Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/data.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/buffer_head.h>
  11#include <linux/mpage.h>
  12#include <linux/writeback.h>
  13#include <linux/backing-dev.h>
  14#include <linux/pagevec.h>
  15#include <linux/blkdev.h>
  16#include <linux/bio.h>
  17#include <linux/blk-crypto.h>
  18#include <linux/swap.h>
  19#include <linux/prefetch.h>
  20#include <linux/uio.h>
  21#include <linux/cleancache.h>
  22#include <linux/sched/signal.h>
  23#include <linux/fiemap.h>
  24
  25#include "f2fs.h"
  26#include "node.h"
  27#include "segment.h"
  28#include <trace/events/f2fs.h>
  29
  30#define NUM_PREALLOC_POST_READ_CTXS	128
  31
  32static struct kmem_cache *bio_post_read_ctx_cache;
  33static struct kmem_cache *bio_entry_slab;
  34static mempool_t *bio_post_read_ctx_pool;
  35static struct bio_set f2fs_bioset;
  36
  37#define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
  38
  39int __init f2fs_init_bioset(void)
  40{
  41	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
  42					0, BIOSET_NEED_BVECS))
  43		return -ENOMEM;
  44	return 0;
  45}
  46
  47void f2fs_destroy_bioset(void)
  48{
  49	bioset_exit(&f2fs_bioset);
  50}
  51
  52static bool __is_cp_guaranteed(struct page *page)
  53{
  54	struct address_space *mapping = page->mapping;
  55	struct inode *inode;
  56	struct f2fs_sb_info *sbi;
  57
  58	if (!mapping)
  59		return false;
  60
  61	inode = mapping->host;
  62	sbi = F2FS_I_SB(inode);
  63
  64	if (inode->i_ino == F2FS_META_INO(sbi) ||
  65			inode->i_ino == F2FS_NODE_INO(sbi) ||
  66			S_ISDIR(inode->i_mode))
  67		return true;
  68
  69	if (f2fs_is_compressed_page(page))
  70		return false;
  71	if ((S_ISREG(inode->i_mode) &&
  72			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
  73			page_private_gcing(page))
  74		return true;
  75	return false;
  76}
  77
  78static enum count_type __read_io_type(struct page *page)
  79{
  80	struct address_space *mapping = page_file_mapping(page);
  81
  82	if (mapping) {
  83		struct inode *inode = mapping->host;
  84		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  85
  86		if (inode->i_ino == F2FS_META_INO(sbi))
  87			return F2FS_RD_META;
  88
  89		if (inode->i_ino == F2FS_NODE_INO(sbi))
  90			return F2FS_RD_NODE;
  91	}
  92	return F2FS_RD_DATA;
  93}
  94
  95/* postprocessing steps for read bios */
  96enum bio_post_read_step {
  97#ifdef CONFIG_FS_ENCRYPTION
  98	STEP_DECRYPT	= 1 << 0,
  99#else
 100	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
 101#endif
 102#ifdef CONFIG_F2FS_FS_COMPRESSION
 103	STEP_DECOMPRESS	= 1 << 1,
 104#else
 105	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
 106#endif
 107#ifdef CONFIG_FS_VERITY
 108	STEP_VERITY	= 1 << 2,
 109#else
 110	STEP_VERITY	= 0,	/* compile out the verity-related code */
 111#endif
 112};
 113
 114struct bio_post_read_ctx {
 115	struct bio *bio;
 116	struct f2fs_sb_info *sbi;
 117	struct work_struct work;
 118	unsigned int enabled_steps;
 119	block_t fs_blkaddr;
 120};
 121
 122static void f2fs_finish_read_bio(struct bio *bio)
 123{
 124	struct bio_vec *bv;
 125	struct bvec_iter_all iter_all;
 126
 127	/*
 128	 * Update and unlock the bio's pagecache pages, and put the
 129	 * decompression context for any compressed pages.
 130	 */
 131	bio_for_each_segment_all(bv, bio, iter_all) {
 132		struct page *page = bv->bv_page;
 133
 134		if (f2fs_is_compressed_page(page)) {
 135			if (bio->bi_status)
 136				f2fs_end_read_compressed_page(page, true, 0);
 137			f2fs_put_page_dic(page);
 138			continue;
 139		}
 140
 141		/* PG_error was set if decryption or verity failed. */
 142		if (bio->bi_status || PageError(page)) {
 143			ClearPageUptodate(page);
 144			/* will re-read again later */
 145			ClearPageError(page);
 146		} else {
 147			SetPageUptodate(page);
 148		}
 149		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
 150		unlock_page(page);
 151	}
 152
 153	if (bio->bi_private)
 154		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 155	bio_put(bio);
 156}
 157
 158static void f2fs_verify_bio(struct work_struct *work)
 159{
 160	struct bio_post_read_ctx *ctx =
 161		container_of(work, struct bio_post_read_ctx, work);
 162	struct bio *bio = ctx->bio;
 163	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
 164
 165	/*
 166	 * fsverity_verify_bio() may call readpages() again, and while verity
 167	 * will be disabled for this, decryption and/or decompression may still
 168	 * be needed, resulting in another bio_post_read_ctx being allocated.
 169	 * So to prevent deadlocks we need to release the current ctx to the
 170	 * mempool first.  This assumes that verity is the last post-read step.
 171	 */
 172	mempool_free(ctx, bio_post_read_ctx_pool);
 173	bio->bi_private = NULL;
 174
 175	/*
 176	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
 177	 * as those were handled separately by f2fs_end_read_compressed_page().
 178	 */
 179	if (may_have_compressed_pages) {
 180		struct bio_vec *bv;
 181		struct bvec_iter_all iter_all;
 182
 183		bio_for_each_segment_all(bv, bio, iter_all) {
 184			struct page *page = bv->bv_page;
 185
 186			if (!f2fs_is_compressed_page(page) &&
 187			    !PageError(page) && !fsverity_verify_page(page))
 188				SetPageError(page);
 189		}
 190	} else {
 191		fsverity_verify_bio(bio);
 192	}
 193
 194	f2fs_finish_read_bio(bio);
 195}
 196
 197/*
 198 * If the bio's data needs to be verified with fs-verity, then enqueue the
 199 * verity work for the bio.  Otherwise finish the bio now.
 200 *
 201 * Note that to avoid deadlocks, the verity work can't be done on the
 202 * decryption/decompression workqueue.  This is because verifying the data pages
 203 * can involve reading verity metadata pages from the file, and these verity
 204 * metadata pages may be encrypted and/or compressed.
 205 */
 206static void f2fs_verify_and_finish_bio(struct bio *bio)
 207{
 208	struct bio_post_read_ctx *ctx = bio->bi_private;
 209
 210	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
 211		INIT_WORK(&ctx->work, f2fs_verify_bio);
 212		fsverity_enqueue_verify_work(&ctx->work);
 213	} else {
 214		f2fs_finish_read_bio(bio);
 215	}
 216}
 217
 218/*
 219 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
 220 * remaining page was read by @ctx->bio.
 221 *
 222 * Note that a bio may span clusters (even a mix of compressed and uncompressed
 223 * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
 224 * that the bio includes at least one compressed page.  The actual decompression
 225 * is done on a per-cluster basis, not a per-bio basis.
 226 */
 227static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
 228{
 229	struct bio_vec *bv;
 230	struct bvec_iter_all iter_all;
 231	bool all_compressed = true;
 232	block_t blkaddr = ctx->fs_blkaddr;
 233
 234	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
 235		struct page *page = bv->bv_page;
 236
 237		/* PG_error was set if decryption failed. */
 238		if (f2fs_is_compressed_page(page))
 239			f2fs_end_read_compressed_page(page, PageError(page),
 240						blkaddr);
 241		else
 242			all_compressed = false;
 243
 244		blkaddr++;
 245	}
 246
 247	/*
 248	 * Optimization: if all the bio's pages are compressed, then scheduling
 249	 * the per-bio verity work is unnecessary, as verity will be fully
 250	 * handled at the compression cluster level.
 251	 */
 252	if (all_compressed)
 253		ctx->enabled_steps &= ~STEP_VERITY;
 254}
 255
 256static void f2fs_post_read_work(struct work_struct *work)
 257{
 258	struct bio_post_read_ctx *ctx =
 259		container_of(work, struct bio_post_read_ctx, work);
 260
 261	if (ctx->enabled_steps & STEP_DECRYPT)
 262		fscrypt_decrypt_bio(ctx->bio);
 263
 264	if (ctx->enabled_steps & STEP_DECOMPRESS)
 265		f2fs_handle_step_decompress(ctx);
 266
 267	f2fs_verify_and_finish_bio(ctx->bio);
 268}
 269
 270static void f2fs_read_end_io(struct bio *bio)
 271{
 272	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
 273	struct bio_post_read_ctx *ctx = bio->bi_private;
 274
 275	if (time_to_inject(sbi, FAULT_READ_IO)) {
 276		f2fs_show_injection_info(sbi, FAULT_READ_IO);
 277		bio->bi_status = BLK_STS_IOERR;
 278	}
 279
 280	if (bio->bi_status) {
 281		f2fs_finish_read_bio(bio);
 282		return;
 283	}
 284
 285	if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
 286		INIT_WORK(&ctx->work, f2fs_post_read_work);
 287		queue_work(ctx->sbi->post_read_wq, &ctx->work);
 288	} else {
 289		f2fs_verify_and_finish_bio(bio);
 290	}
 291}
 292
 293static void f2fs_write_end_io(struct bio *bio)
 294{
 295	struct f2fs_sb_info *sbi = bio->bi_private;
 296	struct bio_vec *bvec;
 297	struct bvec_iter_all iter_all;
 298
 299	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
 300		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
 301		bio->bi_status = BLK_STS_IOERR;
 302	}
 303
 304	bio_for_each_segment_all(bvec, bio, iter_all) {
 305		struct page *page = bvec->bv_page;
 306		enum count_type type = WB_DATA_TYPE(page);
 307
 308		if (page_private_dummy(page)) {
 309			clear_page_private_dummy(page);
 310			unlock_page(page);
 311			mempool_free(page, sbi->write_io_dummy);
 312
 313			if (unlikely(bio->bi_status))
 314				f2fs_stop_checkpoint(sbi, true);
 315			continue;
 316		}
 317
 318		fscrypt_finalize_bounce_page(&page);
 319
 320#ifdef CONFIG_F2FS_FS_COMPRESSION
 321		if (f2fs_is_compressed_page(page)) {
 322			f2fs_compress_write_end_io(bio, page);
 323			continue;
 324		}
 325#endif
 326
 327		if (unlikely(bio->bi_status)) {
 328			mapping_set_error(page->mapping, -EIO);
 329			if (type == F2FS_WB_CP_DATA)
 330				f2fs_stop_checkpoint(sbi, true);
 331		}
 332
 333		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
 334					page->index != nid_of_node(page));
 335
 336		dec_page_count(sbi, type);
 337		if (f2fs_in_warm_node_list(sbi, page))
 338			f2fs_del_fsync_node_entry(sbi, page);
 339		clear_page_private_gcing(page);
 340		end_page_writeback(page);
 341	}
 342	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
 343				wq_has_sleeper(&sbi->cp_wait))
 344		wake_up(&sbi->cp_wait);
 345
 346	bio_put(bio);
 347}
 348
 349struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
 350				block_t blk_addr, struct bio *bio)
 351{
 352	struct block_device *bdev = sbi->sb->s_bdev;
 353	int i;
 354
 355	if (f2fs_is_multi_device(sbi)) {
 356		for (i = 0; i < sbi->s_ndevs; i++) {
 357			if (FDEV(i).start_blk <= blk_addr &&
 358			    FDEV(i).end_blk >= blk_addr) {
 359				blk_addr -= FDEV(i).start_blk;
 360				bdev = FDEV(i).bdev;
 361				break;
 362			}
 363		}
 364	}
 365	if (bio) {
 366		bio_set_dev(bio, bdev);
 367		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
 368	}
 369	return bdev;
 370}
 371
 372int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
 373{
 374	int i;
 375
 376	if (!f2fs_is_multi_device(sbi))
 377		return 0;
 378
 379	for (i = 0; i < sbi->s_ndevs; i++)
 380		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
 381			return i;
 382	return 0;
 383}
 384
 385static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
 386{
 387	struct f2fs_sb_info *sbi = fio->sbi;
 388	struct bio *bio;
 389
 390	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
 391
 392	f2fs_target_device(sbi, fio->new_blkaddr, bio);
 393	if (is_read_io(fio->op)) {
 394		bio->bi_end_io = f2fs_read_end_io;
 395		bio->bi_private = NULL;
 396	} else {
 397		bio->bi_end_io = f2fs_write_end_io;
 398		bio->bi_private = sbi;
 399		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
 400						fio->type, fio->temp);
 401	}
 402	if (fio->io_wbc)
 403		wbc_init_bio(fio->io_wbc, bio);
 404
 405	return bio;
 406}
 407
 408static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
 409				  pgoff_t first_idx,
 410				  const struct f2fs_io_info *fio,
 411				  gfp_t gfp_mask)
 412{
 413	/*
 414	 * The f2fs garbage collector sets ->encrypted_page when it wants to
 415	 * read/write raw data without encryption.
 416	 */
 417	if (!fio || !fio->encrypted_page)
 418		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
 419}
 420
 421static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
 422				     pgoff_t next_idx,
 423				     const struct f2fs_io_info *fio)
 424{
 425	/*
 426	 * The f2fs garbage collector sets ->encrypted_page when it wants to
 427	 * read/write raw data without encryption.
 428	 */
 429	if (fio && fio->encrypted_page)
 430		return !bio_has_crypt_ctx(bio);
 431
 432	return fscrypt_mergeable_bio(bio, inode, next_idx);
 433}
 434
 435static inline void __submit_bio(struct f2fs_sb_info *sbi,
 436				struct bio *bio, enum page_type type)
 437{
 438	if (!is_read_io(bio_op(bio))) {
 439		unsigned int start;
 440
 441		if (type != DATA && type != NODE)
 442			goto submit_io;
 443
 444		if (f2fs_lfs_mode(sbi) && current->plug)
 445			blk_finish_plug(current->plug);
 446
 447		if (!F2FS_IO_ALIGNED(sbi))
 448			goto submit_io;
 449
 450		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
 451		start %= F2FS_IO_SIZE(sbi);
 452
 453		if (start == 0)
 454			goto submit_io;
 455
 456		/* fill dummy pages */
 457		for (; start < F2FS_IO_SIZE(sbi); start++) {
 458			struct page *page =
 459				mempool_alloc(sbi->write_io_dummy,
 460					      GFP_NOIO | __GFP_NOFAIL);
 461			f2fs_bug_on(sbi, !page);
 462
 463			lock_page(page);
 464
 465			zero_user_segment(page, 0, PAGE_SIZE);
 466			set_page_private_dummy(page);
 467
 468			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
 469				f2fs_bug_on(sbi, 1);
 470		}
 471		/*
 472		 * In the NODE case, we lose next block address chain. So, we
 473		 * need to do checkpoint in f2fs_sync_file.
 474		 */
 475		if (type == NODE)
 476			set_sbi_flag(sbi, SBI_NEED_CP);
 477	}
 478submit_io:
 479	if (is_read_io(bio_op(bio)))
 480		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
 481	else
 482		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
 483	submit_bio(bio);
 484}
 485
 486void f2fs_submit_bio(struct f2fs_sb_info *sbi,
 487				struct bio *bio, enum page_type type)
 488{
 489	__submit_bio(sbi, bio, type);
 490}
 491
 492static void __attach_io_flag(struct f2fs_io_info *fio)
 493{
 494	struct f2fs_sb_info *sbi = fio->sbi;
 495	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
 496	unsigned int io_flag, fua_flag, meta_flag;
 497
 498	if (fio->type == DATA)
 499		io_flag = sbi->data_io_flag;
 500	else if (fio->type == NODE)
 501		io_flag = sbi->node_io_flag;
 502	else
 503		return;
 504
 505	fua_flag = io_flag & temp_mask;
 506	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
 507
 508	/*
 509	 * data/node io flag bits per temp:
 510	 *      REQ_META     |      REQ_FUA      |
 511	 *    5 |    4 |   3 |    2 |    1 |   0 |
 512	 * Cold | Warm | Hot | Cold | Warm | Hot |
 513	 */
 514	if ((1 << fio->temp) & meta_flag)
 515		fio->op_flags |= REQ_META;
 516	if ((1 << fio->temp) & fua_flag)
 517		fio->op_flags |= REQ_FUA;
 518}
 519
 520static void __submit_merged_bio(struct f2fs_bio_info *io)
 521{
 522	struct f2fs_io_info *fio = &io->fio;
 523
 524	if (!io->bio)
 525		return;
 526
 527	__attach_io_flag(fio);
 528	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
 529
 530	if (is_read_io(fio->op))
 531		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
 532	else
 533		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
 534
 535	__submit_bio(io->sbi, io->bio, fio->type);
 536	io->bio = NULL;
 537}
 538
 539static bool __has_merged_page(struct bio *bio, struct inode *inode,
 540						struct page *page, nid_t ino)
 541{
 542	struct bio_vec *bvec;
 543	struct bvec_iter_all iter_all;
 544
 545	if (!bio)
 546		return false;
 547
 548	if (!inode && !page && !ino)
 549		return true;
 550
 551	bio_for_each_segment_all(bvec, bio, iter_all) {
 552		struct page *target = bvec->bv_page;
 553
 554		if (fscrypt_is_bounce_page(target)) {
 555			target = fscrypt_pagecache_page(target);
 556			if (IS_ERR(target))
 557				continue;
 558		}
 559		if (f2fs_is_compressed_page(target)) {
 560			target = f2fs_compress_control_page(target);
 561			if (IS_ERR(target))
 562				continue;
 563		}
 564
 565		if (inode && inode == target->mapping->host)
 566			return true;
 567		if (page && page == target)
 568			return true;
 569		if (ino && ino == ino_of_node(target))
 570			return true;
 571	}
 572
 573	return false;
 574}
 575
 576static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
 577				enum page_type type, enum temp_type temp)
 578{
 579	enum page_type btype = PAGE_TYPE_OF_BIO(type);
 580	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 581
 582	down_write(&io->io_rwsem);
 583
 584	/* change META to META_FLUSH in the checkpoint procedure */
 585	if (type >= META_FLUSH) {
 586		io->fio.type = META_FLUSH;
 587		io->fio.op = REQ_OP_WRITE;
 588		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
 589		if (!test_opt(sbi, NOBARRIER))
 590			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
 591	}
 592	__submit_merged_bio(io);
 593	up_write(&io->io_rwsem);
 594}
 595
 596static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
 597				struct inode *inode, struct page *page,
 598				nid_t ino, enum page_type type, bool force)
 599{
 600	enum temp_type temp;
 601	bool ret = true;
 602
 603	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
 604		if (!force)	{
 605			enum page_type btype = PAGE_TYPE_OF_BIO(type);
 606			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 607
 608			down_read(&io->io_rwsem);
 609			ret = __has_merged_page(io->bio, inode, page, ino);
 610			up_read(&io->io_rwsem);
 611		}
 612		if (ret)
 613			__f2fs_submit_merged_write(sbi, type, temp);
 614
 615		/* TODO: use HOT temp only for meta pages now. */
 616		if (type >= META)
 617			break;
 618	}
 619}
 620
 621void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
 622{
 623	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
 624}
 625
 626void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
 627				struct inode *inode, struct page *page,
 628				nid_t ino, enum page_type type)
 629{
 630	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
 631}
 632
 633void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
 634{
 635	f2fs_submit_merged_write(sbi, DATA);
 636	f2fs_submit_merged_write(sbi, NODE);
 637	f2fs_submit_merged_write(sbi, META);
 638}
 639
 640/*
 641 * Fill the locked page with data located in the block address.
 642 * A caller needs to unlock the page on failure.
 643 */
 644int f2fs_submit_page_bio(struct f2fs_io_info *fio)
 645{
 646	struct bio *bio;
 647	struct page *page = fio->encrypted_page ?
 648			fio->encrypted_page : fio->page;
 649
 650	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 651			fio->is_por ? META_POR : (__is_meta_io(fio) ?
 652			META_GENERIC : DATA_GENERIC_ENHANCE)))
 653		return -EFSCORRUPTED;
 654
 655	trace_f2fs_submit_page_bio(page, fio);
 656
 657	/* Allocate a new bio */
 658	bio = __bio_alloc(fio, 1);
 659
 660	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
 661			       fio->page->index, fio, GFP_NOIO);
 662
 663	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 664		bio_put(bio);
 665		return -EFAULT;
 666	}
 667
 668	if (fio->io_wbc && !is_read_io(fio->op))
 669		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 670
 671	__attach_io_flag(fio);
 672	bio_set_op_attrs(bio, fio->op, fio->op_flags);
 673
 674	inc_page_count(fio->sbi, is_read_io(fio->op) ?
 675			__read_io_type(page): WB_DATA_TYPE(fio->page));
 676
 677	__submit_bio(fio->sbi, bio, fio->type);
 678	return 0;
 679}
 680
 681static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 682				block_t last_blkaddr, block_t cur_blkaddr)
 683{
 684	if (unlikely(sbi->max_io_bytes &&
 685			bio->bi_iter.bi_size >= sbi->max_io_bytes))
 686		return false;
 687	if (last_blkaddr + 1 != cur_blkaddr)
 688		return false;
 689	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
 690}
 691
 692static bool io_type_is_mergeable(struct f2fs_bio_info *io,
 693						struct f2fs_io_info *fio)
 694{
 695	if (io->fio.op != fio->op)
 696		return false;
 697	return io->fio.op_flags == fio->op_flags;
 698}
 699
 700static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 701					struct f2fs_bio_info *io,
 702					struct f2fs_io_info *fio,
 703					block_t last_blkaddr,
 704					block_t cur_blkaddr)
 705{
 706	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
 707		unsigned int filled_blocks =
 708				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
 709		unsigned int io_size = F2FS_IO_SIZE(sbi);
 710		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
 711
 712		/* IOs in bio is aligned and left space of vectors is not enough */
 713		if (!(filled_blocks % io_size) && left_vecs < io_size)
 714			return false;
 715	}
 716	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
 717		return false;
 718	return io_type_is_mergeable(io, fio);
 719}
 720
 721static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
 722				struct page *page, enum temp_type temp)
 723{
 724	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 725	struct bio_entry *be;
 726
 727	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
 728	be->bio = bio;
 729	bio_get(bio);
 730
 731	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
 732		f2fs_bug_on(sbi, 1);
 733
 734	down_write(&io->bio_list_lock);
 735	list_add_tail(&be->list, &io->bio_list);
 736	up_write(&io->bio_list_lock);
 737}
 738
 739static void del_bio_entry(struct bio_entry *be)
 740{
 741	list_del(&be->list);
 742	kmem_cache_free(bio_entry_slab, be);
 743}
 744
 745static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
 746							struct page *page)
 747{
 748	struct f2fs_sb_info *sbi = fio->sbi;
 749	enum temp_type temp;
 750	bool found = false;
 751	int ret = -EAGAIN;
 752
 753	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
 754		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 755		struct list_head *head = &io->bio_list;
 756		struct bio_entry *be;
 757
 758		down_write(&io->bio_list_lock);
 759		list_for_each_entry(be, head, list) {
 760			if (be->bio != *bio)
 761				continue;
 762
 763			found = true;
 764
 765			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
 766							    *fio->last_block,
 767							    fio->new_blkaddr));
 768			if (f2fs_crypt_mergeable_bio(*bio,
 769					fio->page->mapping->host,
 770					fio->page->index, fio) &&
 771			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
 772					PAGE_SIZE) {
 773				ret = 0;
 774				break;
 775			}
 776
 777			/* page can't be merged into bio; submit the bio */
 778			del_bio_entry(be);
 779			__submit_bio(sbi, *bio, DATA);
 780			break;
 781		}
 782		up_write(&io->bio_list_lock);
 783	}
 784
 785	if (ret) {
 786		bio_put(*bio);
 787		*bio = NULL;
 788	}
 789
 790	return ret;
 791}
 792
 793void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
 794					struct bio **bio, struct page *page)
 795{
 796	enum temp_type temp;
 797	bool found = false;
 798	struct bio *target = bio ? *bio : NULL;
 799
 800	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
 801		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 802		struct list_head *head = &io->bio_list;
 803		struct bio_entry *be;
 804
 805		if (list_empty(head))
 806			continue;
 807
 808		down_read(&io->bio_list_lock);
 809		list_for_each_entry(be, head, list) {
 810			if (target)
 811				found = (target == be->bio);
 812			else
 813				found = __has_merged_page(be->bio, NULL,
 814								page, 0);
 815			if (found)
 816				break;
 817		}
 818		up_read(&io->bio_list_lock);
 819
 820		if (!found)
 821			continue;
 822
 823		found = false;
 824
 825		down_write(&io->bio_list_lock);
 826		list_for_each_entry(be, head, list) {
 827			if (target)
 828				found = (target == be->bio);
 829			else
 830				found = __has_merged_page(be->bio, NULL,
 831								page, 0);
 832			if (found) {
 833				target = be->bio;
 834				del_bio_entry(be);
 835				break;
 836			}
 837		}
 838		up_write(&io->bio_list_lock);
 839	}
 840
 841	if (found)
 842		__submit_bio(sbi, target, DATA);
 843	if (bio && *bio) {
 844		bio_put(*bio);
 845		*bio = NULL;
 846	}
 847}
 848
 849int f2fs_merge_page_bio(struct f2fs_io_info *fio)
 850{
 851	struct bio *bio = *fio->bio;
 852	struct page *page = fio->encrypted_page ?
 853			fio->encrypted_page : fio->page;
 854
 855	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 856			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
 857		return -EFSCORRUPTED;
 858
 859	trace_f2fs_submit_page_bio(page, fio);
 860
 861	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
 862						fio->new_blkaddr))
 863		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
 864alloc_new:
 865	if (!bio) {
 866		bio = __bio_alloc(fio, BIO_MAX_VECS);
 867		__attach_io_flag(fio);
 868		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
 869				       fio->page->index, fio, GFP_NOIO);
 870		bio_set_op_attrs(bio, fio->op, fio->op_flags);
 871
 872		add_bio_entry(fio->sbi, bio, page, fio->temp);
 873	} else {
 874		if (add_ipu_page(fio, &bio, page))
 875			goto alloc_new;
 876	}
 877
 878	if (fio->io_wbc)
 879		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 880
 881	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
 882
 883	*fio->last_block = fio->new_blkaddr;
 884	*fio->bio = bio;
 885
 886	return 0;
 887}
 888
 889void f2fs_submit_page_write(struct f2fs_io_info *fio)
 890{
 891	struct f2fs_sb_info *sbi = fio->sbi;
 892	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
 893	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
 894	struct page *bio_page;
 895
 896	f2fs_bug_on(sbi, is_read_io(fio->op));
 897
 898	down_write(&io->io_rwsem);
 899next:
 900	if (fio->in_list) {
 901		spin_lock(&io->io_lock);
 902		if (list_empty(&io->io_list)) {
 903			spin_unlock(&io->io_lock);
 904			goto out;
 905		}
 906		fio = list_first_entry(&io->io_list,
 907						struct f2fs_io_info, list);
 908		list_del(&fio->list);
 909		spin_unlock(&io->io_lock);
 910	}
 911
 912	verify_fio_blkaddr(fio);
 913
 914	if (fio->encrypted_page)
 915		bio_page = fio->encrypted_page;
 916	else if (fio->compressed_page)
 917		bio_page = fio->compressed_page;
 918	else
 919		bio_page = fio->page;
 920
 921	/* set submitted = true as a return value */
 922	fio->submitted = true;
 923
 924	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
 925
 926	if (io->bio &&
 927	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
 928			      fio->new_blkaddr) ||
 929	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
 930				       bio_page->index, fio)))
 931		__submit_merged_bio(io);
 932alloc_new:
 933	if (io->bio == NULL) {
 934		if (F2FS_IO_ALIGNED(sbi) &&
 935				(fio->type == DATA || fio->type == NODE) &&
 936				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
 937			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
 938			fio->retry = true;
 939			goto skip;
 940		}
 941		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
 942		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
 943				       bio_page->index, fio, GFP_NOIO);
 944		io->fio = *fio;
 945	}
 946
 947	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
 948		__submit_merged_bio(io);
 949		goto alloc_new;
 950	}
 951
 952	if (fio->io_wbc)
 953		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
 954
 955	io->last_block_in_bio = fio->new_blkaddr;
 956
 957	trace_f2fs_submit_page_write(fio->page, fio);
 958skip:
 959	if (fio->in_list)
 960		goto next;
 961out:
 962	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
 963				!f2fs_is_checkpoint_ready(sbi))
 964		__submit_merged_bio(io);
 965	up_write(&io->io_rwsem);
 966}
 967
 968static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
 969				      unsigned nr_pages, unsigned op_flag,
 970				      pgoff_t first_idx, bool for_write)
 971{
 972	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 973	struct bio *bio;
 974	struct bio_post_read_ctx *ctx;
 975	unsigned int post_read_steps = 0;
 976
 977	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
 978			       bio_max_segs(nr_pages), &f2fs_bioset);
 979	if (!bio)
 980		return ERR_PTR(-ENOMEM);
 981
 982	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
 983
 984	f2fs_target_device(sbi, blkaddr, bio);
 985	bio->bi_end_io = f2fs_read_end_io;
 986	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
 987
 988	if (fscrypt_inode_uses_fs_layer_crypto(inode))
 989		post_read_steps |= STEP_DECRYPT;
 990
 991	if (f2fs_need_verity(inode, first_idx))
 992		post_read_steps |= STEP_VERITY;
 993
 994	/*
 995	 * STEP_DECOMPRESS is handled specially, since a compressed file might
 996	 * contain both compressed and uncompressed clusters.  We'll allocate a
 997	 * bio_post_read_ctx if the file is compressed, but the caller is
 998	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
 999	 */
1000
1001	if (post_read_steps || f2fs_compressed_file(inode)) {
1002		/* Due to the mempool, this never fails. */
1003		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1004		ctx->bio = bio;
1005		ctx->sbi = sbi;
1006		ctx->enabled_steps = post_read_steps;
1007		ctx->fs_blkaddr = blkaddr;
1008		bio->bi_private = ctx;
1009	}
1010
1011	return bio;
1012}
1013
1014/* This can handle encryption stuffs */
1015static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1016				 block_t blkaddr, int op_flags, bool for_write)
1017{
1018	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1019	struct bio *bio;
1020
1021	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1022					page->index, for_write);
1023	if (IS_ERR(bio))
1024		return PTR_ERR(bio);
1025
1026	/* wait for GCed page writeback via META_MAPPING */
1027	f2fs_wait_on_block_writeback(inode, blkaddr);
1028
1029	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1030		bio_put(bio);
1031		return -EFAULT;
1032	}
1033	ClearPageError(page);
1034	inc_page_count(sbi, F2FS_RD_DATA);
1035	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1036	__submit_bio(sbi, bio, DATA);
1037	return 0;
1038}
1039
1040static void __set_data_blkaddr(struct dnode_of_data *dn)
1041{
1042	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1043	__le32 *addr_array;
1044	int base = 0;
1045
1046	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1047		base = get_extra_isize(dn->inode);
1048
1049	/* Get physical address of data block */
1050	addr_array = blkaddr_in_node(rn);
1051	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1052}
1053
1054/*
1055 * Lock ordering for the change of data block address:
1056 * ->data_page
1057 *  ->node_page
1058 *    update block addresses in the node page
1059 */
1060void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1061{
1062	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1063	__set_data_blkaddr(dn);
1064	if (set_page_dirty(dn->node_page))
1065		dn->node_changed = true;
1066}
1067
1068void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1069{
1070	dn->data_blkaddr = blkaddr;
1071	f2fs_set_data_blkaddr(dn);
1072	f2fs_update_extent_cache(dn);
1073}
1074
1075/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1076int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1077{
1078	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1079	int err;
1080
1081	if (!count)
1082		return 0;
1083
1084	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1085		return -EPERM;
1086	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1087		return err;
1088
1089	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1090						dn->ofs_in_node, count);
1091
1092	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1093
1094	for (; count > 0; dn->ofs_in_node++) {
1095		block_t blkaddr = f2fs_data_blkaddr(dn);
1096
1097		if (blkaddr == NULL_ADDR) {
1098			dn->data_blkaddr = NEW_ADDR;
1099			__set_data_blkaddr(dn);
1100			count--;
1101		}
1102	}
1103
1104	if (set_page_dirty(dn->node_page))
1105		dn->node_changed = true;
1106	return 0;
1107}
1108
1109/* Should keep dn->ofs_in_node unchanged */
1110int f2fs_reserve_new_block(struct dnode_of_data *dn)
1111{
1112	unsigned int ofs_in_node = dn->ofs_in_node;
1113	int ret;
1114
1115	ret = f2fs_reserve_new_blocks(dn, 1);
1116	dn->ofs_in_node = ofs_in_node;
1117	return ret;
1118}
1119
1120int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1121{
1122	bool need_put = dn->inode_page ? false : true;
1123	int err;
1124
1125	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1126	if (err)
1127		return err;
1128
1129	if (dn->data_blkaddr == NULL_ADDR)
1130		err = f2fs_reserve_new_block(dn);
1131	if (err || need_put)
1132		f2fs_put_dnode(dn);
1133	return err;
1134}
1135
1136int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1137{
1138	struct extent_info ei = {0, 0, 0};
1139	struct inode *inode = dn->inode;
1140
1141	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1142		dn->data_blkaddr = ei.blk + index - ei.fofs;
1143		return 0;
1144	}
1145
1146	return f2fs_reserve_block(dn, index);
1147}
1148
1149struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1150						int op_flags, bool for_write)
1151{
1152	struct address_space *mapping = inode->i_mapping;
1153	struct dnode_of_data dn;
1154	struct page *page;
1155	struct extent_info ei = {0,0,0};
1156	int err;
1157
1158	page = f2fs_grab_cache_page(mapping, index, for_write);
1159	if (!page)
1160		return ERR_PTR(-ENOMEM);
1161
1162	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1163		dn.data_blkaddr = ei.blk + index - ei.fofs;
1164		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1165						DATA_GENERIC_ENHANCE_READ)) {
1166			err = -EFSCORRUPTED;
1167			goto put_err;
1168		}
1169		goto got_it;
1170	}
1171
1172	set_new_dnode(&dn, inode, NULL, NULL, 0);
1173	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1174	if (err)
1175		goto put_err;
1176	f2fs_put_dnode(&dn);
1177
1178	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1179		err = -ENOENT;
1180		goto put_err;
1181	}
1182	if (dn.data_blkaddr != NEW_ADDR &&
1183			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1184						dn.data_blkaddr,
1185						DATA_GENERIC_ENHANCE)) {
1186		err = -EFSCORRUPTED;
1187		goto put_err;
1188	}
1189got_it:
1190	if (PageUptodate(page)) {
1191		unlock_page(page);
1192		return page;
1193	}
1194
1195	/*
1196	 * A new dentry page is allocated but not able to be written, since its
1197	 * new inode page couldn't be allocated due to -ENOSPC.
1198	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1199	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1200	 * f2fs_init_inode_metadata.
1201	 */
1202	if (dn.data_blkaddr == NEW_ADDR) {
1203		zero_user_segment(page, 0, PAGE_SIZE);
1204		if (!PageUptodate(page))
1205			SetPageUptodate(page);
1206		unlock_page(page);
1207		return page;
1208	}
1209
1210	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1211						op_flags, for_write);
1212	if (err)
1213		goto put_err;
1214	return page;
1215
1216put_err:
1217	f2fs_put_page(page, 1);
1218	return ERR_PTR(err);
1219}
1220
1221struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1222{
1223	struct address_space *mapping = inode->i_mapping;
1224	struct page *page;
1225
1226	page = find_get_page(mapping, index);
1227	if (page && PageUptodate(page))
1228		return page;
1229	f2fs_put_page(page, 0);
1230
1231	page = f2fs_get_read_data_page(inode, index, 0, false);
1232	if (IS_ERR(page))
1233		return page;
1234
1235	if (PageUptodate(page))
1236		return page;
1237
1238	wait_on_page_locked(page);
1239	if (unlikely(!PageUptodate(page))) {
1240		f2fs_put_page(page, 0);
1241		return ERR_PTR(-EIO);
1242	}
1243	return page;
1244}
1245
1246/*
1247 * If it tries to access a hole, return an error.
1248 * Because, the callers, functions in dir.c and GC, should be able to know
1249 * whether this page exists or not.
1250 */
1251struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1252							bool for_write)
1253{
1254	struct address_space *mapping = inode->i_mapping;
1255	struct page *page;
1256repeat:
1257	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1258	if (IS_ERR(page))
1259		return page;
1260
1261	/* wait for read completion */
1262	lock_page(page);
1263	if (unlikely(page->mapping != mapping)) {
1264		f2fs_put_page(page, 1);
1265		goto repeat;
1266	}
1267	if (unlikely(!PageUptodate(page))) {
1268		f2fs_put_page(page, 1);
1269		return ERR_PTR(-EIO);
1270	}
1271	return page;
1272}
1273
1274/*
1275 * Caller ensures that this data page is never allocated.
1276 * A new zero-filled data page is allocated in the page cache.
1277 *
1278 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1279 * f2fs_unlock_op().
1280 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1281 * ipage should be released by this function.
1282 */
1283struct page *f2fs_get_new_data_page(struct inode *inode,
1284		struct page *ipage, pgoff_t index, bool new_i_size)
1285{
1286	struct address_space *mapping = inode->i_mapping;
1287	struct page *page;
1288	struct dnode_of_data dn;
1289	int err;
1290
1291	page = f2fs_grab_cache_page(mapping, index, true);
1292	if (!page) {
1293		/*
1294		 * before exiting, we should make sure ipage will be released
1295		 * if any error occur.
1296		 */
1297		f2fs_put_page(ipage, 1);
1298		return ERR_PTR(-ENOMEM);
1299	}
1300
1301	set_new_dnode(&dn, inode, ipage, NULL, 0);
1302	err = f2fs_reserve_block(&dn, index);
1303	if (err) {
1304		f2fs_put_page(page, 1);
1305		return ERR_PTR(err);
1306	}
1307	if (!ipage)
1308		f2fs_put_dnode(&dn);
1309
1310	if (PageUptodate(page))
1311		goto got_it;
1312
1313	if (dn.data_blkaddr == NEW_ADDR) {
1314		zero_user_segment(page, 0, PAGE_SIZE);
1315		if (!PageUptodate(page))
1316			SetPageUptodate(page);
1317	} else {
1318		f2fs_put_page(page, 1);
1319
1320		/* if ipage exists, blkaddr should be NEW_ADDR */
1321		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1322		page = f2fs_get_lock_data_page(inode, index, true);
1323		if (IS_ERR(page))
1324			return page;
1325	}
1326got_it:
1327	if (new_i_size && i_size_read(inode) <
1328				((loff_t)(index + 1) << PAGE_SHIFT))
1329		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1330	return page;
1331}
1332
1333static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1334{
1335	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1336	struct f2fs_summary sum;
1337	struct node_info ni;
1338	block_t old_blkaddr;
1339	blkcnt_t count = 1;
1340	int err;
1341
1342	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1343		return -EPERM;
1344
1345	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1346	if (err)
1347		return err;
1348
1349	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1350	if (dn->data_blkaddr != NULL_ADDR)
1351		goto alloc;
1352
1353	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1354		return err;
1355
1356alloc:
1357	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1358	old_blkaddr = dn->data_blkaddr;
1359	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1360				&sum, seg_type, NULL);
1361	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1362		invalidate_mapping_pages(META_MAPPING(sbi),
1363					old_blkaddr, old_blkaddr);
1364		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1365	}
1366	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1367
1368	/*
1369	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1370	 * data from unwritten block via dio_read.
1371	 */
1372	return 0;
1373}
1374
1375int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1376{
1377	struct inode *inode = file_inode(iocb->ki_filp);
1378	struct f2fs_map_blocks map;
1379	int flag;
1380	int err = 0;
1381	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1382
1383	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1384	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1385	if (map.m_len > map.m_lblk)
1386		map.m_len -= map.m_lblk;
1387	else
1388		map.m_len = 0;
1389
1390	map.m_next_pgofs = NULL;
1391	map.m_next_extent = NULL;
1392	map.m_seg_type = NO_CHECK_TYPE;
1393	map.m_may_create = true;
1394
1395	if (direct_io) {
1396		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1397		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1398					F2FS_GET_BLOCK_PRE_AIO :
1399					F2FS_GET_BLOCK_PRE_DIO;
1400		goto map_blocks;
1401	}
1402	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1403		err = f2fs_convert_inline_inode(inode);
1404		if (err)
1405			return err;
1406	}
1407	if (f2fs_has_inline_data(inode))
1408		return err;
1409
1410	flag = F2FS_GET_BLOCK_PRE_AIO;
1411
1412map_blocks:
1413	err = f2fs_map_blocks(inode, &map, 1, flag);
1414	if (map.m_len > 0 && err == -ENOSPC) {
1415		if (!direct_io)
1416			set_inode_flag(inode, FI_NO_PREALLOC);
1417		err = 0;
1418	}
1419	return err;
1420}
1421
1422void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1423{
1424	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1425		if (lock)
1426			down_read(&sbi->node_change);
1427		else
1428			up_read(&sbi->node_change);
1429	} else {
1430		if (lock)
1431			f2fs_lock_op(sbi);
1432		else
1433			f2fs_unlock_op(sbi);
1434	}
1435}
1436
1437/*
1438 * f2fs_map_blocks() tries to find or build mapping relationship which
1439 * maps continuous logical blocks to physical blocks, and return such
1440 * info via f2fs_map_blocks structure.
1441 */
1442int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1443						int create, int flag)
1444{
1445	unsigned int maxblocks = map->m_len;
1446	struct dnode_of_data dn;
1447	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1448	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1449	pgoff_t pgofs, end_offset, end;
1450	int err = 0, ofs = 1;
1451	unsigned int ofs_in_node, last_ofs_in_node;
1452	blkcnt_t prealloc;
1453	struct extent_info ei = {0,0,0};
1454	block_t blkaddr;
1455	unsigned int start_pgofs;
1456
1457	if (!maxblocks)
1458		return 0;
1459
1460	map->m_len = 0;
1461	map->m_flags = 0;
1462
1463	/* it only supports block size == page size */
1464	pgofs =	(pgoff_t)map->m_lblk;
1465	end = pgofs + maxblocks;
1466
1467	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1468		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1469							map->m_may_create)
1470			goto next_dnode;
1471
1472		map->m_pblk = ei.blk + pgofs - ei.fofs;
1473		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1474		map->m_flags = F2FS_MAP_MAPPED;
1475		if (map->m_next_extent)
1476			*map->m_next_extent = pgofs + map->m_len;
1477
1478		/* for hardware encryption, but to avoid potential issue in future */
1479		if (flag == F2FS_GET_BLOCK_DIO)
1480			f2fs_wait_on_block_writeback_range(inode,
1481						map->m_pblk, map->m_len);
1482		goto out;
1483	}
1484
1485next_dnode:
1486	if (map->m_may_create)
1487		f2fs_do_map_lock(sbi, flag, true);
1488
1489	/* When reading holes, we need its node page */
1490	set_new_dnode(&dn, inode, NULL, NULL, 0);
1491	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1492	if (err) {
1493		if (flag == F2FS_GET_BLOCK_BMAP)
1494			map->m_pblk = 0;
1495
1496		if (err == -ENOENT) {
1497			/*
1498			 * There is one exceptional case that read_node_page()
1499			 * may return -ENOENT due to filesystem has been
1500			 * shutdown or cp_error, so force to convert error
1501			 * number to EIO for such case.
1502			 */
1503			if (map->m_may_create &&
1504				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1505				f2fs_cp_error(sbi))) {
1506				err = -EIO;
1507				goto unlock_out;
1508			}
1509
1510			err = 0;
1511			if (map->m_next_pgofs)
1512				*map->m_next_pgofs =
1513					f2fs_get_next_page_offset(&dn, pgofs);
1514			if (map->m_next_extent)
1515				*map->m_next_extent =
1516					f2fs_get_next_page_offset(&dn, pgofs);
1517		}
1518		goto unlock_out;
1519	}
1520
1521	start_pgofs = pgofs;
1522	prealloc = 0;
1523	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1524	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1525
1526next_block:
1527	blkaddr = f2fs_data_blkaddr(&dn);
1528
1529	if (__is_valid_data_blkaddr(blkaddr) &&
1530		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1531		err = -EFSCORRUPTED;
1532		goto sync_out;
1533	}
1534
1535	if (__is_valid_data_blkaddr(blkaddr)) {
1536		/* use out-place-update for driect IO under LFS mode */
1537		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1538							map->m_may_create) {
1539			err = __allocate_data_block(&dn, map->m_seg_type);
1540			if (err)
1541				goto sync_out;
1542			blkaddr = dn.data_blkaddr;
1543			set_inode_flag(inode, FI_APPEND_WRITE);
1544		}
1545	} else {
1546		if (create) {
1547			if (unlikely(f2fs_cp_error(sbi))) {
1548				err = -EIO;
1549				goto sync_out;
1550			}
1551			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1552				if (blkaddr == NULL_ADDR) {
1553					prealloc++;
1554					last_ofs_in_node = dn.ofs_in_node;
1555				}
1556			} else {
1557				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1558					flag != F2FS_GET_BLOCK_DIO);
1559				err = __allocate_data_block(&dn,
1560							map->m_seg_type);
1561				if (!err)
1562					set_inode_flag(inode, FI_APPEND_WRITE);
1563			}
1564			if (err)
1565				goto sync_out;
1566			map->m_flags |= F2FS_MAP_NEW;
1567			blkaddr = dn.data_blkaddr;
1568		} else {
1569			if (flag == F2FS_GET_BLOCK_BMAP) {
1570				map->m_pblk = 0;
1571				goto sync_out;
1572			}
1573			if (flag == F2FS_GET_BLOCK_PRECACHE)
1574				goto sync_out;
1575			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1576						blkaddr == NULL_ADDR) {
1577				if (map->m_next_pgofs)
1578					*map->m_next_pgofs = pgofs + 1;
1579				goto sync_out;
1580			}
1581			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1582				/* for defragment case */
1583				if (map->m_next_pgofs)
1584					*map->m_next_pgofs = pgofs + 1;
1585				goto sync_out;
1586			}
1587		}
1588	}
1589
1590	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1591		goto skip;
1592
1593	if (map->m_len == 0) {
1594		/* preallocated unwritten block should be mapped for fiemap. */
1595		if (blkaddr == NEW_ADDR)
1596			map->m_flags |= F2FS_MAP_UNWRITTEN;
1597		map->m_flags |= F2FS_MAP_MAPPED;
1598
1599		map->m_pblk = blkaddr;
1600		map->m_len = 1;
1601	} else if ((map->m_pblk != NEW_ADDR &&
1602			blkaddr == (map->m_pblk + ofs)) ||
1603			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1604			flag == F2FS_GET_BLOCK_PRE_DIO) {
1605		ofs++;
1606		map->m_len++;
1607	} else {
1608		goto sync_out;
1609	}
1610
1611skip:
1612	dn.ofs_in_node++;
1613	pgofs++;
1614
1615	/* preallocate blocks in batch for one dnode page */
1616	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1617			(pgofs == end || dn.ofs_in_node == end_offset)) {
1618
1619		dn.ofs_in_node = ofs_in_node;
1620		err = f2fs_reserve_new_blocks(&dn, prealloc);
1621		if (err)
1622			goto sync_out;
1623
1624		map->m_len += dn.ofs_in_node - ofs_in_node;
1625		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1626			err = -ENOSPC;
1627			goto sync_out;
1628		}
1629		dn.ofs_in_node = end_offset;
1630	}
1631
1632	if (pgofs >= end)
1633		goto sync_out;
1634	else if (dn.ofs_in_node < end_offset)
1635		goto next_block;
1636
1637	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1638		if (map->m_flags & F2FS_MAP_MAPPED) {
1639			unsigned int ofs = start_pgofs - map->m_lblk;
1640
1641			f2fs_update_extent_cache_range(&dn,
1642				start_pgofs, map->m_pblk + ofs,
1643				map->m_len - ofs);
1644		}
1645	}
1646
1647	f2fs_put_dnode(&dn);
1648
1649	if (map->m_may_create) {
1650		f2fs_do_map_lock(sbi, flag, false);
1651		f2fs_balance_fs(sbi, dn.node_changed);
1652	}
1653	goto next_dnode;
1654
1655sync_out:
1656
1657	/* for hardware encryption, but to avoid potential issue in future */
1658	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1659		f2fs_wait_on_block_writeback_range(inode,
1660						map->m_pblk, map->m_len);
1661
1662	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1663		if (map->m_flags & F2FS_MAP_MAPPED) {
1664			unsigned int ofs = start_pgofs - map->m_lblk;
1665
1666			f2fs_update_extent_cache_range(&dn,
1667				start_pgofs, map->m_pblk + ofs,
1668				map->m_len - ofs);
1669		}
1670		if (map->m_next_extent)
1671			*map->m_next_extent = pgofs + 1;
1672	}
1673	f2fs_put_dnode(&dn);
1674unlock_out:
1675	if (map->m_may_create) {
1676		f2fs_do_map_lock(sbi, flag, false);
1677		f2fs_balance_fs(sbi, dn.node_changed);
1678	}
1679out:
1680	trace_f2fs_map_blocks(inode, map, err);
1681	return err;
1682}
1683
1684bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1685{
1686	struct f2fs_map_blocks map;
1687	block_t last_lblk;
1688	int err;
1689
1690	if (pos + len > i_size_read(inode))
1691		return false;
1692
1693	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1694	map.m_next_pgofs = NULL;
1695	map.m_next_extent = NULL;
1696	map.m_seg_type = NO_CHECK_TYPE;
1697	map.m_may_create = false;
1698	last_lblk = F2FS_BLK_ALIGN(pos + len);
1699
1700	while (map.m_lblk < last_lblk) {
1701		map.m_len = last_lblk - map.m_lblk;
1702		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1703		if (err || map.m_len == 0)
1704			return false;
1705		map.m_lblk += map.m_len;
1706	}
1707	return true;
1708}
1709
1710static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1711{
1712	return (bytes >> inode->i_blkbits);
1713}
1714
1715static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1716{
1717	return (blks << inode->i_blkbits);
1718}
1719
1720static int __get_data_block(struct inode *inode, sector_t iblock,
1721			struct buffer_head *bh, int create, int flag,
1722			pgoff_t *next_pgofs, int seg_type, bool may_write)
1723{
1724	struct f2fs_map_blocks map;
1725	int err;
1726
1727	map.m_lblk = iblock;
1728	map.m_len = bytes_to_blks(inode, bh->b_size);
1729	map.m_next_pgofs = next_pgofs;
1730	map.m_next_extent = NULL;
1731	map.m_seg_type = seg_type;
1732	map.m_may_create = may_write;
1733
1734	err = f2fs_map_blocks(inode, &map, create, flag);
1735	if (!err) {
1736		map_bh(bh, inode->i_sb, map.m_pblk);
1737		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1738		bh->b_size = blks_to_bytes(inode, map.m_len);
1739	}
1740	return err;
1741}
1742
1743static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1744			struct buffer_head *bh_result, int create)
1745{
1746	return __get_data_block(inode, iblock, bh_result, create,
1747				F2FS_GET_BLOCK_DIO, NULL,
1748				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1749				true);
1750}
1751
1752static int get_data_block_dio(struct inode *inode, sector_t iblock,
1753			struct buffer_head *bh_result, int create)
1754{
1755	return __get_data_block(inode, iblock, bh_result, create,
1756				F2FS_GET_BLOCK_DIO, NULL,
1757				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1758				false);
1759}
1760
1761static int f2fs_xattr_fiemap(struct inode *inode,
1762				struct fiemap_extent_info *fieinfo)
1763{
1764	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1765	struct page *page;
1766	struct node_info ni;
1767	__u64 phys = 0, len;
1768	__u32 flags;
1769	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1770	int err = 0;
1771
1772	if (f2fs_has_inline_xattr(inode)) {
1773		int offset;
1774
1775		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1776						inode->i_ino, false);
1777		if (!page)
1778			return -ENOMEM;
1779
1780		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1781		if (err) {
1782			f2fs_put_page(page, 1);
1783			return err;
1784		}
1785
1786		phys = blks_to_bytes(inode, ni.blk_addr);
1787		offset = offsetof(struct f2fs_inode, i_addr) +
1788					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1789					get_inline_xattr_addrs(inode));
1790
1791		phys += offset;
1792		len = inline_xattr_size(inode);
1793
1794		f2fs_put_page(page, 1);
1795
1796		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1797
1798		if (!xnid)
1799			flags |= FIEMAP_EXTENT_LAST;
1800
1801		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1802		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1803		if (err || err == 1)
1804			return err;
1805	}
1806
1807	if (xnid) {
1808		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1809		if (!page)
1810			return -ENOMEM;
1811
1812		err = f2fs_get_node_info(sbi, xnid, &ni);
1813		if (err) {
1814			f2fs_put_page(page, 1);
1815			return err;
1816		}
1817
1818		phys = blks_to_bytes(inode, ni.blk_addr);
1819		len = inode->i_sb->s_blocksize;
1820
1821		f2fs_put_page(page, 1);
1822
1823		flags = FIEMAP_EXTENT_LAST;
1824	}
1825
1826	if (phys) {
1827		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1828		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1829	}
1830
1831	return (err < 0 ? err : 0);
1832}
1833
1834static loff_t max_inode_blocks(struct inode *inode)
1835{
1836	loff_t result = ADDRS_PER_INODE(inode);
1837	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1838
1839	/* two direct node blocks */
1840	result += (leaf_count * 2);
1841
1842	/* two indirect node blocks */
1843	leaf_count *= NIDS_PER_BLOCK;
1844	result += (leaf_count * 2);
1845
1846	/* one double indirect node block */
1847	leaf_count *= NIDS_PER_BLOCK;
1848	result += leaf_count;
1849
1850	return result;
1851}
1852
1853int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1854		u64 start, u64 len)
1855{
1856	struct f2fs_map_blocks map;
1857	sector_t start_blk, last_blk;
1858	pgoff_t next_pgofs;
1859	u64 logical = 0, phys = 0, size = 0;
1860	u32 flags = 0;
1861	int ret = 0;
1862	bool compr_cluster = false;
1863	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1864	loff_t maxbytes;
1865
1866	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1867		ret = f2fs_precache_extents(inode);
1868		if (ret)
1869			return ret;
1870	}
1871
1872	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1873	if (ret)
1874		return ret;
1875
1876	inode_lock(inode);
1877
1878	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1879	if (start > maxbytes) {
1880		ret = -EFBIG;
1881		goto out;
1882	}
1883
1884	if (len > maxbytes || (maxbytes - len) < start)
1885		len = maxbytes - start;
1886
1887	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1888		ret = f2fs_xattr_fiemap(inode, fieinfo);
1889		goto out;
1890	}
1891
1892	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1893		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1894		if (ret != -EAGAIN)
1895			goto out;
1896	}
1897
1898	if (bytes_to_blks(inode, len) == 0)
1899		len = blks_to_bytes(inode, 1);
1900
1901	start_blk = bytes_to_blks(inode, start);
1902	last_blk = bytes_to_blks(inode, start + len - 1);
1903
1904next:
1905	memset(&map, 0, sizeof(map));
1906	map.m_lblk = start_blk;
1907	map.m_len = bytes_to_blks(inode, len);
1908	map.m_next_pgofs = &next_pgofs;
1909	map.m_seg_type = NO_CHECK_TYPE;
1910
1911	if (compr_cluster)
1912		map.m_len = cluster_size - 1;
1913
1914	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1915	if (ret)
1916		goto out;
1917
1918	/* HOLE */
1919	if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1920		start_blk = next_pgofs;
1921
1922		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1923						max_inode_blocks(inode)))
1924			goto prep_next;
1925
1926		flags |= FIEMAP_EXTENT_LAST;
1927	}
1928
1929	if (size) {
1930		flags |= FIEMAP_EXTENT_MERGED;
1931		if (IS_ENCRYPTED(inode))
1932			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1933
1934		ret = fiemap_fill_next_extent(fieinfo, logical,
1935				phys, size, flags);
1936		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1937		if (ret)
1938			goto out;
1939		size = 0;
1940	}
1941
1942	if (start_blk > last_blk)
1943		goto out;
1944
1945	if (compr_cluster) {
1946		compr_cluster = false;
1947
1948
1949		logical = blks_to_bytes(inode, start_blk - 1);
1950		phys = blks_to_bytes(inode, map.m_pblk);
1951		size = blks_to_bytes(inode, cluster_size);
1952
1953		flags |= FIEMAP_EXTENT_ENCODED;
1954
1955		start_blk += cluster_size - 1;
1956
1957		if (start_blk > last_blk)
1958			goto out;
1959
1960		goto prep_next;
1961	}
1962
1963	if (map.m_pblk == COMPRESS_ADDR) {
1964		compr_cluster = true;
1965		start_blk++;
1966		goto prep_next;
1967	}
1968
1969	logical = blks_to_bytes(inode, start_blk);
1970	phys = blks_to_bytes(inode, map.m_pblk);
1971	size = blks_to_bytes(inode, map.m_len);
1972	flags = 0;
1973	if (map.m_flags & F2FS_MAP_UNWRITTEN)
1974		flags = FIEMAP_EXTENT_UNWRITTEN;
1975
1976	start_blk += bytes_to_blks(inode, size);
1977
1978prep_next:
1979	cond_resched();
1980	if (fatal_signal_pending(current))
1981		ret = -EINTR;
1982	else
1983		goto next;
1984out:
1985	if (ret == 1)
1986		ret = 0;
1987
1988	inode_unlock(inode);
1989	return ret;
1990}
1991
1992static inline loff_t f2fs_readpage_limit(struct inode *inode)
1993{
1994	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1995	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1996		return inode->i_sb->s_maxbytes;
1997
1998	return i_size_read(inode);
1999}
2000
2001static int f2fs_read_single_page(struct inode *inode, struct page *page,
2002					unsigned nr_pages,
2003					struct f2fs_map_blocks *map,
2004					struct bio **bio_ret,
2005					sector_t *last_block_in_bio,
2006					bool is_readahead)
2007{
2008	struct bio *bio = *bio_ret;
2009	const unsigned blocksize = blks_to_bytes(inode, 1);
2010	sector_t block_in_file;
2011	sector_t last_block;
2012	sector_t last_block_in_file;
2013	sector_t block_nr;
2014	int ret = 0;
2015
2016	block_in_file = (sector_t)page_index(page);
2017	last_block = block_in_file + nr_pages;
2018	last_block_in_file = bytes_to_blks(inode,
2019			f2fs_readpage_limit(inode) + blocksize - 1);
2020	if (last_block > last_block_in_file)
2021		last_block = last_block_in_file;
2022
2023	/* just zeroing out page which is beyond EOF */
2024	if (block_in_file >= last_block)
2025		goto zero_out;
2026	/*
2027	 * Map blocks using the previous result first.
2028	 */
2029	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2030			block_in_file > map->m_lblk &&
2031			block_in_file < (map->m_lblk + map->m_len))
2032		goto got_it;
2033
2034	/*
2035	 * Then do more f2fs_map_blocks() calls until we are
2036	 * done with this page.
2037	 */
2038	map->m_lblk = block_in_file;
2039	map->m_len = last_block - block_in_file;
2040
2041	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2042	if (ret)
2043		goto out;
2044got_it:
2045	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2046		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2047		SetPageMappedToDisk(page);
2048
2049		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2050					!cleancache_get_page(page))) {
2051			SetPageUptodate(page);
2052			goto confused;
2053		}
2054
2055		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2056						DATA_GENERIC_ENHANCE_READ)) {
2057			ret = -EFSCORRUPTED;
2058			goto out;
2059		}
2060	} else {
2061zero_out:
2062		zero_user_segment(page, 0, PAGE_SIZE);
2063		if (f2fs_need_verity(inode, page->index) &&
2064		    !fsverity_verify_page(page)) {
2065			ret = -EIO;
2066			goto out;
2067		}
2068		if (!PageUptodate(page))
2069			SetPageUptodate(page);
2070		unlock_page(page);
2071		goto out;
2072	}
2073
2074	/*
2075	 * This page will go to BIO.  Do we need to send this
2076	 * BIO off first?
2077	 */
2078	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2079				       *last_block_in_bio, block_nr) ||
2080		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2081submit_and_realloc:
2082		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2083		bio = NULL;
2084	}
2085	if (bio == NULL) {
2086		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2087				is_readahead ? REQ_RAHEAD : 0, page->index,
2088				false);
2089		if (IS_ERR(bio)) {
2090			ret = PTR_ERR(bio);
2091			bio = NULL;
2092			goto out;
2093		}
2094	}
2095
2096	/*
2097	 * If the page is under writeback, we need to wait for
2098	 * its completion to see the correct decrypted data.
2099	 */
2100	f2fs_wait_on_block_writeback(inode, block_nr);
2101
2102	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2103		goto submit_and_realloc;
2104
2105	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2106	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2107	ClearPageError(page);
2108	*last_block_in_bio = block_nr;
2109	goto out;
2110confused:
2111	if (bio) {
2112		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2113		bio = NULL;
2114	}
2115	unlock_page(page);
2116out:
2117	*bio_ret = bio;
2118	return ret;
2119}
2120
2121#ifdef CONFIG_F2FS_FS_COMPRESSION
2122int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2123				unsigned nr_pages, sector_t *last_block_in_bio,
2124				bool is_readahead, bool for_write)
2125{
2126	struct dnode_of_data dn;
2127	struct inode *inode = cc->inode;
2128	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2129	struct bio *bio = *bio_ret;
2130	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2131	sector_t last_block_in_file;
2132	const unsigned blocksize = blks_to_bytes(inode, 1);
2133	struct decompress_io_ctx *dic = NULL;
2134	int i;
2135	int ret = 0;
2136
2137	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2138
2139	last_block_in_file = bytes_to_blks(inode,
2140			f2fs_readpage_limit(inode) + blocksize - 1);
2141
2142	/* get rid of pages beyond EOF */
2143	for (i = 0; i < cc->cluster_size; i++) {
2144		struct page *page = cc->rpages[i];
2145
2146		if (!page)
2147			continue;
2148		if ((sector_t)page->index >= last_block_in_file) {
2149			zero_user_segment(page, 0, PAGE_SIZE);
2150			if (!PageUptodate(page))
2151				SetPageUptodate(page);
2152		} else if (!PageUptodate(page)) {
2153			continue;
2154		}
2155		unlock_page(page);
2156		if (for_write)
2157			put_page(page);
2158		cc->rpages[i] = NULL;
2159		cc->nr_rpages--;
2160	}
2161
2162	/* we are done since all pages are beyond EOF */
2163	if (f2fs_cluster_is_empty(cc))
2164		goto out;
2165
2166	set_new_dnode(&dn, inode, NULL, NULL, 0);
2167	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2168	if (ret)
2169		goto out;
2170
2171	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2172
2173	for (i = 1; i < cc->cluster_size; i++) {
2174		block_t blkaddr;
2175
2176		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2177						dn.ofs_in_node + i);
2178
2179		if (!__is_valid_data_blkaddr(blkaddr))
2180			break;
2181
2182		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2183			ret = -EFAULT;
2184			goto out_put_dnode;
2185		}
2186		cc->nr_cpages++;
2187	}
2188
2189	/* nothing to decompress */
2190	if (cc->nr_cpages == 0) {
2191		ret = 0;
2192		goto out_put_dnode;
2193	}
2194
2195	dic = f2fs_alloc_dic(cc);
2196	if (IS_ERR(dic)) {
2197		ret = PTR_ERR(dic);
2198		goto out_put_dnode;
2199	}
2200
2201	for (i = 0; i < cc->nr_cpages; i++) {
2202		struct page *page = dic->cpages[i];
2203		block_t blkaddr;
2204		struct bio_post_read_ctx *ctx;
2205
2206		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2207						dn.ofs_in_node + i + 1);
2208
2209		f2fs_wait_on_block_writeback(inode, blkaddr);
2210
2211		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2212			if (atomic_dec_and_test(&dic->remaining_pages))
2213				f2fs_decompress_cluster(dic);
2214			continue;
2215		}
2216
2217		if (bio && (!page_is_mergeable(sbi, bio,
2218					*last_block_in_bio, blkaddr) ||
2219		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2220submit_and_realloc:
2221			__submit_bio(sbi, bio, DATA);
2222			bio = NULL;
2223		}
2224
2225		if (!bio) {
2226			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2227					is_readahead ? REQ_RAHEAD : 0,
2228					page->index, for_write);
2229			if (IS_ERR(bio)) {
2230				ret = PTR_ERR(bio);
2231				f2fs_decompress_end_io(dic, ret);
2232				f2fs_put_dnode(&dn);
2233				*bio_ret = NULL;
2234				return ret;
2235			}
2236		}
2237
2238		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2239			goto submit_and_realloc;
2240
2241		ctx = bio->bi_private;
2242		ctx->enabled_steps |= STEP_DECOMPRESS;
2243		refcount_inc(&dic->refcnt);
2244
2245		inc_page_count(sbi, F2FS_RD_DATA);
2246		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2247		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2248		ClearPageError(page);
2249		*last_block_in_bio = blkaddr;
2250	}
2251
2252	f2fs_put_dnode(&dn);
2253
2254	*bio_ret = bio;
2255	return 0;
2256
2257out_put_dnode:
2258	f2fs_put_dnode(&dn);
2259out:
2260	for (i = 0; i < cc->cluster_size; i++) {
2261		if (cc->rpages[i]) {
2262			ClearPageUptodate(cc->rpages[i]);
2263			ClearPageError(cc->rpages[i]);
2264			unlock_page(cc->rpages[i]);
2265		}
2266	}
2267	*bio_ret = bio;
2268	return ret;
2269}
2270#endif
2271
2272/*
2273 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2274 * Major change was from block_size == page_size in f2fs by default.
2275 */
2276static int f2fs_mpage_readpages(struct inode *inode,
2277		struct readahead_control *rac, struct page *page)
2278{
2279	struct bio *bio = NULL;
2280	sector_t last_block_in_bio = 0;
2281	struct f2fs_map_blocks map;
2282#ifdef CONFIG_F2FS_FS_COMPRESSION
2283	struct compress_ctx cc = {
2284		.inode = inode,
2285		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2286		.cluster_size = F2FS_I(inode)->i_cluster_size,
2287		.cluster_idx = NULL_CLUSTER,
2288		.rpages = NULL,
2289		.cpages = NULL,
2290		.nr_rpages = 0,
2291		.nr_cpages = 0,
2292	};
2293#endif
2294	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2295	unsigned max_nr_pages = nr_pages;
2296	int ret = 0;
2297
2298	map.m_pblk = 0;
2299	map.m_lblk = 0;
2300	map.m_len = 0;
2301	map.m_flags = 0;
2302	map.m_next_pgofs = NULL;
2303	map.m_next_extent = NULL;
2304	map.m_seg_type = NO_CHECK_TYPE;
2305	map.m_may_create = false;
2306
2307	for (; nr_pages; nr_pages--) {
2308		if (rac) {
2309			page = readahead_page(rac);
2310			prefetchw(&page->flags);
2311		}
2312
2313#ifdef CONFIG_F2FS_FS_COMPRESSION
2314		if (f2fs_compressed_file(inode)) {
2315			/* there are remained comressed pages, submit them */
2316			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2317				ret = f2fs_read_multi_pages(&cc, &bio,
2318							max_nr_pages,
2319							&last_block_in_bio,
2320							rac != NULL, false);
2321				f2fs_destroy_compress_ctx(&cc, false);
2322				if (ret)
2323					goto set_error_page;
2324			}
2325			ret = f2fs_is_compressed_cluster(inode, page->index);
2326			if (ret < 0)
2327				goto set_error_page;
2328			else if (!ret)
2329				goto read_single_page;
2330
2331			ret = f2fs_init_compress_ctx(&cc);
2332			if (ret)
2333				goto set_error_page;
2334
2335			f2fs_compress_ctx_add_page(&cc, page);
2336
2337			goto next_page;
2338		}
2339read_single_page:
2340#endif
2341
2342		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2343					&bio, &last_block_in_bio, rac);
2344		if (ret) {
2345#ifdef CONFIG_F2FS_FS_COMPRESSION
2346set_error_page:
2347#endif
2348			SetPageError(page);
2349			zero_user_segment(page, 0, PAGE_SIZE);
2350			unlock_page(page);
2351		}
2352#ifdef CONFIG_F2FS_FS_COMPRESSION
2353next_page:
2354#endif
2355		if (rac)
2356			put_page(page);
2357
2358#ifdef CONFIG_F2FS_FS_COMPRESSION
2359		if (f2fs_compressed_file(inode)) {
2360			/* last page */
2361			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2362				ret = f2fs_read_multi_pages(&cc, &bio,
2363							max_nr_pages,
2364							&last_block_in_bio,
2365							rac != NULL, false);
2366				f2fs_destroy_compress_ctx(&cc, false);
2367			}
2368		}
2369#endif
2370	}
2371	if (bio)
2372		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2373	return ret;
2374}
2375
2376static int f2fs_read_data_page(struct file *file, struct page *page)
2377{
2378	struct inode *inode = page_file_mapping(page)->host;
2379	int ret = -EAGAIN;
2380
2381	trace_f2fs_readpage(page, DATA);
2382
2383	if (!f2fs_is_compress_backend_ready(inode)) {
2384		unlock_page(page);
2385		return -EOPNOTSUPP;
2386	}
2387
2388	/* If the file has inline data, try to read it directly */
2389	if (f2fs_has_inline_data(inode))
2390		ret = f2fs_read_inline_data(inode, page);
2391	if (ret == -EAGAIN)
2392		ret = f2fs_mpage_readpages(inode, NULL, page);
2393	return ret;
2394}
2395
2396static void f2fs_readahead(struct readahead_control *rac)
2397{
2398	struct inode *inode = rac->mapping->host;
2399
2400	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2401
2402	if (!f2fs_is_compress_backend_ready(inode))
2403		return;
2404
2405	/* If the file has inline data, skip readpages */
2406	if (f2fs_has_inline_data(inode))
2407		return;
2408
2409	f2fs_mpage_readpages(inode, rac, NULL);
2410}
2411
2412int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2413{
2414	struct inode *inode = fio->page->mapping->host;
2415	struct page *mpage, *page;
2416	gfp_t gfp_flags = GFP_NOFS;
2417
2418	if (!f2fs_encrypted_file(inode))
2419		return 0;
2420
2421	page = fio->compressed_page ? fio->compressed_page : fio->page;
2422
2423	/* wait for GCed page writeback via META_MAPPING */
2424	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2425
2426	if (fscrypt_inode_uses_inline_crypto(inode))
2427		return 0;
2428
2429retry_encrypt:
2430	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2431					PAGE_SIZE, 0, gfp_flags);
2432	if (IS_ERR(fio->encrypted_page)) {
2433		/* flush pending IOs and wait for a while in the ENOMEM case */
2434		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2435			f2fs_flush_merged_writes(fio->sbi);
2436			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2437			gfp_flags |= __GFP_NOFAIL;
2438			goto retry_encrypt;
2439		}
2440		return PTR_ERR(fio->encrypted_page);
2441	}
2442
2443	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2444	if (mpage) {
2445		if (PageUptodate(mpage))
2446			memcpy(page_address(mpage),
2447				page_address(fio->encrypted_page), PAGE_SIZE);
2448		f2fs_put_page(mpage, 1);
2449	}
2450	return 0;
2451}
2452
2453static inline bool check_inplace_update_policy(struct inode *inode,
2454				struct f2fs_io_info *fio)
2455{
2456	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2457	unsigned int policy = SM_I(sbi)->ipu_policy;
2458
2459	if (policy & (0x1 << F2FS_IPU_FORCE))
2460		return true;
2461	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2462		return true;
2463	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2464			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2465		return true;
2466	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2467			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2468		return true;
2469
2470	/*
2471	 * IPU for rewrite async pages
2472	 */
2473	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2474			fio && fio->op == REQ_OP_WRITE &&
2475			!(fio->op_flags & REQ_SYNC) &&
2476			!IS_ENCRYPTED(inode))
2477		return true;
2478
2479	/* this is only set during fdatasync */
2480	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2481			is_inode_flag_set(inode, FI_NEED_IPU))
2482		return true;
2483
2484	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2485			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2486		return true;
2487
2488	return false;
2489}
2490
2491bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2492{
2493	/* swap file is migrating in aligned write mode */
2494	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2495		return false;
2496
2497	if (f2fs_is_pinned_file(inode))
2498		return true;
2499
2500	/* if this is cold file, we should overwrite to avoid fragmentation */
2501	if (file_is_cold(inode))
2502		return true;
2503
2504	return check_inplace_update_policy(inode, fio);
2505}
2506
2507bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2508{
2509	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2510
2511	if (f2fs_lfs_mode(sbi))
2512		return true;
2513	if (S_ISDIR(inode->i_mode))
2514		return true;
2515	if (IS_NOQUOTA(inode))
2516		return true;
2517	if (f2fs_is_atomic_file(inode))
2518		return true;
2519	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2520		return true;
2521
2522	/* swap file is migrating in aligned write mode */
2523	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2524		return true;
2525
2526	if (fio) {
2527		if (page_private_gcing(fio->page))
2528			return true;
2529		if (page_private_dummy(fio->page))
2530			return true;
2531		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2532			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2533			return true;
2534	}
2535	return false;
2536}
2537
2538static inline bool need_inplace_update(struct f2fs_io_info *fio)
2539{
2540	struct inode *inode = fio->page->mapping->host;
2541
2542	if (f2fs_should_update_outplace(inode, fio))
2543		return false;
2544
2545	return f2fs_should_update_inplace(inode, fio);
2546}
2547
2548int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2549{
2550	struct page *page = fio->page;
2551	struct inode *inode = page->mapping->host;
2552	struct dnode_of_data dn;
2553	struct extent_info ei = {0,0,0};
2554	struct node_info ni;
2555	bool ipu_force = false;
2556	int err = 0;
2557
2558	set_new_dnode(&dn, inode, NULL, NULL, 0);
2559	if (need_inplace_update(fio) &&
2560			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2561		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2562
2563		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2564						DATA_GENERIC_ENHANCE))
2565			return -EFSCORRUPTED;
2566
2567		ipu_force = true;
2568		fio->need_lock = LOCK_DONE;
2569		goto got_it;
2570	}
2571
2572	/* Deadlock due to between page->lock and f2fs_lock_op */
2573	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2574		return -EAGAIN;
2575
2576	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2577	if (err)
2578		goto out;
2579
2580	fio->old_blkaddr = dn.data_blkaddr;
2581
2582	/* This page is already truncated */
2583	if (fio->old_blkaddr == NULL_ADDR) {
2584		ClearPageUptodate(page);
2585		clear_page_private_gcing(page);
2586		goto out_writepage;
2587	}
2588got_it:
2589	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2590		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2591						DATA_GENERIC_ENHANCE)) {
2592		err = -EFSCORRUPTED;
2593		goto out_writepage;
2594	}
2595	/*
2596	 * If current allocation needs SSR,
2597	 * it had better in-place writes for updated data.
2598	 */
2599	if (ipu_force ||
2600		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2601					need_inplace_update(fio))) {
2602		err = f2fs_encrypt_one_page(fio);
2603		if (err)
2604			goto out_writepage;
2605
2606		set_page_writeback(page);
2607		ClearPageError(page);
2608		f2fs_put_dnode(&dn);
2609		if (fio->need_lock == LOCK_REQ)
2610			f2fs_unlock_op(fio->sbi);
2611		err = f2fs_inplace_write_data(fio);
2612		if (err) {
2613			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2614				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2615			if (PageWriteback(page))
2616				end_page_writeback(page);
2617		} else {
2618			set_inode_flag(inode, FI_UPDATE_WRITE);
2619		}
2620		trace_f2fs_do_write_data_page(fio->page, IPU);
2621		return err;
2622	}
2623
2624	if (fio->need_lock == LOCK_RETRY) {
2625		if (!f2fs_trylock_op(fio->sbi)) {
2626			err = -EAGAIN;
2627			goto out_writepage;
2628		}
2629		fio->need_lock = LOCK_REQ;
2630	}
2631
2632	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2633	if (err)
2634		goto out_writepage;
2635
2636	fio->version = ni.version;
2637
2638	err = f2fs_encrypt_one_page(fio);
2639	if (err)
2640		goto out_writepage;
2641
2642	set_page_writeback(page);
2643	ClearPageError(page);
2644
2645	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2646		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2647
2648	/* LFS mode write path */
2649	f2fs_outplace_write_data(&dn, fio);
2650	trace_f2fs_do_write_data_page(page, OPU);
2651	set_inode_flag(inode, FI_APPEND_WRITE);
2652	if (page->index == 0)
2653		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2654out_writepage:
2655	f2fs_put_dnode(&dn);
2656out:
2657	if (fio->need_lock == LOCK_REQ)
2658		f2fs_unlock_op(fio->sbi);
2659	return err;
2660}
2661
2662int f2fs_write_single_data_page(struct page *page, int *submitted,
2663				struct bio **bio,
2664				sector_t *last_block,
2665				struct writeback_control *wbc,
2666				enum iostat_type io_type,
2667				int compr_blocks,
2668				bool allow_balance)
2669{
2670	struct inode *inode = page->mapping->host;
2671	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2672	loff_t i_size = i_size_read(inode);
2673	const pgoff_t end_index = ((unsigned long long)i_size)
2674							>> PAGE_SHIFT;
2675	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2676	unsigned offset = 0;
2677	bool need_balance_fs = false;
2678	int err = 0;
2679	struct f2fs_io_info fio = {
2680		.sbi = sbi,
2681		.ino = inode->i_ino,
2682		.type = DATA,
2683		.op = REQ_OP_WRITE,
2684		.op_flags = wbc_to_write_flags(wbc),
2685		.old_blkaddr = NULL_ADDR,
2686		.page = page,
2687		.encrypted_page = NULL,
2688		.submitted = false,
2689		.compr_blocks = compr_blocks,
2690		.need_lock = LOCK_RETRY,
2691		.io_type = io_type,
2692		.io_wbc = wbc,
2693		.bio = bio,
2694		.last_block = last_block,
2695	};
2696
2697	trace_f2fs_writepage(page, DATA);
2698
2699	/* we should bypass data pages to proceed the kworkder jobs */
2700	if (unlikely(f2fs_cp_error(sbi))) {
2701		mapping_set_error(page->mapping, -EIO);
2702		/*
2703		 * don't drop any dirty dentry pages for keeping lastest
2704		 * directory structure.
2705		 */
2706		if (S_ISDIR(inode->i_mode))
2707			goto redirty_out;
2708		goto out;
2709	}
2710
2711	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2712		goto redirty_out;
2713
2714	if (page->index < end_index ||
2715			f2fs_verity_in_progress(inode) ||
2716			compr_blocks)
2717		goto write;
2718
2719	/*
2720	 * If the offset is out-of-range of file size,
2721	 * this page does not have to be written to disk.
2722	 */
2723	offset = i_size & (PAGE_SIZE - 1);
2724	if ((page->index >= end_index + 1) || !offset)
2725		goto out;
2726
2727	zero_user_segment(page, offset, PAGE_SIZE);
2728write:
2729	if (f2fs_is_drop_cache(inode))
2730		goto out;
2731	/* we should not write 0'th page having journal header */
2732	if (f2fs_is_volatile_file(inode) && (!page->index ||
2733			(!wbc->for_reclaim &&
2734			f2fs_available_free_memory(sbi, BASE_CHECK))))
2735		goto redirty_out;
2736
2737	/* Dentry/quota blocks are controlled by checkpoint */
2738	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2739		/*
2740		 * We need to wait for node_write to avoid block allocation during
2741		 * checkpoint. This can only happen to quota writes which can cause
2742		 * the below discard race condition.
2743		 */
2744		if (IS_NOQUOTA(inode))
2745			down_read(&sbi->node_write);
2746
2747		fio.need_lock = LOCK_DONE;
2748		err = f2fs_do_write_data_page(&fio);
2749
2750		if (IS_NOQUOTA(inode))
2751			up_read(&sbi->node_write);
2752
2753		goto done;
2754	}
2755
2756	if (!wbc->for_reclaim)
2757		need_balance_fs = true;
2758	else if (has_not_enough_free_secs(sbi, 0, 0))
2759		goto redirty_out;
2760	else
2761		set_inode_flag(inode, FI_HOT_DATA);
2762
2763	err = -EAGAIN;
2764	if (f2fs_has_inline_data(inode)) {
2765		err = f2fs_write_inline_data(inode, page);
2766		if (!err)
2767			goto out;
2768	}
2769
2770	if (err == -EAGAIN) {
2771		err = f2fs_do_write_data_page(&fio);
2772		if (err == -EAGAIN) {
2773			fio.need_lock = LOCK_REQ;
2774			err = f2fs_do_write_data_page(&fio);
2775		}
2776	}
2777
2778	if (err) {
2779		file_set_keep_isize(inode);
2780	} else {
2781		spin_lock(&F2FS_I(inode)->i_size_lock);
2782		if (F2FS_I(inode)->last_disk_size < psize)
2783			F2FS_I(inode)->last_disk_size = psize;
2784		spin_unlock(&F2FS_I(inode)->i_size_lock);
2785	}
2786
2787done:
2788	if (err && err != -ENOENT)
2789		goto redirty_out;
2790
2791out:
2792	inode_dec_dirty_pages(inode);
2793	if (err) {
2794		ClearPageUptodate(page);
2795		clear_page_private_gcing(page);
2796	}
2797
2798	if (wbc->for_reclaim) {
2799		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2800		clear_inode_flag(inode, FI_HOT_DATA);
2801		f2fs_remove_dirty_inode(inode);
2802		submitted = NULL;
2803	}
2804	unlock_page(page);
2805	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2806			!F2FS_I(inode)->cp_task && allow_balance)
2807		f2fs_balance_fs(sbi, need_balance_fs);
2808
2809	if (unlikely(f2fs_cp_error(sbi))) {
2810		f2fs_submit_merged_write(sbi, DATA);
2811		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2812		submitted = NULL;
2813	}
2814
2815	if (submitted)
2816		*submitted = fio.submitted ? 1 : 0;
2817
2818	return 0;
2819
2820redirty_out:
2821	redirty_page_for_writepage(wbc, page);
2822	/*
2823	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2824	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2825	 * file_write_and_wait_range() will see EIO error, which is critical
2826	 * to return value of fsync() followed by atomic_write failure to user.
2827	 */
2828	if (!err || wbc->for_reclaim)
2829		return AOP_WRITEPAGE_ACTIVATE;
2830	unlock_page(page);
2831	return err;
2832}
2833
2834static int f2fs_write_data_page(struct page *page,
2835					struct writeback_control *wbc)
2836{
2837#ifdef CONFIG_F2FS_FS_COMPRESSION
2838	struct inode *inode = page->mapping->host;
2839
2840	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2841		goto out;
2842
2843	if (f2fs_compressed_file(inode)) {
2844		if (f2fs_is_compressed_cluster(inode, page->index)) {
2845			redirty_page_for_writepage(wbc, page);
2846			return AOP_WRITEPAGE_ACTIVATE;
2847		}
2848	}
2849out:
2850#endif
2851
2852	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2853						wbc, FS_DATA_IO, 0, true);
2854}
2855
2856/*
2857 * This function was copied from write_cche_pages from mm/page-writeback.c.
2858 * The major change is making write step of cold data page separately from
2859 * warm/hot data page.
2860 */
2861static int f2fs_write_cache_pages(struct address_space *mapping,
2862					struct writeback_control *wbc,
2863					enum iostat_type io_type)
2864{
2865	int ret = 0;
2866	int done = 0, retry = 0;
2867	struct pagevec pvec;
2868	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2869	struct bio *bio = NULL;
2870	sector_t last_block;
2871#ifdef CONFIG_F2FS_FS_COMPRESSION
2872	struct inode *inode = mapping->host;
2873	struct compress_ctx cc = {
2874		.inode = inode,
2875		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2876		.cluster_size = F2FS_I(inode)->i_cluster_size,
2877		.cluster_idx = NULL_CLUSTER,
2878		.rpages = NULL,
2879		.nr_rpages = 0,
2880		.cpages = NULL,
2881		.rbuf = NULL,
2882		.cbuf = NULL,
2883		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2884		.private = NULL,
2885	};
2886#endif
2887	int nr_pages;
2888	pgoff_t index;
2889	pgoff_t end;		/* Inclusive */
2890	pgoff_t done_index;
2891	int range_whole = 0;
2892	xa_mark_t tag;
2893	int nwritten = 0;
2894	int submitted = 0;
2895	int i;
2896
2897	pagevec_init(&pvec);
2898
2899	if (get_dirty_pages(mapping->host) <=
2900				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2901		set_inode_flag(mapping->host, FI_HOT_DATA);
2902	else
2903		clear_inode_flag(mapping->host, FI_HOT_DATA);
2904
2905	if (wbc->range_cyclic) {
2906		index = mapping->writeback_index; /* prev offset */
2907		end = -1;
2908	} else {
2909		index = wbc->range_start >> PAGE_SHIFT;
2910		end = wbc->range_end >> PAGE_SHIFT;
2911		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2912			range_whole = 1;
2913	}
2914	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2915		tag = PAGECACHE_TAG_TOWRITE;
2916	else
2917		tag = PAGECACHE_TAG_DIRTY;
2918retry:
2919	retry = 0;
2920	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2921		tag_pages_for_writeback(mapping, index, end);
2922	done_index = index;
2923	while (!done && !retry && (index <= end)) {
2924		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2925				tag);
2926		if (nr_pages == 0)
2927			break;
2928
2929		for (i = 0; i < nr_pages; i++) {
2930			struct page *page = pvec.pages[i];
2931			bool need_readd;
2932readd:
2933			need_readd = false;
2934#ifdef CONFIG_F2FS_FS_COMPRESSION
2935			if (f2fs_compressed_file(inode)) {
2936				ret = f2fs_init_compress_ctx(&cc);
2937				if (ret) {
2938					done = 1;
2939					break;
2940				}
2941
2942				if (!f2fs_cluster_can_merge_page(&cc,
2943								page->index)) {
2944					ret = f2fs_write_multi_pages(&cc,
2945						&submitted, wbc, io_type);
2946					if (!ret)
2947						need_readd = true;
2948					goto result;
2949				}
2950
2951				if (unlikely(f2fs_cp_error(sbi)))
2952					goto lock_page;
2953
2954				if (f2fs_cluster_is_empty(&cc)) {
2955					void *fsdata = NULL;
2956					struct page *pagep;
2957					int ret2;
2958
2959					ret2 = f2fs_prepare_compress_overwrite(
2960							inode, &pagep,
2961							page->index, &fsdata);
2962					if (ret2 < 0) {
2963						ret = ret2;
2964						done = 1;
2965						break;
2966					} else if (ret2 &&
2967						!f2fs_compress_write_end(inode,
2968								fsdata, page->index,
2969								1)) {
2970						retry = 1;
2971						break;
2972					}
2973				} else {
2974					goto lock_page;
2975				}
2976			}
2977#endif
2978			/* give a priority to WB_SYNC threads */
2979			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2980					wbc->sync_mode == WB_SYNC_NONE) {
2981				done = 1;
2982				break;
2983			}
2984#ifdef CONFIG_F2FS_FS_COMPRESSION
2985lock_page:
2986#endif
2987			done_index = page->index;
2988retry_write:
2989			lock_page(page);
2990
2991			if (unlikely(page->mapping != mapping)) {
2992continue_unlock:
2993				unlock_page(page);
2994				continue;
2995			}
2996
2997			if (!PageDirty(page)) {
2998				/* someone wrote it for us */
2999				goto continue_unlock;
3000			}
3001
3002			if (PageWriteback(page)) {
3003				if (wbc->sync_mode != WB_SYNC_NONE)
3004					f2fs_wait_on_page_writeback(page,
3005							DATA, true, true);
3006				else
3007					goto continue_unlock;
3008			}
3009
3010			if (!clear_page_dirty_for_io(page))
3011				goto continue_unlock;
3012
3013#ifdef CONFIG_F2FS_FS_COMPRESSION
3014			if (f2fs_compressed_file(inode)) {
3015				get_page(page);
3016				f2fs_compress_ctx_add_page(&cc, page);
3017				continue;
3018			}
3019#endif
3020			ret = f2fs_write_single_data_page(page, &submitted,
3021					&bio, &last_block, wbc, io_type,
3022					0, true);
3023			if (ret == AOP_WRITEPAGE_ACTIVATE)
3024				unlock_page(page);
3025#ifdef CONFIG_F2FS_FS_COMPRESSION
3026result:
3027#endif
3028			nwritten += submitted;
3029			wbc->nr_to_write -= submitted;
3030
3031			if (unlikely(ret)) {
3032				/*
3033				 * keep nr_to_write, since vfs uses this to
3034				 * get # of written pages.
3035				 */
3036				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3037					ret = 0;
3038					goto next;
3039				} else if (ret == -EAGAIN) {
3040					ret = 0;
3041					if (wbc->sync_mode == WB_SYNC_ALL) {
3042						cond_resched();
3043						congestion_wait(BLK_RW_ASYNC,
3044							DEFAULT_IO_TIMEOUT);
3045						goto retry_write;
3046					}
3047					goto next;
3048				}
3049				done_index = page->index + 1;
3050				done = 1;
3051				break;
3052			}
3053
3054			if (wbc->nr_to_write <= 0 &&
3055					wbc->sync_mode == WB_SYNC_NONE) {
3056				done = 1;
3057				break;
3058			}
3059next:
3060			if (need_readd)
3061				goto readd;
3062		}
3063		pagevec_release(&pvec);
3064		cond_resched();
3065	}
3066#ifdef CONFIG_F2FS_FS_COMPRESSION
3067	/* flush remained pages in compress cluster */
3068	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3069		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3070		nwritten += submitted;
3071		wbc->nr_to_write -= submitted;
3072		if (ret) {
3073			done = 1;
3074			retry = 0;
3075		}
3076	}
3077	if (f2fs_compressed_file(inode))
3078		f2fs_destroy_compress_ctx(&cc, false);
3079#endif
3080	if (retry) {
3081		index = 0;
3082		end = -1;
3083		goto retry;
3084	}
3085	if (wbc->range_cyclic && !done)
3086		done_index = 0;
3087	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3088		mapping->writeback_index = done_index;
3089
3090	if (nwritten)
3091		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3092								NULL, 0, DATA);
3093	/* submit cached bio of IPU write */
3094	if (bio)
3095		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3096
3097	return ret;
3098}
3099
3100static inline bool __should_serialize_io(struct inode *inode,
3101					struct writeback_control *wbc)
3102{
3103	/* to avoid deadlock in path of data flush */
3104	if (F2FS_I(inode)->cp_task)
3105		return false;
3106
3107	if (!S_ISREG(inode->i_mode))
3108		return false;
3109	if (IS_NOQUOTA(inode))
3110		return false;
3111
3112	if (f2fs_need_compress_data(inode))
3113		return true;
3114	if (wbc->sync_mode != WB_SYNC_ALL)
3115		return true;
3116	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3117		return true;
3118	return false;
3119}
3120
3121static int __f2fs_write_data_pages(struct address_space *mapping,
3122						struct writeback_control *wbc,
3123						enum iostat_type io_type)
3124{
3125	struct inode *inode = mapping->host;
3126	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3127	struct blk_plug plug;
3128	int ret;
3129	bool locked = false;
3130
3131	/* deal with chardevs and other special file */
3132	if (!mapping->a_ops->writepage)
3133		return 0;
3134
3135	/* skip writing if there is no dirty page in this inode */
3136	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3137		return 0;
3138
3139	/* during POR, we don't need to trigger writepage at all. */
3140	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3141		goto skip_write;
3142
3143	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3144			wbc->sync_mode == WB_SYNC_NONE &&
3145			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3146			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3147		goto skip_write;
3148
3149	/* skip writing during file defragment */
3150	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3151		goto skip_write;
3152
3153	trace_f2fs_writepages(mapping->host, wbc, DATA);
3154
3155	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3156	if (wbc->sync_mode == WB_SYNC_ALL)
3157		atomic_inc(&sbi->wb_sync_req[DATA]);
3158	else if (atomic_read(&sbi->wb_sync_req[DATA]))
3159		goto skip_write;
3160
3161	if (__should_serialize_io(inode, wbc)) {
3162		mutex_lock(&sbi->writepages);
3163		locked = true;
3164	}
3165
3166	blk_start_plug(&plug);
3167	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3168	blk_finish_plug(&plug);
3169
3170	if (locked)
3171		mutex_unlock(&sbi->writepages);
3172
3173	if (wbc->sync_mode == WB_SYNC_ALL)
3174		atomic_dec(&sbi->wb_sync_req[DATA]);
3175	/*
3176	 * if some pages were truncated, we cannot guarantee its mapping->host
3177	 * to detect pending bios.
3178	 */
3179
3180	f2fs_remove_dirty_inode(inode);
3181	return ret;
3182
3183skip_write:
3184	wbc->pages_skipped += get_dirty_pages(inode);
3185	trace_f2fs_writepages(mapping->host, wbc, DATA);
3186	return 0;
3187}
3188
3189static int f2fs_write_data_pages(struct address_space *mapping,
3190			    struct writeback_control *wbc)
3191{
3192	struct inode *inode = mapping->host;
3193
3194	return __f2fs_write_data_pages(mapping, wbc,
3195			F2FS_I(inode)->cp_task == current ?
3196			FS_CP_DATA_IO : FS_DATA_IO);
3197}
3198
3199static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3200{
3201	struct inode *inode = mapping->host;
3202	loff_t i_size = i_size_read(inode);
3203
3204	if (IS_NOQUOTA(inode))
3205		return;
3206
3207	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3208	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3209		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3210		down_write(&F2FS_I(inode)->i_mmap_sem);
3211
3212		truncate_pagecache(inode, i_size);
3213		f2fs_truncate_blocks(inode, i_size, true);
3214
3215		up_write(&F2FS_I(inode)->i_mmap_sem);
3216		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3217	}
3218}
3219
3220static int prepare_write_begin(struct f2fs_sb_info *sbi,
3221			struct page *page, loff_t pos, unsigned len,
3222			block_t *blk_addr, bool *node_changed)
3223{
3224	struct inode *inode = page->mapping->host;
3225	pgoff_t index = page->index;
3226	struct dnode_of_data dn;
3227	struct page *ipage;
3228	bool locked = false;
3229	struct extent_info ei = {0,0,0};
3230	int err = 0;
3231	int flag;
3232
3233	/*
3234	 * we already allocated all the blocks, so we don't need to get
3235	 * the block addresses when there is no need to fill the page.
3236	 */
3237	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3238	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3239	    !f2fs_verity_in_progress(inode))
3240		return 0;
3241
3242	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3243	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3244		flag = F2FS_GET_BLOCK_DEFAULT;
3245	else
3246		flag = F2FS_GET_BLOCK_PRE_AIO;
3247
3248	if (f2fs_has_inline_data(inode) ||
3249			(pos & PAGE_MASK) >= i_size_read(inode)) {
3250		f2fs_do_map_lock(sbi, flag, true);
3251		locked = true;
3252	}
3253
3254restart:
3255	/* check inline_data */
3256	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3257	if (IS_ERR(ipage)) {
3258		err = PTR_ERR(ipage);
3259		goto unlock_out;
3260	}
3261
3262	set_new_dnode(&dn, inode, ipage, ipage, 0);
3263
3264	if (f2fs_has_inline_data(inode)) {
3265		if (pos + len <= MAX_INLINE_DATA(inode)) {
3266			f2fs_do_read_inline_data(page, ipage);
3267			set_inode_flag(inode, FI_DATA_EXIST);
3268			if (inode->i_nlink)
3269				set_page_private_inline(ipage);
3270		} else {
3271			err = f2fs_convert_inline_page(&dn, page);
3272			if (err)
3273				goto out;
3274			if (dn.data_blkaddr == NULL_ADDR)
3275				err = f2fs_get_block(&dn, index);
3276		}
3277	} else if (locked) {
3278		err = f2fs_get_block(&dn, index);
3279	} else {
3280		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3281			dn.data_blkaddr = ei.blk + index - ei.fofs;
3282		} else {
3283			/* hole case */
3284			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3285			if (err || dn.data_blkaddr == NULL_ADDR) {
3286				f2fs_put_dnode(&dn);
3287				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3288								true);
3289				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3290				locked = true;
3291				goto restart;
3292			}
3293		}
3294	}
3295
3296	/* convert_inline_page can make node_changed */
3297	*blk_addr = dn.data_blkaddr;
3298	*node_changed = dn.node_changed;
3299out:
3300	f2fs_put_dnode(&dn);
3301unlock_out:
3302	if (locked)
3303		f2fs_do_map_lock(sbi, flag, false);
3304	return err;
3305}
3306
3307static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3308		loff_t pos, unsigned len, unsigned flags,
3309		struct page **pagep, void **fsdata)
3310{
3311	struct inode *inode = mapping->host;
3312	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3313	struct page *page = NULL;
3314	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3315	bool need_balance = false, drop_atomic = false;
3316	block_t blkaddr = NULL_ADDR;
3317	int err = 0;
3318
3319	trace_f2fs_write_begin(inode, pos, len, flags);
3320
3321	if (!f2fs_is_checkpoint_ready(sbi)) {
3322		err = -ENOSPC;
3323		goto fail;
3324	}
3325
3326	if ((f2fs_is_atomic_file(inode) &&
3327			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3328			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3329		err = -ENOMEM;
3330		drop_atomic = true;
3331		goto fail;
3332	}
3333
3334	/*
3335	 * We should check this at this moment to avoid deadlock on inode page
3336	 * and #0 page. The locking rule for inline_data conversion should be:
3337	 * lock_page(page #0) -> lock_page(inode_page)
3338	 */
3339	if (index != 0) {
3340		err = f2fs_convert_inline_inode(inode);
3341		if (err)
3342			goto fail;
3343	}
3344
3345#ifdef CONFIG_F2FS_FS_COMPRESSION
3346	if (f2fs_compressed_file(inode)) {
3347		int ret;
3348
3349		*fsdata = NULL;
3350
3351		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3352							index, fsdata);
3353		if (ret < 0) {
3354			err = ret;
3355			goto fail;
3356		} else if (ret) {
3357			return 0;
3358		}
3359	}
3360#endif
3361
3362repeat:
3363	/*
3364	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3365	 * wait_for_stable_page. Will wait that below with our IO control.
3366	 */
3367	page = f2fs_pagecache_get_page(mapping, index,
3368				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3369	if (!page) {
3370		err = -ENOMEM;
3371		goto fail;
3372	}
3373
3374	/* TODO: cluster can be compressed due to race with .writepage */
3375
3376	*pagep = page;
3377
3378	err = prepare_write_begin(sbi, page, pos, len,
3379					&blkaddr, &need_balance);
3380	if (err)
3381		goto fail;
3382
3383	if (need_balance && !IS_NOQUOTA(inode) &&
3384			has_not_enough_free_secs(sbi, 0, 0)) {
3385		unlock_page(page);
3386		f2fs_balance_fs(sbi, true);
3387		lock_page(page);
3388		if (page->mapping != mapping) {
3389			/* The page got truncated from under us */
3390			f2fs_put_page(page, 1);
3391			goto repeat;
3392		}
3393	}
3394
3395	f2fs_wait_on_page_writeback(page, DATA, false, true);
3396
3397	if (len == PAGE_SIZE || PageUptodate(page))
3398		return 0;
3399
3400	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3401	    !f2fs_verity_in_progress(inode)) {
3402		zero_user_segment(page, len, PAGE_SIZE);
3403		return 0;
3404	}
3405
3406	if (blkaddr == NEW_ADDR) {
3407		zero_user_segment(page, 0, PAGE_SIZE);
3408		SetPageUptodate(page);
3409	} else {
3410		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3411				DATA_GENERIC_ENHANCE_READ)) {
3412			err = -EFSCORRUPTED;
3413			goto fail;
3414		}
3415		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3416		if (err)
3417			goto fail;
3418
3419		lock_page(page);
3420		if (unlikely(page->mapping != mapping)) {
3421			f2fs_put_page(page, 1);
3422			goto repeat;
3423		}
3424		if (unlikely(!PageUptodate(page))) {
3425			err = -EIO;
3426			goto fail;
3427		}
3428	}
3429	return 0;
3430
3431fail:
3432	f2fs_put_page(page, 1);
3433	f2fs_write_failed(mapping, pos + len);
3434	if (drop_atomic)
3435		f2fs_drop_inmem_pages_all(sbi, false);
3436	return err;
3437}
3438
3439static int f2fs_write_end(struct file *file,
3440			struct address_space *mapping,
3441			loff_t pos, unsigned len, unsigned copied,
3442			struct page *page, void *fsdata)
3443{
3444	struct inode *inode = page->mapping->host;
3445
3446	trace_f2fs_write_end(inode, pos, len, copied);
3447
3448	/*
3449	 * This should be come from len == PAGE_SIZE, and we expect copied
3450	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3451	 * let generic_perform_write() try to copy data again through copied=0.
3452	 */
3453	if (!PageUptodate(page)) {
3454		if (unlikely(copied != len))
3455			copied = 0;
3456		else
3457			SetPageUptodate(page);
3458	}
3459
3460#ifdef CONFIG_F2FS_FS_COMPRESSION
3461	/* overwrite compressed file */
3462	if (f2fs_compressed_file(inode) && fsdata) {
3463		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3464		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3465
3466		if (pos + copied > i_size_read(inode) &&
3467				!f2fs_verity_in_progress(inode))
3468			f2fs_i_size_write(inode, pos + copied);
3469		return copied;
3470	}
3471#endif
3472
3473	if (!copied)
3474		goto unlock_out;
3475
3476	set_page_dirty(page);
3477
3478	if (pos + copied > i_size_read(inode) &&
3479	    !f2fs_verity_in_progress(inode))
3480		f2fs_i_size_write(inode, pos + copied);
3481unlock_out:
3482	f2fs_put_page(page, 1);
3483	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3484	return copied;
3485}
3486
3487static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3488			   loff_t offset)
3489{
3490	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3491	unsigned blkbits = i_blkbits;
3492	unsigned blocksize_mask = (1 << blkbits) - 1;
3493	unsigned long align = offset | iov_iter_alignment(iter);
3494	struct block_device *bdev = inode->i_sb->s_bdev;
3495
3496	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3497		return 1;
3498
3499	if (align & blocksize_mask) {
3500		if (bdev)
3501			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3502		blocksize_mask = (1 << blkbits) - 1;
3503		if (align & blocksize_mask)
3504			return -EINVAL;
3505		return 1;
3506	}
3507	return 0;
3508}
3509
3510static void f2fs_dio_end_io(struct bio *bio)
3511{
3512	struct f2fs_private_dio *dio = bio->bi_private;
3513
3514	dec_page_count(F2FS_I_SB(dio->inode),
3515			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3516
3517	bio->bi_private = dio->orig_private;
3518	bio->bi_end_io = dio->orig_end_io;
3519
3520	kfree(dio);
3521
3522	bio_endio(bio);
3523}
3524
3525static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3526							loff_t file_offset)
3527{
3528	struct f2fs_private_dio *dio;
3529	bool write = (bio_op(bio) == REQ_OP_WRITE);
3530
3531	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3532			sizeof(struct f2fs_private_dio), GFP_NOFS);
3533	if (!dio)
3534		goto out;
3535
3536	dio->inode = inode;
3537	dio->orig_end_io = bio->bi_end_io;
3538	dio->orig_private = bio->bi_private;
3539	dio->write = write;
3540
3541	bio->bi_end_io = f2fs_dio_end_io;
3542	bio->bi_private = dio;
3543
3544	inc_page_count(F2FS_I_SB(inode),
3545			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3546
3547	submit_bio(bio);
3548	return;
3549out:
3550	bio->bi_status = BLK_STS_IOERR;
3551	bio_endio(bio);
3552}
3553
3554static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3555{
3556	struct address_space *mapping = iocb->ki_filp->f_mapping;
3557	struct inode *inode = mapping->host;
3558	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3559	struct f2fs_inode_info *fi = F2FS_I(inode);
3560	size_t count = iov_iter_count(iter);
3561	loff_t offset = iocb->ki_pos;
3562	int rw = iov_iter_rw(iter);
3563	int err;
3564	enum rw_hint hint = iocb->ki_hint;
3565	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3566	bool do_opu;
3567
3568	err = check_direct_IO(inode, iter, offset);
3569	if (err)
3570		return err < 0 ? err : 0;
3571
3572	if (f2fs_force_buffered_io(inode, iocb, iter))
3573		return 0;
3574
3575	do_opu = allow_outplace_dio(inode, iocb, iter);
3576
3577	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3578
3579	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3580		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3581
3582	if (iocb->ki_flags & IOCB_NOWAIT) {
3583		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3584			iocb->ki_hint = hint;
3585			err = -EAGAIN;
3586			goto out;
3587		}
3588		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3589			up_read(&fi->i_gc_rwsem[rw]);
3590			iocb->ki_hint = hint;
3591			err = -EAGAIN;
3592			goto out;
3593		}
3594	} else {
3595		down_read(&fi->i_gc_rwsem[rw]);
3596		if (do_opu)
3597			down_read(&fi->i_gc_rwsem[READ]);
3598	}
3599
3600	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3601			iter, rw == WRITE ? get_data_block_dio_write :
3602			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3603			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3604			DIO_SKIP_HOLES);
3605
3606	if (do_opu)
3607		up_read(&fi->i_gc_rwsem[READ]);
3608
3609	up_read(&fi->i_gc_rwsem[rw]);
3610
3611	if (rw == WRITE) {
3612		if (whint_mode == WHINT_MODE_OFF)
3613			iocb->ki_hint = hint;
3614		if (err > 0) {
3615			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3616									err);
3617			if (!do_opu)
3618				set_inode_flag(inode, FI_UPDATE_WRITE);
3619		} else if (err == -EIOCBQUEUED) {
3620			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3621						count - iov_iter_count(iter));
3622		} else if (err < 0) {
3623			f2fs_write_failed(mapping, offset + count);
3624		}
3625	} else {
3626		if (err > 0)
3627			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3628		else if (err == -EIOCBQUEUED)
3629			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3630						count - iov_iter_count(iter));
3631	}
3632
3633out:
3634	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3635
3636	return err;
3637}
3638
3639void f2fs_invalidate_page(struct page *page, unsigned int offset,
3640							unsigned int length)
3641{
3642	struct inode *inode = page->mapping->host;
3643	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3644
3645	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3646		(offset % PAGE_SIZE || length != PAGE_SIZE))
3647		return;
3648
3649	if (PageDirty(page)) {
3650		if (inode->i_ino == F2FS_META_INO(sbi)) {
3651			dec_page_count(sbi, F2FS_DIRTY_META);
3652		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3653			dec_page_count(sbi, F2FS_DIRTY_NODES);
3654		} else {
3655			inode_dec_dirty_pages(inode);
3656			f2fs_remove_dirty_inode(inode);
3657		}
3658	}
3659
3660	clear_page_private_gcing(page);
3661
3662	if (test_opt(sbi, COMPRESS_CACHE)) {
3663		if (f2fs_compressed_file(inode))
3664			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3665		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3666			clear_page_private_data(page);
3667	}
3668
3669	if (page_private_atomic(page))
3670		return f2fs_drop_inmem_page(inode, page);
3671
3672	detach_page_private(page);
3673	set_page_private(page, 0);
3674}
3675
3676int f2fs_release_page(struct page *page, gfp_t wait)
3677{
3678	/* If this is dirty page, keep PagePrivate */
3679	if (PageDirty(page))
3680		return 0;
3681
3682	/* This is atomic written page, keep Private */
3683	if (page_private_atomic(page))
3684		return 0;
3685
3686	if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3687		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3688		struct inode *inode = page->mapping->host;
3689
3690		if (f2fs_compressed_file(inode))
3691			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3692		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3693			clear_page_private_data(page);
3694	}
3695
3696	clear_page_private_gcing(page);
3697
3698	detach_page_private(page);
3699	set_page_private(page, 0);
3700	return 1;
3701}
3702
3703static int f2fs_set_data_page_dirty(struct page *page)
3704{
3705	struct inode *inode = page_file_mapping(page)->host;
3706
3707	trace_f2fs_set_page_dirty(page, DATA);
3708
3709	if (!PageUptodate(page))
3710		SetPageUptodate(page);
3711	if (PageSwapCache(page))
3712		return __set_page_dirty_nobuffers(page);
3713
3714	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3715		if (!page_private_atomic(page)) {
3716			f2fs_register_inmem_page(inode, page);
3717			return 1;
3718		}
3719		/*
3720		 * Previously, this page has been registered, we just
3721		 * return here.
3722		 */
3723		return 0;
3724	}
3725
3726	if (!PageDirty(page)) {
3727		__set_page_dirty_nobuffers(page);
3728		f2fs_update_dirty_page(inode, page);
3729		return 1;
3730	}
3731	return 0;
3732}
3733
3734
3735static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3736{
3737#ifdef CONFIG_F2FS_FS_COMPRESSION
3738	struct dnode_of_data dn;
3739	sector_t start_idx, blknr = 0;
3740	int ret;
3741
3742	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3743
3744	set_new_dnode(&dn, inode, NULL, NULL, 0);
3745	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3746	if (ret)
3747		return 0;
3748
3749	if (dn.data_blkaddr != COMPRESS_ADDR) {
3750		dn.ofs_in_node += block - start_idx;
3751		blknr = f2fs_data_blkaddr(&dn);
3752		if (!__is_valid_data_blkaddr(blknr))
3753			blknr = 0;
3754	}
3755
3756	f2fs_put_dnode(&dn);
3757	return blknr;
3758#else
3759	return 0;
3760#endif
3761}
3762
3763
3764static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3765{
3766	struct inode *inode = mapping->host;
3767	sector_t blknr = 0;
3768
3769	if (f2fs_has_inline_data(inode))
3770		goto out;
3771
3772	/* make sure allocating whole blocks */
3773	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3774		filemap_write_and_wait(mapping);
3775
3776	/* Block number less than F2FS MAX BLOCKS */
3777	if (unlikely(block >= max_file_blocks(inode)))
3778		goto out;
3779
3780	if (f2fs_compressed_file(inode)) {
3781		blknr = f2fs_bmap_compress(inode, block);
3782	} else {
3783		struct f2fs_map_blocks map;
3784
3785		memset(&map, 0, sizeof(map));
3786		map.m_lblk = block;
3787		map.m_len = 1;
3788		map.m_next_pgofs = NULL;
3789		map.m_seg_type = NO_CHECK_TYPE;
3790
3791		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3792			blknr = map.m_pblk;
3793	}
3794out:
3795	trace_f2fs_bmap(inode, block, blknr);
3796	return blknr;
3797}
3798
3799#ifdef CONFIG_MIGRATION
3800#include <linux/migrate.h>
3801
3802int f2fs_migrate_page(struct address_space *mapping,
3803		struct page *newpage, struct page *page, enum migrate_mode mode)
3804{
3805	int rc, extra_count;
3806	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3807	bool atomic_written = page_private_atomic(page);
3808
3809	BUG_ON(PageWriteback(page));
3810
3811	/* migrating an atomic written page is safe with the inmem_lock hold */
3812	if (atomic_written) {
3813		if (mode != MIGRATE_SYNC)
3814			return -EBUSY;
3815		if (!mutex_trylock(&fi->inmem_lock))
3816			return -EAGAIN;
3817	}
3818
3819	/* one extra reference was held for atomic_write page */
3820	extra_count = atomic_written ? 1 : 0;
3821	rc = migrate_page_move_mapping(mapping, newpage,
3822				page, extra_count);
3823	if (rc != MIGRATEPAGE_SUCCESS) {
3824		if (atomic_written)
3825			mutex_unlock(&fi->inmem_lock);
3826		return rc;
3827	}
3828
3829	if (atomic_written) {
3830		struct inmem_pages *cur;
3831
3832		list_for_each_entry(cur, &fi->inmem_pages, list)
3833			if (cur->page == page) {
3834				cur->page = newpage;
3835				break;
3836			}
3837		mutex_unlock(&fi->inmem_lock);
3838		put_page(page);
3839		get_page(newpage);
3840	}
3841
3842	/* guarantee to start from no stale private field */
3843	set_page_private(newpage, 0);
3844	if (PagePrivate(page)) {
3845		set_page_private(newpage, page_private(page));
3846		SetPagePrivate(newpage);
3847		get_page(newpage);
3848
3849		set_page_private(page, 0);
3850		ClearPagePrivate(page);
3851		put_page(page);
3852	}
3853
3854	if (mode != MIGRATE_SYNC_NO_COPY)
3855		migrate_page_copy(newpage, page);
3856	else
3857		migrate_page_states(newpage, page);
3858
3859	return MIGRATEPAGE_SUCCESS;
3860}
3861#endif
3862
3863#ifdef CONFIG_SWAP
3864static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3865							unsigned int blkcnt)
3866{
3867	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3868	unsigned int blkofs;
3869	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3870	unsigned int secidx = start_blk / blk_per_sec;
3871	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3872	int ret = 0;
3873
3874	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3875	down_write(&F2FS_I(inode)->i_mmap_sem);
3876
3877	set_inode_flag(inode, FI_ALIGNED_WRITE);
3878
3879	for (; secidx < end_sec; secidx++) {
3880		down_write(&sbi->pin_sem);
3881
3882		f2fs_lock_op(sbi);
3883		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3884		f2fs_unlock_op(sbi);
3885
3886		set_inode_flag(inode, FI_DO_DEFRAG);
3887
3888		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3889			struct page *page;
3890			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3891
3892			page = f2fs_get_lock_data_page(inode, blkidx, true);
3893			if (IS_ERR(page)) {
3894				up_write(&sbi->pin_sem);
3895				ret = PTR_ERR(page);
3896				goto done;
3897			}
3898
3899			set_page_dirty(page);
3900			f2fs_put_page(page, 1);
3901		}
3902
3903		clear_inode_flag(inode, FI_DO_DEFRAG);
3904
3905		ret = filemap_fdatawrite(inode->i_mapping);
3906
3907		up_write(&sbi->pin_sem);
3908
3909		if (ret)
3910			break;
3911	}
3912
3913done:
3914	clear_inode_flag(inode, FI_DO_DEFRAG);
3915	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3916
3917	up_write(&F2FS_I(inode)->i_mmap_sem);
3918	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3919
3920	return ret;
3921}
3922
3923static int check_swap_activate(struct swap_info_struct *sis,
3924				struct file *swap_file, sector_t *span)
3925{
3926	struct address_space *mapping = swap_file->f_mapping;
3927	struct inode *inode = mapping->host;
3928	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3929	sector_t cur_lblock;
3930	sector_t last_lblock;
3931	sector_t pblock;
3932	sector_t lowest_pblock = -1;
3933	sector_t highest_pblock = 0;
3934	int nr_extents = 0;
3935	unsigned long nr_pblocks;
3936	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3937	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3938	unsigned int not_aligned = 0;
3939	int ret = 0;
3940
3941	/*
3942	 * Map all the blocks into the extent list.  This code doesn't try
3943	 * to be very smart.
3944	 */
3945	cur_lblock = 0;
3946	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3947
3948	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3949		struct f2fs_map_blocks map;
3950retry:
3951		cond_resched();
3952
3953		memset(&map, 0, sizeof(map));
3954		map.m_lblk = cur_lblock;
3955		map.m_len = last_lblock - cur_lblock;
3956		map.m_next_pgofs = NULL;
3957		map.m_next_extent = NULL;
3958		map.m_seg_type = NO_CHECK_TYPE;
3959		map.m_may_create = false;
3960
3961		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3962		if (ret)
3963			goto out;
3964
3965		/* hole */
3966		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3967			f2fs_err(sbi, "Swapfile has holes");
3968			ret = -EINVAL;
3969			goto out;
3970		}
3971
3972		pblock = map.m_pblk;
3973		nr_pblocks = map.m_len;
3974
3975		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3976				nr_pblocks & sec_blks_mask) {
3977			not_aligned++;
3978
3979			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3980			if (cur_lblock + nr_pblocks > sis->max)
3981				nr_pblocks -= blks_per_sec;
3982
3983			if (!nr_pblocks) {
3984				/* this extent is last one */
3985				nr_pblocks = map.m_len;
3986				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3987				goto next;
3988			}
3989
3990			ret = f2fs_migrate_blocks(inode, cur_lblock,
3991							nr_pblocks);
3992			if (ret)
3993				goto out;
3994			goto retry;
3995		}
3996next:
3997		if (cur_lblock + nr_pblocks >= sis->max)
3998			nr_pblocks = sis->max - cur_lblock;
3999
4000		if (cur_lblock) {	/* exclude the header page */
4001			if (pblock < lowest_pblock)
4002				lowest_pblock = pblock;
4003			if (pblock + nr_pblocks - 1 > highest_pblock)
4004				highest_pblock = pblock + nr_pblocks - 1;
4005		}
4006
4007		/*
4008		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4009		 */
4010		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4011		if (ret < 0)
4012			goto out;
4013		nr_extents += ret;
4014		cur_lblock += nr_pblocks;
4015	}
4016	ret = nr_extents;
4017	*span = 1 + highest_pblock - lowest_pblock;
4018	if (cur_lblock == 0)
4019		cur_lblock = 1;	/* force Empty message */
4020	sis->max = cur_lblock;
4021	sis->pages = cur_lblock - 1;
4022	sis->highest_bit = cur_lblock - 1;
4023out:
4024	if (not_aligned)
4025		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4026			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4027	return ret;
4028}
4029
4030static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4031				sector_t *span)
4032{
4033	struct inode *inode = file_inode(file);
4034	int ret;
4035
4036	if (!S_ISREG(inode->i_mode))
4037		return -EINVAL;
4038
4039	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4040		return -EROFS;
4041
4042	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4043		f2fs_err(F2FS_I_SB(inode),
4044			"Swapfile not supported in LFS mode");
4045		return -EINVAL;
4046	}
4047
4048	ret = f2fs_convert_inline_inode(inode);
4049	if (ret)
4050		return ret;
4051
4052	if (!f2fs_disable_compressed_file(inode))
4053		return -EINVAL;
4054
4055	f2fs_precache_extents(inode);
4056
4057	ret = check_swap_activate(sis, file, span);
4058	if (ret < 0)
4059		return ret;
4060
4061	set_inode_flag(inode, FI_PIN_FILE);
4062	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4063	return ret;
4064}
4065
4066static void f2fs_swap_deactivate(struct file *file)
4067{
4068	struct inode *inode = file_inode(file);
4069
4070	clear_inode_flag(inode, FI_PIN_FILE);
4071}
4072#else
4073static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4074				sector_t *span)
4075{
4076	return -EOPNOTSUPP;
4077}
4078
4079static void f2fs_swap_deactivate(struct file *file)
4080{
4081}
4082#endif
4083
4084const struct address_space_operations f2fs_dblock_aops = {
4085	.readpage	= f2fs_read_data_page,
4086	.readahead	= f2fs_readahead,
4087	.writepage	= f2fs_write_data_page,
4088	.writepages	= f2fs_write_data_pages,
4089	.write_begin	= f2fs_write_begin,
4090	.write_end	= f2fs_write_end,
4091	.set_page_dirty	= f2fs_set_data_page_dirty,
4092	.invalidatepage	= f2fs_invalidate_page,
4093	.releasepage	= f2fs_release_page,
4094	.direct_IO	= f2fs_direct_IO,
4095	.bmap		= f2fs_bmap,
4096	.swap_activate  = f2fs_swap_activate,
4097	.swap_deactivate = f2fs_swap_deactivate,
4098#ifdef CONFIG_MIGRATION
4099	.migratepage    = f2fs_migrate_page,
4100#endif
4101};
4102
4103void f2fs_clear_page_cache_dirty_tag(struct page *page)
4104{
4105	struct address_space *mapping = page_mapping(page);
4106	unsigned long flags;
4107
4108	xa_lock_irqsave(&mapping->i_pages, flags);
4109	__xa_clear_mark(&mapping->i_pages, page_index(page),
4110						PAGECACHE_TAG_DIRTY);
4111	xa_unlock_irqrestore(&mapping->i_pages, flags);
4112}
4113
4114int __init f2fs_init_post_read_processing(void)
4115{
4116	bio_post_read_ctx_cache =
4117		kmem_cache_create("f2fs_bio_post_read_ctx",
4118				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4119	if (!bio_post_read_ctx_cache)
4120		goto fail;
4121	bio_post_read_ctx_pool =
4122		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4123					 bio_post_read_ctx_cache);
4124	if (!bio_post_read_ctx_pool)
4125		goto fail_free_cache;
4126	return 0;
4127
4128fail_free_cache:
4129	kmem_cache_destroy(bio_post_read_ctx_cache);
4130fail:
4131	return -ENOMEM;
4132}
4133
4134void f2fs_destroy_post_read_processing(void)
4135{
4136	mempool_destroy(bio_post_read_ctx_pool);
4137	kmem_cache_destroy(bio_post_read_ctx_cache);
4138}
4139
4140int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4141{
4142	if (!f2fs_sb_has_encrypt(sbi) &&
4143		!f2fs_sb_has_verity(sbi) &&
4144		!f2fs_sb_has_compression(sbi))
4145		return 0;
4146
4147	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4148						 WQ_UNBOUND | WQ_HIGHPRI,
4149						 num_online_cpus());
4150	if (!sbi->post_read_wq)
4151		return -ENOMEM;
4152	return 0;
4153}
4154
4155void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4156{
4157	if (sbi->post_read_wq)
4158		destroy_workqueue(sbi->post_read_wq);
4159}
4160
4161int __init f2fs_init_bio_entry_cache(void)
4162{
4163	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4164			sizeof(struct bio_entry));
4165	if (!bio_entry_slab)
4166		return -ENOMEM;
4167	return 0;
4168}
4169
4170void f2fs_destroy_bio_entry_cache(void)
4171{
4172	kmem_cache_destroy(bio_entry_slab);
4173}