Loading...
Note: File does not exist in v3.5.6.
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42
43#include <net/tls.h>
44
45MODULE_AUTHOR("Mellanox Technologies");
46MODULE_DESCRIPTION("Transport Layer Security Support");
47MODULE_LICENSE("Dual BSD/GPL");
48
49enum {
50 TLSV4,
51 TLSV6,
52 TLS_NUM_PROTS,
53};
54
55enum {
56 TLS_BASE,
57 TLS_SW_TX,
58 TLS_SW_RX,
59 TLS_SW_RXTX,
60 TLS_HW_RECORD,
61 TLS_NUM_CONFIG,
62};
63
64static struct proto *saved_tcpv6_prot;
65static DEFINE_MUTEX(tcpv6_prot_mutex);
66static LIST_HEAD(device_list);
67static DEFINE_MUTEX(device_mutex);
68static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69static struct proto_ops tls_sw_proto_ops;
70
71static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72{
73 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74
75 sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
76}
77
78int wait_on_pending_writer(struct sock *sk, long *timeo)
79{
80 int rc = 0;
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83 add_wait_queue(sk_sleep(sk), &wait);
84 while (1) {
85 if (!*timeo) {
86 rc = -EAGAIN;
87 break;
88 }
89
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
92 break;
93 }
94
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 break;
97 }
98 remove_wait_queue(sk_sleep(sk), &wait);
99 return rc;
100}
101
102int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
105 u16 first_offset,
106 int flags)
107{
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 int ret = 0;
110 struct page *p;
111 size_t size;
112 int offset = first_offset;
113
114 size = sg->length - offset;
115 offset += sg->offset;
116
117 ctx->in_tcp_sendpages = true;
118 while (1) {
119 if (sg_is_last(sg))
120 sendpage_flags = flags;
121
122 /* is sending application-limited? */
123 tcp_rate_check_app_limited(sk);
124 p = sg_page(sg);
125retry:
126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128 if (ret != size) {
129 if (ret > 0) {
130 offset += ret;
131 size -= ret;
132 goto retry;
133 }
134
135 offset -= sg->offset;
136 ctx->partially_sent_offset = offset;
137 ctx->partially_sent_record = (void *)sg;
138 ctx->in_tcp_sendpages = false;
139 return ret;
140 }
141
142 put_page(p);
143 sk_mem_uncharge(sk, sg->length);
144 sg = sg_next(sg);
145 if (!sg)
146 break;
147
148 offset = sg->offset;
149 size = sg->length;
150 }
151
152 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153 ctx->in_tcp_sendpages = false;
154 ctx->sk_write_space(sk);
155
156 return 0;
157}
158
159static int tls_handle_open_record(struct sock *sk, int flags)
160{
161 struct tls_context *ctx = tls_get_ctx(sk);
162
163 if (tls_is_pending_open_record(ctx))
164 return ctx->push_pending_record(sk, flags);
165
166 return 0;
167}
168
169int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170 unsigned char *record_type)
171{
172 struct cmsghdr *cmsg;
173 int rc = -EINVAL;
174
175 for_each_cmsghdr(cmsg, msg) {
176 if (!CMSG_OK(msg, cmsg))
177 return -EINVAL;
178 if (cmsg->cmsg_level != SOL_TLS)
179 continue;
180
181 switch (cmsg->cmsg_type) {
182 case TLS_SET_RECORD_TYPE:
183 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184 return -EINVAL;
185
186 if (msg->msg_flags & MSG_MORE)
187 return -EINVAL;
188
189 rc = tls_handle_open_record(sk, msg->msg_flags);
190 if (rc)
191 return rc;
192
193 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
194 rc = 0;
195 break;
196 default:
197 return -EINVAL;
198 }
199 }
200
201 return rc;
202}
203
204int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205 int flags, long *timeo)
206{
207 struct scatterlist *sg;
208 u16 offset;
209
210 if (!tls_is_partially_sent_record(ctx))
211 return ctx->push_pending_record(sk, flags);
212
213 sg = ctx->partially_sent_record;
214 offset = ctx->partially_sent_offset;
215
216 ctx->partially_sent_record = NULL;
217 return tls_push_sg(sk, ctx, sg, offset, flags);
218}
219
220static void tls_write_space(struct sock *sk)
221{
222 struct tls_context *ctx = tls_get_ctx(sk);
223
224 /* We are already sending pages, ignore notification */
225 if (ctx->in_tcp_sendpages)
226 return;
227
228 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229 gfp_t sk_allocation = sk->sk_allocation;
230 int rc;
231 long timeo = 0;
232
233 sk->sk_allocation = GFP_ATOMIC;
234 rc = tls_push_pending_closed_record(sk, ctx,
235 MSG_DONTWAIT |
236 MSG_NOSIGNAL,
237 &timeo);
238 sk->sk_allocation = sk_allocation;
239
240 if (rc < 0)
241 return;
242 }
243
244 ctx->sk_write_space(sk);
245}
246
247static void tls_sk_proto_close(struct sock *sk, long timeout)
248{
249 struct tls_context *ctx = tls_get_ctx(sk);
250 long timeo = sock_sndtimeo(sk, 0);
251 void (*sk_proto_close)(struct sock *sk, long timeout);
252 bool free_ctx = false;
253
254 lock_sock(sk);
255 sk_proto_close = ctx->sk_proto_close;
256
257 if (ctx->conf == TLS_BASE || ctx->conf == TLS_HW_RECORD) {
258 free_ctx = true;
259 goto skip_tx_cleanup;
260 }
261
262 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
263 tls_handle_open_record(sk, 0);
264
265 if (ctx->partially_sent_record) {
266 struct scatterlist *sg = ctx->partially_sent_record;
267
268 while (1) {
269 put_page(sg_page(sg));
270 sk_mem_uncharge(sk, sg->length);
271
272 if (sg_is_last(sg))
273 break;
274 sg++;
275 }
276 }
277
278 kfree(ctx->tx.rec_seq);
279 kfree(ctx->tx.iv);
280 kfree(ctx->rx.rec_seq);
281 kfree(ctx->rx.iv);
282
283 if (ctx->conf == TLS_SW_TX ||
284 ctx->conf == TLS_SW_RX ||
285 ctx->conf == TLS_SW_RXTX) {
286 tls_sw_free_resources(sk);
287 }
288
289skip_tx_cleanup:
290 release_sock(sk);
291 sk_proto_close(sk, timeout);
292 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
293 * for sk->sk_prot->unhash [tls_hw_unhash]
294 */
295 if (free_ctx)
296 kfree(ctx);
297}
298
299static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300 int __user *optlen)
301{
302 int rc = 0;
303 struct tls_context *ctx = tls_get_ctx(sk);
304 struct tls_crypto_info *crypto_info;
305 int len;
306
307 if (get_user(len, optlen))
308 return -EFAULT;
309
310 if (!optval || (len < sizeof(*crypto_info))) {
311 rc = -EINVAL;
312 goto out;
313 }
314
315 if (!ctx) {
316 rc = -EBUSY;
317 goto out;
318 }
319
320 /* get user crypto info */
321 crypto_info = &ctx->crypto_send;
322
323 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324 rc = -EBUSY;
325 goto out;
326 }
327
328 if (len == sizeof(*crypto_info)) {
329 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330 rc = -EFAULT;
331 goto out;
332 }
333
334 switch (crypto_info->cipher_type) {
335 case TLS_CIPHER_AES_GCM_128: {
336 struct tls12_crypto_info_aes_gcm_128 *
337 crypto_info_aes_gcm_128 =
338 container_of(crypto_info,
339 struct tls12_crypto_info_aes_gcm_128,
340 info);
341
342 if (len != sizeof(*crypto_info_aes_gcm_128)) {
343 rc = -EINVAL;
344 goto out;
345 }
346 lock_sock(sk);
347 memcpy(crypto_info_aes_gcm_128->iv,
348 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349 TLS_CIPHER_AES_GCM_128_IV_SIZE);
350 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352 release_sock(sk);
353 if (copy_to_user(optval,
354 crypto_info_aes_gcm_128,
355 sizeof(*crypto_info_aes_gcm_128)))
356 rc = -EFAULT;
357 break;
358 }
359 default:
360 rc = -EINVAL;
361 }
362
363out:
364 return rc;
365}
366
367static int do_tls_getsockopt(struct sock *sk, int optname,
368 char __user *optval, int __user *optlen)
369{
370 int rc = 0;
371
372 switch (optname) {
373 case TLS_TX:
374 rc = do_tls_getsockopt_tx(sk, optval, optlen);
375 break;
376 default:
377 rc = -ENOPROTOOPT;
378 break;
379 }
380 return rc;
381}
382
383static int tls_getsockopt(struct sock *sk, int level, int optname,
384 char __user *optval, int __user *optlen)
385{
386 struct tls_context *ctx = tls_get_ctx(sk);
387
388 if (level != SOL_TLS)
389 return ctx->getsockopt(sk, level, optname, optval, optlen);
390
391 return do_tls_getsockopt(sk, optname, optval, optlen);
392}
393
394static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
395 unsigned int optlen, int tx)
396{
397 struct tls_crypto_info *crypto_info;
398 struct tls_context *ctx = tls_get_ctx(sk);
399 int rc = 0;
400 int conf;
401
402 if (!optval || (optlen < sizeof(*crypto_info))) {
403 rc = -EINVAL;
404 goto out;
405 }
406
407 if (tx)
408 crypto_info = &ctx->crypto_send;
409 else
410 crypto_info = &ctx->crypto_recv;
411
412 /* Currently we don't support set crypto info more than one time */
413 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
414 rc = -EBUSY;
415 goto out;
416 }
417
418 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
419 if (rc) {
420 rc = -EFAULT;
421 goto err_crypto_info;
422 }
423
424 /* check version */
425 if (crypto_info->version != TLS_1_2_VERSION) {
426 rc = -ENOTSUPP;
427 goto err_crypto_info;
428 }
429
430 switch (crypto_info->cipher_type) {
431 case TLS_CIPHER_AES_GCM_128: {
432 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
433 rc = -EINVAL;
434 goto err_crypto_info;
435 }
436 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
437 optlen - sizeof(*crypto_info));
438 if (rc) {
439 rc = -EFAULT;
440 goto err_crypto_info;
441 }
442 break;
443 }
444 default:
445 rc = -EINVAL;
446 goto err_crypto_info;
447 }
448
449 /* currently SW is default, we will have ethtool in future */
450 if (tx) {
451 rc = tls_set_sw_offload(sk, ctx, 1);
452 if (ctx->conf == TLS_SW_RX)
453 conf = TLS_SW_RXTX;
454 else
455 conf = TLS_SW_TX;
456 } else {
457 rc = tls_set_sw_offload(sk, ctx, 0);
458 if (ctx->conf == TLS_SW_TX)
459 conf = TLS_SW_RXTX;
460 else
461 conf = TLS_SW_RX;
462 }
463
464 if (rc)
465 goto err_crypto_info;
466
467 ctx->conf = conf;
468 update_sk_prot(sk, ctx);
469 if (tx) {
470 ctx->sk_write_space = sk->sk_write_space;
471 sk->sk_write_space = tls_write_space;
472 } else {
473 sk->sk_socket->ops = &tls_sw_proto_ops;
474 }
475 goto out;
476
477err_crypto_info:
478 memset(crypto_info, 0, sizeof(*crypto_info));
479out:
480 return rc;
481}
482
483static int do_tls_setsockopt(struct sock *sk, int optname,
484 char __user *optval, unsigned int optlen)
485{
486 int rc = 0;
487
488 switch (optname) {
489 case TLS_TX:
490 case TLS_RX:
491 lock_sock(sk);
492 rc = do_tls_setsockopt_conf(sk, optval, optlen,
493 optname == TLS_TX);
494 release_sock(sk);
495 break;
496 default:
497 rc = -ENOPROTOOPT;
498 break;
499 }
500 return rc;
501}
502
503static int tls_setsockopt(struct sock *sk, int level, int optname,
504 char __user *optval, unsigned int optlen)
505{
506 struct tls_context *ctx = tls_get_ctx(sk);
507
508 if (level != SOL_TLS)
509 return ctx->setsockopt(sk, level, optname, optval, optlen);
510
511 return do_tls_setsockopt(sk, optname, optval, optlen);
512}
513
514static struct tls_context *create_ctx(struct sock *sk)
515{
516 struct inet_connection_sock *icsk = inet_csk(sk);
517 struct tls_context *ctx;
518
519 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
520 if (!ctx)
521 return NULL;
522
523 icsk->icsk_ulp_data = ctx;
524 return ctx;
525}
526
527static int tls_hw_prot(struct sock *sk)
528{
529 struct tls_context *ctx;
530 struct tls_device *dev;
531 int rc = 0;
532
533 mutex_lock(&device_mutex);
534 list_for_each_entry(dev, &device_list, dev_list) {
535 if (dev->feature && dev->feature(dev)) {
536 ctx = create_ctx(sk);
537 if (!ctx)
538 goto out;
539
540 ctx->hash = sk->sk_prot->hash;
541 ctx->unhash = sk->sk_prot->unhash;
542 ctx->sk_proto_close = sk->sk_prot->close;
543 ctx->conf = TLS_HW_RECORD;
544 update_sk_prot(sk, ctx);
545 rc = 1;
546 break;
547 }
548 }
549out:
550 mutex_unlock(&device_mutex);
551 return rc;
552}
553
554static void tls_hw_unhash(struct sock *sk)
555{
556 struct tls_context *ctx = tls_get_ctx(sk);
557 struct tls_device *dev;
558
559 mutex_lock(&device_mutex);
560 list_for_each_entry(dev, &device_list, dev_list) {
561 if (dev->unhash)
562 dev->unhash(dev, sk);
563 }
564 mutex_unlock(&device_mutex);
565 ctx->unhash(sk);
566}
567
568static int tls_hw_hash(struct sock *sk)
569{
570 struct tls_context *ctx = tls_get_ctx(sk);
571 struct tls_device *dev;
572 int err;
573
574 err = ctx->hash(sk);
575 mutex_lock(&device_mutex);
576 list_for_each_entry(dev, &device_list, dev_list) {
577 if (dev->hash)
578 err |= dev->hash(dev, sk);
579 }
580 mutex_unlock(&device_mutex);
581
582 if (err)
583 tls_hw_unhash(sk);
584 return err;
585}
586
587static void build_protos(struct proto *prot, struct proto *base)
588{
589 prot[TLS_BASE] = *base;
590 prot[TLS_BASE].setsockopt = tls_setsockopt;
591 prot[TLS_BASE].getsockopt = tls_getsockopt;
592 prot[TLS_BASE].close = tls_sk_proto_close;
593
594 prot[TLS_SW_TX] = prot[TLS_BASE];
595 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
596 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
597
598 prot[TLS_SW_RX] = prot[TLS_BASE];
599 prot[TLS_SW_RX].recvmsg = tls_sw_recvmsg;
600 prot[TLS_SW_RX].close = tls_sk_proto_close;
601
602 prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
603 prot[TLS_SW_RXTX].recvmsg = tls_sw_recvmsg;
604 prot[TLS_SW_RXTX].close = tls_sk_proto_close;
605
606 prot[TLS_HW_RECORD] = *base;
607 prot[TLS_HW_RECORD].hash = tls_hw_hash;
608 prot[TLS_HW_RECORD].unhash = tls_hw_unhash;
609 prot[TLS_HW_RECORD].close = tls_sk_proto_close;
610}
611
612static int tls_init(struct sock *sk)
613{
614 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
615 struct tls_context *ctx;
616 int rc = 0;
617
618 if (tls_hw_prot(sk))
619 goto out;
620
621 /* The TLS ulp is currently supported only for TCP sockets
622 * in ESTABLISHED state.
623 * Supporting sockets in LISTEN state will require us
624 * to modify the accept implementation to clone rather then
625 * share the ulp context.
626 */
627 if (sk->sk_state != TCP_ESTABLISHED)
628 return -ENOTSUPP;
629
630 /* allocate tls context */
631 ctx = create_ctx(sk);
632 if (!ctx) {
633 rc = -ENOMEM;
634 goto out;
635 }
636 ctx->setsockopt = sk->sk_prot->setsockopt;
637 ctx->getsockopt = sk->sk_prot->getsockopt;
638 ctx->sk_proto_close = sk->sk_prot->close;
639
640 /* Build IPv6 TLS whenever the address of tcpv6_prot changes */
641 if (ip_ver == TLSV6 &&
642 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
643 mutex_lock(&tcpv6_prot_mutex);
644 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
645 build_protos(tls_prots[TLSV6], sk->sk_prot);
646 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
647 }
648 mutex_unlock(&tcpv6_prot_mutex);
649 }
650
651 ctx->conf = TLS_BASE;
652 update_sk_prot(sk, ctx);
653out:
654 return rc;
655}
656
657void tls_register_device(struct tls_device *device)
658{
659 mutex_lock(&device_mutex);
660 list_add_tail(&device->dev_list, &device_list);
661 mutex_unlock(&device_mutex);
662}
663EXPORT_SYMBOL(tls_register_device);
664
665void tls_unregister_device(struct tls_device *device)
666{
667 mutex_lock(&device_mutex);
668 list_del(&device->dev_list);
669 mutex_unlock(&device_mutex);
670}
671EXPORT_SYMBOL(tls_unregister_device);
672
673static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
674 .name = "tls",
675 .uid = TCP_ULP_TLS,
676 .user_visible = true,
677 .owner = THIS_MODULE,
678 .init = tls_init,
679};
680
681static int __init tls_register(void)
682{
683 build_protos(tls_prots[TLSV4], &tcp_prot);
684
685 tls_sw_proto_ops = inet_stream_ops;
686 tls_sw_proto_ops.poll = tls_sw_poll;
687 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
688
689 tcp_register_ulp(&tcp_tls_ulp_ops);
690
691 return 0;
692}
693
694static void __exit tls_unregister(void)
695{
696 tcp_unregister_ulp(&tcp_tls_ulp_ops);
697}
698
699module_init(tls_register);
700module_exit(tls_unregister);