Loading...
1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/cgroup.h>
32#include <linux/cred.h>
33#include <linux/ctype.h>
34#include <linux/errno.h>
35#include <linux/init_task.h>
36#include <linux/kernel.h>
37#include <linux/list.h>
38#include <linux/magic.h>
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
43#include <linux/proc_fs.h>
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
46#include <linux/slab.h>
47#include <linux/spinlock.h>
48#include <linux/percpu-rwsem.h>
49#include <linux/string.h>
50#include <linux/sort.h>
51#include <linux/kmod.h>
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
54#include <linux/hashtable.h>
55#include <linux/pid_namespace.h>
56#include <linux/idr.h>
57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58#include <linux/kthread.h>
59#include <linux/delay.h>
60#include <linux/atomic.h>
61#include <linux/cpuset.h>
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
64#include <linux/file.h>
65#include <net/sock.h>
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/cgroup.h>
69
70/*
71 * pidlists linger the following amount before being destroyed. The goal
72 * is avoiding frequent destruction in the middle of consecutive read calls
73 * Expiring in the middle is a performance problem not a correctness one.
74 * 1 sec should be enough.
75 */
76#define CGROUP_PIDLIST_DESTROY_DELAY HZ
77
78#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
79 MAX_CFTYPE_NAME + 2)
80
81/*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
84 *
85 * css_set_lock protects task->cgroups pointer, the list of css_set
86 * objects, and the chain of tasks off each css_set.
87 *
88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89 * cgroup.h can use them for lockdep annotations.
90 */
91#ifdef CONFIG_PROVE_RCU
92DEFINE_MUTEX(cgroup_mutex);
93DEFINE_SPINLOCK(css_set_lock);
94EXPORT_SYMBOL_GPL(cgroup_mutex);
95EXPORT_SYMBOL_GPL(css_set_lock);
96#else
97static DEFINE_MUTEX(cgroup_mutex);
98static DEFINE_SPINLOCK(css_set_lock);
99#endif
100
101/*
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
104 */
105static DEFINE_SPINLOCK(cgroup_idr_lock);
106
107/*
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
110 */
111static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112
113/*
114 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
115 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
116 */
117static DEFINE_SPINLOCK(release_agent_path_lock);
118
119struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
120
121#define cgroup_assert_mutex_or_rcu_locked() \
122 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
123 !lockdep_is_held(&cgroup_mutex), \
124 "cgroup_mutex or RCU read lock required");
125
126/*
127 * cgroup destruction makes heavy use of work items and there can be a lot
128 * of concurrent destructions. Use a separate workqueue so that cgroup
129 * destruction work items don't end up filling up max_active of system_wq
130 * which may lead to deadlock.
131 */
132static struct workqueue_struct *cgroup_destroy_wq;
133
134/*
135 * pidlist destructions need to be flushed on cgroup destruction. Use a
136 * separate workqueue as flush domain.
137 */
138static struct workqueue_struct *cgroup_pidlist_destroy_wq;
139
140/* generate an array of cgroup subsystem pointers */
141#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
142static struct cgroup_subsys *cgroup_subsys[] = {
143#include <linux/cgroup_subsys.h>
144};
145#undef SUBSYS
146
147/* array of cgroup subsystem names */
148#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
149static const char *cgroup_subsys_name[] = {
150#include <linux/cgroup_subsys.h>
151};
152#undef SUBSYS
153
154/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
155#define SUBSYS(_x) \
156 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
157 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
158 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
159 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
160#include <linux/cgroup_subsys.h>
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
164static struct static_key_true *cgroup_subsys_enabled_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
169#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
170static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
171#include <linux/cgroup_subsys.h>
172};
173#undef SUBSYS
174
175/*
176 * The default hierarchy, reserved for the subsystems that are otherwise
177 * unattached - it never has more than a single cgroup, and all tasks are
178 * part of that cgroup.
179 */
180struct cgroup_root cgrp_dfl_root;
181EXPORT_SYMBOL_GPL(cgrp_dfl_root);
182
183/*
184 * The default hierarchy always exists but is hidden until mounted for the
185 * first time. This is for backward compatibility.
186 */
187static bool cgrp_dfl_visible;
188
189/* Controllers blocked by the commandline in v1 */
190static u16 cgroup_no_v1_mask;
191
192/* some controllers are not supported in the default hierarchy */
193static u16 cgrp_dfl_inhibit_ss_mask;
194
195/* some controllers are implicitly enabled on the default hierarchy */
196static unsigned long cgrp_dfl_implicit_ss_mask;
197
198/* The list of hierarchy roots */
199
200static LIST_HEAD(cgroup_roots);
201static int cgroup_root_count;
202
203/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
204static DEFINE_IDR(cgroup_hierarchy_idr);
205
206/*
207 * Assign a monotonically increasing serial number to csses. It guarantees
208 * cgroups with bigger numbers are newer than those with smaller numbers.
209 * Also, as csses are always appended to the parent's ->children list, it
210 * guarantees that sibling csses are always sorted in the ascending serial
211 * number order on the list. Protected by cgroup_mutex.
212 */
213static u64 css_serial_nr_next = 1;
214
215/*
216 * These bitmask flags indicate whether tasks in the fork and exit paths have
217 * fork/exit handlers to call. This avoids us having to do extra work in the
218 * fork/exit path to check which subsystems have fork/exit callbacks.
219 */
220static u16 have_fork_callback __read_mostly;
221static u16 have_exit_callback __read_mostly;
222static u16 have_free_callback __read_mostly;
223
224/* cgroup namespace for init task */
225struct cgroup_namespace init_cgroup_ns = {
226 .count = { .counter = 2, },
227 .user_ns = &init_user_ns,
228 .ns.ops = &cgroupns_operations,
229 .ns.inum = PROC_CGROUP_INIT_INO,
230 .root_cset = &init_css_set,
231};
232
233/* Ditto for the can_fork callback. */
234static u16 have_canfork_callback __read_mostly;
235
236static struct file_system_type cgroup2_fs_type;
237static struct cftype cgroup_dfl_base_files[];
238static struct cftype cgroup_legacy_base_files[];
239
240static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
241static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
242static int cgroup_apply_control(struct cgroup *cgrp);
243static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
244static void css_task_iter_advance(struct css_task_iter *it);
245static int cgroup_destroy_locked(struct cgroup *cgrp);
246static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248static void css_release(struct percpu_ref *ref);
249static void kill_css(struct cgroup_subsys_state *css);
250static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254/**
255 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
256 * @ssid: subsys ID of interest
257 *
258 * cgroup_subsys_enabled() can only be used with literal subsys names which
259 * is fine for individual subsystems but unsuitable for cgroup core. This
260 * is slower static_key_enabled() based test indexed by @ssid.
261 */
262static bool cgroup_ssid_enabled(int ssid)
263{
264 if (CGROUP_SUBSYS_COUNT == 0)
265 return false;
266
267 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
268}
269
270static bool cgroup_ssid_no_v1(int ssid)
271{
272 return cgroup_no_v1_mask & (1 << ssid);
273}
274
275/**
276 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
277 * @cgrp: the cgroup of interest
278 *
279 * The default hierarchy is the v2 interface of cgroup and this function
280 * can be used to test whether a cgroup is on the default hierarchy for
281 * cases where a subsystem should behave differnetly depending on the
282 * interface version.
283 *
284 * The set of behaviors which change on the default hierarchy are still
285 * being determined and the mount option is prefixed with __DEVEL__.
286 *
287 * List of changed behaviors:
288 *
289 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
290 * and "name" are disallowed.
291 *
292 * - When mounting an existing superblock, mount options should match.
293 *
294 * - Remount is disallowed.
295 *
296 * - rename(2) is disallowed.
297 *
298 * - "tasks" is removed. Everything should be at process granularity. Use
299 * "cgroup.procs" instead.
300 *
301 * - "cgroup.procs" is not sorted. pids will be unique unless they got
302 * recycled inbetween reads.
303 *
304 * - "release_agent" and "notify_on_release" are removed. Replacement
305 * notification mechanism will be implemented.
306 *
307 * - "cgroup.clone_children" is removed.
308 *
309 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
310 * and its descendants contain no task; otherwise, 1. The file also
311 * generates kernfs notification which can be monitored through poll and
312 * [di]notify when the value of the file changes.
313 *
314 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
315 * take masks of ancestors with non-empty cpus/mems, instead of being
316 * moved to an ancestor.
317 *
318 * - cpuset: a task can be moved into an empty cpuset, and again it takes
319 * masks of ancestors.
320 *
321 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
322 * is not created.
323 *
324 * - blkcg: blk-throttle becomes properly hierarchical.
325 *
326 * - debug: disallowed on the default hierarchy.
327 */
328static bool cgroup_on_dfl(const struct cgroup *cgrp)
329{
330 return cgrp->root == &cgrp_dfl_root;
331}
332
333/* IDR wrappers which synchronize using cgroup_idr_lock */
334static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
335 gfp_t gfp_mask)
336{
337 int ret;
338
339 idr_preload(gfp_mask);
340 spin_lock_bh(&cgroup_idr_lock);
341 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
342 spin_unlock_bh(&cgroup_idr_lock);
343 idr_preload_end();
344 return ret;
345}
346
347static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
348{
349 void *ret;
350
351 spin_lock_bh(&cgroup_idr_lock);
352 ret = idr_replace(idr, ptr, id);
353 spin_unlock_bh(&cgroup_idr_lock);
354 return ret;
355}
356
357static void cgroup_idr_remove(struct idr *idr, int id)
358{
359 spin_lock_bh(&cgroup_idr_lock);
360 idr_remove(idr, id);
361 spin_unlock_bh(&cgroup_idr_lock);
362}
363
364static struct cgroup *cgroup_parent(struct cgroup *cgrp)
365{
366 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
367
368 if (parent_css)
369 return container_of(parent_css, struct cgroup, self);
370 return NULL;
371}
372
373/* subsystems visibly enabled on a cgroup */
374static u16 cgroup_control(struct cgroup *cgrp)
375{
376 struct cgroup *parent = cgroup_parent(cgrp);
377 u16 root_ss_mask = cgrp->root->subsys_mask;
378
379 if (parent)
380 return parent->subtree_control;
381
382 if (cgroup_on_dfl(cgrp))
383 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
384 cgrp_dfl_implicit_ss_mask);
385 return root_ss_mask;
386}
387
388/* subsystems enabled on a cgroup */
389static u16 cgroup_ss_mask(struct cgroup *cgrp)
390{
391 struct cgroup *parent = cgroup_parent(cgrp);
392
393 if (parent)
394 return parent->subtree_ss_mask;
395
396 return cgrp->root->subsys_mask;
397}
398
399/**
400 * cgroup_css - obtain a cgroup's css for the specified subsystem
401 * @cgrp: the cgroup of interest
402 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
403 *
404 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
405 * function must be called either under cgroup_mutex or rcu_read_lock() and
406 * the caller is responsible for pinning the returned css if it wants to
407 * keep accessing it outside the said locks. This function may return
408 * %NULL if @cgrp doesn't have @subsys_id enabled.
409 */
410static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
411 struct cgroup_subsys *ss)
412{
413 if (ss)
414 return rcu_dereference_check(cgrp->subsys[ss->id],
415 lockdep_is_held(&cgroup_mutex));
416 else
417 return &cgrp->self;
418}
419
420/**
421 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
422 * @cgrp: the cgroup of interest
423 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
424 *
425 * Similar to cgroup_css() but returns the effective css, which is defined
426 * as the matching css of the nearest ancestor including self which has @ss
427 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
428 * function is guaranteed to return non-NULL css.
429 */
430static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
431 struct cgroup_subsys *ss)
432{
433 lockdep_assert_held(&cgroup_mutex);
434
435 if (!ss)
436 return &cgrp->self;
437
438 /*
439 * This function is used while updating css associations and thus
440 * can't test the csses directly. Test ss_mask.
441 */
442 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
443 cgrp = cgroup_parent(cgrp);
444 if (!cgrp)
445 return NULL;
446 }
447
448 return cgroup_css(cgrp, ss);
449}
450
451/**
452 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest
455 *
456 * Find and get the effective css of @cgrp for @ss. The effective css is
457 * defined as the matching css of the nearest ancestor including self which
458 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
459 * the root css is returned, so this function always returns a valid css.
460 * The returned css must be put using css_put().
461 */
462struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
463 struct cgroup_subsys *ss)
464{
465 struct cgroup_subsys_state *css;
466
467 rcu_read_lock();
468
469 do {
470 css = cgroup_css(cgrp, ss);
471
472 if (css && css_tryget_online(css))
473 goto out_unlock;
474 cgrp = cgroup_parent(cgrp);
475 } while (cgrp);
476
477 css = init_css_set.subsys[ss->id];
478 css_get(css);
479out_unlock:
480 rcu_read_unlock();
481 return css;
482}
483
484/* convenient tests for these bits */
485static inline bool cgroup_is_dead(const struct cgroup *cgrp)
486{
487 return !(cgrp->self.flags & CSS_ONLINE);
488}
489
490static void cgroup_get(struct cgroup *cgrp)
491{
492 WARN_ON_ONCE(cgroup_is_dead(cgrp));
493 css_get(&cgrp->self);
494}
495
496static bool cgroup_tryget(struct cgroup *cgrp)
497{
498 return css_tryget(&cgrp->self);
499}
500
501struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
502{
503 struct cgroup *cgrp = of->kn->parent->priv;
504 struct cftype *cft = of_cft(of);
505
506 /*
507 * This is open and unprotected implementation of cgroup_css().
508 * seq_css() is only called from a kernfs file operation which has
509 * an active reference on the file. Because all the subsystem
510 * files are drained before a css is disassociated with a cgroup,
511 * the matching css from the cgroup's subsys table is guaranteed to
512 * be and stay valid until the enclosing operation is complete.
513 */
514 if (cft->ss)
515 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
516 else
517 return &cgrp->self;
518}
519EXPORT_SYMBOL_GPL(of_css);
520
521static int notify_on_release(const struct cgroup *cgrp)
522{
523 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
524}
525
526/**
527 * for_each_css - iterate all css's of a cgroup
528 * @css: the iteration cursor
529 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
530 * @cgrp: the target cgroup to iterate css's of
531 *
532 * Should be called under cgroup_[tree_]mutex.
533 */
534#define for_each_css(css, ssid, cgrp) \
535 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
536 if (!((css) = rcu_dereference_check( \
537 (cgrp)->subsys[(ssid)], \
538 lockdep_is_held(&cgroup_mutex)))) { } \
539 else
540
541/**
542 * for_each_e_css - iterate all effective css's of a cgroup
543 * @css: the iteration cursor
544 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
545 * @cgrp: the target cgroup to iterate css's of
546 *
547 * Should be called under cgroup_[tree_]mutex.
548 */
549#define for_each_e_css(css, ssid, cgrp) \
550 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
551 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
552 ; \
553 else
554
555/**
556 * for_each_subsys - iterate all enabled cgroup subsystems
557 * @ss: the iteration cursor
558 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
559 */
560#define for_each_subsys(ss, ssid) \
561 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
562 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
563
564/**
565 * do_each_subsys_mask - filter for_each_subsys with a bitmask
566 * @ss: the iteration cursor
567 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
568 * @ss_mask: the bitmask
569 *
570 * The block will only run for cases where the ssid-th bit (1 << ssid) of
571 * @ss_mask is set.
572 */
573#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
574 unsigned long __ss_mask = (ss_mask); \
575 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
576 (ssid) = 0; \
577 break; \
578 } \
579 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
580 (ss) = cgroup_subsys[ssid]; \
581 {
582
583#define while_each_subsys_mask() \
584 } \
585 } \
586} while (false)
587
588/* iterate across the hierarchies */
589#define for_each_root(root) \
590 list_for_each_entry((root), &cgroup_roots, root_list)
591
592/* iterate over child cgrps, lock should be held throughout iteration */
593#define cgroup_for_each_live_child(child, cgrp) \
594 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
595 if (({ lockdep_assert_held(&cgroup_mutex); \
596 cgroup_is_dead(child); })) \
597 ; \
598 else
599
600/* walk live descendants in preorder */
601#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
602 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
603 if (({ lockdep_assert_held(&cgroup_mutex); \
604 (dsct) = (d_css)->cgroup; \
605 cgroup_is_dead(dsct); })) \
606 ; \
607 else
608
609/* walk live descendants in postorder */
610#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
611 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
612 if (({ lockdep_assert_held(&cgroup_mutex); \
613 (dsct) = (d_css)->cgroup; \
614 cgroup_is_dead(dsct); })) \
615 ; \
616 else
617
618static void cgroup_release_agent(struct work_struct *work);
619static void check_for_release(struct cgroup *cgrp);
620
621/*
622 * A cgroup can be associated with multiple css_sets as different tasks may
623 * belong to different cgroups on different hierarchies. In the other
624 * direction, a css_set is naturally associated with multiple cgroups.
625 * This M:N relationship is represented by the following link structure
626 * which exists for each association and allows traversing the associations
627 * from both sides.
628 */
629struct cgrp_cset_link {
630 /* the cgroup and css_set this link associates */
631 struct cgroup *cgrp;
632 struct css_set *cset;
633
634 /* list of cgrp_cset_links anchored at cgrp->cset_links */
635 struct list_head cset_link;
636
637 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
638 struct list_head cgrp_link;
639};
640
641/*
642 * The default css_set - used by init and its children prior to any
643 * hierarchies being mounted. It contains a pointer to the root state
644 * for each subsystem. Also used to anchor the list of css_sets. Not
645 * reference-counted, to improve performance when child cgroups
646 * haven't been created.
647 */
648struct css_set init_css_set = {
649 .refcount = ATOMIC_INIT(1),
650 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
651 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
652 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
653 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
654 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
655 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
656};
657
658static int css_set_count = 1; /* 1 for init_css_set */
659
660/**
661 * css_set_populated - does a css_set contain any tasks?
662 * @cset: target css_set
663 */
664static bool css_set_populated(struct css_set *cset)
665{
666 lockdep_assert_held(&css_set_lock);
667
668 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
669}
670
671/**
672 * cgroup_update_populated - updated populated count of a cgroup
673 * @cgrp: the target cgroup
674 * @populated: inc or dec populated count
675 *
676 * One of the css_sets associated with @cgrp is either getting its first
677 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
678 * count is propagated towards root so that a given cgroup's populated_cnt
679 * is zero iff the cgroup and all its descendants don't contain any tasks.
680 *
681 * @cgrp's interface file "cgroup.populated" is zero if
682 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
683 * changes from or to zero, userland is notified that the content of the
684 * interface file has changed. This can be used to detect when @cgrp and
685 * its descendants become populated or empty.
686 */
687static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
688{
689 lockdep_assert_held(&css_set_lock);
690
691 do {
692 bool trigger;
693
694 if (populated)
695 trigger = !cgrp->populated_cnt++;
696 else
697 trigger = !--cgrp->populated_cnt;
698
699 if (!trigger)
700 break;
701
702 check_for_release(cgrp);
703 cgroup_file_notify(&cgrp->events_file);
704
705 cgrp = cgroup_parent(cgrp);
706 } while (cgrp);
707}
708
709/**
710 * css_set_update_populated - update populated state of a css_set
711 * @cset: target css_set
712 * @populated: whether @cset is populated or depopulated
713 *
714 * @cset is either getting the first task or losing the last. Update the
715 * ->populated_cnt of all associated cgroups accordingly.
716 */
717static void css_set_update_populated(struct css_set *cset, bool populated)
718{
719 struct cgrp_cset_link *link;
720
721 lockdep_assert_held(&css_set_lock);
722
723 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
724 cgroup_update_populated(link->cgrp, populated);
725}
726
727/**
728 * css_set_move_task - move a task from one css_set to another
729 * @task: task being moved
730 * @from_cset: css_set @task currently belongs to (may be NULL)
731 * @to_cset: new css_set @task is being moved to (may be NULL)
732 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
733 *
734 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
735 * css_set, @from_cset can be NULL. If @task is being disassociated
736 * instead of moved, @to_cset can be NULL.
737 *
738 * This function automatically handles populated_cnt updates and
739 * css_task_iter adjustments but the caller is responsible for managing
740 * @from_cset and @to_cset's reference counts.
741 */
742static void css_set_move_task(struct task_struct *task,
743 struct css_set *from_cset, struct css_set *to_cset,
744 bool use_mg_tasks)
745{
746 lockdep_assert_held(&css_set_lock);
747
748 if (to_cset && !css_set_populated(to_cset))
749 css_set_update_populated(to_cset, true);
750
751 if (from_cset) {
752 struct css_task_iter *it, *pos;
753
754 WARN_ON_ONCE(list_empty(&task->cg_list));
755
756 /*
757 * @task is leaving, advance task iterators which are
758 * pointing to it so that they can resume at the next
759 * position. Advancing an iterator might remove it from
760 * the list, use safe walk. See css_task_iter_advance*()
761 * for details.
762 */
763 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
764 iters_node)
765 if (it->task_pos == &task->cg_list)
766 css_task_iter_advance(it);
767
768 list_del_init(&task->cg_list);
769 if (!css_set_populated(from_cset))
770 css_set_update_populated(from_cset, false);
771 } else {
772 WARN_ON_ONCE(!list_empty(&task->cg_list));
773 }
774
775 if (to_cset) {
776 /*
777 * We are synchronized through cgroup_threadgroup_rwsem
778 * against PF_EXITING setting such that we can't race
779 * against cgroup_exit() changing the css_set to
780 * init_css_set and dropping the old one.
781 */
782 WARN_ON_ONCE(task->flags & PF_EXITING);
783
784 rcu_assign_pointer(task->cgroups, to_cset);
785 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
786 &to_cset->tasks);
787 }
788}
789
790/*
791 * hash table for cgroup groups. This improves the performance to find
792 * an existing css_set. This hash doesn't (currently) take into
793 * account cgroups in empty hierarchies.
794 */
795#define CSS_SET_HASH_BITS 7
796static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
797
798static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
799{
800 unsigned long key = 0UL;
801 struct cgroup_subsys *ss;
802 int i;
803
804 for_each_subsys(ss, i)
805 key += (unsigned long)css[i];
806 key = (key >> 16) ^ key;
807
808 return key;
809}
810
811static void put_css_set_locked(struct css_set *cset)
812{
813 struct cgrp_cset_link *link, *tmp_link;
814 struct cgroup_subsys *ss;
815 int ssid;
816
817 lockdep_assert_held(&css_set_lock);
818
819 if (!atomic_dec_and_test(&cset->refcount))
820 return;
821
822 /* This css_set is dead. unlink it and release cgroup and css refs */
823 for_each_subsys(ss, ssid) {
824 list_del(&cset->e_cset_node[ssid]);
825 css_put(cset->subsys[ssid]);
826 }
827 hash_del(&cset->hlist);
828 css_set_count--;
829
830 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
831 list_del(&link->cset_link);
832 list_del(&link->cgrp_link);
833 if (cgroup_parent(link->cgrp))
834 cgroup_put(link->cgrp);
835 kfree(link);
836 }
837
838 kfree_rcu(cset, rcu_head);
839}
840
841static void put_css_set(struct css_set *cset)
842{
843 unsigned long flags;
844
845 /*
846 * Ensure that the refcount doesn't hit zero while any readers
847 * can see it. Similar to atomic_dec_and_lock(), but for an
848 * rwlock
849 */
850 if (atomic_add_unless(&cset->refcount, -1, 1))
851 return;
852
853 spin_lock_irqsave(&css_set_lock, flags);
854 put_css_set_locked(cset);
855 spin_unlock_irqrestore(&css_set_lock, flags);
856}
857
858/*
859 * refcounted get/put for css_set objects
860 */
861static inline void get_css_set(struct css_set *cset)
862{
863 atomic_inc(&cset->refcount);
864}
865
866/**
867 * compare_css_sets - helper function for find_existing_css_set().
868 * @cset: candidate css_set being tested
869 * @old_cset: existing css_set for a task
870 * @new_cgrp: cgroup that's being entered by the task
871 * @template: desired set of css pointers in css_set (pre-calculated)
872 *
873 * Returns true if "cset" matches "old_cset" except for the hierarchy
874 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
875 */
876static bool compare_css_sets(struct css_set *cset,
877 struct css_set *old_cset,
878 struct cgroup *new_cgrp,
879 struct cgroup_subsys_state *template[])
880{
881 struct list_head *l1, *l2;
882
883 /*
884 * On the default hierarchy, there can be csets which are
885 * associated with the same set of cgroups but different csses.
886 * Let's first ensure that csses match.
887 */
888 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
889 return false;
890
891 /*
892 * Compare cgroup pointers in order to distinguish between
893 * different cgroups in hierarchies. As different cgroups may
894 * share the same effective css, this comparison is always
895 * necessary.
896 */
897 l1 = &cset->cgrp_links;
898 l2 = &old_cset->cgrp_links;
899 while (1) {
900 struct cgrp_cset_link *link1, *link2;
901 struct cgroup *cgrp1, *cgrp2;
902
903 l1 = l1->next;
904 l2 = l2->next;
905 /* See if we reached the end - both lists are equal length. */
906 if (l1 == &cset->cgrp_links) {
907 BUG_ON(l2 != &old_cset->cgrp_links);
908 break;
909 } else {
910 BUG_ON(l2 == &old_cset->cgrp_links);
911 }
912 /* Locate the cgroups associated with these links. */
913 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
914 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
915 cgrp1 = link1->cgrp;
916 cgrp2 = link2->cgrp;
917 /* Hierarchies should be linked in the same order. */
918 BUG_ON(cgrp1->root != cgrp2->root);
919
920 /*
921 * If this hierarchy is the hierarchy of the cgroup
922 * that's changing, then we need to check that this
923 * css_set points to the new cgroup; if it's any other
924 * hierarchy, then this css_set should point to the
925 * same cgroup as the old css_set.
926 */
927 if (cgrp1->root == new_cgrp->root) {
928 if (cgrp1 != new_cgrp)
929 return false;
930 } else {
931 if (cgrp1 != cgrp2)
932 return false;
933 }
934 }
935 return true;
936}
937
938/**
939 * find_existing_css_set - init css array and find the matching css_set
940 * @old_cset: the css_set that we're using before the cgroup transition
941 * @cgrp: the cgroup that we're moving into
942 * @template: out param for the new set of csses, should be clear on entry
943 */
944static struct css_set *find_existing_css_set(struct css_set *old_cset,
945 struct cgroup *cgrp,
946 struct cgroup_subsys_state *template[])
947{
948 struct cgroup_root *root = cgrp->root;
949 struct cgroup_subsys *ss;
950 struct css_set *cset;
951 unsigned long key;
952 int i;
953
954 /*
955 * Build the set of subsystem state objects that we want to see in the
956 * new css_set. while subsystems can change globally, the entries here
957 * won't change, so no need for locking.
958 */
959 for_each_subsys(ss, i) {
960 if (root->subsys_mask & (1UL << i)) {
961 /*
962 * @ss is in this hierarchy, so we want the
963 * effective css from @cgrp.
964 */
965 template[i] = cgroup_e_css(cgrp, ss);
966 } else {
967 /*
968 * @ss is not in this hierarchy, so we don't want
969 * to change the css.
970 */
971 template[i] = old_cset->subsys[i];
972 }
973 }
974
975 key = css_set_hash(template);
976 hash_for_each_possible(css_set_table, cset, hlist, key) {
977 if (!compare_css_sets(cset, old_cset, cgrp, template))
978 continue;
979
980 /* This css_set matches what we need */
981 return cset;
982 }
983
984 /* No existing cgroup group matched */
985 return NULL;
986}
987
988static void free_cgrp_cset_links(struct list_head *links_to_free)
989{
990 struct cgrp_cset_link *link, *tmp_link;
991
992 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
993 list_del(&link->cset_link);
994 kfree(link);
995 }
996}
997
998/**
999 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1000 * @count: the number of links to allocate
1001 * @tmp_links: list_head the allocated links are put on
1002 *
1003 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1004 * through ->cset_link. Returns 0 on success or -errno.
1005 */
1006static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1007{
1008 struct cgrp_cset_link *link;
1009 int i;
1010
1011 INIT_LIST_HEAD(tmp_links);
1012
1013 for (i = 0; i < count; i++) {
1014 link = kzalloc(sizeof(*link), GFP_KERNEL);
1015 if (!link) {
1016 free_cgrp_cset_links(tmp_links);
1017 return -ENOMEM;
1018 }
1019 list_add(&link->cset_link, tmp_links);
1020 }
1021 return 0;
1022}
1023
1024/**
1025 * link_css_set - a helper function to link a css_set to a cgroup
1026 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1027 * @cset: the css_set to be linked
1028 * @cgrp: the destination cgroup
1029 */
1030static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1031 struct cgroup *cgrp)
1032{
1033 struct cgrp_cset_link *link;
1034
1035 BUG_ON(list_empty(tmp_links));
1036
1037 if (cgroup_on_dfl(cgrp))
1038 cset->dfl_cgrp = cgrp;
1039
1040 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1041 link->cset = cset;
1042 link->cgrp = cgrp;
1043
1044 /*
1045 * Always add links to the tail of the lists so that the lists are
1046 * in choronological order.
1047 */
1048 list_move_tail(&link->cset_link, &cgrp->cset_links);
1049 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1050
1051 if (cgroup_parent(cgrp))
1052 cgroup_get(cgrp);
1053}
1054
1055/**
1056 * find_css_set - return a new css_set with one cgroup updated
1057 * @old_cset: the baseline css_set
1058 * @cgrp: the cgroup to be updated
1059 *
1060 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1061 * substituted into the appropriate hierarchy.
1062 */
1063static struct css_set *find_css_set(struct css_set *old_cset,
1064 struct cgroup *cgrp)
1065{
1066 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1067 struct css_set *cset;
1068 struct list_head tmp_links;
1069 struct cgrp_cset_link *link;
1070 struct cgroup_subsys *ss;
1071 unsigned long key;
1072 int ssid;
1073
1074 lockdep_assert_held(&cgroup_mutex);
1075
1076 /* First see if we already have a cgroup group that matches
1077 * the desired set */
1078 spin_lock_irq(&css_set_lock);
1079 cset = find_existing_css_set(old_cset, cgrp, template);
1080 if (cset)
1081 get_css_set(cset);
1082 spin_unlock_irq(&css_set_lock);
1083
1084 if (cset)
1085 return cset;
1086
1087 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1088 if (!cset)
1089 return NULL;
1090
1091 /* Allocate all the cgrp_cset_link objects that we'll need */
1092 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1093 kfree(cset);
1094 return NULL;
1095 }
1096
1097 atomic_set(&cset->refcount, 1);
1098 INIT_LIST_HEAD(&cset->cgrp_links);
1099 INIT_LIST_HEAD(&cset->tasks);
1100 INIT_LIST_HEAD(&cset->mg_tasks);
1101 INIT_LIST_HEAD(&cset->mg_preload_node);
1102 INIT_LIST_HEAD(&cset->mg_node);
1103 INIT_LIST_HEAD(&cset->task_iters);
1104 INIT_HLIST_NODE(&cset->hlist);
1105
1106 /* Copy the set of subsystem state objects generated in
1107 * find_existing_css_set() */
1108 memcpy(cset->subsys, template, sizeof(cset->subsys));
1109
1110 spin_lock_irq(&css_set_lock);
1111 /* Add reference counts and links from the new css_set. */
1112 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1113 struct cgroup *c = link->cgrp;
1114
1115 if (c->root == cgrp->root)
1116 c = cgrp;
1117 link_css_set(&tmp_links, cset, c);
1118 }
1119
1120 BUG_ON(!list_empty(&tmp_links));
1121
1122 css_set_count++;
1123
1124 /* Add @cset to the hash table */
1125 key = css_set_hash(cset->subsys);
1126 hash_add(css_set_table, &cset->hlist, key);
1127
1128 for_each_subsys(ss, ssid) {
1129 struct cgroup_subsys_state *css = cset->subsys[ssid];
1130
1131 list_add_tail(&cset->e_cset_node[ssid],
1132 &css->cgroup->e_csets[ssid]);
1133 css_get(css);
1134 }
1135
1136 spin_unlock_irq(&css_set_lock);
1137
1138 return cset;
1139}
1140
1141static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1142{
1143 struct cgroup *root_cgrp = kf_root->kn->priv;
1144
1145 return root_cgrp->root;
1146}
1147
1148static int cgroup_init_root_id(struct cgroup_root *root)
1149{
1150 int id;
1151
1152 lockdep_assert_held(&cgroup_mutex);
1153
1154 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1155 if (id < 0)
1156 return id;
1157
1158 root->hierarchy_id = id;
1159 return 0;
1160}
1161
1162static void cgroup_exit_root_id(struct cgroup_root *root)
1163{
1164 lockdep_assert_held(&cgroup_mutex);
1165
1166 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1167}
1168
1169static void cgroup_free_root(struct cgroup_root *root)
1170{
1171 if (root) {
1172 idr_destroy(&root->cgroup_idr);
1173 kfree(root);
1174 }
1175}
1176
1177static void cgroup_destroy_root(struct cgroup_root *root)
1178{
1179 struct cgroup *cgrp = &root->cgrp;
1180 struct cgrp_cset_link *link, *tmp_link;
1181
1182 trace_cgroup_destroy_root(root);
1183
1184 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1185
1186 BUG_ON(atomic_read(&root->nr_cgrps));
1187 BUG_ON(!list_empty(&cgrp->self.children));
1188
1189 /* Rebind all subsystems back to the default hierarchy */
1190 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1191
1192 /*
1193 * Release all the links from cset_links to this hierarchy's
1194 * root cgroup
1195 */
1196 spin_lock_irq(&css_set_lock);
1197
1198 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1199 list_del(&link->cset_link);
1200 list_del(&link->cgrp_link);
1201 kfree(link);
1202 }
1203
1204 spin_unlock_irq(&css_set_lock);
1205
1206 if (!list_empty(&root->root_list)) {
1207 list_del(&root->root_list);
1208 cgroup_root_count--;
1209 }
1210
1211 cgroup_exit_root_id(root);
1212
1213 mutex_unlock(&cgroup_mutex);
1214
1215 kernfs_destroy_root(root->kf_root);
1216 cgroup_free_root(root);
1217}
1218
1219/*
1220 * look up cgroup associated with current task's cgroup namespace on the
1221 * specified hierarchy
1222 */
1223static struct cgroup *
1224current_cgns_cgroup_from_root(struct cgroup_root *root)
1225{
1226 struct cgroup *res = NULL;
1227 struct css_set *cset;
1228
1229 lockdep_assert_held(&css_set_lock);
1230
1231 rcu_read_lock();
1232
1233 cset = current->nsproxy->cgroup_ns->root_cset;
1234 if (cset == &init_css_set) {
1235 res = &root->cgrp;
1236 } else {
1237 struct cgrp_cset_link *link;
1238
1239 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1240 struct cgroup *c = link->cgrp;
1241
1242 if (c->root == root) {
1243 res = c;
1244 break;
1245 }
1246 }
1247 }
1248 rcu_read_unlock();
1249
1250 BUG_ON(!res);
1251 return res;
1252}
1253
1254/* look up cgroup associated with given css_set on the specified hierarchy */
1255static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1256 struct cgroup_root *root)
1257{
1258 struct cgroup *res = NULL;
1259
1260 lockdep_assert_held(&cgroup_mutex);
1261 lockdep_assert_held(&css_set_lock);
1262
1263 if (cset == &init_css_set) {
1264 res = &root->cgrp;
1265 } else {
1266 struct cgrp_cset_link *link;
1267
1268 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1269 struct cgroup *c = link->cgrp;
1270
1271 if (c->root == root) {
1272 res = c;
1273 break;
1274 }
1275 }
1276 }
1277
1278 BUG_ON(!res);
1279 return res;
1280}
1281
1282/*
1283 * Return the cgroup for "task" from the given hierarchy. Must be
1284 * called with cgroup_mutex and css_set_lock held.
1285 */
1286static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1287 struct cgroup_root *root)
1288{
1289 /*
1290 * No need to lock the task - since we hold cgroup_mutex the
1291 * task can't change groups, so the only thing that can happen
1292 * is that it exits and its css is set back to init_css_set.
1293 */
1294 return cset_cgroup_from_root(task_css_set(task), root);
1295}
1296
1297/*
1298 * A task must hold cgroup_mutex to modify cgroups.
1299 *
1300 * Any task can increment and decrement the count field without lock.
1301 * So in general, code holding cgroup_mutex can't rely on the count
1302 * field not changing. However, if the count goes to zero, then only
1303 * cgroup_attach_task() can increment it again. Because a count of zero
1304 * means that no tasks are currently attached, therefore there is no
1305 * way a task attached to that cgroup can fork (the other way to
1306 * increment the count). So code holding cgroup_mutex can safely
1307 * assume that if the count is zero, it will stay zero. Similarly, if
1308 * a task holds cgroup_mutex on a cgroup with zero count, it
1309 * knows that the cgroup won't be removed, as cgroup_rmdir()
1310 * needs that mutex.
1311 *
1312 * A cgroup can only be deleted if both its 'count' of using tasks
1313 * is zero, and its list of 'children' cgroups is empty. Since all
1314 * tasks in the system use _some_ cgroup, and since there is always at
1315 * least one task in the system (init, pid == 1), therefore, root cgroup
1316 * always has either children cgroups and/or using tasks. So we don't
1317 * need a special hack to ensure that root cgroup cannot be deleted.
1318 *
1319 * P.S. One more locking exception. RCU is used to guard the
1320 * update of a tasks cgroup pointer by cgroup_attach_task()
1321 */
1322
1323static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1324static const struct file_operations proc_cgroupstats_operations;
1325
1326static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1327 char *buf)
1328{
1329 struct cgroup_subsys *ss = cft->ss;
1330
1331 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1332 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1333 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1334 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1335 cft->name);
1336 else
1337 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1338 return buf;
1339}
1340
1341/**
1342 * cgroup_file_mode - deduce file mode of a control file
1343 * @cft: the control file in question
1344 *
1345 * S_IRUGO for read, S_IWUSR for write.
1346 */
1347static umode_t cgroup_file_mode(const struct cftype *cft)
1348{
1349 umode_t mode = 0;
1350
1351 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1352 mode |= S_IRUGO;
1353
1354 if (cft->write_u64 || cft->write_s64 || cft->write) {
1355 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1356 mode |= S_IWUGO;
1357 else
1358 mode |= S_IWUSR;
1359 }
1360
1361 return mode;
1362}
1363
1364/**
1365 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1366 * @subtree_control: the new subtree_control mask to consider
1367 * @this_ss_mask: available subsystems
1368 *
1369 * On the default hierarchy, a subsystem may request other subsystems to be
1370 * enabled together through its ->depends_on mask. In such cases, more
1371 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1372 *
1373 * This function calculates which subsystems need to be enabled if
1374 * @subtree_control is to be applied while restricted to @this_ss_mask.
1375 */
1376static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1377{
1378 u16 cur_ss_mask = subtree_control;
1379 struct cgroup_subsys *ss;
1380 int ssid;
1381
1382 lockdep_assert_held(&cgroup_mutex);
1383
1384 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1385
1386 while (true) {
1387 u16 new_ss_mask = cur_ss_mask;
1388
1389 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1390 new_ss_mask |= ss->depends_on;
1391 } while_each_subsys_mask();
1392
1393 /*
1394 * Mask out subsystems which aren't available. This can
1395 * happen only if some depended-upon subsystems were bound
1396 * to non-default hierarchies.
1397 */
1398 new_ss_mask &= this_ss_mask;
1399
1400 if (new_ss_mask == cur_ss_mask)
1401 break;
1402 cur_ss_mask = new_ss_mask;
1403 }
1404
1405 return cur_ss_mask;
1406}
1407
1408/**
1409 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1410 * @kn: the kernfs_node being serviced
1411 *
1412 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1413 * the method finishes if locking succeeded. Note that once this function
1414 * returns the cgroup returned by cgroup_kn_lock_live() may become
1415 * inaccessible any time. If the caller intends to continue to access the
1416 * cgroup, it should pin it before invoking this function.
1417 */
1418static void cgroup_kn_unlock(struct kernfs_node *kn)
1419{
1420 struct cgroup *cgrp;
1421
1422 if (kernfs_type(kn) == KERNFS_DIR)
1423 cgrp = kn->priv;
1424 else
1425 cgrp = kn->parent->priv;
1426
1427 mutex_unlock(&cgroup_mutex);
1428
1429 kernfs_unbreak_active_protection(kn);
1430 cgroup_put(cgrp);
1431}
1432
1433/**
1434 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1435 * @kn: the kernfs_node being serviced
1436 * @drain_offline: perform offline draining on the cgroup
1437 *
1438 * This helper is to be used by a cgroup kernfs method currently servicing
1439 * @kn. It breaks the active protection, performs cgroup locking and
1440 * verifies that the associated cgroup is alive. Returns the cgroup if
1441 * alive; otherwise, %NULL. A successful return should be undone by a
1442 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1443 * cgroup is drained of offlining csses before return.
1444 *
1445 * Any cgroup kernfs method implementation which requires locking the
1446 * associated cgroup should use this helper. It avoids nesting cgroup
1447 * locking under kernfs active protection and allows all kernfs operations
1448 * including self-removal.
1449 */
1450static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1451 bool drain_offline)
1452{
1453 struct cgroup *cgrp;
1454
1455 if (kernfs_type(kn) == KERNFS_DIR)
1456 cgrp = kn->priv;
1457 else
1458 cgrp = kn->parent->priv;
1459
1460 /*
1461 * We're gonna grab cgroup_mutex which nests outside kernfs
1462 * active_ref. cgroup liveliness check alone provides enough
1463 * protection against removal. Ensure @cgrp stays accessible and
1464 * break the active_ref protection.
1465 */
1466 if (!cgroup_tryget(cgrp))
1467 return NULL;
1468 kernfs_break_active_protection(kn);
1469
1470 if (drain_offline)
1471 cgroup_lock_and_drain_offline(cgrp);
1472 else
1473 mutex_lock(&cgroup_mutex);
1474
1475 if (!cgroup_is_dead(cgrp))
1476 return cgrp;
1477
1478 cgroup_kn_unlock(kn);
1479 return NULL;
1480}
1481
1482static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1483{
1484 char name[CGROUP_FILE_NAME_MAX];
1485
1486 lockdep_assert_held(&cgroup_mutex);
1487
1488 if (cft->file_offset) {
1489 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1490 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1491
1492 spin_lock_irq(&cgroup_file_kn_lock);
1493 cfile->kn = NULL;
1494 spin_unlock_irq(&cgroup_file_kn_lock);
1495 }
1496
1497 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1498}
1499
1500/**
1501 * css_clear_dir - remove subsys files in a cgroup directory
1502 * @css: taget css
1503 */
1504static void css_clear_dir(struct cgroup_subsys_state *css)
1505{
1506 struct cgroup *cgrp = css->cgroup;
1507 struct cftype *cfts;
1508
1509 if (!(css->flags & CSS_VISIBLE))
1510 return;
1511
1512 css->flags &= ~CSS_VISIBLE;
1513
1514 list_for_each_entry(cfts, &css->ss->cfts, node)
1515 cgroup_addrm_files(css, cgrp, cfts, false);
1516}
1517
1518/**
1519 * css_populate_dir - create subsys files in a cgroup directory
1520 * @css: target css
1521 *
1522 * On failure, no file is added.
1523 */
1524static int css_populate_dir(struct cgroup_subsys_state *css)
1525{
1526 struct cgroup *cgrp = css->cgroup;
1527 struct cftype *cfts, *failed_cfts;
1528 int ret;
1529
1530 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1531 return 0;
1532
1533 if (!css->ss) {
1534 if (cgroup_on_dfl(cgrp))
1535 cfts = cgroup_dfl_base_files;
1536 else
1537 cfts = cgroup_legacy_base_files;
1538
1539 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1540 }
1541
1542 list_for_each_entry(cfts, &css->ss->cfts, node) {
1543 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1544 if (ret < 0) {
1545 failed_cfts = cfts;
1546 goto err;
1547 }
1548 }
1549
1550 css->flags |= CSS_VISIBLE;
1551
1552 return 0;
1553err:
1554 list_for_each_entry(cfts, &css->ss->cfts, node) {
1555 if (cfts == failed_cfts)
1556 break;
1557 cgroup_addrm_files(css, cgrp, cfts, false);
1558 }
1559 return ret;
1560}
1561
1562static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1563{
1564 struct cgroup *dcgrp = &dst_root->cgrp;
1565 struct cgroup_subsys *ss;
1566 int ssid, i, ret;
1567
1568 lockdep_assert_held(&cgroup_mutex);
1569
1570 do_each_subsys_mask(ss, ssid, ss_mask) {
1571 /*
1572 * If @ss has non-root csses attached to it, can't move.
1573 * If @ss is an implicit controller, it is exempt from this
1574 * rule and can be stolen.
1575 */
1576 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1577 !ss->implicit_on_dfl)
1578 return -EBUSY;
1579
1580 /* can't move between two non-dummy roots either */
1581 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1582 return -EBUSY;
1583 } while_each_subsys_mask();
1584
1585 do_each_subsys_mask(ss, ssid, ss_mask) {
1586 struct cgroup_root *src_root = ss->root;
1587 struct cgroup *scgrp = &src_root->cgrp;
1588 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1589 struct css_set *cset;
1590
1591 WARN_ON(!css || cgroup_css(dcgrp, ss));
1592
1593 /* disable from the source */
1594 src_root->subsys_mask &= ~(1 << ssid);
1595 WARN_ON(cgroup_apply_control(scgrp));
1596 cgroup_finalize_control(scgrp, 0);
1597
1598 /* rebind */
1599 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1600 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1601 ss->root = dst_root;
1602 css->cgroup = dcgrp;
1603
1604 spin_lock_irq(&css_set_lock);
1605 hash_for_each(css_set_table, i, cset, hlist)
1606 list_move_tail(&cset->e_cset_node[ss->id],
1607 &dcgrp->e_csets[ss->id]);
1608 spin_unlock_irq(&css_set_lock);
1609
1610 /* default hierarchy doesn't enable controllers by default */
1611 dst_root->subsys_mask |= 1 << ssid;
1612 if (dst_root == &cgrp_dfl_root) {
1613 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1614 } else {
1615 dcgrp->subtree_control |= 1 << ssid;
1616 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1617 }
1618
1619 ret = cgroup_apply_control(dcgrp);
1620 if (ret)
1621 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1622 ss->name, ret);
1623
1624 if (ss->bind)
1625 ss->bind(css);
1626 } while_each_subsys_mask();
1627
1628 kernfs_activate(dcgrp->kn);
1629 return 0;
1630}
1631
1632static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1633 struct kernfs_root *kf_root)
1634{
1635 int len = 0;
1636 char *buf = NULL;
1637 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1638 struct cgroup *ns_cgroup;
1639
1640 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1641 if (!buf)
1642 return -ENOMEM;
1643
1644 spin_lock_irq(&css_set_lock);
1645 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1646 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1647 spin_unlock_irq(&css_set_lock);
1648
1649 if (len >= PATH_MAX)
1650 len = -ERANGE;
1651 else if (len > 0) {
1652 seq_escape(sf, buf, " \t\n\\");
1653 len = 0;
1654 }
1655 kfree(buf);
1656 return len;
1657}
1658
1659static int cgroup_show_options(struct seq_file *seq,
1660 struct kernfs_root *kf_root)
1661{
1662 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1663 struct cgroup_subsys *ss;
1664 int ssid;
1665
1666 if (root != &cgrp_dfl_root)
1667 for_each_subsys(ss, ssid)
1668 if (root->subsys_mask & (1 << ssid))
1669 seq_show_option(seq, ss->legacy_name, NULL);
1670 if (root->flags & CGRP_ROOT_NOPREFIX)
1671 seq_puts(seq, ",noprefix");
1672 if (root->flags & CGRP_ROOT_XATTR)
1673 seq_puts(seq, ",xattr");
1674
1675 spin_lock(&release_agent_path_lock);
1676 if (strlen(root->release_agent_path))
1677 seq_show_option(seq, "release_agent",
1678 root->release_agent_path);
1679 spin_unlock(&release_agent_path_lock);
1680
1681 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1682 seq_puts(seq, ",clone_children");
1683 if (strlen(root->name))
1684 seq_show_option(seq, "name", root->name);
1685 return 0;
1686}
1687
1688struct cgroup_sb_opts {
1689 u16 subsys_mask;
1690 unsigned int flags;
1691 char *release_agent;
1692 bool cpuset_clone_children;
1693 char *name;
1694 /* User explicitly requested empty subsystem */
1695 bool none;
1696};
1697
1698static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1699{
1700 char *token, *o = data;
1701 bool all_ss = false, one_ss = false;
1702 u16 mask = U16_MAX;
1703 struct cgroup_subsys *ss;
1704 int nr_opts = 0;
1705 int i;
1706
1707#ifdef CONFIG_CPUSETS
1708 mask = ~((u16)1 << cpuset_cgrp_id);
1709#endif
1710
1711 memset(opts, 0, sizeof(*opts));
1712
1713 while ((token = strsep(&o, ",")) != NULL) {
1714 nr_opts++;
1715
1716 if (!*token)
1717 return -EINVAL;
1718 if (!strcmp(token, "none")) {
1719 /* Explicitly have no subsystems */
1720 opts->none = true;
1721 continue;
1722 }
1723 if (!strcmp(token, "all")) {
1724 /* Mutually exclusive option 'all' + subsystem name */
1725 if (one_ss)
1726 return -EINVAL;
1727 all_ss = true;
1728 continue;
1729 }
1730 if (!strcmp(token, "noprefix")) {
1731 opts->flags |= CGRP_ROOT_NOPREFIX;
1732 continue;
1733 }
1734 if (!strcmp(token, "clone_children")) {
1735 opts->cpuset_clone_children = true;
1736 continue;
1737 }
1738 if (!strcmp(token, "xattr")) {
1739 opts->flags |= CGRP_ROOT_XATTR;
1740 continue;
1741 }
1742 if (!strncmp(token, "release_agent=", 14)) {
1743 /* Specifying two release agents is forbidden */
1744 if (opts->release_agent)
1745 return -EINVAL;
1746 opts->release_agent =
1747 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1748 if (!opts->release_agent)
1749 return -ENOMEM;
1750 continue;
1751 }
1752 if (!strncmp(token, "name=", 5)) {
1753 const char *name = token + 5;
1754 /* Can't specify an empty name */
1755 if (!strlen(name))
1756 return -EINVAL;
1757 /* Must match [\w.-]+ */
1758 for (i = 0; i < strlen(name); i++) {
1759 char c = name[i];
1760 if (isalnum(c))
1761 continue;
1762 if ((c == '.') || (c == '-') || (c == '_'))
1763 continue;
1764 return -EINVAL;
1765 }
1766 /* Specifying two names is forbidden */
1767 if (opts->name)
1768 return -EINVAL;
1769 opts->name = kstrndup(name,
1770 MAX_CGROUP_ROOT_NAMELEN - 1,
1771 GFP_KERNEL);
1772 if (!opts->name)
1773 return -ENOMEM;
1774
1775 continue;
1776 }
1777
1778 for_each_subsys(ss, i) {
1779 if (strcmp(token, ss->legacy_name))
1780 continue;
1781 if (!cgroup_ssid_enabled(i))
1782 continue;
1783 if (cgroup_ssid_no_v1(i))
1784 continue;
1785
1786 /* Mutually exclusive option 'all' + subsystem name */
1787 if (all_ss)
1788 return -EINVAL;
1789 opts->subsys_mask |= (1 << i);
1790 one_ss = true;
1791
1792 break;
1793 }
1794 if (i == CGROUP_SUBSYS_COUNT)
1795 return -ENOENT;
1796 }
1797
1798 /*
1799 * If the 'all' option was specified select all the subsystems,
1800 * otherwise if 'none', 'name=' and a subsystem name options were
1801 * not specified, let's default to 'all'
1802 */
1803 if (all_ss || (!one_ss && !opts->none && !opts->name))
1804 for_each_subsys(ss, i)
1805 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1806 opts->subsys_mask |= (1 << i);
1807
1808 /*
1809 * We either have to specify by name or by subsystems. (So all
1810 * empty hierarchies must have a name).
1811 */
1812 if (!opts->subsys_mask && !opts->name)
1813 return -EINVAL;
1814
1815 /*
1816 * Option noprefix was introduced just for backward compatibility
1817 * with the old cpuset, so we allow noprefix only if mounting just
1818 * the cpuset subsystem.
1819 */
1820 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1821 return -EINVAL;
1822
1823 /* Can't specify "none" and some subsystems */
1824 if (opts->subsys_mask && opts->none)
1825 return -EINVAL;
1826
1827 return 0;
1828}
1829
1830static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1831{
1832 int ret = 0;
1833 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1834 struct cgroup_sb_opts opts;
1835 u16 added_mask, removed_mask;
1836
1837 if (root == &cgrp_dfl_root) {
1838 pr_err("remount is not allowed\n");
1839 return -EINVAL;
1840 }
1841
1842 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1843
1844 /* See what subsystems are wanted */
1845 ret = parse_cgroupfs_options(data, &opts);
1846 if (ret)
1847 goto out_unlock;
1848
1849 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1850 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1851 task_tgid_nr(current), current->comm);
1852
1853 added_mask = opts.subsys_mask & ~root->subsys_mask;
1854 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1855
1856 /* Don't allow flags or name to change at remount */
1857 if ((opts.flags ^ root->flags) ||
1858 (opts.name && strcmp(opts.name, root->name))) {
1859 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1860 opts.flags, opts.name ?: "", root->flags, root->name);
1861 ret = -EINVAL;
1862 goto out_unlock;
1863 }
1864
1865 /* remounting is not allowed for populated hierarchies */
1866 if (!list_empty(&root->cgrp.self.children)) {
1867 ret = -EBUSY;
1868 goto out_unlock;
1869 }
1870
1871 ret = rebind_subsystems(root, added_mask);
1872 if (ret)
1873 goto out_unlock;
1874
1875 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1876
1877 if (opts.release_agent) {
1878 spin_lock(&release_agent_path_lock);
1879 strcpy(root->release_agent_path, opts.release_agent);
1880 spin_unlock(&release_agent_path_lock);
1881 }
1882
1883 trace_cgroup_remount(root);
1884
1885 out_unlock:
1886 kfree(opts.release_agent);
1887 kfree(opts.name);
1888 mutex_unlock(&cgroup_mutex);
1889 return ret;
1890}
1891
1892/*
1893 * To reduce the fork() overhead for systems that are not actually using
1894 * their cgroups capability, we don't maintain the lists running through
1895 * each css_set to its tasks until we see the list actually used - in other
1896 * words after the first mount.
1897 */
1898static bool use_task_css_set_links __read_mostly;
1899
1900static void cgroup_enable_task_cg_lists(void)
1901{
1902 struct task_struct *p, *g;
1903
1904 spin_lock_irq(&css_set_lock);
1905
1906 if (use_task_css_set_links)
1907 goto out_unlock;
1908
1909 use_task_css_set_links = true;
1910
1911 /*
1912 * We need tasklist_lock because RCU is not safe against
1913 * while_each_thread(). Besides, a forking task that has passed
1914 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1915 * is not guaranteed to have its child immediately visible in the
1916 * tasklist if we walk through it with RCU.
1917 */
1918 read_lock(&tasklist_lock);
1919 do_each_thread(g, p) {
1920 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1921 task_css_set(p) != &init_css_set);
1922
1923 /*
1924 * We should check if the process is exiting, otherwise
1925 * it will race with cgroup_exit() in that the list
1926 * entry won't be deleted though the process has exited.
1927 * Do it while holding siglock so that we don't end up
1928 * racing against cgroup_exit().
1929 *
1930 * Interrupts were already disabled while acquiring
1931 * the css_set_lock, so we do not need to disable it
1932 * again when acquiring the sighand->siglock here.
1933 */
1934 spin_lock(&p->sighand->siglock);
1935 if (!(p->flags & PF_EXITING)) {
1936 struct css_set *cset = task_css_set(p);
1937
1938 if (!css_set_populated(cset))
1939 css_set_update_populated(cset, true);
1940 list_add_tail(&p->cg_list, &cset->tasks);
1941 get_css_set(cset);
1942 }
1943 spin_unlock(&p->sighand->siglock);
1944 } while_each_thread(g, p);
1945 read_unlock(&tasklist_lock);
1946out_unlock:
1947 spin_unlock_irq(&css_set_lock);
1948}
1949
1950static void init_cgroup_housekeeping(struct cgroup *cgrp)
1951{
1952 struct cgroup_subsys *ss;
1953 int ssid;
1954
1955 INIT_LIST_HEAD(&cgrp->self.sibling);
1956 INIT_LIST_HEAD(&cgrp->self.children);
1957 INIT_LIST_HEAD(&cgrp->cset_links);
1958 INIT_LIST_HEAD(&cgrp->pidlists);
1959 mutex_init(&cgrp->pidlist_mutex);
1960 cgrp->self.cgroup = cgrp;
1961 cgrp->self.flags |= CSS_ONLINE;
1962
1963 for_each_subsys(ss, ssid)
1964 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965
1966 init_waitqueue_head(&cgrp->offline_waitq);
1967 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1968}
1969
1970static void init_cgroup_root(struct cgroup_root *root,
1971 struct cgroup_sb_opts *opts)
1972{
1973 struct cgroup *cgrp = &root->cgrp;
1974
1975 INIT_LIST_HEAD(&root->root_list);
1976 atomic_set(&root->nr_cgrps, 1);
1977 cgrp->root = root;
1978 init_cgroup_housekeeping(cgrp);
1979 idr_init(&root->cgroup_idr);
1980
1981 root->flags = opts->flags;
1982 if (opts->release_agent)
1983 strcpy(root->release_agent_path, opts->release_agent);
1984 if (opts->name)
1985 strcpy(root->name, opts->name);
1986 if (opts->cpuset_clone_children)
1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988}
1989
1990static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991{
1992 LIST_HEAD(tmp_links);
1993 struct cgroup *root_cgrp = &root->cgrp;
1994 struct css_set *cset;
1995 int i, ret;
1996
1997 lockdep_assert_held(&cgroup_mutex);
1998
1999 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2000 if (ret < 0)
2001 goto out;
2002 root_cgrp->id = ret;
2003 root_cgrp->ancestor_ids[0] = ret;
2004
2005 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
2006 GFP_KERNEL);
2007 if (ret)
2008 goto out;
2009
2010 /*
2011 * We're accessing css_set_count without locking css_set_lock here,
2012 * but that's OK - it can only be increased by someone holding
2013 * cgroup_lock, and that's us. Later rebinding may disable
2014 * controllers on the default hierarchy and thus create new csets,
2015 * which can't be more than the existing ones. Allocate 2x.
2016 */
2017 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2018 if (ret)
2019 goto cancel_ref;
2020
2021 ret = cgroup_init_root_id(root);
2022 if (ret)
2023 goto cancel_ref;
2024
2025 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2026 KERNFS_ROOT_CREATE_DEACTIVATED,
2027 root_cgrp);
2028 if (IS_ERR(root->kf_root)) {
2029 ret = PTR_ERR(root->kf_root);
2030 goto exit_root_id;
2031 }
2032 root_cgrp->kn = root->kf_root->kn;
2033
2034 ret = css_populate_dir(&root_cgrp->self);
2035 if (ret)
2036 goto destroy_root;
2037
2038 ret = rebind_subsystems(root, ss_mask);
2039 if (ret)
2040 goto destroy_root;
2041
2042 trace_cgroup_setup_root(root);
2043
2044 /*
2045 * There must be no failure case after here, since rebinding takes
2046 * care of subsystems' refcounts, which are explicitly dropped in
2047 * the failure exit path.
2048 */
2049 list_add(&root->root_list, &cgroup_roots);
2050 cgroup_root_count++;
2051
2052 /*
2053 * Link the root cgroup in this hierarchy into all the css_set
2054 * objects.
2055 */
2056 spin_lock_irq(&css_set_lock);
2057 hash_for_each(css_set_table, i, cset, hlist) {
2058 link_css_set(&tmp_links, cset, root_cgrp);
2059 if (css_set_populated(cset))
2060 cgroup_update_populated(root_cgrp, true);
2061 }
2062 spin_unlock_irq(&css_set_lock);
2063
2064 BUG_ON(!list_empty(&root_cgrp->self.children));
2065 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2066
2067 kernfs_activate(root_cgrp->kn);
2068 ret = 0;
2069 goto out;
2070
2071destroy_root:
2072 kernfs_destroy_root(root->kf_root);
2073 root->kf_root = NULL;
2074exit_root_id:
2075 cgroup_exit_root_id(root);
2076cancel_ref:
2077 percpu_ref_exit(&root_cgrp->self.refcnt);
2078out:
2079 free_cgrp_cset_links(&tmp_links);
2080 return ret;
2081}
2082
2083static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2084 int flags, const char *unused_dev_name,
2085 void *data)
2086{
2087 bool is_v2 = fs_type == &cgroup2_fs_type;
2088 struct super_block *pinned_sb = NULL;
2089 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2090 struct cgroup_subsys *ss;
2091 struct cgroup_root *root;
2092 struct cgroup_sb_opts opts;
2093 struct dentry *dentry;
2094 int ret;
2095 int i;
2096 bool new_sb;
2097
2098 get_cgroup_ns(ns);
2099
2100 /* Check if the caller has permission to mount. */
2101 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2102 put_cgroup_ns(ns);
2103 return ERR_PTR(-EPERM);
2104 }
2105
2106 /*
2107 * The first time anyone tries to mount a cgroup, enable the list
2108 * linking each css_set to its tasks and fix up all existing tasks.
2109 */
2110 if (!use_task_css_set_links)
2111 cgroup_enable_task_cg_lists();
2112
2113 if (is_v2) {
2114 if (data) {
2115 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2116 put_cgroup_ns(ns);
2117 return ERR_PTR(-EINVAL);
2118 }
2119 cgrp_dfl_visible = true;
2120 root = &cgrp_dfl_root;
2121 cgroup_get(&root->cgrp);
2122 goto out_mount;
2123 }
2124
2125 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2126
2127 /* First find the desired set of subsystems */
2128 ret = parse_cgroupfs_options(data, &opts);
2129 if (ret)
2130 goto out_unlock;
2131
2132 /*
2133 * Destruction of cgroup root is asynchronous, so subsystems may
2134 * still be dying after the previous unmount. Let's drain the
2135 * dying subsystems. We just need to ensure that the ones
2136 * unmounted previously finish dying and don't care about new ones
2137 * starting. Testing ref liveliness is good enough.
2138 */
2139 for_each_subsys(ss, i) {
2140 if (!(opts.subsys_mask & (1 << i)) ||
2141 ss->root == &cgrp_dfl_root)
2142 continue;
2143
2144 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2145 mutex_unlock(&cgroup_mutex);
2146 msleep(10);
2147 ret = restart_syscall();
2148 goto out_free;
2149 }
2150 cgroup_put(&ss->root->cgrp);
2151 }
2152
2153 for_each_root(root) {
2154 bool name_match = false;
2155
2156 if (root == &cgrp_dfl_root)
2157 continue;
2158
2159 /*
2160 * If we asked for a name then it must match. Also, if
2161 * name matches but sybsys_mask doesn't, we should fail.
2162 * Remember whether name matched.
2163 */
2164 if (opts.name) {
2165 if (strcmp(opts.name, root->name))
2166 continue;
2167 name_match = true;
2168 }
2169
2170 /*
2171 * If we asked for subsystems (or explicitly for no
2172 * subsystems) then they must match.
2173 */
2174 if ((opts.subsys_mask || opts.none) &&
2175 (opts.subsys_mask != root->subsys_mask)) {
2176 if (!name_match)
2177 continue;
2178 ret = -EBUSY;
2179 goto out_unlock;
2180 }
2181
2182 if (root->flags ^ opts.flags)
2183 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2184
2185 /*
2186 * We want to reuse @root whose lifetime is governed by its
2187 * ->cgrp. Let's check whether @root is alive and keep it
2188 * that way. As cgroup_kill_sb() can happen anytime, we
2189 * want to block it by pinning the sb so that @root doesn't
2190 * get killed before mount is complete.
2191 *
2192 * With the sb pinned, tryget_live can reliably indicate
2193 * whether @root can be reused. If it's being killed,
2194 * drain it. We can use wait_queue for the wait but this
2195 * path is super cold. Let's just sleep a bit and retry.
2196 */
2197 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2198 if (IS_ERR(pinned_sb) ||
2199 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2200 mutex_unlock(&cgroup_mutex);
2201 if (!IS_ERR_OR_NULL(pinned_sb))
2202 deactivate_super(pinned_sb);
2203 msleep(10);
2204 ret = restart_syscall();
2205 goto out_free;
2206 }
2207
2208 ret = 0;
2209 goto out_unlock;
2210 }
2211
2212 /*
2213 * No such thing, create a new one. name= matching without subsys
2214 * specification is allowed for already existing hierarchies but we
2215 * can't create new one without subsys specification.
2216 */
2217 if (!opts.subsys_mask && !opts.none) {
2218 ret = -EINVAL;
2219 goto out_unlock;
2220 }
2221
2222 /* Hierarchies may only be created in the initial cgroup namespace. */
2223 if (ns != &init_cgroup_ns) {
2224 ret = -EPERM;
2225 goto out_unlock;
2226 }
2227
2228 root = kzalloc(sizeof(*root), GFP_KERNEL);
2229 if (!root) {
2230 ret = -ENOMEM;
2231 goto out_unlock;
2232 }
2233
2234 init_cgroup_root(root, &opts);
2235
2236 ret = cgroup_setup_root(root, opts.subsys_mask);
2237 if (ret)
2238 cgroup_free_root(root);
2239
2240out_unlock:
2241 mutex_unlock(&cgroup_mutex);
2242out_free:
2243 kfree(opts.release_agent);
2244 kfree(opts.name);
2245
2246 if (ret) {
2247 put_cgroup_ns(ns);
2248 return ERR_PTR(ret);
2249 }
2250out_mount:
2251 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2252 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2253 &new_sb);
2254
2255 /*
2256 * In non-init cgroup namespace, instead of root cgroup's
2257 * dentry, we return the dentry corresponding to the
2258 * cgroupns->root_cgrp.
2259 */
2260 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2261 struct dentry *nsdentry;
2262 struct cgroup *cgrp;
2263
2264 mutex_lock(&cgroup_mutex);
2265 spin_lock_irq(&css_set_lock);
2266
2267 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2268
2269 spin_unlock_irq(&css_set_lock);
2270 mutex_unlock(&cgroup_mutex);
2271
2272 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2273 dput(dentry);
2274 dentry = nsdentry;
2275 }
2276
2277 if (IS_ERR(dentry) || !new_sb)
2278 cgroup_put(&root->cgrp);
2279
2280 /*
2281 * If @pinned_sb, we're reusing an existing root and holding an
2282 * extra ref on its sb. Mount is complete. Put the extra ref.
2283 */
2284 if (pinned_sb) {
2285 WARN_ON(new_sb);
2286 deactivate_super(pinned_sb);
2287 }
2288
2289 put_cgroup_ns(ns);
2290 return dentry;
2291}
2292
2293static void cgroup_kill_sb(struct super_block *sb)
2294{
2295 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2296 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2297
2298 /*
2299 * If @root doesn't have any mounts or children, start killing it.
2300 * This prevents new mounts by disabling percpu_ref_tryget_live().
2301 * cgroup_mount() may wait for @root's release.
2302 *
2303 * And don't kill the default root.
2304 */
2305 if (!list_empty(&root->cgrp.self.children) ||
2306 root == &cgrp_dfl_root)
2307 cgroup_put(&root->cgrp);
2308 else
2309 percpu_ref_kill(&root->cgrp.self.refcnt);
2310
2311 kernfs_kill_sb(sb);
2312}
2313
2314static struct file_system_type cgroup_fs_type = {
2315 .name = "cgroup",
2316 .mount = cgroup_mount,
2317 .kill_sb = cgroup_kill_sb,
2318 .fs_flags = FS_USERNS_MOUNT,
2319};
2320
2321static struct file_system_type cgroup2_fs_type = {
2322 .name = "cgroup2",
2323 .mount = cgroup_mount,
2324 .kill_sb = cgroup_kill_sb,
2325 .fs_flags = FS_USERNS_MOUNT,
2326};
2327
2328static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2329 struct cgroup_namespace *ns)
2330{
2331 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2332
2333 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2334}
2335
2336int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2337 struct cgroup_namespace *ns)
2338{
2339 int ret;
2340
2341 mutex_lock(&cgroup_mutex);
2342 spin_lock_irq(&css_set_lock);
2343
2344 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2345
2346 spin_unlock_irq(&css_set_lock);
2347 mutex_unlock(&cgroup_mutex);
2348
2349 return ret;
2350}
2351EXPORT_SYMBOL_GPL(cgroup_path_ns);
2352
2353/**
2354 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2355 * @task: target task
2356 * @buf: the buffer to write the path into
2357 * @buflen: the length of the buffer
2358 *
2359 * Determine @task's cgroup on the first (the one with the lowest non-zero
2360 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2361 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2362 * cgroup controller callbacks.
2363 *
2364 * Return value is the same as kernfs_path().
2365 */
2366int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2367{
2368 struct cgroup_root *root;
2369 struct cgroup *cgrp;
2370 int hierarchy_id = 1;
2371 int ret;
2372
2373 mutex_lock(&cgroup_mutex);
2374 spin_lock_irq(&css_set_lock);
2375
2376 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2377
2378 if (root) {
2379 cgrp = task_cgroup_from_root(task, root);
2380 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2381 } else {
2382 /* if no hierarchy exists, everyone is in "/" */
2383 ret = strlcpy(buf, "/", buflen);
2384 }
2385
2386 spin_unlock_irq(&css_set_lock);
2387 mutex_unlock(&cgroup_mutex);
2388 return ret;
2389}
2390EXPORT_SYMBOL_GPL(task_cgroup_path);
2391
2392/* used to track tasks and other necessary states during migration */
2393struct cgroup_taskset {
2394 /* the src and dst cset list running through cset->mg_node */
2395 struct list_head src_csets;
2396 struct list_head dst_csets;
2397
2398 /* the subsys currently being processed */
2399 int ssid;
2400
2401 /*
2402 * Fields for cgroup_taskset_*() iteration.
2403 *
2404 * Before migration is committed, the target migration tasks are on
2405 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2406 * the csets on ->dst_csets. ->csets point to either ->src_csets
2407 * or ->dst_csets depending on whether migration is committed.
2408 *
2409 * ->cur_csets and ->cur_task point to the current task position
2410 * during iteration.
2411 */
2412 struct list_head *csets;
2413 struct css_set *cur_cset;
2414 struct task_struct *cur_task;
2415};
2416
2417#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2418 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2419 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2420 .csets = &tset.src_csets, \
2421}
2422
2423/**
2424 * cgroup_taskset_add - try to add a migration target task to a taskset
2425 * @task: target task
2426 * @tset: target taskset
2427 *
2428 * Add @task, which is a migration target, to @tset. This function becomes
2429 * noop if @task doesn't need to be migrated. @task's css_set should have
2430 * been added as a migration source and @task->cg_list will be moved from
2431 * the css_set's tasks list to mg_tasks one.
2432 */
2433static void cgroup_taskset_add(struct task_struct *task,
2434 struct cgroup_taskset *tset)
2435{
2436 struct css_set *cset;
2437
2438 lockdep_assert_held(&css_set_lock);
2439
2440 /* @task either already exited or can't exit until the end */
2441 if (task->flags & PF_EXITING)
2442 return;
2443
2444 /* leave @task alone if post_fork() hasn't linked it yet */
2445 if (list_empty(&task->cg_list))
2446 return;
2447
2448 cset = task_css_set(task);
2449 if (!cset->mg_src_cgrp)
2450 return;
2451
2452 list_move_tail(&task->cg_list, &cset->mg_tasks);
2453 if (list_empty(&cset->mg_node))
2454 list_add_tail(&cset->mg_node, &tset->src_csets);
2455 if (list_empty(&cset->mg_dst_cset->mg_node))
2456 list_move_tail(&cset->mg_dst_cset->mg_node,
2457 &tset->dst_csets);
2458}
2459
2460/**
2461 * cgroup_taskset_first - reset taskset and return the first task
2462 * @tset: taskset of interest
2463 * @dst_cssp: output variable for the destination css
2464 *
2465 * @tset iteration is initialized and the first task is returned.
2466 */
2467struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2468 struct cgroup_subsys_state **dst_cssp)
2469{
2470 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2471 tset->cur_task = NULL;
2472
2473 return cgroup_taskset_next(tset, dst_cssp);
2474}
2475
2476/**
2477 * cgroup_taskset_next - iterate to the next task in taskset
2478 * @tset: taskset of interest
2479 * @dst_cssp: output variable for the destination css
2480 *
2481 * Return the next task in @tset. Iteration must have been initialized
2482 * with cgroup_taskset_first().
2483 */
2484struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2485 struct cgroup_subsys_state **dst_cssp)
2486{
2487 struct css_set *cset = tset->cur_cset;
2488 struct task_struct *task = tset->cur_task;
2489
2490 while (&cset->mg_node != tset->csets) {
2491 if (!task)
2492 task = list_first_entry(&cset->mg_tasks,
2493 struct task_struct, cg_list);
2494 else
2495 task = list_next_entry(task, cg_list);
2496
2497 if (&task->cg_list != &cset->mg_tasks) {
2498 tset->cur_cset = cset;
2499 tset->cur_task = task;
2500
2501 /*
2502 * This function may be called both before and
2503 * after cgroup_taskset_migrate(). The two cases
2504 * can be distinguished by looking at whether @cset
2505 * has its ->mg_dst_cset set.
2506 */
2507 if (cset->mg_dst_cset)
2508 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2509 else
2510 *dst_cssp = cset->subsys[tset->ssid];
2511
2512 return task;
2513 }
2514
2515 cset = list_next_entry(cset, mg_node);
2516 task = NULL;
2517 }
2518
2519 return NULL;
2520}
2521
2522/**
2523 * cgroup_taskset_migrate - migrate a taskset
2524 * @tset: taget taskset
2525 * @root: cgroup root the migration is taking place on
2526 *
2527 * Migrate tasks in @tset as setup by migration preparation functions.
2528 * This function fails iff one of the ->can_attach callbacks fails and
2529 * guarantees that either all or none of the tasks in @tset are migrated.
2530 * @tset is consumed regardless of success.
2531 */
2532static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2533 struct cgroup_root *root)
2534{
2535 struct cgroup_subsys *ss;
2536 struct task_struct *task, *tmp_task;
2537 struct css_set *cset, *tmp_cset;
2538 int ssid, failed_ssid, ret;
2539
2540 /* methods shouldn't be called if no task is actually migrating */
2541 if (list_empty(&tset->src_csets))
2542 return 0;
2543
2544 /* check that we can legitimately attach to the cgroup */
2545 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2546 if (ss->can_attach) {
2547 tset->ssid = ssid;
2548 ret = ss->can_attach(tset);
2549 if (ret) {
2550 failed_ssid = ssid;
2551 goto out_cancel_attach;
2552 }
2553 }
2554 } while_each_subsys_mask();
2555
2556 /*
2557 * Now that we're guaranteed success, proceed to move all tasks to
2558 * the new cgroup. There are no failure cases after here, so this
2559 * is the commit point.
2560 */
2561 spin_lock_irq(&css_set_lock);
2562 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2563 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2564 struct css_set *from_cset = task_css_set(task);
2565 struct css_set *to_cset = cset->mg_dst_cset;
2566
2567 get_css_set(to_cset);
2568 css_set_move_task(task, from_cset, to_cset, true);
2569 put_css_set_locked(from_cset);
2570 }
2571 }
2572 spin_unlock_irq(&css_set_lock);
2573
2574 /*
2575 * Migration is committed, all target tasks are now on dst_csets.
2576 * Nothing is sensitive to fork() after this point. Notify
2577 * controllers that migration is complete.
2578 */
2579 tset->csets = &tset->dst_csets;
2580
2581 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2582 if (ss->attach) {
2583 tset->ssid = ssid;
2584 ss->attach(tset);
2585 }
2586 } while_each_subsys_mask();
2587
2588 ret = 0;
2589 goto out_release_tset;
2590
2591out_cancel_attach:
2592 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2593 if (ssid == failed_ssid)
2594 break;
2595 if (ss->cancel_attach) {
2596 tset->ssid = ssid;
2597 ss->cancel_attach(tset);
2598 }
2599 } while_each_subsys_mask();
2600out_release_tset:
2601 spin_lock_irq(&css_set_lock);
2602 list_splice_init(&tset->dst_csets, &tset->src_csets);
2603 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2604 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2605 list_del_init(&cset->mg_node);
2606 }
2607 spin_unlock_irq(&css_set_lock);
2608 return ret;
2609}
2610
2611/**
2612 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2613 * @dst_cgrp: destination cgroup to test
2614 *
2615 * On the default hierarchy, except for the root, subtree_control must be
2616 * zero for migration destination cgroups with tasks so that child cgroups
2617 * don't compete against tasks.
2618 */
2619static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2620{
2621 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2622 !dst_cgrp->subtree_control;
2623}
2624
2625/**
2626 * cgroup_migrate_finish - cleanup after attach
2627 * @preloaded_csets: list of preloaded css_sets
2628 *
2629 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2630 * those functions for details.
2631 */
2632static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2633{
2634 struct css_set *cset, *tmp_cset;
2635
2636 lockdep_assert_held(&cgroup_mutex);
2637
2638 spin_lock_irq(&css_set_lock);
2639 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2640 cset->mg_src_cgrp = NULL;
2641 cset->mg_dst_cgrp = NULL;
2642 cset->mg_dst_cset = NULL;
2643 list_del_init(&cset->mg_preload_node);
2644 put_css_set_locked(cset);
2645 }
2646 spin_unlock_irq(&css_set_lock);
2647}
2648
2649/**
2650 * cgroup_migrate_add_src - add a migration source css_set
2651 * @src_cset: the source css_set to add
2652 * @dst_cgrp: the destination cgroup
2653 * @preloaded_csets: list of preloaded css_sets
2654 *
2655 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2656 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2657 * up by cgroup_migrate_finish().
2658 *
2659 * This function may be called without holding cgroup_threadgroup_rwsem
2660 * even if the target is a process. Threads may be created and destroyed
2661 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2662 * into play and the preloaded css_sets are guaranteed to cover all
2663 * migrations.
2664 */
2665static void cgroup_migrate_add_src(struct css_set *src_cset,
2666 struct cgroup *dst_cgrp,
2667 struct list_head *preloaded_csets)
2668{
2669 struct cgroup *src_cgrp;
2670
2671 lockdep_assert_held(&cgroup_mutex);
2672 lockdep_assert_held(&css_set_lock);
2673
2674 /*
2675 * If ->dead, @src_set is associated with one or more dead cgroups
2676 * and doesn't contain any migratable tasks. Ignore it early so
2677 * that the rest of migration path doesn't get confused by it.
2678 */
2679 if (src_cset->dead)
2680 return;
2681
2682 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2683
2684 if (!list_empty(&src_cset->mg_preload_node))
2685 return;
2686
2687 WARN_ON(src_cset->mg_src_cgrp);
2688 WARN_ON(src_cset->mg_dst_cgrp);
2689 WARN_ON(!list_empty(&src_cset->mg_tasks));
2690 WARN_ON(!list_empty(&src_cset->mg_node));
2691
2692 src_cset->mg_src_cgrp = src_cgrp;
2693 src_cset->mg_dst_cgrp = dst_cgrp;
2694 get_css_set(src_cset);
2695 list_add(&src_cset->mg_preload_node, preloaded_csets);
2696}
2697
2698/**
2699 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2700 * @preloaded_csets: list of preloaded source css_sets
2701 *
2702 * Tasks are about to be moved and all the source css_sets have been
2703 * preloaded to @preloaded_csets. This function looks up and pins all
2704 * destination css_sets, links each to its source, and append them to
2705 * @preloaded_csets.
2706 *
2707 * This function must be called after cgroup_migrate_add_src() has been
2708 * called on each migration source css_set. After migration is performed
2709 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2710 * @preloaded_csets.
2711 */
2712static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2713{
2714 LIST_HEAD(csets);
2715 struct css_set *src_cset, *tmp_cset;
2716
2717 lockdep_assert_held(&cgroup_mutex);
2718
2719 /* look up the dst cset for each src cset and link it to src */
2720 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2721 struct css_set *dst_cset;
2722
2723 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2724 if (!dst_cset)
2725 goto err;
2726
2727 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2728
2729 /*
2730 * If src cset equals dst, it's noop. Drop the src.
2731 * cgroup_migrate() will skip the cset too. Note that we
2732 * can't handle src == dst as some nodes are used by both.
2733 */
2734 if (src_cset == dst_cset) {
2735 src_cset->mg_src_cgrp = NULL;
2736 src_cset->mg_dst_cgrp = NULL;
2737 list_del_init(&src_cset->mg_preload_node);
2738 put_css_set(src_cset);
2739 put_css_set(dst_cset);
2740 continue;
2741 }
2742
2743 src_cset->mg_dst_cset = dst_cset;
2744
2745 if (list_empty(&dst_cset->mg_preload_node))
2746 list_add(&dst_cset->mg_preload_node, &csets);
2747 else
2748 put_css_set(dst_cset);
2749 }
2750
2751 list_splice_tail(&csets, preloaded_csets);
2752 return 0;
2753err:
2754 cgroup_migrate_finish(&csets);
2755 return -ENOMEM;
2756}
2757
2758/**
2759 * cgroup_migrate - migrate a process or task to a cgroup
2760 * @leader: the leader of the process or the task to migrate
2761 * @threadgroup: whether @leader points to the whole process or a single task
2762 * @root: cgroup root migration is taking place on
2763 *
2764 * Migrate a process or task denoted by @leader. If migrating a process,
2765 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2766 * responsible for invoking cgroup_migrate_add_src() and
2767 * cgroup_migrate_prepare_dst() on the targets before invoking this
2768 * function and following up with cgroup_migrate_finish().
2769 *
2770 * As long as a controller's ->can_attach() doesn't fail, this function is
2771 * guaranteed to succeed. This means that, excluding ->can_attach()
2772 * failure, when migrating multiple targets, the success or failure can be
2773 * decided for all targets by invoking group_migrate_prepare_dst() before
2774 * actually starting migrating.
2775 */
2776static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2777 struct cgroup_root *root)
2778{
2779 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2780 struct task_struct *task;
2781
2782 /*
2783 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2784 * already PF_EXITING could be freed from underneath us unless we
2785 * take an rcu_read_lock.
2786 */
2787 spin_lock_irq(&css_set_lock);
2788 rcu_read_lock();
2789 task = leader;
2790 do {
2791 cgroup_taskset_add(task, &tset);
2792 if (!threadgroup)
2793 break;
2794 } while_each_thread(leader, task);
2795 rcu_read_unlock();
2796 spin_unlock_irq(&css_set_lock);
2797
2798 return cgroup_taskset_migrate(&tset, root);
2799}
2800
2801/**
2802 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2803 * @dst_cgrp: the cgroup to attach to
2804 * @leader: the task or the leader of the threadgroup to be attached
2805 * @threadgroup: attach the whole threadgroup?
2806 *
2807 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2808 */
2809static int cgroup_attach_task(struct cgroup *dst_cgrp,
2810 struct task_struct *leader, bool threadgroup)
2811{
2812 LIST_HEAD(preloaded_csets);
2813 struct task_struct *task;
2814 int ret;
2815
2816 if (!cgroup_may_migrate_to(dst_cgrp))
2817 return -EBUSY;
2818
2819 /* look up all src csets */
2820 spin_lock_irq(&css_set_lock);
2821 rcu_read_lock();
2822 task = leader;
2823 do {
2824 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2825 &preloaded_csets);
2826 if (!threadgroup)
2827 break;
2828 } while_each_thread(leader, task);
2829 rcu_read_unlock();
2830 spin_unlock_irq(&css_set_lock);
2831
2832 /* prepare dst csets and commit */
2833 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2834 if (!ret)
2835 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2836
2837 cgroup_migrate_finish(&preloaded_csets);
2838
2839 if (!ret)
2840 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2841
2842 return ret;
2843}
2844
2845static int cgroup_procs_write_permission(struct task_struct *task,
2846 struct cgroup *dst_cgrp,
2847 struct kernfs_open_file *of)
2848{
2849 const struct cred *cred = current_cred();
2850 const struct cred *tcred = get_task_cred(task);
2851 int ret = 0;
2852
2853 /*
2854 * even if we're attaching all tasks in the thread group, we only
2855 * need to check permissions on one of them.
2856 */
2857 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2858 !uid_eq(cred->euid, tcred->uid) &&
2859 !uid_eq(cred->euid, tcred->suid))
2860 ret = -EACCES;
2861
2862 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2863 struct super_block *sb = of->file->f_path.dentry->d_sb;
2864 struct cgroup *cgrp;
2865 struct inode *inode;
2866
2867 spin_lock_irq(&css_set_lock);
2868 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2869 spin_unlock_irq(&css_set_lock);
2870
2871 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2872 cgrp = cgroup_parent(cgrp);
2873
2874 ret = -ENOMEM;
2875 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2876 if (inode) {
2877 ret = inode_permission(inode, MAY_WRITE);
2878 iput(inode);
2879 }
2880 }
2881
2882 put_cred(tcred);
2883 return ret;
2884}
2885
2886/*
2887 * Find the task_struct of the task to attach by vpid and pass it along to the
2888 * function to attach either it or all tasks in its threadgroup. Will lock
2889 * cgroup_mutex and threadgroup.
2890 */
2891static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2892 size_t nbytes, loff_t off, bool threadgroup)
2893{
2894 struct task_struct *tsk;
2895 struct cgroup_subsys *ss;
2896 struct cgroup *cgrp;
2897 pid_t pid;
2898 int ssid, ret;
2899
2900 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2901 return -EINVAL;
2902
2903 cgrp = cgroup_kn_lock_live(of->kn, false);
2904 if (!cgrp)
2905 return -ENODEV;
2906
2907 percpu_down_write(&cgroup_threadgroup_rwsem);
2908 rcu_read_lock();
2909 if (pid) {
2910 tsk = find_task_by_vpid(pid);
2911 if (!tsk) {
2912 ret = -ESRCH;
2913 goto out_unlock_rcu;
2914 }
2915 } else {
2916 tsk = current;
2917 }
2918
2919 if (threadgroup)
2920 tsk = tsk->group_leader;
2921
2922 /*
2923 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2924 * trapped in a cpuset, or RT worker may be born in a cgroup
2925 * with no rt_runtime allocated. Just say no.
2926 */
2927 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2928 ret = -EINVAL;
2929 goto out_unlock_rcu;
2930 }
2931
2932 get_task_struct(tsk);
2933 rcu_read_unlock();
2934
2935 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2936 if (!ret)
2937 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2938
2939 put_task_struct(tsk);
2940 goto out_unlock_threadgroup;
2941
2942out_unlock_rcu:
2943 rcu_read_unlock();
2944out_unlock_threadgroup:
2945 percpu_up_write(&cgroup_threadgroup_rwsem);
2946 for_each_subsys(ss, ssid)
2947 if (ss->post_attach)
2948 ss->post_attach();
2949 cgroup_kn_unlock(of->kn);
2950 return ret ?: nbytes;
2951}
2952
2953/**
2954 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2955 * @from: attach to all cgroups of a given task
2956 * @tsk: the task to be attached
2957 */
2958int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2959{
2960 struct cgroup_root *root;
2961 int retval = 0;
2962
2963 mutex_lock(&cgroup_mutex);
2964 percpu_down_write(&cgroup_threadgroup_rwsem);
2965 for_each_root(root) {
2966 struct cgroup *from_cgrp;
2967
2968 if (root == &cgrp_dfl_root)
2969 continue;
2970
2971 spin_lock_irq(&css_set_lock);
2972 from_cgrp = task_cgroup_from_root(from, root);
2973 spin_unlock_irq(&css_set_lock);
2974
2975 retval = cgroup_attach_task(from_cgrp, tsk, false);
2976 if (retval)
2977 break;
2978 }
2979 percpu_up_write(&cgroup_threadgroup_rwsem);
2980 mutex_unlock(&cgroup_mutex);
2981
2982 return retval;
2983}
2984EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2985
2986static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2987 char *buf, size_t nbytes, loff_t off)
2988{
2989 return __cgroup_procs_write(of, buf, nbytes, off, false);
2990}
2991
2992static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2993 char *buf, size_t nbytes, loff_t off)
2994{
2995 return __cgroup_procs_write(of, buf, nbytes, off, true);
2996}
2997
2998static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2999 char *buf, size_t nbytes, loff_t off)
3000{
3001 struct cgroup *cgrp;
3002
3003 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
3004
3005 cgrp = cgroup_kn_lock_live(of->kn, false);
3006 if (!cgrp)
3007 return -ENODEV;
3008 spin_lock(&release_agent_path_lock);
3009 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3010 sizeof(cgrp->root->release_agent_path));
3011 spin_unlock(&release_agent_path_lock);
3012 cgroup_kn_unlock(of->kn);
3013 return nbytes;
3014}
3015
3016static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3017{
3018 struct cgroup *cgrp = seq_css(seq)->cgroup;
3019
3020 spin_lock(&release_agent_path_lock);
3021 seq_puts(seq, cgrp->root->release_agent_path);
3022 spin_unlock(&release_agent_path_lock);
3023 seq_putc(seq, '\n');
3024 return 0;
3025}
3026
3027static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3028{
3029 seq_puts(seq, "0\n");
3030 return 0;
3031}
3032
3033static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3034{
3035 struct cgroup_subsys *ss;
3036 bool printed = false;
3037 int ssid;
3038
3039 do_each_subsys_mask(ss, ssid, ss_mask) {
3040 if (printed)
3041 seq_putc(seq, ' ');
3042 seq_printf(seq, "%s", ss->name);
3043 printed = true;
3044 } while_each_subsys_mask();
3045 if (printed)
3046 seq_putc(seq, '\n');
3047}
3048
3049/* show controllers which are enabled from the parent */
3050static int cgroup_controllers_show(struct seq_file *seq, void *v)
3051{
3052 struct cgroup *cgrp = seq_css(seq)->cgroup;
3053
3054 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3055 return 0;
3056}
3057
3058/* show controllers which are enabled for a given cgroup's children */
3059static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3060{
3061 struct cgroup *cgrp = seq_css(seq)->cgroup;
3062
3063 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3064 return 0;
3065}
3066
3067/**
3068 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3069 * @cgrp: root of the subtree to update csses for
3070 *
3071 * @cgrp's control masks have changed and its subtree's css associations
3072 * need to be updated accordingly. This function looks up all css_sets
3073 * which are attached to the subtree, creates the matching updated css_sets
3074 * and migrates the tasks to the new ones.
3075 */
3076static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3077{
3078 LIST_HEAD(preloaded_csets);
3079 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3080 struct cgroup_subsys_state *d_css;
3081 struct cgroup *dsct;
3082 struct css_set *src_cset;
3083 int ret;
3084
3085 lockdep_assert_held(&cgroup_mutex);
3086
3087 percpu_down_write(&cgroup_threadgroup_rwsem);
3088
3089 /* look up all csses currently attached to @cgrp's subtree */
3090 spin_lock_irq(&css_set_lock);
3091 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3092 struct cgrp_cset_link *link;
3093
3094 list_for_each_entry(link, &dsct->cset_links, cset_link)
3095 cgroup_migrate_add_src(link->cset, dsct,
3096 &preloaded_csets);
3097 }
3098 spin_unlock_irq(&css_set_lock);
3099
3100 /* NULL dst indicates self on default hierarchy */
3101 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3102 if (ret)
3103 goto out_finish;
3104
3105 spin_lock_irq(&css_set_lock);
3106 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3107 struct task_struct *task, *ntask;
3108
3109 /* src_csets precede dst_csets, break on the first dst_cset */
3110 if (!src_cset->mg_src_cgrp)
3111 break;
3112
3113 /* all tasks in src_csets need to be migrated */
3114 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3115 cgroup_taskset_add(task, &tset);
3116 }
3117 spin_unlock_irq(&css_set_lock);
3118
3119 ret = cgroup_taskset_migrate(&tset, cgrp->root);
3120out_finish:
3121 cgroup_migrate_finish(&preloaded_csets);
3122 percpu_up_write(&cgroup_threadgroup_rwsem);
3123 return ret;
3124}
3125
3126/**
3127 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3128 * @cgrp: root of the target subtree
3129 *
3130 * Because css offlining is asynchronous, userland may try to re-enable a
3131 * controller while the previous css is still around. This function grabs
3132 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3133 */
3134static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3135 __acquires(&cgroup_mutex)
3136{
3137 struct cgroup *dsct;
3138 struct cgroup_subsys_state *d_css;
3139 struct cgroup_subsys *ss;
3140 int ssid;
3141
3142restart:
3143 mutex_lock(&cgroup_mutex);
3144
3145 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3146 for_each_subsys(ss, ssid) {
3147 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3148 DEFINE_WAIT(wait);
3149
3150 if (!css || !percpu_ref_is_dying(&css->refcnt))
3151 continue;
3152
3153 cgroup_get(dsct);
3154 prepare_to_wait(&dsct->offline_waitq, &wait,
3155 TASK_UNINTERRUPTIBLE);
3156
3157 mutex_unlock(&cgroup_mutex);
3158 schedule();
3159 finish_wait(&dsct->offline_waitq, &wait);
3160
3161 cgroup_put(dsct);
3162 goto restart;
3163 }
3164 }
3165}
3166
3167/**
3168 * cgroup_save_control - save control masks of a subtree
3169 * @cgrp: root of the target subtree
3170 *
3171 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3172 * prefixed fields for @cgrp's subtree including @cgrp itself.
3173 */
3174static void cgroup_save_control(struct cgroup *cgrp)
3175{
3176 struct cgroup *dsct;
3177 struct cgroup_subsys_state *d_css;
3178
3179 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3180 dsct->old_subtree_control = dsct->subtree_control;
3181 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3182 }
3183}
3184
3185/**
3186 * cgroup_propagate_control - refresh control masks of a subtree
3187 * @cgrp: root of the target subtree
3188 *
3189 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3190 * ->subtree_control and propagate controller availability through the
3191 * subtree so that descendants don't have unavailable controllers enabled.
3192 */
3193static void cgroup_propagate_control(struct cgroup *cgrp)
3194{
3195 struct cgroup *dsct;
3196 struct cgroup_subsys_state *d_css;
3197
3198 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3199 dsct->subtree_control &= cgroup_control(dsct);
3200 dsct->subtree_ss_mask =
3201 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3202 cgroup_ss_mask(dsct));
3203 }
3204}
3205
3206/**
3207 * cgroup_restore_control - restore control masks of a subtree
3208 * @cgrp: root of the target subtree
3209 *
3210 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3211 * prefixed fields for @cgrp's subtree including @cgrp itself.
3212 */
3213static void cgroup_restore_control(struct cgroup *cgrp)
3214{
3215 struct cgroup *dsct;
3216 struct cgroup_subsys_state *d_css;
3217
3218 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3219 dsct->subtree_control = dsct->old_subtree_control;
3220 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3221 }
3222}
3223
3224static bool css_visible(struct cgroup_subsys_state *css)
3225{
3226 struct cgroup_subsys *ss = css->ss;
3227 struct cgroup *cgrp = css->cgroup;
3228
3229 if (cgroup_control(cgrp) & (1 << ss->id))
3230 return true;
3231 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3232 return false;
3233 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3234}
3235
3236/**
3237 * cgroup_apply_control_enable - enable or show csses according to control
3238 * @cgrp: root of the target subtree
3239 *
3240 * Walk @cgrp's subtree and create new csses or make the existing ones
3241 * visible. A css is created invisible if it's being implicitly enabled
3242 * through dependency. An invisible css is made visible when the userland
3243 * explicitly enables it.
3244 *
3245 * Returns 0 on success, -errno on failure. On failure, csses which have
3246 * been processed already aren't cleaned up. The caller is responsible for
3247 * cleaning up with cgroup_apply_control_disble().
3248 */
3249static int cgroup_apply_control_enable(struct cgroup *cgrp)
3250{
3251 struct cgroup *dsct;
3252 struct cgroup_subsys_state *d_css;
3253 struct cgroup_subsys *ss;
3254 int ssid, ret;
3255
3256 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3257 for_each_subsys(ss, ssid) {
3258 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3259
3260 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3261
3262 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3263 continue;
3264
3265 if (!css) {
3266 css = css_create(dsct, ss);
3267 if (IS_ERR(css))
3268 return PTR_ERR(css);
3269 }
3270
3271 if (css_visible(css)) {
3272 ret = css_populate_dir(css);
3273 if (ret)
3274 return ret;
3275 }
3276 }
3277 }
3278
3279 return 0;
3280}
3281
3282/**
3283 * cgroup_apply_control_disable - kill or hide csses according to control
3284 * @cgrp: root of the target subtree
3285 *
3286 * Walk @cgrp's subtree and kill and hide csses so that they match
3287 * cgroup_ss_mask() and cgroup_visible_mask().
3288 *
3289 * A css is hidden when the userland requests it to be disabled while other
3290 * subsystems are still depending on it. The css must not actively control
3291 * resources and be in the vanilla state if it's made visible again later.
3292 * Controllers which may be depended upon should provide ->css_reset() for
3293 * this purpose.
3294 */
3295static void cgroup_apply_control_disable(struct cgroup *cgrp)
3296{
3297 struct cgroup *dsct;
3298 struct cgroup_subsys_state *d_css;
3299 struct cgroup_subsys *ss;
3300 int ssid;
3301
3302 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3303 for_each_subsys(ss, ssid) {
3304 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3305
3306 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3307
3308 if (!css)
3309 continue;
3310
3311 if (css->parent &&
3312 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3313 kill_css(css);
3314 } else if (!css_visible(css)) {
3315 css_clear_dir(css);
3316 if (ss->css_reset)
3317 ss->css_reset(css);
3318 }
3319 }
3320 }
3321}
3322
3323/**
3324 * cgroup_apply_control - apply control mask updates to the subtree
3325 * @cgrp: root of the target subtree
3326 *
3327 * subsystems can be enabled and disabled in a subtree using the following
3328 * steps.
3329 *
3330 * 1. Call cgroup_save_control() to stash the current state.
3331 * 2. Update ->subtree_control masks in the subtree as desired.
3332 * 3. Call cgroup_apply_control() to apply the changes.
3333 * 4. Optionally perform other related operations.
3334 * 5. Call cgroup_finalize_control() to finish up.
3335 *
3336 * This function implements step 3 and propagates the mask changes
3337 * throughout @cgrp's subtree, updates csses accordingly and perform
3338 * process migrations.
3339 */
3340static int cgroup_apply_control(struct cgroup *cgrp)
3341{
3342 int ret;
3343
3344 cgroup_propagate_control(cgrp);
3345
3346 ret = cgroup_apply_control_enable(cgrp);
3347 if (ret)
3348 return ret;
3349
3350 /*
3351 * At this point, cgroup_e_css() results reflect the new csses
3352 * making the following cgroup_update_dfl_csses() properly update
3353 * css associations of all tasks in the subtree.
3354 */
3355 ret = cgroup_update_dfl_csses(cgrp);
3356 if (ret)
3357 return ret;
3358
3359 return 0;
3360}
3361
3362/**
3363 * cgroup_finalize_control - finalize control mask update
3364 * @cgrp: root of the target subtree
3365 * @ret: the result of the update
3366 *
3367 * Finalize control mask update. See cgroup_apply_control() for more info.
3368 */
3369static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3370{
3371 if (ret) {
3372 cgroup_restore_control(cgrp);
3373 cgroup_propagate_control(cgrp);
3374 }
3375
3376 cgroup_apply_control_disable(cgrp);
3377}
3378
3379/* change the enabled child controllers for a cgroup in the default hierarchy */
3380static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3381 char *buf, size_t nbytes,
3382 loff_t off)
3383{
3384 u16 enable = 0, disable = 0;
3385 struct cgroup *cgrp, *child;
3386 struct cgroup_subsys *ss;
3387 char *tok;
3388 int ssid, ret;
3389
3390 /*
3391 * Parse input - space separated list of subsystem names prefixed
3392 * with either + or -.
3393 */
3394 buf = strstrip(buf);
3395 while ((tok = strsep(&buf, " "))) {
3396 if (tok[0] == '\0')
3397 continue;
3398 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3399 if (!cgroup_ssid_enabled(ssid) ||
3400 strcmp(tok + 1, ss->name))
3401 continue;
3402
3403 if (*tok == '+') {
3404 enable |= 1 << ssid;
3405 disable &= ~(1 << ssid);
3406 } else if (*tok == '-') {
3407 disable |= 1 << ssid;
3408 enable &= ~(1 << ssid);
3409 } else {
3410 return -EINVAL;
3411 }
3412 break;
3413 } while_each_subsys_mask();
3414 if (ssid == CGROUP_SUBSYS_COUNT)
3415 return -EINVAL;
3416 }
3417
3418 cgrp = cgroup_kn_lock_live(of->kn, true);
3419 if (!cgrp)
3420 return -ENODEV;
3421
3422 for_each_subsys(ss, ssid) {
3423 if (enable & (1 << ssid)) {
3424 if (cgrp->subtree_control & (1 << ssid)) {
3425 enable &= ~(1 << ssid);
3426 continue;
3427 }
3428
3429 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3430 ret = -ENOENT;
3431 goto out_unlock;
3432 }
3433 } else if (disable & (1 << ssid)) {
3434 if (!(cgrp->subtree_control & (1 << ssid))) {
3435 disable &= ~(1 << ssid);
3436 continue;
3437 }
3438
3439 /* a child has it enabled? */
3440 cgroup_for_each_live_child(child, cgrp) {
3441 if (child->subtree_control & (1 << ssid)) {
3442 ret = -EBUSY;
3443 goto out_unlock;
3444 }
3445 }
3446 }
3447 }
3448
3449 if (!enable && !disable) {
3450 ret = 0;
3451 goto out_unlock;
3452 }
3453
3454 /*
3455 * Except for the root, subtree_control must be zero for a cgroup
3456 * with tasks so that child cgroups don't compete against tasks.
3457 */
3458 if (enable && cgroup_parent(cgrp)) {
3459 struct cgrp_cset_link *link;
3460
3461 /*
3462 * Because namespaces pin csets too, @cgrp->cset_links
3463 * might not be empty even when @cgrp is empty. Walk and
3464 * verify each cset.
3465 */
3466 spin_lock_irq(&css_set_lock);
3467
3468 ret = 0;
3469 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
3470 if (css_set_populated(link->cset)) {
3471 ret = -EBUSY;
3472 break;
3473 }
3474 }
3475
3476 spin_unlock_irq(&css_set_lock);
3477
3478 if (ret)
3479 goto out_unlock;
3480 }
3481
3482 /* save and update control masks and prepare csses */
3483 cgroup_save_control(cgrp);
3484
3485 cgrp->subtree_control |= enable;
3486 cgrp->subtree_control &= ~disable;
3487
3488 ret = cgroup_apply_control(cgrp);
3489
3490 cgroup_finalize_control(cgrp, ret);
3491
3492 kernfs_activate(cgrp->kn);
3493 ret = 0;
3494out_unlock:
3495 cgroup_kn_unlock(of->kn);
3496 return ret ?: nbytes;
3497}
3498
3499static int cgroup_events_show(struct seq_file *seq, void *v)
3500{
3501 seq_printf(seq, "populated %d\n",
3502 cgroup_is_populated(seq_css(seq)->cgroup));
3503 return 0;
3504}
3505
3506static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3507 size_t nbytes, loff_t off)
3508{
3509 struct cgroup *cgrp = of->kn->parent->priv;
3510 struct cftype *cft = of->kn->priv;
3511 struct cgroup_subsys_state *css;
3512 int ret;
3513
3514 if (cft->write)
3515 return cft->write(of, buf, nbytes, off);
3516
3517 /*
3518 * kernfs guarantees that a file isn't deleted with operations in
3519 * flight, which means that the matching css is and stays alive and
3520 * doesn't need to be pinned. The RCU locking is not necessary
3521 * either. It's just for the convenience of using cgroup_css().
3522 */
3523 rcu_read_lock();
3524 css = cgroup_css(cgrp, cft->ss);
3525 rcu_read_unlock();
3526
3527 if (cft->write_u64) {
3528 unsigned long long v;
3529 ret = kstrtoull(buf, 0, &v);
3530 if (!ret)
3531 ret = cft->write_u64(css, cft, v);
3532 } else if (cft->write_s64) {
3533 long long v;
3534 ret = kstrtoll(buf, 0, &v);
3535 if (!ret)
3536 ret = cft->write_s64(css, cft, v);
3537 } else {
3538 ret = -EINVAL;
3539 }
3540
3541 return ret ?: nbytes;
3542}
3543
3544static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3545{
3546 return seq_cft(seq)->seq_start(seq, ppos);
3547}
3548
3549static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3550{
3551 return seq_cft(seq)->seq_next(seq, v, ppos);
3552}
3553
3554static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3555{
3556 seq_cft(seq)->seq_stop(seq, v);
3557}
3558
3559static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3560{
3561 struct cftype *cft = seq_cft(m);
3562 struct cgroup_subsys_state *css = seq_css(m);
3563
3564 if (cft->seq_show)
3565 return cft->seq_show(m, arg);
3566
3567 if (cft->read_u64)
3568 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3569 else if (cft->read_s64)
3570 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3571 else
3572 return -EINVAL;
3573 return 0;
3574}
3575
3576static struct kernfs_ops cgroup_kf_single_ops = {
3577 .atomic_write_len = PAGE_SIZE,
3578 .write = cgroup_file_write,
3579 .seq_show = cgroup_seqfile_show,
3580};
3581
3582static struct kernfs_ops cgroup_kf_ops = {
3583 .atomic_write_len = PAGE_SIZE,
3584 .write = cgroup_file_write,
3585 .seq_start = cgroup_seqfile_start,
3586 .seq_next = cgroup_seqfile_next,
3587 .seq_stop = cgroup_seqfile_stop,
3588 .seq_show = cgroup_seqfile_show,
3589};
3590
3591/*
3592 * cgroup_rename - Only allow simple rename of directories in place.
3593 */
3594static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3595 const char *new_name_str)
3596{
3597 struct cgroup *cgrp = kn->priv;
3598 int ret;
3599
3600 if (kernfs_type(kn) != KERNFS_DIR)
3601 return -ENOTDIR;
3602 if (kn->parent != new_parent)
3603 return -EIO;
3604
3605 /*
3606 * This isn't a proper migration and its usefulness is very
3607 * limited. Disallow on the default hierarchy.
3608 */
3609 if (cgroup_on_dfl(cgrp))
3610 return -EPERM;
3611
3612 /*
3613 * We're gonna grab cgroup_mutex which nests outside kernfs
3614 * active_ref. kernfs_rename() doesn't require active_ref
3615 * protection. Break them before grabbing cgroup_mutex.
3616 */
3617 kernfs_break_active_protection(new_parent);
3618 kernfs_break_active_protection(kn);
3619
3620 mutex_lock(&cgroup_mutex);
3621
3622 ret = kernfs_rename(kn, new_parent, new_name_str);
3623 if (!ret)
3624 trace_cgroup_rename(cgrp);
3625
3626 mutex_unlock(&cgroup_mutex);
3627
3628 kernfs_unbreak_active_protection(kn);
3629 kernfs_unbreak_active_protection(new_parent);
3630 return ret;
3631}
3632
3633/* set uid and gid of cgroup dirs and files to that of the creator */
3634static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3635{
3636 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3637 .ia_uid = current_fsuid(),
3638 .ia_gid = current_fsgid(), };
3639
3640 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3641 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3642 return 0;
3643
3644 return kernfs_setattr(kn, &iattr);
3645}
3646
3647static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3648 struct cftype *cft)
3649{
3650 char name[CGROUP_FILE_NAME_MAX];
3651 struct kernfs_node *kn;
3652 struct lock_class_key *key = NULL;
3653 int ret;
3654
3655#ifdef CONFIG_DEBUG_LOCK_ALLOC
3656 key = &cft->lockdep_key;
3657#endif
3658 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3659 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3660 NULL, key);
3661 if (IS_ERR(kn))
3662 return PTR_ERR(kn);
3663
3664 ret = cgroup_kn_set_ugid(kn);
3665 if (ret) {
3666 kernfs_remove(kn);
3667 return ret;
3668 }
3669
3670 if (cft->file_offset) {
3671 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3672
3673 spin_lock_irq(&cgroup_file_kn_lock);
3674 cfile->kn = kn;
3675 spin_unlock_irq(&cgroup_file_kn_lock);
3676 }
3677
3678 return 0;
3679}
3680
3681/**
3682 * cgroup_addrm_files - add or remove files to a cgroup directory
3683 * @css: the target css
3684 * @cgrp: the target cgroup (usually css->cgroup)
3685 * @cfts: array of cftypes to be added
3686 * @is_add: whether to add or remove
3687 *
3688 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3689 * For removals, this function never fails.
3690 */
3691static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3692 struct cgroup *cgrp, struct cftype cfts[],
3693 bool is_add)
3694{
3695 struct cftype *cft, *cft_end = NULL;
3696 int ret = 0;
3697
3698 lockdep_assert_held(&cgroup_mutex);
3699
3700restart:
3701 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3702 /* does cft->flags tell us to skip this file on @cgrp? */
3703 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3704 continue;
3705 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3706 continue;
3707 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3708 continue;
3709 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3710 continue;
3711
3712 if (is_add) {
3713 ret = cgroup_add_file(css, cgrp, cft);
3714 if (ret) {
3715 pr_warn("%s: failed to add %s, err=%d\n",
3716 __func__, cft->name, ret);
3717 cft_end = cft;
3718 is_add = false;
3719 goto restart;
3720 }
3721 } else {
3722 cgroup_rm_file(cgrp, cft);
3723 }
3724 }
3725 return ret;
3726}
3727
3728static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3729{
3730 LIST_HEAD(pending);
3731 struct cgroup_subsys *ss = cfts[0].ss;
3732 struct cgroup *root = &ss->root->cgrp;
3733 struct cgroup_subsys_state *css;
3734 int ret = 0;
3735
3736 lockdep_assert_held(&cgroup_mutex);
3737
3738 /* add/rm files for all cgroups created before */
3739 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3740 struct cgroup *cgrp = css->cgroup;
3741
3742 if (!(css->flags & CSS_VISIBLE))
3743 continue;
3744
3745 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3746 if (ret)
3747 break;
3748 }
3749
3750 if (is_add && !ret)
3751 kernfs_activate(root->kn);
3752 return ret;
3753}
3754
3755static void cgroup_exit_cftypes(struct cftype *cfts)
3756{
3757 struct cftype *cft;
3758
3759 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3760 /* free copy for custom atomic_write_len, see init_cftypes() */
3761 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3762 kfree(cft->kf_ops);
3763 cft->kf_ops = NULL;
3764 cft->ss = NULL;
3765
3766 /* revert flags set by cgroup core while adding @cfts */
3767 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3768 }
3769}
3770
3771static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3772{
3773 struct cftype *cft;
3774
3775 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3776 struct kernfs_ops *kf_ops;
3777
3778 WARN_ON(cft->ss || cft->kf_ops);
3779
3780 if (cft->seq_start)
3781 kf_ops = &cgroup_kf_ops;
3782 else
3783 kf_ops = &cgroup_kf_single_ops;
3784
3785 /*
3786 * Ugh... if @cft wants a custom max_write_len, we need to
3787 * make a copy of kf_ops to set its atomic_write_len.
3788 */
3789 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3790 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3791 if (!kf_ops) {
3792 cgroup_exit_cftypes(cfts);
3793 return -ENOMEM;
3794 }
3795 kf_ops->atomic_write_len = cft->max_write_len;
3796 }
3797
3798 cft->kf_ops = kf_ops;
3799 cft->ss = ss;
3800 }
3801
3802 return 0;
3803}
3804
3805static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3806{
3807 lockdep_assert_held(&cgroup_mutex);
3808
3809 if (!cfts || !cfts[0].ss)
3810 return -ENOENT;
3811
3812 list_del(&cfts->node);
3813 cgroup_apply_cftypes(cfts, false);
3814 cgroup_exit_cftypes(cfts);
3815 return 0;
3816}
3817
3818/**
3819 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3820 * @cfts: zero-length name terminated array of cftypes
3821 *
3822 * Unregister @cfts. Files described by @cfts are removed from all
3823 * existing cgroups and all future cgroups won't have them either. This
3824 * function can be called anytime whether @cfts' subsys is attached or not.
3825 *
3826 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3827 * registered.
3828 */
3829int cgroup_rm_cftypes(struct cftype *cfts)
3830{
3831 int ret;
3832
3833 mutex_lock(&cgroup_mutex);
3834 ret = cgroup_rm_cftypes_locked(cfts);
3835 mutex_unlock(&cgroup_mutex);
3836 return ret;
3837}
3838
3839/**
3840 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3841 * @ss: target cgroup subsystem
3842 * @cfts: zero-length name terminated array of cftypes
3843 *
3844 * Register @cfts to @ss. Files described by @cfts are created for all
3845 * existing cgroups to which @ss is attached and all future cgroups will
3846 * have them too. This function can be called anytime whether @ss is
3847 * attached or not.
3848 *
3849 * Returns 0 on successful registration, -errno on failure. Note that this
3850 * function currently returns 0 as long as @cfts registration is successful
3851 * even if some file creation attempts on existing cgroups fail.
3852 */
3853static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3854{
3855 int ret;
3856
3857 if (!cgroup_ssid_enabled(ss->id))
3858 return 0;
3859
3860 if (!cfts || cfts[0].name[0] == '\0')
3861 return 0;
3862
3863 ret = cgroup_init_cftypes(ss, cfts);
3864 if (ret)
3865 return ret;
3866
3867 mutex_lock(&cgroup_mutex);
3868
3869 list_add_tail(&cfts->node, &ss->cfts);
3870 ret = cgroup_apply_cftypes(cfts, true);
3871 if (ret)
3872 cgroup_rm_cftypes_locked(cfts);
3873
3874 mutex_unlock(&cgroup_mutex);
3875 return ret;
3876}
3877
3878/**
3879 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3880 * @ss: target cgroup subsystem
3881 * @cfts: zero-length name terminated array of cftypes
3882 *
3883 * Similar to cgroup_add_cftypes() but the added files are only used for
3884 * the default hierarchy.
3885 */
3886int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3887{
3888 struct cftype *cft;
3889
3890 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3891 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3892 return cgroup_add_cftypes(ss, cfts);
3893}
3894
3895/**
3896 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3897 * @ss: target cgroup subsystem
3898 * @cfts: zero-length name terminated array of cftypes
3899 *
3900 * Similar to cgroup_add_cftypes() but the added files are only used for
3901 * the legacy hierarchies.
3902 */
3903int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3904{
3905 struct cftype *cft;
3906
3907 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3908 cft->flags |= __CFTYPE_NOT_ON_DFL;
3909 return cgroup_add_cftypes(ss, cfts);
3910}
3911
3912/**
3913 * cgroup_file_notify - generate a file modified event for a cgroup_file
3914 * @cfile: target cgroup_file
3915 *
3916 * @cfile must have been obtained by setting cftype->file_offset.
3917 */
3918void cgroup_file_notify(struct cgroup_file *cfile)
3919{
3920 unsigned long flags;
3921
3922 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3923 if (cfile->kn)
3924 kernfs_notify(cfile->kn);
3925 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3926}
3927
3928/**
3929 * cgroup_task_count - count the number of tasks in a cgroup.
3930 * @cgrp: the cgroup in question
3931 *
3932 * Return the number of tasks in the cgroup. The returned number can be
3933 * higher than the actual number of tasks due to css_set references from
3934 * namespace roots and temporary usages.
3935 */
3936static int cgroup_task_count(const struct cgroup *cgrp)
3937{
3938 int count = 0;
3939 struct cgrp_cset_link *link;
3940
3941 spin_lock_irq(&css_set_lock);
3942 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3943 count += atomic_read(&link->cset->refcount);
3944 spin_unlock_irq(&css_set_lock);
3945 return count;
3946}
3947
3948/**
3949 * css_next_child - find the next child of a given css
3950 * @pos: the current position (%NULL to initiate traversal)
3951 * @parent: css whose children to walk
3952 *
3953 * This function returns the next child of @parent and should be called
3954 * under either cgroup_mutex or RCU read lock. The only requirement is
3955 * that @parent and @pos are accessible. The next sibling is guaranteed to
3956 * be returned regardless of their states.
3957 *
3958 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3959 * css which finished ->css_online() is guaranteed to be visible in the
3960 * future iterations and will stay visible until the last reference is put.
3961 * A css which hasn't finished ->css_online() or already finished
3962 * ->css_offline() may show up during traversal. It's each subsystem's
3963 * responsibility to synchronize against on/offlining.
3964 */
3965struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3966 struct cgroup_subsys_state *parent)
3967{
3968 struct cgroup_subsys_state *next;
3969
3970 cgroup_assert_mutex_or_rcu_locked();
3971
3972 /*
3973 * @pos could already have been unlinked from the sibling list.
3974 * Once a cgroup is removed, its ->sibling.next is no longer
3975 * updated when its next sibling changes. CSS_RELEASED is set when
3976 * @pos is taken off list, at which time its next pointer is valid,
3977 * and, as releases are serialized, the one pointed to by the next
3978 * pointer is guaranteed to not have started release yet. This
3979 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3980 * critical section, the one pointed to by its next pointer is
3981 * guaranteed to not have finished its RCU grace period even if we
3982 * have dropped rcu_read_lock() inbetween iterations.
3983 *
3984 * If @pos has CSS_RELEASED set, its next pointer can't be
3985 * dereferenced; however, as each css is given a monotonically
3986 * increasing unique serial number and always appended to the
3987 * sibling list, the next one can be found by walking the parent's
3988 * children until the first css with higher serial number than
3989 * @pos's. While this path can be slower, it happens iff iteration
3990 * races against release and the race window is very small.
3991 */
3992 if (!pos) {
3993 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3994 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3995 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3996 } else {
3997 list_for_each_entry_rcu(next, &parent->children, sibling)
3998 if (next->serial_nr > pos->serial_nr)
3999 break;
4000 }
4001
4002 /*
4003 * @next, if not pointing to the head, can be dereferenced and is
4004 * the next sibling.
4005 */
4006 if (&next->sibling != &parent->children)
4007 return next;
4008 return NULL;
4009}
4010
4011/**
4012 * css_next_descendant_pre - find the next descendant for pre-order walk
4013 * @pos: the current position (%NULL to initiate traversal)
4014 * @root: css whose descendants to walk
4015 *
4016 * To be used by css_for_each_descendant_pre(). Find the next descendant
4017 * to visit for pre-order traversal of @root's descendants. @root is
4018 * included in the iteration and the first node to be visited.
4019 *
4020 * While this function requires cgroup_mutex or RCU read locking, it
4021 * doesn't require the whole traversal to be contained in a single critical
4022 * section. This function will return the correct next descendant as long
4023 * as both @pos and @root are accessible and @pos is a descendant of @root.
4024 *
4025 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4026 * css which finished ->css_online() is guaranteed to be visible in the
4027 * future iterations and will stay visible until the last reference is put.
4028 * A css which hasn't finished ->css_online() or already finished
4029 * ->css_offline() may show up during traversal. It's each subsystem's
4030 * responsibility to synchronize against on/offlining.
4031 */
4032struct cgroup_subsys_state *
4033css_next_descendant_pre(struct cgroup_subsys_state *pos,
4034 struct cgroup_subsys_state *root)
4035{
4036 struct cgroup_subsys_state *next;
4037
4038 cgroup_assert_mutex_or_rcu_locked();
4039
4040 /* if first iteration, visit @root */
4041 if (!pos)
4042 return root;
4043
4044 /* visit the first child if exists */
4045 next = css_next_child(NULL, pos);
4046 if (next)
4047 return next;
4048
4049 /* no child, visit my or the closest ancestor's next sibling */
4050 while (pos != root) {
4051 next = css_next_child(pos, pos->parent);
4052 if (next)
4053 return next;
4054 pos = pos->parent;
4055 }
4056
4057 return NULL;
4058}
4059
4060/**
4061 * css_rightmost_descendant - return the rightmost descendant of a css
4062 * @pos: css of interest
4063 *
4064 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4065 * is returned. This can be used during pre-order traversal to skip
4066 * subtree of @pos.
4067 *
4068 * While this function requires cgroup_mutex or RCU read locking, it
4069 * doesn't require the whole traversal to be contained in a single critical
4070 * section. This function will return the correct rightmost descendant as
4071 * long as @pos is accessible.
4072 */
4073struct cgroup_subsys_state *
4074css_rightmost_descendant(struct cgroup_subsys_state *pos)
4075{
4076 struct cgroup_subsys_state *last, *tmp;
4077
4078 cgroup_assert_mutex_or_rcu_locked();
4079
4080 do {
4081 last = pos;
4082 /* ->prev isn't RCU safe, walk ->next till the end */
4083 pos = NULL;
4084 css_for_each_child(tmp, last)
4085 pos = tmp;
4086 } while (pos);
4087
4088 return last;
4089}
4090
4091static struct cgroup_subsys_state *
4092css_leftmost_descendant(struct cgroup_subsys_state *pos)
4093{
4094 struct cgroup_subsys_state *last;
4095
4096 do {
4097 last = pos;
4098 pos = css_next_child(NULL, pos);
4099 } while (pos);
4100
4101 return last;
4102}
4103
4104/**
4105 * css_next_descendant_post - find the next descendant for post-order walk
4106 * @pos: the current position (%NULL to initiate traversal)
4107 * @root: css whose descendants to walk
4108 *
4109 * To be used by css_for_each_descendant_post(). Find the next descendant
4110 * to visit for post-order traversal of @root's descendants. @root is
4111 * included in the iteration and the last node to be visited.
4112 *
4113 * While this function requires cgroup_mutex or RCU read locking, it
4114 * doesn't require the whole traversal to be contained in a single critical
4115 * section. This function will return the correct next descendant as long
4116 * as both @pos and @cgroup are accessible and @pos is a descendant of
4117 * @cgroup.
4118 *
4119 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4120 * css which finished ->css_online() is guaranteed to be visible in the
4121 * future iterations and will stay visible until the last reference is put.
4122 * A css which hasn't finished ->css_online() or already finished
4123 * ->css_offline() may show up during traversal. It's each subsystem's
4124 * responsibility to synchronize against on/offlining.
4125 */
4126struct cgroup_subsys_state *
4127css_next_descendant_post(struct cgroup_subsys_state *pos,
4128 struct cgroup_subsys_state *root)
4129{
4130 struct cgroup_subsys_state *next;
4131
4132 cgroup_assert_mutex_or_rcu_locked();
4133
4134 /* if first iteration, visit leftmost descendant which may be @root */
4135 if (!pos)
4136 return css_leftmost_descendant(root);
4137
4138 /* if we visited @root, we're done */
4139 if (pos == root)
4140 return NULL;
4141
4142 /* if there's an unvisited sibling, visit its leftmost descendant */
4143 next = css_next_child(pos, pos->parent);
4144 if (next)
4145 return css_leftmost_descendant(next);
4146
4147 /* no sibling left, visit parent */
4148 return pos->parent;
4149}
4150
4151/**
4152 * css_has_online_children - does a css have online children
4153 * @css: the target css
4154 *
4155 * Returns %true if @css has any online children; otherwise, %false. This
4156 * function can be called from any context but the caller is responsible
4157 * for synchronizing against on/offlining as necessary.
4158 */
4159bool css_has_online_children(struct cgroup_subsys_state *css)
4160{
4161 struct cgroup_subsys_state *child;
4162 bool ret = false;
4163
4164 rcu_read_lock();
4165 css_for_each_child(child, css) {
4166 if (child->flags & CSS_ONLINE) {
4167 ret = true;
4168 break;
4169 }
4170 }
4171 rcu_read_unlock();
4172 return ret;
4173}
4174
4175/**
4176 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4177 * @it: the iterator to advance
4178 *
4179 * Advance @it to the next css_set to walk.
4180 */
4181static void css_task_iter_advance_css_set(struct css_task_iter *it)
4182{
4183 struct list_head *l = it->cset_pos;
4184 struct cgrp_cset_link *link;
4185 struct css_set *cset;
4186
4187 lockdep_assert_held(&css_set_lock);
4188
4189 /* Advance to the next non-empty css_set */
4190 do {
4191 l = l->next;
4192 if (l == it->cset_head) {
4193 it->cset_pos = NULL;
4194 it->task_pos = NULL;
4195 return;
4196 }
4197
4198 if (it->ss) {
4199 cset = container_of(l, struct css_set,
4200 e_cset_node[it->ss->id]);
4201 } else {
4202 link = list_entry(l, struct cgrp_cset_link, cset_link);
4203 cset = link->cset;
4204 }
4205 } while (!css_set_populated(cset));
4206
4207 it->cset_pos = l;
4208
4209 if (!list_empty(&cset->tasks))
4210 it->task_pos = cset->tasks.next;
4211 else
4212 it->task_pos = cset->mg_tasks.next;
4213
4214 it->tasks_head = &cset->tasks;
4215 it->mg_tasks_head = &cset->mg_tasks;
4216
4217 /*
4218 * We don't keep css_sets locked across iteration steps and thus
4219 * need to take steps to ensure that iteration can be resumed after
4220 * the lock is re-acquired. Iteration is performed at two levels -
4221 * css_sets and tasks in them.
4222 *
4223 * Once created, a css_set never leaves its cgroup lists, so a
4224 * pinned css_set is guaranteed to stay put and we can resume
4225 * iteration afterwards.
4226 *
4227 * Tasks may leave @cset across iteration steps. This is resolved
4228 * by registering each iterator with the css_set currently being
4229 * walked and making css_set_move_task() advance iterators whose
4230 * next task is leaving.
4231 */
4232 if (it->cur_cset) {
4233 list_del(&it->iters_node);
4234 put_css_set_locked(it->cur_cset);
4235 }
4236 get_css_set(cset);
4237 it->cur_cset = cset;
4238 list_add(&it->iters_node, &cset->task_iters);
4239}
4240
4241static void css_task_iter_advance(struct css_task_iter *it)
4242{
4243 struct list_head *l = it->task_pos;
4244
4245 lockdep_assert_held(&css_set_lock);
4246 WARN_ON_ONCE(!l);
4247
4248 /*
4249 * Advance iterator to find next entry. cset->tasks is consumed
4250 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4251 * next cset.
4252 */
4253 l = l->next;
4254
4255 if (l == it->tasks_head)
4256 l = it->mg_tasks_head->next;
4257
4258 if (l == it->mg_tasks_head)
4259 css_task_iter_advance_css_set(it);
4260 else
4261 it->task_pos = l;
4262}
4263
4264/**
4265 * css_task_iter_start - initiate task iteration
4266 * @css: the css to walk tasks of
4267 * @it: the task iterator to use
4268 *
4269 * Initiate iteration through the tasks of @css. The caller can call
4270 * css_task_iter_next() to walk through the tasks until the function
4271 * returns NULL. On completion of iteration, css_task_iter_end() must be
4272 * called.
4273 */
4274void css_task_iter_start(struct cgroup_subsys_state *css,
4275 struct css_task_iter *it)
4276{
4277 /* no one should try to iterate before mounting cgroups */
4278 WARN_ON_ONCE(!use_task_css_set_links);
4279
4280 memset(it, 0, sizeof(*it));
4281
4282 spin_lock_irq(&css_set_lock);
4283
4284 it->ss = css->ss;
4285
4286 if (it->ss)
4287 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4288 else
4289 it->cset_pos = &css->cgroup->cset_links;
4290
4291 it->cset_head = it->cset_pos;
4292
4293 css_task_iter_advance_css_set(it);
4294
4295 spin_unlock_irq(&css_set_lock);
4296}
4297
4298/**
4299 * css_task_iter_next - return the next task for the iterator
4300 * @it: the task iterator being iterated
4301 *
4302 * The "next" function for task iteration. @it should have been
4303 * initialized via css_task_iter_start(). Returns NULL when the iteration
4304 * reaches the end.
4305 */
4306struct task_struct *css_task_iter_next(struct css_task_iter *it)
4307{
4308 if (it->cur_task) {
4309 put_task_struct(it->cur_task);
4310 it->cur_task = NULL;
4311 }
4312
4313 spin_lock_irq(&css_set_lock);
4314
4315 if (it->task_pos) {
4316 it->cur_task = list_entry(it->task_pos, struct task_struct,
4317 cg_list);
4318 get_task_struct(it->cur_task);
4319 css_task_iter_advance(it);
4320 }
4321
4322 spin_unlock_irq(&css_set_lock);
4323
4324 return it->cur_task;
4325}
4326
4327/**
4328 * css_task_iter_end - finish task iteration
4329 * @it: the task iterator to finish
4330 *
4331 * Finish task iteration started by css_task_iter_start().
4332 */
4333void css_task_iter_end(struct css_task_iter *it)
4334{
4335 if (it->cur_cset) {
4336 spin_lock_irq(&css_set_lock);
4337 list_del(&it->iters_node);
4338 put_css_set_locked(it->cur_cset);
4339 spin_unlock_irq(&css_set_lock);
4340 }
4341
4342 if (it->cur_task)
4343 put_task_struct(it->cur_task);
4344}
4345
4346/**
4347 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4348 * @to: cgroup to which the tasks will be moved
4349 * @from: cgroup in which the tasks currently reside
4350 *
4351 * Locking rules between cgroup_post_fork() and the migration path
4352 * guarantee that, if a task is forking while being migrated, the new child
4353 * is guaranteed to be either visible in the source cgroup after the
4354 * parent's migration is complete or put into the target cgroup. No task
4355 * can slip out of migration through forking.
4356 */
4357int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4358{
4359 LIST_HEAD(preloaded_csets);
4360 struct cgrp_cset_link *link;
4361 struct css_task_iter it;
4362 struct task_struct *task;
4363 int ret;
4364
4365 if (!cgroup_may_migrate_to(to))
4366 return -EBUSY;
4367
4368 mutex_lock(&cgroup_mutex);
4369
4370 percpu_down_write(&cgroup_threadgroup_rwsem);
4371
4372 /* all tasks in @from are being moved, all csets are source */
4373 spin_lock_irq(&css_set_lock);
4374 list_for_each_entry(link, &from->cset_links, cset_link)
4375 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4376 spin_unlock_irq(&css_set_lock);
4377
4378 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4379 if (ret)
4380 goto out_err;
4381
4382 /*
4383 * Migrate tasks one-by-one until @from is empty. This fails iff
4384 * ->can_attach() fails.
4385 */
4386 do {
4387 css_task_iter_start(&from->self, &it);
4388 task = css_task_iter_next(&it);
4389 if (task)
4390 get_task_struct(task);
4391 css_task_iter_end(&it);
4392
4393 if (task) {
4394 ret = cgroup_migrate(task, false, to->root);
4395 if (!ret)
4396 trace_cgroup_transfer_tasks(to, task, false);
4397 put_task_struct(task);
4398 }
4399 } while (task && !ret);
4400out_err:
4401 cgroup_migrate_finish(&preloaded_csets);
4402 percpu_up_write(&cgroup_threadgroup_rwsem);
4403 mutex_unlock(&cgroup_mutex);
4404 return ret;
4405}
4406
4407/*
4408 * Stuff for reading the 'tasks'/'procs' files.
4409 *
4410 * Reading this file can return large amounts of data if a cgroup has
4411 * *lots* of attached tasks. So it may need several calls to read(),
4412 * but we cannot guarantee that the information we produce is correct
4413 * unless we produce it entirely atomically.
4414 *
4415 */
4416
4417/* which pidlist file are we talking about? */
4418enum cgroup_filetype {
4419 CGROUP_FILE_PROCS,
4420 CGROUP_FILE_TASKS,
4421};
4422
4423/*
4424 * A pidlist is a list of pids that virtually represents the contents of one
4425 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4426 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4427 * to the cgroup.
4428 */
4429struct cgroup_pidlist {
4430 /*
4431 * used to find which pidlist is wanted. doesn't change as long as
4432 * this particular list stays in the list.
4433 */
4434 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4435 /* array of xids */
4436 pid_t *list;
4437 /* how many elements the above list has */
4438 int length;
4439 /* each of these stored in a list by its cgroup */
4440 struct list_head links;
4441 /* pointer to the cgroup we belong to, for list removal purposes */
4442 struct cgroup *owner;
4443 /* for delayed destruction */
4444 struct delayed_work destroy_dwork;
4445};
4446
4447/*
4448 * The following two functions "fix" the issue where there are more pids
4449 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4450 * TODO: replace with a kernel-wide solution to this problem
4451 */
4452#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4453static void *pidlist_allocate(int count)
4454{
4455 if (PIDLIST_TOO_LARGE(count))
4456 return vmalloc(count * sizeof(pid_t));
4457 else
4458 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4459}
4460
4461static void pidlist_free(void *p)
4462{
4463 kvfree(p);
4464}
4465
4466/*
4467 * Used to destroy all pidlists lingering waiting for destroy timer. None
4468 * should be left afterwards.
4469 */
4470static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4471{
4472 struct cgroup_pidlist *l, *tmp_l;
4473
4474 mutex_lock(&cgrp->pidlist_mutex);
4475 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4476 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4477 mutex_unlock(&cgrp->pidlist_mutex);
4478
4479 flush_workqueue(cgroup_pidlist_destroy_wq);
4480 BUG_ON(!list_empty(&cgrp->pidlists));
4481}
4482
4483static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4484{
4485 struct delayed_work *dwork = to_delayed_work(work);
4486 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4487 destroy_dwork);
4488 struct cgroup_pidlist *tofree = NULL;
4489
4490 mutex_lock(&l->owner->pidlist_mutex);
4491
4492 /*
4493 * Destroy iff we didn't get queued again. The state won't change
4494 * as destroy_dwork can only be queued while locked.
4495 */
4496 if (!delayed_work_pending(dwork)) {
4497 list_del(&l->links);
4498 pidlist_free(l->list);
4499 put_pid_ns(l->key.ns);
4500 tofree = l;
4501 }
4502
4503 mutex_unlock(&l->owner->pidlist_mutex);
4504 kfree(tofree);
4505}
4506
4507/*
4508 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4509 * Returns the number of unique elements.
4510 */
4511static int pidlist_uniq(pid_t *list, int length)
4512{
4513 int src, dest = 1;
4514
4515 /*
4516 * we presume the 0th element is unique, so i starts at 1. trivial
4517 * edge cases first; no work needs to be done for either
4518 */
4519 if (length == 0 || length == 1)
4520 return length;
4521 /* src and dest walk down the list; dest counts unique elements */
4522 for (src = 1; src < length; src++) {
4523 /* find next unique element */
4524 while (list[src] == list[src-1]) {
4525 src++;
4526 if (src == length)
4527 goto after;
4528 }
4529 /* dest always points to where the next unique element goes */
4530 list[dest] = list[src];
4531 dest++;
4532 }
4533after:
4534 return dest;
4535}
4536
4537/*
4538 * The two pid files - task and cgroup.procs - guaranteed that the result
4539 * is sorted, which forced this whole pidlist fiasco. As pid order is
4540 * different per namespace, each namespace needs differently sorted list,
4541 * making it impossible to use, for example, single rbtree of member tasks
4542 * sorted by task pointer. As pidlists can be fairly large, allocating one
4543 * per open file is dangerous, so cgroup had to implement shared pool of
4544 * pidlists keyed by cgroup and namespace.
4545 *
4546 * All this extra complexity was caused by the original implementation
4547 * committing to an entirely unnecessary property. In the long term, we
4548 * want to do away with it. Explicitly scramble sort order if on the
4549 * default hierarchy so that no such expectation exists in the new
4550 * interface.
4551 *
4552 * Scrambling is done by swapping every two consecutive bits, which is
4553 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4554 */
4555static pid_t pid_fry(pid_t pid)
4556{
4557 unsigned a = pid & 0x55555555;
4558 unsigned b = pid & 0xAAAAAAAA;
4559
4560 return (a << 1) | (b >> 1);
4561}
4562
4563static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4564{
4565 if (cgroup_on_dfl(cgrp))
4566 return pid_fry(pid);
4567 else
4568 return pid;
4569}
4570
4571static int cmppid(const void *a, const void *b)
4572{
4573 return *(pid_t *)a - *(pid_t *)b;
4574}
4575
4576static int fried_cmppid(const void *a, const void *b)
4577{
4578 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4579}
4580
4581static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4582 enum cgroup_filetype type)
4583{
4584 struct cgroup_pidlist *l;
4585 /* don't need task_nsproxy() if we're looking at ourself */
4586 struct pid_namespace *ns = task_active_pid_ns(current);
4587
4588 lockdep_assert_held(&cgrp->pidlist_mutex);
4589
4590 list_for_each_entry(l, &cgrp->pidlists, links)
4591 if (l->key.type == type && l->key.ns == ns)
4592 return l;
4593 return NULL;
4594}
4595
4596/*
4597 * find the appropriate pidlist for our purpose (given procs vs tasks)
4598 * returns with the lock on that pidlist already held, and takes care
4599 * of the use count, or returns NULL with no locks held if we're out of
4600 * memory.
4601 */
4602static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4603 enum cgroup_filetype type)
4604{
4605 struct cgroup_pidlist *l;
4606
4607 lockdep_assert_held(&cgrp->pidlist_mutex);
4608
4609 l = cgroup_pidlist_find(cgrp, type);
4610 if (l)
4611 return l;
4612
4613 /* entry not found; create a new one */
4614 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4615 if (!l)
4616 return l;
4617
4618 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4619 l->key.type = type;
4620 /* don't need task_nsproxy() if we're looking at ourself */
4621 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4622 l->owner = cgrp;
4623 list_add(&l->links, &cgrp->pidlists);
4624 return l;
4625}
4626
4627/*
4628 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4629 */
4630static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4631 struct cgroup_pidlist **lp)
4632{
4633 pid_t *array;
4634 int length;
4635 int pid, n = 0; /* used for populating the array */
4636 struct css_task_iter it;
4637 struct task_struct *tsk;
4638 struct cgroup_pidlist *l;
4639
4640 lockdep_assert_held(&cgrp->pidlist_mutex);
4641
4642 /*
4643 * If cgroup gets more users after we read count, we won't have
4644 * enough space - tough. This race is indistinguishable to the
4645 * caller from the case that the additional cgroup users didn't
4646 * show up until sometime later on.
4647 */
4648 length = cgroup_task_count(cgrp);
4649 array = pidlist_allocate(length);
4650 if (!array)
4651 return -ENOMEM;
4652 /* now, populate the array */
4653 css_task_iter_start(&cgrp->self, &it);
4654 while ((tsk = css_task_iter_next(&it))) {
4655 if (unlikely(n == length))
4656 break;
4657 /* get tgid or pid for procs or tasks file respectively */
4658 if (type == CGROUP_FILE_PROCS)
4659 pid = task_tgid_vnr(tsk);
4660 else
4661 pid = task_pid_vnr(tsk);
4662 if (pid > 0) /* make sure to only use valid results */
4663 array[n++] = pid;
4664 }
4665 css_task_iter_end(&it);
4666 length = n;
4667 /* now sort & (if procs) strip out duplicates */
4668 if (cgroup_on_dfl(cgrp))
4669 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4670 else
4671 sort(array, length, sizeof(pid_t), cmppid, NULL);
4672 if (type == CGROUP_FILE_PROCS)
4673 length = pidlist_uniq(array, length);
4674
4675 l = cgroup_pidlist_find_create(cgrp, type);
4676 if (!l) {
4677 pidlist_free(array);
4678 return -ENOMEM;
4679 }
4680
4681 /* store array, freeing old if necessary */
4682 pidlist_free(l->list);
4683 l->list = array;
4684 l->length = length;
4685 *lp = l;
4686 return 0;
4687}
4688
4689/**
4690 * cgroupstats_build - build and fill cgroupstats
4691 * @stats: cgroupstats to fill information into
4692 * @dentry: A dentry entry belonging to the cgroup for which stats have
4693 * been requested.
4694 *
4695 * Build and fill cgroupstats so that taskstats can export it to user
4696 * space.
4697 */
4698int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4699{
4700 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4701 struct cgroup *cgrp;
4702 struct css_task_iter it;
4703 struct task_struct *tsk;
4704
4705 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4706 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4707 kernfs_type(kn) != KERNFS_DIR)
4708 return -EINVAL;
4709
4710 mutex_lock(&cgroup_mutex);
4711
4712 /*
4713 * We aren't being called from kernfs and there's no guarantee on
4714 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4715 * @kn->priv is RCU safe. Let's do the RCU dancing.
4716 */
4717 rcu_read_lock();
4718 cgrp = rcu_dereference(kn->priv);
4719 if (!cgrp || cgroup_is_dead(cgrp)) {
4720 rcu_read_unlock();
4721 mutex_unlock(&cgroup_mutex);
4722 return -ENOENT;
4723 }
4724 rcu_read_unlock();
4725
4726 css_task_iter_start(&cgrp->self, &it);
4727 while ((tsk = css_task_iter_next(&it))) {
4728 switch (tsk->state) {
4729 case TASK_RUNNING:
4730 stats->nr_running++;
4731 break;
4732 case TASK_INTERRUPTIBLE:
4733 stats->nr_sleeping++;
4734 break;
4735 case TASK_UNINTERRUPTIBLE:
4736 stats->nr_uninterruptible++;
4737 break;
4738 case TASK_STOPPED:
4739 stats->nr_stopped++;
4740 break;
4741 default:
4742 if (delayacct_is_task_waiting_on_io(tsk))
4743 stats->nr_io_wait++;
4744 break;
4745 }
4746 }
4747 css_task_iter_end(&it);
4748
4749 mutex_unlock(&cgroup_mutex);
4750 return 0;
4751}
4752
4753
4754/*
4755 * seq_file methods for the tasks/procs files. The seq_file position is the
4756 * next pid to display; the seq_file iterator is a pointer to the pid
4757 * in the cgroup->l->list array.
4758 */
4759
4760static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4761{
4762 /*
4763 * Initially we receive a position value that corresponds to
4764 * one more than the last pid shown (or 0 on the first call or
4765 * after a seek to the start). Use a binary-search to find the
4766 * next pid to display, if any
4767 */
4768 struct kernfs_open_file *of = s->private;
4769 struct cgroup *cgrp = seq_css(s)->cgroup;
4770 struct cgroup_pidlist *l;
4771 enum cgroup_filetype type = seq_cft(s)->private;
4772 int index = 0, pid = *pos;
4773 int *iter, ret;
4774
4775 mutex_lock(&cgrp->pidlist_mutex);
4776
4777 /*
4778 * !NULL @of->priv indicates that this isn't the first start()
4779 * after open. If the matching pidlist is around, we can use that.
4780 * Look for it. Note that @of->priv can't be used directly. It
4781 * could already have been destroyed.
4782 */
4783 if (of->priv)
4784 of->priv = cgroup_pidlist_find(cgrp, type);
4785
4786 /*
4787 * Either this is the first start() after open or the matching
4788 * pidlist has been destroyed inbetween. Create a new one.
4789 */
4790 if (!of->priv) {
4791 ret = pidlist_array_load(cgrp, type,
4792 (struct cgroup_pidlist **)&of->priv);
4793 if (ret)
4794 return ERR_PTR(ret);
4795 }
4796 l = of->priv;
4797
4798 if (pid) {
4799 int end = l->length;
4800
4801 while (index < end) {
4802 int mid = (index + end) / 2;
4803 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4804 index = mid;
4805 break;
4806 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4807 index = mid + 1;
4808 else
4809 end = mid;
4810 }
4811 }
4812 /* If we're off the end of the array, we're done */
4813 if (index >= l->length)
4814 return NULL;
4815 /* Update the abstract position to be the actual pid that we found */
4816 iter = l->list + index;
4817 *pos = cgroup_pid_fry(cgrp, *iter);
4818 return iter;
4819}
4820
4821static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4822{
4823 struct kernfs_open_file *of = s->private;
4824 struct cgroup_pidlist *l = of->priv;
4825
4826 if (l)
4827 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4828 CGROUP_PIDLIST_DESTROY_DELAY);
4829 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4830}
4831
4832static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4833{
4834 struct kernfs_open_file *of = s->private;
4835 struct cgroup_pidlist *l = of->priv;
4836 pid_t *p = v;
4837 pid_t *end = l->list + l->length;
4838 /*
4839 * Advance to the next pid in the array. If this goes off the
4840 * end, we're done
4841 */
4842 p++;
4843 if (p >= end) {
4844 return NULL;
4845 } else {
4846 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4847 return p;
4848 }
4849}
4850
4851static int cgroup_pidlist_show(struct seq_file *s, void *v)
4852{
4853 seq_printf(s, "%d\n", *(int *)v);
4854
4855 return 0;
4856}
4857
4858static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4859 struct cftype *cft)
4860{
4861 return notify_on_release(css->cgroup);
4862}
4863
4864static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4865 struct cftype *cft, u64 val)
4866{
4867 if (val)
4868 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4869 else
4870 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4871 return 0;
4872}
4873
4874static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4875 struct cftype *cft)
4876{
4877 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4878}
4879
4880static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4881 struct cftype *cft, u64 val)
4882{
4883 if (val)
4884 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4885 else
4886 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4887 return 0;
4888}
4889
4890/* cgroup core interface files for the default hierarchy */
4891static struct cftype cgroup_dfl_base_files[] = {
4892 {
4893 .name = "cgroup.procs",
4894 .file_offset = offsetof(struct cgroup, procs_file),
4895 .seq_start = cgroup_pidlist_start,
4896 .seq_next = cgroup_pidlist_next,
4897 .seq_stop = cgroup_pidlist_stop,
4898 .seq_show = cgroup_pidlist_show,
4899 .private = CGROUP_FILE_PROCS,
4900 .write = cgroup_procs_write,
4901 },
4902 {
4903 .name = "cgroup.controllers",
4904 .seq_show = cgroup_controllers_show,
4905 },
4906 {
4907 .name = "cgroup.subtree_control",
4908 .seq_show = cgroup_subtree_control_show,
4909 .write = cgroup_subtree_control_write,
4910 },
4911 {
4912 .name = "cgroup.events",
4913 .flags = CFTYPE_NOT_ON_ROOT,
4914 .file_offset = offsetof(struct cgroup, events_file),
4915 .seq_show = cgroup_events_show,
4916 },
4917 { } /* terminate */
4918};
4919
4920/* cgroup core interface files for the legacy hierarchies */
4921static struct cftype cgroup_legacy_base_files[] = {
4922 {
4923 .name = "cgroup.procs",
4924 .seq_start = cgroup_pidlist_start,
4925 .seq_next = cgroup_pidlist_next,
4926 .seq_stop = cgroup_pidlist_stop,
4927 .seq_show = cgroup_pidlist_show,
4928 .private = CGROUP_FILE_PROCS,
4929 .write = cgroup_procs_write,
4930 },
4931 {
4932 .name = "cgroup.clone_children",
4933 .read_u64 = cgroup_clone_children_read,
4934 .write_u64 = cgroup_clone_children_write,
4935 },
4936 {
4937 .name = "cgroup.sane_behavior",
4938 .flags = CFTYPE_ONLY_ON_ROOT,
4939 .seq_show = cgroup_sane_behavior_show,
4940 },
4941 {
4942 .name = "tasks",
4943 .seq_start = cgroup_pidlist_start,
4944 .seq_next = cgroup_pidlist_next,
4945 .seq_stop = cgroup_pidlist_stop,
4946 .seq_show = cgroup_pidlist_show,
4947 .private = CGROUP_FILE_TASKS,
4948 .write = cgroup_tasks_write,
4949 },
4950 {
4951 .name = "notify_on_release",
4952 .read_u64 = cgroup_read_notify_on_release,
4953 .write_u64 = cgroup_write_notify_on_release,
4954 },
4955 {
4956 .name = "release_agent",
4957 .flags = CFTYPE_ONLY_ON_ROOT,
4958 .seq_show = cgroup_release_agent_show,
4959 .write = cgroup_release_agent_write,
4960 .max_write_len = PATH_MAX - 1,
4961 },
4962 { } /* terminate */
4963};
4964
4965/*
4966 * css destruction is four-stage process.
4967 *
4968 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4969 * Implemented in kill_css().
4970 *
4971 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4972 * and thus css_tryget_online() is guaranteed to fail, the css can be
4973 * offlined by invoking offline_css(). After offlining, the base ref is
4974 * put. Implemented in css_killed_work_fn().
4975 *
4976 * 3. When the percpu_ref reaches zero, the only possible remaining
4977 * accessors are inside RCU read sections. css_release() schedules the
4978 * RCU callback.
4979 *
4980 * 4. After the grace period, the css can be freed. Implemented in
4981 * css_free_work_fn().
4982 *
4983 * It is actually hairier because both step 2 and 4 require process context
4984 * and thus involve punting to css->destroy_work adding two additional
4985 * steps to the already complex sequence.
4986 */
4987static void css_free_work_fn(struct work_struct *work)
4988{
4989 struct cgroup_subsys_state *css =
4990 container_of(work, struct cgroup_subsys_state, destroy_work);
4991 struct cgroup_subsys *ss = css->ss;
4992 struct cgroup *cgrp = css->cgroup;
4993
4994 percpu_ref_exit(&css->refcnt);
4995
4996 if (ss) {
4997 /* css free path */
4998 struct cgroup_subsys_state *parent = css->parent;
4999 int id = css->id;
5000
5001 ss->css_free(css);
5002 cgroup_idr_remove(&ss->css_idr, id);
5003 cgroup_put(cgrp);
5004
5005 if (parent)
5006 css_put(parent);
5007 } else {
5008 /* cgroup free path */
5009 atomic_dec(&cgrp->root->nr_cgrps);
5010 cgroup_pidlist_destroy_all(cgrp);
5011 cancel_work_sync(&cgrp->release_agent_work);
5012
5013 if (cgroup_parent(cgrp)) {
5014 /*
5015 * We get a ref to the parent, and put the ref when
5016 * this cgroup is being freed, so it's guaranteed
5017 * that the parent won't be destroyed before its
5018 * children.
5019 */
5020 cgroup_put(cgroup_parent(cgrp));
5021 kernfs_put(cgrp->kn);
5022 kfree(cgrp);
5023 } else {
5024 /*
5025 * This is root cgroup's refcnt reaching zero,
5026 * which indicates that the root should be
5027 * released.
5028 */
5029 cgroup_destroy_root(cgrp->root);
5030 }
5031 }
5032}
5033
5034static void css_free_rcu_fn(struct rcu_head *rcu_head)
5035{
5036 struct cgroup_subsys_state *css =
5037 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5038
5039 INIT_WORK(&css->destroy_work, css_free_work_fn);
5040 queue_work(cgroup_destroy_wq, &css->destroy_work);
5041}
5042
5043static void css_release_work_fn(struct work_struct *work)
5044{
5045 struct cgroup_subsys_state *css =
5046 container_of(work, struct cgroup_subsys_state, destroy_work);
5047 struct cgroup_subsys *ss = css->ss;
5048 struct cgroup *cgrp = css->cgroup;
5049
5050 mutex_lock(&cgroup_mutex);
5051
5052 css->flags |= CSS_RELEASED;
5053 list_del_rcu(&css->sibling);
5054
5055 if (ss) {
5056 /* css release path */
5057 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5058 if (ss->css_released)
5059 ss->css_released(css);
5060 } else {
5061 /* cgroup release path */
5062 trace_cgroup_release(cgrp);
5063
5064 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5065 cgrp->id = -1;
5066
5067 /*
5068 * There are two control paths which try to determine
5069 * cgroup from dentry without going through kernfs -
5070 * cgroupstats_build() and css_tryget_online_from_dir().
5071 * Those are supported by RCU protecting clearing of
5072 * cgrp->kn->priv backpointer.
5073 */
5074 if (cgrp->kn)
5075 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5076 NULL);
5077
5078 cgroup_bpf_put(cgrp);
5079 }
5080
5081 mutex_unlock(&cgroup_mutex);
5082
5083 call_rcu(&css->rcu_head, css_free_rcu_fn);
5084}
5085
5086static void css_release(struct percpu_ref *ref)
5087{
5088 struct cgroup_subsys_state *css =
5089 container_of(ref, struct cgroup_subsys_state, refcnt);
5090
5091 INIT_WORK(&css->destroy_work, css_release_work_fn);
5092 queue_work(cgroup_destroy_wq, &css->destroy_work);
5093}
5094
5095static void init_and_link_css(struct cgroup_subsys_state *css,
5096 struct cgroup_subsys *ss, struct cgroup *cgrp)
5097{
5098 lockdep_assert_held(&cgroup_mutex);
5099
5100 cgroup_get(cgrp);
5101
5102 memset(css, 0, sizeof(*css));
5103 css->cgroup = cgrp;
5104 css->ss = ss;
5105 css->id = -1;
5106 INIT_LIST_HEAD(&css->sibling);
5107 INIT_LIST_HEAD(&css->children);
5108 css->serial_nr = css_serial_nr_next++;
5109 atomic_set(&css->online_cnt, 0);
5110
5111 if (cgroup_parent(cgrp)) {
5112 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5113 css_get(css->parent);
5114 }
5115
5116 BUG_ON(cgroup_css(cgrp, ss));
5117}
5118
5119/* invoke ->css_online() on a new CSS and mark it online if successful */
5120static int online_css(struct cgroup_subsys_state *css)
5121{
5122 struct cgroup_subsys *ss = css->ss;
5123 int ret = 0;
5124
5125 lockdep_assert_held(&cgroup_mutex);
5126
5127 if (ss->css_online)
5128 ret = ss->css_online(css);
5129 if (!ret) {
5130 css->flags |= CSS_ONLINE;
5131 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5132
5133 atomic_inc(&css->online_cnt);
5134 if (css->parent)
5135 atomic_inc(&css->parent->online_cnt);
5136 }
5137 return ret;
5138}
5139
5140/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5141static void offline_css(struct cgroup_subsys_state *css)
5142{
5143 struct cgroup_subsys *ss = css->ss;
5144
5145 lockdep_assert_held(&cgroup_mutex);
5146
5147 if (!(css->flags & CSS_ONLINE))
5148 return;
5149
5150 if (ss->css_reset)
5151 ss->css_reset(css);
5152
5153 if (ss->css_offline)
5154 ss->css_offline(css);
5155
5156 css->flags &= ~CSS_ONLINE;
5157 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5158
5159 wake_up_all(&css->cgroup->offline_waitq);
5160}
5161
5162/**
5163 * css_create - create a cgroup_subsys_state
5164 * @cgrp: the cgroup new css will be associated with
5165 * @ss: the subsys of new css
5166 *
5167 * Create a new css associated with @cgrp - @ss pair. On success, the new
5168 * css is online and installed in @cgrp. This function doesn't create the
5169 * interface files. Returns 0 on success, -errno on failure.
5170 */
5171static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5172 struct cgroup_subsys *ss)
5173{
5174 struct cgroup *parent = cgroup_parent(cgrp);
5175 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5176 struct cgroup_subsys_state *css;
5177 int err;
5178
5179 lockdep_assert_held(&cgroup_mutex);
5180
5181 css = ss->css_alloc(parent_css);
5182 if (!css)
5183 css = ERR_PTR(-ENOMEM);
5184 if (IS_ERR(css))
5185 return css;
5186
5187 init_and_link_css(css, ss, cgrp);
5188
5189 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5190 if (err)
5191 goto err_free_css;
5192
5193 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5194 if (err < 0)
5195 goto err_free_css;
5196 css->id = err;
5197
5198 /* @css is ready to be brought online now, make it visible */
5199 list_add_tail_rcu(&css->sibling, &parent_css->children);
5200 cgroup_idr_replace(&ss->css_idr, css, css->id);
5201
5202 err = online_css(css);
5203 if (err)
5204 goto err_list_del;
5205
5206 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5207 cgroup_parent(parent)) {
5208 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5209 current->comm, current->pid, ss->name);
5210 if (!strcmp(ss->name, "memory"))
5211 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5212 ss->warned_broken_hierarchy = true;
5213 }
5214
5215 return css;
5216
5217err_list_del:
5218 list_del_rcu(&css->sibling);
5219err_free_css:
5220 call_rcu(&css->rcu_head, css_free_rcu_fn);
5221 return ERR_PTR(err);
5222}
5223
5224/*
5225 * The returned cgroup is fully initialized including its control mask, but
5226 * it isn't associated with its kernfs_node and doesn't have the control
5227 * mask applied.
5228 */
5229static struct cgroup *cgroup_create(struct cgroup *parent)
5230{
5231 struct cgroup_root *root = parent->root;
5232 struct cgroup *cgrp, *tcgrp;
5233 int level = parent->level + 1;
5234 int ret;
5235
5236 /* allocate the cgroup and its ID, 0 is reserved for the root */
5237 cgrp = kzalloc(sizeof(*cgrp) +
5238 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5239 if (!cgrp)
5240 return ERR_PTR(-ENOMEM);
5241
5242 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5243 if (ret)
5244 goto out_free_cgrp;
5245
5246 /*
5247 * Temporarily set the pointer to NULL, so idr_find() won't return
5248 * a half-baked cgroup.
5249 */
5250 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5251 if (cgrp->id < 0) {
5252 ret = -ENOMEM;
5253 goto out_cancel_ref;
5254 }
5255
5256 init_cgroup_housekeeping(cgrp);
5257
5258 cgrp->self.parent = &parent->self;
5259 cgrp->root = root;
5260 cgrp->level = level;
5261
5262 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5263 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5264
5265 if (notify_on_release(parent))
5266 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5267
5268 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5269 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5270
5271 cgrp->self.serial_nr = css_serial_nr_next++;
5272
5273 /* allocation complete, commit to creation */
5274 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5275 atomic_inc(&root->nr_cgrps);
5276 cgroup_get(parent);
5277
5278 /*
5279 * @cgrp is now fully operational. If something fails after this
5280 * point, it'll be released via the normal destruction path.
5281 */
5282 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5283
5284 /*
5285 * On the default hierarchy, a child doesn't automatically inherit
5286 * subtree_control from the parent. Each is configured manually.
5287 */
5288 if (!cgroup_on_dfl(cgrp))
5289 cgrp->subtree_control = cgroup_control(cgrp);
5290
5291 if (parent)
5292 cgroup_bpf_inherit(cgrp, parent);
5293
5294 cgroup_propagate_control(cgrp);
5295
5296 return cgrp;
5297
5298out_cancel_ref:
5299 percpu_ref_exit(&cgrp->self.refcnt);
5300out_free_cgrp:
5301 kfree(cgrp);
5302 return ERR_PTR(ret);
5303}
5304
5305static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5306 umode_t mode)
5307{
5308 struct cgroup *parent, *cgrp;
5309 struct kernfs_node *kn;
5310 int ret;
5311
5312 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5313 if (strchr(name, '\n'))
5314 return -EINVAL;
5315
5316 parent = cgroup_kn_lock_live(parent_kn, false);
5317 if (!parent)
5318 return -ENODEV;
5319
5320 cgrp = cgroup_create(parent);
5321 if (IS_ERR(cgrp)) {
5322 ret = PTR_ERR(cgrp);
5323 goto out_unlock;
5324 }
5325
5326 /* create the directory */
5327 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5328 if (IS_ERR(kn)) {
5329 ret = PTR_ERR(kn);
5330 goto out_destroy;
5331 }
5332 cgrp->kn = kn;
5333
5334 /*
5335 * This extra ref will be put in cgroup_free_fn() and guarantees
5336 * that @cgrp->kn is always accessible.
5337 */
5338 kernfs_get(kn);
5339
5340 ret = cgroup_kn_set_ugid(kn);
5341 if (ret)
5342 goto out_destroy;
5343
5344 ret = css_populate_dir(&cgrp->self);
5345 if (ret)
5346 goto out_destroy;
5347
5348 ret = cgroup_apply_control_enable(cgrp);
5349 if (ret)
5350 goto out_destroy;
5351
5352 trace_cgroup_mkdir(cgrp);
5353
5354 /* let's create and online css's */
5355 kernfs_activate(kn);
5356
5357 ret = 0;
5358 goto out_unlock;
5359
5360out_destroy:
5361 cgroup_destroy_locked(cgrp);
5362out_unlock:
5363 cgroup_kn_unlock(parent_kn);
5364 return ret;
5365}
5366
5367/*
5368 * This is called when the refcnt of a css is confirmed to be killed.
5369 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5370 * initate destruction and put the css ref from kill_css().
5371 */
5372static void css_killed_work_fn(struct work_struct *work)
5373{
5374 struct cgroup_subsys_state *css =
5375 container_of(work, struct cgroup_subsys_state, destroy_work);
5376
5377 mutex_lock(&cgroup_mutex);
5378
5379 do {
5380 offline_css(css);
5381 css_put(css);
5382 /* @css can't go away while we're holding cgroup_mutex */
5383 css = css->parent;
5384 } while (css && atomic_dec_and_test(&css->online_cnt));
5385
5386 mutex_unlock(&cgroup_mutex);
5387}
5388
5389/* css kill confirmation processing requires process context, bounce */
5390static void css_killed_ref_fn(struct percpu_ref *ref)
5391{
5392 struct cgroup_subsys_state *css =
5393 container_of(ref, struct cgroup_subsys_state, refcnt);
5394
5395 if (atomic_dec_and_test(&css->online_cnt)) {
5396 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5397 queue_work(cgroup_destroy_wq, &css->destroy_work);
5398 }
5399}
5400
5401/**
5402 * kill_css - destroy a css
5403 * @css: css to destroy
5404 *
5405 * This function initiates destruction of @css by removing cgroup interface
5406 * files and putting its base reference. ->css_offline() will be invoked
5407 * asynchronously once css_tryget_online() is guaranteed to fail and when
5408 * the reference count reaches zero, @css will be released.
5409 */
5410static void kill_css(struct cgroup_subsys_state *css)
5411{
5412 lockdep_assert_held(&cgroup_mutex);
5413
5414 /*
5415 * This must happen before css is disassociated with its cgroup.
5416 * See seq_css() for details.
5417 */
5418 css_clear_dir(css);
5419
5420 /*
5421 * Killing would put the base ref, but we need to keep it alive
5422 * until after ->css_offline().
5423 */
5424 css_get(css);
5425
5426 /*
5427 * cgroup core guarantees that, by the time ->css_offline() is
5428 * invoked, no new css reference will be given out via
5429 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5430 * proceed to offlining css's because percpu_ref_kill() doesn't
5431 * guarantee that the ref is seen as killed on all CPUs on return.
5432 *
5433 * Use percpu_ref_kill_and_confirm() to get notifications as each
5434 * css is confirmed to be seen as killed on all CPUs.
5435 */
5436 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5437}
5438
5439/**
5440 * cgroup_destroy_locked - the first stage of cgroup destruction
5441 * @cgrp: cgroup to be destroyed
5442 *
5443 * css's make use of percpu refcnts whose killing latency shouldn't be
5444 * exposed to userland and are RCU protected. Also, cgroup core needs to
5445 * guarantee that css_tryget_online() won't succeed by the time
5446 * ->css_offline() is invoked. To satisfy all the requirements,
5447 * destruction is implemented in the following two steps.
5448 *
5449 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5450 * userland visible parts and start killing the percpu refcnts of
5451 * css's. Set up so that the next stage will be kicked off once all
5452 * the percpu refcnts are confirmed to be killed.
5453 *
5454 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5455 * rest of destruction. Once all cgroup references are gone, the
5456 * cgroup is RCU-freed.
5457 *
5458 * This function implements s1. After this step, @cgrp is gone as far as
5459 * the userland is concerned and a new cgroup with the same name may be
5460 * created. As cgroup doesn't care about the names internally, this
5461 * doesn't cause any problem.
5462 */
5463static int cgroup_destroy_locked(struct cgroup *cgrp)
5464 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5465{
5466 struct cgroup_subsys_state *css;
5467 struct cgrp_cset_link *link;
5468 int ssid;
5469
5470 lockdep_assert_held(&cgroup_mutex);
5471
5472 /*
5473 * Only migration can raise populated from zero and we're already
5474 * holding cgroup_mutex.
5475 */
5476 if (cgroup_is_populated(cgrp))
5477 return -EBUSY;
5478
5479 /*
5480 * Make sure there's no live children. We can't test emptiness of
5481 * ->self.children as dead children linger on it while being
5482 * drained; otherwise, "rmdir parent/child parent" may fail.
5483 */
5484 if (css_has_online_children(&cgrp->self))
5485 return -EBUSY;
5486
5487 /*
5488 * Mark @cgrp and the associated csets dead. The former prevents
5489 * further task migration and child creation by disabling
5490 * cgroup_lock_live_group(). The latter makes the csets ignored by
5491 * the migration path.
5492 */
5493 cgrp->self.flags &= ~CSS_ONLINE;
5494
5495 spin_lock_irq(&css_set_lock);
5496 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5497 link->cset->dead = true;
5498 spin_unlock_irq(&css_set_lock);
5499
5500 /* initiate massacre of all css's */
5501 for_each_css(css, ssid, cgrp)
5502 kill_css(css);
5503
5504 /*
5505 * Remove @cgrp directory along with the base files. @cgrp has an
5506 * extra ref on its kn.
5507 */
5508 kernfs_remove(cgrp->kn);
5509
5510 check_for_release(cgroup_parent(cgrp));
5511
5512 /* put the base reference */
5513 percpu_ref_kill(&cgrp->self.refcnt);
5514
5515 return 0;
5516};
5517
5518static int cgroup_rmdir(struct kernfs_node *kn)
5519{
5520 struct cgroup *cgrp;
5521 int ret = 0;
5522
5523 cgrp = cgroup_kn_lock_live(kn, false);
5524 if (!cgrp)
5525 return 0;
5526
5527 ret = cgroup_destroy_locked(cgrp);
5528
5529 if (!ret)
5530 trace_cgroup_rmdir(cgrp);
5531
5532 cgroup_kn_unlock(kn);
5533 return ret;
5534}
5535
5536static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5537 .remount_fs = cgroup_remount,
5538 .show_options = cgroup_show_options,
5539 .mkdir = cgroup_mkdir,
5540 .rmdir = cgroup_rmdir,
5541 .rename = cgroup_rename,
5542 .show_path = cgroup_show_path,
5543};
5544
5545static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5546{
5547 struct cgroup_subsys_state *css;
5548
5549 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5550
5551 mutex_lock(&cgroup_mutex);
5552
5553 idr_init(&ss->css_idr);
5554 INIT_LIST_HEAD(&ss->cfts);
5555
5556 /* Create the root cgroup state for this subsystem */
5557 ss->root = &cgrp_dfl_root;
5558 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5559 /* We don't handle early failures gracefully */
5560 BUG_ON(IS_ERR(css));
5561 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5562
5563 /*
5564 * Root csses are never destroyed and we can't initialize
5565 * percpu_ref during early init. Disable refcnting.
5566 */
5567 css->flags |= CSS_NO_REF;
5568
5569 if (early) {
5570 /* allocation can't be done safely during early init */
5571 css->id = 1;
5572 } else {
5573 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5574 BUG_ON(css->id < 0);
5575 }
5576
5577 /* Update the init_css_set to contain a subsys
5578 * pointer to this state - since the subsystem is
5579 * newly registered, all tasks and hence the
5580 * init_css_set is in the subsystem's root cgroup. */
5581 init_css_set.subsys[ss->id] = css;
5582
5583 have_fork_callback |= (bool)ss->fork << ss->id;
5584 have_exit_callback |= (bool)ss->exit << ss->id;
5585 have_free_callback |= (bool)ss->free << ss->id;
5586 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5587
5588 /* At system boot, before all subsystems have been
5589 * registered, no tasks have been forked, so we don't
5590 * need to invoke fork callbacks here. */
5591 BUG_ON(!list_empty(&init_task.tasks));
5592
5593 BUG_ON(online_css(css));
5594
5595 mutex_unlock(&cgroup_mutex);
5596}
5597
5598/**
5599 * cgroup_init_early - cgroup initialization at system boot
5600 *
5601 * Initialize cgroups at system boot, and initialize any
5602 * subsystems that request early init.
5603 */
5604int __init cgroup_init_early(void)
5605{
5606 static struct cgroup_sb_opts __initdata opts;
5607 struct cgroup_subsys *ss;
5608 int i;
5609
5610 init_cgroup_root(&cgrp_dfl_root, &opts);
5611 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5612
5613 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5614
5615 for_each_subsys(ss, i) {
5616 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5617 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5618 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5619 ss->id, ss->name);
5620 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5621 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5622
5623 ss->id = i;
5624 ss->name = cgroup_subsys_name[i];
5625 if (!ss->legacy_name)
5626 ss->legacy_name = cgroup_subsys_name[i];
5627
5628 if (ss->early_init)
5629 cgroup_init_subsys(ss, true);
5630 }
5631 return 0;
5632}
5633
5634static u16 cgroup_disable_mask __initdata;
5635
5636/**
5637 * cgroup_init - cgroup initialization
5638 *
5639 * Register cgroup filesystem and /proc file, and initialize
5640 * any subsystems that didn't request early init.
5641 */
5642int __init cgroup_init(void)
5643{
5644 struct cgroup_subsys *ss;
5645 int ssid;
5646
5647 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5648 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5649 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5650 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5651
5652 /*
5653 * The latency of the synchronize_sched() is too high for cgroups,
5654 * avoid it at the cost of forcing all readers into the slow path.
5655 */
5656 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5657
5658 get_user_ns(init_cgroup_ns.user_ns);
5659
5660 mutex_lock(&cgroup_mutex);
5661
5662 /*
5663 * Add init_css_set to the hash table so that dfl_root can link to
5664 * it during init.
5665 */
5666 hash_add(css_set_table, &init_css_set.hlist,
5667 css_set_hash(init_css_set.subsys));
5668
5669 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5670
5671 mutex_unlock(&cgroup_mutex);
5672
5673 for_each_subsys(ss, ssid) {
5674 if (ss->early_init) {
5675 struct cgroup_subsys_state *css =
5676 init_css_set.subsys[ss->id];
5677
5678 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5679 GFP_KERNEL);
5680 BUG_ON(css->id < 0);
5681 } else {
5682 cgroup_init_subsys(ss, false);
5683 }
5684
5685 list_add_tail(&init_css_set.e_cset_node[ssid],
5686 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5687
5688 /*
5689 * Setting dfl_root subsys_mask needs to consider the
5690 * disabled flag and cftype registration needs kmalloc,
5691 * both of which aren't available during early_init.
5692 */
5693 if (cgroup_disable_mask & (1 << ssid)) {
5694 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5695 printk(KERN_INFO "Disabling %s control group subsystem\n",
5696 ss->name);
5697 continue;
5698 }
5699
5700 if (cgroup_ssid_no_v1(ssid))
5701 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5702 ss->name);
5703
5704 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5705
5706 if (ss->implicit_on_dfl)
5707 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5708 else if (!ss->dfl_cftypes)
5709 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5710
5711 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5712 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5713 } else {
5714 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5715 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5716 }
5717
5718 if (ss->bind)
5719 ss->bind(init_css_set.subsys[ssid]);
5720 }
5721
5722 /* init_css_set.subsys[] has been updated, re-hash */
5723 hash_del(&init_css_set.hlist);
5724 hash_add(css_set_table, &init_css_set.hlist,
5725 css_set_hash(init_css_set.subsys));
5726
5727 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5728 WARN_ON(register_filesystem(&cgroup_fs_type));
5729 WARN_ON(register_filesystem(&cgroup2_fs_type));
5730 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5731
5732 return 0;
5733}
5734
5735static int __init cgroup_wq_init(void)
5736{
5737 /*
5738 * There isn't much point in executing destruction path in
5739 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5740 * Use 1 for @max_active.
5741 *
5742 * We would prefer to do this in cgroup_init() above, but that
5743 * is called before init_workqueues(): so leave this until after.
5744 */
5745 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5746 BUG_ON(!cgroup_destroy_wq);
5747
5748 /*
5749 * Used to destroy pidlists and separate to serve as flush domain.
5750 * Cap @max_active to 1 too.
5751 */
5752 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5753 0, 1);
5754 BUG_ON(!cgroup_pidlist_destroy_wq);
5755
5756 return 0;
5757}
5758core_initcall(cgroup_wq_init);
5759
5760/*
5761 * proc_cgroup_show()
5762 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5763 * - Used for /proc/<pid>/cgroup.
5764 */
5765int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5766 struct pid *pid, struct task_struct *tsk)
5767{
5768 char *buf;
5769 int retval;
5770 struct cgroup_root *root;
5771
5772 retval = -ENOMEM;
5773 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5774 if (!buf)
5775 goto out;
5776
5777 mutex_lock(&cgroup_mutex);
5778 spin_lock_irq(&css_set_lock);
5779
5780 for_each_root(root) {
5781 struct cgroup_subsys *ss;
5782 struct cgroup *cgrp;
5783 int ssid, count = 0;
5784
5785 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5786 continue;
5787
5788 seq_printf(m, "%d:", root->hierarchy_id);
5789 if (root != &cgrp_dfl_root)
5790 for_each_subsys(ss, ssid)
5791 if (root->subsys_mask & (1 << ssid))
5792 seq_printf(m, "%s%s", count++ ? "," : "",
5793 ss->legacy_name);
5794 if (strlen(root->name))
5795 seq_printf(m, "%sname=%s", count ? "," : "",
5796 root->name);
5797 seq_putc(m, ':');
5798
5799 cgrp = task_cgroup_from_root(tsk, root);
5800
5801 /*
5802 * On traditional hierarchies, all zombie tasks show up as
5803 * belonging to the root cgroup. On the default hierarchy,
5804 * while a zombie doesn't show up in "cgroup.procs" and
5805 * thus can't be migrated, its /proc/PID/cgroup keeps
5806 * reporting the cgroup it belonged to before exiting. If
5807 * the cgroup is removed before the zombie is reaped,
5808 * " (deleted)" is appended to the cgroup path.
5809 */
5810 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5811 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5812 current->nsproxy->cgroup_ns);
5813 if (retval >= PATH_MAX)
5814 retval = -ENAMETOOLONG;
5815 if (retval < 0)
5816 goto out_unlock;
5817
5818 seq_puts(m, buf);
5819 } else {
5820 seq_puts(m, "/");
5821 }
5822
5823 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5824 seq_puts(m, " (deleted)\n");
5825 else
5826 seq_putc(m, '\n');
5827 }
5828
5829 retval = 0;
5830out_unlock:
5831 spin_unlock_irq(&css_set_lock);
5832 mutex_unlock(&cgroup_mutex);
5833 kfree(buf);
5834out:
5835 return retval;
5836}
5837
5838/* Display information about each subsystem and each hierarchy */
5839static int proc_cgroupstats_show(struct seq_file *m, void *v)
5840{
5841 struct cgroup_subsys *ss;
5842 int i;
5843
5844 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5845 /*
5846 * ideally we don't want subsystems moving around while we do this.
5847 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5848 * subsys/hierarchy state.
5849 */
5850 mutex_lock(&cgroup_mutex);
5851
5852 for_each_subsys(ss, i)
5853 seq_printf(m, "%s\t%d\t%d\t%d\n",
5854 ss->legacy_name, ss->root->hierarchy_id,
5855 atomic_read(&ss->root->nr_cgrps),
5856 cgroup_ssid_enabled(i));
5857
5858 mutex_unlock(&cgroup_mutex);
5859 return 0;
5860}
5861
5862static int cgroupstats_open(struct inode *inode, struct file *file)
5863{
5864 return single_open(file, proc_cgroupstats_show, NULL);
5865}
5866
5867static const struct file_operations proc_cgroupstats_operations = {
5868 .open = cgroupstats_open,
5869 .read = seq_read,
5870 .llseek = seq_lseek,
5871 .release = single_release,
5872};
5873
5874/**
5875 * cgroup_fork - initialize cgroup related fields during copy_process()
5876 * @child: pointer to task_struct of forking parent process.
5877 *
5878 * A task is associated with the init_css_set until cgroup_post_fork()
5879 * attaches it to the parent's css_set. Empty cg_list indicates that
5880 * @child isn't holding reference to its css_set.
5881 */
5882void cgroup_fork(struct task_struct *child)
5883{
5884 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5885 INIT_LIST_HEAD(&child->cg_list);
5886}
5887
5888/**
5889 * cgroup_can_fork - called on a new task before the process is exposed
5890 * @child: the task in question.
5891 *
5892 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5893 * returns an error, the fork aborts with that error code. This allows for
5894 * a cgroup subsystem to conditionally allow or deny new forks.
5895 */
5896int cgroup_can_fork(struct task_struct *child)
5897{
5898 struct cgroup_subsys *ss;
5899 int i, j, ret;
5900
5901 do_each_subsys_mask(ss, i, have_canfork_callback) {
5902 ret = ss->can_fork(child);
5903 if (ret)
5904 goto out_revert;
5905 } while_each_subsys_mask();
5906
5907 return 0;
5908
5909out_revert:
5910 for_each_subsys(ss, j) {
5911 if (j >= i)
5912 break;
5913 if (ss->cancel_fork)
5914 ss->cancel_fork(child);
5915 }
5916
5917 return ret;
5918}
5919
5920/**
5921 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5922 * @child: the task in question
5923 *
5924 * This calls the cancel_fork() callbacks if a fork failed *after*
5925 * cgroup_can_fork() succeded.
5926 */
5927void cgroup_cancel_fork(struct task_struct *child)
5928{
5929 struct cgroup_subsys *ss;
5930 int i;
5931
5932 for_each_subsys(ss, i)
5933 if (ss->cancel_fork)
5934 ss->cancel_fork(child);
5935}
5936
5937/**
5938 * cgroup_post_fork - called on a new task after adding it to the task list
5939 * @child: the task in question
5940 *
5941 * Adds the task to the list running through its css_set if necessary and
5942 * call the subsystem fork() callbacks. Has to be after the task is
5943 * visible on the task list in case we race with the first call to
5944 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5945 * list.
5946 */
5947void cgroup_post_fork(struct task_struct *child)
5948{
5949 struct cgroup_subsys *ss;
5950 int i;
5951
5952 /*
5953 * This may race against cgroup_enable_task_cg_lists(). As that
5954 * function sets use_task_css_set_links before grabbing
5955 * tasklist_lock and we just went through tasklist_lock to add
5956 * @child, it's guaranteed that either we see the set
5957 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5958 * @child during its iteration.
5959 *
5960 * If we won the race, @child is associated with %current's
5961 * css_set. Grabbing css_set_lock guarantees both that the
5962 * association is stable, and, on completion of the parent's
5963 * migration, @child is visible in the source of migration or
5964 * already in the destination cgroup. This guarantee is necessary
5965 * when implementing operations which need to migrate all tasks of
5966 * a cgroup to another.
5967 *
5968 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5969 * will remain in init_css_set. This is safe because all tasks are
5970 * in the init_css_set before cg_links is enabled and there's no
5971 * operation which transfers all tasks out of init_css_set.
5972 */
5973 if (use_task_css_set_links) {
5974 struct css_set *cset;
5975
5976 spin_lock_irq(&css_set_lock);
5977 cset = task_css_set(current);
5978 if (list_empty(&child->cg_list)) {
5979 get_css_set(cset);
5980 css_set_move_task(child, NULL, cset, false);
5981 }
5982 spin_unlock_irq(&css_set_lock);
5983 }
5984
5985 /*
5986 * Call ss->fork(). This must happen after @child is linked on
5987 * css_set; otherwise, @child might change state between ->fork()
5988 * and addition to css_set.
5989 */
5990 do_each_subsys_mask(ss, i, have_fork_callback) {
5991 ss->fork(child);
5992 } while_each_subsys_mask();
5993}
5994
5995/**
5996 * cgroup_exit - detach cgroup from exiting task
5997 * @tsk: pointer to task_struct of exiting process
5998 *
5999 * Description: Detach cgroup from @tsk and release it.
6000 *
6001 * Note that cgroups marked notify_on_release force every task in
6002 * them to take the global cgroup_mutex mutex when exiting.
6003 * This could impact scaling on very large systems. Be reluctant to
6004 * use notify_on_release cgroups where very high task exit scaling
6005 * is required on large systems.
6006 *
6007 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6008 * call cgroup_exit() while the task is still competent to handle
6009 * notify_on_release(), then leave the task attached to the root cgroup in
6010 * each hierarchy for the remainder of its exit. No need to bother with
6011 * init_css_set refcnting. init_css_set never goes away and we can't race
6012 * with migration path - PF_EXITING is visible to migration path.
6013 */
6014void cgroup_exit(struct task_struct *tsk)
6015{
6016 struct cgroup_subsys *ss;
6017 struct css_set *cset;
6018 int i;
6019
6020 /*
6021 * Unlink from @tsk from its css_set. As migration path can't race
6022 * with us, we can check css_set and cg_list without synchronization.
6023 */
6024 cset = task_css_set(tsk);
6025
6026 if (!list_empty(&tsk->cg_list)) {
6027 spin_lock_irq(&css_set_lock);
6028 css_set_move_task(tsk, cset, NULL, false);
6029 spin_unlock_irq(&css_set_lock);
6030 } else {
6031 get_css_set(cset);
6032 }
6033
6034 /* see cgroup_post_fork() for details */
6035 do_each_subsys_mask(ss, i, have_exit_callback) {
6036 ss->exit(tsk);
6037 } while_each_subsys_mask();
6038}
6039
6040void cgroup_free(struct task_struct *task)
6041{
6042 struct css_set *cset = task_css_set(task);
6043 struct cgroup_subsys *ss;
6044 int ssid;
6045
6046 do_each_subsys_mask(ss, ssid, have_free_callback) {
6047 ss->free(task);
6048 } while_each_subsys_mask();
6049
6050 put_css_set(cset);
6051}
6052
6053static void check_for_release(struct cgroup *cgrp)
6054{
6055 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6056 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6057 schedule_work(&cgrp->release_agent_work);
6058}
6059
6060/*
6061 * Notify userspace when a cgroup is released, by running the
6062 * configured release agent with the name of the cgroup (path
6063 * relative to the root of cgroup file system) as the argument.
6064 *
6065 * Most likely, this user command will try to rmdir this cgroup.
6066 *
6067 * This races with the possibility that some other task will be
6068 * attached to this cgroup before it is removed, or that some other
6069 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6070 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6071 * unused, and this cgroup will be reprieved from its death sentence,
6072 * to continue to serve a useful existence. Next time it's released,
6073 * we will get notified again, if it still has 'notify_on_release' set.
6074 *
6075 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6076 * means only wait until the task is successfully execve()'d. The
6077 * separate release agent task is forked by call_usermodehelper(),
6078 * then control in this thread returns here, without waiting for the
6079 * release agent task. We don't bother to wait because the caller of
6080 * this routine has no use for the exit status of the release agent
6081 * task, so no sense holding our caller up for that.
6082 */
6083static void cgroup_release_agent(struct work_struct *work)
6084{
6085 struct cgroup *cgrp =
6086 container_of(work, struct cgroup, release_agent_work);
6087 char *pathbuf = NULL, *agentbuf = NULL;
6088 char *argv[3], *envp[3];
6089 int ret;
6090
6091 mutex_lock(&cgroup_mutex);
6092
6093 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6094 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6095 if (!pathbuf || !agentbuf)
6096 goto out;
6097
6098 spin_lock_irq(&css_set_lock);
6099 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6100 spin_unlock_irq(&css_set_lock);
6101 if (ret < 0 || ret >= PATH_MAX)
6102 goto out;
6103
6104 argv[0] = agentbuf;
6105 argv[1] = pathbuf;
6106 argv[2] = NULL;
6107
6108 /* minimal command environment */
6109 envp[0] = "HOME=/";
6110 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6111 envp[2] = NULL;
6112
6113 mutex_unlock(&cgroup_mutex);
6114 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6115 goto out_free;
6116out:
6117 mutex_unlock(&cgroup_mutex);
6118out_free:
6119 kfree(agentbuf);
6120 kfree(pathbuf);
6121}
6122
6123static int __init cgroup_disable(char *str)
6124{
6125 struct cgroup_subsys *ss;
6126 char *token;
6127 int i;
6128
6129 while ((token = strsep(&str, ",")) != NULL) {
6130 if (!*token)
6131 continue;
6132
6133 for_each_subsys(ss, i) {
6134 if (strcmp(token, ss->name) &&
6135 strcmp(token, ss->legacy_name))
6136 continue;
6137 cgroup_disable_mask |= 1 << i;
6138 }
6139 }
6140 return 1;
6141}
6142__setup("cgroup_disable=", cgroup_disable);
6143
6144static int __init cgroup_no_v1(char *str)
6145{
6146 struct cgroup_subsys *ss;
6147 char *token;
6148 int i;
6149
6150 while ((token = strsep(&str, ",")) != NULL) {
6151 if (!*token)
6152 continue;
6153
6154 if (!strcmp(token, "all")) {
6155 cgroup_no_v1_mask = U16_MAX;
6156 break;
6157 }
6158
6159 for_each_subsys(ss, i) {
6160 if (strcmp(token, ss->name) &&
6161 strcmp(token, ss->legacy_name))
6162 continue;
6163
6164 cgroup_no_v1_mask |= 1 << i;
6165 }
6166 }
6167 return 1;
6168}
6169__setup("cgroup_no_v1=", cgroup_no_v1);
6170
6171/**
6172 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6173 * @dentry: directory dentry of interest
6174 * @ss: subsystem of interest
6175 *
6176 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6177 * to get the corresponding css and return it. If such css doesn't exist
6178 * or can't be pinned, an ERR_PTR value is returned.
6179 */
6180struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6181 struct cgroup_subsys *ss)
6182{
6183 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6184 struct file_system_type *s_type = dentry->d_sb->s_type;
6185 struct cgroup_subsys_state *css = NULL;
6186 struct cgroup *cgrp;
6187
6188 /* is @dentry a cgroup dir? */
6189 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6190 !kn || kernfs_type(kn) != KERNFS_DIR)
6191 return ERR_PTR(-EBADF);
6192
6193 rcu_read_lock();
6194
6195 /*
6196 * This path doesn't originate from kernfs and @kn could already
6197 * have been or be removed at any point. @kn->priv is RCU
6198 * protected for this access. See css_release_work_fn() for details.
6199 */
6200 cgrp = rcu_dereference(kn->priv);
6201 if (cgrp)
6202 css = cgroup_css(cgrp, ss);
6203
6204 if (!css || !css_tryget_online(css))
6205 css = ERR_PTR(-ENOENT);
6206
6207 rcu_read_unlock();
6208 return css;
6209}
6210
6211/**
6212 * css_from_id - lookup css by id
6213 * @id: the cgroup id
6214 * @ss: cgroup subsys to be looked into
6215 *
6216 * Returns the css if there's valid one with @id, otherwise returns NULL.
6217 * Should be called under rcu_read_lock().
6218 */
6219struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6220{
6221 WARN_ON_ONCE(!rcu_read_lock_held());
6222 return idr_find(&ss->css_idr, id);
6223}
6224
6225/**
6226 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6227 * @path: path on the default hierarchy
6228 *
6229 * Find the cgroup at @path on the default hierarchy, increment its
6230 * reference count and return it. Returns pointer to the found cgroup on
6231 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6232 * if @path points to a non-directory.
6233 */
6234struct cgroup *cgroup_get_from_path(const char *path)
6235{
6236 struct kernfs_node *kn;
6237 struct cgroup *cgrp;
6238
6239 mutex_lock(&cgroup_mutex);
6240
6241 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6242 if (kn) {
6243 if (kernfs_type(kn) == KERNFS_DIR) {
6244 cgrp = kn->priv;
6245 cgroup_get(cgrp);
6246 } else {
6247 cgrp = ERR_PTR(-ENOTDIR);
6248 }
6249 kernfs_put(kn);
6250 } else {
6251 cgrp = ERR_PTR(-ENOENT);
6252 }
6253
6254 mutex_unlock(&cgroup_mutex);
6255 return cgrp;
6256}
6257EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6258
6259/**
6260 * cgroup_get_from_fd - get a cgroup pointer from a fd
6261 * @fd: fd obtained by open(cgroup2_dir)
6262 *
6263 * Find the cgroup from a fd which should be obtained
6264 * by opening a cgroup directory. Returns a pointer to the
6265 * cgroup on success. ERR_PTR is returned if the cgroup
6266 * cannot be found.
6267 */
6268struct cgroup *cgroup_get_from_fd(int fd)
6269{
6270 struct cgroup_subsys_state *css;
6271 struct cgroup *cgrp;
6272 struct file *f;
6273
6274 f = fget_raw(fd);
6275 if (!f)
6276 return ERR_PTR(-EBADF);
6277
6278 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6279 fput(f);
6280 if (IS_ERR(css))
6281 return ERR_CAST(css);
6282
6283 cgrp = css->cgroup;
6284 if (!cgroup_on_dfl(cgrp)) {
6285 cgroup_put(cgrp);
6286 return ERR_PTR(-EBADF);
6287 }
6288
6289 return cgrp;
6290}
6291EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6292
6293/*
6294 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6295 * definition in cgroup-defs.h.
6296 */
6297#ifdef CONFIG_SOCK_CGROUP_DATA
6298
6299#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6300
6301DEFINE_SPINLOCK(cgroup_sk_update_lock);
6302static bool cgroup_sk_alloc_disabled __read_mostly;
6303
6304void cgroup_sk_alloc_disable(void)
6305{
6306 if (cgroup_sk_alloc_disabled)
6307 return;
6308 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6309 cgroup_sk_alloc_disabled = true;
6310}
6311
6312#else
6313
6314#define cgroup_sk_alloc_disabled false
6315
6316#endif
6317
6318void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6319{
6320 if (cgroup_sk_alloc_disabled)
6321 return;
6322
6323 /* Socket clone path */
6324 if (skcd->val) {
6325 cgroup_get(sock_cgroup_ptr(skcd));
6326 return;
6327 }
6328
6329 rcu_read_lock();
6330
6331 while (true) {
6332 struct css_set *cset;
6333
6334 cset = task_css_set(current);
6335 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6336 skcd->val = (unsigned long)cset->dfl_cgrp;
6337 break;
6338 }
6339 cpu_relax();
6340 }
6341
6342 rcu_read_unlock();
6343}
6344
6345void cgroup_sk_free(struct sock_cgroup_data *skcd)
6346{
6347 cgroup_put(sock_cgroup_ptr(skcd));
6348}
6349
6350#endif /* CONFIG_SOCK_CGROUP_DATA */
6351
6352/* cgroup namespaces */
6353
6354static struct ucounts *inc_cgroup_namespaces(struct user_namespace *ns)
6355{
6356 return inc_ucount(ns, current_euid(), UCOUNT_CGROUP_NAMESPACES);
6357}
6358
6359static void dec_cgroup_namespaces(struct ucounts *ucounts)
6360{
6361 dec_ucount(ucounts, UCOUNT_CGROUP_NAMESPACES);
6362}
6363
6364static struct cgroup_namespace *alloc_cgroup_ns(void)
6365{
6366 struct cgroup_namespace *new_ns;
6367 int ret;
6368
6369 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6370 if (!new_ns)
6371 return ERR_PTR(-ENOMEM);
6372 ret = ns_alloc_inum(&new_ns->ns);
6373 if (ret) {
6374 kfree(new_ns);
6375 return ERR_PTR(ret);
6376 }
6377 atomic_set(&new_ns->count, 1);
6378 new_ns->ns.ops = &cgroupns_operations;
6379 return new_ns;
6380}
6381
6382void free_cgroup_ns(struct cgroup_namespace *ns)
6383{
6384 put_css_set(ns->root_cset);
6385 dec_cgroup_namespaces(ns->ucounts);
6386 put_user_ns(ns->user_ns);
6387 ns_free_inum(&ns->ns);
6388 kfree(ns);
6389}
6390EXPORT_SYMBOL(free_cgroup_ns);
6391
6392struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6393 struct user_namespace *user_ns,
6394 struct cgroup_namespace *old_ns)
6395{
6396 struct cgroup_namespace *new_ns;
6397 struct ucounts *ucounts;
6398 struct css_set *cset;
6399
6400 BUG_ON(!old_ns);
6401
6402 if (!(flags & CLONE_NEWCGROUP)) {
6403 get_cgroup_ns(old_ns);
6404 return old_ns;
6405 }
6406
6407 /* Allow only sysadmin to create cgroup namespace. */
6408 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6409 return ERR_PTR(-EPERM);
6410
6411 ucounts = inc_cgroup_namespaces(user_ns);
6412 if (!ucounts)
6413 return ERR_PTR(-ENOSPC);
6414
6415 /* It is not safe to take cgroup_mutex here */
6416 spin_lock_irq(&css_set_lock);
6417 cset = task_css_set(current);
6418 get_css_set(cset);
6419 spin_unlock_irq(&css_set_lock);
6420
6421 new_ns = alloc_cgroup_ns();
6422 if (IS_ERR(new_ns)) {
6423 put_css_set(cset);
6424 dec_cgroup_namespaces(ucounts);
6425 return new_ns;
6426 }
6427
6428 new_ns->user_ns = get_user_ns(user_ns);
6429 new_ns->ucounts = ucounts;
6430 new_ns->root_cset = cset;
6431
6432 return new_ns;
6433}
6434
6435static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6436{
6437 return container_of(ns, struct cgroup_namespace, ns);
6438}
6439
6440static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6441{
6442 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6443
6444 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6445 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6446 return -EPERM;
6447
6448 /* Don't need to do anything if we are attaching to our own cgroupns. */
6449 if (cgroup_ns == nsproxy->cgroup_ns)
6450 return 0;
6451
6452 get_cgroup_ns(cgroup_ns);
6453 put_cgroup_ns(nsproxy->cgroup_ns);
6454 nsproxy->cgroup_ns = cgroup_ns;
6455
6456 return 0;
6457}
6458
6459static struct ns_common *cgroupns_get(struct task_struct *task)
6460{
6461 struct cgroup_namespace *ns = NULL;
6462 struct nsproxy *nsproxy;
6463
6464 task_lock(task);
6465 nsproxy = task->nsproxy;
6466 if (nsproxy) {
6467 ns = nsproxy->cgroup_ns;
6468 get_cgroup_ns(ns);
6469 }
6470 task_unlock(task);
6471
6472 return ns ? &ns->ns : NULL;
6473}
6474
6475static void cgroupns_put(struct ns_common *ns)
6476{
6477 put_cgroup_ns(to_cg_ns(ns));
6478}
6479
6480static struct user_namespace *cgroupns_owner(struct ns_common *ns)
6481{
6482 return to_cg_ns(ns)->user_ns;
6483}
6484
6485const struct proc_ns_operations cgroupns_operations = {
6486 .name = "cgroup",
6487 .type = CLONE_NEWCGROUP,
6488 .get = cgroupns_get,
6489 .put = cgroupns_put,
6490 .install = cgroupns_install,
6491 .owner = cgroupns_owner,
6492};
6493
6494static __init int cgroup_namespaces_init(void)
6495{
6496 return 0;
6497}
6498subsys_initcall(cgroup_namespaces_init);
6499
6500#ifdef CONFIG_CGROUP_BPF
6501int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
6502 enum bpf_attach_type type, bool overridable)
6503{
6504 struct cgroup *parent = cgroup_parent(cgrp);
6505 int ret;
6506
6507 mutex_lock(&cgroup_mutex);
6508 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
6509 mutex_unlock(&cgroup_mutex);
6510 return ret;
6511}
6512#endif /* CONFIG_CGROUP_BPF */
6513
6514#ifdef CONFIG_CGROUP_DEBUG
6515static struct cgroup_subsys_state *
6516debug_css_alloc(struct cgroup_subsys_state *parent_css)
6517{
6518 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6519
6520 if (!css)
6521 return ERR_PTR(-ENOMEM);
6522
6523 return css;
6524}
6525
6526static void debug_css_free(struct cgroup_subsys_state *css)
6527{
6528 kfree(css);
6529}
6530
6531static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6532 struct cftype *cft)
6533{
6534 return cgroup_task_count(css->cgroup);
6535}
6536
6537static u64 current_css_set_read(struct cgroup_subsys_state *css,
6538 struct cftype *cft)
6539{
6540 return (u64)(unsigned long)current->cgroups;
6541}
6542
6543static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6544 struct cftype *cft)
6545{
6546 u64 count;
6547
6548 rcu_read_lock();
6549 count = atomic_read(&task_css_set(current)->refcount);
6550 rcu_read_unlock();
6551 return count;
6552}
6553
6554static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6555{
6556 struct cgrp_cset_link *link;
6557 struct css_set *cset;
6558 char *name_buf;
6559
6560 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6561 if (!name_buf)
6562 return -ENOMEM;
6563
6564 spin_lock_irq(&css_set_lock);
6565 rcu_read_lock();
6566 cset = rcu_dereference(current->cgroups);
6567 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6568 struct cgroup *c = link->cgrp;
6569
6570 cgroup_name(c, name_buf, NAME_MAX + 1);
6571 seq_printf(seq, "Root %d group %s\n",
6572 c->root->hierarchy_id, name_buf);
6573 }
6574 rcu_read_unlock();
6575 spin_unlock_irq(&css_set_lock);
6576 kfree(name_buf);
6577 return 0;
6578}
6579
6580#define MAX_TASKS_SHOWN_PER_CSS 25
6581static int cgroup_css_links_read(struct seq_file *seq, void *v)
6582{
6583 struct cgroup_subsys_state *css = seq_css(seq);
6584 struct cgrp_cset_link *link;
6585
6586 spin_lock_irq(&css_set_lock);
6587 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6588 struct css_set *cset = link->cset;
6589 struct task_struct *task;
6590 int count = 0;
6591
6592 seq_printf(seq, "css_set %p\n", cset);
6593
6594 list_for_each_entry(task, &cset->tasks, cg_list) {
6595 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6596 goto overflow;
6597 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6598 }
6599
6600 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6601 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6602 goto overflow;
6603 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6604 }
6605 continue;
6606 overflow:
6607 seq_puts(seq, " ...\n");
6608 }
6609 spin_unlock_irq(&css_set_lock);
6610 return 0;
6611}
6612
6613static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6614{
6615 return (!cgroup_is_populated(css->cgroup) &&
6616 !css_has_online_children(&css->cgroup->self));
6617}
6618
6619static struct cftype debug_files[] = {
6620 {
6621 .name = "taskcount",
6622 .read_u64 = debug_taskcount_read,
6623 },
6624
6625 {
6626 .name = "current_css_set",
6627 .read_u64 = current_css_set_read,
6628 },
6629
6630 {
6631 .name = "current_css_set_refcount",
6632 .read_u64 = current_css_set_refcount_read,
6633 },
6634
6635 {
6636 .name = "current_css_set_cg_links",
6637 .seq_show = current_css_set_cg_links_read,
6638 },
6639
6640 {
6641 .name = "cgroup_css_links",
6642 .seq_show = cgroup_css_links_read,
6643 },
6644
6645 {
6646 .name = "releasable",
6647 .read_u64 = releasable_read,
6648 },
6649
6650 { } /* terminate */
6651};
6652
6653struct cgroup_subsys debug_cgrp_subsys = {
6654 .css_alloc = debug_css_alloc,
6655 .css_free = debug_css_free,
6656 .legacy_cftypes = debug_files,
6657};
6658#endif /* CONFIG_CGROUP_DEBUG */
1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
30#include <linux/cred.h>
31#include <linux/ctype.h>
32#include <linux/errno.h>
33#include <linux/fs.h>
34#include <linux/init_task.h>
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
44#include <linux/backing-dev.h>
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
50#include <linux/sort.h>
51#include <linux/kmod.h>
52#include <linux/module.h>
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
55#include <linux/hash.h>
56#include <linux/namei.h>
57#include <linux/pid_namespace.h>
58#include <linux/idr.h>
59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60#include <linux/eventfd.h>
61#include <linux/poll.h>
62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
64#include <linux/atomic.h>
65
66static DEFINE_MUTEX(cgroup_mutex);
67
68/*
69 * Generate an array of cgroup subsystem pointers. At boot time, this is
70 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
71 * registered after that. The mutable section of this array is protected by
72 * cgroup_mutex.
73 */
74#define SUBSYS(_x) &_x ## _subsys,
75static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
76#include <linux/cgroup_subsys.h>
77};
78
79#define MAX_CGROUP_ROOT_NAMELEN 64
80
81/*
82 * A cgroupfs_root represents the root of a cgroup hierarchy,
83 * and may be associated with a superblock to form an active
84 * hierarchy
85 */
86struct cgroupfs_root {
87 struct super_block *sb;
88
89 /*
90 * The bitmask of subsystems intended to be attached to this
91 * hierarchy
92 */
93 unsigned long subsys_bits;
94
95 /* Unique id for this hierarchy. */
96 int hierarchy_id;
97
98 /* The bitmask of subsystems currently attached to this hierarchy */
99 unsigned long actual_subsys_bits;
100
101 /* A list running through the attached subsystems */
102 struct list_head subsys_list;
103
104 /* The root cgroup for this hierarchy */
105 struct cgroup top_cgroup;
106
107 /* Tracks how many cgroups are currently defined in hierarchy.*/
108 int number_of_cgroups;
109
110 /* A list running through the active hierarchies */
111 struct list_head root_list;
112
113 /* Hierarchy-specific flags */
114 unsigned long flags;
115
116 /* The path to use for release notifications. */
117 char release_agent_path[PATH_MAX];
118
119 /* The name for this hierarchy - may be empty */
120 char name[MAX_CGROUP_ROOT_NAMELEN];
121};
122
123/*
124 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
125 * subsystems that are otherwise unattached - it never has more than a
126 * single cgroup, and all tasks are part of that cgroup.
127 */
128static struct cgroupfs_root rootnode;
129
130/*
131 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
132 * cgroup_subsys->use_id != 0.
133 */
134#define CSS_ID_MAX (65535)
135struct css_id {
136 /*
137 * The css to which this ID points. This pointer is set to valid value
138 * after cgroup is populated. If cgroup is removed, this will be NULL.
139 * This pointer is expected to be RCU-safe because destroy()
140 * is called after synchronize_rcu(). But for safe use, css_is_removed()
141 * css_tryget() should be used for avoiding race.
142 */
143 struct cgroup_subsys_state __rcu *css;
144 /*
145 * ID of this css.
146 */
147 unsigned short id;
148 /*
149 * Depth in hierarchy which this ID belongs to.
150 */
151 unsigned short depth;
152 /*
153 * ID is freed by RCU. (and lookup routine is RCU safe.)
154 */
155 struct rcu_head rcu_head;
156 /*
157 * Hierarchy of CSS ID belongs to.
158 */
159 unsigned short stack[0]; /* Array of Length (depth+1) */
160};
161
162/*
163 * cgroup_event represents events which userspace want to receive.
164 */
165struct cgroup_event {
166 /*
167 * Cgroup which the event belongs to.
168 */
169 struct cgroup *cgrp;
170 /*
171 * Control file which the event associated.
172 */
173 struct cftype *cft;
174 /*
175 * eventfd to signal userspace about the event.
176 */
177 struct eventfd_ctx *eventfd;
178 /*
179 * Each of these stored in a list by the cgroup.
180 */
181 struct list_head list;
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
192/* The list of hierarchy roots */
193
194static LIST_HEAD(roots);
195static int root_count;
196
197static DEFINE_IDA(hierarchy_ida);
198static int next_hierarchy_id;
199static DEFINE_SPINLOCK(hierarchy_id_lock);
200
201/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
202#define dummytop (&rootnode.top_cgroup)
203
204/* This flag indicates whether tasks in the fork and exit paths should
205 * check for fork/exit handlers to call. This avoids us having to do
206 * extra work in the fork/exit path if none of the subsystems need to
207 * be called.
208 */
209static int need_forkexit_callback __read_mostly;
210
211#ifdef CONFIG_PROVE_LOCKING
212int cgroup_lock_is_held(void)
213{
214 return lockdep_is_held(&cgroup_mutex);
215}
216#else /* #ifdef CONFIG_PROVE_LOCKING */
217int cgroup_lock_is_held(void)
218{
219 return mutex_is_locked(&cgroup_mutex);
220}
221#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
222
223EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
224
225/* convenient tests for these bits */
226inline int cgroup_is_removed(const struct cgroup *cgrp)
227{
228 return test_bit(CGRP_REMOVED, &cgrp->flags);
229}
230
231/* bits in struct cgroupfs_root flags field */
232enum {
233 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
234};
235
236static int cgroup_is_releasable(const struct cgroup *cgrp)
237{
238 const int bits =
239 (1 << CGRP_RELEASABLE) |
240 (1 << CGRP_NOTIFY_ON_RELEASE);
241 return (cgrp->flags & bits) == bits;
242}
243
244static int notify_on_release(const struct cgroup *cgrp)
245{
246 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
247}
248
249static int clone_children(const struct cgroup *cgrp)
250{
251 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
252}
253
254/*
255 * for_each_subsys() allows you to iterate on each subsystem attached to
256 * an active hierarchy
257 */
258#define for_each_subsys(_root, _ss) \
259list_for_each_entry(_ss, &_root->subsys_list, sibling)
260
261/* for_each_active_root() allows you to iterate across the active hierarchies */
262#define for_each_active_root(_root) \
263list_for_each_entry(_root, &roots, root_list)
264
265/* the list of cgroups eligible for automatic release. Protected by
266 * release_list_lock */
267static LIST_HEAD(release_list);
268static DEFINE_SPINLOCK(release_list_lock);
269static void cgroup_release_agent(struct work_struct *work);
270static DECLARE_WORK(release_agent_work, cgroup_release_agent);
271static void check_for_release(struct cgroup *cgrp);
272
273/* Link structure for associating css_set objects with cgroups */
274struct cg_cgroup_link {
275 /*
276 * List running through cg_cgroup_links associated with a
277 * cgroup, anchored on cgroup->css_sets
278 */
279 struct list_head cgrp_link_list;
280 struct cgroup *cgrp;
281 /*
282 * List running through cg_cgroup_links pointing at a
283 * single css_set object, anchored on css_set->cg_links
284 */
285 struct list_head cg_link_list;
286 struct css_set *cg;
287};
288
289/* The default css_set - used by init and its children prior to any
290 * hierarchies being mounted. It contains a pointer to the root state
291 * for each subsystem. Also used to anchor the list of css_sets. Not
292 * reference-counted, to improve performance when child cgroups
293 * haven't been created.
294 */
295
296static struct css_set init_css_set;
297static struct cg_cgroup_link init_css_set_link;
298
299static int cgroup_init_idr(struct cgroup_subsys *ss,
300 struct cgroup_subsys_state *css);
301
302/* css_set_lock protects the list of css_set objects, and the
303 * chain of tasks off each css_set. Nests outside task->alloc_lock
304 * due to cgroup_iter_start() */
305static DEFINE_RWLOCK(css_set_lock);
306static int css_set_count;
307
308/*
309 * hash table for cgroup groups. This improves the performance to find
310 * an existing css_set. This hash doesn't (currently) take into
311 * account cgroups in empty hierarchies.
312 */
313#define CSS_SET_HASH_BITS 7
314#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
315static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
316
317static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
318{
319 int i;
320 int index;
321 unsigned long tmp = 0UL;
322
323 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
324 tmp += (unsigned long)css[i];
325 tmp = (tmp >> 16) ^ tmp;
326
327 index = hash_long(tmp, CSS_SET_HASH_BITS);
328
329 return &css_set_table[index];
330}
331
332/* We don't maintain the lists running through each css_set to its
333 * task until after the first call to cgroup_iter_start(). This
334 * reduces the fork()/exit() overhead for people who have cgroups
335 * compiled into their kernel but not actually in use */
336static int use_task_css_set_links __read_mostly;
337
338static void __put_css_set(struct css_set *cg, int taskexit)
339{
340 struct cg_cgroup_link *link;
341 struct cg_cgroup_link *saved_link;
342 /*
343 * Ensure that the refcount doesn't hit zero while any readers
344 * can see it. Similar to atomic_dec_and_lock(), but for an
345 * rwlock
346 */
347 if (atomic_add_unless(&cg->refcount, -1, 1))
348 return;
349 write_lock(&css_set_lock);
350 if (!atomic_dec_and_test(&cg->refcount)) {
351 write_unlock(&css_set_lock);
352 return;
353 }
354
355 /* This css_set is dead. unlink it and release cgroup refcounts */
356 hlist_del(&cg->hlist);
357 css_set_count--;
358
359 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
360 cg_link_list) {
361 struct cgroup *cgrp = link->cgrp;
362 list_del(&link->cg_link_list);
363 list_del(&link->cgrp_link_list);
364 if (atomic_dec_and_test(&cgrp->count) &&
365 notify_on_release(cgrp)) {
366 if (taskexit)
367 set_bit(CGRP_RELEASABLE, &cgrp->flags);
368 check_for_release(cgrp);
369 }
370
371 kfree(link);
372 }
373
374 write_unlock(&css_set_lock);
375 kfree_rcu(cg, rcu_head);
376}
377
378/*
379 * refcounted get/put for css_set objects
380 */
381static inline void get_css_set(struct css_set *cg)
382{
383 atomic_inc(&cg->refcount);
384}
385
386static inline void put_css_set(struct css_set *cg)
387{
388 __put_css_set(cg, 0);
389}
390
391static inline void put_css_set_taskexit(struct css_set *cg)
392{
393 __put_css_set(cg, 1);
394}
395
396/*
397 * compare_css_sets - helper function for find_existing_css_set().
398 * @cg: candidate css_set being tested
399 * @old_cg: existing css_set for a task
400 * @new_cgrp: cgroup that's being entered by the task
401 * @template: desired set of css pointers in css_set (pre-calculated)
402 *
403 * Returns true if "cg" matches "old_cg" except for the hierarchy
404 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
405 */
406static bool compare_css_sets(struct css_set *cg,
407 struct css_set *old_cg,
408 struct cgroup *new_cgrp,
409 struct cgroup_subsys_state *template[])
410{
411 struct list_head *l1, *l2;
412
413 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
414 /* Not all subsystems matched */
415 return false;
416 }
417
418 /*
419 * Compare cgroup pointers in order to distinguish between
420 * different cgroups in heirarchies with no subsystems. We
421 * could get by with just this check alone (and skip the
422 * memcmp above) but on most setups the memcmp check will
423 * avoid the need for this more expensive check on almost all
424 * candidates.
425 */
426
427 l1 = &cg->cg_links;
428 l2 = &old_cg->cg_links;
429 while (1) {
430 struct cg_cgroup_link *cgl1, *cgl2;
431 struct cgroup *cg1, *cg2;
432
433 l1 = l1->next;
434 l2 = l2->next;
435 /* See if we reached the end - both lists are equal length. */
436 if (l1 == &cg->cg_links) {
437 BUG_ON(l2 != &old_cg->cg_links);
438 break;
439 } else {
440 BUG_ON(l2 == &old_cg->cg_links);
441 }
442 /* Locate the cgroups associated with these links. */
443 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
444 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
445 cg1 = cgl1->cgrp;
446 cg2 = cgl2->cgrp;
447 /* Hierarchies should be linked in the same order. */
448 BUG_ON(cg1->root != cg2->root);
449
450 /*
451 * If this hierarchy is the hierarchy of the cgroup
452 * that's changing, then we need to check that this
453 * css_set points to the new cgroup; if it's any other
454 * hierarchy, then this css_set should point to the
455 * same cgroup as the old css_set.
456 */
457 if (cg1->root == new_cgrp->root) {
458 if (cg1 != new_cgrp)
459 return false;
460 } else {
461 if (cg1 != cg2)
462 return false;
463 }
464 }
465 return true;
466}
467
468/*
469 * find_existing_css_set() is a helper for
470 * find_css_set(), and checks to see whether an existing
471 * css_set is suitable.
472 *
473 * oldcg: the cgroup group that we're using before the cgroup
474 * transition
475 *
476 * cgrp: the cgroup that we're moving into
477 *
478 * template: location in which to build the desired set of subsystem
479 * state objects for the new cgroup group
480 */
481static struct css_set *find_existing_css_set(
482 struct css_set *oldcg,
483 struct cgroup *cgrp,
484 struct cgroup_subsys_state *template[])
485{
486 int i;
487 struct cgroupfs_root *root = cgrp->root;
488 struct hlist_head *hhead;
489 struct hlist_node *node;
490 struct css_set *cg;
491
492 /*
493 * Build the set of subsystem state objects that we want to see in the
494 * new css_set. while subsystems can change globally, the entries here
495 * won't change, so no need for locking.
496 */
497 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
498 if (root->subsys_bits & (1UL << i)) {
499 /* Subsystem is in this hierarchy. So we want
500 * the subsystem state from the new
501 * cgroup */
502 template[i] = cgrp->subsys[i];
503 } else {
504 /* Subsystem is not in this hierarchy, so we
505 * don't want to change the subsystem state */
506 template[i] = oldcg->subsys[i];
507 }
508 }
509
510 hhead = css_set_hash(template);
511 hlist_for_each_entry(cg, node, hhead, hlist) {
512 if (!compare_css_sets(cg, oldcg, cgrp, template))
513 continue;
514
515 /* This css_set matches what we need */
516 return cg;
517 }
518
519 /* No existing cgroup group matched */
520 return NULL;
521}
522
523static void free_cg_links(struct list_head *tmp)
524{
525 struct cg_cgroup_link *link;
526 struct cg_cgroup_link *saved_link;
527
528 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
529 list_del(&link->cgrp_link_list);
530 kfree(link);
531 }
532}
533
534/*
535 * allocate_cg_links() allocates "count" cg_cgroup_link structures
536 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
537 * success or a negative error
538 */
539static int allocate_cg_links(int count, struct list_head *tmp)
540{
541 struct cg_cgroup_link *link;
542 int i;
543 INIT_LIST_HEAD(tmp);
544 for (i = 0; i < count; i++) {
545 link = kmalloc(sizeof(*link), GFP_KERNEL);
546 if (!link) {
547 free_cg_links(tmp);
548 return -ENOMEM;
549 }
550 list_add(&link->cgrp_link_list, tmp);
551 }
552 return 0;
553}
554
555/**
556 * link_css_set - a helper function to link a css_set to a cgroup
557 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
558 * @cg: the css_set to be linked
559 * @cgrp: the destination cgroup
560 */
561static void link_css_set(struct list_head *tmp_cg_links,
562 struct css_set *cg, struct cgroup *cgrp)
563{
564 struct cg_cgroup_link *link;
565
566 BUG_ON(list_empty(tmp_cg_links));
567 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
568 cgrp_link_list);
569 link->cg = cg;
570 link->cgrp = cgrp;
571 atomic_inc(&cgrp->count);
572 list_move(&link->cgrp_link_list, &cgrp->css_sets);
573 /*
574 * Always add links to the tail of the list so that the list
575 * is sorted by order of hierarchy creation
576 */
577 list_add_tail(&link->cg_link_list, &cg->cg_links);
578}
579
580/*
581 * find_css_set() takes an existing cgroup group and a
582 * cgroup object, and returns a css_set object that's
583 * equivalent to the old group, but with the given cgroup
584 * substituted into the appropriate hierarchy. Must be called with
585 * cgroup_mutex held
586 */
587static struct css_set *find_css_set(
588 struct css_set *oldcg, struct cgroup *cgrp)
589{
590 struct css_set *res;
591 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
592
593 struct list_head tmp_cg_links;
594
595 struct hlist_head *hhead;
596 struct cg_cgroup_link *link;
597
598 /* First see if we already have a cgroup group that matches
599 * the desired set */
600 read_lock(&css_set_lock);
601 res = find_existing_css_set(oldcg, cgrp, template);
602 if (res)
603 get_css_set(res);
604 read_unlock(&css_set_lock);
605
606 if (res)
607 return res;
608
609 res = kmalloc(sizeof(*res), GFP_KERNEL);
610 if (!res)
611 return NULL;
612
613 /* Allocate all the cg_cgroup_link objects that we'll need */
614 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
615 kfree(res);
616 return NULL;
617 }
618
619 atomic_set(&res->refcount, 1);
620 INIT_LIST_HEAD(&res->cg_links);
621 INIT_LIST_HEAD(&res->tasks);
622 INIT_HLIST_NODE(&res->hlist);
623
624 /* Copy the set of subsystem state objects generated in
625 * find_existing_css_set() */
626 memcpy(res->subsys, template, sizeof(res->subsys));
627
628 write_lock(&css_set_lock);
629 /* Add reference counts and links from the new css_set. */
630 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
631 struct cgroup *c = link->cgrp;
632 if (c->root == cgrp->root)
633 c = cgrp;
634 link_css_set(&tmp_cg_links, res, c);
635 }
636
637 BUG_ON(!list_empty(&tmp_cg_links));
638
639 css_set_count++;
640
641 /* Add this cgroup group to the hash table */
642 hhead = css_set_hash(res->subsys);
643 hlist_add_head(&res->hlist, hhead);
644
645 write_unlock(&css_set_lock);
646
647 return res;
648}
649
650/*
651 * Return the cgroup for "task" from the given hierarchy. Must be
652 * called with cgroup_mutex held.
653 */
654static struct cgroup *task_cgroup_from_root(struct task_struct *task,
655 struct cgroupfs_root *root)
656{
657 struct css_set *css;
658 struct cgroup *res = NULL;
659
660 BUG_ON(!mutex_is_locked(&cgroup_mutex));
661 read_lock(&css_set_lock);
662 /*
663 * No need to lock the task - since we hold cgroup_mutex the
664 * task can't change groups, so the only thing that can happen
665 * is that it exits and its css is set back to init_css_set.
666 */
667 css = task->cgroups;
668 if (css == &init_css_set) {
669 res = &root->top_cgroup;
670 } else {
671 struct cg_cgroup_link *link;
672 list_for_each_entry(link, &css->cg_links, cg_link_list) {
673 struct cgroup *c = link->cgrp;
674 if (c->root == root) {
675 res = c;
676 break;
677 }
678 }
679 }
680 read_unlock(&css_set_lock);
681 BUG_ON(!res);
682 return res;
683}
684
685/*
686 * There is one global cgroup mutex. We also require taking
687 * task_lock() when dereferencing a task's cgroup subsys pointers.
688 * See "The task_lock() exception", at the end of this comment.
689 *
690 * A task must hold cgroup_mutex to modify cgroups.
691 *
692 * Any task can increment and decrement the count field without lock.
693 * So in general, code holding cgroup_mutex can't rely on the count
694 * field not changing. However, if the count goes to zero, then only
695 * cgroup_attach_task() can increment it again. Because a count of zero
696 * means that no tasks are currently attached, therefore there is no
697 * way a task attached to that cgroup can fork (the other way to
698 * increment the count). So code holding cgroup_mutex can safely
699 * assume that if the count is zero, it will stay zero. Similarly, if
700 * a task holds cgroup_mutex on a cgroup with zero count, it
701 * knows that the cgroup won't be removed, as cgroup_rmdir()
702 * needs that mutex.
703 *
704 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
705 * (usually) take cgroup_mutex. These are the two most performance
706 * critical pieces of code here. The exception occurs on cgroup_exit(),
707 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
708 * is taken, and if the cgroup count is zero, a usermode call made
709 * to the release agent with the name of the cgroup (path relative to
710 * the root of cgroup file system) as the argument.
711 *
712 * A cgroup can only be deleted if both its 'count' of using tasks
713 * is zero, and its list of 'children' cgroups is empty. Since all
714 * tasks in the system use _some_ cgroup, and since there is always at
715 * least one task in the system (init, pid == 1), therefore, top_cgroup
716 * always has either children cgroups and/or using tasks. So we don't
717 * need a special hack to ensure that top_cgroup cannot be deleted.
718 *
719 * The task_lock() exception
720 *
721 * The need for this exception arises from the action of
722 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
723 * another. It does so using cgroup_mutex, however there are
724 * several performance critical places that need to reference
725 * task->cgroup without the expense of grabbing a system global
726 * mutex. Therefore except as noted below, when dereferencing or, as
727 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
728 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
729 * the task_struct routinely used for such matters.
730 *
731 * P.S. One more locking exception. RCU is used to guard the
732 * update of a tasks cgroup pointer by cgroup_attach_task()
733 */
734
735/**
736 * cgroup_lock - lock out any changes to cgroup structures
737 *
738 */
739void cgroup_lock(void)
740{
741 mutex_lock(&cgroup_mutex);
742}
743EXPORT_SYMBOL_GPL(cgroup_lock);
744
745/**
746 * cgroup_unlock - release lock on cgroup changes
747 *
748 * Undo the lock taken in a previous cgroup_lock() call.
749 */
750void cgroup_unlock(void)
751{
752 mutex_unlock(&cgroup_mutex);
753}
754EXPORT_SYMBOL_GPL(cgroup_unlock);
755
756/*
757 * A couple of forward declarations required, due to cyclic reference loop:
758 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
759 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
760 * -> cgroup_mkdir.
761 */
762
763static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
764static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
765static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
766static int cgroup_populate_dir(struct cgroup *cgrp);
767static const struct inode_operations cgroup_dir_inode_operations;
768static const struct file_operations proc_cgroupstats_operations;
769
770static struct backing_dev_info cgroup_backing_dev_info = {
771 .name = "cgroup",
772 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
773};
774
775static int alloc_css_id(struct cgroup_subsys *ss,
776 struct cgroup *parent, struct cgroup *child);
777
778static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
779{
780 struct inode *inode = new_inode(sb);
781
782 if (inode) {
783 inode->i_ino = get_next_ino();
784 inode->i_mode = mode;
785 inode->i_uid = current_fsuid();
786 inode->i_gid = current_fsgid();
787 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
788 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
789 }
790 return inode;
791}
792
793/*
794 * Call subsys's pre_destroy handler.
795 * This is called before css refcnt check.
796 */
797static int cgroup_call_pre_destroy(struct cgroup *cgrp)
798{
799 struct cgroup_subsys *ss;
800 int ret = 0;
801
802 for_each_subsys(cgrp->root, ss)
803 if (ss->pre_destroy) {
804 ret = ss->pre_destroy(ss, cgrp);
805 if (ret)
806 break;
807 }
808
809 return ret;
810}
811
812static void cgroup_diput(struct dentry *dentry, struct inode *inode)
813{
814 /* is dentry a directory ? if so, kfree() associated cgroup */
815 if (S_ISDIR(inode->i_mode)) {
816 struct cgroup *cgrp = dentry->d_fsdata;
817 struct cgroup_subsys *ss;
818 BUG_ON(!(cgroup_is_removed(cgrp)));
819 /* It's possible for external users to be holding css
820 * reference counts on a cgroup; css_put() needs to
821 * be able to access the cgroup after decrementing
822 * the reference count in order to know if it needs to
823 * queue the cgroup to be handled by the release
824 * agent */
825 synchronize_rcu();
826
827 mutex_lock(&cgroup_mutex);
828 /*
829 * Release the subsystem state objects.
830 */
831 for_each_subsys(cgrp->root, ss)
832 ss->destroy(ss, cgrp);
833
834 cgrp->root->number_of_cgroups--;
835 mutex_unlock(&cgroup_mutex);
836
837 /*
838 * Drop the active superblock reference that we took when we
839 * created the cgroup
840 */
841 deactivate_super(cgrp->root->sb);
842
843 /*
844 * if we're getting rid of the cgroup, refcount should ensure
845 * that there are no pidlists left.
846 */
847 BUG_ON(!list_empty(&cgrp->pidlists));
848
849 kfree_rcu(cgrp, rcu_head);
850 }
851 iput(inode);
852}
853
854static int cgroup_delete(const struct dentry *d)
855{
856 return 1;
857}
858
859static void remove_dir(struct dentry *d)
860{
861 struct dentry *parent = dget(d->d_parent);
862
863 d_delete(d);
864 simple_rmdir(parent->d_inode, d);
865 dput(parent);
866}
867
868static void cgroup_clear_directory(struct dentry *dentry)
869{
870 struct list_head *node;
871
872 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
873 spin_lock(&dentry->d_lock);
874 node = dentry->d_subdirs.next;
875 while (node != &dentry->d_subdirs) {
876 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
877
878 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
879 list_del_init(node);
880 if (d->d_inode) {
881 /* This should never be called on a cgroup
882 * directory with child cgroups */
883 BUG_ON(d->d_inode->i_mode & S_IFDIR);
884 dget_dlock(d);
885 spin_unlock(&d->d_lock);
886 spin_unlock(&dentry->d_lock);
887 d_delete(d);
888 simple_unlink(dentry->d_inode, d);
889 dput(d);
890 spin_lock(&dentry->d_lock);
891 } else
892 spin_unlock(&d->d_lock);
893 node = dentry->d_subdirs.next;
894 }
895 spin_unlock(&dentry->d_lock);
896}
897
898/*
899 * NOTE : the dentry must have been dget()'ed
900 */
901static void cgroup_d_remove_dir(struct dentry *dentry)
902{
903 struct dentry *parent;
904
905 cgroup_clear_directory(dentry);
906
907 parent = dentry->d_parent;
908 spin_lock(&parent->d_lock);
909 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
910 list_del_init(&dentry->d_u.d_child);
911 spin_unlock(&dentry->d_lock);
912 spin_unlock(&parent->d_lock);
913 remove_dir(dentry);
914}
915
916/*
917 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
918 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
919 * reference to css->refcnt. In general, this refcnt is expected to goes down
920 * to zero, soon.
921 *
922 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
923 */
924DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
925
926static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
927{
928 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
929 wake_up_all(&cgroup_rmdir_waitq);
930}
931
932void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
933{
934 css_get(css);
935}
936
937void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
938{
939 cgroup_wakeup_rmdir_waiter(css->cgroup);
940 css_put(css);
941}
942
943/*
944 * Call with cgroup_mutex held. Drops reference counts on modules, including
945 * any duplicate ones that parse_cgroupfs_options took. If this function
946 * returns an error, no reference counts are touched.
947 */
948static int rebind_subsystems(struct cgroupfs_root *root,
949 unsigned long final_bits)
950{
951 unsigned long added_bits, removed_bits;
952 struct cgroup *cgrp = &root->top_cgroup;
953 int i;
954
955 BUG_ON(!mutex_is_locked(&cgroup_mutex));
956
957 removed_bits = root->actual_subsys_bits & ~final_bits;
958 added_bits = final_bits & ~root->actual_subsys_bits;
959 /* Check that any added subsystems are currently free */
960 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
961 unsigned long bit = 1UL << i;
962 struct cgroup_subsys *ss = subsys[i];
963 if (!(bit & added_bits))
964 continue;
965 /*
966 * Nobody should tell us to do a subsys that doesn't exist:
967 * parse_cgroupfs_options should catch that case and refcounts
968 * ensure that subsystems won't disappear once selected.
969 */
970 BUG_ON(ss == NULL);
971 if (ss->root != &rootnode) {
972 /* Subsystem isn't free */
973 return -EBUSY;
974 }
975 }
976
977 /* Currently we don't handle adding/removing subsystems when
978 * any child cgroups exist. This is theoretically supportable
979 * but involves complex error handling, so it's being left until
980 * later */
981 if (root->number_of_cgroups > 1)
982 return -EBUSY;
983
984 /* Process each subsystem */
985 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
986 struct cgroup_subsys *ss = subsys[i];
987 unsigned long bit = 1UL << i;
988 if (bit & added_bits) {
989 /* We're binding this subsystem to this hierarchy */
990 BUG_ON(ss == NULL);
991 BUG_ON(cgrp->subsys[i]);
992 BUG_ON(!dummytop->subsys[i]);
993 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
994 mutex_lock(&ss->hierarchy_mutex);
995 cgrp->subsys[i] = dummytop->subsys[i];
996 cgrp->subsys[i]->cgroup = cgrp;
997 list_move(&ss->sibling, &root->subsys_list);
998 ss->root = root;
999 if (ss->bind)
1000 ss->bind(ss, cgrp);
1001 mutex_unlock(&ss->hierarchy_mutex);
1002 /* refcount was already taken, and we're keeping it */
1003 } else if (bit & removed_bits) {
1004 /* We're removing this subsystem */
1005 BUG_ON(ss == NULL);
1006 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1007 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1008 mutex_lock(&ss->hierarchy_mutex);
1009 if (ss->bind)
1010 ss->bind(ss, dummytop);
1011 dummytop->subsys[i]->cgroup = dummytop;
1012 cgrp->subsys[i] = NULL;
1013 subsys[i]->root = &rootnode;
1014 list_move(&ss->sibling, &rootnode.subsys_list);
1015 mutex_unlock(&ss->hierarchy_mutex);
1016 /* subsystem is now free - drop reference on module */
1017 module_put(ss->module);
1018 } else if (bit & final_bits) {
1019 /* Subsystem state should already exist */
1020 BUG_ON(ss == NULL);
1021 BUG_ON(!cgrp->subsys[i]);
1022 /*
1023 * a refcount was taken, but we already had one, so
1024 * drop the extra reference.
1025 */
1026 module_put(ss->module);
1027#ifdef CONFIG_MODULE_UNLOAD
1028 BUG_ON(ss->module && !module_refcount(ss->module));
1029#endif
1030 } else {
1031 /* Subsystem state shouldn't exist */
1032 BUG_ON(cgrp->subsys[i]);
1033 }
1034 }
1035 root->subsys_bits = root->actual_subsys_bits = final_bits;
1036 synchronize_rcu();
1037
1038 return 0;
1039}
1040
1041static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1042{
1043 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1044 struct cgroup_subsys *ss;
1045
1046 mutex_lock(&cgroup_mutex);
1047 for_each_subsys(root, ss)
1048 seq_printf(seq, ",%s", ss->name);
1049 if (test_bit(ROOT_NOPREFIX, &root->flags))
1050 seq_puts(seq, ",noprefix");
1051 if (strlen(root->release_agent_path))
1052 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1053 if (clone_children(&root->top_cgroup))
1054 seq_puts(seq, ",clone_children");
1055 if (strlen(root->name))
1056 seq_printf(seq, ",name=%s", root->name);
1057 mutex_unlock(&cgroup_mutex);
1058 return 0;
1059}
1060
1061struct cgroup_sb_opts {
1062 unsigned long subsys_bits;
1063 unsigned long flags;
1064 char *release_agent;
1065 bool clone_children;
1066 char *name;
1067 /* User explicitly requested empty subsystem */
1068 bool none;
1069
1070 struct cgroupfs_root *new_root;
1071
1072};
1073
1074/*
1075 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1076 * with cgroup_mutex held to protect the subsys[] array. This function takes
1077 * refcounts on subsystems to be used, unless it returns error, in which case
1078 * no refcounts are taken.
1079 */
1080static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1081{
1082 char *token, *o = data;
1083 bool all_ss = false, one_ss = false;
1084 unsigned long mask = (unsigned long)-1;
1085 int i;
1086 bool module_pin_failed = false;
1087
1088 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1089
1090#ifdef CONFIG_CPUSETS
1091 mask = ~(1UL << cpuset_subsys_id);
1092#endif
1093
1094 memset(opts, 0, sizeof(*opts));
1095
1096 while ((token = strsep(&o, ",")) != NULL) {
1097 if (!*token)
1098 return -EINVAL;
1099 if (!strcmp(token, "none")) {
1100 /* Explicitly have no subsystems */
1101 opts->none = true;
1102 continue;
1103 }
1104 if (!strcmp(token, "all")) {
1105 /* Mutually exclusive option 'all' + subsystem name */
1106 if (one_ss)
1107 return -EINVAL;
1108 all_ss = true;
1109 continue;
1110 }
1111 if (!strcmp(token, "noprefix")) {
1112 set_bit(ROOT_NOPREFIX, &opts->flags);
1113 continue;
1114 }
1115 if (!strcmp(token, "clone_children")) {
1116 opts->clone_children = true;
1117 continue;
1118 }
1119 if (!strncmp(token, "release_agent=", 14)) {
1120 /* Specifying two release agents is forbidden */
1121 if (opts->release_agent)
1122 return -EINVAL;
1123 opts->release_agent =
1124 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1125 if (!opts->release_agent)
1126 return -ENOMEM;
1127 continue;
1128 }
1129 if (!strncmp(token, "name=", 5)) {
1130 const char *name = token + 5;
1131 /* Can't specify an empty name */
1132 if (!strlen(name))
1133 return -EINVAL;
1134 /* Must match [\w.-]+ */
1135 for (i = 0; i < strlen(name); i++) {
1136 char c = name[i];
1137 if (isalnum(c))
1138 continue;
1139 if ((c == '.') || (c == '-') || (c == '_'))
1140 continue;
1141 return -EINVAL;
1142 }
1143 /* Specifying two names is forbidden */
1144 if (opts->name)
1145 return -EINVAL;
1146 opts->name = kstrndup(name,
1147 MAX_CGROUP_ROOT_NAMELEN - 1,
1148 GFP_KERNEL);
1149 if (!opts->name)
1150 return -ENOMEM;
1151
1152 continue;
1153 }
1154
1155 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1156 struct cgroup_subsys *ss = subsys[i];
1157 if (ss == NULL)
1158 continue;
1159 if (strcmp(token, ss->name))
1160 continue;
1161 if (ss->disabled)
1162 continue;
1163
1164 /* Mutually exclusive option 'all' + subsystem name */
1165 if (all_ss)
1166 return -EINVAL;
1167 set_bit(i, &opts->subsys_bits);
1168 one_ss = true;
1169
1170 break;
1171 }
1172 if (i == CGROUP_SUBSYS_COUNT)
1173 return -ENOENT;
1174 }
1175
1176 /*
1177 * If the 'all' option was specified select all the subsystems,
1178 * otherwise 'all, 'none' and a subsystem name options were not
1179 * specified, let's default to 'all'
1180 */
1181 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1182 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1183 struct cgroup_subsys *ss = subsys[i];
1184 if (ss == NULL)
1185 continue;
1186 if (ss->disabled)
1187 continue;
1188 set_bit(i, &opts->subsys_bits);
1189 }
1190 }
1191
1192 /* Consistency checks */
1193
1194 /*
1195 * Option noprefix was introduced just for backward compatibility
1196 * with the old cpuset, so we allow noprefix only if mounting just
1197 * the cpuset subsystem.
1198 */
1199 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1200 (opts->subsys_bits & mask))
1201 return -EINVAL;
1202
1203
1204 /* Can't specify "none" and some subsystems */
1205 if (opts->subsys_bits && opts->none)
1206 return -EINVAL;
1207
1208 /*
1209 * We either have to specify by name or by subsystems. (So all
1210 * empty hierarchies must have a name).
1211 */
1212 if (!opts->subsys_bits && !opts->name)
1213 return -EINVAL;
1214
1215 /*
1216 * Grab references on all the modules we'll need, so the subsystems
1217 * don't dance around before rebind_subsystems attaches them. This may
1218 * take duplicate reference counts on a subsystem that's already used,
1219 * but rebind_subsystems handles this case.
1220 */
1221 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1222 unsigned long bit = 1UL << i;
1223
1224 if (!(bit & opts->subsys_bits))
1225 continue;
1226 if (!try_module_get(subsys[i]->module)) {
1227 module_pin_failed = true;
1228 break;
1229 }
1230 }
1231 if (module_pin_failed) {
1232 /*
1233 * oops, one of the modules was going away. this means that we
1234 * raced with a module_delete call, and to the user this is
1235 * essentially a "subsystem doesn't exist" case.
1236 */
1237 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1238 /* drop refcounts only on the ones we took */
1239 unsigned long bit = 1UL << i;
1240
1241 if (!(bit & opts->subsys_bits))
1242 continue;
1243 module_put(subsys[i]->module);
1244 }
1245 return -ENOENT;
1246 }
1247
1248 return 0;
1249}
1250
1251static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1252{
1253 int i;
1254 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1255 unsigned long bit = 1UL << i;
1256
1257 if (!(bit & subsys_bits))
1258 continue;
1259 module_put(subsys[i]->module);
1260 }
1261}
1262
1263static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1264{
1265 int ret = 0;
1266 struct cgroupfs_root *root = sb->s_fs_info;
1267 struct cgroup *cgrp = &root->top_cgroup;
1268 struct cgroup_sb_opts opts;
1269
1270 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1271 mutex_lock(&cgroup_mutex);
1272
1273 /* See what subsystems are wanted */
1274 ret = parse_cgroupfs_options(data, &opts);
1275 if (ret)
1276 goto out_unlock;
1277
1278 /* Don't allow flags or name to change at remount */
1279 if (opts.flags != root->flags ||
1280 (opts.name && strcmp(opts.name, root->name))) {
1281 ret = -EINVAL;
1282 drop_parsed_module_refcounts(opts.subsys_bits);
1283 goto out_unlock;
1284 }
1285
1286 ret = rebind_subsystems(root, opts.subsys_bits);
1287 if (ret) {
1288 drop_parsed_module_refcounts(opts.subsys_bits);
1289 goto out_unlock;
1290 }
1291
1292 /* (re)populate subsystem files */
1293 cgroup_populate_dir(cgrp);
1294
1295 if (opts.release_agent)
1296 strcpy(root->release_agent_path, opts.release_agent);
1297 out_unlock:
1298 kfree(opts.release_agent);
1299 kfree(opts.name);
1300 mutex_unlock(&cgroup_mutex);
1301 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1302 return ret;
1303}
1304
1305static const struct super_operations cgroup_ops = {
1306 .statfs = simple_statfs,
1307 .drop_inode = generic_delete_inode,
1308 .show_options = cgroup_show_options,
1309 .remount_fs = cgroup_remount,
1310};
1311
1312static void init_cgroup_housekeeping(struct cgroup *cgrp)
1313{
1314 INIT_LIST_HEAD(&cgrp->sibling);
1315 INIT_LIST_HEAD(&cgrp->children);
1316 INIT_LIST_HEAD(&cgrp->css_sets);
1317 INIT_LIST_HEAD(&cgrp->release_list);
1318 INIT_LIST_HEAD(&cgrp->pidlists);
1319 mutex_init(&cgrp->pidlist_mutex);
1320 INIT_LIST_HEAD(&cgrp->event_list);
1321 spin_lock_init(&cgrp->event_list_lock);
1322}
1323
1324static void init_cgroup_root(struct cgroupfs_root *root)
1325{
1326 struct cgroup *cgrp = &root->top_cgroup;
1327 INIT_LIST_HEAD(&root->subsys_list);
1328 INIT_LIST_HEAD(&root->root_list);
1329 root->number_of_cgroups = 1;
1330 cgrp->root = root;
1331 cgrp->top_cgroup = cgrp;
1332 init_cgroup_housekeeping(cgrp);
1333}
1334
1335static bool init_root_id(struct cgroupfs_root *root)
1336{
1337 int ret = 0;
1338
1339 do {
1340 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1341 return false;
1342 spin_lock(&hierarchy_id_lock);
1343 /* Try to allocate the next unused ID */
1344 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1345 &root->hierarchy_id);
1346 if (ret == -ENOSPC)
1347 /* Try again starting from 0 */
1348 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1349 if (!ret) {
1350 next_hierarchy_id = root->hierarchy_id + 1;
1351 } else if (ret != -EAGAIN) {
1352 /* Can only get here if the 31-bit IDR is full ... */
1353 BUG_ON(ret);
1354 }
1355 spin_unlock(&hierarchy_id_lock);
1356 } while (ret);
1357 return true;
1358}
1359
1360static int cgroup_test_super(struct super_block *sb, void *data)
1361{
1362 struct cgroup_sb_opts *opts = data;
1363 struct cgroupfs_root *root = sb->s_fs_info;
1364
1365 /* If we asked for a name then it must match */
1366 if (opts->name && strcmp(opts->name, root->name))
1367 return 0;
1368
1369 /*
1370 * If we asked for subsystems (or explicitly for no
1371 * subsystems) then they must match
1372 */
1373 if ((opts->subsys_bits || opts->none)
1374 && (opts->subsys_bits != root->subsys_bits))
1375 return 0;
1376
1377 return 1;
1378}
1379
1380static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1381{
1382 struct cgroupfs_root *root;
1383
1384 if (!opts->subsys_bits && !opts->none)
1385 return NULL;
1386
1387 root = kzalloc(sizeof(*root), GFP_KERNEL);
1388 if (!root)
1389 return ERR_PTR(-ENOMEM);
1390
1391 if (!init_root_id(root)) {
1392 kfree(root);
1393 return ERR_PTR(-ENOMEM);
1394 }
1395 init_cgroup_root(root);
1396
1397 root->subsys_bits = opts->subsys_bits;
1398 root->flags = opts->flags;
1399 if (opts->release_agent)
1400 strcpy(root->release_agent_path, opts->release_agent);
1401 if (opts->name)
1402 strcpy(root->name, opts->name);
1403 if (opts->clone_children)
1404 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1405 return root;
1406}
1407
1408static void cgroup_drop_root(struct cgroupfs_root *root)
1409{
1410 if (!root)
1411 return;
1412
1413 BUG_ON(!root->hierarchy_id);
1414 spin_lock(&hierarchy_id_lock);
1415 ida_remove(&hierarchy_ida, root->hierarchy_id);
1416 spin_unlock(&hierarchy_id_lock);
1417 kfree(root);
1418}
1419
1420static int cgroup_set_super(struct super_block *sb, void *data)
1421{
1422 int ret;
1423 struct cgroup_sb_opts *opts = data;
1424
1425 /* If we don't have a new root, we can't set up a new sb */
1426 if (!opts->new_root)
1427 return -EINVAL;
1428
1429 BUG_ON(!opts->subsys_bits && !opts->none);
1430
1431 ret = set_anon_super(sb, NULL);
1432 if (ret)
1433 return ret;
1434
1435 sb->s_fs_info = opts->new_root;
1436 opts->new_root->sb = sb;
1437
1438 sb->s_blocksize = PAGE_CACHE_SIZE;
1439 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1440 sb->s_magic = CGROUP_SUPER_MAGIC;
1441 sb->s_op = &cgroup_ops;
1442
1443 return 0;
1444}
1445
1446static int cgroup_get_rootdir(struct super_block *sb)
1447{
1448 static const struct dentry_operations cgroup_dops = {
1449 .d_iput = cgroup_diput,
1450 .d_delete = cgroup_delete,
1451 };
1452
1453 struct inode *inode =
1454 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1455 struct dentry *dentry;
1456
1457 if (!inode)
1458 return -ENOMEM;
1459
1460 inode->i_fop = &simple_dir_operations;
1461 inode->i_op = &cgroup_dir_inode_operations;
1462 /* directories start off with i_nlink == 2 (for "." entry) */
1463 inc_nlink(inode);
1464 dentry = d_alloc_root(inode);
1465 if (!dentry) {
1466 iput(inode);
1467 return -ENOMEM;
1468 }
1469 sb->s_root = dentry;
1470 /* for everything else we want ->d_op set */
1471 sb->s_d_op = &cgroup_dops;
1472 return 0;
1473}
1474
1475static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1476 int flags, const char *unused_dev_name,
1477 void *data)
1478{
1479 struct cgroup_sb_opts opts;
1480 struct cgroupfs_root *root;
1481 int ret = 0;
1482 struct super_block *sb;
1483 struct cgroupfs_root *new_root;
1484
1485 /* First find the desired set of subsystems */
1486 mutex_lock(&cgroup_mutex);
1487 ret = parse_cgroupfs_options(data, &opts);
1488 mutex_unlock(&cgroup_mutex);
1489 if (ret)
1490 goto out_err;
1491
1492 /*
1493 * Allocate a new cgroup root. We may not need it if we're
1494 * reusing an existing hierarchy.
1495 */
1496 new_root = cgroup_root_from_opts(&opts);
1497 if (IS_ERR(new_root)) {
1498 ret = PTR_ERR(new_root);
1499 goto drop_modules;
1500 }
1501 opts.new_root = new_root;
1502
1503 /* Locate an existing or new sb for this hierarchy */
1504 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1505 if (IS_ERR(sb)) {
1506 ret = PTR_ERR(sb);
1507 cgroup_drop_root(opts.new_root);
1508 goto drop_modules;
1509 }
1510
1511 root = sb->s_fs_info;
1512 BUG_ON(!root);
1513 if (root == opts.new_root) {
1514 /* We used the new root structure, so this is a new hierarchy */
1515 struct list_head tmp_cg_links;
1516 struct cgroup *root_cgrp = &root->top_cgroup;
1517 struct inode *inode;
1518 struct cgroupfs_root *existing_root;
1519 const struct cred *cred;
1520 int i;
1521
1522 BUG_ON(sb->s_root != NULL);
1523
1524 ret = cgroup_get_rootdir(sb);
1525 if (ret)
1526 goto drop_new_super;
1527 inode = sb->s_root->d_inode;
1528
1529 mutex_lock(&inode->i_mutex);
1530 mutex_lock(&cgroup_mutex);
1531
1532 if (strlen(root->name)) {
1533 /* Check for name clashes with existing mounts */
1534 for_each_active_root(existing_root) {
1535 if (!strcmp(existing_root->name, root->name)) {
1536 ret = -EBUSY;
1537 mutex_unlock(&cgroup_mutex);
1538 mutex_unlock(&inode->i_mutex);
1539 goto drop_new_super;
1540 }
1541 }
1542 }
1543
1544 /*
1545 * We're accessing css_set_count without locking
1546 * css_set_lock here, but that's OK - it can only be
1547 * increased by someone holding cgroup_lock, and
1548 * that's us. The worst that can happen is that we
1549 * have some link structures left over
1550 */
1551 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1552 if (ret) {
1553 mutex_unlock(&cgroup_mutex);
1554 mutex_unlock(&inode->i_mutex);
1555 goto drop_new_super;
1556 }
1557
1558 ret = rebind_subsystems(root, root->subsys_bits);
1559 if (ret == -EBUSY) {
1560 mutex_unlock(&cgroup_mutex);
1561 mutex_unlock(&inode->i_mutex);
1562 free_cg_links(&tmp_cg_links);
1563 goto drop_new_super;
1564 }
1565 /*
1566 * There must be no failure case after here, since rebinding
1567 * takes care of subsystems' refcounts, which are explicitly
1568 * dropped in the failure exit path.
1569 */
1570
1571 /* EBUSY should be the only error here */
1572 BUG_ON(ret);
1573
1574 list_add(&root->root_list, &roots);
1575 root_count++;
1576
1577 sb->s_root->d_fsdata = root_cgrp;
1578 root->top_cgroup.dentry = sb->s_root;
1579
1580 /* Link the top cgroup in this hierarchy into all
1581 * the css_set objects */
1582 write_lock(&css_set_lock);
1583 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1584 struct hlist_head *hhead = &css_set_table[i];
1585 struct hlist_node *node;
1586 struct css_set *cg;
1587
1588 hlist_for_each_entry(cg, node, hhead, hlist)
1589 link_css_set(&tmp_cg_links, cg, root_cgrp);
1590 }
1591 write_unlock(&css_set_lock);
1592
1593 free_cg_links(&tmp_cg_links);
1594
1595 BUG_ON(!list_empty(&root_cgrp->sibling));
1596 BUG_ON(!list_empty(&root_cgrp->children));
1597 BUG_ON(root->number_of_cgroups != 1);
1598
1599 cred = override_creds(&init_cred);
1600 cgroup_populate_dir(root_cgrp);
1601 revert_creds(cred);
1602 mutex_unlock(&cgroup_mutex);
1603 mutex_unlock(&inode->i_mutex);
1604 } else {
1605 /*
1606 * We re-used an existing hierarchy - the new root (if
1607 * any) is not needed
1608 */
1609 cgroup_drop_root(opts.new_root);
1610 /* no subsys rebinding, so refcounts don't change */
1611 drop_parsed_module_refcounts(opts.subsys_bits);
1612 }
1613
1614 kfree(opts.release_agent);
1615 kfree(opts.name);
1616 return dget(sb->s_root);
1617
1618 drop_new_super:
1619 deactivate_locked_super(sb);
1620 drop_modules:
1621 drop_parsed_module_refcounts(opts.subsys_bits);
1622 out_err:
1623 kfree(opts.release_agent);
1624 kfree(opts.name);
1625 return ERR_PTR(ret);
1626}
1627
1628static void cgroup_kill_sb(struct super_block *sb) {
1629 struct cgroupfs_root *root = sb->s_fs_info;
1630 struct cgroup *cgrp = &root->top_cgroup;
1631 int ret;
1632 struct cg_cgroup_link *link;
1633 struct cg_cgroup_link *saved_link;
1634
1635 BUG_ON(!root);
1636
1637 BUG_ON(root->number_of_cgroups != 1);
1638 BUG_ON(!list_empty(&cgrp->children));
1639 BUG_ON(!list_empty(&cgrp->sibling));
1640
1641 mutex_lock(&cgroup_mutex);
1642
1643 /* Rebind all subsystems back to the default hierarchy */
1644 ret = rebind_subsystems(root, 0);
1645 /* Shouldn't be able to fail ... */
1646 BUG_ON(ret);
1647
1648 /*
1649 * Release all the links from css_sets to this hierarchy's
1650 * root cgroup
1651 */
1652 write_lock(&css_set_lock);
1653
1654 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1655 cgrp_link_list) {
1656 list_del(&link->cg_link_list);
1657 list_del(&link->cgrp_link_list);
1658 kfree(link);
1659 }
1660 write_unlock(&css_set_lock);
1661
1662 if (!list_empty(&root->root_list)) {
1663 list_del(&root->root_list);
1664 root_count--;
1665 }
1666
1667 mutex_unlock(&cgroup_mutex);
1668
1669 kill_litter_super(sb);
1670 cgroup_drop_root(root);
1671}
1672
1673static struct file_system_type cgroup_fs_type = {
1674 .name = "cgroup",
1675 .mount = cgroup_mount,
1676 .kill_sb = cgroup_kill_sb,
1677};
1678
1679static struct kobject *cgroup_kobj;
1680
1681static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1682{
1683 return dentry->d_fsdata;
1684}
1685
1686static inline struct cftype *__d_cft(struct dentry *dentry)
1687{
1688 return dentry->d_fsdata;
1689}
1690
1691/**
1692 * cgroup_path - generate the path of a cgroup
1693 * @cgrp: the cgroup in question
1694 * @buf: the buffer to write the path into
1695 * @buflen: the length of the buffer
1696 *
1697 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1698 * reference. Writes path of cgroup into buf. Returns 0 on success,
1699 * -errno on error.
1700 */
1701int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1702{
1703 char *start;
1704 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1705 cgroup_lock_is_held());
1706
1707 if (!dentry || cgrp == dummytop) {
1708 /*
1709 * Inactive subsystems have no dentry for their root
1710 * cgroup
1711 */
1712 strcpy(buf, "/");
1713 return 0;
1714 }
1715
1716 start = buf + buflen;
1717
1718 *--start = '\0';
1719 for (;;) {
1720 int len = dentry->d_name.len;
1721
1722 if ((start -= len) < buf)
1723 return -ENAMETOOLONG;
1724 memcpy(start, dentry->d_name.name, len);
1725 cgrp = cgrp->parent;
1726 if (!cgrp)
1727 break;
1728
1729 dentry = rcu_dereference_check(cgrp->dentry,
1730 cgroup_lock_is_held());
1731 if (!cgrp->parent)
1732 continue;
1733 if (--start < buf)
1734 return -ENAMETOOLONG;
1735 *start = '/';
1736 }
1737 memmove(buf, start, buf + buflen - start);
1738 return 0;
1739}
1740EXPORT_SYMBOL_GPL(cgroup_path);
1741
1742/*
1743 * cgroup_task_migrate - move a task from one cgroup to another.
1744 *
1745 * 'guarantee' is set if the caller promises that a new css_set for the task
1746 * will already exist. If not set, this function might sleep, and can fail with
1747 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1748 */
1749static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1750 struct task_struct *tsk, bool guarantee)
1751{
1752 struct css_set *oldcg;
1753 struct css_set *newcg;
1754
1755 /*
1756 * get old css_set. we need to take task_lock and refcount it, because
1757 * an exiting task can change its css_set to init_css_set and drop its
1758 * old one without taking cgroup_mutex.
1759 */
1760 task_lock(tsk);
1761 oldcg = tsk->cgroups;
1762 get_css_set(oldcg);
1763 task_unlock(tsk);
1764
1765 /* locate or allocate a new css_set for this task. */
1766 if (guarantee) {
1767 /* we know the css_set we want already exists. */
1768 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1769 read_lock(&css_set_lock);
1770 newcg = find_existing_css_set(oldcg, cgrp, template);
1771 BUG_ON(!newcg);
1772 get_css_set(newcg);
1773 read_unlock(&css_set_lock);
1774 } else {
1775 might_sleep();
1776 /* find_css_set will give us newcg already referenced. */
1777 newcg = find_css_set(oldcg, cgrp);
1778 if (!newcg) {
1779 put_css_set(oldcg);
1780 return -ENOMEM;
1781 }
1782 }
1783 put_css_set(oldcg);
1784
1785 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1786 task_lock(tsk);
1787 if (tsk->flags & PF_EXITING) {
1788 task_unlock(tsk);
1789 put_css_set(newcg);
1790 return -ESRCH;
1791 }
1792 rcu_assign_pointer(tsk->cgroups, newcg);
1793 task_unlock(tsk);
1794
1795 /* Update the css_set linked lists if we're using them */
1796 write_lock(&css_set_lock);
1797 if (!list_empty(&tsk->cg_list))
1798 list_move(&tsk->cg_list, &newcg->tasks);
1799 write_unlock(&css_set_lock);
1800
1801 /*
1802 * We just gained a reference on oldcg by taking it from the task. As
1803 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1804 * it here; it will be freed under RCU.
1805 */
1806 put_css_set(oldcg);
1807
1808 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1809 return 0;
1810}
1811
1812/**
1813 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1814 * @cgrp: the cgroup the task is attaching to
1815 * @tsk: the task to be attached
1816 *
1817 * Call holding cgroup_mutex. May take task_lock of
1818 * the task 'tsk' during call.
1819 */
1820int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1821{
1822 int retval;
1823 struct cgroup_subsys *ss, *failed_ss = NULL;
1824 struct cgroup *oldcgrp;
1825 struct cgroupfs_root *root = cgrp->root;
1826
1827 /* Nothing to do if the task is already in that cgroup */
1828 oldcgrp = task_cgroup_from_root(tsk, root);
1829 if (cgrp == oldcgrp)
1830 return 0;
1831
1832 for_each_subsys(root, ss) {
1833 if (ss->can_attach) {
1834 retval = ss->can_attach(ss, cgrp, tsk);
1835 if (retval) {
1836 /*
1837 * Remember on which subsystem the can_attach()
1838 * failed, so that we only call cancel_attach()
1839 * against the subsystems whose can_attach()
1840 * succeeded. (See below)
1841 */
1842 failed_ss = ss;
1843 goto out;
1844 }
1845 }
1846 if (ss->can_attach_task) {
1847 retval = ss->can_attach_task(cgrp, tsk);
1848 if (retval) {
1849 failed_ss = ss;
1850 goto out;
1851 }
1852 }
1853 }
1854
1855 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1856 if (retval)
1857 goto out;
1858
1859 for_each_subsys(root, ss) {
1860 if (ss->pre_attach)
1861 ss->pre_attach(cgrp);
1862 if (ss->attach_task)
1863 ss->attach_task(cgrp, tsk);
1864 if (ss->attach)
1865 ss->attach(ss, cgrp, oldcgrp, tsk);
1866 }
1867
1868 synchronize_rcu();
1869
1870 /*
1871 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1872 * is no longer empty.
1873 */
1874 cgroup_wakeup_rmdir_waiter(cgrp);
1875out:
1876 if (retval) {
1877 for_each_subsys(root, ss) {
1878 if (ss == failed_ss)
1879 /*
1880 * This subsystem was the one that failed the
1881 * can_attach() check earlier, so we don't need
1882 * to call cancel_attach() against it or any
1883 * remaining subsystems.
1884 */
1885 break;
1886 if (ss->cancel_attach)
1887 ss->cancel_attach(ss, cgrp, tsk);
1888 }
1889 }
1890 return retval;
1891}
1892
1893/**
1894 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1895 * @from: attach to all cgroups of a given task
1896 * @tsk: the task to be attached
1897 */
1898int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1899{
1900 struct cgroupfs_root *root;
1901 int retval = 0;
1902
1903 cgroup_lock();
1904 for_each_active_root(root) {
1905 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1906
1907 retval = cgroup_attach_task(from_cg, tsk);
1908 if (retval)
1909 break;
1910 }
1911 cgroup_unlock();
1912
1913 return retval;
1914}
1915EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1916
1917/*
1918 * cgroup_attach_proc works in two stages, the first of which prefetches all
1919 * new css_sets needed (to make sure we have enough memory before committing
1920 * to the move) and stores them in a list of entries of the following type.
1921 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1922 */
1923struct cg_list_entry {
1924 struct css_set *cg;
1925 struct list_head links;
1926};
1927
1928static bool css_set_check_fetched(struct cgroup *cgrp,
1929 struct task_struct *tsk, struct css_set *cg,
1930 struct list_head *newcg_list)
1931{
1932 struct css_set *newcg;
1933 struct cg_list_entry *cg_entry;
1934 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1935
1936 read_lock(&css_set_lock);
1937 newcg = find_existing_css_set(cg, cgrp, template);
1938 if (newcg)
1939 get_css_set(newcg);
1940 read_unlock(&css_set_lock);
1941
1942 /* doesn't exist at all? */
1943 if (!newcg)
1944 return false;
1945 /* see if it's already in the list */
1946 list_for_each_entry(cg_entry, newcg_list, links) {
1947 if (cg_entry->cg == newcg) {
1948 put_css_set(newcg);
1949 return true;
1950 }
1951 }
1952
1953 /* not found */
1954 put_css_set(newcg);
1955 return false;
1956}
1957
1958/*
1959 * Find the new css_set and store it in the list in preparation for moving the
1960 * given task to the given cgroup. Returns 0 or -ENOMEM.
1961 */
1962static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1963 struct list_head *newcg_list)
1964{
1965 struct css_set *newcg;
1966 struct cg_list_entry *cg_entry;
1967
1968 /* ensure a new css_set will exist for this thread */
1969 newcg = find_css_set(cg, cgrp);
1970 if (!newcg)
1971 return -ENOMEM;
1972 /* add it to the list */
1973 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1974 if (!cg_entry) {
1975 put_css_set(newcg);
1976 return -ENOMEM;
1977 }
1978 cg_entry->cg = newcg;
1979 list_add(&cg_entry->links, newcg_list);
1980 return 0;
1981}
1982
1983/**
1984 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1985 * @cgrp: the cgroup to attach to
1986 * @leader: the threadgroup leader task_struct of the group to be attached
1987 *
1988 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1989 * take task_lock of each thread in leader's threadgroup individually in turn.
1990 */
1991int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1992{
1993 int retval, i, group_size;
1994 struct cgroup_subsys *ss, *failed_ss = NULL;
1995 bool cancel_failed_ss = false;
1996 /* guaranteed to be initialized later, but the compiler needs this */
1997 struct cgroup *oldcgrp = NULL;
1998 struct css_set *oldcg;
1999 struct cgroupfs_root *root = cgrp->root;
2000 /* threadgroup list cursor and array */
2001 struct task_struct *tsk;
2002 struct flex_array *group;
2003 /*
2004 * we need to make sure we have css_sets for all the tasks we're
2005 * going to move -before- we actually start moving them, so that in
2006 * case we get an ENOMEM we can bail out before making any changes.
2007 */
2008 struct list_head newcg_list;
2009 struct cg_list_entry *cg_entry, *temp_nobe;
2010
2011 /*
2012 * step 0: in order to do expensive, possibly blocking operations for
2013 * every thread, we cannot iterate the thread group list, since it needs
2014 * rcu or tasklist locked. instead, build an array of all threads in the
2015 * group - threadgroup_fork_lock prevents new threads from appearing,
2016 * and if threads exit, this will just be an over-estimate.
2017 */
2018 group_size = get_nr_threads(leader);
2019 /* flex_array supports very large thread-groups better than kmalloc. */
2020 group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2021 GFP_KERNEL);
2022 if (!group)
2023 return -ENOMEM;
2024 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2025 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2026 if (retval)
2027 goto out_free_group_list;
2028
2029 /* prevent changes to the threadgroup list while we take a snapshot. */
2030 rcu_read_lock();
2031 if (!thread_group_leader(leader)) {
2032 /*
2033 * a race with de_thread from another thread's exec() may strip
2034 * us of our leadership, making while_each_thread unsafe to use
2035 * on this task. if this happens, there is no choice but to
2036 * throw this task away and try again (from cgroup_procs_write);
2037 * this is "double-double-toil-and-trouble-check locking".
2038 */
2039 rcu_read_unlock();
2040 retval = -EAGAIN;
2041 goto out_free_group_list;
2042 }
2043 /* take a reference on each task in the group to go in the array. */
2044 tsk = leader;
2045 i = 0;
2046 do {
2047 /* as per above, nr_threads may decrease, but not increase. */
2048 BUG_ON(i >= group_size);
2049 get_task_struct(tsk);
2050 /*
2051 * saying GFP_ATOMIC has no effect here because we did prealloc
2052 * earlier, but it's good form to communicate our expectations.
2053 */
2054 retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2055 BUG_ON(retval != 0);
2056 i++;
2057 } while_each_thread(leader, tsk);
2058 /* remember the number of threads in the array for later. */
2059 group_size = i;
2060 rcu_read_unlock();
2061
2062 /*
2063 * step 1: check that we can legitimately attach to the cgroup.
2064 */
2065 for_each_subsys(root, ss) {
2066 if (ss->can_attach) {
2067 retval = ss->can_attach(ss, cgrp, leader);
2068 if (retval) {
2069 failed_ss = ss;
2070 goto out_cancel_attach;
2071 }
2072 }
2073 /* a callback to be run on every thread in the threadgroup. */
2074 if (ss->can_attach_task) {
2075 /* run on each task in the threadgroup. */
2076 for (i = 0; i < group_size; i++) {
2077 tsk = flex_array_get_ptr(group, i);
2078 retval = ss->can_attach_task(cgrp, tsk);
2079 if (retval) {
2080 failed_ss = ss;
2081 cancel_failed_ss = true;
2082 goto out_cancel_attach;
2083 }
2084 }
2085 }
2086 }
2087
2088 /*
2089 * step 2: make sure css_sets exist for all threads to be migrated.
2090 * we use find_css_set, which allocates a new one if necessary.
2091 */
2092 INIT_LIST_HEAD(&newcg_list);
2093 for (i = 0; i < group_size; i++) {
2094 tsk = flex_array_get_ptr(group, i);
2095 /* nothing to do if this task is already in the cgroup */
2096 oldcgrp = task_cgroup_from_root(tsk, root);
2097 if (cgrp == oldcgrp)
2098 continue;
2099 /* get old css_set pointer */
2100 task_lock(tsk);
2101 if (tsk->flags & PF_EXITING) {
2102 /* ignore this task if it's going away */
2103 task_unlock(tsk);
2104 continue;
2105 }
2106 oldcg = tsk->cgroups;
2107 get_css_set(oldcg);
2108 task_unlock(tsk);
2109 /* see if the new one for us is already in the list? */
2110 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2111 /* was already there, nothing to do. */
2112 put_css_set(oldcg);
2113 } else {
2114 /* we don't already have it. get new one. */
2115 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2116 put_css_set(oldcg);
2117 if (retval)
2118 goto out_list_teardown;
2119 }
2120 }
2121
2122 /*
2123 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2124 * to move all tasks to the new cgroup, calling ss->attach_task for each
2125 * one along the way. there are no failure cases after here, so this is
2126 * the commit point.
2127 */
2128 for_each_subsys(root, ss) {
2129 if (ss->pre_attach)
2130 ss->pre_attach(cgrp);
2131 }
2132 for (i = 0; i < group_size; i++) {
2133 tsk = flex_array_get_ptr(group, i);
2134 /* leave current thread as it is if it's already there */
2135 oldcgrp = task_cgroup_from_root(tsk, root);
2136 if (cgrp == oldcgrp)
2137 continue;
2138 /* attach each task to each subsystem */
2139 for_each_subsys(root, ss) {
2140 if (ss->attach_task)
2141 ss->attach_task(cgrp, tsk);
2142 }
2143 /* if the thread is PF_EXITING, it can just get skipped. */
2144 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2145 BUG_ON(retval != 0 && retval != -ESRCH);
2146 }
2147 /* nothing is sensitive to fork() after this point. */
2148
2149 /*
2150 * step 4: do expensive, non-thread-specific subsystem callbacks.
2151 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2152 * being moved, this call will need to be reworked to communicate that.
2153 */
2154 for_each_subsys(root, ss) {
2155 if (ss->attach)
2156 ss->attach(ss, cgrp, oldcgrp, leader);
2157 }
2158
2159 /*
2160 * step 5: success! and cleanup
2161 */
2162 synchronize_rcu();
2163 cgroup_wakeup_rmdir_waiter(cgrp);
2164 retval = 0;
2165out_list_teardown:
2166 /* clean up the list of prefetched css_sets. */
2167 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2168 list_del(&cg_entry->links);
2169 put_css_set(cg_entry->cg);
2170 kfree(cg_entry);
2171 }
2172out_cancel_attach:
2173 /* same deal as in cgroup_attach_task */
2174 if (retval) {
2175 for_each_subsys(root, ss) {
2176 if (ss == failed_ss) {
2177 if (cancel_failed_ss && ss->cancel_attach)
2178 ss->cancel_attach(ss, cgrp, leader);
2179 break;
2180 }
2181 if (ss->cancel_attach)
2182 ss->cancel_attach(ss, cgrp, leader);
2183 }
2184 }
2185 /* clean up the array of referenced threads in the group. */
2186 for (i = 0; i < group_size; i++) {
2187 tsk = flex_array_get_ptr(group, i);
2188 put_task_struct(tsk);
2189 }
2190out_free_group_list:
2191 flex_array_free(group);
2192 return retval;
2193}
2194
2195/*
2196 * Find the task_struct of the task to attach by vpid and pass it along to the
2197 * function to attach either it or all tasks in its threadgroup. Will take
2198 * cgroup_mutex; may take task_lock of task.
2199 */
2200static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2201{
2202 struct task_struct *tsk;
2203 const struct cred *cred = current_cred(), *tcred;
2204 int ret;
2205
2206 if (!cgroup_lock_live_group(cgrp))
2207 return -ENODEV;
2208
2209 if (pid) {
2210 rcu_read_lock();
2211 tsk = find_task_by_vpid(pid);
2212 if (!tsk) {
2213 rcu_read_unlock();
2214 cgroup_unlock();
2215 return -ESRCH;
2216 }
2217 if (threadgroup) {
2218 /*
2219 * RCU protects this access, since tsk was found in the
2220 * tid map. a race with de_thread may cause group_leader
2221 * to stop being the leader, but cgroup_attach_proc will
2222 * detect it later.
2223 */
2224 tsk = tsk->group_leader;
2225 } else if (tsk->flags & PF_EXITING) {
2226 /* optimization for the single-task-only case */
2227 rcu_read_unlock();
2228 cgroup_unlock();
2229 return -ESRCH;
2230 }
2231
2232 /*
2233 * even if we're attaching all tasks in the thread group, we
2234 * only need to check permissions on one of them.
2235 */
2236 tcred = __task_cred(tsk);
2237 if (cred->euid &&
2238 cred->euid != tcred->uid &&
2239 cred->euid != tcred->suid) {
2240 rcu_read_unlock();
2241 cgroup_unlock();
2242 return -EACCES;
2243 }
2244 get_task_struct(tsk);
2245 rcu_read_unlock();
2246 } else {
2247 if (threadgroup)
2248 tsk = current->group_leader;
2249 else
2250 tsk = current;
2251 get_task_struct(tsk);
2252 }
2253
2254 if (threadgroup) {
2255 threadgroup_fork_write_lock(tsk);
2256 ret = cgroup_attach_proc(cgrp, tsk);
2257 threadgroup_fork_write_unlock(tsk);
2258 } else {
2259 ret = cgroup_attach_task(cgrp, tsk);
2260 }
2261 put_task_struct(tsk);
2262 cgroup_unlock();
2263 return ret;
2264}
2265
2266static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2267{
2268 return attach_task_by_pid(cgrp, pid, false);
2269}
2270
2271static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2272{
2273 int ret;
2274 do {
2275 /*
2276 * attach_proc fails with -EAGAIN if threadgroup leadership
2277 * changes in the middle of the operation, in which case we need
2278 * to find the task_struct for the new leader and start over.
2279 */
2280 ret = attach_task_by_pid(cgrp, tgid, true);
2281 } while (ret == -EAGAIN);
2282 return ret;
2283}
2284
2285/**
2286 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2287 * @cgrp: the cgroup to be checked for liveness
2288 *
2289 * On success, returns true; the lock should be later released with
2290 * cgroup_unlock(). On failure returns false with no lock held.
2291 */
2292bool cgroup_lock_live_group(struct cgroup *cgrp)
2293{
2294 mutex_lock(&cgroup_mutex);
2295 if (cgroup_is_removed(cgrp)) {
2296 mutex_unlock(&cgroup_mutex);
2297 return false;
2298 }
2299 return true;
2300}
2301EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2302
2303static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2304 const char *buffer)
2305{
2306 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2307 if (strlen(buffer) >= PATH_MAX)
2308 return -EINVAL;
2309 if (!cgroup_lock_live_group(cgrp))
2310 return -ENODEV;
2311 strcpy(cgrp->root->release_agent_path, buffer);
2312 cgroup_unlock();
2313 return 0;
2314}
2315
2316static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2317 struct seq_file *seq)
2318{
2319 if (!cgroup_lock_live_group(cgrp))
2320 return -ENODEV;
2321 seq_puts(seq, cgrp->root->release_agent_path);
2322 seq_putc(seq, '\n');
2323 cgroup_unlock();
2324 return 0;
2325}
2326
2327/* A buffer size big enough for numbers or short strings */
2328#define CGROUP_LOCAL_BUFFER_SIZE 64
2329
2330static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2331 struct file *file,
2332 const char __user *userbuf,
2333 size_t nbytes, loff_t *unused_ppos)
2334{
2335 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2336 int retval = 0;
2337 char *end;
2338
2339 if (!nbytes)
2340 return -EINVAL;
2341 if (nbytes >= sizeof(buffer))
2342 return -E2BIG;
2343 if (copy_from_user(buffer, userbuf, nbytes))
2344 return -EFAULT;
2345
2346 buffer[nbytes] = 0; /* nul-terminate */
2347 if (cft->write_u64) {
2348 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2349 if (*end)
2350 return -EINVAL;
2351 retval = cft->write_u64(cgrp, cft, val);
2352 } else {
2353 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2354 if (*end)
2355 return -EINVAL;
2356 retval = cft->write_s64(cgrp, cft, val);
2357 }
2358 if (!retval)
2359 retval = nbytes;
2360 return retval;
2361}
2362
2363static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2364 struct file *file,
2365 const char __user *userbuf,
2366 size_t nbytes, loff_t *unused_ppos)
2367{
2368 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2369 int retval = 0;
2370 size_t max_bytes = cft->max_write_len;
2371 char *buffer = local_buffer;
2372
2373 if (!max_bytes)
2374 max_bytes = sizeof(local_buffer) - 1;
2375 if (nbytes >= max_bytes)
2376 return -E2BIG;
2377 /* Allocate a dynamic buffer if we need one */
2378 if (nbytes >= sizeof(local_buffer)) {
2379 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2380 if (buffer == NULL)
2381 return -ENOMEM;
2382 }
2383 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2384 retval = -EFAULT;
2385 goto out;
2386 }
2387
2388 buffer[nbytes] = 0; /* nul-terminate */
2389 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2390 if (!retval)
2391 retval = nbytes;
2392out:
2393 if (buffer != local_buffer)
2394 kfree(buffer);
2395 return retval;
2396}
2397
2398static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2399 size_t nbytes, loff_t *ppos)
2400{
2401 struct cftype *cft = __d_cft(file->f_dentry);
2402 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2403
2404 if (cgroup_is_removed(cgrp))
2405 return -ENODEV;
2406 if (cft->write)
2407 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2408 if (cft->write_u64 || cft->write_s64)
2409 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2410 if (cft->write_string)
2411 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2412 if (cft->trigger) {
2413 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2414 return ret ? ret : nbytes;
2415 }
2416 return -EINVAL;
2417}
2418
2419static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2420 struct file *file,
2421 char __user *buf, size_t nbytes,
2422 loff_t *ppos)
2423{
2424 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2425 u64 val = cft->read_u64(cgrp, cft);
2426 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2427
2428 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2429}
2430
2431static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2432 struct file *file,
2433 char __user *buf, size_t nbytes,
2434 loff_t *ppos)
2435{
2436 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2437 s64 val = cft->read_s64(cgrp, cft);
2438 int len = sprintf(tmp, "%lld\n", (long long) val);
2439
2440 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2441}
2442
2443static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2444 size_t nbytes, loff_t *ppos)
2445{
2446 struct cftype *cft = __d_cft(file->f_dentry);
2447 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2448
2449 if (cgroup_is_removed(cgrp))
2450 return -ENODEV;
2451
2452 if (cft->read)
2453 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2454 if (cft->read_u64)
2455 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2456 if (cft->read_s64)
2457 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2458 return -EINVAL;
2459}
2460
2461/*
2462 * seqfile ops/methods for returning structured data. Currently just
2463 * supports string->u64 maps, but can be extended in future.
2464 */
2465
2466struct cgroup_seqfile_state {
2467 struct cftype *cft;
2468 struct cgroup *cgroup;
2469};
2470
2471static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2472{
2473 struct seq_file *sf = cb->state;
2474 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2475}
2476
2477static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2478{
2479 struct cgroup_seqfile_state *state = m->private;
2480 struct cftype *cft = state->cft;
2481 if (cft->read_map) {
2482 struct cgroup_map_cb cb = {
2483 .fill = cgroup_map_add,
2484 .state = m,
2485 };
2486 return cft->read_map(state->cgroup, cft, &cb);
2487 }
2488 return cft->read_seq_string(state->cgroup, cft, m);
2489}
2490
2491static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2492{
2493 struct seq_file *seq = file->private_data;
2494 kfree(seq->private);
2495 return single_release(inode, file);
2496}
2497
2498static const struct file_operations cgroup_seqfile_operations = {
2499 .read = seq_read,
2500 .write = cgroup_file_write,
2501 .llseek = seq_lseek,
2502 .release = cgroup_seqfile_release,
2503};
2504
2505static int cgroup_file_open(struct inode *inode, struct file *file)
2506{
2507 int err;
2508 struct cftype *cft;
2509
2510 err = generic_file_open(inode, file);
2511 if (err)
2512 return err;
2513 cft = __d_cft(file->f_dentry);
2514
2515 if (cft->read_map || cft->read_seq_string) {
2516 struct cgroup_seqfile_state *state =
2517 kzalloc(sizeof(*state), GFP_USER);
2518 if (!state)
2519 return -ENOMEM;
2520 state->cft = cft;
2521 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2522 file->f_op = &cgroup_seqfile_operations;
2523 err = single_open(file, cgroup_seqfile_show, state);
2524 if (err < 0)
2525 kfree(state);
2526 } else if (cft->open)
2527 err = cft->open(inode, file);
2528 else
2529 err = 0;
2530
2531 return err;
2532}
2533
2534static int cgroup_file_release(struct inode *inode, struct file *file)
2535{
2536 struct cftype *cft = __d_cft(file->f_dentry);
2537 if (cft->release)
2538 return cft->release(inode, file);
2539 return 0;
2540}
2541
2542/*
2543 * cgroup_rename - Only allow simple rename of directories in place.
2544 */
2545static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2546 struct inode *new_dir, struct dentry *new_dentry)
2547{
2548 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2549 return -ENOTDIR;
2550 if (new_dentry->d_inode)
2551 return -EEXIST;
2552 if (old_dir != new_dir)
2553 return -EIO;
2554 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2555}
2556
2557static const struct file_operations cgroup_file_operations = {
2558 .read = cgroup_file_read,
2559 .write = cgroup_file_write,
2560 .llseek = generic_file_llseek,
2561 .open = cgroup_file_open,
2562 .release = cgroup_file_release,
2563};
2564
2565static const struct inode_operations cgroup_dir_inode_operations = {
2566 .lookup = cgroup_lookup,
2567 .mkdir = cgroup_mkdir,
2568 .rmdir = cgroup_rmdir,
2569 .rename = cgroup_rename,
2570};
2571
2572static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2573{
2574 if (dentry->d_name.len > NAME_MAX)
2575 return ERR_PTR(-ENAMETOOLONG);
2576 d_add(dentry, NULL);
2577 return NULL;
2578}
2579
2580/*
2581 * Check if a file is a control file
2582 */
2583static inline struct cftype *__file_cft(struct file *file)
2584{
2585 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2586 return ERR_PTR(-EINVAL);
2587 return __d_cft(file->f_dentry);
2588}
2589
2590static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2591 struct super_block *sb)
2592{
2593 struct inode *inode;
2594
2595 if (!dentry)
2596 return -ENOENT;
2597 if (dentry->d_inode)
2598 return -EEXIST;
2599
2600 inode = cgroup_new_inode(mode, sb);
2601 if (!inode)
2602 return -ENOMEM;
2603
2604 if (S_ISDIR(mode)) {
2605 inode->i_op = &cgroup_dir_inode_operations;
2606 inode->i_fop = &simple_dir_operations;
2607
2608 /* start off with i_nlink == 2 (for "." entry) */
2609 inc_nlink(inode);
2610
2611 /* start with the directory inode held, so that we can
2612 * populate it without racing with another mkdir */
2613 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2614 } else if (S_ISREG(mode)) {
2615 inode->i_size = 0;
2616 inode->i_fop = &cgroup_file_operations;
2617 }
2618 d_instantiate(dentry, inode);
2619 dget(dentry); /* Extra count - pin the dentry in core */
2620 return 0;
2621}
2622
2623/*
2624 * cgroup_create_dir - create a directory for an object.
2625 * @cgrp: the cgroup we create the directory for. It must have a valid
2626 * ->parent field. And we are going to fill its ->dentry field.
2627 * @dentry: dentry of the new cgroup
2628 * @mode: mode to set on new directory.
2629 */
2630static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2631 mode_t mode)
2632{
2633 struct dentry *parent;
2634 int error = 0;
2635
2636 parent = cgrp->parent->dentry;
2637 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2638 if (!error) {
2639 dentry->d_fsdata = cgrp;
2640 inc_nlink(parent->d_inode);
2641 rcu_assign_pointer(cgrp->dentry, dentry);
2642 dget(dentry);
2643 }
2644 dput(dentry);
2645
2646 return error;
2647}
2648
2649/**
2650 * cgroup_file_mode - deduce file mode of a control file
2651 * @cft: the control file in question
2652 *
2653 * returns cft->mode if ->mode is not 0
2654 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2655 * returns S_IRUGO if it has only a read handler
2656 * returns S_IWUSR if it has only a write hander
2657 */
2658static mode_t cgroup_file_mode(const struct cftype *cft)
2659{
2660 mode_t mode = 0;
2661
2662 if (cft->mode)
2663 return cft->mode;
2664
2665 if (cft->read || cft->read_u64 || cft->read_s64 ||
2666 cft->read_map || cft->read_seq_string)
2667 mode |= S_IRUGO;
2668
2669 if (cft->write || cft->write_u64 || cft->write_s64 ||
2670 cft->write_string || cft->trigger)
2671 mode |= S_IWUSR;
2672
2673 return mode;
2674}
2675
2676int cgroup_add_file(struct cgroup *cgrp,
2677 struct cgroup_subsys *subsys,
2678 const struct cftype *cft)
2679{
2680 struct dentry *dir = cgrp->dentry;
2681 struct dentry *dentry;
2682 int error;
2683 mode_t mode;
2684
2685 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2686 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2687 strcpy(name, subsys->name);
2688 strcat(name, ".");
2689 }
2690 strcat(name, cft->name);
2691 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2692 dentry = lookup_one_len(name, dir, strlen(name));
2693 if (!IS_ERR(dentry)) {
2694 mode = cgroup_file_mode(cft);
2695 error = cgroup_create_file(dentry, mode | S_IFREG,
2696 cgrp->root->sb);
2697 if (!error)
2698 dentry->d_fsdata = (void *)cft;
2699 dput(dentry);
2700 } else
2701 error = PTR_ERR(dentry);
2702 return error;
2703}
2704EXPORT_SYMBOL_GPL(cgroup_add_file);
2705
2706int cgroup_add_files(struct cgroup *cgrp,
2707 struct cgroup_subsys *subsys,
2708 const struct cftype cft[],
2709 int count)
2710{
2711 int i, err;
2712 for (i = 0; i < count; i++) {
2713 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2714 if (err)
2715 return err;
2716 }
2717 return 0;
2718}
2719EXPORT_SYMBOL_GPL(cgroup_add_files);
2720
2721/**
2722 * cgroup_task_count - count the number of tasks in a cgroup.
2723 * @cgrp: the cgroup in question
2724 *
2725 * Return the number of tasks in the cgroup.
2726 */
2727int cgroup_task_count(const struct cgroup *cgrp)
2728{
2729 int count = 0;
2730 struct cg_cgroup_link *link;
2731
2732 read_lock(&css_set_lock);
2733 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2734 count += atomic_read(&link->cg->refcount);
2735 }
2736 read_unlock(&css_set_lock);
2737 return count;
2738}
2739
2740/*
2741 * Advance a list_head iterator. The iterator should be positioned at
2742 * the start of a css_set
2743 */
2744static void cgroup_advance_iter(struct cgroup *cgrp,
2745 struct cgroup_iter *it)
2746{
2747 struct list_head *l = it->cg_link;
2748 struct cg_cgroup_link *link;
2749 struct css_set *cg;
2750
2751 /* Advance to the next non-empty css_set */
2752 do {
2753 l = l->next;
2754 if (l == &cgrp->css_sets) {
2755 it->cg_link = NULL;
2756 return;
2757 }
2758 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2759 cg = link->cg;
2760 } while (list_empty(&cg->tasks));
2761 it->cg_link = l;
2762 it->task = cg->tasks.next;
2763}
2764
2765/*
2766 * To reduce the fork() overhead for systems that are not actually
2767 * using their cgroups capability, we don't maintain the lists running
2768 * through each css_set to its tasks until we see the list actually
2769 * used - in other words after the first call to cgroup_iter_start().
2770 *
2771 * The tasklist_lock is not held here, as do_each_thread() and
2772 * while_each_thread() are protected by RCU.
2773 */
2774static void cgroup_enable_task_cg_lists(void)
2775{
2776 struct task_struct *p, *g;
2777 write_lock(&css_set_lock);
2778 use_task_css_set_links = 1;
2779 do_each_thread(g, p) {
2780 task_lock(p);
2781 /*
2782 * We should check if the process is exiting, otherwise
2783 * it will race with cgroup_exit() in that the list
2784 * entry won't be deleted though the process has exited.
2785 */
2786 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2787 list_add(&p->cg_list, &p->cgroups->tasks);
2788 task_unlock(p);
2789 } while_each_thread(g, p);
2790 write_unlock(&css_set_lock);
2791}
2792
2793void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2794{
2795 /*
2796 * The first time anyone tries to iterate across a cgroup,
2797 * we need to enable the list linking each css_set to its
2798 * tasks, and fix up all existing tasks.
2799 */
2800 if (!use_task_css_set_links)
2801 cgroup_enable_task_cg_lists();
2802
2803 read_lock(&css_set_lock);
2804 it->cg_link = &cgrp->css_sets;
2805 cgroup_advance_iter(cgrp, it);
2806}
2807
2808struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2809 struct cgroup_iter *it)
2810{
2811 struct task_struct *res;
2812 struct list_head *l = it->task;
2813 struct cg_cgroup_link *link;
2814
2815 /* If the iterator cg is NULL, we have no tasks */
2816 if (!it->cg_link)
2817 return NULL;
2818 res = list_entry(l, struct task_struct, cg_list);
2819 /* Advance iterator to find next entry */
2820 l = l->next;
2821 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2822 if (l == &link->cg->tasks) {
2823 /* We reached the end of this task list - move on to
2824 * the next cg_cgroup_link */
2825 cgroup_advance_iter(cgrp, it);
2826 } else {
2827 it->task = l;
2828 }
2829 return res;
2830}
2831
2832void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2833{
2834 read_unlock(&css_set_lock);
2835}
2836
2837static inline int started_after_time(struct task_struct *t1,
2838 struct timespec *time,
2839 struct task_struct *t2)
2840{
2841 int start_diff = timespec_compare(&t1->start_time, time);
2842 if (start_diff > 0) {
2843 return 1;
2844 } else if (start_diff < 0) {
2845 return 0;
2846 } else {
2847 /*
2848 * Arbitrarily, if two processes started at the same
2849 * time, we'll say that the lower pointer value
2850 * started first. Note that t2 may have exited by now
2851 * so this may not be a valid pointer any longer, but
2852 * that's fine - it still serves to distinguish
2853 * between two tasks started (effectively) simultaneously.
2854 */
2855 return t1 > t2;
2856 }
2857}
2858
2859/*
2860 * This function is a callback from heap_insert() and is used to order
2861 * the heap.
2862 * In this case we order the heap in descending task start time.
2863 */
2864static inline int started_after(void *p1, void *p2)
2865{
2866 struct task_struct *t1 = p1;
2867 struct task_struct *t2 = p2;
2868 return started_after_time(t1, &t2->start_time, t2);
2869}
2870
2871/**
2872 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2873 * @scan: struct cgroup_scanner containing arguments for the scan
2874 *
2875 * Arguments include pointers to callback functions test_task() and
2876 * process_task().
2877 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2878 * and if it returns true, call process_task() for it also.
2879 * The test_task pointer may be NULL, meaning always true (select all tasks).
2880 * Effectively duplicates cgroup_iter_{start,next,end}()
2881 * but does not lock css_set_lock for the call to process_task().
2882 * The struct cgroup_scanner may be embedded in any structure of the caller's
2883 * creation.
2884 * It is guaranteed that process_task() will act on every task that
2885 * is a member of the cgroup for the duration of this call. This
2886 * function may or may not call process_task() for tasks that exit
2887 * or move to a different cgroup during the call, or are forked or
2888 * move into the cgroup during the call.
2889 *
2890 * Note that test_task() may be called with locks held, and may in some
2891 * situations be called multiple times for the same task, so it should
2892 * be cheap.
2893 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2894 * pre-allocated and will be used for heap operations (and its "gt" member will
2895 * be overwritten), else a temporary heap will be used (allocation of which
2896 * may cause this function to fail).
2897 */
2898int cgroup_scan_tasks(struct cgroup_scanner *scan)
2899{
2900 int retval, i;
2901 struct cgroup_iter it;
2902 struct task_struct *p, *dropped;
2903 /* Never dereference latest_task, since it's not refcounted */
2904 struct task_struct *latest_task = NULL;
2905 struct ptr_heap tmp_heap;
2906 struct ptr_heap *heap;
2907 struct timespec latest_time = { 0, 0 };
2908
2909 if (scan->heap) {
2910 /* The caller supplied our heap and pre-allocated its memory */
2911 heap = scan->heap;
2912 heap->gt = &started_after;
2913 } else {
2914 /* We need to allocate our own heap memory */
2915 heap = &tmp_heap;
2916 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2917 if (retval)
2918 /* cannot allocate the heap */
2919 return retval;
2920 }
2921
2922 again:
2923 /*
2924 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2925 * to determine which are of interest, and using the scanner's
2926 * "process_task" callback to process any of them that need an update.
2927 * Since we don't want to hold any locks during the task updates,
2928 * gather tasks to be processed in a heap structure.
2929 * The heap is sorted by descending task start time.
2930 * If the statically-sized heap fills up, we overflow tasks that
2931 * started later, and in future iterations only consider tasks that
2932 * started after the latest task in the previous pass. This
2933 * guarantees forward progress and that we don't miss any tasks.
2934 */
2935 heap->size = 0;
2936 cgroup_iter_start(scan->cg, &it);
2937 while ((p = cgroup_iter_next(scan->cg, &it))) {
2938 /*
2939 * Only affect tasks that qualify per the caller's callback,
2940 * if he provided one
2941 */
2942 if (scan->test_task && !scan->test_task(p, scan))
2943 continue;
2944 /*
2945 * Only process tasks that started after the last task
2946 * we processed
2947 */
2948 if (!started_after_time(p, &latest_time, latest_task))
2949 continue;
2950 dropped = heap_insert(heap, p);
2951 if (dropped == NULL) {
2952 /*
2953 * The new task was inserted; the heap wasn't
2954 * previously full
2955 */
2956 get_task_struct(p);
2957 } else if (dropped != p) {
2958 /*
2959 * The new task was inserted, and pushed out a
2960 * different task
2961 */
2962 get_task_struct(p);
2963 put_task_struct(dropped);
2964 }
2965 /*
2966 * Else the new task was newer than anything already in
2967 * the heap and wasn't inserted
2968 */
2969 }
2970 cgroup_iter_end(scan->cg, &it);
2971
2972 if (heap->size) {
2973 for (i = 0; i < heap->size; i++) {
2974 struct task_struct *q = heap->ptrs[i];
2975 if (i == 0) {
2976 latest_time = q->start_time;
2977 latest_task = q;
2978 }
2979 /* Process the task per the caller's callback */
2980 scan->process_task(q, scan);
2981 put_task_struct(q);
2982 }
2983 /*
2984 * If we had to process any tasks at all, scan again
2985 * in case some of them were in the middle of forking
2986 * children that didn't get processed.
2987 * Not the most efficient way to do it, but it avoids
2988 * having to take callback_mutex in the fork path
2989 */
2990 goto again;
2991 }
2992 if (heap == &tmp_heap)
2993 heap_free(&tmp_heap);
2994 return 0;
2995}
2996
2997/*
2998 * Stuff for reading the 'tasks'/'procs' files.
2999 *
3000 * Reading this file can return large amounts of data if a cgroup has
3001 * *lots* of attached tasks. So it may need several calls to read(),
3002 * but we cannot guarantee that the information we produce is correct
3003 * unless we produce it entirely atomically.
3004 *
3005 */
3006
3007/*
3008 * The following two functions "fix" the issue where there are more pids
3009 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3010 * TODO: replace with a kernel-wide solution to this problem
3011 */
3012#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3013static void *pidlist_allocate(int count)
3014{
3015 if (PIDLIST_TOO_LARGE(count))
3016 return vmalloc(count * sizeof(pid_t));
3017 else
3018 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3019}
3020static void pidlist_free(void *p)
3021{
3022 if (is_vmalloc_addr(p))
3023 vfree(p);
3024 else
3025 kfree(p);
3026}
3027static void *pidlist_resize(void *p, int newcount)
3028{
3029 void *newlist;
3030 /* note: if new alloc fails, old p will still be valid either way */
3031 if (is_vmalloc_addr(p)) {
3032 newlist = vmalloc(newcount * sizeof(pid_t));
3033 if (!newlist)
3034 return NULL;
3035 memcpy(newlist, p, newcount * sizeof(pid_t));
3036 vfree(p);
3037 } else {
3038 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3039 }
3040 return newlist;
3041}
3042
3043/*
3044 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3045 * If the new stripped list is sufficiently smaller and there's enough memory
3046 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3047 * number of unique elements.
3048 */
3049/* is the size difference enough that we should re-allocate the array? */
3050#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3051static int pidlist_uniq(pid_t **p, int length)
3052{
3053 int src, dest = 1;
3054 pid_t *list = *p;
3055 pid_t *newlist;
3056
3057 /*
3058 * we presume the 0th element is unique, so i starts at 1. trivial
3059 * edge cases first; no work needs to be done for either
3060 */
3061 if (length == 0 || length == 1)
3062 return length;
3063 /* src and dest walk down the list; dest counts unique elements */
3064 for (src = 1; src < length; src++) {
3065 /* find next unique element */
3066 while (list[src] == list[src-1]) {
3067 src++;
3068 if (src == length)
3069 goto after;
3070 }
3071 /* dest always points to where the next unique element goes */
3072 list[dest] = list[src];
3073 dest++;
3074 }
3075after:
3076 /*
3077 * if the length difference is large enough, we want to allocate a
3078 * smaller buffer to save memory. if this fails due to out of memory,
3079 * we'll just stay with what we've got.
3080 */
3081 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3082 newlist = pidlist_resize(list, dest);
3083 if (newlist)
3084 *p = newlist;
3085 }
3086 return dest;
3087}
3088
3089static int cmppid(const void *a, const void *b)
3090{
3091 return *(pid_t *)a - *(pid_t *)b;
3092}
3093
3094/*
3095 * find the appropriate pidlist for our purpose (given procs vs tasks)
3096 * returns with the lock on that pidlist already held, and takes care
3097 * of the use count, or returns NULL with no locks held if we're out of
3098 * memory.
3099 */
3100static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3101 enum cgroup_filetype type)
3102{
3103 struct cgroup_pidlist *l;
3104 /* don't need task_nsproxy() if we're looking at ourself */
3105 struct pid_namespace *ns = current->nsproxy->pid_ns;
3106
3107 /*
3108 * We can't drop the pidlist_mutex before taking the l->mutex in case
3109 * the last ref-holder is trying to remove l from the list at the same
3110 * time. Holding the pidlist_mutex precludes somebody taking whichever
3111 * list we find out from under us - compare release_pid_array().
3112 */
3113 mutex_lock(&cgrp->pidlist_mutex);
3114 list_for_each_entry(l, &cgrp->pidlists, links) {
3115 if (l->key.type == type && l->key.ns == ns) {
3116 /* make sure l doesn't vanish out from under us */
3117 down_write(&l->mutex);
3118 mutex_unlock(&cgrp->pidlist_mutex);
3119 return l;
3120 }
3121 }
3122 /* entry not found; create a new one */
3123 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3124 if (!l) {
3125 mutex_unlock(&cgrp->pidlist_mutex);
3126 return l;
3127 }
3128 init_rwsem(&l->mutex);
3129 down_write(&l->mutex);
3130 l->key.type = type;
3131 l->key.ns = get_pid_ns(ns);
3132 l->use_count = 0; /* don't increment here */
3133 l->list = NULL;
3134 l->owner = cgrp;
3135 list_add(&l->links, &cgrp->pidlists);
3136 mutex_unlock(&cgrp->pidlist_mutex);
3137 return l;
3138}
3139
3140/*
3141 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3142 */
3143static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3144 struct cgroup_pidlist **lp)
3145{
3146 pid_t *array;
3147 int length;
3148 int pid, n = 0; /* used for populating the array */
3149 struct cgroup_iter it;
3150 struct task_struct *tsk;
3151 struct cgroup_pidlist *l;
3152
3153 /*
3154 * If cgroup gets more users after we read count, we won't have
3155 * enough space - tough. This race is indistinguishable to the
3156 * caller from the case that the additional cgroup users didn't
3157 * show up until sometime later on.
3158 */
3159 length = cgroup_task_count(cgrp);
3160 array = pidlist_allocate(length);
3161 if (!array)
3162 return -ENOMEM;
3163 /* now, populate the array */
3164 cgroup_iter_start(cgrp, &it);
3165 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3166 if (unlikely(n == length))
3167 break;
3168 /* get tgid or pid for procs or tasks file respectively */
3169 if (type == CGROUP_FILE_PROCS)
3170 pid = task_tgid_vnr(tsk);
3171 else
3172 pid = task_pid_vnr(tsk);
3173 if (pid > 0) /* make sure to only use valid results */
3174 array[n++] = pid;
3175 }
3176 cgroup_iter_end(cgrp, &it);
3177 length = n;
3178 /* now sort & (if procs) strip out duplicates */
3179 sort(array, length, sizeof(pid_t), cmppid, NULL);
3180 if (type == CGROUP_FILE_PROCS)
3181 length = pidlist_uniq(&array, length);
3182 l = cgroup_pidlist_find(cgrp, type);
3183 if (!l) {
3184 pidlist_free(array);
3185 return -ENOMEM;
3186 }
3187 /* store array, freeing old if necessary - lock already held */
3188 pidlist_free(l->list);
3189 l->list = array;
3190 l->length = length;
3191 l->use_count++;
3192 up_write(&l->mutex);
3193 *lp = l;
3194 return 0;
3195}
3196
3197/**
3198 * cgroupstats_build - build and fill cgroupstats
3199 * @stats: cgroupstats to fill information into
3200 * @dentry: A dentry entry belonging to the cgroup for which stats have
3201 * been requested.
3202 *
3203 * Build and fill cgroupstats so that taskstats can export it to user
3204 * space.
3205 */
3206int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3207{
3208 int ret = -EINVAL;
3209 struct cgroup *cgrp;
3210 struct cgroup_iter it;
3211 struct task_struct *tsk;
3212
3213 /*
3214 * Validate dentry by checking the superblock operations,
3215 * and make sure it's a directory.
3216 */
3217 if (dentry->d_sb->s_op != &cgroup_ops ||
3218 !S_ISDIR(dentry->d_inode->i_mode))
3219 goto err;
3220
3221 ret = 0;
3222 cgrp = dentry->d_fsdata;
3223
3224 cgroup_iter_start(cgrp, &it);
3225 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3226 switch (tsk->state) {
3227 case TASK_RUNNING:
3228 stats->nr_running++;
3229 break;
3230 case TASK_INTERRUPTIBLE:
3231 stats->nr_sleeping++;
3232 break;
3233 case TASK_UNINTERRUPTIBLE:
3234 stats->nr_uninterruptible++;
3235 break;
3236 case TASK_STOPPED:
3237 stats->nr_stopped++;
3238 break;
3239 default:
3240 if (delayacct_is_task_waiting_on_io(tsk))
3241 stats->nr_io_wait++;
3242 break;
3243 }
3244 }
3245 cgroup_iter_end(cgrp, &it);
3246
3247err:
3248 return ret;
3249}
3250
3251
3252/*
3253 * seq_file methods for the tasks/procs files. The seq_file position is the
3254 * next pid to display; the seq_file iterator is a pointer to the pid
3255 * in the cgroup->l->list array.
3256 */
3257
3258static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3259{
3260 /*
3261 * Initially we receive a position value that corresponds to
3262 * one more than the last pid shown (or 0 on the first call or
3263 * after a seek to the start). Use a binary-search to find the
3264 * next pid to display, if any
3265 */
3266 struct cgroup_pidlist *l = s->private;
3267 int index = 0, pid = *pos;
3268 int *iter;
3269
3270 down_read(&l->mutex);
3271 if (pid) {
3272 int end = l->length;
3273
3274 while (index < end) {
3275 int mid = (index + end) / 2;
3276 if (l->list[mid] == pid) {
3277 index = mid;
3278 break;
3279 } else if (l->list[mid] <= pid)
3280 index = mid + 1;
3281 else
3282 end = mid;
3283 }
3284 }
3285 /* If we're off the end of the array, we're done */
3286 if (index >= l->length)
3287 return NULL;
3288 /* Update the abstract position to be the actual pid that we found */
3289 iter = l->list + index;
3290 *pos = *iter;
3291 return iter;
3292}
3293
3294static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3295{
3296 struct cgroup_pidlist *l = s->private;
3297 up_read(&l->mutex);
3298}
3299
3300static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3301{
3302 struct cgroup_pidlist *l = s->private;
3303 pid_t *p = v;
3304 pid_t *end = l->list + l->length;
3305 /*
3306 * Advance to the next pid in the array. If this goes off the
3307 * end, we're done
3308 */
3309 p++;
3310 if (p >= end) {
3311 return NULL;
3312 } else {
3313 *pos = *p;
3314 return p;
3315 }
3316}
3317
3318static int cgroup_pidlist_show(struct seq_file *s, void *v)
3319{
3320 return seq_printf(s, "%d\n", *(int *)v);
3321}
3322
3323/*
3324 * seq_operations functions for iterating on pidlists through seq_file -
3325 * independent of whether it's tasks or procs
3326 */
3327static const struct seq_operations cgroup_pidlist_seq_operations = {
3328 .start = cgroup_pidlist_start,
3329 .stop = cgroup_pidlist_stop,
3330 .next = cgroup_pidlist_next,
3331 .show = cgroup_pidlist_show,
3332};
3333
3334static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3335{
3336 /*
3337 * the case where we're the last user of this particular pidlist will
3338 * have us remove it from the cgroup's list, which entails taking the
3339 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3340 * pidlist_mutex, we have to take pidlist_mutex first.
3341 */
3342 mutex_lock(&l->owner->pidlist_mutex);
3343 down_write(&l->mutex);
3344 BUG_ON(!l->use_count);
3345 if (!--l->use_count) {
3346 /* we're the last user if refcount is 0; remove and free */
3347 list_del(&l->links);
3348 mutex_unlock(&l->owner->pidlist_mutex);
3349 pidlist_free(l->list);
3350 put_pid_ns(l->key.ns);
3351 up_write(&l->mutex);
3352 kfree(l);
3353 return;
3354 }
3355 mutex_unlock(&l->owner->pidlist_mutex);
3356 up_write(&l->mutex);
3357}
3358
3359static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3360{
3361 struct cgroup_pidlist *l;
3362 if (!(file->f_mode & FMODE_READ))
3363 return 0;
3364 /*
3365 * the seq_file will only be initialized if the file was opened for
3366 * reading; hence we check if it's not null only in that case.
3367 */
3368 l = ((struct seq_file *)file->private_data)->private;
3369 cgroup_release_pid_array(l);
3370 return seq_release(inode, file);
3371}
3372
3373static const struct file_operations cgroup_pidlist_operations = {
3374 .read = seq_read,
3375 .llseek = seq_lseek,
3376 .write = cgroup_file_write,
3377 .release = cgroup_pidlist_release,
3378};
3379
3380/*
3381 * The following functions handle opens on a file that displays a pidlist
3382 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3383 * in the cgroup.
3384 */
3385/* helper function for the two below it */
3386static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3387{
3388 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3389 struct cgroup_pidlist *l;
3390 int retval;
3391
3392 /* Nothing to do for write-only files */
3393 if (!(file->f_mode & FMODE_READ))
3394 return 0;
3395
3396 /* have the array populated */
3397 retval = pidlist_array_load(cgrp, type, &l);
3398 if (retval)
3399 return retval;
3400 /* configure file information */
3401 file->f_op = &cgroup_pidlist_operations;
3402
3403 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3404 if (retval) {
3405 cgroup_release_pid_array(l);
3406 return retval;
3407 }
3408 ((struct seq_file *)file->private_data)->private = l;
3409 return 0;
3410}
3411static int cgroup_tasks_open(struct inode *unused, struct file *file)
3412{
3413 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3414}
3415static int cgroup_procs_open(struct inode *unused, struct file *file)
3416{
3417 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3418}
3419
3420static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3421 struct cftype *cft)
3422{
3423 return notify_on_release(cgrp);
3424}
3425
3426static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3427 struct cftype *cft,
3428 u64 val)
3429{
3430 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3431 if (val)
3432 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3433 else
3434 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3435 return 0;
3436}
3437
3438/*
3439 * Unregister event and free resources.
3440 *
3441 * Gets called from workqueue.
3442 */
3443static void cgroup_event_remove(struct work_struct *work)
3444{
3445 struct cgroup_event *event = container_of(work, struct cgroup_event,
3446 remove);
3447 struct cgroup *cgrp = event->cgrp;
3448
3449 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3450
3451 eventfd_ctx_put(event->eventfd);
3452 kfree(event);
3453 dput(cgrp->dentry);
3454}
3455
3456/*
3457 * Gets called on POLLHUP on eventfd when user closes it.
3458 *
3459 * Called with wqh->lock held and interrupts disabled.
3460 */
3461static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3462 int sync, void *key)
3463{
3464 struct cgroup_event *event = container_of(wait,
3465 struct cgroup_event, wait);
3466 struct cgroup *cgrp = event->cgrp;
3467 unsigned long flags = (unsigned long)key;
3468
3469 if (flags & POLLHUP) {
3470 __remove_wait_queue(event->wqh, &event->wait);
3471 spin_lock(&cgrp->event_list_lock);
3472 list_del(&event->list);
3473 spin_unlock(&cgrp->event_list_lock);
3474 /*
3475 * We are in atomic context, but cgroup_event_remove() may
3476 * sleep, so we have to call it in workqueue.
3477 */
3478 schedule_work(&event->remove);
3479 }
3480
3481 return 0;
3482}
3483
3484static void cgroup_event_ptable_queue_proc(struct file *file,
3485 wait_queue_head_t *wqh, poll_table *pt)
3486{
3487 struct cgroup_event *event = container_of(pt,
3488 struct cgroup_event, pt);
3489
3490 event->wqh = wqh;
3491 add_wait_queue(wqh, &event->wait);
3492}
3493
3494/*
3495 * Parse input and register new cgroup event handler.
3496 *
3497 * Input must be in format '<event_fd> <control_fd> <args>'.
3498 * Interpretation of args is defined by control file implementation.
3499 */
3500static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3501 const char *buffer)
3502{
3503 struct cgroup_event *event = NULL;
3504 unsigned int efd, cfd;
3505 struct file *efile = NULL;
3506 struct file *cfile = NULL;
3507 char *endp;
3508 int ret;
3509
3510 efd = simple_strtoul(buffer, &endp, 10);
3511 if (*endp != ' ')
3512 return -EINVAL;
3513 buffer = endp + 1;
3514
3515 cfd = simple_strtoul(buffer, &endp, 10);
3516 if ((*endp != ' ') && (*endp != '\0'))
3517 return -EINVAL;
3518 buffer = endp + 1;
3519
3520 event = kzalloc(sizeof(*event), GFP_KERNEL);
3521 if (!event)
3522 return -ENOMEM;
3523 event->cgrp = cgrp;
3524 INIT_LIST_HEAD(&event->list);
3525 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3526 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3527 INIT_WORK(&event->remove, cgroup_event_remove);
3528
3529 efile = eventfd_fget(efd);
3530 if (IS_ERR(efile)) {
3531 ret = PTR_ERR(efile);
3532 goto fail;
3533 }
3534
3535 event->eventfd = eventfd_ctx_fileget(efile);
3536 if (IS_ERR(event->eventfd)) {
3537 ret = PTR_ERR(event->eventfd);
3538 goto fail;
3539 }
3540
3541 cfile = fget(cfd);
3542 if (!cfile) {
3543 ret = -EBADF;
3544 goto fail;
3545 }
3546
3547 /* the process need read permission on control file */
3548 /* AV: shouldn't we check that it's been opened for read instead? */
3549 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3550 if (ret < 0)
3551 goto fail;
3552
3553 event->cft = __file_cft(cfile);
3554 if (IS_ERR(event->cft)) {
3555 ret = PTR_ERR(event->cft);
3556 goto fail;
3557 }
3558
3559 if (!event->cft->register_event || !event->cft->unregister_event) {
3560 ret = -EINVAL;
3561 goto fail;
3562 }
3563
3564 ret = event->cft->register_event(cgrp, event->cft,
3565 event->eventfd, buffer);
3566 if (ret)
3567 goto fail;
3568
3569 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3570 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3571 ret = 0;
3572 goto fail;
3573 }
3574
3575 /*
3576 * Events should be removed after rmdir of cgroup directory, but before
3577 * destroying subsystem state objects. Let's take reference to cgroup
3578 * directory dentry to do that.
3579 */
3580 dget(cgrp->dentry);
3581
3582 spin_lock(&cgrp->event_list_lock);
3583 list_add(&event->list, &cgrp->event_list);
3584 spin_unlock(&cgrp->event_list_lock);
3585
3586 fput(cfile);
3587 fput(efile);
3588
3589 return 0;
3590
3591fail:
3592 if (cfile)
3593 fput(cfile);
3594
3595 if (event && event->eventfd && !IS_ERR(event->eventfd))
3596 eventfd_ctx_put(event->eventfd);
3597
3598 if (!IS_ERR_OR_NULL(efile))
3599 fput(efile);
3600
3601 kfree(event);
3602
3603 return ret;
3604}
3605
3606static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3607 struct cftype *cft)
3608{
3609 return clone_children(cgrp);
3610}
3611
3612static int cgroup_clone_children_write(struct cgroup *cgrp,
3613 struct cftype *cft,
3614 u64 val)
3615{
3616 if (val)
3617 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3618 else
3619 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3620 return 0;
3621}
3622
3623/*
3624 * for the common functions, 'private' gives the type of file
3625 */
3626/* for hysterical raisins, we can't put this on the older files */
3627#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3628static struct cftype files[] = {
3629 {
3630 .name = "tasks",
3631 .open = cgroup_tasks_open,
3632 .write_u64 = cgroup_tasks_write,
3633 .release = cgroup_pidlist_release,
3634 .mode = S_IRUGO | S_IWUSR,
3635 },
3636 {
3637 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3638 .open = cgroup_procs_open,
3639 .write_u64 = cgroup_procs_write,
3640 .release = cgroup_pidlist_release,
3641 .mode = S_IRUGO | S_IWUSR,
3642 },
3643 {
3644 .name = "notify_on_release",
3645 .read_u64 = cgroup_read_notify_on_release,
3646 .write_u64 = cgroup_write_notify_on_release,
3647 },
3648 {
3649 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3650 .write_string = cgroup_write_event_control,
3651 .mode = S_IWUGO,
3652 },
3653 {
3654 .name = "cgroup.clone_children",
3655 .read_u64 = cgroup_clone_children_read,
3656 .write_u64 = cgroup_clone_children_write,
3657 },
3658};
3659
3660static struct cftype cft_release_agent = {
3661 .name = "release_agent",
3662 .read_seq_string = cgroup_release_agent_show,
3663 .write_string = cgroup_release_agent_write,
3664 .max_write_len = PATH_MAX,
3665};
3666
3667static int cgroup_populate_dir(struct cgroup *cgrp)
3668{
3669 int err;
3670 struct cgroup_subsys *ss;
3671
3672 /* First clear out any existing files */
3673 cgroup_clear_directory(cgrp->dentry);
3674
3675 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3676 if (err < 0)
3677 return err;
3678
3679 if (cgrp == cgrp->top_cgroup) {
3680 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3681 return err;
3682 }
3683
3684 for_each_subsys(cgrp->root, ss) {
3685 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3686 return err;
3687 }
3688 /* This cgroup is ready now */
3689 for_each_subsys(cgrp->root, ss) {
3690 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3691 /*
3692 * Update id->css pointer and make this css visible from
3693 * CSS ID functions. This pointer will be dereferened
3694 * from RCU-read-side without locks.
3695 */
3696 if (css->id)
3697 rcu_assign_pointer(css->id->css, css);
3698 }
3699
3700 return 0;
3701}
3702
3703static void init_cgroup_css(struct cgroup_subsys_state *css,
3704 struct cgroup_subsys *ss,
3705 struct cgroup *cgrp)
3706{
3707 css->cgroup = cgrp;
3708 atomic_set(&css->refcnt, 1);
3709 css->flags = 0;
3710 css->id = NULL;
3711 if (cgrp == dummytop)
3712 set_bit(CSS_ROOT, &css->flags);
3713 BUG_ON(cgrp->subsys[ss->subsys_id]);
3714 cgrp->subsys[ss->subsys_id] = css;
3715}
3716
3717static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3718{
3719 /* We need to take each hierarchy_mutex in a consistent order */
3720 int i;
3721
3722 /*
3723 * No worry about a race with rebind_subsystems that might mess up the
3724 * locking order, since both parties are under cgroup_mutex.
3725 */
3726 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3727 struct cgroup_subsys *ss = subsys[i];
3728 if (ss == NULL)
3729 continue;
3730 if (ss->root == root)
3731 mutex_lock(&ss->hierarchy_mutex);
3732 }
3733}
3734
3735static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3736{
3737 int i;
3738
3739 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3740 struct cgroup_subsys *ss = subsys[i];
3741 if (ss == NULL)
3742 continue;
3743 if (ss->root == root)
3744 mutex_unlock(&ss->hierarchy_mutex);
3745 }
3746}
3747
3748/*
3749 * cgroup_create - create a cgroup
3750 * @parent: cgroup that will be parent of the new cgroup
3751 * @dentry: dentry of the new cgroup
3752 * @mode: mode to set on new inode
3753 *
3754 * Must be called with the mutex on the parent inode held
3755 */
3756static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3757 mode_t mode)
3758{
3759 struct cgroup *cgrp;
3760 struct cgroupfs_root *root = parent->root;
3761 int err = 0;
3762 struct cgroup_subsys *ss;
3763 struct super_block *sb = root->sb;
3764
3765 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3766 if (!cgrp)
3767 return -ENOMEM;
3768
3769 /* Grab a reference on the superblock so the hierarchy doesn't
3770 * get deleted on unmount if there are child cgroups. This
3771 * can be done outside cgroup_mutex, since the sb can't
3772 * disappear while someone has an open control file on the
3773 * fs */
3774 atomic_inc(&sb->s_active);
3775
3776 mutex_lock(&cgroup_mutex);
3777
3778 init_cgroup_housekeeping(cgrp);
3779
3780 cgrp->parent = parent;
3781 cgrp->root = parent->root;
3782 cgrp->top_cgroup = parent->top_cgroup;
3783
3784 if (notify_on_release(parent))
3785 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3786
3787 if (clone_children(parent))
3788 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3789
3790 for_each_subsys(root, ss) {
3791 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3792
3793 if (IS_ERR(css)) {
3794 err = PTR_ERR(css);
3795 goto err_destroy;
3796 }
3797 init_cgroup_css(css, ss, cgrp);
3798 if (ss->use_id) {
3799 err = alloc_css_id(ss, parent, cgrp);
3800 if (err)
3801 goto err_destroy;
3802 }
3803 /* At error, ->destroy() callback has to free assigned ID. */
3804 if (clone_children(parent) && ss->post_clone)
3805 ss->post_clone(ss, cgrp);
3806 }
3807
3808 cgroup_lock_hierarchy(root);
3809 list_add(&cgrp->sibling, &cgrp->parent->children);
3810 cgroup_unlock_hierarchy(root);
3811 root->number_of_cgroups++;
3812
3813 err = cgroup_create_dir(cgrp, dentry, mode);
3814 if (err < 0)
3815 goto err_remove;
3816
3817 /* The cgroup directory was pre-locked for us */
3818 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3819
3820 err = cgroup_populate_dir(cgrp);
3821 /* If err < 0, we have a half-filled directory - oh well ;) */
3822
3823 mutex_unlock(&cgroup_mutex);
3824 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3825
3826 return 0;
3827
3828 err_remove:
3829
3830 cgroup_lock_hierarchy(root);
3831 list_del(&cgrp->sibling);
3832 cgroup_unlock_hierarchy(root);
3833 root->number_of_cgroups--;
3834
3835 err_destroy:
3836
3837 for_each_subsys(root, ss) {
3838 if (cgrp->subsys[ss->subsys_id])
3839 ss->destroy(ss, cgrp);
3840 }
3841
3842 mutex_unlock(&cgroup_mutex);
3843
3844 /* Release the reference count that we took on the superblock */
3845 deactivate_super(sb);
3846
3847 kfree(cgrp);
3848 return err;
3849}
3850
3851static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3852{
3853 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3854
3855 /* the vfs holds inode->i_mutex already */
3856 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3857}
3858
3859static int cgroup_has_css_refs(struct cgroup *cgrp)
3860{
3861 /* Check the reference count on each subsystem. Since we
3862 * already established that there are no tasks in the
3863 * cgroup, if the css refcount is also 1, then there should
3864 * be no outstanding references, so the subsystem is safe to
3865 * destroy. We scan across all subsystems rather than using
3866 * the per-hierarchy linked list of mounted subsystems since
3867 * we can be called via check_for_release() with no
3868 * synchronization other than RCU, and the subsystem linked
3869 * list isn't RCU-safe */
3870 int i;
3871 /*
3872 * We won't need to lock the subsys array, because the subsystems
3873 * we're concerned about aren't going anywhere since our cgroup root
3874 * has a reference on them.
3875 */
3876 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3877 struct cgroup_subsys *ss = subsys[i];
3878 struct cgroup_subsys_state *css;
3879 /* Skip subsystems not present or not in this hierarchy */
3880 if (ss == NULL || ss->root != cgrp->root)
3881 continue;
3882 css = cgrp->subsys[ss->subsys_id];
3883 /* When called from check_for_release() it's possible
3884 * that by this point the cgroup has been removed
3885 * and the css deleted. But a false-positive doesn't
3886 * matter, since it can only happen if the cgroup
3887 * has been deleted and hence no longer needs the
3888 * release agent to be called anyway. */
3889 if (css && (atomic_read(&css->refcnt) > 1))
3890 return 1;
3891 }
3892 return 0;
3893}
3894
3895/*
3896 * Atomically mark all (or else none) of the cgroup's CSS objects as
3897 * CSS_REMOVED. Return true on success, or false if the cgroup has
3898 * busy subsystems. Call with cgroup_mutex held
3899 */
3900
3901static int cgroup_clear_css_refs(struct cgroup *cgrp)
3902{
3903 struct cgroup_subsys *ss;
3904 unsigned long flags;
3905 bool failed = false;
3906 local_irq_save(flags);
3907 for_each_subsys(cgrp->root, ss) {
3908 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3909 int refcnt;
3910 while (1) {
3911 /* We can only remove a CSS with a refcnt==1 */
3912 refcnt = atomic_read(&css->refcnt);
3913 if (refcnt > 1) {
3914 failed = true;
3915 goto done;
3916 }
3917 BUG_ON(!refcnt);
3918 /*
3919 * Drop the refcnt to 0 while we check other
3920 * subsystems. This will cause any racing
3921 * css_tryget() to spin until we set the
3922 * CSS_REMOVED bits or abort
3923 */
3924 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3925 break;
3926 cpu_relax();
3927 }
3928 }
3929 done:
3930 for_each_subsys(cgrp->root, ss) {
3931 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3932 if (failed) {
3933 /*
3934 * Restore old refcnt if we previously managed
3935 * to clear it from 1 to 0
3936 */
3937 if (!atomic_read(&css->refcnt))
3938 atomic_set(&css->refcnt, 1);
3939 } else {
3940 /* Commit the fact that the CSS is removed */
3941 set_bit(CSS_REMOVED, &css->flags);
3942 }
3943 }
3944 local_irq_restore(flags);
3945 return !failed;
3946}
3947
3948static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3949{
3950 struct cgroup *cgrp = dentry->d_fsdata;
3951 struct dentry *d;
3952 struct cgroup *parent;
3953 DEFINE_WAIT(wait);
3954 struct cgroup_event *event, *tmp;
3955 int ret;
3956
3957 /* the vfs holds both inode->i_mutex already */
3958again:
3959 mutex_lock(&cgroup_mutex);
3960 if (atomic_read(&cgrp->count) != 0) {
3961 mutex_unlock(&cgroup_mutex);
3962 return -EBUSY;
3963 }
3964 if (!list_empty(&cgrp->children)) {
3965 mutex_unlock(&cgroup_mutex);
3966 return -EBUSY;
3967 }
3968 mutex_unlock(&cgroup_mutex);
3969
3970 /*
3971 * In general, subsystem has no css->refcnt after pre_destroy(). But
3972 * in racy cases, subsystem may have to get css->refcnt after
3973 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3974 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3975 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3976 * and subsystem's reference count handling. Please see css_get/put
3977 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3978 */
3979 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3980
3981 /*
3982 * Call pre_destroy handlers of subsys. Notify subsystems
3983 * that rmdir() request comes.
3984 */
3985 ret = cgroup_call_pre_destroy(cgrp);
3986 if (ret) {
3987 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3988 return ret;
3989 }
3990
3991 mutex_lock(&cgroup_mutex);
3992 parent = cgrp->parent;
3993 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3994 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3995 mutex_unlock(&cgroup_mutex);
3996 return -EBUSY;
3997 }
3998 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3999 if (!cgroup_clear_css_refs(cgrp)) {
4000 mutex_unlock(&cgroup_mutex);
4001 /*
4002 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4003 * prepare_to_wait(), we need to check this flag.
4004 */
4005 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4006 schedule();
4007 finish_wait(&cgroup_rmdir_waitq, &wait);
4008 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4009 if (signal_pending(current))
4010 return -EINTR;
4011 goto again;
4012 }
4013 /* NO css_tryget() can success after here. */
4014 finish_wait(&cgroup_rmdir_waitq, &wait);
4015 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4016
4017 spin_lock(&release_list_lock);
4018 set_bit(CGRP_REMOVED, &cgrp->flags);
4019 if (!list_empty(&cgrp->release_list))
4020 list_del_init(&cgrp->release_list);
4021 spin_unlock(&release_list_lock);
4022
4023 cgroup_lock_hierarchy(cgrp->root);
4024 /* delete this cgroup from parent->children */
4025 list_del_init(&cgrp->sibling);
4026 cgroup_unlock_hierarchy(cgrp->root);
4027
4028 d = dget(cgrp->dentry);
4029
4030 cgroup_d_remove_dir(d);
4031 dput(d);
4032
4033 set_bit(CGRP_RELEASABLE, &parent->flags);
4034 check_for_release(parent);
4035
4036 /*
4037 * Unregister events and notify userspace.
4038 * Notify userspace about cgroup removing only after rmdir of cgroup
4039 * directory to avoid race between userspace and kernelspace
4040 */
4041 spin_lock(&cgrp->event_list_lock);
4042 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4043 list_del(&event->list);
4044 remove_wait_queue(event->wqh, &event->wait);
4045 eventfd_signal(event->eventfd, 1);
4046 schedule_work(&event->remove);
4047 }
4048 spin_unlock(&cgrp->event_list_lock);
4049
4050 mutex_unlock(&cgroup_mutex);
4051 return 0;
4052}
4053
4054static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4055{
4056 struct cgroup_subsys_state *css;
4057
4058 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4059
4060 /* Create the top cgroup state for this subsystem */
4061 list_add(&ss->sibling, &rootnode.subsys_list);
4062 ss->root = &rootnode;
4063 css = ss->create(ss, dummytop);
4064 /* We don't handle early failures gracefully */
4065 BUG_ON(IS_ERR(css));
4066 init_cgroup_css(css, ss, dummytop);
4067
4068 /* Update the init_css_set to contain a subsys
4069 * pointer to this state - since the subsystem is
4070 * newly registered, all tasks and hence the
4071 * init_css_set is in the subsystem's top cgroup. */
4072 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4073
4074 need_forkexit_callback |= ss->fork || ss->exit;
4075
4076 /* At system boot, before all subsystems have been
4077 * registered, no tasks have been forked, so we don't
4078 * need to invoke fork callbacks here. */
4079 BUG_ON(!list_empty(&init_task.tasks));
4080
4081 mutex_init(&ss->hierarchy_mutex);
4082 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4083 ss->active = 1;
4084
4085 /* this function shouldn't be used with modular subsystems, since they
4086 * need to register a subsys_id, among other things */
4087 BUG_ON(ss->module);
4088}
4089
4090/**
4091 * cgroup_load_subsys: load and register a modular subsystem at runtime
4092 * @ss: the subsystem to load
4093 *
4094 * This function should be called in a modular subsystem's initcall. If the
4095 * subsystem is built as a module, it will be assigned a new subsys_id and set
4096 * up for use. If the subsystem is built-in anyway, work is delegated to the
4097 * simpler cgroup_init_subsys.
4098 */
4099int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4100{
4101 int i;
4102 struct cgroup_subsys_state *css;
4103
4104 /* check name and function validity */
4105 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4106 ss->create == NULL || ss->destroy == NULL)
4107 return -EINVAL;
4108
4109 /*
4110 * we don't support callbacks in modular subsystems. this check is
4111 * before the ss->module check for consistency; a subsystem that could
4112 * be a module should still have no callbacks even if the user isn't
4113 * compiling it as one.
4114 */
4115 if (ss->fork || ss->exit)
4116 return -EINVAL;
4117
4118 /*
4119 * an optionally modular subsystem is built-in: we want to do nothing,
4120 * since cgroup_init_subsys will have already taken care of it.
4121 */
4122 if (ss->module == NULL) {
4123 /* a few sanity checks */
4124 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4125 BUG_ON(subsys[ss->subsys_id] != ss);
4126 return 0;
4127 }
4128
4129 /*
4130 * need to register a subsys id before anything else - for example,
4131 * init_cgroup_css needs it.
4132 */
4133 mutex_lock(&cgroup_mutex);
4134 /* find the first empty slot in the array */
4135 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4136 if (subsys[i] == NULL)
4137 break;
4138 }
4139 if (i == CGROUP_SUBSYS_COUNT) {
4140 /* maximum number of subsystems already registered! */
4141 mutex_unlock(&cgroup_mutex);
4142 return -EBUSY;
4143 }
4144 /* assign ourselves the subsys_id */
4145 ss->subsys_id = i;
4146 subsys[i] = ss;
4147
4148 /*
4149 * no ss->create seems to need anything important in the ss struct, so
4150 * this can happen first (i.e. before the rootnode attachment).
4151 */
4152 css = ss->create(ss, dummytop);
4153 if (IS_ERR(css)) {
4154 /* failure case - need to deassign the subsys[] slot. */
4155 subsys[i] = NULL;
4156 mutex_unlock(&cgroup_mutex);
4157 return PTR_ERR(css);
4158 }
4159
4160 list_add(&ss->sibling, &rootnode.subsys_list);
4161 ss->root = &rootnode;
4162
4163 /* our new subsystem will be attached to the dummy hierarchy. */
4164 init_cgroup_css(css, ss, dummytop);
4165 /* init_idr must be after init_cgroup_css because it sets css->id. */
4166 if (ss->use_id) {
4167 int ret = cgroup_init_idr(ss, css);
4168 if (ret) {
4169 dummytop->subsys[ss->subsys_id] = NULL;
4170 ss->destroy(ss, dummytop);
4171 subsys[i] = NULL;
4172 mutex_unlock(&cgroup_mutex);
4173 return ret;
4174 }
4175 }
4176
4177 /*
4178 * Now we need to entangle the css into the existing css_sets. unlike
4179 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4180 * will need a new pointer to it; done by iterating the css_set_table.
4181 * furthermore, modifying the existing css_sets will corrupt the hash
4182 * table state, so each changed css_set will need its hash recomputed.
4183 * this is all done under the css_set_lock.
4184 */
4185 write_lock(&css_set_lock);
4186 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4187 struct css_set *cg;
4188 struct hlist_node *node, *tmp;
4189 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4190
4191 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4192 /* skip entries that we already rehashed */
4193 if (cg->subsys[ss->subsys_id])
4194 continue;
4195 /* remove existing entry */
4196 hlist_del(&cg->hlist);
4197 /* set new value */
4198 cg->subsys[ss->subsys_id] = css;
4199 /* recompute hash and restore entry */
4200 new_bucket = css_set_hash(cg->subsys);
4201 hlist_add_head(&cg->hlist, new_bucket);
4202 }
4203 }
4204 write_unlock(&css_set_lock);
4205
4206 mutex_init(&ss->hierarchy_mutex);
4207 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4208 ss->active = 1;
4209
4210 /* success! */
4211 mutex_unlock(&cgroup_mutex);
4212 return 0;
4213}
4214EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4215
4216/**
4217 * cgroup_unload_subsys: unload a modular subsystem
4218 * @ss: the subsystem to unload
4219 *
4220 * This function should be called in a modular subsystem's exitcall. When this
4221 * function is invoked, the refcount on the subsystem's module will be 0, so
4222 * the subsystem will not be attached to any hierarchy.
4223 */
4224void cgroup_unload_subsys(struct cgroup_subsys *ss)
4225{
4226 struct cg_cgroup_link *link;
4227 struct hlist_head *hhead;
4228
4229 BUG_ON(ss->module == NULL);
4230
4231 /*
4232 * we shouldn't be called if the subsystem is in use, and the use of
4233 * try_module_get in parse_cgroupfs_options should ensure that it
4234 * doesn't start being used while we're killing it off.
4235 */
4236 BUG_ON(ss->root != &rootnode);
4237
4238 mutex_lock(&cgroup_mutex);
4239 /* deassign the subsys_id */
4240 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4241 subsys[ss->subsys_id] = NULL;
4242
4243 /* remove subsystem from rootnode's list of subsystems */
4244 list_del_init(&ss->sibling);
4245
4246 /*
4247 * disentangle the css from all css_sets attached to the dummytop. as
4248 * in loading, we need to pay our respects to the hashtable gods.
4249 */
4250 write_lock(&css_set_lock);
4251 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4252 struct css_set *cg = link->cg;
4253
4254 hlist_del(&cg->hlist);
4255 BUG_ON(!cg->subsys[ss->subsys_id]);
4256 cg->subsys[ss->subsys_id] = NULL;
4257 hhead = css_set_hash(cg->subsys);
4258 hlist_add_head(&cg->hlist, hhead);
4259 }
4260 write_unlock(&css_set_lock);
4261
4262 /*
4263 * remove subsystem's css from the dummytop and free it - need to free
4264 * before marking as null because ss->destroy needs the cgrp->subsys
4265 * pointer to find their state. note that this also takes care of
4266 * freeing the css_id.
4267 */
4268 ss->destroy(ss, dummytop);
4269 dummytop->subsys[ss->subsys_id] = NULL;
4270
4271 mutex_unlock(&cgroup_mutex);
4272}
4273EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4274
4275/**
4276 * cgroup_init_early - cgroup initialization at system boot
4277 *
4278 * Initialize cgroups at system boot, and initialize any
4279 * subsystems that request early init.
4280 */
4281int __init cgroup_init_early(void)
4282{
4283 int i;
4284 atomic_set(&init_css_set.refcount, 1);
4285 INIT_LIST_HEAD(&init_css_set.cg_links);
4286 INIT_LIST_HEAD(&init_css_set.tasks);
4287 INIT_HLIST_NODE(&init_css_set.hlist);
4288 css_set_count = 1;
4289 init_cgroup_root(&rootnode);
4290 root_count = 1;
4291 init_task.cgroups = &init_css_set;
4292
4293 init_css_set_link.cg = &init_css_set;
4294 init_css_set_link.cgrp = dummytop;
4295 list_add(&init_css_set_link.cgrp_link_list,
4296 &rootnode.top_cgroup.css_sets);
4297 list_add(&init_css_set_link.cg_link_list,
4298 &init_css_set.cg_links);
4299
4300 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4301 INIT_HLIST_HEAD(&css_set_table[i]);
4302
4303 /* at bootup time, we don't worry about modular subsystems */
4304 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4305 struct cgroup_subsys *ss = subsys[i];
4306
4307 BUG_ON(!ss->name);
4308 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4309 BUG_ON(!ss->create);
4310 BUG_ON(!ss->destroy);
4311 if (ss->subsys_id != i) {
4312 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4313 ss->name, ss->subsys_id);
4314 BUG();
4315 }
4316
4317 if (ss->early_init)
4318 cgroup_init_subsys(ss);
4319 }
4320 return 0;
4321}
4322
4323/**
4324 * cgroup_init - cgroup initialization
4325 *
4326 * Register cgroup filesystem and /proc file, and initialize
4327 * any subsystems that didn't request early init.
4328 */
4329int __init cgroup_init(void)
4330{
4331 int err;
4332 int i;
4333 struct hlist_head *hhead;
4334
4335 err = bdi_init(&cgroup_backing_dev_info);
4336 if (err)
4337 return err;
4338
4339 /* at bootup time, we don't worry about modular subsystems */
4340 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4341 struct cgroup_subsys *ss = subsys[i];
4342 if (!ss->early_init)
4343 cgroup_init_subsys(ss);
4344 if (ss->use_id)
4345 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4346 }
4347
4348 /* Add init_css_set to the hash table */
4349 hhead = css_set_hash(init_css_set.subsys);
4350 hlist_add_head(&init_css_set.hlist, hhead);
4351 BUG_ON(!init_root_id(&rootnode));
4352
4353 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4354 if (!cgroup_kobj) {
4355 err = -ENOMEM;
4356 goto out;
4357 }
4358
4359 err = register_filesystem(&cgroup_fs_type);
4360 if (err < 0) {
4361 kobject_put(cgroup_kobj);
4362 goto out;
4363 }
4364
4365 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4366
4367out:
4368 if (err)
4369 bdi_destroy(&cgroup_backing_dev_info);
4370
4371 return err;
4372}
4373
4374/*
4375 * proc_cgroup_show()
4376 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4377 * - Used for /proc/<pid>/cgroup.
4378 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4379 * doesn't really matter if tsk->cgroup changes after we read it,
4380 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4381 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4382 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4383 * cgroup to top_cgroup.
4384 */
4385
4386/* TODO: Use a proper seq_file iterator */
4387static int proc_cgroup_show(struct seq_file *m, void *v)
4388{
4389 struct pid *pid;
4390 struct task_struct *tsk;
4391 char *buf;
4392 int retval;
4393 struct cgroupfs_root *root;
4394
4395 retval = -ENOMEM;
4396 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4397 if (!buf)
4398 goto out;
4399
4400 retval = -ESRCH;
4401 pid = m->private;
4402 tsk = get_pid_task(pid, PIDTYPE_PID);
4403 if (!tsk)
4404 goto out_free;
4405
4406 retval = 0;
4407
4408 mutex_lock(&cgroup_mutex);
4409
4410 for_each_active_root(root) {
4411 struct cgroup_subsys *ss;
4412 struct cgroup *cgrp;
4413 int count = 0;
4414
4415 seq_printf(m, "%d:", root->hierarchy_id);
4416 for_each_subsys(root, ss)
4417 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4418 if (strlen(root->name))
4419 seq_printf(m, "%sname=%s", count ? "," : "",
4420 root->name);
4421 seq_putc(m, ':');
4422 cgrp = task_cgroup_from_root(tsk, root);
4423 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4424 if (retval < 0)
4425 goto out_unlock;
4426 seq_puts(m, buf);
4427 seq_putc(m, '\n');
4428 }
4429
4430out_unlock:
4431 mutex_unlock(&cgroup_mutex);
4432 put_task_struct(tsk);
4433out_free:
4434 kfree(buf);
4435out:
4436 return retval;
4437}
4438
4439static int cgroup_open(struct inode *inode, struct file *file)
4440{
4441 struct pid *pid = PROC_I(inode)->pid;
4442 return single_open(file, proc_cgroup_show, pid);
4443}
4444
4445const struct file_operations proc_cgroup_operations = {
4446 .open = cgroup_open,
4447 .read = seq_read,
4448 .llseek = seq_lseek,
4449 .release = single_release,
4450};
4451
4452/* Display information about each subsystem and each hierarchy */
4453static int proc_cgroupstats_show(struct seq_file *m, void *v)
4454{
4455 int i;
4456
4457 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4458 /*
4459 * ideally we don't want subsystems moving around while we do this.
4460 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4461 * subsys/hierarchy state.
4462 */
4463 mutex_lock(&cgroup_mutex);
4464 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4465 struct cgroup_subsys *ss = subsys[i];
4466 if (ss == NULL)
4467 continue;
4468 seq_printf(m, "%s\t%d\t%d\t%d\n",
4469 ss->name, ss->root->hierarchy_id,
4470 ss->root->number_of_cgroups, !ss->disabled);
4471 }
4472 mutex_unlock(&cgroup_mutex);
4473 return 0;
4474}
4475
4476static int cgroupstats_open(struct inode *inode, struct file *file)
4477{
4478 return single_open(file, proc_cgroupstats_show, NULL);
4479}
4480
4481static const struct file_operations proc_cgroupstats_operations = {
4482 .open = cgroupstats_open,
4483 .read = seq_read,
4484 .llseek = seq_lseek,
4485 .release = single_release,
4486};
4487
4488/**
4489 * cgroup_fork - attach newly forked task to its parents cgroup.
4490 * @child: pointer to task_struct of forking parent process.
4491 *
4492 * Description: A task inherits its parent's cgroup at fork().
4493 *
4494 * A pointer to the shared css_set was automatically copied in
4495 * fork.c by dup_task_struct(). However, we ignore that copy, since
4496 * it was not made under the protection of RCU or cgroup_mutex, so
4497 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4498 * have already changed current->cgroups, allowing the previously
4499 * referenced cgroup group to be removed and freed.
4500 *
4501 * At the point that cgroup_fork() is called, 'current' is the parent
4502 * task, and the passed argument 'child' points to the child task.
4503 */
4504void cgroup_fork(struct task_struct *child)
4505{
4506 task_lock(current);
4507 child->cgroups = current->cgroups;
4508 get_css_set(child->cgroups);
4509 task_unlock(current);
4510 INIT_LIST_HEAD(&child->cg_list);
4511}
4512
4513/**
4514 * cgroup_fork_callbacks - run fork callbacks
4515 * @child: the new task
4516 *
4517 * Called on a new task very soon before adding it to the
4518 * tasklist. No need to take any locks since no-one can
4519 * be operating on this task.
4520 */
4521void cgroup_fork_callbacks(struct task_struct *child)
4522{
4523 if (need_forkexit_callback) {
4524 int i;
4525 /*
4526 * forkexit callbacks are only supported for builtin
4527 * subsystems, and the builtin section of the subsys array is
4528 * immutable, so we don't need to lock the subsys array here.
4529 */
4530 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4531 struct cgroup_subsys *ss = subsys[i];
4532 if (ss->fork)
4533 ss->fork(ss, child);
4534 }
4535 }
4536}
4537
4538/**
4539 * cgroup_post_fork - called on a new task after adding it to the task list
4540 * @child: the task in question
4541 *
4542 * Adds the task to the list running through its css_set if necessary.
4543 * Has to be after the task is visible on the task list in case we race
4544 * with the first call to cgroup_iter_start() - to guarantee that the
4545 * new task ends up on its list.
4546 */
4547void cgroup_post_fork(struct task_struct *child)
4548{
4549 if (use_task_css_set_links) {
4550 write_lock(&css_set_lock);
4551 task_lock(child);
4552 if (list_empty(&child->cg_list))
4553 list_add(&child->cg_list, &child->cgroups->tasks);
4554 task_unlock(child);
4555 write_unlock(&css_set_lock);
4556 }
4557}
4558/**
4559 * cgroup_exit - detach cgroup from exiting task
4560 * @tsk: pointer to task_struct of exiting process
4561 * @run_callback: run exit callbacks?
4562 *
4563 * Description: Detach cgroup from @tsk and release it.
4564 *
4565 * Note that cgroups marked notify_on_release force every task in
4566 * them to take the global cgroup_mutex mutex when exiting.
4567 * This could impact scaling on very large systems. Be reluctant to
4568 * use notify_on_release cgroups where very high task exit scaling
4569 * is required on large systems.
4570 *
4571 * the_top_cgroup_hack:
4572 *
4573 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4574 *
4575 * We call cgroup_exit() while the task is still competent to
4576 * handle notify_on_release(), then leave the task attached to the
4577 * root cgroup in each hierarchy for the remainder of its exit.
4578 *
4579 * To do this properly, we would increment the reference count on
4580 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4581 * code we would add a second cgroup function call, to drop that
4582 * reference. This would just create an unnecessary hot spot on
4583 * the top_cgroup reference count, to no avail.
4584 *
4585 * Normally, holding a reference to a cgroup without bumping its
4586 * count is unsafe. The cgroup could go away, or someone could
4587 * attach us to a different cgroup, decrementing the count on
4588 * the first cgroup that we never incremented. But in this case,
4589 * top_cgroup isn't going away, and either task has PF_EXITING set,
4590 * which wards off any cgroup_attach_task() attempts, or task is a failed
4591 * fork, never visible to cgroup_attach_task.
4592 */
4593void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4594{
4595 struct css_set *cg;
4596 int i;
4597
4598 /*
4599 * Unlink from the css_set task list if necessary.
4600 * Optimistically check cg_list before taking
4601 * css_set_lock
4602 */
4603 if (!list_empty(&tsk->cg_list)) {
4604 write_lock(&css_set_lock);
4605 if (!list_empty(&tsk->cg_list))
4606 list_del_init(&tsk->cg_list);
4607 write_unlock(&css_set_lock);
4608 }
4609
4610 /* Reassign the task to the init_css_set. */
4611 task_lock(tsk);
4612 cg = tsk->cgroups;
4613 tsk->cgroups = &init_css_set;
4614
4615 if (run_callbacks && need_forkexit_callback) {
4616 /*
4617 * modular subsystems can't use callbacks, so no need to lock
4618 * the subsys array
4619 */
4620 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4621 struct cgroup_subsys *ss = subsys[i];
4622 if (ss->exit) {
4623 struct cgroup *old_cgrp =
4624 rcu_dereference_raw(cg->subsys[i])->cgroup;
4625 struct cgroup *cgrp = task_cgroup(tsk, i);
4626 ss->exit(ss, cgrp, old_cgrp, tsk);
4627 }
4628 }
4629 }
4630 task_unlock(tsk);
4631
4632 if (cg)
4633 put_css_set_taskexit(cg);
4634}
4635
4636/**
4637 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4638 * @cgrp: the cgroup in question
4639 * @task: the task in question
4640 *
4641 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4642 * hierarchy.
4643 *
4644 * If we are sending in dummytop, then presumably we are creating
4645 * the top cgroup in the subsystem.
4646 *
4647 * Called only by the ns (nsproxy) cgroup.
4648 */
4649int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4650{
4651 int ret;
4652 struct cgroup *target;
4653
4654 if (cgrp == dummytop)
4655 return 1;
4656
4657 target = task_cgroup_from_root(task, cgrp->root);
4658 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4659 cgrp = cgrp->parent;
4660 ret = (cgrp == target);
4661 return ret;
4662}
4663
4664static void check_for_release(struct cgroup *cgrp)
4665{
4666 /* All of these checks rely on RCU to keep the cgroup
4667 * structure alive */
4668 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4669 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4670 /* Control Group is currently removeable. If it's not
4671 * already queued for a userspace notification, queue
4672 * it now */
4673 int need_schedule_work = 0;
4674 spin_lock(&release_list_lock);
4675 if (!cgroup_is_removed(cgrp) &&
4676 list_empty(&cgrp->release_list)) {
4677 list_add(&cgrp->release_list, &release_list);
4678 need_schedule_work = 1;
4679 }
4680 spin_unlock(&release_list_lock);
4681 if (need_schedule_work)
4682 schedule_work(&release_agent_work);
4683 }
4684}
4685
4686/* Caller must verify that the css is not for root cgroup */
4687void __css_put(struct cgroup_subsys_state *css, int count)
4688{
4689 struct cgroup *cgrp = css->cgroup;
4690 int val;
4691 rcu_read_lock();
4692 val = atomic_sub_return(count, &css->refcnt);
4693 if (val == 1) {
4694 if (notify_on_release(cgrp)) {
4695 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4696 check_for_release(cgrp);
4697 }
4698 cgroup_wakeup_rmdir_waiter(cgrp);
4699 }
4700 rcu_read_unlock();
4701 WARN_ON_ONCE(val < 1);
4702}
4703EXPORT_SYMBOL_GPL(__css_put);
4704
4705/*
4706 * Notify userspace when a cgroup is released, by running the
4707 * configured release agent with the name of the cgroup (path
4708 * relative to the root of cgroup file system) as the argument.
4709 *
4710 * Most likely, this user command will try to rmdir this cgroup.
4711 *
4712 * This races with the possibility that some other task will be
4713 * attached to this cgroup before it is removed, or that some other
4714 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4715 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4716 * unused, and this cgroup will be reprieved from its death sentence,
4717 * to continue to serve a useful existence. Next time it's released,
4718 * we will get notified again, if it still has 'notify_on_release' set.
4719 *
4720 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4721 * means only wait until the task is successfully execve()'d. The
4722 * separate release agent task is forked by call_usermodehelper(),
4723 * then control in this thread returns here, without waiting for the
4724 * release agent task. We don't bother to wait because the caller of
4725 * this routine has no use for the exit status of the release agent
4726 * task, so no sense holding our caller up for that.
4727 */
4728static void cgroup_release_agent(struct work_struct *work)
4729{
4730 BUG_ON(work != &release_agent_work);
4731 mutex_lock(&cgroup_mutex);
4732 spin_lock(&release_list_lock);
4733 while (!list_empty(&release_list)) {
4734 char *argv[3], *envp[3];
4735 int i;
4736 char *pathbuf = NULL, *agentbuf = NULL;
4737 struct cgroup *cgrp = list_entry(release_list.next,
4738 struct cgroup,
4739 release_list);
4740 list_del_init(&cgrp->release_list);
4741 spin_unlock(&release_list_lock);
4742 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4743 if (!pathbuf)
4744 goto continue_free;
4745 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4746 goto continue_free;
4747 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4748 if (!agentbuf)
4749 goto continue_free;
4750
4751 i = 0;
4752 argv[i++] = agentbuf;
4753 argv[i++] = pathbuf;
4754 argv[i] = NULL;
4755
4756 i = 0;
4757 /* minimal command environment */
4758 envp[i++] = "HOME=/";
4759 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4760 envp[i] = NULL;
4761
4762 /* Drop the lock while we invoke the usermode helper,
4763 * since the exec could involve hitting disk and hence
4764 * be a slow process */
4765 mutex_unlock(&cgroup_mutex);
4766 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4767 mutex_lock(&cgroup_mutex);
4768 continue_free:
4769 kfree(pathbuf);
4770 kfree(agentbuf);
4771 spin_lock(&release_list_lock);
4772 }
4773 spin_unlock(&release_list_lock);
4774 mutex_unlock(&cgroup_mutex);
4775}
4776
4777static int __init cgroup_disable(char *str)
4778{
4779 int i;
4780 char *token;
4781
4782 while ((token = strsep(&str, ",")) != NULL) {
4783 if (!*token)
4784 continue;
4785 /*
4786 * cgroup_disable, being at boot time, can't know about module
4787 * subsystems, so we don't worry about them.
4788 */
4789 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4790 struct cgroup_subsys *ss = subsys[i];
4791
4792 if (!strcmp(token, ss->name)) {
4793 ss->disabled = 1;
4794 printk(KERN_INFO "Disabling %s control group"
4795 " subsystem\n", ss->name);
4796 break;
4797 }
4798 }
4799 }
4800 return 1;
4801}
4802__setup("cgroup_disable=", cgroup_disable);
4803
4804/*
4805 * Functons for CSS ID.
4806 */
4807
4808/*
4809 *To get ID other than 0, this should be called when !cgroup_is_removed().
4810 */
4811unsigned short css_id(struct cgroup_subsys_state *css)
4812{
4813 struct css_id *cssid;
4814
4815 /*
4816 * This css_id() can return correct value when somone has refcnt
4817 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4818 * it's unchanged until freed.
4819 */
4820 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4821
4822 if (cssid)
4823 return cssid->id;
4824 return 0;
4825}
4826EXPORT_SYMBOL_GPL(css_id);
4827
4828unsigned short css_depth(struct cgroup_subsys_state *css)
4829{
4830 struct css_id *cssid;
4831
4832 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4833
4834 if (cssid)
4835 return cssid->depth;
4836 return 0;
4837}
4838EXPORT_SYMBOL_GPL(css_depth);
4839
4840/**
4841 * css_is_ancestor - test "root" css is an ancestor of "child"
4842 * @child: the css to be tested.
4843 * @root: the css supporsed to be an ancestor of the child.
4844 *
4845 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4846 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4847 * But, considering usual usage, the csses should be valid objects after test.
4848 * Assuming that the caller will do some action to the child if this returns
4849 * returns true, the caller must take "child";s reference count.
4850 * If "child" is valid object and this returns true, "root" is valid, too.
4851 */
4852
4853bool css_is_ancestor(struct cgroup_subsys_state *child,
4854 const struct cgroup_subsys_state *root)
4855{
4856 struct css_id *child_id;
4857 struct css_id *root_id;
4858 bool ret = true;
4859
4860 rcu_read_lock();
4861 child_id = rcu_dereference(child->id);
4862 root_id = rcu_dereference(root->id);
4863 if (!child_id
4864 || !root_id
4865 || (child_id->depth < root_id->depth)
4866 || (child_id->stack[root_id->depth] != root_id->id))
4867 ret = false;
4868 rcu_read_unlock();
4869 return ret;
4870}
4871
4872void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4873{
4874 struct css_id *id = css->id;
4875 /* When this is called before css_id initialization, id can be NULL */
4876 if (!id)
4877 return;
4878
4879 BUG_ON(!ss->use_id);
4880
4881 rcu_assign_pointer(id->css, NULL);
4882 rcu_assign_pointer(css->id, NULL);
4883 spin_lock(&ss->id_lock);
4884 idr_remove(&ss->idr, id->id);
4885 spin_unlock(&ss->id_lock);
4886 kfree_rcu(id, rcu_head);
4887}
4888EXPORT_SYMBOL_GPL(free_css_id);
4889
4890/*
4891 * This is called by init or create(). Then, calls to this function are
4892 * always serialized (By cgroup_mutex() at create()).
4893 */
4894
4895static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4896{
4897 struct css_id *newid;
4898 int myid, error, size;
4899
4900 BUG_ON(!ss->use_id);
4901
4902 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4903 newid = kzalloc(size, GFP_KERNEL);
4904 if (!newid)
4905 return ERR_PTR(-ENOMEM);
4906 /* get id */
4907 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4908 error = -ENOMEM;
4909 goto err_out;
4910 }
4911 spin_lock(&ss->id_lock);
4912 /* Don't use 0. allocates an ID of 1-65535 */
4913 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4914 spin_unlock(&ss->id_lock);
4915
4916 /* Returns error when there are no free spaces for new ID.*/
4917 if (error) {
4918 error = -ENOSPC;
4919 goto err_out;
4920 }
4921 if (myid > CSS_ID_MAX)
4922 goto remove_idr;
4923
4924 newid->id = myid;
4925 newid->depth = depth;
4926 return newid;
4927remove_idr:
4928 error = -ENOSPC;
4929 spin_lock(&ss->id_lock);
4930 idr_remove(&ss->idr, myid);
4931 spin_unlock(&ss->id_lock);
4932err_out:
4933 kfree(newid);
4934 return ERR_PTR(error);
4935
4936}
4937
4938static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4939 struct cgroup_subsys_state *rootcss)
4940{
4941 struct css_id *newid;
4942
4943 spin_lock_init(&ss->id_lock);
4944 idr_init(&ss->idr);
4945
4946 newid = get_new_cssid(ss, 0);
4947 if (IS_ERR(newid))
4948 return PTR_ERR(newid);
4949
4950 newid->stack[0] = newid->id;
4951 newid->css = rootcss;
4952 rootcss->id = newid;
4953 return 0;
4954}
4955
4956static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4957 struct cgroup *child)
4958{
4959 int subsys_id, i, depth = 0;
4960 struct cgroup_subsys_state *parent_css, *child_css;
4961 struct css_id *child_id, *parent_id;
4962
4963 subsys_id = ss->subsys_id;
4964 parent_css = parent->subsys[subsys_id];
4965 child_css = child->subsys[subsys_id];
4966 parent_id = parent_css->id;
4967 depth = parent_id->depth + 1;
4968
4969 child_id = get_new_cssid(ss, depth);
4970 if (IS_ERR(child_id))
4971 return PTR_ERR(child_id);
4972
4973 for (i = 0; i < depth; i++)
4974 child_id->stack[i] = parent_id->stack[i];
4975 child_id->stack[depth] = child_id->id;
4976 /*
4977 * child_id->css pointer will be set after this cgroup is available
4978 * see cgroup_populate_dir()
4979 */
4980 rcu_assign_pointer(child_css->id, child_id);
4981
4982 return 0;
4983}
4984
4985/**
4986 * css_lookup - lookup css by id
4987 * @ss: cgroup subsys to be looked into.
4988 * @id: the id
4989 *
4990 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4991 * NULL if not. Should be called under rcu_read_lock()
4992 */
4993struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4994{
4995 struct css_id *cssid = NULL;
4996
4997 BUG_ON(!ss->use_id);
4998 cssid = idr_find(&ss->idr, id);
4999
5000 if (unlikely(!cssid))
5001 return NULL;
5002
5003 return rcu_dereference(cssid->css);
5004}
5005EXPORT_SYMBOL_GPL(css_lookup);
5006
5007/**
5008 * css_get_next - lookup next cgroup under specified hierarchy.
5009 * @ss: pointer to subsystem
5010 * @id: current position of iteration.
5011 * @root: pointer to css. search tree under this.
5012 * @foundid: position of found object.
5013 *
5014 * Search next css under the specified hierarchy of rootid. Calling under
5015 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5016 */
5017struct cgroup_subsys_state *
5018css_get_next(struct cgroup_subsys *ss, int id,
5019 struct cgroup_subsys_state *root, int *foundid)
5020{
5021 struct cgroup_subsys_state *ret = NULL;
5022 struct css_id *tmp;
5023 int tmpid;
5024 int rootid = css_id(root);
5025 int depth = css_depth(root);
5026
5027 if (!rootid)
5028 return NULL;
5029
5030 BUG_ON(!ss->use_id);
5031 /* fill start point for scan */
5032 tmpid = id;
5033 while (1) {
5034 /*
5035 * scan next entry from bitmap(tree), tmpid is updated after
5036 * idr_get_next().
5037 */
5038 spin_lock(&ss->id_lock);
5039 tmp = idr_get_next(&ss->idr, &tmpid);
5040 spin_unlock(&ss->id_lock);
5041
5042 if (!tmp)
5043 break;
5044 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5045 ret = rcu_dereference(tmp->css);
5046 if (ret) {
5047 *foundid = tmpid;
5048 break;
5049 }
5050 }
5051 /* continue to scan from next id */
5052 tmpid = tmpid + 1;
5053 }
5054 return ret;
5055}
5056
5057/*
5058 * get corresponding css from file open on cgroupfs directory
5059 */
5060struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5061{
5062 struct cgroup *cgrp;
5063 struct inode *inode;
5064 struct cgroup_subsys_state *css;
5065
5066 inode = f->f_dentry->d_inode;
5067 /* check in cgroup filesystem dir */
5068 if (inode->i_op != &cgroup_dir_inode_operations)
5069 return ERR_PTR(-EBADF);
5070
5071 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5072 return ERR_PTR(-EINVAL);
5073
5074 /* get cgroup */
5075 cgrp = __d_cgrp(f->f_dentry);
5076 css = cgrp->subsys[id];
5077 return css ? css : ERR_PTR(-ENOENT);
5078}
5079
5080#ifdef CONFIG_CGROUP_DEBUG
5081static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5082 struct cgroup *cont)
5083{
5084 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5085
5086 if (!css)
5087 return ERR_PTR(-ENOMEM);
5088
5089 return css;
5090}
5091
5092static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5093{
5094 kfree(cont->subsys[debug_subsys_id]);
5095}
5096
5097static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5098{
5099 return atomic_read(&cont->count);
5100}
5101
5102static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5103{
5104 return cgroup_task_count(cont);
5105}
5106
5107static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5108{
5109 return (u64)(unsigned long)current->cgroups;
5110}
5111
5112static u64 current_css_set_refcount_read(struct cgroup *cont,
5113 struct cftype *cft)
5114{
5115 u64 count;
5116
5117 rcu_read_lock();
5118 count = atomic_read(¤t->cgroups->refcount);
5119 rcu_read_unlock();
5120 return count;
5121}
5122
5123static int current_css_set_cg_links_read(struct cgroup *cont,
5124 struct cftype *cft,
5125 struct seq_file *seq)
5126{
5127 struct cg_cgroup_link *link;
5128 struct css_set *cg;
5129
5130 read_lock(&css_set_lock);
5131 rcu_read_lock();
5132 cg = rcu_dereference(current->cgroups);
5133 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5134 struct cgroup *c = link->cgrp;
5135 const char *name;
5136
5137 if (c->dentry)
5138 name = c->dentry->d_name.name;
5139 else
5140 name = "?";
5141 seq_printf(seq, "Root %d group %s\n",
5142 c->root->hierarchy_id, name);
5143 }
5144 rcu_read_unlock();
5145 read_unlock(&css_set_lock);
5146 return 0;
5147}
5148
5149#define MAX_TASKS_SHOWN_PER_CSS 25
5150static int cgroup_css_links_read(struct cgroup *cont,
5151 struct cftype *cft,
5152 struct seq_file *seq)
5153{
5154 struct cg_cgroup_link *link;
5155
5156 read_lock(&css_set_lock);
5157 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5158 struct css_set *cg = link->cg;
5159 struct task_struct *task;
5160 int count = 0;
5161 seq_printf(seq, "css_set %p\n", cg);
5162 list_for_each_entry(task, &cg->tasks, cg_list) {
5163 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5164 seq_puts(seq, " ...\n");
5165 break;
5166 } else {
5167 seq_printf(seq, " task %d\n",
5168 task_pid_vnr(task));
5169 }
5170 }
5171 }
5172 read_unlock(&css_set_lock);
5173 return 0;
5174}
5175
5176static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5177{
5178 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5179}
5180
5181static struct cftype debug_files[] = {
5182 {
5183 .name = "cgroup_refcount",
5184 .read_u64 = cgroup_refcount_read,
5185 },
5186 {
5187 .name = "taskcount",
5188 .read_u64 = debug_taskcount_read,
5189 },
5190
5191 {
5192 .name = "current_css_set",
5193 .read_u64 = current_css_set_read,
5194 },
5195
5196 {
5197 .name = "current_css_set_refcount",
5198 .read_u64 = current_css_set_refcount_read,
5199 },
5200
5201 {
5202 .name = "current_css_set_cg_links",
5203 .read_seq_string = current_css_set_cg_links_read,
5204 },
5205
5206 {
5207 .name = "cgroup_css_links",
5208 .read_seq_string = cgroup_css_links_read,
5209 },
5210
5211 {
5212 .name = "releasable",
5213 .read_u64 = releasable_read,
5214 },
5215};
5216
5217static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5218{
5219 return cgroup_add_files(cont, ss, debug_files,
5220 ARRAY_SIZE(debug_files));
5221}
5222
5223struct cgroup_subsys debug_subsys = {
5224 .name = "debug",
5225 .create = debug_create,
5226 .destroy = debug_destroy,
5227 .populate = debug_populate,
5228 .subsys_id = debug_subsys_id,
5229};
5230#endif /* CONFIG_CGROUP_DEBUG */