Loading...
1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/cgroup.h>
32#include <linux/cred.h>
33#include <linux/ctype.h>
34#include <linux/errno.h>
35#include <linux/init_task.h>
36#include <linux/kernel.h>
37#include <linux/list.h>
38#include <linux/magic.h>
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
43#include <linux/proc_fs.h>
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
46#include <linux/slab.h>
47#include <linux/spinlock.h>
48#include <linux/percpu-rwsem.h>
49#include <linux/string.h>
50#include <linux/sort.h>
51#include <linux/kmod.h>
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
54#include <linux/hashtable.h>
55#include <linux/pid_namespace.h>
56#include <linux/idr.h>
57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58#include <linux/kthread.h>
59#include <linux/delay.h>
60#include <linux/atomic.h>
61#include <linux/cpuset.h>
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
64#include <linux/file.h>
65#include <net/sock.h>
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/cgroup.h>
69
70/*
71 * pidlists linger the following amount before being destroyed. The goal
72 * is avoiding frequent destruction in the middle of consecutive read calls
73 * Expiring in the middle is a performance problem not a correctness one.
74 * 1 sec should be enough.
75 */
76#define CGROUP_PIDLIST_DESTROY_DELAY HZ
77
78#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
79 MAX_CFTYPE_NAME + 2)
80
81/*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
84 *
85 * css_set_lock protects task->cgroups pointer, the list of css_set
86 * objects, and the chain of tasks off each css_set.
87 *
88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89 * cgroup.h can use them for lockdep annotations.
90 */
91#ifdef CONFIG_PROVE_RCU
92DEFINE_MUTEX(cgroup_mutex);
93DEFINE_SPINLOCK(css_set_lock);
94EXPORT_SYMBOL_GPL(cgroup_mutex);
95EXPORT_SYMBOL_GPL(css_set_lock);
96#else
97static DEFINE_MUTEX(cgroup_mutex);
98static DEFINE_SPINLOCK(css_set_lock);
99#endif
100
101/*
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
104 */
105static DEFINE_SPINLOCK(cgroup_idr_lock);
106
107/*
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
110 */
111static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112
113/*
114 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
115 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
116 */
117static DEFINE_SPINLOCK(release_agent_path_lock);
118
119struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
120
121#define cgroup_assert_mutex_or_rcu_locked() \
122 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
123 !lockdep_is_held(&cgroup_mutex), \
124 "cgroup_mutex or RCU read lock required");
125
126/*
127 * cgroup destruction makes heavy use of work items and there can be a lot
128 * of concurrent destructions. Use a separate workqueue so that cgroup
129 * destruction work items don't end up filling up max_active of system_wq
130 * which may lead to deadlock.
131 */
132static struct workqueue_struct *cgroup_destroy_wq;
133
134/*
135 * pidlist destructions need to be flushed on cgroup destruction. Use a
136 * separate workqueue as flush domain.
137 */
138static struct workqueue_struct *cgroup_pidlist_destroy_wq;
139
140/* generate an array of cgroup subsystem pointers */
141#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
142static struct cgroup_subsys *cgroup_subsys[] = {
143#include <linux/cgroup_subsys.h>
144};
145#undef SUBSYS
146
147/* array of cgroup subsystem names */
148#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
149static const char *cgroup_subsys_name[] = {
150#include <linux/cgroup_subsys.h>
151};
152#undef SUBSYS
153
154/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
155#define SUBSYS(_x) \
156 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
157 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
158 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
159 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
160#include <linux/cgroup_subsys.h>
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
164static struct static_key_true *cgroup_subsys_enabled_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
169#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
170static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
171#include <linux/cgroup_subsys.h>
172};
173#undef SUBSYS
174
175/*
176 * The default hierarchy, reserved for the subsystems that are otherwise
177 * unattached - it never has more than a single cgroup, and all tasks are
178 * part of that cgroup.
179 */
180struct cgroup_root cgrp_dfl_root;
181EXPORT_SYMBOL_GPL(cgrp_dfl_root);
182
183/*
184 * The default hierarchy always exists but is hidden until mounted for the
185 * first time. This is for backward compatibility.
186 */
187static bool cgrp_dfl_visible;
188
189/* Controllers blocked by the commandline in v1 */
190static u16 cgroup_no_v1_mask;
191
192/* some controllers are not supported in the default hierarchy */
193static u16 cgrp_dfl_inhibit_ss_mask;
194
195/* some controllers are implicitly enabled on the default hierarchy */
196static unsigned long cgrp_dfl_implicit_ss_mask;
197
198/* The list of hierarchy roots */
199
200static LIST_HEAD(cgroup_roots);
201static int cgroup_root_count;
202
203/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
204static DEFINE_IDR(cgroup_hierarchy_idr);
205
206/*
207 * Assign a monotonically increasing serial number to csses. It guarantees
208 * cgroups with bigger numbers are newer than those with smaller numbers.
209 * Also, as csses are always appended to the parent's ->children list, it
210 * guarantees that sibling csses are always sorted in the ascending serial
211 * number order on the list. Protected by cgroup_mutex.
212 */
213static u64 css_serial_nr_next = 1;
214
215/*
216 * These bitmask flags indicate whether tasks in the fork and exit paths have
217 * fork/exit handlers to call. This avoids us having to do extra work in the
218 * fork/exit path to check which subsystems have fork/exit callbacks.
219 */
220static u16 have_fork_callback __read_mostly;
221static u16 have_exit_callback __read_mostly;
222static u16 have_free_callback __read_mostly;
223
224/* cgroup namespace for init task */
225struct cgroup_namespace init_cgroup_ns = {
226 .count = { .counter = 2, },
227 .user_ns = &init_user_ns,
228 .ns.ops = &cgroupns_operations,
229 .ns.inum = PROC_CGROUP_INIT_INO,
230 .root_cset = &init_css_set,
231};
232
233/* Ditto for the can_fork callback. */
234static u16 have_canfork_callback __read_mostly;
235
236static struct file_system_type cgroup2_fs_type;
237static struct cftype cgroup_dfl_base_files[];
238static struct cftype cgroup_legacy_base_files[];
239
240static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
241static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
242static int cgroup_apply_control(struct cgroup *cgrp);
243static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
244static void css_task_iter_advance(struct css_task_iter *it);
245static int cgroup_destroy_locked(struct cgroup *cgrp);
246static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248static void css_release(struct percpu_ref *ref);
249static void kill_css(struct cgroup_subsys_state *css);
250static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254/**
255 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
256 * @ssid: subsys ID of interest
257 *
258 * cgroup_subsys_enabled() can only be used with literal subsys names which
259 * is fine for individual subsystems but unsuitable for cgroup core. This
260 * is slower static_key_enabled() based test indexed by @ssid.
261 */
262static bool cgroup_ssid_enabled(int ssid)
263{
264 if (CGROUP_SUBSYS_COUNT == 0)
265 return false;
266
267 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
268}
269
270static bool cgroup_ssid_no_v1(int ssid)
271{
272 return cgroup_no_v1_mask & (1 << ssid);
273}
274
275/**
276 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
277 * @cgrp: the cgroup of interest
278 *
279 * The default hierarchy is the v2 interface of cgroup and this function
280 * can be used to test whether a cgroup is on the default hierarchy for
281 * cases where a subsystem should behave differnetly depending on the
282 * interface version.
283 *
284 * The set of behaviors which change on the default hierarchy are still
285 * being determined and the mount option is prefixed with __DEVEL__.
286 *
287 * List of changed behaviors:
288 *
289 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
290 * and "name" are disallowed.
291 *
292 * - When mounting an existing superblock, mount options should match.
293 *
294 * - Remount is disallowed.
295 *
296 * - rename(2) is disallowed.
297 *
298 * - "tasks" is removed. Everything should be at process granularity. Use
299 * "cgroup.procs" instead.
300 *
301 * - "cgroup.procs" is not sorted. pids will be unique unless they got
302 * recycled inbetween reads.
303 *
304 * - "release_agent" and "notify_on_release" are removed. Replacement
305 * notification mechanism will be implemented.
306 *
307 * - "cgroup.clone_children" is removed.
308 *
309 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
310 * and its descendants contain no task; otherwise, 1. The file also
311 * generates kernfs notification which can be monitored through poll and
312 * [di]notify when the value of the file changes.
313 *
314 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
315 * take masks of ancestors with non-empty cpus/mems, instead of being
316 * moved to an ancestor.
317 *
318 * - cpuset: a task can be moved into an empty cpuset, and again it takes
319 * masks of ancestors.
320 *
321 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
322 * is not created.
323 *
324 * - blkcg: blk-throttle becomes properly hierarchical.
325 *
326 * - debug: disallowed on the default hierarchy.
327 */
328static bool cgroup_on_dfl(const struct cgroup *cgrp)
329{
330 return cgrp->root == &cgrp_dfl_root;
331}
332
333/* IDR wrappers which synchronize using cgroup_idr_lock */
334static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
335 gfp_t gfp_mask)
336{
337 int ret;
338
339 idr_preload(gfp_mask);
340 spin_lock_bh(&cgroup_idr_lock);
341 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
342 spin_unlock_bh(&cgroup_idr_lock);
343 idr_preload_end();
344 return ret;
345}
346
347static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
348{
349 void *ret;
350
351 spin_lock_bh(&cgroup_idr_lock);
352 ret = idr_replace(idr, ptr, id);
353 spin_unlock_bh(&cgroup_idr_lock);
354 return ret;
355}
356
357static void cgroup_idr_remove(struct idr *idr, int id)
358{
359 spin_lock_bh(&cgroup_idr_lock);
360 idr_remove(idr, id);
361 spin_unlock_bh(&cgroup_idr_lock);
362}
363
364static struct cgroup *cgroup_parent(struct cgroup *cgrp)
365{
366 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
367
368 if (parent_css)
369 return container_of(parent_css, struct cgroup, self);
370 return NULL;
371}
372
373/* subsystems visibly enabled on a cgroup */
374static u16 cgroup_control(struct cgroup *cgrp)
375{
376 struct cgroup *parent = cgroup_parent(cgrp);
377 u16 root_ss_mask = cgrp->root->subsys_mask;
378
379 if (parent)
380 return parent->subtree_control;
381
382 if (cgroup_on_dfl(cgrp))
383 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
384 cgrp_dfl_implicit_ss_mask);
385 return root_ss_mask;
386}
387
388/* subsystems enabled on a cgroup */
389static u16 cgroup_ss_mask(struct cgroup *cgrp)
390{
391 struct cgroup *parent = cgroup_parent(cgrp);
392
393 if (parent)
394 return parent->subtree_ss_mask;
395
396 return cgrp->root->subsys_mask;
397}
398
399/**
400 * cgroup_css - obtain a cgroup's css for the specified subsystem
401 * @cgrp: the cgroup of interest
402 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
403 *
404 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
405 * function must be called either under cgroup_mutex or rcu_read_lock() and
406 * the caller is responsible for pinning the returned css if it wants to
407 * keep accessing it outside the said locks. This function may return
408 * %NULL if @cgrp doesn't have @subsys_id enabled.
409 */
410static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
411 struct cgroup_subsys *ss)
412{
413 if (ss)
414 return rcu_dereference_check(cgrp->subsys[ss->id],
415 lockdep_is_held(&cgroup_mutex));
416 else
417 return &cgrp->self;
418}
419
420/**
421 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
422 * @cgrp: the cgroup of interest
423 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
424 *
425 * Similar to cgroup_css() but returns the effective css, which is defined
426 * as the matching css of the nearest ancestor including self which has @ss
427 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
428 * function is guaranteed to return non-NULL css.
429 */
430static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
431 struct cgroup_subsys *ss)
432{
433 lockdep_assert_held(&cgroup_mutex);
434
435 if (!ss)
436 return &cgrp->self;
437
438 /*
439 * This function is used while updating css associations and thus
440 * can't test the csses directly. Test ss_mask.
441 */
442 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
443 cgrp = cgroup_parent(cgrp);
444 if (!cgrp)
445 return NULL;
446 }
447
448 return cgroup_css(cgrp, ss);
449}
450
451/**
452 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest
455 *
456 * Find and get the effective css of @cgrp for @ss. The effective css is
457 * defined as the matching css of the nearest ancestor including self which
458 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
459 * the root css is returned, so this function always returns a valid css.
460 * The returned css must be put using css_put().
461 */
462struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
463 struct cgroup_subsys *ss)
464{
465 struct cgroup_subsys_state *css;
466
467 rcu_read_lock();
468
469 do {
470 css = cgroup_css(cgrp, ss);
471
472 if (css && css_tryget_online(css))
473 goto out_unlock;
474 cgrp = cgroup_parent(cgrp);
475 } while (cgrp);
476
477 css = init_css_set.subsys[ss->id];
478 css_get(css);
479out_unlock:
480 rcu_read_unlock();
481 return css;
482}
483
484/* convenient tests for these bits */
485static inline bool cgroup_is_dead(const struct cgroup *cgrp)
486{
487 return !(cgrp->self.flags & CSS_ONLINE);
488}
489
490static void cgroup_get(struct cgroup *cgrp)
491{
492 WARN_ON_ONCE(cgroup_is_dead(cgrp));
493 css_get(&cgrp->self);
494}
495
496static bool cgroup_tryget(struct cgroup *cgrp)
497{
498 return css_tryget(&cgrp->self);
499}
500
501struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
502{
503 struct cgroup *cgrp = of->kn->parent->priv;
504 struct cftype *cft = of_cft(of);
505
506 /*
507 * This is open and unprotected implementation of cgroup_css().
508 * seq_css() is only called from a kernfs file operation which has
509 * an active reference on the file. Because all the subsystem
510 * files are drained before a css is disassociated with a cgroup,
511 * the matching css from the cgroup's subsys table is guaranteed to
512 * be and stay valid until the enclosing operation is complete.
513 */
514 if (cft->ss)
515 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
516 else
517 return &cgrp->self;
518}
519EXPORT_SYMBOL_GPL(of_css);
520
521static int notify_on_release(const struct cgroup *cgrp)
522{
523 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
524}
525
526/**
527 * for_each_css - iterate all css's of a cgroup
528 * @css: the iteration cursor
529 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
530 * @cgrp: the target cgroup to iterate css's of
531 *
532 * Should be called under cgroup_[tree_]mutex.
533 */
534#define for_each_css(css, ssid, cgrp) \
535 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
536 if (!((css) = rcu_dereference_check( \
537 (cgrp)->subsys[(ssid)], \
538 lockdep_is_held(&cgroup_mutex)))) { } \
539 else
540
541/**
542 * for_each_e_css - iterate all effective css's of a cgroup
543 * @css: the iteration cursor
544 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
545 * @cgrp: the target cgroup to iterate css's of
546 *
547 * Should be called under cgroup_[tree_]mutex.
548 */
549#define for_each_e_css(css, ssid, cgrp) \
550 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
551 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
552 ; \
553 else
554
555/**
556 * for_each_subsys - iterate all enabled cgroup subsystems
557 * @ss: the iteration cursor
558 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
559 */
560#define for_each_subsys(ss, ssid) \
561 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
562 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
563
564/**
565 * do_each_subsys_mask - filter for_each_subsys with a bitmask
566 * @ss: the iteration cursor
567 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
568 * @ss_mask: the bitmask
569 *
570 * The block will only run for cases where the ssid-th bit (1 << ssid) of
571 * @ss_mask is set.
572 */
573#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
574 unsigned long __ss_mask = (ss_mask); \
575 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
576 (ssid) = 0; \
577 break; \
578 } \
579 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
580 (ss) = cgroup_subsys[ssid]; \
581 {
582
583#define while_each_subsys_mask() \
584 } \
585 } \
586} while (false)
587
588/* iterate across the hierarchies */
589#define for_each_root(root) \
590 list_for_each_entry((root), &cgroup_roots, root_list)
591
592/* iterate over child cgrps, lock should be held throughout iteration */
593#define cgroup_for_each_live_child(child, cgrp) \
594 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
595 if (({ lockdep_assert_held(&cgroup_mutex); \
596 cgroup_is_dead(child); })) \
597 ; \
598 else
599
600/* walk live descendants in preorder */
601#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
602 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
603 if (({ lockdep_assert_held(&cgroup_mutex); \
604 (dsct) = (d_css)->cgroup; \
605 cgroup_is_dead(dsct); })) \
606 ; \
607 else
608
609/* walk live descendants in postorder */
610#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
611 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
612 if (({ lockdep_assert_held(&cgroup_mutex); \
613 (dsct) = (d_css)->cgroup; \
614 cgroup_is_dead(dsct); })) \
615 ; \
616 else
617
618static void cgroup_release_agent(struct work_struct *work);
619static void check_for_release(struct cgroup *cgrp);
620
621/*
622 * A cgroup can be associated with multiple css_sets as different tasks may
623 * belong to different cgroups on different hierarchies. In the other
624 * direction, a css_set is naturally associated with multiple cgroups.
625 * This M:N relationship is represented by the following link structure
626 * which exists for each association and allows traversing the associations
627 * from both sides.
628 */
629struct cgrp_cset_link {
630 /* the cgroup and css_set this link associates */
631 struct cgroup *cgrp;
632 struct css_set *cset;
633
634 /* list of cgrp_cset_links anchored at cgrp->cset_links */
635 struct list_head cset_link;
636
637 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
638 struct list_head cgrp_link;
639};
640
641/*
642 * The default css_set - used by init and its children prior to any
643 * hierarchies being mounted. It contains a pointer to the root state
644 * for each subsystem. Also used to anchor the list of css_sets. Not
645 * reference-counted, to improve performance when child cgroups
646 * haven't been created.
647 */
648struct css_set init_css_set = {
649 .refcount = ATOMIC_INIT(1),
650 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
651 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
652 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
653 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
654 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
655 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
656};
657
658static int css_set_count = 1; /* 1 for init_css_set */
659
660/**
661 * css_set_populated - does a css_set contain any tasks?
662 * @cset: target css_set
663 */
664static bool css_set_populated(struct css_set *cset)
665{
666 lockdep_assert_held(&css_set_lock);
667
668 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
669}
670
671/**
672 * cgroup_update_populated - updated populated count of a cgroup
673 * @cgrp: the target cgroup
674 * @populated: inc or dec populated count
675 *
676 * One of the css_sets associated with @cgrp is either getting its first
677 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
678 * count is propagated towards root so that a given cgroup's populated_cnt
679 * is zero iff the cgroup and all its descendants don't contain any tasks.
680 *
681 * @cgrp's interface file "cgroup.populated" is zero if
682 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
683 * changes from or to zero, userland is notified that the content of the
684 * interface file has changed. This can be used to detect when @cgrp and
685 * its descendants become populated or empty.
686 */
687static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
688{
689 lockdep_assert_held(&css_set_lock);
690
691 do {
692 bool trigger;
693
694 if (populated)
695 trigger = !cgrp->populated_cnt++;
696 else
697 trigger = !--cgrp->populated_cnt;
698
699 if (!trigger)
700 break;
701
702 check_for_release(cgrp);
703 cgroup_file_notify(&cgrp->events_file);
704
705 cgrp = cgroup_parent(cgrp);
706 } while (cgrp);
707}
708
709/**
710 * css_set_update_populated - update populated state of a css_set
711 * @cset: target css_set
712 * @populated: whether @cset is populated or depopulated
713 *
714 * @cset is either getting the first task or losing the last. Update the
715 * ->populated_cnt of all associated cgroups accordingly.
716 */
717static void css_set_update_populated(struct css_set *cset, bool populated)
718{
719 struct cgrp_cset_link *link;
720
721 lockdep_assert_held(&css_set_lock);
722
723 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
724 cgroup_update_populated(link->cgrp, populated);
725}
726
727/**
728 * css_set_move_task - move a task from one css_set to another
729 * @task: task being moved
730 * @from_cset: css_set @task currently belongs to (may be NULL)
731 * @to_cset: new css_set @task is being moved to (may be NULL)
732 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
733 *
734 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
735 * css_set, @from_cset can be NULL. If @task is being disassociated
736 * instead of moved, @to_cset can be NULL.
737 *
738 * This function automatically handles populated_cnt updates and
739 * css_task_iter adjustments but the caller is responsible for managing
740 * @from_cset and @to_cset's reference counts.
741 */
742static void css_set_move_task(struct task_struct *task,
743 struct css_set *from_cset, struct css_set *to_cset,
744 bool use_mg_tasks)
745{
746 lockdep_assert_held(&css_set_lock);
747
748 if (to_cset && !css_set_populated(to_cset))
749 css_set_update_populated(to_cset, true);
750
751 if (from_cset) {
752 struct css_task_iter *it, *pos;
753
754 WARN_ON_ONCE(list_empty(&task->cg_list));
755
756 /*
757 * @task is leaving, advance task iterators which are
758 * pointing to it so that they can resume at the next
759 * position. Advancing an iterator might remove it from
760 * the list, use safe walk. See css_task_iter_advance*()
761 * for details.
762 */
763 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
764 iters_node)
765 if (it->task_pos == &task->cg_list)
766 css_task_iter_advance(it);
767
768 list_del_init(&task->cg_list);
769 if (!css_set_populated(from_cset))
770 css_set_update_populated(from_cset, false);
771 } else {
772 WARN_ON_ONCE(!list_empty(&task->cg_list));
773 }
774
775 if (to_cset) {
776 /*
777 * We are synchronized through cgroup_threadgroup_rwsem
778 * against PF_EXITING setting such that we can't race
779 * against cgroup_exit() changing the css_set to
780 * init_css_set and dropping the old one.
781 */
782 WARN_ON_ONCE(task->flags & PF_EXITING);
783
784 rcu_assign_pointer(task->cgroups, to_cset);
785 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
786 &to_cset->tasks);
787 }
788}
789
790/*
791 * hash table for cgroup groups. This improves the performance to find
792 * an existing css_set. This hash doesn't (currently) take into
793 * account cgroups in empty hierarchies.
794 */
795#define CSS_SET_HASH_BITS 7
796static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
797
798static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
799{
800 unsigned long key = 0UL;
801 struct cgroup_subsys *ss;
802 int i;
803
804 for_each_subsys(ss, i)
805 key += (unsigned long)css[i];
806 key = (key >> 16) ^ key;
807
808 return key;
809}
810
811static void put_css_set_locked(struct css_set *cset)
812{
813 struct cgrp_cset_link *link, *tmp_link;
814 struct cgroup_subsys *ss;
815 int ssid;
816
817 lockdep_assert_held(&css_set_lock);
818
819 if (!atomic_dec_and_test(&cset->refcount))
820 return;
821
822 /* This css_set is dead. unlink it and release cgroup and css refs */
823 for_each_subsys(ss, ssid) {
824 list_del(&cset->e_cset_node[ssid]);
825 css_put(cset->subsys[ssid]);
826 }
827 hash_del(&cset->hlist);
828 css_set_count--;
829
830 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
831 list_del(&link->cset_link);
832 list_del(&link->cgrp_link);
833 if (cgroup_parent(link->cgrp))
834 cgroup_put(link->cgrp);
835 kfree(link);
836 }
837
838 kfree_rcu(cset, rcu_head);
839}
840
841static void put_css_set(struct css_set *cset)
842{
843 unsigned long flags;
844
845 /*
846 * Ensure that the refcount doesn't hit zero while any readers
847 * can see it. Similar to atomic_dec_and_lock(), but for an
848 * rwlock
849 */
850 if (atomic_add_unless(&cset->refcount, -1, 1))
851 return;
852
853 spin_lock_irqsave(&css_set_lock, flags);
854 put_css_set_locked(cset);
855 spin_unlock_irqrestore(&css_set_lock, flags);
856}
857
858/*
859 * refcounted get/put for css_set objects
860 */
861static inline void get_css_set(struct css_set *cset)
862{
863 atomic_inc(&cset->refcount);
864}
865
866/**
867 * compare_css_sets - helper function for find_existing_css_set().
868 * @cset: candidate css_set being tested
869 * @old_cset: existing css_set for a task
870 * @new_cgrp: cgroup that's being entered by the task
871 * @template: desired set of css pointers in css_set (pre-calculated)
872 *
873 * Returns true if "cset" matches "old_cset" except for the hierarchy
874 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
875 */
876static bool compare_css_sets(struct css_set *cset,
877 struct css_set *old_cset,
878 struct cgroup *new_cgrp,
879 struct cgroup_subsys_state *template[])
880{
881 struct list_head *l1, *l2;
882
883 /*
884 * On the default hierarchy, there can be csets which are
885 * associated with the same set of cgroups but different csses.
886 * Let's first ensure that csses match.
887 */
888 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
889 return false;
890
891 /*
892 * Compare cgroup pointers in order to distinguish between
893 * different cgroups in hierarchies. As different cgroups may
894 * share the same effective css, this comparison is always
895 * necessary.
896 */
897 l1 = &cset->cgrp_links;
898 l2 = &old_cset->cgrp_links;
899 while (1) {
900 struct cgrp_cset_link *link1, *link2;
901 struct cgroup *cgrp1, *cgrp2;
902
903 l1 = l1->next;
904 l2 = l2->next;
905 /* See if we reached the end - both lists are equal length. */
906 if (l1 == &cset->cgrp_links) {
907 BUG_ON(l2 != &old_cset->cgrp_links);
908 break;
909 } else {
910 BUG_ON(l2 == &old_cset->cgrp_links);
911 }
912 /* Locate the cgroups associated with these links. */
913 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
914 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
915 cgrp1 = link1->cgrp;
916 cgrp2 = link2->cgrp;
917 /* Hierarchies should be linked in the same order. */
918 BUG_ON(cgrp1->root != cgrp2->root);
919
920 /*
921 * If this hierarchy is the hierarchy of the cgroup
922 * that's changing, then we need to check that this
923 * css_set points to the new cgroup; if it's any other
924 * hierarchy, then this css_set should point to the
925 * same cgroup as the old css_set.
926 */
927 if (cgrp1->root == new_cgrp->root) {
928 if (cgrp1 != new_cgrp)
929 return false;
930 } else {
931 if (cgrp1 != cgrp2)
932 return false;
933 }
934 }
935 return true;
936}
937
938/**
939 * find_existing_css_set - init css array and find the matching css_set
940 * @old_cset: the css_set that we're using before the cgroup transition
941 * @cgrp: the cgroup that we're moving into
942 * @template: out param for the new set of csses, should be clear on entry
943 */
944static struct css_set *find_existing_css_set(struct css_set *old_cset,
945 struct cgroup *cgrp,
946 struct cgroup_subsys_state *template[])
947{
948 struct cgroup_root *root = cgrp->root;
949 struct cgroup_subsys *ss;
950 struct css_set *cset;
951 unsigned long key;
952 int i;
953
954 /*
955 * Build the set of subsystem state objects that we want to see in the
956 * new css_set. while subsystems can change globally, the entries here
957 * won't change, so no need for locking.
958 */
959 for_each_subsys(ss, i) {
960 if (root->subsys_mask & (1UL << i)) {
961 /*
962 * @ss is in this hierarchy, so we want the
963 * effective css from @cgrp.
964 */
965 template[i] = cgroup_e_css(cgrp, ss);
966 } else {
967 /*
968 * @ss is not in this hierarchy, so we don't want
969 * to change the css.
970 */
971 template[i] = old_cset->subsys[i];
972 }
973 }
974
975 key = css_set_hash(template);
976 hash_for_each_possible(css_set_table, cset, hlist, key) {
977 if (!compare_css_sets(cset, old_cset, cgrp, template))
978 continue;
979
980 /* This css_set matches what we need */
981 return cset;
982 }
983
984 /* No existing cgroup group matched */
985 return NULL;
986}
987
988static void free_cgrp_cset_links(struct list_head *links_to_free)
989{
990 struct cgrp_cset_link *link, *tmp_link;
991
992 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
993 list_del(&link->cset_link);
994 kfree(link);
995 }
996}
997
998/**
999 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1000 * @count: the number of links to allocate
1001 * @tmp_links: list_head the allocated links are put on
1002 *
1003 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1004 * through ->cset_link. Returns 0 on success or -errno.
1005 */
1006static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1007{
1008 struct cgrp_cset_link *link;
1009 int i;
1010
1011 INIT_LIST_HEAD(tmp_links);
1012
1013 for (i = 0; i < count; i++) {
1014 link = kzalloc(sizeof(*link), GFP_KERNEL);
1015 if (!link) {
1016 free_cgrp_cset_links(tmp_links);
1017 return -ENOMEM;
1018 }
1019 list_add(&link->cset_link, tmp_links);
1020 }
1021 return 0;
1022}
1023
1024/**
1025 * link_css_set - a helper function to link a css_set to a cgroup
1026 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1027 * @cset: the css_set to be linked
1028 * @cgrp: the destination cgroup
1029 */
1030static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1031 struct cgroup *cgrp)
1032{
1033 struct cgrp_cset_link *link;
1034
1035 BUG_ON(list_empty(tmp_links));
1036
1037 if (cgroup_on_dfl(cgrp))
1038 cset->dfl_cgrp = cgrp;
1039
1040 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1041 link->cset = cset;
1042 link->cgrp = cgrp;
1043
1044 /*
1045 * Always add links to the tail of the lists so that the lists are
1046 * in choronological order.
1047 */
1048 list_move_tail(&link->cset_link, &cgrp->cset_links);
1049 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1050
1051 if (cgroup_parent(cgrp))
1052 cgroup_get(cgrp);
1053}
1054
1055/**
1056 * find_css_set - return a new css_set with one cgroup updated
1057 * @old_cset: the baseline css_set
1058 * @cgrp: the cgroup to be updated
1059 *
1060 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1061 * substituted into the appropriate hierarchy.
1062 */
1063static struct css_set *find_css_set(struct css_set *old_cset,
1064 struct cgroup *cgrp)
1065{
1066 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1067 struct css_set *cset;
1068 struct list_head tmp_links;
1069 struct cgrp_cset_link *link;
1070 struct cgroup_subsys *ss;
1071 unsigned long key;
1072 int ssid;
1073
1074 lockdep_assert_held(&cgroup_mutex);
1075
1076 /* First see if we already have a cgroup group that matches
1077 * the desired set */
1078 spin_lock_irq(&css_set_lock);
1079 cset = find_existing_css_set(old_cset, cgrp, template);
1080 if (cset)
1081 get_css_set(cset);
1082 spin_unlock_irq(&css_set_lock);
1083
1084 if (cset)
1085 return cset;
1086
1087 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1088 if (!cset)
1089 return NULL;
1090
1091 /* Allocate all the cgrp_cset_link objects that we'll need */
1092 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1093 kfree(cset);
1094 return NULL;
1095 }
1096
1097 atomic_set(&cset->refcount, 1);
1098 INIT_LIST_HEAD(&cset->cgrp_links);
1099 INIT_LIST_HEAD(&cset->tasks);
1100 INIT_LIST_HEAD(&cset->mg_tasks);
1101 INIT_LIST_HEAD(&cset->mg_preload_node);
1102 INIT_LIST_HEAD(&cset->mg_node);
1103 INIT_LIST_HEAD(&cset->task_iters);
1104 INIT_HLIST_NODE(&cset->hlist);
1105
1106 /* Copy the set of subsystem state objects generated in
1107 * find_existing_css_set() */
1108 memcpy(cset->subsys, template, sizeof(cset->subsys));
1109
1110 spin_lock_irq(&css_set_lock);
1111 /* Add reference counts and links from the new css_set. */
1112 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1113 struct cgroup *c = link->cgrp;
1114
1115 if (c->root == cgrp->root)
1116 c = cgrp;
1117 link_css_set(&tmp_links, cset, c);
1118 }
1119
1120 BUG_ON(!list_empty(&tmp_links));
1121
1122 css_set_count++;
1123
1124 /* Add @cset to the hash table */
1125 key = css_set_hash(cset->subsys);
1126 hash_add(css_set_table, &cset->hlist, key);
1127
1128 for_each_subsys(ss, ssid) {
1129 struct cgroup_subsys_state *css = cset->subsys[ssid];
1130
1131 list_add_tail(&cset->e_cset_node[ssid],
1132 &css->cgroup->e_csets[ssid]);
1133 css_get(css);
1134 }
1135
1136 spin_unlock_irq(&css_set_lock);
1137
1138 return cset;
1139}
1140
1141static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1142{
1143 struct cgroup *root_cgrp = kf_root->kn->priv;
1144
1145 return root_cgrp->root;
1146}
1147
1148static int cgroup_init_root_id(struct cgroup_root *root)
1149{
1150 int id;
1151
1152 lockdep_assert_held(&cgroup_mutex);
1153
1154 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1155 if (id < 0)
1156 return id;
1157
1158 root->hierarchy_id = id;
1159 return 0;
1160}
1161
1162static void cgroup_exit_root_id(struct cgroup_root *root)
1163{
1164 lockdep_assert_held(&cgroup_mutex);
1165
1166 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1167}
1168
1169static void cgroup_free_root(struct cgroup_root *root)
1170{
1171 if (root) {
1172 idr_destroy(&root->cgroup_idr);
1173 kfree(root);
1174 }
1175}
1176
1177static void cgroup_destroy_root(struct cgroup_root *root)
1178{
1179 struct cgroup *cgrp = &root->cgrp;
1180 struct cgrp_cset_link *link, *tmp_link;
1181
1182 trace_cgroup_destroy_root(root);
1183
1184 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1185
1186 BUG_ON(atomic_read(&root->nr_cgrps));
1187 BUG_ON(!list_empty(&cgrp->self.children));
1188
1189 /* Rebind all subsystems back to the default hierarchy */
1190 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1191
1192 /*
1193 * Release all the links from cset_links to this hierarchy's
1194 * root cgroup
1195 */
1196 spin_lock_irq(&css_set_lock);
1197
1198 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1199 list_del(&link->cset_link);
1200 list_del(&link->cgrp_link);
1201 kfree(link);
1202 }
1203
1204 spin_unlock_irq(&css_set_lock);
1205
1206 if (!list_empty(&root->root_list)) {
1207 list_del(&root->root_list);
1208 cgroup_root_count--;
1209 }
1210
1211 cgroup_exit_root_id(root);
1212
1213 mutex_unlock(&cgroup_mutex);
1214
1215 kernfs_destroy_root(root->kf_root);
1216 cgroup_free_root(root);
1217}
1218
1219/*
1220 * look up cgroup associated with current task's cgroup namespace on the
1221 * specified hierarchy
1222 */
1223static struct cgroup *
1224current_cgns_cgroup_from_root(struct cgroup_root *root)
1225{
1226 struct cgroup *res = NULL;
1227 struct css_set *cset;
1228
1229 lockdep_assert_held(&css_set_lock);
1230
1231 rcu_read_lock();
1232
1233 cset = current->nsproxy->cgroup_ns->root_cset;
1234 if (cset == &init_css_set) {
1235 res = &root->cgrp;
1236 } else {
1237 struct cgrp_cset_link *link;
1238
1239 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1240 struct cgroup *c = link->cgrp;
1241
1242 if (c->root == root) {
1243 res = c;
1244 break;
1245 }
1246 }
1247 }
1248 rcu_read_unlock();
1249
1250 BUG_ON(!res);
1251 return res;
1252}
1253
1254/* look up cgroup associated with given css_set on the specified hierarchy */
1255static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1256 struct cgroup_root *root)
1257{
1258 struct cgroup *res = NULL;
1259
1260 lockdep_assert_held(&cgroup_mutex);
1261 lockdep_assert_held(&css_set_lock);
1262
1263 if (cset == &init_css_set) {
1264 res = &root->cgrp;
1265 } else {
1266 struct cgrp_cset_link *link;
1267
1268 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1269 struct cgroup *c = link->cgrp;
1270
1271 if (c->root == root) {
1272 res = c;
1273 break;
1274 }
1275 }
1276 }
1277
1278 BUG_ON(!res);
1279 return res;
1280}
1281
1282/*
1283 * Return the cgroup for "task" from the given hierarchy. Must be
1284 * called with cgroup_mutex and css_set_lock held.
1285 */
1286static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1287 struct cgroup_root *root)
1288{
1289 /*
1290 * No need to lock the task - since we hold cgroup_mutex the
1291 * task can't change groups, so the only thing that can happen
1292 * is that it exits and its css is set back to init_css_set.
1293 */
1294 return cset_cgroup_from_root(task_css_set(task), root);
1295}
1296
1297/*
1298 * A task must hold cgroup_mutex to modify cgroups.
1299 *
1300 * Any task can increment and decrement the count field without lock.
1301 * So in general, code holding cgroup_mutex can't rely on the count
1302 * field not changing. However, if the count goes to zero, then only
1303 * cgroup_attach_task() can increment it again. Because a count of zero
1304 * means that no tasks are currently attached, therefore there is no
1305 * way a task attached to that cgroup can fork (the other way to
1306 * increment the count). So code holding cgroup_mutex can safely
1307 * assume that if the count is zero, it will stay zero. Similarly, if
1308 * a task holds cgroup_mutex on a cgroup with zero count, it
1309 * knows that the cgroup won't be removed, as cgroup_rmdir()
1310 * needs that mutex.
1311 *
1312 * A cgroup can only be deleted if both its 'count' of using tasks
1313 * is zero, and its list of 'children' cgroups is empty. Since all
1314 * tasks in the system use _some_ cgroup, and since there is always at
1315 * least one task in the system (init, pid == 1), therefore, root cgroup
1316 * always has either children cgroups and/or using tasks. So we don't
1317 * need a special hack to ensure that root cgroup cannot be deleted.
1318 *
1319 * P.S. One more locking exception. RCU is used to guard the
1320 * update of a tasks cgroup pointer by cgroup_attach_task()
1321 */
1322
1323static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1324static const struct file_operations proc_cgroupstats_operations;
1325
1326static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1327 char *buf)
1328{
1329 struct cgroup_subsys *ss = cft->ss;
1330
1331 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1332 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1333 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1334 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1335 cft->name);
1336 else
1337 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1338 return buf;
1339}
1340
1341/**
1342 * cgroup_file_mode - deduce file mode of a control file
1343 * @cft: the control file in question
1344 *
1345 * S_IRUGO for read, S_IWUSR for write.
1346 */
1347static umode_t cgroup_file_mode(const struct cftype *cft)
1348{
1349 umode_t mode = 0;
1350
1351 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1352 mode |= S_IRUGO;
1353
1354 if (cft->write_u64 || cft->write_s64 || cft->write) {
1355 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1356 mode |= S_IWUGO;
1357 else
1358 mode |= S_IWUSR;
1359 }
1360
1361 return mode;
1362}
1363
1364/**
1365 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1366 * @subtree_control: the new subtree_control mask to consider
1367 * @this_ss_mask: available subsystems
1368 *
1369 * On the default hierarchy, a subsystem may request other subsystems to be
1370 * enabled together through its ->depends_on mask. In such cases, more
1371 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1372 *
1373 * This function calculates which subsystems need to be enabled if
1374 * @subtree_control is to be applied while restricted to @this_ss_mask.
1375 */
1376static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1377{
1378 u16 cur_ss_mask = subtree_control;
1379 struct cgroup_subsys *ss;
1380 int ssid;
1381
1382 lockdep_assert_held(&cgroup_mutex);
1383
1384 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1385
1386 while (true) {
1387 u16 new_ss_mask = cur_ss_mask;
1388
1389 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1390 new_ss_mask |= ss->depends_on;
1391 } while_each_subsys_mask();
1392
1393 /*
1394 * Mask out subsystems which aren't available. This can
1395 * happen only if some depended-upon subsystems were bound
1396 * to non-default hierarchies.
1397 */
1398 new_ss_mask &= this_ss_mask;
1399
1400 if (new_ss_mask == cur_ss_mask)
1401 break;
1402 cur_ss_mask = new_ss_mask;
1403 }
1404
1405 return cur_ss_mask;
1406}
1407
1408/**
1409 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1410 * @kn: the kernfs_node being serviced
1411 *
1412 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1413 * the method finishes if locking succeeded. Note that once this function
1414 * returns the cgroup returned by cgroup_kn_lock_live() may become
1415 * inaccessible any time. If the caller intends to continue to access the
1416 * cgroup, it should pin it before invoking this function.
1417 */
1418static void cgroup_kn_unlock(struct kernfs_node *kn)
1419{
1420 struct cgroup *cgrp;
1421
1422 if (kernfs_type(kn) == KERNFS_DIR)
1423 cgrp = kn->priv;
1424 else
1425 cgrp = kn->parent->priv;
1426
1427 mutex_unlock(&cgroup_mutex);
1428
1429 kernfs_unbreak_active_protection(kn);
1430 cgroup_put(cgrp);
1431}
1432
1433/**
1434 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1435 * @kn: the kernfs_node being serviced
1436 * @drain_offline: perform offline draining on the cgroup
1437 *
1438 * This helper is to be used by a cgroup kernfs method currently servicing
1439 * @kn. It breaks the active protection, performs cgroup locking and
1440 * verifies that the associated cgroup is alive. Returns the cgroup if
1441 * alive; otherwise, %NULL. A successful return should be undone by a
1442 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1443 * cgroup is drained of offlining csses before return.
1444 *
1445 * Any cgroup kernfs method implementation which requires locking the
1446 * associated cgroup should use this helper. It avoids nesting cgroup
1447 * locking under kernfs active protection and allows all kernfs operations
1448 * including self-removal.
1449 */
1450static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1451 bool drain_offline)
1452{
1453 struct cgroup *cgrp;
1454
1455 if (kernfs_type(kn) == KERNFS_DIR)
1456 cgrp = kn->priv;
1457 else
1458 cgrp = kn->parent->priv;
1459
1460 /*
1461 * We're gonna grab cgroup_mutex which nests outside kernfs
1462 * active_ref. cgroup liveliness check alone provides enough
1463 * protection against removal. Ensure @cgrp stays accessible and
1464 * break the active_ref protection.
1465 */
1466 if (!cgroup_tryget(cgrp))
1467 return NULL;
1468 kernfs_break_active_protection(kn);
1469
1470 if (drain_offline)
1471 cgroup_lock_and_drain_offline(cgrp);
1472 else
1473 mutex_lock(&cgroup_mutex);
1474
1475 if (!cgroup_is_dead(cgrp))
1476 return cgrp;
1477
1478 cgroup_kn_unlock(kn);
1479 return NULL;
1480}
1481
1482static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1483{
1484 char name[CGROUP_FILE_NAME_MAX];
1485
1486 lockdep_assert_held(&cgroup_mutex);
1487
1488 if (cft->file_offset) {
1489 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1490 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1491
1492 spin_lock_irq(&cgroup_file_kn_lock);
1493 cfile->kn = NULL;
1494 spin_unlock_irq(&cgroup_file_kn_lock);
1495 }
1496
1497 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1498}
1499
1500/**
1501 * css_clear_dir - remove subsys files in a cgroup directory
1502 * @css: taget css
1503 */
1504static void css_clear_dir(struct cgroup_subsys_state *css)
1505{
1506 struct cgroup *cgrp = css->cgroup;
1507 struct cftype *cfts;
1508
1509 if (!(css->flags & CSS_VISIBLE))
1510 return;
1511
1512 css->flags &= ~CSS_VISIBLE;
1513
1514 list_for_each_entry(cfts, &css->ss->cfts, node)
1515 cgroup_addrm_files(css, cgrp, cfts, false);
1516}
1517
1518/**
1519 * css_populate_dir - create subsys files in a cgroup directory
1520 * @css: target css
1521 *
1522 * On failure, no file is added.
1523 */
1524static int css_populate_dir(struct cgroup_subsys_state *css)
1525{
1526 struct cgroup *cgrp = css->cgroup;
1527 struct cftype *cfts, *failed_cfts;
1528 int ret;
1529
1530 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1531 return 0;
1532
1533 if (!css->ss) {
1534 if (cgroup_on_dfl(cgrp))
1535 cfts = cgroup_dfl_base_files;
1536 else
1537 cfts = cgroup_legacy_base_files;
1538
1539 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1540 }
1541
1542 list_for_each_entry(cfts, &css->ss->cfts, node) {
1543 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1544 if (ret < 0) {
1545 failed_cfts = cfts;
1546 goto err;
1547 }
1548 }
1549
1550 css->flags |= CSS_VISIBLE;
1551
1552 return 0;
1553err:
1554 list_for_each_entry(cfts, &css->ss->cfts, node) {
1555 if (cfts == failed_cfts)
1556 break;
1557 cgroup_addrm_files(css, cgrp, cfts, false);
1558 }
1559 return ret;
1560}
1561
1562static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1563{
1564 struct cgroup *dcgrp = &dst_root->cgrp;
1565 struct cgroup_subsys *ss;
1566 int ssid, i, ret;
1567
1568 lockdep_assert_held(&cgroup_mutex);
1569
1570 do_each_subsys_mask(ss, ssid, ss_mask) {
1571 /*
1572 * If @ss has non-root csses attached to it, can't move.
1573 * If @ss is an implicit controller, it is exempt from this
1574 * rule and can be stolen.
1575 */
1576 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1577 !ss->implicit_on_dfl)
1578 return -EBUSY;
1579
1580 /* can't move between two non-dummy roots either */
1581 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1582 return -EBUSY;
1583 } while_each_subsys_mask();
1584
1585 do_each_subsys_mask(ss, ssid, ss_mask) {
1586 struct cgroup_root *src_root = ss->root;
1587 struct cgroup *scgrp = &src_root->cgrp;
1588 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1589 struct css_set *cset;
1590
1591 WARN_ON(!css || cgroup_css(dcgrp, ss));
1592
1593 /* disable from the source */
1594 src_root->subsys_mask &= ~(1 << ssid);
1595 WARN_ON(cgroup_apply_control(scgrp));
1596 cgroup_finalize_control(scgrp, 0);
1597
1598 /* rebind */
1599 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1600 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1601 ss->root = dst_root;
1602 css->cgroup = dcgrp;
1603
1604 spin_lock_irq(&css_set_lock);
1605 hash_for_each(css_set_table, i, cset, hlist)
1606 list_move_tail(&cset->e_cset_node[ss->id],
1607 &dcgrp->e_csets[ss->id]);
1608 spin_unlock_irq(&css_set_lock);
1609
1610 /* default hierarchy doesn't enable controllers by default */
1611 dst_root->subsys_mask |= 1 << ssid;
1612 if (dst_root == &cgrp_dfl_root) {
1613 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1614 } else {
1615 dcgrp->subtree_control |= 1 << ssid;
1616 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1617 }
1618
1619 ret = cgroup_apply_control(dcgrp);
1620 if (ret)
1621 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1622 ss->name, ret);
1623
1624 if (ss->bind)
1625 ss->bind(css);
1626 } while_each_subsys_mask();
1627
1628 kernfs_activate(dcgrp->kn);
1629 return 0;
1630}
1631
1632static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1633 struct kernfs_root *kf_root)
1634{
1635 int len = 0;
1636 char *buf = NULL;
1637 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1638 struct cgroup *ns_cgroup;
1639
1640 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1641 if (!buf)
1642 return -ENOMEM;
1643
1644 spin_lock_irq(&css_set_lock);
1645 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1646 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1647 spin_unlock_irq(&css_set_lock);
1648
1649 if (len >= PATH_MAX)
1650 len = -ERANGE;
1651 else if (len > 0) {
1652 seq_escape(sf, buf, " \t\n\\");
1653 len = 0;
1654 }
1655 kfree(buf);
1656 return len;
1657}
1658
1659static int cgroup_show_options(struct seq_file *seq,
1660 struct kernfs_root *kf_root)
1661{
1662 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1663 struct cgroup_subsys *ss;
1664 int ssid;
1665
1666 if (root != &cgrp_dfl_root)
1667 for_each_subsys(ss, ssid)
1668 if (root->subsys_mask & (1 << ssid))
1669 seq_show_option(seq, ss->legacy_name, NULL);
1670 if (root->flags & CGRP_ROOT_NOPREFIX)
1671 seq_puts(seq, ",noprefix");
1672 if (root->flags & CGRP_ROOT_XATTR)
1673 seq_puts(seq, ",xattr");
1674
1675 spin_lock(&release_agent_path_lock);
1676 if (strlen(root->release_agent_path))
1677 seq_show_option(seq, "release_agent",
1678 root->release_agent_path);
1679 spin_unlock(&release_agent_path_lock);
1680
1681 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1682 seq_puts(seq, ",clone_children");
1683 if (strlen(root->name))
1684 seq_show_option(seq, "name", root->name);
1685 return 0;
1686}
1687
1688struct cgroup_sb_opts {
1689 u16 subsys_mask;
1690 unsigned int flags;
1691 char *release_agent;
1692 bool cpuset_clone_children;
1693 char *name;
1694 /* User explicitly requested empty subsystem */
1695 bool none;
1696};
1697
1698static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1699{
1700 char *token, *o = data;
1701 bool all_ss = false, one_ss = false;
1702 u16 mask = U16_MAX;
1703 struct cgroup_subsys *ss;
1704 int nr_opts = 0;
1705 int i;
1706
1707#ifdef CONFIG_CPUSETS
1708 mask = ~((u16)1 << cpuset_cgrp_id);
1709#endif
1710
1711 memset(opts, 0, sizeof(*opts));
1712
1713 while ((token = strsep(&o, ",")) != NULL) {
1714 nr_opts++;
1715
1716 if (!*token)
1717 return -EINVAL;
1718 if (!strcmp(token, "none")) {
1719 /* Explicitly have no subsystems */
1720 opts->none = true;
1721 continue;
1722 }
1723 if (!strcmp(token, "all")) {
1724 /* Mutually exclusive option 'all' + subsystem name */
1725 if (one_ss)
1726 return -EINVAL;
1727 all_ss = true;
1728 continue;
1729 }
1730 if (!strcmp(token, "noprefix")) {
1731 opts->flags |= CGRP_ROOT_NOPREFIX;
1732 continue;
1733 }
1734 if (!strcmp(token, "clone_children")) {
1735 opts->cpuset_clone_children = true;
1736 continue;
1737 }
1738 if (!strcmp(token, "xattr")) {
1739 opts->flags |= CGRP_ROOT_XATTR;
1740 continue;
1741 }
1742 if (!strncmp(token, "release_agent=", 14)) {
1743 /* Specifying two release agents is forbidden */
1744 if (opts->release_agent)
1745 return -EINVAL;
1746 opts->release_agent =
1747 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1748 if (!opts->release_agent)
1749 return -ENOMEM;
1750 continue;
1751 }
1752 if (!strncmp(token, "name=", 5)) {
1753 const char *name = token + 5;
1754 /* Can't specify an empty name */
1755 if (!strlen(name))
1756 return -EINVAL;
1757 /* Must match [\w.-]+ */
1758 for (i = 0; i < strlen(name); i++) {
1759 char c = name[i];
1760 if (isalnum(c))
1761 continue;
1762 if ((c == '.') || (c == '-') || (c == '_'))
1763 continue;
1764 return -EINVAL;
1765 }
1766 /* Specifying two names is forbidden */
1767 if (opts->name)
1768 return -EINVAL;
1769 opts->name = kstrndup(name,
1770 MAX_CGROUP_ROOT_NAMELEN - 1,
1771 GFP_KERNEL);
1772 if (!opts->name)
1773 return -ENOMEM;
1774
1775 continue;
1776 }
1777
1778 for_each_subsys(ss, i) {
1779 if (strcmp(token, ss->legacy_name))
1780 continue;
1781 if (!cgroup_ssid_enabled(i))
1782 continue;
1783 if (cgroup_ssid_no_v1(i))
1784 continue;
1785
1786 /* Mutually exclusive option 'all' + subsystem name */
1787 if (all_ss)
1788 return -EINVAL;
1789 opts->subsys_mask |= (1 << i);
1790 one_ss = true;
1791
1792 break;
1793 }
1794 if (i == CGROUP_SUBSYS_COUNT)
1795 return -ENOENT;
1796 }
1797
1798 /*
1799 * If the 'all' option was specified select all the subsystems,
1800 * otherwise if 'none', 'name=' and a subsystem name options were
1801 * not specified, let's default to 'all'
1802 */
1803 if (all_ss || (!one_ss && !opts->none && !opts->name))
1804 for_each_subsys(ss, i)
1805 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1806 opts->subsys_mask |= (1 << i);
1807
1808 /*
1809 * We either have to specify by name or by subsystems. (So all
1810 * empty hierarchies must have a name).
1811 */
1812 if (!opts->subsys_mask && !opts->name)
1813 return -EINVAL;
1814
1815 /*
1816 * Option noprefix was introduced just for backward compatibility
1817 * with the old cpuset, so we allow noprefix only if mounting just
1818 * the cpuset subsystem.
1819 */
1820 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1821 return -EINVAL;
1822
1823 /* Can't specify "none" and some subsystems */
1824 if (opts->subsys_mask && opts->none)
1825 return -EINVAL;
1826
1827 return 0;
1828}
1829
1830static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1831{
1832 int ret = 0;
1833 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1834 struct cgroup_sb_opts opts;
1835 u16 added_mask, removed_mask;
1836
1837 if (root == &cgrp_dfl_root) {
1838 pr_err("remount is not allowed\n");
1839 return -EINVAL;
1840 }
1841
1842 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1843
1844 /* See what subsystems are wanted */
1845 ret = parse_cgroupfs_options(data, &opts);
1846 if (ret)
1847 goto out_unlock;
1848
1849 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1850 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1851 task_tgid_nr(current), current->comm);
1852
1853 added_mask = opts.subsys_mask & ~root->subsys_mask;
1854 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1855
1856 /* Don't allow flags or name to change at remount */
1857 if ((opts.flags ^ root->flags) ||
1858 (opts.name && strcmp(opts.name, root->name))) {
1859 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1860 opts.flags, opts.name ?: "", root->flags, root->name);
1861 ret = -EINVAL;
1862 goto out_unlock;
1863 }
1864
1865 /* remounting is not allowed for populated hierarchies */
1866 if (!list_empty(&root->cgrp.self.children)) {
1867 ret = -EBUSY;
1868 goto out_unlock;
1869 }
1870
1871 ret = rebind_subsystems(root, added_mask);
1872 if (ret)
1873 goto out_unlock;
1874
1875 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1876
1877 if (opts.release_agent) {
1878 spin_lock(&release_agent_path_lock);
1879 strcpy(root->release_agent_path, opts.release_agent);
1880 spin_unlock(&release_agent_path_lock);
1881 }
1882
1883 trace_cgroup_remount(root);
1884
1885 out_unlock:
1886 kfree(opts.release_agent);
1887 kfree(opts.name);
1888 mutex_unlock(&cgroup_mutex);
1889 return ret;
1890}
1891
1892/*
1893 * To reduce the fork() overhead for systems that are not actually using
1894 * their cgroups capability, we don't maintain the lists running through
1895 * each css_set to its tasks until we see the list actually used - in other
1896 * words after the first mount.
1897 */
1898static bool use_task_css_set_links __read_mostly;
1899
1900static void cgroup_enable_task_cg_lists(void)
1901{
1902 struct task_struct *p, *g;
1903
1904 spin_lock_irq(&css_set_lock);
1905
1906 if (use_task_css_set_links)
1907 goto out_unlock;
1908
1909 use_task_css_set_links = true;
1910
1911 /*
1912 * We need tasklist_lock because RCU is not safe against
1913 * while_each_thread(). Besides, a forking task that has passed
1914 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1915 * is not guaranteed to have its child immediately visible in the
1916 * tasklist if we walk through it with RCU.
1917 */
1918 read_lock(&tasklist_lock);
1919 do_each_thread(g, p) {
1920 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1921 task_css_set(p) != &init_css_set);
1922
1923 /*
1924 * We should check if the process is exiting, otherwise
1925 * it will race with cgroup_exit() in that the list
1926 * entry won't be deleted though the process has exited.
1927 * Do it while holding siglock so that we don't end up
1928 * racing against cgroup_exit().
1929 *
1930 * Interrupts were already disabled while acquiring
1931 * the css_set_lock, so we do not need to disable it
1932 * again when acquiring the sighand->siglock here.
1933 */
1934 spin_lock(&p->sighand->siglock);
1935 if (!(p->flags & PF_EXITING)) {
1936 struct css_set *cset = task_css_set(p);
1937
1938 if (!css_set_populated(cset))
1939 css_set_update_populated(cset, true);
1940 list_add_tail(&p->cg_list, &cset->tasks);
1941 get_css_set(cset);
1942 }
1943 spin_unlock(&p->sighand->siglock);
1944 } while_each_thread(g, p);
1945 read_unlock(&tasklist_lock);
1946out_unlock:
1947 spin_unlock_irq(&css_set_lock);
1948}
1949
1950static void init_cgroup_housekeeping(struct cgroup *cgrp)
1951{
1952 struct cgroup_subsys *ss;
1953 int ssid;
1954
1955 INIT_LIST_HEAD(&cgrp->self.sibling);
1956 INIT_LIST_HEAD(&cgrp->self.children);
1957 INIT_LIST_HEAD(&cgrp->cset_links);
1958 INIT_LIST_HEAD(&cgrp->pidlists);
1959 mutex_init(&cgrp->pidlist_mutex);
1960 cgrp->self.cgroup = cgrp;
1961 cgrp->self.flags |= CSS_ONLINE;
1962
1963 for_each_subsys(ss, ssid)
1964 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965
1966 init_waitqueue_head(&cgrp->offline_waitq);
1967 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1968}
1969
1970static void init_cgroup_root(struct cgroup_root *root,
1971 struct cgroup_sb_opts *opts)
1972{
1973 struct cgroup *cgrp = &root->cgrp;
1974
1975 INIT_LIST_HEAD(&root->root_list);
1976 atomic_set(&root->nr_cgrps, 1);
1977 cgrp->root = root;
1978 init_cgroup_housekeeping(cgrp);
1979 idr_init(&root->cgroup_idr);
1980
1981 root->flags = opts->flags;
1982 if (opts->release_agent)
1983 strcpy(root->release_agent_path, opts->release_agent);
1984 if (opts->name)
1985 strcpy(root->name, opts->name);
1986 if (opts->cpuset_clone_children)
1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988}
1989
1990static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991{
1992 LIST_HEAD(tmp_links);
1993 struct cgroup *root_cgrp = &root->cgrp;
1994 struct css_set *cset;
1995 int i, ret;
1996
1997 lockdep_assert_held(&cgroup_mutex);
1998
1999 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2000 if (ret < 0)
2001 goto out;
2002 root_cgrp->id = ret;
2003 root_cgrp->ancestor_ids[0] = ret;
2004
2005 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
2006 GFP_KERNEL);
2007 if (ret)
2008 goto out;
2009
2010 /*
2011 * We're accessing css_set_count without locking css_set_lock here,
2012 * but that's OK - it can only be increased by someone holding
2013 * cgroup_lock, and that's us. Later rebinding may disable
2014 * controllers on the default hierarchy and thus create new csets,
2015 * which can't be more than the existing ones. Allocate 2x.
2016 */
2017 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2018 if (ret)
2019 goto cancel_ref;
2020
2021 ret = cgroup_init_root_id(root);
2022 if (ret)
2023 goto cancel_ref;
2024
2025 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2026 KERNFS_ROOT_CREATE_DEACTIVATED,
2027 root_cgrp);
2028 if (IS_ERR(root->kf_root)) {
2029 ret = PTR_ERR(root->kf_root);
2030 goto exit_root_id;
2031 }
2032 root_cgrp->kn = root->kf_root->kn;
2033
2034 ret = css_populate_dir(&root_cgrp->self);
2035 if (ret)
2036 goto destroy_root;
2037
2038 ret = rebind_subsystems(root, ss_mask);
2039 if (ret)
2040 goto destroy_root;
2041
2042 trace_cgroup_setup_root(root);
2043
2044 /*
2045 * There must be no failure case after here, since rebinding takes
2046 * care of subsystems' refcounts, which are explicitly dropped in
2047 * the failure exit path.
2048 */
2049 list_add(&root->root_list, &cgroup_roots);
2050 cgroup_root_count++;
2051
2052 /*
2053 * Link the root cgroup in this hierarchy into all the css_set
2054 * objects.
2055 */
2056 spin_lock_irq(&css_set_lock);
2057 hash_for_each(css_set_table, i, cset, hlist) {
2058 link_css_set(&tmp_links, cset, root_cgrp);
2059 if (css_set_populated(cset))
2060 cgroup_update_populated(root_cgrp, true);
2061 }
2062 spin_unlock_irq(&css_set_lock);
2063
2064 BUG_ON(!list_empty(&root_cgrp->self.children));
2065 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2066
2067 kernfs_activate(root_cgrp->kn);
2068 ret = 0;
2069 goto out;
2070
2071destroy_root:
2072 kernfs_destroy_root(root->kf_root);
2073 root->kf_root = NULL;
2074exit_root_id:
2075 cgroup_exit_root_id(root);
2076cancel_ref:
2077 percpu_ref_exit(&root_cgrp->self.refcnt);
2078out:
2079 free_cgrp_cset_links(&tmp_links);
2080 return ret;
2081}
2082
2083static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2084 int flags, const char *unused_dev_name,
2085 void *data)
2086{
2087 bool is_v2 = fs_type == &cgroup2_fs_type;
2088 struct super_block *pinned_sb = NULL;
2089 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2090 struct cgroup_subsys *ss;
2091 struct cgroup_root *root;
2092 struct cgroup_sb_opts opts;
2093 struct dentry *dentry;
2094 int ret;
2095 int i;
2096 bool new_sb;
2097
2098 get_cgroup_ns(ns);
2099
2100 /* Check if the caller has permission to mount. */
2101 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2102 put_cgroup_ns(ns);
2103 return ERR_PTR(-EPERM);
2104 }
2105
2106 /*
2107 * The first time anyone tries to mount a cgroup, enable the list
2108 * linking each css_set to its tasks and fix up all existing tasks.
2109 */
2110 if (!use_task_css_set_links)
2111 cgroup_enable_task_cg_lists();
2112
2113 if (is_v2) {
2114 if (data) {
2115 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2116 put_cgroup_ns(ns);
2117 return ERR_PTR(-EINVAL);
2118 }
2119 cgrp_dfl_visible = true;
2120 root = &cgrp_dfl_root;
2121 cgroup_get(&root->cgrp);
2122 goto out_mount;
2123 }
2124
2125 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2126
2127 /* First find the desired set of subsystems */
2128 ret = parse_cgroupfs_options(data, &opts);
2129 if (ret)
2130 goto out_unlock;
2131
2132 /*
2133 * Destruction of cgroup root is asynchronous, so subsystems may
2134 * still be dying after the previous unmount. Let's drain the
2135 * dying subsystems. We just need to ensure that the ones
2136 * unmounted previously finish dying and don't care about new ones
2137 * starting. Testing ref liveliness is good enough.
2138 */
2139 for_each_subsys(ss, i) {
2140 if (!(opts.subsys_mask & (1 << i)) ||
2141 ss->root == &cgrp_dfl_root)
2142 continue;
2143
2144 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2145 mutex_unlock(&cgroup_mutex);
2146 msleep(10);
2147 ret = restart_syscall();
2148 goto out_free;
2149 }
2150 cgroup_put(&ss->root->cgrp);
2151 }
2152
2153 for_each_root(root) {
2154 bool name_match = false;
2155
2156 if (root == &cgrp_dfl_root)
2157 continue;
2158
2159 /*
2160 * If we asked for a name then it must match. Also, if
2161 * name matches but sybsys_mask doesn't, we should fail.
2162 * Remember whether name matched.
2163 */
2164 if (opts.name) {
2165 if (strcmp(opts.name, root->name))
2166 continue;
2167 name_match = true;
2168 }
2169
2170 /*
2171 * If we asked for subsystems (or explicitly for no
2172 * subsystems) then they must match.
2173 */
2174 if ((opts.subsys_mask || opts.none) &&
2175 (opts.subsys_mask != root->subsys_mask)) {
2176 if (!name_match)
2177 continue;
2178 ret = -EBUSY;
2179 goto out_unlock;
2180 }
2181
2182 if (root->flags ^ opts.flags)
2183 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2184
2185 /*
2186 * We want to reuse @root whose lifetime is governed by its
2187 * ->cgrp. Let's check whether @root is alive and keep it
2188 * that way. As cgroup_kill_sb() can happen anytime, we
2189 * want to block it by pinning the sb so that @root doesn't
2190 * get killed before mount is complete.
2191 *
2192 * With the sb pinned, tryget_live can reliably indicate
2193 * whether @root can be reused. If it's being killed,
2194 * drain it. We can use wait_queue for the wait but this
2195 * path is super cold. Let's just sleep a bit and retry.
2196 */
2197 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2198 if (IS_ERR(pinned_sb) ||
2199 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2200 mutex_unlock(&cgroup_mutex);
2201 if (!IS_ERR_OR_NULL(pinned_sb))
2202 deactivate_super(pinned_sb);
2203 msleep(10);
2204 ret = restart_syscall();
2205 goto out_free;
2206 }
2207
2208 ret = 0;
2209 goto out_unlock;
2210 }
2211
2212 /*
2213 * No such thing, create a new one. name= matching without subsys
2214 * specification is allowed for already existing hierarchies but we
2215 * can't create new one without subsys specification.
2216 */
2217 if (!opts.subsys_mask && !opts.none) {
2218 ret = -EINVAL;
2219 goto out_unlock;
2220 }
2221
2222 /* Hierarchies may only be created in the initial cgroup namespace. */
2223 if (ns != &init_cgroup_ns) {
2224 ret = -EPERM;
2225 goto out_unlock;
2226 }
2227
2228 root = kzalloc(sizeof(*root), GFP_KERNEL);
2229 if (!root) {
2230 ret = -ENOMEM;
2231 goto out_unlock;
2232 }
2233
2234 init_cgroup_root(root, &opts);
2235
2236 ret = cgroup_setup_root(root, opts.subsys_mask);
2237 if (ret)
2238 cgroup_free_root(root);
2239
2240out_unlock:
2241 mutex_unlock(&cgroup_mutex);
2242out_free:
2243 kfree(opts.release_agent);
2244 kfree(opts.name);
2245
2246 if (ret) {
2247 put_cgroup_ns(ns);
2248 return ERR_PTR(ret);
2249 }
2250out_mount:
2251 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2252 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2253 &new_sb);
2254
2255 /*
2256 * In non-init cgroup namespace, instead of root cgroup's
2257 * dentry, we return the dentry corresponding to the
2258 * cgroupns->root_cgrp.
2259 */
2260 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2261 struct dentry *nsdentry;
2262 struct cgroup *cgrp;
2263
2264 mutex_lock(&cgroup_mutex);
2265 spin_lock_irq(&css_set_lock);
2266
2267 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2268
2269 spin_unlock_irq(&css_set_lock);
2270 mutex_unlock(&cgroup_mutex);
2271
2272 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2273 dput(dentry);
2274 dentry = nsdentry;
2275 }
2276
2277 if (IS_ERR(dentry) || !new_sb)
2278 cgroup_put(&root->cgrp);
2279
2280 /*
2281 * If @pinned_sb, we're reusing an existing root and holding an
2282 * extra ref on its sb. Mount is complete. Put the extra ref.
2283 */
2284 if (pinned_sb) {
2285 WARN_ON(new_sb);
2286 deactivate_super(pinned_sb);
2287 }
2288
2289 put_cgroup_ns(ns);
2290 return dentry;
2291}
2292
2293static void cgroup_kill_sb(struct super_block *sb)
2294{
2295 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2296 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2297
2298 /*
2299 * If @root doesn't have any mounts or children, start killing it.
2300 * This prevents new mounts by disabling percpu_ref_tryget_live().
2301 * cgroup_mount() may wait for @root's release.
2302 *
2303 * And don't kill the default root.
2304 */
2305 if (!list_empty(&root->cgrp.self.children) ||
2306 root == &cgrp_dfl_root)
2307 cgroup_put(&root->cgrp);
2308 else
2309 percpu_ref_kill(&root->cgrp.self.refcnt);
2310
2311 kernfs_kill_sb(sb);
2312}
2313
2314static struct file_system_type cgroup_fs_type = {
2315 .name = "cgroup",
2316 .mount = cgroup_mount,
2317 .kill_sb = cgroup_kill_sb,
2318 .fs_flags = FS_USERNS_MOUNT,
2319};
2320
2321static struct file_system_type cgroup2_fs_type = {
2322 .name = "cgroup2",
2323 .mount = cgroup_mount,
2324 .kill_sb = cgroup_kill_sb,
2325 .fs_flags = FS_USERNS_MOUNT,
2326};
2327
2328static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2329 struct cgroup_namespace *ns)
2330{
2331 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2332
2333 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2334}
2335
2336int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2337 struct cgroup_namespace *ns)
2338{
2339 int ret;
2340
2341 mutex_lock(&cgroup_mutex);
2342 spin_lock_irq(&css_set_lock);
2343
2344 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2345
2346 spin_unlock_irq(&css_set_lock);
2347 mutex_unlock(&cgroup_mutex);
2348
2349 return ret;
2350}
2351EXPORT_SYMBOL_GPL(cgroup_path_ns);
2352
2353/**
2354 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2355 * @task: target task
2356 * @buf: the buffer to write the path into
2357 * @buflen: the length of the buffer
2358 *
2359 * Determine @task's cgroup on the first (the one with the lowest non-zero
2360 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2361 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2362 * cgroup controller callbacks.
2363 *
2364 * Return value is the same as kernfs_path().
2365 */
2366int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2367{
2368 struct cgroup_root *root;
2369 struct cgroup *cgrp;
2370 int hierarchy_id = 1;
2371 int ret;
2372
2373 mutex_lock(&cgroup_mutex);
2374 spin_lock_irq(&css_set_lock);
2375
2376 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2377
2378 if (root) {
2379 cgrp = task_cgroup_from_root(task, root);
2380 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2381 } else {
2382 /* if no hierarchy exists, everyone is in "/" */
2383 ret = strlcpy(buf, "/", buflen);
2384 }
2385
2386 spin_unlock_irq(&css_set_lock);
2387 mutex_unlock(&cgroup_mutex);
2388 return ret;
2389}
2390EXPORT_SYMBOL_GPL(task_cgroup_path);
2391
2392/* used to track tasks and other necessary states during migration */
2393struct cgroup_taskset {
2394 /* the src and dst cset list running through cset->mg_node */
2395 struct list_head src_csets;
2396 struct list_head dst_csets;
2397
2398 /* the subsys currently being processed */
2399 int ssid;
2400
2401 /*
2402 * Fields for cgroup_taskset_*() iteration.
2403 *
2404 * Before migration is committed, the target migration tasks are on
2405 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2406 * the csets on ->dst_csets. ->csets point to either ->src_csets
2407 * or ->dst_csets depending on whether migration is committed.
2408 *
2409 * ->cur_csets and ->cur_task point to the current task position
2410 * during iteration.
2411 */
2412 struct list_head *csets;
2413 struct css_set *cur_cset;
2414 struct task_struct *cur_task;
2415};
2416
2417#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2418 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2419 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2420 .csets = &tset.src_csets, \
2421}
2422
2423/**
2424 * cgroup_taskset_add - try to add a migration target task to a taskset
2425 * @task: target task
2426 * @tset: target taskset
2427 *
2428 * Add @task, which is a migration target, to @tset. This function becomes
2429 * noop if @task doesn't need to be migrated. @task's css_set should have
2430 * been added as a migration source and @task->cg_list will be moved from
2431 * the css_set's tasks list to mg_tasks one.
2432 */
2433static void cgroup_taskset_add(struct task_struct *task,
2434 struct cgroup_taskset *tset)
2435{
2436 struct css_set *cset;
2437
2438 lockdep_assert_held(&css_set_lock);
2439
2440 /* @task either already exited or can't exit until the end */
2441 if (task->flags & PF_EXITING)
2442 return;
2443
2444 /* leave @task alone if post_fork() hasn't linked it yet */
2445 if (list_empty(&task->cg_list))
2446 return;
2447
2448 cset = task_css_set(task);
2449 if (!cset->mg_src_cgrp)
2450 return;
2451
2452 list_move_tail(&task->cg_list, &cset->mg_tasks);
2453 if (list_empty(&cset->mg_node))
2454 list_add_tail(&cset->mg_node, &tset->src_csets);
2455 if (list_empty(&cset->mg_dst_cset->mg_node))
2456 list_move_tail(&cset->mg_dst_cset->mg_node,
2457 &tset->dst_csets);
2458}
2459
2460/**
2461 * cgroup_taskset_first - reset taskset and return the first task
2462 * @tset: taskset of interest
2463 * @dst_cssp: output variable for the destination css
2464 *
2465 * @tset iteration is initialized and the first task is returned.
2466 */
2467struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2468 struct cgroup_subsys_state **dst_cssp)
2469{
2470 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2471 tset->cur_task = NULL;
2472
2473 return cgroup_taskset_next(tset, dst_cssp);
2474}
2475
2476/**
2477 * cgroup_taskset_next - iterate to the next task in taskset
2478 * @tset: taskset of interest
2479 * @dst_cssp: output variable for the destination css
2480 *
2481 * Return the next task in @tset. Iteration must have been initialized
2482 * with cgroup_taskset_first().
2483 */
2484struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2485 struct cgroup_subsys_state **dst_cssp)
2486{
2487 struct css_set *cset = tset->cur_cset;
2488 struct task_struct *task = tset->cur_task;
2489
2490 while (&cset->mg_node != tset->csets) {
2491 if (!task)
2492 task = list_first_entry(&cset->mg_tasks,
2493 struct task_struct, cg_list);
2494 else
2495 task = list_next_entry(task, cg_list);
2496
2497 if (&task->cg_list != &cset->mg_tasks) {
2498 tset->cur_cset = cset;
2499 tset->cur_task = task;
2500
2501 /*
2502 * This function may be called both before and
2503 * after cgroup_taskset_migrate(). The two cases
2504 * can be distinguished by looking at whether @cset
2505 * has its ->mg_dst_cset set.
2506 */
2507 if (cset->mg_dst_cset)
2508 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2509 else
2510 *dst_cssp = cset->subsys[tset->ssid];
2511
2512 return task;
2513 }
2514
2515 cset = list_next_entry(cset, mg_node);
2516 task = NULL;
2517 }
2518
2519 return NULL;
2520}
2521
2522/**
2523 * cgroup_taskset_migrate - migrate a taskset
2524 * @tset: taget taskset
2525 * @root: cgroup root the migration is taking place on
2526 *
2527 * Migrate tasks in @tset as setup by migration preparation functions.
2528 * This function fails iff one of the ->can_attach callbacks fails and
2529 * guarantees that either all or none of the tasks in @tset are migrated.
2530 * @tset is consumed regardless of success.
2531 */
2532static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2533 struct cgroup_root *root)
2534{
2535 struct cgroup_subsys *ss;
2536 struct task_struct *task, *tmp_task;
2537 struct css_set *cset, *tmp_cset;
2538 int ssid, failed_ssid, ret;
2539
2540 /* methods shouldn't be called if no task is actually migrating */
2541 if (list_empty(&tset->src_csets))
2542 return 0;
2543
2544 /* check that we can legitimately attach to the cgroup */
2545 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2546 if (ss->can_attach) {
2547 tset->ssid = ssid;
2548 ret = ss->can_attach(tset);
2549 if (ret) {
2550 failed_ssid = ssid;
2551 goto out_cancel_attach;
2552 }
2553 }
2554 } while_each_subsys_mask();
2555
2556 /*
2557 * Now that we're guaranteed success, proceed to move all tasks to
2558 * the new cgroup. There are no failure cases after here, so this
2559 * is the commit point.
2560 */
2561 spin_lock_irq(&css_set_lock);
2562 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2563 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2564 struct css_set *from_cset = task_css_set(task);
2565 struct css_set *to_cset = cset->mg_dst_cset;
2566
2567 get_css_set(to_cset);
2568 css_set_move_task(task, from_cset, to_cset, true);
2569 put_css_set_locked(from_cset);
2570 }
2571 }
2572 spin_unlock_irq(&css_set_lock);
2573
2574 /*
2575 * Migration is committed, all target tasks are now on dst_csets.
2576 * Nothing is sensitive to fork() after this point. Notify
2577 * controllers that migration is complete.
2578 */
2579 tset->csets = &tset->dst_csets;
2580
2581 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2582 if (ss->attach) {
2583 tset->ssid = ssid;
2584 ss->attach(tset);
2585 }
2586 } while_each_subsys_mask();
2587
2588 ret = 0;
2589 goto out_release_tset;
2590
2591out_cancel_attach:
2592 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2593 if (ssid == failed_ssid)
2594 break;
2595 if (ss->cancel_attach) {
2596 tset->ssid = ssid;
2597 ss->cancel_attach(tset);
2598 }
2599 } while_each_subsys_mask();
2600out_release_tset:
2601 spin_lock_irq(&css_set_lock);
2602 list_splice_init(&tset->dst_csets, &tset->src_csets);
2603 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2604 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2605 list_del_init(&cset->mg_node);
2606 }
2607 spin_unlock_irq(&css_set_lock);
2608 return ret;
2609}
2610
2611/**
2612 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2613 * @dst_cgrp: destination cgroup to test
2614 *
2615 * On the default hierarchy, except for the root, subtree_control must be
2616 * zero for migration destination cgroups with tasks so that child cgroups
2617 * don't compete against tasks.
2618 */
2619static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2620{
2621 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2622 !dst_cgrp->subtree_control;
2623}
2624
2625/**
2626 * cgroup_migrate_finish - cleanup after attach
2627 * @preloaded_csets: list of preloaded css_sets
2628 *
2629 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2630 * those functions for details.
2631 */
2632static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2633{
2634 struct css_set *cset, *tmp_cset;
2635
2636 lockdep_assert_held(&cgroup_mutex);
2637
2638 spin_lock_irq(&css_set_lock);
2639 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2640 cset->mg_src_cgrp = NULL;
2641 cset->mg_dst_cgrp = NULL;
2642 cset->mg_dst_cset = NULL;
2643 list_del_init(&cset->mg_preload_node);
2644 put_css_set_locked(cset);
2645 }
2646 spin_unlock_irq(&css_set_lock);
2647}
2648
2649/**
2650 * cgroup_migrate_add_src - add a migration source css_set
2651 * @src_cset: the source css_set to add
2652 * @dst_cgrp: the destination cgroup
2653 * @preloaded_csets: list of preloaded css_sets
2654 *
2655 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2656 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2657 * up by cgroup_migrate_finish().
2658 *
2659 * This function may be called without holding cgroup_threadgroup_rwsem
2660 * even if the target is a process. Threads may be created and destroyed
2661 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2662 * into play and the preloaded css_sets are guaranteed to cover all
2663 * migrations.
2664 */
2665static void cgroup_migrate_add_src(struct css_set *src_cset,
2666 struct cgroup *dst_cgrp,
2667 struct list_head *preloaded_csets)
2668{
2669 struct cgroup *src_cgrp;
2670
2671 lockdep_assert_held(&cgroup_mutex);
2672 lockdep_assert_held(&css_set_lock);
2673
2674 /*
2675 * If ->dead, @src_set is associated with one or more dead cgroups
2676 * and doesn't contain any migratable tasks. Ignore it early so
2677 * that the rest of migration path doesn't get confused by it.
2678 */
2679 if (src_cset->dead)
2680 return;
2681
2682 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2683
2684 if (!list_empty(&src_cset->mg_preload_node))
2685 return;
2686
2687 WARN_ON(src_cset->mg_src_cgrp);
2688 WARN_ON(src_cset->mg_dst_cgrp);
2689 WARN_ON(!list_empty(&src_cset->mg_tasks));
2690 WARN_ON(!list_empty(&src_cset->mg_node));
2691
2692 src_cset->mg_src_cgrp = src_cgrp;
2693 src_cset->mg_dst_cgrp = dst_cgrp;
2694 get_css_set(src_cset);
2695 list_add(&src_cset->mg_preload_node, preloaded_csets);
2696}
2697
2698/**
2699 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2700 * @preloaded_csets: list of preloaded source css_sets
2701 *
2702 * Tasks are about to be moved and all the source css_sets have been
2703 * preloaded to @preloaded_csets. This function looks up and pins all
2704 * destination css_sets, links each to its source, and append them to
2705 * @preloaded_csets.
2706 *
2707 * This function must be called after cgroup_migrate_add_src() has been
2708 * called on each migration source css_set. After migration is performed
2709 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2710 * @preloaded_csets.
2711 */
2712static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2713{
2714 LIST_HEAD(csets);
2715 struct css_set *src_cset, *tmp_cset;
2716
2717 lockdep_assert_held(&cgroup_mutex);
2718
2719 /* look up the dst cset for each src cset and link it to src */
2720 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2721 struct css_set *dst_cset;
2722
2723 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2724 if (!dst_cset)
2725 goto err;
2726
2727 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2728
2729 /*
2730 * If src cset equals dst, it's noop. Drop the src.
2731 * cgroup_migrate() will skip the cset too. Note that we
2732 * can't handle src == dst as some nodes are used by both.
2733 */
2734 if (src_cset == dst_cset) {
2735 src_cset->mg_src_cgrp = NULL;
2736 src_cset->mg_dst_cgrp = NULL;
2737 list_del_init(&src_cset->mg_preload_node);
2738 put_css_set(src_cset);
2739 put_css_set(dst_cset);
2740 continue;
2741 }
2742
2743 src_cset->mg_dst_cset = dst_cset;
2744
2745 if (list_empty(&dst_cset->mg_preload_node))
2746 list_add(&dst_cset->mg_preload_node, &csets);
2747 else
2748 put_css_set(dst_cset);
2749 }
2750
2751 list_splice_tail(&csets, preloaded_csets);
2752 return 0;
2753err:
2754 cgroup_migrate_finish(&csets);
2755 return -ENOMEM;
2756}
2757
2758/**
2759 * cgroup_migrate - migrate a process or task to a cgroup
2760 * @leader: the leader of the process or the task to migrate
2761 * @threadgroup: whether @leader points to the whole process or a single task
2762 * @root: cgroup root migration is taking place on
2763 *
2764 * Migrate a process or task denoted by @leader. If migrating a process,
2765 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2766 * responsible for invoking cgroup_migrate_add_src() and
2767 * cgroup_migrate_prepare_dst() on the targets before invoking this
2768 * function and following up with cgroup_migrate_finish().
2769 *
2770 * As long as a controller's ->can_attach() doesn't fail, this function is
2771 * guaranteed to succeed. This means that, excluding ->can_attach()
2772 * failure, when migrating multiple targets, the success or failure can be
2773 * decided for all targets by invoking group_migrate_prepare_dst() before
2774 * actually starting migrating.
2775 */
2776static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2777 struct cgroup_root *root)
2778{
2779 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2780 struct task_struct *task;
2781
2782 /*
2783 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2784 * already PF_EXITING could be freed from underneath us unless we
2785 * take an rcu_read_lock.
2786 */
2787 spin_lock_irq(&css_set_lock);
2788 rcu_read_lock();
2789 task = leader;
2790 do {
2791 cgroup_taskset_add(task, &tset);
2792 if (!threadgroup)
2793 break;
2794 } while_each_thread(leader, task);
2795 rcu_read_unlock();
2796 spin_unlock_irq(&css_set_lock);
2797
2798 return cgroup_taskset_migrate(&tset, root);
2799}
2800
2801/**
2802 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2803 * @dst_cgrp: the cgroup to attach to
2804 * @leader: the task or the leader of the threadgroup to be attached
2805 * @threadgroup: attach the whole threadgroup?
2806 *
2807 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2808 */
2809static int cgroup_attach_task(struct cgroup *dst_cgrp,
2810 struct task_struct *leader, bool threadgroup)
2811{
2812 LIST_HEAD(preloaded_csets);
2813 struct task_struct *task;
2814 int ret;
2815
2816 if (!cgroup_may_migrate_to(dst_cgrp))
2817 return -EBUSY;
2818
2819 /* look up all src csets */
2820 spin_lock_irq(&css_set_lock);
2821 rcu_read_lock();
2822 task = leader;
2823 do {
2824 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2825 &preloaded_csets);
2826 if (!threadgroup)
2827 break;
2828 } while_each_thread(leader, task);
2829 rcu_read_unlock();
2830 spin_unlock_irq(&css_set_lock);
2831
2832 /* prepare dst csets and commit */
2833 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2834 if (!ret)
2835 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2836
2837 cgroup_migrate_finish(&preloaded_csets);
2838
2839 if (!ret)
2840 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2841
2842 return ret;
2843}
2844
2845static int cgroup_procs_write_permission(struct task_struct *task,
2846 struct cgroup *dst_cgrp,
2847 struct kernfs_open_file *of)
2848{
2849 const struct cred *cred = current_cred();
2850 const struct cred *tcred = get_task_cred(task);
2851 int ret = 0;
2852
2853 /*
2854 * even if we're attaching all tasks in the thread group, we only
2855 * need to check permissions on one of them.
2856 */
2857 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2858 !uid_eq(cred->euid, tcred->uid) &&
2859 !uid_eq(cred->euid, tcred->suid))
2860 ret = -EACCES;
2861
2862 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2863 struct super_block *sb = of->file->f_path.dentry->d_sb;
2864 struct cgroup *cgrp;
2865 struct inode *inode;
2866
2867 spin_lock_irq(&css_set_lock);
2868 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2869 spin_unlock_irq(&css_set_lock);
2870
2871 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2872 cgrp = cgroup_parent(cgrp);
2873
2874 ret = -ENOMEM;
2875 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2876 if (inode) {
2877 ret = inode_permission(inode, MAY_WRITE);
2878 iput(inode);
2879 }
2880 }
2881
2882 put_cred(tcred);
2883 return ret;
2884}
2885
2886/*
2887 * Find the task_struct of the task to attach by vpid and pass it along to the
2888 * function to attach either it or all tasks in its threadgroup. Will lock
2889 * cgroup_mutex and threadgroup.
2890 */
2891static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2892 size_t nbytes, loff_t off, bool threadgroup)
2893{
2894 struct task_struct *tsk;
2895 struct cgroup_subsys *ss;
2896 struct cgroup *cgrp;
2897 pid_t pid;
2898 int ssid, ret;
2899
2900 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2901 return -EINVAL;
2902
2903 cgrp = cgroup_kn_lock_live(of->kn, false);
2904 if (!cgrp)
2905 return -ENODEV;
2906
2907 percpu_down_write(&cgroup_threadgroup_rwsem);
2908 rcu_read_lock();
2909 if (pid) {
2910 tsk = find_task_by_vpid(pid);
2911 if (!tsk) {
2912 ret = -ESRCH;
2913 goto out_unlock_rcu;
2914 }
2915 } else {
2916 tsk = current;
2917 }
2918
2919 if (threadgroup)
2920 tsk = tsk->group_leader;
2921
2922 /*
2923 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2924 * trapped in a cpuset, or RT worker may be born in a cgroup
2925 * with no rt_runtime allocated. Just say no.
2926 */
2927 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2928 ret = -EINVAL;
2929 goto out_unlock_rcu;
2930 }
2931
2932 get_task_struct(tsk);
2933 rcu_read_unlock();
2934
2935 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2936 if (!ret)
2937 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2938
2939 put_task_struct(tsk);
2940 goto out_unlock_threadgroup;
2941
2942out_unlock_rcu:
2943 rcu_read_unlock();
2944out_unlock_threadgroup:
2945 percpu_up_write(&cgroup_threadgroup_rwsem);
2946 for_each_subsys(ss, ssid)
2947 if (ss->post_attach)
2948 ss->post_attach();
2949 cgroup_kn_unlock(of->kn);
2950 return ret ?: nbytes;
2951}
2952
2953/**
2954 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2955 * @from: attach to all cgroups of a given task
2956 * @tsk: the task to be attached
2957 */
2958int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2959{
2960 struct cgroup_root *root;
2961 int retval = 0;
2962
2963 mutex_lock(&cgroup_mutex);
2964 percpu_down_write(&cgroup_threadgroup_rwsem);
2965 for_each_root(root) {
2966 struct cgroup *from_cgrp;
2967
2968 if (root == &cgrp_dfl_root)
2969 continue;
2970
2971 spin_lock_irq(&css_set_lock);
2972 from_cgrp = task_cgroup_from_root(from, root);
2973 spin_unlock_irq(&css_set_lock);
2974
2975 retval = cgroup_attach_task(from_cgrp, tsk, false);
2976 if (retval)
2977 break;
2978 }
2979 percpu_up_write(&cgroup_threadgroup_rwsem);
2980 mutex_unlock(&cgroup_mutex);
2981
2982 return retval;
2983}
2984EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2985
2986static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2987 char *buf, size_t nbytes, loff_t off)
2988{
2989 return __cgroup_procs_write(of, buf, nbytes, off, false);
2990}
2991
2992static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2993 char *buf, size_t nbytes, loff_t off)
2994{
2995 return __cgroup_procs_write(of, buf, nbytes, off, true);
2996}
2997
2998static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2999 char *buf, size_t nbytes, loff_t off)
3000{
3001 struct cgroup *cgrp;
3002
3003 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
3004
3005 cgrp = cgroup_kn_lock_live(of->kn, false);
3006 if (!cgrp)
3007 return -ENODEV;
3008 spin_lock(&release_agent_path_lock);
3009 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3010 sizeof(cgrp->root->release_agent_path));
3011 spin_unlock(&release_agent_path_lock);
3012 cgroup_kn_unlock(of->kn);
3013 return nbytes;
3014}
3015
3016static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3017{
3018 struct cgroup *cgrp = seq_css(seq)->cgroup;
3019
3020 spin_lock(&release_agent_path_lock);
3021 seq_puts(seq, cgrp->root->release_agent_path);
3022 spin_unlock(&release_agent_path_lock);
3023 seq_putc(seq, '\n');
3024 return 0;
3025}
3026
3027static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3028{
3029 seq_puts(seq, "0\n");
3030 return 0;
3031}
3032
3033static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3034{
3035 struct cgroup_subsys *ss;
3036 bool printed = false;
3037 int ssid;
3038
3039 do_each_subsys_mask(ss, ssid, ss_mask) {
3040 if (printed)
3041 seq_putc(seq, ' ');
3042 seq_printf(seq, "%s", ss->name);
3043 printed = true;
3044 } while_each_subsys_mask();
3045 if (printed)
3046 seq_putc(seq, '\n');
3047}
3048
3049/* show controllers which are enabled from the parent */
3050static int cgroup_controllers_show(struct seq_file *seq, void *v)
3051{
3052 struct cgroup *cgrp = seq_css(seq)->cgroup;
3053
3054 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3055 return 0;
3056}
3057
3058/* show controllers which are enabled for a given cgroup's children */
3059static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3060{
3061 struct cgroup *cgrp = seq_css(seq)->cgroup;
3062
3063 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3064 return 0;
3065}
3066
3067/**
3068 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3069 * @cgrp: root of the subtree to update csses for
3070 *
3071 * @cgrp's control masks have changed and its subtree's css associations
3072 * need to be updated accordingly. This function looks up all css_sets
3073 * which are attached to the subtree, creates the matching updated css_sets
3074 * and migrates the tasks to the new ones.
3075 */
3076static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3077{
3078 LIST_HEAD(preloaded_csets);
3079 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3080 struct cgroup_subsys_state *d_css;
3081 struct cgroup *dsct;
3082 struct css_set *src_cset;
3083 int ret;
3084
3085 lockdep_assert_held(&cgroup_mutex);
3086
3087 percpu_down_write(&cgroup_threadgroup_rwsem);
3088
3089 /* look up all csses currently attached to @cgrp's subtree */
3090 spin_lock_irq(&css_set_lock);
3091 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3092 struct cgrp_cset_link *link;
3093
3094 list_for_each_entry(link, &dsct->cset_links, cset_link)
3095 cgroup_migrate_add_src(link->cset, dsct,
3096 &preloaded_csets);
3097 }
3098 spin_unlock_irq(&css_set_lock);
3099
3100 /* NULL dst indicates self on default hierarchy */
3101 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3102 if (ret)
3103 goto out_finish;
3104
3105 spin_lock_irq(&css_set_lock);
3106 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3107 struct task_struct *task, *ntask;
3108
3109 /* src_csets precede dst_csets, break on the first dst_cset */
3110 if (!src_cset->mg_src_cgrp)
3111 break;
3112
3113 /* all tasks in src_csets need to be migrated */
3114 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3115 cgroup_taskset_add(task, &tset);
3116 }
3117 spin_unlock_irq(&css_set_lock);
3118
3119 ret = cgroup_taskset_migrate(&tset, cgrp->root);
3120out_finish:
3121 cgroup_migrate_finish(&preloaded_csets);
3122 percpu_up_write(&cgroup_threadgroup_rwsem);
3123 return ret;
3124}
3125
3126/**
3127 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3128 * @cgrp: root of the target subtree
3129 *
3130 * Because css offlining is asynchronous, userland may try to re-enable a
3131 * controller while the previous css is still around. This function grabs
3132 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3133 */
3134static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3135 __acquires(&cgroup_mutex)
3136{
3137 struct cgroup *dsct;
3138 struct cgroup_subsys_state *d_css;
3139 struct cgroup_subsys *ss;
3140 int ssid;
3141
3142restart:
3143 mutex_lock(&cgroup_mutex);
3144
3145 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3146 for_each_subsys(ss, ssid) {
3147 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3148 DEFINE_WAIT(wait);
3149
3150 if (!css || !percpu_ref_is_dying(&css->refcnt))
3151 continue;
3152
3153 cgroup_get(dsct);
3154 prepare_to_wait(&dsct->offline_waitq, &wait,
3155 TASK_UNINTERRUPTIBLE);
3156
3157 mutex_unlock(&cgroup_mutex);
3158 schedule();
3159 finish_wait(&dsct->offline_waitq, &wait);
3160
3161 cgroup_put(dsct);
3162 goto restart;
3163 }
3164 }
3165}
3166
3167/**
3168 * cgroup_save_control - save control masks of a subtree
3169 * @cgrp: root of the target subtree
3170 *
3171 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3172 * prefixed fields for @cgrp's subtree including @cgrp itself.
3173 */
3174static void cgroup_save_control(struct cgroup *cgrp)
3175{
3176 struct cgroup *dsct;
3177 struct cgroup_subsys_state *d_css;
3178
3179 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3180 dsct->old_subtree_control = dsct->subtree_control;
3181 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3182 }
3183}
3184
3185/**
3186 * cgroup_propagate_control - refresh control masks of a subtree
3187 * @cgrp: root of the target subtree
3188 *
3189 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3190 * ->subtree_control and propagate controller availability through the
3191 * subtree so that descendants don't have unavailable controllers enabled.
3192 */
3193static void cgroup_propagate_control(struct cgroup *cgrp)
3194{
3195 struct cgroup *dsct;
3196 struct cgroup_subsys_state *d_css;
3197
3198 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3199 dsct->subtree_control &= cgroup_control(dsct);
3200 dsct->subtree_ss_mask =
3201 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3202 cgroup_ss_mask(dsct));
3203 }
3204}
3205
3206/**
3207 * cgroup_restore_control - restore control masks of a subtree
3208 * @cgrp: root of the target subtree
3209 *
3210 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3211 * prefixed fields for @cgrp's subtree including @cgrp itself.
3212 */
3213static void cgroup_restore_control(struct cgroup *cgrp)
3214{
3215 struct cgroup *dsct;
3216 struct cgroup_subsys_state *d_css;
3217
3218 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3219 dsct->subtree_control = dsct->old_subtree_control;
3220 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3221 }
3222}
3223
3224static bool css_visible(struct cgroup_subsys_state *css)
3225{
3226 struct cgroup_subsys *ss = css->ss;
3227 struct cgroup *cgrp = css->cgroup;
3228
3229 if (cgroup_control(cgrp) & (1 << ss->id))
3230 return true;
3231 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3232 return false;
3233 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3234}
3235
3236/**
3237 * cgroup_apply_control_enable - enable or show csses according to control
3238 * @cgrp: root of the target subtree
3239 *
3240 * Walk @cgrp's subtree and create new csses or make the existing ones
3241 * visible. A css is created invisible if it's being implicitly enabled
3242 * through dependency. An invisible css is made visible when the userland
3243 * explicitly enables it.
3244 *
3245 * Returns 0 on success, -errno on failure. On failure, csses which have
3246 * been processed already aren't cleaned up. The caller is responsible for
3247 * cleaning up with cgroup_apply_control_disble().
3248 */
3249static int cgroup_apply_control_enable(struct cgroup *cgrp)
3250{
3251 struct cgroup *dsct;
3252 struct cgroup_subsys_state *d_css;
3253 struct cgroup_subsys *ss;
3254 int ssid, ret;
3255
3256 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3257 for_each_subsys(ss, ssid) {
3258 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3259
3260 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3261
3262 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3263 continue;
3264
3265 if (!css) {
3266 css = css_create(dsct, ss);
3267 if (IS_ERR(css))
3268 return PTR_ERR(css);
3269 }
3270
3271 if (css_visible(css)) {
3272 ret = css_populate_dir(css);
3273 if (ret)
3274 return ret;
3275 }
3276 }
3277 }
3278
3279 return 0;
3280}
3281
3282/**
3283 * cgroup_apply_control_disable - kill or hide csses according to control
3284 * @cgrp: root of the target subtree
3285 *
3286 * Walk @cgrp's subtree and kill and hide csses so that they match
3287 * cgroup_ss_mask() and cgroup_visible_mask().
3288 *
3289 * A css is hidden when the userland requests it to be disabled while other
3290 * subsystems are still depending on it. The css must not actively control
3291 * resources and be in the vanilla state if it's made visible again later.
3292 * Controllers which may be depended upon should provide ->css_reset() for
3293 * this purpose.
3294 */
3295static void cgroup_apply_control_disable(struct cgroup *cgrp)
3296{
3297 struct cgroup *dsct;
3298 struct cgroup_subsys_state *d_css;
3299 struct cgroup_subsys *ss;
3300 int ssid;
3301
3302 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3303 for_each_subsys(ss, ssid) {
3304 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3305
3306 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3307
3308 if (!css)
3309 continue;
3310
3311 if (css->parent &&
3312 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3313 kill_css(css);
3314 } else if (!css_visible(css)) {
3315 css_clear_dir(css);
3316 if (ss->css_reset)
3317 ss->css_reset(css);
3318 }
3319 }
3320 }
3321}
3322
3323/**
3324 * cgroup_apply_control - apply control mask updates to the subtree
3325 * @cgrp: root of the target subtree
3326 *
3327 * subsystems can be enabled and disabled in a subtree using the following
3328 * steps.
3329 *
3330 * 1. Call cgroup_save_control() to stash the current state.
3331 * 2. Update ->subtree_control masks in the subtree as desired.
3332 * 3. Call cgroup_apply_control() to apply the changes.
3333 * 4. Optionally perform other related operations.
3334 * 5. Call cgroup_finalize_control() to finish up.
3335 *
3336 * This function implements step 3 and propagates the mask changes
3337 * throughout @cgrp's subtree, updates csses accordingly and perform
3338 * process migrations.
3339 */
3340static int cgroup_apply_control(struct cgroup *cgrp)
3341{
3342 int ret;
3343
3344 cgroup_propagate_control(cgrp);
3345
3346 ret = cgroup_apply_control_enable(cgrp);
3347 if (ret)
3348 return ret;
3349
3350 /*
3351 * At this point, cgroup_e_css() results reflect the new csses
3352 * making the following cgroup_update_dfl_csses() properly update
3353 * css associations of all tasks in the subtree.
3354 */
3355 ret = cgroup_update_dfl_csses(cgrp);
3356 if (ret)
3357 return ret;
3358
3359 return 0;
3360}
3361
3362/**
3363 * cgroup_finalize_control - finalize control mask update
3364 * @cgrp: root of the target subtree
3365 * @ret: the result of the update
3366 *
3367 * Finalize control mask update. See cgroup_apply_control() for more info.
3368 */
3369static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3370{
3371 if (ret) {
3372 cgroup_restore_control(cgrp);
3373 cgroup_propagate_control(cgrp);
3374 }
3375
3376 cgroup_apply_control_disable(cgrp);
3377}
3378
3379/* change the enabled child controllers for a cgroup in the default hierarchy */
3380static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3381 char *buf, size_t nbytes,
3382 loff_t off)
3383{
3384 u16 enable = 0, disable = 0;
3385 struct cgroup *cgrp, *child;
3386 struct cgroup_subsys *ss;
3387 char *tok;
3388 int ssid, ret;
3389
3390 /*
3391 * Parse input - space separated list of subsystem names prefixed
3392 * with either + or -.
3393 */
3394 buf = strstrip(buf);
3395 while ((tok = strsep(&buf, " "))) {
3396 if (tok[0] == '\0')
3397 continue;
3398 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3399 if (!cgroup_ssid_enabled(ssid) ||
3400 strcmp(tok + 1, ss->name))
3401 continue;
3402
3403 if (*tok == '+') {
3404 enable |= 1 << ssid;
3405 disable &= ~(1 << ssid);
3406 } else if (*tok == '-') {
3407 disable |= 1 << ssid;
3408 enable &= ~(1 << ssid);
3409 } else {
3410 return -EINVAL;
3411 }
3412 break;
3413 } while_each_subsys_mask();
3414 if (ssid == CGROUP_SUBSYS_COUNT)
3415 return -EINVAL;
3416 }
3417
3418 cgrp = cgroup_kn_lock_live(of->kn, true);
3419 if (!cgrp)
3420 return -ENODEV;
3421
3422 for_each_subsys(ss, ssid) {
3423 if (enable & (1 << ssid)) {
3424 if (cgrp->subtree_control & (1 << ssid)) {
3425 enable &= ~(1 << ssid);
3426 continue;
3427 }
3428
3429 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3430 ret = -ENOENT;
3431 goto out_unlock;
3432 }
3433 } else if (disable & (1 << ssid)) {
3434 if (!(cgrp->subtree_control & (1 << ssid))) {
3435 disable &= ~(1 << ssid);
3436 continue;
3437 }
3438
3439 /* a child has it enabled? */
3440 cgroup_for_each_live_child(child, cgrp) {
3441 if (child->subtree_control & (1 << ssid)) {
3442 ret = -EBUSY;
3443 goto out_unlock;
3444 }
3445 }
3446 }
3447 }
3448
3449 if (!enable && !disable) {
3450 ret = 0;
3451 goto out_unlock;
3452 }
3453
3454 /*
3455 * Except for the root, subtree_control must be zero for a cgroup
3456 * with tasks so that child cgroups don't compete against tasks.
3457 */
3458 if (enable && cgroup_parent(cgrp)) {
3459 struct cgrp_cset_link *link;
3460
3461 /*
3462 * Because namespaces pin csets too, @cgrp->cset_links
3463 * might not be empty even when @cgrp is empty. Walk and
3464 * verify each cset.
3465 */
3466 spin_lock_irq(&css_set_lock);
3467
3468 ret = 0;
3469 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
3470 if (css_set_populated(link->cset)) {
3471 ret = -EBUSY;
3472 break;
3473 }
3474 }
3475
3476 spin_unlock_irq(&css_set_lock);
3477
3478 if (ret)
3479 goto out_unlock;
3480 }
3481
3482 /* save and update control masks and prepare csses */
3483 cgroup_save_control(cgrp);
3484
3485 cgrp->subtree_control |= enable;
3486 cgrp->subtree_control &= ~disable;
3487
3488 ret = cgroup_apply_control(cgrp);
3489
3490 cgroup_finalize_control(cgrp, ret);
3491
3492 kernfs_activate(cgrp->kn);
3493 ret = 0;
3494out_unlock:
3495 cgroup_kn_unlock(of->kn);
3496 return ret ?: nbytes;
3497}
3498
3499static int cgroup_events_show(struct seq_file *seq, void *v)
3500{
3501 seq_printf(seq, "populated %d\n",
3502 cgroup_is_populated(seq_css(seq)->cgroup));
3503 return 0;
3504}
3505
3506static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3507 size_t nbytes, loff_t off)
3508{
3509 struct cgroup *cgrp = of->kn->parent->priv;
3510 struct cftype *cft = of->kn->priv;
3511 struct cgroup_subsys_state *css;
3512 int ret;
3513
3514 if (cft->write)
3515 return cft->write(of, buf, nbytes, off);
3516
3517 /*
3518 * kernfs guarantees that a file isn't deleted with operations in
3519 * flight, which means that the matching css is and stays alive and
3520 * doesn't need to be pinned. The RCU locking is not necessary
3521 * either. It's just for the convenience of using cgroup_css().
3522 */
3523 rcu_read_lock();
3524 css = cgroup_css(cgrp, cft->ss);
3525 rcu_read_unlock();
3526
3527 if (cft->write_u64) {
3528 unsigned long long v;
3529 ret = kstrtoull(buf, 0, &v);
3530 if (!ret)
3531 ret = cft->write_u64(css, cft, v);
3532 } else if (cft->write_s64) {
3533 long long v;
3534 ret = kstrtoll(buf, 0, &v);
3535 if (!ret)
3536 ret = cft->write_s64(css, cft, v);
3537 } else {
3538 ret = -EINVAL;
3539 }
3540
3541 return ret ?: nbytes;
3542}
3543
3544static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3545{
3546 return seq_cft(seq)->seq_start(seq, ppos);
3547}
3548
3549static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3550{
3551 return seq_cft(seq)->seq_next(seq, v, ppos);
3552}
3553
3554static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3555{
3556 seq_cft(seq)->seq_stop(seq, v);
3557}
3558
3559static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3560{
3561 struct cftype *cft = seq_cft(m);
3562 struct cgroup_subsys_state *css = seq_css(m);
3563
3564 if (cft->seq_show)
3565 return cft->seq_show(m, arg);
3566
3567 if (cft->read_u64)
3568 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3569 else if (cft->read_s64)
3570 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3571 else
3572 return -EINVAL;
3573 return 0;
3574}
3575
3576static struct kernfs_ops cgroup_kf_single_ops = {
3577 .atomic_write_len = PAGE_SIZE,
3578 .write = cgroup_file_write,
3579 .seq_show = cgroup_seqfile_show,
3580};
3581
3582static struct kernfs_ops cgroup_kf_ops = {
3583 .atomic_write_len = PAGE_SIZE,
3584 .write = cgroup_file_write,
3585 .seq_start = cgroup_seqfile_start,
3586 .seq_next = cgroup_seqfile_next,
3587 .seq_stop = cgroup_seqfile_stop,
3588 .seq_show = cgroup_seqfile_show,
3589};
3590
3591/*
3592 * cgroup_rename - Only allow simple rename of directories in place.
3593 */
3594static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3595 const char *new_name_str)
3596{
3597 struct cgroup *cgrp = kn->priv;
3598 int ret;
3599
3600 if (kernfs_type(kn) != KERNFS_DIR)
3601 return -ENOTDIR;
3602 if (kn->parent != new_parent)
3603 return -EIO;
3604
3605 /*
3606 * This isn't a proper migration and its usefulness is very
3607 * limited. Disallow on the default hierarchy.
3608 */
3609 if (cgroup_on_dfl(cgrp))
3610 return -EPERM;
3611
3612 /*
3613 * We're gonna grab cgroup_mutex which nests outside kernfs
3614 * active_ref. kernfs_rename() doesn't require active_ref
3615 * protection. Break them before grabbing cgroup_mutex.
3616 */
3617 kernfs_break_active_protection(new_parent);
3618 kernfs_break_active_protection(kn);
3619
3620 mutex_lock(&cgroup_mutex);
3621
3622 ret = kernfs_rename(kn, new_parent, new_name_str);
3623 if (!ret)
3624 trace_cgroup_rename(cgrp);
3625
3626 mutex_unlock(&cgroup_mutex);
3627
3628 kernfs_unbreak_active_protection(kn);
3629 kernfs_unbreak_active_protection(new_parent);
3630 return ret;
3631}
3632
3633/* set uid and gid of cgroup dirs and files to that of the creator */
3634static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3635{
3636 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3637 .ia_uid = current_fsuid(),
3638 .ia_gid = current_fsgid(), };
3639
3640 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3641 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3642 return 0;
3643
3644 return kernfs_setattr(kn, &iattr);
3645}
3646
3647static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3648 struct cftype *cft)
3649{
3650 char name[CGROUP_FILE_NAME_MAX];
3651 struct kernfs_node *kn;
3652 struct lock_class_key *key = NULL;
3653 int ret;
3654
3655#ifdef CONFIG_DEBUG_LOCK_ALLOC
3656 key = &cft->lockdep_key;
3657#endif
3658 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3659 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3660 NULL, key);
3661 if (IS_ERR(kn))
3662 return PTR_ERR(kn);
3663
3664 ret = cgroup_kn_set_ugid(kn);
3665 if (ret) {
3666 kernfs_remove(kn);
3667 return ret;
3668 }
3669
3670 if (cft->file_offset) {
3671 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3672
3673 spin_lock_irq(&cgroup_file_kn_lock);
3674 cfile->kn = kn;
3675 spin_unlock_irq(&cgroup_file_kn_lock);
3676 }
3677
3678 return 0;
3679}
3680
3681/**
3682 * cgroup_addrm_files - add or remove files to a cgroup directory
3683 * @css: the target css
3684 * @cgrp: the target cgroup (usually css->cgroup)
3685 * @cfts: array of cftypes to be added
3686 * @is_add: whether to add or remove
3687 *
3688 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3689 * For removals, this function never fails.
3690 */
3691static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3692 struct cgroup *cgrp, struct cftype cfts[],
3693 bool is_add)
3694{
3695 struct cftype *cft, *cft_end = NULL;
3696 int ret = 0;
3697
3698 lockdep_assert_held(&cgroup_mutex);
3699
3700restart:
3701 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3702 /* does cft->flags tell us to skip this file on @cgrp? */
3703 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3704 continue;
3705 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3706 continue;
3707 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3708 continue;
3709 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3710 continue;
3711
3712 if (is_add) {
3713 ret = cgroup_add_file(css, cgrp, cft);
3714 if (ret) {
3715 pr_warn("%s: failed to add %s, err=%d\n",
3716 __func__, cft->name, ret);
3717 cft_end = cft;
3718 is_add = false;
3719 goto restart;
3720 }
3721 } else {
3722 cgroup_rm_file(cgrp, cft);
3723 }
3724 }
3725 return ret;
3726}
3727
3728static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3729{
3730 LIST_HEAD(pending);
3731 struct cgroup_subsys *ss = cfts[0].ss;
3732 struct cgroup *root = &ss->root->cgrp;
3733 struct cgroup_subsys_state *css;
3734 int ret = 0;
3735
3736 lockdep_assert_held(&cgroup_mutex);
3737
3738 /* add/rm files for all cgroups created before */
3739 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3740 struct cgroup *cgrp = css->cgroup;
3741
3742 if (!(css->flags & CSS_VISIBLE))
3743 continue;
3744
3745 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3746 if (ret)
3747 break;
3748 }
3749
3750 if (is_add && !ret)
3751 kernfs_activate(root->kn);
3752 return ret;
3753}
3754
3755static void cgroup_exit_cftypes(struct cftype *cfts)
3756{
3757 struct cftype *cft;
3758
3759 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3760 /* free copy for custom atomic_write_len, see init_cftypes() */
3761 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3762 kfree(cft->kf_ops);
3763 cft->kf_ops = NULL;
3764 cft->ss = NULL;
3765
3766 /* revert flags set by cgroup core while adding @cfts */
3767 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3768 }
3769}
3770
3771static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3772{
3773 struct cftype *cft;
3774
3775 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3776 struct kernfs_ops *kf_ops;
3777
3778 WARN_ON(cft->ss || cft->kf_ops);
3779
3780 if (cft->seq_start)
3781 kf_ops = &cgroup_kf_ops;
3782 else
3783 kf_ops = &cgroup_kf_single_ops;
3784
3785 /*
3786 * Ugh... if @cft wants a custom max_write_len, we need to
3787 * make a copy of kf_ops to set its atomic_write_len.
3788 */
3789 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3790 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3791 if (!kf_ops) {
3792 cgroup_exit_cftypes(cfts);
3793 return -ENOMEM;
3794 }
3795 kf_ops->atomic_write_len = cft->max_write_len;
3796 }
3797
3798 cft->kf_ops = kf_ops;
3799 cft->ss = ss;
3800 }
3801
3802 return 0;
3803}
3804
3805static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3806{
3807 lockdep_assert_held(&cgroup_mutex);
3808
3809 if (!cfts || !cfts[0].ss)
3810 return -ENOENT;
3811
3812 list_del(&cfts->node);
3813 cgroup_apply_cftypes(cfts, false);
3814 cgroup_exit_cftypes(cfts);
3815 return 0;
3816}
3817
3818/**
3819 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3820 * @cfts: zero-length name terminated array of cftypes
3821 *
3822 * Unregister @cfts. Files described by @cfts are removed from all
3823 * existing cgroups and all future cgroups won't have them either. This
3824 * function can be called anytime whether @cfts' subsys is attached or not.
3825 *
3826 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3827 * registered.
3828 */
3829int cgroup_rm_cftypes(struct cftype *cfts)
3830{
3831 int ret;
3832
3833 mutex_lock(&cgroup_mutex);
3834 ret = cgroup_rm_cftypes_locked(cfts);
3835 mutex_unlock(&cgroup_mutex);
3836 return ret;
3837}
3838
3839/**
3840 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3841 * @ss: target cgroup subsystem
3842 * @cfts: zero-length name terminated array of cftypes
3843 *
3844 * Register @cfts to @ss. Files described by @cfts are created for all
3845 * existing cgroups to which @ss is attached and all future cgroups will
3846 * have them too. This function can be called anytime whether @ss is
3847 * attached or not.
3848 *
3849 * Returns 0 on successful registration, -errno on failure. Note that this
3850 * function currently returns 0 as long as @cfts registration is successful
3851 * even if some file creation attempts on existing cgroups fail.
3852 */
3853static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3854{
3855 int ret;
3856
3857 if (!cgroup_ssid_enabled(ss->id))
3858 return 0;
3859
3860 if (!cfts || cfts[0].name[0] == '\0')
3861 return 0;
3862
3863 ret = cgroup_init_cftypes(ss, cfts);
3864 if (ret)
3865 return ret;
3866
3867 mutex_lock(&cgroup_mutex);
3868
3869 list_add_tail(&cfts->node, &ss->cfts);
3870 ret = cgroup_apply_cftypes(cfts, true);
3871 if (ret)
3872 cgroup_rm_cftypes_locked(cfts);
3873
3874 mutex_unlock(&cgroup_mutex);
3875 return ret;
3876}
3877
3878/**
3879 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3880 * @ss: target cgroup subsystem
3881 * @cfts: zero-length name terminated array of cftypes
3882 *
3883 * Similar to cgroup_add_cftypes() but the added files are only used for
3884 * the default hierarchy.
3885 */
3886int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3887{
3888 struct cftype *cft;
3889
3890 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3891 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3892 return cgroup_add_cftypes(ss, cfts);
3893}
3894
3895/**
3896 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3897 * @ss: target cgroup subsystem
3898 * @cfts: zero-length name terminated array of cftypes
3899 *
3900 * Similar to cgroup_add_cftypes() but the added files are only used for
3901 * the legacy hierarchies.
3902 */
3903int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3904{
3905 struct cftype *cft;
3906
3907 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3908 cft->flags |= __CFTYPE_NOT_ON_DFL;
3909 return cgroup_add_cftypes(ss, cfts);
3910}
3911
3912/**
3913 * cgroup_file_notify - generate a file modified event for a cgroup_file
3914 * @cfile: target cgroup_file
3915 *
3916 * @cfile must have been obtained by setting cftype->file_offset.
3917 */
3918void cgroup_file_notify(struct cgroup_file *cfile)
3919{
3920 unsigned long flags;
3921
3922 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3923 if (cfile->kn)
3924 kernfs_notify(cfile->kn);
3925 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3926}
3927
3928/**
3929 * cgroup_task_count - count the number of tasks in a cgroup.
3930 * @cgrp: the cgroup in question
3931 *
3932 * Return the number of tasks in the cgroup. The returned number can be
3933 * higher than the actual number of tasks due to css_set references from
3934 * namespace roots and temporary usages.
3935 */
3936static int cgroup_task_count(const struct cgroup *cgrp)
3937{
3938 int count = 0;
3939 struct cgrp_cset_link *link;
3940
3941 spin_lock_irq(&css_set_lock);
3942 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3943 count += atomic_read(&link->cset->refcount);
3944 spin_unlock_irq(&css_set_lock);
3945 return count;
3946}
3947
3948/**
3949 * css_next_child - find the next child of a given css
3950 * @pos: the current position (%NULL to initiate traversal)
3951 * @parent: css whose children to walk
3952 *
3953 * This function returns the next child of @parent and should be called
3954 * under either cgroup_mutex or RCU read lock. The only requirement is
3955 * that @parent and @pos are accessible. The next sibling is guaranteed to
3956 * be returned regardless of their states.
3957 *
3958 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3959 * css which finished ->css_online() is guaranteed to be visible in the
3960 * future iterations and will stay visible until the last reference is put.
3961 * A css which hasn't finished ->css_online() or already finished
3962 * ->css_offline() may show up during traversal. It's each subsystem's
3963 * responsibility to synchronize against on/offlining.
3964 */
3965struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3966 struct cgroup_subsys_state *parent)
3967{
3968 struct cgroup_subsys_state *next;
3969
3970 cgroup_assert_mutex_or_rcu_locked();
3971
3972 /*
3973 * @pos could already have been unlinked from the sibling list.
3974 * Once a cgroup is removed, its ->sibling.next is no longer
3975 * updated when its next sibling changes. CSS_RELEASED is set when
3976 * @pos is taken off list, at which time its next pointer is valid,
3977 * and, as releases are serialized, the one pointed to by the next
3978 * pointer is guaranteed to not have started release yet. This
3979 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3980 * critical section, the one pointed to by its next pointer is
3981 * guaranteed to not have finished its RCU grace period even if we
3982 * have dropped rcu_read_lock() inbetween iterations.
3983 *
3984 * If @pos has CSS_RELEASED set, its next pointer can't be
3985 * dereferenced; however, as each css is given a monotonically
3986 * increasing unique serial number and always appended to the
3987 * sibling list, the next one can be found by walking the parent's
3988 * children until the first css with higher serial number than
3989 * @pos's. While this path can be slower, it happens iff iteration
3990 * races against release and the race window is very small.
3991 */
3992 if (!pos) {
3993 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3994 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3995 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3996 } else {
3997 list_for_each_entry_rcu(next, &parent->children, sibling)
3998 if (next->serial_nr > pos->serial_nr)
3999 break;
4000 }
4001
4002 /*
4003 * @next, if not pointing to the head, can be dereferenced and is
4004 * the next sibling.
4005 */
4006 if (&next->sibling != &parent->children)
4007 return next;
4008 return NULL;
4009}
4010
4011/**
4012 * css_next_descendant_pre - find the next descendant for pre-order walk
4013 * @pos: the current position (%NULL to initiate traversal)
4014 * @root: css whose descendants to walk
4015 *
4016 * To be used by css_for_each_descendant_pre(). Find the next descendant
4017 * to visit for pre-order traversal of @root's descendants. @root is
4018 * included in the iteration and the first node to be visited.
4019 *
4020 * While this function requires cgroup_mutex or RCU read locking, it
4021 * doesn't require the whole traversal to be contained in a single critical
4022 * section. This function will return the correct next descendant as long
4023 * as both @pos and @root are accessible and @pos is a descendant of @root.
4024 *
4025 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4026 * css which finished ->css_online() is guaranteed to be visible in the
4027 * future iterations and will stay visible until the last reference is put.
4028 * A css which hasn't finished ->css_online() or already finished
4029 * ->css_offline() may show up during traversal. It's each subsystem's
4030 * responsibility to synchronize against on/offlining.
4031 */
4032struct cgroup_subsys_state *
4033css_next_descendant_pre(struct cgroup_subsys_state *pos,
4034 struct cgroup_subsys_state *root)
4035{
4036 struct cgroup_subsys_state *next;
4037
4038 cgroup_assert_mutex_or_rcu_locked();
4039
4040 /* if first iteration, visit @root */
4041 if (!pos)
4042 return root;
4043
4044 /* visit the first child if exists */
4045 next = css_next_child(NULL, pos);
4046 if (next)
4047 return next;
4048
4049 /* no child, visit my or the closest ancestor's next sibling */
4050 while (pos != root) {
4051 next = css_next_child(pos, pos->parent);
4052 if (next)
4053 return next;
4054 pos = pos->parent;
4055 }
4056
4057 return NULL;
4058}
4059
4060/**
4061 * css_rightmost_descendant - return the rightmost descendant of a css
4062 * @pos: css of interest
4063 *
4064 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4065 * is returned. This can be used during pre-order traversal to skip
4066 * subtree of @pos.
4067 *
4068 * While this function requires cgroup_mutex or RCU read locking, it
4069 * doesn't require the whole traversal to be contained in a single critical
4070 * section. This function will return the correct rightmost descendant as
4071 * long as @pos is accessible.
4072 */
4073struct cgroup_subsys_state *
4074css_rightmost_descendant(struct cgroup_subsys_state *pos)
4075{
4076 struct cgroup_subsys_state *last, *tmp;
4077
4078 cgroup_assert_mutex_or_rcu_locked();
4079
4080 do {
4081 last = pos;
4082 /* ->prev isn't RCU safe, walk ->next till the end */
4083 pos = NULL;
4084 css_for_each_child(tmp, last)
4085 pos = tmp;
4086 } while (pos);
4087
4088 return last;
4089}
4090
4091static struct cgroup_subsys_state *
4092css_leftmost_descendant(struct cgroup_subsys_state *pos)
4093{
4094 struct cgroup_subsys_state *last;
4095
4096 do {
4097 last = pos;
4098 pos = css_next_child(NULL, pos);
4099 } while (pos);
4100
4101 return last;
4102}
4103
4104/**
4105 * css_next_descendant_post - find the next descendant for post-order walk
4106 * @pos: the current position (%NULL to initiate traversal)
4107 * @root: css whose descendants to walk
4108 *
4109 * To be used by css_for_each_descendant_post(). Find the next descendant
4110 * to visit for post-order traversal of @root's descendants. @root is
4111 * included in the iteration and the last node to be visited.
4112 *
4113 * While this function requires cgroup_mutex or RCU read locking, it
4114 * doesn't require the whole traversal to be contained in a single critical
4115 * section. This function will return the correct next descendant as long
4116 * as both @pos and @cgroup are accessible and @pos is a descendant of
4117 * @cgroup.
4118 *
4119 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4120 * css which finished ->css_online() is guaranteed to be visible in the
4121 * future iterations and will stay visible until the last reference is put.
4122 * A css which hasn't finished ->css_online() or already finished
4123 * ->css_offline() may show up during traversal. It's each subsystem's
4124 * responsibility to synchronize against on/offlining.
4125 */
4126struct cgroup_subsys_state *
4127css_next_descendant_post(struct cgroup_subsys_state *pos,
4128 struct cgroup_subsys_state *root)
4129{
4130 struct cgroup_subsys_state *next;
4131
4132 cgroup_assert_mutex_or_rcu_locked();
4133
4134 /* if first iteration, visit leftmost descendant which may be @root */
4135 if (!pos)
4136 return css_leftmost_descendant(root);
4137
4138 /* if we visited @root, we're done */
4139 if (pos == root)
4140 return NULL;
4141
4142 /* if there's an unvisited sibling, visit its leftmost descendant */
4143 next = css_next_child(pos, pos->parent);
4144 if (next)
4145 return css_leftmost_descendant(next);
4146
4147 /* no sibling left, visit parent */
4148 return pos->parent;
4149}
4150
4151/**
4152 * css_has_online_children - does a css have online children
4153 * @css: the target css
4154 *
4155 * Returns %true if @css has any online children; otherwise, %false. This
4156 * function can be called from any context but the caller is responsible
4157 * for synchronizing against on/offlining as necessary.
4158 */
4159bool css_has_online_children(struct cgroup_subsys_state *css)
4160{
4161 struct cgroup_subsys_state *child;
4162 bool ret = false;
4163
4164 rcu_read_lock();
4165 css_for_each_child(child, css) {
4166 if (child->flags & CSS_ONLINE) {
4167 ret = true;
4168 break;
4169 }
4170 }
4171 rcu_read_unlock();
4172 return ret;
4173}
4174
4175/**
4176 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4177 * @it: the iterator to advance
4178 *
4179 * Advance @it to the next css_set to walk.
4180 */
4181static void css_task_iter_advance_css_set(struct css_task_iter *it)
4182{
4183 struct list_head *l = it->cset_pos;
4184 struct cgrp_cset_link *link;
4185 struct css_set *cset;
4186
4187 lockdep_assert_held(&css_set_lock);
4188
4189 /* Advance to the next non-empty css_set */
4190 do {
4191 l = l->next;
4192 if (l == it->cset_head) {
4193 it->cset_pos = NULL;
4194 it->task_pos = NULL;
4195 return;
4196 }
4197
4198 if (it->ss) {
4199 cset = container_of(l, struct css_set,
4200 e_cset_node[it->ss->id]);
4201 } else {
4202 link = list_entry(l, struct cgrp_cset_link, cset_link);
4203 cset = link->cset;
4204 }
4205 } while (!css_set_populated(cset));
4206
4207 it->cset_pos = l;
4208
4209 if (!list_empty(&cset->tasks))
4210 it->task_pos = cset->tasks.next;
4211 else
4212 it->task_pos = cset->mg_tasks.next;
4213
4214 it->tasks_head = &cset->tasks;
4215 it->mg_tasks_head = &cset->mg_tasks;
4216
4217 /*
4218 * We don't keep css_sets locked across iteration steps and thus
4219 * need to take steps to ensure that iteration can be resumed after
4220 * the lock is re-acquired. Iteration is performed at two levels -
4221 * css_sets and tasks in them.
4222 *
4223 * Once created, a css_set never leaves its cgroup lists, so a
4224 * pinned css_set is guaranteed to stay put and we can resume
4225 * iteration afterwards.
4226 *
4227 * Tasks may leave @cset across iteration steps. This is resolved
4228 * by registering each iterator with the css_set currently being
4229 * walked and making css_set_move_task() advance iterators whose
4230 * next task is leaving.
4231 */
4232 if (it->cur_cset) {
4233 list_del(&it->iters_node);
4234 put_css_set_locked(it->cur_cset);
4235 }
4236 get_css_set(cset);
4237 it->cur_cset = cset;
4238 list_add(&it->iters_node, &cset->task_iters);
4239}
4240
4241static void css_task_iter_advance(struct css_task_iter *it)
4242{
4243 struct list_head *l = it->task_pos;
4244
4245 lockdep_assert_held(&css_set_lock);
4246 WARN_ON_ONCE(!l);
4247
4248 /*
4249 * Advance iterator to find next entry. cset->tasks is consumed
4250 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4251 * next cset.
4252 */
4253 l = l->next;
4254
4255 if (l == it->tasks_head)
4256 l = it->mg_tasks_head->next;
4257
4258 if (l == it->mg_tasks_head)
4259 css_task_iter_advance_css_set(it);
4260 else
4261 it->task_pos = l;
4262}
4263
4264/**
4265 * css_task_iter_start - initiate task iteration
4266 * @css: the css to walk tasks of
4267 * @it: the task iterator to use
4268 *
4269 * Initiate iteration through the tasks of @css. The caller can call
4270 * css_task_iter_next() to walk through the tasks until the function
4271 * returns NULL. On completion of iteration, css_task_iter_end() must be
4272 * called.
4273 */
4274void css_task_iter_start(struct cgroup_subsys_state *css,
4275 struct css_task_iter *it)
4276{
4277 /* no one should try to iterate before mounting cgroups */
4278 WARN_ON_ONCE(!use_task_css_set_links);
4279
4280 memset(it, 0, sizeof(*it));
4281
4282 spin_lock_irq(&css_set_lock);
4283
4284 it->ss = css->ss;
4285
4286 if (it->ss)
4287 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4288 else
4289 it->cset_pos = &css->cgroup->cset_links;
4290
4291 it->cset_head = it->cset_pos;
4292
4293 css_task_iter_advance_css_set(it);
4294
4295 spin_unlock_irq(&css_set_lock);
4296}
4297
4298/**
4299 * css_task_iter_next - return the next task for the iterator
4300 * @it: the task iterator being iterated
4301 *
4302 * The "next" function for task iteration. @it should have been
4303 * initialized via css_task_iter_start(). Returns NULL when the iteration
4304 * reaches the end.
4305 */
4306struct task_struct *css_task_iter_next(struct css_task_iter *it)
4307{
4308 if (it->cur_task) {
4309 put_task_struct(it->cur_task);
4310 it->cur_task = NULL;
4311 }
4312
4313 spin_lock_irq(&css_set_lock);
4314
4315 if (it->task_pos) {
4316 it->cur_task = list_entry(it->task_pos, struct task_struct,
4317 cg_list);
4318 get_task_struct(it->cur_task);
4319 css_task_iter_advance(it);
4320 }
4321
4322 spin_unlock_irq(&css_set_lock);
4323
4324 return it->cur_task;
4325}
4326
4327/**
4328 * css_task_iter_end - finish task iteration
4329 * @it: the task iterator to finish
4330 *
4331 * Finish task iteration started by css_task_iter_start().
4332 */
4333void css_task_iter_end(struct css_task_iter *it)
4334{
4335 if (it->cur_cset) {
4336 spin_lock_irq(&css_set_lock);
4337 list_del(&it->iters_node);
4338 put_css_set_locked(it->cur_cset);
4339 spin_unlock_irq(&css_set_lock);
4340 }
4341
4342 if (it->cur_task)
4343 put_task_struct(it->cur_task);
4344}
4345
4346/**
4347 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4348 * @to: cgroup to which the tasks will be moved
4349 * @from: cgroup in which the tasks currently reside
4350 *
4351 * Locking rules between cgroup_post_fork() and the migration path
4352 * guarantee that, if a task is forking while being migrated, the new child
4353 * is guaranteed to be either visible in the source cgroup after the
4354 * parent's migration is complete or put into the target cgroup. No task
4355 * can slip out of migration through forking.
4356 */
4357int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4358{
4359 LIST_HEAD(preloaded_csets);
4360 struct cgrp_cset_link *link;
4361 struct css_task_iter it;
4362 struct task_struct *task;
4363 int ret;
4364
4365 if (!cgroup_may_migrate_to(to))
4366 return -EBUSY;
4367
4368 mutex_lock(&cgroup_mutex);
4369
4370 percpu_down_write(&cgroup_threadgroup_rwsem);
4371
4372 /* all tasks in @from are being moved, all csets are source */
4373 spin_lock_irq(&css_set_lock);
4374 list_for_each_entry(link, &from->cset_links, cset_link)
4375 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4376 spin_unlock_irq(&css_set_lock);
4377
4378 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4379 if (ret)
4380 goto out_err;
4381
4382 /*
4383 * Migrate tasks one-by-one until @from is empty. This fails iff
4384 * ->can_attach() fails.
4385 */
4386 do {
4387 css_task_iter_start(&from->self, &it);
4388 task = css_task_iter_next(&it);
4389 if (task)
4390 get_task_struct(task);
4391 css_task_iter_end(&it);
4392
4393 if (task) {
4394 ret = cgroup_migrate(task, false, to->root);
4395 if (!ret)
4396 trace_cgroup_transfer_tasks(to, task, false);
4397 put_task_struct(task);
4398 }
4399 } while (task && !ret);
4400out_err:
4401 cgroup_migrate_finish(&preloaded_csets);
4402 percpu_up_write(&cgroup_threadgroup_rwsem);
4403 mutex_unlock(&cgroup_mutex);
4404 return ret;
4405}
4406
4407/*
4408 * Stuff for reading the 'tasks'/'procs' files.
4409 *
4410 * Reading this file can return large amounts of data if a cgroup has
4411 * *lots* of attached tasks. So it may need several calls to read(),
4412 * but we cannot guarantee that the information we produce is correct
4413 * unless we produce it entirely atomically.
4414 *
4415 */
4416
4417/* which pidlist file are we talking about? */
4418enum cgroup_filetype {
4419 CGROUP_FILE_PROCS,
4420 CGROUP_FILE_TASKS,
4421};
4422
4423/*
4424 * A pidlist is a list of pids that virtually represents the contents of one
4425 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4426 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4427 * to the cgroup.
4428 */
4429struct cgroup_pidlist {
4430 /*
4431 * used to find which pidlist is wanted. doesn't change as long as
4432 * this particular list stays in the list.
4433 */
4434 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4435 /* array of xids */
4436 pid_t *list;
4437 /* how many elements the above list has */
4438 int length;
4439 /* each of these stored in a list by its cgroup */
4440 struct list_head links;
4441 /* pointer to the cgroup we belong to, for list removal purposes */
4442 struct cgroup *owner;
4443 /* for delayed destruction */
4444 struct delayed_work destroy_dwork;
4445};
4446
4447/*
4448 * The following two functions "fix" the issue where there are more pids
4449 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4450 * TODO: replace with a kernel-wide solution to this problem
4451 */
4452#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4453static void *pidlist_allocate(int count)
4454{
4455 if (PIDLIST_TOO_LARGE(count))
4456 return vmalloc(count * sizeof(pid_t));
4457 else
4458 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4459}
4460
4461static void pidlist_free(void *p)
4462{
4463 kvfree(p);
4464}
4465
4466/*
4467 * Used to destroy all pidlists lingering waiting for destroy timer. None
4468 * should be left afterwards.
4469 */
4470static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4471{
4472 struct cgroup_pidlist *l, *tmp_l;
4473
4474 mutex_lock(&cgrp->pidlist_mutex);
4475 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4476 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4477 mutex_unlock(&cgrp->pidlist_mutex);
4478
4479 flush_workqueue(cgroup_pidlist_destroy_wq);
4480 BUG_ON(!list_empty(&cgrp->pidlists));
4481}
4482
4483static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4484{
4485 struct delayed_work *dwork = to_delayed_work(work);
4486 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4487 destroy_dwork);
4488 struct cgroup_pidlist *tofree = NULL;
4489
4490 mutex_lock(&l->owner->pidlist_mutex);
4491
4492 /*
4493 * Destroy iff we didn't get queued again. The state won't change
4494 * as destroy_dwork can only be queued while locked.
4495 */
4496 if (!delayed_work_pending(dwork)) {
4497 list_del(&l->links);
4498 pidlist_free(l->list);
4499 put_pid_ns(l->key.ns);
4500 tofree = l;
4501 }
4502
4503 mutex_unlock(&l->owner->pidlist_mutex);
4504 kfree(tofree);
4505}
4506
4507/*
4508 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4509 * Returns the number of unique elements.
4510 */
4511static int pidlist_uniq(pid_t *list, int length)
4512{
4513 int src, dest = 1;
4514
4515 /*
4516 * we presume the 0th element is unique, so i starts at 1. trivial
4517 * edge cases first; no work needs to be done for either
4518 */
4519 if (length == 0 || length == 1)
4520 return length;
4521 /* src and dest walk down the list; dest counts unique elements */
4522 for (src = 1; src < length; src++) {
4523 /* find next unique element */
4524 while (list[src] == list[src-1]) {
4525 src++;
4526 if (src == length)
4527 goto after;
4528 }
4529 /* dest always points to where the next unique element goes */
4530 list[dest] = list[src];
4531 dest++;
4532 }
4533after:
4534 return dest;
4535}
4536
4537/*
4538 * The two pid files - task and cgroup.procs - guaranteed that the result
4539 * is sorted, which forced this whole pidlist fiasco. As pid order is
4540 * different per namespace, each namespace needs differently sorted list,
4541 * making it impossible to use, for example, single rbtree of member tasks
4542 * sorted by task pointer. As pidlists can be fairly large, allocating one
4543 * per open file is dangerous, so cgroup had to implement shared pool of
4544 * pidlists keyed by cgroup and namespace.
4545 *
4546 * All this extra complexity was caused by the original implementation
4547 * committing to an entirely unnecessary property. In the long term, we
4548 * want to do away with it. Explicitly scramble sort order if on the
4549 * default hierarchy so that no such expectation exists in the new
4550 * interface.
4551 *
4552 * Scrambling is done by swapping every two consecutive bits, which is
4553 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4554 */
4555static pid_t pid_fry(pid_t pid)
4556{
4557 unsigned a = pid & 0x55555555;
4558 unsigned b = pid & 0xAAAAAAAA;
4559
4560 return (a << 1) | (b >> 1);
4561}
4562
4563static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4564{
4565 if (cgroup_on_dfl(cgrp))
4566 return pid_fry(pid);
4567 else
4568 return pid;
4569}
4570
4571static int cmppid(const void *a, const void *b)
4572{
4573 return *(pid_t *)a - *(pid_t *)b;
4574}
4575
4576static int fried_cmppid(const void *a, const void *b)
4577{
4578 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4579}
4580
4581static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4582 enum cgroup_filetype type)
4583{
4584 struct cgroup_pidlist *l;
4585 /* don't need task_nsproxy() if we're looking at ourself */
4586 struct pid_namespace *ns = task_active_pid_ns(current);
4587
4588 lockdep_assert_held(&cgrp->pidlist_mutex);
4589
4590 list_for_each_entry(l, &cgrp->pidlists, links)
4591 if (l->key.type == type && l->key.ns == ns)
4592 return l;
4593 return NULL;
4594}
4595
4596/*
4597 * find the appropriate pidlist for our purpose (given procs vs tasks)
4598 * returns with the lock on that pidlist already held, and takes care
4599 * of the use count, or returns NULL with no locks held if we're out of
4600 * memory.
4601 */
4602static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4603 enum cgroup_filetype type)
4604{
4605 struct cgroup_pidlist *l;
4606
4607 lockdep_assert_held(&cgrp->pidlist_mutex);
4608
4609 l = cgroup_pidlist_find(cgrp, type);
4610 if (l)
4611 return l;
4612
4613 /* entry not found; create a new one */
4614 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4615 if (!l)
4616 return l;
4617
4618 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4619 l->key.type = type;
4620 /* don't need task_nsproxy() if we're looking at ourself */
4621 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4622 l->owner = cgrp;
4623 list_add(&l->links, &cgrp->pidlists);
4624 return l;
4625}
4626
4627/*
4628 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4629 */
4630static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4631 struct cgroup_pidlist **lp)
4632{
4633 pid_t *array;
4634 int length;
4635 int pid, n = 0; /* used for populating the array */
4636 struct css_task_iter it;
4637 struct task_struct *tsk;
4638 struct cgroup_pidlist *l;
4639
4640 lockdep_assert_held(&cgrp->pidlist_mutex);
4641
4642 /*
4643 * If cgroup gets more users after we read count, we won't have
4644 * enough space - tough. This race is indistinguishable to the
4645 * caller from the case that the additional cgroup users didn't
4646 * show up until sometime later on.
4647 */
4648 length = cgroup_task_count(cgrp);
4649 array = pidlist_allocate(length);
4650 if (!array)
4651 return -ENOMEM;
4652 /* now, populate the array */
4653 css_task_iter_start(&cgrp->self, &it);
4654 while ((tsk = css_task_iter_next(&it))) {
4655 if (unlikely(n == length))
4656 break;
4657 /* get tgid or pid for procs or tasks file respectively */
4658 if (type == CGROUP_FILE_PROCS)
4659 pid = task_tgid_vnr(tsk);
4660 else
4661 pid = task_pid_vnr(tsk);
4662 if (pid > 0) /* make sure to only use valid results */
4663 array[n++] = pid;
4664 }
4665 css_task_iter_end(&it);
4666 length = n;
4667 /* now sort & (if procs) strip out duplicates */
4668 if (cgroup_on_dfl(cgrp))
4669 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4670 else
4671 sort(array, length, sizeof(pid_t), cmppid, NULL);
4672 if (type == CGROUP_FILE_PROCS)
4673 length = pidlist_uniq(array, length);
4674
4675 l = cgroup_pidlist_find_create(cgrp, type);
4676 if (!l) {
4677 pidlist_free(array);
4678 return -ENOMEM;
4679 }
4680
4681 /* store array, freeing old if necessary */
4682 pidlist_free(l->list);
4683 l->list = array;
4684 l->length = length;
4685 *lp = l;
4686 return 0;
4687}
4688
4689/**
4690 * cgroupstats_build - build and fill cgroupstats
4691 * @stats: cgroupstats to fill information into
4692 * @dentry: A dentry entry belonging to the cgroup for which stats have
4693 * been requested.
4694 *
4695 * Build and fill cgroupstats so that taskstats can export it to user
4696 * space.
4697 */
4698int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4699{
4700 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4701 struct cgroup *cgrp;
4702 struct css_task_iter it;
4703 struct task_struct *tsk;
4704
4705 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4706 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4707 kernfs_type(kn) != KERNFS_DIR)
4708 return -EINVAL;
4709
4710 mutex_lock(&cgroup_mutex);
4711
4712 /*
4713 * We aren't being called from kernfs and there's no guarantee on
4714 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4715 * @kn->priv is RCU safe. Let's do the RCU dancing.
4716 */
4717 rcu_read_lock();
4718 cgrp = rcu_dereference(kn->priv);
4719 if (!cgrp || cgroup_is_dead(cgrp)) {
4720 rcu_read_unlock();
4721 mutex_unlock(&cgroup_mutex);
4722 return -ENOENT;
4723 }
4724 rcu_read_unlock();
4725
4726 css_task_iter_start(&cgrp->self, &it);
4727 while ((tsk = css_task_iter_next(&it))) {
4728 switch (tsk->state) {
4729 case TASK_RUNNING:
4730 stats->nr_running++;
4731 break;
4732 case TASK_INTERRUPTIBLE:
4733 stats->nr_sleeping++;
4734 break;
4735 case TASK_UNINTERRUPTIBLE:
4736 stats->nr_uninterruptible++;
4737 break;
4738 case TASK_STOPPED:
4739 stats->nr_stopped++;
4740 break;
4741 default:
4742 if (delayacct_is_task_waiting_on_io(tsk))
4743 stats->nr_io_wait++;
4744 break;
4745 }
4746 }
4747 css_task_iter_end(&it);
4748
4749 mutex_unlock(&cgroup_mutex);
4750 return 0;
4751}
4752
4753
4754/*
4755 * seq_file methods for the tasks/procs files. The seq_file position is the
4756 * next pid to display; the seq_file iterator is a pointer to the pid
4757 * in the cgroup->l->list array.
4758 */
4759
4760static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4761{
4762 /*
4763 * Initially we receive a position value that corresponds to
4764 * one more than the last pid shown (or 0 on the first call or
4765 * after a seek to the start). Use a binary-search to find the
4766 * next pid to display, if any
4767 */
4768 struct kernfs_open_file *of = s->private;
4769 struct cgroup *cgrp = seq_css(s)->cgroup;
4770 struct cgroup_pidlist *l;
4771 enum cgroup_filetype type = seq_cft(s)->private;
4772 int index = 0, pid = *pos;
4773 int *iter, ret;
4774
4775 mutex_lock(&cgrp->pidlist_mutex);
4776
4777 /*
4778 * !NULL @of->priv indicates that this isn't the first start()
4779 * after open. If the matching pidlist is around, we can use that.
4780 * Look for it. Note that @of->priv can't be used directly. It
4781 * could already have been destroyed.
4782 */
4783 if (of->priv)
4784 of->priv = cgroup_pidlist_find(cgrp, type);
4785
4786 /*
4787 * Either this is the first start() after open or the matching
4788 * pidlist has been destroyed inbetween. Create a new one.
4789 */
4790 if (!of->priv) {
4791 ret = pidlist_array_load(cgrp, type,
4792 (struct cgroup_pidlist **)&of->priv);
4793 if (ret)
4794 return ERR_PTR(ret);
4795 }
4796 l = of->priv;
4797
4798 if (pid) {
4799 int end = l->length;
4800
4801 while (index < end) {
4802 int mid = (index + end) / 2;
4803 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4804 index = mid;
4805 break;
4806 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4807 index = mid + 1;
4808 else
4809 end = mid;
4810 }
4811 }
4812 /* If we're off the end of the array, we're done */
4813 if (index >= l->length)
4814 return NULL;
4815 /* Update the abstract position to be the actual pid that we found */
4816 iter = l->list + index;
4817 *pos = cgroup_pid_fry(cgrp, *iter);
4818 return iter;
4819}
4820
4821static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4822{
4823 struct kernfs_open_file *of = s->private;
4824 struct cgroup_pidlist *l = of->priv;
4825
4826 if (l)
4827 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4828 CGROUP_PIDLIST_DESTROY_DELAY);
4829 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4830}
4831
4832static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4833{
4834 struct kernfs_open_file *of = s->private;
4835 struct cgroup_pidlist *l = of->priv;
4836 pid_t *p = v;
4837 pid_t *end = l->list + l->length;
4838 /*
4839 * Advance to the next pid in the array. If this goes off the
4840 * end, we're done
4841 */
4842 p++;
4843 if (p >= end) {
4844 return NULL;
4845 } else {
4846 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4847 return p;
4848 }
4849}
4850
4851static int cgroup_pidlist_show(struct seq_file *s, void *v)
4852{
4853 seq_printf(s, "%d\n", *(int *)v);
4854
4855 return 0;
4856}
4857
4858static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4859 struct cftype *cft)
4860{
4861 return notify_on_release(css->cgroup);
4862}
4863
4864static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4865 struct cftype *cft, u64 val)
4866{
4867 if (val)
4868 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4869 else
4870 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4871 return 0;
4872}
4873
4874static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4875 struct cftype *cft)
4876{
4877 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4878}
4879
4880static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4881 struct cftype *cft, u64 val)
4882{
4883 if (val)
4884 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4885 else
4886 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4887 return 0;
4888}
4889
4890/* cgroup core interface files for the default hierarchy */
4891static struct cftype cgroup_dfl_base_files[] = {
4892 {
4893 .name = "cgroup.procs",
4894 .file_offset = offsetof(struct cgroup, procs_file),
4895 .seq_start = cgroup_pidlist_start,
4896 .seq_next = cgroup_pidlist_next,
4897 .seq_stop = cgroup_pidlist_stop,
4898 .seq_show = cgroup_pidlist_show,
4899 .private = CGROUP_FILE_PROCS,
4900 .write = cgroup_procs_write,
4901 },
4902 {
4903 .name = "cgroup.controllers",
4904 .seq_show = cgroup_controllers_show,
4905 },
4906 {
4907 .name = "cgroup.subtree_control",
4908 .seq_show = cgroup_subtree_control_show,
4909 .write = cgroup_subtree_control_write,
4910 },
4911 {
4912 .name = "cgroup.events",
4913 .flags = CFTYPE_NOT_ON_ROOT,
4914 .file_offset = offsetof(struct cgroup, events_file),
4915 .seq_show = cgroup_events_show,
4916 },
4917 { } /* terminate */
4918};
4919
4920/* cgroup core interface files for the legacy hierarchies */
4921static struct cftype cgroup_legacy_base_files[] = {
4922 {
4923 .name = "cgroup.procs",
4924 .seq_start = cgroup_pidlist_start,
4925 .seq_next = cgroup_pidlist_next,
4926 .seq_stop = cgroup_pidlist_stop,
4927 .seq_show = cgroup_pidlist_show,
4928 .private = CGROUP_FILE_PROCS,
4929 .write = cgroup_procs_write,
4930 },
4931 {
4932 .name = "cgroup.clone_children",
4933 .read_u64 = cgroup_clone_children_read,
4934 .write_u64 = cgroup_clone_children_write,
4935 },
4936 {
4937 .name = "cgroup.sane_behavior",
4938 .flags = CFTYPE_ONLY_ON_ROOT,
4939 .seq_show = cgroup_sane_behavior_show,
4940 },
4941 {
4942 .name = "tasks",
4943 .seq_start = cgroup_pidlist_start,
4944 .seq_next = cgroup_pidlist_next,
4945 .seq_stop = cgroup_pidlist_stop,
4946 .seq_show = cgroup_pidlist_show,
4947 .private = CGROUP_FILE_TASKS,
4948 .write = cgroup_tasks_write,
4949 },
4950 {
4951 .name = "notify_on_release",
4952 .read_u64 = cgroup_read_notify_on_release,
4953 .write_u64 = cgroup_write_notify_on_release,
4954 },
4955 {
4956 .name = "release_agent",
4957 .flags = CFTYPE_ONLY_ON_ROOT,
4958 .seq_show = cgroup_release_agent_show,
4959 .write = cgroup_release_agent_write,
4960 .max_write_len = PATH_MAX - 1,
4961 },
4962 { } /* terminate */
4963};
4964
4965/*
4966 * css destruction is four-stage process.
4967 *
4968 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4969 * Implemented in kill_css().
4970 *
4971 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4972 * and thus css_tryget_online() is guaranteed to fail, the css can be
4973 * offlined by invoking offline_css(). After offlining, the base ref is
4974 * put. Implemented in css_killed_work_fn().
4975 *
4976 * 3. When the percpu_ref reaches zero, the only possible remaining
4977 * accessors are inside RCU read sections. css_release() schedules the
4978 * RCU callback.
4979 *
4980 * 4. After the grace period, the css can be freed. Implemented in
4981 * css_free_work_fn().
4982 *
4983 * It is actually hairier because both step 2 and 4 require process context
4984 * and thus involve punting to css->destroy_work adding two additional
4985 * steps to the already complex sequence.
4986 */
4987static void css_free_work_fn(struct work_struct *work)
4988{
4989 struct cgroup_subsys_state *css =
4990 container_of(work, struct cgroup_subsys_state, destroy_work);
4991 struct cgroup_subsys *ss = css->ss;
4992 struct cgroup *cgrp = css->cgroup;
4993
4994 percpu_ref_exit(&css->refcnt);
4995
4996 if (ss) {
4997 /* css free path */
4998 struct cgroup_subsys_state *parent = css->parent;
4999 int id = css->id;
5000
5001 ss->css_free(css);
5002 cgroup_idr_remove(&ss->css_idr, id);
5003 cgroup_put(cgrp);
5004
5005 if (parent)
5006 css_put(parent);
5007 } else {
5008 /* cgroup free path */
5009 atomic_dec(&cgrp->root->nr_cgrps);
5010 cgroup_pidlist_destroy_all(cgrp);
5011 cancel_work_sync(&cgrp->release_agent_work);
5012
5013 if (cgroup_parent(cgrp)) {
5014 /*
5015 * We get a ref to the parent, and put the ref when
5016 * this cgroup is being freed, so it's guaranteed
5017 * that the parent won't be destroyed before its
5018 * children.
5019 */
5020 cgroup_put(cgroup_parent(cgrp));
5021 kernfs_put(cgrp->kn);
5022 kfree(cgrp);
5023 } else {
5024 /*
5025 * This is root cgroup's refcnt reaching zero,
5026 * which indicates that the root should be
5027 * released.
5028 */
5029 cgroup_destroy_root(cgrp->root);
5030 }
5031 }
5032}
5033
5034static void css_free_rcu_fn(struct rcu_head *rcu_head)
5035{
5036 struct cgroup_subsys_state *css =
5037 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5038
5039 INIT_WORK(&css->destroy_work, css_free_work_fn);
5040 queue_work(cgroup_destroy_wq, &css->destroy_work);
5041}
5042
5043static void css_release_work_fn(struct work_struct *work)
5044{
5045 struct cgroup_subsys_state *css =
5046 container_of(work, struct cgroup_subsys_state, destroy_work);
5047 struct cgroup_subsys *ss = css->ss;
5048 struct cgroup *cgrp = css->cgroup;
5049
5050 mutex_lock(&cgroup_mutex);
5051
5052 css->flags |= CSS_RELEASED;
5053 list_del_rcu(&css->sibling);
5054
5055 if (ss) {
5056 /* css release path */
5057 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5058 if (ss->css_released)
5059 ss->css_released(css);
5060 } else {
5061 /* cgroup release path */
5062 trace_cgroup_release(cgrp);
5063
5064 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5065 cgrp->id = -1;
5066
5067 /*
5068 * There are two control paths which try to determine
5069 * cgroup from dentry without going through kernfs -
5070 * cgroupstats_build() and css_tryget_online_from_dir().
5071 * Those are supported by RCU protecting clearing of
5072 * cgrp->kn->priv backpointer.
5073 */
5074 if (cgrp->kn)
5075 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5076 NULL);
5077
5078 cgroup_bpf_put(cgrp);
5079 }
5080
5081 mutex_unlock(&cgroup_mutex);
5082
5083 call_rcu(&css->rcu_head, css_free_rcu_fn);
5084}
5085
5086static void css_release(struct percpu_ref *ref)
5087{
5088 struct cgroup_subsys_state *css =
5089 container_of(ref, struct cgroup_subsys_state, refcnt);
5090
5091 INIT_WORK(&css->destroy_work, css_release_work_fn);
5092 queue_work(cgroup_destroy_wq, &css->destroy_work);
5093}
5094
5095static void init_and_link_css(struct cgroup_subsys_state *css,
5096 struct cgroup_subsys *ss, struct cgroup *cgrp)
5097{
5098 lockdep_assert_held(&cgroup_mutex);
5099
5100 cgroup_get(cgrp);
5101
5102 memset(css, 0, sizeof(*css));
5103 css->cgroup = cgrp;
5104 css->ss = ss;
5105 css->id = -1;
5106 INIT_LIST_HEAD(&css->sibling);
5107 INIT_LIST_HEAD(&css->children);
5108 css->serial_nr = css_serial_nr_next++;
5109 atomic_set(&css->online_cnt, 0);
5110
5111 if (cgroup_parent(cgrp)) {
5112 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5113 css_get(css->parent);
5114 }
5115
5116 BUG_ON(cgroup_css(cgrp, ss));
5117}
5118
5119/* invoke ->css_online() on a new CSS and mark it online if successful */
5120static int online_css(struct cgroup_subsys_state *css)
5121{
5122 struct cgroup_subsys *ss = css->ss;
5123 int ret = 0;
5124
5125 lockdep_assert_held(&cgroup_mutex);
5126
5127 if (ss->css_online)
5128 ret = ss->css_online(css);
5129 if (!ret) {
5130 css->flags |= CSS_ONLINE;
5131 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5132
5133 atomic_inc(&css->online_cnt);
5134 if (css->parent)
5135 atomic_inc(&css->parent->online_cnt);
5136 }
5137 return ret;
5138}
5139
5140/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5141static void offline_css(struct cgroup_subsys_state *css)
5142{
5143 struct cgroup_subsys *ss = css->ss;
5144
5145 lockdep_assert_held(&cgroup_mutex);
5146
5147 if (!(css->flags & CSS_ONLINE))
5148 return;
5149
5150 if (ss->css_reset)
5151 ss->css_reset(css);
5152
5153 if (ss->css_offline)
5154 ss->css_offline(css);
5155
5156 css->flags &= ~CSS_ONLINE;
5157 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5158
5159 wake_up_all(&css->cgroup->offline_waitq);
5160}
5161
5162/**
5163 * css_create - create a cgroup_subsys_state
5164 * @cgrp: the cgroup new css will be associated with
5165 * @ss: the subsys of new css
5166 *
5167 * Create a new css associated with @cgrp - @ss pair. On success, the new
5168 * css is online and installed in @cgrp. This function doesn't create the
5169 * interface files. Returns 0 on success, -errno on failure.
5170 */
5171static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5172 struct cgroup_subsys *ss)
5173{
5174 struct cgroup *parent = cgroup_parent(cgrp);
5175 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5176 struct cgroup_subsys_state *css;
5177 int err;
5178
5179 lockdep_assert_held(&cgroup_mutex);
5180
5181 css = ss->css_alloc(parent_css);
5182 if (!css)
5183 css = ERR_PTR(-ENOMEM);
5184 if (IS_ERR(css))
5185 return css;
5186
5187 init_and_link_css(css, ss, cgrp);
5188
5189 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5190 if (err)
5191 goto err_free_css;
5192
5193 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5194 if (err < 0)
5195 goto err_free_css;
5196 css->id = err;
5197
5198 /* @css is ready to be brought online now, make it visible */
5199 list_add_tail_rcu(&css->sibling, &parent_css->children);
5200 cgroup_idr_replace(&ss->css_idr, css, css->id);
5201
5202 err = online_css(css);
5203 if (err)
5204 goto err_list_del;
5205
5206 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5207 cgroup_parent(parent)) {
5208 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5209 current->comm, current->pid, ss->name);
5210 if (!strcmp(ss->name, "memory"))
5211 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5212 ss->warned_broken_hierarchy = true;
5213 }
5214
5215 return css;
5216
5217err_list_del:
5218 list_del_rcu(&css->sibling);
5219err_free_css:
5220 call_rcu(&css->rcu_head, css_free_rcu_fn);
5221 return ERR_PTR(err);
5222}
5223
5224/*
5225 * The returned cgroup is fully initialized including its control mask, but
5226 * it isn't associated with its kernfs_node and doesn't have the control
5227 * mask applied.
5228 */
5229static struct cgroup *cgroup_create(struct cgroup *parent)
5230{
5231 struct cgroup_root *root = parent->root;
5232 struct cgroup *cgrp, *tcgrp;
5233 int level = parent->level + 1;
5234 int ret;
5235
5236 /* allocate the cgroup and its ID, 0 is reserved for the root */
5237 cgrp = kzalloc(sizeof(*cgrp) +
5238 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5239 if (!cgrp)
5240 return ERR_PTR(-ENOMEM);
5241
5242 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5243 if (ret)
5244 goto out_free_cgrp;
5245
5246 /*
5247 * Temporarily set the pointer to NULL, so idr_find() won't return
5248 * a half-baked cgroup.
5249 */
5250 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5251 if (cgrp->id < 0) {
5252 ret = -ENOMEM;
5253 goto out_cancel_ref;
5254 }
5255
5256 init_cgroup_housekeeping(cgrp);
5257
5258 cgrp->self.parent = &parent->self;
5259 cgrp->root = root;
5260 cgrp->level = level;
5261
5262 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5263 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5264
5265 if (notify_on_release(parent))
5266 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5267
5268 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5269 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5270
5271 cgrp->self.serial_nr = css_serial_nr_next++;
5272
5273 /* allocation complete, commit to creation */
5274 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5275 atomic_inc(&root->nr_cgrps);
5276 cgroup_get(parent);
5277
5278 /*
5279 * @cgrp is now fully operational. If something fails after this
5280 * point, it'll be released via the normal destruction path.
5281 */
5282 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5283
5284 /*
5285 * On the default hierarchy, a child doesn't automatically inherit
5286 * subtree_control from the parent. Each is configured manually.
5287 */
5288 if (!cgroup_on_dfl(cgrp))
5289 cgrp->subtree_control = cgroup_control(cgrp);
5290
5291 if (parent)
5292 cgroup_bpf_inherit(cgrp, parent);
5293
5294 cgroup_propagate_control(cgrp);
5295
5296 return cgrp;
5297
5298out_cancel_ref:
5299 percpu_ref_exit(&cgrp->self.refcnt);
5300out_free_cgrp:
5301 kfree(cgrp);
5302 return ERR_PTR(ret);
5303}
5304
5305static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5306 umode_t mode)
5307{
5308 struct cgroup *parent, *cgrp;
5309 struct kernfs_node *kn;
5310 int ret;
5311
5312 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5313 if (strchr(name, '\n'))
5314 return -EINVAL;
5315
5316 parent = cgroup_kn_lock_live(parent_kn, false);
5317 if (!parent)
5318 return -ENODEV;
5319
5320 cgrp = cgroup_create(parent);
5321 if (IS_ERR(cgrp)) {
5322 ret = PTR_ERR(cgrp);
5323 goto out_unlock;
5324 }
5325
5326 /* create the directory */
5327 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5328 if (IS_ERR(kn)) {
5329 ret = PTR_ERR(kn);
5330 goto out_destroy;
5331 }
5332 cgrp->kn = kn;
5333
5334 /*
5335 * This extra ref will be put in cgroup_free_fn() and guarantees
5336 * that @cgrp->kn is always accessible.
5337 */
5338 kernfs_get(kn);
5339
5340 ret = cgroup_kn_set_ugid(kn);
5341 if (ret)
5342 goto out_destroy;
5343
5344 ret = css_populate_dir(&cgrp->self);
5345 if (ret)
5346 goto out_destroy;
5347
5348 ret = cgroup_apply_control_enable(cgrp);
5349 if (ret)
5350 goto out_destroy;
5351
5352 trace_cgroup_mkdir(cgrp);
5353
5354 /* let's create and online css's */
5355 kernfs_activate(kn);
5356
5357 ret = 0;
5358 goto out_unlock;
5359
5360out_destroy:
5361 cgroup_destroy_locked(cgrp);
5362out_unlock:
5363 cgroup_kn_unlock(parent_kn);
5364 return ret;
5365}
5366
5367/*
5368 * This is called when the refcnt of a css is confirmed to be killed.
5369 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5370 * initate destruction and put the css ref from kill_css().
5371 */
5372static void css_killed_work_fn(struct work_struct *work)
5373{
5374 struct cgroup_subsys_state *css =
5375 container_of(work, struct cgroup_subsys_state, destroy_work);
5376
5377 mutex_lock(&cgroup_mutex);
5378
5379 do {
5380 offline_css(css);
5381 css_put(css);
5382 /* @css can't go away while we're holding cgroup_mutex */
5383 css = css->parent;
5384 } while (css && atomic_dec_and_test(&css->online_cnt));
5385
5386 mutex_unlock(&cgroup_mutex);
5387}
5388
5389/* css kill confirmation processing requires process context, bounce */
5390static void css_killed_ref_fn(struct percpu_ref *ref)
5391{
5392 struct cgroup_subsys_state *css =
5393 container_of(ref, struct cgroup_subsys_state, refcnt);
5394
5395 if (atomic_dec_and_test(&css->online_cnt)) {
5396 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5397 queue_work(cgroup_destroy_wq, &css->destroy_work);
5398 }
5399}
5400
5401/**
5402 * kill_css - destroy a css
5403 * @css: css to destroy
5404 *
5405 * This function initiates destruction of @css by removing cgroup interface
5406 * files and putting its base reference. ->css_offline() will be invoked
5407 * asynchronously once css_tryget_online() is guaranteed to fail and when
5408 * the reference count reaches zero, @css will be released.
5409 */
5410static void kill_css(struct cgroup_subsys_state *css)
5411{
5412 lockdep_assert_held(&cgroup_mutex);
5413
5414 /*
5415 * This must happen before css is disassociated with its cgroup.
5416 * See seq_css() for details.
5417 */
5418 css_clear_dir(css);
5419
5420 /*
5421 * Killing would put the base ref, but we need to keep it alive
5422 * until after ->css_offline().
5423 */
5424 css_get(css);
5425
5426 /*
5427 * cgroup core guarantees that, by the time ->css_offline() is
5428 * invoked, no new css reference will be given out via
5429 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5430 * proceed to offlining css's because percpu_ref_kill() doesn't
5431 * guarantee that the ref is seen as killed on all CPUs on return.
5432 *
5433 * Use percpu_ref_kill_and_confirm() to get notifications as each
5434 * css is confirmed to be seen as killed on all CPUs.
5435 */
5436 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5437}
5438
5439/**
5440 * cgroup_destroy_locked - the first stage of cgroup destruction
5441 * @cgrp: cgroup to be destroyed
5442 *
5443 * css's make use of percpu refcnts whose killing latency shouldn't be
5444 * exposed to userland and are RCU protected. Also, cgroup core needs to
5445 * guarantee that css_tryget_online() won't succeed by the time
5446 * ->css_offline() is invoked. To satisfy all the requirements,
5447 * destruction is implemented in the following two steps.
5448 *
5449 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5450 * userland visible parts and start killing the percpu refcnts of
5451 * css's. Set up so that the next stage will be kicked off once all
5452 * the percpu refcnts are confirmed to be killed.
5453 *
5454 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5455 * rest of destruction. Once all cgroup references are gone, the
5456 * cgroup is RCU-freed.
5457 *
5458 * This function implements s1. After this step, @cgrp is gone as far as
5459 * the userland is concerned and a new cgroup with the same name may be
5460 * created. As cgroup doesn't care about the names internally, this
5461 * doesn't cause any problem.
5462 */
5463static int cgroup_destroy_locked(struct cgroup *cgrp)
5464 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5465{
5466 struct cgroup_subsys_state *css;
5467 struct cgrp_cset_link *link;
5468 int ssid;
5469
5470 lockdep_assert_held(&cgroup_mutex);
5471
5472 /*
5473 * Only migration can raise populated from zero and we're already
5474 * holding cgroup_mutex.
5475 */
5476 if (cgroup_is_populated(cgrp))
5477 return -EBUSY;
5478
5479 /*
5480 * Make sure there's no live children. We can't test emptiness of
5481 * ->self.children as dead children linger on it while being
5482 * drained; otherwise, "rmdir parent/child parent" may fail.
5483 */
5484 if (css_has_online_children(&cgrp->self))
5485 return -EBUSY;
5486
5487 /*
5488 * Mark @cgrp and the associated csets dead. The former prevents
5489 * further task migration and child creation by disabling
5490 * cgroup_lock_live_group(). The latter makes the csets ignored by
5491 * the migration path.
5492 */
5493 cgrp->self.flags &= ~CSS_ONLINE;
5494
5495 spin_lock_irq(&css_set_lock);
5496 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5497 link->cset->dead = true;
5498 spin_unlock_irq(&css_set_lock);
5499
5500 /* initiate massacre of all css's */
5501 for_each_css(css, ssid, cgrp)
5502 kill_css(css);
5503
5504 /*
5505 * Remove @cgrp directory along with the base files. @cgrp has an
5506 * extra ref on its kn.
5507 */
5508 kernfs_remove(cgrp->kn);
5509
5510 check_for_release(cgroup_parent(cgrp));
5511
5512 /* put the base reference */
5513 percpu_ref_kill(&cgrp->self.refcnt);
5514
5515 return 0;
5516};
5517
5518static int cgroup_rmdir(struct kernfs_node *kn)
5519{
5520 struct cgroup *cgrp;
5521 int ret = 0;
5522
5523 cgrp = cgroup_kn_lock_live(kn, false);
5524 if (!cgrp)
5525 return 0;
5526
5527 ret = cgroup_destroy_locked(cgrp);
5528
5529 if (!ret)
5530 trace_cgroup_rmdir(cgrp);
5531
5532 cgroup_kn_unlock(kn);
5533 return ret;
5534}
5535
5536static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5537 .remount_fs = cgroup_remount,
5538 .show_options = cgroup_show_options,
5539 .mkdir = cgroup_mkdir,
5540 .rmdir = cgroup_rmdir,
5541 .rename = cgroup_rename,
5542 .show_path = cgroup_show_path,
5543};
5544
5545static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5546{
5547 struct cgroup_subsys_state *css;
5548
5549 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5550
5551 mutex_lock(&cgroup_mutex);
5552
5553 idr_init(&ss->css_idr);
5554 INIT_LIST_HEAD(&ss->cfts);
5555
5556 /* Create the root cgroup state for this subsystem */
5557 ss->root = &cgrp_dfl_root;
5558 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5559 /* We don't handle early failures gracefully */
5560 BUG_ON(IS_ERR(css));
5561 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5562
5563 /*
5564 * Root csses are never destroyed and we can't initialize
5565 * percpu_ref during early init. Disable refcnting.
5566 */
5567 css->flags |= CSS_NO_REF;
5568
5569 if (early) {
5570 /* allocation can't be done safely during early init */
5571 css->id = 1;
5572 } else {
5573 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5574 BUG_ON(css->id < 0);
5575 }
5576
5577 /* Update the init_css_set to contain a subsys
5578 * pointer to this state - since the subsystem is
5579 * newly registered, all tasks and hence the
5580 * init_css_set is in the subsystem's root cgroup. */
5581 init_css_set.subsys[ss->id] = css;
5582
5583 have_fork_callback |= (bool)ss->fork << ss->id;
5584 have_exit_callback |= (bool)ss->exit << ss->id;
5585 have_free_callback |= (bool)ss->free << ss->id;
5586 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5587
5588 /* At system boot, before all subsystems have been
5589 * registered, no tasks have been forked, so we don't
5590 * need to invoke fork callbacks here. */
5591 BUG_ON(!list_empty(&init_task.tasks));
5592
5593 BUG_ON(online_css(css));
5594
5595 mutex_unlock(&cgroup_mutex);
5596}
5597
5598/**
5599 * cgroup_init_early - cgroup initialization at system boot
5600 *
5601 * Initialize cgroups at system boot, and initialize any
5602 * subsystems that request early init.
5603 */
5604int __init cgroup_init_early(void)
5605{
5606 static struct cgroup_sb_opts __initdata opts;
5607 struct cgroup_subsys *ss;
5608 int i;
5609
5610 init_cgroup_root(&cgrp_dfl_root, &opts);
5611 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5612
5613 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5614
5615 for_each_subsys(ss, i) {
5616 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5617 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5618 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5619 ss->id, ss->name);
5620 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5621 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5622
5623 ss->id = i;
5624 ss->name = cgroup_subsys_name[i];
5625 if (!ss->legacy_name)
5626 ss->legacy_name = cgroup_subsys_name[i];
5627
5628 if (ss->early_init)
5629 cgroup_init_subsys(ss, true);
5630 }
5631 return 0;
5632}
5633
5634static u16 cgroup_disable_mask __initdata;
5635
5636/**
5637 * cgroup_init - cgroup initialization
5638 *
5639 * Register cgroup filesystem and /proc file, and initialize
5640 * any subsystems that didn't request early init.
5641 */
5642int __init cgroup_init(void)
5643{
5644 struct cgroup_subsys *ss;
5645 int ssid;
5646
5647 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5648 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5649 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5650 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5651
5652 /*
5653 * The latency of the synchronize_sched() is too high for cgroups,
5654 * avoid it at the cost of forcing all readers into the slow path.
5655 */
5656 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5657
5658 get_user_ns(init_cgroup_ns.user_ns);
5659
5660 mutex_lock(&cgroup_mutex);
5661
5662 /*
5663 * Add init_css_set to the hash table so that dfl_root can link to
5664 * it during init.
5665 */
5666 hash_add(css_set_table, &init_css_set.hlist,
5667 css_set_hash(init_css_set.subsys));
5668
5669 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5670
5671 mutex_unlock(&cgroup_mutex);
5672
5673 for_each_subsys(ss, ssid) {
5674 if (ss->early_init) {
5675 struct cgroup_subsys_state *css =
5676 init_css_set.subsys[ss->id];
5677
5678 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5679 GFP_KERNEL);
5680 BUG_ON(css->id < 0);
5681 } else {
5682 cgroup_init_subsys(ss, false);
5683 }
5684
5685 list_add_tail(&init_css_set.e_cset_node[ssid],
5686 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5687
5688 /*
5689 * Setting dfl_root subsys_mask needs to consider the
5690 * disabled flag and cftype registration needs kmalloc,
5691 * both of which aren't available during early_init.
5692 */
5693 if (cgroup_disable_mask & (1 << ssid)) {
5694 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5695 printk(KERN_INFO "Disabling %s control group subsystem\n",
5696 ss->name);
5697 continue;
5698 }
5699
5700 if (cgroup_ssid_no_v1(ssid))
5701 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5702 ss->name);
5703
5704 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5705
5706 if (ss->implicit_on_dfl)
5707 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5708 else if (!ss->dfl_cftypes)
5709 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5710
5711 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5712 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5713 } else {
5714 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5715 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5716 }
5717
5718 if (ss->bind)
5719 ss->bind(init_css_set.subsys[ssid]);
5720 }
5721
5722 /* init_css_set.subsys[] has been updated, re-hash */
5723 hash_del(&init_css_set.hlist);
5724 hash_add(css_set_table, &init_css_set.hlist,
5725 css_set_hash(init_css_set.subsys));
5726
5727 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5728 WARN_ON(register_filesystem(&cgroup_fs_type));
5729 WARN_ON(register_filesystem(&cgroup2_fs_type));
5730 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5731
5732 return 0;
5733}
5734
5735static int __init cgroup_wq_init(void)
5736{
5737 /*
5738 * There isn't much point in executing destruction path in
5739 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5740 * Use 1 for @max_active.
5741 *
5742 * We would prefer to do this in cgroup_init() above, but that
5743 * is called before init_workqueues(): so leave this until after.
5744 */
5745 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5746 BUG_ON(!cgroup_destroy_wq);
5747
5748 /*
5749 * Used to destroy pidlists and separate to serve as flush domain.
5750 * Cap @max_active to 1 too.
5751 */
5752 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5753 0, 1);
5754 BUG_ON(!cgroup_pidlist_destroy_wq);
5755
5756 return 0;
5757}
5758core_initcall(cgroup_wq_init);
5759
5760/*
5761 * proc_cgroup_show()
5762 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5763 * - Used for /proc/<pid>/cgroup.
5764 */
5765int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5766 struct pid *pid, struct task_struct *tsk)
5767{
5768 char *buf;
5769 int retval;
5770 struct cgroup_root *root;
5771
5772 retval = -ENOMEM;
5773 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5774 if (!buf)
5775 goto out;
5776
5777 mutex_lock(&cgroup_mutex);
5778 spin_lock_irq(&css_set_lock);
5779
5780 for_each_root(root) {
5781 struct cgroup_subsys *ss;
5782 struct cgroup *cgrp;
5783 int ssid, count = 0;
5784
5785 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5786 continue;
5787
5788 seq_printf(m, "%d:", root->hierarchy_id);
5789 if (root != &cgrp_dfl_root)
5790 for_each_subsys(ss, ssid)
5791 if (root->subsys_mask & (1 << ssid))
5792 seq_printf(m, "%s%s", count++ ? "," : "",
5793 ss->legacy_name);
5794 if (strlen(root->name))
5795 seq_printf(m, "%sname=%s", count ? "," : "",
5796 root->name);
5797 seq_putc(m, ':');
5798
5799 cgrp = task_cgroup_from_root(tsk, root);
5800
5801 /*
5802 * On traditional hierarchies, all zombie tasks show up as
5803 * belonging to the root cgroup. On the default hierarchy,
5804 * while a zombie doesn't show up in "cgroup.procs" and
5805 * thus can't be migrated, its /proc/PID/cgroup keeps
5806 * reporting the cgroup it belonged to before exiting. If
5807 * the cgroup is removed before the zombie is reaped,
5808 * " (deleted)" is appended to the cgroup path.
5809 */
5810 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5811 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5812 current->nsproxy->cgroup_ns);
5813 if (retval >= PATH_MAX)
5814 retval = -ENAMETOOLONG;
5815 if (retval < 0)
5816 goto out_unlock;
5817
5818 seq_puts(m, buf);
5819 } else {
5820 seq_puts(m, "/");
5821 }
5822
5823 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5824 seq_puts(m, " (deleted)\n");
5825 else
5826 seq_putc(m, '\n');
5827 }
5828
5829 retval = 0;
5830out_unlock:
5831 spin_unlock_irq(&css_set_lock);
5832 mutex_unlock(&cgroup_mutex);
5833 kfree(buf);
5834out:
5835 return retval;
5836}
5837
5838/* Display information about each subsystem and each hierarchy */
5839static int proc_cgroupstats_show(struct seq_file *m, void *v)
5840{
5841 struct cgroup_subsys *ss;
5842 int i;
5843
5844 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5845 /*
5846 * ideally we don't want subsystems moving around while we do this.
5847 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5848 * subsys/hierarchy state.
5849 */
5850 mutex_lock(&cgroup_mutex);
5851
5852 for_each_subsys(ss, i)
5853 seq_printf(m, "%s\t%d\t%d\t%d\n",
5854 ss->legacy_name, ss->root->hierarchy_id,
5855 atomic_read(&ss->root->nr_cgrps),
5856 cgroup_ssid_enabled(i));
5857
5858 mutex_unlock(&cgroup_mutex);
5859 return 0;
5860}
5861
5862static int cgroupstats_open(struct inode *inode, struct file *file)
5863{
5864 return single_open(file, proc_cgroupstats_show, NULL);
5865}
5866
5867static const struct file_operations proc_cgroupstats_operations = {
5868 .open = cgroupstats_open,
5869 .read = seq_read,
5870 .llseek = seq_lseek,
5871 .release = single_release,
5872};
5873
5874/**
5875 * cgroup_fork - initialize cgroup related fields during copy_process()
5876 * @child: pointer to task_struct of forking parent process.
5877 *
5878 * A task is associated with the init_css_set until cgroup_post_fork()
5879 * attaches it to the parent's css_set. Empty cg_list indicates that
5880 * @child isn't holding reference to its css_set.
5881 */
5882void cgroup_fork(struct task_struct *child)
5883{
5884 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5885 INIT_LIST_HEAD(&child->cg_list);
5886}
5887
5888/**
5889 * cgroup_can_fork - called on a new task before the process is exposed
5890 * @child: the task in question.
5891 *
5892 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5893 * returns an error, the fork aborts with that error code. This allows for
5894 * a cgroup subsystem to conditionally allow or deny new forks.
5895 */
5896int cgroup_can_fork(struct task_struct *child)
5897{
5898 struct cgroup_subsys *ss;
5899 int i, j, ret;
5900
5901 do_each_subsys_mask(ss, i, have_canfork_callback) {
5902 ret = ss->can_fork(child);
5903 if (ret)
5904 goto out_revert;
5905 } while_each_subsys_mask();
5906
5907 return 0;
5908
5909out_revert:
5910 for_each_subsys(ss, j) {
5911 if (j >= i)
5912 break;
5913 if (ss->cancel_fork)
5914 ss->cancel_fork(child);
5915 }
5916
5917 return ret;
5918}
5919
5920/**
5921 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5922 * @child: the task in question
5923 *
5924 * This calls the cancel_fork() callbacks if a fork failed *after*
5925 * cgroup_can_fork() succeded.
5926 */
5927void cgroup_cancel_fork(struct task_struct *child)
5928{
5929 struct cgroup_subsys *ss;
5930 int i;
5931
5932 for_each_subsys(ss, i)
5933 if (ss->cancel_fork)
5934 ss->cancel_fork(child);
5935}
5936
5937/**
5938 * cgroup_post_fork - called on a new task after adding it to the task list
5939 * @child: the task in question
5940 *
5941 * Adds the task to the list running through its css_set if necessary and
5942 * call the subsystem fork() callbacks. Has to be after the task is
5943 * visible on the task list in case we race with the first call to
5944 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5945 * list.
5946 */
5947void cgroup_post_fork(struct task_struct *child)
5948{
5949 struct cgroup_subsys *ss;
5950 int i;
5951
5952 /*
5953 * This may race against cgroup_enable_task_cg_lists(). As that
5954 * function sets use_task_css_set_links before grabbing
5955 * tasklist_lock and we just went through tasklist_lock to add
5956 * @child, it's guaranteed that either we see the set
5957 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5958 * @child during its iteration.
5959 *
5960 * If we won the race, @child is associated with %current's
5961 * css_set. Grabbing css_set_lock guarantees both that the
5962 * association is stable, and, on completion of the parent's
5963 * migration, @child is visible in the source of migration or
5964 * already in the destination cgroup. This guarantee is necessary
5965 * when implementing operations which need to migrate all tasks of
5966 * a cgroup to another.
5967 *
5968 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5969 * will remain in init_css_set. This is safe because all tasks are
5970 * in the init_css_set before cg_links is enabled and there's no
5971 * operation which transfers all tasks out of init_css_set.
5972 */
5973 if (use_task_css_set_links) {
5974 struct css_set *cset;
5975
5976 spin_lock_irq(&css_set_lock);
5977 cset = task_css_set(current);
5978 if (list_empty(&child->cg_list)) {
5979 get_css_set(cset);
5980 css_set_move_task(child, NULL, cset, false);
5981 }
5982 spin_unlock_irq(&css_set_lock);
5983 }
5984
5985 /*
5986 * Call ss->fork(). This must happen after @child is linked on
5987 * css_set; otherwise, @child might change state between ->fork()
5988 * and addition to css_set.
5989 */
5990 do_each_subsys_mask(ss, i, have_fork_callback) {
5991 ss->fork(child);
5992 } while_each_subsys_mask();
5993}
5994
5995/**
5996 * cgroup_exit - detach cgroup from exiting task
5997 * @tsk: pointer to task_struct of exiting process
5998 *
5999 * Description: Detach cgroup from @tsk and release it.
6000 *
6001 * Note that cgroups marked notify_on_release force every task in
6002 * them to take the global cgroup_mutex mutex when exiting.
6003 * This could impact scaling on very large systems. Be reluctant to
6004 * use notify_on_release cgroups where very high task exit scaling
6005 * is required on large systems.
6006 *
6007 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6008 * call cgroup_exit() while the task is still competent to handle
6009 * notify_on_release(), then leave the task attached to the root cgroup in
6010 * each hierarchy for the remainder of its exit. No need to bother with
6011 * init_css_set refcnting. init_css_set never goes away and we can't race
6012 * with migration path - PF_EXITING is visible to migration path.
6013 */
6014void cgroup_exit(struct task_struct *tsk)
6015{
6016 struct cgroup_subsys *ss;
6017 struct css_set *cset;
6018 int i;
6019
6020 /*
6021 * Unlink from @tsk from its css_set. As migration path can't race
6022 * with us, we can check css_set and cg_list without synchronization.
6023 */
6024 cset = task_css_set(tsk);
6025
6026 if (!list_empty(&tsk->cg_list)) {
6027 spin_lock_irq(&css_set_lock);
6028 css_set_move_task(tsk, cset, NULL, false);
6029 spin_unlock_irq(&css_set_lock);
6030 } else {
6031 get_css_set(cset);
6032 }
6033
6034 /* see cgroup_post_fork() for details */
6035 do_each_subsys_mask(ss, i, have_exit_callback) {
6036 ss->exit(tsk);
6037 } while_each_subsys_mask();
6038}
6039
6040void cgroup_free(struct task_struct *task)
6041{
6042 struct css_set *cset = task_css_set(task);
6043 struct cgroup_subsys *ss;
6044 int ssid;
6045
6046 do_each_subsys_mask(ss, ssid, have_free_callback) {
6047 ss->free(task);
6048 } while_each_subsys_mask();
6049
6050 put_css_set(cset);
6051}
6052
6053static void check_for_release(struct cgroup *cgrp)
6054{
6055 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6056 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6057 schedule_work(&cgrp->release_agent_work);
6058}
6059
6060/*
6061 * Notify userspace when a cgroup is released, by running the
6062 * configured release agent with the name of the cgroup (path
6063 * relative to the root of cgroup file system) as the argument.
6064 *
6065 * Most likely, this user command will try to rmdir this cgroup.
6066 *
6067 * This races with the possibility that some other task will be
6068 * attached to this cgroup before it is removed, or that some other
6069 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6070 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6071 * unused, and this cgroup will be reprieved from its death sentence,
6072 * to continue to serve a useful existence. Next time it's released,
6073 * we will get notified again, if it still has 'notify_on_release' set.
6074 *
6075 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6076 * means only wait until the task is successfully execve()'d. The
6077 * separate release agent task is forked by call_usermodehelper(),
6078 * then control in this thread returns here, without waiting for the
6079 * release agent task. We don't bother to wait because the caller of
6080 * this routine has no use for the exit status of the release agent
6081 * task, so no sense holding our caller up for that.
6082 */
6083static void cgroup_release_agent(struct work_struct *work)
6084{
6085 struct cgroup *cgrp =
6086 container_of(work, struct cgroup, release_agent_work);
6087 char *pathbuf = NULL, *agentbuf = NULL;
6088 char *argv[3], *envp[3];
6089 int ret;
6090
6091 mutex_lock(&cgroup_mutex);
6092
6093 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6094 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6095 if (!pathbuf || !agentbuf)
6096 goto out;
6097
6098 spin_lock_irq(&css_set_lock);
6099 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6100 spin_unlock_irq(&css_set_lock);
6101 if (ret < 0 || ret >= PATH_MAX)
6102 goto out;
6103
6104 argv[0] = agentbuf;
6105 argv[1] = pathbuf;
6106 argv[2] = NULL;
6107
6108 /* minimal command environment */
6109 envp[0] = "HOME=/";
6110 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6111 envp[2] = NULL;
6112
6113 mutex_unlock(&cgroup_mutex);
6114 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6115 goto out_free;
6116out:
6117 mutex_unlock(&cgroup_mutex);
6118out_free:
6119 kfree(agentbuf);
6120 kfree(pathbuf);
6121}
6122
6123static int __init cgroup_disable(char *str)
6124{
6125 struct cgroup_subsys *ss;
6126 char *token;
6127 int i;
6128
6129 while ((token = strsep(&str, ",")) != NULL) {
6130 if (!*token)
6131 continue;
6132
6133 for_each_subsys(ss, i) {
6134 if (strcmp(token, ss->name) &&
6135 strcmp(token, ss->legacy_name))
6136 continue;
6137 cgroup_disable_mask |= 1 << i;
6138 }
6139 }
6140 return 1;
6141}
6142__setup("cgroup_disable=", cgroup_disable);
6143
6144static int __init cgroup_no_v1(char *str)
6145{
6146 struct cgroup_subsys *ss;
6147 char *token;
6148 int i;
6149
6150 while ((token = strsep(&str, ",")) != NULL) {
6151 if (!*token)
6152 continue;
6153
6154 if (!strcmp(token, "all")) {
6155 cgroup_no_v1_mask = U16_MAX;
6156 break;
6157 }
6158
6159 for_each_subsys(ss, i) {
6160 if (strcmp(token, ss->name) &&
6161 strcmp(token, ss->legacy_name))
6162 continue;
6163
6164 cgroup_no_v1_mask |= 1 << i;
6165 }
6166 }
6167 return 1;
6168}
6169__setup("cgroup_no_v1=", cgroup_no_v1);
6170
6171/**
6172 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6173 * @dentry: directory dentry of interest
6174 * @ss: subsystem of interest
6175 *
6176 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6177 * to get the corresponding css and return it. If such css doesn't exist
6178 * or can't be pinned, an ERR_PTR value is returned.
6179 */
6180struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6181 struct cgroup_subsys *ss)
6182{
6183 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6184 struct file_system_type *s_type = dentry->d_sb->s_type;
6185 struct cgroup_subsys_state *css = NULL;
6186 struct cgroup *cgrp;
6187
6188 /* is @dentry a cgroup dir? */
6189 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6190 !kn || kernfs_type(kn) != KERNFS_DIR)
6191 return ERR_PTR(-EBADF);
6192
6193 rcu_read_lock();
6194
6195 /*
6196 * This path doesn't originate from kernfs and @kn could already
6197 * have been or be removed at any point. @kn->priv is RCU
6198 * protected for this access. See css_release_work_fn() for details.
6199 */
6200 cgrp = rcu_dereference(kn->priv);
6201 if (cgrp)
6202 css = cgroup_css(cgrp, ss);
6203
6204 if (!css || !css_tryget_online(css))
6205 css = ERR_PTR(-ENOENT);
6206
6207 rcu_read_unlock();
6208 return css;
6209}
6210
6211/**
6212 * css_from_id - lookup css by id
6213 * @id: the cgroup id
6214 * @ss: cgroup subsys to be looked into
6215 *
6216 * Returns the css if there's valid one with @id, otherwise returns NULL.
6217 * Should be called under rcu_read_lock().
6218 */
6219struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6220{
6221 WARN_ON_ONCE(!rcu_read_lock_held());
6222 return idr_find(&ss->css_idr, id);
6223}
6224
6225/**
6226 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6227 * @path: path on the default hierarchy
6228 *
6229 * Find the cgroup at @path on the default hierarchy, increment its
6230 * reference count and return it. Returns pointer to the found cgroup on
6231 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6232 * if @path points to a non-directory.
6233 */
6234struct cgroup *cgroup_get_from_path(const char *path)
6235{
6236 struct kernfs_node *kn;
6237 struct cgroup *cgrp;
6238
6239 mutex_lock(&cgroup_mutex);
6240
6241 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6242 if (kn) {
6243 if (kernfs_type(kn) == KERNFS_DIR) {
6244 cgrp = kn->priv;
6245 cgroup_get(cgrp);
6246 } else {
6247 cgrp = ERR_PTR(-ENOTDIR);
6248 }
6249 kernfs_put(kn);
6250 } else {
6251 cgrp = ERR_PTR(-ENOENT);
6252 }
6253
6254 mutex_unlock(&cgroup_mutex);
6255 return cgrp;
6256}
6257EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6258
6259/**
6260 * cgroup_get_from_fd - get a cgroup pointer from a fd
6261 * @fd: fd obtained by open(cgroup2_dir)
6262 *
6263 * Find the cgroup from a fd which should be obtained
6264 * by opening a cgroup directory. Returns a pointer to the
6265 * cgroup on success. ERR_PTR is returned if the cgroup
6266 * cannot be found.
6267 */
6268struct cgroup *cgroup_get_from_fd(int fd)
6269{
6270 struct cgroup_subsys_state *css;
6271 struct cgroup *cgrp;
6272 struct file *f;
6273
6274 f = fget_raw(fd);
6275 if (!f)
6276 return ERR_PTR(-EBADF);
6277
6278 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6279 fput(f);
6280 if (IS_ERR(css))
6281 return ERR_CAST(css);
6282
6283 cgrp = css->cgroup;
6284 if (!cgroup_on_dfl(cgrp)) {
6285 cgroup_put(cgrp);
6286 return ERR_PTR(-EBADF);
6287 }
6288
6289 return cgrp;
6290}
6291EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6292
6293/*
6294 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6295 * definition in cgroup-defs.h.
6296 */
6297#ifdef CONFIG_SOCK_CGROUP_DATA
6298
6299#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6300
6301DEFINE_SPINLOCK(cgroup_sk_update_lock);
6302static bool cgroup_sk_alloc_disabled __read_mostly;
6303
6304void cgroup_sk_alloc_disable(void)
6305{
6306 if (cgroup_sk_alloc_disabled)
6307 return;
6308 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6309 cgroup_sk_alloc_disabled = true;
6310}
6311
6312#else
6313
6314#define cgroup_sk_alloc_disabled false
6315
6316#endif
6317
6318void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6319{
6320 if (cgroup_sk_alloc_disabled)
6321 return;
6322
6323 /* Socket clone path */
6324 if (skcd->val) {
6325 cgroup_get(sock_cgroup_ptr(skcd));
6326 return;
6327 }
6328
6329 rcu_read_lock();
6330
6331 while (true) {
6332 struct css_set *cset;
6333
6334 cset = task_css_set(current);
6335 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6336 skcd->val = (unsigned long)cset->dfl_cgrp;
6337 break;
6338 }
6339 cpu_relax();
6340 }
6341
6342 rcu_read_unlock();
6343}
6344
6345void cgroup_sk_free(struct sock_cgroup_data *skcd)
6346{
6347 cgroup_put(sock_cgroup_ptr(skcd));
6348}
6349
6350#endif /* CONFIG_SOCK_CGROUP_DATA */
6351
6352/* cgroup namespaces */
6353
6354static struct ucounts *inc_cgroup_namespaces(struct user_namespace *ns)
6355{
6356 return inc_ucount(ns, current_euid(), UCOUNT_CGROUP_NAMESPACES);
6357}
6358
6359static void dec_cgroup_namespaces(struct ucounts *ucounts)
6360{
6361 dec_ucount(ucounts, UCOUNT_CGROUP_NAMESPACES);
6362}
6363
6364static struct cgroup_namespace *alloc_cgroup_ns(void)
6365{
6366 struct cgroup_namespace *new_ns;
6367 int ret;
6368
6369 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6370 if (!new_ns)
6371 return ERR_PTR(-ENOMEM);
6372 ret = ns_alloc_inum(&new_ns->ns);
6373 if (ret) {
6374 kfree(new_ns);
6375 return ERR_PTR(ret);
6376 }
6377 atomic_set(&new_ns->count, 1);
6378 new_ns->ns.ops = &cgroupns_operations;
6379 return new_ns;
6380}
6381
6382void free_cgroup_ns(struct cgroup_namespace *ns)
6383{
6384 put_css_set(ns->root_cset);
6385 dec_cgroup_namespaces(ns->ucounts);
6386 put_user_ns(ns->user_ns);
6387 ns_free_inum(&ns->ns);
6388 kfree(ns);
6389}
6390EXPORT_SYMBOL(free_cgroup_ns);
6391
6392struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6393 struct user_namespace *user_ns,
6394 struct cgroup_namespace *old_ns)
6395{
6396 struct cgroup_namespace *new_ns;
6397 struct ucounts *ucounts;
6398 struct css_set *cset;
6399
6400 BUG_ON(!old_ns);
6401
6402 if (!(flags & CLONE_NEWCGROUP)) {
6403 get_cgroup_ns(old_ns);
6404 return old_ns;
6405 }
6406
6407 /* Allow only sysadmin to create cgroup namespace. */
6408 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6409 return ERR_PTR(-EPERM);
6410
6411 ucounts = inc_cgroup_namespaces(user_ns);
6412 if (!ucounts)
6413 return ERR_PTR(-ENOSPC);
6414
6415 /* It is not safe to take cgroup_mutex here */
6416 spin_lock_irq(&css_set_lock);
6417 cset = task_css_set(current);
6418 get_css_set(cset);
6419 spin_unlock_irq(&css_set_lock);
6420
6421 new_ns = alloc_cgroup_ns();
6422 if (IS_ERR(new_ns)) {
6423 put_css_set(cset);
6424 dec_cgroup_namespaces(ucounts);
6425 return new_ns;
6426 }
6427
6428 new_ns->user_ns = get_user_ns(user_ns);
6429 new_ns->ucounts = ucounts;
6430 new_ns->root_cset = cset;
6431
6432 return new_ns;
6433}
6434
6435static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6436{
6437 return container_of(ns, struct cgroup_namespace, ns);
6438}
6439
6440static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6441{
6442 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6443
6444 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6445 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6446 return -EPERM;
6447
6448 /* Don't need to do anything if we are attaching to our own cgroupns. */
6449 if (cgroup_ns == nsproxy->cgroup_ns)
6450 return 0;
6451
6452 get_cgroup_ns(cgroup_ns);
6453 put_cgroup_ns(nsproxy->cgroup_ns);
6454 nsproxy->cgroup_ns = cgroup_ns;
6455
6456 return 0;
6457}
6458
6459static struct ns_common *cgroupns_get(struct task_struct *task)
6460{
6461 struct cgroup_namespace *ns = NULL;
6462 struct nsproxy *nsproxy;
6463
6464 task_lock(task);
6465 nsproxy = task->nsproxy;
6466 if (nsproxy) {
6467 ns = nsproxy->cgroup_ns;
6468 get_cgroup_ns(ns);
6469 }
6470 task_unlock(task);
6471
6472 return ns ? &ns->ns : NULL;
6473}
6474
6475static void cgroupns_put(struct ns_common *ns)
6476{
6477 put_cgroup_ns(to_cg_ns(ns));
6478}
6479
6480static struct user_namespace *cgroupns_owner(struct ns_common *ns)
6481{
6482 return to_cg_ns(ns)->user_ns;
6483}
6484
6485const struct proc_ns_operations cgroupns_operations = {
6486 .name = "cgroup",
6487 .type = CLONE_NEWCGROUP,
6488 .get = cgroupns_get,
6489 .put = cgroupns_put,
6490 .install = cgroupns_install,
6491 .owner = cgroupns_owner,
6492};
6493
6494static __init int cgroup_namespaces_init(void)
6495{
6496 return 0;
6497}
6498subsys_initcall(cgroup_namespaces_init);
6499
6500#ifdef CONFIG_CGROUP_BPF
6501int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
6502 enum bpf_attach_type type, bool overridable)
6503{
6504 struct cgroup *parent = cgroup_parent(cgrp);
6505 int ret;
6506
6507 mutex_lock(&cgroup_mutex);
6508 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
6509 mutex_unlock(&cgroup_mutex);
6510 return ret;
6511}
6512#endif /* CONFIG_CGROUP_BPF */
6513
6514#ifdef CONFIG_CGROUP_DEBUG
6515static struct cgroup_subsys_state *
6516debug_css_alloc(struct cgroup_subsys_state *parent_css)
6517{
6518 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6519
6520 if (!css)
6521 return ERR_PTR(-ENOMEM);
6522
6523 return css;
6524}
6525
6526static void debug_css_free(struct cgroup_subsys_state *css)
6527{
6528 kfree(css);
6529}
6530
6531static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6532 struct cftype *cft)
6533{
6534 return cgroup_task_count(css->cgroup);
6535}
6536
6537static u64 current_css_set_read(struct cgroup_subsys_state *css,
6538 struct cftype *cft)
6539{
6540 return (u64)(unsigned long)current->cgroups;
6541}
6542
6543static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6544 struct cftype *cft)
6545{
6546 u64 count;
6547
6548 rcu_read_lock();
6549 count = atomic_read(&task_css_set(current)->refcount);
6550 rcu_read_unlock();
6551 return count;
6552}
6553
6554static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6555{
6556 struct cgrp_cset_link *link;
6557 struct css_set *cset;
6558 char *name_buf;
6559
6560 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6561 if (!name_buf)
6562 return -ENOMEM;
6563
6564 spin_lock_irq(&css_set_lock);
6565 rcu_read_lock();
6566 cset = rcu_dereference(current->cgroups);
6567 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6568 struct cgroup *c = link->cgrp;
6569
6570 cgroup_name(c, name_buf, NAME_MAX + 1);
6571 seq_printf(seq, "Root %d group %s\n",
6572 c->root->hierarchy_id, name_buf);
6573 }
6574 rcu_read_unlock();
6575 spin_unlock_irq(&css_set_lock);
6576 kfree(name_buf);
6577 return 0;
6578}
6579
6580#define MAX_TASKS_SHOWN_PER_CSS 25
6581static int cgroup_css_links_read(struct seq_file *seq, void *v)
6582{
6583 struct cgroup_subsys_state *css = seq_css(seq);
6584 struct cgrp_cset_link *link;
6585
6586 spin_lock_irq(&css_set_lock);
6587 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6588 struct css_set *cset = link->cset;
6589 struct task_struct *task;
6590 int count = 0;
6591
6592 seq_printf(seq, "css_set %p\n", cset);
6593
6594 list_for_each_entry(task, &cset->tasks, cg_list) {
6595 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6596 goto overflow;
6597 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6598 }
6599
6600 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6601 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6602 goto overflow;
6603 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6604 }
6605 continue;
6606 overflow:
6607 seq_puts(seq, " ...\n");
6608 }
6609 spin_unlock_irq(&css_set_lock);
6610 return 0;
6611}
6612
6613static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6614{
6615 return (!cgroup_is_populated(css->cgroup) &&
6616 !css_has_online_children(&css->cgroup->self));
6617}
6618
6619static struct cftype debug_files[] = {
6620 {
6621 .name = "taskcount",
6622 .read_u64 = debug_taskcount_read,
6623 },
6624
6625 {
6626 .name = "current_css_set",
6627 .read_u64 = current_css_set_read,
6628 },
6629
6630 {
6631 .name = "current_css_set_refcount",
6632 .read_u64 = current_css_set_refcount_read,
6633 },
6634
6635 {
6636 .name = "current_css_set_cg_links",
6637 .seq_show = current_css_set_cg_links_read,
6638 },
6639
6640 {
6641 .name = "cgroup_css_links",
6642 .seq_show = cgroup_css_links_read,
6643 },
6644
6645 {
6646 .name = "releasable",
6647 .read_u64 = releasable_read,
6648 },
6649
6650 { } /* terminate */
6651};
6652
6653struct cgroup_subsys debug_cgrp_subsys = {
6654 .css_alloc = debug_css_alloc,
6655 .css_free = debug_css_free,
6656 .legacy_cftypes = debug_files,
6657};
6658#endif /* CONFIG_CGROUP_DEBUG */
1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
30#include <linux/cred.h>
31#include <linux/ctype.h>
32#include <linux/errno.h>
33#include <linux/init_task.h>
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/magic.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
44#include <linux/slab.h>
45#include <linux/spinlock.h>
46#include <linux/rwsem.h>
47#include <linux/string.h>
48#include <linux/sort.h>
49#include <linux/kmod.h>
50#include <linux/delayacct.h>
51#include <linux/cgroupstats.h>
52#include <linux/hashtable.h>
53#include <linux/pid_namespace.h>
54#include <linux/idr.h>
55#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
56#include <linux/kthread.h>
57#include <linux/delay.h>
58
59#include <linux/atomic.h>
60
61/*
62 * pidlists linger the following amount before being destroyed. The goal
63 * is avoiding frequent destruction in the middle of consecutive read calls
64 * Expiring in the middle is a performance problem not a correctness one.
65 * 1 sec should be enough.
66 */
67#define CGROUP_PIDLIST_DESTROY_DELAY HZ
68
69#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
70 MAX_CFTYPE_NAME + 2)
71
72/*
73 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
74 * creation/removal and hierarchy changing operations including cgroup
75 * creation, removal, css association and controller rebinding. This outer
76 * lock is needed mainly to resolve the circular dependency between kernfs
77 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
78 */
79static DEFINE_MUTEX(cgroup_tree_mutex);
80
81/*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
84 *
85 * css_set_rwsem protects task->cgroups pointer, the list of css_set
86 * objects, and the chain of tasks off each css_set.
87 *
88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89 * cgroup.h can use them for lockdep annotations.
90 */
91#ifdef CONFIG_PROVE_RCU
92DEFINE_MUTEX(cgroup_mutex);
93DECLARE_RWSEM(css_set_rwsem);
94EXPORT_SYMBOL_GPL(cgroup_mutex);
95EXPORT_SYMBOL_GPL(css_set_rwsem);
96#else
97static DEFINE_MUTEX(cgroup_mutex);
98static DECLARE_RWSEM(css_set_rwsem);
99#endif
100
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
106
107#define cgroup_assert_mutexes_or_rcu_locked() \
108 rcu_lockdep_assert(rcu_read_lock_held() || \
109 lockdep_is_held(&cgroup_tree_mutex) || \
110 lockdep_is_held(&cgroup_mutex), \
111 "cgroup_[tree_]mutex or RCU read lock required");
112
113/*
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
118 */
119static struct workqueue_struct *cgroup_destroy_wq;
120
121/*
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
124 */
125static struct workqueue_struct *cgroup_pidlist_destroy_wq;
126
127/* generate an array of cgroup subsystem pointers */
128#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129static struct cgroup_subsys *cgroup_subsys[] = {
130#include <linux/cgroup_subsys.h>
131};
132#undef SUBSYS
133
134/* array of cgroup subsystem names */
135#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136static const char *cgroup_subsys_name[] = {
137#include <linux/cgroup_subsys.h>
138};
139#undef SUBSYS
140
141/*
142 * The default hierarchy, reserved for the subsystems that are otherwise
143 * unattached - it never has more than a single cgroup, and all tasks are
144 * part of that cgroup.
145 */
146struct cgroup_root cgrp_dfl_root;
147
148/*
149 * The default hierarchy always exists but is hidden until mounted for the
150 * first time. This is for backward compatibility.
151 */
152static bool cgrp_dfl_root_visible;
153
154/* The list of hierarchy roots */
155
156static LIST_HEAD(cgroup_roots);
157static int cgroup_root_count;
158
159/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
160static DEFINE_IDR(cgroup_hierarchy_idr);
161
162/*
163 * Assign a monotonically increasing serial number to cgroups. It
164 * guarantees cgroups with bigger numbers are newer than those with smaller
165 * numbers. Also, as cgroups are always appended to the parent's
166 * ->children list, it guarantees that sibling cgroups are always sorted in
167 * the ascending serial number order on the list. Protected by
168 * cgroup_mutex.
169 */
170static u64 cgroup_serial_nr_next = 1;
171
172/* This flag indicates whether tasks in the fork and exit paths should
173 * check for fork/exit handlers to call. This avoids us having to do
174 * extra work in the fork/exit path if none of the subsystems need to
175 * be called.
176 */
177static int need_forkexit_callback __read_mostly;
178
179static struct cftype cgroup_base_files[];
180
181static void cgroup_put(struct cgroup *cgrp);
182static int rebind_subsystems(struct cgroup_root *dst_root,
183 unsigned long ss_mask);
184static void cgroup_destroy_css_killed(struct cgroup *cgrp);
185static int cgroup_destroy_locked(struct cgroup *cgrp);
186static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
187 bool is_add);
188static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
189
190/**
191 * cgroup_css - obtain a cgroup's css for the specified subsystem
192 * @cgrp: the cgroup of interest
193 * @ss: the subsystem of interest (%NULL returns the dummy_css)
194 *
195 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
196 * function must be called either under cgroup_mutex or rcu_read_lock() and
197 * the caller is responsible for pinning the returned css if it wants to
198 * keep accessing it outside the said locks. This function may return
199 * %NULL if @cgrp doesn't have @subsys_id enabled.
200 */
201static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
202 struct cgroup_subsys *ss)
203{
204 if (ss)
205 return rcu_dereference_check(cgrp->subsys[ss->id],
206 lockdep_is_held(&cgroup_tree_mutex) ||
207 lockdep_is_held(&cgroup_mutex));
208 else
209 return &cgrp->dummy_css;
210}
211
212/* convenient tests for these bits */
213static inline bool cgroup_is_dead(const struct cgroup *cgrp)
214{
215 return test_bit(CGRP_DEAD, &cgrp->flags);
216}
217
218struct cgroup_subsys_state *seq_css(struct seq_file *seq)
219{
220 struct kernfs_open_file *of = seq->private;
221 struct cgroup *cgrp = of->kn->parent->priv;
222 struct cftype *cft = seq_cft(seq);
223
224 /*
225 * This is open and unprotected implementation of cgroup_css().
226 * seq_css() is only called from a kernfs file operation which has
227 * an active reference on the file. Because all the subsystem
228 * files are drained before a css is disassociated with a cgroup,
229 * the matching css from the cgroup's subsys table is guaranteed to
230 * be and stay valid until the enclosing operation is complete.
231 */
232 if (cft->ss)
233 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
234 else
235 return &cgrp->dummy_css;
236}
237EXPORT_SYMBOL_GPL(seq_css);
238
239/**
240 * cgroup_is_descendant - test ancestry
241 * @cgrp: the cgroup to be tested
242 * @ancestor: possible ancestor of @cgrp
243 *
244 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
245 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
246 * and @ancestor are accessible.
247 */
248bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
249{
250 while (cgrp) {
251 if (cgrp == ancestor)
252 return true;
253 cgrp = cgrp->parent;
254 }
255 return false;
256}
257
258static int cgroup_is_releasable(const struct cgroup *cgrp)
259{
260 const int bits =
261 (1 << CGRP_RELEASABLE) |
262 (1 << CGRP_NOTIFY_ON_RELEASE);
263 return (cgrp->flags & bits) == bits;
264}
265
266static int notify_on_release(const struct cgroup *cgrp)
267{
268 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
269}
270
271/**
272 * for_each_css - iterate all css's of a cgroup
273 * @css: the iteration cursor
274 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
275 * @cgrp: the target cgroup to iterate css's of
276 *
277 * Should be called under cgroup_mutex.
278 */
279#define for_each_css(css, ssid, cgrp) \
280 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
281 if (!((css) = rcu_dereference_check( \
282 (cgrp)->subsys[(ssid)], \
283 lockdep_is_held(&cgroup_tree_mutex) || \
284 lockdep_is_held(&cgroup_mutex)))) { } \
285 else
286
287/**
288 * for_each_subsys - iterate all enabled cgroup subsystems
289 * @ss: the iteration cursor
290 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
291 */
292#define for_each_subsys(ss, ssid) \
293 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
294 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
295
296/* iterate across the hierarchies */
297#define for_each_root(root) \
298 list_for_each_entry((root), &cgroup_roots, root_list)
299
300/**
301 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
302 * @cgrp: the cgroup to be checked for liveness
303 *
304 * On success, returns true; the mutex should be later unlocked. On
305 * failure returns false with no lock held.
306 */
307static bool cgroup_lock_live_group(struct cgroup *cgrp)
308{
309 mutex_lock(&cgroup_mutex);
310 if (cgroup_is_dead(cgrp)) {
311 mutex_unlock(&cgroup_mutex);
312 return false;
313 }
314 return true;
315}
316
317/* the list of cgroups eligible for automatic release. Protected by
318 * release_list_lock */
319static LIST_HEAD(release_list);
320static DEFINE_RAW_SPINLOCK(release_list_lock);
321static void cgroup_release_agent(struct work_struct *work);
322static DECLARE_WORK(release_agent_work, cgroup_release_agent);
323static void check_for_release(struct cgroup *cgrp);
324
325/*
326 * A cgroup can be associated with multiple css_sets as different tasks may
327 * belong to different cgroups on different hierarchies. In the other
328 * direction, a css_set is naturally associated with multiple cgroups.
329 * This M:N relationship is represented by the following link structure
330 * which exists for each association and allows traversing the associations
331 * from both sides.
332 */
333struct cgrp_cset_link {
334 /* the cgroup and css_set this link associates */
335 struct cgroup *cgrp;
336 struct css_set *cset;
337
338 /* list of cgrp_cset_links anchored at cgrp->cset_links */
339 struct list_head cset_link;
340
341 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
342 struct list_head cgrp_link;
343};
344
345/*
346 * The default css_set - used by init and its children prior to any
347 * hierarchies being mounted. It contains a pointer to the root state
348 * for each subsystem. Also used to anchor the list of css_sets. Not
349 * reference-counted, to improve performance when child cgroups
350 * haven't been created.
351 */
352struct css_set init_css_set = {
353 .refcount = ATOMIC_INIT(1),
354 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
355 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
356 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
357 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
358 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
359};
360
361static int css_set_count = 1; /* 1 for init_css_set */
362
363/*
364 * hash table for cgroup groups. This improves the performance to find
365 * an existing css_set. This hash doesn't (currently) take into
366 * account cgroups in empty hierarchies.
367 */
368#define CSS_SET_HASH_BITS 7
369static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
370
371static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
372{
373 unsigned long key = 0UL;
374 struct cgroup_subsys *ss;
375 int i;
376
377 for_each_subsys(ss, i)
378 key += (unsigned long)css[i];
379 key = (key >> 16) ^ key;
380
381 return key;
382}
383
384static void put_css_set_locked(struct css_set *cset, bool taskexit)
385{
386 struct cgrp_cset_link *link, *tmp_link;
387
388 lockdep_assert_held(&css_set_rwsem);
389
390 if (!atomic_dec_and_test(&cset->refcount))
391 return;
392
393 /* This css_set is dead. unlink it and release cgroup refcounts */
394 hash_del(&cset->hlist);
395 css_set_count--;
396
397 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
398 struct cgroup *cgrp = link->cgrp;
399
400 list_del(&link->cset_link);
401 list_del(&link->cgrp_link);
402
403 /* @cgrp can't go away while we're holding css_set_rwsem */
404 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
405 if (taskexit)
406 set_bit(CGRP_RELEASABLE, &cgrp->flags);
407 check_for_release(cgrp);
408 }
409
410 kfree(link);
411 }
412
413 kfree_rcu(cset, rcu_head);
414}
415
416static void put_css_set(struct css_set *cset, bool taskexit)
417{
418 /*
419 * Ensure that the refcount doesn't hit zero while any readers
420 * can see it. Similar to atomic_dec_and_lock(), but for an
421 * rwlock
422 */
423 if (atomic_add_unless(&cset->refcount, -1, 1))
424 return;
425
426 down_write(&css_set_rwsem);
427 put_css_set_locked(cset, taskexit);
428 up_write(&css_set_rwsem);
429}
430
431/*
432 * refcounted get/put for css_set objects
433 */
434static inline void get_css_set(struct css_set *cset)
435{
436 atomic_inc(&cset->refcount);
437}
438
439/**
440 * compare_css_sets - helper function for find_existing_css_set().
441 * @cset: candidate css_set being tested
442 * @old_cset: existing css_set for a task
443 * @new_cgrp: cgroup that's being entered by the task
444 * @template: desired set of css pointers in css_set (pre-calculated)
445 *
446 * Returns true if "cset" matches "old_cset" except for the hierarchy
447 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
448 */
449static bool compare_css_sets(struct css_set *cset,
450 struct css_set *old_cset,
451 struct cgroup *new_cgrp,
452 struct cgroup_subsys_state *template[])
453{
454 struct list_head *l1, *l2;
455
456 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
457 /* Not all subsystems matched */
458 return false;
459 }
460
461 /*
462 * Compare cgroup pointers in order to distinguish between
463 * different cgroups in heirarchies with no subsystems. We
464 * could get by with just this check alone (and skip the
465 * memcmp above) but on most setups the memcmp check will
466 * avoid the need for this more expensive check on almost all
467 * candidates.
468 */
469
470 l1 = &cset->cgrp_links;
471 l2 = &old_cset->cgrp_links;
472 while (1) {
473 struct cgrp_cset_link *link1, *link2;
474 struct cgroup *cgrp1, *cgrp2;
475
476 l1 = l1->next;
477 l2 = l2->next;
478 /* See if we reached the end - both lists are equal length. */
479 if (l1 == &cset->cgrp_links) {
480 BUG_ON(l2 != &old_cset->cgrp_links);
481 break;
482 } else {
483 BUG_ON(l2 == &old_cset->cgrp_links);
484 }
485 /* Locate the cgroups associated with these links. */
486 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
487 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
488 cgrp1 = link1->cgrp;
489 cgrp2 = link2->cgrp;
490 /* Hierarchies should be linked in the same order. */
491 BUG_ON(cgrp1->root != cgrp2->root);
492
493 /*
494 * If this hierarchy is the hierarchy of the cgroup
495 * that's changing, then we need to check that this
496 * css_set points to the new cgroup; if it's any other
497 * hierarchy, then this css_set should point to the
498 * same cgroup as the old css_set.
499 */
500 if (cgrp1->root == new_cgrp->root) {
501 if (cgrp1 != new_cgrp)
502 return false;
503 } else {
504 if (cgrp1 != cgrp2)
505 return false;
506 }
507 }
508 return true;
509}
510
511/**
512 * find_existing_css_set - init css array and find the matching css_set
513 * @old_cset: the css_set that we're using before the cgroup transition
514 * @cgrp: the cgroup that we're moving into
515 * @template: out param for the new set of csses, should be clear on entry
516 */
517static struct css_set *find_existing_css_set(struct css_set *old_cset,
518 struct cgroup *cgrp,
519 struct cgroup_subsys_state *template[])
520{
521 struct cgroup_root *root = cgrp->root;
522 struct cgroup_subsys *ss;
523 struct css_set *cset;
524 unsigned long key;
525 int i;
526
527 /*
528 * Build the set of subsystem state objects that we want to see in the
529 * new css_set. while subsystems can change globally, the entries here
530 * won't change, so no need for locking.
531 */
532 for_each_subsys(ss, i) {
533 if (root->cgrp.subsys_mask & (1UL << i)) {
534 /* Subsystem is in this hierarchy. So we want
535 * the subsystem state from the new
536 * cgroup */
537 template[i] = cgroup_css(cgrp, ss);
538 } else {
539 /* Subsystem is not in this hierarchy, so we
540 * don't want to change the subsystem state */
541 template[i] = old_cset->subsys[i];
542 }
543 }
544
545 key = css_set_hash(template);
546 hash_for_each_possible(css_set_table, cset, hlist, key) {
547 if (!compare_css_sets(cset, old_cset, cgrp, template))
548 continue;
549
550 /* This css_set matches what we need */
551 return cset;
552 }
553
554 /* No existing cgroup group matched */
555 return NULL;
556}
557
558static void free_cgrp_cset_links(struct list_head *links_to_free)
559{
560 struct cgrp_cset_link *link, *tmp_link;
561
562 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
563 list_del(&link->cset_link);
564 kfree(link);
565 }
566}
567
568/**
569 * allocate_cgrp_cset_links - allocate cgrp_cset_links
570 * @count: the number of links to allocate
571 * @tmp_links: list_head the allocated links are put on
572 *
573 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
574 * through ->cset_link. Returns 0 on success or -errno.
575 */
576static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
577{
578 struct cgrp_cset_link *link;
579 int i;
580
581 INIT_LIST_HEAD(tmp_links);
582
583 for (i = 0; i < count; i++) {
584 link = kzalloc(sizeof(*link), GFP_KERNEL);
585 if (!link) {
586 free_cgrp_cset_links(tmp_links);
587 return -ENOMEM;
588 }
589 list_add(&link->cset_link, tmp_links);
590 }
591 return 0;
592}
593
594/**
595 * link_css_set - a helper function to link a css_set to a cgroup
596 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
597 * @cset: the css_set to be linked
598 * @cgrp: the destination cgroup
599 */
600static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
601 struct cgroup *cgrp)
602{
603 struct cgrp_cset_link *link;
604
605 BUG_ON(list_empty(tmp_links));
606 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
607 link->cset = cset;
608 link->cgrp = cgrp;
609 list_move(&link->cset_link, &cgrp->cset_links);
610 /*
611 * Always add links to the tail of the list so that the list
612 * is sorted by order of hierarchy creation
613 */
614 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
615}
616
617/**
618 * find_css_set - return a new css_set with one cgroup updated
619 * @old_cset: the baseline css_set
620 * @cgrp: the cgroup to be updated
621 *
622 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
623 * substituted into the appropriate hierarchy.
624 */
625static struct css_set *find_css_set(struct css_set *old_cset,
626 struct cgroup *cgrp)
627{
628 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
629 struct css_set *cset;
630 struct list_head tmp_links;
631 struct cgrp_cset_link *link;
632 unsigned long key;
633
634 lockdep_assert_held(&cgroup_mutex);
635
636 /* First see if we already have a cgroup group that matches
637 * the desired set */
638 down_read(&css_set_rwsem);
639 cset = find_existing_css_set(old_cset, cgrp, template);
640 if (cset)
641 get_css_set(cset);
642 up_read(&css_set_rwsem);
643
644 if (cset)
645 return cset;
646
647 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
648 if (!cset)
649 return NULL;
650
651 /* Allocate all the cgrp_cset_link objects that we'll need */
652 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
653 kfree(cset);
654 return NULL;
655 }
656
657 atomic_set(&cset->refcount, 1);
658 INIT_LIST_HEAD(&cset->cgrp_links);
659 INIT_LIST_HEAD(&cset->tasks);
660 INIT_LIST_HEAD(&cset->mg_tasks);
661 INIT_LIST_HEAD(&cset->mg_preload_node);
662 INIT_LIST_HEAD(&cset->mg_node);
663 INIT_HLIST_NODE(&cset->hlist);
664
665 /* Copy the set of subsystem state objects generated in
666 * find_existing_css_set() */
667 memcpy(cset->subsys, template, sizeof(cset->subsys));
668
669 down_write(&css_set_rwsem);
670 /* Add reference counts and links from the new css_set. */
671 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
672 struct cgroup *c = link->cgrp;
673
674 if (c->root == cgrp->root)
675 c = cgrp;
676 link_css_set(&tmp_links, cset, c);
677 }
678
679 BUG_ON(!list_empty(&tmp_links));
680
681 css_set_count++;
682
683 /* Add this cgroup group to the hash table */
684 key = css_set_hash(cset->subsys);
685 hash_add(css_set_table, &cset->hlist, key);
686
687 up_write(&css_set_rwsem);
688
689 return cset;
690}
691
692static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
693{
694 struct cgroup *root_cgrp = kf_root->kn->priv;
695
696 return root_cgrp->root;
697}
698
699static int cgroup_init_root_id(struct cgroup_root *root)
700{
701 int id;
702
703 lockdep_assert_held(&cgroup_mutex);
704
705 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
706 if (id < 0)
707 return id;
708
709 root->hierarchy_id = id;
710 return 0;
711}
712
713static void cgroup_exit_root_id(struct cgroup_root *root)
714{
715 lockdep_assert_held(&cgroup_mutex);
716
717 if (root->hierarchy_id) {
718 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
719 root->hierarchy_id = 0;
720 }
721}
722
723static void cgroup_free_root(struct cgroup_root *root)
724{
725 if (root) {
726 /* hierarhcy ID shoulid already have been released */
727 WARN_ON_ONCE(root->hierarchy_id);
728
729 idr_destroy(&root->cgroup_idr);
730 kfree(root);
731 }
732}
733
734static void cgroup_destroy_root(struct cgroup_root *root)
735{
736 struct cgroup *cgrp = &root->cgrp;
737 struct cgrp_cset_link *link, *tmp_link;
738
739 mutex_lock(&cgroup_tree_mutex);
740 mutex_lock(&cgroup_mutex);
741
742 BUG_ON(atomic_read(&root->nr_cgrps));
743 BUG_ON(!list_empty(&cgrp->children));
744
745 /* Rebind all subsystems back to the default hierarchy */
746 rebind_subsystems(&cgrp_dfl_root, cgrp->subsys_mask);
747
748 /*
749 * Release all the links from cset_links to this hierarchy's
750 * root cgroup
751 */
752 down_write(&css_set_rwsem);
753
754 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
755 list_del(&link->cset_link);
756 list_del(&link->cgrp_link);
757 kfree(link);
758 }
759 up_write(&css_set_rwsem);
760
761 if (!list_empty(&root->root_list)) {
762 list_del(&root->root_list);
763 cgroup_root_count--;
764 }
765
766 cgroup_exit_root_id(root);
767
768 mutex_unlock(&cgroup_mutex);
769 mutex_unlock(&cgroup_tree_mutex);
770
771 kernfs_destroy_root(root->kf_root);
772 cgroup_free_root(root);
773}
774
775/* look up cgroup associated with given css_set on the specified hierarchy */
776static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
777 struct cgroup_root *root)
778{
779 struct cgroup *res = NULL;
780
781 lockdep_assert_held(&cgroup_mutex);
782 lockdep_assert_held(&css_set_rwsem);
783
784 if (cset == &init_css_set) {
785 res = &root->cgrp;
786 } else {
787 struct cgrp_cset_link *link;
788
789 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
790 struct cgroup *c = link->cgrp;
791
792 if (c->root == root) {
793 res = c;
794 break;
795 }
796 }
797 }
798
799 BUG_ON(!res);
800 return res;
801}
802
803/*
804 * Return the cgroup for "task" from the given hierarchy. Must be
805 * called with cgroup_mutex and css_set_rwsem held.
806 */
807static struct cgroup *task_cgroup_from_root(struct task_struct *task,
808 struct cgroup_root *root)
809{
810 /*
811 * No need to lock the task - since we hold cgroup_mutex the
812 * task can't change groups, so the only thing that can happen
813 * is that it exits and its css is set back to init_css_set.
814 */
815 return cset_cgroup_from_root(task_css_set(task), root);
816}
817
818/*
819 * A task must hold cgroup_mutex to modify cgroups.
820 *
821 * Any task can increment and decrement the count field without lock.
822 * So in general, code holding cgroup_mutex can't rely on the count
823 * field not changing. However, if the count goes to zero, then only
824 * cgroup_attach_task() can increment it again. Because a count of zero
825 * means that no tasks are currently attached, therefore there is no
826 * way a task attached to that cgroup can fork (the other way to
827 * increment the count). So code holding cgroup_mutex can safely
828 * assume that if the count is zero, it will stay zero. Similarly, if
829 * a task holds cgroup_mutex on a cgroup with zero count, it
830 * knows that the cgroup won't be removed, as cgroup_rmdir()
831 * needs that mutex.
832 *
833 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
834 * (usually) take cgroup_mutex. These are the two most performance
835 * critical pieces of code here. The exception occurs on cgroup_exit(),
836 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
837 * is taken, and if the cgroup count is zero, a usermode call made
838 * to the release agent with the name of the cgroup (path relative to
839 * the root of cgroup file system) as the argument.
840 *
841 * A cgroup can only be deleted if both its 'count' of using tasks
842 * is zero, and its list of 'children' cgroups is empty. Since all
843 * tasks in the system use _some_ cgroup, and since there is always at
844 * least one task in the system (init, pid == 1), therefore, root cgroup
845 * always has either children cgroups and/or using tasks. So we don't
846 * need a special hack to ensure that root cgroup cannot be deleted.
847 *
848 * P.S. One more locking exception. RCU is used to guard the
849 * update of a tasks cgroup pointer by cgroup_attach_task()
850 */
851
852static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
853static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
854static const struct file_operations proc_cgroupstats_operations;
855
856static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
857 char *buf)
858{
859 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
860 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
861 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
862 cft->ss->name, cft->name);
863 else
864 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
865 return buf;
866}
867
868/**
869 * cgroup_file_mode - deduce file mode of a control file
870 * @cft: the control file in question
871 *
872 * returns cft->mode if ->mode is not 0
873 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
874 * returns S_IRUGO if it has only a read handler
875 * returns S_IWUSR if it has only a write hander
876 */
877static umode_t cgroup_file_mode(const struct cftype *cft)
878{
879 umode_t mode = 0;
880
881 if (cft->mode)
882 return cft->mode;
883
884 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
885 mode |= S_IRUGO;
886
887 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
888 cft->trigger)
889 mode |= S_IWUSR;
890
891 return mode;
892}
893
894static void cgroup_free_fn(struct work_struct *work)
895{
896 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
897
898 atomic_dec(&cgrp->root->nr_cgrps);
899 cgroup_pidlist_destroy_all(cgrp);
900
901 if (cgrp->parent) {
902 /*
903 * We get a ref to the parent, and put the ref when this
904 * cgroup is being freed, so it's guaranteed that the
905 * parent won't be destroyed before its children.
906 */
907 cgroup_put(cgrp->parent);
908 kernfs_put(cgrp->kn);
909 kfree(cgrp);
910 } else {
911 /*
912 * This is root cgroup's refcnt reaching zero, which
913 * indicates that the root should be released.
914 */
915 cgroup_destroy_root(cgrp->root);
916 }
917}
918
919static void cgroup_free_rcu(struct rcu_head *head)
920{
921 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
922
923 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
924 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
925}
926
927static void cgroup_get(struct cgroup *cgrp)
928{
929 WARN_ON_ONCE(cgroup_is_dead(cgrp));
930 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
931 atomic_inc(&cgrp->refcnt);
932}
933
934static void cgroup_put(struct cgroup *cgrp)
935{
936 if (!atomic_dec_and_test(&cgrp->refcnt))
937 return;
938 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
939 return;
940
941 /*
942 * XXX: cgrp->id is only used to look up css's. As cgroup and
943 * css's lifetimes will be decoupled, it should be made
944 * per-subsystem and moved to css->id so that lookups are
945 * successful until the target css is released.
946 */
947 mutex_lock(&cgroup_mutex);
948 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
949 mutex_unlock(&cgroup_mutex);
950 cgrp->id = -1;
951
952 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
953}
954
955static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
956{
957 char name[CGROUP_FILE_NAME_MAX];
958
959 lockdep_assert_held(&cgroup_tree_mutex);
960 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
961}
962
963/**
964 * cgroup_clear_dir - remove subsys files in a cgroup directory
965 * @cgrp: target cgroup
966 * @subsys_mask: mask of the subsystem ids whose files should be removed
967 */
968static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
969{
970 struct cgroup_subsys *ss;
971 int i;
972
973 for_each_subsys(ss, i) {
974 struct cftype *cfts;
975
976 if (!test_bit(i, &subsys_mask))
977 continue;
978 list_for_each_entry(cfts, &ss->cfts, node)
979 cgroup_addrm_files(cgrp, cfts, false);
980 }
981}
982
983static int rebind_subsystems(struct cgroup_root *dst_root,
984 unsigned long ss_mask)
985{
986 struct cgroup_subsys *ss;
987 int ssid, ret;
988
989 lockdep_assert_held(&cgroup_tree_mutex);
990 lockdep_assert_held(&cgroup_mutex);
991
992 for_each_subsys(ss, ssid) {
993 if (!(ss_mask & (1 << ssid)))
994 continue;
995
996 /* if @ss is on the dummy_root, we can always move it */
997 if (ss->root == &cgrp_dfl_root)
998 continue;
999
1000 /* if @ss has non-root cgroups attached to it, can't move */
1001 if (!list_empty(&ss->root->cgrp.children))
1002 return -EBUSY;
1003
1004 /* can't move between two non-dummy roots either */
1005 if (dst_root != &cgrp_dfl_root)
1006 return -EBUSY;
1007 }
1008
1009 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1010 if (ret) {
1011 if (dst_root != &cgrp_dfl_root)
1012 return ret;
1013
1014 /*
1015 * Rebinding back to the default root is not allowed to
1016 * fail. Using both default and non-default roots should
1017 * be rare. Moving subsystems back and forth even more so.
1018 * Just warn about it and continue.
1019 */
1020 if (cgrp_dfl_root_visible) {
1021 pr_warning("cgroup: failed to create files (%d) while rebinding 0x%lx to default root\n",
1022 ret, ss_mask);
1023 pr_warning("cgroup: you may retry by moving them to a different hierarchy and unbinding\n");
1024 }
1025 }
1026
1027 /*
1028 * Nothing can fail from this point on. Remove files for the
1029 * removed subsystems and rebind each subsystem.
1030 */
1031 mutex_unlock(&cgroup_mutex);
1032 for_each_subsys(ss, ssid)
1033 if (ss_mask & (1 << ssid))
1034 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1035 mutex_lock(&cgroup_mutex);
1036
1037 for_each_subsys(ss, ssid) {
1038 struct cgroup_root *src_root;
1039 struct cgroup_subsys_state *css;
1040
1041 if (!(ss_mask & (1 << ssid)))
1042 continue;
1043
1044 src_root = ss->root;
1045 css = cgroup_css(&src_root->cgrp, ss);
1046
1047 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1048
1049 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1050 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1051 ss->root = dst_root;
1052 css->cgroup = &dst_root->cgrp;
1053
1054 src_root->cgrp.subsys_mask &= ~(1 << ssid);
1055 dst_root->cgrp.subsys_mask |= 1 << ssid;
1056
1057 if (ss->bind)
1058 ss->bind(css);
1059 }
1060
1061 kernfs_activate(dst_root->cgrp.kn);
1062 return 0;
1063}
1064
1065static int cgroup_show_options(struct seq_file *seq,
1066 struct kernfs_root *kf_root)
1067{
1068 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1069 struct cgroup_subsys *ss;
1070 int ssid;
1071
1072 for_each_subsys(ss, ssid)
1073 if (root->cgrp.subsys_mask & (1 << ssid))
1074 seq_printf(seq, ",%s", ss->name);
1075 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1076 seq_puts(seq, ",sane_behavior");
1077 if (root->flags & CGRP_ROOT_NOPREFIX)
1078 seq_puts(seq, ",noprefix");
1079 if (root->flags & CGRP_ROOT_XATTR)
1080 seq_puts(seq, ",xattr");
1081
1082 spin_lock(&release_agent_path_lock);
1083 if (strlen(root->release_agent_path))
1084 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1085 spin_unlock(&release_agent_path_lock);
1086
1087 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1088 seq_puts(seq, ",clone_children");
1089 if (strlen(root->name))
1090 seq_printf(seq, ",name=%s", root->name);
1091 return 0;
1092}
1093
1094struct cgroup_sb_opts {
1095 unsigned long subsys_mask;
1096 unsigned long flags;
1097 char *release_agent;
1098 bool cpuset_clone_children;
1099 char *name;
1100 /* User explicitly requested empty subsystem */
1101 bool none;
1102};
1103
1104/*
1105 * Convert a hierarchy specifier into a bitmask of subsystems and
1106 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1107 * array. This function takes refcounts on subsystems to be used, unless it
1108 * returns error, in which case no refcounts are taken.
1109 */
1110static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1111{
1112 char *token, *o = data;
1113 bool all_ss = false, one_ss = false;
1114 unsigned long mask = (unsigned long)-1;
1115 struct cgroup_subsys *ss;
1116 int i;
1117
1118 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1119
1120#ifdef CONFIG_CPUSETS
1121 mask = ~(1UL << cpuset_cgrp_id);
1122#endif
1123
1124 memset(opts, 0, sizeof(*opts));
1125
1126 while ((token = strsep(&o, ",")) != NULL) {
1127 if (!*token)
1128 return -EINVAL;
1129 if (!strcmp(token, "none")) {
1130 /* Explicitly have no subsystems */
1131 opts->none = true;
1132 continue;
1133 }
1134 if (!strcmp(token, "all")) {
1135 /* Mutually exclusive option 'all' + subsystem name */
1136 if (one_ss)
1137 return -EINVAL;
1138 all_ss = true;
1139 continue;
1140 }
1141 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1142 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1143 continue;
1144 }
1145 if (!strcmp(token, "noprefix")) {
1146 opts->flags |= CGRP_ROOT_NOPREFIX;
1147 continue;
1148 }
1149 if (!strcmp(token, "clone_children")) {
1150 opts->cpuset_clone_children = true;
1151 continue;
1152 }
1153 if (!strcmp(token, "xattr")) {
1154 opts->flags |= CGRP_ROOT_XATTR;
1155 continue;
1156 }
1157 if (!strncmp(token, "release_agent=", 14)) {
1158 /* Specifying two release agents is forbidden */
1159 if (opts->release_agent)
1160 return -EINVAL;
1161 opts->release_agent =
1162 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1163 if (!opts->release_agent)
1164 return -ENOMEM;
1165 continue;
1166 }
1167 if (!strncmp(token, "name=", 5)) {
1168 const char *name = token + 5;
1169 /* Can't specify an empty name */
1170 if (!strlen(name))
1171 return -EINVAL;
1172 /* Must match [\w.-]+ */
1173 for (i = 0; i < strlen(name); i++) {
1174 char c = name[i];
1175 if (isalnum(c))
1176 continue;
1177 if ((c == '.') || (c == '-') || (c == '_'))
1178 continue;
1179 return -EINVAL;
1180 }
1181 /* Specifying two names is forbidden */
1182 if (opts->name)
1183 return -EINVAL;
1184 opts->name = kstrndup(name,
1185 MAX_CGROUP_ROOT_NAMELEN - 1,
1186 GFP_KERNEL);
1187 if (!opts->name)
1188 return -ENOMEM;
1189
1190 continue;
1191 }
1192
1193 for_each_subsys(ss, i) {
1194 if (strcmp(token, ss->name))
1195 continue;
1196 if (ss->disabled)
1197 continue;
1198
1199 /* Mutually exclusive option 'all' + subsystem name */
1200 if (all_ss)
1201 return -EINVAL;
1202 set_bit(i, &opts->subsys_mask);
1203 one_ss = true;
1204
1205 break;
1206 }
1207 if (i == CGROUP_SUBSYS_COUNT)
1208 return -ENOENT;
1209 }
1210
1211 /* Consistency checks */
1212
1213 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1214 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1215
1216 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1217 opts->cpuset_clone_children || opts->release_agent ||
1218 opts->name) {
1219 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
1220 return -EINVAL;
1221 }
1222 } else {
1223 /*
1224 * If the 'all' option was specified select all the
1225 * subsystems, otherwise if 'none', 'name=' and a subsystem
1226 * name options were not specified, let's default to 'all'
1227 */
1228 if (all_ss || (!one_ss && !opts->none && !opts->name))
1229 for_each_subsys(ss, i)
1230 if (!ss->disabled)
1231 set_bit(i, &opts->subsys_mask);
1232
1233 /*
1234 * We either have to specify by name or by subsystems. (So
1235 * all empty hierarchies must have a name).
1236 */
1237 if (!opts->subsys_mask && !opts->name)
1238 return -EINVAL;
1239 }
1240
1241 /*
1242 * Option noprefix was introduced just for backward compatibility
1243 * with the old cpuset, so we allow noprefix only if mounting just
1244 * the cpuset subsystem.
1245 */
1246 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1247 return -EINVAL;
1248
1249
1250 /* Can't specify "none" and some subsystems */
1251 if (opts->subsys_mask && opts->none)
1252 return -EINVAL;
1253
1254 return 0;
1255}
1256
1257static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1258{
1259 int ret = 0;
1260 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1261 struct cgroup_sb_opts opts;
1262 unsigned long added_mask, removed_mask;
1263
1264 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1265 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1266 return -EINVAL;
1267 }
1268
1269 mutex_lock(&cgroup_tree_mutex);
1270 mutex_lock(&cgroup_mutex);
1271
1272 /* See what subsystems are wanted */
1273 ret = parse_cgroupfs_options(data, &opts);
1274 if (ret)
1275 goto out_unlock;
1276
1277 if (opts.subsys_mask != root->cgrp.subsys_mask || opts.release_agent)
1278 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1279 task_tgid_nr(current), current->comm);
1280
1281 added_mask = opts.subsys_mask & ~root->cgrp.subsys_mask;
1282 removed_mask = root->cgrp.subsys_mask & ~opts.subsys_mask;
1283
1284 /* Don't allow flags or name to change at remount */
1285 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1286 (opts.name && strcmp(opts.name, root->name))) {
1287 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1288 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1289 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1290 ret = -EINVAL;
1291 goto out_unlock;
1292 }
1293
1294 /* remounting is not allowed for populated hierarchies */
1295 if (!list_empty(&root->cgrp.children)) {
1296 ret = -EBUSY;
1297 goto out_unlock;
1298 }
1299
1300 ret = rebind_subsystems(root, added_mask);
1301 if (ret)
1302 goto out_unlock;
1303
1304 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1305
1306 if (opts.release_agent) {
1307 spin_lock(&release_agent_path_lock);
1308 strcpy(root->release_agent_path, opts.release_agent);
1309 spin_unlock(&release_agent_path_lock);
1310 }
1311 out_unlock:
1312 kfree(opts.release_agent);
1313 kfree(opts.name);
1314 mutex_unlock(&cgroup_mutex);
1315 mutex_unlock(&cgroup_tree_mutex);
1316 return ret;
1317}
1318
1319/*
1320 * To reduce the fork() overhead for systems that are not actually using
1321 * their cgroups capability, we don't maintain the lists running through
1322 * each css_set to its tasks until we see the list actually used - in other
1323 * words after the first mount.
1324 */
1325static bool use_task_css_set_links __read_mostly;
1326
1327static void cgroup_enable_task_cg_lists(void)
1328{
1329 struct task_struct *p, *g;
1330
1331 down_write(&css_set_rwsem);
1332
1333 if (use_task_css_set_links)
1334 goto out_unlock;
1335
1336 use_task_css_set_links = true;
1337
1338 /*
1339 * We need tasklist_lock because RCU is not safe against
1340 * while_each_thread(). Besides, a forking task that has passed
1341 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1342 * is not guaranteed to have its child immediately visible in the
1343 * tasklist if we walk through it with RCU.
1344 */
1345 read_lock(&tasklist_lock);
1346 do_each_thread(g, p) {
1347 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1348 task_css_set(p) != &init_css_set);
1349
1350 /*
1351 * We should check if the process is exiting, otherwise
1352 * it will race with cgroup_exit() in that the list
1353 * entry won't be deleted though the process has exited.
1354 * Do it while holding siglock so that we don't end up
1355 * racing against cgroup_exit().
1356 */
1357 spin_lock_irq(&p->sighand->siglock);
1358 if (!(p->flags & PF_EXITING)) {
1359 struct css_set *cset = task_css_set(p);
1360
1361 list_add(&p->cg_list, &cset->tasks);
1362 get_css_set(cset);
1363 }
1364 spin_unlock_irq(&p->sighand->siglock);
1365 } while_each_thread(g, p);
1366 read_unlock(&tasklist_lock);
1367out_unlock:
1368 up_write(&css_set_rwsem);
1369}
1370
1371static void init_cgroup_housekeeping(struct cgroup *cgrp)
1372{
1373 atomic_set(&cgrp->refcnt, 1);
1374 INIT_LIST_HEAD(&cgrp->sibling);
1375 INIT_LIST_HEAD(&cgrp->children);
1376 INIT_LIST_HEAD(&cgrp->cset_links);
1377 INIT_LIST_HEAD(&cgrp->release_list);
1378 INIT_LIST_HEAD(&cgrp->pidlists);
1379 mutex_init(&cgrp->pidlist_mutex);
1380 cgrp->dummy_css.cgroup = cgrp;
1381}
1382
1383static void init_cgroup_root(struct cgroup_root *root,
1384 struct cgroup_sb_opts *opts)
1385{
1386 struct cgroup *cgrp = &root->cgrp;
1387
1388 INIT_LIST_HEAD(&root->root_list);
1389 atomic_set(&root->nr_cgrps, 1);
1390 cgrp->root = root;
1391 init_cgroup_housekeeping(cgrp);
1392 idr_init(&root->cgroup_idr);
1393
1394 root->flags = opts->flags;
1395 if (opts->release_agent)
1396 strcpy(root->release_agent_path, opts->release_agent);
1397 if (opts->name)
1398 strcpy(root->name, opts->name);
1399 if (opts->cpuset_clone_children)
1400 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1401}
1402
1403static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1404{
1405 LIST_HEAD(tmp_links);
1406 struct cgroup *root_cgrp = &root->cgrp;
1407 struct css_set *cset;
1408 int i, ret;
1409
1410 lockdep_assert_held(&cgroup_tree_mutex);
1411 lockdep_assert_held(&cgroup_mutex);
1412
1413 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1414 if (ret < 0)
1415 goto out;
1416 root_cgrp->id = ret;
1417
1418 /*
1419 * We're accessing css_set_count without locking css_set_rwsem here,
1420 * but that's OK - it can only be increased by someone holding
1421 * cgroup_lock, and that's us. The worst that can happen is that we
1422 * have some link structures left over
1423 */
1424 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1425 if (ret)
1426 goto out;
1427
1428 ret = cgroup_init_root_id(root);
1429 if (ret)
1430 goto out;
1431
1432 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1433 KERNFS_ROOT_CREATE_DEACTIVATED,
1434 root_cgrp);
1435 if (IS_ERR(root->kf_root)) {
1436 ret = PTR_ERR(root->kf_root);
1437 goto exit_root_id;
1438 }
1439 root_cgrp->kn = root->kf_root->kn;
1440
1441 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1442 if (ret)
1443 goto destroy_root;
1444
1445 ret = rebind_subsystems(root, ss_mask);
1446 if (ret)
1447 goto destroy_root;
1448
1449 /*
1450 * There must be no failure case after here, since rebinding takes
1451 * care of subsystems' refcounts, which are explicitly dropped in
1452 * the failure exit path.
1453 */
1454 list_add(&root->root_list, &cgroup_roots);
1455 cgroup_root_count++;
1456
1457 /*
1458 * Link the root cgroup in this hierarchy into all the css_set
1459 * objects.
1460 */
1461 down_write(&css_set_rwsem);
1462 hash_for_each(css_set_table, i, cset, hlist)
1463 link_css_set(&tmp_links, cset, root_cgrp);
1464 up_write(&css_set_rwsem);
1465
1466 BUG_ON(!list_empty(&root_cgrp->children));
1467 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1468
1469 kernfs_activate(root_cgrp->kn);
1470 ret = 0;
1471 goto out;
1472
1473destroy_root:
1474 kernfs_destroy_root(root->kf_root);
1475 root->kf_root = NULL;
1476exit_root_id:
1477 cgroup_exit_root_id(root);
1478out:
1479 free_cgrp_cset_links(&tmp_links);
1480 return ret;
1481}
1482
1483static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1484 int flags, const char *unused_dev_name,
1485 void *data)
1486{
1487 struct cgroup_root *root;
1488 struct cgroup_sb_opts opts;
1489 struct dentry *dentry;
1490 int ret;
1491 bool new_sb;
1492
1493 /*
1494 * The first time anyone tries to mount a cgroup, enable the list
1495 * linking each css_set to its tasks and fix up all existing tasks.
1496 */
1497 if (!use_task_css_set_links)
1498 cgroup_enable_task_cg_lists();
1499
1500 mutex_lock(&cgroup_tree_mutex);
1501 mutex_lock(&cgroup_mutex);
1502
1503 /* First find the desired set of subsystems */
1504 ret = parse_cgroupfs_options(data, &opts);
1505 if (ret)
1506 goto out_unlock;
1507retry:
1508 /* look for a matching existing root */
1509 if (!opts.subsys_mask && !opts.none && !opts.name) {
1510 cgrp_dfl_root_visible = true;
1511 root = &cgrp_dfl_root;
1512 cgroup_get(&root->cgrp);
1513 ret = 0;
1514 goto out_unlock;
1515 }
1516
1517 for_each_root(root) {
1518 bool name_match = false;
1519
1520 if (root == &cgrp_dfl_root)
1521 continue;
1522
1523 /*
1524 * If we asked for a name then it must match. Also, if
1525 * name matches but sybsys_mask doesn't, we should fail.
1526 * Remember whether name matched.
1527 */
1528 if (opts.name) {
1529 if (strcmp(opts.name, root->name))
1530 continue;
1531 name_match = true;
1532 }
1533
1534 /*
1535 * If we asked for subsystems (or explicitly for no
1536 * subsystems) then they must match.
1537 */
1538 if ((opts.subsys_mask || opts.none) &&
1539 (opts.subsys_mask != root->cgrp.subsys_mask)) {
1540 if (!name_match)
1541 continue;
1542 ret = -EBUSY;
1543 goto out_unlock;
1544 }
1545
1546 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1547 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1548 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1549 ret = -EINVAL;
1550 goto out_unlock;
1551 } else {
1552 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1553 }
1554 }
1555
1556 /*
1557 * A root's lifetime is governed by its root cgroup. Zero
1558 * ref indicate that the root is being destroyed. Wait for
1559 * destruction to complete so that the subsystems are free.
1560 * We can use wait_queue for the wait but this path is
1561 * super cold. Let's just sleep for a bit and retry.
1562 */
1563 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
1564 mutex_unlock(&cgroup_mutex);
1565 mutex_unlock(&cgroup_tree_mutex);
1566 msleep(10);
1567 mutex_lock(&cgroup_tree_mutex);
1568 mutex_lock(&cgroup_mutex);
1569 goto retry;
1570 }
1571
1572 ret = 0;
1573 goto out_unlock;
1574 }
1575
1576 /*
1577 * No such thing, create a new one. name= matching without subsys
1578 * specification is allowed for already existing hierarchies but we
1579 * can't create new one without subsys specification.
1580 */
1581 if (!opts.subsys_mask && !opts.none) {
1582 ret = -EINVAL;
1583 goto out_unlock;
1584 }
1585
1586 root = kzalloc(sizeof(*root), GFP_KERNEL);
1587 if (!root) {
1588 ret = -ENOMEM;
1589 goto out_unlock;
1590 }
1591
1592 init_cgroup_root(root, &opts);
1593
1594 ret = cgroup_setup_root(root, opts.subsys_mask);
1595 if (ret)
1596 cgroup_free_root(root);
1597
1598out_unlock:
1599 mutex_unlock(&cgroup_mutex);
1600 mutex_unlock(&cgroup_tree_mutex);
1601
1602 kfree(opts.release_agent);
1603 kfree(opts.name);
1604
1605 if (ret)
1606 return ERR_PTR(ret);
1607
1608 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1609 CGROUP_SUPER_MAGIC, &new_sb);
1610 if (IS_ERR(dentry) || !new_sb)
1611 cgroup_put(&root->cgrp);
1612 return dentry;
1613}
1614
1615static void cgroup_kill_sb(struct super_block *sb)
1616{
1617 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1618 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1619
1620 cgroup_put(&root->cgrp);
1621 kernfs_kill_sb(sb);
1622}
1623
1624static struct file_system_type cgroup_fs_type = {
1625 .name = "cgroup",
1626 .mount = cgroup_mount,
1627 .kill_sb = cgroup_kill_sb,
1628};
1629
1630static struct kobject *cgroup_kobj;
1631
1632/**
1633 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1634 * @task: target task
1635 * @buf: the buffer to write the path into
1636 * @buflen: the length of the buffer
1637 *
1638 * Determine @task's cgroup on the first (the one with the lowest non-zero
1639 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1640 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1641 * cgroup controller callbacks.
1642 *
1643 * Return value is the same as kernfs_path().
1644 */
1645char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1646{
1647 struct cgroup_root *root;
1648 struct cgroup *cgrp;
1649 int hierarchy_id = 1;
1650 char *path = NULL;
1651
1652 mutex_lock(&cgroup_mutex);
1653 down_read(&css_set_rwsem);
1654
1655 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1656
1657 if (root) {
1658 cgrp = task_cgroup_from_root(task, root);
1659 path = cgroup_path(cgrp, buf, buflen);
1660 } else {
1661 /* if no hierarchy exists, everyone is in "/" */
1662 if (strlcpy(buf, "/", buflen) < buflen)
1663 path = buf;
1664 }
1665
1666 up_read(&css_set_rwsem);
1667 mutex_unlock(&cgroup_mutex);
1668 return path;
1669}
1670EXPORT_SYMBOL_GPL(task_cgroup_path);
1671
1672/* used to track tasks and other necessary states during migration */
1673struct cgroup_taskset {
1674 /* the src and dst cset list running through cset->mg_node */
1675 struct list_head src_csets;
1676 struct list_head dst_csets;
1677
1678 /*
1679 * Fields for cgroup_taskset_*() iteration.
1680 *
1681 * Before migration is committed, the target migration tasks are on
1682 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1683 * the csets on ->dst_csets. ->csets point to either ->src_csets
1684 * or ->dst_csets depending on whether migration is committed.
1685 *
1686 * ->cur_csets and ->cur_task point to the current task position
1687 * during iteration.
1688 */
1689 struct list_head *csets;
1690 struct css_set *cur_cset;
1691 struct task_struct *cur_task;
1692};
1693
1694/**
1695 * cgroup_taskset_first - reset taskset and return the first task
1696 * @tset: taskset of interest
1697 *
1698 * @tset iteration is initialized and the first task is returned.
1699 */
1700struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1701{
1702 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1703 tset->cur_task = NULL;
1704
1705 return cgroup_taskset_next(tset);
1706}
1707
1708/**
1709 * cgroup_taskset_next - iterate to the next task in taskset
1710 * @tset: taskset of interest
1711 *
1712 * Return the next task in @tset. Iteration must have been initialized
1713 * with cgroup_taskset_first().
1714 */
1715struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1716{
1717 struct css_set *cset = tset->cur_cset;
1718 struct task_struct *task = tset->cur_task;
1719
1720 while (&cset->mg_node != tset->csets) {
1721 if (!task)
1722 task = list_first_entry(&cset->mg_tasks,
1723 struct task_struct, cg_list);
1724 else
1725 task = list_next_entry(task, cg_list);
1726
1727 if (&task->cg_list != &cset->mg_tasks) {
1728 tset->cur_cset = cset;
1729 tset->cur_task = task;
1730 return task;
1731 }
1732
1733 cset = list_next_entry(cset, mg_node);
1734 task = NULL;
1735 }
1736
1737 return NULL;
1738}
1739
1740/**
1741 * cgroup_task_migrate - move a task from one cgroup to another.
1742 * @old_cgrp; the cgroup @tsk is being migrated from
1743 * @tsk: the task being migrated
1744 * @new_cset: the new css_set @tsk is being attached to
1745 *
1746 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1747 */
1748static void cgroup_task_migrate(struct cgroup *old_cgrp,
1749 struct task_struct *tsk,
1750 struct css_set *new_cset)
1751{
1752 struct css_set *old_cset;
1753
1754 lockdep_assert_held(&cgroup_mutex);
1755 lockdep_assert_held(&css_set_rwsem);
1756
1757 /*
1758 * We are synchronized through threadgroup_lock() against PF_EXITING
1759 * setting such that we can't race against cgroup_exit() changing the
1760 * css_set to init_css_set and dropping the old one.
1761 */
1762 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1763 old_cset = task_css_set(tsk);
1764
1765 get_css_set(new_cset);
1766 rcu_assign_pointer(tsk->cgroups, new_cset);
1767
1768 /*
1769 * Use move_tail so that cgroup_taskset_first() still returns the
1770 * leader after migration. This works because cgroup_migrate()
1771 * ensures that the dst_cset of the leader is the first on the
1772 * tset's dst_csets list.
1773 */
1774 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
1775
1776 /*
1777 * We just gained a reference on old_cset by taking it from the
1778 * task. As trading it for new_cset is protected by cgroup_mutex,
1779 * we're safe to drop it here; it will be freed under RCU.
1780 */
1781 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1782 put_css_set_locked(old_cset, false);
1783}
1784
1785/**
1786 * cgroup_migrate_finish - cleanup after attach
1787 * @preloaded_csets: list of preloaded css_sets
1788 *
1789 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1790 * those functions for details.
1791 */
1792static void cgroup_migrate_finish(struct list_head *preloaded_csets)
1793{
1794 struct css_set *cset, *tmp_cset;
1795
1796 lockdep_assert_held(&cgroup_mutex);
1797
1798 down_write(&css_set_rwsem);
1799 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1800 cset->mg_src_cgrp = NULL;
1801 cset->mg_dst_cset = NULL;
1802 list_del_init(&cset->mg_preload_node);
1803 put_css_set_locked(cset, false);
1804 }
1805 up_write(&css_set_rwsem);
1806}
1807
1808/**
1809 * cgroup_migrate_add_src - add a migration source css_set
1810 * @src_cset: the source css_set to add
1811 * @dst_cgrp: the destination cgroup
1812 * @preloaded_csets: list of preloaded css_sets
1813 *
1814 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1815 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1816 * up by cgroup_migrate_finish().
1817 *
1818 * This function may be called without holding threadgroup_lock even if the
1819 * target is a process. Threads may be created and destroyed but as long
1820 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1821 * the preloaded css_sets are guaranteed to cover all migrations.
1822 */
1823static void cgroup_migrate_add_src(struct css_set *src_cset,
1824 struct cgroup *dst_cgrp,
1825 struct list_head *preloaded_csets)
1826{
1827 struct cgroup *src_cgrp;
1828
1829 lockdep_assert_held(&cgroup_mutex);
1830 lockdep_assert_held(&css_set_rwsem);
1831
1832 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1833
1834 /* nothing to do if this cset already belongs to the cgroup */
1835 if (src_cgrp == dst_cgrp)
1836 return;
1837
1838 if (!list_empty(&src_cset->mg_preload_node))
1839 return;
1840
1841 WARN_ON(src_cset->mg_src_cgrp);
1842 WARN_ON(!list_empty(&src_cset->mg_tasks));
1843 WARN_ON(!list_empty(&src_cset->mg_node));
1844
1845 src_cset->mg_src_cgrp = src_cgrp;
1846 get_css_set(src_cset);
1847 list_add(&src_cset->mg_preload_node, preloaded_csets);
1848}
1849
1850/**
1851 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1852 * @dst_cgrp: the destination cgroup
1853 * @preloaded_csets: list of preloaded source css_sets
1854 *
1855 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1856 * have been preloaded to @preloaded_csets. This function looks up and
1857 * pins all destination css_sets, links each to its source, and put them on
1858 * @preloaded_csets.
1859 *
1860 * This function must be called after cgroup_migrate_add_src() has been
1861 * called on each migration source css_set. After migration is performed
1862 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1863 * @preloaded_csets.
1864 */
1865static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1866 struct list_head *preloaded_csets)
1867{
1868 LIST_HEAD(csets);
1869 struct css_set *src_cset;
1870
1871 lockdep_assert_held(&cgroup_mutex);
1872
1873 /* look up the dst cset for each src cset and link it to src */
1874 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1875 struct css_set *dst_cset;
1876
1877 dst_cset = find_css_set(src_cset, dst_cgrp);
1878 if (!dst_cset)
1879 goto err;
1880
1881 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1882 src_cset->mg_dst_cset = dst_cset;
1883
1884 if (list_empty(&dst_cset->mg_preload_node))
1885 list_add(&dst_cset->mg_preload_node, &csets);
1886 else
1887 put_css_set(dst_cset, false);
1888 }
1889
1890 list_splice(&csets, preloaded_csets);
1891 return 0;
1892err:
1893 cgroup_migrate_finish(&csets);
1894 return -ENOMEM;
1895}
1896
1897/**
1898 * cgroup_migrate - migrate a process or task to a cgroup
1899 * @cgrp: the destination cgroup
1900 * @leader: the leader of the process or the task to migrate
1901 * @threadgroup: whether @leader points to the whole process or a single task
1902 *
1903 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1904 * process, the caller must be holding threadgroup_lock of @leader. The
1905 * caller is also responsible for invoking cgroup_migrate_add_src() and
1906 * cgroup_migrate_prepare_dst() on the targets before invoking this
1907 * function and following up with cgroup_migrate_finish().
1908 *
1909 * As long as a controller's ->can_attach() doesn't fail, this function is
1910 * guaranteed to succeed. This means that, excluding ->can_attach()
1911 * failure, when migrating multiple targets, the success or failure can be
1912 * decided for all targets by invoking group_migrate_prepare_dst() before
1913 * actually starting migrating.
1914 */
1915static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1916 bool threadgroup)
1917{
1918 struct cgroup_taskset tset = {
1919 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1920 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1921 .csets = &tset.src_csets,
1922 };
1923 struct cgroup_subsys_state *css, *failed_css = NULL;
1924 struct css_set *cset, *tmp_cset;
1925 struct task_struct *task, *tmp_task;
1926 int i, ret;
1927
1928 /*
1929 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1930 * already PF_EXITING could be freed from underneath us unless we
1931 * take an rcu_read_lock.
1932 */
1933 down_write(&css_set_rwsem);
1934 rcu_read_lock();
1935 task = leader;
1936 do {
1937 /* @task either already exited or can't exit until the end */
1938 if (task->flags & PF_EXITING)
1939 goto next;
1940
1941 /* leave @task alone if post_fork() hasn't linked it yet */
1942 if (list_empty(&task->cg_list))
1943 goto next;
1944
1945 cset = task_css_set(task);
1946 if (!cset->mg_src_cgrp)
1947 goto next;
1948
1949 /*
1950 * cgroup_taskset_first() must always return the leader.
1951 * Take care to avoid disturbing the ordering.
1952 */
1953 list_move_tail(&task->cg_list, &cset->mg_tasks);
1954 if (list_empty(&cset->mg_node))
1955 list_add_tail(&cset->mg_node, &tset.src_csets);
1956 if (list_empty(&cset->mg_dst_cset->mg_node))
1957 list_move_tail(&cset->mg_dst_cset->mg_node,
1958 &tset.dst_csets);
1959 next:
1960 if (!threadgroup)
1961 break;
1962 } while_each_thread(leader, task);
1963 rcu_read_unlock();
1964 up_write(&css_set_rwsem);
1965
1966 /* methods shouldn't be called if no task is actually migrating */
1967 if (list_empty(&tset.src_csets))
1968 return 0;
1969
1970 /* check that we can legitimately attach to the cgroup */
1971 for_each_css(css, i, cgrp) {
1972 if (css->ss->can_attach) {
1973 ret = css->ss->can_attach(css, &tset);
1974 if (ret) {
1975 failed_css = css;
1976 goto out_cancel_attach;
1977 }
1978 }
1979 }
1980
1981 /*
1982 * Now that we're guaranteed success, proceed to move all tasks to
1983 * the new cgroup. There are no failure cases after here, so this
1984 * is the commit point.
1985 */
1986 down_write(&css_set_rwsem);
1987 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1988 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1989 cgroup_task_migrate(cset->mg_src_cgrp, task,
1990 cset->mg_dst_cset);
1991 }
1992 up_write(&css_set_rwsem);
1993
1994 /*
1995 * Migration is committed, all target tasks are now on dst_csets.
1996 * Nothing is sensitive to fork() after this point. Notify
1997 * controllers that migration is complete.
1998 */
1999 tset.csets = &tset.dst_csets;
2000
2001 for_each_css(css, i, cgrp)
2002 if (css->ss->attach)
2003 css->ss->attach(css, &tset);
2004
2005 ret = 0;
2006 goto out_release_tset;
2007
2008out_cancel_attach:
2009 for_each_css(css, i, cgrp) {
2010 if (css == failed_css)
2011 break;
2012 if (css->ss->cancel_attach)
2013 css->ss->cancel_attach(css, &tset);
2014 }
2015out_release_tset:
2016 down_write(&css_set_rwsem);
2017 list_splice_init(&tset.dst_csets, &tset.src_csets);
2018 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2019 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2020 list_del_init(&cset->mg_node);
2021 }
2022 up_write(&css_set_rwsem);
2023 return ret;
2024}
2025
2026/**
2027 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2028 * @dst_cgrp: the cgroup to attach to
2029 * @leader: the task or the leader of the threadgroup to be attached
2030 * @threadgroup: attach the whole threadgroup?
2031 *
2032 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2033 */
2034static int cgroup_attach_task(struct cgroup *dst_cgrp,
2035 struct task_struct *leader, bool threadgroup)
2036{
2037 LIST_HEAD(preloaded_csets);
2038 struct task_struct *task;
2039 int ret;
2040
2041 /* look up all src csets */
2042 down_read(&css_set_rwsem);
2043 rcu_read_lock();
2044 task = leader;
2045 do {
2046 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2047 &preloaded_csets);
2048 if (!threadgroup)
2049 break;
2050 } while_each_thread(leader, task);
2051 rcu_read_unlock();
2052 up_read(&css_set_rwsem);
2053
2054 /* prepare dst csets and commit */
2055 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2056 if (!ret)
2057 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2058
2059 cgroup_migrate_finish(&preloaded_csets);
2060 return ret;
2061}
2062
2063/*
2064 * Find the task_struct of the task to attach by vpid and pass it along to the
2065 * function to attach either it or all tasks in its threadgroup. Will lock
2066 * cgroup_mutex and threadgroup.
2067 */
2068static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2069{
2070 struct task_struct *tsk;
2071 const struct cred *cred = current_cred(), *tcred;
2072 int ret;
2073
2074 if (!cgroup_lock_live_group(cgrp))
2075 return -ENODEV;
2076
2077retry_find_task:
2078 rcu_read_lock();
2079 if (pid) {
2080 tsk = find_task_by_vpid(pid);
2081 if (!tsk) {
2082 rcu_read_unlock();
2083 ret = -ESRCH;
2084 goto out_unlock_cgroup;
2085 }
2086 /*
2087 * even if we're attaching all tasks in the thread group, we
2088 * only need to check permissions on one of them.
2089 */
2090 tcred = __task_cred(tsk);
2091 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2092 !uid_eq(cred->euid, tcred->uid) &&
2093 !uid_eq(cred->euid, tcred->suid)) {
2094 rcu_read_unlock();
2095 ret = -EACCES;
2096 goto out_unlock_cgroup;
2097 }
2098 } else
2099 tsk = current;
2100
2101 if (threadgroup)
2102 tsk = tsk->group_leader;
2103
2104 /*
2105 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2106 * trapped in a cpuset, or RT worker may be born in a cgroup
2107 * with no rt_runtime allocated. Just say no.
2108 */
2109 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2110 ret = -EINVAL;
2111 rcu_read_unlock();
2112 goto out_unlock_cgroup;
2113 }
2114
2115 get_task_struct(tsk);
2116 rcu_read_unlock();
2117
2118 threadgroup_lock(tsk);
2119 if (threadgroup) {
2120 if (!thread_group_leader(tsk)) {
2121 /*
2122 * a race with de_thread from another thread's exec()
2123 * may strip us of our leadership, if this happens,
2124 * there is no choice but to throw this task away and
2125 * try again; this is
2126 * "double-double-toil-and-trouble-check locking".
2127 */
2128 threadgroup_unlock(tsk);
2129 put_task_struct(tsk);
2130 goto retry_find_task;
2131 }
2132 }
2133
2134 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2135
2136 threadgroup_unlock(tsk);
2137
2138 put_task_struct(tsk);
2139out_unlock_cgroup:
2140 mutex_unlock(&cgroup_mutex);
2141 return ret;
2142}
2143
2144/**
2145 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2146 * @from: attach to all cgroups of a given task
2147 * @tsk: the task to be attached
2148 */
2149int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2150{
2151 struct cgroup_root *root;
2152 int retval = 0;
2153
2154 mutex_lock(&cgroup_mutex);
2155 for_each_root(root) {
2156 struct cgroup *from_cgrp;
2157
2158 if (root == &cgrp_dfl_root)
2159 continue;
2160
2161 down_read(&css_set_rwsem);
2162 from_cgrp = task_cgroup_from_root(from, root);
2163 up_read(&css_set_rwsem);
2164
2165 retval = cgroup_attach_task(from_cgrp, tsk, false);
2166 if (retval)
2167 break;
2168 }
2169 mutex_unlock(&cgroup_mutex);
2170
2171 return retval;
2172}
2173EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2174
2175static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2176 struct cftype *cft, u64 pid)
2177{
2178 return attach_task_by_pid(css->cgroup, pid, false);
2179}
2180
2181static int cgroup_procs_write(struct cgroup_subsys_state *css,
2182 struct cftype *cft, u64 tgid)
2183{
2184 return attach_task_by_pid(css->cgroup, tgid, true);
2185}
2186
2187static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2188 struct cftype *cft, char *buffer)
2189{
2190 struct cgroup_root *root = css->cgroup->root;
2191
2192 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
2193 if (!cgroup_lock_live_group(css->cgroup))
2194 return -ENODEV;
2195 spin_lock(&release_agent_path_lock);
2196 strlcpy(root->release_agent_path, buffer,
2197 sizeof(root->release_agent_path));
2198 spin_unlock(&release_agent_path_lock);
2199 mutex_unlock(&cgroup_mutex);
2200 return 0;
2201}
2202
2203static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2204{
2205 struct cgroup *cgrp = seq_css(seq)->cgroup;
2206
2207 if (!cgroup_lock_live_group(cgrp))
2208 return -ENODEV;
2209 seq_puts(seq, cgrp->root->release_agent_path);
2210 seq_putc(seq, '\n');
2211 mutex_unlock(&cgroup_mutex);
2212 return 0;
2213}
2214
2215static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2216{
2217 struct cgroup *cgrp = seq_css(seq)->cgroup;
2218
2219 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2220 return 0;
2221}
2222
2223static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2224 size_t nbytes, loff_t off)
2225{
2226 struct cgroup *cgrp = of->kn->parent->priv;
2227 struct cftype *cft = of->kn->priv;
2228 struct cgroup_subsys_state *css;
2229 int ret;
2230
2231 /*
2232 * kernfs guarantees that a file isn't deleted with operations in
2233 * flight, which means that the matching css is and stays alive and
2234 * doesn't need to be pinned. The RCU locking is not necessary
2235 * either. It's just for the convenience of using cgroup_css().
2236 */
2237 rcu_read_lock();
2238 css = cgroup_css(cgrp, cft->ss);
2239 rcu_read_unlock();
2240
2241 if (cft->write_string) {
2242 ret = cft->write_string(css, cft, strstrip(buf));
2243 } else if (cft->write_u64) {
2244 unsigned long long v;
2245 ret = kstrtoull(buf, 0, &v);
2246 if (!ret)
2247 ret = cft->write_u64(css, cft, v);
2248 } else if (cft->write_s64) {
2249 long long v;
2250 ret = kstrtoll(buf, 0, &v);
2251 if (!ret)
2252 ret = cft->write_s64(css, cft, v);
2253 } else if (cft->trigger) {
2254 ret = cft->trigger(css, (unsigned int)cft->private);
2255 } else {
2256 ret = -EINVAL;
2257 }
2258
2259 return ret ?: nbytes;
2260}
2261
2262static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2263{
2264 return seq_cft(seq)->seq_start(seq, ppos);
2265}
2266
2267static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2268{
2269 return seq_cft(seq)->seq_next(seq, v, ppos);
2270}
2271
2272static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2273{
2274 seq_cft(seq)->seq_stop(seq, v);
2275}
2276
2277static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2278{
2279 struct cftype *cft = seq_cft(m);
2280 struct cgroup_subsys_state *css = seq_css(m);
2281
2282 if (cft->seq_show)
2283 return cft->seq_show(m, arg);
2284
2285 if (cft->read_u64)
2286 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2287 else if (cft->read_s64)
2288 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2289 else
2290 return -EINVAL;
2291 return 0;
2292}
2293
2294static struct kernfs_ops cgroup_kf_single_ops = {
2295 .atomic_write_len = PAGE_SIZE,
2296 .write = cgroup_file_write,
2297 .seq_show = cgroup_seqfile_show,
2298};
2299
2300static struct kernfs_ops cgroup_kf_ops = {
2301 .atomic_write_len = PAGE_SIZE,
2302 .write = cgroup_file_write,
2303 .seq_start = cgroup_seqfile_start,
2304 .seq_next = cgroup_seqfile_next,
2305 .seq_stop = cgroup_seqfile_stop,
2306 .seq_show = cgroup_seqfile_show,
2307};
2308
2309/*
2310 * cgroup_rename - Only allow simple rename of directories in place.
2311 */
2312static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2313 const char *new_name_str)
2314{
2315 struct cgroup *cgrp = kn->priv;
2316 int ret;
2317
2318 if (kernfs_type(kn) != KERNFS_DIR)
2319 return -ENOTDIR;
2320 if (kn->parent != new_parent)
2321 return -EIO;
2322
2323 /*
2324 * This isn't a proper migration and its usefulness is very
2325 * limited. Disallow if sane_behavior.
2326 */
2327 if (cgroup_sane_behavior(cgrp))
2328 return -EPERM;
2329
2330 /*
2331 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2332 * active_ref. kernfs_rename() doesn't require active_ref
2333 * protection. Break them before grabbing cgroup_tree_mutex.
2334 */
2335 kernfs_break_active_protection(new_parent);
2336 kernfs_break_active_protection(kn);
2337
2338 mutex_lock(&cgroup_tree_mutex);
2339 mutex_lock(&cgroup_mutex);
2340
2341 ret = kernfs_rename(kn, new_parent, new_name_str);
2342
2343 mutex_unlock(&cgroup_mutex);
2344 mutex_unlock(&cgroup_tree_mutex);
2345
2346 kernfs_unbreak_active_protection(kn);
2347 kernfs_unbreak_active_protection(new_parent);
2348 return ret;
2349}
2350
2351/* set uid and gid of cgroup dirs and files to that of the creator */
2352static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2353{
2354 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2355 .ia_uid = current_fsuid(),
2356 .ia_gid = current_fsgid(), };
2357
2358 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2359 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2360 return 0;
2361
2362 return kernfs_setattr(kn, &iattr);
2363}
2364
2365static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2366{
2367 char name[CGROUP_FILE_NAME_MAX];
2368 struct kernfs_node *kn;
2369 struct lock_class_key *key = NULL;
2370 int ret;
2371
2372#ifdef CONFIG_DEBUG_LOCK_ALLOC
2373 key = &cft->lockdep_key;
2374#endif
2375 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2376 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2377 NULL, false, key);
2378 if (IS_ERR(kn))
2379 return PTR_ERR(kn);
2380
2381 ret = cgroup_kn_set_ugid(kn);
2382 if (ret)
2383 kernfs_remove(kn);
2384 return ret;
2385}
2386
2387/**
2388 * cgroup_addrm_files - add or remove files to a cgroup directory
2389 * @cgrp: the target cgroup
2390 * @cfts: array of cftypes to be added
2391 * @is_add: whether to add or remove
2392 *
2393 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2394 * For removals, this function never fails. If addition fails, this
2395 * function doesn't remove files already added. The caller is responsible
2396 * for cleaning up.
2397 */
2398static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2399 bool is_add)
2400{
2401 struct cftype *cft;
2402 int ret;
2403
2404 lockdep_assert_held(&cgroup_tree_mutex);
2405
2406 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2407 /* does cft->flags tell us to skip this file on @cgrp? */
2408 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2409 continue;
2410 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2411 continue;
2412 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2413 continue;
2414 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2415 continue;
2416
2417 if (is_add) {
2418 ret = cgroup_add_file(cgrp, cft);
2419 if (ret) {
2420 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2421 cft->name, ret);
2422 return ret;
2423 }
2424 } else {
2425 cgroup_rm_file(cgrp, cft);
2426 }
2427 }
2428 return 0;
2429}
2430
2431static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
2432{
2433 LIST_HEAD(pending);
2434 struct cgroup_subsys *ss = cfts[0].ss;
2435 struct cgroup *root = &ss->root->cgrp;
2436 struct cgroup_subsys_state *css;
2437 int ret = 0;
2438
2439 lockdep_assert_held(&cgroup_tree_mutex);
2440
2441 /* don't bother if @ss isn't attached */
2442 if (ss->root == &cgrp_dfl_root)
2443 return 0;
2444
2445 /* add/rm files for all cgroups created before */
2446 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2447 struct cgroup *cgrp = css->cgroup;
2448
2449 if (cgroup_is_dead(cgrp))
2450 continue;
2451
2452 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2453 if (ret)
2454 break;
2455 }
2456
2457 if (is_add && !ret)
2458 kernfs_activate(root->kn);
2459 return ret;
2460}
2461
2462static void cgroup_exit_cftypes(struct cftype *cfts)
2463{
2464 struct cftype *cft;
2465
2466 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2467 /* free copy for custom atomic_write_len, see init_cftypes() */
2468 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2469 kfree(cft->kf_ops);
2470 cft->kf_ops = NULL;
2471 cft->ss = NULL;
2472 }
2473}
2474
2475static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2476{
2477 struct cftype *cft;
2478
2479 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2480 struct kernfs_ops *kf_ops;
2481
2482 WARN_ON(cft->ss || cft->kf_ops);
2483
2484 if (cft->seq_start)
2485 kf_ops = &cgroup_kf_ops;
2486 else
2487 kf_ops = &cgroup_kf_single_ops;
2488
2489 /*
2490 * Ugh... if @cft wants a custom max_write_len, we need to
2491 * make a copy of kf_ops to set its atomic_write_len.
2492 */
2493 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2494 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2495 if (!kf_ops) {
2496 cgroup_exit_cftypes(cfts);
2497 return -ENOMEM;
2498 }
2499 kf_ops->atomic_write_len = cft->max_write_len;
2500 }
2501
2502 cft->kf_ops = kf_ops;
2503 cft->ss = ss;
2504 }
2505
2506 return 0;
2507}
2508
2509static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2510{
2511 lockdep_assert_held(&cgroup_tree_mutex);
2512
2513 if (!cfts || !cfts[0].ss)
2514 return -ENOENT;
2515
2516 list_del(&cfts->node);
2517 cgroup_apply_cftypes(cfts, false);
2518 cgroup_exit_cftypes(cfts);
2519 return 0;
2520}
2521
2522/**
2523 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2524 * @cfts: zero-length name terminated array of cftypes
2525 *
2526 * Unregister @cfts. Files described by @cfts are removed from all
2527 * existing cgroups and all future cgroups won't have them either. This
2528 * function can be called anytime whether @cfts' subsys is attached or not.
2529 *
2530 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2531 * registered.
2532 */
2533int cgroup_rm_cftypes(struct cftype *cfts)
2534{
2535 int ret;
2536
2537 mutex_lock(&cgroup_tree_mutex);
2538 ret = cgroup_rm_cftypes_locked(cfts);
2539 mutex_unlock(&cgroup_tree_mutex);
2540 return ret;
2541}
2542
2543/**
2544 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2545 * @ss: target cgroup subsystem
2546 * @cfts: zero-length name terminated array of cftypes
2547 *
2548 * Register @cfts to @ss. Files described by @cfts are created for all
2549 * existing cgroups to which @ss is attached and all future cgroups will
2550 * have them too. This function can be called anytime whether @ss is
2551 * attached or not.
2552 *
2553 * Returns 0 on successful registration, -errno on failure. Note that this
2554 * function currently returns 0 as long as @cfts registration is successful
2555 * even if some file creation attempts on existing cgroups fail.
2556 */
2557int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2558{
2559 int ret;
2560
2561 if (!cfts || cfts[0].name[0] == '\0')
2562 return 0;
2563
2564 ret = cgroup_init_cftypes(ss, cfts);
2565 if (ret)
2566 return ret;
2567
2568 mutex_lock(&cgroup_tree_mutex);
2569
2570 list_add_tail(&cfts->node, &ss->cfts);
2571 ret = cgroup_apply_cftypes(cfts, true);
2572 if (ret)
2573 cgroup_rm_cftypes_locked(cfts);
2574
2575 mutex_unlock(&cgroup_tree_mutex);
2576 return ret;
2577}
2578
2579/**
2580 * cgroup_task_count - count the number of tasks in a cgroup.
2581 * @cgrp: the cgroup in question
2582 *
2583 * Return the number of tasks in the cgroup.
2584 */
2585static int cgroup_task_count(const struct cgroup *cgrp)
2586{
2587 int count = 0;
2588 struct cgrp_cset_link *link;
2589
2590 down_read(&css_set_rwsem);
2591 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2592 count += atomic_read(&link->cset->refcount);
2593 up_read(&css_set_rwsem);
2594 return count;
2595}
2596
2597/**
2598 * css_next_child - find the next child of a given css
2599 * @pos_css: the current position (%NULL to initiate traversal)
2600 * @parent_css: css whose children to walk
2601 *
2602 * This function returns the next child of @parent_css and should be called
2603 * under either cgroup_mutex or RCU read lock. The only requirement is
2604 * that @parent_css and @pos_css are accessible. The next sibling is
2605 * guaranteed to be returned regardless of their states.
2606 */
2607struct cgroup_subsys_state *
2608css_next_child(struct cgroup_subsys_state *pos_css,
2609 struct cgroup_subsys_state *parent_css)
2610{
2611 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2612 struct cgroup *cgrp = parent_css->cgroup;
2613 struct cgroup *next;
2614
2615 cgroup_assert_mutexes_or_rcu_locked();
2616
2617 /*
2618 * @pos could already have been removed. Once a cgroup is removed,
2619 * its ->sibling.next is no longer updated when its next sibling
2620 * changes. As CGRP_DEAD assertion is serialized and happens
2621 * before the cgroup is taken off the ->sibling list, if we see it
2622 * unasserted, it's guaranteed that the next sibling hasn't
2623 * finished its grace period even if it's already removed, and thus
2624 * safe to dereference from this RCU critical section. If
2625 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2626 * to be visible as %true here.
2627 *
2628 * If @pos is dead, its next pointer can't be dereferenced;
2629 * however, as each cgroup is given a monotonically increasing
2630 * unique serial number and always appended to the sibling list,
2631 * the next one can be found by walking the parent's children until
2632 * we see a cgroup with higher serial number than @pos's. While
2633 * this path can be slower, it's taken only when either the current
2634 * cgroup is removed or iteration and removal race.
2635 */
2636 if (!pos) {
2637 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2638 } else if (likely(!cgroup_is_dead(pos))) {
2639 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
2640 } else {
2641 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2642 if (next->serial_nr > pos->serial_nr)
2643 break;
2644 }
2645
2646 if (&next->sibling == &cgrp->children)
2647 return NULL;
2648
2649 return cgroup_css(next, parent_css->ss);
2650}
2651
2652/**
2653 * css_next_descendant_pre - find the next descendant for pre-order walk
2654 * @pos: the current position (%NULL to initiate traversal)
2655 * @root: css whose descendants to walk
2656 *
2657 * To be used by css_for_each_descendant_pre(). Find the next descendant
2658 * to visit for pre-order traversal of @root's descendants. @root is
2659 * included in the iteration and the first node to be visited.
2660 *
2661 * While this function requires cgroup_mutex or RCU read locking, it
2662 * doesn't require the whole traversal to be contained in a single critical
2663 * section. This function will return the correct next descendant as long
2664 * as both @pos and @root are accessible and @pos is a descendant of @root.
2665 */
2666struct cgroup_subsys_state *
2667css_next_descendant_pre(struct cgroup_subsys_state *pos,
2668 struct cgroup_subsys_state *root)
2669{
2670 struct cgroup_subsys_state *next;
2671
2672 cgroup_assert_mutexes_or_rcu_locked();
2673
2674 /* if first iteration, visit @root */
2675 if (!pos)
2676 return root;
2677
2678 /* visit the first child if exists */
2679 next = css_next_child(NULL, pos);
2680 if (next)
2681 return next;
2682
2683 /* no child, visit my or the closest ancestor's next sibling */
2684 while (pos != root) {
2685 next = css_next_child(pos, css_parent(pos));
2686 if (next)
2687 return next;
2688 pos = css_parent(pos);
2689 }
2690
2691 return NULL;
2692}
2693
2694/**
2695 * css_rightmost_descendant - return the rightmost descendant of a css
2696 * @pos: css of interest
2697 *
2698 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2699 * is returned. This can be used during pre-order traversal to skip
2700 * subtree of @pos.
2701 *
2702 * While this function requires cgroup_mutex or RCU read locking, it
2703 * doesn't require the whole traversal to be contained in a single critical
2704 * section. This function will return the correct rightmost descendant as
2705 * long as @pos is accessible.
2706 */
2707struct cgroup_subsys_state *
2708css_rightmost_descendant(struct cgroup_subsys_state *pos)
2709{
2710 struct cgroup_subsys_state *last, *tmp;
2711
2712 cgroup_assert_mutexes_or_rcu_locked();
2713
2714 do {
2715 last = pos;
2716 /* ->prev isn't RCU safe, walk ->next till the end */
2717 pos = NULL;
2718 css_for_each_child(tmp, last)
2719 pos = tmp;
2720 } while (pos);
2721
2722 return last;
2723}
2724
2725static struct cgroup_subsys_state *
2726css_leftmost_descendant(struct cgroup_subsys_state *pos)
2727{
2728 struct cgroup_subsys_state *last;
2729
2730 do {
2731 last = pos;
2732 pos = css_next_child(NULL, pos);
2733 } while (pos);
2734
2735 return last;
2736}
2737
2738/**
2739 * css_next_descendant_post - find the next descendant for post-order walk
2740 * @pos: the current position (%NULL to initiate traversal)
2741 * @root: css whose descendants to walk
2742 *
2743 * To be used by css_for_each_descendant_post(). Find the next descendant
2744 * to visit for post-order traversal of @root's descendants. @root is
2745 * included in the iteration and the last node to be visited.
2746 *
2747 * While this function requires cgroup_mutex or RCU read locking, it
2748 * doesn't require the whole traversal to be contained in a single critical
2749 * section. This function will return the correct next descendant as long
2750 * as both @pos and @cgroup are accessible and @pos is a descendant of
2751 * @cgroup.
2752 */
2753struct cgroup_subsys_state *
2754css_next_descendant_post(struct cgroup_subsys_state *pos,
2755 struct cgroup_subsys_state *root)
2756{
2757 struct cgroup_subsys_state *next;
2758
2759 cgroup_assert_mutexes_or_rcu_locked();
2760
2761 /* if first iteration, visit leftmost descendant which may be @root */
2762 if (!pos)
2763 return css_leftmost_descendant(root);
2764
2765 /* if we visited @root, we're done */
2766 if (pos == root)
2767 return NULL;
2768
2769 /* if there's an unvisited sibling, visit its leftmost descendant */
2770 next = css_next_child(pos, css_parent(pos));
2771 if (next)
2772 return css_leftmost_descendant(next);
2773
2774 /* no sibling left, visit parent */
2775 return css_parent(pos);
2776}
2777
2778/**
2779 * css_advance_task_iter - advance a task itererator to the next css_set
2780 * @it: the iterator to advance
2781 *
2782 * Advance @it to the next css_set to walk.
2783 */
2784static void css_advance_task_iter(struct css_task_iter *it)
2785{
2786 struct list_head *l = it->cset_link;
2787 struct cgrp_cset_link *link;
2788 struct css_set *cset;
2789
2790 /* Advance to the next non-empty css_set */
2791 do {
2792 l = l->next;
2793 if (l == &it->origin_css->cgroup->cset_links) {
2794 it->cset_link = NULL;
2795 return;
2796 }
2797 link = list_entry(l, struct cgrp_cset_link, cset_link);
2798 cset = link->cset;
2799 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2800
2801 it->cset_link = l;
2802
2803 if (!list_empty(&cset->tasks))
2804 it->task = cset->tasks.next;
2805 else
2806 it->task = cset->mg_tasks.next;
2807}
2808
2809/**
2810 * css_task_iter_start - initiate task iteration
2811 * @css: the css to walk tasks of
2812 * @it: the task iterator to use
2813 *
2814 * Initiate iteration through the tasks of @css. The caller can call
2815 * css_task_iter_next() to walk through the tasks until the function
2816 * returns NULL. On completion of iteration, css_task_iter_end() must be
2817 * called.
2818 *
2819 * Note that this function acquires a lock which is released when the
2820 * iteration finishes. The caller can't sleep while iteration is in
2821 * progress.
2822 */
2823void css_task_iter_start(struct cgroup_subsys_state *css,
2824 struct css_task_iter *it)
2825 __acquires(css_set_rwsem)
2826{
2827 /* no one should try to iterate before mounting cgroups */
2828 WARN_ON_ONCE(!use_task_css_set_links);
2829
2830 down_read(&css_set_rwsem);
2831
2832 it->origin_css = css;
2833 it->cset_link = &css->cgroup->cset_links;
2834
2835 css_advance_task_iter(it);
2836}
2837
2838/**
2839 * css_task_iter_next - return the next task for the iterator
2840 * @it: the task iterator being iterated
2841 *
2842 * The "next" function for task iteration. @it should have been
2843 * initialized via css_task_iter_start(). Returns NULL when the iteration
2844 * reaches the end.
2845 */
2846struct task_struct *css_task_iter_next(struct css_task_iter *it)
2847{
2848 struct task_struct *res;
2849 struct list_head *l = it->task;
2850 struct cgrp_cset_link *link = list_entry(it->cset_link,
2851 struct cgrp_cset_link, cset_link);
2852
2853 /* If the iterator cg is NULL, we have no tasks */
2854 if (!it->cset_link)
2855 return NULL;
2856 res = list_entry(l, struct task_struct, cg_list);
2857
2858 /*
2859 * Advance iterator to find next entry. cset->tasks is consumed
2860 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2861 * next cset.
2862 */
2863 l = l->next;
2864
2865 if (l == &link->cset->tasks)
2866 l = link->cset->mg_tasks.next;
2867
2868 if (l == &link->cset->mg_tasks)
2869 css_advance_task_iter(it);
2870 else
2871 it->task = l;
2872
2873 return res;
2874}
2875
2876/**
2877 * css_task_iter_end - finish task iteration
2878 * @it: the task iterator to finish
2879 *
2880 * Finish task iteration started by css_task_iter_start().
2881 */
2882void css_task_iter_end(struct css_task_iter *it)
2883 __releases(css_set_rwsem)
2884{
2885 up_read(&css_set_rwsem);
2886}
2887
2888/**
2889 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2890 * @to: cgroup to which the tasks will be moved
2891 * @from: cgroup in which the tasks currently reside
2892 *
2893 * Locking rules between cgroup_post_fork() and the migration path
2894 * guarantee that, if a task is forking while being migrated, the new child
2895 * is guaranteed to be either visible in the source cgroup after the
2896 * parent's migration is complete or put into the target cgroup. No task
2897 * can slip out of migration through forking.
2898 */
2899int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2900{
2901 LIST_HEAD(preloaded_csets);
2902 struct cgrp_cset_link *link;
2903 struct css_task_iter it;
2904 struct task_struct *task;
2905 int ret;
2906
2907 mutex_lock(&cgroup_mutex);
2908
2909 /* all tasks in @from are being moved, all csets are source */
2910 down_read(&css_set_rwsem);
2911 list_for_each_entry(link, &from->cset_links, cset_link)
2912 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2913 up_read(&css_set_rwsem);
2914
2915 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2916 if (ret)
2917 goto out_err;
2918
2919 /*
2920 * Migrate tasks one-by-one until @form is empty. This fails iff
2921 * ->can_attach() fails.
2922 */
2923 do {
2924 css_task_iter_start(&from->dummy_css, &it);
2925 task = css_task_iter_next(&it);
2926 if (task)
2927 get_task_struct(task);
2928 css_task_iter_end(&it);
2929
2930 if (task) {
2931 ret = cgroup_migrate(to, task, false);
2932 put_task_struct(task);
2933 }
2934 } while (task && !ret);
2935out_err:
2936 cgroup_migrate_finish(&preloaded_csets);
2937 mutex_unlock(&cgroup_mutex);
2938 return ret;
2939}
2940
2941/*
2942 * Stuff for reading the 'tasks'/'procs' files.
2943 *
2944 * Reading this file can return large amounts of data if a cgroup has
2945 * *lots* of attached tasks. So it may need several calls to read(),
2946 * but we cannot guarantee that the information we produce is correct
2947 * unless we produce it entirely atomically.
2948 *
2949 */
2950
2951/* which pidlist file are we talking about? */
2952enum cgroup_filetype {
2953 CGROUP_FILE_PROCS,
2954 CGROUP_FILE_TASKS,
2955};
2956
2957/*
2958 * A pidlist is a list of pids that virtually represents the contents of one
2959 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2960 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2961 * to the cgroup.
2962 */
2963struct cgroup_pidlist {
2964 /*
2965 * used to find which pidlist is wanted. doesn't change as long as
2966 * this particular list stays in the list.
2967 */
2968 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2969 /* array of xids */
2970 pid_t *list;
2971 /* how many elements the above list has */
2972 int length;
2973 /* each of these stored in a list by its cgroup */
2974 struct list_head links;
2975 /* pointer to the cgroup we belong to, for list removal purposes */
2976 struct cgroup *owner;
2977 /* for delayed destruction */
2978 struct delayed_work destroy_dwork;
2979};
2980
2981/*
2982 * The following two functions "fix" the issue where there are more pids
2983 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2984 * TODO: replace with a kernel-wide solution to this problem
2985 */
2986#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2987static void *pidlist_allocate(int count)
2988{
2989 if (PIDLIST_TOO_LARGE(count))
2990 return vmalloc(count * sizeof(pid_t));
2991 else
2992 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2993}
2994
2995static void pidlist_free(void *p)
2996{
2997 if (is_vmalloc_addr(p))
2998 vfree(p);
2999 else
3000 kfree(p);
3001}
3002
3003/*
3004 * Used to destroy all pidlists lingering waiting for destroy timer. None
3005 * should be left afterwards.
3006 */
3007static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3008{
3009 struct cgroup_pidlist *l, *tmp_l;
3010
3011 mutex_lock(&cgrp->pidlist_mutex);
3012 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3013 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3014 mutex_unlock(&cgrp->pidlist_mutex);
3015
3016 flush_workqueue(cgroup_pidlist_destroy_wq);
3017 BUG_ON(!list_empty(&cgrp->pidlists));
3018}
3019
3020static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3021{
3022 struct delayed_work *dwork = to_delayed_work(work);
3023 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3024 destroy_dwork);
3025 struct cgroup_pidlist *tofree = NULL;
3026
3027 mutex_lock(&l->owner->pidlist_mutex);
3028
3029 /*
3030 * Destroy iff we didn't get queued again. The state won't change
3031 * as destroy_dwork can only be queued while locked.
3032 */
3033 if (!delayed_work_pending(dwork)) {
3034 list_del(&l->links);
3035 pidlist_free(l->list);
3036 put_pid_ns(l->key.ns);
3037 tofree = l;
3038 }
3039
3040 mutex_unlock(&l->owner->pidlist_mutex);
3041 kfree(tofree);
3042}
3043
3044/*
3045 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3046 * Returns the number of unique elements.
3047 */
3048static int pidlist_uniq(pid_t *list, int length)
3049{
3050 int src, dest = 1;
3051
3052 /*
3053 * we presume the 0th element is unique, so i starts at 1. trivial
3054 * edge cases first; no work needs to be done for either
3055 */
3056 if (length == 0 || length == 1)
3057 return length;
3058 /* src and dest walk down the list; dest counts unique elements */
3059 for (src = 1; src < length; src++) {
3060 /* find next unique element */
3061 while (list[src] == list[src-1]) {
3062 src++;
3063 if (src == length)
3064 goto after;
3065 }
3066 /* dest always points to where the next unique element goes */
3067 list[dest] = list[src];
3068 dest++;
3069 }
3070after:
3071 return dest;
3072}
3073
3074/*
3075 * The two pid files - task and cgroup.procs - guaranteed that the result
3076 * is sorted, which forced this whole pidlist fiasco. As pid order is
3077 * different per namespace, each namespace needs differently sorted list,
3078 * making it impossible to use, for example, single rbtree of member tasks
3079 * sorted by task pointer. As pidlists can be fairly large, allocating one
3080 * per open file is dangerous, so cgroup had to implement shared pool of
3081 * pidlists keyed by cgroup and namespace.
3082 *
3083 * All this extra complexity was caused by the original implementation
3084 * committing to an entirely unnecessary property. In the long term, we
3085 * want to do away with it. Explicitly scramble sort order if
3086 * sane_behavior so that no such expectation exists in the new interface.
3087 *
3088 * Scrambling is done by swapping every two consecutive bits, which is
3089 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3090 */
3091static pid_t pid_fry(pid_t pid)
3092{
3093 unsigned a = pid & 0x55555555;
3094 unsigned b = pid & 0xAAAAAAAA;
3095
3096 return (a << 1) | (b >> 1);
3097}
3098
3099static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3100{
3101 if (cgroup_sane_behavior(cgrp))
3102 return pid_fry(pid);
3103 else
3104 return pid;
3105}
3106
3107static int cmppid(const void *a, const void *b)
3108{
3109 return *(pid_t *)a - *(pid_t *)b;
3110}
3111
3112static int fried_cmppid(const void *a, const void *b)
3113{
3114 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3115}
3116
3117static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3118 enum cgroup_filetype type)
3119{
3120 struct cgroup_pidlist *l;
3121 /* don't need task_nsproxy() if we're looking at ourself */
3122 struct pid_namespace *ns = task_active_pid_ns(current);
3123
3124 lockdep_assert_held(&cgrp->pidlist_mutex);
3125
3126 list_for_each_entry(l, &cgrp->pidlists, links)
3127 if (l->key.type == type && l->key.ns == ns)
3128 return l;
3129 return NULL;
3130}
3131
3132/*
3133 * find the appropriate pidlist for our purpose (given procs vs tasks)
3134 * returns with the lock on that pidlist already held, and takes care
3135 * of the use count, or returns NULL with no locks held if we're out of
3136 * memory.
3137 */
3138static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3139 enum cgroup_filetype type)
3140{
3141 struct cgroup_pidlist *l;
3142
3143 lockdep_assert_held(&cgrp->pidlist_mutex);
3144
3145 l = cgroup_pidlist_find(cgrp, type);
3146 if (l)
3147 return l;
3148
3149 /* entry not found; create a new one */
3150 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3151 if (!l)
3152 return l;
3153
3154 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3155 l->key.type = type;
3156 /* don't need task_nsproxy() if we're looking at ourself */
3157 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3158 l->owner = cgrp;
3159 list_add(&l->links, &cgrp->pidlists);
3160 return l;
3161}
3162
3163/*
3164 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3165 */
3166static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3167 struct cgroup_pidlist **lp)
3168{
3169 pid_t *array;
3170 int length;
3171 int pid, n = 0; /* used for populating the array */
3172 struct css_task_iter it;
3173 struct task_struct *tsk;
3174 struct cgroup_pidlist *l;
3175
3176 lockdep_assert_held(&cgrp->pidlist_mutex);
3177
3178 /*
3179 * If cgroup gets more users after we read count, we won't have
3180 * enough space - tough. This race is indistinguishable to the
3181 * caller from the case that the additional cgroup users didn't
3182 * show up until sometime later on.
3183 */
3184 length = cgroup_task_count(cgrp);
3185 array = pidlist_allocate(length);
3186 if (!array)
3187 return -ENOMEM;
3188 /* now, populate the array */
3189 css_task_iter_start(&cgrp->dummy_css, &it);
3190 while ((tsk = css_task_iter_next(&it))) {
3191 if (unlikely(n == length))
3192 break;
3193 /* get tgid or pid for procs or tasks file respectively */
3194 if (type == CGROUP_FILE_PROCS)
3195 pid = task_tgid_vnr(tsk);
3196 else
3197 pid = task_pid_vnr(tsk);
3198 if (pid > 0) /* make sure to only use valid results */
3199 array[n++] = pid;
3200 }
3201 css_task_iter_end(&it);
3202 length = n;
3203 /* now sort & (if procs) strip out duplicates */
3204 if (cgroup_sane_behavior(cgrp))
3205 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3206 else
3207 sort(array, length, sizeof(pid_t), cmppid, NULL);
3208 if (type == CGROUP_FILE_PROCS)
3209 length = pidlist_uniq(array, length);
3210
3211 l = cgroup_pidlist_find_create(cgrp, type);
3212 if (!l) {
3213 mutex_unlock(&cgrp->pidlist_mutex);
3214 pidlist_free(array);
3215 return -ENOMEM;
3216 }
3217
3218 /* store array, freeing old if necessary */
3219 pidlist_free(l->list);
3220 l->list = array;
3221 l->length = length;
3222 *lp = l;
3223 return 0;
3224}
3225
3226/**
3227 * cgroupstats_build - build and fill cgroupstats
3228 * @stats: cgroupstats to fill information into
3229 * @dentry: A dentry entry belonging to the cgroup for which stats have
3230 * been requested.
3231 *
3232 * Build and fill cgroupstats so that taskstats can export it to user
3233 * space.
3234 */
3235int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3236{
3237 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3238 struct cgroup *cgrp;
3239 struct css_task_iter it;
3240 struct task_struct *tsk;
3241
3242 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3243 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3244 kernfs_type(kn) != KERNFS_DIR)
3245 return -EINVAL;
3246
3247 mutex_lock(&cgroup_mutex);
3248
3249 /*
3250 * We aren't being called from kernfs and there's no guarantee on
3251 * @kn->priv's validity. For this and css_tryget_from_dir(),
3252 * @kn->priv is RCU safe. Let's do the RCU dancing.
3253 */
3254 rcu_read_lock();
3255 cgrp = rcu_dereference(kn->priv);
3256 if (!cgrp || cgroup_is_dead(cgrp)) {
3257 rcu_read_unlock();
3258 mutex_unlock(&cgroup_mutex);
3259 return -ENOENT;
3260 }
3261 rcu_read_unlock();
3262
3263 css_task_iter_start(&cgrp->dummy_css, &it);
3264 while ((tsk = css_task_iter_next(&it))) {
3265 switch (tsk->state) {
3266 case TASK_RUNNING:
3267 stats->nr_running++;
3268 break;
3269 case TASK_INTERRUPTIBLE:
3270 stats->nr_sleeping++;
3271 break;
3272 case TASK_UNINTERRUPTIBLE:
3273 stats->nr_uninterruptible++;
3274 break;
3275 case TASK_STOPPED:
3276 stats->nr_stopped++;
3277 break;
3278 default:
3279 if (delayacct_is_task_waiting_on_io(tsk))
3280 stats->nr_io_wait++;
3281 break;
3282 }
3283 }
3284 css_task_iter_end(&it);
3285
3286 mutex_unlock(&cgroup_mutex);
3287 return 0;
3288}
3289
3290
3291/*
3292 * seq_file methods for the tasks/procs files. The seq_file position is the
3293 * next pid to display; the seq_file iterator is a pointer to the pid
3294 * in the cgroup->l->list array.
3295 */
3296
3297static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3298{
3299 /*
3300 * Initially we receive a position value that corresponds to
3301 * one more than the last pid shown (or 0 on the first call or
3302 * after a seek to the start). Use a binary-search to find the
3303 * next pid to display, if any
3304 */
3305 struct kernfs_open_file *of = s->private;
3306 struct cgroup *cgrp = seq_css(s)->cgroup;
3307 struct cgroup_pidlist *l;
3308 enum cgroup_filetype type = seq_cft(s)->private;
3309 int index = 0, pid = *pos;
3310 int *iter, ret;
3311
3312 mutex_lock(&cgrp->pidlist_mutex);
3313
3314 /*
3315 * !NULL @of->priv indicates that this isn't the first start()
3316 * after open. If the matching pidlist is around, we can use that.
3317 * Look for it. Note that @of->priv can't be used directly. It
3318 * could already have been destroyed.
3319 */
3320 if (of->priv)
3321 of->priv = cgroup_pidlist_find(cgrp, type);
3322
3323 /*
3324 * Either this is the first start() after open or the matching
3325 * pidlist has been destroyed inbetween. Create a new one.
3326 */
3327 if (!of->priv) {
3328 ret = pidlist_array_load(cgrp, type,
3329 (struct cgroup_pidlist **)&of->priv);
3330 if (ret)
3331 return ERR_PTR(ret);
3332 }
3333 l = of->priv;
3334
3335 if (pid) {
3336 int end = l->length;
3337
3338 while (index < end) {
3339 int mid = (index + end) / 2;
3340 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
3341 index = mid;
3342 break;
3343 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
3344 index = mid + 1;
3345 else
3346 end = mid;
3347 }
3348 }
3349 /* If we're off the end of the array, we're done */
3350 if (index >= l->length)
3351 return NULL;
3352 /* Update the abstract position to be the actual pid that we found */
3353 iter = l->list + index;
3354 *pos = cgroup_pid_fry(cgrp, *iter);
3355 return iter;
3356}
3357
3358static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3359{
3360 struct kernfs_open_file *of = s->private;
3361 struct cgroup_pidlist *l = of->priv;
3362
3363 if (l)
3364 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3365 CGROUP_PIDLIST_DESTROY_DELAY);
3366 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
3367}
3368
3369static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3370{
3371 struct kernfs_open_file *of = s->private;
3372 struct cgroup_pidlist *l = of->priv;
3373 pid_t *p = v;
3374 pid_t *end = l->list + l->length;
3375 /*
3376 * Advance to the next pid in the array. If this goes off the
3377 * end, we're done
3378 */
3379 p++;
3380 if (p >= end) {
3381 return NULL;
3382 } else {
3383 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
3384 return p;
3385 }
3386}
3387
3388static int cgroup_pidlist_show(struct seq_file *s, void *v)
3389{
3390 return seq_printf(s, "%d\n", *(int *)v);
3391}
3392
3393/*
3394 * seq_operations functions for iterating on pidlists through seq_file -
3395 * independent of whether it's tasks or procs
3396 */
3397static const struct seq_operations cgroup_pidlist_seq_operations = {
3398 .start = cgroup_pidlist_start,
3399 .stop = cgroup_pidlist_stop,
3400 .next = cgroup_pidlist_next,
3401 .show = cgroup_pidlist_show,
3402};
3403
3404static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3405 struct cftype *cft)
3406{
3407 return notify_on_release(css->cgroup);
3408}
3409
3410static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3411 struct cftype *cft, u64 val)
3412{
3413 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3414 if (val)
3415 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3416 else
3417 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3418 return 0;
3419}
3420
3421static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3422 struct cftype *cft)
3423{
3424 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3425}
3426
3427static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3428 struct cftype *cft, u64 val)
3429{
3430 if (val)
3431 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3432 else
3433 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3434 return 0;
3435}
3436
3437static struct cftype cgroup_base_files[] = {
3438 {
3439 .name = "cgroup.procs",
3440 .seq_start = cgroup_pidlist_start,
3441 .seq_next = cgroup_pidlist_next,
3442 .seq_stop = cgroup_pidlist_stop,
3443 .seq_show = cgroup_pidlist_show,
3444 .private = CGROUP_FILE_PROCS,
3445 .write_u64 = cgroup_procs_write,
3446 .mode = S_IRUGO | S_IWUSR,
3447 },
3448 {
3449 .name = "cgroup.clone_children",
3450 .flags = CFTYPE_INSANE,
3451 .read_u64 = cgroup_clone_children_read,
3452 .write_u64 = cgroup_clone_children_write,
3453 },
3454 {
3455 .name = "cgroup.sane_behavior",
3456 .flags = CFTYPE_ONLY_ON_ROOT,
3457 .seq_show = cgroup_sane_behavior_show,
3458 },
3459
3460 /*
3461 * Historical crazy stuff. These don't have "cgroup." prefix and
3462 * don't exist if sane_behavior. If you're depending on these, be
3463 * prepared to be burned.
3464 */
3465 {
3466 .name = "tasks",
3467 .flags = CFTYPE_INSANE, /* use "procs" instead */
3468 .seq_start = cgroup_pidlist_start,
3469 .seq_next = cgroup_pidlist_next,
3470 .seq_stop = cgroup_pidlist_stop,
3471 .seq_show = cgroup_pidlist_show,
3472 .private = CGROUP_FILE_TASKS,
3473 .write_u64 = cgroup_tasks_write,
3474 .mode = S_IRUGO | S_IWUSR,
3475 },
3476 {
3477 .name = "notify_on_release",
3478 .flags = CFTYPE_INSANE,
3479 .read_u64 = cgroup_read_notify_on_release,
3480 .write_u64 = cgroup_write_notify_on_release,
3481 },
3482 {
3483 .name = "release_agent",
3484 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
3485 .seq_show = cgroup_release_agent_show,
3486 .write_string = cgroup_release_agent_write,
3487 .max_write_len = PATH_MAX - 1,
3488 },
3489 { } /* terminate */
3490};
3491
3492/**
3493 * cgroup_populate_dir - create subsys files in a cgroup directory
3494 * @cgrp: target cgroup
3495 * @subsys_mask: mask of the subsystem ids whose files should be added
3496 *
3497 * On failure, no file is added.
3498 */
3499static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
3500{
3501 struct cgroup_subsys *ss;
3502 int i, ret = 0;
3503
3504 /* process cftsets of each subsystem */
3505 for_each_subsys(ss, i) {
3506 struct cftype *cfts;
3507
3508 if (!test_bit(i, &subsys_mask))
3509 continue;
3510
3511 list_for_each_entry(cfts, &ss->cfts, node) {
3512 ret = cgroup_addrm_files(cgrp, cfts, true);
3513 if (ret < 0)
3514 goto err;
3515 }
3516 }
3517 return 0;
3518err:
3519 cgroup_clear_dir(cgrp, subsys_mask);
3520 return ret;
3521}
3522
3523/*
3524 * css destruction is four-stage process.
3525 *
3526 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3527 * Implemented in kill_css().
3528 *
3529 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3530 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3531 * by invoking offline_css(). After offlining, the base ref is put.
3532 * Implemented in css_killed_work_fn().
3533 *
3534 * 3. When the percpu_ref reaches zero, the only possible remaining
3535 * accessors are inside RCU read sections. css_release() schedules the
3536 * RCU callback.
3537 *
3538 * 4. After the grace period, the css can be freed. Implemented in
3539 * css_free_work_fn().
3540 *
3541 * It is actually hairier because both step 2 and 4 require process context
3542 * and thus involve punting to css->destroy_work adding two additional
3543 * steps to the already complex sequence.
3544 */
3545static void css_free_work_fn(struct work_struct *work)
3546{
3547 struct cgroup_subsys_state *css =
3548 container_of(work, struct cgroup_subsys_state, destroy_work);
3549 struct cgroup *cgrp = css->cgroup;
3550
3551 if (css->parent)
3552 css_put(css->parent);
3553
3554 css->ss->css_free(css);
3555 cgroup_put(cgrp);
3556}
3557
3558static void css_free_rcu_fn(struct rcu_head *rcu_head)
3559{
3560 struct cgroup_subsys_state *css =
3561 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
3562
3563 INIT_WORK(&css->destroy_work, css_free_work_fn);
3564 queue_work(cgroup_destroy_wq, &css->destroy_work);
3565}
3566
3567static void css_release(struct percpu_ref *ref)
3568{
3569 struct cgroup_subsys_state *css =
3570 container_of(ref, struct cgroup_subsys_state, refcnt);
3571
3572 RCU_INIT_POINTER(css->cgroup->subsys[css->ss->id], NULL);
3573 call_rcu(&css->rcu_head, css_free_rcu_fn);
3574}
3575
3576static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3577 struct cgroup *cgrp)
3578{
3579 css->cgroup = cgrp;
3580 css->ss = ss;
3581 css->flags = 0;
3582
3583 if (cgrp->parent)
3584 css->parent = cgroup_css(cgrp->parent, ss);
3585 else
3586 css->flags |= CSS_ROOT;
3587
3588 BUG_ON(cgroup_css(cgrp, ss));
3589}
3590
3591/* invoke ->css_online() on a new CSS and mark it online if successful */
3592static int online_css(struct cgroup_subsys_state *css)
3593{
3594 struct cgroup_subsys *ss = css->ss;
3595 int ret = 0;
3596
3597 lockdep_assert_held(&cgroup_tree_mutex);
3598 lockdep_assert_held(&cgroup_mutex);
3599
3600 if (ss->css_online)
3601 ret = ss->css_online(css);
3602 if (!ret) {
3603 css->flags |= CSS_ONLINE;
3604 css->cgroup->nr_css++;
3605 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
3606 }
3607 return ret;
3608}
3609
3610/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
3611static void offline_css(struct cgroup_subsys_state *css)
3612{
3613 struct cgroup_subsys *ss = css->ss;
3614
3615 lockdep_assert_held(&cgroup_tree_mutex);
3616 lockdep_assert_held(&cgroup_mutex);
3617
3618 if (!(css->flags & CSS_ONLINE))
3619 return;
3620
3621 if (ss->css_offline)
3622 ss->css_offline(css);
3623
3624 css->flags &= ~CSS_ONLINE;
3625 css->cgroup->nr_css--;
3626 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
3627}
3628
3629/**
3630 * create_css - create a cgroup_subsys_state
3631 * @cgrp: the cgroup new css will be associated with
3632 * @ss: the subsys of new css
3633 *
3634 * Create a new css associated with @cgrp - @ss pair. On success, the new
3635 * css is online and installed in @cgrp with all interface files created.
3636 * Returns 0 on success, -errno on failure.
3637 */
3638static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3639{
3640 struct cgroup *parent = cgrp->parent;
3641 struct cgroup_subsys_state *css;
3642 int err;
3643
3644 lockdep_assert_held(&cgroup_mutex);
3645
3646 css = ss->css_alloc(cgroup_css(parent, ss));
3647 if (IS_ERR(css))
3648 return PTR_ERR(css);
3649
3650 err = percpu_ref_init(&css->refcnt, css_release);
3651 if (err)
3652 goto err_free_css;
3653
3654 init_css(css, ss, cgrp);
3655
3656 err = cgroup_populate_dir(cgrp, 1 << ss->id);
3657 if (err)
3658 goto err_free_percpu_ref;
3659
3660 err = online_css(css);
3661 if (err)
3662 goto err_clear_dir;
3663
3664 cgroup_get(cgrp);
3665 css_get(css->parent);
3666
3667 cgrp->subsys_mask |= 1 << ss->id;
3668
3669 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3670 parent->parent) {
3671 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3672 current->comm, current->pid, ss->name);
3673 if (!strcmp(ss->name, "memory"))
3674 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3675 ss->warned_broken_hierarchy = true;
3676 }
3677
3678 return 0;
3679
3680err_clear_dir:
3681 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3682err_free_percpu_ref:
3683 percpu_ref_cancel_init(&css->refcnt);
3684err_free_css:
3685 ss->css_free(css);
3686 return err;
3687}
3688
3689/**
3690 * cgroup_create - create a cgroup
3691 * @parent: cgroup that will be parent of the new cgroup
3692 * @name: name of the new cgroup
3693 * @mode: mode to set on new cgroup
3694 */
3695static long cgroup_create(struct cgroup *parent, const char *name,
3696 umode_t mode)
3697{
3698 struct cgroup *cgrp;
3699 struct cgroup_root *root = parent->root;
3700 int ssid, err;
3701 struct cgroup_subsys *ss;
3702 struct kernfs_node *kn;
3703
3704 /*
3705 * XXX: The default hierarchy isn't fully implemented yet. Block
3706 * !root cgroup creation on it for now.
3707 */
3708 if (root == &cgrp_dfl_root)
3709 return -EINVAL;
3710
3711 /* allocate the cgroup and its ID, 0 is reserved for the root */
3712 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3713 if (!cgrp)
3714 return -ENOMEM;
3715
3716 mutex_lock(&cgroup_tree_mutex);
3717
3718 /*
3719 * Only live parents can have children. Note that the liveliness
3720 * check isn't strictly necessary because cgroup_mkdir() and
3721 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3722 * anyway so that locking is contained inside cgroup proper and we
3723 * don't get nasty surprises if we ever grow another caller.
3724 */
3725 if (!cgroup_lock_live_group(parent)) {
3726 err = -ENODEV;
3727 goto err_unlock_tree;
3728 }
3729
3730 /*
3731 * Temporarily set the pointer to NULL, so idr_find() won't return
3732 * a half-baked cgroup.
3733 */
3734 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3735 if (cgrp->id < 0) {
3736 err = -ENOMEM;
3737 goto err_unlock;
3738 }
3739
3740 init_cgroup_housekeeping(cgrp);
3741
3742 cgrp->parent = parent;
3743 cgrp->dummy_css.parent = &parent->dummy_css;
3744 cgrp->root = parent->root;
3745
3746 if (notify_on_release(parent))
3747 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3748
3749 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3750 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3751
3752 /* create the directory */
3753 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
3754 if (IS_ERR(kn)) {
3755 err = PTR_ERR(kn);
3756 goto err_free_id;
3757 }
3758 cgrp->kn = kn;
3759
3760 /*
3761 * This extra ref will be put in cgroup_free_fn() and guarantees
3762 * that @cgrp->kn is always accessible.
3763 */
3764 kernfs_get(kn);
3765
3766 cgrp->serial_nr = cgroup_serial_nr_next++;
3767
3768 /* allocation complete, commit to creation */
3769 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3770 atomic_inc(&root->nr_cgrps);
3771 cgroup_get(parent);
3772
3773 /*
3774 * @cgrp is now fully operational. If something fails after this
3775 * point, it'll be released via the normal destruction path.
3776 */
3777 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3778
3779 err = cgroup_kn_set_ugid(kn);
3780 if (err)
3781 goto err_destroy;
3782
3783 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
3784 if (err)
3785 goto err_destroy;
3786
3787 /* let's create and online css's */
3788 for_each_subsys(ss, ssid) {
3789 if (root->cgrp.subsys_mask & (1 << ssid)) {
3790 err = create_css(cgrp, ss);
3791 if (err)
3792 goto err_destroy;
3793 }
3794 }
3795
3796 kernfs_activate(kn);
3797
3798 mutex_unlock(&cgroup_mutex);
3799 mutex_unlock(&cgroup_tree_mutex);
3800
3801 return 0;
3802
3803err_free_id:
3804 idr_remove(&root->cgroup_idr, cgrp->id);
3805err_unlock:
3806 mutex_unlock(&cgroup_mutex);
3807err_unlock_tree:
3808 mutex_unlock(&cgroup_tree_mutex);
3809 kfree(cgrp);
3810 return err;
3811
3812err_destroy:
3813 cgroup_destroy_locked(cgrp);
3814 mutex_unlock(&cgroup_mutex);
3815 mutex_unlock(&cgroup_tree_mutex);
3816 return err;
3817}
3818
3819static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3820 umode_t mode)
3821{
3822 struct cgroup *parent = parent_kn->priv;
3823 int ret;
3824
3825 /*
3826 * cgroup_create() grabs cgroup_tree_mutex which nests outside
3827 * kernfs active_ref and cgroup_create() already synchronizes
3828 * properly against removal through cgroup_lock_live_group().
3829 * Break it before calling cgroup_create().
3830 */
3831 cgroup_get(parent);
3832 kernfs_break_active_protection(parent_kn);
3833
3834 ret = cgroup_create(parent, name, mode);
3835
3836 kernfs_unbreak_active_protection(parent_kn);
3837 cgroup_put(parent);
3838 return ret;
3839}
3840
3841/*
3842 * This is called when the refcnt of a css is confirmed to be killed.
3843 * css_tryget() is now guaranteed to fail.
3844 */
3845static void css_killed_work_fn(struct work_struct *work)
3846{
3847 struct cgroup_subsys_state *css =
3848 container_of(work, struct cgroup_subsys_state, destroy_work);
3849 struct cgroup *cgrp = css->cgroup;
3850
3851 mutex_lock(&cgroup_tree_mutex);
3852 mutex_lock(&cgroup_mutex);
3853
3854 /*
3855 * css_tryget() is guaranteed to fail now. Tell subsystems to
3856 * initate destruction.
3857 */
3858 offline_css(css);
3859
3860 /*
3861 * If @cgrp is marked dead, it's waiting for refs of all css's to
3862 * be disabled before proceeding to the second phase of cgroup
3863 * destruction. If we are the last one, kick it off.
3864 */
3865 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
3866 cgroup_destroy_css_killed(cgrp);
3867
3868 mutex_unlock(&cgroup_mutex);
3869 mutex_unlock(&cgroup_tree_mutex);
3870
3871 /*
3872 * Put the css refs from kill_css(). Each css holds an extra
3873 * reference to the cgroup's dentry and cgroup removal proceeds
3874 * regardless of css refs. On the last put of each css, whenever
3875 * that may be, the extra dentry ref is put so that dentry
3876 * destruction happens only after all css's are released.
3877 */
3878 css_put(css);
3879}
3880
3881/* css kill confirmation processing requires process context, bounce */
3882static void css_killed_ref_fn(struct percpu_ref *ref)
3883{
3884 struct cgroup_subsys_state *css =
3885 container_of(ref, struct cgroup_subsys_state, refcnt);
3886
3887 INIT_WORK(&css->destroy_work, css_killed_work_fn);
3888 queue_work(cgroup_destroy_wq, &css->destroy_work);
3889}
3890
3891static void __kill_css(struct cgroup_subsys_state *css)
3892{
3893 lockdep_assert_held(&cgroup_tree_mutex);
3894
3895 /*
3896 * This must happen before css is disassociated with its cgroup.
3897 * See seq_css() for details.
3898 */
3899 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3900
3901 /*
3902 * Killing would put the base ref, but we need to keep it alive
3903 * until after ->css_offline().
3904 */
3905 css_get(css);
3906
3907 /*
3908 * cgroup core guarantees that, by the time ->css_offline() is
3909 * invoked, no new css reference will be given out via
3910 * css_tryget(). We can't simply call percpu_ref_kill() and
3911 * proceed to offlining css's because percpu_ref_kill() doesn't
3912 * guarantee that the ref is seen as killed on all CPUs on return.
3913 *
3914 * Use percpu_ref_kill_and_confirm() to get notifications as each
3915 * css is confirmed to be seen as killed on all CPUs.
3916 */
3917 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
3918}
3919
3920/**
3921 * kill_css - destroy a css
3922 * @css: css to destroy
3923 *
3924 * This function initiates destruction of @css by removing cgroup interface
3925 * files and putting its base reference. ->css_offline() will be invoked
3926 * asynchronously once css_tryget() is guaranteed to fail and when the
3927 * reference count reaches zero, @css will be released.
3928 */
3929static void kill_css(struct cgroup_subsys_state *css)
3930{
3931 struct cgroup *cgrp = css->cgroup;
3932
3933 lockdep_assert_held(&cgroup_tree_mutex);
3934
3935 /* if already killed, noop */
3936 if (cgrp->subsys_mask & (1 << css->ss->id)) {
3937 cgrp->subsys_mask &= ~(1 << css->ss->id);
3938 __kill_css(css);
3939 }
3940}
3941
3942/**
3943 * cgroup_destroy_locked - the first stage of cgroup destruction
3944 * @cgrp: cgroup to be destroyed
3945 *
3946 * css's make use of percpu refcnts whose killing latency shouldn't be
3947 * exposed to userland and are RCU protected. Also, cgroup core needs to
3948 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3949 * invoked. To satisfy all the requirements, destruction is implemented in
3950 * the following two steps.
3951 *
3952 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3953 * userland visible parts and start killing the percpu refcnts of
3954 * css's. Set up so that the next stage will be kicked off once all
3955 * the percpu refcnts are confirmed to be killed.
3956 *
3957 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3958 * rest of destruction. Once all cgroup references are gone, the
3959 * cgroup is RCU-freed.
3960 *
3961 * This function implements s1. After this step, @cgrp is gone as far as
3962 * the userland is concerned and a new cgroup with the same name may be
3963 * created. As cgroup doesn't care about the names internally, this
3964 * doesn't cause any problem.
3965 */
3966static int cgroup_destroy_locked(struct cgroup *cgrp)
3967 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
3968{
3969 struct cgroup *child;
3970 struct cgroup_subsys_state *css;
3971 bool empty;
3972 int ssid;
3973
3974 lockdep_assert_held(&cgroup_tree_mutex);
3975 lockdep_assert_held(&cgroup_mutex);
3976
3977 /*
3978 * css_set_rwsem synchronizes access to ->cset_links and prevents
3979 * @cgrp from being removed while put_css_set() is in progress.
3980 */
3981 down_read(&css_set_rwsem);
3982 empty = list_empty(&cgrp->cset_links);
3983 up_read(&css_set_rwsem);
3984 if (!empty)
3985 return -EBUSY;
3986
3987 /*
3988 * Make sure there's no live children. We can't test ->children
3989 * emptiness as dead children linger on it while being destroyed;
3990 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3991 */
3992 empty = true;
3993 rcu_read_lock();
3994 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3995 empty = cgroup_is_dead(child);
3996 if (!empty)
3997 break;
3998 }
3999 rcu_read_unlock();
4000 if (!empty)
4001 return -EBUSY;
4002
4003 /*
4004 * Mark @cgrp dead. This prevents further task migration and child
4005 * creation by disabling cgroup_lock_live_group(). Note that
4006 * CGRP_DEAD assertion is depended upon by css_next_child() to
4007 * resume iteration after dropping RCU read lock. See
4008 * css_next_child() for details.
4009 */
4010 set_bit(CGRP_DEAD, &cgrp->flags);
4011
4012 /*
4013 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4014 * will be invoked to perform the rest of destruction once the
4015 * percpu refs of all css's are confirmed to be killed. This
4016 * involves removing the subsystem's files, drop cgroup_mutex.
4017 */
4018 mutex_unlock(&cgroup_mutex);
4019 for_each_css(css, ssid, cgrp)
4020 kill_css(css);
4021 mutex_lock(&cgroup_mutex);
4022
4023 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4024 raw_spin_lock(&release_list_lock);
4025 if (!list_empty(&cgrp->release_list))
4026 list_del_init(&cgrp->release_list);
4027 raw_spin_unlock(&release_list_lock);
4028
4029 /*
4030 * If @cgrp has css's attached, the second stage of cgroup
4031 * destruction is kicked off from css_killed_work_fn() after the
4032 * refs of all attached css's are killed. If @cgrp doesn't have
4033 * any css, we kick it off here.
4034 */
4035 if (!cgrp->nr_css)
4036 cgroup_destroy_css_killed(cgrp);
4037
4038 /* remove @cgrp directory along with the base files */
4039 mutex_unlock(&cgroup_mutex);
4040
4041 /*
4042 * There are two control paths which try to determine cgroup from
4043 * dentry without going through kernfs - cgroupstats_build() and
4044 * css_tryget_from_dir(). Those are supported by RCU protecting
4045 * clearing of cgrp->kn->priv backpointer, which should happen
4046 * after all files under it have been removed.
4047 */
4048 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
4049 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4050
4051 mutex_lock(&cgroup_mutex);
4052
4053 return 0;
4054};
4055
4056/**
4057 * cgroup_destroy_css_killed - the second step of cgroup destruction
4058 * @work: cgroup->destroy_free_work
4059 *
4060 * This function is invoked from a work item for a cgroup which is being
4061 * destroyed after all css's are offlined and performs the rest of
4062 * destruction. This is the second step of destruction described in the
4063 * comment above cgroup_destroy_locked().
4064 */
4065static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4066{
4067 struct cgroup *parent = cgrp->parent;
4068
4069 lockdep_assert_held(&cgroup_tree_mutex);
4070 lockdep_assert_held(&cgroup_mutex);
4071
4072 /* delete this cgroup from parent->children */
4073 list_del_rcu(&cgrp->sibling);
4074
4075 cgroup_put(cgrp);
4076
4077 set_bit(CGRP_RELEASABLE, &parent->flags);
4078 check_for_release(parent);
4079}
4080
4081static int cgroup_rmdir(struct kernfs_node *kn)
4082{
4083 struct cgroup *cgrp = kn->priv;
4084 int ret = 0;
4085
4086 /*
4087 * This is self-destruction but @kn can't be removed while this
4088 * callback is in progress. Let's break active protection. Once
4089 * the protection is broken, @cgrp can be destroyed at any point.
4090 * Pin it so that it stays accessible.
4091 */
4092 cgroup_get(cgrp);
4093 kernfs_break_active_protection(kn);
4094
4095 mutex_lock(&cgroup_tree_mutex);
4096 mutex_lock(&cgroup_mutex);
4097
4098 /*
4099 * @cgrp might already have been destroyed while we're trying to
4100 * grab the mutexes.
4101 */
4102 if (!cgroup_is_dead(cgrp))
4103 ret = cgroup_destroy_locked(cgrp);
4104
4105 mutex_unlock(&cgroup_mutex);
4106 mutex_unlock(&cgroup_tree_mutex);
4107
4108 kernfs_unbreak_active_protection(kn);
4109 cgroup_put(cgrp);
4110 return ret;
4111}
4112
4113static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4114 .remount_fs = cgroup_remount,
4115 .show_options = cgroup_show_options,
4116 .mkdir = cgroup_mkdir,
4117 .rmdir = cgroup_rmdir,
4118 .rename = cgroup_rename,
4119};
4120
4121static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4122{
4123 struct cgroup_subsys_state *css;
4124
4125 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4126
4127 mutex_lock(&cgroup_tree_mutex);
4128 mutex_lock(&cgroup_mutex);
4129
4130 INIT_LIST_HEAD(&ss->cfts);
4131
4132 /* Create the root cgroup state for this subsystem */
4133 ss->root = &cgrp_dfl_root;
4134 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4135 /* We don't handle early failures gracefully */
4136 BUG_ON(IS_ERR(css));
4137 init_css(css, ss, &cgrp_dfl_root.cgrp);
4138
4139 /* Update the init_css_set to contain a subsys
4140 * pointer to this state - since the subsystem is
4141 * newly registered, all tasks and hence the
4142 * init_css_set is in the subsystem's root cgroup. */
4143 init_css_set.subsys[ss->id] = css;
4144
4145 need_forkexit_callback |= ss->fork || ss->exit;
4146
4147 /* At system boot, before all subsystems have been
4148 * registered, no tasks have been forked, so we don't
4149 * need to invoke fork callbacks here. */
4150 BUG_ON(!list_empty(&init_task.tasks));
4151
4152 BUG_ON(online_css(css));
4153
4154 cgrp_dfl_root.cgrp.subsys_mask |= 1 << ss->id;
4155
4156 mutex_unlock(&cgroup_mutex);
4157 mutex_unlock(&cgroup_tree_mutex);
4158}
4159
4160/**
4161 * cgroup_init_early - cgroup initialization at system boot
4162 *
4163 * Initialize cgroups at system boot, and initialize any
4164 * subsystems that request early init.
4165 */
4166int __init cgroup_init_early(void)
4167{
4168 static struct cgroup_sb_opts __initdata opts =
4169 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
4170 struct cgroup_subsys *ss;
4171 int i;
4172
4173 init_cgroup_root(&cgrp_dfl_root, &opts);
4174 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4175
4176 for_each_subsys(ss, i) {
4177 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4178 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4179 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4180 ss->id, ss->name);
4181 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4182 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4183
4184 ss->id = i;
4185 ss->name = cgroup_subsys_name[i];
4186
4187 if (ss->early_init)
4188 cgroup_init_subsys(ss);
4189 }
4190 return 0;
4191}
4192
4193/**
4194 * cgroup_init - cgroup initialization
4195 *
4196 * Register cgroup filesystem and /proc file, and initialize
4197 * any subsystems that didn't request early init.
4198 */
4199int __init cgroup_init(void)
4200{
4201 struct cgroup_subsys *ss;
4202 unsigned long key;
4203 int ssid, err;
4204
4205 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4206
4207 mutex_lock(&cgroup_tree_mutex);
4208 mutex_lock(&cgroup_mutex);
4209
4210 /* Add init_css_set to the hash table */
4211 key = css_set_hash(init_css_set.subsys);
4212 hash_add(css_set_table, &init_css_set.hlist, key);
4213
4214 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4215
4216 mutex_unlock(&cgroup_mutex);
4217 mutex_unlock(&cgroup_tree_mutex);
4218
4219 for_each_subsys(ss, ssid) {
4220 if (!ss->early_init)
4221 cgroup_init_subsys(ss);
4222
4223 /*
4224 * cftype registration needs kmalloc and can't be done
4225 * during early_init. Register base cftypes separately.
4226 */
4227 if (ss->base_cftypes)
4228 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4229 }
4230
4231 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4232 if (!cgroup_kobj)
4233 return -ENOMEM;
4234
4235 err = register_filesystem(&cgroup_fs_type);
4236 if (err < 0) {
4237 kobject_put(cgroup_kobj);
4238 return err;
4239 }
4240
4241 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4242 return 0;
4243}
4244
4245static int __init cgroup_wq_init(void)
4246{
4247 /*
4248 * There isn't much point in executing destruction path in
4249 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4250 * Use 1 for @max_active.
4251 *
4252 * We would prefer to do this in cgroup_init() above, but that
4253 * is called before init_workqueues(): so leave this until after.
4254 */
4255 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4256 BUG_ON(!cgroup_destroy_wq);
4257
4258 /*
4259 * Used to destroy pidlists and separate to serve as flush domain.
4260 * Cap @max_active to 1 too.
4261 */
4262 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4263 0, 1);
4264 BUG_ON(!cgroup_pidlist_destroy_wq);
4265
4266 return 0;
4267}
4268core_initcall(cgroup_wq_init);
4269
4270/*
4271 * proc_cgroup_show()
4272 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4273 * - Used for /proc/<pid>/cgroup.
4274 */
4275
4276/* TODO: Use a proper seq_file iterator */
4277int proc_cgroup_show(struct seq_file *m, void *v)
4278{
4279 struct pid *pid;
4280 struct task_struct *tsk;
4281 char *buf, *path;
4282 int retval;
4283 struct cgroup_root *root;
4284
4285 retval = -ENOMEM;
4286 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4287 if (!buf)
4288 goto out;
4289
4290 retval = -ESRCH;
4291 pid = m->private;
4292 tsk = get_pid_task(pid, PIDTYPE_PID);
4293 if (!tsk)
4294 goto out_free;
4295
4296 retval = 0;
4297
4298 mutex_lock(&cgroup_mutex);
4299 down_read(&css_set_rwsem);
4300
4301 for_each_root(root) {
4302 struct cgroup_subsys *ss;
4303 struct cgroup *cgrp;
4304 int ssid, count = 0;
4305
4306 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
4307 continue;
4308
4309 seq_printf(m, "%d:", root->hierarchy_id);
4310 for_each_subsys(ss, ssid)
4311 if (root->cgrp.subsys_mask & (1 << ssid))
4312 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4313 if (strlen(root->name))
4314 seq_printf(m, "%sname=%s", count ? "," : "",
4315 root->name);
4316 seq_putc(m, ':');
4317 cgrp = task_cgroup_from_root(tsk, root);
4318 path = cgroup_path(cgrp, buf, PATH_MAX);
4319 if (!path) {
4320 retval = -ENAMETOOLONG;
4321 goto out_unlock;
4322 }
4323 seq_puts(m, path);
4324 seq_putc(m, '\n');
4325 }
4326
4327out_unlock:
4328 up_read(&css_set_rwsem);
4329 mutex_unlock(&cgroup_mutex);
4330 put_task_struct(tsk);
4331out_free:
4332 kfree(buf);
4333out:
4334 return retval;
4335}
4336
4337/* Display information about each subsystem and each hierarchy */
4338static int proc_cgroupstats_show(struct seq_file *m, void *v)
4339{
4340 struct cgroup_subsys *ss;
4341 int i;
4342
4343 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4344 /*
4345 * ideally we don't want subsystems moving around while we do this.
4346 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4347 * subsys/hierarchy state.
4348 */
4349 mutex_lock(&cgroup_mutex);
4350
4351 for_each_subsys(ss, i)
4352 seq_printf(m, "%s\t%d\t%d\t%d\n",
4353 ss->name, ss->root->hierarchy_id,
4354 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
4355
4356 mutex_unlock(&cgroup_mutex);
4357 return 0;
4358}
4359
4360static int cgroupstats_open(struct inode *inode, struct file *file)
4361{
4362 return single_open(file, proc_cgroupstats_show, NULL);
4363}
4364
4365static const struct file_operations proc_cgroupstats_operations = {
4366 .open = cgroupstats_open,
4367 .read = seq_read,
4368 .llseek = seq_lseek,
4369 .release = single_release,
4370};
4371
4372/**
4373 * cgroup_fork - initialize cgroup related fields during copy_process()
4374 * @child: pointer to task_struct of forking parent process.
4375 *
4376 * A task is associated with the init_css_set until cgroup_post_fork()
4377 * attaches it to the parent's css_set. Empty cg_list indicates that
4378 * @child isn't holding reference to its css_set.
4379 */
4380void cgroup_fork(struct task_struct *child)
4381{
4382 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4383 INIT_LIST_HEAD(&child->cg_list);
4384}
4385
4386/**
4387 * cgroup_post_fork - called on a new task after adding it to the task list
4388 * @child: the task in question
4389 *
4390 * Adds the task to the list running through its css_set if necessary and
4391 * call the subsystem fork() callbacks. Has to be after the task is
4392 * visible on the task list in case we race with the first call to
4393 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4394 * list.
4395 */
4396void cgroup_post_fork(struct task_struct *child)
4397{
4398 struct cgroup_subsys *ss;
4399 int i;
4400
4401 /*
4402 * This may race against cgroup_enable_task_cg_links(). As that
4403 * function sets use_task_css_set_links before grabbing
4404 * tasklist_lock and we just went through tasklist_lock to add
4405 * @child, it's guaranteed that either we see the set
4406 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4407 * @child during its iteration.
4408 *
4409 * If we won the race, @child is associated with %current's
4410 * css_set. Grabbing css_set_rwsem guarantees both that the
4411 * association is stable, and, on completion of the parent's
4412 * migration, @child is visible in the source of migration or
4413 * already in the destination cgroup. This guarantee is necessary
4414 * when implementing operations which need to migrate all tasks of
4415 * a cgroup to another.
4416 *
4417 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4418 * will remain in init_css_set. This is safe because all tasks are
4419 * in the init_css_set before cg_links is enabled and there's no
4420 * operation which transfers all tasks out of init_css_set.
4421 */
4422 if (use_task_css_set_links) {
4423 struct css_set *cset;
4424
4425 down_write(&css_set_rwsem);
4426 cset = task_css_set(current);
4427 if (list_empty(&child->cg_list)) {
4428 rcu_assign_pointer(child->cgroups, cset);
4429 list_add(&child->cg_list, &cset->tasks);
4430 get_css_set(cset);
4431 }
4432 up_write(&css_set_rwsem);
4433 }
4434
4435 /*
4436 * Call ss->fork(). This must happen after @child is linked on
4437 * css_set; otherwise, @child might change state between ->fork()
4438 * and addition to css_set.
4439 */
4440 if (need_forkexit_callback) {
4441 for_each_subsys(ss, i)
4442 if (ss->fork)
4443 ss->fork(child);
4444 }
4445}
4446
4447/**
4448 * cgroup_exit - detach cgroup from exiting task
4449 * @tsk: pointer to task_struct of exiting process
4450 *
4451 * Description: Detach cgroup from @tsk and release it.
4452 *
4453 * Note that cgroups marked notify_on_release force every task in
4454 * them to take the global cgroup_mutex mutex when exiting.
4455 * This could impact scaling on very large systems. Be reluctant to
4456 * use notify_on_release cgroups where very high task exit scaling
4457 * is required on large systems.
4458 *
4459 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4460 * call cgroup_exit() while the task is still competent to handle
4461 * notify_on_release(), then leave the task attached to the root cgroup in
4462 * each hierarchy for the remainder of its exit. No need to bother with
4463 * init_css_set refcnting. init_css_set never goes away and we can't race
4464 * with migration path - PF_EXITING is visible to migration path.
4465 */
4466void cgroup_exit(struct task_struct *tsk)
4467{
4468 struct cgroup_subsys *ss;
4469 struct css_set *cset;
4470 bool put_cset = false;
4471 int i;
4472
4473 /*
4474 * Unlink from @tsk from its css_set. As migration path can't race
4475 * with us, we can check cg_list without grabbing css_set_rwsem.
4476 */
4477 if (!list_empty(&tsk->cg_list)) {
4478 down_write(&css_set_rwsem);
4479 list_del_init(&tsk->cg_list);
4480 up_write(&css_set_rwsem);
4481 put_cset = true;
4482 }
4483
4484 /* Reassign the task to the init_css_set. */
4485 cset = task_css_set(tsk);
4486 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
4487
4488 if (need_forkexit_callback) {
4489 /* see cgroup_post_fork() for details */
4490 for_each_subsys(ss, i) {
4491 if (ss->exit) {
4492 struct cgroup_subsys_state *old_css = cset->subsys[i];
4493 struct cgroup_subsys_state *css = task_css(tsk, i);
4494
4495 ss->exit(css, old_css, tsk);
4496 }
4497 }
4498 }
4499
4500 if (put_cset)
4501 put_css_set(cset, true);
4502}
4503
4504static void check_for_release(struct cgroup *cgrp)
4505{
4506 if (cgroup_is_releasable(cgrp) &&
4507 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
4508 /*
4509 * Control Group is currently removeable. If it's not
4510 * already queued for a userspace notification, queue
4511 * it now
4512 */
4513 int need_schedule_work = 0;
4514
4515 raw_spin_lock(&release_list_lock);
4516 if (!cgroup_is_dead(cgrp) &&
4517 list_empty(&cgrp->release_list)) {
4518 list_add(&cgrp->release_list, &release_list);
4519 need_schedule_work = 1;
4520 }
4521 raw_spin_unlock(&release_list_lock);
4522 if (need_schedule_work)
4523 schedule_work(&release_agent_work);
4524 }
4525}
4526
4527/*
4528 * Notify userspace when a cgroup is released, by running the
4529 * configured release agent with the name of the cgroup (path
4530 * relative to the root of cgroup file system) as the argument.
4531 *
4532 * Most likely, this user command will try to rmdir this cgroup.
4533 *
4534 * This races with the possibility that some other task will be
4535 * attached to this cgroup before it is removed, or that some other
4536 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4537 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4538 * unused, and this cgroup will be reprieved from its death sentence,
4539 * to continue to serve a useful existence. Next time it's released,
4540 * we will get notified again, if it still has 'notify_on_release' set.
4541 *
4542 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4543 * means only wait until the task is successfully execve()'d. The
4544 * separate release agent task is forked by call_usermodehelper(),
4545 * then control in this thread returns here, without waiting for the
4546 * release agent task. We don't bother to wait because the caller of
4547 * this routine has no use for the exit status of the release agent
4548 * task, so no sense holding our caller up for that.
4549 */
4550static void cgroup_release_agent(struct work_struct *work)
4551{
4552 BUG_ON(work != &release_agent_work);
4553 mutex_lock(&cgroup_mutex);
4554 raw_spin_lock(&release_list_lock);
4555 while (!list_empty(&release_list)) {
4556 char *argv[3], *envp[3];
4557 int i;
4558 char *pathbuf = NULL, *agentbuf = NULL, *path;
4559 struct cgroup *cgrp = list_entry(release_list.next,
4560 struct cgroup,
4561 release_list);
4562 list_del_init(&cgrp->release_list);
4563 raw_spin_unlock(&release_list_lock);
4564 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
4565 if (!pathbuf)
4566 goto continue_free;
4567 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4568 if (!path)
4569 goto continue_free;
4570 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4571 if (!agentbuf)
4572 goto continue_free;
4573
4574 i = 0;
4575 argv[i++] = agentbuf;
4576 argv[i++] = path;
4577 argv[i] = NULL;
4578
4579 i = 0;
4580 /* minimal command environment */
4581 envp[i++] = "HOME=/";
4582 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4583 envp[i] = NULL;
4584
4585 /* Drop the lock while we invoke the usermode helper,
4586 * since the exec could involve hitting disk and hence
4587 * be a slow process */
4588 mutex_unlock(&cgroup_mutex);
4589 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4590 mutex_lock(&cgroup_mutex);
4591 continue_free:
4592 kfree(pathbuf);
4593 kfree(agentbuf);
4594 raw_spin_lock(&release_list_lock);
4595 }
4596 raw_spin_unlock(&release_list_lock);
4597 mutex_unlock(&cgroup_mutex);
4598}
4599
4600static int __init cgroup_disable(char *str)
4601{
4602 struct cgroup_subsys *ss;
4603 char *token;
4604 int i;
4605
4606 while ((token = strsep(&str, ",")) != NULL) {
4607 if (!*token)
4608 continue;
4609
4610 for_each_subsys(ss, i) {
4611 if (!strcmp(token, ss->name)) {
4612 ss->disabled = 1;
4613 printk(KERN_INFO "Disabling %s control group"
4614 " subsystem\n", ss->name);
4615 break;
4616 }
4617 }
4618 }
4619 return 1;
4620}
4621__setup("cgroup_disable=", cgroup_disable);
4622
4623/**
4624 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
4625 * @dentry: directory dentry of interest
4626 * @ss: subsystem of interest
4627 *
4628 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4629 * to get the corresponding css and return it. If such css doesn't exist
4630 * or can't be pinned, an ERR_PTR value is returned.
4631 */
4632struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4633 struct cgroup_subsys *ss)
4634{
4635 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4636 struct cgroup_subsys_state *css = NULL;
4637 struct cgroup *cgrp;
4638
4639 /* is @dentry a cgroup dir? */
4640 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4641 kernfs_type(kn) != KERNFS_DIR)
4642 return ERR_PTR(-EBADF);
4643
4644 rcu_read_lock();
4645
4646 /*
4647 * This path doesn't originate from kernfs and @kn could already
4648 * have been or be removed at any point. @kn->priv is RCU
4649 * protected for this access. See destroy_locked() for details.
4650 */
4651 cgrp = rcu_dereference(kn->priv);
4652 if (cgrp)
4653 css = cgroup_css(cgrp, ss);
4654
4655 if (!css || !css_tryget(css))
4656 css = ERR_PTR(-ENOENT);
4657
4658 rcu_read_unlock();
4659 return css;
4660}
4661
4662/**
4663 * css_from_id - lookup css by id
4664 * @id: the cgroup id
4665 * @ss: cgroup subsys to be looked into
4666 *
4667 * Returns the css if there's valid one with @id, otherwise returns NULL.
4668 * Should be called under rcu_read_lock().
4669 */
4670struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4671{
4672 struct cgroup *cgrp;
4673
4674 cgroup_assert_mutexes_or_rcu_locked();
4675
4676 cgrp = idr_find(&ss->root->cgroup_idr, id);
4677 if (cgrp)
4678 return cgroup_css(cgrp, ss);
4679 return NULL;
4680}
4681
4682#ifdef CONFIG_CGROUP_DEBUG
4683static struct cgroup_subsys_state *
4684debug_css_alloc(struct cgroup_subsys_state *parent_css)
4685{
4686 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4687
4688 if (!css)
4689 return ERR_PTR(-ENOMEM);
4690
4691 return css;
4692}
4693
4694static void debug_css_free(struct cgroup_subsys_state *css)
4695{
4696 kfree(css);
4697}
4698
4699static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4700 struct cftype *cft)
4701{
4702 return cgroup_task_count(css->cgroup);
4703}
4704
4705static u64 current_css_set_read(struct cgroup_subsys_state *css,
4706 struct cftype *cft)
4707{
4708 return (u64)(unsigned long)current->cgroups;
4709}
4710
4711static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
4712 struct cftype *cft)
4713{
4714 u64 count;
4715
4716 rcu_read_lock();
4717 count = atomic_read(&task_css_set(current)->refcount);
4718 rcu_read_unlock();
4719 return count;
4720}
4721
4722static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
4723{
4724 struct cgrp_cset_link *link;
4725 struct css_set *cset;
4726 char *name_buf;
4727
4728 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4729 if (!name_buf)
4730 return -ENOMEM;
4731
4732 down_read(&css_set_rwsem);
4733 rcu_read_lock();
4734 cset = rcu_dereference(current->cgroups);
4735 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
4736 struct cgroup *c = link->cgrp;
4737
4738 cgroup_name(c, name_buf, NAME_MAX + 1);
4739 seq_printf(seq, "Root %d group %s\n",
4740 c->root->hierarchy_id, name_buf);
4741 }
4742 rcu_read_unlock();
4743 up_read(&css_set_rwsem);
4744 kfree(name_buf);
4745 return 0;
4746}
4747
4748#define MAX_TASKS_SHOWN_PER_CSS 25
4749static int cgroup_css_links_read(struct seq_file *seq, void *v)
4750{
4751 struct cgroup_subsys_state *css = seq_css(seq);
4752 struct cgrp_cset_link *link;
4753
4754 down_read(&css_set_rwsem);
4755 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
4756 struct css_set *cset = link->cset;
4757 struct task_struct *task;
4758 int count = 0;
4759
4760 seq_printf(seq, "css_set %p\n", cset);
4761
4762 list_for_each_entry(task, &cset->tasks, cg_list) {
4763 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4764 goto overflow;
4765 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4766 }
4767
4768 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4769 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4770 goto overflow;
4771 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4772 }
4773 continue;
4774 overflow:
4775 seq_puts(seq, " ...\n");
4776 }
4777 up_read(&css_set_rwsem);
4778 return 0;
4779}
4780
4781static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
4782{
4783 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
4784}
4785
4786static struct cftype debug_files[] = {
4787 {
4788 .name = "taskcount",
4789 .read_u64 = debug_taskcount_read,
4790 },
4791
4792 {
4793 .name = "current_css_set",
4794 .read_u64 = current_css_set_read,
4795 },
4796
4797 {
4798 .name = "current_css_set_refcount",
4799 .read_u64 = current_css_set_refcount_read,
4800 },
4801
4802 {
4803 .name = "current_css_set_cg_links",
4804 .seq_show = current_css_set_cg_links_read,
4805 },
4806
4807 {
4808 .name = "cgroup_css_links",
4809 .seq_show = cgroup_css_links_read,
4810 },
4811
4812 {
4813 .name = "releasable",
4814 .read_u64 = releasable_read,
4815 },
4816
4817 { } /* terminate */
4818};
4819
4820struct cgroup_subsys debug_cgrp_subsys = {
4821 .css_alloc = debug_css_alloc,
4822 .css_free = debug_css_free,
4823 .base_cftypes = debug_files,
4824};
4825#endif /* CONFIG_CGROUP_DEBUG */