Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2  Red Black Trees
  3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  5  (C) 2012  Michel Lespinasse <walken@google.com>
  6
  7  This program is free software; you can redistribute it and/or modify
  8  it under the terms of the GNU General Public License as published by
  9  the Free Software Foundation; either version 2 of the License, or
 10  (at your option) any later version.
 11
 12  This program is distributed in the hope that it will be useful,
 13  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  GNU General Public License for more details.
 16
 17  You should have received a copy of the GNU General Public License
 18  along with this program; if not, write to the Free Software
 19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 20
 21  linux/lib/rbtree.c
 22*/
 23
 24#include <linux/rbtree_augmented.h>
 25#include <linux/export.h>
 26
 27/*
 28 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 29 *
 30 *  1) A node is either red or black
 31 *  2) The root is black
 32 *  3) All leaves (NULL) are black
 33 *  4) Both children of every red node are black
 34 *  5) Every simple path from root to leaves contains the same number
 35 *     of black nodes.
 36 *
 37 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 38 *  consecutive red nodes in a path and every red node is therefore followed by
 39 *  a black. So if B is the number of black nodes on every simple path (as per
 40 *  5), then the longest possible path due to 4 is 2B.
 41 *
 42 *  We shall indicate color with case, where black nodes are uppercase and red
 43 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 44 *  parentheses and have some accompanying text comment.
 45 */
 46
 47/*
 48 * Notes on lockless lookups:
 49 *
 50 * All stores to the tree structure (rb_left and rb_right) must be done using
 51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 52 * tree structure as seen in program order.
 53 *
 54 * These two requirements will allow lockless iteration of the tree -- not
 55 * correct iteration mind you, tree rotations are not atomic so a lookup might
 56 * miss entire subtrees.
 57 *
 58 * But they do guarantee that any such traversal will only see valid elements
 59 * and that it will indeed complete -- does not get stuck in a loop.
 60 *
 61 * It also guarantees that if the lookup returns an element it is the 'correct'
 62 * one. But not returning an element does _NOT_ mean it's not present.
 63 *
 64 * NOTE:
 65 *
 66 * Stores to __rb_parent_color are not important for simple lookups so those
 67 * are left undone as of now. Nor did I check for loops involving parent
 68 * pointers.
 69 */
 70
 71static inline void rb_set_black(struct rb_node *rb)
 72{
 73	rb->__rb_parent_color |= RB_BLACK;
 
 
 
 
 
 
 
 
 
 74}
 75
 76static inline struct rb_node *rb_red_parent(struct rb_node *red)
 77{
 78	return (struct rb_node *)red->__rb_parent_color;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79}
 80
 81/*
 82 * Helper function for rotations:
 83 * - old's parent and color get assigned to new
 84 * - old gets assigned new as a parent and 'color' as a color.
 85 */
 86static inline void
 87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 88			struct rb_root *root, int color)
 89{
 90	struct rb_node *parent = rb_parent(old);
 91	new->__rb_parent_color = old->__rb_parent_color;
 92	rb_set_parent_color(old, new, color);
 93	__rb_change_child(old, new, parent, root);
 94}
 95
 96static __always_inline void
 97__rb_insert(struct rb_node *node, struct rb_root *root,
 98	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 99{
100	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
101
102	while (true) {
103		/*
104		 * Loop invariant: node is red
105		 *
106		 * If there is a black parent, we are done.
107		 * Otherwise, take some corrective action as we don't
108		 * want a red root or two consecutive red nodes.
109		 */
110		if (!parent) {
111			rb_set_parent_color(node, NULL, RB_BLACK);
112			break;
113		} else if (rb_is_black(parent))
114			break;
115
116		gparent = rb_red_parent(parent);
117
118		tmp = gparent->rb_right;
119		if (parent != tmp) {	/* parent == gparent->rb_left */
120			if (tmp && rb_is_red(tmp)) {
121				/*
122				 * Case 1 - color flips
123				 *
124				 *       G            g
125				 *      / \          / \
126				 *     p   u  -->   P   U
127				 *    /            /
128				 *   n            n
129				 *
130				 * However, since g's parent might be red, and
131				 * 4) does not allow this, we need to recurse
132				 * at g.
133				 */
134				rb_set_parent_color(tmp, gparent, RB_BLACK);
135				rb_set_parent_color(parent, gparent, RB_BLACK);
136				node = gparent;
137				parent = rb_parent(node);
138				rb_set_parent_color(node, parent, RB_RED);
139				continue;
140			}
141
142			tmp = parent->rb_right;
143			if (node == tmp) {
144				/*
145				 * Case 2 - left rotate at parent
146				 *
147				 *      G             G
148				 *     / \           / \
149				 *    p   U  -->    n   U
150				 *     \           /
151				 *      n         p
152				 *
153				 * This still leaves us in violation of 4), the
154				 * continuation into Case 3 will fix that.
155				 */
156				tmp = node->rb_left;
157				WRITE_ONCE(parent->rb_right, tmp);
158				WRITE_ONCE(node->rb_left, parent);
159				if (tmp)
160					rb_set_parent_color(tmp, parent,
161							    RB_BLACK);
162				rb_set_parent_color(parent, node, RB_RED);
163				augment_rotate(parent, node);
164				parent = node;
165				tmp = node->rb_right;
166			}
167
168			/*
169			 * Case 3 - right rotate at gparent
170			 *
171			 *        G           P
172			 *       / \         / \
173			 *      p   U  -->  n   g
174			 *     /                 \
175			 *    n                   U
176			 */
177			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178			WRITE_ONCE(parent->rb_right, gparent);
179			if (tmp)
180				rb_set_parent_color(tmp, gparent, RB_BLACK);
181			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182			augment_rotate(gparent, parent);
183			break;
184		} else {
185			tmp = gparent->rb_left;
186			if (tmp && rb_is_red(tmp)) {
187				/* Case 1 - color flips */
188				rb_set_parent_color(tmp, gparent, RB_BLACK);
189				rb_set_parent_color(parent, gparent, RB_BLACK);
190				node = gparent;
191				parent = rb_parent(node);
192				rb_set_parent_color(node, parent, RB_RED);
193				continue;
 
194			}
195
196			tmp = parent->rb_left;
197			if (node == tmp) {
198				/* Case 2 - right rotate at parent */
199				tmp = node->rb_right;
200				WRITE_ONCE(parent->rb_left, tmp);
201				WRITE_ONCE(node->rb_right, parent);
202				if (tmp)
203					rb_set_parent_color(tmp, parent,
204							    RB_BLACK);
205				rb_set_parent_color(parent, node, RB_RED);
206				augment_rotate(parent, node);
207				parent = node;
208				tmp = node->rb_left;
209			}
210
211			/* Case 3 - left rotate at gparent */
212			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213			WRITE_ONCE(parent->rb_left, gparent);
214			if (tmp)
215				rb_set_parent_color(tmp, gparent, RB_BLACK);
216			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
217			augment_rotate(gparent, parent);
218			break;
219		}
220	}
 
 
221}
 
222
223/*
224 * Inline version for rb_erase() use - we want to be able to inline
225 * and eliminate the dummy_rotate callback there
226 */
227static __always_inline void
228____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230{
231	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
232
233	while (true) {
234		/*
235		 * Loop invariants:
236		 * - node is black (or NULL on first iteration)
237		 * - node is not the root (parent is not NULL)
238		 * - All leaf paths going through parent and node have a
239		 *   black node count that is 1 lower than other leaf paths.
240		 */
241		sibling = parent->rb_right;
242		if (node != sibling) {	/* node == parent->rb_left */
243			if (rb_is_red(sibling)) {
244				/*
245				 * Case 1 - left rotate at parent
246				 *
247				 *     P               S
248				 *    / \             / \
249				 *   N   s    -->    p   Sr
250				 *      / \         / \
251				 *     Sl  Sr      N   Sl
252				 */
253				tmp1 = sibling->rb_left;
254				WRITE_ONCE(parent->rb_right, tmp1);
255				WRITE_ONCE(sibling->rb_left, parent);
256				rb_set_parent_color(tmp1, parent, RB_BLACK);
257				__rb_rotate_set_parents(parent, sibling, root,
258							RB_RED);
259				augment_rotate(parent, sibling);
260				sibling = tmp1;
261			}
262			tmp1 = sibling->rb_right;
263			if (!tmp1 || rb_is_black(tmp1)) {
264				tmp2 = sibling->rb_left;
265				if (!tmp2 || rb_is_black(tmp2)) {
266					/*
267					 * Case 2 - sibling color flip
268					 * (p could be either color here)
269					 *
270					 *    (p)           (p)
271					 *    / \           / \
272					 *   N   S    -->  N   s
273					 *      / \           / \
274					 *     Sl  Sr        Sl  Sr
275					 *
276					 * This leaves us violating 5) which
277					 * can be fixed by flipping p to black
278					 * if it was red, or by recursing at p.
279					 * p is red when coming from Case 1.
280					 */
281					rb_set_parent_color(sibling, parent,
282							    RB_RED);
283					if (rb_is_red(parent))
284						rb_set_black(parent);
285					else {
286						node = parent;
287						parent = rb_parent(node);
288						if (parent)
289							continue;
290					}
291					break;
292				}
293				/*
294				 * Case 3 - right rotate at sibling
295				 * (p could be either color here)
296				 *
297				 *   (p)           (p)
298				 *   / \           / \
299				 *  N   S    -->  N   sl
300				 *     / \             \
301				 *    sl  Sr            S
302				 *                       \
303				 *                        Sr
304				 *
305				 * Note: p might be red, and then both
306				 * p and sl are red after rotation(which
307				 * breaks property 4). This is fixed in
308				 * Case 4 (in __rb_rotate_set_parents()
309				 *         which set sl the color of p
310				 *         and set p RB_BLACK)
311				 *
312				 *   (p)            (sl)
313				 *   / \            /  \
314				 *  N   sl   -->   P    S
315				 *       \        /      \
316				 *        S      N        Sr
317				 *         \
318				 *          Sr
319				 */
320				tmp1 = tmp2->rb_right;
321				WRITE_ONCE(sibling->rb_left, tmp1);
322				WRITE_ONCE(tmp2->rb_right, sibling);
323				WRITE_ONCE(parent->rb_right, tmp2);
324				if (tmp1)
325					rb_set_parent_color(tmp1, sibling,
326							    RB_BLACK);
327				augment_rotate(sibling, tmp2);
328				tmp1 = sibling;
329				sibling = tmp2;
330			}
331			/*
332			 * Case 4 - left rotate at parent + color flips
333			 * (p and sl could be either color here.
334			 *  After rotation, p becomes black, s acquires
335			 *  p's color, and sl keeps its color)
336			 *
337			 *      (p)             (s)
338			 *      / \             / \
339			 *     N   S     -->   P   Sr
340			 *        / \         / \
341			 *      (sl) sr      N  (sl)
342			 */
343			tmp2 = sibling->rb_left;
344			WRITE_ONCE(parent->rb_right, tmp2);
345			WRITE_ONCE(sibling->rb_left, parent);
346			rb_set_parent_color(tmp1, sibling, RB_BLACK);
347			if (tmp2)
348				rb_set_parent(tmp2, parent);
349			__rb_rotate_set_parents(parent, sibling, root,
350						RB_BLACK);
351			augment_rotate(parent, sibling);
352			break;
353		} else {
354			sibling = parent->rb_left;
355			if (rb_is_red(sibling)) {
356				/* Case 1 - right rotate at parent */
357				tmp1 = sibling->rb_right;
358				WRITE_ONCE(parent->rb_left, tmp1);
359				WRITE_ONCE(sibling->rb_right, parent);
360				rb_set_parent_color(tmp1, parent, RB_BLACK);
361				__rb_rotate_set_parents(parent, sibling, root,
362							RB_RED);
363				augment_rotate(parent, sibling);
364				sibling = tmp1;
365			}
366			tmp1 = sibling->rb_left;
367			if (!tmp1 || rb_is_black(tmp1)) {
368				tmp2 = sibling->rb_right;
369				if (!tmp2 || rb_is_black(tmp2)) {
370					/* Case 2 - sibling color flip */
371					rb_set_parent_color(sibling, parent,
372							    RB_RED);
373					if (rb_is_red(parent))
374						rb_set_black(parent);
375					else {
376						node = parent;
377						parent = rb_parent(node);
378						if (parent)
379							continue;
380					}
381					break;
382				}
383				/* Case 3 - left rotate at sibling */
384				tmp1 = tmp2->rb_left;
385				WRITE_ONCE(sibling->rb_right, tmp1);
386				WRITE_ONCE(tmp2->rb_left, sibling);
387				WRITE_ONCE(parent->rb_left, tmp2);
388				if (tmp1)
389					rb_set_parent_color(tmp1, sibling,
390							    RB_BLACK);
391				augment_rotate(sibling, tmp2);
392				tmp1 = sibling;
393				sibling = tmp2;
394			}
395			/* Case 4 - right rotate at parent + color flips */
396			tmp2 = sibling->rb_right;
397			WRITE_ONCE(parent->rb_left, tmp2);
398			WRITE_ONCE(sibling->rb_right, parent);
399			rb_set_parent_color(tmp1, sibling, RB_BLACK);
400			if (tmp2)
401				rb_set_parent(tmp2, parent);
402			__rb_rotate_set_parents(parent, sibling, root,
403						RB_BLACK);
404			augment_rotate(parent, sibling);
405			break;
406		}
407	}
 
 
408}
409
410/* Non-inline version for rb_erase_augmented() use */
411void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
412	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
413{
414	____rb_erase_color(parent, root, augment_rotate);
415}
416EXPORT_SYMBOL(__rb_erase_color);
417
418/*
419 * Non-augmented rbtree manipulation functions.
420 *
421 * We use dummy augmented callbacks here, and have the compiler optimize them
422 * out of the rb_insert_color() and rb_erase() function definitions.
423 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424
425static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
426static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
427static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
428
429static const struct rb_augment_callbacks dummy_callbacks = {
430	dummy_propagate, dummy_copy, dummy_rotate
431};
432
433void rb_insert_color(struct rb_node *node, struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434{
435	__rb_insert(node, root, dummy_rotate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436}
437EXPORT_SYMBOL(rb_insert_color);
438
439void rb_erase(struct rb_node *node, struct rb_root *root)
 
 
 
 
440{
441	struct rb_node *rebalance;
442	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
443	if (rebalance)
444		____rb_erase_color(rebalance, root, dummy_rotate);
 
 
445}
446EXPORT_SYMBOL(rb_erase);
447
448/*
449 * Augmented rbtree manipulation functions.
450 *
451 * This instantiates the same __always_inline functions as in the non-augmented
452 * case, but this time with user-defined callbacks.
453 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
455void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
456	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 
 
 
 
 
 
 
457{
458	__rb_insert(node, root, augment_rotate);
 
459}
460EXPORT_SYMBOL(__rb_insert_augmented);
461
462/*
463 * This function returns the first node (in sort order) of the tree.
464 */
465struct rb_node *rb_first(const struct rb_root *root)
466{
467	struct rb_node	*n;
468
469	n = root->rb_node;
470	if (!n)
471		return NULL;
472	while (n->rb_left)
473		n = n->rb_left;
474	return n;
475}
476EXPORT_SYMBOL(rb_first);
477
478struct rb_node *rb_last(const struct rb_root *root)
479{
480	struct rb_node	*n;
481
482	n = root->rb_node;
483	if (!n)
484		return NULL;
485	while (n->rb_right)
486		n = n->rb_right;
487	return n;
488}
489EXPORT_SYMBOL(rb_last);
490
491struct rb_node *rb_next(const struct rb_node *node)
492{
493	struct rb_node *parent;
494
495	if (RB_EMPTY_NODE(node))
496		return NULL;
497
498	/*
499	 * If we have a right-hand child, go down and then left as far
500	 * as we can.
501	 */
502	if (node->rb_right) {
503		node = node->rb_right; 
504		while (node->rb_left)
505			node=node->rb_left;
506		return (struct rb_node *)node;
507	}
508
509	/*
510	 * No right-hand children. Everything down and left is smaller than us,
511	 * so any 'next' node must be in the general direction of our parent.
512	 * Go up the tree; any time the ancestor is a right-hand child of its
513	 * parent, keep going up. First time it's a left-hand child of its
514	 * parent, said parent is our 'next' node.
515	 */
516	while ((parent = rb_parent(node)) && node == parent->rb_right)
517		node = parent;
518
519	return parent;
520}
521EXPORT_SYMBOL(rb_next);
522
523struct rb_node *rb_prev(const struct rb_node *node)
524{
525	struct rb_node *parent;
526
527	if (RB_EMPTY_NODE(node))
528		return NULL;
529
530	/*
531	 * If we have a left-hand child, go down and then right as far
532	 * as we can.
533	 */
534	if (node->rb_left) {
535		node = node->rb_left; 
536		while (node->rb_right)
537			node=node->rb_right;
538		return (struct rb_node *)node;
539	}
540
541	/*
542	 * No left-hand children. Go up till we find an ancestor which
543	 * is a right-hand child of its parent.
544	 */
545	while ((parent = rb_parent(node)) && node == parent->rb_left)
546		node = parent;
547
548	return parent;
549}
550EXPORT_SYMBOL(rb_prev);
551
552void rb_replace_node(struct rb_node *victim, struct rb_node *new,
553		     struct rb_root *root)
554{
555	struct rb_node *parent = rb_parent(victim);
556
557	/* Copy the pointers/colour from the victim to the replacement */
558	*new = *victim;
559
560	/* Set the surrounding nodes to point to the replacement */
 
 
 
 
 
 
 
 
561	if (victim->rb_left)
562		rb_set_parent(victim->rb_left, new);
563	if (victim->rb_right)
564		rb_set_parent(victim->rb_right, new);
565	__rb_change_child(victim, new, parent, root);
566}
567EXPORT_SYMBOL(rb_replace_node);
568
569void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
570			 struct rb_root *root)
571{
572	struct rb_node *parent = rb_parent(victim);
573
574	/* Copy the pointers/colour from the victim to the replacement */
575	*new = *victim;
576
577	/* Set the surrounding nodes to point to the replacement */
578	if (victim->rb_left)
579		rb_set_parent(victim->rb_left, new);
580	if (victim->rb_right)
581		rb_set_parent(victim->rb_right, new);
582
583	/* Set the parent's pointer to the new node last after an RCU barrier
584	 * so that the pointers onwards are seen to be set correctly when doing
585	 * an RCU walk over the tree.
586	 */
587	__rb_change_child_rcu(victim, new, parent, root);
588}
589EXPORT_SYMBOL(rb_replace_node_rcu);
590
591static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
592{
593	for (;;) {
594		if (node->rb_left)
595			node = node->rb_left;
596		else if (node->rb_right)
597			node = node->rb_right;
598		else
599			return (struct rb_node *)node;
600	}
601}
602
603struct rb_node *rb_next_postorder(const struct rb_node *node)
604{
605	const struct rb_node *parent;
606	if (!node)
607		return NULL;
608	parent = rb_parent(node);
609
610	/* If we're sitting on node, we've already seen our children */
611	if (parent && node == parent->rb_left && parent->rb_right) {
612		/* If we are the parent's left node, go to the parent's right
613		 * node then all the way down to the left */
614		return rb_left_deepest_node(parent->rb_right);
615	} else
616		/* Otherwise we are the parent's right node, and the parent
617		 * should be next */
618		return (struct rb_node *)parent;
619}
620EXPORT_SYMBOL(rb_next_postorder);
621
622struct rb_node *rb_first_postorder(const struct rb_root *root)
623{
624	if (!root->rb_node)
625		return NULL;
626
627	return rb_left_deepest_node(root->rb_node);
628}
629EXPORT_SYMBOL(rb_first_postorder);
v3.1
  1/*
  2  Red Black Trees
  3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  5  
 
  6  This program is free software; you can redistribute it and/or modify
  7  it under the terms of the GNU General Public License as published by
  8  the Free Software Foundation; either version 2 of the License, or
  9  (at your option) any later version.
 10
 11  This program is distributed in the hope that it will be useful,
 12  but WITHOUT ANY WARRANTY; without even the implied warranty of
 13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14  GNU General Public License for more details.
 15
 16  You should have received a copy of the GNU General Public License
 17  along with this program; if not, write to the Free Software
 18  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 19
 20  linux/lib/rbtree.c
 21*/
 22
 23#include <linux/rbtree.h>
 24#include <linux/module.h>
 25
 26static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
 27{
 28	struct rb_node *right = node->rb_right;
 29	struct rb_node *parent = rb_parent(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30
 31	if ((node->rb_right = right->rb_left))
 32		rb_set_parent(right->rb_left, node);
 33	right->rb_left = node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35	rb_set_parent(right, parent);
 36
 37	if (parent)
 38	{
 39		if (node == parent->rb_left)
 40			parent->rb_left = right;
 41		else
 42			parent->rb_right = right;
 43	}
 44	else
 45		root->rb_node = right;
 46	rb_set_parent(node, right);
 47}
 48
 49static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
 50{
 51	struct rb_node *left = node->rb_left;
 52	struct rb_node *parent = rb_parent(node);
 53
 54	if ((node->rb_left = left->rb_right))
 55		rb_set_parent(left->rb_right, node);
 56	left->rb_right = node;
 57
 58	rb_set_parent(left, parent);
 59
 60	if (parent)
 61	{
 62		if (node == parent->rb_right)
 63			parent->rb_right = left;
 64		else
 65			parent->rb_left = left;
 66	}
 67	else
 68		root->rb_node = left;
 69	rb_set_parent(node, left);
 70}
 71
 72void rb_insert_color(struct rb_node *node, struct rb_root *root)
 73{
 74	struct rb_node *parent, *gparent;
 75
 76	while ((parent = rb_parent(node)) && rb_is_red(parent))
 77	{
 78		gparent = rb_parent(parent);
 79
 80		if (parent == gparent->rb_left)
 81		{
 82			{
 83				register struct rb_node *uncle = gparent->rb_right;
 84				if (uncle && rb_is_red(uncle))
 85				{
 86					rb_set_black(uncle);
 87					rb_set_black(parent);
 88					rb_set_red(gparent);
 89					node = gparent;
 90					continue;
 91				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92			}
 93
 94			if (parent->rb_right == node)
 95			{
 96				register struct rb_node *tmp;
 97				__rb_rotate_left(parent, root);
 98				tmp = parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99				parent = node;
100				node = tmp;
101			}
102
103			rb_set_black(parent);
104			rb_set_red(gparent);
105			__rb_rotate_right(gparent, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
106		} else {
107			{
108				register struct rb_node *uncle = gparent->rb_left;
109				if (uncle && rb_is_red(uncle))
110				{
111					rb_set_black(uncle);
112					rb_set_black(parent);
113					rb_set_red(gparent);
114					node = gparent;
115					continue;
116				}
117			}
118
119			if (parent->rb_left == node)
120			{
121				register struct rb_node *tmp;
122				__rb_rotate_right(parent, root);
123				tmp = parent;
 
 
 
 
 
 
124				parent = node;
125				node = tmp;
126			}
127
128			rb_set_black(parent);
129			rb_set_red(gparent);
130			__rb_rotate_left(gparent, root);
 
 
 
 
 
131		}
132	}
133
134	rb_set_black(root->rb_node);
135}
136EXPORT_SYMBOL(rb_insert_color);
137
138static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
139			     struct rb_root *root)
140{
141	struct rb_node *other;
142
143	while ((!node || rb_is_black(node)) && node != root->rb_node)
144	{
145		if (parent->rb_left == node)
146		{
147			other = parent->rb_right;
148			if (rb_is_red(other))
149			{
150				rb_set_black(other);
151				rb_set_red(parent);
152				__rb_rotate_left(parent, root);
153				other = parent->rb_right;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154			}
155			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
156			    (!other->rb_right || rb_is_black(other->rb_right)))
157			{
158				rb_set_red(other);
159				node = parent;
160				parent = rb_parent(node);
161			}
162			else
163			{
164				if (!other->rb_right || rb_is_black(other->rb_right))
165				{
166					rb_set_black(other->rb_left);
167					rb_set_red(other);
168					__rb_rotate_right(other, root);
169					other = parent->rb_right;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170				}
171				rb_set_color(other, rb_color(parent));
172				rb_set_black(parent);
173				rb_set_black(other->rb_right);
174				__rb_rotate_left(parent, root);
175				node = root->rb_node;
176				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177			}
178		}
179		else
180		{
181			other = parent->rb_left;
182			if (rb_is_red(other))
183			{
184				rb_set_black(other);
185				rb_set_red(parent);
186				__rb_rotate_right(parent, root);
187				other = parent->rb_left;
188			}
189			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
190			    (!other->rb_right || rb_is_black(other->rb_right)))
191			{
192				rb_set_red(other);
193				node = parent;
194				parent = rb_parent(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195			}
196			else
197			{
198				if (!other->rb_left || rb_is_black(other->rb_left))
199				{
200					rb_set_black(other->rb_right);
201					rb_set_red(other);
202					__rb_rotate_left(other, root);
203					other = parent->rb_left;
 
 
 
 
 
 
 
 
204				}
205				rb_set_color(other, rb_color(parent));
206				rb_set_black(parent);
207				rb_set_black(other->rb_left);
208				__rb_rotate_right(parent, root);
209				node = root->rb_node;
210				break;
 
 
 
 
 
211			}
 
 
 
 
 
 
 
 
 
 
 
212		}
213	}
214	if (node)
215		rb_set_black(node);
216}
217
218void rb_erase(struct rb_node *node, struct rb_root *root)
 
 
219{
220	struct rb_node *child, *parent;
221	int color;
 
222
223	if (!node->rb_left)
224		child = node->rb_right;
225	else if (!node->rb_right)
226		child = node->rb_left;
227	else
228	{
229		struct rb_node *old = node, *left;
230
231		node = node->rb_right;
232		while ((left = node->rb_left) != NULL)
233			node = left;
234
235		if (rb_parent(old)) {
236			if (rb_parent(old)->rb_left == old)
237				rb_parent(old)->rb_left = node;
238			else
239				rb_parent(old)->rb_right = node;
240		} else
241			root->rb_node = node;
242
243		child = node->rb_right;
244		parent = rb_parent(node);
245		color = rb_color(node);
246
247		if (parent == old) {
248			parent = node;
249		} else {
250			if (child)
251				rb_set_parent(child, parent);
252			parent->rb_left = child;
 
253
254			node->rb_right = old->rb_right;
255			rb_set_parent(old->rb_right, node);
256		}
257
258		node->rb_parent_color = old->rb_parent_color;
259		node->rb_left = old->rb_left;
260		rb_set_parent(old->rb_left, node);
261
262		goto color;
263	}
264
265	parent = rb_parent(node);
266	color = rb_color(node);
267
268	if (child)
269		rb_set_parent(child, parent);
270	if (parent)
271	{
272		if (parent->rb_left == node)
273			parent->rb_left = child;
274		else
275			parent->rb_right = child;
276	}
277	else
278		root->rb_node = child;
279
280 color:
281	if (color == RB_BLACK)
282		__rb_erase_color(child, parent, root);
283}
284EXPORT_SYMBOL(rb_erase);
285
286static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
287{
288	struct rb_node *parent;
289
290up:
291	func(node, data);
292	parent = rb_parent(node);
293	if (!parent)
294		return;
295
296	if (node == parent->rb_left && parent->rb_right)
297		func(parent->rb_right, data);
298	else if (parent->rb_left)
299		func(parent->rb_left, data);
300
301	node = parent;
302	goto up;
303}
 
304
305/*
306 * after inserting @node into the tree, update the tree to account for
307 * both the new entry and any damage done by rebalance
308 */
309void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
310{
311	if (node->rb_left)
312		node = node->rb_left;
313	else if (node->rb_right)
314		node = node->rb_right;
315
316	rb_augment_path(node, func, data);
317}
318EXPORT_SYMBOL(rb_augment_insert);
319
320/*
321 * before removing the node, find the deepest node on the rebalance path
322 * that will still be there after @node gets removed
 
 
323 */
324struct rb_node *rb_augment_erase_begin(struct rb_node *node)
325{
326	struct rb_node *deepest;
327
328	if (!node->rb_right && !node->rb_left)
329		deepest = rb_parent(node);
330	else if (!node->rb_right)
331		deepest = node->rb_left;
332	else if (!node->rb_left)
333		deepest = node->rb_right;
334	else {
335		deepest = rb_next(node);
336		if (deepest->rb_right)
337			deepest = deepest->rb_right;
338		else if (rb_parent(deepest) != node)
339			deepest = rb_parent(deepest);
340	}
341
342	return deepest;
343}
344EXPORT_SYMBOL(rb_augment_erase_begin);
345
346/*
347 * after removal, update the tree to account for the removed entry
348 * and any rebalance damage.
349 */
350void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
351{
352	if (node)
353		rb_augment_path(node, func, data);
354}
355EXPORT_SYMBOL(rb_augment_erase_end);
356
357/*
358 * This function returns the first node (in sort order) of the tree.
359 */
360struct rb_node *rb_first(const struct rb_root *root)
361{
362	struct rb_node	*n;
363
364	n = root->rb_node;
365	if (!n)
366		return NULL;
367	while (n->rb_left)
368		n = n->rb_left;
369	return n;
370}
371EXPORT_SYMBOL(rb_first);
372
373struct rb_node *rb_last(const struct rb_root *root)
374{
375	struct rb_node	*n;
376
377	n = root->rb_node;
378	if (!n)
379		return NULL;
380	while (n->rb_right)
381		n = n->rb_right;
382	return n;
383}
384EXPORT_SYMBOL(rb_last);
385
386struct rb_node *rb_next(const struct rb_node *node)
387{
388	struct rb_node *parent;
389
390	if (rb_parent(node) == node)
391		return NULL;
392
393	/* If we have a right-hand child, go down and then left as far
394	   as we can. */
 
 
395	if (node->rb_right) {
396		node = node->rb_right; 
397		while (node->rb_left)
398			node=node->rb_left;
399		return (struct rb_node *)node;
400	}
401
402	/* No right-hand children.  Everything down and left is
403	   smaller than us, so any 'next' node must be in the general
404	   direction of our parent. Go up the tree; any time the
405	   ancestor is a right-hand child of its parent, keep going
406	   up. First time it's a left-hand child of its parent, said
407	   parent is our 'next' node. */
 
408	while ((parent = rb_parent(node)) && node == parent->rb_right)
409		node = parent;
410
411	return parent;
412}
413EXPORT_SYMBOL(rb_next);
414
415struct rb_node *rb_prev(const struct rb_node *node)
416{
417	struct rb_node *parent;
418
419	if (rb_parent(node) == node)
420		return NULL;
421
422	/* If we have a left-hand child, go down and then right as far
423	   as we can. */
 
 
424	if (node->rb_left) {
425		node = node->rb_left; 
426		while (node->rb_right)
427			node=node->rb_right;
428		return (struct rb_node *)node;
429	}
430
431	/* No left-hand children. Go up till we find an ancestor which
432	   is a right-hand child of its parent */
 
 
433	while ((parent = rb_parent(node)) && node == parent->rb_left)
434		node = parent;
435
436	return parent;
437}
438EXPORT_SYMBOL(rb_prev);
439
440void rb_replace_node(struct rb_node *victim, struct rb_node *new,
441		     struct rb_root *root)
442{
443	struct rb_node *parent = rb_parent(victim);
444
 
 
 
445	/* Set the surrounding nodes to point to the replacement */
446	if (parent) {
447		if (victim == parent->rb_left)
448			parent->rb_left = new;
449		else
450			parent->rb_right = new;
451	} else {
452		root->rb_node = new;
453	}
454	if (victim->rb_left)
455		rb_set_parent(victim->rb_left, new);
456	if (victim->rb_right)
457		rb_set_parent(victim->rb_right, new);
 
 
 
 
 
 
 
 
458
459	/* Copy the pointers/colour from the victim to the replacement */
460	*new = *victim;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461}
462EXPORT_SYMBOL(rb_replace_node);