Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35
  36#include <net/tcp.h>
  37#include <net/inet_common.h>
  38#include <linux/highmem.h>
  39#include <linux/netdevice.h>
  40#include <linux/sched/signal.h>
  41#include <linux/inetdevice.h>
  42#include <linux/inet_diag.h>
  43
  44#include <net/snmp.h>
  45#include <net/tls.h>
  46#include <net/tls_toe.h>
  47
  48#include "tls.h"
  49
  50MODULE_AUTHOR("Mellanox Technologies");
  51MODULE_DESCRIPTION("Transport Layer Security Support");
  52MODULE_LICENSE("Dual BSD/GPL");
  53MODULE_ALIAS_TCP_ULP("tls");
  54
  55enum {
  56	TLSV4,
  57	TLSV6,
  58	TLS_NUM_PROTS,
  59};
  60
  61#define CHECK_CIPHER_DESC(cipher,ci)				\
  62	static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);		\
  63	static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);		\
  64	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
  65	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
  66	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
  67	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
  68	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
  69	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
  70
  71#define __CIPHER_DESC(ci) \
  72	.iv_offset = offsetof(struct ci, iv), \
  73	.key_offset = offsetof(struct ci, key), \
  74	.salt_offset = offsetof(struct ci, salt), \
  75	.rec_seq_offset = offsetof(struct ci, rec_seq), \
  76	.crypto_info = sizeof(struct ci)
  77
  78#define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
  79	.nonce = cipher ## _IV_SIZE, \
  80	.iv = cipher ## _IV_SIZE, \
  81	.key = cipher ## _KEY_SIZE, \
  82	.salt = cipher ## _SALT_SIZE, \
  83	.tag = cipher ## _TAG_SIZE, \
  84	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  85	.cipher_name = algname,	\
  86	.offloadable = _offloadable, \
  87	__CIPHER_DESC(ci), \
  88}
  89
  90#define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
  91	.nonce = 0, \
  92	.iv = cipher ## _IV_SIZE, \
  93	.key = cipher ## _KEY_SIZE, \
  94	.salt = cipher ## _SALT_SIZE, \
  95	.tag = cipher ## _TAG_SIZE, \
  96	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  97	.cipher_name = algname,	\
  98	.offloadable = _offloadable, \
  99	__CIPHER_DESC(ci), \
 100}
 101
 102const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
 103	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
 104	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
 105	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
 106	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
 107	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
 108	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
 109	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
 110	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
 111};
 112
 113CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
 114CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
 115CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
 116CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
 117CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
 118CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
 119CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
 120CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
 121
 122static const struct proto *saved_tcpv6_prot;
 123static DEFINE_MUTEX(tcpv6_prot_mutex);
 124static const struct proto *saved_tcpv4_prot;
 125static DEFINE_MUTEX(tcpv4_prot_mutex);
 126static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 127static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 128static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 129			 const struct proto *base);
 130
 131void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 132{
 133	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 134
 135	WRITE_ONCE(sk->sk_prot,
 136		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 137	WRITE_ONCE(sk->sk_socket->ops,
 138		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 139}
 140
 141int wait_on_pending_writer(struct sock *sk, long *timeo)
 142{
 143	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 144	int ret, rc = 0;
 145
 146	add_wait_queue(sk_sleep(sk), &wait);
 147	while (1) {
 148		if (!*timeo) {
 149			rc = -EAGAIN;
 150			break;
 151		}
 152
 153		if (signal_pending(current)) {
 154			rc = sock_intr_errno(*timeo);
 155			break;
 156		}
 157
 158		ret = sk_wait_event(sk, timeo,
 159				    !READ_ONCE(sk->sk_write_pending), &wait);
 160		if (ret) {
 161			if (ret < 0)
 162				rc = ret;
 163			break;
 164		}
 165	}
 166	remove_wait_queue(sk_sleep(sk), &wait);
 167	return rc;
 168}
 169
 170int tls_push_sg(struct sock *sk,
 171		struct tls_context *ctx,
 172		struct scatterlist *sg,
 173		u16 first_offset,
 174		int flags)
 175{
 176	struct bio_vec bvec;
 177	struct msghdr msg = {
 178		.msg_flags = MSG_SPLICE_PAGES | flags,
 179	};
 180	int ret = 0;
 181	struct page *p;
 182	size_t size;
 183	int offset = first_offset;
 184
 185	size = sg->length - offset;
 186	offset += sg->offset;
 187
 188	ctx->splicing_pages = true;
 189	while (1) {
 190		/* is sending application-limited? */
 191		tcp_rate_check_app_limited(sk);
 192		p = sg_page(sg);
 193retry:
 194		bvec_set_page(&bvec, p, size, offset);
 195		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
 196
 197		ret = tcp_sendmsg_locked(sk, &msg, size);
 198
 199		if (ret != size) {
 200			if (ret > 0) {
 201				offset += ret;
 202				size -= ret;
 203				goto retry;
 204			}
 205
 206			offset -= sg->offset;
 207			ctx->partially_sent_offset = offset;
 208			ctx->partially_sent_record = (void *)sg;
 209			ctx->splicing_pages = false;
 210			return ret;
 211		}
 212
 213		put_page(p);
 214		sk_mem_uncharge(sk, sg->length);
 215		sg = sg_next(sg);
 216		if (!sg)
 217			break;
 218
 219		offset = sg->offset;
 220		size = sg->length;
 221	}
 222
 223	ctx->splicing_pages = false;
 224
 225	return 0;
 226}
 227
 228static int tls_handle_open_record(struct sock *sk, int flags)
 229{
 230	struct tls_context *ctx = tls_get_ctx(sk);
 231
 232	if (tls_is_pending_open_record(ctx))
 233		return ctx->push_pending_record(sk, flags);
 234
 235	return 0;
 236}
 237
 238int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
 239		     unsigned char *record_type)
 240{
 241	struct cmsghdr *cmsg;
 242	int rc = -EINVAL;
 243
 244	for_each_cmsghdr(cmsg, msg) {
 245		if (!CMSG_OK(msg, cmsg))
 246			return -EINVAL;
 247		if (cmsg->cmsg_level != SOL_TLS)
 248			continue;
 249
 250		switch (cmsg->cmsg_type) {
 251		case TLS_SET_RECORD_TYPE:
 252			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
 253				return -EINVAL;
 254
 255			if (msg->msg_flags & MSG_MORE)
 256				return -EINVAL;
 257
 258			rc = tls_handle_open_record(sk, msg->msg_flags);
 259			if (rc)
 260				return rc;
 261
 262			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
 263			rc = 0;
 264			break;
 265		default:
 266			return -EINVAL;
 267		}
 268	}
 269
 270	return rc;
 271}
 272
 273int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 274			    int flags)
 275{
 276	struct scatterlist *sg;
 277	u16 offset;
 278
 279	sg = ctx->partially_sent_record;
 280	offset = ctx->partially_sent_offset;
 281
 282	ctx->partially_sent_record = NULL;
 283	return tls_push_sg(sk, ctx, sg, offset, flags);
 284}
 285
 286void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
 287{
 288	struct scatterlist *sg;
 289
 290	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
 291		put_page(sg_page(sg));
 292		sk_mem_uncharge(sk, sg->length);
 293	}
 294	ctx->partially_sent_record = NULL;
 295}
 296
 297static void tls_write_space(struct sock *sk)
 298{
 299	struct tls_context *ctx = tls_get_ctx(sk);
 300
 301	/* If splicing_pages call lower protocol write space handler
 302	 * to ensure we wake up any waiting operations there. For example
 303	 * if splicing pages where to call sk_wait_event.
 304	 */
 305	if (ctx->splicing_pages) {
 306		ctx->sk_write_space(sk);
 307		return;
 308	}
 309
 310#ifdef CONFIG_TLS_DEVICE
 311	if (ctx->tx_conf == TLS_HW)
 312		tls_device_write_space(sk, ctx);
 313	else
 314#endif
 315		tls_sw_write_space(sk, ctx);
 316
 317	ctx->sk_write_space(sk);
 318}
 319
 320/**
 321 * tls_ctx_free() - free TLS ULP context
 322 * @sk:  socket to with @ctx is attached
 323 * @ctx: TLS context structure
 324 *
 325 * Free TLS context. If @sk is %NULL caller guarantees that the socket
 326 * to which @ctx was attached has no outstanding references.
 327 */
 328void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
 329{
 330	if (!ctx)
 331		return;
 332
 333	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
 334	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
 335	mutex_destroy(&ctx->tx_lock);
 336
 337	if (sk)
 338		kfree_rcu(ctx, rcu);
 339	else
 340		kfree(ctx);
 341}
 342
 343static void tls_sk_proto_cleanup(struct sock *sk,
 344				 struct tls_context *ctx, long timeo)
 345{
 346	if (unlikely(sk->sk_write_pending) &&
 347	    !wait_on_pending_writer(sk, &timeo))
 348		tls_handle_open_record(sk, 0);
 349
 350	/* We need these for tls_sw_fallback handling of other packets */
 351	if (ctx->tx_conf == TLS_SW) {
 352		tls_sw_release_resources_tx(sk);
 353		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 354	} else if (ctx->tx_conf == TLS_HW) {
 355		tls_device_free_resources_tx(sk);
 356		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 357	}
 358
 359	if (ctx->rx_conf == TLS_SW) {
 360		tls_sw_release_resources_rx(sk);
 361		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 362	} else if (ctx->rx_conf == TLS_HW) {
 363		tls_device_offload_cleanup_rx(sk);
 364		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 365	}
 366}
 367
 368static void tls_sk_proto_close(struct sock *sk, long timeout)
 369{
 370	struct inet_connection_sock *icsk = inet_csk(sk);
 371	struct tls_context *ctx = tls_get_ctx(sk);
 372	long timeo = sock_sndtimeo(sk, 0);
 373	bool free_ctx;
 374
 375	if (ctx->tx_conf == TLS_SW)
 376		tls_sw_cancel_work_tx(ctx);
 377
 378	lock_sock(sk);
 379	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
 380
 381	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
 382		tls_sk_proto_cleanup(sk, ctx, timeo);
 383
 384	write_lock_bh(&sk->sk_callback_lock);
 385	if (free_ctx)
 386		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
 387	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
 388	if (sk->sk_write_space == tls_write_space)
 389		sk->sk_write_space = ctx->sk_write_space;
 390	write_unlock_bh(&sk->sk_callback_lock);
 391	release_sock(sk);
 392	if (ctx->tx_conf == TLS_SW)
 393		tls_sw_free_ctx_tx(ctx);
 394	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 395		tls_sw_strparser_done(ctx);
 396	if (ctx->rx_conf == TLS_SW)
 397		tls_sw_free_ctx_rx(ctx);
 398	ctx->sk_proto->close(sk, timeout);
 399
 400	if (free_ctx)
 401		tls_ctx_free(sk, ctx);
 402}
 403
 404static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
 405			    struct poll_table_struct *wait)
 406{
 407	struct tls_sw_context_rx *ctx;
 408	struct tls_context *tls_ctx;
 409	struct sock *sk = sock->sk;
 410	struct sk_psock *psock;
 411	__poll_t mask = 0;
 412	u8 shutdown;
 413	int state;
 414
 415	mask = tcp_poll(file, sock, wait);
 416
 417	state = inet_sk_state_load(sk);
 418	shutdown = READ_ONCE(sk->sk_shutdown);
 419	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
 420		return mask;
 421
 422	tls_ctx = tls_get_ctx(sk);
 423	ctx = tls_sw_ctx_rx(tls_ctx);
 424	psock = sk_psock_get(sk);
 425
 426	if (skb_queue_empty_lockless(&ctx->rx_list) &&
 427	    !tls_strp_msg_ready(ctx) &&
 428	    sk_psock_queue_empty(psock))
 429		mask &= ~(EPOLLIN | EPOLLRDNORM);
 430
 431	if (psock)
 432		sk_psock_put(sk, psock);
 433
 434	return mask;
 435}
 436
 437static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
 438				  int __user *optlen, int tx)
 439{
 440	int rc = 0;
 441	const struct tls_cipher_desc *cipher_desc;
 442	struct tls_context *ctx = tls_get_ctx(sk);
 443	struct tls_crypto_info *crypto_info;
 444	struct cipher_context *cctx;
 445	int len;
 446
 447	if (get_user(len, optlen))
 448		return -EFAULT;
 449
 450	if (!optval || (len < sizeof(*crypto_info))) {
 451		rc = -EINVAL;
 452		goto out;
 453	}
 454
 455	if (!ctx) {
 456		rc = -EBUSY;
 457		goto out;
 458	}
 459
 460	/* get user crypto info */
 461	if (tx) {
 462		crypto_info = &ctx->crypto_send.info;
 463		cctx = &ctx->tx;
 464	} else {
 465		crypto_info = &ctx->crypto_recv.info;
 466		cctx = &ctx->rx;
 467	}
 468
 469	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
 470		rc = -EBUSY;
 471		goto out;
 472	}
 473
 474	if (len == sizeof(*crypto_info)) {
 475		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
 476			rc = -EFAULT;
 477		goto out;
 478	}
 479
 480	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
 481	if (!cipher_desc || len != cipher_desc->crypto_info) {
 482		rc = -EINVAL;
 483		goto out;
 484	}
 485
 486	memcpy(crypto_info_iv(crypto_info, cipher_desc),
 487	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
 488	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
 489	       cctx->rec_seq, cipher_desc->rec_seq);
 490
 491	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
 492		rc = -EFAULT;
 493
 494out:
 495	return rc;
 496}
 497
 498static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
 499				   int __user *optlen)
 500{
 501	struct tls_context *ctx = tls_get_ctx(sk);
 502	unsigned int value;
 503	int len;
 504
 505	if (get_user(len, optlen))
 506		return -EFAULT;
 507
 508	if (len != sizeof(value))
 509		return -EINVAL;
 510
 511	value = ctx->zerocopy_sendfile;
 512	if (copy_to_user(optval, &value, sizeof(value)))
 513		return -EFAULT;
 514
 515	return 0;
 516}
 517
 518static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
 519				    int __user *optlen)
 520{
 521	struct tls_context *ctx = tls_get_ctx(sk);
 522	int value, len;
 523
 524	if (ctx->prot_info.version != TLS_1_3_VERSION)
 525		return -EINVAL;
 526
 527	if (get_user(len, optlen))
 528		return -EFAULT;
 529	if (len < sizeof(value))
 530		return -EINVAL;
 531
 532	value = -EINVAL;
 533	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 534		value = ctx->rx_no_pad;
 535	if (value < 0)
 536		return value;
 537
 538	if (put_user(sizeof(value), optlen))
 539		return -EFAULT;
 540	if (copy_to_user(optval, &value, sizeof(value)))
 541		return -EFAULT;
 542
 543	return 0;
 544}
 545
 546static int do_tls_getsockopt(struct sock *sk, int optname,
 547			     char __user *optval, int __user *optlen)
 548{
 549	int rc = 0;
 550
 551	lock_sock(sk);
 552
 553	switch (optname) {
 554	case TLS_TX:
 555	case TLS_RX:
 556		rc = do_tls_getsockopt_conf(sk, optval, optlen,
 557					    optname == TLS_TX);
 558		break;
 559	case TLS_TX_ZEROCOPY_RO:
 560		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
 561		break;
 562	case TLS_RX_EXPECT_NO_PAD:
 563		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
 564		break;
 565	default:
 566		rc = -ENOPROTOOPT;
 567		break;
 568	}
 569
 570	release_sock(sk);
 571
 572	return rc;
 573}
 574
 575static int tls_getsockopt(struct sock *sk, int level, int optname,
 576			  char __user *optval, int __user *optlen)
 577{
 578	struct tls_context *ctx = tls_get_ctx(sk);
 579
 580	if (level != SOL_TLS)
 581		return ctx->sk_proto->getsockopt(sk, level,
 582						 optname, optval, optlen);
 583
 584	return do_tls_getsockopt(sk, optname, optval, optlen);
 585}
 586
 587static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
 588				const struct tls_crypto_info *alt_crypto_info)
 589{
 590	if (crypto_info->version != TLS_1_2_VERSION &&
 591	    crypto_info->version != TLS_1_3_VERSION)
 592		return -EINVAL;
 593
 594	switch (crypto_info->cipher_type) {
 595	case TLS_CIPHER_ARIA_GCM_128:
 596	case TLS_CIPHER_ARIA_GCM_256:
 597		if (crypto_info->version != TLS_1_2_VERSION)
 598			return -EINVAL;
 599		break;
 600	}
 601
 602	/* Ensure that TLS version and ciphers are same in both directions */
 603	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
 604		if (alt_crypto_info->version != crypto_info->version ||
 605		    alt_crypto_info->cipher_type != crypto_info->cipher_type)
 606			return -EINVAL;
 607	}
 608
 609	return 0;
 610}
 611
 612static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
 613				  unsigned int optlen, int tx)
 614{
 615	struct tls_crypto_info *crypto_info;
 616	struct tls_crypto_info *alt_crypto_info;
 617	struct tls_context *ctx = tls_get_ctx(sk);
 618	const struct tls_cipher_desc *cipher_desc;
 619	int rc = 0;
 620	int conf;
 621
 622	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
 623		return -EINVAL;
 624
 625	if (tx) {
 626		crypto_info = &ctx->crypto_send.info;
 627		alt_crypto_info = &ctx->crypto_recv.info;
 628	} else {
 629		crypto_info = &ctx->crypto_recv.info;
 630		alt_crypto_info = &ctx->crypto_send.info;
 631	}
 632
 633	/* Currently we don't support set crypto info more than one time */
 634	if (TLS_CRYPTO_INFO_READY(crypto_info))
 635		return -EBUSY;
 636
 637	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
 638	if (rc) {
 639		rc = -EFAULT;
 640		goto err_crypto_info;
 641	}
 642
 643	rc = validate_crypto_info(crypto_info, alt_crypto_info);
 644	if (rc)
 645		goto err_crypto_info;
 646
 647	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
 648	if (!cipher_desc) {
 649		rc = -EINVAL;
 650		goto err_crypto_info;
 651	}
 652
 653	if (optlen != cipher_desc->crypto_info) {
 654		rc = -EINVAL;
 655		goto err_crypto_info;
 656	}
 657
 658	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
 659				      sizeof(*crypto_info),
 660				      optlen - sizeof(*crypto_info));
 661	if (rc) {
 662		rc = -EFAULT;
 663		goto err_crypto_info;
 664	}
 665
 666	if (tx) {
 667		rc = tls_set_device_offload(sk);
 668		conf = TLS_HW;
 669		if (!rc) {
 670			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
 671			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 672		} else {
 673			rc = tls_set_sw_offload(sk, 1);
 674			if (rc)
 675				goto err_crypto_info;
 676			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
 677			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 678			conf = TLS_SW;
 679		}
 680	} else {
 681		rc = tls_set_device_offload_rx(sk, ctx);
 682		conf = TLS_HW;
 683		if (!rc) {
 684			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
 685			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 686		} else {
 687			rc = tls_set_sw_offload(sk, 0);
 688			if (rc)
 689				goto err_crypto_info;
 690			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
 691			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 692			conf = TLS_SW;
 693		}
 694		tls_sw_strparser_arm(sk, ctx);
 695	}
 696
 697	if (tx)
 698		ctx->tx_conf = conf;
 699	else
 700		ctx->rx_conf = conf;
 701	update_sk_prot(sk, ctx);
 702	if (tx) {
 703		ctx->sk_write_space = sk->sk_write_space;
 704		sk->sk_write_space = tls_write_space;
 705	} else {
 706		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
 707
 708		tls_strp_check_rcv(&rx_ctx->strp);
 709	}
 710	return 0;
 711
 712err_crypto_info:
 713	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
 714	return rc;
 715}
 716
 717static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
 718				   unsigned int optlen)
 719{
 720	struct tls_context *ctx = tls_get_ctx(sk);
 721	unsigned int value;
 722
 723	if (sockptr_is_null(optval) || optlen != sizeof(value))
 724		return -EINVAL;
 725
 726	if (copy_from_sockptr(&value, optval, sizeof(value)))
 727		return -EFAULT;
 728
 729	if (value > 1)
 730		return -EINVAL;
 731
 732	ctx->zerocopy_sendfile = value;
 733
 734	return 0;
 735}
 736
 737static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
 738				    unsigned int optlen)
 739{
 740	struct tls_context *ctx = tls_get_ctx(sk);
 741	u32 val;
 742	int rc;
 743
 744	if (ctx->prot_info.version != TLS_1_3_VERSION ||
 745	    sockptr_is_null(optval) || optlen < sizeof(val))
 746		return -EINVAL;
 747
 748	rc = copy_from_sockptr(&val, optval, sizeof(val));
 749	if (rc)
 750		return -EFAULT;
 751	if (val > 1)
 752		return -EINVAL;
 753	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
 754	if (rc < 1)
 755		return rc == 0 ? -EINVAL : rc;
 756
 757	lock_sock(sk);
 758	rc = -EINVAL;
 759	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
 760		ctx->rx_no_pad = val;
 761		tls_update_rx_zc_capable(ctx);
 762		rc = 0;
 763	}
 764	release_sock(sk);
 765
 766	return rc;
 767}
 768
 769static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
 770			     unsigned int optlen)
 771{
 772	int rc = 0;
 773
 774	switch (optname) {
 775	case TLS_TX:
 776	case TLS_RX:
 777		lock_sock(sk);
 778		rc = do_tls_setsockopt_conf(sk, optval, optlen,
 779					    optname == TLS_TX);
 780		release_sock(sk);
 781		break;
 782	case TLS_TX_ZEROCOPY_RO:
 783		lock_sock(sk);
 784		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
 785		release_sock(sk);
 786		break;
 787	case TLS_RX_EXPECT_NO_PAD:
 788		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
 789		break;
 790	default:
 791		rc = -ENOPROTOOPT;
 792		break;
 793	}
 794	return rc;
 795}
 796
 797static int tls_setsockopt(struct sock *sk, int level, int optname,
 798			  sockptr_t optval, unsigned int optlen)
 799{
 800	struct tls_context *ctx = tls_get_ctx(sk);
 801
 802	if (level != SOL_TLS)
 803		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
 804						 optlen);
 805
 806	return do_tls_setsockopt(sk, optname, optval, optlen);
 807}
 808
 809struct tls_context *tls_ctx_create(struct sock *sk)
 810{
 811	struct inet_connection_sock *icsk = inet_csk(sk);
 812	struct tls_context *ctx;
 813
 814	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
 815	if (!ctx)
 816		return NULL;
 817
 818	mutex_init(&ctx->tx_lock);
 819	ctx->sk_proto = READ_ONCE(sk->sk_prot);
 820	ctx->sk = sk;
 821	/* Release semantic of rcu_assign_pointer() ensures that
 822	 * ctx->sk_proto is visible before changing sk->sk_prot in
 823	 * update_sk_prot(), and prevents reading uninitialized value in
 824	 * tls_{getsockopt, setsockopt}. Note that we do not need a
 825	 * read barrier in tls_{getsockopt,setsockopt} as there is an
 826	 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
 827	 * and ctx->sk_proto.
 828	 */
 829	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
 830	return ctx;
 831}
 832
 833static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 834			    const struct proto_ops *base)
 835{
 836	ops[TLS_BASE][TLS_BASE] = *base;
 837
 838	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 839	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
 840
 841	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
 842	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
 843	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
 844	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
 845
 846	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
 847	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
 848	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
 849	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
 850
 851#ifdef CONFIG_TLS_DEVICE
 852	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 853
 854	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
 855
 856	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
 857
 858	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
 859
 860	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
 861#endif
 862#ifdef CONFIG_TLS_TOE
 863	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 864#endif
 865}
 866
 867static void tls_build_proto(struct sock *sk)
 868{
 869	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 870	struct proto *prot = READ_ONCE(sk->sk_prot);
 871
 872	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
 873	if (ip_ver == TLSV6 &&
 874	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
 875		mutex_lock(&tcpv6_prot_mutex);
 876		if (likely(prot != saved_tcpv6_prot)) {
 877			build_protos(tls_prots[TLSV6], prot);
 878			build_proto_ops(tls_proto_ops[TLSV6],
 879					sk->sk_socket->ops);
 880			smp_store_release(&saved_tcpv6_prot, prot);
 881		}
 882		mutex_unlock(&tcpv6_prot_mutex);
 883	}
 884
 885	if (ip_ver == TLSV4 &&
 886	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
 887		mutex_lock(&tcpv4_prot_mutex);
 888		if (likely(prot != saved_tcpv4_prot)) {
 889			build_protos(tls_prots[TLSV4], prot);
 890			build_proto_ops(tls_proto_ops[TLSV4],
 891					sk->sk_socket->ops);
 892			smp_store_release(&saved_tcpv4_prot, prot);
 893		}
 894		mutex_unlock(&tcpv4_prot_mutex);
 895	}
 896}
 897
 898static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 899			 const struct proto *base)
 900{
 901	prot[TLS_BASE][TLS_BASE] = *base;
 902	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
 903	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
 904	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
 905
 906	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
 907	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
 908	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
 909
 910	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
 911	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
 912	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
 913	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
 914
 915	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
 916	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
 917	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
 918	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
 919
 920#ifdef CONFIG_TLS_DEVICE
 921	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
 922	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
 923	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
 924
 925	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
 926	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
 927	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
 928
 929	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
 930
 931	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
 932
 933	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
 934#endif
 935#ifdef CONFIG_TLS_TOE
 936	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 937	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
 938	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
 939#endif
 940}
 941
 942static int tls_init(struct sock *sk)
 943{
 944	struct tls_context *ctx;
 945	int rc = 0;
 946
 947	tls_build_proto(sk);
 948
 949#ifdef CONFIG_TLS_TOE
 950	if (tls_toe_bypass(sk))
 951		return 0;
 952#endif
 953
 954	/* The TLS ulp is currently supported only for TCP sockets
 955	 * in ESTABLISHED state.
 956	 * Supporting sockets in LISTEN state will require us
 957	 * to modify the accept implementation to clone rather then
 958	 * share the ulp context.
 959	 */
 960	if (sk->sk_state != TCP_ESTABLISHED)
 961		return -ENOTCONN;
 962
 963	/* allocate tls context */
 964	write_lock_bh(&sk->sk_callback_lock);
 965	ctx = tls_ctx_create(sk);
 966	if (!ctx) {
 967		rc = -ENOMEM;
 968		goto out;
 969	}
 970
 971	ctx->tx_conf = TLS_BASE;
 972	ctx->rx_conf = TLS_BASE;
 973	update_sk_prot(sk, ctx);
 974out:
 975	write_unlock_bh(&sk->sk_callback_lock);
 976	return rc;
 977}
 978
 979static void tls_update(struct sock *sk, struct proto *p,
 980		       void (*write_space)(struct sock *sk))
 981{
 982	struct tls_context *ctx;
 983
 984	WARN_ON_ONCE(sk->sk_prot == p);
 985
 986	ctx = tls_get_ctx(sk);
 987	if (likely(ctx)) {
 988		ctx->sk_write_space = write_space;
 989		ctx->sk_proto = p;
 990	} else {
 991		/* Pairs with lockless read in sk_clone_lock(). */
 992		WRITE_ONCE(sk->sk_prot, p);
 993		sk->sk_write_space = write_space;
 994	}
 995}
 996
 997static u16 tls_user_config(struct tls_context *ctx, bool tx)
 998{
 999	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1000
1001	switch (config) {
1002	case TLS_BASE:
1003		return TLS_CONF_BASE;
1004	case TLS_SW:
1005		return TLS_CONF_SW;
1006	case TLS_HW:
1007		return TLS_CONF_HW;
1008	case TLS_HW_RECORD:
1009		return TLS_CONF_HW_RECORD;
1010	}
1011	return 0;
1012}
1013
1014static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1015{
1016	u16 version, cipher_type;
1017	struct tls_context *ctx;
1018	struct nlattr *start;
1019	int err;
1020
1021	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1022	if (!start)
1023		return -EMSGSIZE;
1024
1025	rcu_read_lock();
1026	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1027	if (!ctx) {
1028		err = 0;
1029		goto nla_failure;
1030	}
1031	version = ctx->prot_info.version;
1032	if (version) {
1033		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1034		if (err)
1035			goto nla_failure;
1036	}
1037	cipher_type = ctx->prot_info.cipher_type;
1038	if (cipher_type) {
1039		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1040		if (err)
1041			goto nla_failure;
1042	}
1043	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1044	if (err)
1045		goto nla_failure;
1046
1047	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1048	if (err)
1049		goto nla_failure;
1050
1051	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1052		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1053		if (err)
1054			goto nla_failure;
1055	}
1056	if (ctx->rx_no_pad) {
1057		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1058		if (err)
1059			goto nla_failure;
1060	}
1061
1062	rcu_read_unlock();
1063	nla_nest_end(skb, start);
1064	return 0;
1065
1066nla_failure:
1067	rcu_read_unlock();
1068	nla_nest_cancel(skb, start);
1069	return err;
1070}
1071
1072static size_t tls_get_info_size(const struct sock *sk)
1073{
1074	size_t size = 0;
1075
1076	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1077		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1078		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1079		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1080		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1081		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1082		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1083		0;
1084
1085	return size;
1086}
1087
1088static int __net_init tls_init_net(struct net *net)
1089{
1090	int err;
1091
1092	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1093	if (!net->mib.tls_statistics)
1094		return -ENOMEM;
1095
1096	err = tls_proc_init(net);
1097	if (err)
1098		goto err_free_stats;
1099
1100	return 0;
1101err_free_stats:
1102	free_percpu(net->mib.tls_statistics);
1103	return err;
1104}
1105
1106static void __net_exit tls_exit_net(struct net *net)
1107{
1108	tls_proc_fini(net);
1109	free_percpu(net->mib.tls_statistics);
1110}
1111
1112static struct pernet_operations tls_proc_ops = {
1113	.init = tls_init_net,
1114	.exit = tls_exit_net,
1115};
1116
1117static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1118	.name			= "tls",
1119	.owner			= THIS_MODULE,
1120	.init			= tls_init,
1121	.update			= tls_update,
1122	.get_info		= tls_get_info,
1123	.get_info_size		= tls_get_info_size,
1124};
1125
1126static int __init tls_register(void)
1127{
1128	int err;
1129
1130	err = register_pernet_subsys(&tls_proc_ops);
1131	if (err)
1132		return err;
1133
1134	err = tls_strp_dev_init();
1135	if (err)
1136		goto err_pernet;
1137
1138	err = tls_device_init();
1139	if (err)
1140		goto err_strp;
1141
1142	tcp_register_ulp(&tcp_tls_ulp_ops);
1143
1144	return 0;
1145err_strp:
1146	tls_strp_dev_exit();
1147err_pernet:
1148	unregister_pernet_subsys(&tls_proc_ops);
1149	return err;
1150}
1151
1152static void __exit tls_unregister(void)
1153{
1154	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1155	tls_strp_dev_exit();
1156	tls_device_cleanup();
1157	unregister_pernet_subsys(&tls_proc_ops);
1158}
1159
1160module_init(tls_register);
1161module_exit(tls_unregister);