Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2  Red Black Trees
  3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  5  (C) 2012  Michel Lespinasse <walken@google.com>
  6
  7  This program is free software; you can redistribute it and/or modify
  8  it under the terms of the GNU General Public License as published by
  9  the Free Software Foundation; either version 2 of the License, or
 10  (at your option) any later version.
 11
 12  This program is distributed in the hope that it will be useful,
 13  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  GNU General Public License for more details.
 16
 17  You should have received a copy of the GNU General Public License
 18  along with this program; if not, write to the Free Software
 19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 20
 21  linux/lib/rbtree.c
 22*/
 23
 24#include <linux/rbtree_augmented.h>
 25#include <linux/export.h>
 26
 27/*
 28 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 29 *
 30 *  1) A node is either red or black
 31 *  2) The root is black
 32 *  3) All leaves (NULL) are black
 33 *  4) Both children of every red node are black
 34 *  5) Every simple path from root to leaves contains the same number
 35 *     of black nodes.
 36 *
 37 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 38 *  consecutive red nodes in a path and every red node is therefore followed by
 39 *  a black. So if B is the number of black nodes on every simple path (as per
 40 *  5), then the longest possible path due to 4 is 2B.
 41 *
 42 *  We shall indicate color with case, where black nodes are uppercase and red
 43 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 44 *  parentheses and have some accompanying text comment.
 45 */
 46
 47/*
 48 * Notes on lockless lookups:
 49 *
 50 * All stores to the tree structure (rb_left and rb_right) must be done using
 51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 52 * tree structure as seen in program order.
 53 *
 54 * These two requirements will allow lockless iteration of the tree -- not
 55 * correct iteration mind you, tree rotations are not atomic so a lookup might
 56 * miss entire subtrees.
 57 *
 58 * But they do guarantee that any such traversal will only see valid elements
 59 * and that it will indeed complete -- does not get stuck in a loop.
 60 *
 61 * It also guarantees that if the lookup returns an element it is the 'correct'
 62 * one. But not returning an element does _NOT_ mean it's not present.
 63 *
 64 * NOTE:
 65 *
 66 * Stores to __rb_parent_color are not important for simple lookups so those
 67 * are left undone as of now. Nor did I check for loops involving parent
 68 * pointers.
 69 */
 70
 71static inline void rb_set_black(struct rb_node *rb)
 72{
 73	rb->__rb_parent_color |= RB_BLACK;
 74}
 75
 76static inline struct rb_node *rb_red_parent(struct rb_node *red)
 77{
 78	return (struct rb_node *)red->__rb_parent_color;
 79}
 80
 81/*
 82 * Helper function for rotations:
 83 * - old's parent and color get assigned to new
 84 * - old gets assigned new as a parent and 'color' as a color.
 85 */
 86static inline void
 87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 88			struct rb_root *root, int color)
 89{
 90	struct rb_node *parent = rb_parent(old);
 91	new->__rb_parent_color = old->__rb_parent_color;
 92	rb_set_parent_color(old, new, color);
 93	__rb_change_child(old, new, parent, root);
 94}
 95
 96static __always_inline void
 97__rb_insert(struct rb_node *node, struct rb_root *root,
 
 98	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 99{
100	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
101
 
 
 
102	while (true) {
103		/*
104		 * Loop invariant: node is red
105		 *
106		 * If there is a black parent, we are done.
107		 * Otherwise, take some corrective action as we don't
108		 * want a red root or two consecutive red nodes.
109		 */
110		if (!parent) {
 
 
 
 
 
111			rb_set_parent_color(node, NULL, RB_BLACK);
112			break;
113		} else if (rb_is_black(parent))
 
 
 
 
 
 
 
 
114			break;
115
116		gparent = rb_red_parent(parent);
117
118		tmp = gparent->rb_right;
119		if (parent != tmp) {	/* parent == gparent->rb_left */
120			if (tmp && rb_is_red(tmp)) {
121				/*
122				 * Case 1 - color flips
123				 *
124				 *       G            g
125				 *      / \          / \
126				 *     p   u  -->   P   U
127				 *    /            /
128				 *   n            n
129				 *
130				 * However, since g's parent might be red, and
131				 * 4) does not allow this, we need to recurse
132				 * at g.
133				 */
134				rb_set_parent_color(tmp, gparent, RB_BLACK);
135				rb_set_parent_color(parent, gparent, RB_BLACK);
136				node = gparent;
137				parent = rb_parent(node);
138				rb_set_parent_color(node, parent, RB_RED);
139				continue;
140			}
141
142			tmp = parent->rb_right;
143			if (node == tmp) {
144				/*
145				 * Case 2 - left rotate at parent
 
146				 *
147				 *      G             G
148				 *     / \           / \
149				 *    p   U  -->    n   U
150				 *     \           /
151				 *      n         p
152				 *
153				 * This still leaves us in violation of 4), the
154				 * continuation into Case 3 will fix that.
155				 */
156				tmp = node->rb_left;
157				WRITE_ONCE(parent->rb_right, tmp);
158				WRITE_ONCE(node->rb_left, parent);
159				if (tmp)
160					rb_set_parent_color(tmp, parent,
161							    RB_BLACK);
162				rb_set_parent_color(parent, node, RB_RED);
163				augment_rotate(parent, node);
164				parent = node;
165				tmp = node->rb_right;
166			}
167
168			/*
169			 * Case 3 - right rotate at gparent
 
170			 *
171			 *        G           P
172			 *       / \         / \
173			 *      p   U  -->  n   g
174			 *     /                 \
175			 *    n                   U
176			 */
177			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178			WRITE_ONCE(parent->rb_right, gparent);
179			if (tmp)
180				rb_set_parent_color(tmp, gparent, RB_BLACK);
181			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182			augment_rotate(gparent, parent);
183			break;
184		} else {
185			tmp = gparent->rb_left;
186			if (tmp && rb_is_red(tmp)) {
187				/* Case 1 - color flips */
188				rb_set_parent_color(tmp, gparent, RB_BLACK);
189				rb_set_parent_color(parent, gparent, RB_BLACK);
190				node = gparent;
191				parent = rb_parent(node);
192				rb_set_parent_color(node, parent, RB_RED);
193				continue;
194			}
195
196			tmp = parent->rb_left;
197			if (node == tmp) {
198				/* Case 2 - right rotate at parent */
199				tmp = node->rb_right;
200				WRITE_ONCE(parent->rb_left, tmp);
201				WRITE_ONCE(node->rb_right, parent);
202				if (tmp)
203					rb_set_parent_color(tmp, parent,
204							    RB_BLACK);
205				rb_set_parent_color(parent, node, RB_RED);
206				augment_rotate(parent, node);
207				parent = node;
208				tmp = node->rb_left;
209			}
210
211			/* Case 3 - left rotate at gparent */
212			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213			WRITE_ONCE(parent->rb_left, gparent);
214			if (tmp)
215				rb_set_parent_color(tmp, gparent, RB_BLACK);
216			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
217			augment_rotate(gparent, parent);
218			break;
219		}
220	}
221}
222
223/*
224 * Inline version for rb_erase() use - we want to be able to inline
225 * and eliminate the dummy_rotate callback there
226 */
227static __always_inline void
228____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230{
231	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
232
233	while (true) {
234		/*
235		 * Loop invariants:
236		 * - node is black (or NULL on first iteration)
237		 * - node is not the root (parent is not NULL)
238		 * - All leaf paths going through parent and node have a
239		 *   black node count that is 1 lower than other leaf paths.
240		 */
241		sibling = parent->rb_right;
242		if (node != sibling) {	/* node == parent->rb_left */
243			if (rb_is_red(sibling)) {
244				/*
245				 * Case 1 - left rotate at parent
246				 *
247				 *     P               S
248				 *    / \             / \
249				 *   N   s    -->    p   Sr
250				 *      / \         / \
251				 *     Sl  Sr      N   Sl
252				 */
253				tmp1 = sibling->rb_left;
254				WRITE_ONCE(parent->rb_right, tmp1);
255				WRITE_ONCE(sibling->rb_left, parent);
256				rb_set_parent_color(tmp1, parent, RB_BLACK);
257				__rb_rotate_set_parents(parent, sibling, root,
258							RB_RED);
259				augment_rotate(parent, sibling);
260				sibling = tmp1;
261			}
262			tmp1 = sibling->rb_right;
263			if (!tmp1 || rb_is_black(tmp1)) {
264				tmp2 = sibling->rb_left;
265				if (!tmp2 || rb_is_black(tmp2)) {
266					/*
267					 * Case 2 - sibling color flip
268					 * (p could be either color here)
269					 *
270					 *    (p)           (p)
271					 *    / \           / \
272					 *   N   S    -->  N   s
273					 *      / \           / \
274					 *     Sl  Sr        Sl  Sr
275					 *
276					 * This leaves us violating 5) which
277					 * can be fixed by flipping p to black
278					 * if it was red, or by recursing at p.
279					 * p is red when coming from Case 1.
280					 */
281					rb_set_parent_color(sibling, parent,
282							    RB_RED);
283					if (rb_is_red(parent))
284						rb_set_black(parent);
285					else {
286						node = parent;
287						parent = rb_parent(node);
288						if (parent)
289							continue;
290					}
291					break;
292				}
293				/*
294				 * Case 3 - right rotate at sibling
295				 * (p could be either color here)
296				 *
297				 *   (p)           (p)
298				 *   / \           / \
299				 *  N   S    -->  N   sl
300				 *     / \             \
301				 *    sl  Sr            S
302				 *                       \
303				 *                        Sr
304				 *
305				 * Note: p might be red, and then both
306				 * p and sl are red after rotation(which
307				 * breaks property 4). This is fixed in
308				 * Case 4 (in __rb_rotate_set_parents()
309				 *         which set sl the color of p
310				 *         and set p RB_BLACK)
311				 *
312				 *   (p)            (sl)
313				 *   / \            /  \
314				 *  N   sl   -->   P    S
315				 *       \        /      \
316				 *        S      N        Sr
317				 *         \
318				 *          Sr
319				 */
320				tmp1 = tmp2->rb_right;
321				WRITE_ONCE(sibling->rb_left, tmp1);
322				WRITE_ONCE(tmp2->rb_right, sibling);
323				WRITE_ONCE(parent->rb_right, tmp2);
324				if (tmp1)
325					rb_set_parent_color(tmp1, sibling,
326							    RB_BLACK);
327				augment_rotate(sibling, tmp2);
328				tmp1 = sibling;
329				sibling = tmp2;
330			}
331			/*
332			 * Case 4 - left rotate at parent + color flips
333			 * (p and sl could be either color here.
334			 *  After rotation, p becomes black, s acquires
335			 *  p's color, and sl keeps its color)
336			 *
337			 *      (p)             (s)
338			 *      / \             / \
339			 *     N   S     -->   P   Sr
340			 *        / \         / \
341			 *      (sl) sr      N  (sl)
342			 */
343			tmp2 = sibling->rb_left;
344			WRITE_ONCE(parent->rb_right, tmp2);
345			WRITE_ONCE(sibling->rb_left, parent);
346			rb_set_parent_color(tmp1, sibling, RB_BLACK);
347			if (tmp2)
348				rb_set_parent(tmp2, parent);
349			__rb_rotate_set_parents(parent, sibling, root,
350						RB_BLACK);
351			augment_rotate(parent, sibling);
352			break;
353		} else {
354			sibling = parent->rb_left;
355			if (rb_is_red(sibling)) {
356				/* Case 1 - right rotate at parent */
357				tmp1 = sibling->rb_right;
358				WRITE_ONCE(parent->rb_left, tmp1);
359				WRITE_ONCE(sibling->rb_right, parent);
360				rb_set_parent_color(tmp1, parent, RB_BLACK);
361				__rb_rotate_set_parents(parent, sibling, root,
362							RB_RED);
363				augment_rotate(parent, sibling);
364				sibling = tmp1;
365			}
366			tmp1 = sibling->rb_left;
367			if (!tmp1 || rb_is_black(tmp1)) {
368				tmp2 = sibling->rb_right;
369				if (!tmp2 || rb_is_black(tmp2)) {
370					/* Case 2 - sibling color flip */
371					rb_set_parent_color(sibling, parent,
372							    RB_RED);
373					if (rb_is_red(parent))
374						rb_set_black(parent);
375					else {
376						node = parent;
377						parent = rb_parent(node);
378						if (parent)
379							continue;
380					}
381					break;
382				}
383				/* Case 3 - left rotate at sibling */
384				tmp1 = tmp2->rb_left;
385				WRITE_ONCE(sibling->rb_right, tmp1);
386				WRITE_ONCE(tmp2->rb_left, sibling);
387				WRITE_ONCE(parent->rb_left, tmp2);
388				if (tmp1)
389					rb_set_parent_color(tmp1, sibling,
390							    RB_BLACK);
391				augment_rotate(sibling, tmp2);
392				tmp1 = sibling;
393				sibling = tmp2;
394			}
395			/* Case 4 - right rotate at parent + color flips */
396			tmp2 = sibling->rb_right;
397			WRITE_ONCE(parent->rb_left, tmp2);
398			WRITE_ONCE(sibling->rb_right, parent);
399			rb_set_parent_color(tmp1, sibling, RB_BLACK);
400			if (tmp2)
401				rb_set_parent(tmp2, parent);
402			__rb_rotate_set_parents(parent, sibling, root,
403						RB_BLACK);
404			augment_rotate(parent, sibling);
405			break;
406		}
407	}
408}
409
410/* Non-inline version for rb_erase_augmented() use */
411void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
412	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
413{
414	____rb_erase_color(parent, root, augment_rotate);
415}
416EXPORT_SYMBOL(__rb_erase_color);
417
418/*
419 * Non-augmented rbtree manipulation functions.
420 *
421 * We use dummy augmented callbacks here, and have the compiler optimize them
422 * out of the rb_insert_color() and rb_erase() function definitions.
423 */
424
425static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
426static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
427static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
428
429static const struct rb_augment_callbacks dummy_callbacks = {
430	dummy_propagate, dummy_copy, dummy_rotate
 
 
431};
432
433void rb_insert_color(struct rb_node *node, struct rb_root *root)
434{
435	__rb_insert(node, root, dummy_rotate);
436}
437EXPORT_SYMBOL(rb_insert_color);
438
439void rb_erase(struct rb_node *node, struct rb_root *root)
440{
441	struct rb_node *rebalance;
442	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
 
443	if (rebalance)
444		____rb_erase_color(rebalance, root, dummy_rotate);
445}
446EXPORT_SYMBOL(rb_erase);
447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448/*
449 * Augmented rbtree manipulation functions.
450 *
451 * This instantiates the same __always_inline functions as in the non-augmented
452 * case, but this time with user-defined callbacks.
453 */
454
455void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
 
456	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
457{
458	__rb_insert(node, root, augment_rotate);
459}
460EXPORT_SYMBOL(__rb_insert_augmented);
461
462/*
463 * This function returns the first node (in sort order) of the tree.
464 */
465struct rb_node *rb_first(const struct rb_root *root)
466{
467	struct rb_node	*n;
468
469	n = root->rb_node;
470	if (!n)
471		return NULL;
472	while (n->rb_left)
473		n = n->rb_left;
474	return n;
475}
476EXPORT_SYMBOL(rb_first);
477
478struct rb_node *rb_last(const struct rb_root *root)
479{
480	struct rb_node	*n;
481
482	n = root->rb_node;
483	if (!n)
484		return NULL;
485	while (n->rb_right)
486		n = n->rb_right;
487	return n;
488}
489EXPORT_SYMBOL(rb_last);
490
491struct rb_node *rb_next(const struct rb_node *node)
492{
493	struct rb_node *parent;
494
495	if (RB_EMPTY_NODE(node))
496		return NULL;
497
498	/*
499	 * If we have a right-hand child, go down and then left as far
500	 * as we can.
501	 */
502	if (node->rb_right) {
503		node = node->rb_right; 
504		while (node->rb_left)
505			node=node->rb_left;
506		return (struct rb_node *)node;
507	}
508
509	/*
510	 * No right-hand children. Everything down and left is smaller than us,
511	 * so any 'next' node must be in the general direction of our parent.
512	 * Go up the tree; any time the ancestor is a right-hand child of its
513	 * parent, keep going up. First time it's a left-hand child of its
514	 * parent, said parent is our 'next' node.
515	 */
516	while ((parent = rb_parent(node)) && node == parent->rb_right)
517		node = parent;
518
519	return parent;
520}
521EXPORT_SYMBOL(rb_next);
522
523struct rb_node *rb_prev(const struct rb_node *node)
524{
525	struct rb_node *parent;
526
527	if (RB_EMPTY_NODE(node))
528		return NULL;
529
530	/*
531	 * If we have a left-hand child, go down and then right as far
532	 * as we can.
533	 */
534	if (node->rb_left) {
535		node = node->rb_left; 
536		while (node->rb_right)
537			node=node->rb_right;
538		return (struct rb_node *)node;
539	}
540
541	/*
542	 * No left-hand children. Go up till we find an ancestor which
543	 * is a right-hand child of its parent.
544	 */
545	while ((parent = rb_parent(node)) && node == parent->rb_left)
546		node = parent;
547
548	return parent;
549}
550EXPORT_SYMBOL(rb_prev);
551
552void rb_replace_node(struct rb_node *victim, struct rb_node *new,
553		     struct rb_root *root)
554{
555	struct rb_node *parent = rb_parent(victim);
556
557	/* Copy the pointers/colour from the victim to the replacement */
558	*new = *victim;
559
560	/* Set the surrounding nodes to point to the replacement */
561	if (victim->rb_left)
562		rb_set_parent(victim->rb_left, new);
563	if (victim->rb_right)
564		rb_set_parent(victim->rb_right, new);
565	__rb_change_child(victim, new, parent, root);
566}
567EXPORT_SYMBOL(rb_replace_node);
 
 
 
 
 
 
 
 
 
 
568
569void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
570			 struct rb_root *root)
571{
572	struct rb_node *parent = rb_parent(victim);
573
574	/* Copy the pointers/colour from the victim to the replacement */
575	*new = *victim;
576
577	/* Set the surrounding nodes to point to the replacement */
578	if (victim->rb_left)
579		rb_set_parent(victim->rb_left, new);
580	if (victim->rb_right)
581		rb_set_parent(victim->rb_right, new);
582
583	/* Set the parent's pointer to the new node last after an RCU barrier
584	 * so that the pointers onwards are seen to be set correctly when doing
585	 * an RCU walk over the tree.
586	 */
587	__rb_change_child_rcu(victim, new, parent, root);
588}
589EXPORT_SYMBOL(rb_replace_node_rcu);
590
591static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
592{
593	for (;;) {
594		if (node->rb_left)
595			node = node->rb_left;
596		else if (node->rb_right)
597			node = node->rb_right;
598		else
599			return (struct rb_node *)node;
600	}
601}
602
603struct rb_node *rb_next_postorder(const struct rb_node *node)
604{
605	const struct rb_node *parent;
606	if (!node)
607		return NULL;
608	parent = rb_parent(node);
609
610	/* If we're sitting on node, we've already seen our children */
611	if (parent && node == parent->rb_left && parent->rb_right) {
612		/* If we are the parent's left node, go to the parent's right
613		 * node then all the way down to the left */
614		return rb_left_deepest_node(parent->rb_right);
615	} else
616		/* Otherwise we are the parent's right node, and the parent
617		 * should be next */
618		return (struct rb_node *)parent;
619}
620EXPORT_SYMBOL(rb_next_postorder);
621
622struct rb_node *rb_first_postorder(const struct rb_root *root)
623{
624	if (!root->rb_node)
625		return NULL;
626
627	return rb_left_deepest_node(root->rb_node);
628}
629EXPORT_SYMBOL(rb_first_postorder);
v4.17
  1/*
  2  Red Black Trees
  3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  5  (C) 2012  Michel Lespinasse <walken@google.com>
  6
  7  This program is free software; you can redistribute it and/or modify
  8  it under the terms of the GNU General Public License as published by
  9  the Free Software Foundation; either version 2 of the License, or
 10  (at your option) any later version.
 11
 12  This program is distributed in the hope that it will be useful,
 13  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  GNU General Public License for more details.
 16
 17  You should have received a copy of the GNU General Public License
 18  along with this program; if not, write to the Free Software
 19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 20
 21  linux/lib/rbtree.c
 22*/
 23
 24#include <linux/rbtree_augmented.h>
 25#include <linux/export.h>
 26
 27/*
 28 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 29 *
 30 *  1) A node is either red or black
 31 *  2) The root is black
 32 *  3) All leaves (NULL) are black
 33 *  4) Both children of every red node are black
 34 *  5) Every simple path from root to leaves contains the same number
 35 *     of black nodes.
 36 *
 37 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 38 *  consecutive red nodes in a path and every red node is therefore followed by
 39 *  a black. So if B is the number of black nodes on every simple path (as per
 40 *  5), then the longest possible path due to 4 is 2B.
 41 *
 42 *  We shall indicate color with case, where black nodes are uppercase and red
 43 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 44 *  parentheses and have some accompanying text comment.
 45 */
 46
 47/*
 48 * Notes on lockless lookups:
 49 *
 50 * All stores to the tree structure (rb_left and rb_right) must be done using
 51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 52 * tree structure as seen in program order.
 53 *
 54 * These two requirements will allow lockless iteration of the tree -- not
 55 * correct iteration mind you, tree rotations are not atomic so a lookup might
 56 * miss entire subtrees.
 57 *
 58 * But they do guarantee that any such traversal will only see valid elements
 59 * and that it will indeed complete -- does not get stuck in a loop.
 60 *
 61 * It also guarantees that if the lookup returns an element it is the 'correct'
 62 * one. But not returning an element does _NOT_ mean it's not present.
 63 *
 64 * NOTE:
 65 *
 66 * Stores to __rb_parent_color are not important for simple lookups so those
 67 * are left undone as of now. Nor did I check for loops involving parent
 68 * pointers.
 69 */
 70
 71static inline void rb_set_black(struct rb_node *rb)
 72{
 73	rb->__rb_parent_color |= RB_BLACK;
 74}
 75
 76static inline struct rb_node *rb_red_parent(struct rb_node *red)
 77{
 78	return (struct rb_node *)red->__rb_parent_color;
 79}
 80
 81/*
 82 * Helper function for rotations:
 83 * - old's parent and color get assigned to new
 84 * - old gets assigned new as a parent and 'color' as a color.
 85 */
 86static inline void
 87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 88			struct rb_root *root, int color)
 89{
 90	struct rb_node *parent = rb_parent(old);
 91	new->__rb_parent_color = old->__rb_parent_color;
 92	rb_set_parent_color(old, new, color);
 93	__rb_change_child(old, new, parent, root);
 94}
 95
 96static __always_inline void
 97__rb_insert(struct rb_node *node, struct rb_root *root,
 98	    bool newleft, struct rb_node **leftmost,
 99	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
100{
101	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
102
103	if (newleft)
104		*leftmost = node;
105
106	while (true) {
107		/*
108		 * Loop invariant: node is red.
 
 
 
 
109		 */
110		if (unlikely(!parent)) {
111			/*
112			 * The inserted node is root. Either this is the
113			 * first node, or we recursed at Case 1 below and
114			 * are no longer violating 4).
115			 */
116			rb_set_parent_color(node, NULL, RB_BLACK);
117			break;
118		}
119
120		/*
121		 * If there is a black parent, we are done.
122		 * Otherwise, take some corrective action as,
123		 * per 4), we don't want a red root or two
124		 * consecutive red nodes.
125		 */
126		if(rb_is_black(parent))
127			break;
128
129		gparent = rb_red_parent(parent);
130
131		tmp = gparent->rb_right;
132		if (parent != tmp) {	/* parent == gparent->rb_left */
133			if (tmp && rb_is_red(tmp)) {
134				/*
135				 * Case 1 - node's uncle is red (color flips).
136				 *
137				 *       G            g
138				 *      / \          / \
139				 *     p   u  -->   P   U
140				 *    /            /
141				 *   n            n
142				 *
143				 * However, since g's parent might be red, and
144				 * 4) does not allow this, we need to recurse
145				 * at g.
146				 */
147				rb_set_parent_color(tmp, gparent, RB_BLACK);
148				rb_set_parent_color(parent, gparent, RB_BLACK);
149				node = gparent;
150				parent = rb_parent(node);
151				rb_set_parent_color(node, parent, RB_RED);
152				continue;
153			}
154
155			tmp = parent->rb_right;
156			if (node == tmp) {
157				/*
158				 * Case 2 - node's uncle is black and node is
159				 * the parent's right child (left rotate at parent).
160				 *
161				 *      G             G
162				 *     / \           / \
163				 *    p   U  -->    n   U
164				 *     \           /
165				 *      n         p
166				 *
167				 * This still leaves us in violation of 4), the
168				 * continuation into Case 3 will fix that.
169				 */
170				tmp = node->rb_left;
171				WRITE_ONCE(parent->rb_right, tmp);
172				WRITE_ONCE(node->rb_left, parent);
173				if (tmp)
174					rb_set_parent_color(tmp, parent,
175							    RB_BLACK);
176				rb_set_parent_color(parent, node, RB_RED);
177				augment_rotate(parent, node);
178				parent = node;
179				tmp = node->rb_right;
180			}
181
182			/*
183			 * Case 3 - node's uncle is black and node is
184			 * the parent's left child (right rotate at gparent).
185			 *
186			 *        G           P
187			 *       / \         / \
188			 *      p   U  -->  n   g
189			 *     /                 \
190			 *    n                   U
191			 */
192			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
193			WRITE_ONCE(parent->rb_right, gparent);
194			if (tmp)
195				rb_set_parent_color(tmp, gparent, RB_BLACK);
196			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
197			augment_rotate(gparent, parent);
198			break;
199		} else {
200			tmp = gparent->rb_left;
201			if (tmp && rb_is_red(tmp)) {
202				/* Case 1 - color flips */
203				rb_set_parent_color(tmp, gparent, RB_BLACK);
204				rb_set_parent_color(parent, gparent, RB_BLACK);
205				node = gparent;
206				parent = rb_parent(node);
207				rb_set_parent_color(node, parent, RB_RED);
208				continue;
209			}
210
211			tmp = parent->rb_left;
212			if (node == tmp) {
213				/* Case 2 - right rotate at parent */
214				tmp = node->rb_right;
215				WRITE_ONCE(parent->rb_left, tmp);
216				WRITE_ONCE(node->rb_right, parent);
217				if (tmp)
218					rb_set_parent_color(tmp, parent,
219							    RB_BLACK);
220				rb_set_parent_color(parent, node, RB_RED);
221				augment_rotate(parent, node);
222				parent = node;
223				tmp = node->rb_left;
224			}
225
226			/* Case 3 - left rotate at gparent */
227			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
228			WRITE_ONCE(parent->rb_left, gparent);
229			if (tmp)
230				rb_set_parent_color(tmp, gparent, RB_BLACK);
231			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
232			augment_rotate(gparent, parent);
233			break;
234		}
235	}
236}
237
238/*
239 * Inline version for rb_erase() use - we want to be able to inline
240 * and eliminate the dummy_rotate callback there
241 */
242static __always_inline void
243____rb_erase_color(struct rb_node *parent, struct rb_root *root,
244	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
245{
246	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
247
248	while (true) {
249		/*
250		 * Loop invariants:
251		 * - node is black (or NULL on first iteration)
252		 * - node is not the root (parent is not NULL)
253		 * - All leaf paths going through parent and node have a
254		 *   black node count that is 1 lower than other leaf paths.
255		 */
256		sibling = parent->rb_right;
257		if (node != sibling) {	/* node == parent->rb_left */
258			if (rb_is_red(sibling)) {
259				/*
260				 * Case 1 - left rotate at parent
261				 *
262				 *     P               S
263				 *    / \             / \
264				 *   N   s    -->    p   Sr
265				 *      / \         / \
266				 *     Sl  Sr      N   Sl
267				 */
268				tmp1 = sibling->rb_left;
269				WRITE_ONCE(parent->rb_right, tmp1);
270				WRITE_ONCE(sibling->rb_left, parent);
271				rb_set_parent_color(tmp1, parent, RB_BLACK);
272				__rb_rotate_set_parents(parent, sibling, root,
273							RB_RED);
274				augment_rotate(parent, sibling);
275				sibling = tmp1;
276			}
277			tmp1 = sibling->rb_right;
278			if (!tmp1 || rb_is_black(tmp1)) {
279				tmp2 = sibling->rb_left;
280				if (!tmp2 || rb_is_black(tmp2)) {
281					/*
282					 * Case 2 - sibling color flip
283					 * (p could be either color here)
284					 *
285					 *    (p)           (p)
286					 *    / \           / \
287					 *   N   S    -->  N   s
288					 *      / \           / \
289					 *     Sl  Sr        Sl  Sr
290					 *
291					 * This leaves us violating 5) which
292					 * can be fixed by flipping p to black
293					 * if it was red, or by recursing at p.
294					 * p is red when coming from Case 1.
295					 */
296					rb_set_parent_color(sibling, parent,
297							    RB_RED);
298					if (rb_is_red(parent))
299						rb_set_black(parent);
300					else {
301						node = parent;
302						parent = rb_parent(node);
303						if (parent)
304							continue;
305					}
306					break;
307				}
308				/*
309				 * Case 3 - right rotate at sibling
310				 * (p could be either color here)
311				 *
312				 *   (p)           (p)
313				 *   / \           / \
314				 *  N   S    -->  N   sl
315				 *     / \             \
316				 *    sl  Sr            S
317				 *                       \
318				 *                        Sr
319				 *
320				 * Note: p might be red, and then both
321				 * p and sl are red after rotation(which
322				 * breaks property 4). This is fixed in
323				 * Case 4 (in __rb_rotate_set_parents()
324				 *         which set sl the color of p
325				 *         and set p RB_BLACK)
326				 *
327				 *   (p)            (sl)
328				 *   / \            /  \
329				 *  N   sl   -->   P    S
330				 *       \        /      \
331				 *        S      N        Sr
332				 *         \
333				 *          Sr
334				 */
335				tmp1 = tmp2->rb_right;
336				WRITE_ONCE(sibling->rb_left, tmp1);
337				WRITE_ONCE(tmp2->rb_right, sibling);
338				WRITE_ONCE(parent->rb_right, tmp2);
339				if (tmp1)
340					rb_set_parent_color(tmp1, sibling,
341							    RB_BLACK);
342				augment_rotate(sibling, tmp2);
343				tmp1 = sibling;
344				sibling = tmp2;
345			}
346			/*
347			 * Case 4 - left rotate at parent + color flips
348			 * (p and sl could be either color here.
349			 *  After rotation, p becomes black, s acquires
350			 *  p's color, and sl keeps its color)
351			 *
352			 *      (p)             (s)
353			 *      / \             / \
354			 *     N   S     -->   P   Sr
355			 *        / \         / \
356			 *      (sl) sr      N  (sl)
357			 */
358			tmp2 = sibling->rb_left;
359			WRITE_ONCE(parent->rb_right, tmp2);
360			WRITE_ONCE(sibling->rb_left, parent);
361			rb_set_parent_color(tmp1, sibling, RB_BLACK);
362			if (tmp2)
363				rb_set_parent(tmp2, parent);
364			__rb_rotate_set_parents(parent, sibling, root,
365						RB_BLACK);
366			augment_rotate(parent, sibling);
367			break;
368		} else {
369			sibling = parent->rb_left;
370			if (rb_is_red(sibling)) {
371				/* Case 1 - right rotate at parent */
372				tmp1 = sibling->rb_right;
373				WRITE_ONCE(parent->rb_left, tmp1);
374				WRITE_ONCE(sibling->rb_right, parent);
375				rb_set_parent_color(tmp1, parent, RB_BLACK);
376				__rb_rotate_set_parents(parent, sibling, root,
377							RB_RED);
378				augment_rotate(parent, sibling);
379				sibling = tmp1;
380			}
381			tmp1 = sibling->rb_left;
382			if (!tmp1 || rb_is_black(tmp1)) {
383				tmp2 = sibling->rb_right;
384				if (!tmp2 || rb_is_black(tmp2)) {
385					/* Case 2 - sibling color flip */
386					rb_set_parent_color(sibling, parent,
387							    RB_RED);
388					if (rb_is_red(parent))
389						rb_set_black(parent);
390					else {
391						node = parent;
392						parent = rb_parent(node);
393						if (parent)
394							continue;
395					}
396					break;
397				}
398				/* Case 3 - left rotate at sibling */
399				tmp1 = tmp2->rb_left;
400				WRITE_ONCE(sibling->rb_right, tmp1);
401				WRITE_ONCE(tmp2->rb_left, sibling);
402				WRITE_ONCE(parent->rb_left, tmp2);
403				if (tmp1)
404					rb_set_parent_color(tmp1, sibling,
405							    RB_BLACK);
406				augment_rotate(sibling, tmp2);
407				tmp1 = sibling;
408				sibling = tmp2;
409			}
410			/* Case 4 - right rotate at parent + color flips */
411			tmp2 = sibling->rb_right;
412			WRITE_ONCE(parent->rb_left, tmp2);
413			WRITE_ONCE(sibling->rb_right, parent);
414			rb_set_parent_color(tmp1, sibling, RB_BLACK);
415			if (tmp2)
416				rb_set_parent(tmp2, parent);
417			__rb_rotate_set_parents(parent, sibling, root,
418						RB_BLACK);
419			augment_rotate(parent, sibling);
420			break;
421		}
422	}
423}
424
425/* Non-inline version for rb_erase_augmented() use */
426void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
427	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
428{
429	____rb_erase_color(parent, root, augment_rotate);
430}
431EXPORT_SYMBOL(__rb_erase_color);
432
433/*
434 * Non-augmented rbtree manipulation functions.
435 *
436 * We use dummy augmented callbacks here, and have the compiler optimize them
437 * out of the rb_insert_color() and rb_erase() function definitions.
438 */
439
440static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
441static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
442static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
443
444static const struct rb_augment_callbacks dummy_callbacks = {
445	.propagate = dummy_propagate,
446	.copy = dummy_copy,
447	.rotate = dummy_rotate
448};
449
450void rb_insert_color(struct rb_node *node, struct rb_root *root)
451{
452	__rb_insert(node, root, false, NULL, dummy_rotate);
453}
454EXPORT_SYMBOL(rb_insert_color);
455
456void rb_erase(struct rb_node *node, struct rb_root *root)
457{
458	struct rb_node *rebalance;
459	rebalance = __rb_erase_augmented(node, root,
460					 NULL, &dummy_callbacks);
461	if (rebalance)
462		____rb_erase_color(rebalance, root, dummy_rotate);
463}
464EXPORT_SYMBOL(rb_erase);
465
466void rb_insert_color_cached(struct rb_node *node,
467			    struct rb_root_cached *root, bool leftmost)
468{
469	__rb_insert(node, &root->rb_root, leftmost,
470		    &root->rb_leftmost, dummy_rotate);
471}
472EXPORT_SYMBOL(rb_insert_color_cached);
473
474void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
475{
476	struct rb_node *rebalance;
477	rebalance = __rb_erase_augmented(node, &root->rb_root,
478					 &root->rb_leftmost, &dummy_callbacks);
479	if (rebalance)
480		____rb_erase_color(rebalance, &root->rb_root, dummy_rotate);
481}
482EXPORT_SYMBOL(rb_erase_cached);
483
484/*
485 * Augmented rbtree manipulation functions.
486 *
487 * This instantiates the same __always_inline functions as in the non-augmented
488 * case, but this time with user-defined callbacks.
489 */
490
491void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
492			   bool newleft, struct rb_node **leftmost,
493	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
494{
495	__rb_insert(node, root, newleft, leftmost, augment_rotate);
496}
497EXPORT_SYMBOL(__rb_insert_augmented);
498
499/*
500 * This function returns the first node (in sort order) of the tree.
501 */
502struct rb_node *rb_first(const struct rb_root *root)
503{
504	struct rb_node	*n;
505
506	n = root->rb_node;
507	if (!n)
508		return NULL;
509	while (n->rb_left)
510		n = n->rb_left;
511	return n;
512}
513EXPORT_SYMBOL(rb_first);
514
515struct rb_node *rb_last(const struct rb_root *root)
516{
517	struct rb_node	*n;
518
519	n = root->rb_node;
520	if (!n)
521		return NULL;
522	while (n->rb_right)
523		n = n->rb_right;
524	return n;
525}
526EXPORT_SYMBOL(rb_last);
527
528struct rb_node *rb_next(const struct rb_node *node)
529{
530	struct rb_node *parent;
531
532	if (RB_EMPTY_NODE(node))
533		return NULL;
534
535	/*
536	 * If we have a right-hand child, go down and then left as far
537	 * as we can.
538	 */
539	if (node->rb_right) {
540		node = node->rb_right;
541		while (node->rb_left)
542			node=node->rb_left;
543		return (struct rb_node *)node;
544	}
545
546	/*
547	 * No right-hand children. Everything down and left is smaller than us,
548	 * so any 'next' node must be in the general direction of our parent.
549	 * Go up the tree; any time the ancestor is a right-hand child of its
550	 * parent, keep going up. First time it's a left-hand child of its
551	 * parent, said parent is our 'next' node.
552	 */
553	while ((parent = rb_parent(node)) && node == parent->rb_right)
554		node = parent;
555
556	return parent;
557}
558EXPORT_SYMBOL(rb_next);
559
560struct rb_node *rb_prev(const struct rb_node *node)
561{
562	struct rb_node *parent;
563
564	if (RB_EMPTY_NODE(node))
565		return NULL;
566
567	/*
568	 * If we have a left-hand child, go down and then right as far
569	 * as we can.
570	 */
571	if (node->rb_left) {
572		node = node->rb_left;
573		while (node->rb_right)
574			node=node->rb_right;
575		return (struct rb_node *)node;
576	}
577
578	/*
579	 * No left-hand children. Go up till we find an ancestor which
580	 * is a right-hand child of its parent.
581	 */
582	while ((parent = rb_parent(node)) && node == parent->rb_left)
583		node = parent;
584
585	return parent;
586}
587EXPORT_SYMBOL(rb_prev);
588
589void rb_replace_node(struct rb_node *victim, struct rb_node *new,
590		     struct rb_root *root)
591{
592	struct rb_node *parent = rb_parent(victim);
593
594	/* Copy the pointers/colour from the victim to the replacement */
595	*new = *victim;
596
597	/* Set the surrounding nodes to point to the replacement */
598	if (victim->rb_left)
599		rb_set_parent(victim->rb_left, new);
600	if (victim->rb_right)
601		rb_set_parent(victim->rb_right, new);
602	__rb_change_child(victim, new, parent, root);
603}
604EXPORT_SYMBOL(rb_replace_node);
605
606void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new,
607			    struct rb_root_cached *root)
608{
609	rb_replace_node(victim, new, &root->rb_root);
610
611	if (root->rb_leftmost == victim)
612		root->rb_leftmost = new;
613}
614EXPORT_SYMBOL(rb_replace_node_cached);
615
616void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
617			 struct rb_root *root)
618{
619	struct rb_node *parent = rb_parent(victim);
620
621	/* Copy the pointers/colour from the victim to the replacement */
622	*new = *victim;
623
624	/* Set the surrounding nodes to point to the replacement */
625	if (victim->rb_left)
626		rb_set_parent(victim->rb_left, new);
627	if (victim->rb_right)
628		rb_set_parent(victim->rb_right, new);
629
630	/* Set the parent's pointer to the new node last after an RCU barrier
631	 * so that the pointers onwards are seen to be set correctly when doing
632	 * an RCU walk over the tree.
633	 */
634	__rb_change_child_rcu(victim, new, parent, root);
635}
636EXPORT_SYMBOL(rb_replace_node_rcu);
637
638static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
639{
640	for (;;) {
641		if (node->rb_left)
642			node = node->rb_left;
643		else if (node->rb_right)
644			node = node->rb_right;
645		else
646			return (struct rb_node *)node;
647	}
648}
649
650struct rb_node *rb_next_postorder(const struct rb_node *node)
651{
652	const struct rb_node *parent;
653	if (!node)
654		return NULL;
655	parent = rb_parent(node);
656
657	/* If we're sitting on node, we've already seen our children */
658	if (parent && node == parent->rb_left && parent->rb_right) {
659		/* If we are the parent's left node, go to the parent's right
660		 * node then all the way down to the left */
661		return rb_left_deepest_node(parent->rb_right);
662	} else
663		/* Otherwise we are the parent's right node, and the parent
664		 * should be next */
665		return (struct rb_node *)parent;
666}
667EXPORT_SYMBOL(rb_next_postorder);
668
669struct rb_node *rb_first_postorder(const struct rb_root *root)
670{
671	if (!root->rb_node)
672		return NULL;
673
674	return rb_left_deepest_node(root->rb_node);
675}
676EXPORT_SYMBOL(rb_first_postorder);