Loading...
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/file.h>
39#include <linux/mount.h>
40#include <linux/gfp.h>
41#include <linux/syscore_ops.h>
42#include <linux/version.h>
43#include <linux/ctype.h>
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
47#include <linux/kprobes.h>
48#include <linux/user_namespace.h>
49#include <linux/binfmts.h>
50
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
56#include <linux/kmsg_dump.h>
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
59
60#include <linux/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
65# define SET_UNALIGN_CTL(a, b) (-EINVAL)
66#endif
67#ifndef GET_UNALIGN_CTL
68# define GET_UNALIGN_CTL(a, b) (-EINVAL)
69#endif
70#ifndef SET_FPEMU_CTL
71# define SET_FPEMU_CTL(a, b) (-EINVAL)
72#endif
73#ifndef GET_FPEMU_CTL
74# define GET_FPEMU_CTL(a, b) (-EINVAL)
75#endif
76#ifndef SET_FPEXC_CTL
77# define SET_FPEXC_CTL(a, b) (-EINVAL)
78#endif
79#ifndef GET_FPEXC_CTL
80# define GET_FPEXC_CTL(a, b) (-EINVAL)
81#endif
82#ifndef GET_ENDIAN
83# define GET_ENDIAN(a, b) (-EINVAL)
84#endif
85#ifndef SET_ENDIAN
86# define SET_ENDIAN(a, b) (-EINVAL)
87#endif
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
94#ifndef MPX_ENABLE_MANAGEMENT
95# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
96#endif
97#ifndef MPX_DISABLE_MANAGEMENT
98# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
99#endif
100#ifndef GET_FP_MODE
101# define GET_FP_MODE(a) (-EINVAL)
102#endif
103#ifndef SET_FP_MODE
104# define SET_FP_MODE(a,b) (-EINVAL)
105#endif
106
107/*
108 * this is where the system-wide overflow UID and GID are defined, for
109 * architectures that now have 32-bit UID/GID but didn't in the past
110 */
111
112int overflowuid = DEFAULT_OVERFLOWUID;
113int overflowgid = DEFAULT_OVERFLOWGID;
114
115EXPORT_SYMBOL(overflowuid);
116EXPORT_SYMBOL(overflowgid);
117
118/*
119 * the same as above, but for filesystems which can only store a 16-bit
120 * UID and GID. as such, this is needed on all architectures
121 */
122
123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125
126EXPORT_SYMBOL(fs_overflowuid);
127EXPORT_SYMBOL(fs_overflowgid);
128
129/*
130 * Returns true if current's euid is same as p's uid or euid,
131 * or has CAP_SYS_NICE to p's user_ns.
132 *
133 * Called with rcu_read_lock, creds are safe
134 */
135static bool set_one_prio_perm(struct task_struct *p)
136{
137 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138
139 if (uid_eq(pcred->uid, cred->euid) ||
140 uid_eq(pcred->euid, cred->euid))
141 return true;
142 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
143 return true;
144 return false;
145}
146
147/*
148 * set the priority of a task
149 * - the caller must hold the RCU read lock
150 */
151static int set_one_prio(struct task_struct *p, int niceval, int error)
152{
153 int no_nice;
154
155 if (!set_one_prio_perm(p)) {
156 error = -EPERM;
157 goto out;
158 }
159 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
160 error = -EACCES;
161 goto out;
162 }
163 no_nice = security_task_setnice(p, niceval);
164 if (no_nice) {
165 error = no_nice;
166 goto out;
167 }
168 if (error == -ESRCH)
169 error = 0;
170 set_user_nice(p, niceval);
171out:
172 return error;
173}
174
175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
176{
177 struct task_struct *g, *p;
178 struct user_struct *user;
179 const struct cred *cred = current_cred();
180 int error = -EINVAL;
181 struct pid *pgrp;
182 kuid_t uid;
183
184 if (which > PRIO_USER || which < PRIO_PROCESS)
185 goto out;
186
187 /* normalize: avoid signed division (rounding problems) */
188 error = -ESRCH;
189 if (niceval < MIN_NICE)
190 niceval = MIN_NICE;
191 if (niceval > MAX_NICE)
192 niceval = MAX_NICE;
193
194 rcu_read_lock();
195 read_lock(&tasklist_lock);
196 switch (which) {
197 case PRIO_PROCESS:
198 if (who)
199 p = find_task_by_vpid(who);
200 else
201 p = current;
202 if (p)
203 error = set_one_prio(p, niceval, error);
204 break;
205 case PRIO_PGRP:
206 if (who)
207 pgrp = find_vpid(who);
208 else
209 pgrp = task_pgrp(current);
210 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211 error = set_one_prio(p, niceval, error);
212 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213 break;
214 case PRIO_USER:
215 uid = make_kuid(cred->user_ns, who);
216 user = cred->user;
217 if (!who)
218 uid = cred->uid;
219 else if (!uid_eq(uid, cred->uid)) {
220 user = find_user(uid);
221 if (!user)
222 goto out_unlock; /* No processes for this user */
223 }
224 do_each_thread(g, p) {
225 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
226 error = set_one_prio(p, niceval, error);
227 } while_each_thread(g, p);
228 if (!uid_eq(uid, cred->uid))
229 free_uid(user); /* For find_user() */
230 break;
231 }
232out_unlock:
233 read_unlock(&tasklist_lock);
234 rcu_read_unlock();
235out:
236 return error;
237}
238
239/*
240 * Ugh. To avoid negative return values, "getpriority()" will
241 * not return the normal nice-value, but a negated value that
242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243 * to stay compatible.
244 */
245SYSCALL_DEFINE2(getpriority, int, which, int, who)
246{
247 struct task_struct *g, *p;
248 struct user_struct *user;
249 const struct cred *cred = current_cred();
250 long niceval, retval = -ESRCH;
251 struct pid *pgrp;
252 kuid_t uid;
253
254 if (which > PRIO_USER || which < PRIO_PROCESS)
255 return -EINVAL;
256
257 rcu_read_lock();
258 read_lock(&tasklist_lock);
259 switch (which) {
260 case PRIO_PROCESS:
261 if (who)
262 p = find_task_by_vpid(who);
263 else
264 p = current;
265 if (p) {
266 niceval = nice_to_rlimit(task_nice(p));
267 if (niceval > retval)
268 retval = niceval;
269 }
270 break;
271 case PRIO_PGRP:
272 if (who)
273 pgrp = find_vpid(who);
274 else
275 pgrp = task_pgrp(current);
276 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277 niceval = nice_to_rlimit(task_nice(p));
278 if (niceval > retval)
279 retval = niceval;
280 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 uid = make_kuid(cred->user_ns, who);
284 user = cred->user;
285 if (!who)
286 uid = cred->uid;
287 else if (!uid_eq(uid, cred->uid)) {
288 user = find_user(uid);
289 if (!user)
290 goto out_unlock; /* No processes for this user */
291 }
292 do_each_thread(g, p) {
293 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 } while_each_thread(g, p);
299 if (!uid_eq(uid, cred->uid))
300 free_uid(user); /* for find_user() */
301 break;
302 }
303out_unlock:
304 read_unlock(&tasklist_lock);
305 rcu_read_unlock();
306
307 return retval;
308}
309
310/*
311 * Unprivileged users may change the real gid to the effective gid
312 * or vice versa. (BSD-style)
313 *
314 * If you set the real gid at all, or set the effective gid to a value not
315 * equal to the real gid, then the saved gid is set to the new effective gid.
316 *
317 * This makes it possible for a setgid program to completely drop its
318 * privileges, which is often a useful assertion to make when you are doing
319 * a security audit over a program.
320 *
321 * The general idea is that a program which uses just setregid() will be
322 * 100% compatible with BSD. A program which uses just setgid() will be
323 * 100% compatible with POSIX with saved IDs.
324 *
325 * SMP: There are not races, the GIDs are checked only by filesystem
326 * operations (as far as semantic preservation is concerned).
327 */
328#ifdef CONFIG_MULTIUSER
329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
330{
331 struct user_namespace *ns = current_user_ns();
332 const struct cred *old;
333 struct cred *new;
334 int retval;
335 kgid_t krgid, kegid;
336
337 krgid = make_kgid(ns, rgid);
338 kegid = make_kgid(ns, egid);
339
340 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
341 return -EINVAL;
342 if ((egid != (gid_t) -1) && !gid_valid(kegid))
343 return -EINVAL;
344
345 new = prepare_creds();
346 if (!new)
347 return -ENOMEM;
348 old = current_cred();
349
350 retval = -EPERM;
351 if (rgid != (gid_t) -1) {
352 if (gid_eq(old->gid, krgid) ||
353 gid_eq(old->egid, krgid) ||
354 ns_capable(old->user_ns, CAP_SETGID))
355 new->gid = krgid;
356 else
357 goto error;
358 }
359 if (egid != (gid_t) -1) {
360 if (gid_eq(old->gid, kegid) ||
361 gid_eq(old->egid, kegid) ||
362 gid_eq(old->sgid, kegid) ||
363 ns_capable(old->user_ns, CAP_SETGID))
364 new->egid = kegid;
365 else
366 goto error;
367 }
368
369 if (rgid != (gid_t) -1 ||
370 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
371 new->sgid = new->egid;
372 new->fsgid = new->egid;
373
374 return commit_creds(new);
375
376error:
377 abort_creds(new);
378 return retval;
379}
380
381/*
382 * setgid() is implemented like SysV w/ SAVED_IDS
383 *
384 * SMP: Same implicit races as above.
385 */
386SYSCALL_DEFINE1(setgid, gid_t, gid)
387{
388 struct user_namespace *ns = current_user_ns();
389 const struct cred *old;
390 struct cred *new;
391 int retval;
392 kgid_t kgid;
393
394 kgid = make_kgid(ns, gid);
395 if (!gid_valid(kgid))
396 return -EINVAL;
397
398 new = prepare_creds();
399 if (!new)
400 return -ENOMEM;
401 old = current_cred();
402
403 retval = -EPERM;
404 if (ns_capable(old->user_ns, CAP_SETGID))
405 new->gid = new->egid = new->sgid = new->fsgid = kgid;
406 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
407 new->egid = new->fsgid = kgid;
408 else
409 goto error;
410
411 return commit_creds(new);
412
413error:
414 abort_creds(new);
415 return retval;
416}
417
418/*
419 * change the user struct in a credentials set to match the new UID
420 */
421static int set_user(struct cred *new)
422{
423 struct user_struct *new_user;
424
425 new_user = alloc_uid(new->uid);
426 if (!new_user)
427 return -EAGAIN;
428
429 /*
430 * We don't fail in case of NPROC limit excess here because too many
431 * poorly written programs don't check set*uid() return code, assuming
432 * it never fails if called by root. We may still enforce NPROC limit
433 * for programs doing set*uid()+execve() by harmlessly deferring the
434 * failure to the execve() stage.
435 */
436 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
437 new_user != INIT_USER)
438 current->flags |= PF_NPROC_EXCEEDED;
439 else
440 current->flags &= ~PF_NPROC_EXCEEDED;
441
442 free_uid(new->user);
443 new->user = new_user;
444 return 0;
445}
446
447/*
448 * Unprivileged users may change the real uid to the effective uid
449 * or vice versa. (BSD-style)
450 *
451 * If you set the real uid at all, or set the effective uid to a value not
452 * equal to the real uid, then the saved uid is set to the new effective uid.
453 *
454 * This makes it possible for a setuid program to completely drop its
455 * privileges, which is often a useful assertion to make when you are doing
456 * a security audit over a program.
457 *
458 * The general idea is that a program which uses just setreuid() will be
459 * 100% compatible with BSD. A program which uses just setuid() will be
460 * 100% compatible with POSIX with saved IDs.
461 */
462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
463{
464 struct user_namespace *ns = current_user_ns();
465 const struct cred *old;
466 struct cred *new;
467 int retval;
468 kuid_t kruid, keuid;
469
470 kruid = make_kuid(ns, ruid);
471 keuid = make_kuid(ns, euid);
472
473 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
474 return -EINVAL;
475 if ((euid != (uid_t) -1) && !uid_valid(keuid))
476 return -EINVAL;
477
478 new = prepare_creds();
479 if (!new)
480 return -ENOMEM;
481 old = current_cred();
482
483 retval = -EPERM;
484 if (ruid != (uid_t) -1) {
485 new->uid = kruid;
486 if (!uid_eq(old->uid, kruid) &&
487 !uid_eq(old->euid, kruid) &&
488 !ns_capable(old->user_ns, CAP_SETUID))
489 goto error;
490 }
491
492 if (euid != (uid_t) -1) {
493 new->euid = keuid;
494 if (!uid_eq(old->uid, keuid) &&
495 !uid_eq(old->euid, keuid) &&
496 !uid_eq(old->suid, keuid) &&
497 !ns_capable(old->user_ns, CAP_SETUID))
498 goto error;
499 }
500
501 if (!uid_eq(new->uid, old->uid)) {
502 retval = set_user(new);
503 if (retval < 0)
504 goto error;
505 }
506 if (ruid != (uid_t) -1 ||
507 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
508 new->suid = new->euid;
509 new->fsuid = new->euid;
510
511 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
512 if (retval < 0)
513 goto error;
514
515 return commit_creds(new);
516
517error:
518 abort_creds(new);
519 return retval;
520}
521
522/*
523 * setuid() is implemented like SysV with SAVED_IDS
524 *
525 * Note that SAVED_ID's is deficient in that a setuid root program
526 * like sendmail, for example, cannot set its uid to be a normal
527 * user and then switch back, because if you're root, setuid() sets
528 * the saved uid too. If you don't like this, blame the bright people
529 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
530 * will allow a root program to temporarily drop privileges and be able to
531 * regain them by swapping the real and effective uid.
532 */
533SYSCALL_DEFINE1(setuid, uid_t, uid)
534{
535 struct user_namespace *ns = current_user_ns();
536 const struct cred *old;
537 struct cred *new;
538 int retval;
539 kuid_t kuid;
540
541 kuid = make_kuid(ns, uid);
542 if (!uid_valid(kuid))
543 return -EINVAL;
544
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
550 retval = -EPERM;
551 if (ns_capable(old->user_ns, CAP_SETUID)) {
552 new->suid = new->uid = kuid;
553 if (!uid_eq(kuid, old->uid)) {
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
557 }
558 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
559 goto error;
560 }
561
562 new->fsuid = new->euid = kuid;
563
564 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
565 if (retval < 0)
566 goto error;
567
568 return commit_creds(new);
569
570error:
571 abort_creds(new);
572 return retval;
573}
574
575
576/*
577 * This function implements a generic ability to update ruid, euid,
578 * and suid. This allows you to implement the 4.4 compatible seteuid().
579 */
580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
581{
582 struct user_namespace *ns = current_user_ns();
583 const struct cred *old;
584 struct cred *new;
585 int retval;
586 kuid_t kruid, keuid, ksuid;
587
588 kruid = make_kuid(ns, ruid);
589 keuid = make_kuid(ns, euid);
590 ksuid = make_kuid(ns, suid);
591
592 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
593 return -EINVAL;
594
595 if ((euid != (uid_t) -1) && !uid_valid(keuid))
596 return -EINVAL;
597
598 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
599 return -EINVAL;
600
601 new = prepare_creds();
602 if (!new)
603 return -ENOMEM;
604
605 old = current_cred();
606
607 retval = -EPERM;
608 if (!ns_capable(old->user_ns, CAP_SETUID)) {
609 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
610 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
611 goto error;
612 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
613 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
614 goto error;
615 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
616 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
617 goto error;
618 }
619
620 if (ruid != (uid_t) -1) {
621 new->uid = kruid;
622 if (!uid_eq(kruid, old->uid)) {
623 retval = set_user(new);
624 if (retval < 0)
625 goto error;
626 }
627 }
628 if (euid != (uid_t) -1)
629 new->euid = keuid;
630 if (suid != (uid_t) -1)
631 new->suid = ksuid;
632 new->fsuid = new->euid;
633
634 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
635 if (retval < 0)
636 goto error;
637
638 return commit_creds(new);
639
640error:
641 abort_creds(new);
642 return retval;
643}
644
645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
646{
647 const struct cred *cred = current_cred();
648 int retval;
649 uid_t ruid, euid, suid;
650
651 ruid = from_kuid_munged(cred->user_ns, cred->uid);
652 euid = from_kuid_munged(cred->user_ns, cred->euid);
653 suid = from_kuid_munged(cred->user_ns, cred->suid);
654
655 retval = put_user(ruid, ruidp);
656 if (!retval) {
657 retval = put_user(euid, euidp);
658 if (!retval)
659 return put_user(suid, suidp);
660 }
661 return retval;
662}
663
664/*
665 * Same as above, but for rgid, egid, sgid.
666 */
667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
668{
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
671 struct cred *new;
672 int retval;
673 kgid_t krgid, kegid, ksgid;
674
675 krgid = make_kgid(ns, rgid);
676 kegid = make_kgid(ns, egid);
677 ksgid = make_kgid(ns, sgid);
678
679 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
680 return -EINVAL;
681 if ((egid != (gid_t) -1) && !gid_valid(kegid))
682 return -EINVAL;
683 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
684 return -EINVAL;
685
686 new = prepare_creds();
687 if (!new)
688 return -ENOMEM;
689 old = current_cred();
690
691 retval = -EPERM;
692 if (!ns_capable(old->user_ns, CAP_SETGID)) {
693 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
694 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
695 goto error;
696 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
697 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
698 goto error;
699 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
700 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
701 goto error;
702 }
703
704 if (rgid != (gid_t) -1)
705 new->gid = krgid;
706 if (egid != (gid_t) -1)
707 new->egid = kegid;
708 if (sgid != (gid_t) -1)
709 new->sgid = ksgid;
710 new->fsgid = new->egid;
711
712 return commit_creds(new);
713
714error:
715 abort_creds(new);
716 return retval;
717}
718
719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
720{
721 const struct cred *cred = current_cred();
722 int retval;
723 gid_t rgid, egid, sgid;
724
725 rgid = from_kgid_munged(cred->user_ns, cred->gid);
726 egid = from_kgid_munged(cred->user_ns, cred->egid);
727 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
728
729 retval = put_user(rgid, rgidp);
730 if (!retval) {
731 retval = put_user(egid, egidp);
732 if (!retval)
733 retval = put_user(sgid, sgidp);
734 }
735
736 return retval;
737}
738
739
740/*
741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
743 * whatever uid it wants to). It normally shadows "euid", except when
744 * explicitly set by setfsuid() or for access..
745 */
746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
747{
748 const struct cred *old;
749 struct cred *new;
750 uid_t old_fsuid;
751 kuid_t kuid;
752
753 old = current_cred();
754 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
755
756 kuid = make_kuid(old->user_ns, uid);
757 if (!uid_valid(kuid))
758 return old_fsuid;
759
760 new = prepare_creds();
761 if (!new)
762 return old_fsuid;
763
764 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
765 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
766 ns_capable(old->user_ns, CAP_SETUID)) {
767 if (!uid_eq(kuid, old->fsuid)) {
768 new->fsuid = kuid;
769 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
770 goto change_okay;
771 }
772 }
773
774 abort_creds(new);
775 return old_fsuid;
776
777change_okay:
778 commit_creds(new);
779 return old_fsuid;
780}
781
782/*
783 * Samma på svenska..
784 */
785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
786{
787 const struct cred *old;
788 struct cred *new;
789 gid_t old_fsgid;
790 kgid_t kgid;
791
792 old = current_cred();
793 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
794
795 kgid = make_kgid(old->user_ns, gid);
796 if (!gid_valid(kgid))
797 return old_fsgid;
798
799 new = prepare_creds();
800 if (!new)
801 return old_fsgid;
802
803 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
804 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
805 ns_capable(old->user_ns, CAP_SETGID)) {
806 if (!gid_eq(kgid, old->fsgid)) {
807 new->fsgid = kgid;
808 goto change_okay;
809 }
810 }
811
812 abort_creds(new);
813 return old_fsgid;
814
815change_okay:
816 commit_creds(new);
817 return old_fsgid;
818}
819#endif /* CONFIG_MULTIUSER */
820
821/**
822 * sys_getpid - return the thread group id of the current process
823 *
824 * Note, despite the name, this returns the tgid not the pid. The tgid and
825 * the pid are identical unless CLONE_THREAD was specified on clone() in
826 * which case the tgid is the same in all threads of the same group.
827 *
828 * This is SMP safe as current->tgid does not change.
829 */
830SYSCALL_DEFINE0(getpid)
831{
832 return task_tgid_vnr(current);
833}
834
835/* Thread ID - the internal kernel "pid" */
836SYSCALL_DEFINE0(gettid)
837{
838 return task_pid_vnr(current);
839}
840
841/*
842 * Accessing ->real_parent is not SMP-safe, it could
843 * change from under us. However, we can use a stale
844 * value of ->real_parent under rcu_read_lock(), see
845 * release_task()->call_rcu(delayed_put_task_struct).
846 */
847SYSCALL_DEFINE0(getppid)
848{
849 int pid;
850
851 rcu_read_lock();
852 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
853 rcu_read_unlock();
854
855 return pid;
856}
857
858SYSCALL_DEFINE0(getuid)
859{
860 /* Only we change this so SMP safe */
861 return from_kuid_munged(current_user_ns(), current_uid());
862}
863
864SYSCALL_DEFINE0(geteuid)
865{
866 /* Only we change this so SMP safe */
867 return from_kuid_munged(current_user_ns(), current_euid());
868}
869
870SYSCALL_DEFINE0(getgid)
871{
872 /* Only we change this so SMP safe */
873 return from_kgid_munged(current_user_ns(), current_gid());
874}
875
876SYSCALL_DEFINE0(getegid)
877{
878 /* Only we change this so SMP safe */
879 return from_kgid_munged(current_user_ns(), current_egid());
880}
881
882void do_sys_times(struct tms *tms)
883{
884 cputime_t tgutime, tgstime, cutime, cstime;
885
886 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
889 tms->tms_utime = cputime_to_clock_t(tgutime);
890 tms->tms_stime = cputime_to_clock_t(tgstime);
891 tms->tms_cutime = cputime_to_clock_t(cutime);
892 tms->tms_cstime = cputime_to_clock_t(cstime);
893}
894
895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
896{
897 if (tbuf) {
898 struct tms tmp;
899
900 do_sys_times(&tmp);
901 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
902 return -EFAULT;
903 }
904 force_successful_syscall_return();
905 return (long) jiffies_64_to_clock_t(get_jiffies_64());
906}
907
908/*
909 * This needs some heavy checking ...
910 * I just haven't the stomach for it. I also don't fully
911 * understand sessions/pgrp etc. Let somebody who does explain it.
912 *
913 * OK, I think I have the protection semantics right.... this is really
914 * only important on a multi-user system anyway, to make sure one user
915 * can't send a signal to a process owned by another. -TYT, 12/12/91
916 *
917 * !PF_FORKNOEXEC check to conform completely to POSIX.
918 */
919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
920{
921 struct task_struct *p;
922 struct task_struct *group_leader = current->group_leader;
923 struct pid *pgrp;
924 int err;
925
926 if (!pid)
927 pid = task_pid_vnr(group_leader);
928 if (!pgid)
929 pgid = pid;
930 if (pgid < 0)
931 return -EINVAL;
932 rcu_read_lock();
933
934 /* From this point forward we keep holding onto the tasklist lock
935 * so that our parent does not change from under us. -DaveM
936 */
937 write_lock_irq(&tasklist_lock);
938
939 err = -ESRCH;
940 p = find_task_by_vpid(pid);
941 if (!p)
942 goto out;
943
944 err = -EINVAL;
945 if (!thread_group_leader(p))
946 goto out;
947
948 if (same_thread_group(p->real_parent, group_leader)) {
949 err = -EPERM;
950 if (task_session(p) != task_session(group_leader))
951 goto out;
952 err = -EACCES;
953 if (!(p->flags & PF_FORKNOEXEC))
954 goto out;
955 } else {
956 err = -ESRCH;
957 if (p != group_leader)
958 goto out;
959 }
960
961 err = -EPERM;
962 if (p->signal->leader)
963 goto out;
964
965 pgrp = task_pid(p);
966 if (pgid != pid) {
967 struct task_struct *g;
968
969 pgrp = find_vpid(pgid);
970 g = pid_task(pgrp, PIDTYPE_PGID);
971 if (!g || task_session(g) != task_session(group_leader))
972 goto out;
973 }
974
975 err = security_task_setpgid(p, pgid);
976 if (err)
977 goto out;
978
979 if (task_pgrp(p) != pgrp)
980 change_pid(p, PIDTYPE_PGID, pgrp);
981
982 err = 0;
983out:
984 /* All paths lead to here, thus we are safe. -DaveM */
985 write_unlock_irq(&tasklist_lock);
986 rcu_read_unlock();
987 return err;
988}
989
990SYSCALL_DEFINE1(getpgid, pid_t, pid)
991{
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
995
996 rcu_read_lock();
997 if (!pid)
998 grp = task_pgrp(current);
999 else {
1000 retval = -ESRCH;
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1007
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1011 }
1012 retval = pid_vnr(grp);
1013out:
1014 rcu_read_unlock();
1015 return retval;
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022 return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1032
1033 rcu_read_lock();
1034 if (!pid)
1035 sid = task_session(current);
1036 else {
1037 retval = -ESRCH;
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1044
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1048 }
1049 retval = pid_vnr(sid);
1050out:
1051 rcu_read_unlock();
1052 return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057 struct task_struct *curr = current->group_leader;
1058
1059 if (task_session(curr) != pid)
1060 change_pid(curr, PIDTYPE_SID, pid);
1061
1062 if (task_pgrp(curr) != pid)
1063 change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068 struct task_struct *group_leader = current->group_leader;
1069 struct pid *sid = task_pid(group_leader);
1070 pid_t session = pid_vnr(sid);
1071 int err = -EPERM;
1072
1073 write_lock_irq(&tasklist_lock);
1074 /* Fail if I am already a session leader */
1075 if (group_leader->signal->leader)
1076 goto out;
1077
1078 /* Fail if a process group id already exists that equals the
1079 * proposed session id.
1080 */
1081 if (pid_task(sid, PIDTYPE_PGID))
1082 goto out;
1083
1084 group_leader->signal->leader = 1;
1085 set_special_pids(sid);
1086
1087 proc_clear_tty(group_leader);
1088
1089 err = session;
1090out:
1091 write_unlock_irq(&tasklist_lock);
1092 if (err > 0) {
1093 proc_sid_connector(group_leader);
1094 sched_autogroup_create_attach(group_leader);
1095 }
1096 return err;
1097}
1098
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103 (personality(current->personality) == PER_LINUX32 && \
1104 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105 sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name) 0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117 int ret = 0;
1118
1119 if (current->personality & UNAME26) {
1120 const char *rest = UTS_RELEASE;
1121 char buf[65] = { 0 };
1122 int ndots = 0;
1123 unsigned v;
1124 size_t copy;
1125
1126 while (*rest) {
1127 if (*rest == '.' && ++ndots >= 3)
1128 break;
1129 if (!isdigit(*rest) && *rest != '.')
1130 break;
1131 rest++;
1132 }
1133 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134 copy = clamp_t(size_t, len, 1, sizeof(buf));
1135 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136 ret = copy_to_user(release, buf, copy + 1);
1137 }
1138 return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143 int errno = 0;
1144
1145 down_read(&uts_sem);
1146 if (copy_to_user(name, utsname(), sizeof *name))
1147 errno = -EFAULT;
1148 up_read(&uts_sem);
1149
1150 if (!errno && override_release(name->release, sizeof(name->release)))
1151 errno = -EFAULT;
1152 if (!errno && override_architecture(name))
1153 errno = -EFAULT;
1154 return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163 int error = 0;
1164
1165 if (!name)
1166 return -EFAULT;
1167
1168 down_read(&uts_sem);
1169 if (copy_to_user(name, utsname(), sizeof(*name)))
1170 error = -EFAULT;
1171 up_read(&uts_sem);
1172
1173 if (!error && override_release(name->release, sizeof(name->release)))
1174 error = -EFAULT;
1175 if (!error && override_architecture(name))
1176 error = -EFAULT;
1177 return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182 int error;
1183
1184 if (!name)
1185 return -EFAULT;
1186 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187 return -EFAULT;
1188
1189 down_read(&uts_sem);
1190 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191 __OLD_UTS_LEN);
1192 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194 __OLD_UTS_LEN);
1195 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196 error |= __copy_to_user(&name->release, &utsname()->release,
1197 __OLD_UTS_LEN);
1198 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199 error |= __copy_to_user(&name->version, &utsname()->version,
1200 __OLD_UTS_LEN);
1201 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202 error |= __copy_to_user(&name->machine, &utsname()->machine,
1203 __OLD_UTS_LEN);
1204 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205 up_read(&uts_sem);
1206
1207 if (!error && override_architecture(name))
1208 error = -EFAULT;
1209 if (!error && override_release(name->release, sizeof(name->release)))
1210 error = -EFAULT;
1211 return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217 int errno;
1218 char tmp[__NEW_UTS_LEN];
1219
1220 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221 return -EPERM;
1222
1223 if (len < 0 || len > __NEW_UTS_LEN)
1224 return -EINVAL;
1225 down_write(&uts_sem);
1226 errno = -EFAULT;
1227 if (!copy_from_user(tmp, name, len)) {
1228 struct new_utsname *u = utsname();
1229
1230 memcpy(u->nodename, tmp, len);
1231 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232 errno = 0;
1233 uts_proc_notify(UTS_PROC_HOSTNAME);
1234 }
1235 up_write(&uts_sem);
1236 return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243 int i, errno;
1244 struct new_utsname *u;
1245
1246 if (len < 0)
1247 return -EINVAL;
1248 down_read(&uts_sem);
1249 u = utsname();
1250 i = 1 + strlen(u->nodename);
1251 if (i > len)
1252 i = len;
1253 errno = 0;
1254 if (copy_to_user(name, u->nodename, i))
1255 errno = -EFAULT;
1256 up_read(&uts_sem);
1257 return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268 int errno;
1269 char tmp[__NEW_UTS_LEN];
1270
1271 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272 return -EPERM;
1273 if (len < 0 || len > __NEW_UTS_LEN)
1274 return -EINVAL;
1275
1276 down_write(&uts_sem);
1277 errno = -EFAULT;
1278 if (!copy_from_user(tmp, name, len)) {
1279 struct new_utsname *u = utsname();
1280
1281 memcpy(u->domainname, tmp, len);
1282 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283 errno = 0;
1284 uts_proc_notify(UTS_PROC_DOMAINNAME);
1285 }
1286 up_write(&uts_sem);
1287 return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292 struct rlimit value;
1293 int ret;
1294
1295 ret = do_prlimit(current, resource, NULL, &value);
1296 if (!ret)
1297 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299 return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 * Back compatibility for getrlimit. Needed for some apps.
1306 */
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308 struct rlimit __user *, rlim)
1309{
1310 struct rlimit x;
1311 if (resource >= RLIM_NLIMITS)
1312 return -EINVAL;
1313
1314 task_lock(current->group_leader);
1315 x = current->signal->rlim[resource];
1316 task_unlock(current->group_leader);
1317 if (x.rlim_cur > 0x7FFFFFFF)
1318 x.rlim_cur = 0x7FFFFFFF;
1319 if (x.rlim_max > 0x7FFFFFFF)
1320 x.rlim_max = 0x7FFFFFFF;
1321 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329 return rlim64 >= ULONG_MAX;
1330#else
1331 return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337 if (rlim->rlim_cur == RLIM_INFINITY)
1338 rlim64->rlim_cur = RLIM64_INFINITY;
1339 else
1340 rlim64->rlim_cur = rlim->rlim_cur;
1341 if (rlim->rlim_max == RLIM_INFINITY)
1342 rlim64->rlim_max = RLIM64_INFINITY;
1343 else
1344 rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349 if (rlim64_is_infinity(rlim64->rlim_cur))
1350 rlim->rlim_cur = RLIM_INFINITY;
1351 else
1352 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353 if (rlim64_is_infinity(rlim64->rlim_max))
1354 rlim->rlim_max = RLIM_INFINITY;
1355 else
1356 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361 struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363 struct rlimit *rlim;
1364 int retval = 0;
1365
1366 if (resource >= RLIM_NLIMITS)
1367 return -EINVAL;
1368 if (new_rlim) {
1369 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370 return -EINVAL;
1371 if (resource == RLIMIT_NOFILE &&
1372 new_rlim->rlim_max > sysctl_nr_open)
1373 return -EPERM;
1374 }
1375
1376 /* protect tsk->signal and tsk->sighand from disappearing */
1377 read_lock(&tasklist_lock);
1378 if (!tsk->sighand) {
1379 retval = -ESRCH;
1380 goto out;
1381 }
1382
1383 rlim = tsk->signal->rlim + resource;
1384 task_lock(tsk->group_leader);
1385 if (new_rlim) {
1386 /* Keep the capable check against init_user_ns until
1387 cgroups can contain all limits */
1388 if (new_rlim->rlim_max > rlim->rlim_max &&
1389 !capable(CAP_SYS_RESOURCE))
1390 retval = -EPERM;
1391 if (!retval)
1392 retval = security_task_setrlimit(tsk->group_leader,
1393 resource, new_rlim);
1394 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395 /*
1396 * The caller is asking for an immediate RLIMIT_CPU
1397 * expiry. But we use the zero value to mean "it was
1398 * never set". So let's cheat and make it one second
1399 * instead
1400 */
1401 new_rlim->rlim_cur = 1;
1402 }
1403 }
1404 if (!retval) {
1405 if (old_rlim)
1406 *old_rlim = *rlim;
1407 if (new_rlim)
1408 *rlim = *new_rlim;
1409 }
1410 task_unlock(tsk->group_leader);
1411
1412 /*
1413 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1414 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1415 * very long-standing error, and fixing it now risks breakage of
1416 * applications, so we live with it
1417 */
1418 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419 new_rlim->rlim_cur != RLIM_INFINITY &&
1420 IS_ENABLED(CONFIG_POSIX_TIMERS))
1421 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1422out:
1423 read_unlock(&tasklist_lock);
1424 return retval;
1425}
1426
1427/* rcu lock must be held */
1428static int check_prlimit_permission(struct task_struct *task)
1429{
1430 const struct cred *cred = current_cred(), *tcred;
1431
1432 if (current == task)
1433 return 0;
1434
1435 tcred = __task_cred(task);
1436 if (uid_eq(cred->uid, tcred->euid) &&
1437 uid_eq(cred->uid, tcred->suid) &&
1438 uid_eq(cred->uid, tcred->uid) &&
1439 gid_eq(cred->gid, tcred->egid) &&
1440 gid_eq(cred->gid, tcred->sgid) &&
1441 gid_eq(cred->gid, tcred->gid))
1442 return 0;
1443 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1444 return 0;
1445
1446 return -EPERM;
1447}
1448
1449SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1450 const struct rlimit64 __user *, new_rlim,
1451 struct rlimit64 __user *, old_rlim)
1452{
1453 struct rlimit64 old64, new64;
1454 struct rlimit old, new;
1455 struct task_struct *tsk;
1456 int ret;
1457
1458 if (new_rlim) {
1459 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1460 return -EFAULT;
1461 rlim64_to_rlim(&new64, &new);
1462 }
1463
1464 rcu_read_lock();
1465 tsk = pid ? find_task_by_vpid(pid) : current;
1466 if (!tsk) {
1467 rcu_read_unlock();
1468 return -ESRCH;
1469 }
1470 ret = check_prlimit_permission(tsk);
1471 if (ret) {
1472 rcu_read_unlock();
1473 return ret;
1474 }
1475 get_task_struct(tsk);
1476 rcu_read_unlock();
1477
1478 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1479 old_rlim ? &old : NULL);
1480
1481 if (!ret && old_rlim) {
1482 rlim_to_rlim64(&old, &old64);
1483 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1484 ret = -EFAULT;
1485 }
1486
1487 put_task_struct(tsk);
1488 return ret;
1489}
1490
1491SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1492{
1493 struct rlimit new_rlim;
1494
1495 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1496 return -EFAULT;
1497 return do_prlimit(current, resource, &new_rlim, NULL);
1498}
1499
1500/*
1501 * It would make sense to put struct rusage in the task_struct,
1502 * except that would make the task_struct be *really big*. After
1503 * task_struct gets moved into malloc'ed memory, it would
1504 * make sense to do this. It will make moving the rest of the information
1505 * a lot simpler! (Which we're not doing right now because we're not
1506 * measuring them yet).
1507 *
1508 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1509 * races with threads incrementing their own counters. But since word
1510 * reads are atomic, we either get new values or old values and we don't
1511 * care which for the sums. We always take the siglock to protect reading
1512 * the c* fields from p->signal from races with exit.c updating those
1513 * fields when reaping, so a sample either gets all the additions of a
1514 * given child after it's reaped, or none so this sample is before reaping.
1515 *
1516 * Locking:
1517 * We need to take the siglock for CHILDEREN, SELF and BOTH
1518 * for the cases current multithreaded, non-current single threaded
1519 * non-current multithreaded. Thread traversal is now safe with
1520 * the siglock held.
1521 * Strictly speaking, we donot need to take the siglock if we are current and
1522 * single threaded, as no one else can take our signal_struct away, no one
1523 * else can reap the children to update signal->c* counters, and no one else
1524 * can race with the signal-> fields. If we do not take any lock, the
1525 * signal-> fields could be read out of order while another thread was just
1526 * exiting. So we should place a read memory barrier when we avoid the lock.
1527 * On the writer side, write memory barrier is implied in __exit_signal
1528 * as __exit_signal releases the siglock spinlock after updating the signal->
1529 * fields. But we don't do this yet to keep things simple.
1530 *
1531 */
1532
1533static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1534{
1535 r->ru_nvcsw += t->nvcsw;
1536 r->ru_nivcsw += t->nivcsw;
1537 r->ru_minflt += t->min_flt;
1538 r->ru_majflt += t->maj_flt;
1539 r->ru_inblock += task_io_get_inblock(t);
1540 r->ru_oublock += task_io_get_oublock(t);
1541}
1542
1543static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1544{
1545 struct task_struct *t;
1546 unsigned long flags;
1547 cputime_t tgutime, tgstime, utime, stime;
1548 unsigned long maxrss = 0;
1549
1550 memset((char *)r, 0, sizeof (*r));
1551 utime = stime = 0;
1552
1553 if (who == RUSAGE_THREAD) {
1554 task_cputime_adjusted(current, &utime, &stime);
1555 accumulate_thread_rusage(p, r);
1556 maxrss = p->signal->maxrss;
1557 goto out;
1558 }
1559
1560 if (!lock_task_sighand(p, &flags))
1561 return;
1562
1563 switch (who) {
1564 case RUSAGE_BOTH:
1565 case RUSAGE_CHILDREN:
1566 utime = p->signal->cutime;
1567 stime = p->signal->cstime;
1568 r->ru_nvcsw = p->signal->cnvcsw;
1569 r->ru_nivcsw = p->signal->cnivcsw;
1570 r->ru_minflt = p->signal->cmin_flt;
1571 r->ru_majflt = p->signal->cmaj_flt;
1572 r->ru_inblock = p->signal->cinblock;
1573 r->ru_oublock = p->signal->coublock;
1574 maxrss = p->signal->cmaxrss;
1575
1576 if (who == RUSAGE_CHILDREN)
1577 break;
1578
1579 case RUSAGE_SELF:
1580 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1581 utime += tgutime;
1582 stime += tgstime;
1583 r->ru_nvcsw += p->signal->nvcsw;
1584 r->ru_nivcsw += p->signal->nivcsw;
1585 r->ru_minflt += p->signal->min_flt;
1586 r->ru_majflt += p->signal->maj_flt;
1587 r->ru_inblock += p->signal->inblock;
1588 r->ru_oublock += p->signal->oublock;
1589 if (maxrss < p->signal->maxrss)
1590 maxrss = p->signal->maxrss;
1591 t = p;
1592 do {
1593 accumulate_thread_rusage(t, r);
1594 } while_each_thread(p, t);
1595 break;
1596
1597 default:
1598 BUG();
1599 }
1600 unlock_task_sighand(p, &flags);
1601
1602out:
1603 cputime_to_timeval(utime, &r->ru_utime);
1604 cputime_to_timeval(stime, &r->ru_stime);
1605
1606 if (who != RUSAGE_CHILDREN) {
1607 struct mm_struct *mm = get_task_mm(p);
1608
1609 if (mm) {
1610 setmax_mm_hiwater_rss(&maxrss, mm);
1611 mmput(mm);
1612 }
1613 }
1614 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1615}
1616
1617int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1618{
1619 struct rusage r;
1620
1621 k_getrusage(p, who, &r);
1622 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1623}
1624
1625SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1626{
1627 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1628 who != RUSAGE_THREAD)
1629 return -EINVAL;
1630 return getrusage(current, who, ru);
1631}
1632
1633#ifdef CONFIG_COMPAT
1634COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1635{
1636 struct rusage r;
1637
1638 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1639 who != RUSAGE_THREAD)
1640 return -EINVAL;
1641
1642 k_getrusage(current, who, &r);
1643 return put_compat_rusage(&r, ru);
1644}
1645#endif
1646
1647SYSCALL_DEFINE1(umask, int, mask)
1648{
1649 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1650 return mask;
1651}
1652
1653static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1654{
1655 struct fd exe;
1656 struct file *old_exe, *exe_file;
1657 struct inode *inode;
1658 int err;
1659
1660 exe = fdget(fd);
1661 if (!exe.file)
1662 return -EBADF;
1663
1664 inode = file_inode(exe.file);
1665
1666 /*
1667 * Because the original mm->exe_file points to executable file, make
1668 * sure that this one is executable as well, to avoid breaking an
1669 * overall picture.
1670 */
1671 err = -EACCES;
1672 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1673 goto exit;
1674
1675 err = inode_permission(inode, MAY_EXEC);
1676 if (err)
1677 goto exit;
1678
1679 /*
1680 * Forbid mm->exe_file change if old file still mapped.
1681 */
1682 exe_file = get_mm_exe_file(mm);
1683 err = -EBUSY;
1684 if (exe_file) {
1685 struct vm_area_struct *vma;
1686
1687 down_read(&mm->mmap_sem);
1688 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1689 if (!vma->vm_file)
1690 continue;
1691 if (path_equal(&vma->vm_file->f_path,
1692 &exe_file->f_path))
1693 goto exit_err;
1694 }
1695
1696 up_read(&mm->mmap_sem);
1697 fput(exe_file);
1698 }
1699
1700 err = 0;
1701 /* set the new file, lockless */
1702 get_file(exe.file);
1703 old_exe = xchg(&mm->exe_file, exe.file);
1704 if (old_exe)
1705 fput(old_exe);
1706exit:
1707 fdput(exe);
1708 return err;
1709exit_err:
1710 up_read(&mm->mmap_sem);
1711 fput(exe_file);
1712 goto exit;
1713}
1714
1715/*
1716 * WARNING: we don't require any capability here so be very careful
1717 * in what is allowed for modification from userspace.
1718 */
1719static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1720{
1721 unsigned long mmap_max_addr = TASK_SIZE;
1722 struct mm_struct *mm = current->mm;
1723 int error = -EINVAL, i;
1724
1725 static const unsigned char offsets[] = {
1726 offsetof(struct prctl_mm_map, start_code),
1727 offsetof(struct prctl_mm_map, end_code),
1728 offsetof(struct prctl_mm_map, start_data),
1729 offsetof(struct prctl_mm_map, end_data),
1730 offsetof(struct prctl_mm_map, start_brk),
1731 offsetof(struct prctl_mm_map, brk),
1732 offsetof(struct prctl_mm_map, start_stack),
1733 offsetof(struct prctl_mm_map, arg_start),
1734 offsetof(struct prctl_mm_map, arg_end),
1735 offsetof(struct prctl_mm_map, env_start),
1736 offsetof(struct prctl_mm_map, env_end),
1737 };
1738
1739 /*
1740 * Make sure the members are not somewhere outside
1741 * of allowed address space.
1742 */
1743 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1744 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1745
1746 if ((unsigned long)val >= mmap_max_addr ||
1747 (unsigned long)val < mmap_min_addr)
1748 goto out;
1749 }
1750
1751 /*
1752 * Make sure the pairs are ordered.
1753 */
1754#define __prctl_check_order(__m1, __op, __m2) \
1755 ((unsigned long)prctl_map->__m1 __op \
1756 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1757 error = __prctl_check_order(start_code, <, end_code);
1758 error |= __prctl_check_order(start_data, <, end_data);
1759 error |= __prctl_check_order(start_brk, <=, brk);
1760 error |= __prctl_check_order(arg_start, <=, arg_end);
1761 error |= __prctl_check_order(env_start, <=, env_end);
1762 if (error)
1763 goto out;
1764#undef __prctl_check_order
1765
1766 error = -EINVAL;
1767
1768 /*
1769 * @brk should be after @end_data in traditional maps.
1770 */
1771 if (prctl_map->start_brk <= prctl_map->end_data ||
1772 prctl_map->brk <= prctl_map->end_data)
1773 goto out;
1774
1775 /*
1776 * Neither we should allow to override limits if they set.
1777 */
1778 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1779 prctl_map->start_brk, prctl_map->end_data,
1780 prctl_map->start_data))
1781 goto out;
1782
1783 /*
1784 * Someone is trying to cheat the auxv vector.
1785 */
1786 if (prctl_map->auxv_size) {
1787 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1788 goto out;
1789 }
1790
1791 /*
1792 * Finally, make sure the caller has the rights to
1793 * change /proc/pid/exe link: only local root should
1794 * be allowed to.
1795 */
1796 if (prctl_map->exe_fd != (u32)-1) {
1797 struct user_namespace *ns = current_user_ns();
1798 const struct cred *cred = current_cred();
1799
1800 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1801 !gid_eq(cred->gid, make_kgid(ns, 0)))
1802 goto out;
1803 }
1804
1805 error = 0;
1806out:
1807 return error;
1808}
1809
1810#ifdef CONFIG_CHECKPOINT_RESTORE
1811static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1812{
1813 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1814 unsigned long user_auxv[AT_VECTOR_SIZE];
1815 struct mm_struct *mm = current->mm;
1816 int error;
1817
1818 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1819 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1820
1821 if (opt == PR_SET_MM_MAP_SIZE)
1822 return put_user((unsigned int)sizeof(prctl_map),
1823 (unsigned int __user *)addr);
1824
1825 if (data_size != sizeof(prctl_map))
1826 return -EINVAL;
1827
1828 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1829 return -EFAULT;
1830
1831 error = validate_prctl_map(&prctl_map);
1832 if (error)
1833 return error;
1834
1835 if (prctl_map.auxv_size) {
1836 memset(user_auxv, 0, sizeof(user_auxv));
1837 if (copy_from_user(user_auxv,
1838 (const void __user *)prctl_map.auxv,
1839 prctl_map.auxv_size))
1840 return -EFAULT;
1841
1842 /* Last entry must be AT_NULL as specification requires */
1843 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1844 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1845 }
1846
1847 if (prctl_map.exe_fd != (u32)-1) {
1848 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1849 if (error)
1850 return error;
1851 }
1852
1853 down_write(&mm->mmap_sem);
1854
1855 /*
1856 * We don't validate if these members are pointing to
1857 * real present VMAs because application may have correspond
1858 * VMAs already unmapped and kernel uses these members for statistics
1859 * output in procfs mostly, except
1860 *
1861 * - @start_brk/@brk which are used in do_brk but kernel lookups
1862 * for VMAs when updating these memvers so anything wrong written
1863 * here cause kernel to swear at userspace program but won't lead
1864 * to any problem in kernel itself
1865 */
1866
1867 mm->start_code = prctl_map.start_code;
1868 mm->end_code = prctl_map.end_code;
1869 mm->start_data = prctl_map.start_data;
1870 mm->end_data = prctl_map.end_data;
1871 mm->start_brk = prctl_map.start_brk;
1872 mm->brk = prctl_map.brk;
1873 mm->start_stack = prctl_map.start_stack;
1874 mm->arg_start = prctl_map.arg_start;
1875 mm->arg_end = prctl_map.arg_end;
1876 mm->env_start = prctl_map.env_start;
1877 mm->env_end = prctl_map.env_end;
1878
1879 /*
1880 * Note this update of @saved_auxv is lockless thus
1881 * if someone reads this member in procfs while we're
1882 * updating -- it may get partly updated results. It's
1883 * known and acceptable trade off: we leave it as is to
1884 * not introduce additional locks here making the kernel
1885 * more complex.
1886 */
1887 if (prctl_map.auxv_size)
1888 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1889
1890 up_write(&mm->mmap_sem);
1891 return 0;
1892}
1893#endif /* CONFIG_CHECKPOINT_RESTORE */
1894
1895static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1896 unsigned long len)
1897{
1898 /*
1899 * This doesn't move the auxiliary vector itself since it's pinned to
1900 * mm_struct, but it permits filling the vector with new values. It's
1901 * up to the caller to provide sane values here, otherwise userspace
1902 * tools which use this vector might be unhappy.
1903 */
1904 unsigned long user_auxv[AT_VECTOR_SIZE];
1905
1906 if (len > sizeof(user_auxv))
1907 return -EINVAL;
1908
1909 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1910 return -EFAULT;
1911
1912 /* Make sure the last entry is always AT_NULL */
1913 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1914 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1915
1916 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1917
1918 task_lock(current);
1919 memcpy(mm->saved_auxv, user_auxv, len);
1920 task_unlock(current);
1921
1922 return 0;
1923}
1924
1925static int prctl_set_mm(int opt, unsigned long addr,
1926 unsigned long arg4, unsigned long arg5)
1927{
1928 struct mm_struct *mm = current->mm;
1929 struct prctl_mm_map prctl_map;
1930 struct vm_area_struct *vma;
1931 int error;
1932
1933 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1934 opt != PR_SET_MM_MAP &&
1935 opt != PR_SET_MM_MAP_SIZE)))
1936 return -EINVAL;
1937
1938#ifdef CONFIG_CHECKPOINT_RESTORE
1939 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1940 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1941#endif
1942
1943 if (!capable(CAP_SYS_RESOURCE))
1944 return -EPERM;
1945
1946 if (opt == PR_SET_MM_EXE_FILE)
1947 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1948
1949 if (opt == PR_SET_MM_AUXV)
1950 return prctl_set_auxv(mm, addr, arg4);
1951
1952 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1953 return -EINVAL;
1954
1955 error = -EINVAL;
1956
1957 down_write(&mm->mmap_sem);
1958 vma = find_vma(mm, addr);
1959
1960 prctl_map.start_code = mm->start_code;
1961 prctl_map.end_code = mm->end_code;
1962 prctl_map.start_data = mm->start_data;
1963 prctl_map.end_data = mm->end_data;
1964 prctl_map.start_brk = mm->start_brk;
1965 prctl_map.brk = mm->brk;
1966 prctl_map.start_stack = mm->start_stack;
1967 prctl_map.arg_start = mm->arg_start;
1968 prctl_map.arg_end = mm->arg_end;
1969 prctl_map.env_start = mm->env_start;
1970 prctl_map.env_end = mm->env_end;
1971 prctl_map.auxv = NULL;
1972 prctl_map.auxv_size = 0;
1973 prctl_map.exe_fd = -1;
1974
1975 switch (opt) {
1976 case PR_SET_MM_START_CODE:
1977 prctl_map.start_code = addr;
1978 break;
1979 case PR_SET_MM_END_CODE:
1980 prctl_map.end_code = addr;
1981 break;
1982 case PR_SET_MM_START_DATA:
1983 prctl_map.start_data = addr;
1984 break;
1985 case PR_SET_MM_END_DATA:
1986 prctl_map.end_data = addr;
1987 break;
1988 case PR_SET_MM_START_STACK:
1989 prctl_map.start_stack = addr;
1990 break;
1991 case PR_SET_MM_START_BRK:
1992 prctl_map.start_brk = addr;
1993 break;
1994 case PR_SET_MM_BRK:
1995 prctl_map.brk = addr;
1996 break;
1997 case PR_SET_MM_ARG_START:
1998 prctl_map.arg_start = addr;
1999 break;
2000 case PR_SET_MM_ARG_END:
2001 prctl_map.arg_end = addr;
2002 break;
2003 case PR_SET_MM_ENV_START:
2004 prctl_map.env_start = addr;
2005 break;
2006 case PR_SET_MM_ENV_END:
2007 prctl_map.env_end = addr;
2008 break;
2009 default:
2010 goto out;
2011 }
2012
2013 error = validate_prctl_map(&prctl_map);
2014 if (error)
2015 goto out;
2016
2017 switch (opt) {
2018 /*
2019 * If command line arguments and environment
2020 * are placed somewhere else on stack, we can
2021 * set them up here, ARG_START/END to setup
2022 * command line argumets and ENV_START/END
2023 * for environment.
2024 */
2025 case PR_SET_MM_START_STACK:
2026 case PR_SET_MM_ARG_START:
2027 case PR_SET_MM_ARG_END:
2028 case PR_SET_MM_ENV_START:
2029 case PR_SET_MM_ENV_END:
2030 if (!vma) {
2031 error = -EFAULT;
2032 goto out;
2033 }
2034 }
2035
2036 mm->start_code = prctl_map.start_code;
2037 mm->end_code = prctl_map.end_code;
2038 mm->start_data = prctl_map.start_data;
2039 mm->end_data = prctl_map.end_data;
2040 mm->start_brk = prctl_map.start_brk;
2041 mm->brk = prctl_map.brk;
2042 mm->start_stack = prctl_map.start_stack;
2043 mm->arg_start = prctl_map.arg_start;
2044 mm->arg_end = prctl_map.arg_end;
2045 mm->env_start = prctl_map.env_start;
2046 mm->env_end = prctl_map.env_end;
2047
2048 error = 0;
2049out:
2050 up_write(&mm->mmap_sem);
2051 return error;
2052}
2053
2054#ifdef CONFIG_CHECKPOINT_RESTORE
2055static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2056{
2057 return put_user(me->clear_child_tid, tid_addr);
2058}
2059#else
2060static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2061{
2062 return -EINVAL;
2063}
2064#endif
2065
2066SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2067 unsigned long, arg4, unsigned long, arg5)
2068{
2069 struct task_struct *me = current;
2070 unsigned char comm[sizeof(me->comm)];
2071 long error;
2072
2073 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2074 if (error != -ENOSYS)
2075 return error;
2076
2077 error = 0;
2078 switch (option) {
2079 case PR_SET_PDEATHSIG:
2080 if (!valid_signal(arg2)) {
2081 error = -EINVAL;
2082 break;
2083 }
2084 me->pdeath_signal = arg2;
2085 break;
2086 case PR_GET_PDEATHSIG:
2087 error = put_user(me->pdeath_signal, (int __user *)arg2);
2088 break;
2089 case PR_GET_DUMPABLE:
2090 error = get_dumpable(me->mm);
2091 break;
2092 case PR_SET_DUMPABLE:
2093 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2094 error = -EINVAL;
2095 break;
2096 }
2097 set_dumpable(me->mm, arg2);
2098 break;
2099
2100 case PR_SET_UNALIGN:
2101 error = SET_UNALIGN_CTL(me, arg2);
2102 break;
2103 case PR_GET_UNALIGN:
2104 error = GET_UNALIGN_CTL(me, arg2);
2105 break;
2106 case PR_SET_FPEMU:
2107 error = SET_FPEMU_CTL(me, arg2);
2108 break;
2109 case PR_GET_FPEMU:
2110 error = GET_FPEMU_CTL(me, arg2);
2111 break;
2112 case PR_SET_FPEXC:
2113 error = SET_FPEXC_CTL(me, arg2);
2114 break;
2115 case PR_GET_FPEXC:
2116 error = GET_FPEXC_CTL(me, arg2);
2117 break;
2118 case PR_GET_TIMING:
2119 error = PR_TIMING_STATISTICAL;
2120 break;
2121 case PR_SET_TIMING:
2122 if (arg2 != PR_TIMING_STATISTICAL)
2123 error = -EINVAL;
2124 break;
2125 case PR_SET_NAME:
2126 comm[sizeof(me->comm) - 1] = 0;
2127 if (strncpy_from_user(comm, (char __user *)arg2,
2128 sizeof(me->comm) - 1) < 0)
2129 return -EFAULT;
2130 set_task_comm(me, comm);
2131 proc_comm_connector(me);
2132 break;
2133 case PR_GET_NAME:
2134 get_task_comm(comm, me);
2135 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2136 return -EFAULT;
2137 break;
2138 case PR_GET_ENDIAN:
2139 error = GET_ENDIAN(me, arg2);
2140 break;
2141 case PR_SET_ENDIAN:
2142 error = SET_ENDIAN(me, arg2);
2143 break;
2144 case PR_GET_SECCOMP:
2145 error = prctl_get_seccomp();
2146 break;
2147 case PR_SET_SECCOMP:
2148 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2149 break;
2150 case PR_GET_TSC:
2151 error = GET_TSC_CTL(arg2);
2152 break;
2153 case PR_SET_TSC:
2154 error = SET_TSC_CTL(arg2);
2155 break;
2156 case PR_TASK_PERF_EVENTS_DISABLE:
2157 error = perf_event_task_disable();
2158 break;
2159 case PR_TASK_PERF_EVENTS_ENABLE:
2160 error = perf_event_task_enable();
2161 break;
2162 case PR_GET_TIMERSLACK:
2163 if (current->timer_slack_ns > ULONG_MAX)
2164 error = ULONG_MAX;
2165 else
2166 error = current->timer_slack_ns;
2167 break;
2168 case PR_SET_TIMERSLACK:
2169 if (arg2 <= 0)
2170 current->timer_slack_ns =
2171 current->default_timer_slack_ns;
2172 else
2173 current->timer_slack_ns = arg2;
2174 break;
2175 case PR_MCE_KILL:
2176 if (arg4 | arg5)
2177 return -EINVAL;
2178 switch (arg2) {
2179 case PR_MCE_KILL_CLEAR:
2180 if (arg3 != 0)
2181 return -EINVAL;
2182 current->flags &= ~PF_MCE_PROCESS;
2183 break;
2184 case PR_MCE_KILL_SET:
2185 current->flags |= PF_MCE_PROCESS;
2186 if (arg3 == PR_MCE_KILL_EARLY)
2187 current->flags |= PF_MCE_EARLY;
2188 else if (arg3 == PR_MCE_KILL_LATE)
2189 current->flags &= ~PF_MCE_EARLY;
2190 else if (arg3 == PR_MCE_KILL_DEFAULT)
2191 current->flags &=
2192 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2193 else
2194 return -EINVAL;
2195 break;
2196 default:
2197 return -EINVAL;
2198 }
2199 break;
2200 case PR_MCE_KILL_GET:
2201 if (arg2 | arg3 | arg4 | arg5)
2202 return -EINVAL;
2203 if (current->flags & PF_MCE_PROCESS)
2204 error = (current->flags & PF_MCE_EARLY) ?
2205 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2206 else
2207 error = PR_MCE_KILL_DEFAULT;
2208 break;
2209 case PR_SET_MM:
2210 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2211 break;
2212 case PR_GET_TID_ADDRESS:
2213 error = prctl_get_tid_address(me, (int __user **)arg2);
2214 break;
2215 case PR_SET_CHILD_SUBREAPER:
2216 me->signal->is_child_subreaper = !!arg2;
2217 break;
2218 case PR_GET_CHILD_SUBREAPER:
2219 error = put_user(me->signal->is_child_subreaper,
2220 (int __user *)arg2);
2221 break;
2222 case PR_SET_NO_NEW_PRIVS:
2223 if (arg2 != 1 || arg3 || arg4 || arg5)
2224 return -EINVAL;
2225
2226 task_set_no_new_privs(current);
2227 break;
2228 case PR_GET_NO_NEW_PRIVS:
2229 if (arg2 || arg3 || arg4 || arg5)
2230 return -EINVAL;
2231 return task_no_new_privs(current) ? 1 : 0;
2232 case PR_GET_THP_DISABLE:
2233 if (arg2 || arg3 || arg4 || arg5)
2234 return -EINVAL;
2235 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2236 break;
2237 case PR_SET_THP_DISABLE:
2238 if (arg3 || arg4 || arg5)
2239 return -EINVAL;
2240 if (down_write_killable(&me->mm->mmap_sem))
2241 return -EINTR;
2242 if (arg2)
2243 me->mm->def_flags |= VM_NOHUGEPAGE;
2244 else
2245 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2246 up_write(&me->mm->mmap_sem);
2247 break;
2248 case PR_MPX_ENABLE_MANAGEMENT:
2249 if (arg2 || arg3 || arg4 || arg5)
2250 return -EINVAL;
2251 error = MPX_ENABLE_MANAGEMENT();
2252 break;
2253 case PR_MPX_DISABLE_MANAGEMENT:
2254 if (arg2 || arg3 || arg4 || arg5)
2255 return -EINVAL;
2256 error = MPX_DISABLE_MANAGEMENT();
2257 break;
2258 case PR_SET_FP_MODE:
2259 error = SET_FP_MODE(me, arg2);
2260 break;
2261 case PR_GET_FP_MODE:
2262 error = GET_FP_MODE(me);
2263 break;
2264 default:
2265 error = -EINVAL;
2266 break;
2267 }
2268 return error;
2269}
2270
2271SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2272 struct getcpu_cache __user *, unused)
2273{
2274 int err = 0;
2275 int cpu = raw_smp_processor_id();
2276
2277 if (cpup)
2278 err |= put_user(cpu, cpup);
2279 if (nodep)
2280 err |= put_user(cpu_to_node(cpu), nodep);
2281 return err ? -EFAULT : 0;
2282}
2283
2284/**
2285 * do_sysinfo - fill in sysinfo struct
2286 * @info: pointer to buffer to fill
2287 */
2288static int do_sysinfo(struct sysinfo *info)
2289{
2290 unsigned long mem_total, sav_total;
2291 unsigned int mem_unit, bitcount;
2292 struct timespec tp;
2293
2294 memset(info, 0, sizeof(struct sysinfo));
2295
2296 get_monotonic_boottime(&tp);
2297 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2298
2299 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2300
2301 info->procs = nr_threads;
2302
2303 si_meminfo(info);
2304 si_swapinfo(info);
2305
2306 /*
2307 * If the sum of all the available memory (i.e. ram + swap)
2308 * is less than can be stored in a 32 bit unsigned long then
2309 * we can be binary compatible with 2.2.x kernels. If not,
2310 * well, in that case 2.2.x was broken anyways...
2311 *
2312 * -Erik Andersen <andersee@debian.org>
2313 */
2314
2315 mem_total = info->totalram + info->totalswap;
2316 if (mem_total < info->totalram || mem_total < info->totalswap)
2317 goto out;
2318 bitcount = 0;
2319 mem_unit = info->mem_unit;
2320 while (mem_unit > 1) {
2321 bitcount++;
2322 mem_unit >>= 1;
2323 sav_total = mem_total;
2324 mem_total <<= 1;
2325 if (mem_total < sav_total)
2326 goto out;
2327 }
2328
2329 /*
2330 * If mem_total did not overflow, multiply all memory values by
2331 * info->mem_unit and set it to 1. This leaves things compatible
2332 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2333 * kernels...
2334 */
2335
2336 info->mem_unit = 1;
2337 info->totalram <<= bitcount;
2338 info->freeram <<= bitcount;
2339 info->sharedram <<= bitcount;
2340 info->bufferram <<= bitcount;
2341 info->totalswap <<= bitcount;
2342 info->freeswap <<= bitcount;
2343 info->totalhigh <<= bitcount;
2344 info->freehigh <<= bitcount;
2345
2346out:
2347 return 0;
2348}
2349
2350SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2351{
2352 struct sysinfo val;
2353
2354 do_sysinfo(&val);
2355
2356 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2357 return -EFAULT;
2358
2359 return 0;
2360}
2361
2362#ifdef CONFIG_COMPAT
2363struct compat_sysinfo {
2364 s32 uptime;
2365 u32 loads[3];
2366 u32 totalram;
2367 u32 freeram;
2368 u32 sharedram;
2369 u32 bufferram;
2370 u32 totalswap;
2371 u32 freeswap;
2372 u16 procs;
2373 u16 pad;
2374 u32 totalhigh;
2375 u32 freehigh;
2376 u32 mem_unit;
2377 char _f[20-2*sizeof(u32)-sizeof(int)];
2378};
2379
2380COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2381{
2382 struct sysinfo s;
2383
2384 do_sysinfo(&s);
2385
2386 /* Check to see if any memory value is too large for 32-bit and scale
2387 * down if needed
2388 */
2389 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2390 int bitcount = 0;
2391
2392 while (s.mem_unit < PAGE_SIZE) {
2393 s.mem_unit <<= 1;
2394 bitcount++;
2395 }
2396
2397 s.totalram >>= bitcount;
2398 s.freeram >>= bitcount;
2399 s.sharedram >>= bitcount;
2400 s.bufferram >>= bitcount;
2401 s.totalswap >>= bitcount;
2402 s.freeswap >>= bitcount;
2403 s.totalhigh >>= bitcount;
2404 s.freehigh >>= bitcount;
2405 }
2406
2407 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2408 __put_user(s.uptime, &info->uptime) ||
2409 __put_user(s.loads[0], &info->loads[0]) ||
2410 __put_user(s.loads[1], &info->loads[1]) ||
2411 __put_user(s.loads[2], &info->loads[2]) ||
2412 __put_user(s.totalram, &info->totalram) ||
2413 __put_user(s.freeram, &info->freeram) ||
2414 __put_user(s.sharedram, &info->sharedram) ||
2415 __put_user(s.bufferram, &info->bufferram) ||
2416 __put_user(s.totalswap, &info->totalswap) ||
2417 __put_user(s.freeswap, &info->freeswap) ||
2418 __put_user(s.procs, &info->procs) ||
2419 __put_user(s.totalhigh, &info->totalhigh) ||
2420 __put_user(s.freehigh, &info->freehigh) ||
2421 __put_user(s.mem_unit, &info->mem_unit))
2422 return -EFAULT;
2423
2424 return 0;
2425}
2426#endif /* CONFIG_COMPAT */
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/perf_event.h>
16#include <linux/resource.h>
17#include <linux/kernel.h>
18#include <linux/kexec.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/gfp.h>
39#include <linux/syscore_ops.h>
40#include <linux/version.h>
41#include <linux/ctype.h>
42
43#include <linux/compat.h>
44#include <linux/syscalls.h>
45#include <linux/kprobes.h>
46#include <linux/user_namespace.h>
47
48#include <linux/kmsg_dump.h>
49/* Move somewhere else to avoid recompiling? */
50#include <generated/utsrelease.h>
51
52#include <asm/uaccess.h>
53#include <asm/io.h>
54#include <asm/unistd.h>
55
56#ifndef SET_UNALIGN_CTL
57# define SET_UNALIGN_CTL(a,b) (-EINVAL)
58#endif
59#ifndef GET_UNALIGN_CTL
60# define GET_UNALIGN_CTL(a,b) (-EINVAL)
61#endif
62#ifndef SET_FPEMU_CTL
63# define SET_FPEMU_CTL(a,b) (-EINVAL)
64#endif
65#ifndef GET_FPEMU_CTL
66# define GET_FPEMU_CTL(a,b) (-EINVAL)
67#endif
68#ifndef SET_FPEXC_CTL
69# define SET_FPEXC_CTL(a,b) (-EINVAL)
70#endif
71#ifndef GET_FPEXC_CTL
72# define GET_FPEXC_CTL(a,b) (-EINVAL)
73#endif
74#ifndef GET_ENDIAN
75# define GET_ENDIAN(a,b) (-EINVAL)
76#endif
77#ifndef SET_ENDIAN
78# define SET_ENDIAN(a,b) (-EINVAL)
79#endif
80#ifndef GET_TSC_CTL
81# define GET_TSC_CTL(a) (-EINVAL)
82#endif
83#ifndef SET_TSC_CTL
84# define SET_TSC_CTL(a) (-EINVAL)
85#endif
86
87/*
88 * this is where the system-wide overflow UID and GID are defined, for
89 * architectures that now have 32-bit UID/GID but didn't in the past
90 */
91
92int overflowuid = DEFAULT_OVERFLOWUID;
93int overflowgid = DEFAULT_OVERFLOWGID;
94
95#ifdef CONFIG_UID16
96EXPORT_SYMBOL(overflowuid);
97EXPORT_SYMBOL(overflowgid);
98#endif
99
100/*
101 * the same as above, but for filesystems which can only store a 16-bit
102 * UID and GID. as such, this is needed on all architectures
103 */
104
105int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
106int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
107
108EXPORT_SYMBOL(fs_overflowuid);
109EXPORT_SYMBOL(fs_overflowgid);
110
111/*
112 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
113 */
114
115int C_A_D = 1;
116struct pid *cad_pid;
117EXPORT_SYMBOL(cad_pid);
118
119/*
120 * If set, this is used for preparing the system to power off.
121 */
122
123void (*pm_power_off_prepare)(void);
124
125/*
126 * Returns true if current's euid is same as p's uid or euid,
127 * or has CAP_SYS_NICE to p's user_ns.
128 *
129 * Called with rcu_read_lock, creds are safe
130 */
131static bool set_one_prio_perm(struct task_struct *p)
132{
133 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
134
135 if (pcred->user->user_ns == cred->user->user_ns &&
136 (pcred->uid == cred->euid ||
137 pcred->euid == cred->euid))
138 return true;
139 if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
140 return true;
141 return false;
142}
143
144/*
145 * set the priority of a task
146 * - the caller must hold the RCU read lock
147 */
148static int set_one_prio(struct task_struct *p, int niceval, int error)
149{
150 int no_nice;
151
152 if (!set_one_prio_perm(p)) {
153 error = -EPERM;
154 goto out;
155 }
156 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
157 error = -EACCES;
158 goto out;
159 }
160 no_nice = security_task_setnice(p, niceval);
161 if (no_nice) {
162 error = no_nice;
163 goto out;
164 }
165 if (error == -ESRCH)
166 error = 0;
167 set_user_nice(p, niceval);
168out:
169 return error;
170}
171
172SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
173{
174 struct task_struct *g, *p;
175 struct user_struct *user;
176 const struct cred *cred = current_cred();
177 int error = -EINVAL;
178 struct pid *pgrp;
179
180 if (which > PRIO_USER || which < PRIO_PROCESS)
181 goto out;
182
183 /* normalize: avoid signed division (rounding problems) */
184 error = -ESRCH;
185 if (niceval < -20)
186 niceval = -20;
187 if (niceval > 19)
188 niceval = 19;
189
190 rcu_read_lock();
191 read_lock(&tasklist_lock);
192 switch (which) {
193 case PRIO_PROCESS:
194 if (who)
195 p = find_task_by_vpid(who);
196 else
197 p = current;
198 if (p)
199 error = set_one_prio(p, niceval, error);
200 break;
201 case PRIO_PGRP:
202 if (who)
203 pgrp = find_vpid(who);
204 else
205 pgrp = task_pgrp(current);
206 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
207 error = set_one_prio(p, niceval, error);
208 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
209 break;
210 case PRIO_USER:
211 user = (struct user_struct *) cred->user;
212 if (!who)
213 who = cred->uid;
214 else if ((who != cred->uid) &&
215 !(user = find_user(who)))
216 goto out_unlock; /* No processes for this user */
217
218 do_each_thread(g, p) {
219 if (__task_cred(p)->uid == who)
220 error = set_one_prio(p, niceval, error);
221 } while_each_thread(g, p);
222 if (who != cred->uid)
223 free_uid(user); /* For find_user() */
224 break;
225 }
226out_unlock:
227 read_unlock(&tasklist_lock);
228 rcu_read_unlock();
229out:
230 return error;
231}
232
233/*
234 * Ugh. To avoid negative return values, "getpriority()" will
235 * not return the normal nice-value, but a negated value that
236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237 * to stay compatible.
238 */
239SYSCALL_DEFINE2(getpriority, int, which, int, who)
240{
241 struct task_struct *g, *p;
242 struct user_struct *user;
243 const struct cred *cred = current_cred();
244 long niceval, retval = -ESRCH;
245 struct pid *pgrp;
246
247 if (which > PRIO_USER || which < PRIO_PROCESS)
248 return -EINVAL;
249
250 rcu_read_lock();
251 read_lock(&tasklist_lock);
252 switch (which) {
253 case PRIO_PROCESS:
254 if (who)
255 p = find_task_by_vpid(who);
256 else
257 p = current;
258 if (p) {
259 niceval = 20 - task_nice(p);
260 if (niceval > retval)
261 retval = niceval;
262 }
263 break;
264 case PRIO_PGRP:
265 if (who)
266 pgrp = find_vpid(who);
267 else
268 pgrp = task_pgrp(current);
269 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
270 niceval = 20 - task_nice(p);
271 if (niceval > retval)
272 retval = niceval;
273 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
274 break;
275 case PRIO_USER:
276 user = (struct user_struct *) cred->user;
277 if (!who)
278 who = cred->uid;
279 else if ((who != cred->uid) &&
280 !(user = find_user(who)))
281 goto out_unlock; /* No processes for this user */
282
283 do_each_thread(g, p) {
284 if (__task_cred(p)->uid == who) {
285 niceval = 20 - task_nice(p);
286 if (niceval > retval)
287 retval = niceval;
288 }
289 } while_each_thread(g, p);
290 if (who != cred->uid)
291 free_uid(user); /* for find_user() */
292 break;
293 }
294out_unlock:
295 read_unlock(&tasklist_lock);
296 rcu_read_unlock();
297
298 return retval;
299}
300
301/**
302 * emergency_restart - reboot the system
303 *
304 * Without shutting down any hardware or taking any locks
305 * reboot the system. This is called when we know we are in
306 * trouble so this is our best effort to reboot. This is
307 * safe to call in interrupt context.
308 */
309void emergency_restart(void)
310{
311 kmsg_dump(KMSG_DUMP_EMERG);
312 machine_emergency_restart();
313}
314EXPORT_SYMBOL_GPL(emergency_restart);
315
316void kernel_restart_prepare(char *cmd)
317{
318 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
319 system_state = SYSTEM_RESTART;
320 usermodehelper_disable();
321 device_shutdown();
322 syscore_shutdown();
323}
324
325/**
326 * register_reboot_notifier - Register function to be called at reboot time
327 * @nb: Info about notifier function to be called
328 *
329 * Registers a function with the list of functions
330 * to be called at reboot time.
331 *
332 * Currently always returns zero, as blocking_notifier_chain_register()
333 * always returns zero.
334 */
335int register_reboot_notifier(struct notifier_block *nb)
336{
337 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
338}
339EXPORT_SYMBOL(register_reboot_notifier);
340
341/**
342 * unregister_reboot_notifier - Unregister previously registered reboot notifier
343 * @nb: Hook to be unregistered
344 *
345 * Unregisters a previously registered reboot
346 * notifier function.
347 *
348 * Returns zero on success, or %-ENOENT on failure.
349 */
350int unregister_reboot_notifier(struct notifier_block *nb)
351{
352 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
353}
354EXPORT_SYMBOL(unregister_reboot_notifier);
355
356/**
357 * kernel_restart - reboot the system
358 * @cmd: pointer to buffer containing command to execute for restart
359 * or %NULL
360 *
361 * Shutdown everything and perform a clean reboot.
362 * This is not safe to call in interrupt context.
363 */
364void kernel_restart(char *cmd)
365{
366 kernel_restart_prepare(cmd);
367 if (!cmd)
368 printk(KERN_EMERG "Restarting system.\n");
369 else
370 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
371 kmsg_dump(KMSG_DUMP_RESTART);
372 machine_restart(cmd);
373}
374EXPORT_SYMBOL_GPL(kernel_restart);
375
376static void kernel_shutdown_prepare(enum system_states state)
377{
378 blocking_notifier_call_chain(&reboot_notifier_list,
379 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
380 system_state = state;
381 usermodehelper_disable();
382 device_shutdown();
383}
384/**
385 * kernel_halt - halt the system
386 *
387 * Shutdown everything and perform a clean system halt.
388 */
389void kernel_halt(void)
390{
391 kernel_shutdown_prepare(SYSTEM_HALT);
392 syscore_shutdown();
393 printk(KERN_EMERG "System halted.\n");
394 kmsg_dump(KMSG_DUMP_HALT);
395 machine_halt();
396}
397
398EXPORT_SYMBOL_GPL(kernel_halt);
399
400/**
401 * kernel_power_off - power_off the system
402 *
403 * Shutdown everything and perform a clean system power_off.
404 */
405void kernel_power_off(void)
406{
407 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
408 if (pm_power_off_prepare)
409 pm_power_off_prepare();
410 disable_nonboot_cpus();
411 syscore_shutdown();
412 printk(KERN_EMERG "Power down.\n");
413 kmsg_dump(KMSG_DUMP_POWEROFF);
414 machine_power_off();
415}
416EXPORT_SYMBOL_GPL(kernel_power_off);
417
418static DEFINE_MUTEX(reboot_mutex);
419
420/*
421 * Reboot system call: for obvious reasons only root may call it,
422 * and even root needs to set up some magic numbers in the registers
423 * so that some mistake won't make this reboot the whole machine.
424 * You can also set the meaning of the ctrl-alt-del-key here.
425 *
426 * reboot doesn't sync: do that yourself before calling this.
427 */
428SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
429 void __user *, arg)
430{
431 char buffer[256];
432 int ret = 0;
433
434 /* We only trust the superuser with rebooting the system. */
435 if (!capable(CAP_SYS_BOOT))
436 return -EPERM;
437
438 /* For safety, we require "magic" arguments. */
439 if (magic1 != LINUX_REBOOT_MAGIC1 ||
440 (magic2 != LINUX_REBOOT_MAGIC2 &&
441 magic2 != LINUX_REBOOT_MAGIC2A &&
442 magic2 != LINUX_REBOOT_MAGIC2B &&
443 magic2 != LINUX_REBOOT_MAGIC2C))
444 return -EINVAL;
445
446 /* Instead of trying to make the power_off code look like
447 * halt when pm_power_off is not set do it the easy way.
448 */
449 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
450 cmd = LINUX_REBOOT_CMD_HALT;
451
452 mutex_lock(&reboot_mutex);
453 switch (cmd) {
454 case LINUX_REBOOT_CMD_RESTART:
455 kernel_restart(NULL);
456 break;
457
458 case LINUX_REBOOT_CMD_CAD_ON:
459 C_A_D = 1;
460 break;
461
462 case LINUX_REBOOT_CMD_CAD_OFF:
463 C_A_D = 0;
464 break;
465
466 case LINUX_REBOOT_CMD_HALT:
467 kernel_halt();
468 do_exit(0);
469 panic("cannot halt");
470
471 case LINUX_REBOOT_CMD_POWER_OFF:
472 kernel_power_off();
473 do_exit(0);
474 break;
475
476 case LINUX_REBOOT_CMD_RESTART2:
477 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
478 ret = -EFAULT;
479 break;
480 }
481 buffer[sizeof(buffer) - 1] = '\0';
482
483 kernel_restart(buffer);
484 break;
485
486#ifdef CONFIG_KEXEC
487 case LINUX_REBOOT_CMD_KEXEC:
488 ret = kernel_kexec();
489 break;
490#endif
491
492#ifdef CONFIG_HIBERNATION
493 case LINUX_REBOOT_CMD_SW_SUSPEND:
494 ret = hibernate();
495 break;
496#endif
497
498 default:
499 ret = -EINVAL;
500 break;
501 }
502 mutex_unlock(&reboot_mutex);
503 return ret;
504}
505
506static void deferred_cad(struct work_struct *dummy)
507{
508 kernel_restart(NULL);
509}
510
511/*
512 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
513 * As it's called within an interrupt, it may NOT sync: the only choice
514 * is whether to reboot at once, or just ignore the ctrl-alt-del.
515 */
516void ctrl_alt_del(void)
517{
518 static DECLARE_WORK(cad_work, deferred_cad);
519
520 if (C_A_D)
521 schedule_work(&cad_work);
522 else
523 kill_cad_pid(SIGINT, 1);
524}
525
526/*
527 * Unprivileged users may change the real gid to the effective gid
528 * or vice versa. (BSD-style)
529 *
530 * If you set the real gid at all, or set the effective gid to a value not
531 * equal to the real gid, then the saved gid is set to the new effective gid.
532 *
533 * This makes it possible for a setgid program to completely drop its
534 * privileges, which is often a useful assertion to make when you are doing
535 * a security audit over a program.
536 *
537 * The general idea is that a program which uses just setregid() will be
538 * 100% compatible with BSD. A program which uses just setgid() will be
539 * 100% compatible with POSIX with saved IDs.
540 *
541 * SMP: There are not races, the GIDs are checked only by filesystem
542 * operations (as far as semantic preservation is concerned).
543 */
544SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
545{
546 const struct cred *old;
547 struct cred *new;
548 int retval;
549
550 new = prepare_creds();
551 if (!new)
552 return -ENOMEM;
553 old = current_cred();
554
555 retval = -EPERM;
556 if (rgid != (gid_t) -1) {
557 if (old->gid == rgid ||
558 old->egid == rgid ||
559 nsown_capable(CAP_SETGID))
560 new->gid = rgid;
561 else
562 goto error;
563 }
564 if (egid != (gid_t) -1) {
565 if (old->gid == egid ||
566 old->egid == egid ||
567 old->sgid == egid ||
568 nsown_capable(CAP_SETGID))
569 new->egid = egid;
570 else
571 goto error;
572 }
573
574 if (rgid != (gid_t) -1 ||
575 (egid != (gid_t) -1 && egid != old->gid))
576 new->sgid = new->egid;
577 new->fsgid = new->egid;
578
579 return commit_creds(new);
580
581error:
582 abort_creds(new);
583 return retval;
584}
585
586/*
587 * setgid() is implemented like SysV w/ SAVED_IDS
588 *
589 * SMP: Same implicit races as above.
590 */
591SYSCALL_DEFINE1(setgid, gid_t, gid)
592{
593 const struct cred *old;
594 struct cred *new;
595 int retval;
596
597 new = prepare_creds();
598 if (!new)
599 return -ENOMEM;
600 old = current_cred();
601
602 retval = -EPERM;
603 if (nsown_capable(CAP_SETGID))
604 new->gid = new->egid = new->sgid = new->fsgid = gid;
605 else if (gid == old->gid || gid == old->sgid)
606 new->egid = new->fsgid = gid;
607 else
608 goto error;
609
610 return commit_creds(new);
611
612error:
613 abort_creds(new);
614 return retval;
615}
616
617/*
618 * change the user struct in a credentials set to match the new UID
619 */
620static int set_user(struct cred *new)
621{
622 struct user_struct *new_user;
623
624 new_user = alloc_uid(current_user_ns(), new->uid);
625 if (!new_user)
626 return -EAGAIN;
627
628 /*
629 * We don't fail in case of NPROC limit excess here because too many
630 * poorly written programs don't check set*uid() return code, assuming
631 * it never fails if called by root. We may still enforce NPROC limit
632 * for programs doing set*uid()+execve() by harmlessly deferring the
633 * failure to the execve() stage.
634 */
635 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
636 new_user != INIT_USER)
637 current->flags |= PF_NPROC_EXCEEDED;
638 else
639 current->flags &= ~PF_NPROC_EXCEEDED;
640
641 free_uid(new->user);
642 new->user = new_user;
643 return 0;
644}
645
646/*
647 * Unprivileged users may change the real uid to the effective uid
648 * or vice versa. (BSD-style)
649 *
650 * If you set the real uid at all, or set the effective uid to a value not
651 * equal to the real uid, then the saved uid is set to the new effective uid.
652 *
653 * This makes it possible for a setuid program to completely drop its
654 * privileges, which is often a useful assertion to make when you are doing
655 * a security audit over a program.
656 *
657 * The general idea is that a program which uses just setreuid() will be
658 * 100% compatible with BSD. A program which uses just setuid() will be
659 * 100% compatible with POSIX with saved IDs.
660 */
661SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
662{
663 const struct cred *old;
664 struct cred *new;
665 int retval;
666
667 new = prepare_creds();
668 if (!new)
669 return -ENOMEM;
670 old = current_cred();
671
672 retval = -EPERM;
673 if (ruid != (uid_t) -1) {
674 new->uid = ruid;
675 if (old->uid != ruid &&
676 old->euid != ruid &&
677 !nsown_capable(CAP_SETUID))
678 goto error;
679 }
680
681 if (euid != (uid_t) -1) {
682 new->euid = euid;
683 if (old->uid != euid &&
684 old->euid != euid &&
685 old->suid != euid &&
686 !nsown_capable(CAP_SETUID))
687 goto error;
688 }
689
690 if (new->uid != old->uid) {
691 retval = set_user(new);
692 if (retval < 0)
693 goto error;
694 }
695 if (ruid != (uid_t) -1 ||
696 (euid != (uid_t) -1 && euid != old->uid))
697 new->suid = new->euid;
698 new->fsuid = new->euid;
699
700 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
701 if (retval < 0)
702 goto error;
703
704 return commit_creds(new);
705
706error:
707 abort_creds(new);
708 return retval;
709}
710
711/*
712 * setuid() is implemented like SysV with SAVED_IDS
713 *
714 * Note that SAVED_ID's is deficient in that a setuid root program
715 * like sendmail, for example, cannot set its uid to be a normal
716 * user and then switch back, because if you're root, setuid() sets
717 * the saved uid too. If you don't like this, blame the bright people
718 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
719 * will allow a root program to temporarily drop privileges and be able to
720 * regain them by swapping the real and effective uid.
721 */
722SYSCALL_DEFINE1(setuid, uid_t, uid)
723{
724 const struct cred *old;
725 struct cred *new;
726 int retval;
727
728 new = prepare_creds();
729 if (!new)
730 return -ENOMEM;
731 old = current_cred();
732
733 retval = -EPERM;
734 if (nsown_capable(CAP_SETUID)) {
735 new->suid = new->uid = uid;
736 if (uid != old->uid) {
737 retval = set_user(new);
738 if (retval < 0)
739 goto error;
740 }
741 } else if (uid != old->uid && uid != new->suid) {
742 goto error;
743 }
744
745 new->fsuid = new->euid = uid;
746
747 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
748 if (retval < 0)
749 goto error;
750
751 return commit_creds(new);
752
753error:
754 abort_creds(new);
755 return retval;
756}
757
758
759/*
760 * This function implements a generic ability to update ruid, euid,
761 * and suid. This allows you to implement the 4.4 compatible seteuid().
762 */
763SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
764{
765 const struct cred *old;
766 struct cred *new;
767 int retval;
768
769 new = prepare_creds();
770 if (!new)
771 return -ENOMEM;
772
773 old = current_cred();
774
775 retval = -EPERM;
776 if (!nsown_capable(CAP_SETUID)) {
777 if (ruid != (uid_t) -1 && ruid != old->uid &&
778 ruid != old->euid && ruid != old->suid)
779 goto error;
780 if (euid != (uid_t) -1 && euid != old->uid &&
781 euid != old->euid && euid != old->suid)
782 goto error;
783 if (suid != (uid_t) -1 && suid != old->uid &&
784 suid != old->euid && suid != old->suid)
785 goto error;
786 }
787
788 if (ruid != (uid_t) -1) {
789 new->uid = ruid;
790 if (ruid != old->uid) {
791 retval = set_user(new);
792 if (retval < 0)
793 goto error;
794 }
795 }
796 if (euid != (uid_t) -1)
797 new->euid = euid;
798 if (suid != (uid_t) -1)
799 new->suid = suid;
800 new->fsuid = new->euid;
801
802 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
803 if (retval < 0)
804 goto error;
805
806 return commit_creds(new);
807
808error:
809 abort_creds(new);
810 return retval;
811}
812
813SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
814{
815 const struct cred *cred = current_cred();
816 int retval;
817
818 if (!(retval = put_user(cred->uid, ruid)) &&
819 !(retval = put_user(cred->euid, euid)))
820 retval = put_user(cred->suid, suid);
821
822 return retval;
823}
824
825/*
826 * Same as above, but for rgid, egid, sgid.
827 */
828SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
829{
830 const struct cred *old;
831 struct cred *new;
832 int retval;
833
834 new = prepare_creds();
835 if (!new)
836 return -ENOMEM;
837 old = current_cred();
838
839 retval = -EPERM;
840 if (!nsown_capable(CAP_SETGID)) {
841 if (rgid != (gid_t) -1 && rgid != old->gid &&
842 rgid != old->egid && rgid != old->sgid)
843 goto error;
844 if (egid != (gid_t) -1 && egid != old->gid &&
845 egid != old->egid && egid != old->sgid)
846 goto error;
847 if (sgid != (gid_t) -1 && sgid != old->gid &&
848 sgid != old->egid && sgid != old->sgid)
849 goto error;
850 }
851
852 if (rgid != (gid_t) -1)
853 new->gid = rgid;
854 if (egid != (gid_t) -1)
855 new->egid = egid;
856 if (sgid != (gid_t) -1)
857 new->sgid = sgid;
858 new->fsgid = new->egid;
859
860 return commit_creds(new);
861
862error:
863 abort_creds(new);
864 return retval;
865}
866
867SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
868{
869 const struct cred *cred = current_cred();
870 int retval;
871
872 if (!(retval = put_user(cred->gid, rgid)) &&
873 !(retval = put_user(cred->egid, egid)))
874 retval = put_user(cred->sgid, sgid);
875
876 return retval;
877}
878
879
880/*
881 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
882 * is used for "access()" and for the NFS daemon (letting nfsd stay at
883 * whatever uid it wants to). It normally shadows "euid", except when
884 * explicitly set by setfsuid() or for access..
885 */
886SYSCALL_DEFINE1(setfsuid, uid_t, uid)
887{
888 const struct cred *old;
889 struct cred *new;
890 uid_t old_fsuid;
891
892 new = prepare_creds();
893 if (!new)
894 return current_fsuid();
895 old = current_cred();
896 old_fsuid = old->fsuid;
897
898 if (uid == old->uid || uid == old->euid ||
899 uid == old->suid || uid == old->fsuid ||
900 nsown_capable(CAP_SETUID)) {
901 if (uid != old_fsuid) {
902 new->fsuid = uid;
903 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
904 goto change_okay;
905 }
906 }
907
908 abort_creds(new);
909 return old_fsuid;
910
911change_okay:
912 commit_creds(new);
913 return old_fsuid;
914}
915
916/*
917 * Samma på svenska..
918 */
919SYSCALL_DEFINE1(setfsgid, gid_t, gid)
920{
921 const struct cred *old;
922 struct cred *new;
923 gid_t old_fsgid;
924
925 new = prepare_creds();
926 if (!new)
927 return current_fsgid();
928 old = current_cred();
929 old_fsgid = old->fsgid;
930
931 if (gid == old->gid || gid == old->egid ||
932 gid == old->sgid || gid == old->fsgid ||
933 nsown_capable(CAP_SETGID)) {
934 if (gid != old_fsgid) {
935 new->fsgid = gid;
936 goto change_okay;
937 }
938 }
939
940 abort_creds(new);
941 return old_fsgid;
942
943change_okay:
944 commit_creds(new);
945 return old_fsgid;
946}
947
948void do_sys_times(struct tms *tms)
949{
950 cputime_t tgutime, tgstime, cutime, cstime;
951
952 spin_lock_irq(¤t->sighand->siglock);
953 thread_group_times(current, &tgutime, &tgstime);
954 cutime = current->signal->cutime;
955 cstime = current->signal->cstime;
956 spin_unlock_irq(¤t->sighand->siglock);
957 tms->tms_utime = cputime_to_clock_t(tgutime);
958 tms->tms_stime = cputime_to_clock_t(tgstime);
959 tms->tms_cutime = cputime_to_clock_t(cutime);
960 tms->tms_cstime = cputime_to_clock_t(cstime);
961}
962
963SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
964{
965 if (tbuf) {
966 struct tms tmp;
967
968 do_sys_times(&tmp);
969 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
970 return -EFAULT;
971 }
972 force_successful_syscall_return();
973 return (long) jiffies_64_to_clock_t(get_jiffies_64());
974}
975
976/*
977 * This needs some heavy checking ...
978 * I just haven't the stomach for it. I also don't fully
979 * understand sessions/pgrp etc. Let somebody who does explain it.
980 *
981 * OK, I think I have the protection semantics right.... this is really
982 * only important on a multi-user system anyway, to make sure one user
983 * can't send a signal to a process owned by another. -TYT, 12/12/91
984 *
985 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
986 * LBT 04.03.94
987 */
988SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
989{
990 struct task_struct *p;
991 struct task_struct *group_leader = current->group_leader;
992 struct pid *pgrp;
993 int err;
994
995 if (!pid)
996 pid = task_pid_vnr(group_leader);
997 if (!pgid)
998 pgid = pid;
999 if (pgid < 0)
1000 return -EINVAL;
1001 rcu_read_lock();
1002
1003 /* From this point forward we keep holding onto the tasklist lock
1004 * so that our parent does not change from under us. -DaveM
1005 */
1006 write_lock_irq(&tasklist_lock);
1007
1008 err = -ESRCH;
1009 p = find_task_by_vpid(pid);
1010 if (!p)
1011 goto out;
1012
1013 err = -EINVAL;
1014 if (!thread_group_leader(p))
1015 goto out;
1016
1017 if (same_thread_group(p->real_parent, group_leader)) {
1018 err = -EPERM;
1019 if (task_session(p) != task_session(group_leader))
1020 goto out;
1021 err = -EACCES;
1022 if (p->did_exec)
1023 goto out;
1024 } else {
1025 err = -ESRCH;
1026 if (p != group_leader)
1027 goto out;
1028 }
1029
1030 err = -EPERM;
1031 if (p->signal->leader)
1032 goto out;
1033
1034 pgrp = task_pid(p);
1035 if (pgid != pid) {
1036 struct task_struct *g;
1037
1038 pgrp = find_vpid(pgid);
1039 g = pid_task(pgrp, PIDTYPE_PGID);
1040 if (!g || task_session(g) != task_session(group_leader))
1041 goto out;
1042 }
1043
1044 err = security_task_setpgid(p, pgid);
1045 if (err)
1046 goto out;
1047
1048 if (task_pgrp(p) != pgrp)
1049 change_pid(p, PIDTYPE_PGID, pgrp);
1050
1051 err = 0;
1052out:
1053 /* All paths lead to here, thus we are safe. -DaveM */
1054 write_unlock_irq(&tasklist_lock);
1055 rcu_read_unlock();
1056 return err;
1057}
1058
1059SYSCALL_DEFINE1(getpgid, pid_t, pid)
1060{
1061 struct task_struct *p;
1062 struct pid *grp;
1063 int retval;
1064
1065 rcu_read_lock();
1066 if (!pid)
1067 grp = task_pgrp(current);
1068 else {
1069 retval = -ESRCH;
1070 p = find_task_by_vpid(pid);
1071 if (!p)
1072 goto out;
1073 grp = task_pgrp(p);
1074 if (!grp)
1075 goto out;
1076
1077 retval = security_task_getpgid(p);
1078 if (retval)
1079 goto out;
1080 }
1081 retval = pid_vnr(grp);
1082out:
1083 rcu_read_unlock();
1084 return retval;
1085}
1086
1087#ifdef __ARCH_WANT_SYS_GETPGRP
1088
1089SYSCALL_DEFINE0(getpgrp)
1090{
1091 return sys_getpgid(0);
1092}
1093
1094#endif
1095
1096SYSCALL_DEFINE1(getsid, pid_t, pid)
1097{
1098 struct task_struct *p;
1099 struct pid *sid;
1100 int retval;
1101
1102 rcu_read_lock();
1103 if (!pid)
1104 sid = task_session(current);
1105 else {
1106 retval = -ESRCH;
1107 p = find_task_by_vpid(pid);
1108 if (!p)
1109 goto out;
1110 sid = task_session(p);
1111 if (!sid)
1112 goto out;
1113
1114 retval = security_task_getsid(p);
1115 if (retval)
1116 goto out;
1117 }
1118 retval = pid_vnr(sid);
1119out:
1120 rcu_read_unlock();
1121 return retval;
1122}
1123
1124SYSCALL_DEFINE0(setsid)
1125{
1126 struct task_struct *group_leader = current->group_leader;
1127 struct pid *sid = task_pid(group_leader);
1128 pid_t session = pid_vnr(sid);
1129 int err = -EPERM;
1130
1131 write_lock_irq(&tasklist_lock);
1132 /* Fail if I am already a session leader */
1133 if (group_leader->signal->leader)
1134 goto out;
1135
1136 /* Fail if a process group id already exists that equals the
1137 * proposed session id.
1138 */
1139 if (pid_task(sid, PIDTYPE_PGID))
1140 goto out;
1141
1142 group_leader->signal->leader = 1;
1143 __set_special_pids(sid);
1144
1145 proc_clear_tty(group_leader);
1146
1147 err = session;
1148out:
1149 write_unlock_irq(&tasklist_lock);
1150 if (err > 0) {
1151 proc_sid_connector(group_leader);
1152 sched_autogroup_create_attach(group_leader);
1153 }
1154 return err;
1155}
1156
1157DECLARE_RWSEM(uts_sem);
1158
1159#ifdef COMPAT_UTS_MACHINE
1160#define override_architecture(name) \
1161 (personality(current->personality) == PER_LINUX32 && \
1162 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1163 sizeof(COMPAT_UTS_MACHINE)))
1164#else
1165#define override_architecture(name) 0
1166#endif
1167
1168/*
1169 * Work around broken programs that cannot handle "Linux 3.0".
1170 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1171 */
1172static int override_release(char __user *release, int len)
1173{
1174 int ret = 0;
1175 char buf[65];
1176
1177 if (current->personality & UNAME26) {
1178 char *rest = UTS_RELEASE;
1179 int ndots = 0;
1180 unsigned v;
1181
1182 while (*rest) {
1183 if (*rest == '.' && ++ndots >= 3)
1184 break;
1185 if (!isdigit(*rest) && *rest != '.')
1186 break;
1187 rest++;
1188 }
1189 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1190 snprintf(buf, len, "2.6.%u%s", v, rest);
1191 ret = copy_to_user(release, buf, len);
1192 }
1193 return ret;
1194}
1195
1196SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1197{
1198 int errno = 0;
1199
1200 down_read(&uts_sem);
1201 if (copy_to_user(name, utsname(), sizeof *name))
1202 errno = -EFAULT;
1203 up_read(&uts_sem);
1204
1205 if (!errno && override_release(name->release, sizeof(name->release)))
1206 errno = -EFAULT;
1207 if (!errno && override_architecture(name))
1208 errno = -EFAULT;
1209 return errno;
1210}
1211
1212#ifdef __ARCH_WANT_SYS_OLD_UNAME
1213/*
1214 * Old cruft
1215 */
1216SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1217{
1218 int error = 0;
1219
1220 if (!name)
1221 return -EFAULT;
1222
1223 down_read(&uts_sem);
1224 if (copy_to_user(name, utsname(), sizeof(*name)))
1225 error = -EFAULT;
1226 up_read(&uts_sem);
1227
1228 if (!error && override_release(name->release, sizeof(name->release)))
1229 error = -EFAULT;
1230 if (!error && override_architecture(name))
1231 error = -EFAULT;
1232 return error;
1233}
1234
1235SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1236{
1237 int error;
1238
1239 if (!name)
1240 return -EFAULT;
1241 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1242 return -EFAULT;
1243
1244 down_read(&uts_sem);
1245 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1246 __OLD_UTS_LEN);
1247 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1248 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1249 __OLD_UTS_LEN);
1250 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1251 error |= __copy_to_user(&name->release, &utsname()->release,
1252 __OLD_UTS_LEN);
1253 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1254 error |= __copy_to_user(&name->version, &utsname()->version,
1255 __OLD_UTS_LEN);
1256 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1257 error |= __copy_to_user(&name->machine, &utsname()->machine,
1258 __OLD_UTS_LEN);
1259 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1260 up_read(&uts_sem);
1261
1262 if (!error && override_architecture(name))
1263 error = -EFAULT;
1264 if (!error && override_release(name->release, sizeof(name->release)))
1265 error = -EFAULT;
1266 return error ? -EFAULT : 0;
1267}
1268#endif
1269
1270SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1271{
1272 int errno;
1273 char tmp[__NEW_UTS_LEN];
1274
1275 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1276 return -EPERM;
1277
1278 if (len < 0 || len > __NEW_UTS_LEN)
1279 return -EINVAL;
1280 down_write(&uts_sem);
1281 errno = -EFAULT;
1282 if (!copy_from_user(tmp, name, len)) {
1283 struct new_utsname *u = utsname();
1284
1285 memcpy(u->nodename, tmp, len);
1286 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1287 errno = 0;
1288 }
1289 up_write(&uts_sem);
1290 return errno;
1291}
1292
1293#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1294
1295SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1296{
1297 int i, errno;
1298 struct new_utsname *u;
1299
1300 if (len < 0)
1301 return -EINVAL;
1302 down_read(&uts_sem);
1303 u = utsname();
1304 i = 1 + strlen(u->nodename);
1305 if (i > len)
1306 i = len;
1307 errno = 0;
1308 if (copy_to_user(name, u->nodename, i))
1309 errno = -EFAULT;
1310 up_read(&uts_sem);
1311 return errno;
1312}
1313
1314#endif
1315
1316/*
1317 * Only setdomainname; getdomainname can be implemented by calling
1318 * uname()
1319 */
1320SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1321{
1322 int errno;
1323 char tmp[__NEW_UTS_LEN];
1324
1325 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1326 return -EPERM;
1327 if (len < 0 || len > __NEW_UTS_LEN)
1328 return -EINVAL;
1329
1330 down_write(&uts_sem);
1331 errno = -EFAULT;
1332 if (!copy_from_user(tmp, name, len)) {
1333 struct new_utsname *u = utsname();
1334
1335 memcpy(u->domainname, tmp, len);
1336 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1337 errno = 0;
1338 }
1339 up_write(&uts_sem);
1340 return errno;
1341}
1342
1343SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1344{
1345 struct rlimit value;
1346 int ret;
1347
1348 ret = do_prlimit(current, resource, NULL, &value);
1349 if (!ret)
1350 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1351
1352 return ret;
1353}
1354
1355#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1356
1357/*
1358 * Back compatibility for getrlimit. Needed for some apps.
1359 */
1360
1361SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1362 struct rlimit __user *, rlim)
1363{
1364 struct rlimit x;
1365 if (resource >= RLIM_NLIMITS)
1366 return -EINVAL;
1367
1368 task_lock(current->group_leader);
1369 x = current->signal->rlim[resource];
1370 task_unlock(current->group_leader);
1371 if (x.rlim_cur > 0x7FFFFFFF)
1372 x.rlim_cur = 0x7FFFFFFF;
1373 if (x.rlim_max > 0x7FFFFFFF)
1374 x.rlim_max = 0x7FFFFFFF;
1375 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1376}
1377
1378#endif
1379
1380static inline bool rlim64_is_infinity(__u64 rlim64)
1381{
1382#if BITS_PER_LONG < 64
1383 return rlim64 >= ULONG_MAX;
1384#else
1385 return rlim64 == RLIM64_INFINITY;
1386#endif
1387}
1388
1389static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1390{
1391 if (rlim->rlim_cur == RLIM_INFINITY)
1392 rlim64->rlim_cur = RLIM64_INFINITY;
1393 else
1394 rlim64->rlim_cur = rlim->rlim_cur;
1395 if (rlim->rlim_max == RLIM_INFINITY)
1396 rlim64->rlim_max = RLIM64_INFINITY;
1397 else
1398 rlim64->rlim_max = rlim->rlim_max;
1399}
1400
1401static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1402{
1403 if (rlim64_is_infinity(rlim64->rlim_cur))
1404 rlim->rlim_cur = RLIM_INFINITY;
1405 else
1406 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1407 if (rlim64_is_infinity(rlim64->rlim_max))
1408 rlim->rlim_max = RLIM_INFINITY;
1409 else
1410 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1411}
1412
1413/* make sure you are allowed to change @tsk limits before calling this */
1414int do_prlimit(struct task_struct *tsk, unsigned int resource,
1415 struct rlimit *new_rlim, struct rlimit *old_rlim)
1416{
1417 struct rlimit *rlim;
1418 int retval = 0;
1419
1420 if (resource >= RLIM_NLIMITS)
1421 return -EINVAL;
1422 if (new_rlim) {
1423 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1424 return -EINVAL;
1425 if (resource == RLIMIT_NOFILE &&
1426 new_rlim->rlim_max > sysctl_nr_open)
1427 return -EPERM;
1428 }
1429
1430 /* protect tsk->signal and tsk->sighand from disappearing */
1431 read_lock(&tasklist_lock);
1432 if (!tsk->sighand) {
1433 retval = -ESRCH;
1434 goto out;
1435 }
1436
1437 rlim = tsk->signal->rlim + resource;
1438 task_lock(tsk->group_leader);
1439 if (new_rlim) {
1440 /* Keep the capable check against init_user_ns until
1441 cgroups can contain all limits */
1442 if (new_rlim->rlim_max > rlim->rlim_max &&
1443 !capable(CAP_SYS_RESOURCE))
1444 retval = -EPERM;
1445 if (!retval)
1446 retval = security_task_setrlimit(tsk->group_leader,
1447 resource, new_rlim);
1448 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1449 /*
1450 * The caller is asking for an immediate RLIMIT_CPU
1451 * expiry. But we use the zero value to mean "it was
1452 * never set". So let's cheat and make it one second
1453 * instead
1454 */
1455 new_rlim->rlim_cur = 1;
1456 }
1457 }
1458 if (!retval) {
1459 if (old_rlim)
1460 *old_rlim = *rlim;
1461 if (new_rlim)
1462 *rlim = *new_rlim;
1463 }
1464 task_unlock(tsk->group_leader);
1465
1466 /*
1467 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1468 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1469 * very long-standing error, and fixing it now risks breakage of
1470 * applications, so we live with it
1471 */
1472 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1473 new_rlim->rlim_cur != RLIM_INFINITY)
1474 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1475out:
1476 read_unlock(&tasklist_lock);
1477 return retval;
1478}
1479
1480/* rcu lock must be held */
1481static int check_prlimit_permission(struct task_struct *task)
1482{
1483 const struct cred *cred = current_cred(), *tcred;
1484
1485 if (current == task)
1486 return 0;
1487
1488 tcred = __task_cred(task);
1489 if (cred->user->user_ns == tcred->user->user_ns &&
1490 (cred->uid == tcred->euid &&
1491 cred->uid == tcred->suid &&
1492 cred->uid == tcred->uid &&
1493 cred->gid == tcred->egid &&
1494 cred->gid == tcred->sgid &&
1495 cred->gid == tcred->gid))
1496 return 0;
1497 if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1498 return 0;
1499
1500 return -EPERM;
1501}
1502
1503SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1504 const struct rlimit64 __user *, new_rlim,
1505 struct rlimit64 __user *, old_rlim)
1506{
1507 struct rlimit64 old64, new64;
1508 struct rlimit old, new;
1509 struct task_struct *tsk;
1510 int ret;
1511
1512 if (new_rlim) {
1513 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1514 return -EFAULT;
1515 rlim64_to_rlim(&new64, &new);
1516 }
1517
1518 rcu_read_lock();
1519 tsk = pid ? find_task_by_vpid(pid) : current;
1520 if (!tsk) {
1521 rcu_read_unlock();
1522 return -ESRCH;
1523 }
1524 ret = check_prlimit_permission(tsk);
1525 if (ret) {
1526 rcu_read_unlock();
1527 return ret;
1528 }
1529 get_task_struct(tsk);
1530 rcu_read_unlock();
1531
1532 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1533 old_rlim ? &old : NULL);
1534
1535 if (!ret && old_rlim) {
1536 rlim_to_rlim64(&old, &old64);
1537 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1538 ret = -EFAULT;
1539 }
1540
1541 put_task_struct(tsk);
1542 return ret;
1543}
1544
1545SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1546{
1547 struct rlimit new_rlim;
1548
1549 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1550 return -EFAULT;
1551 return do_prlimit(current, resource, &new_rlim, NULL);
1552}
1553
1554/*
1555 * It would make sense to put struct rusage in the task_struct,
1556 * except that would make the task_struct be *really big*. After
1557 * task_struct gets moved into malloc'ed memory, it would
1558 * make sense to do this. It will make moving the rest of the information
1559 * a lot simpler! (Which we're not doing right now because we're not
1560 * measuring them yet).
1561 *
1562 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1563 * races with threads incrementing their own counters. But since word
1564 * reads are atomic, we either get new values or old values and we don't
1565 * care which for the sums. We always take the siglock to protect reading
1566 * the c* fields from p->signal from races with exit.c updating those
1567 * fields when reaping, so a sample either gets all the additions of a
1568 * given child after it's reaped, or none so this sample is before reaping.
1569 *
1570 * Locking:
1571 * We need to take the siglock for CHILDEREN, SELF and BOTH
1572 * for the cases current multithreaded, non-current single threaded
1573 * non-current multithreaded. Thread traversal is now safe with
1574 * the siglock held.
1575 * Strictly speaking, we donot need to take the siglock if we are current and
1576 * single threaded, as no one else can take our signal_struct away, no one
1577 * else can reap the children to update signal->c* counters, and no one else
1578 * can race with the signal-> fields. If we do not take any lock, the
1579 * signal-> fields could be read out of order while another thread was just
1580 * exiting. So we should place a read memory barrier when we avoid the lock.
1581 * On the writer side, write memory barrier is implied in __exit_signal
1582 * as __exit_signal releases the siglock spinlock after updating the signal->
1583 * fields. But we don't do this yet to keep things simple.
1584 *
1585 */
1586
1587static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1588{
1589 r->ru_nvcsw += t->nvcsw;
1590 r->ru_nivcsw += t->nivcsw;
1591 r->ru_minflt += t->min_flt;
1592 r->ru_majflt += t->maj_flt;
1593 r->ru_inblock += task_io_get_inblock(t);
1594 r->ru_oublock += task_io_get_oublock(t);
1595}
1596
1597static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1598{
1599 struct task_struct *t;
1600 unsigned long flags;
1601 cputime_t tgutime, tgstime, utime, stime;
1602 unsigned long maxrss = 0;
1603
1604 memset((char *) r, 0, sizeof *r);
1605 utime = stime = cputime_zero;
1606
1607 if (who == RUSAGE_THREAD) {
1608 task_times(current, &utime, &stime);
1609 accumulate_thread_rusage(p, r);
1610 maxrss = p->signal->maxrss;
1611 goto out;
1612 }
1613
1614 if (!lock_task_sighand(p, &flags))
1615 return;
1616
1617 switch (who) {
1618 case RUSAGE_BOTH:
1619 case RUSAGE_CHILDREN:
1620 utime = p->signal->cutime;
1621 stime = p->signal->cstime;
1622 r->ru_nvcsw = p->signal->cnvcsw;
1623 r->ru_nivcsw = p->signal->cnivcsw;
1624 r->ru_minflt = p->signal->cmin_flt;
1625 r->ru_majflt = p->signal->cmaj_flt;
1626 r->ru_inblock = p->signal->cinblock;
1627 r->ru_oublock = p->signal->coublock;
1628 maxrss = p->signal->cmaxrss;
1629
1630 if (who == RUSAGE_CHILDREN)
1631 break;
1632
1633 case RUSAGE_SELF:
1634 thread_group_times(p, &tgutime, &tgstime);
1635 utime = cputime_add(utime, tgutime);
1636 stime = cputime_add(stime, tgstime);
1637 r->ru_nvcsw += p->signal->nvcsw;
1638 r->ru_nivcsw += p->signal->nivcsw;
1639 r->ru_minflt += p->signal->min_flt;
1640 r->ru_majflt += p->signal->maj_flt;
1641 r->ru_inblock += p->signal->inblock;
1642 r->ru_oublock += p->signal->oublock;
1643 if (maxrss < p->signal->maxrss)
1644 maxrss = p->signal->maxrss;
1645 t = p;
1646 do {
1647 accumulate_thread_rusage(t, r);
1648 t = next_thread(t);
1649 } while (t != p);
1650 break;
1651
1652 default:
1653 BUG();
1654 }
1655 unlock_task_sighand(p, &flags);
1656
1657out:
1658 cputime_to_timeval(utime, &r->ru_utime);
1659 cputime_to_timeval(stime, &r->ru_stime);
1660
1661 if (who != RUSAGE_CHILDREN) {
1662 struct mm_struct *mm = get_task_mm(p);
1663 if (mm) {
1664 setmax_mm_hiwater_rss(&maxrss, mm);
1665 mmput(mm);
1666 }
1667 }
1668 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1669}
1670
1671int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1672{
1673 struct rusage r;
1674 k_getrusage(p, who, &r);
1675 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1676}
1677
1678SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1679{
1680 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1681 who != RUSAGE_THREAD)
1682 return -EINVAL;
1683 return getrusage(current, who, ru);
1684}
1685
1686SYSCALL_DEFINE1(umask, int, mask)
1687{
1688 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1689 return mask;
1690}
1691
1692SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1693 unsigned long, arg4, unsigned long, arg5)
1694{
1695 struct task_struct *me = current;
1696 unsigned char comm[sizeof(me->comm)];
1697 long error;
1698
1699 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1700 if (error != -ENOSYS)
1701 return error;
1702
1703 error = 0;
1704 switch (option) {
1705 case PR_SET_PDEATHSIG:
1706 if (!valid_signal(arg2)) {
1707 error = -EINVAL;
1708 break;
1709 }
1710 me->pdeath_signal = arg2;
1711 error = 0;
1712 break;
1713 case PR_GET_PDEATHSIG:
1714 error = put_user(me->pdeath_signal, (int __user *)arg2);
1715 break;
1716 case PR_GET_DUMPABLE:
1717 error = get_dumpable(me->mm);
1718 break;
1719 case PR_SET_DUMPABLE:
1720 if (arg2 < 0 || arg2 > 1) {
1721 error = -EINVAL;
1722 break;
1723 }
1724 set_dumpable(me->mm, arg2);
1725 error = 0;
1726 break;
1727
1728 case PR_SET_UNALIGN:
1729 error = SET_UNALIGN_CTL(me, arg2);
1730 break;
1731 case PR_GET_UNALIGN:
1732 error = GET_UNALIGN_CTL(me, arg2);
1733 break;
1734 case PR_SET_FPEMU:
1735 error = SET_FPEMU_CTL(me, arg2);
1736 break;
1737 case PR_GET_FPEMU:
1738 error = GET_FPEMU_CTL(me, arg2);
1739 break;
1740 case PR_SET_FPEXC:
1741 error = SET_FPEXC_CTL(me, arg2);
1742 break;
1743 case PR_GET_FPEXC:
1744 error = GET_FPEXC_CTL(me, arg2);
1745 break;
1746 case PR_GET_TIMING:
1747 error = PR_TIMING_STATISTICAL;
1748 break;
1749 case PR_SET_TIMING:
1750 if (arg2 != PR_TIMING_STATISTICAL)
1751 error = -EINVAL;
1752 else
1753 error = 0;
1754 break;
1755
1756 case PR_SET_NAME:
1757 comm[sizeof(me->comm)-1] = 0;
1758 if (strncpy_from_user(comm, (char __user *)arg2,
1759 sizeof(me->comm) - 1) < 0)
1760 return -EFAULT;
1761 set_task_comm(me, comm);
1762 return 0;
1763 case PR_GET_NAME:
1764 get_task_comm(comm, me);
1765 if (copy_to_user((char __user *)arg2, comm,
1766 sizeof(comm)))
1767 return -EFAULT;
1768 return 0;
1769 case PR_GET_ENDIAN:
1770 error = GET_ENDIAN(me, arg2);
1771 break;
1772 case PR_SET_ENDIAN:
1773 error = SET_ENDIAN(me, arg2);
1774 break;
1775
1776 case PR_GET_SECCOMP:
1777 error = prctl_get_seccomp();
1778 break;
1779 case PR_SET_SECCOMP:
1780 error = prctl_set_seccomp(arg2);
1781 break;
1782 case PR_GET_TSC:
1783 error = GET_TSC_CTL(arg2);
1784 break;
1785 case PR_SET_TSC:
1786 error = SET_TSC_CTL(arg2);
1787 break;
1788 case PR_TASK_PERF_EVENTS_DISABLE:
1789 error = perf_event_task_disable();
1790 break;
1791 case PR_TASK_PERF_EVENTS_ENABLE:
1792 error = perf_event_task_enable();
1793 break;
1794 case PR_GET_TIMERSLACK:
1795 error = current->timer_slack_ns;
1796 break;
1797 case PR_SET_TIMERSLACK:
1798 if (arg2 <= 0)
1799 current->timer_slack_ns =
1800 current->default_timer_slack_ns;
1801 else
1802 current->timer_slack_ns = arg2;
1803 error = 0;
1804 break;
1805 case PR_MCE_KILL:
1806 if (arg4 | arg5)
1807 return -EINVAL;
1808 switch (arg2) {
1809 case PR_MCE_KILL_CLEAR:
1810 if (arg3 != 0)
1811 return -EINVAL;
1812 current->flags &= ~PF_MCE_PROCESS;
1813 break;
1814 case PR_MCE_KILL_SET:
1815 current->flags |= PF_MCE_PROCESS;
1816 if (arg3 == PR_MCE_KILL_EARLY)
1817 current->flags |= PF_MCE_EARLY;
1818 else if (arg3 == PR_MCE_KILL_LATE)
1819 current->flags &= ~PF_MCE_EARLY;
1820 else if (arg3 == PR_MCE_KILL_DEFAULT)
1821 current->flags &=
1822 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1823 else
1824 return -EINVAL;
1825 break;
1826 default:
1827 return -EINVAL;
1828 }
1829 error = 0;
1830 break;
1831 case PR_MCE_KILL_GET:
1832 if (arg2 | arg3 | arg4 | arg5)
1833 return -EINVAL;
1834 if (current->flags & PF_MCE_PROCESS)
1835 error = (current->flags & PF_MCE_EARLY) ?
1836 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1837 else
1838 error = PR_MCE_KILL_DEFAULT;
1839 break;
1840 default:
1841 error = -EINVAL;
1842 break;
1843 }
1844 return error;
1845}
1846
1847SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1848 struct getcpu_cache __user *, unused)
1849{
1850 int err = 0;
1851 int cpu = raw_smp_processor_id();
1852 if (cpup)
1853 err |= put_user(cpu, cpup);
1854 if (nodep)
1855 err |= put_user(cpu_to_node(cpu), nodep);
1856 return err ? -EFAULT : 0;
1857}
1858
1859char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1860
1861static void argv_cleanup(struct subprocess_info *info)
1862{
1863 argv_free(info->argv);
1864}
1865
1866/**
1867 * orderly_poweroff - Trigger an orderly system poweroff
1868 * @force: force poweroff if command execution fails
1869 *
1870 * This may be called from any context to trigger a system shutdown.
1871 * If the orderly shutdown fails, it will force an immediate shutdown.
1872 */
1873int orderly_poweroff(bool force)
1874{
1875 int argc;
1876 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1877 static char *envp[] = {
1878 "HOME=/",
1879 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1880 NULL
1881 };
1882 int ret = -ENOMEM;
1883 struct subprocess_info *info;
1884
1885 if (argv == NULL) {
1886 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1887 __func__, poweroff_cmd);
1888 goto out;
1889 }
1890
1891 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1892 if (info == NULL) {
1893 argv_free(argv);
1894 goto out;
1895 }
1896
1897 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1898
1899 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1900
1901 out:
1902 if (ret && force) {
1903 printk(KERN_WARNING "Failed to start orderly shutdown: "
1904 "forcing the issue\n");
1905
1906 /* I guess this should try to kick off some daemon to
1907 sync and poweroff asap. Or not even bother syncing
1908 if we're doing an emergency shutdown? */
1909 emergency_sync();
1910 kernel_power_off();
1911 }
1912
1913 return ret;
1914}
1915EXPORT_SYMBOL_GPL(orderly_poweroff);