Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/sched/mm.h>
12#include <linux/mpage.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/sched/signal.h>
22#include <linux/fiemap.h>
23#include <linux/iomap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "iostat.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS 128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS);
44}
45
46void f2fs_destroy_bioset(void)
47{
48 bioset_exit(&f2fs_bioset);
49}
50
51static bool __is_cp_guaranteed(struct page *page)
52{
53 struct address_space *mapping = page->mapping;
54 struct inode *inode;
55 struct f2fs_sb_info *sbi;
56
57 if (!mapping)
58 return false;
59
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
66 return true;
67
68 if (f2fs_is_compressed_page(page))
69 return false;
70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 page_private_gcing(page))
72 return true;
73 return false;
74}
75
76static enum count_type __read_io_type(struct page *page)
77{
78 struct address_space *mapping = page_file_mapping(page);
79
80 if (mapping) {
81 struct inode *inode = mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84 if (inode->i_ino == F2FS_META_INO(sbi))
85 return F2FS_RD_META;
86
87 if (inode->i_ino == F2FS_NODE_INO(sbi))
88 return F2FS_RD_NODE;
89 }
90 return F2FS_RD_DATA;
91}
92
93/* postprocessing steps for read bios */
94enum bio_post_read_step {
95#ifdef CONFIG_FS_ENCRYPTION
96 STEP_DECRYPT = BIT(0),
97#else
98 STEP_DECRYPT = 0, /* compile out the decryption-related code */
99#endif
100#ifdef CONFIG_F2FS_FS_COMPRESSION
101 STEP_DECOMPRESS = BIT(1),
102#else
103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
104#endif
105#ifdef CONFIG_FS_VERITY
106 STEP_VERITY = BIT(2),
107#else
108 STEP_VERITY = 0, /* compile out the verity-related code */
109#endif
110};
111
112struct bio_post_read_ctx {
113 struct bio *bio;
114 struct f2fs_sb_info *sbi;
115 struct work_struct work;
116 unsigned int enabled_steps;
117 /*
118 * decompression_attempted keeps track of whether
119 * f2fs_end_read_compressed_page() has been called on the pages in the
120 * bio that belong to a compressed cluster yet.
121 */
122 bool decompression_attempted;
123 block_t fs_blkaddr;
124};
125
126/*
127 * Update and unlock a bio's pages, and free the bio.
128 *
129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
130 * decryption error, or verity error), as indicated by bio->bi_status.
131 *
132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133 * aren't marked up-to-date here, as decompression is done on a per-compression-
134 * cluster basis rather than a per-bio basis. Instead, we only must do two
135 * things for each compressed page here: call f2fs_end_read_compressed_page()
136 * with failed=true if an error occurred before it would have normally gotten
137 * called (i.e., I/O error or decryption error, but *not* verity error), and
138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
139 */
140static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141{
142 struct bio_vec *bv;
143 struct bvec_iter_all iter_all;
144 struct bio_post_read_ctx *ctx = bio->bi_private;
145
146 bio_for_each_segment_all(bv, bio, iter_all) {
147 struct page *page = bv->bv_page;
148
149 if (f2fs_is_compressed_page(page)) {
150 if (ctx && !ctx->decompression_attempted)
151 f2fs_end_read_compressed_page(page, true, 0,
152 in_task);
153 f2fs_put_page_dic(page, in_task);
154 continue;
155 }
156
157 if (bio->bi_status)
158 ClearPageUptodate(page);
159 else
160 SetPageUptodate(page);
161 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 unlock_page(page);
163 }
164
165 if (ctx)
166 mempool_free(ctx, bio_post_read_ctx_pool);
167 bio_put(bio);
168}
169
170static void f2fs_verify_bio(struct work_struct *work)
171{
172 struct bio_post_read_ctx *ctx =
173 container_of(work, struct bio_post_read_ctx, work);
174 struct bio *bio = ctx->bio;
175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177 /*
178 * fsverity_verify_bio() may call readahead() again, and while verity
179 * will be disabled for this, decryption and/or decompression may still
180 * be needed, resulting in another bio_post_read_ctx being allocated.
181 * So to prevent deadlocks we need to release the current ctx to the
182 * mempool first. This assumes that verity is the last post-read step.
183 */
184 mempool_free(ctx, bio_post_read_ctx_pool);
185 bio->bi_private = NULL;
186
187 /*
188 * Verify the bio's pages with fs-verity. Exclude compressed pages,
189 * as those were handled separately by f2fs_end_read_compressed_page().
190 */
191 if (may_have_compressed_pages) {
192 struct bio_vec *bv;
193 struct bvec_iter_all iter_all;
194
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
197
198 if (!f2fs_is_compressed_page(page) &&
199 !fsverity_verify_page(page)) {
200 bio->bi_status = BLK_STS_IOERR;
201 break;
202 }
203 }
204 } else {
205 fsverity_verify_bio(bio);
206 }
207
208 f2fs_finish_read_bio(bio, true);
209}
210
211/*
212 * If the bio's data needs to be verified with fs-verity, then enqueue the
213 * verity work for the bio. Otherwise finish the bio now.
214 *
215 * Note that to avoid deadlocks, the verity work can't be done on the
216 * decryption/decompression workqueue. This is because verifying the data pages
217 * can involve reading verity metadata pages from the file, and these verity
218 * metadata pages may be encrypted and/or compressed.
219 */
220static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221{
222 struct bio_post_read_ctx *ctx = bio->bi_private;
223
224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 INIT_WORK(&ctx->work, f2fs_verify_bio);
226 fsverity_enqueue_verify_work(&ctx->work);
227 } else {
228 f2fs_finish_read_bio(bio, in_task);
229 }
230}
231
232/*
233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234 * remaining page was read by @ctx->bio.
235 *
236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
238 * that the bio includes at least one compressed page. The actual decompression
239 * is done on a per-cluster basis, not a per-bio basis.
240 */
241static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 bool in_task)
243{
244 struct bio_vec *bv;
245 struct bvec_iter_all iter_all;
246 bool all_compressed = true;
247 block_t blkaddr = ctx->fs_blkaddr;
248
249 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 struct page *page = bv->bv_page;
251
252 if (f2fs_is_compressed_page(page))
253 f2fs_end_read_compressed_page(page, false, blkaddr,
254 in_task);
255 else
256 all_compressed = false;
257
258 blkaddr++;
259 }
260
261 ctx->decompression_attempted = true;
262
263 /*
264 * Optimization: if all the bio's pages are compressed, then scheduling
265 * the per-bio verity work is unnecessary, as verity will be fully
266 * handled at the compression cluster level.
267 */
268 if (all_compressed)
269 ctx->enabled_steps &= ~STEP_VERITY;
270}
271
272static void f2fs_post_read_work(struct work_struct *work)
273{
274 struct bio_post_read_ctx *ctx =
275 container_of(work, struct bio_post_read_ctx, work);
276 struct bio *bio = ctx->bio;
277
278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 f2fs_finish_read_bio(bio, true);
280 return;
281 }
282
283 if (ctx->enabled_steps & STEP_DECOMPRESS)
284 f2fs_handle_step_decompress(ctx, true);
285
286 f2fs_verify_and_finish_bio(bio, true);
287}
288
289static void f2fs_read_end_io(struct bio *bio)
290{
291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 struct bio_post_read_ctx *ctx;
293 bool intask = in_task();
294
295 iostat_update_and_unbind_ctx(bio);
296 ctx = bio->bi_private;
297
298 if (time_to_inject(sbi, FAULT_READ_IO))
299 bio->bi_status = BLK_STS_IOERR;
300
301 if (bio->bi_status) {
302 f2fs_finish_read_bio(bio, intask);
303 return;
304 }
305
306 if (ctx) {
307 unsigned int enabled_steps = ctx->enabled_steps &
308 (STEP_DECRYPT | STEP_DECOMPRESS);
309
310 /*
311 * If we have only decompression step between decompression and
312 * decrypt, we don't need post processing for this.
313 */
314 if (enabled_steps == STEP_DECOMPRESS &&
315 !f2fs_low_mem_mode(sbi)) {
316 f2fs_handle_step_decompress(ctx, intask);
317 } else if (enabled_steps) {
318 INIT_WORK(&ctx->work, f2fs_post_read_work);
319 queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 return;
321 }
322 }
323
324 f2fs_verify_and_finish_bio(bio, intask);
325}
326
327static void f2fs_write_end_io(struct bio *bio)
328{
329 struct f2fs_sb_info *sbi;
330 struct bio_vec *bvec;
331 struct bvec_iter_all iter_all;
332
333 iostat_update_and_unbind_ctx(bio);
334 sbi = bio->bi_private;
335
336 if (time_to_inject(sbi, FAULT_WRITE_IO))
337 bio->bi_status = BLK_STS_IOERR;
338
339 bio_for_each_segment_all(bvec, bio, iter_all) {
340 struct page *page = bvec->bv_page;
341 enum count_type type = WB_DATA_TYPE(page);
342
343 if (page_private_dummy(page)) {
344 clear_page_private_dummy(page);
345 unlock_page(page);
346 mempool_free(page, sbi->write_io_dummy);
347
348 if (unlikely(bio->bi_status))
349 f2fs_stop_checkpoint(sbi, true,
350 STOP_CP_REASON_WRITE_FAIL);
351 continue;
352 }
353
354 fscrypt_finalize_bounce_page(&page);
355
356#ifdef CONFIG_F2FS_FS_COMPRESSION
357 if (f2fs_is_compressed_page(page)) {
358 f2fs_compress_write_end_io(bio, page);
359 continue;
360 }
361#endif
362
363 if (unlikely(bio->bi_status)) {
364 mapping_set_error(page->mapping, -EIO);
365 if (type == F2FS_WB_CP_DATA)
366 f2fs_stop_checkpoint(sbi, true,
367 STOP_CP_REASON_WRITE_FAIL);
368 }
369
370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 page->index != nid_of_node(page));
372
373 dec_page_count(sbi, type);
374 if (f2fs_in_warm_node_list(sbi, page))
375 f2fs_del_fsync_node_entry(sbi, page);
376 clear_page_private_gcing(page);
377 end_page_writeback(page);
378 }
379 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 wq_has_sleeper(&sbi->cp_wait))
381 wake_up(&sbi->cp_wait);
382
383 bio_put(bio);
384}
385
386#ifdef CONFIG_BLK_DEV_ZONED
387static void f2fs_zone_write_end_io(struct bio *bio)
388{
389 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
390
391 bio->bi_private = io->bi_private;
392 complete(&io->zone_wait);
393 f2fs_write_end_io(bio);
394}
395#endif
396
397struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
398 block_t blk_addr, sector_t *sector)
399{
400 struct block_device *bdev = sbi->sb->s_bdev;
401 int i;
402
403 if (f2fs_is_multi_device(sbi)) {
404 for (i = 0; i < sbi->s_ndevs; i++) {
405 if (FDEV(i).start_blk <= blk_addr &&
406 FDEV(i).end_blk >= blk_addr) {
407 blk_addr -= FDEV(i).start_blk;
408 bdev = FDEV(i).bdev;
409 break;
410 }
411 }
412 }
413
414 if (sector)
415 *sector = SECTOR_FROM_BLOCK(blk_addr);
416 return bdev;
417}
418
419int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
420{
421 int i;
422
423 if (!f2fs_is_multi_device(sbi))
424 return 0;
425
426 for (i = 0; i < sbi->s_ndevs; i++)
427 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428 return i;
429 return 0;
430}
431
432static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
433{
434 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
435 unsigned int fua_flag, meta_flag, io_flag;
436 blk_opf_t op_flags = 0;
437
438 if (fio->op != REQ_OP_WRITE)
439 return 0;
440 if (fio->type == DATA)
441 io_flag = fio->sbi->data_io_flag;
442 else if (fio->type == NODE)
443 io_flag = fio->sbi->node_io_flag;
444 else
445 return 0;
446
447 fua_flag = io_flag & temp_mask;
448 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
449
450 /*
451 * data/node io flag bits per temp:
452 * REQ_META | REQ_FUA |
453 * 5 | 4 | 3 | 2 | 1 | 0 |
454 * Cold | Warm | Hot | Cold | Warm | Hot |
455 */
456 if (BIT(fio->temp) & meta_flag)
457 op_flags |= REQ_META;
458 if (BIT(fio->temp) & fua_flag)
459 op_flags |= REQ_FUA;
460 return op_flags;
461}
462
463static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
464{
465 struct f2fs_sb_info *sbi = fio->sbi;
466 struct block_device *bdev;
467 sector_t sector;
468 struct bio *bio;
469
470 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
471 bio = bio_alloc_bioset(bdev, npages,
472 fio->op | fio->op_flags | f2fs_io_flags(fio),
473 GFP_NOIO, &f2fs_bioset);
474 bio->bi_iter.bi_sector = sector;
475 if (is_read_io(fio->op)) {
476 bio->bi_end_io = f2fs_read_end_io;
477 bio->bi_private = NULL;
478 } else {
479 bio->bi_end_io = f2fs_write_end_io;
480 bio->bi_private = sbi;
481 }
482 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
483
484 if (fio->io_wbc)
485 wbc_init_bio(fio->io_wbc, bio);
486
487 return bio;
488}
489
490static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
491 pgoff_t first_idx,
492 const struct f2fs_io_info *fio,
493 gfp_t gfp_mask)
494{
495 /*
496 * The f2fs garbage collector sets ->encrypted_page when it wants to
497 * read/write raw data without encryption.
498 */
499 if (!fio || !fio->encrypted_page)
500 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
501}
502
503static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
504 pgoff_t next_idx,
505 const struct f2fs_io_info *fio)
506{
507 /*
508 * The f2fs garbage collector sets ->encrypted_page when it wants to
509 * read/write raw data without encryption.
510 */
511 if (fio && fio->encrypted_page)
512 return !bio_has_crypt_ctx(bio);
513
514 return fscrypt_mergeable_bio(bio, inode, next_idx);
515}
516
517void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
518 enum page_type type)
519{
520 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
521 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522
523 iostat_update_submit_ctx(bio, type);
524 submit_bio(bio);
525}
526
527static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
528{
529 unsigned int start =
530 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
531
532 if (start == 0)
533 return;
534
535 /* fill dummy pages */
536 for (; start < F2FS_IO_SIZE(sbi); start++) {
537 struct page *page =
538 mempool_alloc(sbi->write_io_dummy,
539 GFP_NOIO | __GFP_NOFAIL);
540 f2fs_bug_on(sbi, !page);
541
542 lock_page(page);
543
544 zero_user_segment(page, 0, PAGE_SIZE);
545 set_page_private_dummy(page);
546
547 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
548 f2fs_bug_on(sbi, 1);
549 }
550}
551
552static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
553 enum page_type type)
554{
555 WARN_ON_ONCE(is_read_io(bio_op(bio)));
556
557 if (type == DATA || type == NODE) {
558 if (f2fs_lfs_mode(sbi) && current->plug)
559 blk_finish_plug(current->plug);
560
561 if (F2FS_IO_ALIGNED(sbi)) {
562 f2fs_align_write_bio(sbi, bio);
563 /*
564 * In the NODE case, we lose next block address chain.
565 * So, we need to do checkpoint in f2fs_sync_file.
566 */
567 if (type == NODE)
568 set_sbi_flag(sbi, SBI_NEED_CP);
569 }
570 }
571
572 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
573 iostat_update_submit_ctx(bio, type);
574 submit_bio(bio);
575}
576
577static void __submit_merged_bio(struct f2fs_bio_info *io)
578{
579 struct f2fs_io_info *fio = &io->fio;
580
581 if (!io->bio)
582 return;
583
584 if (is_read_io(fio->op)) {
585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
587 } else {
588 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
590 }
591 io->bio = NULL;
592}
593
594static bool __has_merged_page(struct bio *bio, struct inode *inode,
595 struct page *page, nid_t ino)
596{
597 struct bio_vec *bvec;
598 struct bvec_iter_all iter_all;
599
600 if (!bio)
601 return false;
602
603 if (!inode && !page && !ino)
604 return true;
605
606 bio_for_each_segment_all(bvec, bio, iter_all) {
607 struct page *target = bvec->bv_page;
608
609 if (fscrypt_is_bounce_page(target)) {
610 target = fscrypt_pagecache_page(target);
611 if (IS_ERR(target))
612 continue;
613 }
614 if (f2fs_is_compressed_page(target)) {
615 target = f2fs_compress_control_page(target);
616 if (IS_ERR(target))
617 continue;
618 }
619
620 if (inode && inode == target->mapping->host)
621 return true;
622 if (page && page == target)
623 return true;
624 if (ino && ino == ino_of_node(target))
625 return true;
626 }
627
628 return false;
629}
630
631int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
632{
633 int i;
634
635 for (i = 0; i < NR_PAGE_TYPE; i++) {
636 int n = (i == META) ? 1 : NR_TEMP_TYPE;
637 int j;
638
639 sbi->write_io[i] = f2fs_kmalloc(sbi,
640 array_size(n, sizeof(struct f2fs_bio_info)),
641 GFP_KERNEL);
642 if (!sbi->write_io[i])
643 return -ENOMEM;
644
645 for (j = HOT; j < n; j++) {
646 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
647 sbi->write_io[i][j].sbi = sbi;
648 sbi->write_io[i][j].bio = NULL;
649 spin_lock_init(&sbi->write_io[i][j].io_lock);
650 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
651 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
652 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
653#ifdef CONFIG_BLK_DEV_ZONED
654 init_completion(&sbi->write_io[i][j].zone_wait);
655 sbi->write_io[i][j].zone_pending_bio = NULL;
656 sbi->write_io[i][j].bi_private = NULL;
657#endif
658 }
659 }
660
661 return 0;
662}
663
664static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
665 enum page_type type, enum temp_type temp)
666{
667 enum page_type btype = PAGE_TYPE_OF_BIO(type);
668 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
669
670 f2fs_down_write(&io->io_rwsem);
671
672 if (!io->bio)
673 goto unlock_out;
674
675 /* change META to META_FLUSH in the checkpoint procedure */
676 if (type >= META_FLUSH) {
677 io->fio.type = META_FLUSH;
678 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
679 if (!test_opt(sbi, NOBARRIER))
680 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
681 }
682 __submit_merged_bio(io);
683unlock_out:
684 f2fs_up_write(&io->io_rwsem);
685}
686
687static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
688 struct inode *inode, struct page *page,
689 nid_t ino, enum page_type type, bool force)
690{
691 enum temp_type temp;
692 bool ret = true;
693
694 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
695 if (!force) {
696 enum page_type btype = PAGE_TYPE_OF_BIO(type);
697 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
698
699 f2fs_down_read(&io->io_rwsem);
700 ret = __has_merged_page(io->bio, inode, page, ino);
701 f2fs_up_read(&io->io_rwsem);
702 }
703 if (ret)
704 __f2fs_submit_merged_write(sbi, type, temp);
705
706 /* TODO: use HOT temp only for meta pages now. */
707 if (type >= META)
708 break;
709 }
710}
711
712void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
713{
714 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
715}
716
717void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
718 struct inode *inode, struct page *page,
719 nid_t ino, enum page_type type)
720{
721 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
722}
723
724void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
725{
726 f2fs_submit_merged_write(sbi, DATA);
727 f2fs_submit_merged_write(sbi, NODE);
728 f2fs_submit_merged_write(sbi, META);
729}
730
731/*
732 * Fill the locked page with data located in the block address.
733 * A caller needs to unlock the page on failure.
734 */
735int f2fs_submit_page_bio(struct f2fs_io_info *fio)
736{
737 struct bio *bio;
738 struct page *page = fio->encrypted_page ?
739 fio->encrypted_page : fio->page;
740
741 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
742 fio->is_por ? META_POR : (__is_meta_io(fio) ?
743 META_GENERIC : DATA_GENERIC_ENHANCE))) {
744 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
745 return -EFSCORRUPTED;
746 }
747
748 trace_f2fs_submit_page_bio(page, fio);
749
750 /* Allocate a new bio */
751 bio = __bio_alloc(fio, 1);
752
753 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
754 fio->page->index, fio, GFP_NOIO);
755
756 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
757 bio_put(bio);
758 return -EFAULT;
759 }
760
761 if (fio->io_wbc && !is_read_io(fio->op))
762 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
763
764 inc_page_count(fio->sbi, is_read_io(fio->op) ?
765 __read_io_type(page) : WB_DATA_TYPE(fio->page));
766
767 if (is_read_io(bio_op(bio)))
768 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
769 else
770 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
771 return 0;
772}
773
774static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
775 block_t last_blkaddr, block_t cur_blkaddr)
776{
777 if (unlikely(sbi->max_io_bytes &&
778 bio->bi_iter.bi_size >= sbi->max_io_bytes))
779 return false;
780 if (last_blkaddr + 1 != cur_blkaddr)
781 return false;
782 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
783}
784
785static bool io_type_is_mergeable(struct f2fs_bio_info *io,
786 struct f2fs_io_info *fio)
787{
788 if (io->fio.op != fio->op)
789 return false;
790 return io->fio.op_flags == fio->op_flags;
791}
792
793static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
794 struct f2fs_bio_info *io,
795 struct f2fs_io_info *fio,
796 block_t last_blkaddr,
797 block_t cur_blkaddr)
798{
799 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
800 unsigned int filled_blocks =
801 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
802 unsigned int io_size = F2FS_IO_SIZE(sbi);
803 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
804
805 /* IOs in bio is aligned and left space of vectors is not enough */
806 if (!(filled_blocks % io_size) && left_vecs < io_size)
807 return false;
808 }
809 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
810 return false;
811 return io_type_is_mergeable(io, fio);
812}
813
814static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
815 struct page *page, enum temp_type temp)
816{
817 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
818 struct bio_entry *be;
819
820 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
821 be->bio = bio;
822 bio_get(bio);
823
824 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
825 f2fs_bug_on(sbi, 1);
826
827 f2fs_down_write(&io->bio_list_lock);
828 list_add_tail(&be->list, &io->bio_list);
829 f2fs_up_write(&io->bio_list_lock);
830}
831
832static void del_bio_entry(struct bio_entry *be)
833{
834 list_del(&be->list);
835 kmem_cache_free(bio_entry_slab, be);
836}
837
838static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
839 struct page *page)
840{
841 struct f2fs_sb_info *sbi = fio->sbi;
842 enum temp_type temp;
843 bool found = false;
844 int ret = -EAGAIN;
845
846 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
847 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
848 struct list_head *head = &io->bio_list;
849 struct bio_entry *be;
850
851 f2fs_down_write(&io->bio_list_lock);
852 list_for_each_entry(be, head, list) {
853 if (be->bio != *bio)
854 continue;
855
856 found = true;
857
858 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
859 *fio->last_block,
860 fio->new_blkaddr));
861 if (f2fs_crypt_mergeable_bio(*bio,
862 fio->page->mapping->host,
863 fio->page->index, fio) &&
864 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
865 PAGE_SIZE) {
866 ret = 0;
867 break;
868 }
869
870 /* page can't be merged into bio; submit the bio */
871 del_bio_entry(be);
872 f2fs_submit_write_bio(sbi, *bio, DATA);
873 break;
874 }
875 f2fs_up_write(&io->bio_list_lock);
876 }
877
878 if (ret) {
879 bio_put(*bio);
880 *bio = NULL;
881 }
882
883 return ret;
884}
885
886void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
887 struct bio **bio, struct page *page)
888{
889 enum temp_type temp;
890 bool found = false;
891 struct bio *target = bio ? *bio : NULL;
892
893 f2fs_bug_on(sbi, !target && !page);
894
895 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
896 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
897 struct list_head *head = &io->bio_list;
898 struct bio_entry *be;
899
900 if (list_empty(head))
901 continue;
902
903 f2fs_down_read(&io->bio_list_lock);
904 list_for_each_entry(be, head, list) {
905 if (target)
906 found = (target == be->bio);
907 else
908 found = __has_merged_page(be->bio, NULL,
909 page, 0);
910 if (found)
911 break;
912 }
913 f2fs_up_read(&io->bio_list_lock);
914
915 if (!found)
916 continue;
917
918 found = false;
919
920 f2fs_down_write(&io->bio_list_lock);
921 list_for_each_entry(be, head, list) {
922 if (target)
923 found = (target == be->bio);
924 else
925 found = __has_merged_page(be->bio, NULL,
926 page, 0);
927 if (found) {
928 target = be->bio;
929 del_bio_entry(be);
930 break;
931 }
932 }
933 f2fs_up_write(&io->bio_list_lock);
934 }
935
936 if (found)
937 f2fs_submit_write_bio(sbi, target, DATA);
938 if (bio && *bio) {
939 bio_put(*bio);
940 *bio = NULL;
941 }
942}
943
944int f2fs_merge_page_bio(struct f2fs_io_info *fio)
945{
946 struct bio *bio = *fio->bio;
947 struct page *page = fio->encrypted_page ?
948 fio->encrypted_page : fio->page;
949
950 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
951 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
952 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
953 return -EFSCORRUPTED;
954 }
955
956 trace_f2fs_submit_page_bio(page, fio);
957
958 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
959 fio->new_blkaddr))
960 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
961alloc_new:
962 if (!bio) {
963 bio = __bio_alloc(fio, BIO_MAX_VECS);
964 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
965 fio->page->index, fio, GFP_NOIO);
966
967 add_bio_entry(fio->sbi, bio, page, fio->temp);
968 } else {
969 if (add_ipu_page(fio, &bio, page))
970 goto alloc_new;
971 }
972
973 if (fio->io_wbc)
974 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
975
976 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
977
978 *fio->last_block = fio->new_blkaddr;
979 *fio->bio = bio;
980
981 return 0;
982}
983
984#ifdef CONFIG_BLK_DEV_ZONED
985static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
986{
987 int devi = 0;
988
989 if (f2fs_is_multi_device(sbi)) {
990 devi = f2fs_target_device_index(sbi, blkaddr);
991 if (blkaddr < FDEV(devi).start_blk ||
992 blkaddr > FDEV(devi).end_blk) {
993 f2fs_err(sbi, "Invalid block %x", blkaddr);
994 return false;
995 }
996 blkaddr -= FDEV(devi).start_blk;
997 }
998 return bdev_is_zoned(FDEV(devi).bdev) &&
999 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001}
1002#endif
1003
1004void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005{
1006 struct f2fs_sb_info *sbi = fio->sbi;
1007 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009 struct page *bio_page;
1010
1011 f2fs_bug_on(sbi, is_read_io(fio->op));
1012
1013 f2fs_down_write(&io->io_rwsem);
1014
1015#ifdef CONFIG_BLK_DEV_ZONED
1016 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017 wait_for_completion_io(&io->zone_wait);
1018 bio_put(io->zone_pending_bio);
1019 io->zone_pending_bio = NULL;
1020 io->bi_private = NULL;
1021 }
1022#endif
1023
1024next:
1025 if (fio->in_list) {
1026 spin_lock(&io->io_lock);
1027 if (list_empty(&io->io_list)) {
1028 spin_unlock(&io->io_lock);
1029 goto out;
1030 }
1031 fio = list_first_entry(&io->io_list,
1032 struct f2fs_io_info, list);
1033 list_del(&fio->list);
1034 spin_unlock(&io->io_lock);
1035 }
1036
1037 verify_fio_blkaddr(fio);
1038
1039 if (fio->encrypted_page)
1040 bio_page = fio->encrypted_page;
1041 else if (fio->compressed_page)
1042 bio_page = fio->compressed_page;
1043 else
1044 bio_page = fio->page;
1045
1046 /* set submitted = true as a return value */
1047 fio->submitted = 1;
1048
1049 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050
1051 if (io->bio &&
1052 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053 fio->new_blkaddr) ||
1054 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055 bio_page->index, fio)))
1056 __submit_merged_bio(io);
1057alloc_new:
1058 if (io->bio == NULL) {
1059 if (F2FS_IO_ALIGNED(sbi) &&
1060 (fio->type == DATA || fio->type == NODE) &&
1061 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063 fio->retry = 1;
1064 goto skip;
1065 }
1066 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068 bio_page->index, fio, GFP_NOIO);
1069 io->fio = *fio;
1070 }
1071
1072 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073 __submit_merged_bio(io);
1074 goto alloc_new;
1075 }
1076
1077 if (fio->io_wbc)
1078 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080 io->last_block_in_bio = fio->new_blkaddr;
1081
1082 trace_f2fs_submit_page_write(fio->page, fio);
1083skip:
1084 if (fio->in_list)
1085 goto next;
1086out:
1087#ifdef CONFIG_BLK_DEV_ZONED
1088 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090 bio_get(io->bio);
1091 reinit_completion(&io->zone_wait);
1092 io->bi_private = io->bio->bi_private;
1093 io->bio->bi_private = io;
1094 io->bio->bi_end_io = f2fs_zone_write_end_io;
1095 io->zone_pending_bio = io->bio;
1096 __submit_merged_bio(io);
1097 }
1098#endif
1099 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100 !f2fs_is_checkpoint_ready(sbi))
1101 __submit_merged_bio(io);
1102 f2fs_up_write(&io->io_rwsem);
1103}
1104
1105static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106 unsigned nr_pages, blk_opf_t op_flag,
1107 pgoff_t first_idx, bool for_write)
1108{
1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110 struct bio *bio;
1111 struct bio_post_read_ctx *ctx = NULL;
1112 unsigned int post_read_steps = 0;
1113 sector_t sector;
1114 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1115
1116 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117 REQ_OP_READ | op_flag,
1118 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119 if (!bio)
1120 return ERR_PTR(-ENOMEM);
1121 bio->bi_iter.bi_sector = sector;
1122 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123 bio->bi_end_io = f2fs_read_end_io;
1124
1125 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126 post_read_steps |= STEP_DECRYPT;
1127
1128 if (f2fs_need_verity(inode, first_idx))
1129 post_read_steps |= STEP_VERITY;
1130
1131 /*
1132 * STEP_DECOMPRESS is handled specially, since a compressed file might
1133 * contain both compressed and uncompressed clusters. We'll allocate a
1134 * bio_post_read_ctx if the file is compressed, but the caller is
1135 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136 */
1137
1138 if (post_read_steps || f2fs_compressed_file(inode)) {
1139 /* Due to the mempool, this never fails. */
1140 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141 ctx->bio = bio;
1142 ctx->sbi = sbi;
1143 ctx->enabled_steps = post_read_steps;
1144 ctx->fs_blkaddr = blkaddr;
1145 ctx->decompression_attempted = false;
1146 bio->bi_private = ctx;
1147 }
1148 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150 return bio;
1151}
1152
1153/* This can handle encryption stuffs */
1154static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155 block_t blkaddr, blk_opf_t op_flags,
1156 bool for_write)
1157{
1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 struct bio *bio;
1160
1161 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162 page->index, for_write);
1163 if (IS_ERR(bio))
1164 return PTR_ERR(bio);
1165
1166 /* wait for GCed page writeback via META_MAPPING */
1167 f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170 iostat_update_and_unbind_ctx(bio);
1171 if (bio->bi_private)
1172 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1173 bio_put(bio);
1174 return -EFAULT;
1175 }
1176 inc_page_count(sbi, F2FS_RD_DATA);
1177 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1178 f2fs_submit_read_bio(sbi, bio, DATA);
1179 return 0;
1180}
1181
1182static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1183{
1184 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1185
1186 dn->data_blkaddr = blkaddr;
1187 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1188}
1189
1190/*
1191 * Lock ordering for the change of data block address:
1192 * ->data_page
1193 * ->node_page
1194 * update block addresses in the node page
1195 */
1196void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1197{
1198 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1199 __set_data_blkaddr(dn, blkaddr);
1200 if (set_page_dirty(dn->node_page))
1201 dn->node_changed = true;
1202}
1203
1204void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1205{
1206 f2fs_set_data_blkaddr(dn, blkaddr);
1207 f2fs_update_read_extent_cache(dn);
1208}
1209
1210/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1211int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1212{
1213 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1214 int err;
1215
1216 if (!count)
1217 return 0;
1218
1219 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1220 return -EPERM;
1221 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1222 return err;
1223
1224 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1225 dn->ofs_in_node, count);
1226
1227 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1228
1229 for (; count > 0; dn->ofs_in_node++) {
1230 block_t blkaddr = f2fs_data_blkaddr(dn);
1231
1232 if (blkaddr == NULL_ADDR) {
1233 __set_data_blkaddr(dn, NEW_ADDR);
1234 count--;
1235 }
1236 }
1237
1238 if (set_page_dirty(dn->node_page))
1239 dn->node_changed = true;
1240 return 0;
1241}
1242
1243/* Should keep dn->ofs_in_node unchanged */
1244int f2fs_reserve_new_block(struct dnode_of_data *dn)
1245{
1246 unsigned int ofs_in_node = dn->ofs_in_node;
1247 int ret;
1248
1249 ret = f2fs_reserve_new_blocks(dn, 1);
1250 dn->ofs_in_node = ofs_in_node;
1251 return ret;
1252}
1253
1254int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1255{
1256 bool need_put = dn->inode_page ? false : true;
1257 int err;
1258
1259 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1260 if (err)
1261 return err;
1262
1263 if (dn->data_blkaddr == NULL_ADDR)
1264 err = f2fs_reserve_new_block(dn);
1265 if (err || need_put)
1266 f2fs_put_dnode(dn);
1267 return err;
1268}
1269
1270struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1271 blk_opf_t op_flags, bool for_write,
1272 pgoff_t *next_pgofs)
1273{
1274 struct address_space *mapping = inode->i_mapping;
1275 struct dnode_of_data dn;
1276 struct page *page;
1277 int err;
1278
1279 page = f2fs_grab_cache_page(mapping, index, for_write);
1280 if (!page)
1281 return ERR_PTR(-ENOMEM);
1282
1283 if (f2fs_lookup_read_extent_cache_block(inode, index,
1284 &dn.data_blkaddr)) {
1285 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1286 DATA_GENERIC_ENHANCE_READ)) {
1287 err = -EFSCORRUPTED;
1288 f2fs_handle_error(F2FS_I_SB(inode),
1289 ERROR_INVALID_BLKADDR);
1290 goto put_err;
1291 }
1292 goto got_it;
1293 }
1294
1295 set_new_dnode(&dn, inode, NULL, NULL, 0);
1296 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1297 if (err) {
1298 if (err == -ENOENT && next_pgofs)
1299 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1300 goto put_err;
1301 }
1302 f2fs_put_dnode(&dn);
1303
1304 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1305 err = -ENOENT;
1306 if (next_pgofs)
1307 *next_pgofs = index + 1;
1308 goto put_err;
1309 }
1310 if (dn.data_blkaddr != NEW_ADDR &&
1311 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1312 dn.data_blkaddr,
1313 DATA_GENERIC_ENHANCE)) {
1314 err = -EFSCORRUPTED;
1315 f2fs_handle_error(F2FS_I_SB(inode),
1316 ERROR_INVALID_BLKADDR);
1317 goto put_err;
1318 }
1319got_it:
1320 if (PageUptodate(page)) {
1321 unlock_page(page);
1322 return page;
1323 }
1324
1325 /*
1326 * A new dentry page is allocated but not able to be written, since its
1327 * new inode page couldn't be allocated due to -ENOSPC.
1328 * In such the case, its blkaddr can be remained as NEW_ADDR.
1329 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1330 * f2fs_init_inode_metadata.
1331 */
1332 if (dn.data_blkaddr == NEW_ADDR) {
1333 zero_user_segment(page, 0, PAGE_SIZE);
1334 if (!PageUptodate(page))
1335 SetPageUptodate(page);
1336 unlock_page(page);
1337 return page;
1338 }
1339
1340 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1341 op_flags, for_write);
1342 if (err)
1343 goto put_err;
1344 return page;
1345
1346put_err:
1347 f2fs_put_page(page, 1);
1348 return ERR_PTR(err);
1349}
1350
1351struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1352 pgoff_t *next_pgofs)
1353{
1354 struct address_space *mapping = inode->i_mapping;
1355 struct page *page;
1356
1357 page = find_get_page(mapping, index);
1358 if (page && PageUptodate(page))
1359 return page;
1360 f2fs_put_page(page, 0);
1361
1362 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1363 if (IS_ERR(page))
1364 return page;
1365
1366 if (PageUptodate(page))
1367 return page;
1368
1369 wait_on_page_locked(page);
1370 if (unlikely(!PageUptodate(page))) {
1371 f2fs_put_page(page, 0);
1372 return ERR_PTR(-EIO);
1373 }
1374 return page;
1375}
1376
1377/*
1378 * If it tries to access a hole, return an error.
1379 * Because, the callers, functions in dir.c and GC, should be able to know
1380 * whether this page exists or not.
1381 */
1382struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1383 bool for_write)
1384{
1385 struct address_space *mapping = inode->i_mapping;
1386 struct page *page;
1387
1388 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1389 if (IS_ERR(page))
1390 return page;
1391
1392 /* wait for read completion */
1393 lock_page(page);
1394 if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1395 f2fs_put_page(page, 1);
1396 return ERR_PTR(-EIO);
1397 }
1398 return page;
1399}
1400
1401/*
1402 * Caller ensures that this data page is never allocated.
1403 * A new zero-filled data page is allocated in the page cache.
1404 *
1405 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1406 * f2fs_unlock_op().
1407 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1408 * ipage should be released by this function.
1409 */
1410struct page *f2fs_get_new_data_page(struct inode *inode,
1411 struct page *ipage, pgoff_t index, bool new_i_size)
1412{
1413 struct address_space *mapping = inode->i_mapping;
1414 struct page *page;
1415 struct dnode_of_data dn;
1416 int err;
1417
1418 page = f2fs_grab_cache_page(mapping, index, true);
1419 if (!page) {
1420 /*
1421 * before exiting, we should make sure ipage will be released
1422 * if any error occur.
1423 */
1424 f2fs_put_page(ipage, 1);
1425 return ERR_PTR(-ENOMEM);
1426 }
1427
1428 set_new_dnode(&dn, inode, ipage, NULL, 0);
1429 err = f2fs_reserve_block(&dn, index);
1430 if (err) {
1431 f2fs_put_page(page, 1);
1432 return ERR_PTR(err);
1433 }
1434 if (!ipage)
1435 f2fs_put_dnode(&dn);
1436
1437 if (PageUptodate(page))
1438 goto got_it;
1439
1440 if (dn.data_blkaddr == NEW_ADDR) {
1441 zero_user_segment(page, 0, PAGE_SIZE);
1442 if (!PageUptodate(page))
1443 SetPageUptodate(page);
1444 } else {
1445 f2fs_put_page(page, 1);
1446
1447 /* if ipage exists, blkaddr should be NEW_ADDR */
1448 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1449 page = f2fs_get_lock_data_page(inode, index, true);
1450 if (IS_ERR(page))
1451 return page;
1452 }
1453got_it:
1454 if (new_i_size && i_size_read(inode) <
1455 ((loff_t)(index + 1) << PAGE_SHIFT))
1456 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1457 return page;
1458}
1459
1460static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1461{
1462 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1463 struct f2fs_summary sum;
1464 struct node_info ni;
1465 block_t old_blkaddr;
1466 blkcnt_t count = 1;
1467 int err;
1468
1469 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1470 return -EPERM;
1471
1472 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1473 if (err)
1474 return err;
1475
1476 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1477 if (dn->data_blkaddr == NULL_ADDR) {
1478 err = inc_valid_block_count(sbi, dn->inode, &count);
1479 if (unlikely(err))
1480 return err;
1481 }
1482
1483 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1484 old_blkaddr = dn->data_blkaddr;
1485 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1486 &sum, seg_type, NULL);
1487 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1488 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1489
1490 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1491 return 0;
1492}
1493
1494static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1495{
1496 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1497 f2fs_down_read(&sbi->node_change);
1498 else
1499 f2fs_lock_op(sbi);
1500}
1501
1502static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1503{
1504 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1505 f2fs_up_read(&sbi->node_change);
1506 else
1507 f2fs_unlock_op(sbi);
1508}
1509
1510int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1511{
1512 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1513 int err = 0;
1514
1515 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1516 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1517 &dn->data_blkaddr))
1518 err = f2fs_reserve_block(dn, index);
1519 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1520
1521 return err;
1522}
1523
1524static int f2fs_map_no_dnode(struct inode *inode,
1525 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1526 pgoff_t pgoff)
1527{
1528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1529
1530 /*
1531 * There is one exceptional case that read_node_page() may return
1532 * -ENOENT due to filesystem has been shutdown or cp_error, return
1533 * -EIO in that case.
1534 */
1535 if (map->m_may_create &&
1536 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1537 return -EIO;
1538
1539 if (map->m_next_pgofs)
1540 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1541 if (map->m_next_extent)
1542 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1543 return 0;
1544}
1545
1546static bool f2fs_map_blocks_cached(struct inode *inode,
1547 struct f2fs_map_blocks *map, int flag)
1548{
1549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1550 unsigned int maxblocks = map->m_len;
1551 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1552 struct extent_info ei = {};
1553
1554 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1555 return false;
1556
1557 map->m_pblk = ei.blk + pgoff - ei.fofs;
1558 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1559 map->m_flags = F2FS_MAP_MAPPED;
1560 if (map->m_next_extent)
1561 *map->m_next_extent = pgoff + map->m_len;
1562
1563 /* for hardware encryption, but to avoid potential issue in future */
1564 if (flag == F2FS_GET_BLOCK_DIO)
1565 f2fs_wait_on_block_writeback_range(inode,
1566 map->m_pblk, map->m_len);
1567
1568 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1569 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1570 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1571
1572 map->m_bdev = dev->bdev;
1573 map->m_pblk -= dev->start_blk;
1574 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1575 } else {
1576 map->m_bdev = inode->i_sb->s_bdev;
1577 }
1578 return true;
1579}
1580
1581/*
1582 * f2fs_map_blocks() tries to find or build mapping relationship which
1583 * maps continuous logical blocks to physical blocks, and return such
1584 * info via f2fs_map_blocks structure.
1585 */
1586int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1587{
1588 unsigned int maxblocks = map->m_len;
1589 struct dnode_of_data dn;
1590 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1591 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1592 pgoff_t pgofs, end_offset, end;
1593 int err = 0, ofs = 1;
1594 unsigned int ofs_in_node, last_ofs_in_node;
1595 blkcnt_t prealloc;
1596 block_t blkaddr;
1597 unsigned int start_pgofs;
1598 int bidx = 0;
1599 bool is_hole;
1600
1601 if (!maxblocks)
1602 return 0;
1603
1604 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1605 goto out;
1606
1607 map->m_bdev = inode->i_sb->s_bdev;
1608 map->m_multidev_dio =
1609 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1610
1611 map->m_len = 0;
1612 map->m_flags = 0;
1613
1614 /* it only supports block size == page size */
1615 pgofs = (pgoff_t)map->m_lblk;
1616 end = pgofs + maxblocks;
1617
1618next_dnode:
1619 if (map->m_may_create)
1620 f2fs_map_lock(sbi, flag);
1621
1622 /* When reading holes, we need its node page */
1623 set_new_dnode(&dn, inode, NULL, NULL, 0);
1624 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1625 if (err) {
1626 if (flag == F2FS_GET_BLOCK_BMAP)
1627 map->m_pblk = 0;
1628 if (err == -ENOENT)
1629 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1630 goto unlock_out;
1631 }
1632
1633 start_pgofs = pgofs;
1634 prealloc = 0;
1635 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1636 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1637
1638next_block:
1639 blkaddr = f2fs_data_blkaddr(&dn);
1640 is_hole = !__is_valid_data_blkaddr(blkaddr);
1641 if (!is_hole &&
1642 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1643 err = -EFSCORRUPTED;
1644 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1645 goto sync_out;
1646 }
1647
1648 /* use out-place-update for direct IO under LFS mode */
1649 if (map->m_may_create &&
1650 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1651 if (unlikely(f2fs_cp_error(sbi))) {
1652 err = -EIO;
1653 goto sync_out;
1654 }
1655
1656 switch (flag) {
1657 case F2FS_GET_BLOCK_PRE_AIO:
1658 if (blkaddr == NULL_ADDR) {
1659 prealloc++;
1660 last_ofs_in_node = dn.ofs_in_node;
1661 }
1662 break;
1663 case F2FS_GET_BLOCK_PRE_DIO:
1664 case F2FS_GET_BLOCK_DIO:
1665 err = __allocate_data_block(&dn, map->m_seg_type);
1666 if (err)
1667 goto sync_out;
1668 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1669 file_need_truncate(inode);
1670 set_inode_flag(inode, FI_APPEND_WRITE);
1671 break;
1672 default:
1673 WARN_ON_ONCE(1);
1674 err = -EIO;
1675 goto sync_out;
1676 }
1677
1678 blkaddr = dn.data_blkaddr;
1679 if (is_hole)
1680 map->m_flags |= F2FS_MAP_NEW;
1681 } else if (is_hole) {
1682 if (f2fs_compressed_file(inode) &&
1683 f2fs_sanity_check_cluster(&dn)) {
1684 err = -EFSCORRUPTED;
1685 f2fs_handle_error(sbi,
1686 ERROR_CORRUPTED_CLUSTER);
1687 goto sync_out;
1688 }
1689
1690 switch (flag) {
1691 case F2FS_GET_BLOCK_PRECACHE:
1692 goto sync_out;
1693 case F2FS_GET_BLOCK_BMAP:
1694 map->m_pblk = 0;
1695 goto sync_out;
1696 case F2FS_GET_BLOCK_FIEMAP:
1697 if (blkaddr == NULL_ADDR) {
1698 if (map->m_next_pgofs)
1699 *map->m_next_pgofs = pgofs + 1;
1700 goto sync_out;
1701 }
1702 break;
1703 default:
1704 /* for defragment case */
1705 if (map->m_next_pgofs)
1706 *map->m_next_pgofs = pgofs + 1;
1707 goto sync_out;
1708 }
1709 }
1710
1711 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1712 goto skip;
1713
1714 if (map->m_multidev_dio)
1715 bidx = f2fs_target_device_index(sbi, blkaddr);
1716
1717 if (map->m_len == 0) {
1718 /* reserved delalloc block should be mapped for fiemap. */
1719 if (blkaddr == NEW_ADDR)
1720 map->m_flags |= F2FS_MAP_DELALLOC;
1721 map->m_flags |= F2FS_MAP_MAPPED;
1722
1723 map->m_pblk = blkaddr;
1724 map->m_len = 1;
1725
1726 if (map->m_multidev_dio)
1727 map->m_bdev = FDEV(bidx).bdev;
1728 } else if ((map->m_pblk != NEW_ADDR &&
1729 blkaddr == (map->m_pblk + ofs)) ||
1730 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1731 flag == F2FS_GET_BLOCK_PRE_DIO) {
1732 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1733 goto sync_out;
1734 ofs++;
1735 map->m_len++;
1736 } else {
1737 goto sync_out;
1738 }
1739
1740skip:
1741 dn.ofs_in_node++;
1742 pgofs++;
1743
1744 /* preallocate blocks in batch for one dnode page */
1745 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1746 (pgofs == end || dn.ofs_in_node == end_offset)) {
1747
1748 dn.ofs_in_node = ofs_in_node;
1749 err = f2fs_reserve_new_blocks(&dn, prealloc);
1750 if (err)
1751 goto sync_out;
1752
1753 map->m_len += dn.ofs_in_node - ofs_in_node;
1754 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1755 err = -ENOSPC;
1756 goto sync_out;
1757 }
1758 dn.ofs_in_node = end_offset;
1759 }
1760
1761 if (pgofs >= end)
1762 goto sync_out;
1763 else if (dn.ofs_in_node < end_offset)
1764 goto next_block;
1765
1766 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1767 if (map->m_flags & F2FS_MAP_MAPPED) {
1768 unsigned int ofs = start_pgofs - map->m_lblk;
1769
1770 f2fs_update_read_extent_cache_range(&dn,
1771 start_pgofs, map->m_pblk + ofs,
1772 map->m_len - ofs);
1773 }
1774 }
1775
1776 f2fs_put_dnode(&dn);
1777
1778 if (map->m_may_create) {
1779 f2fs_map_unlock(sbi, flag);
1780 f2fs_balance_fs(sbi, dn.node_changed);
1781 }
1782 goto next_dnode;
1783
1784sync_out:
1785
1786 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1787 /*
1788 * for hardware encryption, but to avoid potential issue
1789 * in future
1790 */
1791 f2fs_wait_on_block_writeback_range(inode,
1792 map->m_pblk, map->m_len);
1793
1794 if (map->m_multidev_dio) {
1795 block_t blk_addr = map->m_pblk;
1796
1797 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1798
1799 map->m_bdev = FDEV(bidx).bdev;
1800 map->m_pblk -= FDEV(bidx).start_blk;
1801
1802 if (map->m_may_create)
1803 f2fs_update_device_state(sbi, inode->i_ino,
1804 blk_addr, map->m_len);
1805
1806 f2fs_bug_on(sbi, blk_addr + map->m_len >
1807 FDEV(bidx).end_blk + 1);
1808 }
1809 }
1810
1811 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1812 if (map->m_flags & F2FS_MAP_MAPPED) {
1813 unsigned int ofs = start_pgofs - map->m_lblk;
1814
1815 f2fs_update_read_extent_cache_range(&dn,
1816 start_pgofs, map->m_pblk + ofs,
1817 map->m_len - ofs);
1818 }
1819 if (map->m_next_extent)
1820 *map->m_next_extent = pgofs + 1;
1821 }
1822 f2fs_put_dnode(&dn);
1823unlock_out:
1824 if (map->m_may_create) {
1825 f2fs_map_unlock(sbi, flag);
1826 f2fs_balance_fs(sbi, dn.node_changed);
1827 }
1828out:
1829 trace_f2fs_map_blocks(inode, map, flag, err);
1830 return err;
1831}
1832
1833bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1834{
1835 struct f2fs_map_blocks map;
1836 block_t last_lblk;
1837 int err;
1838
1839 if (pos + len > i_size_read(inode))
1840 return false;
1841
1842 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1843 map.m_next_pgofs = NULL;
1844 map.m_next_extent = NULL;
1845 map.m_seg_type = NO_CHECK_TYPE;
1846 map.m_may_create = false;
1847 last_lblk = F2FS_BLK_ALIGN(pos + len);
1848
1849 while (map.m_lblk < last_lblk) {
1850 map.m_len = last_lblk - map.m_lblk;
1851 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1852 if (err || map.m_len == 0)
1853 return false;
1854 map.m_lblk += map.m_len;
1855 }
1856 return true;
1857}
1858
1859static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1860{
1861 return (bytes >> inode->i_blkbits);
1862}
1863
1864static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1865{
1866 return (blks << inode->i_blkbits);
1867}
1868
1869static int f2fs_xattr_fiemap(struct inode *inode,
1870 struct fiemap_extent_info *fieinfo)
1871{
1872 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1873 struct page *page;
1874 struct node_info ni;
1875 __u64 phys = 0, len;
1876 __u32 flags;
1877 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1878 int err = 0;
1879
1880 if (f2fs_has_inline_xattr(inode)) {
1881 int offset;
1882
1883 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1884 inode->i_ino, false);
1885 if (!page)
1886 return -ENOMEM;
1887
1888 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1889 if (err) {
1890 f2fs_put_page(page, 1);
1891 return err;
1892 }
1893
1894 phys = blks_to_bytes(inode, ni.blk_addr);
1895 offset = offsetof(struct f2fs_inode, i_addr) +
1896 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1897 get_inline_xattr_addrs(inode));
1898
1899 phys += offset;
1900 len = inline_xattr_size(inode);
1901
1902 f2fs_put_page(page, 1);
1903
1904 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1905
1906 if (!xnid)
1907 flags |= FIEMAP_EXTENT_LAST;
1908
1909 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1910 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1911 if (err)
1912 return err;
1913 }
1914
1915 if (xnid) {
1916 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1917 if (!page)
1918 return -ENOMEM;
1919
1920 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1921 if (err) {
1922 f2fs_put_page(page, 1);
1923 return err;
1924 }
1925
1926 phys = blks_to_bytes(inode, ni.blk_addr);
1927 len = inode->i_sb->s_blocksize;
1928
1929 f2fs_put_page(page, 1);
1930
1931 flags = FIEMAP_EXTENT_LAST;
1932 }
1933
1934 if (phys) {
1935 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1936 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1937 }
1938
1939 return (err < 0 ? err : 0);
1940}
1941
1942static loff_t max_inode_blocks(struct inode *inode)
1943{
1944 loff_t result = ADDRS_PER_INODE(inode);
1945 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1946
1947 /* two direct node blocks */
1948 result += (leaf_count * 2);
1949
1950 /* two indirect node blocks */
1951 leaf_count *= NIDS_PER_BLOCK;
1952 result += (leaf_count * 2);
1953
1954 /* one double indirect node block */
1955 leaf_count *= NIDS_PER_BLOCK;
1956 result += leaf_count;
1957
1958 return result;
1959}
1960
1961int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1962 u64 start, u64 len)
1963{
1964 struct f2fs_map_blocks map;
1965 sector_t start_blk, last_blk;
1966 pgoff_t next_pgofs;
1967 u64 logical = 0, phys = 0, size = 0;
1968 u32 flags = 0;
1969 int ret = 0;
1970 bool compr_cluster = false, compr_appended;
1971 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1972 unsigned int count_in_cluster = 0;
1973 loff_t maxbytes;
1974
1975 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1976 ret = f2fs_precache_extents(inode);
1977 if (ret)
1978 return ret;
1979 }
1980
1981 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1982 if (ret)
1983 return ret;
1984
1985 inode_lock_shared(inode);
1986
1987 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1988 if (start > maxbytes) {
1989 ret = -EFBIG;
1990 goto out;
1991 }
1992
1993 if (len > maxbytes || (maxbytes - len) < start)
1994 len = maxbytes - start;
1995
1996 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1997 ret = f2fs_xattr_fiemap(inode, fieinfo);
1998 goto out;
1999 }
2000
2001 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2002 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2003 if (ret != -EAGAIN)
2004 goto out;
2005 }
2006
2007 if (bytes_to_blks(inode, len) == 0)
2008 len = blks_to_bytes(inode, 1);
2009
2010 start_blk = bytes_to_blks(inode, start);
2011 last_blk = bytes_to_blks(inode, start + len - 1);
2012
2013next:
2014 memset(&map, 0, sizeof(map));
2015 map.m_lblk = start_blk;
2016 map.m_len = bytes_to_blks(inode, len);
2017 map.m_next_pgofs = &next_pgofs;
2018 map.m_seg_type = NO_CHECK_TYPE;
2019
2020 if (compr_cluster) {
2021 map.m_lblk += 1;
2022 map.m_len = cluster_size - count_in_cluster;
2023 }
2024
2025 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2026 if (ret)
2027 goto out;
2028
2029 /* HOLE */
2030 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2031 start_blk = next_pgofs;
2032
2033 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2034 max_inode_blocks(inode)))
2035 goto prep_next;
2036
2037 flags |= FIEMAP_EXTENT_LAST;
2038 }
2039
2040 compr_appended = false;
2041 /* In a case of compressed cluster, append this to the last extent */
2042 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2043 !(map.m_flags & F2FS_MAP_FLAGS))) {
2044 compr_appended = true;
2045 goto skip_fill;
2046 }
2047
2048 if (size) {
2049 flags |= FIEMAP_EXTENT_MERGED;
2050 if (IS_ENCRYPTED(inode))
2051 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2052
2053 ret = fiemap_fill_next_extent(fieinfo, logical,
2054 phys, size, flags);
2055 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2056 if (ret)
2057 goto out;
2058 size = 0;
2059 }
2060
2061 if (start_blk > last_blk)
2062 goto out;
2063
2064skip_fill:
2065 if (map.m_pblk == COMPRESS_ADDR) {
2066 compr_cluster = true;
2067 count_in_cluster = 1;
2068 } else if (compr_appended) {
2069 unsigned int appended_blks = cluster_size -
2070 count_in_cluster + 1;
2071 size += blks_to_bytes(inode, appended_blks);
2072 start_blk += appended_blks;
2073 compr_cluster = false;
2074 } else {
2075 logical = blks_to_bytes(inode, start_blk);
2076 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2077 blks_to_bytes(inode, map.m_pblk) : 0;
2078 size = blks_to_bytes(inode, map.m_len);
2079 flags = 0;
2080
2081 if (compr_cluster) {
2082 flags = FIEMAP_EXTENT_ENCODED;
2083 count_in_cluster += map.m_len;
2084 if (count_in_cluster == cluster_size) {
2085 compr_cluster = false;
2086 size += blks_to_bytes(inode, 1);
2087 }
2088 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2089 flags = FIEMAP_EXTENT_UNWRITTEN;
2090 }
2091
2092 start_blk += bytes_to_blks(inode, size);
2093 }
2094
2095prep_next:
2096 cond_resched();
2097 if (fatal_signal_pending(current))
2098 ret = -EINTR;
2099 else
2100 goto next;
2101out:
2102 if (ret == 1)
2103 ret = 0;
2104
2105 inode_unlock_shared(inode);
2106 return ret;
2107}
2108
2109static inline loff_t f2fs_readpage_limit(struct inode *inode)
2110{
2111 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2112 return inode->i_sb->s_maxbytes;
2113
2114 return i_size_read(inode);
2115}
2116
2117static int f2fs_read_single_page(struct inode *inode, struct page *page,
2118 unsigned nr_pages,
2119 struct f2fs_map_blocks *map,
2120 struct bio **bio_ret,
2121 sector_t *last_block_in_bio,
2122 bool is_readahead)
2123{
2124 struct bio *bio = *bio_ret;
2125 const unsigned blocksize = blks_to_bytes(inode, 1);
2126 sector_t block_in_file;
2127 sector_t last_block;
2128 sector_t last_block_in_file;
2129 sector_t block_nr;
2130 int ret = 0;
2131
2132 block_in_file = (sector_t)page_index(page);
2133 last_block = block_in_file + nr_pages;
2134 last_block_in_file = bytes_to_blks(inode,
2135 f2fs_readpage_limit(inode) + blocksize - 1);
2136 if (last_block > last_block_in_file)
2137 last_block = last_block_in_file;
2138
2139 /* just zeroing out page which is beyond EOF */
2140 if (block_in_file >= last_block)
2141 goto zero_out;
2142 /*
2143 * Map blocks using the previous result first.
2144 */
2145 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2146 block_in_file > map->m_lblk &&
2147 block_in_file < (map->m_lblk + map->m_len))
2148 goto got_it;
2149
2150 /*
2151 * Then do more f2fs_map_blocks() calls until we are
2152 * done with this page.
2153 */
2154 map->m_lblk = block_in_file;
2155 map->m_len = last_block - block_in_file;
2156
2157 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2158 if (ret)
2159 goto out;
2160got_it:
2161 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2162 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2163 SetPageMappedToDisk(page);
2164
2165 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2166 DATA_GENERIC_ENHANCE_READ)) {
2167 ret = -EFSCORRUPTED;
2168 f2fs_handle_error(F2FS_I_SB(inode),
2169 ERROR_INVALID_BLKADDR);
2170 goto out;
2171 }
2172 } else {
2173zero_out:
2174 zero_user_segment(page, 0, PAGE_SIZE);
2175 if (f2fs_need_verity(inode, page->index) &&
2176 !fsverity_verify_page(page)) {
2177 ret = -EIO;
2178 goto out;
2179 }
2180 if (!PageUptodate(page))
2181 SetPageUptodate(page);
2182 unlock_page(page);
2183 goto out;
2184 }
2185
2186 /*
2187 * This page will go to BIO. Do we need to send this
2188 * BIO off first?
2189 */
2190 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2191 *last_block_in_bio, block_nr) ||
2192 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2193submit_and_realloc:
2194 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2195 bio = NULL;
2196 }
2197 if (bio == NULL) {
2198 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2199 is_readahead ? REQ_RAHEAD : 0, page->index,
2200 false);
2201 if (IS_ERR(bio)) {
2202 ret = PTR_ERR(bio);
2203 bio = NULL;
2204 goto out;
2205 }
2206 }
2207
2208 /*
2209 * If the page is under writeback, we need to wait for
2210 * its completion to see the correct decrypted data.
2211 */
2212 f2fs_wait_on_block_writeback(inode, block_nr);
2213
2214 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2215 goto submit_and_realloc;
2216
2217 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2218 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2219 F2FS_BLKSIZE);
2220 *last_block_in_bio = block_nr;
2221out:
2222 *bio_ret = bio;
2223 return ret;
2224}
2225
2226#ifdef CONFIG_F2FS_FS_COMPRESSION
2227int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2228 unsigned nr_pages, sector_t *last_block_in_bio,
2229 bool is_readahead, bool for_write)
2230{
2231 struct dnode_of_data dn;
2232 struct inode *inode = cc->inode;
2233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2234 struct bio *bio = *bio_ret;
2235 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2236 sector_t last_block_in_file;
2237 const unsigned blocksize = blks_to_bytes(inode, 1);
2238 struct decompress_io_ctx *dic = NULL;
2239 struct extent_info ei = {};
2240 bool from_dnode = true;
2241 int i;
2242 int ret = 0;
2243
2244 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2245
2246 last_block_in_file = bytes_to_blks(inode,
2247 f2fs_readpage_limit(inode) + blocksize - 1);
2248
2249 /* get rid of pages beyond EOF */
2250 for (i = 0; i < cc->cluster_size; i++) {
2251 struct page *page = cc->rpages[i];
2252
2253 if (!page)
2254 continue;
2255 if ((sector_t)page->index >= last_block_in_file) {
2256 zero_user_segment(page, 0, PAGE_SIZE);
2257 if (!PageUptodate(page))
2258 SetPageUptodate(page);
2259 } else if (!PageUptodate(page)) {
2260 continue;
2261 }
2262 unlock_page(page);
2263 if (for_write)
2264 put_page(page);
2265 cc->rpages[i] = NULL;
2266 cc->nr_rpages--;
2267 }
2268
2269 /* we are done since all pages are beyond EOF */
2270 if (f2fs_cluster_is_empty(cc))
2271 goto out;
2272
2273 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2274 from_dnode = false;
2275
2276 if (!from_dnode)
2277 goto skip_reading_dnode;
2278
2279 set_new_dnode(&dn, inode, NULL, NULL, 0);
2280 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2281 if (ret)
2282 goto out;
2283
2284 if (unlikely(f2fs_cp_error(sbi))) {
2285 ret = -EIO;
2286 goto out_put_dnode;
2287 }
2288 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2289
2290skip_reading_dnode:
2291 for (i = 1; i < cc->cluster_size; i++) {
2292 block_t blkaddr;
2293
2294 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2295 dn.ofs_in_node + i) :
2296 ei.blk + i - 1;
2297
2298 if (!__is_valid_data_blkaddr(blkaddr))
2299 break;
2300
2301 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2302 ret = -EFAULT;
2303 goto out_put_dnode;
2304 }
2305 cc->nr_cpages++;
2306
2307 if (!from_dnode && i >= ei.c_len)
2308 break;
2309 }
2310
2311 /* nothing to decompress */
2312 if (cc->nr_cpages == 0) {
2313 ret = 0;
2314 goto out_put_dnode;
2315 }
2316
2317 dic = f2fs_alloc_dic(cc);
2318 if (IS_ERR(dic)) {
2319 ret = PTR_ERR(dic);
2320 goto out_put_dnode;
2321 }
2322
2323 for (i = 0; i < cc->nr_cpages; i++) {
2324 struct page *page = dic->cpages[i];
2325 block_t blkaddr;
2326 struct bio_post_read_ctx *ctx;
2327
2328 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2329 dn.ofs_in_node + i + 1) :
2330 ei.blk + i;
2331
2332 f2fs_wait_on_block_writeback(inode, blkaddr);
2333
2334 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2335 if (atomic_dec_and_test(&dic->remaining_pages)) {
2336 f2fs_decompress_cluster(dic, true);
2337 break;
2338 }
2339 continue;
2340 }
2341
2342 if (bio && (!page_is_mergeable(sbi, bio,
2343 *last_block_in_bio, blkaddr) ||
2344 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2345submit_and_realloc:
2346 f2fs_submit_read_bio(sbi, bio, DATA);
2347 bio = NULL;
2348 }
2349
2350 if (!bio) {
2351 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2352 is_readahead ? REQ_RAHEAD : 0,
2353 page->index, for_write);
2354 if (IS_ERR(bio)) {
2355 ret = PTR_ERR(bio);
2356 f2fs_decompress_end_io(dic, ret, true);
2357 f2fs_put_dnode(&dn);
2358 *bio_ret = NULL;
2359 return ret;
2360 }
2361 }
2362
2363 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2364 goto submit_and_realloc;
2365
2366 ctx = get_post_read_ctx(bio);
2367 ctx->enabled_steps |= STEP_DECOMPRESS;
2368 refcount_inc(&dic->refcnt);
2369
2370 inc_page_count(sbi, F2FS_RD_DATA);
2371 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2372 *last_block_in_bio = blkaddr;
2373 }
2374
2375 if (from_dnode)
2376 f2fs_put_dnode(&dn);
2377
2378 *bio_ret = bio;
2379 return 0;
2380
2381out_put_dnode:
2382 if (from_dnode)
2383 f2fs_put_dnode(&dn);
2384out:
2385 for (i = 0; i < cc->cluster_size; i++) {
2386 if (cc->rpages[i]) {
2387 ClearPageUptodate(cc->rpages[i]);
2388 unlock_page(cc->rpages[i]);
2389 }
2390 }
2391 *bio_ret = bio;
2392 return ret;
2393}
2394#endif
2395
2396/*
2397 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2398 * Major change was from block_size == page_size in f2fs by default.
2399 */
2400static int f2fs_mpage_readpages(struct inode *inode,
2401 struct readahead_control *rac, struct page *page)
2402{
2403 struct bio *bio = NULL;
2404 sector_t last_block_in_bio = 0;
2405 struct f2fs_map_blocks map;
2406#ifdef CONFIG_F2FS_FS_COMPRESSION
2407 struct compress_ctx cc = {
2408 .inode = inode,
2409 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2410 .cluster_size = F2FS_I(inode)->i_cluster_size,
2411 .cluster_idx = NULL_CLUSTER,
2412 .rpages = NULL,
2413 .cpages = NULL,
2414 .nr_rpages = 0,
2415 .nr_cpages = 0,
2416 };
2417 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2418#endif
2419 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2420 unsigned max_nr_pages = nr_pages;
2421 int ret = 0;
2422
2423 map.m_pblk = 0;
2424 map.m_lblk = 0;
2425 map.m_len = 0;
2426 map.m_flags = 0;
2427 map.m_next_pgofs = NULL;
2428 map.m_next_extent = NULL;
2429 map.m_seg_type = NO_CHECK_TYPE;
2430 map.m_may_create = false;
2431
2432 for (; nr_pages; nr_pages--) {
2433 if (rac) {
2434 page = readahead_page(rac);
2435 prefetchw(&page->flags);
2436 }
2437
2438#ifdef CONFIG_F2FS_FS_COMPRESSION
2439 if (f2fs_compressed_file(inode)) {
2440 /* there are remained compressed pages, submit them */
2441 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2442 ret = f2fs_read_multi_pages(&cc, &bio,
2443 max_nr_pages,
2444 &last_block_in_bio,
2445 rac != NULL, false);
2446 f2fs_destroy_compress_ctx(&cc, false);
2447 if (ret)
2448 goto set_error_page;
2449 }
2450 if (cc.cluster_idx == NULL_CLUSTER) {
2451 if (nc_cluster_idx ==
2452 page->index >> cc.log_cluster_size) {
2453 goto read_single_page;
2454 }
2455
2456 ret = f2fs_is_compressed_cluster(inode, page->index);
2457 if (ret < 0)
2458 goto set_error_page;
2459 else if (!ret) {
2460 nc_cluster_idx =
2461 page->index >> cc.log_cluster_size;
2462 goto read_single_page;
2463 }
2464
2465 nc_cluster_idx = NULL_CLUSTER;
2466 }
2467 ret = f2fs_init_compress_ctx(&cc);
2468 if (ret)
2469 goto set_error_page;
2470
2471 f2fs_compress_ctx_add_page(&cc, page);
2472
2473 goto next_page;
2474 }
2475read_single_page:
2476#endif
2477
2478 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2479 &bio, &last_block_in_bio, rac);
2480 if (ret) {
2481#ifdef CONFIG_F2FS_FS_COMPRESSION
2482set_error_page:
2483#endif
2484 zero_user_segment(page, 0, PAGE_SIZE);
2485 unlock_page(page);
2486 }
2487#ifdef CONFIG_F2FS_FS_COMPRESSION
2488next_page:
2489#endif
2490 if (rac)
2491 put_page(page);
2492
2493#ifdef CONFIG_F2FS_FS_COMPRESSION
2494 if (f2fs_compressed_file(inode)) {
2495 /* last page */
2496 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2497 ret = f2fs_read_multi_pages(&cc, &bio,
2498 max_nr_pages,
2499 &last_block_in_bio,
2500 rac != NULL, false);
2501 f2fs_destroy_compress_ctx(&cc, false);
2502 }
2503 }
2504#endif
2505 }
2506 if (bio)
2507 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2508 return ret;
2509}
2510
2511static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2512{
2513 struct page *page = &folio->page;
2514 struct inode *inode = page_file_mapping(page)->host;
2515 int ret = -EAGAIN;
2516
2517 trace_f2fs_readpage(page, DATA);
2518
2519 if (!f2fs_is_compress_backend_ready(inode)) {
2520 unlock_page(page);
2521 return -EOPNOTSUPP;
2522 }
2523
2524 /* If the file has inline data, try to read it directly */
2525 if (f2fs_has_inline_data(inode))
2526 ret = f2fs_read_inline_data(inode, page);
2527 if (ret == -EAGAIN)
2528 ret = f2fs_mpage_readpages(inode, NULL, page);
2529 return ret;
2530}
2531
2532static void f2fs_readahead(struct readahead_control *rac)
2533{
2534 struct inode *inode = rac->mapping->host;
2535
2536 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2537
2538 if (!f2fs_is_compress_backend_ready(inode))
2539 return;
2540
2541 /* If the file has inline data, skip readahead */
2542 if (f2fs_has_inline_data(inode))
2543 return;
2544
2545 f2fs_mpage_readpages(inode, rac, NULL);
2546}
2547
2548int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2549{
2550 struct inode *inode = fio->page->mapping->host;
2551 struct page *mpage, *page;
2552 gfp_t gfp_flags = GFP_NOFS;
2553
2554 if (!f2fs_encrypted_file(inode))
2555 return 0;
2556
2557 page = fio->compressed_page ? fio->compressed_page : fio->page;
2558
2559 if (fscrypt_inode_uses_inline_crypto(inode))
2560 return 0;
2561
2562retry_encrypt:
2563 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2564 PAGE_SIZE, 0, gfp_flags);
2565 if (IS_ERR(fio->encrypted_page)) {
2566 /* flush pending IOs and wait for a while in the ENOMEM case */
2567 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2568 f2fs_flush_merged_writes(fio->sbi);
2569 memalloc_retry_wait(GFP_NOFS);
2570 gfp_flags |= __GFP_NOFAIL;
2571 goto retry_encrypt;
2572 }
2573 return PTR_ERR(fio->encrypted_page);
2574 }
2575
2576 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2577 if (mpage) {
2578 if (PageUptodate(mpage))
2579 memcpy(page_address(mpage),
2580 page_address(fio->encrypted_page), PAGE_SIZE);
2581 f2fs_put_page(mpage, 1);
2582 }
2583 return 0;
2584}
2585
2586static inline bool check_inplace_update_policy(struct inode *inode,
2587 struct f2fs_io_info *fio)
2588{
2589 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2590
2591 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2592 is_inode_flag_set(inode, FI_OPU_WRITE))
2593 return false;
2594 if (IS_F2FS_IPU_FORCE(sbi))
2595 return true;
2596 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2597 return true;
2598 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2599 return true;
2600 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2601 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2602 return true;
2603
2604 /*
2605 * IPU for rewrite async pages
2606 */
2607 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2608 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2609 return true;
2610
2611 /* this is only set during fdatasync */
2612 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2613 return true;
2614
2615 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2616 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2617 return true;
2618
2619 return false;
2620}
2621
2622bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2623{
2624 /* swap file is migrating in aligned write mode */
2625 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2626 return false;
2627
2628 if (f2fs_is_pinned_file(inode))
2629 return true;
2630
2631 /* if this is cold file, we should overwrite to avoid fragmentation */
2632 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2633 return true;
2634
2635 return check_inplace_update_policy(inode, fio);
2636}
2637
2638bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2639{
2640 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2641
2642 /* The below cases were checked when setting it. */
2643 if (f2fs_is_pinned_file(inode))
2644 return false;
2645 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2646 return true;
2647 if (f2fs_lfs_mode(sbi))
2648 return true;
2649 if (S_ISDIR(inode->i_mode))
2650 return true;
2651 if (IS_NOQUOTA(inode))
2652 return true;
2653 if (f2fs_is_atomic_file(inode))
2654 return true;
2655 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2656 if (f2fs_compressed_file(inode) &&
2657 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2658 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2659 return true;
2660
2661 /* swap file is migrating in aligned write mode */
2662 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2663 return true;
2664
2665 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2666 return true;
2667
2668 if (fio) {
2669 if (page_private_gcing(fio->page))
2670 return true;
2671 if (page_private_dummy(fio->page))
2672 return true;
2673 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2674 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2675 return true;
2676 }
2677 return false;
2678}
2679
2680static inline bool need_inplace_update(struct f2fs_io_info *fio)
2681{
2682 struct inode *inode = fio->page->mapping->host;
2683
2684 if (f2fs_should_update_outplace(inode, fio))
2685 return false;
2686
2687 return f2fs_should_update_inplace(inode, fio);
2688}
2689
2690int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2691{
2692 struct page *page = fio->page;
2693 struct inode *inode = page->mapping->host;
2694 struct dnode_of_data dn;
2695 struct node_info ni;
2696 bool ipu_force = false;
2697 int err = 0;
2698
2699 /* Use COW inode to make dnode_of_data for atomic write */
2700 if (f2fs_is_atomic_file(inode))
2701 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2702 else
2703 set_new_dnode(&dn, inode, NULL, NULL, 0);
2704
2705 if (need_inplace_update(fio) &&
2706 f2fs_lookup_read_extent_cache_block(inode, page->index,
2707 &fio->old_blkaddr)) {
2708 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2709 DATA_GENERIC_ENHANCE)) {
2710 f2fs_handle_error(fio->sbi,
2711 ERROR_INVALID_BLKADDR);
2712 return -EFSCORRUPTED;
2713 }
2714
2715 ipu_force = true;
2716 fio->need_lock = LOCK_DONE;
2717 goto got_it;
2718 }
2719
2720 /* Deadlock due to between page->lock and f2fs_lock_op */
2721 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2722 return -EAGAIN;
2723
2724 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2725 if (err)
2726 goto out;
2727
2728 fio->old_blkaddr = dn.data_blkaddr;
2729
2730 /* This page is already truncated */
2731 if (fio->old_blkaddr == NULL_ADDR) {
2732 ClearPageUptodate(page);
2733 clear_page_private_gcing(page);
2734 goto out_writepage;
2735 }
2736got_it:
2737 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2738 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2739 DATA_GENERIC_ENHANCE)) {
2740 err = -EFSCORRUPTED;
2741 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2742 goto out_writepage;
2743 }
2744
2745 /* wait for GCed page writeback via META_MAPPING */
2746 if (fio->post_read)
2747 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2748
2749 /*
2750 * If current allocation needs SSR,
2751 * it had better in-place writes for updated data.
2752 */
2753 if (ipu_force ||
2754 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2755 need_inplace_update(fio))) {
2756 err = f2fs_encrypt_one_page(fio);
2757 if (err)
2758 goto out_writepage;
2759
2760 set_page_writeback(page);
2761 f2fs_put_dnode(&dn);
2762 if (fio->need_lock == LOCK_REQ)
2763 f2fs_unlock_op(fio->sbi);
2764 err = f2fs_inplace_write_data(fio);
2765 if (err) {
2766 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2767 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2768 if (PageWriteback(page))
2769 end_page_writeback(page);
2770 } else {
2771 set_inode_flag(inode, FI_UPDATE_WRITE);
2772 }
2773 trace_f2fs_do_write_data_page(fio->page, IPU);
2774 return err;
2775 }
2776
2777 if (fio->need_lock == LOCK_RETRY) {
2778 if (!f2fs_trylock_op(fio->sbi)) {
2779 err = -EAGAIN;
2780 goto out_writepage;
2781 }
2782 fio->need_lock = LOCK_REQ;
2783 }
2784
2785 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2786 if (err)
2787 goto out_writepage;
2788
2789 fio->version = ni.version;
2790
2791 err = f2fs_encrypt_one_page(fio);
2792 if (err)
2793 goto out_writepage;
2794
2795 set_page_writeback(page);
2796
2797 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2798 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2799
2800 /* LFS mode write path */
2801 f2fs_outplace_write_data(&dn, fio);
2802 trace_f2fs_do_write_data_page(page, OPU);
2803 set_inode_flag(inode, FI_APPEND_WRITE);
2804out_writepage:
2805 f2fs_put_dnode(&dn);
2806out:
2807 if (fio->need_lock == LOCK_REQ)
2808 f2fs_unlock_op(fio->sbi);
2809 return err;
2810}
2811
2812int f2fs_write_single_data_page(struct page *page, int *submitted,
2813 struct bio **bio,
2814 sector_t *last_block,
2815 struct writeback_control *wbc,
2816 enum iostat_type io_type,
2817 int compr_blocks,
2818 bool allow_balance)
2819{
2820 struct inode *inode = page->mapping->host;
2821 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2822 loff_t i_size = i_size_read(inode);
2823 const pgoff_t end_index = ((unsigned long long)i_size)
2824 >> PAGE_SHIFT;
2825 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2826 unsigned offset = 0;
2827 bool need_balance_fs = false;
2828 bool quota_inode = IS_NOQUOTA(inode);
2829 int err = 0;
2830 struct f2fs_io_info fio = {
2831 .sbi = sbi,
2832 .ino = inode->i_ino,
2833 .type = DATA,
2834 .op = REQ_OP_WRITE,
2835 .op_flags = wbc_to_write_flags(wbc),
2836 .old_blkaddr = NULL_ADDR,
2837 .page = page,
2838 .encrypted_page = NULL,
2839 .submitted = 0,
2840 .compr_blocks = compr_blocks,
2841 .need_lock = LOCK_RETRY,
2842 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2843 .io_type = io_type,
2844 .io_wbc = wbc,
2845 .bio = bio,
2846 .last_block = last_block,
2847 };
2848
2849 trace_f2fs_writepage(page, DATA);
2850
2851 /* we should bypass data pages to proceed the kworker jobs */
2852 if (unlikely(f2fs_cp_error(sbi))) {
2853 mapping_set_error(page->mapping, -EIO);
2854 /*
2855 * don't drop any dirty dentry pages for keeping lastest
2856 * directory structure.
2857 */
2858 if (S_ISDIR(inode->i_mode) &&
2859 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2860 goto redirty_out;
2861
2862 /* keep data pages in remount-ro mode */
2863 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2864 goto redirty_out;
2865 goto out;
2866 }
2867
2868 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2869 goto redirty_out;
2870
2871 if (page->index < end_index ||
2872 f2fs_verity_in_progress(inode) ||
2873 compr_blocks)
2874 goto write;
2875
2876 /*
2877 * If the offset is out-of-range of file size,
2878 * this page does not have to be written to disk.
2879 */
2880 offset = i_size & (PAGE_SIZE - 1);
2881 if ((page->index >= end_index + 1) || !offset)
2882 goto out;
2883
2884 zero_user_segment(page, offset, PAGE_SIZE);
2885write:
2886 /* Dentry/quota blocks are controlled by checkpoint */
2887 if (S_ISDIR(inode->i_mode) || quota_inode) {
2888 /*
2889 * We need to wait for node_write to avoid block allocation during
2890 * checkpoint. This can only happen to quota writes which can cause
2891 * the below discard race condition.
2892 */
2893 if (quota_inode)
2894 f2fs_down_read(&sbi->node_write);
2895
2896 fio.need_lock = LOCK_DONE;
2897 err = f2fs_do_write_data_page(&fio);
2898
2899 if (quota_inode)
2900 f2fs_up_read(&sbi->node_write);
2901
2902 goto done;
2903 }
2904
2905 if (!wbc->for_reclaim)
2906 need_balance_fs = true;
2907 else if (has_not_enough_free_secs(sbi, 0, 0))
2908 goto redirty_out;
2909 else
2910 set_inode_flag(inode, FI_HOT_DATA);
2911
2912 err = -EAGAIN;
2913 if (f2fs_has_inline_data(inode)) {
2914 err = f2fs_write_inline_data(inode, page);
2915 if (!err)
2916 goto out;
2917 }
2918
2919 if (err == -EAGAIN) {
2920 err = f2fs_do_write_data_page(&fio);
2921 if (err == -EAGAIN) {
2922 fio.need_lock = LOCK_REQ;
2923 err = f2fs_do_write_data_page(&fio);
2924 }
2925 }
2926
2927 if (err) {
2928 file_set_keep_isize(inode);
2929 } else {
2930 spin_lock(&F2FS_I(inode)->i_size_lock);
2931 if (F2FS_I(inode)->last_disk_size < psize)
2932 F2FS_I(inode)->last_disk_size = psize;
2933 spin_unlock(&F2FS_I(inode)->i_size_lock);
2934 }
2935
2936done:
2937 if (err && err != -ENOENT)
2938 goto redirty_out;
2939
2940out:
2941 inode_dec_dirty_pages(inode);
2942 if (err) {
2943 ClearPageUptodate(page);
2944 clear_page_private_gcing(page);
2945 }
2946
2947 if (wbc->for_reclaim) {
2948 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2949 clear_inode_flag(inode, FI_HOT_DATA);
2950 f2fs_remove_dirty_inode(inode);
2951 submitted = NULL;
2952 }
2953 unlock_page(page);
2954 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2955 !F2FS_I(inode)->wb_task && allow_balance)
2956 f2fs_balance_fs(sbi, need_balance_fs);
2957
2958 if (unlikely(f2fs_cp_error(sbi))) {
2959 f2fs_submit_merged_write(sbi, DATA);
2960 if (bio && *bio)
2961 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2962 submitted = NULL;
2963 }
2964
2965 if (submitted)
2966 *submitted = fio.submitted;
2967
2968 return 0;
2969
2970redirty_out:
2971 redirty_page_for_writepage(wbc, page);
2972 /*
2973 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2974 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2975 * file_write_and_wait_range() will see EIO error, which is critical
2976 * to return value of fsync() followed by atomic_write failure to user.
2977 */
2978 if (!err || wbc->for_reclaim)
2979 return AOP_WRITEPAGE_ACTIVATE;
2980 unlock_page(page);
2981 return err;
2982}
2983
2984static int f2fs_write_data_page(struct page *page,
2985 struct writeback_control *wbc)
2986{
2987#ifdef CONFIG_F2FS_FS_COMPRESSION
2988 struct inode *inode = page->mapping->host;
2989
2990 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2991 goto out;
2992
2993 if (f2fs_compressed_file(inode)) {
2994 if (f2fs_is_compressed_cluster(inode, page->index)) {
2995 redirty_page_for_writepage(wbc, page);
2996 return AOP_WRITEPAGE_ACTIVATE;
2997 }
2998 }
2999out:
3000#endif
3001
3002 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3003 wbc, FS_DATA_IO, 0, true);
3004}
3005
3006/*
3007 * This function was copied from write_cache_pages from mm/page-writeback.c.
3008 * The major change is making write step of cold data page separately from
3009 * warm/hot data page.
3010 */
3011static int f2fs_write_cache_pages(struct address_space *mapping,
3012 struct writeback_control *wbc,
3013 enum iostat_type io_type)
3014{
3015 int ret = 0;
3016 int done = 0, retry = 0;
3017 struct page *pages_local[F2FS_ONSTACK_PAGES];
3018 struct page **pages = pages_local;
3019 struct folio_batch fbatch;
3020 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3021 struct bio *bio = NULL;
3022 sector_t last_block;
3023#ifdef CONFIG_F2FS_FS_COMPRESSION
3024 struct inode *inode = mapping->host;
3025 struct compress_ctx cc = {
3026 .inode = inode,
3027 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3028 .cluster_size = F2FS_I(inode)->i_cluster_size,
3029 .cluster_idx = NULL_CLUSTER,
3030 .rpages = NULL,
3031 .nr_rpages = 0,
3032 .cpages = NULL,
3033 .valid_nr_cpages = 0,
3034 .rbuf = NULL,
3035 .cbuf = NULL,
3036 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3037 .private = NULL,
3038 };
3039#endif
3040 int nr_folios, p, idx;
3041 int nr_pages;
3042 unsigned int max_pages = F2FS_ONSTACK_PAGES;
3043 pgoff_t index;
3044 pgoff_t end; /* Inclusive */
3045 pgoff_t done_index;
3046 int range_whole = 0;
3047 xa_mark_t tag;
3048 int nwritten = 0;
3049 int submitted = 0;
3050 int i;
3051
3052#ifdef CONFIG_F2FS_FS_COMPRESSION
3053 if (f2fs_compressed_file(inode) &&
3054 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3055 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3056 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3057 max_pages = 1 << cc.log_cluster_size;
3058 }
3059#endif
3060
3061 folio_batch_init(&fbatch);
3062
3063 if (get_dirty_pages(mapping->host) <=
3064 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3065 set_inode_flag(mapping->host, FI_HOT_DATA);
3066 else
3067 clear_inode_flag(mapping->host, FI_HOT_DATA);
3068
3069 if (wbc->range_cyclic) {
3070 index = mapping->writeback_index; /* prev offset */
3071 end = -1;
3072 } else {
3073 index = wbc->range_start >> PAGE_SHIFT;
3074 end = wbc->range_end >> PAGE_SHIFT;
3075 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3076 range_whole = 1;
3077 }
3078 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3079 tag = PAGECACHE_TAG_TOWRITE;
3080 else
3081 tag = PAGECACHE_TAG_DIRTY;
3082retry:
3083 retry = 0;
3084 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3085 tag_pages_for_writeback(mapping, index, end);
3086 done_index = index;
3087 while (!done && !retry && (index <= end)) {
3088 nr_pages = 0;
3089again:
3090 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3091 tag, &fbatch);
3092 if (nr_folios == 0) {
3093 if (nr_pages)
3094 goto write;
3095 break;
3096 }
3097
3098 for (i = 0; i < nr_folios; i++) {
3099 struct folio *folio = fbatch.folios[i];
3100
3101 idx = 0;
3102 p = folio_nr_pages(folio);
3103add_more:
3104 pages[nr_pages] = folio_page(folio, idx);
3105 folio_get(folio);
3106 if (++nr_pages == max_pages) {
3107 index = folio->index + idx + 1;
3108 folio_batch_release(&fbatch);
3109 goto write;
3110 }
3111 if (++idx < p)
3112 goto add_more;
3113 }
3114 folio_batch_release(&fbatch);
3115 goto again;
3116write:
3117 for (i = 0; i < nr_pages; i++) {
3118 struct page *page = pages[i];
3119 struct folio *folio = page_folio(page);
3120 bool need_readd;
3121readd:
3122 need_readd = false;
3123#ifdef CONFIG_F2FS_FS_COMPRESSION
3124 if (f2fs_compressed_file(inode)) {
3125 void *fsdata = NULL;
3126 struct page *pagep;
3127 int ret2;
3128
3129 ret = f2fs_init_compress_ctx(&cc);
3130 if (ret) {
3131 done = 1;
3132 break;
3133 }
3134
3135 if (!f2fs_cluster_can_merge_page(&cc,
3136 folio->index)) {
3137 ret = f2fs_write_multi_pages(&cc,
3138 &submitted, wbc, io_type);
3139 if (!ret)
3140 need_readd = true;
3141 goto result;
3142 }
3143
3144 if (unlikely(f2fs_cp_error(sbi)))
3145 goto lock_folio;
3146
3147 if (!f2fs_cluster_is_empty(&cc))
3148 goto lock_folio;
3149
3150 if (f2fs_all_cluster_page_ready(&cc,
3151 pages, i, nr_pages, true))
3152 goto lock_folio;
3153
3154 ret2 = f2fs_prepare_compress_overwrite(
3155 inode, &pagep,
3156 folio->index, &fsdata);
3157 if (ret2 < 0) {
3158 ret = ret2;
3159 done = 1;
3160 break;
3161 } else if (ret2 &&
3162 (!f2fs_compress_write_end(inode,
3163 fsdata, folio->index, 1) ||
3164 !f2fs_all_cluster_page_ready(&cc,
3165 pages, i, nr_pages,
3166 false))) {
3167 retry = 1;
3168 break;
3169 }
3170 }
3171#endif
3172 /* give a priority to WB_SYNC threads */
3173 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3174 wbc->sync_mode == WB_SYNC_NONE) {
3175 done = 1;
3176 break;
3177 }
3178#ifdef CONFIG_F2FS_FS_COMPRESSION
3179lock_folio:
3180#endif
3181 done_index = folio->index;
3182retry_write:
3183 folio_lock(folio);
3184
3185 if (unlikely(folio->mapping != mapping)) {
3186continue_unlock:
3187 folio_unlock(folio);
3188 continue;
3189 }
3190
3191 if (!folio_test_dirty(folio)) {
3192 /* someone wrote it for us */
3193 goto continue_unlock;
3194 }
3195
3196 if (folio_test_writeback(folio)) {
3197 if (wbc->sync_mode == WB_SYNC_NONE)
3198 goto continue_unlock;
3199 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3200 }
3201
3202 if (!folio_clear_dirty_for_io(folio))
3203 goto continue_unlock;
3204
3205#ifdef CONFIG_F2FS_FS_COMPRESSION
3206 if (f2fs_compressed_file(inode)) {
3207 folio_get(folio);
3208 f2fs_compress_ctx_add_page(&cc, &folio->page);
3209 continue;
3210 }
3211#endif
3212 ret = f2fs_write_single_data_page(&folio->page,
3213 &submitted, &bio, &last_block,
3214 wbc, io_type, 0, true);
3215 if (ret == AOP_WRITEPAGE_ACTIVATE)
3216 folio_unlock(folio);
3217#ifdef CONFIG_F2FS_FS_COMPRESSION
3218result:
3219#endif
3220 nwritten += submitted;
3221 wbc->nr_to_write -= submitted;
3222
3223 if (unlikely(ret)) {
3224 /*
3225 * keep nr_to_write, since vfs uses this to
3226 * get # of written pages.
3227 */
3228 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3229 ret = 0;
3230 goto next;
3231 } else if (ret == -EAGAIN) {
3232 ret = 0;
3233 if (wbc->sync_mode == WB_SYNC_ALL) {
3234 f2fs_io_schedule_timeout(
3235 DEFAULT_IO_TIMEOUT);
3236 goto retry_write;
3237 }
3238 goto next;
3239 }
3240 done_index = folio_next_index(folio);
3241 done = 1;
3242 break;
3243 }
3244
3245 if (wbc->nr_to_write <= 0 &&
3246 wbc->sync_mode == WB_SYNC_NONE) {
3247 done = 1;
3248 break;
3249 }
3250next:
3251 if (need_readd)
3252 goto readd;
3253 }
3254 release_pages(pages, nr_pages);
3255 cond_resched();
3256 }
3257#ifdef CONFIG_F2FS_FS_COMPRESSION
3258 /* flush remained pages in compress cluster */
3259 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3260 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3261 nwritten += submitted;
3262 wbc->nr_to_write -= submitted;
3263 if (ret) {
3264 done = 1;
3265 retry = 0;
3266 }
3267 }
3268 if (f2fs_compressed_file(inode))
3269 f2fs_destroy_compress_ctx(&cc, false);
3270#endif
3271 if (retry) {
3272 index = 0;
3273 end = -1;
3274 goto retry;
3275 }
3276 if (wbc->range_cyclic && !done)
3277 done_index = 0;
3278 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3279 mapping->writeback_index = done_index;
3280
3281 if (nwritten)
3282 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3283 NULL, 0, DATA);
3284 /* submit cached bio of IPU write */
3285 if (bio)
3286 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3287
3288#ifdef CONFIG_F2FS_FS_COMPRESSION
3289 if (pages != pages_local)
3290 kfree(pages);
3291#endif
3292
3293 return ret;
3294}
3295
3296static inline bool __should_serialize_io(struct inode *inode,
3297 struct writeback_control *wbc)
3298{
3299 /* to avoid deadlock in path of data flush */
3300 if (F2FS_I(inode)->wb_task)
3301 return false;
3302
3303 if (!S_ISREG(inode->i_mode))
3304 return false;
3305 if (IS_NOQUOTA(inode))
3306 return false;
3307
3308 if (f2fs_need_compress_data(inode))
3309 return true;
3310 if (wbc->sync_mode != WB_SYNC_ALL)
3311 return true;
3312 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3313 return true;
3314 return false;
3315}
3316
3317static int __f2fs_write_data_pages(struct address_space *mapping,
3318 struct writeback_control *wbc,
3319 enum iostat_type io_type)
3320{
3321 struct inode *inode = mapping->host;
3322 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3323 struct blk_plug plug;
3324 int ret;
3325 bool locked = false;
3326
3327 /* deal with chardevs and other special file */
3328 if (!mapping->a_ops->writepage)
3329 return 0;
3330
3331 /* skip writing if there is no dirty page in this inode */
3332 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3333 return 0;
3334
3335 /* during POR, we don't need to trigger writepage at all. */
3336 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3337 goto skip_write;
3338
3339 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3340 wbc->sync_mode == WB_SYNC_NONE &&
3341 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3342 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3343 goto skip_write;
3344
3345 /* skip writing in file defragment preparing stage */
3346 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3347 goto skip_write;
3348
3349 trace_f2fs_writepages(mapping->host, wbc, DATA);
3350
3351 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3352 if (wbc->sync_mode == WB_SYNC_ALL)
3353 atomic_inc(&sbi->wb_sync_req[DATA]);
3354 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3355 /* to avoid potential deadlock */
3356 if (current->plug)
3357 blk_finish_plug(current->plug);
3358 goto skip_write;
3359 }
3360
3361 if (__should_serialize_io(inode, wbc)) {
3362 mutex_lock(&sbi->writepages);
3363 locked = true;
3364 }
3365
3366 blk_start_plug(&plug);
3367 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3368 blk_finish_plug(&plug);
3369
3370 if (locked)
3371 mutex_unlock(&sbi->writepages);
3372
3373 if (wbc->sync_mode == WB_SYNC_ALL)
3374 atomic_dec(&sbi->wb_sync_req[DATA]);
3375 /*
3376 * if some pages were truncated, we cannot guarantee its mapping->host
3377 * to detect pending bios.
3378 */
3379
3380 f2fs_remove_dirty_inode(inode);
3381 return ret;
3382
3383skip_write:
3384 wbc->pages_skipped += get_dirty_pages(inode);
3385 trace_f2fs_writepages(mapping->host, wbc, DATA);
3386 return 0;
3387}
3388
3389static int f2fs_write_data_pages(struct address_space *mapping,
3390 struct writeback_control *wbc)
3391{
3392 struct inode *inode = mapping->host;
3393
3394 return __f2fs_write_data_pages(mapping, wbc,
3395 F2FS_I(inode)->cp_task == current ?
3396 FS_CP_DATA_IO : FS_DATA_IO);
3397}
3398
3399void f2fs_write_failed(struct inode *inode, loff_t to)
3400{
3401 loff_t i_size = i_size_read(inode);
3402
3403 if (IS_NOQUOTA(inode))
3404 return;
3405
3406 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3407 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3408 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3409 filemap_invalidate_lock(inode->i_mapping);
3410
3411 truncate_pagecache(inode, i_size);
3412 f2fs_truncate_blocks(inode, i_size, true);
3413
3414 filemap_invalidate_unlock(inode->i_mapping);
3415 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3416 }
3417}
3418
3419static int prepare_write_begin(struct f2fs_sb_info *sbi,
3420 struct page *page, loff_t pos, unsigned len,
3421 block_t *blk_addr, bool *node_changed)
3422{
3423 struct inode *inode = page->mapping->host;
3424 pgoff_t index = page->index;
3425 struct dnode_of_data dn;
3426 struct page *ipage;
3427 bool locked = false;
3428 int flag = F2FS_GET_BLOCK_PRE_AIO;
3429 int err = 0;
3430
3431 /*
3432 * If a whole page is being written and we already preallocated all the
3433 * blocks, then there is no need to get a block address now.
3434 */
3435 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3436 return 0;
3437
3438 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3439 if (f2fs_has_inline_data(inode)) {
3440 if (pos + len > MAX_INLINE_DATA(inode))
3441 flag = F2FS_GET_BLOCK_DEFAULT;
3442 f2fs_map_lock(sbi, flag);
3443 locked = true;
3444 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3445 f2fs_map_lock(sbi, flag);
3446 locked = true;
3447 }
3448
3449restart:
3450 /* check inline_data */
3451 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3452 if (IS_ERR(ipage)) {
3453 err = PTR_ERR(ipage);
3454 goto unlock_out;
3455 }
3456
3457 set_new_dnode(&dn, inode, ipage, ipage, 0);
3458
3459 if (f2fs_has_inline_data(inode)) {
3460 if (pos + len <= MAX_INLINE_DATA(inode)) {
3461 f2fs_do_read_inline_data(page, ipage);
3462 set_inode_flag(inode, FI_DATA_EXIST);
3463 if (inode->i_nlink)
3464 set_page_private_inline(ipage);
3465 goto out;
3466 }
3467 err = f2fs_convert_inline_page(&dn, page);
3468 if (err || dn.data_blkaddr != NULL_ADDR)
3469 goto out;
3470 }
3471
3472 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3473 &dn.data_blkaddr)) {
3474 if (locked) {
3475 err = f2fs_reserve_block(&dn, index);
3476 goto out;
3477 }
3478
3479 /* hole case */
3480 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3481 if (!err && dn.data_blkaddr != NULL_ADDR)
3482 goto out;
3483 f2fs_put_dnode(&dn);
3484 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3485 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3486 locked = true;
3487 goto restart;
3488 }
3489out:
3490 if (!err) {
3491 /* convert_inline_page can make node_changed */
3492 *blk_addr = dn.data_blkaddr;
3493 *node_changed = dn.node_changed;
3494 }
3495 f2fs_put_dnode(&dn);
3496unlock_out:
3497 if (locked)
3498 f2fs_map_unlock(sbi, flag);
3499 return err;
3500}
3501
3502static int __find_data_block(struct inode *inode, pgoff_t index,
3503 block_t *blk_addr)
3504{
3505 struct dnode_of_data dn;
3506 struct page *ipage;
3507 int err = 0;
3508
3509 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3510 if (IS_ERR(ipage))
3511 return PTR_ERR(ipage);
3512
3513 set_new_dnode(&dn, inode, ipage, ipage, 0);
3514
3515 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3516 &dn.data_blkaddr)) {
3517 /* hole case */
3518 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3519 if (err) {
3520 dn.data_blkaddr = NULL_ADDR;
3521 err = 0;
3522 }
3523 }
3524 *blk_addr = dn.data_blkaddr;
3525 f2fs_put_dnode(&dn);
3526 return err;
3527}
3528
3529static int __reserve_data_block(struct inode *inode, pgoff_t index,
3530 block_t *blk_addr, bool *node_changed)
3531{
3532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533 struct dnode_of_data dn;
3534 struct page *ipage;
3535 int err = 0;
3536
3537 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3538
3539 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3540 if (IS_ERR(ipage)) {
3541 err = PTR_ERR(ipage);
3542 goto unlock_out;
3543 }
3544 set_new_dnode(&dn, inode, ipage, ipage, 0);
3545
3546 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3547 &dn.data_blkaddr))
3548 err = f2fs_reserve_block(&dn, index);
3549
3550 *blk_addr = dn.data_blkaddr;
3551 *node_changed = dn.node_changed;
3552 f2fs_put_dnode(&dn);
3553
3554unlock_out:
3555 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3556 return err;
3557}
3558
3559static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3560 struct page *page, loff_t pos, unsigned int len,
3561 block_t *blk_addr, bool *node_changed, bool *use_cow)
3562{
3563 struct inode *inode = page->mapping->host;
3564 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3565 pgoff_t index = page->index;
3566 int err = 0;
3567 block_t ori_blk_addr = NULL_ADDR;
3568
3569 /* If pos is beyond the end of file, reserve a new block in COW inode */
3570 if ((pos & PAGE_MASK) >= i_size_read(inode))
3571 goto reserve_block;
3572
3573 /* Look for the block in COW inode first */
3574 err = __find_data_block(cow_inode, index, blk_addr);
3575 if (err) {
3576 return err;
3577 } else if (*blk_addr != NULL_ADDR) {
3578 *use_cow = true;
3579 return 0;
3580 }
3581
3582 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3583 goto reserve_block;
3584
3585 /* Look for the block in the original inode */
3586 err = __find_data_block(inode, index, &ori_blk_addr);
3587 if (err)
3588 return err;
3589
3590reserve_block:
3591 /* Finally, we should reserve a new block in COW inode for the update */
3592 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3593 if (err)
3594 return err;
3595 inc_atomic_write_cnt(inode);
3596
3597 if (ori_blk_addr != NULL_ADDR)
3598 *blk_addr = ori_blk_addr;
3599 return 0;
3600}
3601
3602static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3603 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3604{
3605 struct inode *inode = mapping->host;
3606 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3607 struct page *page = NULL;
3608 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3609 bool need_balance = false;
3610 bool use_cow = false;
3611 block_t blkaddr = NULL_ADDR;
3612 int err = 0;
3613
3614 trace_f2fs_write_begin(inode, pos, len);
3615
3616 if (!f2fs_is_checkpoint_ready(sbi)) {
3617 err = -ENOSPC;
3618 goto fail;
3619 }
3620
3621 /*
3622 * We should check this at this moment to avoid deadlock on inode page
3623 * and #0 page. The locking rule for inline_data conversion should be:
3624 * lock_page(page #0) -> lock_page(inode_page)
3625 */
3626 if (index != 0) {
3627 err = f2fs_convert_inline_inode(inode);
3628 if (err)
3629 goto fail;
3630 }
3631
3632#ifdef CONFIG_F2FS_FS_COMPRESSION
3633 if (f2fs_compressed_file(inode)) {
3634 int ret;
3635
3636 *fsdata = NULL;
3637
3638 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3639 goto repeat;
3640
3641 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3642 index, fsdata);
3643 if (ret < 0) {
3644 err = ret;
3645 goto fail;
3646 } else if (ret) {
3647 return 0;
3648 }
3649 }
3650#endif
3651
3652repeat:
3653 /*
3654 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3655 * wait_for_stable_page. Will wait that below with our IO control.
3656 */
3657 page = f2fs_pagecache_get_page(mapping, index,
3658 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3659 if (!page) {
3660 err = -ENOMEM;
3661 goto fail;
3662 }
3663
3664 /* TODO: cluster can be compressed due to race with .writepage */
3665
3666 *pagep = page;
3667
3668 if (f2fs_is_atomic_file(inode))
3669 err = prepare_atomic_write_begin(sbi, page, pos, len,
3670 &blkaddr, &need_balance, &use_cow);
3671 else
3672 err = prepare_write_begin(sbi, page, pos, len,
3673 &blkaddr, &need_balance);
3674 if (err)
3675 goto fail;
3676
3677 if (need_balance && !IS_NOQUOTA(inode) &&
3678 has_not_enough_free_secs(sbi, 0, 0)) {
3679 unlock_page(page);
3680 f2fs_balance_fs(sbi, true);
3681 lock_page(page);
3682 if (page->mapping != mapping) {
3683 /* The page got truncated from under us */
3684 f2fs_put_page(page, 1);
3685 goto repeat;
3686 }
3687 }
3688
3689 f2fs_wait_on_page_writeback(page, DATA, false, true);
3690
3691 if (len == PAGE_SIZE || PageUptodate(page))
3692 return 0;
3693
3694 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3695 !f2fs_verity_in_progress(inode)) {
3696 zero_user_segment(page, len, PAGE_SIZE);
3697 return 0;
3698 }
3699
3700 if (blkaddr == NEW_ADDR) {
3701 zero_user_segment(page, 0, PAGE_SIZE);
3702 SetPageUptodate(page);
3703 } else {
3704 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3705 DATA_GENERIC_ENHANCE_READ)) {
3706 err = -EFSCORRUPTED;
3707 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3708 goto fail;
3709 }
3710 err = f2fs_submit_page_read(use_cow ?
3711 F2FS_I(inode)->cow_inode : inode, page,
3712 blkaddr, 0, true);
3713 if (err)
3714 goto fail;
3715
3716 lock_page(page);
3717 if (unlikely(page->mapping != mapping)) {
3718 f2fs_put_page(page, 1);
3719 goto repeat;
3720 }
3721 if (unlikely(!PageUptodate(page))) {
3722 err = -EIO;
3723 goto fail;
3724 }
3725 }
3726 return 0;
3727
3728fail:
3729 f2fs_put_page(page, 1);
3730 f2fs_write_failed(inode, pos + len);
3731 return err;
3732}
3733
3734static int f2fs_write_end(struct file *file,
3735 struct address_space *mapping,
3736 loff_t pos, unsigned len, unsigned copied,
3737 struct page *page, void *fsdata)
3738{
3739 struct inode *inode = page->mapping->host;
3740
3741 trace_f2fs_write_end(inode, pos, len, copied);
3742
3743 /*
3744 * This should be come from len == PAGE_SIZE, and we expect copied
3745 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3746 * let generic_perform_write() try to copy data again through copied=0.
3747 */
3748 if (!PageUptodate(page)) {
3749 if (unlikely(copied != len))
3750 copied = 0;
3751 else
3752 SetPageUptodate(page);
3753 }
3754
3755#ifdef CONFIG_F2FS_FS_COMPRESSION
3756 /* overwrite compressed file */
3757 if (f2fs_compressed_file(inode) && fsdata) {
3758 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3759 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3760
3761 if (pos + copied > i_size_read(inode) &&
3762 !f2fs_verity_in_progress(inode))
3763 f2fs_i_size_write(inode, pos + copied);
3764 return copied;
3765 }
3766#endif
3767
3768 if (!copied)
3769 goto unlock_out;
3770
3771 set_page_dirty(page);
3772
3773 if (pos + copied > i_size_read(inode) &&
3774 !f2fs_verity_in_progress(inode)) {
3775 f2fs_i_size_write(inode, pos + copied);
3776 if (f2fs_is_atomic_file(inode))
3777 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3778 pos + copied);
3779 }
3780unlock_out:
3781 f2fs_put_page(page, 1);
3782 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3783 return copied;
3784}
3785
3786void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3787{
3788 struct inode *inode = folio->mapping->host;
3789 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3790
3791 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3792 (offset || length != folio_size(folio)))
3793 return;
3794
3795 if (folio_test_dirty(folio)) {
3796 if (inode->i_ino == F2FS_META_INO(sbi)) {
3797 dec_page_count(sbi, F2FS_DIRTY_META);
3798 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3799 dec_page_count(sbi, F2FS_DIRTY_NODES);
3800 } else {
3801 inode_dec_dirty_pages(inode);
3802 f2fs_remove_dirty_inode(inode);
3803 }
3804 }
3805 clear_page_private_all(&folio->page);
3806}
3807
3808bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3809{
3810 /* If this is dirty folio, keep private data */
3811 if (folio_test_dirty(folio))
3812 return false;
3813
3814 clear_page_private_all(&folio->page);
3815 return true;
3816}
3817
3818static bool f2fs_dirty_data_folio(struct address_space *mapping,
3819 struct folio *folio)
3820{
3821 struct inode *inode = mapping->host;
3822
3823 trace_f2fs_set_page_dirty(&folio->page, DATA);
3824
3825 if (!folio_test_uptodate(folio))
3826 folio_mark_uptodate(folio);
3827 BUG_ON(folio_test_swapcache(folio));
3828
3829 if (filemap_dirty_folio(mapping, folio)) {
3830 f2fs_update_dirty_folio(inode, folio);
3831 return true;
3832 }
3833 return false;
3834}
3835
3836
3837static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3838{
3839#ifdef CONFIG_F2FS_FS_COMPRESSION
3840 struct dnode_of_data dn;
3841 sector_t start_idx, blknr = 0;
3842 int ret;
3843
3844 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3845
3846 set_new_dnode(&dn, inode, NULL, NULL, 0);
3847 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3848 if (ret)
3849 return 0;
3850
3851 if (dn.data_blkaddr != COMPRESS_ADDR) {
3852 dn.ofs_in_node += block - start_idx;
3853 blknr = f2fs_data_blkaddr(&dn);
3854 if (!__is_valid_data_blkaddr(blknr))
3855 blknr = 0;
3856 }
3857
3858 f2fs_put_dnode(&dn);
3859 return blknr;
3860#else
3861 return 0;
3862#endif
3863}
3864
3865
3866static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3867{
3868 struct inode *inode = mapping->host;
3869 sector_t blknr = 0;
3870
3871 if (f2fs_has_inline_data(inode))
3872 goto out;
3873
3874 /* make sure allocating whole blocks */
3875 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3876 filemap_write_and_wait(mapping);
3877
3878 /* Block number less than F2FS MAX BLOCKS */
3879 if (unlikely(block >= max_file_blocks(inode)))
3880 goto out;
3881
3882 if (f2fs_compressed_file(inode)) {
3883 blknr = f2fs_bmap_compress(inode, block);
3884 } else {
3885 struct f2fs_map_blocks map;
3886
3887 memset(&map, 0, sizeof(map));
3888 map.m_lblk = block;
3889 map.m_len = 1;
3890 map.m_next_pgofs = NULL;
3891 map.m_seg_type = NO_CHECK_TYPE;
3892
3893 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3894 blknr = map.m_pblk;
3895 }
3896out:
3897 trace_f2fs_bmap(inode, block, blknr);
3898 return blknr;
3899}
3900
3901#ifdef CONFIG_SWAP
3902static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3903 unsigned int blkcnt)
3904{
3905 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3906 unsigned int blkofs;
3907 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3908 unsigned int secidx = start_blk / blk_per_sec;
3909 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3910 int ret = 0;
3911
3912 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3913 filemap_invalidate_lock(inode->i_mapping);
3914
3915 set_inode_flag(inode, FI_ALIGNED_WRITE);
3916 set_inode_flag(inode, FI_OPU_WRITE);
3917
3918 for (; secidx < end_sec; secidx++) {
3919 f2fs_down_write(&sbi->pin_sem);
3920
3921 f2fs_lock_op(sbi);
3922 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3923 f2fs_unlock_op(sbi);
3924
3925 set_inode_flag(inode, FI_SKIP_WRITES);
3926
3927 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3928 struct page *page;
3929 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3930
3931 page = f2fs_get_lock_data_page(inode, blkidx, true);
3932 if (IS_ERR(page)) {
3933 f2fs_up_write(&sbi->pin_sem);
3934 ret = PTR_ERR(page);
3935 goto done;
3936 }
3937
3938 set_page_dirty(page);
3939 f2fs_put_page(page, 1);
3940 }
3941
3942 clear_inode_flag(inode, FI_SKIP_WRITES);
3943
3944 ret = filemap_fdatawrite(inode->i_mapping);
3945
3946 f2fs_up_write(&sbi->pin_sem);
3947
3948 if (ret)
3949 break;
3950 }
3951
3952done:
3953 clear_inode_flag(inode, FI_SKIP_WRITES);
3954 clear_inode_flag(inode, FI_OPU_WRITE);
3955 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3956
3957 filemap_invalidate_unlock(inode->i_mapping);
3958 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3959
3960 return ret;
3961}
3962
3963static int check_swap_activate(struct swap_info_struct *sis,
3964 struct file *swap_file, sector_t *span)
3965{
3966 struct address_space *mapping = swap_file->f_mapping;
3967 struct inode *inode = mapping->host;
3968 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3969 sector_t cur_lblock;
3970 sector_t last_lblock;
3971 sector_t pblock;
3972 sector_t lowest_pblock = -1;
3973 sector_t highest_pblock = 0;
3974 int nr_extents = 0;
3975 unsigned long nr_pblocks;
3976 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3977 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3978 unsigned int not_aligned = 0;
3979 int ret = 0;
3980
3981 /*
3982 * Map all the blocks into the extent list. This code doesn't try
3983 * to be very smart.
3984 */
3985 cur_lblock = 0;
3986 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3987
3988 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3989 struct f2fs_map_blocks map;
3990retry:
3991 cond_resched();
3992
3993 memset(&map, 0, sizeof(map));
3994 map.m_lblk = cur_lblock;
3995 map.m_len = last_lblock - cur_lblock;
3996 map.m_next_pgofs = NULL;
3997 map.m_next_extent = NULL;
3998 map.m_seg_type = NO_CHECK_TYPE;
3999 map.m_may_create = false;
4000
4001 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
4002 if (ret)
4003 goto out;
4004
4005 /* hole */
4006 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4007 f2fs_err(sbi, "Swapfile has holes");
4008 ret = -EINVAL;
4009 goto out;
4010 }
4011
4012 pblock = map.m_pblk;
4013 nr_pblocks = map.m_len;
4014
4015 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4016 nr_pblocks & sec_blks_mask) {
4017 not_aligned++;
4018
4019 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4020 if (cur_lblock + nr_pblocks > sis->max)
4021 nr_pblocks -= blks_per_sec;
4022
4023 if (!nr_pblocks) {
4024 /* this extent is last one */
4025 nr_pblocks = map.m_len;
4026 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4027 goto next;
4028 }
4029
4030 ret = f2fs_migrate_blocks(inode, cur_lblock,
4031 nr_pblocks);
4032 if (ret)
4033 goto out;
4034 goto retry;
4035 }
4036next:
4037 if (cur_lblock + nr_pblocks >= sis->max)
4038 nr_pblocks = sis->max - cur_lblock;
4039
4040 if (cur_lblock) { /* exclude the header page */
4041 if (pblock < lowest_pblock)
4042 lowest_pblock = pblock;
4043 if (pblock + nr_pblocks - 1 > highest_pblock)
4044 highest_pblock = pblock + nr_pblocks - 1;
4045 }
4046
4047 /*
4048 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4049 */
4050 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4051 if (ret < 0)
4052 goto out;
4053 nr_extents += ret;
4054 cur_lblock += nr_pblocks;
4055 }
4056 ret = nr_extents;
4057 *span = 1 + highest_pblock - lowest_pblock;
4058 if (cur_lblock == 0)
4059 cur_lblock = 1; /* force Empty message */
4060 sis->max = cur_lblock;
4061 sis->pages = cur_lblock - 1;
4062 sis->highest_bit = cur_lblock - 1;
4063out:
4064 if (not_aligned)
4065 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4066 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4067 return ret;
4068}
4069
4070static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4071 sector_t *span)
4072{
4073 struct inode *inode = file_inode(file);
4074 int ret;
4075
4076 if (!S_ISREG(inode->i_mode))
4077 return -EINVAL;
4078
4079 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4080 return -EROFS;
4081
4082 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4083 f2fs_err(F2FS_I_SB(inode),
4084 "Swapfile not supported in LFS mode");
4085 return -EINVAL;
4086 }
4087
4088 ret = f2fs_convert_inline_inode(inode);
4089 if (ret)
4090 return ret;
4091
4092 if (!f2fs_disable_compressed_file(inode))
4093 return -EINVAL;
4094
4095 f2fs_precache_extents(inode);
4096
4097 ret = check_swap_activate(sis, file, span);
4098 if (ret < 0)
4099 return ret;
4100
4101 stat_inc_swapfile_inode(inode);
4102 set_inode_flag(inode, FI_PIN_FILE);
4103 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4104 return ret;
4105}
4106
4107static void f2fs_swap_deactivate(struct file *file)
4108{
4109 struct inode *inode = file_inode(file);
4110
4111 stat_dec_swapfile_inode(inode);
4112 clear_inode_flag(inode, FI_PIN_FILE);
4113}
4114#else
4115static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4116 sector_t *span)
4117{
4118 return -EOPNOTSUPP;
4119}
4120
4121static void f2fs_swap_deactivate(struct file *file)
4122{
4123}
4124#endif
4125
4126const struct address_space_operations f2fs_dblock_aops = {
4127 .read_folio = f2fs_read_data_folio,
4128 .readahead = f2fs_readahead,
4129 .writepage = f2fs_write_data_page,
4130 .writepages = f2fs_write_data_pages,
4131 .write_begin = f2fs_write_begin,
4132 .write_end = f2fs_write_end,
4133 .dirty_folio = f2fs_dirty_data_folio,
4134 .migrate_folio = filemap_migrate_folio,
4135 .invalidate_folio = f2fs_invalidate_folio,
4136 .release_folio = f2fs_release_folio,
4137 .bmap = f2fs_bmap,
4138 .swap_activate = f2fs_swap_activate,
4139 .swap_deactivate = f2fs_swap_deactivate,
4140};
4141
4142void f2fs_clear_page_cache_dirty_tag(struct page *page)
4143{
4144 struct address_space *mapping = page_mapping(page);
4145 unsigned long flags;
4146
4147 xa_lock_irqsave(&mapping->i_pages, flags);
4148 __xa_clear_mark(&mapping->i_pages, page_index(page),
4149 PAGECACHE_TAG_DIRTY);
4150 xa_unlock_irqrestore(&mapping->i_pages, flags);
4151}
4152
4153int __init f2fs_init_post_read_processing(void)
4154{
4155 bio_post_read_ctx_cache =
4156 kmem_cache_create("f2fs_bio_post_read_ctx",
4157 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4158 if (!bio_post_read_ctx_cache)
4159 goto fail;
4160 bio_post_read_ctx_pool =
4161 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4162 bio_post_read_ctx_cache);
4163 if (!bio_post_read_ctx_pool)
4164 goto fail_free_cache;
4165 return 0;
4166
4167fail_free_cache:
4168 kmem_cache_destroy(bio_post_read_ctx_cache);
4169fail:
4170 return -ENOMEM;
4171}
4172
4173void f2fs_destroy_post_read_processing(void)
4174{
4175 mempool_destroy(bio_post_read_ctx_pool);
4176 kmem_cache_destroy(bio_post_read_ctx_cache);
4177}
4178
4179int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4180{
4181 if (!f2fs_sb_has_encrypt(sbi) &&
4182 !f2fs_sb_has_verity(sbi) &&
4183 !f2fs_sb_has_compression(sbi))
4184 return 0;
4185
4186 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4187 WQ_UNBOUND | WQ_HIGHPRI,
4188 num_online_cpus());
4189 return sbi->post_read_wq ? 0 : -ENOMEM;
4190}
4191
4192void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4193{
4194 if (sbi->post_read_wq)
4195 destroy_workqueue(sbi->post_read_wq);
4196}
4197
4198int __init f2fs_init_bio_entry_cache(void)
4199{
4200 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4201 sizeof(struct bio_entry));
4202 return bio_entry_slab ? 0 : -ENOMEM;
4203}
4204
4205void f2fs_destroy_bio_entry_cache(void)
4206{
4207 kmem_cache_destroy(bio_entry_slab);
4208}
4209
4210static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4211 unsigned int flags, struct iomap *iomap,
4212 struct iomap *srcmap)
4213{
4214 struct f2fs_map_blocks map = {};
4215 pgoff_t next_pgofs = 0;
4216 int err;
4217
4218 map.m_lblk = bytes_to_blks(inode, offset);
4219 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4220 map.m_next_pgofs = &next_pgofs;
4221 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4222 if (flags & IOMAP_WRITE)
4223 map.m_may_create = true;
4224
4225 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4226 if (err)
4227 return err;
4228
4229 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4230
4231 /*
4232 * When inline encryption is enabled, sometimes I/O to an encrypted file
4233 * has to be broken up to guarantee DUN contiguity. Handle this by
4234 * limiting the length of the mapping returned.
4235 */
4236 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4237
4238 /*
4239 * We should never see delalloc or compressed extents here based on
4240 * prior flushing and checks.
4241 */
4242 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4243 return -EINVAL;
4244 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4245 return -EINVAL;
4246
4247 if (map.m_pblk != NULL_ADDR) {
4248 iomap->length = blks_to_bytes(inode, map.m_len);
4249 iomap->type = IOMAP_MAPPED;
4250 iomap->flags |= IOMAP_F_MERGED;
4251 iomap->bdev = map.m_bdev;
4252 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4253 } else {
4254 if (flags & IOMAP_WRITE)
4255 return -ENOTBLK;
4256 iomap->length = blks_to_bytes(inode, next_pgofs) -
4257 iomap->offset;
4258 iomap->type = IOMAP_HOLE;
4259 iomap->addr = IOMAP_NULL_ADDR;
4260 }
4261
4262 if (map.m_flags & F2FS_MAP_NEW)
4263 iomap->flags |= IOMAP_F_NEW;
4264 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4265 offset + length > i_size_read(inode))
4266 iomap->flags |= IOMAP_F_DIRTY;
4267
4268 return 0;
4269}
4270
4271const struct iomap_ops f2fs_iomap_ops = {
4272 .iomap_begin = f2fs_iomap_begin,
4273};