Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
  67#include <linux/fault-inject.h>
  68
  69#include <asm/futex.h>
  70
  71#include "locking/rtmutex_common.h"
  72
  73/*
  74 * READ this before attempting to hack on futexes!
  75 *
  76 * Basic futex operation and ordering guarantees
  77 * =============================================
  78 *
  79 * The waiter reads the futex value in user space and calls
  80 * futex_wait(). This function computes the hash bucket and acquires
  81 * the hash bucket lock. After that it reads the futex user space value
  82 * again and verifies that the data has not changed. If it has not changed
  83 * it enqueues itself into the hash bucket, releases the hash bucket lock
  84 * and schedules.
  85 *
  86 * The waker side modifies the user space value of the futex and calls
  87 * futex_wake(). This function computes the hash bucket and acquires the
  88 * hash bucket lock. Then it looks for waiters on that futex in the hash
  89 * bucket and wakes them.
  90 *
  91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  92 * the hb spinlock can be avoided and simply return. In order for this
  93 * optimization to work, ordering guarantees must exist so that the waiter
  94 * being added to the list is acknowledged when the list is concurrently being
  95 * checked by the waker, avoiding scenarios like the following:
  96 *
  97 * CPU 0                               CPU 1
  98 * val = *futex;
  99 * sys_futex(WAIT, futex, val);
 100 *   futex_wait(futex, val);
 101 *   uval = *futex;
 102 *                                     *futex = newval;
 103 *                                     sys_futex(WAKE, futex);
 104 *                                       futex_wake(futex);
 105 *                                       if (queue_empty())
 106 *                                         return;
 107 *   if (uval == val)
 108 *      lock(hash_bucket(futex));
 109 *      queue();
 110 *     unlock(hash_bucket(futex));
 111 *     schedule();
 112 *
 113 * This would cause the waiter on CPU 0 to wait forever because it
 114 * missed the transition of the user space value from val to newval
 115 * and the waker did not find the waiter in the hash bucket queue.
 116 *
 117 * The correct serialization ensures that a waiter either observes
 118 * the changed user space value before blocking or is woken by a
 119 * concurrent waker:
 120 *
 121 * CPU 0                                 CPU 1
 122 * val = *futex;
 123 * sys_futex(WAIT, futex, val);
 124 *   futex_wait(futex, val);
 125 *
 126 *   waiters++; (a)
 127 *   smp_mb(); (A) <-- paired with -.
 128 *                                  |
 129 *   lock(hash_bucket(futex));      |
 130 *                                  |
 131 *   uval = *futex;                 |
 132 *                                  |        *futex = newval;
 133 *                                  |        sys_futex(WAKE, futex);
 134 *                                  |          futex_wake(futex);
 135 *                                  |
 136 *                                  `--------> smp_mb(); (B)
 137 *   if (uval == val)
 138 *     queue();
 139 *     unlock(hash_bucket(futex));
 140 *     schedule();                         if (waiters)
 141 *                                           lock(hash_bucket(futex));
 142 *   else                                    wake_waiters(futex);
 143 *     waiters--; (b)                        unlock(hash_bucket(futex));
 144 *
 145 * Where (A) orders the waiters increment and the futex value read through
 146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 147 * to futex and the waiters read -- this is done by the barriers for both
 148 * shared and private futexes in get_futex_key_refs().
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *	X = Y = 0
 153 *
 154 *	w[X]=1		w[Y]=1
 155 *	MB		MB
 156 *	r[Y]=y		r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 176#endif
 
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#ifdef CONFIG_MMU
 183# define FLAGS_SHARED		0x01
 184#else
 185/*
 186 * NOMMU does not have per process address space. Let the compiler optimize
 187 * code away.
 188 */
 189# define FLAGS_SHARED		0x00
 190#endif
 191#define FLAGS_CLOCKRT		0x02
 192#define FLAGS_HAS_TIMEOUT	0x04
 193
 194/*
 195 * Priority Inheritance state:
 196 */
 197struct futex_pi_state {
 198	/*
 199	 * list of 'owned' pi_state instances - these have to be
 200	 * cleaned up in do_exit() if the task exits prematurely:
 201	 */
 202	struct list_head list;
 203
 204	/*
 205	 * The PI object:
 206	 */
 207	struct rt_mutex pi_mutex;
 208
 209	struct task_struct *owner;
 210	atomic_t refcount;
 211
 212	union futex_key key;
 213};
 214
 215/**
 216 * struct futex_q - The hashed futex queue entry, one per waiting task
 217 * @list:		priority-sorted list of tasks waiting on this futex
 218 * @task:		the task waiting on the futex
 219 * @lock_ptr:		the hash bucket lock
 220 * @key:		the key the futex is hashed on
 221 * @pi_state:		optional priority inheritance state
 222 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 223 * @requeue_pi_key:	the requeue_pi target futex key
 224 * @bitset:		bitset for the optional bitmasked wakeup
 225 *
 226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 227 * we can wake only the relevant ones (hashed queues may be shared).
 228 *
 229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 231 * The order of wakeup is always to make the first condition true, then
 232 * the second.
 233 *
 234 * PI futexes are typically woken before they are removed from the hash list via
 235 * the rt_mutex code. See unqueue_me_pi().
 236 */
 237struct futex_q {
 238	struct plist_node list;
 239
 240	struct task_struct *task;
 241	spinlock_t *lock_ptr;
 242	union futex_key key;
 243	struct futex_pi_state *pi_state;
 244	struct rt_mutex_waiter *rt_waiter;
 245	union futex_key *requeue_pi_key;
 246	u32 bitset;
 247};
 248
 249static const struct futex_q futex_q_init = {
 250	/* list gets initialized in queue_me()*/
 251	.key = FUTEX_KEY_INIT,
 252	.bitset = FUTEX_BITSET_MATCH_ANY
 253};
 254
 255/*
 256 * Hash buckets are shared by all the futex_keys that hash to the same
 257 * location.  Each key may have multiple futex_q structures, one for each task
 258 * waiting on a futex.
 259 */
 260struct futex_hash_bucket {
 261	atomic_t waiters;
 262	spinlock_t lock;
 263	struct plist_head chain;
 264} ____cacheline_aligned_in_smp;
 265
 266/*
 267 * The base of the bucket array and its size are always used together
 268 * (after initialization only in hash_futex()), so ensure that they
 269 * reside in the same cacheline.
 270 */
 271static struct {
 272	struct futex_hash_bucket *queues;
 273	unsigned long            hashsize;
 274} __futex_data __read_mostly __aligned(2*sizeof(long));
 275#define futex_queues   (__futex_data.queues)
 276#define futex_hashsize (__futex_data.hashsize)
 277
 278
 279/*
 280 * Fault injections for futexes.
 281 */
 282#ifdef CONFIG_FAIL_FUTEX
 283
 284static struct {
 285	struct fault_attr attr;
 286
 287	bool ignore_private;
 288} fail_futex = {
 289	.attr = FAULT_ATTR_INITIALIZER,
 290	.ignore_private = false,
 291};
 292
 293static int __init setup_fail_futex(char *str)
 294{
 295	return setup_fault_attr(&fail_futex.attr, str);
 296}
 297__setup("fail_futex=", setup_fail_futex);
 298
 299static bool should_fail_futex(bool fshared)
 300{
 301	if (fail_futex.ignore_private && !fshared)
 302		return false;
 303
 304	return should_fail(&fail_futex.attr, 1);
 305}
 306
 307#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 308
 309static int __init fail_futex_debugfs(void)
 310{
 311	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 312	struct dentry *dir;
 313
 314	dir = fault_create_debugfs_attr("fail_futex", NULL,
 315					&fail_futex.attr);
 316	if (IS_ERR(dir))
 317		return PTR_ERR(dir);
 318
 319	if (!debugfs_create_bool("ignore-private", mode, dir,
 320				 &fail_futex.ignore_private)) {
 321		debugfs_remove_recursive(dir);
 322		return -ENOMEM;
 323	}
 324
 325	return 0;
 326}
 327
 328late_initcall(fail_futex_debugfs);
 329
 330#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 331
 332#else
 333static inline bool should_fail_futex(bool fshared)
 334{
 335	return false;
 336}
 337#endif /* CONFIG_FAIL_FUTEX */
 338
 339static inline void futex_get_mm(union futex_key *key)
 340{
 341	atomic_inc(&key->private.mm->mm_count);
 342	/*
 343	 * Ensure futex_get_mm() implies a full barrier such that
 344	 * get_futex_key() implies a full barrier. This is relied upon
 345	 * as smp_mb(); (B), see the ordering comment above.
 346	 */
 347	smp_mb__after_atomic();
 348}
 349
 350/*
 351 * Reflects a new waiter being added to the waitqueue.
 352 */
 353static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 354{
 355#ifdef CONFIG_SMP
 356	atomic_inc(&hb->waiters);
 357	/*
 358	 * Full barrier (A), see the ordering comment above.
 359	 */
 360	smp_mb__after_atomic();
 361#endif
 362}
 363
 364/*
 365 * Reflects a waiter being removed from the waitqueue by wakeup
 366 * paths.
 367 */
 368static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 369{
 370#ifdef CONFIG_SMP
 371	atomic_dec(&hb->waiters);
 372#endif
 373}
 374
 375static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 376{
 377#ifdef CONFIG_SMP
 378	return atomic_read(&hb->waiters);
 379#else
 380	return 1;
 381#endif
 382}
 383
 384/**
 385 * hash_futex - Return the hash bucket in the global hash
 386 * @key:	Pointer to the futex key for which the hash is calculated
 387 *
 388 * We hash on the keys returned from get_futex_key (see below) and return the
 389 * corresponding hash bucket in the global hash.
 390 */
 391static struct futex_hash_bucket *hash_futex(union futex_key *key)
 392{
 393	u32 hash = jhash2((u32*)&key->both.word,
 394			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 395			  key->both.offset);
 396	return &futex_queues[hash & (futex_hashsize - 1)];
 397}
 398
 399
 400/**
 401 * match_futex - Check whether two futex keys are equal
 402 * @key1:	Pointer to key1
 403 * @key2:	Pointer to key2
 404 *
 405 * Return 1 if two futex_keys are equal, 0 otherwise.
 406 */
 407static inline int match_futex(union futex_key *key1, union futex_key *key2)
 408{
 409	return (key1 && key2
 410		&& key1->both.word == key2->both.word
 411		&& key1->both.ptr == key2->both.ptr
 412		&& key1->both.offset == key2->both.offset);
 413}
 414
 415/*
 416 * Take a reference to the resource addressed by a key.
 417 * Can be called while holding spinlocks.
 418 *
 419 */
 420static void get_futex_key_refs(union futex_key *key)
 421{
 422	if (!key->both.ptr)
 423		return;
 424
 425	/*
 426	 * On MMU less systems futexes are always "private" as there is no per
 427	 * process address space. We need the smp wmb nevertheless - yes,
 428	 * arch/blackfin has MMU less SMP ...
 429	 */
 430	if (!IS_ENABLED(CONFIG_MMU)) {
 431		smp_mb(); /* explicit smp_mb(); (B) */
 432		return;
 433	}
 434
 435	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 436	case FUT_OFF_INODE:
 437		ihold(key->shared.inode); /* implies smp_mb(); (B) */
 438		break;
 439	case FUT_OFF_MMSHARED:
 440		futex_get_mm(key); /* implies smp_mb(); (B) */
 441		break;
 442	default:
 443		/*
 444		 * Private futexes do not hold reference on an inode or
 445		 * mm, therefore the only purpose of calling get_futex_key_refs
 446		 * is because we need the barrier for the lockless waiter check.
 447		 */
 448		smp_mb(); /* explicit smp_mb(); (B) */
 449	}
 450}
 451
 452/*
 453 * Drop a reference to the resource addressed by a key.
 454 * The hash bucket spinlock must not be held. This is
 455 * a no-op for private futexes, see comment in the get
 456 * counterpart.
 457 */
 458static void drop_futex_key_refs(union futex_key *key)
 459{
 460	if (!key->both.ptr) {
 461		/* If we're here then we tried to put a key we failed to get */
 462		WARN_ON_ONCE(1);
 463		return;
 464	}
 465
 466	if (!IS_ENABLED(CONFIG_MMU))
 467		return;
 468
 469	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 470	case FUT_OFF_INODE:
 471		iput(key->shared.inode);
 472		break;
 473	case FUT_OFF_MMSHARED:
 474		mmdrop(key->private.mm);
 475		break;
 476	}
 477}
 478
 479/**
 480 * get_futex_key() - Get parameters which are the keys for a futex
 481 * @uaddr:	virtual address of the futex
 482 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 483 * @key:	address where result is stored.
 484 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 485 *              VERIFY_WRITE)
 486 *
 487 * Return: a negative error code or 0
 488 *
 489 * The key words are stored in *key on success.
 490 *
 491 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 492 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 493 * We can usually work out the index without swapping in the page.
 494 *
 495 * lock_page() might sleep, the caller should not hold a spinlock.
 496 */
 497static int
 498get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 499{
 500	unsigned long address = (unsigned long)uaddr;
 501	struct mm_struct *mm = current->mm;
 502	struct page *page, *tail;
 503	struct address_space *mapping;
 504	int err, ro = 0;
 505
 506	/*
 507	 * The futex address must be "naturally" aligned.
 508	 */
 509	key->both.offset = address % PAGE_SIZE;
 510	if (unlikely((address % sizeof(u32)) != 0))
 511		return -EINVAL;
 512	address -= key->both.offset;
 513
 514	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 515		return -EFAULT;
 516
 517	if (unlikely(should_fail_futex(fshared)))
 518		return -EFAULT;
 519
 520	/*
 521	 * PROCESS_PRIVATE futexes are fast.
 522	 * As the mm cannot disappear under us and the 'key' only needs
 523	 * virtual address, we dont even have to find the underlying vma.
 524	 * Note : We do have to check 'uaddr' is a valid user address,
 525	 *        but access_ok() should be faster than find_vma()
 526	 */
 527	if (!fshared) {
 
 
 528		key->private.mm = mm;
 529		key->private.address = address;
 530		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 531		return 0;
 532	}
 533
 534again:
 535	/* Ignore any VERIFY_READ mapping (futex common case) */
 536	if (unlikely(should_fail_futex(fshared)))
 537		return -EFAULT;
 538
 539	err = get_user_pages_fast(address, 1, 1, &page);
 540	/*
 541	 * If write access is not required (eg. FUTEX_WAIT), try
 542	 * and get read-only access.
 543	 */
 544	if (err == -EFAULT && rw == VERIFY_READ) {
 545		err = get_user_pages_fast(address, 1, 0, &page);
 546		ro = 1;
 547	}
 548	if (err < 0)
 549		return err;
 550	else
 551		err = 0;
 552
 553	/*
 554	 * The treatment of mapping from this point on is critical. The page
 555	 * lock protects many things but in this context the page lock
 556	 * stabilizes mapping, prevents inode freeing in the shared
 557	 * file-backed region case and guards against movement to swap cache.
 558	 *
 559	 * Strictly speaking the page lock is not needed in all cases being
 560	 * considered here and page lock forces unnecessarily serialization
 561	 * From this point on, mapping will be re-verified if necessary and
 562	 * page lock will be acquired only if it is unavoidable
 563	 *
 564	 * Mapping checks require the head page for any compound page so the
 565	 * head page and mapping is looked up now. For anonymous pages, it
 566	 * does not matter if the page splits in the future as the key is
 567	 * based on the address. For filesystem-backed pages, the tail is
 568	 * required as the index of the page determines the key. For
 569	 * base pages, there is no tail page and tail == page.
 570	 */
 571	tail = page;
 572	page = compound_head(page);
 573	mapping = READ_ONCE(page->mapping);
 574
 575	/*
 576	 * If page->mapping is NULL, then it cannot be a PageAnon
 577	 * page; but it might be the ZERO_PAGE or in the gate area or
 578	 * in a special mapping (all cases which we are happy to fail);
 579	 * or it may have been a good file page when get_user_pages_fast
 580	 * found it, but truncated or holepunched or subjected to
 581	 * invalidate_complete_page2 before we got the page lock (also
 582	 * cases which we are happy to fail).  And we hold a reference,
 583	 * so refcount care in invalidate_complete_page's remove_mapping
 584	 * prevents drop_caches from setting mapping to NULL beneath us.
 585	 *
 586	 * The case we do have to guard against is when memory pressure made
 587	 * shmem_writepage move it from filecache to swapcache beneath us:
 588	 * an unlikely race, but we do need to retry for page->mapping.
 589	 */
 590	if (unlikely(!mapping)) {
 591		int shmem_swizzled;
 592
 593		/*
 594		 * Page lock is required to identify which special case above
 595		 * applies. If this is really a shmem page then the page lock
 596		 * will prevent unexpected transitions.
 597		 */
 598		lock_page(page);
 599		shmem_swizzled = PageSwapCache(page) || page->mapping;
 600		unlock_page(page);
 601		put_page(page);
 602
 603		if (shmem_swizzled)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604			goto again;
 
 
 
 
 
 
 
 
 
 605
 606		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 607	}
 608
 609	/*
 610	 * Private mappings are handled in a simple way.
 611	 *
 612	 * If the futex key is stored on an anonymous page, then the associated
 613	 * object is the mm which is implicitly pinned by the calling process.
 614	 *
 615	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 616	 * it's a read-only handle, it's expected that futexes attach to
 617	 * the object not the particular process.
 618	 */
 619	if (PageAnon(page)) {
 620		/*
 621		 * A RO anonymous page will never change and thus doesn't make
 622		 * sense for futex operations.
 623		 */
 624		if (unlikely(should_fail_futex(fshared)) || ro) {
 625			err = -EFAULT;
 626			goto out;
 627		}
 628
 629		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 630		key->private.mm = mm;
 631		key->private.address = address;
 632
 633		get_futex_key_refs(key); /* implies smp_mb(); (B) */
 634
 635	} else {
 636		struct inode *inode;
 637
 638		/*
 639		 * The associated futex object in this case is the inode and
 640		 * the page->mapping must be traversed. Ordinarily this should
 641		 * be stabilised under page lock but it's not strictly
 642		 * necessary in this case as we just want to pin the inode, not
 643		 * update the radix tree or anything like that.
 644		 *
 645		 * The RCU read lock is taken as the inode is finally freed
 646		 * under RCU. If the mapping still matches expectations then the
 647		 * mapping->host can be safely accessed as being a valid inode.
 648		 */
 649		rcu_read_lock();
 650
 651		if (READ_ONCE(page->mapping) != mapping) {
 652			rcu_read_unlock();
 653			put_page(page);
 654
 655			goto again;
 656		}
 657
 658		inode = READ_ONCE(mapping->host);
 659		if (!inode) {
 660			rcu_read_unlock();
 661			put_page(page);
 662
 663			goto again;
 664		}
 665
 666		/*
 667		 * Take a reference unless it is about to be freed. Previously
 668		 * this reference was taken by ihold under the page lock
 669		 * pinning the inode in place so i_lock was unnecessary. The
 670		 * only way for this check to fail is if the inode was
 671		 * truncated in parallel so warn for now if this happens.
 672		 *
 673		 * We are not calling into get_futex_key_refs() in file-backed
 674		 * cases, therefore a successful atomic_inc return below will
 675		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 676		 */
 677		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
 678			rcu_read_unlock();
 679			put_page(page);
 680
 681			goto again;
 682		}
 683
 684		/* Should be impossible but lets be paranoid for now */
 685		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 686			err = -EFAULT;
 687			rcu_read_unlock();
 688			iput(inode);
 689
 690			goto out;
 691		}
 692
 693		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 694		key->shared.inode = inode;
 695		key->shared.pgoff = basepage_index(tail);
 696		rcu_read_unlock();
 697	}
 698
 
 
 699out:
 700	put_page(page);
 
 701	return err;
 702}
 703
 704static inline void put_futex_key(union futex_key *key)
 705{
 706	drop_futex_key_refs(key);
 707}
 708
 709/**
 710 * fault_in_user_writeable() - Fault in user address and verify RW access
 711 * @uaddr:	pointer to faulting user space address
 712 *
 713 * Slow path to fixup the fault we just took in the atomic write
 714 * access to @uaddr.
 715 *
 716 * We have no generic implementation of a non-destructive write to the
 717 * user address. We know that we faulted in the atomic pagefault
 718 * disabled section so we can as well avoid the #PF overhead by
 719 * calling get_user_pages() right away.
 720 */
 721static int fault_in_user_writeable(u32 __user *uaddr)
 722{
 723	struct mm_struct *mm = current->mm;
 724	int ret;
 725
 726	down_read(&mm->mmap_sem);
 727	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 728			       FAULT_FLAG_WRITE, NULL);
 729	up_read(&mm->mmap_sem);
 730
 731	return ret < 0 ? ret : 0;
 732}
 733
 734/**
 735 * futex_top_waiter() - Return the highest priority waiter on a futex
 736 * @hb:		the hash bucket the futex_q's reside in
 737 * @key:	the futex key (to distinguish it from other futex futex_q's)
 738 *
 739 * Must be called with the hb lock held.
 740 */
 741static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 742					union futex_key *key)
 743{
 744	struct futex_q *this;
 745
 746	plist_for_each_entry(this, &hb->chain, list) {
 747		if (match_futex(&this->key, key))
 748			return this;
 749	}
 750	return NULL;
 751}
 752
 753static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 754				      u32 uval, u32 newval)
 755{
 756	int ret;
 757
 758	pagefault_disable();
 759	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 760	pagefault_enable();
 761
 762	return ret;
 763}
 764
 765static int get_futex_value_locked(u32 *dest, u32 __user *from)
 766{
 767	int ret;
 768
 769	pagefault_disable();
 770	ret = __get_user(*dest, from);
 771	pagefault_enable();
 772
 773	return ret ? -EFAULT : 0;
 774}
 775
 776
 777/*
 778 * PI code:
 779 */
 780static int refill_pi_state_cache(void)
 781{
 782	struct futex_pi_state *pi_state;
 783
 784	if (likely(current->pi_state_cache))
 785		return 0;
 786
 787	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 788
 789	if (!pi_state)
 790		return -ENOMEM;
 791
 792	INIT_LIST_HEAD(&pi_state->list);
 793	/* pi_mutex gets initialized later */
 794	pi_state->owner = NULL;
 795	atomic_set(&pi_state->refcount, 1);
 796	pi_state->key = FUTEX_KEY_INIT;
 797
 798	current->pi_state_cache = pi_state;
 799
 800	return 0;
 801}
 802
 803static struct futex_pi_state * alloc_pi_state(void)
 804{
 805	struct futex_pi_state *pi_state = current->pi_state_cache;
 806
 807	WARN_ON(!pi_state);
 808	current->pi_state_cache = NULL;
 809
 810	return pi_state;
 811}
 812
 813/*
 814 * Drops a reference to the pi_state object and frees or caches it
 815 * when the last reference is gone.
 816 *
 817 * Must be called with the hb lock held.
 818 */
 819static void put_pi_state(struct futex_pi_state *pi_state)
 820{
 821	if (!pi_state)
 822		return;
 823
 824	if (!atomic_dec_and_test(&pi_state->refcount))
 825		return;
 826
 827	/*
 828	 * If pi_state->owner is NULL, the owner is most probably dying
 829	 * and has cleaned up the pi_state already
 830	 */
 831	if (pi_state->owner) {
 832		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 833		list_del_init(&pi_state->list);
 834		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 835
 836		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 837	}
 838
 839	if (current->pi_state_cache)
 840		kfree(pi_state);
 841	else {
 842		/*
 843		 * pi_state->list is already empty.
 844		 * clear pi_state->owner.
 845		 * refcount is at 0 - put it back to 1.
 846		 */
 847		pi_state->owner = NULL;
 848		atomic_set(&pi_state->refcount, 1);
 849		current->pi_state_cache = pi_state;
 850	}
 851}
 852
 853/*
 854 * Look up the task based on what TID userspace gave us.
 855 * We dont trust it.
 856 */
 857static struct task_struct * futex_find_get_task(pid_t pid)
 858{
 859	struct task_struct *p;
 860
 861	rcu_read_lock();
 862	p = find_task_by_vpid(pid);
 863	if (p)
 864		get_task_struct(p);
 865
 866	rcu_read_unlock();
 867
 868	return p;
 869}
 870
 871/*
 872 * This task is holding PI mutexes at exit time => bad.
 873 * Kernel cleans up PI-state, but userspace is likely hosed.
 874 * (Robust-futex cleanup is separate and might save the day for userspace.)
 875 */
 876void exit_pi_state_list(struct task_struct *curr)
 877{
 878	struct list_head *next, *head = &curr->pi_state_list;
 879	struct futex_pi_state *pi_state;
 880	struct futex_hash_bucket *hb;
 881	union futex_key key = FUTEX_KEY_INIT;
 882
 883	if (!futex_cmpxchg_enabled)
 884		return;
 885	/*
 886	 * We are a ZOMBIE and nobody can enqueue itself on
 887	 * pi_state_list anymore, but we have to be careful
 888	 * versus waiters unqueueing themselves:
 889	 */
 890	raw_spin_lock_irq(&curr->pi_lock);
 891	while (!list_empty(head)) {
 892
 893		next = head->next;
 894		pi_state = list_entry(next, struct futex_pi_state, list);
 895		key = pi_state->key;
 896		hb = hash_futex(&key);
 897		raw_spin_unlock_irq(&curr->pi_lock);
 898
 899		spin_lock(&hb->lock);
 900
 901		raw_spin_lock_irq(&curr->pi_lock);
 902		/*
 903		 * We dropped the pi-lock, so re-check whether this
 904		 * task still owns the PI-state:
 905		 */
 906		if (head->next != next) {
 907			spin_unlock(&hb->lock);
 908			continue;
 909		}
 910
 911		WARN_ON(pi_state->owner != curr);
 912		WARN_ON(list_empty(&pi_state->list));
 913		list_del_init(&pi_state->list);
 914		pi_state->owner = NULL;
 915		raw_spin_unlock_irq(&curr->pi_lock);
 916
 917		rt_mutex_unlock(&pi_state->pi_mutex);
 918
 919		spin_unlock(&hb->lock);
 920
 921		raw_spin_lock_irq(&curr->pi_lock);
 922	}
 923	raw_spin_unlock_irq(&curr->pi_lock);
 924}
 925
 926/*
 927 * We need to check the following states:
 928 *
 929 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 930 *
 931 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 932 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 933 *
 934 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 935 *
 936 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 937 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 938 *
 939 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 940 *
 941 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 942 *
 943 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 944 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 945 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 946 *
 947 * [1]	Indicates that the kernel can acquire the futex atomically. We
 948 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 949 *
 950 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 951 *      thread is found then it indicates that the owner TID has died.
 952 *
 953 * [3]	Invalid. The waiter is queued on a non PI futex
 954 *
 955 * [4]	Valid state after exit_robust_list(), which sets the user space
 956 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 957 *
 958 * [5]	The user space value got manipulated between exit_robust_list()
 959 *	and exit_pi_state_list()
 960 *
 961 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 962 *	the pi_state but cannot access the user space value.
 963 *
 964 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 965 *
 966 * [8]	Owner and user space value match
 967 *
 968 * [9]	There is no transient state which sets the user space TID to 0
 969 *	except exit_robust_list(), but this is indicated by the
 970 *	FUTEX_OWNER_DIED bit. See [4]
 971 *
 972 * [10] There is no transient state which leaves owner and user space
 973 *	TID out of sync.
 974 */
 975
 976/*
 977 * Validate that the existing waiter has a pi_state and sanity check
 978 * the pi_state against the user space value. If correct, attach to
 979 * it.
 980 */
 981static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
 982			      struct futex_pi_state **ps)
 983{
 
 
 
 
 984	pid_t pid = uval & FUTEX_TID_MASK;
 985
 986	/*
 987	 * Userspace might have messed up non-PI and PI futexes [3]
 988	 */
 989	if (unlikely(!pi_state))
 990		return -EINVAL;
 991
 992	WARN_ON(!atomic_read(&pi_state->refcount));
 993
 994	/*
 995	 * Handle the owner died case:
 996	 */
 997	if (uval & FUTEX_OWNER_DIED) {
 998		/*
 999		 * exit_pi_state_list sets owner to NULL and wakes the
1000		 * topmost waiter. The task which acquires the
1001		 * pi_state->rt_mutex will fixup owner.
1002		 */
1003		if (!pi_state->owner) {
1004			/*
1005			 * No pi state owner, but the user space TID
1006			 * is not 0. Inconsistent state. [5]
1007			 */
1008			if (pid)
1009				return -EINVAL;
1010			/*
1011			 * Take a ref on the state and return success. [4]
1012			 */
1013			goto out_state;
1014		}
1015
1016		/*
1017		 * If TID is 0, then either the dying owner has not
1018		 * yet executed exit_pi_state_list() or some waiter
1019		 * acquired the rtmutex in the pi state, but did not
1020		 * yet fixup the TID in user space.
1021		 *
1022		 * Take a ref on the state and return success. [6]
1023		 */
1024		if (!pid)
1025			goto out_state;
1026	} else {
1027		/*
1028		 * If the owner died bit is not set, then the pi_state
1029		 * must have an owner. [7]
1030		 */
1031		if (!pi_state->owner)
1032			return -EINVAL;
1033	}
1034
1035	/*
1036	 * Bail out if user space manipulated the futex value. If pi
1037	 * state exists then the owner TID must be the same as the
1038	 * user space TID. [9/10]
1039	 */
1040	if (pid != task_pid_vnr(pi_state->owner))
1041		return -EINVAL;
1042out_state:
1043	atomic_inc(&pi_state->refcount);
1044	*ps = pi_state;
1045	return 0;
1046}
 
 
 
 
 
 
1047
1048/*
1049 * Lookup the task for the TID provided from user space and attach to
1050 * it after doing proper sanity checks.
1051 */
1052static int attach_to_pi_owner(u32 uval, union futex_key *key,
1053			      struct futex_pi_state **ps)
1054{
1055	pid_t pid = uval & FUTEX_TID_MASK;
1056	struct futex_pi_state *pi_state;
1057	struct task_struct *p;
1058
1059	/*
1060	 * We are the first waiter - try to look up the real owner and attach
1061	 * the new pi_state to it, but bail out when TID = 0 [1]
1062	 */
1063	if (!pid)
1064		return -ESRCH;
1065	p = futex_find_get_task(pid);
1066	if (!p)
1067		return -ESRCH;
1068
1069	if (unlikely(p->flags & PF_KTHREAD)) {
1070		put_task_struct(p);
1071		return -EPERM;
1072	}
1073
1074	/*
1075	 * We need to look at the task state flags to figure out,
1076	 * whether the task is exiting. To protect against the do_exit
1077	 * change of the task flags, we do this protected by
1078	 * p->pi_lock:
1079	 */
1080	raw_spin_lock_irq(&p->pi_lock);
1081	if (unlikely(p->flags & PF_EXITING)) {
1082		/*
1083		 * The task is on the way out. When PF_EXITPIDONE is
1084		 * set, we know that the task has finished the
1085		 * cleanup:
1086		 */
1087		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1088
1089		raw_spin_unlock_irq(&p->pi_lock);
1090		put_task_struct(p);
1091		return ret;
1092	}
1093
1094	/*
1095	 * No existing pi state. First waiter. [2]
1096	 */
1097	pi_state = alloc_pi_state();
1098
1099	/*
1100	 * Initialize the pi_mutex in locked state and make @p
1101	 * the owner of it:
1102	 */
1103	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1104
1105	/* Store the key for possible exit cleanups: */
1106	pi_state->key = *key;
1107
1108	WARN_ON(!list_empty(&pi_state->list));
1109	list_add(&pi_state->list, &p->pi_state_list);
1110	pi_state->owner = p;
1111	raw_spin_unlock_irq(&p->pi_lock);
1112
1113	put_task_struct(p);
1114
1115	*ps = pi_state;
1116
1117	return 0;
1118}
1119
1120static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1121			   union futex_key *key, struct futex_pi_state **ps)
1122{
1123	struct futex_q *match = futex_top_waiter(hb, key);
1124
1125	/*
1126	 * If there is a waiter on that futex, validate it and
1127	 * attach to the pi_state when the validation succeeds.
1128	 */
1129	if (match)
1130		return attach_to_pi_state(uval, match->pi_state, ps);
1131
1132	/*
1133	 * We are the first waiter - try to look up the owner based on
1134	 * @uval and attach to it.
1135	 */
1136	return attach_to_pi_owner(uval, key, ps);
1137}
1138
1139static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1140{
1141	u32 uninitialized_var(curval);
1142
1143	if (unlikely(should_fail_futex(true)))
1144		return -EFAULT;
1145
1146	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1147		return -EFAULT;
1148
1149	/*If user space value changed, let the caller retry */
1150	return curval != uval ? -EAGAIN : 0;
1151}
1152
1153/**
1154 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1155 * @uaddr:		the pi futex user address
1156 * @hb:			the pi futex hash bucket
1157 * @key:		the futex key associated with uaddr and hb
1158 * @ps:			the pi_state pointer where we store the result of the
1159 *			lookup
1160 * @task:		the task to perform the atomic lock work for.  This will
1161 *			be "current" except in the case of requeue pi.
1162 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1163 *
1164 * Return:
1165 *  0 - ready to wait;
1166 *  1 - acquired the lock;
1167 * <0 - error
1168 *
1169 * The hb->lock and futex_key refs shall be held by the caller.
1170 */
1171static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1172				union futex_key *key,
1173				struct futex_pi_state **ps,
1174				struct task_struct *task, int set_waiters)
1175{
1176	u32 uval, newval, vpid = task_pid_vnr(task);
1177	struct futex_q *match;
1178	int ret;
 
 
1179
1180	/*
1181	 * Read the user space value first so we can validate a few
1182	 * things before proceeding further.
 
1183	 */
1184	if (get_futex_value_locked(&uval, uaddr))
1185		return -EFAULT;
 
1186
1187	if (unlikely(should_fail_futex(true)))
1188		return -EFAULT;
1189
1190	/*
1191	 * Detect deadlocks.
1192	 */
1193	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1194		return -EDEADLK;
1195
1196	if ((unlikely(should_fail_futex(true))))
1197		return -EDEADLK;
1198
1199	/*
1200	 * Lookup existing state first. If it exists, try to attach to
1201	 * its pi_state.
1202	 */
1203	match = futex_top_waiter(hb, key);
1204	if (match)
1205		return attach_to_pi_state(uval, match->pi_state, ps);
 
1206
1207	/*
1208	 * No waiter and user TID is 0. We are here because the
1209	 * waiters or the owner died bit is set or called from
1210	 * requeue_cmp_pi or for whatever reason something took the
1211	 * syscall.
1212	 */
1213	if (!(uval & FUTEX_TID_MASK)) {
1214		/*
1215		 * We take over the futex. No other waiters and the user space
1216		 * TID is 0. We preserve the owner died bit.
1217		 */
1218		newval = uval & FUTEX_OWNER_DIED;
1219		newval |= vpid;
1220
1221		/* The futex requeue_pi code can enforce the waiters bit */
1222		if (set_waiters)
1223			newval |= FUTEX_WAITERS;
1224
1225		ret = lock_pi_update_atomic(uaddr, uval, newval);
1226		/* If the take over worked, return 1 */
1227		return ret < 0 ? ret : 1;
 
 
 
 
 
 
 
 
 
 
1228	}
1229
 
 
 
 
 
1230	/*
1231	 * First waiter. Set the waiters bit before attaching ourself to
1232	 * the owner. If owner tries to unlock, it will be forced into
1233	 * the kernel and blocked on hb->lock.
1234	 */
1235	newval = uval | FUTEX_WAITERS;
1236	ret = lock_pi_update_atomic(uaddr, uval, newval);
1237	if (ret)
1238		return ret;
1239	/*
1240	 * If the update of the user space value succeeded, we try to
1241	 * attach to the owner. If that fails, no harm done, we only
1242	 * set the FUTEX_WAITERS bit in the user space variable.
1243	 */
1244	return attach_to_pi_owner(uval, key, ps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245}
1246
1247/**
1248 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1249 * @q:	The futex_q to unqueue
1250 *
1251 * The q->lock_ptr must not be NULL and must be held by the caller.
1252 */
1253static void __unqueue_futex(struct futex_q *q)
1254{
1255	struct futex_hash_bucket *hb;
1256
1257	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1258	    || WARN_ON(plist_node_empty(&q->list)))
1259		return;
1260
1261	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1262	plist_del(&q->list, &hb->chain);
1263	hb_waiters_dec(hb);
1264}
1265
1266/*
1267 * The hash bucket lock must be held when this is called.
1268 * Afterwards, the futex_q must not be accessed. Callers
1269 * must ensure to later call wake_up_q() for the actual
1270 * wakeups to occur.
1271 */
1272static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1273{
1274	struct task_struct *p = q->task;
1275
1276	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1277		return;
1278
1279	/*
1280	 * Queue the task for later wakeup for after we've released
1281	 * the hb->lock. wake_q_add() grabs reference to p.
 
 
 
1282	 */
1283	wake_q_add(wake_q, p);
 
1284	__unqueue_futex(q);
1285	/*
1286	 * The waiting task can free the futex_q as soon as
1287	 * q->lock_ptr = NULL is written, without taking any locks. A
1288	 * memory barrier is required here to prevent the following
1289	 * store to lock_ptr from getting ahead of the plist_del.
1290	 */
1291	smp_wmb();
1292	q->lock_ptr = NULL;
 
 
 
1293}
1294
1295static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1296			 struct futex_hash_bucket *hb)
1297{
1298	struct task_struct *new_owner;
1299	struct futex_pi_state *pi_state = this->pi_state;
1300	u32 uninitialized_var(curval), newval;
1301	DEFINE_WAKE_Q(wake_q);
1302	bool deboost;
1303	int ret = 0;
1304
1305	if (!pi_state)
1306		return -EINVAL;
1307
1308	/*
1309	 * If current does not own the pi_state then the futex is
1310	 * inconsistent and user space fiddled with the futex value.
1311	 */
1312	if (pi_state->owner != current)
1313		return -EINVAL;
1314
1315	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1316	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1317
1318	/*
1319	 * It is possible that the next waiter (the one that brought
1320	 * this owner to the kernel) timed out and is no longer
1321	 * waiting on the lock.
1322	 */
1323	if (!new_owner)
1324		new_owner = this->task;
1325
1326	/*
1327	 * We pass it to the next owner. The WAITERS bit is always
1328	 * kept enabled while there is PI state around. We cleanup the
1329	 * owner died bit, because we are the owner.
1330	 */
1331	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 
1332
1333	if (unlikely(should_fail_futex(true)))
1334		ret = -EFAULT;
1335
1336	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1337		ret = -EFAULT;
1338	} else if (curval != uval) {
1339		/*
1340		 * If a unconditional UNLOCK_PI operation (user space did not
1341		 * try the TID->0 transition) raced with a waiter setting the
1342		 * FUTEX_WAITERS flag between get_user() and locking the hash
1343		 * bucket lock, retry the operation.
1344		 */
1345		if ((FUTEX_TID_MASK & curval) == uval)
1346			ret = -EAGAIN;
1347		else
1348			ret = -EINVAL;
1349	}
1350	if (ret) {
1351		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1352		return ret;
1353	}
1354
1355	raw_spin_lock(&pi_state->owner->pi_lock);
1356	WARN_ON(list_empty(&pi_state->list));
1357	list_del_init(&pi_state->list);
1358	raw_spin_unlock(&pi_state->owner->pi_lock);
1359
1360	raw_spin_lock(&new_owner->pi_lock);
1361	WARN_ON(!list_empty(&pi_state->list));
1362	list_add(&pi_state->list, &new_owner->pi_state_list);
1363	pi_state->owner = new_owner;
1364	raw_spin_unlock(&new_owner->pi_lock);
1365
1366	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 
1367
1368	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
 
 
 
 
 
1369
1370	/*
1371	 * First unlock HB so the waiter does not spin on it once he got woken
1372	 * up. Second wake up the waiter before the priority is adjusted. If we
1373	 * deboost first (and lose our higher priority), then the task might get
1374	 * scheduled away before the wake up can take place.
1375	 */
1376	spin_unlock(&hb->lock);
1377	wake_up_q(&wake_q);
1378	if (deboost)
1379		rt_mutex_adjust_prio(current);
1380
1381	return 0;
1382}
1383
1384/*
1385 * Express the locking dependencies for lockdep:
1386 */
1387static inline void
1388double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1389{
1390	if (hb1 <= hb2) {
1391		spin_lock(&hb1->lock);
1392		if (hb1 < hb2)
1393			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1394	} else { /* hb1 > hb2 */
1395		spin_lock(&hb2->lock);
1396		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1397	}
1398}
1399
1400static inline void
1401double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1402{
1403	spin_unlock(&hb1->lock);
1404	if (hb1 != hb2)
1405		spin_unlock(&hb2->lock);
1406}
1407
1408/*
1409 * Wake up waiters matching bitset queued on this futex (uaddr).
1410 */
1411static int
1412futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1413{
1414	struct futex_hash_bucket *hb;
1415	struct futex_q *this, *next;
 
1416	union futex_key key = FUTEX_KEY_INIT;
1417	int ret;
1418	DEFINE_WAKE_Q(wake_q);
1419
1420	if (!bitset)
1421		return -EINVAL;
1422
1423	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1424	if (unlikely(ret != 0))
1425		goto out;
1426
1427	hb = hash_futex(&key);
1428
1429	/* Make sure we really have tasks to wakeup */
1430	if (!hb_waiters_pending(hb))
1431		goto out_put_key;
1432
1433	spin_lock(&hb->lock);
 
1434
1435	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1436		if (match_futex (&this->key, &key)) {
1437			if (this->pi_state || this->rt_waiter) {
1438				ret = -EINVAL;
1439				break;
1440			}
1441
1442			/* Check if one of the bits is set in both bitsets */
1443			if (!(this->bitset & bitset))
1444				continue;
1445
1446			mark_wake_futex(&wake_q, this);
1447			if (++ret >= nr_wake)
1448				break;
1449		}
1450	}
1451
1452	spin_unlock(&hb->lock);
1453	wake_up_q(&wake_q);
1454out_put_key:
1455	put_futex_key(&key);
1456out:
1457	return ret;
1458}
1459
1460/*
1461 * Wake up all waiters hashed on the physical page that is mapped
1462 * to this virtual address:
1463 */
1464static int
1465futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1466	      int nr_wake, int nr_wake2, int op)
1467{
1468	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1469	struct futex_hash_bucket *hb1, *hb2;
 
1470	struct futex_q *this, *next;
1471	int ret, op_ret;
1472	DEFINE_WAKE_Q(wake_q);
1473
1474retry:
1475	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1476	if (unlikely(ret != 0))
1477		goto out;
1478	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1479	if (unlikely(ret != 0))
1480		goto out_put_key1;
1481
1482	hb1 = hash_futex(&key1);
1483	hb2 = hash_futex(&key2);
1484
1485retry_private:
1486	double_lock_hb(hb1, hb2);
1487	op_ret = futex_atomic_op_inuser(op, uaddr2);
1488	if (unlikely(op_ret < 0)) {
1489
1490		double_unlock_hb(hb1, hb2);
1491
1492#ifndef CONFIG_MMU
1493		/*
1494		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1495		 * but we might get them from range checking
1496		 */
1497		ret = op_ret;
1498		goto out_put_keys;
1499#endif
1500
1501		if (unlikely(op_ret != -EFAULT)) {
1502			ret = op_ret;
1503			goto out_put_keys;
1504		}
1505
1506		ret = fault_in_user_writeable(uaddr2);
1507		if (ret)
1508			goto out_put_keys;
1509
1510		if (!(flags & FLAGS_SHARED))
1511			goto retry_private;
1512
1513		put_futex_key(&key2);
1514		put_futex_key(&key1);
1515		goto retry;
1516	}
1517
1518	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
 
 
1519		if (match_futex (&this->key, &key1)) {
1520			if (this->pi_state || this->rt_waiter) {
1521				ret = -EINVAL;
1522				goto out_unlock;
1523			}
1524			mark_wake_futex(&wake_q, this);
1525			if (++ret >= nr_wake)
1526				break;
1527		}
1528	}
1529
1530	if (op_ret > 0) {
 
 
1531		op_ret = 0;
1532		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1533			if (match_futex (&this->key, &key2)) {
1534				if (this->pi_state || this->rt_waiter) {
1535					ret = -EINVAL;
1536					goto out_unlock;
1537				}
1538				mark_wake_futex(&wake_q, this);
1539				if (++op_ret >= nr_wake2)
1540					break;
1541			}
1542		}
1543		ret += op_ret;
1544	}
1545
1546out_unlock:
1547	double_unlock_hb(hb1, hb2);
1548	wake_up_q(&wake_q);
1549out_put_keys:
1550	put_futex_key(&key2);
1551out_put_key1:
1552	put_futex_key(&key1);
1553out:
1554	return ret;
1555}
1556
1557/**
1558 * requeue_futex() - Requeue a futex_q from one hb to another
1559 * @q:		the futex_q to requeue
1560 * @hb1:	the source hash_bucket
1561 * @hb2:	the target hash_bucket
1562 * @key2:	the new key for the requeued futex_q
1563 */
1564static inline
1565void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1566		   struct futex_hash_bucket *hb2, union futex_key *key2)
1567{
1568
1569	/*
1570	 * If key1 and key2 hash to the same bucket, no need to
1571	 * requeue.
1572	 */
1573	if (likely(&hb1->chain != &hb2->chain)) {
1574		plist_del(&q->list, &hb1->chain);
1575		hb_waiters_dec(hb1);
1576		hb_waiters_inc(hb2);
1577		plist_add(&q->list, &hb2->chain);
1578		q->lock_ptr = &hb2->lock;
1579	}
1580	get_futex_key_refs(key2);
1581	q->key = *key2;
1582}
1583
1584/**
1585 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1586 * @q:		the futex_q
1587 * @key:	the key of the requeue target futex
1588 * @hb:		the hash_bucket of the requeue target futex
1589 *
1590 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1591 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1592 * to the requeue target futex so the waiter can detect the wakeup on the right
1593 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1594 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1595 * to protect access to the pi_state to fixup the owner later.  Must be called
1596 * with both q->lock_ptr and hb->lock held.
1597 */
1598static inline
1599void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1600			   struct futex_hash_bucket *hb)
1601{
1602	get_futex_key_refs(key);
1603	q->key = *key;
1604
1605	__unqueue_futex(q);
1606
1607	WARN_ON(!q->rt_waiter);
1608	q->rt_waiter = NULL;
1609
1610	q->lock_ptr = &hb->lock;
1611
1612	wake_up_state(q->task, TASK_NORMAL);
1613}
1614
1615/**
1616 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1617 * @pifutex:		the user address of the to futex
1618 * @hb1:		the from futex hash bucket, must be locked by the caller
1619 * @hb2:		the to futex hash bucket, must be locked by the caller
1620 * @key1:		the from futex key
1621 * @key2:		the to futex key
1622 * @ps:			address to store the pi_state pointer
1623 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1624 *
1625 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1626 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1627 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1628 * hb1 and hb2 must be held by the caller.
1629 *
1630 * Return:
1631 *  0 - failed to acquire the lock atomically;
1632 * >0 - acquired the lock, return value is vpid of the top_waiter
1633 * <0 - error
1634 */
1635static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1636				 struct futex_hash_bucket *hb1,
1637				 struct futex_hash_bucket *hb2,
1638				 union futex_key *key1, union futex_key *key2,
1639				 struct futex_pi_state **ps, int set_waiters)
1640{
1641	struct futex_q *top_waiter = NULL;
1642	u32 curval;
1643	int ret, vpid;
1644
1645	if (get_futex_value_locked(&curval, pifutex))
1646		return -EFAULT;
1647
1648	if (unlikely(should_fail_futex(true)))
1649		return -EFAULT;
1650
1651	/*
1652	 * Find the top_waiter and determine if there are additional waiters.
1653	 * If the caller intends to requeue more than 1 waiter to pifutex,
1654	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1655	 * as we have means to handle the possible fault.  If not, don't set
1656	 * the bit unecessarily as it will force the subsequent unlock to enter
1657	 * the kernel.
1658	 */
1659	top_waiter = futex_top_waiter(hb1, key1);
1660
1661	/* There are no waiters, nothing for us to do. */
1662	if (!top_waiter)
1663		return 0;
1664
1665	/* Ensure we requeue to the expected futex. */
1666	if (!match_futex(top_waiter->requeue_pi_key, key2))
1667		return -EINVAL;
1668
1669	/*
1670	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1671	 * the contended case or if set_waiters is 1.  The pi_state is returned
1672	 * in ps in contended cases.
1673	 */
1674	vpid = task_pid_vnr(top_waiter->task);
1675	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1676				   set_waiters);
1677	if (ret == 1) {
1678		requeue_pi_wake_futex(top_waiter, key2, hb2);
1679		return vpid;
1680	}
1681	return ret;
1682}
1683
1684/**
1685 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1686 * @uaddr1:	source futex user address
1687 * @flags:	futex flags (FLAGS_SHARED, etc.)
1688 * @uaddr2:	target futex user address
1689 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1690 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1691 * @cmpval:	@uaddr1 expected value (or %NULL)
1692 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1693 *		pi futex (pi to pi requeue is not supported)
1694 *
1695 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1696 * uaddr2 atomically on behalf of the top waiter.
1697 *
1698 * Return:
1699 * >=0 - on success, the number of tasks requeued or woken;
1700 *  <0 - on error
1701 */
1702static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1703			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1704			 u32 *cmpval, int requeue_pi)
1705{
1706	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1707	int drop_count = 0, task_count = 0, ret;
1708	struct futex_pi_state *pi_state = NULL;
1709	struct futex_hash_bucket *hb1, *hb2;
 
1710	struct futex_q *this, *next;
1711	DEFINE_WAKE_Q(wake_q);
1712
1713	if (requeue_pi) {
1714		/*
1715		 * Requeue PI only works on two distinct uaddrs. This
1716		 * check is only valid for private futexes. See below.
1717		 */
1718		if (uaddr1 == uaddr2)
1719			return -EINVAL;
1720
1721		/*
1722		 * requeue_pi requires a pi_state, try to allocate it now
1723		 * without any locks in case it fails.
1724		 */
1725		if (refill_pi_state_cache())
1726			return -ENOMEM;
1727		/*
1728		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1729		 * + nr_requeue, since it acquires the rt_mutex prior to
1730		 * returning to userspace, so as to not leave the rt_mutex with
1731		 * waiters and no owner.  However, second and third wake-ups
1732		 * cannot be predicted as they involve race conditions with the
1733		 * first wake and a fault while looking up the pi_state.  Both
1734		 * pthread_cond_signal() and pthread_cond_broadcast() should
1735		 * use nr_wake=1.
1736		 */
1737		if (nr_wake != 1)
1738			return -EINVAL;
1739	}
1740
1741retry:
 
 
 
 
 
 
 
 
 
1742	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1743	if (unlikely(ret != 0))
1744		goto out;
1745	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1746			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1747	if (unlikely(ret != 0))
1748		goto out_put_key1;
1749
1750	/*
1751	 * The check above which compares uaddrs is not sufficient for
1752	 * shared futexes. We need to compare the keys:
1753	 */
1754	if (requeue_pi && match_futex(&key1, &key2)) {
1755		ret = -EINVAL;
1756		goto out_put_keys;
1757	}
1758
1759	hb1 = hash_futex(&key1);
1760	hb2 = hash_futex(&key2);
1761
1762retry_private:
1763	hb_waiters_inc(hb2);
1764	double_lock_hb(hb1, hb2);
1765
1766	if (likely(cmpval != NULL)) {
1767		u32 curval;
1768
1769		ret = get_futex_value_locked(&curval, uaddr1);
1770
1771		if (unlikely(ret)) {
1772			double_unlock_hb(hb1, hb2);
1773			hb_waiters_dec(hb2);
1774
1775			ret = get_user(curval, uaddr1);
1776			if (ret)
1777				goto out_put_keys;
1778
1779			if (!(flags & FLAGS_SHARED))
1780				goto retry_private;
1781
1782			put_futex_key(&key2);
1783			put_futex_key(&key1);
1784			goto retry;
1785		}
1786		if (curval != *cmpval) {
1787			ret = -EAGAIN;
1788			goto out_unlock;
1789		}
1790	}
1791
1792	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1793		/*
1794		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1795		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1796		 * bit.  We force this here where we are able to easily handle
1797		 * faults rather in the requeue loop below.
1798		 */
1799		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1800						 &key2, &pi_state, nr_requeue);
1801
1802		/*
1803		 * At this point the top_waiter has either taken uaddr2 or is
1804		 * waiting on it.  If the former, then the pi_state will not
1805		 * exist yet, look it up one more time to ensure we have a
1806		 * reference to it. If the lock was taken, ret contains the
1807		 * vpid of the top waiter task.
1808		 * If the lock was not taken, we have pi_state and an initial
1809		 * refcount on it. In case of an error we have nothing.
1810		 */
1811		if (ret > 0) {
1812			WARN_ON(pi_state);
1813			drop_count++;
1814			task_count++;
1815			/*
1816			 * If we acquired the lock, then the user space value
1817			 * of uaddr2 should be vpid. It cannot be changed by
1818			 * the top waiter as it is blocked on hb2 lock if it
1819			 * tries to do so. If something fiddled with it behind
1820			 * our back the pi state lookup might unearth it. So
1821			 * we rather use the known value than rereading and
1822			 * handing potential crap to lookup_pi_state.
1823			 *
1824			 * If that call succeeds then we have pi_state and an
1825			 * initial refcount on it.
1826			 */
1827			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1828		}
1829
1830		switch (ret) {
1831		case 0:
1832			/* We hold a reference on the pi state. */
1833			break;
1834
1835			/* If the above failed, then pi_state is NULL */
1836		case -EFAULT:
1837			double_unlock_hb(hb1, hb2);
1838			hb_waiters_dec(hb2);
1839			put_futex_key(&key2);
1840			put_futex_key(&key1);
1841			ret = fault_in_user_writeable(uaddr2);
1842			if (!ret)
1843				goto retry;
1844			goto out;
1845		case -EAGAIN:
1846			/*
1847			 * Two reasons for this:
1848			 * - Owner is exiting and we just wait for the
1849			 *   exit to complete.
1850			 * - The user space value changed.
1851			 */
1852			double_unlock_hb(hb1, hb2);
1853			hb_waiters_dec(hb2);
1854			put_futex_key(&key2);
1855			put_futex_key(&key1);
1856			cond_resched();
1857			goto retry;
1858		default:
1859			goto out_unlock;
1860		}
1861	}
1862
1863	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
 
1864		if (task_count - nr_wake >= nr_requeue)
1865			break;
1866
1867		if (!match_futex(&this->key, &key1))
1868			continue;
1869
1870		/*
1871		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1872		 * be paired with each other and no other futex ops.
1873		 *
1874		 * We should never be requeueing a futex_q with a pi_state,
1875		 * which is awaiting a futex_unlock_pi().
1876		 */
1877		if ((requeue_pi && !this->rt_waiter) ||
1878		    (!requeue_pi && this->rt_waiter) ||
1879		    this->pi_state) {
1880			ret = -EINVAL;
1881			break;
1882		}
1883
1884		/*
1885		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1886		 * lock, we already woke the top_waiter.  If not, it will be
1887		 * woken by futex_unlock_pi().
1888		 */
1889		if (++task_count <= nr_wake && !requeue_pi) {
1890			mark_wake_futex(&wake_q, this);
1891			continue;
1892		}
1893
1894		/* Ensure we requeue to the expected futex for requeue_pi. */
1895		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1896			ret = -EINVAL;
1897			break;
1898		}
1899
1900		/*
1901		 * Requeue nr_requeue waiters and possibly one more in the case
1902		 * of requeue_pi if we couldn't acquire the lock atomically.
1903		 */
1904		if (requeue_pi) {
1905			/*
1906			 * Prepare the waiter to take the rt_mutex. Take a
1907			 * refcount on the pi_state and store the pointer in
1908			 * the futex_q object of the waiter.
1909			 */
1910			atomic_inc(&pi_state->refcount);
1911			this->pi_state = pi_state;
1912			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1913							this->rt_waiter,
1914							this->task);
1915			if (ret == 1) {
1916				/*
1917				 * We got the lock. We do neither drop the
1918				 * refcount on pi_state nor clear
1919				 * this->pi_state because the waiter needs the
1920				 * pi_state for cleaning up the user space
1921				 * value. It will drop the refcount after
1922				 * doing so.
1923				 */
1924				requeue_pi_wake_futex(this, &key2, hb2);
1925				drop_count++;
1926				continue;
1927			} else if (ret) {
1928				/*
1929				 * rt_mutex_start_proxy_lock() detected a
1930				 * potential deadlock when we tried to queue
1931				 * that waiter. Drop the pi_state reference
1932				 * which we took above and remove the pointer
1933				 * to the state from the waiters futex_q
1934				 * object.
1935				 */
1936				this->pi_state = NULL;
1937				put_pi_state(pi_state);
1938				/*
1939				 * We stop queueing more waiters and let user
1940				 * space deal with the mess.
1941				 */
1942				break;
1943			}
1944		}
1945		requeue_futex(this, hb1, hb2, &key2);
1946		drop_count++;
1947	}
1948
1949	/*
1950	 * We took an extra initial reference to the pi_state either
1951	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1952	 * need to drop it here again.
1953	 */
1954	put_pi_state(pi_state);
1955
1956out_unlock:
1957	double_unlock_hb(hb1, hb2);
1958	wake_up_q(&wake_q);
1959	hb_waiters_dec(hb2);
1960
1961	/*
1962	 * drop_futex_key_refs() must be called outside the spinlocks. During
1963	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1964	 * one at key2 and updated their key pointer.  We no longer need to
1965	 * hold the references to key1.
1966	 */
1967	while (--drop_count >= 0)
1968		drop_futex_key_refs(&key1);
1969
1970out_put_keys:
1971	put_futex_key(&key2);
1972out_put_key1:
1973	put_futex_key(&key1);
1974out:
 
 
1975	return ret ? ret : task_count;
1976}
1977
1978/* The key must be already stored in q->key. */
1979static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1980	__acquires(&hb->lock)
1981{
1982	struct futex_hash_bucket *hb;
1983
1984	hb = hash_futex(&q->key);
1985
1986	/*
1987	 * Increment the counter before taking the lock so that
1988	 * a potential waker won't miss a to-be-slept task that is
1989	 * waiting for the spinlock. This is safe as all queue_lock()
1990	 * users end up calling queue_me(). Similarly, for housekeeping,
1991	 * decrement the counter at queue_unlock() when some error has
1992	 * occurred and we don't end up adding the task to the list.
1993	 */
1994	hb_waiters_inc(hb);
1995
1996	q->lock_ptr = &hb->lock;
1997
1998	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1999	return hb;
2000}
2001
2002static inline void
2003queue_unlock(struct futex_hash_bucket *hb)
2004	__releases(&hb->lock)
2005{
2006	spin_unlock(&hb->lock);
2007	hb_waiters_dec(hb);
2008}
2009
2010/**
2011 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2012 * @q:	The futex_q to enqueue
2013 * @hb:	The destination hash bucket
2014 *
2015 * The hb->lock must be held by the caller, and is released here. A call to
2016 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2017 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2018 * or nothing if the unqueue is done as part of the wake process and the unqueue
2019 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2020 * an example).
2021 */
2022static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2023	__releases(&hb->lock)
2024{
2025	int prio;
2026
2027	/*
2028	 * The priority used to register this element is
2029	 * - either the real thread-priority for the real-time threads
2030	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2031	 * - or MAX_RT_PRIO for non-RT threads.
2032	 * Thus, all RT-threads are woken first in priority order, and
2033	 * the others are woken last, in FIFO order.
2034	 */
2035	prio = min(current->normal_prio, MAX_RT_PRIO);
2036
2037	plist_node_init(&q->list, prio);
2038	plist_add(&q->list, &hb->chain);
2039	q->task = current;
2040	spin_unlock(&hb->lock);
2041}
2042
2043/**
2044 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2045 * @q:	The futex_q to unqueue
2046 *
2047 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2048 * be paired with exactly one earlier call to queue_me().
2049 *
2050 * Return:
2051 *   1 - if the futex_q was still queued (and we removed unqueued it);
2052 *   0 - if the futex_q was already removed by the waking thread
2053 */
2054static int unqueue_me(struct futex_q *q)
2055{
2056	spinlock_t *lock_ptr;
2057	int ret = 0;
2058
2059	/* In the common case we don't take the spinlock, which is nice. */
2060retry:
2061	/*
2062	 * q->lock_ptr can change between this read and the following spin_lock.
2063	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2064	 * optimizing lock_ptr out of the logic below.
2065	 */
2066	lock_ptr = READ_ONCE(q->lock_ptr);
2067	if (lock_ptr != NULL) {
2068		spin_lock(lock_ptr);
2069		/*
2070		 * q->lock_ptr can change between reading it and
2071		 * spin_lock(), causing us to take the wrong lock.  This
2072		 * corrects the race condition.
2073		 *
2074		 * Reasoning goes like this: if we have the wrong lock,
2075		 * q->lock_ptr must have changed (maybe several times)
2076		 * between reading it and the spin_lock().  It can
2077		 * change again after the spin_lock() but only if it was
2078		 * already changed before the spin_lock().  It cannot,
2079		 * however, change back to the original value.  Therefore
2080		 * we can detect whether we acquired the correct lock.
2081		 */
2082		if (unlikely(lock_ptr != q->lock_ptr)) {
2083			spin_unlock(lock_ptr);
2084			goto retry;
2085		}
2086		__unqueue_futex(q);
2087
2088		BUG_ON(q->pi_state);
2089
2090		spin_unlock(lock_ptr);
2091		ret = 1;
2092	}
2093
2094	drop_futex_key_refs(&q->key);
2095	return ret;
2096}
2097
2098/*
2099 * PI futexes can not be requeued and must remove themself from the
2100 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2101 * and dropped here.
2102 */
2103static void unqueue_me_pi(struct futex_q *q)
2104	__releases(q->lock_ptr)
2105{
2106	__unqueue_futex(q);
2107
2108	BUG_ON(!q->pi_state);
2109	put_pi_state(q->pi_state);
2110	q->pi_state = NULL;
2111
2112	spin_unlock(q->lock_ptr);
2113}
2114
2115/*
2116 * Fixup the pi_state owner with the new owner.
2117 *
2118 * Must be called with hash bucket lock held and mm->sem held for non
2119 * private futexes.
2120 */
2121static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2122				struct task_struct *newowner)
2123{
2124	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2125	struct futex_pi_state *pi_state = q->pi_state;
2126	struct task_struct *oldowner = pi_state->owner;
2127	u32 uval, uninitialized_var(curval), newval;
2128	int ret;
2129
2130	/* Owner died? */
2131	if (!pi_state->owner)
2132		newtid |= FUTEX_OWNER_DIED;
2133
2134	/*
2135	 * We are here either because we stole the rtmutex from the
2136	 * previous highest priority waiter or we are the highest priority
2137	 * waiter but failed to get the rtmutex the first time.
2138	 * We have to replace the newowner TID in the user space variable.
2139	 * This must be atomic as we have to preserve the owner died bit here.
2140	 *
2141	 * Note: We write the user space value _before_ changing the pi_state
2142	 * because we can fault here. Imagine swapped out pages or a fork
2143	 * that marked all the anonymous memory readonly for cow.
2144	 *
2145	 * Modifying pi_state _before_ the user space value would
2146	 * leave the pi_state in an inconsistent state when we fault
2147	 * here, because we need to drop the hash bucket lock to
2148	 * handle the fault. This might be observed in the PID check
2149	 * in lookup_pi_state.
2150	 */
2151retry:
2152	if (get_futex_value_locked(&uval, uaddr))
2153		goto handle_fault;
2154
2155	while (1) {
2156		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2157
2158		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2159			goto handle_fault;
2160		if (curval == uval)
2161			break;
2162		uval = curval;
2163	}
2164
2165	/*
2166	 * We fixed up user space. Now we need to fix the pi_state
2167	 * itself.
2168	 */
2169	if (pi_state->owner != NULL) {
2170		raw_spin_lock_irq(&pi_state->owner->pi_lock);
2171		WARN_ON(list_empty(&pi_state->list));
2172		list_del_init(&pi_state->list);
2173		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2174	}
2175
2176	pi_state->owner = newowner;
2177
2178	raw_spin_lock_irq(&newowner->pi_lock);
2179	WARN_ON(!list_empty(&pi_state->list));
2180	list_add(&pi_state->list, &newowner->pi_state_list);
2181	raw_spin_unlock_irq(&newowner->pi_lock);
2182	return 0;
2183
2184	/*
2185	 * To handle the page fault we need to drop the hash bucket
2186	 * lock here. That gives the other task (either the highest priority
2187	 * waiter itself or the task which stole the rtmutex) the
2188	 * chance to try the fixup of the pi_state. So once we are
2189	 * back from handling the fault we need to check the pi_state
2190	 * after reacquiring the hash bucket lock and before trying to
2191	 * do another fixup. When the fixup has been done already we
2192	 * simply return.
2193	 */
2194handle_fault:
2195	spin_unlock(q->lock_ptr);
2196
2197	ret = fault_in_user_writeable(uaddr);
2198
2199	spin_lock(q->lock_ptr);
2200
2201	/*
2202	 * Check if someone else fixed it for us:
2203	 */
2204	if (pi_state->owner != oldowner)
2205		return 0;
2206
2207	if (ret)
2208		return ret;
2209
2210	goto retry;
2211}
2212
2213static long futex_wait_restart(struct restart_block *restart);
2214
2215/**
2216 * fixup_owner() - Post lock pi_state and corner case management
2217 * @uaddr:	user address of the futex
2218 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2219 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2220 *
2221 * After attempting to lock an rt_mutex, this function is called to cleanup
2222 * the pi_state owner as well as handle race conditions that may allow us to
2223 * acquire the lock. Must be called with the hb lock held.
2224 *
2225 * Return:
2226 *  1 - success, lock taken;
2227 *  0 - success, lock not taken;
2228 * <0 - on error (-EFAULT)
2229 */
2230static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2231{
2232	struct task_struct *owner;
2233	int ret = 0;
2234
2235	if (locked) {
2236		/*
2237		 * Got the lock. We might not be the anticipated owner if we
2238		 * did a lock-steal - fix up the PI-state in that case:
2239		 */
2240		if (q->pi_state->owner != current)
2241			ret = fixup_pi_state_owner(uaddr, q, current);
2242		goto out;
2243	}
2244
2245	/*
2246	 * Catch the rare case, where the lock was released when we were on the
2247	 * way back before we locked the hash bucket.
2248	 */
2249	if (q->pi_state->owner == current) {
2250		/*
2251		 * Try to get the rt_mutex now. This might fail as some other
2252		 * task acquired the rt_mutex after we removed ourself from the
2253		 * rt_mutex waiters list.
2254		 */
2255		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2256			locked = 1;
2257			goto out;
2258		}
2259
2260		/*
2261		 * pi_state is incorrect, some other task did a lock steal and
2262		 * we returned due to timeout or signal without taking the
2263		 * rt_mutex. Too late.
2264		 */
2265		raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2266		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2267		if (!owner)
2268			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2269		raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2270		ret = fixup_pi_state_owner(uaddr, q, owner);
2271		goto out;
2272	}
2273
2274	/*
2275	 * Paranoia check. If we did not take the lock, then we should not be
2276	 * the owner of the rt_mutex.
2277	 */
2278	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2279		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2280				"pi-state %p\n", ret,
2281				q->pi_state->pi_mutex.owner,
2282				q->pi_state->owner);
2283
2284out:
2285	return ret ? ret : locked;
2286}
2287
2288/**
2289 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2290 * @hb:		the futex hash bucket, must be locked by the caller
2291 * @q:		the futex_q to queue up on
2292 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2293 */
2294static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2295				struct hrtimer_sleeper *timeout)
2296{
2297	/*
2298	 * The task state is guaranteed to be set before another task can
2299	 * wake it. set_current_state() is implemented using smp_store_mb() and
2300	 * queue_me() calls spin_unlock() upon completion, both serializing
2301	 * access to the hash list and forcing another memory barrier.
2302	 */
2303	set_current_state(TASK_INTERRUPTIBLE);
2304	queue_me(q, hb);
2305
2306	/* Arm the timer */
2307	if (timeout)
2308		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
 
 
 
2309
2310	/*
2311	 * If we have been removed from the hash list, then another task
2312	 * has tried to wake us, and we can skip the call to schedule().
2313	 */
2314	if (likely(!plist_node_empty(&q->list))) {
2315		/*
2316		 * If the timer has already expired, current will already be
2317		 * flagged for rescheduling. Only call schedule if there
2318		 * is no timeout, or if it has yet to expire.
2319		 */
2320		if (!timeout || timeout->task)
2321			freezable_schedule();
2322	}
2323	__set_current_state(TASK_RUNNING);
2324}
2325
2326/**
2327 * futex_wait_setup() - Prepare to wait on a futex
2328 * @uaddr:	the futex userspace address
2329 * @val:	the expected value
2330 * @flags:	futex flags (FLAGS_SHARED, etc.)
2331 * @q:		the associated futex_q
2332 * @hb:		storage for hash_bucket pointer to be returned to caller
2333 *
2334 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2335 * compare it with the expected value.  Handle atomic faults internally.
2336 * Return with the hb lock held and a q.key reference on success, and unlocked
2337 * with no q.key reference on failure.
2338 *
2339 * Return:
2340 *  0 - uaddr contains val and hb has been locked;
2341 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2342 */
2343static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2344			   struct futex_q *q, struct futex_hash_bucket **hb)
2345{
2346	u32 uval;
2347	int ret;
2348
2349	/*
2350	 * Access the page AFTER the hash-bucket is locked.
2351	 * Order is important:
2352	 *
2353	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2354	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2355	 *
2356	 * The basic logical guarantee of a futex is that it blocks ONLY
2357	 * if cond(var) is known to be true at the time of blocking, for
2358	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2359	 * would open a race condition where we could block indefinitely with
2360	 * cond(var) false, which would violate the guarantee.
2361	 *
2362	 * On the other hand, we insert q and release the hash-bucket only
2363	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2364	 * absorb a wakeup if *uaddr does not match the desired values
2365	 * while the syscall executes.
2366	 */
2367retry:
2368	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2369	if (unlikely(ret != 0))
2370		return ret;
2371
2372retry_private:
2373	*hb = queue_lock(q);
2374
2375	ret = get_futex_value_locked(&uval, uaddr);
2376
2377	if (ret) {
2378		queue_unlock(*hb);
2379
2380		ret = get_user(uval, uaddr);
2381		if (ret)
2382			goto out;
2383
2384		if (!(flags & FLAGS_SHARED))
2385			goto retry_private;
2386
2387		put_futex_key(&q->key);
2388		goto retry;
2389	}
2390
2391	if (uval != val) {
2392		queue_unlock(*hb);
2393		ret = -EWOULDBLOCK;
2394	}
2395
2396out:
2397	if (ret)
2398		put_futex_key(&q->key);
2399	return ret;
2400}
2401
2402static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2403		      ktime_t *abs_time, u32 bitset)
2404{
2405	struct hrtimer_sleeper timeout, *to = NULL;
2406	struct restart_block *restart;
2407	struct futex_hash_bucket *hb;
2408	struct futex_q q = futex_q_init;
2409	int ret;
2410
2411	if (!bitset)
2412		return -EINVAL;
2413	q.bitset = bitset;
2414
2415	if (abs_time) {
2416		to = &timeout;
2417
2418		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2419				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2420				      HRTIMER_MODE_ABS);
2421		hrtimer_init_sleeper(to, current);
2422		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2423					     current->timer_slack_ns);
2424	}
2425
2426retry:
2427	/*
2428	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2429	 * q.key refs.
2430	 */
2431	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2432	if (ret)
2433		goto out;
2434
2435	/* queue_me and wait for wakeup, timeout, or a signal. */
2436	futex_wait_queue_me(hb, &q, to);
2437
2438	/* If we were woken (and unqueued), we succeeded, whatever. */
2439	ret = 0;
2440	/* unqueue_me() drops q.key ref */
2441	if (!unqueue_me(&q))
2442		goto out;
2443	ret = -ETIMEDOUT;
2444	if (to && !to->task)
2445		goto out;
2446
2447	/*
2448	 * We expect signal_pending(current), but we might be the
2449	 * victim of a spurious wakeup as well.
2450	 */
2451	if (!signal_pending(current))
2452		goto retry;
2453
2454	ret = -ERESTARTSYS;
2455	if (!abs_time)
2456		goto out;
2457
2458	restart = &current->restart_block;
2459	restart->fn = futex_wait_restart;
2460	restart->futex.uaddr = uaddr;
2461	restart->futex.val = val;
2462	restart->futex.time = *abs_time;
2463	restart->futex.bitset = bitset;
2464	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2465
2466	ret = -ERESTART_RESTARTBLOCK;
2467
2468out:
2469	if (to) {
2470		hrtimer_cancel(&to->timer);
2471		destroy_hrtimer_on_stack(&to->timer);
2472	}
2473	return ret;
2474}
2475
2476
2477static long futex_wait_restart(struct restart_block *restart)
2478{
2479	u32 __user *uaddr = restart->futex.uaddr;
2480	ktime_t t, *tp = NULL;
2481
2482	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2483		t = restart->futex.time;
2484		tp = &t;
2485	}
2486	restart->fn = do_no_restart_syscall;
2487
2488	return (long)futex_wait(uaddr, restart->futex.flags,
2489				restart->futex.val, tp, restart->futex.bitset);
2490}
2491
2492
2493/*
2494 * Userspace tried a 0 -> TID atomic transition of the futex value
2495 * and failed. The kernel side here does the whole locking operation:
2496 * if there are waiters then it will block as a consequence of relying
2497 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2498 * a 0 value of the futex too.).
2499 *
2500 * Also serves as futex trylock_pi()'ing, and due semantics.
2501 */
2502static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2503			 ktime_t *time, int trylock)
2504{
2505	struct hrtimer_sleeper timeout, *to = NULL;
2506	struct futex_hash_bucket *hb;
2507	struct futex_q q = futex_q_init;
2508	int res, ret;
2509
2510	if (refill_pi_state_cache())
2511		return -ENOMEM;
2512
2513	if (time) {
2514		to = &timeout;
2515		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2516				      HRTIMER_MODE_ABS);
2517		hrtimer_init_sleeper(to, current);
2518		hrtimer_set_expires(&to->timer, *time);
2519	}
2520
2521retry:
2522	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2523	if (unlikely(ret != 0))
2524		goto out;
2525
2526retry_private:
2527	hb = queue_lock(&q);
2528
2529	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2530	if (unlikely(ret)) {
2531		/*
2532		 * Atomic work succeeded and we got the lock,
2533		 * or failed. Either way, we do _not_ block.
2534		 */
2535		switch (ret) {
2536		case 1:
2537			/* We got the lock. */
2538			ret = 0;
2539			goto out_unlock_put_key;
2540		case -EFAULT:
2541			goto uaddr_faulted;
2542		case -EAGAIN:
2543			/*
2544			 * Two reasons for this:
2545			 * - Task is exiting and we just wait for the
2546			 *   exit to complete.
2547			 * - The user space value changed.
2548			 */
2549			queue_unlock(hb);
2550			put_futex_key(&q.key);
2551			cond_resched();
2552			goto retry;
2553		default:
2554			goto out_unlock_put_key;
2555		}
2556	}
2557
2558	/*
2559	 * Only actually queue now that the atomic ops are done:
2560	 */
2561	queue_me(&q, hb);
2562
2563	WARN_ON(!q.pi_state);
2564	/*
2565	 * Block on the PI mutex:
2566	 */
2567	if (!trylock) {
2568		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2569	} else {
2570		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2571		/* Fixup the trylock return value: */
2572		ret = ret ? 0 : -EWOULDBLOCK;
2573	}
2574
2575	spin_lock(q.lock_ptr);
2576	/*
2577	 * Fixup the pi_state owner and possibly acquire the lock if we
2578	 * haven't already.
2579	 */
2580	res = fixup_owner(uaddr, &q, !ret);
2581	/*
2582	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2583	 * the lock, clear our -ETIMEDOUT or -EINTR.
2584	 */
2585	if (res)
2586		ret = (res < 0) ? res : 0;
2587
2588	/*
2589	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2590	 * it and return the fault to userspace.
2591	 */
2592	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2593		rt_mutex_unlock(&q.pi_state->pi_mutex);
2594
2595	/* Unqueue and drop the lock */
2596	unqueue_me_pi(&q);
2597
2598	goto out_put_key;
2599
2600out_unlock_put_key:
2601	queue_unlock(hb);
2602
2603out_put_key:
2604	put_futex_key(&q.key);
2605out:
2606	if (to)
2607		destroy_hrtimer_on_stack(&to->timer);
2608	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2609
2610uaddr_faulted:
2611	queue_unlock(hb);
2612
2613	ret = fault_in_user_writeable(uaddr);
2614	if (ret)
2615		goto out_put_key;
2616
2617	if (!(flags & FLAGS_SHARED))
2618		goto retry_private;
2619
2620	put_futex_key(&q.key);
2621	goto retry;
2622}
2623
2624/*
2625 * Userspace attempted a TID -> 0 atomic transition, and failed.
2626 * This is the in-kernel slowpath: we look up the PI state (if any),
2627 * and do the rt-mutex unlock.
2628 */
2629static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2630{
2631	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2632	union futex_key key = FUTEX_KEY_INIT;
2633	struct futex_hash_bucket *hb;
2634	struct futex_q *match;
 
 
 
2635	int ret;
2636
2637retry:
2638	if (get_user(uval, uaddr))
2639		return -EFAULT;
2640	/*
2641	 * We release only a lock we actually own:
2642	 */
2643	if ((uval & FUTEX_TID_MASK) != vpid)
2644		return -EPERM;
2645
2646	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2647	if (ret)
2648		return ret;
2649
2650	hb = hash_futex(&key);
2651	spin_lock(&hb->lock);
2652
2653	/*
2654	 * Check waiters first. We do not trust user space values at
2655	 * all and we at least want to know if user space fiddled
2656	 * with the futex value instead of blindly unlocking.
2657	 */
2658	match = futex_top_waiter(hb, &key);
2659	if (match) {
2660		ret = wake_futex_pi(uaddr, uval, match, hb);
2661		/*
2662		 * In case of success wake_futex_pi dropped the hash
2663		 * bucket lock.
2664		 */
2665		if (!ret)
2666			goto out_putkey;
 
 
 
 
 
 
 
 
 
 
 
2667		/*
2668		 * The atomic access to the futex value generated a
2669		 * pagefault, so retry the user-access and the wakeup:
 
2670		 */
2671		if (ret == -EFAULT)
2672			goto pi_faulted;
2673		/*
2674		 * A unconditional UNLOCK_PI op raced against a waiter
2675		 * setting the FUTEX_WAITERS bit. Try again.
2676		 */
2677		if (ret == -EAGAIN) {
2678			spin_unlock(&hb->lock);
2679			put_futex_key(&key);
2680			goto retry;
2681		}
2682		/*
2683		 * wake_futex_pi has detected invalid state. Tell user
2684		 * space.
2685		 */
2686		goto out_unlock;
2687	}
2688
2689	/*
2690	 * We have no kernel internal state, i.e. no waiters in the
2691	 * kernel. Waiters which are about to queue themselves are stuck
2692	 * on hb->lock. So we can safely ignore them. We do neither
2693	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2694	 * owner.
2695	 */
2696	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2697		goto pi_faulted;
2698
2699	/*
2700	 * If uval has changed, let user space handle it.
2701	 */
2702	ret = (curval == uval) ? 0 : -EAGAIN;
2703
2704out_unlock:
2705	spin_unlock(&hb->lock);
2706out_putkey:
2707	put_futex_key(&key);
 
 
2708	return ret;
2709
2710pi_faulted:
2711	spin_unlock(&hb->lock);
2712	put_futex_key(&key);
2713
2714	ret = fault_in_user_writeable(uaddr);
2715	if (!ret)
2716		goto retry;
2717
2718	return ret;
2719}
2720
2721/**
2722 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2723 * @hb:		the hash_bucket futex_q was original enqueued on
2724 * @q:		the futex_q woken while waiting to be requeued
2725 * @key2:	the futex_key of the requeue target futex
2726 * @timeout:	the timeout associated with the wait (NULL if none)
2727 *
2728 * Detect if the task was woken on the initial futex as opposed to the requeue
2729 * target futex.  If so, determine if it was a timeout or a signal that caused
2730 * the wakeup and return the appropriate error code to the caller.  Must be
2731 * called with the hb lock held.
2732 *
2733 * Return:
2734 *  0 = no early wakeup detected;
2735 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2736 */
2737static inline
2738int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2739				   struct futex_q *q, union futex_key *key2,
2740				   struct hrtimer_sleeper *timeout)
2741{
2742	int ret = 0;
2743
2744	/*
2745	 * With the hb lock held, we avoid races while we process the wakeup.
2746	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2747	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2748	 * It can't be requeued from uaddr2 to something else since we don't
2749	 * support a PI aware source futex for requeue.
2750	 */
2751	if (!match_futex(&q->key, key2)) {
2752		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2753		/*
2754		 * We were woken prior to requeue by a timeout or a signal.
2755		 * Unqueue the futex_q and determine which it was.
2756		 */
2757		plist_del(&q->list, &hb->chain);
2758		hb_waiters_dec(hb);
2759
2760		/* Handle spurious wakeups gracefully */
2761		ret = -EWOULDBLOCK;
2762		if (timeout && !timeout->task)
2763			ret = -ETIMEDOUT;
2764		else if (signal_pending(current))
2765			ret = -ERESTARTNOINTR;
2766	}
2767	return ret;
2768}
2769
2770/**
2771 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2772 * @uaddr:	the futex we initially wait on (non-pi)
2773 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2774 *		the same type, no requeueing from private to shared, etc.
2775 * @val:	the expected value of uaddr
2776 * @abs_time:	absolute timeout
2777 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
 
2778 * @uaddr2:	the pi futex we will take prior to returning to user-space
2779 *
2780 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2781 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2782 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2783 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2784 * without one, the pi logic would not know which task to boost/deboost, if
2785 * there was a need to.
2786 *
2787 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2788 * via the following--
2789 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2790 * 2) wakeup on uaddr2 after a requeue
2791 * 3) signal
2792 * 4) timeout
2793 *
2794 * If 3, cleanup and return -ERESTARTNOINTR.
2795 *
2796 * If 2, we may then block on trying to take the rt_mutex and return via:
2797 * 5) successful lock
2798 * 6) signal
2799 * 7) timeout
2800 * 8) other lock acquisition failure
2801 *
2802 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2803 *
2804 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2805 *
2806 * Return:
2807 *  0 - On success;
2808 * <0 - On error
2809 */
2810static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2811				 u32 val, ktime_t *abs_time, u32 bitset,
2812				 u32 __user *uaddr2)
2813{
2814	struct hrtimer_sleeper timeout, *to = NULL;
2815	struct rt_mutex_waiter rt_waiter;
 
2816	struct futex_hash_bucket *hb;
2817	union futex_key key2 = FUTEX_KEY_INIT;
2818	struct futex_q q = futex_q_init;
2819	int res, ret;
2820
2821	if (uaddr == uaddr2)
2822		return -EINVAL;
2823
2824	if (!bitset)
2825		return -EINVAL;
2826
2827	if (abs_time) {
2828		to = &timeout;
2829		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2830				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2831				      HRTIMER_MODE_ABS);
2832		hrtimer_init_sleeper(to, current);
2833		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2834					     current->timer_slack_ns);
2835	}
2836
2837	/*
2838	 * The waiter is allocated on our stack, manipulated by the requeue
2839	 * code while we sleep on uaddr.
2840	 */
2841	debug_rt_mutex_init_waiter(&rt_waiter);
2842	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2843	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2844	rt_waiter.task = NULL;
2845
2846	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2847	if (unlikely(ret != 0))
2848		goto out;
2849
2850	q.bitset = bitset;
2851	q.rt_waiter = &rt_waiter;
2852	q.requeue_pi_key = &key2;
2853
2854	/*
2855	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2856	 * count.
2857	 */
2858	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2859	if (ret)
2860		goto out_key2;
2861
2862	/*
2863	 * The check above which compares uaddrs is not sufficient for
2864	 * shared futexes. We need to compare the keys:
2865	 */
2866	if (match_futex(&q.key, &key2)) {
2867		queue_unlock(hb);
2868		ret = -EINVAL;
2869		goto out_put_keys;
2870	}
2871
2872	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2873	futex_wait_queue_me(hb, &q, to);
2874
2875	spin_lock(&hb->lock);
2876	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2877	spin_unlock(&hb->lock);
2878	if (ret)
2879		goto out_put_keys;
2880
2881	/*
2882	 * In order for us to be here, we know our q.key == key2, and since
2883	 * we took the hb->lock above, we also know that futex_requeue() has
2884	 * completed and we no longer have to concern ourselves with a wakeup
2885	 * race with the atomic proxy lock acquisition by the requeue code. The
2886	 * futex_requeue dropped our key1 reference and incremented our key2
2887	 * reference count.
2888	 */
2889
2890	/* Check if the requeue code acquired the second futex for us. */
2891	if (!q.rt_waiter) {
2892		/*
2893		 * Got the lock. We might not be the anticipated owner if we
2894		 * did a lock-steal - fix up the PI-state in that case.
2895		 */
2896		if (q.pi_state && (q.pi_state->owner != current)) {
2897			spin_lock(q.lock_ptr);
2898			ret = fixup_pi_state_owner(uaddr2, &q, current);
2899			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2900				rt_mutex_unlock(&q.pi_state->pi_mutex);
2901			/*
2902			 * Drop the reference to the pi state which
2903			 * the requeue_pi() code acquired for us.
2904			 */
2905			put_pi_state(q.pi_state);
2906			spin_unlock(q.lock_ptr);
2907		}
2908	} else {
2909		struct rt_mutex *pi_mutex;
2910
2911		/*
2912		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2913		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2914		 * the pi_state.
2915		 */
2916		WARN_ON(!q.pi_state);
2917		pi_mutex = &q.pi_state->pi_mutex;
2918		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2919		debug_rt_mutex_free_waiter(&rt_waiter);
2920
2921		spin_lock(q.lock_ptr);
2922		/*
2923		 * Fixup the pi_state owner and possibly acquire the lock if we
2924		 * haven't already.
2925		 */
2926		res = fixup_owner(uaddr2, &q, !ret);
2927		/*
2928		 * If fixup_owner() returned an error, proprogate that.  If it
2929		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2930		 */
2931		if (res)
2932			ret = (res < 0) ? res : 0;
2933
2934		/*
2935		 * If fixup_pi_state_owner() faulted and was unable to handle
2936		 * the fault, unlock the rt_mutex and return the fault to
2937		 * userspace.
2938		 */
2939		if (ret && rt_mutex_owner(pi_mutex) == current)
2940			rt_mutex_unlock(pi_mutex);
2941
2942		/* Unqueue and drop the lock. */
2943		unqueue_me_pi(&q);
2944	}
2945
2946	if (ret == -EINTR) {
 
 
 
 
 
 
 
2947		/*
2948		 * We've already been requeued, but cannot restart by calling
2949		 * futex_lock_pi() directly. We could restart this syscall, but
2950		 * it would detect that the user space "val" changed and return
2951		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2952		 * -EWOULDBLOCK directly.
2953		 */
2954		ret = -EWOULDBLOCK;
2955	}
2956
2957out_put_keys:
2958	put_futex_key(&q.key);
2959out_key2:
2960	put_futex_key(&key2);
2961
2962out:
2963	if (to) {
2964		hrtimer_cancel(&to->timer);
2965		destroy_hrtimer_on_stack(&to->timer);
2966	}
2967	return ret;
2968}
2969
2970/*
2971 * Support for robust futexes: the kernel cleans up held futexes at
2972 * thread exit time.
2973 *
2974 * Implementation: user-space maintains a per-thread list of locks it
2975 * is holding. Upon do_exit(), the kernel carefully walks this list,
2976 * and marks all locks that are owned by this thread with the
2977 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2978 * always manipulated with the lock held, so the list is private and
2979 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2980 * field, to allow the kernel to clean up if the thread dies after
2981 * acquiring the lock, but just before it could have added itself to
2982 * the list. There can only be one such pending lock.
2983 */
2984
2985/**
2986 * sys_set_robust_list() - Set the robust-futex list head of a task
2987 * @head:	pointer to the list-head
2988 * @len:	length of the list-head, as userspace expects
2989 */
2990SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2991		size_t, len)
2992{
2993	if (!futex_cmpxchg_enabled)
2994		return -ENOSYS;
2995	/*
2996	 * The kernel knows only one size for now:
2997	 */
2998	if (unlikely(len != sizeof(*head)))
2999		return -EINVAL;
3000
3001	current->robust_list = head;
3002
3003	return 0;
3004}
3005
3006/**
3007 * sys_get_robust_list() - Get the robust-futex list head of a task
3008 * @pid:	pid of the process [zero for current task]
3009 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3010 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3011 */
3012SYSCALL_DEFINE3(get_robust_list, int, pid,
3013		struct robust_list_head __user * __user *, head_ptr,
3014		size_t __user *, len_ptr)
3015{
3016	struct robust_list_head __user *head;
3017	unsigned long ret;
3018	struct task_struct *p;
3019
3020	if (!futex_cmpxchg_enabled)
3021		return -ENOSYS;
3022
3023	rcu_read_lock();
3024
3025	ret = -ESRCH;
3026	if (!pid)
3027		p = current;
3028	else {
 
 
 
 
3029		p = find_task_by_vpid(pid);
3030		if (!p)
3031			goto err_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032	}
3033
3034	ret = -EPERM;
3035	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3036		goto err_unlock;
3037
3038	head = p->robust_list;
3039	rcu_read_unlock();
3040
3041	if (put_user(sizeof(*head), len_ptr))
3042		return -EFAULT;
3043	return put_user(head, head_ptr);
3044
3045err_unlock:
3046	rcu_read_unlock();
3047
3048	return ret;
3049}
3050
3051/*
3052 * Process a futex-list entry, check whether it's owned by the
3053 * dying task, and do notification if so:
3054 */
3055int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3056{
3057	u32 uval, uninitialized_var(nval), mval;
3058
3059retry:
3060	if (get_user(uval, uaddr))
3061		return -1;
3062
3063	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3064		/*
3065		 * Ok, this dying thread is truly holding a futex
3066		 * of interest. Set the OWNER_DIED bit atomically
3067		 * via cmpxchg, and if the value had FUTEX_WAITERS
3068		 * set, wake up a waiter (if any). (We have to do a
3069		 * futex_wake() even if OWNER_DIED is already set -
3070		 * to handle the rare but possible case of recursive
3071		 * thread-death.) The rest of the cleanup is done in
3072		 * userspace.
3073		 */
3074		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3075		/*
3076		 * We are not holding a lock here, but we want to have
3077		 * the pagefault_disable/enable() protection because
3078		 * we want to handle the fault gracefully. If the
3079		 * access fails we try to fault in the futex with R/W
3080		 * verification via get_user_pages. get_user() above
3081		 * does not guarantee R/W access. If that fails we
3082		 * give up and leave the futex locked.
3083		 */
3084		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3085			if (fault_in_user_writeable(uaddr))
3086				return -1;
3087			goto retry;
3088		}
3089		if (nval != uval)
3090			goto retry;
3091
3092		/*
3093		 * Wake robust non-PI futexes here. The wakeup of
3094		 * PI futexes happens in exit_pi_state():
3095		 */
3096		if (!pi && (uval & FUTEX_WAITERS))
3097			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3098	}
3099	return 0;
3100}
3101
3102/*
3103 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3104 */
3105static inline int fetch_robust_entry(struct robust_list __user **entry,
3106				     struct robust_list __user * __user *head,
3107				     unsigned int *pi)
3108{
3109	unsigned long uentry;
3110
3111	if (get_user(uentry, (unsigned long __user *)head))
3112		return -EFAULT;
3113
3114	*entry = (void __user *)(uentry & ~1UL);
3115	*pi = uentry & 1;
3116
3117	return 0;
3118}
3119
3120/*
3121 * Walk curr->robust_list (very carefully, it's a userspace list!)
3122 * and mark any locks found there dead, and notify any waiters.
3123 *
3124 * We silently return on any sign of list-walking problem.
3125 */
3126void exit_robust_list(struct task_struct *curr)
3127{
3128	struct robust_list_head __user *head = curr->robust_list;
3129	struct robust_list __user *entry, *next_entry, *pending;
3130	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3131	unsigned int uninitialized_var(next_pi);
3132	unsigned long futex_offset;
3133	int rc;
3134
3135	if (!futex_cmpxchg_enabled)
3136		return;
3137
3138	/*
3139	 * Fetch the list head (which was registered earlier, via
3140	 * sys_set_robust_list()):
3141	 */
3142	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3143		return;
3144	/*
3145	 * Fetch the relative futex offset:
3146	 */
3147	if (get_user(futex_offset, &head->futex_offset))
3148		return;
3149	/*
3150	 * Fetch any possibly pending lock-add first, and handle it
3151	 * if it exists:
3152	 */
3153	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3154		return;
3155
3156	next_entry = NULL;	/* avoid warning with gcc */
3157	while (entry != &head->list) {
3158		/*
3159		 * Fetch the next entry in the list before calling
3160		 * handle_futex_death:
3161		 */
3162		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3163		/*
3164		 * A pending lock might already be on the list, so
3165		 * don't process it twice:
3166		 */
3167		if (entry != pending)
3168			if (handle_futex_death((void __user *)entry + futex_offset,
3169						curr, pi))
3170				return;
3171		if (rc)
3172			return;
3173		entry = next_entry;
3174		pi = next_pi;
3175		/*
3176		 * Avoid excessively long or circular lists:
3177		 */
3178		if (!--limit)
3179			break;
3180
3181		cond_resched();
3182	}
3183
3184	if (pending)
3185		handle_futex_death((void __user *)pending + futex_offset,
3186				   curr, pip);
3187}
3188
3189long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3190		u32 __user *uaddr2, u32 val2, u32 val3)
3191{
3192	int cmd = op & FUTEX_CMD_MASK;
3193	unsigned int flags = 0;
3194
3195	if (!(op & FUTEX_PRIVATE_FLAG))
3196		flags |= FLAGS_SHARED;
3197
3198	if (op & FUTEX_CLOCK_REALTIME) {
3199		flags |= FLAGS_CLOCKRT;
3200		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3201		    cmd != FUTEX_WAIT_REQUEUE_PI)
3202			return -ENOSYS;
3203	}
3204
3205	switch (cmd) {
3206	case FUTEX_LOCK_PI:
3207	case FUTEX_UNLOCK_PI:
3208	case FUTEX_TRYLOCK_PI:
3209	case FUTEX_WAIT_REQUEUE_PI:
3210	case FUTEX_CMP_REQUEUE_PI:
3211		if (!futex_cmpxchg_enabled)
3212			return -ENOSYS;
3213	}
3214
3215	switch (cmd) {
3216	case FUTEX_WAIT:
3217		val3 = FUTEX_BITSET_MATCH_ANY;
3218	case FUTEX_WAIT_BITSET:
3219		return futex_wait(uaddr, flags, val, timeout, val3);
 
3220	case FUTEX_WAKE:
3221		val3 = FUTEX_BITSET_MATCH_ANY;
3222	case FUTEX_WAKE_BITSET:
3223		return futex_wake(uaddr, flags, val, val3);
 
3224	case FUTEX_REQUEUE:
3225		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
 
3226	case FUTEX_CMP_REQUEUE:
3227		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
 
3228	case FUTEX_WAKE_OP:
3229		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
 
3230	case FUTEX_LOCK_PI:
3231		return futex_lock_pi(uaddr, flags, timeout, 0);
 
 
3232	case FUTEX_UNLOCK_PI:
3233		return futex_unlock_pi(uaddr, flags);
 
 
3234	case FUTEX_TRYLOCK_PI:
3235		return futex_lock_pi(uaddr, flags, NULL, 1);
 
 
3236	case FUTEX_WAIT_REQUEUE_PI:
3237		val3 = FUTEX_BITSET_MATCH_ANY;
3238		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3239					     uaddr2);
 
3240	case FUTEX_CMP_REQUEUE_PI:
3241		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
 
 
 
3242	}
3243	return -ENOSYS;
3244}
3245
3246
3247SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3248		struct timespec __user *, utime, u32 __user *, uaddr2,
3249		u32, val3)
3250{
3251	struct timespec ts;
3252	ktime_t t, *tp = NULL;
3253	u32 val2 = 0;
3254	int cmd = op & FUTEX_CMD_MASK;
3255
3256	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3257		      cmd == FUTEX_WAIT_BITSET ||
3258		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3259		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3260			return -EFAULT;
3261		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3262			return -EFAULT;
3263		if (!timespec_valid(&ts))
3264			return -EINVAL;
3265
3266		t = timespec_to_ktime(ts);
3267		if (cmd == FUTEX_WAIT)
3268			t = ktime_add_safe(ktime_get(), t);
3269		tp = &t;
3270	}
3271	/*
3272	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3273	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3274	 */
3275	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3276	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3277		val2 = (u32) (unsigned long) utime;
3278
3279	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3280}
3281
3282static void __init futex_detect_cmpxchg(void)
3283{
3284#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3285	u32 curval;
 
3286
3287	/*
3288	 * This will fail and we want it. Some arch implementations do
3289	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3290	 * functionality. We want to know that before we call in any
3291	 * of the complex code paths. Also we want to prevent
3292	 * registration of robust lists in that case. NULL is
3293	 * guaranteed to fault and we get -EFAULT on functional
3294	 * implementation, the non-functional ones will return
3295	 * -ENOSYS.
3296	 */
3297	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3298		futex_cmpxchg_enabled = 1;
3299#endif
3300}
3301
3302static int __init futex_init(void)
3303{
3304	unsigned int futex_shift;
3305	unsigned long i;
3306
3307#if CONFIG_BASE_SMALL
3308	futex_hashsize = 16;
3309#else
3310	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3311#endif
3312
3313	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3314					       futex_hashsize, 0,
3315					       futex_hashsize < 256 ? HASH_SMALL : 0,
3316					       &futex_shift, NULL,
3317					       futex_hashsize, futex_hashsize);
3318	futex_hashsize = 1UL << futex_shift;
3319
3320	futex_detect_cmpxchg();
3321
3322	for (i = 0; i < futex_hashsize; i++) {
3323		atomic_set(&futex_queues[i].waiters, 0);
3324		plist_head_init(&futex_queues[i].chain);
3325		spin_lock_init(&futex_queues[i].lock);
3326	}
3327
3328	return 0;
3329}
3330core_initcall(futex_init);
v3.1
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/module.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
 
 
 
 
 
 
  62
  63#include <asm/futex.h>
  64
  65#include "rtmutex_common.h"
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67int __read_mostly futex_cmpxchg_enabled;
  68
  69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  70
  71/*
  72 * Futex flags used to encode options to functions and preserve them across
  73 * restarts.
  74 */
  75#define FLAGS_SHARED		0x01
 
 
 
 
 
 
 
 
  76#define FLAGS_CLOCKRT		0x02
  77#define FLAGS_HAS_TIMEOUT	0x04
  78
  79/*
  80 * Priority Inheritance state:
  81 */
  82struct futex_pi_state {
  83	/*
  84	 * list of 'owned' pi_state instances - these have to be
  85	 * cleaned up in do_exit() if the task exits prematurely:
  86	 */
  87	struct list_head list;
  88
  89	/*
  90	 * The PI object:
  91	 */
  92	struct rt_mutex pi_mutex;
  93
  94	struct task_struct *owner;
  95	atomic_t refcount;
  96
  97	union futex_key key;
  98};
  99
 100/**
 101 * struct futex_q - The hashed futex queue entry, one per waiting task
 102 * @list:		priority-sorted list of tasks waiting on this futex
 103 * @task:		the task waiting on the futex
 104 * @lock_ptr:		the hash bucket lock
 105 * @key:		the key the futex is hashed on
 106 * @pi_state:		optional priority inheritance state
 107 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 108 * @requeue_pi_key:	the requeue_pi target futex key
 109 * @bitset:		bitset for the optional bitmasked wakeup
 110 *
 111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 112 * we can wake only the relevant ones (hashed queues may be shared).
 113 *
 114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 116 * The order of wakeup is always to make the first condition true, then
 117 * the second.
 118 *
 119 * PI futexes are typically woken before they are removed from the hash list via
 120 * the rt_mutex code. See unqueue_me_pi().
 121 */
 122struct futex_q {
 123	struct plist_node list;
 124
 125	struct task_struct *task;
 126	spinlock_t *lock_ptr;
 127	union futex_key key;
 128	struct futex_pi_state *pi_state;
 129	struct rt_mutex_waiter *rt_waiter;
 130	union futex_key *requeue_pi_key;
 131	u32 bitset;
 132};
 133
 134static const struct futex_q futex_q_init = {
 135	/* list gets initialized in queue_me()*/
 136	.key = FUTEX_KEY_INIT,
 137	.bitset = FUTEX_BITSET_MATCH_ANY
 138};
 139
 140/*
 141 * Hash buckets are shared by all the futex_keys that hash to the same
 142 * location.  Each key may have multiple futex_q structures, one for each task
 143 * waiting on a futex.
 144 */
 145struct futex_hash_bucket {
 
 146	spinlock_t lock;
 147	struct plist_head chain;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148};
 149
 150static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151
 152/*
 153 * We hash on the keys returned from get_futex_key (see below).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154 */
 155static struct futex_hash_bucket *hash_futex(union futex_key *key)
 156{
 157	u32 hash = jhash2((u32*)&key->both.word,
 158			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 159			  key->both.offset);
 160	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
 161}
 162
 163/*
 
 
 
 
 
 164 * Return 1 if two futex_keys are equal, 0 otherwise.
 165 */
 166static inline int match_futex(union futex_key *key1, union futex_key *key2)
 167{
 168	return (key1 && key2
 169		&& key1->both.word == key2->both.word
 170		&& key1->both.ptr == key2->both.ptr
 171		&& key1->both.offset == key2->both.offset);
 172}
 173
 174/*
 175 * Take a reference to the resource addressed by a key.
 176 * Can be called while holding spinlocks.
 177 *
 178 */
 179static void get_futex_key_refs(union futex_key *key)
 180{
 181	if (!key->both.ptr)
 182		return;
 183
 
 
 
 
 
 
 
 
 
 
 184	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 185	case FUT_OFF_INODE:
 186		ihold(key->shared.inode);
 187		break;
 188	case FUT_OFF_MMSHARED:
 189		atomic_inc(&key->private.mm->mm_count);
 190		break;
 
 
 
 
 
 
 
 191	}
 192}
 193
 194/*
 195 * Drop a reference to the resource addressed by a key.
 196 * The hash bucket spinlock must not be held.
 
 
 197 */
 198static void drop_futex_key_refs(union futex_key *key)
 199{
 200	if (!key->both.ptr) {
 201		/* If we're here then we tried to put a key we failed to get */
 202		WARN_ON_ONCE(1);
 203		return;
 204	}
 205
 
 
 
 206	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 207	case FUT_OFF_INODE:
 208		iput(key->shared.inode);
 209		break;
 210	case FUT_OFF_MMSHARED:
 211		mmdrop(key->private.mm);
 212		break;
 213	}
 214}
 215
 216/**
 217 * get_futex_key() - Get parameters which are the keys for a futex
 218 * @uaddr:	virtual address of the futex
 219 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 220 * @key:	address where result is stored.
 221 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 222 *              VERIFY_WRITE)
 223 *
 224 * Returns a negative error code or 0
 
 225 * The key words are stored in *key on success.
 226 *
 227 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
 228 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 229 * We can usually work out the index without swapping in the page.
 230 *
 231 * lock_page() might sleep, the caller should not hold a spinlock.
 232 */
 233static int
 234get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 235{
 236	unsigned long address = (unsigned long)uaddr;
 237	struct mm_struct *mm = current->mm;
 238	struct page *page, *page_head;
 
 239	int err, ro = 0;
 240
 241	/*
 242	 * The futex address must be "naturally" aligned.
 243	 */
 244	key->both.offset = address % PAGE_SIZE;
 245	if (unlikely((address % sizeof(u32)) != 0))
 246		return -EINVAL;
 247	address -= key->both.offset;
 248
 
 
 
 
 
 
 249	/*
 250	 * PROCESS_PRIVATE futexes are fast.
 251	 * As the mm cannot disappear under us and the 'key' only needs
 252	 * virtual address, we dont even have to find the underlying vma.
 253	 * Note : We do have to check 'uaddr' is a valid user address,
 254	 *        but access_ok() should be faster than find_vma()
 255	 */
 256	if (!fshared) {
 257		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
 258			return -EFAULT;
 259		key->private.mm = mm;
 260		key->private.address = address;
 261		get_futex_key_refs(key);
 262		return 0;
 263	}
 264
 265again:
 
 
 
 
 266	err = get_user_pages_fast(address, 1, 1, &page);
 267	/*
 268	 * If write access is not required (eg. FUTEX_WAIT), try
 269	 * and get read-only access.
 270	 */
 271	if (err == -EFAULT && rw == VERIFY_READ) {
 272		err = get_user_pages_fast(address, 1, 0, &page);
 273		ro = 1;
 274	}
 275	if (err < 0)
 276		return err;
 277	else
 278		err = 0;
 279
 280#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 281	page_head = page;
 282	if (unlikely(PageTail(page))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283		put_page(page);
 284		/* serialize against __split_huge_page_splitting() */
 285		local_irq_disable();
 286		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
 287			page_head = compound_head(page);
 288			/*
 289			 * page_head is valid pointer but we must pin
 290			 * it before taking the PG_lock and/or
 291			 * PG_compound_lock. The moment we re-enable
 292			 * irqs __split_huge_page_splitting() can
 293			 * return and the head page can be freed from
 294			 * under us. We can't take the PG_lock and/or
 295			 * PG_compound_lock on a page that could be
 296			 * freed from under us.
 297			 */
 298			if (page != page_head) {
 299				get_page(page_head);
 300				put_page(page);
 301			}
 302			local_irq_enable();
 303		} else {
 304			local_irq_enable();
 305			goto again;
 306		}
 307	}
 308#else
 309	page_head = compound_head(page);
 310	if (page != page_head) {
 311		get_page(page_head);
 312		put_page(page);
 313	}
 314#endif
 315
 316	lock_page(page_head);
 317	if (!page_head->mapping) {
 318		unlock_page(page_head);
 319		put_page(page_head);
 320		/*
 321		* ZERO_PAGE pages don't have a mapping. Avoid a busy loop
 322		* trying to find one. RW mapping would have COW'd (and thus
 323		* have a mapping) so this page is RO and won't ever change.
 324		*/
 325		if ((page_head == ZERO_PAGE(address)))
 326			return -EFAULT;
 327		goto again;
 328	}
 329
 330	/*
 331	 * Private mappings are handled in a simple way.
 332	 *
 
 
 
 333	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 334	 * it's a read-only handle, it's expected that futexes attach to
 335	 * the object not the particular process.
 336	 */
 337	if (PageAnon(page_head)) {
 338		/*
 339		 * A RO anonymous page will never change and thus doesn't make
 340		 * sense for futex operations.
 341		 */
 342		if (ro) {
 343			err = -EFAULT;
 344			goto out;
 345		}
 346
 347		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 348		key->private.mm = mm;
 349		key->private.address = address;
 
 
 
 350	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 352		key->shared.inode = page_head->mapping->host;
 353		key->shared.pgoff = page_head->index;
 
 354	}
 355
 356	get_futex_key_refs(key);
 357
 358out:
 359	unlock_page(page_head);
 360	put_page(page_head);
 361	return err;
 362}
 363
 364static inline void put_futex_key(union futex_key *key)
 365{
 366	drop_futex_key_refs(key);
 367}
 368
 369/**
 370 * fault_in_user_writeable() - Fault in user address and verify RW access
 371 * @uaddr:	pointer to faulting user space address
 372 *
 373 * Slow path to fixup the fault we just took in the atomic write
 374 * access to @uaddr.
 375 *
 376 * We have no generic implementation of a non-destructive write to the
 377 * user address. We know that we faulted in the atomic pagefault
 378 * disabled section so we can as well avoid the #PF overhead by
 379 * calling get_user_pages() right away.
 380 */
 381static int fault_in_user_writeable(u32 __user *uaddr)
 382{
 383	struct mm_struct *mm = current->mm;
 384	int ret;
 385
 386	down_read(&mm->mmap_sem);
 387	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 388			       FAULT_FLAG_WRITE);
 389	up_read(&mm->mmap_sem);
 390
 391	return ret < 0 ? ret : 0;
 392}
 393
 394/**
 395 * futex_top_waiter() - Return the highest priority waiter on a futex
 396 * @hb:		the hash bucket the futex_q's reside in
 397 * @key:	the futex key (to distinguish it from other futex futex_q's)
 398 *
 399 * Must be called with the hb lock held.
 400 */
 401static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 402					union futex_key *key)
 403{
 404	struct futex_q *this;
 405
 406	plist_for_each_entry(this, &hb->chain, list) {
 407		if (match_futex(&this->key, key))
 408			return this;
 409	}
 410	return NULL;
 411}
 412
 413static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 414				      u32 uval, u32 newval)
 415{
 416	int ret;
 417
 418	pagefault_disable();
 419	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 420	pagefault_enable();
 421
 422	return ret;
 423}
 424
 425static int get_futex_value_locked(u32 *dest, u32 __user *from)
 426{
 427	int ret;
 428
 429	pagefault_disable();
 430	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 431	pagefault_enable();
 432
 433	return ret ? -EFAULT : 0;
 434}
 435
 436
 437/*
 438 * PI code:
 439 */
 440static int refill_pi_state_cache(void)
 441{
 442	struct futex_pi_state *pi_state;
 443
 444	if (likely(current->pi_state_cache))
 445		return 0;
 446
 447	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 448
 449	if (!pi_state)
 450		return -ENOMEM;
 451
 452	INIT_LIST_HEAD(&pi_state->list);
 453	/* pi_mutex gets initialized later */
 454	pi_state->owner = NULL;
 455	atomic_set(&pi_state->refcount, 1);
 456	pi_state->key = FUTEX_KEY_INIT;
 457
 458	current->pi_state_cache = pi_state;
 459
 460	return 0;
 461}
 462
 463static struct futex_pi_state * alloc_pi_state(void)
 464{
 465	struct futex_pi_state *pi_state = current->pi_state_cache;
 466
 467	WARN_ON(!pi_state);
 468	current->pi_state_cache = NULL;
 469
 470	return pi_state;
 471}
 472
 473static void free_pi_state(struct futex_pi_state *pi_state)
 
 
 
 
 
 
 474{
 
 
 
 475	if (!atomic_dec_and_test(&pi_state->refcount))
 476		return;
 477
 478	/*
 479	 * If pi_state->owner is NULL, the owner is most probably dying
 480	 * and has cleaned up the pi_state already
 481	 */
 482	if (pi_state->owner) {
 483		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 484		list_del_init(&pi_state->list);
 485		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 486
 487		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 488	}
 489
 490	if (current->pi_state_cache)
 491		kfree(pi_state);
 492	else {
 493		/*
 494		 * pi_state->list is already empty.
 495		 * clear pi_state->owner.
 496		 * refcount is at 0 - put it back to 1.
 497		 */
 498		pi_state->owner = NULL;
 499		atomic_set(&pi_state->refcount, 1);
 500		current->pi_state_cache = pi_state;
 501	}
 502}
 503
 504/*
 505 * Look up the task based on what TID userspace gave us.
 506 * We dont trust it.
 507 */
 508static struct task_struct * futex_find_get_task(pid_t pid)
 509{
 510	struct task_struct *p;
 511
 512	rcu_read_lock();
 513	p = find_task_by_vpid(pid);
 514	if (p)
 515		get_task_struct(p);
 516
 517	rcu_read_unlock();
 518
 519	return p;
 520}
 521
 522/*
 523 * This task is holding PI mutexes at exit time => bad.
 524 * Kernel cleans up PI-state, but userspace is likely hosed.
 525 * (Robust-futex cleanup is separate and might save the day for userspace.)
 526 */
 527void exit_pi_state_list(struct task_struct *curr)
 528{
 529	struct list_head *next, *head = &curr->pi_state_list;
 530	struct futex_pi_state *pi_state;
 531	struct futex_hash_bucket *hb;
 532	union futex_key key = FUTEX_KEY_INIT;
 533
 534	if (!futex_cmpxchg_enabled)
 535		return;
 536	/*
 537	 * We are a ZOMBIE and nobody can enqueue itself on
 538	 * pi_state_list anymore, but we have to be careful
 539	 * versus waiters unqueueing themselves:
 540	 */
 541	raw_spin_lock_irq(&curr->pi_lock);
 542	while (!list_empty(head)) {
 543
 544		next = head->next;
 545		pi_state = list_entry(next, struct futex_pi_state, list);
 546		key = pi_state->key;
 547		hb = hash_futex(&key);
 548		raw_spin_unlock_irq(&curr->pi_lock);
 549
 550		spin_lock(&hb->lock);
 551
 552		raw_spin_lock_irq(&curr->pi_lock);
 553		/*
 554		 * We dropped the pi-lock, so re-check whether this
 555		 * task still owns the PI-state:
 556		 */
 557		if (head->next != next) {
 558			spin_unlock(&hb->lock);
 559			continue;
 560		}
 561
 562		WARN_ON(pi_state->owner != curr);
 563		WARN_ON(list_empty(&pi_state->list));
 564		list_del_init(&pi_state->list);
 565		pi_state->owner = NULL;
 566		raw_spin_unlock_irq(&curr->pi_lock);
 567
 568		rt_mutex_unlock(&pi_state->pi_mutex);
 569
 570		spin_unlock(&hb->lock);
 571
 572		raw_spin_lock_irq(&curr->pi_lock);
 573	}
 574	raw_spin_unlock_irq(&curr->pi_lock);
 575}
 576
 577static int
 578lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 579		union futex_key *key, struct futex_pi_state **ps)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580{
 581	struct futex_pi_state *pi_state = NULL;
 582	struct futex_q *this, *next;
 583	struct plist_head *head;
 584	struct task_struct *p;
 585	pid_t pid = uval & FUTEX_TID_MASK;
 586
 587	head = &hb->chain;
 
 
 
 
 
 
 588
 589	plist_for_each_entry_safe(this, next, head, list) {
 590		if (match_futex(&this->key, key)) {
 
 
 
 
 
 
 
 
 591			/*
 592			 * Another waiter already exists - bump up
 593			 * the refcount and return its pi_state:
 594			 */
 595			pi_state = this->pi_state;
 
 596			/*
 597			 * Userspace might have messed up non-PI and PI futexes
 598			 */
 599			if (unlikely(!pi_state))
 600				return -EINVAL;
 601
 602			WARN_ON(!atomic_read(&pi_state->refcount));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603
 604			/*
 605			 * When pi_state->owner is NULL then the owner died
 606			 * and another waiter is on the fly. pi_state->owner
 607			 * is fixed up by the task which acquires
 608			 * pi_state->rt_mutex.
 609			 *
 610			 * We do not check for pid == 0 which can happen when
 611			 * the owner died and robust_list_exit() cleared the
 612			 * TID.
 613			 */
 614			if (pid && pi_state->owner) {
 615				/*
 616				 * Bail out if user space manipulated the
 617				 * futex value.
 618				 */
 619				if (pid != task_pid_vnr(pi_state->owner))
 620					return -EINVAL;
 621			}
 622
 623			atomic_inc(&pi_state->refcount);
 624			*ps = pi_state;
 625
 626			return 0;
 627		}
 628	}
 
 
 
 
 629
 630	/*
 631	 * We are the first waiter - try to look up the real owner and attach
 632	 * the new pi_state to it, but bail out when TID = 0
 633	 */
 634	if (!pid)
 635		return -ESRCH;
 636	p = futex_find_get_task(pid);
 637	if (!p)
 638		return -ESRCH;
 639
 
 
 
 
 
 640	/*
 641	 * We need to look at the task state flags to figure out,
 642	 * whether the task is exiting. To protect against the do_exit
 643	 * change of the task flags, we do this protected by
 644	 * p->pi_lock:
 645	 */
 646	raw_spin_lock_irq(&p->pi_lock);
 647	if (unlikely(p->flags & PF_EXITING)) {
 648		/*
 649		 * The task is on the way out. When PF_EXITPIDONE is
 650		 * set, we know that the task has finished the
 651		 * cleanup:
 652		 */
 653		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 654
 655		raw_spin_unlock_irq(&p->pi_lock);
 656		put_task_struct(p);
 657		return ret;
 658	}
 659
 
 
 
 660	pi_state = alloc_pi_state();
 661
 662	/*
 663	 * Initialize the pi_mutex in locked state and make 'p'
 664	 * the owner of it:
 665	 */
 666	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 667
 668	/* Store the key for possible exit cleanups: */
 669	pi_state->key = *key;
 670
 671	WARN_ON(!list_empty(&pi_state->list));
 672	list_add(&pi_state->list, &p->pi_state_list);
 673	pi_state->owner = p;
 674	raw_spin_unlock_irq(&p->pi_lock);
 675
 676	put_task_struct(p);
 677
 678	*ps = pi_state;
 679
 680	return 0;
 681}
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683/**
 684 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 685 * @uaddr:		the pi futex user address
 686 * @hb:			the pi futex hash bucket
 687 * @key:		the futex key associated with uaddr and hb
 688 * @ps:			the pi_state pointer where we store the result of the
 689 *			lookup
 690 * @task:		the task to perform the atomic lock work for.  This will
 691 *			be "current" except in the case of requeue pi.
 692 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 693 *
 694 * Returns:
 695 *  0 - ready to wait
 696 *  1 - acquired the lock
 697 * <0 - error
 698 *
 699 * The hb->lock and futex_key refs shall be held by the caller.
 700 */
 701static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 702				union futex_key *key,
 703				struct futex_pi_state **ps,
 704				struct task_struct *task, int set_waiters)
 705{
 706	int lock_taken, ret, ownerdied = 0;
 707	u32 uval, newval, curval, vpid = task_pid_vnr(task);
 708
 709retry:
 710	ret = lock_taken = 0;
 711
 712	/*
 713	 * To avoid races, we attempt to take the lock here again
 714	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
 715	 * the locks. It will most likely not succeed.
 716	 */
 717	newval = vpid;
 718	if (set_waiters)
 719		newval |= FUTEX_WAITERS;
 720
 721	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 722		return -EFAULT;
 723
 724	/*
 725	 * Detect deadlocks.
 726	 */
 727	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 
 
 
 728		return -EDEADLK;
 729
 730	/*
 731	 * Surprise - we got the lock. Just return to userspace:
 
 732	 */
 733	if (unlikely(!curval))
 734		return 1;
 735
 736	uval = curval;
 737
 738	/*
 739	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
 740	 * to wake at the next unlock.
 
 
 741	 */
 742	newval = curval | FUTEX_WAITERS;
 
 
 
 
 
 
 
 
 
 
 743
 744	/*
 745	 * There are two cases, where a futex might have no owner (the
 746	 * owner TID is 0): OWNER_DIED. We take over the futex in this
 747	 * case. We also do an unconditional take over, when the owner
 748	 * of the futex died.
 749	 *
 750	 * This is safe as we are protected by the hash bucket lock !
 751	 */
 752	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
 753		/* Keep the OWNER_DIED bit */
 754		newval = (curval & ~FUTEX_TID_MASK) | vpid;
 755		ownerdied = 0;
 756		lock_taken = 1;
 757	}
 758
 759	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
 760		return -EFAULT;
 761	if (unlikely(curval != uval))
 762		goto retry;
 763
 764	/*
 765	 * We took the lock due to owner died take over.
 
 
 766	 */
 767	if (unlikely(lock_taken))
 768		return 1;
 769
 
 770	/*
 771	 * We dont have the lock. Look up the PI state (or create it if
 772	 * we are the first waiter):
 
 773	 */
 774	ret = lookup_pi_state(uval, hb, key, ps);
 775
 776	if (unlikely(ret)) {
 777		switch (ret) {
 778		case -ESRCH:
 779			/*
 780			 * No owner found for this futex. Check if the
 781			 * OWNER_DIED bit is set to figure out whether
 782			 * this is a robust futex or not.
 783			 */
 784			if (get_futex_value_locked(&curval, uaddr))
 785				return -EFAULT;
 786
 787			/*
 788			 * We simply start over in case of a robust
 789			 * futex. The code above will take the futex
 790			 * and return happy.
 791			 */
 792			if (curval & FUTEX_OWNER_DIED) {
 793				ownerdied = 1;
 794				goto retry;
 795			}
 796		default:
 797			break;
 798		}
 799	}
 800
 801	return ret;
 802}
 803
 804/**
 805 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 806 * @q:	The futex_q to unqueue
 807 *
 808 * The q->lock_ptr must not be NULL and must be held by the caller.
 809 */
 810static void __unqueue_futex(struct futex_q *q)
 811{
 812	struct futex_hash_bucket *hb;
 813
 814	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
 815	    || WARN_ON(plist_node_empty(&q->list)))
 816		return;
 817
 818	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
 819	plist_del(&q->list, &hb->chain);
 
 820}
 821
 822/*
 823 * The hash bucket lock must be held when this is called.
 824 * Afterwards, the futex_q must not be accessed.
 
 
 825 */
 826static void wake_futex(struct futex_q *q)
 827{
 828	struct task_struct *p = q->task;
 829
 
 
 
 830	/*
 831	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
 832	 * a non-futex wake up happens on another CPU then the task
 833	 * might exit and p would dereference a non-existing task
 834	 * struct. Prevent this by holding a reference on p across the
 835	 * wake up.
 836	 */
 837	get_task_struct(p);
 838
 839	__unqueue_futex(q);
 840	/*
 841	 * The waiting task can free the futex_q as soon as
 842	 * q->lock_ptr = NULL is written, without taking any locks. A
 843	 * memory barrier is required here to prevent the following
 844	 * store to lock_ptr from getting ahead of the plist_del.
 845	 */
 846	smp_wmb();
 847	q->lock_ptr = NULL;
 848
 849	wake_up_state(p, TASK_NORMAL);
 850	put_task_struct(p);
 851}
 852
 853static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 
 854{
 855	struct task_struct *new_owner;
 856	struct futex_pi_state *pi_state = this->pi_state;
 857	u32 curval, newval;
 
 
 
 858
 859	if (!pi_state)
 860		return -EINVAL;
 861
 862	/*
 863	 * If current does not own the pi_state then the futex is
 864	 * inconsistent and user space fiddled with the futex value.
 865	 */
 866	if (pi_state->owner != current)
 867		return -EINVAL;
 868
 869	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
 870	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 871
 872	/*
 873	 * It is possible that the next waiter (the one that brought
 874	 * this owner to the kernel) timed out and is no longer
 875	 * waiting on the lock.
 876	 */
 877	if (!new_owner)
 878		new_owner = this->task;
 879
 880	/*
 881	 * We pass it to the next owner. (The WAITERS bit is always
 882	 * kept enabled while there is PI state around. We must also
 883	 * preserve the owner died bit.)
 884	 */
 885	if (!(uval & FUTEX_OWNER_DIED)) {
 886		int ret = 0;
 887
 888		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 
 889
 890		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
 891			ret = -EFAULT;
 892		else if (curval != uval)
 
 
 
 
 
 
 
 
 
 893			ret = -EINVAL;
 894		if (ret) {
 895			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 896			return ret;
 897		}
 898	}
 899
 900	raw_spin_lock_irq(&pi_state->owner->pi_lock);
 901	WARN_ON(list_empty(&pi_state->list));
 902	list_del_init(&pi_state->list);
 903	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 904
 905	raw_spin_lock_irq(&new_owner->pi_lock);
 906	WARN_ON(!list_empty(&pi_state->list));
 907	list_add(&pi_state->list, &new_owner->pi_state_list);
 908	pi_state->owner = new_owner;
 909	raw_spin_unlock_irq(&new_owner->pi_lock);
 910
 911	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 912	rt_mutex_unlock(&pi_state->pi_mutex);
 913
 914	return 0;
 915}
 916
 917static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
 918{
 919	u32 oldval;
 920
 921	/*
 922	 * There is no waiter, so we unlock the futex. The owner died
 923	 * bit has not to be preserved here. We are the owner:
 
 
 924	 */
 925	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
 926		return -EFAULT;
 927	if (oldval != uval)
 928		return -EAGAIN;
 929
 930	return 0;
 931}
 932
 933/*
 934 * Express the locking dependencies for lockdep:
 935 */
 936static inline void
 937double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 938{
 939	if (hb1 <= hb2) {
 940		spin_lock(&hb1->lock);
 941		if (hb1 < hb2)
 942			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
 943	} else { /* hb1 > hb2 */
 944		spin_lock(&hb2->lock);
 945		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
 946	}
 947}
 948
 949static inline void
 950double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 951{
 952	spin_unlock(&hb1->lock);
 953	if (hb1 != hb2)
 954		spin_unlock(&hb2->lock);
 955}
 956
 957/*
 958 * Wake up waiters matching bitset queued on this futex (uaddr).
 959 */
 960static int
 961futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
 962{
 963	struct futex_hash_bucket *hb;
 964	struct futex_q *this, *next;
 965	struct plist_head *head;
 966	union futex_key key = FUTEX_KEY_INIT;
 967	int ret;
 
 968
 969	if (!bitset)
 970		return -EINVAL;
 971
 972	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
 973	if (unlikely(ret != 0))
 974		goto out;
 975
 976	hb = hash_futex(&key);
 
 
 
 
 
 977	spin_lock(&hb->lock);
 978	head = &hb->chain;
 979
 980	plist_for_each_entry_safe(this, next, head, list) {
 981		if (match_futex (&this->key, &key)) {
 982			if (this->pi_state || this->rt_waiter) {
 983				ret = -EINVAL;
 984				break;
 985			}
 986
 987			/* Check if one of the bits is set in both bitsets */
 988			if (!(this->bitset & bitset))
 989				continue;
 990
 991			wake_futex(this);
 992			if (++ret >= nr_wake)
 993				break;
 994		}
 995	}
 996
 997	spin_unlock(&hb->lock);
 
 
 998	put_futex_key(&key);
 999out:
1000	return ret;
1001}
1002
1003/*
1004 * Wake up all waiters hashed on the physical page that is mapped
1005 * to this virtual address:
1006 */
1007static int
1008futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1009	      int nr_wake, int nr_wake2, int op)
1010{
1011	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1012	struct futex_hash_bucket *hb1, *hb2;
1013	struct plist_head *head;
1014	struct futex_q *this, *next;
1015	int ret, op_ret;
 
1016
1017retry:
1018	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1019	if (unlikely(ret != 0))
1020		goto out;
1021	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1022	if (unlikely(ret != 0))
1023		goto out_put_key1;
1024
1025	hb1 = hash_futex(&key1);
1026	hb2 = hash_futex(&key2);
1027
1028retry_private:
1029	double_lock_hb(hb1, hb2);
1030	op_ret = futex_atomic_op_inuser(op, uaddr2);
1031	if (unlikely(op_ret < 0)) {
1032
1033		double_unlock_hb(hb1, hb2);
1034
1035#ifndef CONFIG_MMU
1036		/*
1037		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1038		 * but we might get them from range checking
1039		 */
1040		ret = op_ret;
1041		goto out_put_keys;
1042#endif
1043
1044		if (unlikely(op_ret != -EFAULT)) {
1045			ret = op_ret;
1046			goto out_put_keys;
1047		}
1048
1049		ret = fault_in_user_writeable(uaddr2);
1050		if (ret)
1051			goto out_put_keys;
1052
1053		if (!(flags & FLAGS_SHARED))
1054			goto retry_private;
1055
1056		put_futex_key(&key2);
1057		put_futex_key(&key1);
1058		goto retry;
1059	}
1060
1061	head = &hb1->chain;
1062
1063	plist_for_each_entry_safe(this, next, head, list) {
1064		if (match_futex (&this->key, &key1)) {
1065			wake_futex(this);
 
 
 
 
1066			if (++ret >= nr_wake)
1067				break;
1068		}
1069	}
1070
1071	if (op_ret > 0) {
1072		head = &hb2->chain;
1073
1074		op_ret = 0;
1075		plist_for_each_entry_safe(this, next, head, list) {
1076			if (match_futex (&this->key, &key2)) {
1077				wake_futex(this);
 
 
 
 
1078				if (++op_ret >= nr_wake2)
1079					break;
1080			}
1081		}
1082		ret += op_ret;
1083	}
1084
 
1085	double_unlock_hb(hb1, hb2);
 
1086out_put_keys:
1087	put_futex_key(&key2);
1088out_put_key1:
1089	put_futex_key(&key1);
1090out:
1091	return ret;
1092}
1093
1094/**
1095 * requeue_futex() - Requeue a futex_q from one hb to another
1096 * @q:		the futex_q to requeue
1097 * @hb1:	the source hash_bucket
1098 * @hb2:	the target hash_bucket
1099 * @key2:	the new key for the requeued futex_q
1100 */
1101static inline
1102void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1103		   struct futex_hash_bucket *hb2, union futex_key *key2)
1104{
1105
1106	/*
1107	 * If key1 and key2 hash to the same bucket, no need to
1108	 * requeue.
1109	 */
1110	if (likely(&hb1->chain != &hb2->chain)) {
1111		plist_del(&q->list, &hb1->chain);
 
 
1112		plist_add(&q->list, &hb2->chain);
1113		q->lock_ptr = &hb2->lock;
1114	}
1115	get_futex_key_refs(key2);
1116	q->key = *key2;
1117}
1118
1119/**
1120 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1121 * @q:		the futex_q
1122 * @key:	the key of the requeue target futex
1123 * @hb:		the hash_bucket of the requeue target futex
1124 *
1125 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1126 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1127 * to the requeue target futex so the waiter can detect the wakeup on the right
1128 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1129 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1130 * to protect access to the pi_state to fixup the owner later.  Must be called
1131 * with both q->lock_ptr and hb->lock held.
1132 */
1133static inline
1134void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1135			   struct futex_hash_bucket *hb)
1136{
1137	get_futex_key_refs(key);
1138	q->key = *key;
1139
1140	__unqueue_futex(q);
1141
1142	WARN_ON(!q->rt_waiter);
1143	q->rt_waiter = NULL;
1144
1145	q->lock_ptr = &hb->lock;
1146
1147	wake_up_state(q->task, TASK_NORMAL);
1148}
1149
1150/**
1151 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1152 * @pifutex:		the user address of the to futex
1153 * @hb1:		the from futex hash bucket, must be locked by the caller
1154 * @hb2:		the to futex hash bucket, must be locked by the caller
1155 * @key1:		the from futex key
1156 * @key2:		the to futex key
1157 * @ps:			address to store the pi_state pointer
1158 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1159 *
1160 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1161 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1162 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1163 * hb1 and hb2 must be held by the caller.
1164 *
1165 * Returns:
1166 *  0 - failed to acquire the lock atomicly
1167 *  1 - acquired the lock
1168 * <0 - error
1169 */
1170static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1171				 struct futex_hash_bucket *hb1,
1172				 struct futex_hash_bucket *hb2,
1173				 union futex_key *key1, union futex_key *key2,
1174				 struct futex_pi_state **ps, int set_waiters)
1175{
1176	struct futex_q *top_waiter = NULL;
1177	u32 curval;
1178	int ret;
1179
1180	if (get_futex_value_locked(&curval, pifutex))
1181		return -EFAULT;
1182
 
 
 
1183	/*
1184	 * Find the top_waiter and determine if there are additional waiters.
1185	 * If the caller intends to requeue more than 1 waiter to pifutex,
1186	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1187	 * as we have means to handle the possible fault.  If not, don't set
1188	 * the bit unecessarily as it will force the subsequent unlock to enter
1189	 * the kernel.
1190	 */
1191	top_waiter = futex_top_waiter(hb1, key1);
1192
1193	/* There are no waiters, nothing for us to do. */
1194	if (!top_waiter)
1195		return 0;
1196
1197	/* Ensure we requeue to the expected futex. */
1198	if (!match_futex(top_waiter->requeue_pi_key, key2))
1199		return -EINVAL;
1200
1201	/*
1202	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1203	 * the contended case or if set_waiters is 1.  The pi_state is returned
1204	 * in ps in contended cases.
1205	 */
 
1206	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1207				   set_waiters);
1208	if (ret == 1)
1209		requeue_pi_wake_futex(top_waiter, key2, hb2);
1210
 
1211	return ret;
1212}
1213
1214/**
1215 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1216 * @uaddr1:	source futex user address
1217 * @flags:	futex flags (FLAGS_SHARED, etc.)
1218 * @uaddr2:	target futex user address
1219 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1220 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1221 * @cmpval:	@uaddr1 expected value (or %NULL)
1222 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1223 *		pi futex (pi to pi requeue is not supported)
1224 *
1225 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1226 * uaddr2 atomically on behalf of the top waiter.
1227 *
1228 * Returns:
1229 * >=0 - on success, the number of tasks requeued or woken
1230 *  <0 - on error
1231 */
1232static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1233			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1234			 u32 *cmpval, int requeue_pi)
1235{
1236	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1237	int drop_count = 0, task_count = 0, ret;
1238	struct futex_pi_state *pi_state = NULL;
1239	struct futex_hash_bucket *hb1, *hb2;
1240	struct plist_head *head1;
1241	struct futex_q *this, *next;
1242	u32 curval2;
1243
1244	if (requeue_pi) {
1245		/*
 
 
 
 
 
 
 
1246		 * requeue_pi requires a pi_state, try to allocate it now
1247		 * without any locks in case it fails.
1248		 */
1249		if (refill_pi_state_cache())
1250			return -ENOMEM;
1251		/*
1252		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1253		 * + nr_requeue, since it acquires the rt_mutex prior to
1254		 * returning to userspace, so as to not leave the rt_mutex with
1255		 * waiters and no owner.  However, second and third wake-ups
1256		 * cannot be predicted as they involve race conditions with the
1257		 * first wake and a fault while looking up the pi_state.  Both
1258		 * pthread_cond_signal() and pthread_cond_broadcast() should
1259		 * use nr_wake=1.
1260		 */
1261		if (nr_wake != 1)
1262			return -EINVAL;
1263	}
1264
1265retry:
1266	if (pi_state != NULL) {
1267		/*
1268		 * We will have to lookup the pi_state again, so free this one
1269		 * to keep the accounting correct.
1270		 */
1271		free_pi_state(pi_state);
1272		pi_state = NULL;
1273	}
1274
1275	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1276	if (unlikely(ret != 0))
1277		goto out;
1278	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1279			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1280	if (unlikely(ret != 0))
1281		goto out_put_key1;
1282
 
 
 
 
 
 
 
 
 
1283	hb1 = hash_futex(&key1);
1284	hb2 = hash_futex(&key2);
1285
1286retry_private:
 
1287	double_lock_hb(hb1, hb2);
1288
1289	if (likely(cmpval != NULL)) {
1290		u32 curval;
1291
1292		ret = get_futex_value_locked(&curval, uaddr1);
1293
1294		if (unlikely(ret)) {
1295			double_unlock_hb(hb1, hb2);
 
1296
1297			ret = get_user(curval, uaddr1);
1298			if (ret)
1299				goto out_put_keys;
1300
1301			if (!(flags & FLAGS_SHARED))
1302				goto retry_private;
1303
1304			put_futex_key(&key2);
1305			put_futex_key(&key1);
1306			goto retry;
1307		}
1308		if (curval != *cmpval) {
1309			ret = -EAGAIN;
1310			goto out_unlock;
1311		}
1312	}
1313
1314	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1315		/*
1316		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1317		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1318		 * bit.  We force this here where we are able to easily handle
1319		 * faults rather in the requeue loop below.
1320		 */
1321		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1322						 &key2, &pi_state, nr_requeue);
1323
1324		/*
1325		 * At this point the top_waiter has either taken uaddr2 or is
1326		 * waiting on it.  If the former, then the pi_state will not
1327		 * exist yet, look it up one more time to ensure we have a
1328		 * reference to it.
 
 
 
1329		 */
1330		if (ret == 1) {
1331			WARN_ON(pi_state);
1332			drop_count++;
1333			task_count++;
1334			ret = get_futex_value_locked(&curval2, uaddr2);
1335			if (!ret)
1336				ret = lookup_pi_state(curval2, hb2, &key2,
1337						      &pi_state);
 
 
 
 
 
 
 
 
 
1338		}
1339
1340		switch (ret) {
1341		case 0:
 
1342			break;
 
 
1343		case -EFAULT:
1344			double_unlock_hb(hb1, hb2);
 
1345			put_futex_key(&key2);
1346			put_futex_key(&key1);
1347			ret = fault_in_user_writeable(uaddr2);
1348			if (!ret)
1349				goto retry;
1350			goto out;
1351		case -EAGAIN:
1352			/* The owner was exiting, try again. */
 
 
 
 
 
1353			double_unlock_hb(hb1, hb2);
 
1354			put_futex_key(&key2);
1355			put_futex_key(&key1);
1356			cond_resched();
1357			goto retry;
1358		default:
1359			goto out_unlock;
1360		}
1361	}
1362
1363	head1 = &hb1->chain;
1364	plist_for_each_entry_safe(this, next, head1, list) {
1365		if (task_count - nr_wake >= nr_requeue)
1366			break;
1367
1368		if (!match_futex(&this->key, &key1))
1369			continue;
1370
1371		/*
1372		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1373		 * be paired with each other and no other futex ops.
 
 
 
1374		 */
1375		if ((requeue_pi && !this->rt_waiter) ||
1376		    (!requeue_pi && this->rt_waiter)) {
 
1377			ret = -EINVAL;
1378			break;
1379		}
1380
1381		/*
1382		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1383		 * lock, we already woke the top_waiter.  If not, it will be
1384		 * woken by futex_unlock_pi().
1385		 */
1386		if (++task_count <= nr_wake && !requeue_pi) {
1387			wake_futex(this);
1388			continue;
1389		}
1390
1391		/* Ensure we requeue to the expected futex for requeue_pi. */
1392		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1393			ret = -EINVAL;
1394			break;
1395		}
1396
1397		/*
1398		 * Requeue nr_requeue waiters and possibly one more in the case
1399		 * of requeue_pi if we couldn't acquire the lock atomically.
1400		 */
1401		if (requeue_pi) {
1402			/* Prepare the waiter to take the rt_mutex. */
 
 
 
 
1403			atomic_inc(&pi_state->refcount);
1404			this->pi_state = pi_state;
1405			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1406							this->rt_waiter,
1407							this->task, 1);
1408			if (ret == 1) {
1409				/* We got the lock. */
 
 
 
 
 
 
 
1410				requeue_pi_wake_futex(this, &key2, hb2);
1411				drop_count++;
1412				continue;
1413			} else if (ret) {
1414				/* -EDEADLK */
 
 
 
 
 
 
 
1415				this->pi_state = NULL;
1416				free_pi_state(pi_state);
1417				goto out_unlock;
 
 
 
 
1418			}
1419		}
1420		requeue_futex(this, hb1, hb2, &key2);
1421		drop_count++;
1422	}
1423
 
 
 
 
 
 
 
1424out_unlock:
1425	double_unlock_hb(hb1, hb2);
 
 
1426
1427	/*
1428	 * drop_futex_key_refs() must be called outside the spinlocks. During
1429	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1430	 * one at key2 and updated their key pointer.  We no longer need to
1431	 * hold the references to key1.
1432	 */
1433	while (--drop_count >= 0)
1434		drop_futex_key_refs(&key1);
1435
1436out_put_keys:
1437	put_futex_key(&key2);
1438out_put_key1:
1439	put_futex_key(&key1);
1440out:
1441	if (pi_state != NULL)
1442		free_pi_state(pi_state);
1443	return ret ? ret : task_count;
1444}
1445
1446/* The key must be already stored in q->key. */
1447static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1448	__acquires(&hb->lock)
1449{
1450	struct futex_hash_bucket *hb;
1451
1452	hb = hash_futex(&q->key);
 
 
 
 
 
 
 
 
 
 
 
1453	q->lock_ptr = &hb->lock;
1454
1455	spin_lock(&hb->lock);
1456	return hb;
1457}
1458
1459static inline void
1460queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1461	__releases(&hb->lock)
1462{
1463	spin_unlock(&hb->lock);
 
1464}
1465
1466/**
1467 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1468 * @q:	The futex_q to enqueue
1469 * @hb:	The destination hash bucket
1470 *
1471 * The hb->lock must be held by the caller, and is released here. A call to
1472 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1473 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1474 * or nothing if the unqueue is done as part of the wake process and the unqueue
1475 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1476 * an example).
1477 */
1478static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1479	__releases(&hb->lock)
1480{
1481	int prio;
1482
1483	/*
1484	 * The priority used to register this element is
1485	 * - either the real thread-priority for the real-time threads
1486	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1487	 * - or MAX_RT_PRIO for non-RT threads.
1488	 * Thus, all RT-threads are woken first in priority order, and
1489	 * the others are woken last, in FIFO order.
1490	 */
1491	prio = min(current->normal_prio, MAX_RT_PRIO);
1492
1493	plist_node_init(&q->list, prio);
1494	plist_add(&q->list, &hb->chain);
1495	q->task = current;
1496	spin_unlock(&hb->lock);
1497}
1498
1499/**
1500 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1501 * @q:	The futex_q to unqueue
1502 *
1503 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1504 * be paired with exactly one earlier call to queue_me().
1505 *
1506 * Returns:
1507 *   1 - if the futex_q was still queued (and we removed unqueued it)
1508 *   0 - if the futex_q was already removed by the waking thread
1509 */
1510static int unqueue_me(struct futex_q *q)
1511{
1512	spinlock_t *lock_ptr;
1513	int ret = 0;
1514
1515	/* In the common case we don't take the spinlock, which is nice. */
1516retry:
1517	lock_ptr = q->lock_ptr;
1518	barrier();
 
 
 
 
1519	if (lock_ptr != NULL) {
1520		spin_lock(lock_ptr);
1521		/*
1522		 * q->lock_ptr can change between reading it and
1523		 * spin_lock(), causing us to take the wrong lock.  This
1524		 * corrects the race condition.
1525		 *
1526		 * Reasoning goes like this: if we have the wrong lock,
1527		 * q->lock_ptr must have changed (maybe several times)
1528		 * between reading it and the spin_lock().  It can
1529		 * change again after the spin_lock() but only if it was
1530		 * already changed before the spin_lock().  It cannot,
1531		 * however, change back to the original value.  Therefore
1532		 * we can detect whether we acquired the correct lock.
1533		 */
1534		if (unlikely(lock_ptr != q->lock_ptr)) {
1535			spin_unlock(lock_ptr);
1536			goto retry;
1537		}
1538		__unqueue_futex(q);
1539
1540		BUG_ON(q->pi_state);
1541
1542		spin_unlock(lock_ptr);
1543		ret = 1;
1544	}
1545
1546	drop_futex_key_refs(&q->key);
1547	return ret;
1548}
1549
1550/*
1551 * PI futexes can not be requeued and must remove themself from the
1552 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1553 * and dropped here.
1554 */
1555static void unqueue_me_pi(struct futex_q *q)
1556	__releases(q->lock_ptr)
1557{
1558	__unqueue_futex(q);
1559
1560	BUG_ON(!q->pi_state);
1561	free_pi_state(q->pi_state);
1562	q->pi_state = NULL;
1563
1564	spin_unlock(q->lock_ptr);
1565}
1566
1567/*
1568 * Fixup the pi_state owner with the new owner.
1569 *
1570 * Must be called with hash bucket lock held and mm->sem held for non
1571 * private futexes.
1572 */
1573static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1574				struct task_struct *newowner)
1575{
1576	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1577	struct futex_pi_state *pi_state = q->pi_state;
1578	struct task_struct *oldowner = pi_state->owner;
1579	u32 uval, curval, newval;
1580	int ret;
1581
1582	/* Owner died? */
1583	if (!pi_state->owner)
1584		newtid |= FUTEX_OWNER_DIED;
1585
1586	/*
1587	 * We are here either because we stole the rtmutex from the
1588	 * previous highest priority waiter or we are the highest priority
1589	 * waiter but failed to get the rtmutex the first time.
1590	 * We have to replace the newowner TID in the user space variable.
1591	 * This must be atomic as we have to preserve the owner died bit here.
1592	 *
1593	 * Note: We write the user space value _before_ changing the pi_state
1594	 * because we can fault here. Imagine swapped out pages or a fork
1595	 * that marked all the anonymous memory readonly for cow.
1596	 *
1597	 * Modifying pi_state _before_ the user space value would
1598	 * leave the pi_state in an inconsistent state when we fault
1599	 * here, because we need to drop the hash bucket lock to
1600	 * handle the fault. This might be observed in the PID check
1601	 * in lookup_pi_state.
1602	 */
1603retry:
1604	if (get_futex_value_locked(&uval, uaddr))
1605		goto handle_fault;
1606
1607	while (1) {
1608		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1609
1610		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1611			goto handle_fault;
1612		if (curval == uval)
1613			break;
1614		uval = curval;
1615	}
1616
1617	/*
1618	 * We fixed up user space. Now we need to fix the pi_state
1619	 * itself.
1620	 */
1621	if (pi_state->owner != NULL) {
1622		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1623		WARN_ON(list_empty(&pi_state->list));
1624		list_del_init(&pi_state->list);
1625		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1626	}
1627
1628	pi_state->owner = newowner;
1629
1630	raw_spin_lock_irq(&newowner->pi_lock);
1631	WARN_ON(!list_empty(&pi_state->list));
1632	list_add(&pi_state->list, &newowner->pi_state_list);
1633	raw_spin_unlock_irq(&newowner->pi_lock);
1634	return 0;
1635
1636	/*
1637	 * To handle the page fault we need to drop the hash bucket
1638	 * lock here. That gives the other task (either the highest priority
1639	 * waiter itself or the task which stole the rtmutex) the
1640	 * chance to try the fixup of the pi_state. So once we are
1641	 * back from handling the fault we need to check the pi_state
1642	 * after reacquiring the hash bucket lock and before trying to
1643	 * do another fixup. When the fixup has been done already we
1644	 * simply return.
1645	 */
1646handle_fault:
1647	spin_unlock(q->lock_ptr);
1648
1649	ret = fault_in_user_writeable(uaddr);
1650
1651	spin_lock(q->lock_ptr);
1652
1653	/*
1654	 * Check if someone else fixed it for us:
1655	 */
1656	if (pi_state->owner != oldowner)
1657		return 0;
1658
1659	if (ret)
1660		return ret;
1661
1662	goto retry;
1663}
1664
1665static long futex_wait_restart(struct restart_block *restart);
1666
1667/**
1668 * fixup_owner() - Post lock pi_state and corner case management
1669 * @uaddr:	user address of the futex
1670 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1671 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1672 *
1673 * After attempting to lock an rt_mutex, this function is called to cleanup
1674 * the pi_state owner as well as handle race conditions that may allow us to
1675 * acquire the lock. Must be called with the hb lock held.
1676 *
1677 * Returns:
1678 *  1 - success, lock taken
1679 *  0 - success, lock not taken
1680 * <0 - on error (-EFAULT)
1681 */
1682static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1683{
1684	struct task_struct *owner;
1685	int ret = 0;
1686
1687	if (locked) {
1688		/*
1689		 * Got the lock. We might not be the anticipated owner if we
1690		 * did a lock-steal - fix up the PI-state in that case:
1691		 */
1692		if (q->pi_state->owner != current)
1693			ret = fixup_pi_state_owner(uaddr, q, current);
1694		goto out;
1695	}
1696
1697	/*
1698	 * Catch the rare case, where the lock was released when we were on the
1699	 * way back before we locked the hash bucket.
1700	 */
1701	if (q->pi_state->owner == current) {
1702		/*
1703		 * Try to get the rt_mutex now. This might fail as some other
1704		 * task acquired the rt_mutex after we removed ourself from the
1705		 * rt_mutex waiters list.
1706		 */
1707		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1708			locked = 1;
1709			goto out;
1710		}
1711
1712		/*
1713		 * pi_state is incorrect, some other task did a lock steal and
1714		 * we returned due to timeout or signal without taking the
1715		 * rt_mutex. Too late.
1716		 */
1717		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1718		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1719		if (!owner)
1720			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1721		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1722		ret = fixup_pi_state_owner(uaddr, q, owner);
1723		goto out;
1724	}
1725
1726	/*
1727	 * Paranoia check. If we did not take the lock, then we should not be
1728	 * the owner of the rt_mutex.
1729	 */
1730	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1731		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1732				"pi-state %p\n", ret,
1733				q->pi_state->pi_mutex.owner,
1734				q->pi_state->owner);
1735
1736out:
1737	return ret ? ret : locked;
1738}
1739
1740/**
1741 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1742 * @hb:		the futex hash bucket, must be locked by the caller
1743 * @q:		the futex_q to queue up on
1744 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
1745 */
1746static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1747				struct hrtimer_sleeper *timeout)
1748{
1749	/*
1750	 * The task state is guaranteed to be set before another task can
1751	 * wake it. set_current_state() is implemented using set_mb() and
1752	 * queue_me() calls spin_unlock() upon completion, both serializing
1753	 * access to the hash list and forcing another memory barrier.
1754	 */
1755	set_current_state(TASK_INTERRUPTIBLE);
1756	queue_me(q, hb);
1757
1758	/* Arm the timer */
1759	if (timeout) {
1760		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1761		if (!hrtimer_active(&timeout->timer))
1762			timeout->task = NULL;
1763	}
1764
1765	/*
1766	 * If we have been removed from the hash list, then another task
1767	 * has tried to wake us, and we can skip the call to schedule().
1768	 */
1769	if (likely(!plist_node_empty(&q->list))) {
1770		/*
1771		 * If the timer has already expired, current will already be
1772		 * flagged for rescheduling. Only call schedule if there
1773		 * is no timeout, or if it has yet to expire.
1774		 */
1775		if (!timeout || timeout->task)
1776			schedule();
1777	}
1778	__set_current_state(TASK_RUNNING);
1779}
1780
1781/**
1782 * futex_wait_setup() - Prepare to wait on a futex
1783 * @uaddr:	the futex userspace address
1784 * @val:	the expected value
1785 * @flags:	futex flags (FLAGS_SHARED, etc.)
1786 * @q:		the associated futex_q
1787 * @hb:		storage for hash_bucket pointer to be returned to caller
1788 *
1789 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1790 * compare it with the expected value.  Handle atomic faults internally.
1791 * Return with the hb lock held and a q.key reference on success, and unlocked
1792 * with no q.key reference on failure.
1793 *
1794 * Returns:
1795 *  0 - uaddr contains val and hb has been locked
1796 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1797 */
1798static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1799			   struct futex_q *q, struct futex_hash_bucket **hb)
1800{
1801	u32 uval;
1802	int ret;
1803
1804	/*
1805	 * Access the page AFTER the hash-bucket is locked.
1806	 * Order is important:
1807	 *
1808	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1809	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1810	 *
1811	 * The basic logical guarantee of a futex is that it blocks ONLY
1812	 * if cond(var) is known to be true at the time of blocking, for
1813	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
1814	 * would open a race condition where we could block indefinitely with
1815	 * cond(var) false, which would violate the guarantee.
1816	 *
1817	 * On the other hand, we insert q and release the hash-bucket only
1818	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
1819	 * absorb a wakeup if *uaddr does not match the desired values
1820	 * while the syscall executes.
1821	 */
1822retry:
1823	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1824	if (unlikely(ret != 0))
1825		return ret;
1826
1827retry_private:
1828	*hb = queue_lock(q);
1829
1830	ret = get_futex_value_locked(&uval, uaddr);
1831
1832	if (ret) {
1833		queue_unlock(q, *hb);
1834
1835		ret = get_user(uval, uaddr);
1836		if (ret)
1837			goto out;
1838
1839		if (!(flags & FLAGS_SHARED))
1840			goto retry_private;
1841
1842		put_futex_key(&q->key);
1843		goto retry;
1844	}
1845
1846	if (uval != val) {
1847		queue_unlock(q, *hb);
1848		ret = -EWOULDBLOCK;
1849	}
1850
1851out:
1852	if (ret)
1853		put_futex_key(&q->key);
1854	return ret;
1855}
1856
1857static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1858		      ktime_t *abs_time, u32 bitset)
1859{
1860	struct hrtimer_sleeper timeout, *to = NULL;
1861	struct restart_block *restart;
1862	struct futex_hash_bucket *hb;
1863	struct futex_q q = futex_q_init;
1864	int ret;
1865
1866	if (!bitset)
1867		return -EINVAL;
1868	q.bitset = bitset;
1869
1870	if (abs_time) {
1871		to = &timeout;
1872
1873		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1874				      CLOCK_REALTIME : CLOCK_MONOTONIC,
1875				      HRTIMER_MODE_ABS);
1876		hrtimer_init_sleeper(to, current);
1877		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1878					     current->timer_slack_ns);
1879	}
1880
1881retry:
1882	/*
1883	 * Prepare to wait on uaddr. On success, holds hb lock and increments
1884	 * q.key refs.
1885	 */
1886	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1887	if (ret)
1888		goto out;
1889
1890	/* queue_me and wait for wakeup, timeout, or a signal. */
1891	futex_wait_queue_me(hb, &q, to);
1892
1893	/* If we were woken (and unqueued), we succeeded, whatever. */
1894	ret = 0;
1895	/* unqueue_me() drops q.key ref */
1896	if (!unqueue_me(&q))
1897		goto out;
1898	ret = -ETIMEDOUT;
1899	if (to && !to->task)
1900		goto out;
1901
1902	/*
1903	 * We expect signal_pending(current), but we might be the
1904	 * victim of a spurious wakeup as well.
1905	 */
1906	if (!signal_pending(current))
1907		goto retry;
1908
1909	ret = -ERESTARTSYS;
1910	if (!abs_time)
1911		goto out;
1912
1913	restart = &current_thread_info()->restart_block;
1914	restart->fn = futex_wait_restart;
1915	restart->futex.uaddr = uaddr;
1916	restart->futex.val = val;
1917	restart->futex.time = abs_time->tv64;
1918	restart->futex.bitset = bitset;
1919	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1920
1921	ret = -ERESTART_RESTARTBLOCK;
1922
1923out:
1924	if (to) {
1925		hrtimer_cancel(&to->timer);
1926		destroy_hrtimer_on_stack(&to->timer);
1927	}
1928	return ret;
1929}
1930
1931
1932static long futex_wait_restart(struct restart_block *restart)
1933{
1934	u32 __user *uaddr = restart->futex.uaddr;
1935	ktime_t t, *tp = NULL;
1936
1937	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1938		t.tv64 = restart->futex.time;
1939		tp = &t;
1940	}
1941	restart->fn = do_no_restart_syscall;
1942
1943	return (long)futex_wait(uaddr, restart->futex.flags,
1944				restart->futex.val, tp, restart->futex.bitset);
1945}
1946
1947
1948/*
1949 * Userspace tried a 0 -> TID atomic transition of the futex value
1950 * and failed. The kernel side here does the whole locking operation:
1951 * if there are waiters then it will block, it does PI, etc. (Due to
1952 * races the kernel might see a 0 value of the futex too.)
 
 
 
1953 */
1954static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1955			 ktime_t *time, int trylock)
1956{
1957	struct hrtimer_sleeper timeout, *to = NULL;
1958	struct futex_hash_bucket *hb;
1959	struct futex_q q = futex_q_init;
1960	int res, ret;
1961
1962	if (refill_pi_state_cache())
1963		return -ENOMEM;
1964
1965	if (time) {
1966		to = &timeout;
1967		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1968				      HRTIMER_MODE_ABS);
1969		hrtimer_init_sleeper(to, current);
1970		hrtimer_set_expires(&to->timer, *time);
1971	}
1972
1973retry:
1974	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1975	if (unlikely(ret != 0))
1976		goto out;
1977
1978retry_private:
1979	hb = queue_lock(&q);
1980
1981	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1982	if (unlikely(ret)) {
 
 
 
 
1983		switch (ret) {
1984		case 1:
1985			/* We got the lock. */
1986			ret = 0;
1987			goto out_unlock_put_key;
1988		case -EFAULT:
1989			goto uaddr_faulted;
1990		case -EAGAIN:
1991			/*
1992			 * Task is exiting and we just wait for the
1993			 * exit to complete.
 
 
1994			 */
1995			queue_unlock(&q, hb);
1996			put_futex_key(&q.key);
1997			cond_resched();
1998			goto retry;
1999		default:
2000			goto out_unlock_put_key;
2001		}
2002	}
2003
2004	/*
2005	 * Only actually queue now that the atomic ops are done:
2006	 */
2007	queue_me(&q, hb);
2008
2009	WARN_ON(!q.pi_state);
2010	/*
2011	 * Block on the PI mutex:
2012	 */
2013	if (!trylock)
2014		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2015	else {
2016		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2017		/* Fixup the trylock return value: */
2018		ret = ret ? 0 : -EWOULDBLOCK;
2019	}
2020
2021	spin_lock(q.lock_ptr);
2022	/*
2023	 * Fixup the pi_state owner and possibly acquire the lock if we
2024	 * haven't already.
2025	 */
2026	res = fixup_owner(uaddr, &q, !ret);
2027	/*
2028	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2029	 * the lock, clear our -ETIMEDOUT or -EINTR.
2030	 */
2031	if (res)
2032		ret = (res < 0) ? res : 0;
2033
2034	/*
2035	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2036	 * it and return the fault to userspace.
2037	 */
2038	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2039		rt_mutex_unlock(&q.pi_state->pi_mutex);
2040
2041	/* Unqueue and drop the lock */
2042	unqueue_me_pi(&q);
2043
2044	goto out_put_key;
2045
2046out_unlock_put_key:
2047	queue_unlock(&q, hb);
2048
2049out_put_key:
2050	put_futex_key(&q.key);
2051out:
2052	if (to)
2053		destroy_hrtimer_on_stack(&to->timer);
2054	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2055
2056uaddr_faulted:
2057	queue_unlock(&q, hb);
2058
2059	ret = fault_in_user_writeable(uaddr);
2060	if (ret)
2061		goto out_put_key;
2062
2063	if (!(flags & FLAGS_SHARED))
2064		goto retry_private;
2065
2066	put_futex_key(&q.key);
2067	goto retry;
2068}
2069
2070/*
2071 * Userspace attempted a TID -> 0 atomic transition, and failed.
2072 * This is the in-kernel slowpath: we look up the PI state (if any),
2073 * and do the rt-mutex unlock.
2074 */
2075static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2076{
 
 
2077	struct futex_hash_bucket *hb;
2078	struct futex_q *this, *next;
2079	struct plist_head *head;
2080	union futex_key key = FUTEX_KEY_INIT;
2081	u32 uval, vpid = task_pid_vnr(current);
2082	int ret;
2083
2084retry:
2085	if (get_user(uval, uaddr))
2086		return -EFAULT;
2087	/*
2088	 * We release only a lock we actually own:
2089	 */
2090	if ((uval & FUTEX_TID_MASK) != vpid)
2091		return -EPERM;
2092
2093	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2094	if (unlikely(ret != 0))
2095		goto out;
2096
2097	hb = hash_futex(&key);
2098	spin_lock(&hb->lock);
2099
2100	/*
2101	 * To avoid races, try to do the TID -> 0 atomic transition
2102	 * again. If it succeeds then we can return without waking
2103	 * anyone else up:
2104	 */
2105	if (!(uval & FUTEX_OWNER_DIED) &&
2106	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2107		goto pi_faulted;
2108	/*
2109	 * Rare case: we managed to release the lock atomically,
2110	 * no need to wake anyone else up:
2111	 */
2112	if (unlikely(uval == vpid))
2113		goto out_unlock;
2114
2115	/*
2116	 * Ok, other tasks may need to be woken up - check waiters
2117	 * and do the wakeup if necessary:
2118	 */
2119	head = &hb->chain;
2120
2121	plist_for_each_entry_safe(this, next, head, list) {
2122		if (!match_futex (&this->key, &key))
2123			continue;
2124		ret = wake_futex_pi(uaddr, uval, this);
2125		/*
2126		 * The atomic access to the futex value
2127		 * generated a pagefault, so retry the
2128		 * user-access and the wakeup:
2129		 */
2130		if (ret == -EFAULT)
2131			goto pi_faulted;
 
 
 
 
 
 
 
 
 
 
 
 
 
2132		goto out_unlock;
2133	}
 
2134	/*
2135	 * No waiters - kernel unlocks the futex:
 
 
 
 
2136	 */
2137	if (!(uval & FUTEX_OWNER_DIED)) {
2138		ret = unlock_futex_pi(uaddr, uval);
2139		if (ret == -EFAULT)
2140			goto pi_faulted;
2141	}
 
 
2142
2143out_unlock:
2144	spin_unlock(&hb->lock);
 
2145	put_futex_key(&key);
2146
2147out:
2148	return ret;
2149
2150pi_faulted:
2151	spin_unlock(&hb->lock);
2152	put_futex_key(&key);
2153
2154	ret = fault_in_user_writeable(uaddr);
2155	if (!ret)
2156		goto retry;
2157
2158	return ret;
2159}
2160
2161/**
2162 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2163 * @hb:		the hash_bucket futex_q was original enqueued on
2164 * @q:		the futex_q woken while waiting to be requeued
2165 * @key2:	the futex_key of the requeue target futex
2166 * @timeout:	the timeout associated with the wait (NULL if none)
2167 *
2168 * Detect if the task was woken on the initial futex as opposed to the requeue
2169 * target futex.  If so, determine if it was a timeout or a signal that caused
2170 * the wakeup and return the appropriate error code to the caller.  Must be
2171 * called with the hb lock held.
2172 *
2173 * Returns
2174 *  0 - no early wakeup detected
2175 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2176 */
2177static inline
2178int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2179				   struct futex_q *q, union futex_key *key2,
2180				   struct hrtimer_sleeper *timeout)
2181{
2182	int ret = 0;
2183
2184	/*
2185	 * With the hb lock held, we avoid races while we process the wakeup.
2186	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2187	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2188	 * It can't be requeued from uaddr2 to something else since we don't
2189	 * support a PI aware source futex for requeue.
2190	 */
2191	if (!match_futex(&q->key, key2)) {
2192		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2193		/*
2194		 * We were woken prior to requeue by a timeout or a signal.
2195		 * Unqueue the futex_q and determine which it was.
2196		 */
2197		plist_del(&q->list, &hb->chain);
 
2198
2199		/* Handle spurious wakeups gracefully */
2200		ret = -EWOULDBLOCK;
2201		if (timeout && !timeout->task)
2202			ret = -ETIMEDOUT;
2203		else if (signal_pending(current))
2204			ret = -ERESTARTNOINTR;
2205	}
2206	return ret;
2207}
2208
2209/**
2210 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2211 * @uaddr:	the futex we initially wait on (non-pi)
2212 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2213 * 		the same type, no requeueing from private to shared, etc.
2214 * @val:	the expected value of uaddr
2215 * @abs_time:	absolute timeout
2216 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2217 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2218 * @uaddr2:	the pi futex we will take prior to returning to user-space
2219 *
2220 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2221 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2222 * complete the acquisition of the rt_mutex prior to returning to userspace.
2223 * This ensures the rt_mutex maintains an owner when it has waiters; without
2224 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2225 * need to.
2226 *
2227 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2228 * via the following:
2229 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2230 * 2) wakeup on uaddr2 after a requeue
2231 * 3) signal
2232 * 4) timeout
2233 *
2234 * If 3, cleanup and return -ERESTARTNOINTR.
2235 *
2236 * If 2, we may then block on trying to take the rt_mutex and return via:
2237 * 5) successful lock
2238 * 6) signal
2239 * 7) timeout
2240 * 8) other lock acquisition failure
2241 *
2242 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2243 *
2244 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2245 *
2246 * Returns:
2247 *  0 - On success
2248 * <0 - On error
2249 */
2250static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2251				 u32 val, ktime_t *abs_time, u32 bitset,
2252				 u32 __user *uaddr2)
2253{
2254	struct hrtimer_sleeper timeout, *to = NULL;
2255	struct rt_mutex_waiter rt_waiter;
2256	struct rt_mutex *pi_mutex = NULL;
2257	struct futex_hash_bucket *hb;
2258	union futex_key key2 = FUTEX_KEY_INIT;
2259	struct futex_q q = futex_q_init;
2260	int res, ret;
2261
 
 
 
2262	if (!bitset)
2263		return -EINVAL;
2264
2265	if (abs_time) {
2266		to = &timeout;
2267		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2268				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2269				      HRTIMER_MODE_ABS);
2270		hrtimer_init_sleeper(to, current);
2271		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2272					     current->timer_slack_ns);
2273	}
2274
2275	/*
2276	 * The waiter is allocated on our stack, manipulated by the requeue
2277	 * code while we sleep on uaddr.
2278	 */
2279	debug_rt_mutex_init_waiter(&rt_waiter);
 
 
2280	rt_waiter.task = NULL;
2281
2282	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2283	if (unlikely(ret != 0))
2284		goto out;
2285
2286	q.bitset = bitset;
2287	q.rt_waiter = &rt_waiter;
2288	q.requeue_pi_key = &key2;
2289
2290	/*
2291	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2292	 * count.
2293	 */
2294	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2295	if (ret)
2296		goto out_key2;
2297
 
 
 
 
 
 
 
 
 
 
2298	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2299	futex_wait_queue_me(hb, &q, to);
2300
2301	spin_lock(&hb->lock);
2302	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2303	spin_unlock(&hb->lock);
2304	if (ret)
2305		goto out_put_keys;
2306
2307	/*
2308	 * In order for us to be here, we know our q.key == key2, and since
2309	 * we took the hb->lock above, we also know that futex_requeue() has
2310	 * completed and we no longer have to concern ourselves with a wakeup
2311	 * race with the atomic proxy lock acquisition by the requeue code. The
2312	 * futex_requeue dropped our key1 reference and incremented our key2
2313	 * reference count.
2314	 */
2315
2316	/* Check if the requeue code acquired the second futex for us. */
2317	if (!q.rt_waiter) {
2318		/*
2319		 * Got the lock. We might not be the anticipated owner if we
2320		 * did a lock-steal - fix up the PI-state in that case.
2321		 */
2322		if (q.pi_state && (q.pi_state->owner != current)) {
2323			spin_lock(q.lock_ptr);
2324			ret = fixup_pi_state_owner(uaddr2, &q, current);
 
 
 
 
 
 
 
2325			spin_unlock(q.lock_ptr);
2326		}
2327	} else {
 
 
2328		/*
2329		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2330		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2331		 * the pi_state.
2332		 */
2333		WARN_ON(!&q.pi_state);
2334		pi_mutex = &q.pi_state->pi_mutex;
2335		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2336		debug_rt_mutex_free_waiter(&rt_waiter);
2337
2338		spin_lock(q.lock_ptr);
2339		/*
2340		 * Fixup the pi_state owner and possibly acquire the lock if we
2341		 * haven't already.
2342		 */
2343		res = fixup_owner(uaddr2, &q, !ret);
2344		/*
2345		 * If fixup_owner() returned an error, proprogate that.  If it
2346		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2347		 */
2348		if (res)
2349			ret = (res < 0) ? res : 0;
2350
 
 
 
 
 
 
 
 
2351		/* Unqueue and drop the lock. */
2352		unqueue_me_pi(&q);
2353	}
2354
2355	/*
2356	 * If fixup_pi_state_owner() faulted and was unable to handle the
2357	 * fault, unlock the rt_mutex and return the fault to userspace.
2358	 */
2359	if (ret == -EFAULT) {
2360		if (rt_mutex_owner(pi_mutex) == current)
2361			rt_mutex_unlock(pi_mutex);
2362	} else if (ret == -EINTR) {
2363		/*
2364		 * We've already been requeued, but cannot restart by calling
2365		 * futex_lock_pi() directly. We could restart this syscall, but
2366		 * it would detect that the user space "val" changed and return
2367		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2368		 * -EWOULDBLOCK directly.
2369		 */
2370		ret = -EWOULDBLOCK;
2371	}
2372
2373out_put_keys:
2374	put_futex_key(&q.key);
2375out_key2:
2376	put_futex_key(&key2);
2377
2378out:
2379	if (to) {
2380		hrtimer_cancel(&to->timer);
2381		destroy_hrtimer_on_stack(&to->timer);
2382	}
2383	return ret;
2384}
2385
2386/*
2387 * Support for robust futexes: the kernel cleans up held futexes at
2388 * thread exit time.
2389 *
2390 * Implementation: user-space maintains a per-thread list of locks it
2391 * is holding. Upon do_exit(), the kernel carefully walks this list,
2392 * and marks all locks that are owned by this thread with the
2393 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2394 * always manipulated with the lock held, so the list is private and
2395 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2396 * field, to allow the kernel to clean up if the thread dies after
2397 * acquiring the lock, but just before it could have added itself to
2398 * the list. There can only be one such pending lock.
2399 */
2400
2401/**
2402 * sys_set_robust_list() - Set the robust-futex list head of a task
2403 * @head:	pointer to the list-head
2404 * @len:	length of the list-head, as userspace expects
2405 */
2406SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2407		size_t, len)
2408{
2409	if (!futex_cmpxchg_enabled)
2410		return -ENOSYS;
2411	/*
2412	 * The kernel knows only one size for now:
2413	 */
2414	if (unlikely(len != sizeof(*head)))
2415		return -EINVAL;
2416
2417	current->robust_list = head;
2418
2419	return 0;
2420}
2421
2422/**
2423 * sys_get_robust_list() - Get the robust-futex list head of a task
2424 * @pid:	pid of the process [zero for current task]
2425 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2426 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2427 */
2428SYSCALL_DEFINE3(get_robust_list, int, pid,
2429		struct robust_list_head __user * __user *, head_ptr,
2430		size_t __user *, len_ptr)
2431{
2432	struct robust_list_head __user *head;
2433	unsigned long ret;
2434	const struct cred *cred = current_cred(), *pcred;
2435
2436	if (!futex_cmpxchg_enabled)
2437		return -ENOSYS;
2438
 
 
 
2439	if (!pid)
2440		head = current->robust_list;
2441	else {
2442		struct task_struct *p;
2443
2444		ret = -ESRCH;
2445		rcu_read_lock();
2446		p = find_task_by_vpid(pid);
2447		if (!p)
2448			goto err_unlock;
2449		ret = -EPERM;
2450		pcred = __task_cred(p);
2451		/* If victim is in different user_ns, then uids are not
2452		   comparable, so we must have CAP_SYS_PTRACE */
2453		if (cred->user->user_ns != pcred->user->user_ns) {
2454			if (!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2455				goto err_unlock;
2456			goto ok;
2457		}
2458		/* If victim is in same user_ns, then uids are comparable */
2459		if (cred->euid != pcred->euid &&
2460		    cred->euid != pcred->uid &&
2461		    !ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2462			goto err_unlock;
2463ok:
2464		head = p->robust_list;
2465		rcu_read_unlock();
2466	}
2467
 
 
 
 
 
 
 
2468	if (put_user(sizeof(*head), len_ptr))
2469		return -EFAULT;
2470	return put_user(head, head_ptr);
2471
2472err_unlock:
2473	rcu_read_unlock();
2474
2475	return ret;
2476}
2477
2478/*
2479 * Process a futex-list entry, check whether it's owned by the
2480 * dying task, and do notification if so:
2481 */
2482int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2483{
2484	u32 uval, nval, mval;
2485
2486retry:
2487	if (get_user(uval, uaddr))
2488		return -1;
2489
2490	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2491		/*
2492		 * Ok, this dying thread is truly holding a futex
2493		 * of interest. Set the OWNER_DIED bit atomically
2494		 * via cmpxchg, and if the value had FUTEX_WAITERS
2495		 * set, wake up a waiter (if any). (We have to do a
2496		 * futex_wake() even if OWNER_DIED is already set -
2497		 * to handle the rare but possible case of recursive
2498		 * thread-death.) The rest of the cleanup is done in
2499		 * userspace.
2500		 */
2501		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2502		/*
2503		 * We are not holding a lock here, but we want to have
2504		 * the pagefault_disable/enable() protection because
2505		 * we want to handle the fault gracefully. If the
2506		 * access fails we try to fault in the futex with R/W
2507		 * verification via get_user_pages. get_user() above
2508		 * does not guarantee R/W access. If that fails we
2509		 * give up and leave the futex locked.
2510		 */
2511		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2512			if (fault_in_user_writeable(uaddr))
2513				return -1;
2514			goto retry;
2515		}
2516		if (nval != uval)
2517			goto retry;
2518
2519		/*
2520		 * Wake robust non-PI futexes here. The wakeup of
2521		 * PI futexes happens in exit_pi_state():
2522		 */
2523		if (!pi && (uval & FUTEX_WAITERS))
2524			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2525	}
2526	return 0;
2527}
2528
2529/*
2530 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2531 */
2532static inline int fetch_robust_entry(struct robust_list __user **entry,
2533				     struct robust_list __user * __user *head,
2534				     unsigned int *pi)
2535{
2536	unsigned long uentry;
2537
2538	if (get_user(uentry, (unsigned long __user *)head))
2539		return -EFAULT;
2540
2541	*entry = (void __user *)(uentry & ~1UL);
2542	*pi = uentry & 1;
2543
2544	return 0;
2545}
2546
2547/*
2548 * Walk curr->robust_list (very carefully, it's a userspace list!)
2549 * and mark any locks found there dead, and notify any waiters.
2550 *
2551 * We silently return on any sign of list-walking problem.
2552 */
2553void exit_robust_list(struct task_struct *curr)
2554{
2555	struct robust_list_head __user *head = curr->robust_list;
2556	struct robust_list __user *entry, *next_entry, *pending;
2557	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2558	unsigned int uninitialized_var(next_pi);
2559	unsigned long futex_offset;
2560	int rc;
2561
2562	if (!futex_cmpxchg_enabled)
2563		return;
2564
2565	/*
2566	 * Fetch the list head (which was registered earlier, via
2567	 * sys_set_robust_list()):
2568	 */
2569	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2570		return;
2571	/*
2572	 * Fetch the relative futex offset:
2573	 */
2574	if (get_user(futex_offset, &head->futex_offset))
2575		return;
2576	/*
2577	 * Fetch any possibly pending lock-add first, and handle it
2578	 * if it exists:
2579	 */
2580	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2581		return;
2582
2583	next_entry = NULL;	/* avoid warning with gcc */
2584	while (entry != &head->list) {
2585		/*
2586		 * Fetch the next entry in the list before calling
2587		 * handle_futex_death:
2588		 */
2589		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2590		/*
2591		 * A pending lock might already be on the list, so
2592		 * don't process it twice:
2593		 */
2594		if (entry != pending)
2595			if (handle_futex_death((void __user *)entry + futex_offset,
2596						curr, pi))
2597				return;
2598		if (rc)
2599			return;
2600		entry = next_entry;
2601		pi = next_pi;
2602		/*
2603		 * Avoid excessively long or circular lists:
2604		 */
2605		if (!--limit)
2606			break;
2607
2608		cond_resched();
2609	}
2610
2611	if (pending)
2612		handle_futex_death((void __user *)pending + futex_offset,
2613				   curr, pip);
2614}
2615
2616long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2617		u32 __user *uaddr2, u32 val2, u32 val3)
2618{
2619	int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2620	unsigned int flags = 0;
2621
2622	if (!(op & FUTEX_PRIVATE_FLAG))
2623		flags |= FLAGS_SHARED;
2624
2625	if (op & FUTEX_CLOCK_REALTIME) {
2626		flags |= FLAGS_CLOCKRT;
2627		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
 
 
 
 
 
 
 
 
 
 
 
2628			return -ENOSYS;
2629	}
2630
2631	switch (cmd) {
2632	case FUTEX_WAIT:
2633		val3 = FUTEX_BITSET_MATCH_ANY;
2634	case FUTEX_WAIT_BITSET:
2635		ret = futex_wait(uaddr, flags, val, timeout, val3);
2636		break;
2637	case FUTEX_WAKE:
2638		val3 = FUTEX_BITSET_MATCH_ANY;
2639	case FUTEX_WAKE_BITSET:
2640		ret = futex_wake(uaddr, flags, val, val3);
2641		break;
2642	case FUTEX_REQUEUE:
2643		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2644		break;
2645	case FUTEX_CMP_REQUEUE:
2646		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2647		break;
2648	case FUTEX_WAKE_OP:
2649		ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2650		break;
2651	case FUTEX_LOCK_PI:
2652		if (futex_cmpxchg_enabled)
2653			ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2654		break;
2655	case FUTEX_UNLOCK_PI:
2656		if (futex_cmpxchg_enabled)
2657			ret = futex_unlock_pi(uaddr, flags);
2658		break;
2659	case FUTEX_TRYLOCK_PI:
2660		if (futex_cmpxchg_enabled)
2661			ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2662		break;
2663	case FUTEX_WAIT_REQUEUE_PI:
2664		val3 = FUTEX_BITSET_MATCH_ANY;
2665		ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2666					    uaddr2);
2667		break;
2668	case FUTEX_CMP_REQUEUE_PI:
2669		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2670		break;
2671	default:
2672		ret = -ENOSYS;
2673	}
2674	return ret;
2675}
2676
2677
2678SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2679		struct timespec __user *, utime, u32 __user *, uaddr2,
2680		u32, val3)
2681{
2682	struct timespec ts;
2683	ktime_t t, *tp = NULL;
2684	u32 val2 = 0;
2685	int cmd = op & FUTEX_CMD_MASK;
2686
2687	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2688		      cmd == FUTEX_WAIT_BITSET ||
2689		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
 
 
2690		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2691			return -EFAULT;
2692		if (!timespec_valid(&ts))
2693			return -EINVAL;
2694
2695		t = timespec_to_ktime(ts);
2696		if (cmd == FUTEX_WAIT)
2697			t = ktime_add_safe(ktime_get(), t);
2698		tp = &t;
2699	}
2700	/*
2701	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2702	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2703	 */
2704	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2705	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2706		val2 = (u32) (unsigned long) utime;
2707
2708	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2709}
2710
2711static int __init futex_init(void)
2712{
 
2713	u32 curval;
2714	int i;
2715
2716	/*
2717	 * This will fail and we want it. Some arch implementations do
2718	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2719	 * functionality. We want to know that before we call in any
2720	 * of the complex code paths. Also we want to prevent
2721	 * registration of robust lists in that case. NULL is
2722	 * guaranteed to fault and we get -EFAULT on functional
2723	 * implementation, the non-functional ones will return
2724	 * -ENOSYS.
2725	 */
2726	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2727		futex_cmpxchg_enabled = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2728
2729	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
 
2730		plist_head_init(&futex_queues[i].chain);
2731		spin_lock_init(&futex_queues[i].lock);
2732	}
2733
2734	return 0;
2735}
2736__initcall(futex_init);