 494		ret = hibernate();
 495		break;
 496#endif
 497
 498	default:
 499		ret = -EINVAL;
 500		break;
 501	}
 502	mutex_unlock(&reboot_mutex);
 503	return ret;
 504}
 505
 506static void deferred_cad(struct work_struct *dummy)
 507{
 508	kernel_restart(NULL);
 509}
 510
 511/*
 512 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
 513 * As it's called within an interrupt, it may NOT sync: the only choice
 514 * is whether to reboot at once, or just ignore the ctrl-alt-del.
 515 */
 516void ctrl_alt_del(void)
 517{
 518	static DECLARE_WORK(cad_work, deferred_cad);
 519
 520	if (C_A_D)
 521		schedule_work(&cad_work);
 522	else
 523		kill_cad_pid(SIGINT, 1);
 524}
 525	
 526/*
 527 * Unprivileged users may change the real gid to the effective gid
 528 * or vice versa.  (BSD-style)
 529 *
 530 * If you set the real gid at all, or set the effective gid to a value not
 531 * equal to the real gid, then the saved gid is set to the new effective gid.
 532 *
 533 * This makes it possible for a setgid program to completely drop its
 534 * privileges, which is often a useful assertion to make when you are doing
 535 * a security audit over a program.
 536 *
 537 * The general idea is that a program which uses just setregid() will be
 538 * 100% compatible with BSD.  A program which uses just setgid() will be
 539 * 100% compatible with POSIX with saved IDs. 
 540 *
 541 * SMP: There are not races, the GIDs are checked only by filesystem
 542 *      operations (as far as semantic preservation is concerned).
 543 */
 
 544SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 545{
 
 546	const struct cred *old;
 547	struct cred *new;
 548	int retval;
 
 
 
 
 
 
 
 
 
 549
 550	new = prepare_creds();
 551	if (!new)
 552		return -ENOMEM;
 553	old = current_cred();
 554
 555	retval = -EPERM;
 556	if (rgid != (gid_t) -1) {
 557		if (old->gid == rgid ||
 558		    old->egid == rgid ||
 559		    nsown_capable(CAP_SETGID))
 560			new->gid = rgid;
 561		else
 562			goto error;
 563	}
 564	if (egid != (gid_t) -1) {
 565		if (old->gid == egid ||
 566		    old->egid == egid ||
 567		    old->sgid == egid ||
 568		    nsown_capable(CAP_SETGID))
 569			new->egid = egid;
 570		else
 571			goto error;
 572	}
 573
 574	if (rgid != (gid_t) -1 ||
 575	    (egid != (gid_t) -1 && egid != old->gid))
 576		new->sgid = new->egid;
 577	new->fsgid = new->egid;
 578
 579	return commit_creds(new);
 580
 581error:
 582	abort_creds(new);
 583	return retval;
 584}
 585
 586/*
 587 * setgid() is implemented like SysV w/ SAVED_IDS 
 588 *
 589 * SMP: Same implicit races as above.
 590 */
 591SYSCALL_DEFINE1(setgid, gid_t, gid)
 592{
 
 593	const struct cred *old;
 594	struct cred *new;
 595	int retval;
 
 
 
 
 
 596
 597	new = prepare_creds();
 598	if (!new)
 599		return -ENOMEM;
 600	old = current_cred();
 601
 602	retval = -EPERM;
 603	if (nsown_capable(CAP_SETGID))
 604		new->gid = new->egid = new->sgid = new->fsgid = gid;
 605	else if (gid == old->gid || gid == old->sgid)
 606		new->egid = new->fsgid = gid;
 607	else
 608		goto error;
 609
 610	return commit_creds(new);
 611
 612error:
 613	abort_creds(new);
 614	return retval;
 615}
 616
 617/*
 618 * change the user struct in a credentials set to match the new UID
 619 */
 620static int set_user(struct cred *new)
 621{
 622	struct user_struct *new_user;
 623
 624	new_user = alloc_uid(current_user_ns(), new->uid);
 625	if (!new_user)
 626		return -EAGAIN;
 627
 628	/*
 629	 * We don't fail in case of NPROC limit excess here because too many
 630	 * poorly written programs don't check set*uid() return code, assuming
 631	 * it never fails if called by root.  We may still enforce NPROC limit
 632	 * for programs doing set*uid()+execve() by harmlessly deferring the
 633	 * failure to the execve() stage.
 634	 */
 635	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 636			new_user != INIT_USER)
 637		current->flags |= PF_NPROC_EXCEEDED;
 638	else
 639		current->flags &= ~PF_NPROC_EXCEEDED;
 640
 641	free_uid(new->user);
 642	new->user = new_user;
 643	return 0;
 644}
 645
 646/*
 647 * Unprivileged users may change the real uid to the effective uid
 648 * or vice versa.  (BSD-style)
 649 *
 650 * If you set the real uid at all, or set the effective uid to a value not
 651 * equal to the real uid, then the saved uid is set to the new effective uid.
 652 *
 653 * This makes it possible for a setuid program to completely drop its
 654 * privileges, which is often a useful assertion to make when you are doing
 655 * a security audit over a program.
 656 *
 657 * The general idea is that a program which uses just setreuid() will be
 658 * 100% compatible with BSD.  A program which uses just setuid() will be
 659 * 100% compatible with POSIX with saved IDs. 
 660 */
 661SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 662{
 
 663	const struct cred *old;
 664	struct cred *new;
 665	int retval;
 
 
 
 
 
 
 
 
 
 666
 667	new = prepare_creds();
 668	if (!new)
 669		return -ENOMEM;
 670	old = current_cred();
 671
 672	retval = -EPERM;
 673	if (ruid != (uid_t) -1) {
 674		new->uid = ruid;
 675		if (old->uid != ruid &&
 676		    old->euid != ruid &&
 677		    !nsown_capable(CAP_SETUID))
 678			goto error;
 679	}
 680
 681	if (euid != (uid_t) -1) {
 682		new->euid = euid;
 683		if (old->uid != euid &&
 684		    old->euid != euid &&
 685		    old->suid != euid &&
 686		    !nsown_capable(CAP_SETUID))
 687			goto error;
 688	}
 689
 690	if (new->uid != old->uid) {
 691		retval = set_user(new);
 692		if (retval < 0)
 693			goto error;
 694	}
 695	if (ruid != (uid_t) -1 ||
 696	    (euid != (uid_t) -1 && euid != old->uid))
 697		new->suid = new->euid;
 698	new->fsuid = new->euid;
 699
 700	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 701	if (retval < 0)
 702		goto error;
 703
 704	return commit_creds(new);
 705
 706error:
 707	abort_creds(new);
 708	return retval;
 709}
 710		
 711/*
 712 * setuid() is implemented like SysV with SAVED_IDS 
 713 * 
 714 * Note that SAVED_ID's is deficient in that a setuid root program
 715 * like sendmail, for example, cannot set its uid to be a normal 
 716 * user and then switch back, because if you're root, setuid() sets
 717 * the saved uid too.  If you don't like this, blame the bright people
 718 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 719 * will allow a root program to temporarily drop privileges and be able to
 720 * regain them by swapping the real and effective uid.  
 721 */
 722SYSCALL_DEFINE1(setuid, uid_t, uid)
 723{
 
 724	const struct cred *old;
 725	struct cred *new;
 726	int retval;
 
 
 
 
 
 727
 728	new = prepare_creds();
 729	if (!new)
 730		return -ENOMEM;
 731	old = current_cred();
 732
 733	retval = -EPERM;
 734	if (nsown_capable(CAP_SETUID)) {
 735		new->suid = new->uid = uid;
 736		if (uid != old->uid) {
 737			retval = set_user(new);
 738			if (retval < 0)
 739				goto error;
 740		}
 741	} else if (uid != old->uid && uid != new->suid) {
 742		goto error;
 743	}
 744
 745	new->fsuid = new->euid = uid;
 746
 747	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 748	if (retval < 0)
 749		goto error;
 750
 751	return commit_creds(new);
 752
 753error:
 754	abort_creds(new);
 755	return retval;
 756}
 757
 758
 759/*
 760 * This function implements a generic ability to update ruid, euid,
 761 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 762 */
 763SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 764{
 
 765	const struct cred *old;
 766	struct cred *new;
 767	int retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768
 769	new = prepare_creds();
 770	if (!new)
 771		return -ENOMEM;
 772
 773	old = current_cred();
 774
 775	retval = -EPERM;
 776	if (!nsown_capable(CAP_SETUID)) {
 777		if (ruid != (uid_t) -1 && ruid != old->uid &&
 778		    ruid != old->euid  && ruid != old->suid)
 779			goto error;
 780		if (euid != (uid_t) -1 && euid != old->uid &&
 781		    euid != old->euid  && euid != old->suid)
 782			goto error;
 783		if (suid != (uid_t) -1 && suid != old->uid &&
 784		    suid != old->euid  && suid != old->suid)
 785			goto error;
 786	}
 787
 788	if (ruid != (uid_t) -1) {
 789		new->uid = ruid;
 790		if (ruid != old->uid) {
 791			retval = set_user(new);
 792			if (retval < 0)
 793				goto error;
 794		}
 795	}
 796	if (euid != (uid_t) -1)
 797		new->euid = euid;
 798	if (suid != (uid_t) -1)
 799		new->suid = suid;
 800	new->fsuid = new->euid;
 801
 802	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 803	if (retval < 0)
 804		goto error;
 805
 806	return commit_creds(new);
 807
 808error:
 809	abort_creds(new);
 810	return retval;
 811}
 812
 813SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
 814{
 815	const struct cred *cred = current_cred();
 816	int retval;
 
 817
 818	if (!(retval   = put_user(cred->uid,  ruid)) &&
 819	    !(retval   = put_user(cred->euid, euid)))
 820		retval = put_user(cred->suid, suid);
 821
 
 
 
 
 
 
 822	return retval;
 823}
 824
 825/*
 826 * Same as above, but for rgid, egid, sgid.
 827 */
 828SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 829{
 
 830	const struct cred *old;
 831	struct cred *new;
 832	int retval;
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	new = prepare_creds();
 835	if (!new)
 836		return -ENOMEM;
 837	old = current_cred();
 838
 839	retval = -EPERM;
 840	if (!nsown_capable(CAP_SETGID)) {
 841		if (rgid != (gid_t) -1 && rgid != old->gid &&
 842		    rgid != old->egid  && rgid != old->sgid)
 843			goto error;
 844		if (egid != (gid_t) -1 && egid != old->gid &&
 845		    egid != old->egid  && egid != old->sgid)
 846			goto error;
 847		if (sgid != (gid_t) -1 && sgid != old->gid &&
 848		    sgid != old->egid  && sgid != old->sgid)
 849			goto error;
 850	}
 851
 852	if (rgid != (gid_t) -1)
 853		new->gid = rgid;
 854	if (egid != (gid_t) -1)
 855		new->egid = egid;
 856	if (sgid != (gid_t) -1)
 857		new->sgid = sgid;
 858	new->fsgid = new->egid;
 859
 860	return commit_creds(new);
 861
 862error:
 863	abort_creds(new);
 864	return retval;
 865}
 866
 867SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
 868{
 869	const struct cred *cred = current_cred();
 870	int retval;
 
 871
 872	if (!(retval   = put_user(cred->gid,  rgid)) &&
 873	    !(retval   = put_user(cred->egid, egid)))
 874		retval = put_user(cred->sgid, sgid);
 
 
 
 
 
 
 
 875
 876	return retval;
 877}
 878
 879
 880/*
 881 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 882 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 883 * whatever uid it wants to). It normally shadows "euid", except when
 884 * explicitly set by setfsuid() or for access..
 885 */
 886SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 887{
 888	const struct cred *old;
 889	struct cred *new;
 890	uid_t old_fsuid;
 
 
 
 
 
 
 
 
 891
 892	new = prepare_creds();
 893	if (!new)
 894		return current_fsuid();
 895	old = current_cred();
 896	old_fsuid = old->fsuid;
 897
 898	if (uid == old->uid  || uid == old->euid  ||
 899	    uid == old->suid || uid == old->fsuid ||
 900	    nsown_capable(CAP_SETUID)) {
 901		if (uid != old_fsuid) {
 902			new->fsuid = uid;
 903			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 904				goto change_okay;
 905		}
 906	}
 907
 908	abort_creds(new);
 909	return old_fsuid;
 910
 911change_okay:
 912	commit_creds(new);
 913	return old_fsuid;
 914}
 915
 916/*
 917 * Samma på svenska..
 918 */
 919SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 920{
 921	const struct cred *old;
 922	struct cred *new;
 923	gid_t old_fsgid;
 
 
 
 
 
 
 
 
 924
 925	new = prepare_creds();
 926	if (!new)
 927		return current_fsgid();
 928	old = current_cred();
 929	old_fsgid = old->fsgid;
 930
 931	if (gid == old->gid  || gid == old->egid  ||
 932	    gid == old->sgid || gid == old->fsgid ||
 933	    nsown_capable(CAP_SETGID)) {
 934		if (gid != old_fsgid) {
 935			new->fsgid = gid;
 936			goto change_okay;
 937		}
 938	}
 939
 940	abort_creds(new);
 941	return old_fsgid;
 942
 943change_okay:
 944	commit_creds(new);
 945	return old_fsgid;
 946}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947
 948void do_sys_times(struct tms *tms)
 949{
 950	cputime_t tgutime, tgstime, cutime, cstime;
 951
 952	spin_lock_irq(&current->sighand->siglock);
 953	thread_group_times(current, &tgutime, &tgstime);
 954	cutime = current->signal->cutime;
 955	cstime = current->signal->cstime;
 956	spin_unlock_irq(&current->sighand->siglock);
 957	tms->tms_utime = cputime_to_clock_t(tgutime);
 958	tms->tms_stime = cputime_to_clock_t(tgstime);
 959	tms->tms_cutime = cputime_to_clock_t(cutime);
 960	tms->tms_cstime = cputime_to_clock_t(cstime);
 961}
 962
 963SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 964{
 965	if (tbuf) {
 966		struct tms tmp;
 967
 968		do_sys_times(&tmp);
 969		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 970			return -EFAULT;
 971	}
 972	force_successful_syscall_return();
 973	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 974}
 975
 976/*
 977 * This needs some heavy checking ...
 978 * I just haven't the stomach for it. I also don't fully
 979 * understand sessions/pgrp etc. Let somebody who does explain it.
 980 *
 981 * OK, I think I have the protection semantics right.... this is really
 982 * only important on a multi-user system anyway, to make sure one user
 983 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 984 *
 985 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
 986 * LBT 04.03.94
 987 */
 988SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 989{
 990	struct task_struct *p;
 991	struct task_struct *group_leader = current->group_leader;
 992	struct pid *pgrp;
 993	int err;
 994
 995	if (!pid)
 996		pid = task_pid_vnr(group_leader);
 997	if (!pgid)
 998		pgid = pid;
 999	if (pgid < 0)
1000		return -EINVAL;
1001	rcu_read_lock();
1002
1003	/* From this point forward we keep holding onto the tasklist lock
1004	 * so that our parent does not change from under us. -DaveM
1005	 */
1006	write_lock_irq(&tasklist_lock);
1007
1008	err = -ESRCH;
1009	p = find_task_by_vpid(pid);
1010	if (!p)
1011		goto out;
1012
1013	err = -EINVAL;
1014	if (!thread_group_leader(p))
1015		goto out;
1016
1017	if (same_thread_group(p->real_parent, group_leader)) {
1018		err = -EPERM;
1019		if (task_session(p) != task_session(group_leader))
1020			goto out;
1021		err = -EACCES;
1022		if (p->did_exec)
1023			goto out;
1024	} else {
1025		err = -ESRCH;
1026		if (p != group_leader)
1027			goto out;
1028	}
1029
1030	err = -EPERM;
1031	if (p->signal->leader)
1032		goto out;
1033
1034	pgrp = task_pid(p);
1035	if (pgid != pid) {
1036		struct task_struct *g;
1037
1038		pgrp = find_vpid(pgid);
1039		g = pid_task(pgrp, PIDTYPE_PGID);
1040		if (!g || task_session(g) != task_session(group_leader))
1041			goto out;
1042	}
1043
1044	err = security_task_setpgid(p, pgid);
1045	if (err)
1046		goto out;
1047
1048	if (task_pgrp(p) != pgrp)
1049		change_pid(p, PIDTYPE_PGID, pgrp);
1050
1051	err = 0;
1052out:
1053	/* All paths lead to here, thus we are safe. -DaveM */
1054	write_unlock_irq(&tasklist_lock);
1055	rcu_read_unlock();
1056	return err;
1057}
1058
1059SYSCALL_DEFINE1(getpgid, pid_t, pid)
1060{
1061	struct task_struct *p;
1062	struct pid *grp;
1063	int retval;
1064
1065	rcu_read_lock();
1066	if (!pid)
1067		grp = task_pgrp(current);
1068	else {
1069		retval = -ESRCH;
1070		p = find_task_by_vpid(pid);
1071		if (!p)
1072			goto out;
1073		grp = task_pgrp(p);
1074		if (!grp)
1075			goto out;
1076
1077		retval = security_task_getpgid(p);
1078		if (retval)
1079			goto out;
1080	}
1081	retval = pid_vnr(grp);
1082out:
1083	rcu_read_unlock();
1084	return retval;
1085}
1086
1087#ifdef __ARCH_WANT_SYS_GETPGRP
1088
1089SYSCALL_DEFINE0(getpgrp)
1090{
1091	return sys_getpgid(0);
1092}
1093
1094#endif
1095
1096SYSCALL_DEFINE1(getsid, pid_t, pid)
1097{
1098	struct task_struct *p;
1099	struct pid *sid;
1100	int retval;
1101
1102	rcu_read_lock();
1103	if (!pid)
1104		sid = task_session(current);
1105	else {
1106		retval = -ESRCH;
1107		p = find_task_by_vpid(pid);
1108		if (!p)
1109			goto out;
1110		sid = task_session(p);
1111		if (!sid)
1112			goto out;
1113
1114		retval = security_task_getsid(p);
1115		if (retval)
1116			goto out;
1117	}
1118	retval = pid_vnr(sid);
1119out:
1120	rcu_read_unlock();
1121	return retval;
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
1124SYSCALL_DEFINE0(setsid)
1125{
1126	struct task_struct *group_leader = current->group_leader;
1127	struct pid *sid = task_pid(group_leader);
1128	pid_t session = pid_vnr(sid);
1129	int err = -EPERM;
1130
1131	write_lock_irq(&tasklist_lock);
1132	/* Fail if I am already a session leader */
1133	if (group_leader->signal->leader)
1134		goto out;
1135
1136	/* Fail if a process group id already exists that equals the
1137	 * proposed session id.
1138	 */
1139	if (pid_task(sid, PIDTYPE_PGID))
1140		goto out;
1141
1142	group_leader->signal->leader = 1;
1143	__set_special_pids(sid);
1144
1145	proc_clear_tty(group_leader);
1146
1147	err = session;
1148out:
1149	write_unlock_irq(&tasklist_lock);
1150	if (err > 0) {
1151		proc_sid_connector(group_leader);
1152		sched_autogroup_create_attach(group_leader);
1153	}
1154	return err;
1155}
1156
1157DECLARE_RWSEM(uts_sem);
1158
1159#ifdef COMPAT_UTS_MACHINE
1160#define override_architecture(name) \
1161	(personality(current->personality) == PER_LINUX32 && \
1162	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1163		      sizeof(COMPAT_UTS_MACHINE)))
1164#else
1165#define override_architecture(name)	0
1166#endif
1167
1168/*
1169 * Work around broken programs that cannot handle "Linux 3.0".
1170 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
 
1171 */
1172static int override_release(char __user *release, int len)
1173{
1174	int ret = 0;
1175	char buf[65];
1176
1177	if (current->personality & UNAME26) {
1178		char *rest = UTS_RELEASE;
 
1179		int ndots = 0;
1180		unsigned v;
 
1181
1182		while (*rest) {
1183			if (*rest == '.' && ++ndots >= 3)
1184				break;
1185			if (!isdigit(*rest) && *rest != '.')
1186				break;
1187			rest++;
1188		}
1189		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1190		snprintf(buf, len, "2.6.%u%s", v, rest);
1191		ret = copy_to_user(release, buf, len);
 
1192	}
1193	return ret;
1194}
1195
1196SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1197{
1198	int errno = 0;
1199
1200	down_read(&uts_sem);
1201	if (copy_to_user(name, utsname(), sizeof *name))
1202		errno = -EFAULT;
1203	up_read(&uts_sem);
1204
1205	if (!errno && override_release(name->release, sizeof(name->release)))
1206		errno = -EFAULT;
1207	if (!errno && override_architecture(name))
1208		errno = -EFAULT;
1209	return errno;
1210}
1211
1212#ifdef __ARCH_WANT_SYS_OLD_UNAME
1213/*
1214 * Old cruft
1215 */
1216SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1217{
1218	int error = 0;
1219
1220	if (!name)
1221		return -EFAULT;
1222
1223	down_read(&uts_sem);
1224	if (copy_to_user(name, utsname(), sizeof(*name)))
1225		error = -EFAULT;
1226	up_read(&uts_sem);
1227
1228	if (!error && override_release(name->release, sizeof(name->release)))
1229		error = -EFAULT;
1230	if (!error && override_architecture(name))
1231		error = -EFAULT;
1232	return error;
1233}
1234
1235SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1236{
1237	int error;
1238
1239	if (!name)
1240		return -EFAULT;
1241	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1242		return -EFAULT;
1243
1244	down_read(&uts_sem);
1245	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1246			       __OLD_UTS_LEN);
1247	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1248	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1249				__OLD_UTS_LEN);
1250	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1251	error |= __copy_to_user(&name->release, &utsname()->release,
1252				__OLD_UTS_LEN);
1253	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1254	error |= __copy_to_user(&name->version, &utsname()->version,
1255				__OLD_UTS_LEN);
1256	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1257	error |= __copy_to_user(&name->machine, &utsname()->machine,
1258				__OLD_UTS_LEN);
1259	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1260	up_read(&uts_sem);
1261
1262	if (!error && override_architecture(name))
1263		error = -EFAULT;
1264	if (!error && override_release(name->release, sizeof(name->release)))
1265		error = -EFAULT;
1266	return error ? -EFAULT : 0;
1267}
1268#endif
1269
1270SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1271{
1272	int errno;
1273	char tmp[__NEW_UTS_LEN];
1274
1275	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1276		return -EPERM;
1277
1278	if (len < 0 || len > __NEW_UTS_LEN)
1279		return -EINVAL;
1280	down_write(&uts_sem);
1281	errno = -EFAULT;
1282	if (!copy_from_user(tmp, name, len)) {
1283		struct new_utsname *u = utsname();
1284
1285		memcpy(u->nodename, tmp, len);
1286		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1287		errno = 0;
 
1288	}
1289	up_write(&uts_sem);
1290	return errno;
1291}
1292
1293#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1294
1295SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1296{
1297	int i, errno;
1298	struct new_utsname *u;
1299
1300	if (len < 0)
1301		return -EINVAL;
1302	down_read(&uts_sem);
1303	u = utsname();
1304	i = 1 + strlen(u->nodename);
1305	if (i > len)
1306		i = len;
1307	errno = 0;
1308	if (copy_to_user(name, u->nodename, i))
1309		errno = -EFAULT;
1310	up_read(&uts_sem);
1311	return errno;
1312}
1313
1314#endif
1315
1316/*
1317 * Only setdomainname; getdomainname can be implemented by calling
1318 * uname()
1319 */
1320SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1321{
1322	int errno;
1323	char tmp[__NEW_UTS_LEN];
1324
1325	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1326		return -EPERM;
1327	if (len < 0 || len > __NEW_UTS_LEN)
1328		return -EINVAL;
1329
1330	down_write(&uts_sem);
1331	errno = -EFAULT;
1332	if (!copy_from_user(tmp, name, len)) {
1333		struct new_utsname *u = utsname();
1334
1335		memcpy(u->domainname, tmp, len);
1336		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1337		errno = 0;
 
1338	}
1339	up_write(&uts_sem);
1340	return errno;
1341}
1342
1343SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1344{
1345	struct rlimit value;
1346	int ret;
1347
1348	ret = do_prlimit(current, resource, NULL, &value);
1349	if (!ret)
1350		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1351
1352	return ret;
1353}
1354
1355#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1356
1357/*
1358 *	Back compatibility for getrlimit. Needed for some apps.
1359 */
1360 
1361SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1362		struct rlimit __user *, rlim)
1363{
1364	struct rlimit x;
1365	if (resource >= RLIM_NLIMITS)
1366		return -EINVAL;
1367
1368	task_lock(current->group_leader);
1369	x = current->signal->rlim[resource];
1370	task_unlock(current->group_leader);
1371	if (x.rlim_cur > 0x7FFFFFFF)
1372		x.rlim_cur = 0x7FFFFFFF;
1373	if (x.rlim_max > 0x7FFFFFFF)
1374		x.rlim_max = 0x7FFFFFFF;
1375	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1376}
1377
1378#endif
1379
1380static inline bool rlim64_is_infinity(__u64 rlim64)
1381{
1382#if BITS_PER_LONG < 64
1383	return rlim64 >= ULONG_MAX;
1384#else
1385	return rlim64 == RLIM64_INFINITY;
1386#endif
1387}
1388
1389static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1390{
1391	if (rlim->rlim_cur == RLIM_INFINITY)
1392		rlim64->rlim_cur = RLIM64_INFINITY;
1393	else
1394		rlim64->rlim_cur = rlim->rlim_cur;
1395	if (rlim->rlim_max == RLIM_INFINITY)
1396		rlim64->rlim_max = RLIM64_INFINITY;
1397	else
1398		rlim64->rlim_max = rlim->rlim_max;
1399}
1400
1401static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1402{
1403	if (rlim64_is_infinity(rlim64->rlim_cur))
1404		rlim->rlim_cur = RLIM_INFINITY;
1405	else
1406		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1407	if (rlim64_is_infinity(rlim64->rlim_max))
1408		rlim->rlim_max = RLIM_INFINITY;
1409	else
1410		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1411}
1412
1413/* make sure you are allowed to change @tsk limits before calling this */
1414int do_prlimit(struct task_struct *tsk, unsigned int resource,
1415		struct rlimit *new_rlim, struct rlimit *old_rlim)
1416{
1417	struct rlimit *rlim;
1418	int retval = 0;
1419
1420	if (resource >= RLIM_NLIMITS)
1421		return -EINVAL;
1422	if (new_rlim) {
1423		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1424			return -EINVAL;
1425		if (resource == RLIMIT_NOFILE &&
1426				new_rlim->rlim_max > sysctl_nr_open)
1427			return -EPERM;
1428	}
1429
1430	/* protect tsk->signal and tsk->sighand from disappearing */
1431	read_lock(&tasklist_lock);
1432	if (!tsk->sighand) {
1433		retval = -ESRCH;
1434		goto out;
1435	}
1436
1437	rlim = tsk->signal->rlim + resource;
1438	task_lock(tsk->group_leader);
1439	if (new_rlim) {
1440		/* Keep the capable check against init_user_ns until
1441		   cgroups can contain all limits */
1442		if (new_rlim->rlim_max > rlim->rlim_max &&
1443				!capable(CAP_SYS_RESOURCE))
1444			retval = -EPERM;
1445		if (!retval)
1446			retval = security_task_setrlimit(tsk->group_leader,
1447					resource, new_rlim);
1448		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1449			/*
1450			 * The caller is asking for an immediate RLIMIT_CPU
1451			 * expiry.  But we use the zero value to mean "it was
1452			 * never set".  So let's cheat and make it one second
1453			 * instead
1454			 */
1455			new_rlim->rlim_cur = 1;
1456		}
1457	}
1458	if (!retval) {
1459		if (old_rlim)
1460			*old_rlim = *rlim;
1461		if (new_rlim)
1462			*rlim = *new_rlim;
1463	}
1464	task_unlock(tsk->group_leader);
1465
1466	/*
1467	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1468	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1469	 * very long-standing error, and fixing it now risks breakage of
1470	 * applications, so we live with it
1471	 */
1472	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1473			 new_rlim->rlim_cur != RLIM_INFINITY)
 
1474		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1475out:
1476	read_unlock(&tasklist_lock);
1477	return retval;
1478}
1479
1480/* rcu lock must be held */
1481static int check_prlimit_permission(struct task_struct *task)
1482{
1483	const struct cred *cred = current_cred(), *tcred;
1484
1485	if (current == task)
1486		return 0;
1487
1488	tcred = __task_cred(task);
1489	if (cred->user->user_ns == tcred->user->user_ns &&
1490	    (cred->uid == tcred->euid &&
1491	     cred->uid == tcred->suid &&
1492	     cred->uid == tcred->uid  &&
1493	     cred->gid == tcred->egid &&
1494	     cred->gid == tcred->sgid &&
1495	     cred->gid == tcred->gid))
1496		return 0;
1497	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1498		return 0;
1499
1500	return -EPERM;
1501}
1502
1503SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1504		const struct rlimit64 __user *, new_rlim,
1505		struct rlimit64 __user *, old_rlim)
1506{
1507	struct rlimit64 old64, new64;
1508	struct rlimit old, new;
1509	struct task_struct *tsk;
1510	int ret;
1511
1512	if (new_rlim) {
1513		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1514			return -EFAULT;
1515		rlim64_to_rlim(&new64, &new);
1516	}
1517
1518	rcu_read_lock();
1519	tsk = pid ? find_task_by_vpid(pid) : current;
1520	if (!tsk) {
1521		rcu_read_unlock();
1522		return -ESRCH;
1523	}
1524	ret = check_prlimit_permission(tsk);
1525	if (ret) {
1526		rcu_read_unlock();
1527		return ret;
1528	}
1529	get_task_struct(tsk);
1530	rcu_read_unlock();
1531
1532	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1533			old_rlim ? &old : NULL);
1534
1535	if (!ret && old_rlim) {
1536		rlim_to_rlim64(&old, &old64);
1537		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1538			ret = -EFAULT;
1539	}
1540
1541	put_task_struct(tsk);
1542	return ret;
1543}
1544
1545SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1546{
1547	struct rlimit new_rlim;
1548
1549	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1550		return -EFAULT;
1551	return do_prlimit(current, resource, &new_rlim, NULL);
1552}
1553
1554/*
1555 * It would make sense to put struct rusage in the task_struct,
1556 * except that would make the task_struct be *really big*.  After
1557 * task_struct gets moved into malloc'ed memory, it would
1558 * make sense to do this.  It will make moving the rest of the information
1559 * a lot simpler!  (Which we're not doing right now because we're not
1560 * measuring them yet).
1561 *
1562 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1563 * races with threads incrementing their own counters.  But since word
1564 * reads are atomic, we either get new values or old values and we don't
1565 * care which for the sums.  We always take the siglock to protect reading
1566 * the c* fields from p->signal from races with exit.c updating those
1567 * fields when reaping, so a sample either gets all the additions of a
1568 * given child after it's reaped, or none so this sample is before reaping.
1569 *
1570 * Locking:
1571 * We need to take the siglock for CHILDEREN, SELF and BOTH
1572 * for  the cases current multithreaded, non-current single threaded
1573 * non-current multithreaded.  Thread traversal is now safe with
1574 * the siglock held.
1575 * Strictly speaking, we donot need to take the siglock if we are current and
1576 * single threaded,  as no one else can take our signal_struct away, no one
1577 * else can  reap the  children to update signal->c* counters, and no one else
1578 * can race with the signal-> fields. If we do not take any lock, the
1579 * signal-> fields could be read out of order while another thread was just
1580 * exiting. So we should  place a read memory barrier when we avoid the lock.
1581 * On the writer side,  write memory barrier is implied in  __exit_signal
1582 * as __exit_signal releases  the siglock spinlock after updating the signal->
1583 * fields. But we don't do this yet to keep things simple.
1584 *
1585 */
1586
1587static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1588{
1589	r->ru_nvcsw += t->nvcsw;
1590	r->ru_nivcsw += t->nivcsw;
1591	r->ru_minflt += t->min_flt;
1592	r->ru_majflt += t->maj_flt;
1593	r->ru_inblock += task_io_get_inblock(t);
1594	r->ru_oublock += task_io_get_oublock(t);
1595}
1596
1597static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1598{
1599	struct task_struct *t;
1600	unsigned long flags;
1601	cputime_t tgutime, tgstime, utime, stime;
1602	unsigned long maxrss = 0;
1603
1604	memset((char *) r, 0, sizeof *r);
1605	utime = stime = cputime_zero;
1606
1607	if (who == RUSAGE_THREAD) {
1608		task_times(current, &utime, &stime);
1609		accumulate_thread_rusage(p, r);
1610		maxrss = p->signal->maxrss;
1611		goto out;
1612	}
1613
1614	if (!lock_task_sighand(p, &flags))
1615		return;
1616
1617	switch (who) {
1618		case RUSAGE_BOTH:
1619		case RUSAGE_CHILDREN:
1620			utime = p->signal->cutime;
1621			stime = p->signal->cstime;
1622			r->ru_nvcsw = p->signal->cnvcsw;
1623			r->ru_nivcsw = p->signal->cnivcsw;
1624			r->ru_minflt = p->signal->cmin_flt;
1625			r->ru_majflt = p->signal->cmaj_flt;
1626			r->ru_inblock = p->signal->cinblock;
1627			r->ru_oublock = p->signal->coublock;
1628			maxrss = p->signal->cmaxrss;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630			if (who == RUSAGE_CHILDREN)
1631				break;
1632
1633		case RUSAGE_SELF:
1634			thread_group_times(p, &tgutime, &tgstime);
1635			utime = cputime_add(utime, tgutime);
1636			stime = cputime_add(stime, tgstime);
1637			r->ru_nvcsw += p->signal->nvcsw;
1638			r->ru_nivcsw += p->signal->nivcsw;
1639			r->ru_minflt += p->signal->min_flt;
1640			r->ru_majflt += p->signal->maj_flt;
1641			r->ru_inblock += p->signal->inblock;
1642			r->ru_oublock += p->signal->oublock;
1643			if (maxrss < p->signal->maxrss)
1644				maxrss = p->signal->maxrss;
1645			t = p;
1646			do {
1647				accumulate_thread_rusage(t, r);
1648				t = next_thread(t);
1649			} while (t != p);
1650			break;
1651
1652		default:
1653			BUG();
1654	}
1655	unlock_task_sighand(p, &flags);
1656
1657out:
1658	cputime_to_timeval(utime, &r->ru_utime);
1659	cputime_to_timeval(stime, &r->ru_stime);
1660
1661	if (who != RUSAGE_CHILDREN) {
1662		struct mm_struct *mm = get_task_mm(p);
 
1663		if (mm) {
1664			setmax_mm_hiwater_rss(&maxrss, mm);
1665			mmput(mm);
1666		}
1667	}
1668	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1669}
1670
1671int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1672{
1673	struct rusage r;
 
1674	k_getrusage(p, who, &r);
1675	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1676}
1677
1678SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1679{
1680	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1681	    who != RUSAGE_THREAD)
1682		return -EINVAL;
1683	return getrusage(current, who, ru);
1684}
1685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686SYSCALL_DEFINE1(umask, int, mask)
1687{
1688	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1689	return mask;
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1693		unsigned long, arg4, unsigned long, arg5)
1694{
1695	struct task_struct *me = current;
1696	unsigned char comm[sizeof(me->comm)];
1697	long error;
1698
1699	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1700	if (error != -ENOSYS)
1701		return error;
1702
1703	error = 0;
1704	switch (option) {
1705		case PR_SET_PDEATHSIG:
1706			if (!valid_signal(arg2)) {
1707				error = -EINVAL;
1708				break;
1709			}
1710			me->pdeath_signal = arg2;
1711			error = 0;
1712			break;
1713		case PR_GET_PDEATHSIG:
1714			error = put_user(me->pdeath_signal, (int __user *)arg2);
1715			break;
1716		case PR_GET_DUMPABLE:
1717			error = get_dumpable(me->mm);
1718			break;
1719		case PR_SET_DUMPABLE:
1720			if (arg2 < 0 || arg2 > 1) {
1721				error = -EINVAL;
1722				break;
1723			}
1724			set_dumpable(me->mm, arg2);
1725			error = 0;
1726			break;
 
 
 
1727
1728		case PR_SET_UNALIGN:
1729			error = SET_UNALIGN_CTL(me, arg2);
1730			break;
1731		case PR_GET_UNALIGN:
1732			error = GET_UNALIGN_CTL(me, arg2);
1733			break;
1734		case PR_SET_FPEMU:
1735			error = SET_FPEMU_CTL(me, arg2);
1736			break;
1737		case PR_GET_FPEMU:
1738			error = GET_FPEMU_CTL(me, arg2);
1739			break;
1740		case PR_SET_FPEXC:
1741			error = SET_FPEXC_CTL(me, arg2);
1742			break;
1743		case PR_GET_FPEXC:
1744			error = GET_FPEXC_CTL(me, arg2);
1745			break;
1746		case PR_GET_TIMING:
1747			error = PR_TIMING_STATISTICAL;
1748			break;
1749		case PR_SET_TIMING:
1750			if (arg2 != PR_TIMING_STATISTICAL)
1751				error = -EINVAL;
1752			else
1753				error = 0;
1754			break;
1755
1756		case PR_SET_NAME:
1757			comm[sizeof(me->comm)-1] = 0;
1758			if (strncpy_from_user(comm, (char __user *)arg2,
1759					      sizeof(me->comm) - 1) < 0)
1760				return -EFAULT;
1761			set_task_comm(me, comm);
1762			return 0;
1763		case PR_GET_NAME:
1764			get_task_comm(comm, me);
1765			if (copy_to_user((char __user *)arg2, comm,
1766					 sizeof(comm)))
1767				return -EFAULT;
1768			return 0;
1769		case PR_GET_ENDIAN:
1770			error = GET_ENDIAN(me, arg2);
1771			break;
1772		case PR_SET_ENDIAN:
1773			error = SET_ENDIAN(me, arg2);
1774			break;
1775
1776		case PR_GET_SECCOMP:
1777			error = prctl_get_seccomp();
1778			break;
1779		case PR_SET_SECCOMP:
1780			error = prctl_set_seccomp(arg2);
1781			break;
1782		case PR_GET_TSC:
1783			error = GET_TSC_CTL(arg2);
1784			break;
1785		case PR_SET_TSC:
1786			error = SET_TSC_CTL(arg2);
1787			break;
1788		case PR_TASK_PERF_EVENTS_DISABLE:
1789			error = perf_event_task_disable();
1790			break;
1791		case PR_TASK_PERF_EVENTS_ENABLE:
1792			error = perf_event_task_enable();
1793			break;
1794		case PR_GET_TIMERSLACK:
1795			error = current->timer_slack_ns;
1796			break;
1797		case PR_SET_TIMERSLACK:
1798			if (arg2 <= 0)
1799				current->timer_slack_ns =
1800					current->default_timer_slack_ns;
1801			else
1802				current->timer_slack_ns = arg2;
1803			error = 0;
 
 
 
 
 
 
 
 
1804			break;
1805		case PR_MCE_KILL:
1806			if (arg4 | arg5)
1807				return -EINVAL;
1808			switch (arg2) {
1809			case PR_MCE_KILL_CLEAR:
1810				if (arg3 != 0)
1811					return -EINVAL;
1812				current->flags &= ~PF_MCE_PROCESS;
1813				break;
1814			case PR_MCE_KILL_SET:
1815				current->flags |= PF_MCE_PROCESS;
1816				if (arg3 == PR_MCE_KILL_EARLY)
1817					current->flags |= PF_MCE_EARLY;
1818				else if (arg3 == PR_MCE_KILL_LATE)
1819					current->flags &= ~PF_MCE_EARLY;
1820				else if (arg3 == PR_MCE_KILL_DEFAULT)
1821					current->flags &=
1822						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1823				else
1824					return -EINVAL;
1825				break;
1826			default:
1827				return -EINVAL;
1828			}
1829			error = 0;
1830			break;
1831		case PR_MCE_KILL_GET:
1832			if (arg2 | arg3 | arg4 | arg5)
1833				return -EINVAL;
1834			if (current->flags & PF_MCE_PROCESS)
1835				error = (current->flags & PF_MCE_EARLY) ?
1836					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1837			else
1838				error = PR_MCE_KILL_DEFAULT;
1839			break;
1840		default:
1841			error = -EINVAL;
1842			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843	}
1844	return error;
1845}
1846
1847SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1848		struct getcpu_cache __user *, unused)
1849{
1850	int err = 0;
1851	int cpu = raw_smp_processor_id();
 
1852	if (cpup)
1853		err |= put_user(cpu, cpup);
1854	if (nodep)
1855		err |= put_user(cpu_to_node(cpu), nodep);
1856	return err ? -EFAULT : 0;
1857}
1858
1859char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1860
1861static void argv_cleanup(struct subprocess_info *info)
1862{
1863	argv_free(info->argv);
1864}
1865
1866/**
1867 * orderly_poweroff - Trigger an orderly system poweroff
1868 * @force: force poweroff if command execution fails
1869 *
1870 * This may be called from any context to trigger a system shutdown.
1871 * If the orderly shutdown fails, it will force an immediate shutdown.
1872 */
1873int orderly_poweroff(bool force)
1874{
1875	int argc;
1876	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1877	static char *envp[] = {
1878		"HOME=/",
1879		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1880		NULL
1881	};
1882	int ret = -ENOMEM;
1883	struct subprocess_info *info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1884
1885	if (argv == NULL) {
1886		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1887		       __func__, poweroff_cmd);
1888		goto out;
 
 
 
 
 
 
 
 
 
1889	}
1890
1891	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1892	if (info == NULL) {
1893		argv_free(argv);
1894		goto out;
1895	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
 
 
 
 
1898
1899	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
 
 
 
1900
1901  out:
1902	if (ret && force) {
1903		printk(KERN_WARNING "Failed to start orderly shutdown: "
1904		       "forcing the issue\n");
1905
1906		/* I guess this should try to kick off some daemon to
1907		   sync and poweroff asap.  Or not even bother syncing
1908		   if we're doing an emergency shutdown? */
1909		emergency_sync();
1910		kernel_power_off();
1911	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1912
1913	return ret;
1914}
1915EXPORT_SYMBOL_GPL(orderly_poweroff);