Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 
 
 
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 
 
 
 
 
 
 
 
 
 
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event);
 69	u32 events;
 70	struct avc_callback_node *next;
 71};
 72
 73/* Exported via selinufs */
 74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 75
 76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 78#endif
 79
 80static struct avc_cache avc_cache;
 81static struct avc_callback_node *avc_callbacks;
 82static struct kmem_cache *avc_node_cachep;
 
 83
 84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 85{
 86	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 87}
 88
 89/**
 90 * avc_dump_av - Display an access vector in human-readable form.
 91 * @tclass: target security class
 92 * @av: access vector
 93 */
 94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 95{
 96	const char **perms;
 97	int i, perm;
 98
 99	if (av == 0) {
100		audit_log_format(ab, " null");
101		return;
102	}
103
104	perms = secclass_map[tclass-1].perms;
105
106	audit_log_format(ab, " {");
107	i = 0;
108	perm = 1;
109	while (i < (sizeof(av) * 8)) {
110		if ((perm & av) && perms[i]) {
111			audit_log_format(ab, " %s", perms[i]);
112			av &= ~perm;
113		}
114		i++;
115		perm <<= 1;
116	}
117
118	if (av)
119		audit_log_format(ab, " 0x%x", av);
120
121	audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131{
132	int rc;
133	char *scontext;
134	u32 scontext_len;
135
136	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137	if (rc)
138		audit_log_format(ab, "ssid=%d", ssid);
139	else {
140		audit_log_format(ab, "scontext=%s", scontext);
141		kfree(scontext);
142	}
143
144	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145	if (rc)
146		audit_log_format(ab, " tsid=%d", tsid);
147	else {
148		audit_log_format(ab, " tcontext=%s", scontext);
149		kfree(scontext);
150	}
151
152	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
 
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163	int i;
164
165	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167		spin_lock_init(&avc_cache.slots_lock[i]);
168	}
169	atomic_set(&avc_cache.active_nodes, 0);
170	atomic_set(&avc_cache.lru_hint, 0);
171
172	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173					     0, SLAB_PANIC, NULL);
174
175	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 
 
 
 
 
 
 
 
176}
177
178int avc_get_hash_stats(char *page)
179{
180	int i, chain_len, max_chain_len, slots_used;
181	struct avc_node *node;
182	struct hlist_head *head;
183
184	rcu_read_lock();
185
186	slots_used = 0;
187	max_chain_len = 0;
188	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189		head = &avc_cache.slots[i];
190		if (!hlist_empty(head)) {
191			struct hlist_node *next;
192
193			slots_used++;
194			chain_len = 0;
195			hlist_for_each_entry_rcu(node, next, head, list)
196				chain_len++;
197			if (chain_len > max_chain_len)
198				max_chain_len = chain_len;
199		}
200	}
201
202	rcu_read_unlock();
203
204	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
205			 "longest chain: %d\n",
206			 atomic_read(&avc_cache.active_nodes),
207			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
208}
209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210static void avc_node_free(struct rcu_head *rhead)
211{
212	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 
213	kmem_cache_free(avc_node_cachep, node);
214	avc_cache_stats_incr(frees);
215}
216
217static void avc_node_delete(struct avc_node *node)
218{
219	hlist_del_rcu(&node->list);
220	call_rcu(&node->rhead, avc_node_free);
221	atomic_dec(&avc_cache.active_nodes);
222}
223
224static void avc_node_kill(struct avc_node *node)
225{
 
226	kmem_cache_free(avc_node_cachep, node);
227	avc_cache_stats_incr(frees);
228	atomic_dec(&avc_cache.active_nodes);
229}
230
231static void avc_node_replace(struct avc_node *new, struct avc_node *old)
232{
233	hlist_replace_rcu(&old->list, &new->list);
234	call_rcu(&old->rhead, avc_node_free);
235	atomic_dec(&avc_cache.active_nodes);
236}
237
238static inline int avc_reclaim_node(void)
239{
240	struct avc_node *node;
241	int hvalue, try, ecx;
242	unsigned long flags;
243	struct hlist_head *head;
244	struct hlist_node *next;
245	spinlock_t *lock;
246
247	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
248		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
249		head = &avc_cache.slots[hvalue];
250		lock = &avc_cache.slots_lock[hvalue];
 
251
252		if (!spin_trylock_irqsave(lock, flags))
253			continue;
254
255		rcu_read_lock();
256		hlist_for_each_entry(node, next, head, list) {
257			avc_node_delete(node);
258			avc_cache_stats_incr(reclaims);
259			ecx++;
260			if (ecx >= AVC_CACHE_RECLAIM) {
261				rcu_read_unlock();
262				spin_unlock_irqrestore(lock, flags);
263				goto out;
264			}
265		}
266		rcu_read_unlock();
267		spin_unlock_irqrestore(lock, flags);
268	}
269out:
270	return ecx;
271}
272
273static struct avc_node *avc_alloc_node(void)
274{
275	struct avc_node *node;
276
277	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
278	if (!node)
279		goto out;
280
281	INIT_HLIST_NODE(&node->list);
282	avc_cache_stats_incr(allocations);
283
284	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
 
285		avc_reclaim_node();
286
287out:
288	return node;
289}
290
291static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
292{
293	node->ae.ssid = ssid;
294	node->ae.tsid = tsid;
295	node->ae.tclass = tclass;
296	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
297}
298
299static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
300{
301	struct avc_node *node, *ret = NULL;
302	int hvalue;
303	struct hlist_head *head;
304	struct hlist_node *next;
305
306	hvalue = avc_hash(ssid, tsid, tclass);
307	head = &avc_cache.slots[hvalue];
308	hlist_for_each_entry_rcu(node, next, head, list) {
309		if (ssid == node->ae.ssid &&
310		    tclass == node->ae.tclass &&
311		    tsid == node->ae.tsid) {
312			ret = node;
313			break;
314		}
315	}
316
317	return ret;
318}
319
320/**
321 * avc_lookup - Look up an AVC entry.
322 * @ssid: source security identifier
323 * @tsid: target security identifier
324 * @tclass: target security class
325 *
326 * Look up an AVC entry that is valid for the
327 * (@ssid, @tsid), interpreting the permissions
328 * based on @tclass.  If a valid AVC entry exists,
329 * then this function returns the avc_node.
330 * Otherwise, this function returns NULL.
331 */
332static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
333{
334	struct avc_node *node;
335
336	avc_cache_stats_incr(lookups);
337	node = avc_search_node(ssid, tsid, tclass);
338
339	if (node)
340		return node;
341
342	avc_cache_stats_incr(misses);
343	return NULL;
344}
345
346static int avc_latest_notif_update(int seqno, int is_insert)
347{
348	int ret = 0;
349	static DEFINE_SPINLOCK(notif_lock);
350	unsigned long flag;
351
352	spin_lock_irqsave(&notif_lock, flag);
353	if (is_insert) {
354		if (seqno < avc_cache.latest_notif) {
355			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
356			       seqno, avc_cache.latest_notif);
357			ret = -EAGAIN;
358		}
359	} else {
360		if (seqno > avc_cache.latest_notif)
361			avc_cache.latest_notif = seqno;
362	}
363	spin_unlock_irqrestore(&notif_lock, flag);
364
365	return ret;
366}
367
368/**
369 * avc_insert - Insert an AVC entry.
370 * @ssid: source security identifier
371 * @tsid: target security identifier
372 * @tclass: target security class
373 * @avd: resulting av decision
 
374 *
375 * Insert an AVC entry for the SID pair
376 * (@ssid, @tsid) and class @tclass.
377 * The access vectors and the sequence number are
378 * normally provided by the security server in
379 * response to a security_compute_av() call.  If the
380 * sequence number @avd->seqno is not less than the latest
381 * revocation notification, then the function copies
382 * the access vectors into a cache entry, returns
383 * avc_node inserted. Otherwise, this function returns NULL.
384 */
385static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 
386{
387	struct avc_node *pos, *node = NULL;
388	int hvalue;
389	unsigned long flag;
 
 
390
391	if (avc_latest_notif_update(avd->seqno, 1))
392		goto out;
393
394	node = avc_alloc_node();
395	if (node) {
396		struct hlist_head *head;
397		struct hlist_node *next;
398		spinlock_t *lock;
399
400		hvalue = avc_hash(ssid, tsid, tclass);
401		avc_node_populate(node, ssid, tsid, tclass, avd);
402
403		head = &avc_cache.slots[hvalue];
404		lock = &avc_cache.slots_lock[hvalue];
 
 
 
405
406		spin_lock_irqsave(lock, flag);
407		hlist_for_each_entry(pos, next, head, list) {
408			if (pos->ae.ssid == ssid &&
409			    pos->ae.tsid == tsid &&
410			    pos->ae.tclass == tclass) {
411				avc_node_replace(node, pos);
412				goto found;
413			}
 
 
414		}
415		hlist_add_head_rcu(&node->list, head);
416found:
417		spin_unlock_irqrestore(lock, flag);
418	}
419out:
420	return node;
 
421}
422
423/**
424 * avc_audit_pre_callback - SELinux specific information
425 * will be called by generic audit code
426 * @ab: the audit buffer
427 * @a: audit_data
428 */
429static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
430{
431	struct common_audit_data *ad = a;
432	audit_log_format(ab, "avc:  %s ",
433			 ad->selinux_audit_data->denied ? "denied" : "granted");
434	avc_dump_av(ab, ad->selinux_audit_data->tclass,
435			ad->selinux_audit_data->audited);
436	audit_log_format(ab, " for ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437}
438
439/**
440 * avc_audit_post_callback - SELinux specific information
441 * will be called by generic audit code
442 * @ab: the audit buffer
443 * @a: audit_data
444 */
445static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
446{
447	struct common_audit_data *ad = a;
448	audit_log_format(ab, " ");
449	avc_dump_query(ab, ad->selinux_audit_data->ssid,
450			   ad->selinux_audit_data->tsid,
451			   ad->selinux_audit_data->tclass);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452}
453
454/* This is the slow part of avc audit with big stack footprint */
 
 
 
 
455noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
456		u32 requested, u32 audited, u32 denied,
457		struct common_audit_data *a,
458		unsigned flags)
459{
460	struct common_audit_data stack_data;
461	struct selinux_audit_data sad;
462
 
 
 
463	if (!a) {
464		a = &stack_data;
465		a->type = LSM_AUDIT_DATA_NONE;
466	}
467
468	/*
469	 * When in a RCU walk do the audit on the RCU retry.  This is because
470	 * the collection of the dname in an inode audit message is not RCU
471	 * safe.  Note this may drop some audits when the situation changes
472	 * during retry. However this is logically just as if the operation
473	 * happened a little later.
474	 */
475	if ((a->type == LSM_AUDIT_DATA_INODE) &&
476	    (flags & MAY_NOT_BLOCK))
477		return -ECHILD;
478
479	sad.tclass = tclass;
480	sad.requested = requested;
481	sad.ssid = ssid;
482	sad.tsid = tsid;
483	sad.audited = audited;
484	sad.denied = denied;
 
485
486	a->selinux_audit_data = &sad;
487
488	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489	return 0;
490}
491
492/**
493 * avc_add_callback - Register a callback for security events.
494 * @callback: callback function
495 * @events: security events
496 *
497 * Register a callback function for events in the set @events.
498 * Returns %0 on success or -%ENOMEM if insufficient memory
499 * exists to add the callback.
500 */
501int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502{
503	struct avc_callback_node *c;
504	int rc = 0;
505
506	c = kmalloc(sizeof(*c), GFP_KERNEL);
507	if (!c) {
508		rc = -ENOMEM;
509		goto out;
510	}
511
512	c->callback = callback;
513	c->events = events;
514	c->next = avc_callbacks;
515	avc_callbacks = c;
516out:
517	return rc;
518}
519
520static inline int avc_sidcmp(u32 x, u32 y)
521{
522	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
523}
524
525/**
526 * avc_update_node Update an AVC entry
527 * @event : Updating event
528 * @perms : Permission mask bits
529 * @ssid,@tsid,@tclass : identifier of an AVC entry
 
 
 
 
530 * @seqno : sequence number when decision was made
 
 
531 *
532 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
533 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
534 * otherwise, this function updates the AVC entry. The original AVC-entry object
535 * will release later by RCU.
536 */
537static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
538			   u32 seqno)
 
 
539{
540	int hvalue, rc = 0;
 
541	unsigned long flag;
542	struct avc_node *pos, *node, *orig = NULL;
543	struct hlist_head *head;
544	struct hlist_node *next;
545	spinlock_t *lock;
546
547	node = avc_alloc_node();
548	if (!node) {
549		rc = -ENOMEM;
550		goto out;
551	}
552
553	/* Lock the target slot */
554	hvalue = avc_hash(ssid, tsid, tclass);
555
556	head = &avc_cache.slots[hvalue];
557	lock = &avc_cache.slots_lock[hvalue];
558
559	spin_lock_irqsave(lock, flag);
560
561	hlist_for_each_entry(pos, next, head, list) {
562		if (ssid == pos->ae.ssid &&
563		    tsid == pos->ae.tsid &&
564		    tclass == pos->ae.tclass &&
565		    seqno == pos->ae.avd.seqno){
566			orig = pos;
567			break;
568		}
569	}
570
571	if (!orig) {
572		rc = -ENOENT;
573		avc_node_kill(node);
574		goto out_unlock;
575	}
576
577	/*
578	 * Copy and replace original node.
579	 */
580
581	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
582
 
 
 
 
 
 
 
 
583	switch (event) {
584	case AVC_CALLBACK_GRANT:
585		node->ae.avd.allowed |= perms;
 
 
586		break;
587	case AVC_CALLBACK_TRY_REVOKE:
588	case AVC_CALLBACK_REVOKE:
589		node->ae.avd.allowed &= ~perms;
590		break;
591	case AVC_CALLBACK_AUDITALLOW_ENABLE:
592		node->ae.avd.auditallow |= perms;
593		break;
594	case AVC_CALLBACK_AUDITALLOW_DISABLE:
595		node->ae.avd.auditallow &= ~perms;
596		break;
597	case AVC_CALLBACK_AUDITDENY_ENABLE:
598		node->ae.avd.auditdeny |= perms;
599		break;
600	case AVC_CALLBACK_AUDITDENY_DISABLE:
601		node->ae.avd.auditdeny &= ~perms;
602		break;
 
 
 
603	}
604	avc_node_replace(node, orig);
605out_unlock:
606	spin_unlock_irqrestore(lock, flag);
607out:
608	return rc;
609}
610
611/**
612 * avc_flush - Flush the cache
613 */
614static void avc_flush(void)
615{
616	struct hlist_head *head;
617	struct hlist_node *next;
618	struct avc_node *node;
619	spinlock_t *lock;
620	unsigned long flag;
621	int i;
622
623	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
624		head = &avc_cache.slots[i];
625		lock = &avc_cache.slots_lock[i];
626
627		spin_lock_irqsave(lock, flag);
628		/*
629		 * With preemptable RCU, the outer spinlock does not
630		 * prevent RCU grace periods from ending.
631		 */
632		rcu_read_lock();
633		hlist_for_each_entry(node, next, head, list)
634			avc_node_delete(node);
635		rcu_read_unlock();
636		spin_unlock_irqrestore(lock, flag);
637	}
638}
639
640/**
641 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
642 * @seqno: policy sequence number
643 */
644int avc_ss_reset(u32 seqno)
645{
646	struct avc_callback_node *c;
647	int rc = 0, tmprc;
648
649	avc_flush();
650
651	for (c = avc_callbacks; c; c = c->next) {
652		if (c->events & AVC_CALLBACK_RESET) {
653			tmprc = c->callback(AVC_CALLBACK_RESET);
654			/* save the first error encountered for the return
655			   value and continue processing the callbacks */
656			if (!rc)
657				rc = tmprc;
658		}
659	}
660
661	avc_latest_notif_update(seqno, 0);
662	return rc;
663}
664
665/*
666 * Slow-path helper function for avc_has_perm_noaudit,
667 * when the avc_node lookup fails. We get called with
668 * the RCU read lock held, and need to return with it
669 * still held, but drop if for the security compute.
 
 
670 *
671 * Don't inline this, since it's the slow-path and just
672 * results in a bigger stack frame.
 
673 */
674static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
675			 u16 tclass, struct av_decision *avd)
676{
677	rcu_read_unlock();
678	security_compute_av(ssid, tsid, tclass, avd);
679	rcu_read_lock();
680	return avc_insert(ssid, tsid, tclass, avd);
681}
682
683static noinline int avc_denied(u32 ssid, u32 tsid,
684			 u16 tclass, u32 requested,
685			 unsigned flags,
686			 struct av_decision *avd)
687{
688	if (flags & AVC_STRICT)
689		return -EACCES;
690
691	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
 
692		return -EACCES;
693
694	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
695				tsid, tclass, avd->seqno);
696	return 0;
697}
698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699
700/**
701 * avc_has_perm_noaudit - Check permissions but perform no auditing.
702 * @ssid: source security identifier
703 * @tsid: target security identifier
704 * @tclass: target security class
705 * @requested: requested permissions, interpreted based on @tclass
706 * @flags:  AVC_STRICT or 0
707 * @avd: access vector decisions
708 *
709 * Check the AVC to determine whether the @requested permissions are granted
710 * for the SID pair (@ssid, @tsid), interpreting the permissions
711 * based on @tclass, and call the security server on a cache miss to obtain
712 * a new decision and add it to the cache.  Return a copy of the decisions
713 * in @avd.  Return %0 if all @requested permissions are granted,
714 * -%EACCES if any permissions are denied, or another -errno upon
715 * other errors.  This function is typically called by avc_has_perm(),
716 * but may also be called directly to separate permission checking from
717 * auditing, e.g. in cases where a lock must be held for the check but
718 * should be released for the auditing.
719 */
720inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
721			 u16 tclass, u32 requested,
722			 unsigned flags,
723			 struct av_decision *avd)
724{
725	struct avc_node *node;
726	int rc = 0;
727	u32 denied;
 
728
729	BUG_ON(!requested);
 
730
731	rcu_read_lock();
732
733	node = avc_lookup(ssid, tsid, tclass);
734	if (unlikely(!node)) {
735		node = avc_compute_av(ssid, tsid, tclass, avd);
736	} else {
737		memcpy(avd, &node->ae.avd, sizeof(*avd));
738		avd = &node->ae.avd;
739	}
 
 
 
740
741	denied = requested & ~(avd->allowed);
742	if (unlikely(denied))
743		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
744
745	rcu_read_unlock();
746	return rc;
747}
748
749/**
750 * avc_has_perm - Check permissions and perform any appropriate auditing.
751 * @ssid: source security identifier
752 * @tsid: target security identifier
753 * @tclass: target security class
754 * @requested: requested permissions, interpreted based on @tclass
755 * @auditdata: auxiliary audit data
756 * @flags: VFS walk flags
757 *
758 * Check the AVC to determine whether the @requested permissions are granted
759 * for the SID pair (@ssid, @tsid), interpreting the permissions
760 * based on @tclass, and call the security server on a cache miss to obtain
761 * a new decision and add it to the cache.  Audit the granting or denial of
762 * permissions in accordance with the policy.  Return %0 if all @requested
763 * permissions are granted, -%EACCES if any permissions are denied, or
764 * another -errno upon other errors.
765 */
766int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
767		       u32 requested, struct common_audit_data *auditdata,
768		       unsigned flags)
769{
770	struct av_decision avd;
771	int rc, rc2;
772
773	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
774
775	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
776			flags);
777	if (rc2)
778		return rc2;
779	return rc;
780}
781
782u32 avc_policy_seqno(void)
783{
784	return avc_cache.latest_notif;
785}
786
787void avc_disable(void)
788{
789	/*
790	 * If you are looking at this because you have realized that we are
791	 * not destroying the avc_node_cachep it might be easy to fix, but
792	 * I don't know the memory barrier semantics well enough to know.  It's
793	 * possible that some other task dereferenced security_ops when
794	 * it still pointed to selinux operations.  If that is the case it's
795	 * possible that it is about to use the avc and is about to need the
796	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
797	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
798	 * the cache and get that memory back.
799	 */
800	if (avc_node_cachep) {
801		avc_flush();
802		/* kmem_cache_destroy(avc_node_cachep); */
803	}
804}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
 
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/avc.h>
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
 
 
 
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
 
 
 
  95
  96void selinux_avc_init(void)
 
 
 
 
 
  97{
  98	int i;
 
 
 
 
 
 
 
 
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 
 
 
 
 
 
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 
 
 
 107}
 108
 109unsigned int avc_get_cache_threshold(void)
 
 
 
 
 
 
 110{
 111	return selinux_avc.avc_cache_threshold;
 112}
 
 113
 114void avc_set_cache_threshold(unsigned int cache_threshold)
 115{
 116	selinux_avc.avc_cache_threshold = cache_threshold;
 117}
 
 
 
 118
 119static struct avc_callback_node *avc_callbacks __ro_after_init;
 120static struct kmem_cache *avc_node_cachep __ro_after_init;
 121static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
 122static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
 123static struct kmem_cache *avc_xperms_cachep __ro_after_init;
 
 
 124
 125static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
 126{
 127	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 128}
 129
 130/**
 131 * avc_init - Initialize the AVC.
 132 *
 133 * Initialize the access vector cache.
 134 */
 135void __init avc_init(void)
 136{
 
 
 
 
 
 
 
 
 
 137	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 138					0, SLAB_PANIC, NULL);
 139	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 140					sizeof(struct avc_xperms_node),
 141					0, SLAB_PANIC, NULL);
 142	avc_xperms_decision_cachep = kmem_cache_create(
 143					"avc_xperms_decision_node",
 144					sizeof(struct avc_xperms_decision_node),
 145					0, SLAB_PANIC, NULL);
 146	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 147					sizeof(struct extended_perms_data),
 148					0, SLAB_PANIC, NULL);
 149}
 150
 151int avc_get_hash_stats(char *page)
 152{
 153	int i, chain_len, max_chain_len, slots_used;
 154	struct avc_node *node;
 155	struct hlist_head *head;
 156
 157	rcu_read_lock();
 158
 159	slots_used = 0;
 160	max_chain_len = 0;
 161	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 162		head = &selinux_avc.avc_cache.slots[i];
 163		if (!hlist_empty(head)) {
 
 
 164			slots_used++;
 165			chain_len = 0;
 166			hlist_for_each_entry_rcu(node, head, list)
 167				chain_len++;
 168			if (chain_len > max_chain_len)
 169				max_chain_len = chain_len;
 170		}
 171	}
 172
 173	rcu_read_unlock();
 174
 175	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 176			 "longest chain: %d\n",
 177			 atomic_read(&selinux_avc.avc_cache.active_nodes),
 178			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 179}
 180
 181/*
 182 * using a linked list for extended_perms_decision lookup because the list is
 183 * always small. i.e. less than 5, typically 1
 184 */
 185static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 186					struct avc_xperms_node *xp_node)
 187{
 188	struct avc_xperms_decision_node *xpd_node;
 189
 190	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 191		if (xpd_node->xpd.driver == driver)
 192			return &xpd_node->xpd;
 193	}
 194	return NULL;
 195}
 196
 197static inline unsigned int
 198avc_xperms_has_perm(struct extended_perms_decision *xpd,
 199					u8 perm, u8 which)
 200{
 201	unsigned int rc = 0;
 202
 203	if ((which == XPERMS_ALLOWED) &&
 204			(xpd->used & XPERMS_ALLOWED))
 205		rc = security_xperm_test(xpd->allowed->p, perm);
 206	else if ((which == XPERMS_AUDITALLOW) &&
 207			(xpd->used & XPERMS_AUDITALLOW))
 208		rc = security_xperm_test(xpd->auditallow->p, perm);
 209	else if ((which == XPERMS_DONTAUDIT) &&
 210			(xpd->used & XPERMS_DONTAUDIT))
 211		rc = security_xperm_test(xpd->dontaudit->p, perm);
 212	return rc;
 213}
 214
 215static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 216				u8 driver, u8 perm)
 217{
 218	struct extended_perms_decision *xpd;
 219	security_xperm_set(xp_node->xp.drivers.p, driver);
 220	xpd = avc_xperms_decision_lookup(driver, xp_node);
 221	if (xpd && xpd->allowed)
 222		security_xperm_set(xpd->allowed->p, perm);
 223}
 224
 225static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 226{
 227	struct extended_perms_decision *xpd;
 228
 229	xpd = &xpd_node->xpd;
 230	if (xpd->allowed)
 231		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 232	if (xpd->auditallow)
 233		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 234	if (xpd->dontaudit)
 235		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 236	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 237}
 238
 239static void avc_xperms_free(struct avc_xperms_node *xp_node)
 240{
 241	struct avc_xperms_decision_node *xpd_node, *tmp;
 242
 243	if (!xp_node)
 244		return;
 245
 246	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 247		list_del(&xpd_node->xpd_list);
 248		avc_xperms_decision_free(xpd_node);
 249	}
 250	kmem_cache_free(avc_xperms_cachep, xp_node);
 251}
 252
 253static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 254					struct extended_perms_decision *src)
 255{
 256	dest->driver = src->driver;
 257	dest->used = src->used;
 258	if (dest->used & XPERMS_ALLOWED)
 259		memcpy(dest->allowed->p, src->allowed->p,
 260				sizeof(src->allowed->p));
 261	if (dest->used & XPERMS_AUDITALLOW)
 262		memcpy(dest->auditallow->p, src->auditallow->p,
 263				sizeof(src->auditallow->p));
 264	if (dest->used & XPERMS_DONTAUDIT)
 265		memcpy(dest->dontaudit->p, src->dontaudit->p,
 266				sizeof(src->dontaudit->p));
 267}
 268
 269/*
 270 * similar to avc_copy_xperms_decision, but only copy decision
 271 * information relevant to this perm
 272 */
 273static inline void avc_quick_copy_xperms_decision(u8 perm,
 274			struct extended_perms_decision *dest,
 275			struct extended_perms_decision *src)
 276{
 277	/*
 278	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 279	 * command permission
 280	 */
 281	u8 i = perm >> 5;
 282
 283	dest->used = src->used;
 284	if (dest->used & XPERMS_ALLOWED)
 285		dest->allowed->p[i] = src->allowed->p[i];
 286	if (dest->used & XPERMS_AUDITALLOW)
 287		dest->auditallow->p[i] = src->auditallow->p[i];
 288	if (dest->used & XPERMS_DONTAUDIT)
 289		dest->dontaudit->p[i] = src->dontaudit->p[i];
 290}
 291
 292static struct avc_xperms_decision_node
 293		*avc_xperms_decision_alloc(u8 which)
 294{
 295	struct avc_xperms_decision_node *xpd_node;
 296	struct extended_perms_decision *xpd;
 297
 298	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 299				     GFP_NOWAIT | __GFP_NOWARN);
 300	if (!xpd_node)
 301		return NULL;
 302
 303	xpd = &xpd_node->xpd;
 304	if (which & XPERMS_ALLOWED) {
 305		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 306						GFP_NOWAIT | __GFP_NOWARN);
 307		if (!xpd->allowed)
 308			goto error;
 309	}
 310	if (which & XPERMS_AUDITALLOW) {
 311		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 312						GFP_NOWAIT | __GFP_NOWARN);
 313		if (!xpd->auditallow)
 314			goto error;
 315	}
 316	if (which & XPERMS_DONTAUDIT) {
 317		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 318						GFP_NOWAIT | __GFP_NOWARN);
 319		if (!xpd->dontaudit)
 320			goto error;
 321	}
 322	return xpd_node;
 323error:
 324	avc_xperms_decision_free(xpd_node);
 325	return NULL;
 326}
 327
 328static int avc_add_xperms_decision(struct avc_node *node,
 329			struct extended_perms_decision *src)
 330{
 331	struct avc_xperms_decision_node *dest_xpd;
 332
 333	node->ae.xp_node->xp.len++;
 334	dest_xpd = avc_xperms_decision_alloc(src->used);
 335	if (!dest_xpd)
 336		return -ENOMEM;
 337	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 338	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 339	return 0;
 340}
 341
 342static struct avc_xperms_node *avc_xperms_alloc(void)
 343{
 344	struct avc_xperms_node *xp_node;
 345
 346	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
 347	if (!xp_node)
 348		return xp_node;
 349	INIT_LIST_HEAD(&xp_node->xpd_head);
 350	return xp_node;
 351}
 352
 353static int avc_xperms_populate(struct avc_node *node,
 354				struct avc_xperms_node *src)
 355{
 356	struct avc_xperms_node *dest;
 357	struct avc_xperms_decision_node *dest_xpd;
 358	struct avc_xperms_decision_node *src_xpd;
 359
 360	if (src->xp.len == 0)
 361		return 0;
 362	dest = avc_xperms_alloc();
 363	if (!dest)
 364		return -ENOMEM;
 365
 366	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 367	dest->xp.len = src->xp.len;
 368
 369	/* for each source xpd allocate a destination xpd and copy */
 370	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 371		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 372		if (!dest_xpd)
 373			goto error;
 374		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 375		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 376	}
 377	node->ae.xp_node = dest;
 378	return 0;
 379error:
 380	avc_xperms_free(dest);
 381	return -ENOMEM;
 382
 383}
 384
 385static inline u32 avc_xperms_audit_required(u32 requested,
 386					struct av_decision *avd,
 387					struct extended_perms_decision *xpd,
 388					u8 perm,
 389					int result,
 390					u32 *deniedp)
 391{
 392	u32 denied, audited;
 393
 394	denied = requested & ~avd->allowed;
 395	if (unlikely(denied)) {
 396		audited = denied & avd->auditdeny;
 397		if (audited && xpd) {
 398			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 399				audited &= ~requested;
 400		}
 401	} else if (result) {
 402		audited = denied = requested;
 403	} else {
 404		audited = requested & avd->auditallow;
 405		if (audited && xpd) {
 406			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 407				audited &= ~requested;
 408		}
 409	}
 410
 411	*deniedp = denied;
 412	return audited;
 413}
 414
 415static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
 416				   u32 requested, struct av_decision *avd,
 417				   struct extended_perms_decision *xpd,
 418				   u8 perm, int result,
 419				   struct common_audit_data *ad)
 420{
 421	u32 audited, denied;
 422
 423	audited = avc_xperms_audit_required(
 424			requested, avd, xpd, perm, result, &denied);
 425	if (likely(!audited))
 426		return 0;
 427	return slow_avc_audit(ssid, tsid, tclass, requested,
 428			audited, denied, result, ad);
 429}
 430
 431static void avc_node_free(struct rcu_head *rhead)
 432{
 433	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 434	avc_xperms_free(node->ae.xp_node);
 435	kmem_cache_free(avc_node_cachep, node);
 436	avc_cache_stats_incr(frees);
 437}
 438
 439static void avc_node_delete(struct avc_node *node)
 440{
 441	hlist_del_rcu(&node->list);
 442	call_rcu(&node->rhead, avc_node_free);
 443	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 444}
 445
 446static void avc_node_kill(struct avc_node *node)
 447{
 448	avc_xperms_free(node->ae.xp_node);
 449	kmem_cache_free(avc_node_cachep, node);
 450	avc_cache_stats_incr(frees);
 451	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 452}
 453
 454static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 455{
 456	hlist_replace_rcu(&old->list, &new->list);
 457	call_rcu(&old->rhead, avc_node_free);
 458	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 459}
 460
 461static inline int avc_reclaim_node(void)
 462{
 463	struct avc_node *node;
 464	int hvalue, try, ecx;
 465	unsigned long flags;
 466	struct hlist_head *head;
 
 467	spinlock_t *lock;
 468
 469	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 470		hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
 471			(AVC_CACHE_SLOTS - 1);
 472		head = &selinux_avc.avc_cache.slots[hvalue];
 473		lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 474
 475		if (!spin_trylock_irqsave(lock, flags))
 476			continue;
 477
 478		rcu_read_lock();
 479		hlist_for_each_entry(node, head, list) {
 480			avc_node_delete(node);
 481			avc_cache_stats_incr(reclaims);
 482			ecx++;
 483			if (ecx >= AVC_CACHE_RECLAIM) {
 484				rcu_read_unlock();
 485				spin_unlock_irqrestore(lock, flags);
 486				goto out;
 487			}
 488		}
 489		rcu_read_unlock();
 490		spin_unlock_irqrestore(lock, flags);
 491	}
 492out:
 493	return ecx;
 494}
 495
 496static struct avc_node *avc_alloc_node(void)
 497{
 498	struct avc_node *node;
 499
 500	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
 501	if (!node)
 502		goto out;
 503
 504	INIT_HLIST_NODE(&node->list);
 505	avc_cache_stats_incr(allocations);
 506
 507	if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
 508	    selinux_avc.avc_cache_threshold)
 509		avc_reclaim_node();
 510
 511out:
 512	return node;
 513}
 514
 515static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 516{
 517	node->ae.ssid = ssid;
 518	node->ae.tsid = tsid;
 519	node->ae.tclass = tclass;
 520	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 521}
 522
 523static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 524{
 525	struct avc_node *node, *ret = NULL;
 526	u32 hvalue;
 527	struct hlist_head *head;
 
 528
 529	hvalue = avc_hash(ssid, tsid, tclass);
 530	head = &selinux_avc.avc_cache.slots[hvalue];
 531	hlist_for_each_entry_rcu(node, head, list) {
 532		if (ssid == node->ae.ssid &&
 533		    tclass == node->ae.tclass &&
 534		    tsid == node->ae.tsid) {
 535			ret = node;
 536			break;
 537		}
 538	}
 539
 540	return ret;
 541}
 542
 543/**
 544 * avc_lookup - Look up an AVC entry.
 545 * @ssid: source security identifier
 546 * @tsid: target security identifier
 547 * @tclass: target security class
 548 *
 549 * Look up an AVC entry that is valid for the
 550 * (@ssid, @tsid), interpreting the permissions
 551 * based on @tclass.  If a valid AVC entry exists,
 552 * then this function returns the avc_node.
 553 * Otherwise, this function returns NULL.
 554 */
 555static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 556{
 557	struct avc_node *node;
 558
 559	avc_cache_stats_incr(lookups);
 560	node = avc_search_node(ssid, tsid, tclass);
 561
 562	if (node)
 563		return node;
 564
 565	avc_cache_stats_incr(misses);
 566	return NULL;
 567}
 568
 569static int avc_latest_notif_update(u32 seqno, int is_insert)
 570{
 571	int ret = 0;
 572	static DEFINE_SPINLOCK(notif_lock);
 573	unsigned long flag;
 574
 575	spin_lock_irqsave(&notif_lock, flag);
 576	if (is_insert) {
 577		if (seqno < selinux_avc.avc_cache.latest_notif) {
 578			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 579			       seqno, selinux_avc.avc_cache.latest_notif);
 580			ret = -EAGAIN;
 581		}
 582	} else {
 583		if (seqno > selinux_avc.avc_cache.latest_notif)
 584			selinux_avc.avc_cache.latest_notif = seqno;
 585	}
 586	spin_unlock_irqrestore(&notif_lock, flag);
 587
 588	return ret;
 589}
 590
 591/**
 592 * avc_insert - Insert an AVC entry.
 593 * @ssid: source security identifier
 594 * @tsid: target security identifier
 595 * @tclass: target security class
 596 * @avd: resulting av decision
 597 * @xp_node: resulting extended permissions
 598 *
 599 * Insert an AVC entry for the SID pair
 600 * (@ssid, @tsid) and class @tclass.
 601 * The access vectors and the sequence number are
 602 * normally provided by the security server in
 603 * response to a security_compute_av() call.  If the
 604 * sequence number @avd->seqno is not less than the latest
 605 * revocation notification, then the function copies
 606 * the access vectors into a cache entry.
 
 607 */
 608static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
 609		       struct av_decision *avd, struct avc_xperms_node *xp_node)
 610{
 611	struct avc_node *pos, *node = NULL;
 612	u32 hvalue;
 613	unsigned long flag;
 614	spinlock_t *lock;
 615	struct hlist_head *head;
 616
 617	if (avc_latest_notif_update(avd->seqno, 1))
 618		return;
 619
 620	node = avc_alloc_node();
 621	if (!node)
 622		return;
 
 
 
 
 
 623
 624	avc_node_populate(node, ssid, tsid, tclass, avd);
 625	if (avc_xperms_populate(node, xp_node)) {
 626		avc_node_kill(node);
 627		return;
 628	}
 629
 630	hvalue = avc_hash(ssid, tsid, tclass);
 631	head = &selinux_avc.avc_cache.slots[hvalue];
 632	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 633	spin_lock_irqsave(lock, flag);
 634	hlist_for_each_entry(pos, head, list) {
 635		if (pos->ae.ssid == ssid &&
 636			pos->ae.tsid == tsid &&
 637			pos->ae.tclass == tclass) {
 638			avc_node_replace(node, pos);
 639			goto found;
 640		}
 
 
 
 641	}
 642	hlist_add_head_rcu(&node->list, head);
 643found:
 644	spin_unlock_irqrestore(lock, flag);
 645}
 646
 647/**
 648 * avc_audit_pre_callback - SELinux specific information
 649 * will be called by generic audit code
 650 * @ab: the audit buffer
 651 * @a: audit_data
 652 */
 653static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 654{
 655	struct common_audit_data *ad = a;
 656	struct selinux_audit_data *sad = ad->selinux_audit_data;
 657	u32 av = sad->audited, perm;
 658	const char *const *perms;
 659	u32 i;
 660
 661	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 662
 663	if (av == 0) {
 664		audit_log_format(ab, " null");
 665		return;
 666	}
 667
 668	perms = secclass_map[sad->tclass-1].perms;
 669
 670	audit_log_format(ab, " {");
 671	i = 0;
 672	perm = 1;
 673	while (i < (sizeof(av) * 8)) {
 674		if ((perm & av) && perms[i]) {
 675			audit_log_format(ab, " %s", perms[i]);
 676			av &= ~perm;
 677		}
 678		i++;
 679		perm <<= 1;
 680	}
 681
 682	if (av)
 683		audit_log_format(ab, " 0x%x", av);
 684
 685	audit_log_format(ab, " } for ");
 686}
 687
 688/**
 689 * avc_audit_post_callback - SELinux specific information
 690 * will be called by generic audit code
 691 * @ab: the audit buffer
 692 * @a: audit_data
 693 */
 694static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 695{
 696	struct common_audit_data *ad = a;
 697	struct selinux_audit_data *sad = ad->selinux_audit_data;
 698	char *scontext = NULL;
 699	char *tcontext = NULL;
 700	const char *tclass = NULL;
 701	u32 scontext_len;
 702	u32 tcontext_len;
 703	int rc;
 704
 705	rc = security_sid_to_context(sad->ssid, &scontext,
 706				     &scontext_len);
 707	if (rc)
 708		audit_log_format(ab, " ssid=%d", sad->ssid);
 709	else
 710		audit_log_format(ab, " scontext=%s", scontext);
 711
 712	rc = security_sid_to_context(sad->tsid, &tcontext,
 713				     &tcontext_len);
 714	if (rc)
 715		audit_log_format(ab, " tsid=%d", sad->tsid);
 716	else
 717		audit_log_format(ab, " tcontext=%s", tcontext);
 718
 719	tclass = secclass_map[sad->tclass-1].name;
 720	audit_log_format(ab, " tclass=%s", tclass);
 721
 722	if (sad->denied)
 723		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 724
 725	trace_selinux_audited(sad, scontext, tcontext, tclass);
 726	kfree(tcontext);
 727	kfree(scontext);
 728
 729	/* in case of invalid context report also the actual context string */
 730	rc = security_sid_to_context_inval(sad->ssid, &scontext,
 731					   &scontext_len);
 732	if (!rc && scontext) {
 733		if (scontext_len && scontext[scontext_len - 1] == '\0')
 734			scontext_len--;
 735		audit_log_format(ab, " srawcon=");
 736		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 737		kfree(scontext);
 738	}
 739
 740	rc = security_sid_to_context_inval(sad->tsid, &scontext,
 741					   &scontext_len);
 742	if (!rc && scontext) {
 743		if (scontext_len && scontext[scontext_len - 1] == '\0')
 744			scontext_len--;
 745		audit_log_format(ab, " trawcon=");
 746		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 747		kfree(scontext);
 748	}
 749}
 750
 751/*
 752 * This is the slow part of avc audit with big stack footprint.
 753 * Note that it is non-blocking and can be called from under
 754 * rcu_read_lock().
 755 */
 756noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
 757			    u32 requested, u32 audited, u32 denied, int result,
 758			    struct common_audit_data *a)
 
 759{
 760	struct common_audit_data stack_data;
 761	struct selinux_audit_data sad;
 762
 763	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 764		return -EINVAL;
 765
 766	if (!a) {
 767		a = &stack_data;
 768		a->type = LSM_AUDIT_DATA_NONE;
 769	}
 770
 
 
 
 
 
 
 
 
 
 
 
 771	sad.tclass = tclass;
 772	sad.requested = requested;
 773	sad.ssid = ssid;
 774	sad.tsid = tsid;
 775	sad.audited = audited;
 776	sad.denied = denied;
 777	sad.result = result;
 778
 779	a->selinux_audit_data = &sad;
 780
 781	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 782	return 0;
 783}
 784
 785/**
 786 * avc_add_callback - Register a callback for security events.
 787 * @callback: callback function
 788 * @events: security events
 789 *
 790 * Register a callback function for events in the set @events.
 791 * Returns %0 on success or -%ENOMEM if insufficient memory
 792 * exists to add the callback.
 793 */
 794int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 795{
 796	struct avc_callback_node *c;
 797	int rc = 0;
 798
 799	c = kmalloc(sizeof(*c), GFP_KERNEL);
 800	if (!c) {
 801		rc = -ENOMEM;
 802		goto out;
 803	}
 804
 805	c->callback = callback;
 806	c->events = events;
 807	c->next = avc_callbacks;
 808	avc_callbacks = c;
 809out:
 810	return rc;
 811}
 812
 
 
 
 
 
 813/**
 814 * avc_update_node - Update an AVC entry
 815 * @event : Updating event
 816 * @perms : Permission mask bits
 817 * @driver: xperm driver information
 818 * @xperm: xperm permissions
 819 * @ssid: AVC entry source sid
 820 * @tsid: AVC entry target sid
 821 * @tclass : AVC entry target object class
 822 * @seqno : sequence number when decision was made
 823 * @xpd: extended_perms_decision to be added to the node
 824 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
 825 *
 826 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 827 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 828 * otherwise, this function updates the AVC entry. The original AVC-entry object
 829 * will release later by RCU.
 830 */
 831static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 832			   u32 tsid, u16 tclass, u32 seqno,
 833			   struct extended_perms_decision *xpd,
 834			   u32 flags)
 835{
 836	u32 hvalue;
 837	int rc = 0;
 838	unsigned long flag;
 839	struct avc_node *pos, *node, *orig = NULL;
 840	struct hlist_head *head;
 
 841	spinlock_t *lock;
 842
 843	node = avc_alloc_node();
 844	if (!node) {
 845		rc = -ENOMEM;
 846		goto out;
 847	}
 848
 849	/* Lock the target slot */
 850	hvalue = avc_hash(ssid, tsid, tclass);
 851
 852	head = &selinux_avc.avc_cache.slots[hvalue];
 853	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 854
 855	spin_lock_irqsave(lock, flag);
 856
 857	hlist_for_each_entry(pos, head, list) {
 858		if (ssid == pos->ae.ssid &&
 859		    tsid == pos->ae.tsid &&
 860		    tclass == pos->ae.tclass &&
 861		    seqno == pos->ae.avd.seqno){
 862			orig = pos;
 863			break;
 864		}
 865	}
 866
 867	if (!orig) {
 868		rc = -ENOENT;
 869		avc_node_kill(node);
 870		goto out_unlock;
 871	}
 872
 873	/*
 874	 * Copy and replace original node.
 875	 */
 876
 877	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 878
 879	if (orig->ae.xp_node) {
 880		rc = avc_xperms_populate(node, orig->ae.xp_node);
 881		if (rc) {
 882			avc_node_kill(node);
 883			goto out_unlock;
 884		}
 885	}
 886
 887	switch (event) {
 888	case AVC_CALLBACK_GRANT:
 889		node->ae.avd.allowed |= perms;
 890		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 891			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 892		break;
 893	case AVC_CALLBACK_TRY_REVOKE:
 894	case AVC_CALLBACK_REVOKE:
 895		node->ae.avd.allowed &= ~perms;
 896		break;
 897	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 898		node->ae.avd.auditallow |= perms;
 899		break;
 900	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 901		node->ae.avd.auditallow &= ~perms;
 902		break;
 903	case AVC_CALLBACK_AUDITDENY_ENABLE:
 904		node->ae.avd.auditdeny |= perms;
 905		break;
 906	case AVC_CALLBACK_AUDITDENY_DISABLE:
 907		node->ae.avd.auditdeny &= ~perms;
 908		break;
 909	case AVC_CALLBACK_ADD_XPERMS:
 910		avc_add_xperms_decision(node, xpd);
 911		break;
 912	}
 913	avc_node_replace(node, orig);
 914out_unlock:
 915	spin_unlock_irqrestore(lock, flag);
 916out:
 917	return rc;
 918}
 919
 920/**
 921 * avc_flush - Flush the cache
 922 */
 923static void avc_flush(void)
 924{
 925	struct hlist_head *head;
 
 926	struct avc_node *node;
 927	spinlock_t *lock;
 928	unsigned long flag;
 929	int i;
 930
 931	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 932		head = &selinux_avc.avc_cache.slots[i];
 933		lock = &selinux_avc.avc_cache.slots_lock[i];
 934
 935		spin_lock_irqsave(lock, flag);
 936		/*
 937		 * With preemptable RCU, the outer spinlock does not
 938		 * prevent RCU grace periods from ending.
 939		 */
 940		rcu_read_lock();
 941		hlist_for_each_entry(node, head, list)
 942			avc_node_delete(node);
 943		rcu_read_unlock();
 944		spin_unlock_irqrestore(lock, flag);
 945	}
 946}
 947
 948/**
 949 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 950 * @seqno: policy sequence number
 951 */
 952int avc_ss_reset(u32 seqno)
 953{
 954	struct avc_callback_node *c;
 955	int rc = 0, tmprc;
 956
 957	avc_flush();
 958
 959	for (c = avc_callbacks; c; c = c->next) {
 960		if (c->events & AVC_CALLBACK_RESET) {
 961			tmprc = c->callback(AVC_CALLBACK_RESET);
 962			/* save the first error encountered for the return
 963			   value and continue processing the callbacks */
 964			if (!rc)
 965				rc = tmprc;
 966		}
 967	}
 968
 969	avc_latest_notif_update(seqno, 0);
 970	return rc;
 971}
 972
 973/**
 974 * avc_compute_av - Add an entry to the AVC based on the security policy
 975 * @ssid: subject
 976 * @tsid: object/target
 977 * @tclass: object class
 978 * @avd: access vector decision
 979 * @xp_node: AVC extended permissions node
 980 *
 981 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
 982 * fails.  Don't inline this, since it's the slow-path and just results in a
 983 * bigger stack frame.
 984 */
 985static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
 986				    struct av_decision *avd,
 987				    struct avc_xperms_node *xp_node)
 988{
 989	INIT_LIST_HEAD(&xp_node->xpd_head);
 990	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
 991	avc_insert(ssid, tsid, tclass, avd, xp_node);
 992}
 993
 994static noinline int avc_denied(u32 ssid, u32 tsid,
 995			       u16 tclass, u32 requested,
 996			       u8 driver, u8 xperm, unsigned int flags,
 997			       struct av_decision *avd)
 998{
 999	if (flags & AVC_STRICT)
1000		return -EACCES;
1001
1002	if (enforcing_enabled() &&
1003	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1004		return -EACCES;
1005
1006	avc_update_node(AVC_CALLBACK_GRANT, requested, driver,
1007			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1008	return 0;
1009}
1010
1011/*
1012 * The avc extended permissions logic adds an additional 256 bits of
1013 * permissions to an avc node when extended permissions for that node are
1014 * specified in the avtab. If the additional 256 permissions is not adequate,
1015 * as-is the case with ioctls, then multiple may be chained together and the
1016 * driver field is used to specify which set contains the permission.
1017 */
1018int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1019			   u8 driver, u8 xperm, struct common_audit_data *ad)
1020{
1021	struct avc_node *node;
1022	struct av_decision avd;
1023	u32 denied;
1024	struct extended_perms_decision local_xpd;
1025	struct extended_perms_decision *xpd = NULL;
1026	struct extended_perms_data allowed;
1027	struct extended_perms_data auditallow;
1028	struct extended_perms_data dontaudit;
1029	struct avc_xperms_node local_xp_node;
1030	struct avc_xperms_node *xp_node;
1031	int rc = 0, rc2;
1032
1033	xp_node = &local_xp_node;
1034	if (WARN_ON(!requested))
1035		return -EACCES;
1036
1037	rcu_read_lock();
1038
1039	node = avc_lookup(ssid, tsid, tclass);
1040	if (unlikely(!node)) {
1041		avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1042	} else {
1043		memcpy(&avd, &node->ae.avd, sizeof(avd));
1044		xp_node = node->ae.xp_node;
1045	}
1046	/* if extended permissions are not defined, only consider av_decision */
1047	if (!xp_node || !xp_node->xp.len)
1048		goto decision;
1049
1050	local_xpd.allowed = &allowed;
1051	local_xpd.auditallow = &auditallow;
1052	local_xpd.dontaudit = &dontaudit;
1053
1054	xpd = avc_xperms_decision_lookup(driver, xp_node);
1055	if (unlikely(!xpd)) {
1056		/*
1057		 * Compute the extended_perms_decision only if the driver
1058		 * is flagged
1059		 */
1060		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1061			avd.allowed &= ~requested;
1062			goto decision;
1063		}
1064		rcu_read_unlock();
1065		security_compute_xperms_decision(ssid, tsid, tclass,
1066						 driver, &local_xpd);
1067		rcu_read_lock();
1068		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested,
1069				driver, xperm, ssid, tsid, tclass, avd.seqno,
1070				&local_xpd, 0);
1071	} else {
1072		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1073	}
1074	xpd = &local_xpd;
1075
1076	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1077		avd.allowed &= ~requested;
1078
1079decision:
1080	denied = requested & ~(avd.allowed);
1081	if (unlikely(denied))
1082		rc = avc_denied(ssid, tsid, tclass, requested,
1083				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1084
1085	rcu_read_unlock();
1086
1087	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1088			&avd, xpd, xperm, rc, ad);
1089	if (rc2)
1090		return rc2;
1091	return rc;
1092}
1093
1094/**
1095 * avc_perm_nonode - Add an entry to the AVC
1096 * @ssid: subject
1097 * @tsid: object/target
1098 * @tclass: object class
1099 * @requested: requested permissions
1100 * @flags: AVC flags
1101 * @avd: access vector decision
1102 *
1103 * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1104 * unlikely and needs extra stack space for the new node that we generate, so
1105 * don't inline it.
1106 */
1107static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1108				    u32 requested, unsigned int flags,
1109				    struct av_decision *avd)
1110{
1111	u32 denied;
1112	struct avc_xperms_node xp_node;
1113
1114	avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1115	denied = requested & ~(avd->allowed);
1116	if (unlikely(denied))
1117		return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1118				  flags, avd);
1119	return 0;
1120}
1121
1122/**
1123 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1124 * @ssid: source security identifier
1125 * @tsid: target security identifier
1126 * @tclass: target security class
1127 * @requested: requested permissions, interpreted based on @tclass
1128 * @flags:  AVC_STRICT or 0
1129 * @avd: access vector decisions
1130 *
1131 * Check the AVC to determine whether the @requested permissions are granted
1132 * for the SID pair (@ssid, @tsid), interpreting the permissions
1133 * based on @tclass, and call the security server on a cache miss to obtain
1134 * a new decision and add it to the cache.  Return a copy of the decisions
1135 * in @avd.  Return %0 if all @requested permissions are granted,
1136 * -%EACCES if any permissions are denied, or another -errno upon
1137 * other errors.  This function is typically called by avc_has_perm(),
1138 * but may also be called directly to separate permission checking from
1139 * auditing, e.g. in cases where a lock must be held for the check but
1140 * should be released for the auditing.
1141 */
1142inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1143				u16 tclass, u32 requested,
1144				unsigned int flags,
1145				struct av_decision *avd)
1146{
 
 
1147	u32 denied;
1148	struct avc_node *node;
1149
1150	if (WARN_ON(!requested))
1151		return -EACCES;
1152
1153	rcu_read_lock();
 
1154	node = avc_lookup(ssid, tsid, tclass);
1155	if (unlikely(!node)) {
1156		rcu_read_unlock();
1157		return avc_perm_nonode(ssid, tsid, tclass, requested,
1158				       flags, avd);
 
1159	}
1160	denied = requested & ~node->ae.avd.allowed;
1161	memcpy(avd, &node->ae.avd, sizeof(*avd));
1162	rcu_read_unlock();
1163
 
1164	if (unlikely(denied))
1165		return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1166				  flags, avd);
1167	return 0;
 
1168}
1169
1170/**
1171 * avc_has_perm - Check permissions and perform any appropriate auditing.
1172 * @ssid: source security identifier
1173 * @tsid: target security identifier
1174 * @tclass: target security class
1175 * @requested: requested permissions, interpreted based on @tclass
1176 * @auditdata: auxiliary audit data
 
1177 *
1178 * Check the AVC to determine whether the @requested permissions are granted
1179 * for the SID pair (@ssid, @tsid), interpreting the permissions
1180 * based on @tclass, and call the security server on a cache miss to obtain
1181 * a new decision and add it to the cache.  Audit the granting or denial of
1182 * permissions in accordance with the policy.  Return %0 if all @requested
1183 * permissions are granted, -%EACCES if any permissions are denied, or
1184 * another -errno upon other errors.
1185 */
1186int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1187		 u32 requested, struct common_audit_data *auditdata)
 
1188{
1189	struct av_decision avd;
1190	int rc, rc2;
1191
1192	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1193				  &avd);
1194
1195	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1196			auditdata);
1197	if (rc2)
1198		return rc2;
1199	return rc;
1200}
1201
1202u32 avc_policy_seqno(void)
1203{
1204	return selinux_avc.avc_cache.latest_notif;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205}