Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.5.6
 
   1/*
   2 *  linux/fs/ext4/super.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Big-endian to little-endian byte-swapping/bitmaps by
  16 *        David S. Miller (davem@caip.rutgers.edu), 1995
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/string.h>
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/vmalloc.h>
  24#include <linux/jbd2.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
 
  28#include <linux/parser.h>
  29#include <linux/buffer_head.h>
  30#include <linux/exportfs.h>
  31#include <linux/vfs.h>
  32#include <linux/random.h>
  33#include <linux/mount.h>
  34#include <linux/namei.h>
  35#include <linux/quotaops.h>
  36#include <linux/seq_file.h>
  37#include <linux/proc_fs.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/cleancache.h>
  42#include <asm/uaccess.h>
  43
 
 
  44#include <linux/kthread.h>
  45#include <linux/freezer.h>
 
 
 
  46
  47#include "ext4.h"
  48#include "ext4_extents.h"
  49#include "ext4_jbd2.h"
  50#include "xattr.h"
  51#include "acl.h"
  52#include "mballoc.h"
 
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/ext4.h>
  56
  57static struct proc_dir_entry *ext4_proc_root;
  58static struct kset *ext4_kset;
  59static struct ext4_lazy_init *ext4_li_info;
  60static struct mutex ext4_li_mtx;
  61static struct ext4_features *ext4_feat;
  62
  63static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  64			     unsigned long journal_devnum);
  65static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  66static int ext4_commit_super(struct super_block *sb, int sync);
  67static void ext4_mark_recovery_complete(struct super_block *sb,
 
  68					struct ext4_super_block *es);
  69static void ext4_clear_journal_err(struct super_block *sb,
  70				   struct ext4_super_block *es);
  71static int ext4_sync_fs(struct super_block *sb, int wait);
  72static const char *ext4_decode_error(struct super_block *sb, int errno,
  73				     char nbuf[16]);
  74static int ext4_remount(struct super_block *sb, int *flags, char *data);
  75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  76static int ext4_unfreeze(struct super_block *sb);
  77static void ext4_write_super(struct super_block *sb);
  78static int ext4_freeze(struct super_block *sb);
  79static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  80		       const char *dev_name, void *data);
  81static inline int ext2_feature_set_ok(struct super_block *sb);
  82static inline int ext3_feature_set_ok(struct super_block *sb);
  83static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  84static void ext4_destroy_lazyinit_thread(void);
  85static void ext4_unregister_li_request(struct super_block *sb);
  86static void ext4_clear_request_list(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87
  88#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
 
 
 
 
 
 
 
 
  89static struct file_system_type ext2_fs_type = {
  90	.owner		= THIS_MODULE,
  91	.name		= "ext2",
  92	.mount		= ext4_mount,
  93	.kill_sb	= kill_block_super,
  94	.fs_flags	= FS_REQUIRES_DEV,
 
  95};
  96#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 
 
  97#else
  98#define IS_EXT2_SB(sb) (0)
  99#endif
 100
 101
 102#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
 103static struct file_system_type ext3_fs_type = {
 104	.owner		= THIS_MODULE,
 105	.name		= "ext3",
 106	.mount		= ext4_mount,
 107	.kill_sb	= kill_block_super,
 108	.fs_flags	= FS_REQUIRES_DEV,
 
 109};
 110#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 111#else
 112#define IS_EXT3_SB(sb) (0)
 113#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115static int ext4_verify_csum_type(struct super_block *sb,
 116				 struct ext4_super_block *es)
 117{
 118	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
 119					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 120		return 1;
 121
 122	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 123}
 124
 125static __le32 ext4_superblock_csum(struct super_block *sb,
 126				   struct ext4_super_block *es)
 127{
 128	struct ext4_sb_info *sbi = EXT4_SB(sb);
 129	int offset = offsetof(struct ext4_super_block, s_checksum);
 130	__u32 csum;
 131
 132	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 133
 134	return cpu_to_le32(csum);
 135}
 136
 137int ext4_superblock_csum_verify(struct super_block *sb,
 138				struct ext4_super_block *es)
 139{
 140	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
 141				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 142		return 1;
 143
 144	return es->s_checksum == ext4_superblock_csum(sb, es);
 145}
 146
 147void ext4_superblock_csum_set(struct super_block *sb,
 148			      struct ext4_super_block *es)
 149{
 150	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
 151		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 
 152		return;
 153
 154	es->s_checksum = ext4_superblock_csum(sb, es);
 155}
 156
 157void *ext4_kvmalloc(size_t size, gfp_t flags)
 158{
 159	void *ret;
 160
 161	ret = kmalloc(size, flags);
 162	if (!ret)
 163		ret = __vmalloc(size, flags, PAGE_KERNEL);
 164	return ret;
 165}
 166
 167void *ext4_kvzalloc(size_t size, gfp_t flags)
 168{
 169	void *ret;
 170
 171	ret = kzalloc(size, flags);
 172	if (!ret)
 173		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
 174	return ret;
 175}
 176
 177void ext4_kvfree(void *ptr)
 178{
 179	if (is_vmalloc_addr(ptr))
 180		vfree(ptr);
 181	else
 182		kfree(ptr);
 183
 184}
 185
 186ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 187			       struct ext4_group_desc *bg)
 188{
 189	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 190		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 191		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 192}
 193
 194ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 195			       struct ext4_group_desc *bg)
 196{
 197	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 198		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 199		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 200}
 201
 202ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 203			      struct ext4_group_desc *bg)
 204{
 205	return le32_to_cpu(bg->bg_inode_table_lo) |
 206		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 207		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 208}
 209
 210__u32 ext4_free_group_clusters(struct super_block *sb,
 211			       struct ext4_group_desc *bg)
 212{
 213	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 214		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 215		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 216}
 217
 218__u32 ext4_free_inodes_count(struct super_block *sb,
 219			      struct ext4_group_desc *bg)
 220{
 221	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 222		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 223		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 224}
 225
 226__u32 ext4_used_dirs_count(struct super_block *sb,
 227			      struct ext4_group_desc *bg)
 228{
 229	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 230		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 231		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 232}
 233
 234__u32 ext4_itable_unused_count(struct super_block *sb,
 235			      struct ext4_group_desc *bg)
 236{
 237	return le16_to_cpu(bg->bg_itable_unused_lo) |
 238		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 239		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 240}
 241
 242void ext4_block_bitmap_set(struct super_block *sb,
 243			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 244{
 245	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 246	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 247		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 248}
 249
 250void ext4_inode_bitmap_set(struct super_block *sb,
 251			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 252{
 253	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 254	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 255		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 256}
 257
 258void ext4_inode_table_set(struct super_block *sb,
 259			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 260{
 261	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 262	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 263		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 264}
 265
 266void ext4_free_group_clusters_set(struct super_block *sb,
 267				  struct ext4_group_desc *bg, __u32 count)
 268{
 269	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 270	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 271		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 272}
 273
 274void ext4_free_inodes_set(struct super_block *sb,
 275			  struct ext4_group_desc *bg, __u32 count)
 276{
 277	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 278	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 279		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 280}
 281
 282void ext4_used_dirs_set(struct super_block *sb,
 283			  struct ext4_group_desc *bg, __u32 count)
 284{
 285	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 286	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 287		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 288}
 289
 290void ext4_itable_unused_set(struct super_block *sb,
 291			  struct ext4_group_desc *bg, __u32 count)
 292{
 293	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 294	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 295		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 296}
 297
 298
 299/* Just increment the non-pointer handle value */
 300static handle_t *ext4_get_nojournal(void)
 301{
 302	handle_t *handle = current->journal_info;
 303	unsigned long ref_cnt = (unsigned long)handle;
 304
 305	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
 306
 307	ref_cnt++;
 308	handle = (handle_t *)ref_cnt;
 309
 310	current->journal_info = handle;
 311	return handle;
 312}
 313
 314
 315/* Decrement the non-pointer handle value */
 316static void ext4_put_nojournal(handle_t *handle)
 317{
 318	unsigned long ref_cnt = (unsigned long)handle;
 319
 320	BUG_ON(ref_cnt == 0);
 321
 322	ref_cnt--;
 323	handle = (handle_t *)ref_cnt;
 324
 325	current->journal_info = handle;
 326}
 
 
 
 
 
 
 
 
 327
 328/*
 329 * Wrappers for jbd2_journal_start/end.
 
 330 *
 331 * The only special thing we need to do here is to make sure that all
 332 * journal_end calls result in the superblock being marked dirty, so
 333 * that sync() will call the filesystem's write_super callback if
 334 * appropriate.
 
 335 *
 336 * To avoid j_barrier hold in userspace when a user calls freeze(),
 337 * ext4 prevents a new handle from being started by s_frozen, which
 338 * is in an upper layer.
 339 */
 340handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
 341{
 342	journal_t *journal;
 343	handle_t  *handle;
 344
 345	trace_ext4_journal_start(sb, nblocks, _RET_IP_);
 346	if (sb->s_flags & MS_RDONLY)
 347		return ERR_PTR(-EROFS);
 348
 349	journal = EXT4_SB(sb)->s_journal;
 350	handle = ext4_journal_current_handle();
 351
 352	/*
 353	 * If a handle has been started, it should be allowed to
 354	 * finish, otherwise deadlock could happen between freeze
 355	 * and others(e.g. truncate) due to the restart of the
 356	 * journal handle if the filesystem is forzen and active
 357	 * handles are not stopped.
 358	 */
 359	if (!handle)
 360		vfs_check_frozen(sb, SB_FREEZE_TRANS);
 361
 362	if (!journal)
 363		return ext4_get_nojournal();
 364	/*
 365	 * Special case here: if the journal has aborted behind our
 366	 * backs (eg. EIO in the commit thread), then we still need to
 367	 * take the FS itself readonly cleanly.
 368	 */
 369	if (is_journal_aborted(journal)) {
 370		ext4_abort(sb, "Detected aborted journal");
 371		return ERR_PTR(-EROFS);
 372	}
 373	return jbd2_journal_start(journal, nblocks);
 374}
 375
 376/*
 377 * The only special thing we need to do here is to make sure that all
 378 * jbd2_journal_stop calls result in the superblock being marked dirty, so
 379 * that sync() will call the filesystem's write_super callback if
 380 * appropriate.
 381 */
 382int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
 383{
 384	struct super_block *sb;
 385	int err;
 386	int rc;
 387
 388	if (!ext4_handle_valid(handle)) {
 389		ext4_put_nojournal(handle);
 390		return 0;
 391	}
 392	sb = handle->h_transaction->t_journal->j_private;
 393	err = handle->h_err;
 394	rc = jbd2_journal_stop(handle);
 395
 396	if (!err)
 397		err = rc;
 398	if (err)
 399		__ext4_std_error(sb, where, line, err);
 400	return err;
 401}
 402
 403void ext4_journal_abort_handle(const char *caller, unsigned int line,
 404			       const char *err_fn, struct buffer_head *bh,
 405			       handle_t *handle, int err)
 406{
 407	char nbuf[16];
 408	const char *errstr = ext4_decode_error(NULL, err, nbuf);
 409
 410	BUG_ON(!ext4_handle_valid(handle));
 411
 412	if (bh)
 413		BUFFER_TRACE(bh, "abort");
 414
 415	if (!handle->h_err)
 416		handle->h_err = err;
 417
 418	if (is_handle_aborted(handle))
 
 419		return;
 420
 421	printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
 422	       caller, line, errstr, err_fn);
 423
 424	jbd2_journal_abort_handle(handle);
 425}
 426
 427static void __save_error_info(struct super_block *sb, const char *func,
 428			    unsigned int line)
 429{
 430	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 431
 432	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 433	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
 434	es->s_last_error_time = cpu_to_le32(get_seconds());
 435	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
 436	es->s_last_error_line = cpu_to_le32(line);
 437	if (!es->s_first_error_time) {
 438		es->s_first_error_time = es->s_last_error_time;
 439		strncpy(es->s_first_error_func, func,
 440			sizeof(es->s_first_error_func));
 441		es->s_first_error_line = cpu_to_le32(line);
 442		es->s_first_error_ino = es->s_last_error_ino;
 443		es->s_first_error_block = es->s_last_error_block;
 444	}
 445	/*
 446	 * Start the daily error reporting function if it hasn't been
 447	 * started already
 448	 */
 449	if (!es->s_error_count)
 450		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
 451	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
 452}
 453
 454static void save_error_info(struct super_block *sb, const char *func,
 455			    unsigned int line)
 456{
 457	__save_error_info(sb, func, line);
 458	ext4_commit_super(sb, 1);
 459}
 460
 461/*
 462 * The del_gendisk() function uninitializes the disk-specific data
 463 * structures, including the bdi structure, without telling anyone
 464 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 465 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 466 * This is a kludge to prevent these oops until we can put in a proper
 467 * hook in del_gendisk() to inform the VFS and file system layers.
 468 */
 469static int block_device_ejected(struct super_block *sb)
 470{
 471	struct inode *bd_inode = sb->s_bdev->bd_inode;
 472	struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
 473
 474	return bdi->dev == NULL;
 475}
 476
 477static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 478{
 479	struct super_block		*sb = journal->j_private;
 480	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 481	int				error = is_journal_aborted(journal);
 482	struct ext4_journal_cb_entry	*jce, *tmp;
 
 
 
 
 
 483
 484	spin_lock(&sbi->s_md_lock);
 485	list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
 
 
 486		list_del_init(&jce->jce_list);
 487		spin_unlock(&sbi->s_md_lock);
 488		jce->jce_func(sb, jce, error);
 489		spin_lock(&sbi->s_md_lock);
 490	}
 491	spin_unlock(&sbi->s_md_lock);
 492}
 493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494/* Deal with the reporting of failure conditions on a filesystem such as
 495 * inconsistencies detected or read IO failures.
 496 *
 497 * On ext2, we can store the error state of the filesystem in the
 498 * superblock.  That is not possible on ext4, because we may have other
 499 * write ordering constraints on the superblock which prevent us from
 500 * writing it out straight away; and given that the journal is about to
 501 * be aborted, we can't rely on the current, or future, transactions to
 502 * write out the superblock safely.
 503 *
 504 * We'll just use the jbd2_journal_abort() error code to record an error in
 505 * the journal instead.  On recovery, the journal will complain about
 506 * that error until we've noted it down and cleared it.
 
 
 
 
 
 
 507 */
 508
 509static void ext4_handle_error(struct super_block *sb)
 
 510{
 511	if (sb->s_flags & MS_RDONLY)
 512		return;
 513
 514	if (!test_opt(sb, ERRORS_CONT)) {
 515		journal_t *journal = EXT4_SB(sb)->s_journal;
 
 516
 517		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 
 518		if (journal)
 519			jbd2_journal_abort(journal, -EIO);
 520	}
 521	if (test_opt(sb, ERRORS_RO)) {
 522		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 523		sb->s_flags |= MS_RDONLY;
 
 
 
 
 
 
 
 
 
 
 524	}
 525	if (test_opt(sb, ERRORS_PANIC))
 
 
 
 
 
 
 526		panic("EXT4-fs (device %s): panic forced after error\n",
 527			sb->s_id);
 
 
 
 
 
 
 
 
 
 
 
 
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530void __ext4_error(struct super_block *sb, const char *function,
 531		  unsigned int line, const char *fmt, ...)
 
 532{
 533	struct va_format vaf;
 534	va_list args;
 535
 536	va_start(args, fmt);
 537	vaf.fmt = fmt;
 538	vaf.va = &args;
 539	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 540	       sb->s_id, function, line, current->comm, &vaf);
 541	va_end(args);
 542	save_error_info(sb, function, line);
 543
 544	ext4_handle_error(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 545}
 546
 547void ext4_error_inode(struct inode *inode, const char *function,
 548		      unsigned int line, ext4_fsblk_t block,
 549		      const char *fmt, ...)
 550{
 551	va_list args;
 552	struct va_format vaf;
 553	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 554
 555	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 556	es->s_last_error_block = cpu_to_le64(block);
 557	save_error_info(inode->i_sb, function, line);
 558	va_start(args, fmt);
 559	vaf.fmt = fmt;
 560	vaf.va = &args;
 561	if (block)
 562		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 563		       "inode #%lu: block %llu: comm %s: %pV\n",
 564		       inode->i_sb->s_id, function, line, inode->i_ino,
 565		       block, current->comm, &vaf);
 566	else
 567		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 568		       "inode #%lu: comm %s: %pV\n",
 569		       inode->i_sb->s_id, function, line, inode->i_ino,
 570		       current->comm, &vaf);
 571	va_end(args);
 572
 573	ext4_handle_error(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574}
 575
 576void ext4_error_file(struct file *file, const char *function,
 577		     unsigned int line, ext4_fsblk_t block,
 578		     const char *fmt, ...)
 579{
 580	va_list args;
 581	struct va_format vaf;
 582	struct ext4_super_block *es;
 583	struct inode *inode = file->f_dentry->d_inode;
 584	char pathname[80], *path;
 585
 586	es = EXT4_SB(inode->i_sb)->s_es;
 587	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 588	save_error_info(inode->i_sb, function, line);
 589	path = d_path(&(file->f_path), pathname, sizeof(pathname));
 590	if (IS_ERR(path))
 591		path = "(unknown)";
 592	va_start(args, fmt);
 593	vaf.fmt = fmt;
 594	vaf.va = &args;
 595	if (block)
 596		printk(KERN_CRIT
 597		       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 598		       "block %llu: comm %s: path %s: %pV\n",
 599		       inode->i_sb->s_id, function, line, inode->i_ino,
 600		       block, current->comm, path, &vaf);
 601	else
 602		printk(KERN_CRIT
 603		       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 604		       "comm %s: path %s: %pV\n",
 605		       inode->i_sb->s_id, function, line, inode->i_ino,
 606		       current->comm, path, &vaf);
 607	va_end(args);
 608
 609	ext4_handle_error(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610}
 611
 612static const char *ext4_decode_error(struct super_block *sb, int errno,
 613				     char nbuf[16])
 614{
 615	char *errstr = NULL;
 616
 617	switch (errno) {
 
 
 
 
 
 
 618	case -EIO:
 619		errstr = "IO failure";
 620		break;
 621	case -ENOMEM:
 622		errstr = "Out of memory";
 623		break;
 624	case -EROFS:
 625		if (!sb || (EXT4_SB(sb)->s_journal &&
 626			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 627			errstr = "Journal has aborted";
 628		else
 629			errstr = "Readonly filesystem";
 630		break;
 631	default:
 632		/* If the caller passed in an extra buffer for unknown
 633		 * errors, textualise them now.  Else we just return
 634		 * NULL. */
 635		if (nbuf) {
 636			/* Check for truncated error codes... */
 637			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 638				errstr = nbuf;
 639		}
 640		break;
 641	}
 642
 643	return errstr;
 644}
 645
 646/* __ext4_std_error decodes expected errors from journaling functions
 647 * automatically and invokes the appropriate error response.  */
 648
 649void __ext4_std_error(struct super_block *sb, const char *function,
 650		      unsigned int line, int errno)
 651{
 652	char nbuf[16];
 653	const char *errstr;
 654
 
 
 
 655	/* Special case: if the error is EROFS, and we're not already
 656	 * inside a transaction, then there's really no point in logging
 657	 * an error. */
 658	if (errno == -EROFS && journal_current_handle() == NULL &&
 659	    (sb->s_flags & MS_RDONLY))
 660		return;
 661
 662	errstr = ext4_decode_error(sb, errno, nbuf);
 663	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 664	       sb->s_id, function, line, errstr);
 665	save_error_info(sb, function, line);
 
 
 666
 667	ext4_handle_error(sb);
 668}
 669
 670/*
 671 * ext4_abort is a much stronger failure handler than ext4_error.  The
 672 * abort function may be used to deal with unrecoverable failures such
 673 * as journal IO errors or ENOMEM at a critical moment in log management.
 674 *
 675 * We unconditionally force the filesystem into an ABORT|READONLY state,
 676 * unless the error response on the fs has been set to panic in which
 677 * case we take the easy way out and panic immediately.
 678 */
 679
 680void __ext4_abort(struct super_block *sb, const char *function,
 681		unsigned int line, const char *fmt, ...)
 682{
 
 683	va_list args;
 684
 685	save_error_info(sb, function, line);
 
 
 
 
 
 
 686	va_start(args, fmt);
 687	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
 688	       function, line);
 689	vprintk(fmt, args);
 690	printk("\n");
 
 
 691	va_end(args);
 
 692
 693	if ((sb->s_flags & MS_RDONLY) == 0) {
 694		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 695		sb->s_flags |= MS_RDONLY;
 696		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 697		if (EXT4_SB(sb)->s_journal)
 698			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
 699		save_error_info(sb, function, line);
 700	}
 701	if (test_opt(sb, ERRORS_PANIC))
 702		panic("EXT4-fs panic from previous error\n");
 703}
 704
 705void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
 
 706{
 707	struct va_format vaf;
 708	va_list args;
 709
 
 
 
 710	va_start(args, fmt);
 711	vaf.fmt = fmt;
 712	vaf.va = &args;
 713	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 
 714	va_end(args);
 715}
 716
 717void __ext4_warning(struct super_block *sb, const char *function,
 718		    unsigned int line, const char *fmt, ...)
 719{
 720	struct va_format vaf;
 721	va_list args;
 722
 
 
 
 723	va_start(args, fmt);
 724	vaf.fmt = fmt;
 725	vaf.va = &args;
 726	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 727	       sb->s_id, function, line, &vaf);
 
 728	va_end(args);
 729}
 730
 731void __ext4_grp_locked_error(const char *function, unsigned int line,
 732			     struct super_block *sb, ext4_group_t grp,
 733			     unsigned long ino, ext4_fsblk_t block,
 734			     const char *fmt, ...)
 735__releases(bitlock)
 736__acquires(bitlock)
 737{
 738	struct va_format vaf;
 739	va_list args;
 740	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 741
 742	es->s_last_error_ino = cpu_to_le32(ino);
 743	es->s_last_error_block = cpu_to_le64(block);
 744	__save_error_info(sb, function, line);
 745
 746	va_start(args, fmt);
 
 747
 748	vaf.fmt = fmt;
 749	vaf.va = &args;
 750	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 751	       sb->s_id, function, line, grp);
 752	if (ino)
 753		printk(KERN_CONT "inode %lu: ", ino);
 754	if (block)
 755		printk(KERN_CONT "block %llu:", (unsigned long long) block);
 756	printk(KERN_CONT "%pV\n", &vaf);
 757	va_end(args);
 
 
 
 
 
 758
 759	if (test_opt(sb, ERRORS_CONT)) {
 760		ext4_commit_super(sb, 0);
 
 
 
 
 
 
 
 761		return;
 762	}
 763
 764	ext4_unlock_group(sb, grp);
 765	ext4_handle_error(sb);
 766	/*
 767	 * We only get here in the ERRORS_RO case; relocking the group
 768	 * may be dangerous, but nothing bad will happen since the
 769	 * filesystem will have already been marked read/only and the
 770	 * journal has been aborted.  We return 1 as a hint to callers
 771	 * who might what to use the return value from
 772	 * ext4_grp_locked_error() to distinguish between the
 773	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
 774	 * aggressively from the ext4 function in question, with a
 775	 * more appropriate error code.
 776	 */
 777	ext4_lock_group(sb, grp);
 778	return;
 779}
 780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781void ext4_update_dynamic_rev(struct super_block *sb)
 782{
 783	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 784
 785	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
 786		return;
 787
 788	ext4_warning(sb,
 789		     "updating to rev %d because of new feature flag, "
 790		     "running e2fsck is recommended",
 791		     EXT4_DYNAMIC_REV);
 792
 793	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
 794	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
 795	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
 796	/* leave es->s_feature_*compat flags alone */
 797	/* es->s_uuid will be set by e2fsck if empty */
 798
 799	/*
 800	 * The rest of the superblock fields should be zero, and if not it
 801	 * means they are likely already in use, so leave them alone.  We
 802	 * can leave it up to e2fsck to clean up any inconsistencies there.
 803	 */
 804}
 805
 806/*
 807 * Open the external journal device
 808 */
 809static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
 810{
 811	struct block_device *bdev;
 812	char b[BDEVNAME_SIZE];
 813
 814	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
 815	if (IS_ERR(bdev))
 816		goto fail;
 817	return bdev;
 818
 819fail:
 820	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
 821			__bdevname(dev, b), PTR_ERR(bdev));
 822	return NULL;
 823}
 824
 825/*
 826 * Release the journal device
 827 */
 828static int ext4_blkdev_put(struct block_device *bdev)
 829{
 830	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 831}
 832
 833static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
 834{
 835	struct block_device *bdev;
 836	int ret = -ENODEV;
 837
 838	bdev = sbi->journal_bdev;
 839	if (bdev) {
 840		ret = ext4_blkdev_put(bdev);
 841		sbi->journal_bdev = NULL;
 842	}
 843	return ret;
 844}
 845
 846static inline struct inode *orphan_list_entry(struct list_head *l)
 847{
 848	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
 849}
 850
 851static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
 852{
 853	struct list_head *l;
 854
 855	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
 856		 le32_to_cpu(sbi->s_es->s_last_orphan));
 857
 858	printk(KERN_ERR "sb_info orphan list:\n");
 859	list_for_each(l, &sbi->s_orphan) {
 860		struct inode *inode = orphan_list_entry(l);
 861		printk(KERN_ERR "  "
 862		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
 863		       inode->i_sb->s_id, inode->i_ino, inode,
 864		       inode->i_mode, inode->i_nlink,
 865		       NEXT_ORPHAN(inode));
 866	}
 867}
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static void ext4_put_super(struct super_block *sb)
 870{
 871	struct ext4_sb_info *sbi = EXT4_SB(sb);
 872	struct ext4_super_block *es = sbi->s_es;
 873	int i, err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 875	ext4_unregister_li_request(sb);
 876	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
 877
 878	flush_workqueue(sbi->dio_unwritten_wq);
 879	destroy_workqueue(sbi->dio_unwritten_wq);
 
 880
 881	lock_super(sb);
 882	if (sbi->s_journal) {
 
 883		err = jbd2_journal_destroy(sbi->s_journal);
 884		sbi->s_journal = NULL;
 885		if (err < 0)
 886			ext4_abort(sb, "Couldn't clean up the journal");
 
 887	}
 888
 889	del_timer(&sbi->s_err_report);
 
 890	ext4_release_system_zone(sb);
 891	ext4_mb_release(sb);
 892	ext4_ext_release(sb);
 893	ext4_xattr_put_super(sb);
 894
 895	if (!(sb->s_flags & MS_RDONLY)) {
 896		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
 
 897		es->s_state = cpu_to_le16(sbi->s_mount_state);
 898	}
 899	if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
 900		ext4_commit_super(sb, 1);
 901
 902	if (sbi->s_proc) {
 903		remove_proc_entry("options", sbi->s_proc);
 904		remove_proc_entry(sb->s_id, ext4_proc_root);
 905	}
 906	kobject_del(&sbi->s_kobj);
 907
 908	for (i = 0; i < sbi->s_gdb_count; i++)
 909		brelse(sbi->s_group_desc[i]);
 910	ext4_kvfree(sbi->s_group_desc);
 911	ext4_kvfree(sbi->s_flex_groups);
 912	percpu_counter_destroy(&sbi->s_freeclusters_counter);
 913	percpu_counter_destroy(&sbi->s_freeinodes_counter);
 914	percpu_counter_destroy(&sbi->s_dirs_counter);
 915	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 916	brelse(sbi->s_sbh);
 917#ifdef CONFIG_QUOTA
 918	for (i = 0; i < MAXQUOTAS; i++)
 919		kfree(sbi->s_qf_names[i]);
 920#endif
 921
 922	/* Debugging code just in case the in-memory inode orphan list
 923	 * isn't empty.  The on-disk one can be non-empty if we've
 924	 * detected an error and taken the fs readonly, but the
 925	 * in-memory list had better be clean by this point. */
 926	if (!list_empty(&sbi->s_orphan))
 927		dump_orphan_list(sb, sbi);
 928	J_ASSERT(list_empty(&sbi->s_orphan));
 929
 
 930	invalidate_bdev(sb->s_bdev);
 931	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
 932		/*
 933		 * Invalidate the journal device's buffers.  We don't want them
 934		 * floating about in memory - the physical journal device may
 935		 * hotswapped, and it breaks the `ro-after' testing code.
 936		 */
 937		sync_blockdev(sbi->journal_bdev);
 938		invalidate_bdev(sbi->journal_bdev);
 939		ext4_blkdev_remove(sbi);
 940	}
 941	if (sbi->s_mmp_tsk)
 942		kthread_stop(sbi->s_mmp_tsk);
 
 
 
 
 
 
 
 
 943	sb->s_fs_info = NULL;
 944	/*
 945	 * Now that we are completely done shutting down the
 946	 * superblock, we need to actually destroy the kobject.
 947	 */
 948	unlock_super(sb);
 949	kobject_put(&sbi->s_kobj);
 950	wait_for_completion(&sbi->s_kobj_unregister);
 951	if (sbi->s_chksum_driver)
 952		crypto_free_shash(sbi->s_chksum_driver);
 953	kfree(sbi->s_blockgroup_lock);
 
 
 
 
 
 954	kfree(sbi);
 955}
 956
 957static struct kmem_cache *ext4_inode_cachep;
 958
 959/*
 960 * Called inside transaction, so use GFP_NOFS
 961 */
 962static struct inode *ext4_alloc_inode(struct super_block *sb)
 963{
 964	struct ext4_inode_info *ei;
 965
 966	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
 967	if (!ei)
 968		return NULL;
 969
 970	ei->vfs_inode.i_version = 1;
 971	ei->vfs_inode.i_data.writeback_index = 0;
 972	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
 973	INIT_LIST_HEAD(&ei->i_prealloc_list);
 974	spin_lock_init(&ei->i_prealloc_lock);
 
 
 
 
 
 
 
 975	ei->i_reserved_data_blocks = 0;
 976	ei->i_reserved_meta_blocks = 0;
 977	ei->i_allocated_meta_blocks = 0;
 978	ei->i_da_metadata_calc_len = 0;
 979	ei->i_da_metadata_calc_last_lblock = 0;
 980	spin_lock_init(&(ei->i_block_reservation_lock));
 
 981#ifdef CONFIG_QUOTA
 982	ei->i_reserved_quota = 0;
 
 983#endif
 984	ei->jinode = NULL;
 985	INIT_LIST_HEAD(&ei->i_completed_io_list);
 986	spin_lock_init(&ei->i_completed_io_lock);
 987	ei->cur_aio_dio = NULL;
 988	ei->i_sync_tid = 0;
 989	ei->i_datasync_tid = 0;
 990	atomic_set(&ei->i_ioend_count, 0);
 991	atomic_set(&ei->i_aiodio_unwritten, 0);
 992
 
 993	return &ei->vfs_inode;
 994}
 995
 996static int ext4_drop_inode(struct inode *inode)
 997{
 998	int drop = generic_drop_inode(inode);
 999
 
 
 
1000	trace_ext4_drop_inode(inode, drop);
1001	return drop;
1002}
1003
1004static void ext4_i_callback(struct rcu_head *head)
1005{
1006	struct inode *inode = container_of(head, struct inode, i_rcu);
 
 
 
 
1007	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1008}
1009
1010static void ext4_destroy_inode(struct inode *inode)
1011{
1012	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1013		ext4_msg(inode->i_sb, KERN_ERR,
1014			 "Inode %lu (%p): orphan list check failed!",
1015			 inode->i_ino, EXT4_I(inode));
1016		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1017				EXT4_I(inode), sizeof(struct ext4_inode_info),
1018				true);
1019		dump_stack();
1020	}
1021	call_rcu(&inode->i_rcu, ext4_i_callback);
 
 
 
 
 
 
 
 
 
 
1022}
1023
1024static void init_once(void *foo)
1025{
1026	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1027
1028	INIT_LIST_HEAD(&ei->i_orphan);
1029#ifdef CONFIG_EXT4_FS_XATTR
1030	init_rwsem(&ei->xattr_sem);
1031#endif
1032	init_rwsem(&ei->i_data_sem);
1033	inode_init_once(&ei->vfs_inode);
 
1034}
1035
1036static int init_inodecache(void)
1037{
1038	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1039					     sizeof(struct ext4_inode_info),
1040					     0, (SLAB_RECLAIM_ACCOUNT|
1041						SLAB_MEM_SPREAD),
1042					     init_once);
 
 
1043	if (ext4_inode_cachep == NULL)
1044		return -ENOMEM;
1045	return 0;
1046}
1047
1048static void destroy_inodecache(void)
1049{
 
 
 
 
 
1050	kmem_cache_destroy(ext4_inode_cachep);
1051}
1052
1053void ext4_clear_inode(struct inode *inode)
1054{
 
1055	invalidate_inode_buffers(inode);
1056	clear_inode(inode);
1057	dquot_drop(inode);
1058	ext4_discard_preallocations(inode);
 
 
1059	if (EXT4_I(inode)->jinode) {
1060		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1061					       EXT4_I(inode)->jinode);
1062		jbd2_free_inode(EXT4_I(inode)->jinode);
1063		EXT4_I(inode)->jinode = NULL;
1064	}
 
 
1065}
1066
1067static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1068					u64 ino, u32 generation)
1069{
1070	struct inode *inode;
1071
1072	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1073		return ERR_PTR(-ESTALE);
1074	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1075		return ERR_PTR(-ESTALE);
1076
1077	/* iget isn't really right if the inode is currently unallocated!!
1078	 *
1079	 * ext4_read_inode will return a bad_inode if the inode had been
1080	 * deleted, so we should be safe.
1081	 *
1082	 * Currently we don't know the generation for parent directory, so
1083	 * a generation of 0 means "accept any"
1084	 */
1085	inode = ext4_iget(sb, ino);
1086	if (IS_ERR(inode))
1087		return ERR_CAST(inode);
1088	if (generation && inode->i_generation != generation) {
1089		iput(inode);
1090		return ERR_PTR(-ESTALE);
1091	}
1092
1093	return inode;
1094}
1095
1096static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1097					int fh_len, int fh_type)
1098{
1099	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1100				    ext4_nfs_get_inode);
1101}
1102
1103static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1104					int fh_len, int fh_type)
1105{
1106	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1107				    ext4_nfs_get_inode);
1108}
1109
1110/*
1111 * Try to release metadata pages (indirect blocks, directories) which are
1112 * mapped via the block device.  Since these pages could have journal heads
1113 * which would prevent try_to_free_buffers() from freeing them, we must use
1114 * jbd2 layer's try_to_free_buffers() function to release them.
1115 */
1116static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1117				 gfp_t wait)
1118{
1119	journal_t *journal = EXT4_SB(sb)->s_journal;
 
 
1120
1121	WARN_ON(PageChecked(page));
1122	if (!page_has_buffers(page))
1123		return 0;
1124	if (journal)
1125		return jbd2_journal_try_to_free_buffers(journal, page,
1126							wait & ~__GFP_WAIT);
1127	return try_to_free_buffers(page);
1128}
1129
1130#ifdef CONFIG_QUOTA
1131#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1132#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1133
1134static int ext4_write_dquot(struct dquot *dquot);
1135static int ext4_acquire_dquot(struct dquot *dquot);
1136static int ext4_release_dquot(struct dquot *dquot);
1137static int ext4_mark_dquot_dirty(struct dquot *dquot);
1138static int ext4_write_info(struct super_block *sb, int type);
1139static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1140			 struct path *path);
1141static int ext4_quota_off(struct super_block *sb, int type);
1142static int ext4_quota_on_mount(struct super_block *sb, int type);
1143static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1144			       size_t len, loff_t off);
1145static ssize_t ext4_quota_write(struct super_block *sb, int type,
1146				const char *data, size_t len, loff_t off);
 
 
 
 
 
 
 
1147
1148static const struct dquot_operations ext4_quota_operations = {
1149	.get_reserved_space = ext4_get_reserved_space,
1150	.write_dquot	= ext4_write_dquot,
1151	.acquire_dquot	= ext4_acquire_dquot,
1152	.release_dquot	= ext4_release_dquot,
1153	.mark_dirty	= ext4_mark_dquot_dirty,
1154	.write_info	= ext4_write_info,
1155	.alloc_dquot	= dquot_alloc,
1156	.destroy_dquot	= dquot_destroy,
 
 
 
1157};
1158
1159static const struct quotactl_ops ext4_qctl_operations = {
1160	.quota_on	= ext4_quota_on,
1161	.quota_off	= ext4_quota_off,
1162	.quota_sync	= dquot_quota_sync,
1163	.get_info	= dquot_get_dqinfo,
1164	.set_info	= dquot_set_dqinfo,
1165	.get_dqblk	= dquot_get_dqblk,
1166	.set_dqblk	= dquot_set_dqblk
 
1167};
1168#endif
1169
1170static const struct super_operations ext4_sops = {
1171	.alloc_inode	= ext4_alloc_inode,
 
1172	.destroy_inode	= ext4_destroy_inode,
1173	.write_inode	= ext4_write_inode,
1174	.dirty_inode	= ext4_dirty_inode,
1175	.drop_inode	= ext4_drop_inode,
1176	.evict_inode	= ext4_evict_inode,
1177	.put_super	= ext4_put_super,
1178	.sync_fs	= ext4_sync_fs,
1179	.freeze_fs	= ext4_freeze,
1180	.unfreeze_fs	= ext4_unfreeze,
1181	.statfs		= ext4_statfs,
1182	.remount_fs	= ext4_remount,
1183	.show_options	= ext4_show_options,
 
1184#ifdef CONFIG_QUOTA
1185	.quota_read	= ext4_quota_read,
1186	.quota_write	= ext4_quota_write,
 
1187#endif
1188	.bdev_try_to_free_page = bdev_try_to_free_page,
1189};
1190
1191static const struct super_operations ext4_nojournal_sops = {
1192	.alloc_inode	= ext4_alloc_inode,
1193	.destroy_inode	= ext4_destroy_inode,
1194	.write_inode	= ext4_write_inode,
1195	.dirty_inode	= ext4_dirty_inode,
1196	.drop_inode	= ext4_drop_inode,
1197	.evict_inode	= ext4_evict_inode,
1198	.write_super	= ext4_write_super,
1199	.put_super	= ext4_put_super,
1200	.statfs		= ext4_statfs,
1201	.remount_fs	= ext4_remount,
1202	.show_options	= ext4_show_options,
1203#ifdef CONFIG_QUOTA
1204	.quota_read	= ext4_quota_read,
1205	.quota_write	= ext4_quota_write,
1206#endif
1207	.bdev_try_to_free_page = bdev_try_to_free_page,
1208};
1209
1210static const struct export_operations ext4_export_ops = {
 
1211	.fh_to_dentry = ext4_fh_to_dentry,
1212	.fh_to_parent = ext4_fh_to_parent,
1213	.get_parent = ext4_get_parent,
 
1214};
1215
1216enum {
1217	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1218	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1219	Opt_nouid32, Opt_debug, Opt_removed,
1220	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1221	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1222	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1223	Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1224	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1225	Opt_data_err_abort, Opt_data_err_ignore,
1226	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1227	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1228	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1229	Opt_usrquota, Opt_grpquota, Opt_i_version,
1230	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
 
 
1231	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1232	Opt_inode_readahead_blks, Opt_journal_ioprio,
1233	Opt_dioread_nolock, Opt_dioread_lock,
1234	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
 
 
 
 
 
 
1235};
1236
1237static const match_table_t tokens = {
1238	{Opt_bsd_df, "bsddf"},
1239	{Opt_minix_df, "minixdf"},
1240	{Opt_grpid, "grpid"},
1241	{Opt_grpid, "bsdgroups"},
1242	{Opt_nogrpid, "nogrpid"},
1243	{Opt_nogrpid, "sysvgroups"},
1244	{Opt_resgid, "resgid=%u"},
1245	{Opt_resuid, "resuid=%u"},
1246	{Opt_sb, "sb=%u"},
1247	{Opt_err_cont, "errors=continue"},
1248	{Opt_err_panic, "errors=panic"},
1249	{Opt_err_ro, "errors=remount-ro"},
1250	{Opt_nouid32, "nouid32"},
1251	{Opt_debug, "debug"},
1252	{Opt_removed, "oldalloc"},
1253	{Opt_removed, "orlov"},
1254	{Opt_user_xattr, "user_xattr"},
1255	{Opt_nouser_xattr, "nouser_xattr"},
1256	{Opt_acl, "acl"},
1257	{Opt_noacl, "noacl"},
1258	{Opt_noload, "norecovery"},
1259	{Opt_noload, "noload"},
1260	{Opt_removed, "nobh"},
1261	{Opt_removed, "bh"},
1262	{Opt_commit, "commit=%u"},
1263	{Opt_min_batch_time, "min_batch_time=%u"},
1264	{Opt_max_batch_time, "max_batch_time=%u"},
1265	{Opt_journal_dev, "journal_dev=%u"},
1266	{Opt_journal_checksum, "journal_checksum"},
1267	{Opt_journal_async_commit, "journal_async_commit"},
1268	{Opt_abort, "abort"},
1269	{Opt_data_journal, "data=journal"},
1270	{Opt_data_ordered, "data=ordered"},
1271	{Opt_data_writeback, "data=writeback"},
1272	{Opt_data_err_abort, "data_err=abort"},
1273	{Opt_data_err_ignore, "data_err=ignore"},
1274	{Opt_offusrjquota, "usrjquota="},
1275	{Opt_usrjquota, "usrjquota=%s"},
1276	{Opt_offgrpjquota, "grpjquota="},
1277	{Opt_grpjquota, "grpjquota=%s"},
1278	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1279	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1280	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1281	{Opt_grpquota, "grpquota"},
1282	{Opt_noquota, "noquota"},
1283	{Opt_quota, "quota"},
1284	{Opt_usrquota, "usrquota"},
1285	{Opt_barrier, "barrier=%u"},
1286	{Opt_barrier, "barrier"},
1287	{Opt_nobarrier, "nobarrier"},
1288	{Opt_i_version, "i_version"},
1289	{Opt_stripe, "stripe=%u"},
1290	{Opt_delalloc, "delalloc"},
1291	{Opt_nodelalloc, "nodelalloc"},
1292	{Opt_mblk_io_submit, "mblk_io_submit"},
1293	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1294	{Opt_block_validity, "block_validity"},
1295	{Opt_noblock_validity, "noblock_validity"},
1296	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1297	{Opt_journal_ioprio, "journal_ioprio=%u"},
1298	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1299	{Opt_auto_da_alloc, "auto_da_alloc"},
1300	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1301	{Opt_dioread_nolock, "dioread_nolock"},
1302	{Opt_dioread_lock, "dioread_lock"},
1303	{Opt_discard, "discard"},
1304	{Opt_nodiscard, "nodiscard"},
1305	{Opt_init_itable, "init_itable=%u"},
1306	{Opt_init_itable, "init_itable"},
1307	{Opt_noinit_itable, "noinit_itable"},
1308	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1309	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1310	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1311	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1312	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1313	{Opt_err, NULL},
1314};
1315
1316static ext4_fsblk_t get_sb_block(void **data)
1317{
1318	ext4_fsblk_t	sb_block;
1319	char		*options = (char *) *data;
1320
1321	if (!options || strncmp(options, "sb=", 3) != 0)
1322		return 1;	/* Default location */
1323
1324	options += 3;
1325	/* TODO: use simple_strtoll with >32bit ext4 */
1326	sb_block = simple_strtoul(options, &options, 0);
1327	if (*options && *options != ',') {
1328		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1329		       (char *) *data);
1330		return 1;
1331	}
1332	if (*options == ',')
1333		options++;
1334	*data = (void *) options;
1335
1336	return sb_block;
1337}
1338
1339#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1340static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1341	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1342
1343#ifdef CONFIG_QUOTA
1344static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1345{
1346	struct ext4_sb_info *sbi = EXT4_SB(sb);
1347	char *qname;
1348
1349	if (sb_any_quota_loaded(sb) &&
1350		!sbi->s_qf_names[qtype]) {
1351		ext4_msg(sb, KERN_ERR,
1352			"Cannot change journaled "
1353			"quota options when quota turned on");
1354		return -1;
1355	}
1356	qname = match_strdup(args);
1357	if (!qname) {
1358		ext4_msg(sb, KERN_ERR,
1359			"Not enough memory for storing quotafile name");
1360		return -1;
1361	}
1362	if (sbi->s_qf_names[qtype] &&
1363		strcmp(sbi->s_qf_names[qtype], qname)) {
1364		ext4_msg(sb, KERN_ERR,
1365			"%s quota file already specified", QTYPE2NAME(qtype));
1366		kfree(qname);
1367		return -1;
1368	}
1369	sbi->s_qf_names[qtype] = qname;
1370	if (strchr(sbi->s_qf_names[qtype], '/')) {
1371		ext4_msg(sb, KERN_ERR,
1372			"quotafile must be on filesystem root");
1373		kfree(sbi->s_qf_names[qtype]);
1374		sbi->s_qf_names[qtype] = NULL;
1375		return -1;
1376	}
1377	set_opt(sb, QUOTA);
1378	return 1;
1379}
1380
1381static int clear_qf_name(struct super_block *sb, int qtype)
1382{
 
 
 
 
1383
1384	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
1385
1386	if (sb_any_quota_loaded(sb) &&
1387		sbi->s_qf_names[qtype]) {
1388		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1389			" when quota turned on");
1390		return -1;
1391	}
1392	/*
1393	 * The space will be released later when all options are confirmed
1394	 * to be correct
1395	 */
1396	sbi->s_qf_names[qtype] = NULL;
1397	return 1;
1398}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400
1401#define MOPT_SET	0x0001
1402#define MOPT_CLEAR	0x0002
1403#define MOPT_NOSUPPORT	0x0004
1404#define MOPT_EXPLICIT	0x0008
1405#define MOPT_CLEAR_ERR	0x0010
1406#define MOPT_GTE0	0x0020
1407#ifdef CONFIG_QUOTA
1408#define MOPT_Q		0
1409#define MOPT_QFMT	0x0040
1410#else
1411#define MOPT_Q		MOPT_NOSUPPORT
1412#define MOPT_QFMT	MOPT_NOSUPPORT
1413#endif
1414#define MOPT_DATAJ	0x0080
 
 
 
 
1415
1416static const struct mount_opts {
1417	int	token;
1418	int	mount_opt;
1419	int	flags;
1420} ext4_mount_opts[] = {
1421	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1422	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1423	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1424	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1425	{Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1426	{Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1427	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1428	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1429	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1430	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
 
 
1431	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1432	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1433	{Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1434	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1435	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
 
 
 
 
 
 
 
 
1436	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1437				    EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1438	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1439	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1440	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1441	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1442	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1443	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1444	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1445	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1446	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1447	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1448	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1449	{Opt_commit, 0, MOPT_GTE0},
1450	{Opt_max_batch_time, 0, MOPT_GTE0},
1451	{Opt_min_batch_time, 0, MOPT_GTE0},
1452	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1453	{Opt_init_itable, 0, MOPT_GTE0},
1454	{Opt_stripe, 0, MOPT_GTE0},
1455	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1456	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1457	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1458#ifdef CONFIG_EXT4_FS_XATTR
1459	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1460	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1461#else
1462	{Opt_user_xattr, 0, MOPT_NOSUPPORT},
1463	{Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1464#endif
1465#ifdef CONFIG_EXT4_FS_POSIX_ACL
1466	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1467	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1468#else
1469	{Opt_acl, 0, MOPT_NOSUPPORT},
1470	{Opt_noacl, 0, MOPT_NOSUPPORT},
1471#endif
1472	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1473	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1474	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1475	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1476							MOPT_SET | MOPT_Q},
1477	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1478							MOPT_SET | MOPT_Q},
 
 
1479	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1480		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
 
1481	{Opt_usrjquota, 0, MOPT_Q},
1482	{Opt_grpjquota, 0, MOPT_Q},
1483	{Opt_offusrjquota, 0, MOPT_Q},
1484	{Opt_offgrpjquota, 0, MOPT_Q},
1485	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1486	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1487	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
 
 
 
 
1488	{Opt_err, 0, 0}
1489};
1490
1491static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1492			    substring_t *args, unsigned long *journal_devnum,
1493			    unsigned int *journal_ioprio, int is_remount)
 
 
 
 
 
 
 
 
1494{
1495	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496	const struct mount_opts *m;
 
1497	kuid_t uid;
1498	kgid_t gid;
1499	int arg = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500
 
1501#ifdef CONFIG_QUOTA
1502	if (token == Opt_usrjquota)
1503		return set_qf_name(sb, USRQUOTA, &args[0]);
1504	else if (token == Opt_grpjquota)
1505		return set_qf_name(sb, GRPQUOTA, &args[0]);
1506	else if (token == Opt_offusrjquota)
1507		return clear_qf_name(sb, USRQUOTA);
1508	else if (token == Opt_offgrpjquota)
1509		return clear_qf_name(sb, GRPQUOTA);
 
 
1510#endif
1511	if (args->from && match_int(args, &arg))
1512		return -1;
1513	switch (token) {
1514	case Opt_noacl:
1515	case Opt_nouser_xattr:
1516		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1517		break;
1518	case Opt_sb:
1519		return 1;	/* handled by get_sb_block() */
 
 
 
 
 
 
 
1520	case Opt_removed:
1521		ext4_msg(sb, KERN_WARNING,
1522			 "Ignoring removed %s option", opt);
1523		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524	case Opt_resuid:
1525		uid = make_kuid(current_user_ns(), arg);
1526		if (!uid_valid(uid)) {
1527			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1528			return -1;
 
1529		}
1530		sbi->s_resuid = uid;
1531		return 1;
 
1532	case Opt_resgid:
1533		gid = make_kgid(current_user_ns(), arg);
1534		if (!gid_valid(gid)) {
1535			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1536			return -1;
 
1537		}
1538		sbi->s_resgid = gid;
1539		return 1;
1540	case Opt_abort:
1541		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1542		return 1;
1543	case Opt_i_version:
1544		sb->s_flags |= MS_I_VERSION;
1545		return 1;
1546	case Opt_journal_dev:
1547		if (is_remount) {
1548			ext4_msg(sb, KERN_ERR,
1549				 "Cannot specify journal on remount");
1550			return -1;
1551		}
1552		*journal_devnum = arg;
1553		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	case Opt_journal_ioprio:
1555		if (arg < 0 || arg > 7)
1556			return -1;
1557		*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1558		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559	}
1560
1561	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1562		if (token != m->token)
1563			continue;
1564		if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1565			return -1;
1566		if (m->flags & MOPT_EXPLICIT)
1567			set_opt2(sb, EXPLICIT_DELALLOC);
1568		if (m->flags & MOPT_CLEAR_ERR)
1569			clear_opt(sb, ERRORS_MASK);
1570		if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1571			ext4_msg(sb, KERN_ERR, "Cannot change quota "
1572				 "options when quota turned on");
1573			return -1;
1574		}
1575
1576		if (m->flags & MOPT_NOSUPPORT) {
1577			ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1578		} else if (token == Opt_commit) {
1579			if (arg == 0)
1580				arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1581			sbi->s_commit_interval = HZ * arg;
1582		} else if (token == Opt_max_batch_time) {
1583			if (arg == 0)
1584				arg = EXT4_DEF_MAX_BATCH_TIME;
1585			sbi->s_max_batch_time = arg;
1586		} else if (token == Opt_min_batch_time) {
1587			sbi->s_min_batch_time = arg;
1588		} else if (token == Opt_inode_readahead_blks) {
1589			if (arg > (1 << 30))
1590				return -1;
1591			if (arg && !is_power_of_2(arg)) {
1592				ext4_msg(sb, KERN_ERR,
1593					 "EXT4-fs: inode_readahead_blks"
1594					 " must be a power of 2");
1595				return -1;
1596			}
1597			sbi->s_inode_readahead_blks = arg;
1598		} else if (token == Opt_init_itable) {
1599			set_opt(sb, INIT_INODE_TABLE);
1600			if (!args->from)
1601				arg = EXT4_DEF_LI_WAIT_MULT;
1602			sbi->s_li_wait_mult = arg;
1603		} else if (token == Opt_stripe) {
1604			sbi->s_stripe = arg;
1605		} else if (m->flags & MOPT_DATAJ) {
1606			if (is_remount) {
1607				if (!sbi->s_journal)
1608					ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1609				else if (test_opt(sb, DATA_FLAGS) !=
1610					 m->mount_opt) {
1611					ext4_msg(sb, KERN_ERR,
1612					 "Cannot change data mode on remount");
1613					return -1;
1614				}
1615			} else {
1616				clear_opt(sb, DATA_FLAGS);
1617				sbi->s_mount_opt |= m->mount_opt;
1618			}
1619#ifdef CONFIG_QUOTA
1620		} else if (m->flags & MOPT_QFMT) {
1621			if (sb_any_quota_loaded(sb) &&
1622			    sbi->s_jquota_fmt != m->mount_opt) {
1623				ext4_msg(sb, KERN_ERR, "Cannot "
1624					 "change journaled quota options "
1625					 "when quota turned on");
1626				return -1;
1627			}
1628			sbi->s_jquota_fmt = m->mount_opt;
1629#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1630		} else {
1631			if (!args->from)
1632				arg = 1;
1633			if (m->flags & MOPT_CLEAR)
1634				arg = !arg;
1635			else if (unlikely(!(m->flags & MOPT_SET))) {
1636				ext4_msg(sb, KERN_WARNING,
1637					 "buggy handling of option %s", opt);
1638				WARN_ON(1);
1639				return -1;
1640			}
1641			if (arg != 0)
1642				sbi->s_mount_opt |= m->mount_opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643			else
1644				sbi->s_mount_opt &= ~m->mount_opt;
 
 
 
 
 
1645		}
1646		return 1;
1647	}
1648	ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1649		 "or missing value", opt);
1650	return -1;
1651}
1652
1653static int parse_options(char *options, struct super_block *sb,
1654			 unsigned long *journal_devnum,
1655			 unsigned int *journal_ioprio,
1656			 int is_remount)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657{
1658#ifdef CONFIG_QUOTA
 
 
1659	struct ext4_sb_info *sbi = EXT4_SB(sb);
1660#endif
1661	char *p;
1662	substring_t args[MAX_OPT_ARGS];
1663	int token;
1664
1665	if (!options)
1666		return 1;
1667
1668	while ((p = strsep(&options, ",")) != NULL) {
1669		if (!*p)
1670			continue;
1671		/*
1672		 * Initialize args struct so we know whether arg was
1673		 * found; some options take optional arguments.
1674		 */
1675		args[0].to = args[0].from = 0;
1676		token = match_token(p, tokens, args);
1677		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1678				     journal_ioprio, is_remount) < 0)
1679			return 0;
 
 
1680	}
 
 
 
 
 
 
 
 
 
 
 
 
1681#ifdef CONFIG_QUOTA
1682	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1683		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1684			clear_opt(sb, USRQUOTA);
1685
1686		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1687			clear_opt(sb, GRPQUOTA);
1688
1689		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1690			ext4_msg(sb, KERN_ERR, "old and new quota "
1691					"format mixing");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692			return 0;
1693		}
 
1694
1695		if (!sbi->s_jquota_fmt) {
1696			ext4_msg(sb, KERN_ERR, "journaled quota format "
1697					"not specified");
 
 
 
1698			return 0;
1699		}
1700	} else {
1701		if (sbi->s_jquota_fmt) {
1702			ext4_msg(sb, KERN_ERR, "journaled quota format "
1703					"specified with no journaling "
1704					"enabled");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706		}
1707	}
1708#endif
1709	return 1;
1710}
1711
1712static inline void ext4_show_quota_options(struct seq_file *seq,
1713					   struct super_block *sb)
1714{
1715#if defined(CONFIG_QUOTA)
1716	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
1717
1718	if (sbi->s_jquota_fmt) {
1719		char *fmtname = "";
1720
1721		switch (sbi->s_jquota_fmt) {
1722		case QFMT_VFS_OLD:
1723			fmtname = "vfsold";
1724			break;
1725		case QFMT_VFS_V0:
1726			fmtname = "vfsv0";
1727			break;
1728		case QFMT_VFS_V1:
1729			fmtname = "vfsv1";
1730			break;
1731		}
1732		seq_printf(seq, ",jqfmt=%s", fmtname);
1733	}
1734
1735	if (sbi->s_qf_names[USRQUOTA])
1736		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1737
1738	if (sbi->s_qf_names[GRPQUOTA])
1739		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1740
1741	if (test_opt(sb, USRQUOTA))
1742		seq_puts(seq, ",usrquota");
1743
1744	if (test_opt(sb, GRPQUOTA))
1745		seq_puts(seq, ",grpquota");
1746#endif
1747}
1748
1749static const char *token2str(int token)
1750{
1751	static const struct match_token *t;
1752
1753	for (t = tokens; t->token != Opt_err; t++)
1754		if (t->token == token && !strchr(t->pattern, '='))
1755			break;
1756	return t->pattern;
1757}
1758
1759/*
1760 * Show an option if
1761 *  - it's set to a non-default value OR
1762 *  - if the per-sb default is different from the global default
1763 */
1764static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1765			      int nodefs)
1766{
1767	struct ext4_sb_info *sbi = EXT4_SB(sb);
1768	struct ext4_super_block *es = sbi->s_es;
1769	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1770	const struct mount_opts *m;
1771	char sep = nodefs ? '\n' : ',';
1772
1773#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1774#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1775
1776	if (sbi->s_sb_block != 1)
1777		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1778
1779	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1780		int want_set = m->flags & MOPT_SET;
 
 
 
1781		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1782		    (m->flags & MOPT_CLEAR_ERR))
1783			continue;
1784		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1785			continue; /* skip if same as the default */
 
 
 
 
 
 
 
 
 
 
1786		if ((want_set &&
1787		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1788		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1789			continue; /* select Opt_noFoo vs Opt_Foo */
1790		SEQ_OPTS_PRINT("%s", token2str(m->token));
1791	}
1792
1793	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1794	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1795		SEQ_OPTS_PRINT("resuid=%u",
1796				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1797	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1798	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1799		SEQ_OPTS_PRINT("resgid=%u",
1800				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1801	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1802	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1803		SEQ_OPTS_PUTS("errors=remount-ro");
1804	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1805		SEQ_OPTS_PUTS("errors=continue");
1806	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1807		SEQ_OPTS_PUTS("errors=panic");
1808	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1809		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1810	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1811		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1812	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1813		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1814	if (sb->s_flags & MS_I_VERSION)
1815		SEQ_OPTS_PUTS("i_version");
1816	if (nodefs || sbi->s_stripe)
1817		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1818	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
 
1819		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1820			SEQ_OPTS_PUTS("data=journal");
1821		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1822			SEQ_OPTS_PUTS("data=ordered");
1823		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1824			SEQ_OPTS_PUTS("data=writeback");
1825	}
1826	if (nodefs ||
1827	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1828		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1829			       sbi->s_inode_readahead_blks);
1830
1831	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1832		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1833		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834
1835	ext4_show_quota_options(seq, sb);
1836	return 0;
1837}
1838
1839static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1840{
1841	return _ext4_show_options(seq, root->d_sb, 0);
1842}
1843
1844static int options_seq_show(struct seq_file *seq, void *offset)
1845{
1846	struct super_block *sb = seq->private;
1847	int rc;
1848
1849	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1850	rc = _ext4_show_options(seq, sb, 1);
1851	seq_puts(seq, "\n");
1852	return rc;
1853}
1854
1855static int options_open_fs(struct inode *inode, struct file *file)
1856{
1857	return single_open(file, options_seq_show, PDE(inode)->data);
1858}
1859
1860static const struct file_operations ext4_seq_options_fops = {
1861	.owner = THIS_MODULE,
1862	.open = options_open_fs,
1863	.read = seq_read,
1864	.llseek = seq_lseek,
1865	.release = single_release,
1866};
1867
1868static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1869			    int read_only)
1870{
1871	struct ext4_sb_info *sbi = EXT4_SB(sb);
1872	int res = 0;
1873
1874	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1875		ext4_msg(sb, KERN_ERR, "revision level too high, "
1876			 "forcing read-only mode");
1877		res = MS_RDONLY;
 
1878	}
1879	if (read_only)
1880		goto done;
1881	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1882		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1883			 "running e2fsck is recommended");
1884	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1885		ext4_msg(sb, KERN_WARNING,
1886			 "warning: mounting fs with errors, "
1887			 "running e2fsck is recommended");
1888	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1889		 le16_to_cpu(es->s_mnt_count) >=
1890		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1891		ext4_msg(sb, KERN_WARNING,
1892			 "warning: maximal mount count reached, "
1893			 "running e2fsck is recommended");
1894	else if (le32_to_cpu(es->s_checkinterval) &&
1895		(le32_to_cpu(es->s_lastcheck) +
1896			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1897		ext4_msg(sb, KERN_WARNING,
1898			 "warning: checktime reached, "
1899			 "running e2fsck is recommended");
1900	if (!sbi->s_journal)
1901		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1902	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1903		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1904	le16_add_cpu(&es->s_mnt_count, 1);
1905	es->s_mtime = cpu_to_le32(get_seconds());
1906	ext4_update_dynamic_rev(sb);
1907	if (sbi->s_journal)
1908		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
 
 
1909
1910	ext4_commit_super(sb, 1);
1911done:
1912	if (test_opt(sb, DEBUG))
1913		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1914				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1915			sb->s_blocksize,
1916			sbi->s_groups_count,
1917			EXT4_BLOCKS_PER_GROUP(sb),
1918			EXT4_INODES_PER_GROUP(sb),
1919			sbi->s_mount_opt, sbi->s_mount_opt2);
 
 
1920
1921	cleancache_init_fs(sb);
1922	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923}
1924
1925static int ext4_fill_flex_info(struct super_block *sb)
1926{
1927	struct ext4_sb_info *sbi = EXT4_SB(sb);
1928	struct ext4_group_desc *gdp = NULL;
1929	ext4_group_t flex_group_count;
1930	ext4_group_t flex_group;
1931	unsigned int groups_per_flex = 0;
1932	size_t size;
1933	int i;
1934
1935	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1936	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1937		sbi->s_log_groups_per_flex = 0;
1938		return 1;
1939	}
1940	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1941
1942	/* We allocate both existing and potentially added groups */
1943	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1944			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1945			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1946	size = flex_group_count * sizeof(struct flex_groups);
1947	sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1948	if (sbi->s_flex_groups == NULL) {
1949		ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1950			 flex_group_count);
1951		goto failed;
1952	}
1953
1954	for (i = 0; i < sbi->s_groups_count; i++) {
1955		gdp = ext4_get_group_desc(sb, i, NULL);
1956
1957		flex_group = ext4_flex_group(sbi, i);
1958		atomic_add(ext4_free_inodes_count(sb, gdp),
1959			   &sbi->s_flex_groups[flex_group].free_inodes);
1960		atomic_add(ext4_free_group_clusters(sb, gdp),
1961			   &sbi->s_flex_groups[flex_group].free_clusters);
1962		atomic_add(ext4_used_dirs_count(sb, gdp),
1963			   &sbi->s_flex_groups[flex_group].used_dirs);
1964	}
1965
1966	return 1;
1967failed:
1968	return 0;
1969}
1970
1971static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1972				   struct ext4_group_desc *gdp)
1973{
1974	int offset;
1975	__u16 crc = 0;
1976	__le32 le_group = cpu_to_le32(block_group);
 
1977
1978	if ((sbi->s_es->s_feature_ro_compat &
1979	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1980		/* Use new metadata_csum algorithm */
1981		__u16 old_csum;
1982		__u32 csum32;
 
1983
1984		old_csum = gdp->bg_checksum;
1985		gdp->bg_checksum = 0;
1986		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1987				     sizeof(le_group));
1988		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1989				     sbi->s_desc_size);
1990		gdp->bg_checksum = old_csum;
 
 
 
 
1991
1992		crc = csum32 & 0xFFFF;
1993		goto out;
1994	}
1995
1996	/* old crc16 code */
1997	offset = offsetof(struct ext4_group_desc, bg_checksum);
 
1998
1999	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2000	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2001	crc = crc16(crc, (__u8 *)gdp, offset);
2002	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2003	/* for checksum of struct ext4_group_desc do the rest...*/
2004	if ((sbi->s_es->s_feature_incompat &
2005	     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2006	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2007		crc = crc16(crc, (__u8 *)gdp + offset,
2008			    le16_to_cpu(sbi->s_es->s_desc_size) -
2009				offset);
2010
2011out:
2012	return cpu_to_le16(crc);
2013}
2014
2015int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2016				struct ext4_group_desc *gdp)
2017{
2018	if (ext4_has_group_desc_csum(sb) &&
2019	    (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2020						      block_group, gdp)))
2021		return 0;
2022
2023	return 1;
2024}
2025
2026void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2027			      struct ext4_group_desc *gdp)
2028{
2029	if (!ext4_has_group_desc_csum(sb))
2030		return;
2031	gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2032}
2033
2034/* Called at mount-time, super-block is locked */
2035static int ext4_check_descriptors(struct super_block *sb,
 
2036				  ext4_group_t *first_not_zeroed)
2037{
2038	struct ext4_sb_info *sbi = EXT4_SB(sb);
2039	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2040	ext4_fsblk_t last_block;
 
2041	ext4_fsblk_t block_bitmap;
2042	ext4_fsblk_t inode_bitmap;
2043	ext4_fsblk_t inode_table;
2044	int flexbg_flag = 0;
2045	ext4_group_t i, grp = sbi->s_groups_count;
2046
2047	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2048		flexbg_flag = 1;
2049
2050	ext4_debug("Checking group descriptors");
2051
2052	for (i = 0; i < sbi->s_groups_count; i++) {
2053		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2054
2055		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2056			last_block = ext4_blocks_count(sbi->s_es) - 1;
2057		else
2058			last_block = first_block +
2059				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2060
2061		if ((grp == sbi->s_groups_count) &&
2062		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2063			grp = i;
2064
2065		block_bitmap = ext4_block_bitmap(sb, gdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066		if (block_bitmap < first_block || block_bitmap > last_block) {
2067			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2068			       "Block bitmap for group %u not in group "
2069			       "(block %llu)!", i, block_bitmap);
2070			return 0;
2071		}
2072		inode_bitmap = ext4_inode_bitmap(sb, gdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2074			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2075			       "Inode bitmap for group %u not in group "
2076			       "(block %llu)!", i, inode_bitmap);
2077			return 0;
2078		}
2079		inode_table = ext4_inode_table(sb, gdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080		if (inode_table < first_block ||
2081		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2082			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2083			       "Inode table for group %u not in group "
2084			       "(block %llu)!", i, inode_table);
2085			return 0;
2086		}
2087		ext4_lock_group(sb, i);
2088		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2089			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2090				 "Checksum for group %u failed (%u!=%u)",
2091				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2092				     gdp)), le16_to_cpu(gdp->bg_checksum));
2093			if (!(sb->s_flags & MS_RDONLY)) {
2094				ext4_unlock_group(sb, i);
2095				return 0;
2096			}
2097		}
2098		ext4_unlock_group(sb, i);
2099		if (!flexbg_flag)
2100			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2101	}
2102	if (NULL != first_not_zeroed)
2103		*first_not_zeroed = grp;
2104
2105	ext4_free_blocks_count_set(sbi->s_es,
2106				   EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2107	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2108	return 1;
2109}
2110
2111/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2112 * the superblock) which were deleted from all directories, but held open by
2113 * a process at the time of a crash.  We walk the list and try to delete these
2114 * inodes at recovery time (only with a read-write filesystem).
2115 *
2116 * In order to keep the orphan inode chain consistent during traversal (in
2117 * case of crash during recovery), we link each inode into the superblock
2118 * orphan list_head and handle it the same way as an inode deletion during
2119 * normal operation (which journals the operations for us).
2120 *
2121 * We only do an iget() and an iput() on each inode, which is very safe if we
2122 * accidentally point at an in-use or already deleted inode.  The worst that
2123 * can happen in this case is that we get a "bit already cleared" message from
2124 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2125 * e2fsck was run on this filesystem, and it must have already done the orphan
2126 * inode cleanup for us, so we can safely abort without any further action.
2127 */
2128static void ext4_orphan_cleanup(struct super_block *sb,
2129				struct ext4_super_block *es)
2130{
2131	unsigned int s_flags = sb->s_flags;
2132	int nr_orphans = 0, nr_truncates = 0;
2133#ifdef CONFIG_QUOTA
2134	int i;
2135#endif
2136	if (!es->s_last_orphan) {
2137		jbd_debug(4, "no orphan inodes to clean up\n");
2138		return;
2139	}
2140
2141	if (bdev_read_only(sb->s_bdev)) {
2142		ext4_msg(sb, KERN_ERR, "write access "
2143			"unavailable, skipping orphan cleanup");
2144		return;
2145	}
2146
2147	/* Check if feature set would not allow a r/w mount */
2148	if (!ext4_feature_set_ok(sb, 0)) {
2149		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2150			 "unknown ROCOMPAT features");
2151		return;
2152	}
2153
2154	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2155		if (es->s_last_orphan)
2156			jbd_debug(1, "Errors on filesystem, "
2157				  "clearing orphan list.\n");
2158		es->s_last_orphan = 0;
2159		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2160		return;
2161	}
2162
2163	if (s_flags & MS_RDONLY) {
2164		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2165		sb->s_flags &= ~MS_RDONLY;
2166	}
2167#ifdef CONFIG_QUOTA
2168	/* Needed for iput() to work correctly and not trash data */
2169	sb->s_flags |= MS_ACTIVE;
2170	/* Turn on quotas so that they are updated correctly */
2171	for (i = 0; i < MAXQUOTAS; i++) {
2172		if (EXT4_SB(sb)->s_qf_names[i]) {
2173			int ret = ext4_quota_on_mount(sb, i);
2174			if (ret < 0)
2175				ext4_msg(sb, KERN_ERR,
2176					"Cannot turn on journaled "
2177					"quota: error %d", ret);
2178		}
2179	}
2180#endif
2181
2182	while (es->s_last_orphan) {
2183		struct inode *inode;
2184
2185		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2186		if (IS_ERR(inode)) {
2187			es->s_last_orphan = 0;
2188			break;
2189		}
2190
2191		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2192		dquot_initialize(inode);
2193		if (inode->i_nlink) {
2194			ext4_msg(sb, KERN_DEBUG,
2195				"%s: truncating inode %lu to %lld bytes",
2196				__func__, inode->i_ino, inode->i_size);
2197			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2198				  inode->i_ino, inode->i_size);
2199			ext4_truncate(inode);
2200			nr_truncates++;
2201		} else {
2202			ext4_msg(sb, KERN_DEBUG,
2203				"%s: deleting unreferenced inode %lu",
2204				__func__, inode->i_ino);
2205			jbd_debug(2, "deleting unreferenced inode %lu\n",
2206				  inode->i_ino);
2207			nr_orphans++;
2208		}
2209		iput(inode);  /* The delete magic happens here! */
2210	}
2211
2212#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2213
2214	if (nr_orphans)
2215		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2216		       PLURAL(nr_orphans));
2217	if (nr_truncates)
2218		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2219		       PLURAL(nr_truncates));
2220#ifdef CONFIG_QUOTA
2221	/* Turn quotas off */
2222	for (i = 0; i < MAXQUOTAS; i++) {
2223		if (sb_dqopt(sb)->files[i])
2224			dquot_quota_off(sb, i);
2225	}
2226#endif
2227	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2228}
2229
2230/*
2231 * Maximal extent format file size.
2232 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2233 * extent format containers, within a sector_t, and within i_blocks
2234 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2235 * so that won't be a limiting factor.
2236 *
2237 * However there is other limiting factor. We do store extents in the form
2238 * of starting block and length, hence the resulting length of the extent
2239 * covering maximum file size must fit into on-disk format containers as
2240 * well. Given that length is always by 1 unit bigger than max unit (because
2241 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2242 *
2243 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2244 */
2245static loff_t ext4_max_size(int blkbits, int has_huge_files)
2246{
2247	loff_t res;
2248	loff_t upper_limit = MAX_LFS_FILESIZE;
2249
2250	/* small i_blocks in vfs inode? */
2251	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2252		/*
2253		 * CONFIG_LBDAF is not enabled implies the inode
2254		 * i_block represent total blocks in 512 bytes
2255		 * 32 == size of vfs inode i_blocks * 8
2256		 */
2257		upper_limit = (1LL << 32) - 1;
2258
2259		/* total blocks in file system block size */
2260		upper_limit >>= (blkbits - 9);
2261		upper_limit <<= blkbits;
2262	}
2263
2264	/*
2265	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2266	 * by one fs block, so ee_len can cover the extent of maximum file
2267	 * size
2268	 */
2269	res = (1LL << 32) - 1;
2270	res <<= blkbits;
2271
2272	/* Sanity check against vm- & vfs- imposed limits */
2273	if (res > upper_limit)
2274		res = upper_limit;
2275
2276	return res;
2277}
2278
2279/*
2280 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2281 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2282 * We need to be 1 filesystem block less than the 2^48 sector limit.
2283 */
2284static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2285{
2286	loff_t res = EXT4_NDIR_BLOCKS;
2287	int meta_blocks;
2288	loff_t upper_limit;
2289	/* This is calculated to be the largest file size for a dense, block
 
 
2290	 * mapped file such that the file's total number of 512-byte sectors,
2291	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2292	 *
2293	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2294	 * number of 512-byte sectors of the file.
2295	 */
2296
2297	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2298		/*
2299		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2300		 * the inode i_block field represents total file blocks in
2301		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2302		 */
2303		upper_limit = (1LL << 32) - 1;
2304
2305		/* total blocks in file system block size */
2306		upper_limit >>= (bits - 9);
2307
2308	} else {
2309		/*
2310		 * We use 48 bit ext4_inode i_blocks
2311		 * With EXT4_HUGE_FILE_FL set the i_blocks
2312		 * represent total number of blocks in
2313		 * file system block size
2314		 */
2315		upper_limit = (1LL << 48) - 1;
2316
2317	}
2318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319	/* indirect blocks */
2320	meta_blocks = 1;
 
2321	/* double indirect blocks */
2322	meta_blocks += 1 + (1LL << (bits-2));
2323	/* tripple indirect blocks */
2324	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2325
2326	upper_limit -= meta_blocks;
2327	upper_limit <<= bits;
2328
2329	res += 1LL << (bits-2);
2330	res += 1LL << (2*(bits-2));
2331	res += 1LL << (3*(bits-2));
 
 
2332	res <<= bits;
2333	if (res > upper_limit)
2334		res = upper_limit;
2335
2336	if (res > MAX_LFS_FILESIZE)
2337		res = MAX_LFS_FILESIZE;
2338
2339	return res;
2340}
2341
2342static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2343				   ext4_fsblk_t logical_sb_block, int nr)
2344{
2345	struct ext4_sb_info *sbi = EXT4_SB(sb);
2346	ext4_group_t bg, first_meta_bg;
2347	int has_super = 0;
2348
2349	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2350
2351	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2352	    nr < first_meta_bg)
2353		return logical_sb_block + nr + 1;
2354	bg = sbi->s_desc_per_block * nr;
2355	if (ext4_bg_has_super(sb, bg))
2356		has_super = 1;
2357
 
 
 
 
 
 
 
 
 
 
2358	return (has_super + ext4_group_first_block_no(sb, bg));
2359}
2360
2361/**
2362 * ext4_get_stripe_size: Get the stripe size.
2363 * @sbi: In memory super block info
2364 *
2365 * If we have specified it via mount option, then
2366 * use the mount option value. If the value specified at mount time is
2367 * greater than the blocks per group use the super block value.
2368 * If the super block value is greater than blocks per group return 0.
2369 * Allocator needs it be less than blocks per group.
2370 *
2371 */
2372static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2373{
2374	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2375	unsigned long stripe_width =
2376			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2377	int ret;
2378
2379	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2380		ret = sbi->s_stripe;
2381	else if (stripe_width <= sbi->s_blocks_per_group)
2382		ret = stripe_width;
2383	else if (stride <= sbi->s_blocks_per_group)
2384		ret = stride;
2385	else
2386		ret = 0;
2387
2388	/*
2389	 * If the stripe width is 1, this makes no sense and
2390	 * we set it to 0 to turn off stripe handling code.
2391	 */
2392	if (ret <= 1)
2393		ret = 0;
2394
2395	return ret;
2396}
2397
2398/* sysfs supprt */
2399
2400struct ext4_attr {
2401	struct attribute attr;
2402	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2403	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2404			 const char *, size_t);
2405	int offset;
2406};
2407
2408static int parse_strtoul(const char *buf,
2409		unsigned long max, unsigned long *value)
2410{
2411	char *endp;
2412
2413	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2414	endp = skip_spaces(endp);
2415	if (*endp || *value > max)
2416		return -EINVAL;
2417
2418	return 0;
2419}
2420
2421static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2422					      struct ext4_sb_info *sbi,
2423					      char *buf)
2424{
2425	return snprintf(buf, PAGE_SIZE, "%llu\n",
2426		(s64) EXT4_C2B(sbi,
2427			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2428}
2429
2430static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2431					 struct ext4_sb_info *sbi, char *buf)
2432{
2433	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2434
2435	if (!sb->s_bdev->bd_part)
2436		return snprintf(buf, PAGE_SIZE, "0\n");
2437	return snprintf(buf, PAGE_SIZE, "%lu\n",
2438			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2439			 sbi->s_sectors_written_start) >> 1);
2440}
2441
2442static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2443					  struct ext4_sb_info *sbi, char *buf)
2444{
2445	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2446
2447	if (!sb->s_bdev->bd_part)
2448		return snprintf(buf, PAGE_SIZE, "0\n");
2449	return snprintf(buf, PAGE_SIZE, "%llu\n",
2450			(unsigned long long)(sbi->s_kbytes_written +
2451			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2452			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2453}
2454
2455static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2456					  struct ext4_sb_info *sbi,
2457					  const char *buf, size_t count)
2458{
2459	unsigned long t;
2460
2461	if (parse_strtoul(buf, 0x40000000, &t))
2462		return -EINVAL;
2463
2464	if (t && !is_power_of_2(t))
2465		return -EINVAL;
2466
2467	sbi->s_inode_readahead_blks = t;
2468	return count;
2469}
2470
2471static ssize_t sbi_ui_show(struct ext4_attr *a,
2472			   struct ext4_sb_info *sbi, char *buf)
2473{
2474	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2475
2476	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2477}
2478
2479static ssize_t sbi_ui_store(struct ext4_attr *a,
2480			    struct ext4_sb_info *sbi,
2481			    const char *buf, size_t count)
2482{
2483	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2484	unsigned long t;
2485
2486	if (parse_strtoul(buf, 0xffffffff, &t))
2487		return -EINVAL;
2488	*ui = t;
2489	return count;
2490}
2491
2492static ssize_t trigger_test_error(struct ext4_attr *a,
2493				  struct ext4_sb_info *sbi,
2494				  const char *buf, size_t count)
2495{
2496	int len = count;
2497
2498	if (!capable(CAP_SYS_ADMIN))
2499		return -EPERM;
2500
2501	if (len && buf[len-1] == '\n')
2502		len--;
2503
2504	if (len)
2505		ext4_error(sbi->s_sb, "%.*s", len, buf);
2506	return count;
2507}
2508
2509#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2510static struct ext4_attr ext4_attr_##_name = {			\
2511	.attr = {.name = __stringify(_name), .mode = _mode },	\
2512	.show	= _show,					\
2513	.store	= _store,					\
2514	.offset = offsetof(struct ext4_sb_info, _elname),	\
2515}
2516#define EXT4_ATTR(name, mode, show, store) \
2517static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2518
2519#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2520#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2521#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2522#define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2523	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2524#define ATTR_LIST(name) &ext4_attr_##name.attr
2525
2526EXT4_RO_ATTR(delayed_allocation_blocks);
2527EXT4_RO_ATTR(session_write_kbytes);
2528EXT4_RO_ATTR(lifetime_write_kbytes);
2529EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2530		 inode_readahead_blks_store, s_inode_readahead_blks);
2531EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2532EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2533EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2534EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2535EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2536EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2537EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2538EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2539EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2540
2541static struct attribute *ext4_attrs[] = {
2542	ATTR_LIST(delayed_allocation_blocks),
2543	ATTR_LIST(session_write_kbytes),
2544	ATTR_LIST(lifetime_write_kbytes),
2545	ATTR_LIST(inode_readahead_blks),
2546	ATTR_LIST(inode_goal),
2547	ATTR_LIST(mb_stats),
2548	ATTR_LIST(mb_max_to_scan),
2549	ATTR_LIST(mb_min_to_scan),
2550	ATTR_LIST(mb_order2_req),
2551	ATTR_LIST(mb_stream_req),
2552	ATTR_LIST(mb_group_prealloc),
2553	ATTR_LIST(max_writeback_mb_bump),
2554	ATTR_LIST(trigger_fs_error),
2555	NULL,
2556};
2557
2558/* Features this copy of ext4 supports */
2559EXT4_INFO_ATTR(lazy_itable_init);
2560EXT4_INFO_ATTR(batched_discard);
2561
2562static struct attribute *ext4_feat_attrs[] = {
2563	ATTR_LIST(lazy_itable_init),
2564	ATTR_LIST(batched_discard),
2565	NULL,
2566};
2567
2568static ssize_t ext4_attr_show(struct kobject *kobj,
2569			      struct attribute *attr, char *buf)
2570{
2571	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2572						s_kobj);
2573	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2574
2575	return a->show ? a->show(a, sbi, buf) : 0;
2576}
2577
2578static ssize_t ext4_attr_store(struct kobject *kobj,
2579			       struct attribute *attr,
2580			       const char *buf, size_t len)
2581{
2582	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2583						s_kobj);
2584	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2585
2586	return a->store ? a->store(a, sbi, buf, len) : 0;
2587}
2588
2589static void ext4_sb_release(struct kobject *kobj)
2590{
2591	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2592						s_kobj);
2593	complete(&sbi->s_kobj_unregister);
2594}
2595
2596static const struct sysfs_ops ext4_attr_ops = {
2597	.show	= ext4_attr_show,
2598	.store	= ext4_attr_store,
2599};
2600
2601static struct kobj_type ext4_ktype = {
2602	.default_attrs	= ext4_attrs,
2603	.sysfs_ops	= &ext4_attr_ops,
2604	.release	= ext4_sb_release,
2605};
2606
2607static void ext4_feat_release(struct kobject *kobj)
2608{
2609	complete(&ext4_feat->f_kobj_unregister);
2610}
2611
2612static struct kobj_type ext4_feat_ktype = {
2613	.default_attrs	= ext4_feat_attrs,
2614	.sysfs_ops	= &ext4_attr_ops,
2615	.release	= ext4_feat_release,
2616};
2617
2618/*
2619 * Check whether this filesystem can be mounted based on
2620 * the features present and the RDONLY/RDWR mount requested.
2621 * Returns 1 if this filesystem can be mounted as requested,
2622 * 0 if it cannot be.
2623 */
2624static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2625{
2626	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2627		ext4_msg(sb, KERN_ERR,
2628			"Couldn't mount because of "
2629			"unsupported optional features (%x)",
2630			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2631			~EXT4_FEATURE_INCOMPAT_SUPP));
2632		return 0;
2633	}
2634
 
 
 
 
 
 
 
 
 
2635	if (readonly)
2636		return 1;
2637
 
 
 
 
 
 
2638	/* Check that feature set is OK for a read-write mount */
2639	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2640		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2641			 "unsupported optional features (%x)",
2642			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2643				~EXT4_FEATURE_RO_COMPAT_SUPP));
2644		return 0;
2645	}
2646	/*
2647	 * Large file size enabled file system can only be mounted
2648	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2649	 */
2650	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2651		if (sizeof(blkcnt_t) < sizeof(u64)) {
2652			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2653				 "cannot be mounted RDWR without "
2654				 "CONFIG_LBDAF");
2655			return 0;
2656		}
2657	}
2658	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2659	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2660		ext4_msg(sb, KERN_ERR,
2661			 "Can't support bigalloc feature without "
2662			 "extents feature\n");
2663		return 0;
2664	}
 
 
 
 
 
 
 
 
 
2665	return 1;
2666}
2667
2668/*
2669 * This function is called once a day if we have errors logged
2670 * on the file system
2671 */
2672static void print_daily_error_info(unsigned long arg)
2673{
2674	struct super_block *sb = (struct super_block *) arg;
2675	struct ext4_sb_info *sbi;
2676	struct ext4_super_block *es;
2677
2678	sbi = EXT4_SB(sb);
2679	es = sbi->s_es;
2680
2681	if (es->s_error_count)
2682		ext4_msg(sb, KERN_NOTICE, "error count: %u",
 
2683			 le32_to_cpu(es->s_error_count));
2684	if (es->s_first_error_time) {
2685		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2686		       sb->s_id, le32_to_cpu(es->s_first_error_time),
 
2687		       (int) sizeof(es->s_first_error_func),
2688		       es->s_first_error_func,
2689		       le32_to_cpu(es->s_first_error_line));
2690		if (es->s_first_error_ino)
2691			printk(": inode %u",
2692			       le32_to_cpu(es->s_first_error_ino));
2693		if (es->s_first_error_block)
2694			printk(": block %llu", (unsigned long long)
2695			       le64_to_cpu(es->s_first_error_block));
2696		printk("\n");
2697	}
2698	if (es->s_last_error_time) {
2699		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2700		       sb->s_id, le32_to_cpu(es->s_last_error_time),
 
2701		       (int) sizeof(es->s_last_error_func),
2702		       es->s_last_error_func,
2703		       le32_to_cpu(es->s_last_error_line));
2704		if (es->s_last_error_ino)
2705			printk(": inode %u",
2706			       le32_to_cpu(es->s_last_error_ino));
2707		if (es->s_last_error_block)
2708			printk(": block %llu", (unsigned long long)
2709			       le64_to_cpu(es->s_last_error_block));
2710		printk("\n");
2711	}
2712	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2713}
2714
2715/* Find next suitable group and run ext4_init_inode_table */
2716static int ext4_run_li_request(struct ext4_li_request *elr)
2717{
2718	struct ext4_group_desc *gdp = NULL;
2719	ext4_group_t group, ngroups;
2720	struct super_block *sb;
2721	unsigned long timeout = 0;
 
2722	int ret = 0;
 
 
2723
2724	sb = elr->lr_super;
2725	ngroups = EXT4_SB(sb)->s_groups_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
2726
2727	for (group = elr->lr_next_group; group < ngroups; group++) {
2728		gdp = ext4_get_group_desc(sb, group, NULL);
2729		if (!gdp) {
2730			ret = 1;
2731			break;
2732		}
2733
2734		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2735			break;
2736	}
2737
2738	if (group == ngroups)
2739		ret = 1;
2740
2741	if (!ret) {
2742		timeout = jiffies;
2743		ret = ext4_init_inode_table(sb, group,
2744					    elr->lr_timeout ? 0 : 1);
 
2745		if (elr->lr_timeout == 0) {
2746			timeout = (jiffies - timeout) *
2747				  elr->lr_sbi->s_li_wait_mult;
2748			elr->lr_timeout = timeout;
2749		}
2750		elr->lr_next_sched = jiffies + elr->lr_timeout;
2751		elr->lr_next_group = group + 1;
2752	}
2753
2754	return ret;
2755}
2756
2757/*
2758 * Remove lr_request from the list_request and free the
2759 * request structure. Should be called with li_list_mtx held
2760 */
2761static void ext4_remove_li_request(struct ext4_li_request *elr)
2762{
2763	struct ext4_sb_info *sbi;
2764
2765	if (!elr)
2766		return;
2767
2768	sbi = elr->lr_sbi;
2769
2770	list_del(&elr->lr_request);
2771	sbi->s_li_request = NULL;
2772	kfree(elr);
2773}
2774
2775static void ext4_unregister_li_request(struct super_block *sb)
2776{
2777	mutex_lock(&ext4_li_mtx);
2778	if (!ext4_li_info) {
2779		mutex_unlock(&ext4_li_mtx);
2780		return;
2781	}
2782
2783	mutex_lock(&ext4_li_info->li_list_mtx);
2784	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2785	mutex_unlock(&ext4_li_info->li_list_mtx);
2786	mutex_unlock(&ext4_li_mtx);
2787}
2788
2789static struct task_struct *ext4_lazyinit_task;
2790
2791/*
2792 * This is the function where ext4lazyinit thread lives. It walks
2793 * through the request list searching for next scheduled filesystem.
2794 * When such a fs is found, run the lazy initialization request
2795 * (ext4_rn_li_request) and keep track of the time spend in this
2796 * function. Based on that time we compute next schedule time of
2797 * the request. When walking through the list is complete, compute
2798 * next waking time and put itself into sleep.
2799 */
2800static int ext4_lazyinit_thread(void *arg)
2801{
2802	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2803	struct list_head *pos, *n;
2804	struct ext4_li_request *elr;
2805	unsigned long next_wakeup, cur;
2806
2807	BUG_ON(NULL == eli);
 
2808
2809cont_thread:
2810	while (true) {
2811		next_wakeup = MAX_JIFFY_OFFSET;
2812
2813		mutex_lock(&eli->li_list_mtx);
2814		if (list_empty(&eli->li_request_list)) {
2815			mutex_unlock(&eli->li_list_mtx);
2816			goto exit_thread;
2817		}
2818
2819		list_for_each_safe(pos, n, &eli->li_request_list) {
 
 
2820			elr = list_entry(pos, struct ext4_li_request,
2821					 lr_request);
2822
2823			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2824				if (ext4_run_li_request(elr) != 0) {
2825					/* error, remove the lazy_init job */
2826					ext4_remove_li_request(elr);
2827					continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
2828				}
 
 
 
 
 
 
 
 
 
 
2829			}
2830
2831			if (time_before(elr->lr_next_sched, next_wakeup))
2832				next_wakeup = elr->lr_next_sched;
2833		}
2834		mutex_unlock(&eli->li_list_mtx);
2835
2836		try_to_freeze();
2837
2838		cur = jiffies;
2839		if ((time_after_eq(cur, next_wakeup)) ||
2840		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2841			cond_resched();
2842			continue;
2843		}
2844
2845		schedule_timeout_interruptible(next_wakeup - cur);
2846
2847		if (kthread_should_stop()) {
2848			ext4_clear_request_list();
2849			goto exit_thread;
2850		}
2851	}
2852
2853exit_thread:
2854	/*
2855	 * It looks like the request list is empty, but we need
2856	 * to check it under the li_list_mtx lock, to prevent any
2857	 * additions into it, and of course we should lock ext4_li_mtx
2858	 * to atomically free the list and ext4_li_info, because at
2859	 * this point another ext4 filesystem could be registering
2860	 * new one.
2861	 */
2862	mutex_lock(&ext4_li_mtx);
2863	mutex_lock(&eli->li_list_mtx);
2864	if (!list_empty(&eli->li_request_list)) {
2865		mutex_unlock(&eli->li_list_mtx);
2866		mutex_unlock(&ext4_li_mtx);
2867		goto cont_thread;
2868	}
2869	mutex_unlock(&eli->li_list_mtx);
2870	kfree(ext4_li_info);
2871	ext4_li_info = NULL;
2872	mutex_unlock(&ext4_li_mtx);
2873
2874	return 0;
2875}
2876
2877static void ext4_clear_request_list(void)
2878{
2879	struct list_head *pos, *n;
2880	struct ext4_li_request *elr;
2881
2882	mutex_lock(&ext4_li_info->li_list_mtx);
2883	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2884		elr = list_entry(pos, struct ext4_li_request,
2885				 lr_request);
2886		ext4_remove_li_request(elr);
2887	}
2888	mutex_unlock(&ext4_li_info->li_list_mtx);
2889}
2890
2891static int ext4_run_lazyinit_thread(void)
2892{
2893	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2894					 ext4_li_info, "ext4lazyinit");
2895	if (IS_ERR(ext4_lazyinit_task)) {
2896		int err = PTR_ERR(ext4_lazyinit_task);
2897		ext4_clear_request_list();
2898		kfree(ext4_li_info);
2899		ext4_li_info = NULL;
2900		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2901				 "initialization thread\n",
2902				 err);
2903		return err;
2904	}
2905	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2906	return 0;
2907}
2908
2909/*
2910 * Check whether it make sense to run itable init. thread or not.
2911 * If there is at least one uninitialized inode table, return
2912 * corresponding group number, else the loop goes through all
2913 * groups and return total number of groups.
2914 */
2915static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2916{
2917	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2918	struct ext4_group_desc *gdp = NULL;
2919
 
 
 
2920	for (group = 0; group < ngroups; group++) {
2921		gdp = ext4_get_group_desc(sb, group, NULL);
2922		if (!gdp)
2923			continue;
2924
2925		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2926			break;
2927	}
2928
2929	return group;
2930}
2931
2932static int ext4_li_info_new(void)
2933{
2934	struct ext4_lazy_init *eli = NULL;
2935
2936	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2937	if (!eli)
2938		return -ENOMEM;
2939
2940	INIT_LIST_HEAD(&eli->li_request_list);
2941	mutex_init(&eli->li_list_mtx);
2942
2943	eli->li_state |= EXT4_LAZYINIT_QUIT;
2944
2945	ext4_li_info = eli;
2946
2947	return 0;
2948}
2949
2950static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2951					    ext4_group_t start)
2952{
2953	struct ext4_sb_info *sbi = EXT4_SB(sb);
2954	struct ext4_li_request *elr;
2955	unsigned long rnd;
2956
2957	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2958	if (!elr)
2959		return NULL;
2960
2961	elr->lr_super = sb;
2962	elr->lr_sbi = sbi;
2963	elr->lr_next_group = start;
 
 
 
 
 
2964
2965	/*
2966	 * Randomize first schedule time of the request to
2967	 * spread the inode table initialization requests
2968	 * better.
2969	 */
2970	get_random_bytes(&rnd, sizeof(rnd));
2971	elr->lr_next_sched = jiffies + (unsigned long)rnd %
2972			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2973
2974	return elr;
2975}
2976
2977static int ext4_register_li_request(struct super_block *sb,
2978				    ext4_group_t first_not_zeroed)
2979{
2980	struct ext4_sb_info *sbi = EXT4_SB(sb);
2981	struct ext4_li_request *elr;
2982	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2983	int ret = 0;
2984
 
2985	if (sbi->s_li_request != NULL) {
2986		/*
2987		 * Reset timeout so it can be computed again, because
2988		 * s_li_wait_mult might have changed.
2989		 */
2990		sbi->s_li_request->lr_timeout = 0;
2991		return 0;
2992	}
2993
2994	if (first_not_zeroed == ngroups ||
2995	    (sb->s_flags & MS_RDONLY) ||
2996	    !test_opt(sb, INIT_INODE_TABLE))
2997		return 0;
2998
2999	elr = ext4_li_request_new(sb, first_not_zeroed);
3000	if (!elr)
3001		return -ENOMEM;
3002
3003	mutex_lock(&ext4_li_mtx);
3004
3005	if (NULL == ext4_li_info) {
3006		ret = ext4_li_info_new();
3007		if (ret)
3008			goto out;
3009	}
3010
3011	mutex_lock(&ext4_li_info->li_list_mtx);
3012	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3013	mutex_unlock(&ext4_li_info->li_list_mtx);
3014
3015	sbi->s_li_request = elr;
3016	/*
3017	 * set elr to NULL here since it has been inserted to
3018	 * the request_list and the removal and free of it is
3019	 * handled by ext4_clear_request_list from now on.
3020	 */
3021	elr = NULL;
3022
3023	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3024		ret = ext4_run_lazyinit_thread();
3025		if (ret)
3026			goto out;
3027	}
3028out:
3029	mutex_unlock(&ext4_li_mtx);
3030	if (ret)
3031		kfree(elr);
3032	return ret;
3033}
3034
3035/*
3036 * We do not need to lock anything since this is called on
3037 * module unload.
3038 */
3039static void ext4_destroy_lazyinit_thread(void)
3040{
3041	/*
3042	 * If thread exited earlier
3043	 * there's nothing to be done.
3044	 */
3045	if (!ext4_li_info || !ext4_lazyinit_task)
3046		return;
3047
3048	kthread_stop(ext4_lazyinit_task);
3049}
3050
3051static int set_journal_csum_feature_set(struct super_block *sb)
3052{
3053	int ret = 1;
3054	int compat, incompat;
3055	struct ext4_sb_info *sbi = EXT4_SB(sb);
3056
3057	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3058				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3059		/* journal checksum v2 */
3060		compat = 0;
3061		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3062	} else {
3063		/* journal checksum v1 */
3064		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3065		incompat = 0;
3066	}
3067
 
 
 
 
3068	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3069		ret = jbd2_journal_set_features(sbi->s_journal,
3070				compat, 0,
3071				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3072				incompat);
3073	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3074		ret = jbd2_journal_set_features(sbi->s_journal,
3075				compat, 0,
3076				incompat);
3077		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3078				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3079	} else {
3080		jbd2_journal_clear_features(sbi->s_journal,
3081				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3082				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3083				JBD2_FEATURE_INCOMPAT_CSUM_V2);
3084	}
3085
3086	return ret;
3087}
3088
3089/*
3090 * Note: calculating the overhead so we can be compatible with
3091 * historical BSD practice is quite difficult in the face of
3092 * clusters/bigalloc.  This is because multiple metadata blocks from
3093 * different block group can end up in the same allocation cluster.
3094 * Calculating the exact overhead in the face of clustered allocation
3095 * requires either O(all block bitmaps) in memory or O(number of block
3096 * groups**2) in time.  We will still calculate the superblock for
3097 * older file systems --- and if we come across with a bigalloc file
3098 * system with zero in s_overhead_clusters the estimate will be close to
3099 * correct especially for very large cluster sizes --- but for newer
3100 * file systems, it's better to calculate this figure once at mkfs
3101 * time, and store it in the superblock.  If the superblock value is
3102 * present (even for non-bigalloc file systems), we will use it.
3103 */
3104static int count_overhead(struct super_block *sb, ext4_group_t grp,
3105			  char *buf)
3106{
3107	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3108	struct ext4_group_desc	*gdp;
3109	ext4_fsblk_t		first_block, last_block, b;
3110	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3111	int			s, j, count = 0;
 
3112
3113	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3114		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
 
3115			sbi->s_itb_per_group + 2);
3116
3117	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3118		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3119	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3120	for (i = 0; i < ngroups; i++) {
3121		gdp = ext4_get_group_desc(sb, i, NULL);
3122		b = ext4_block_bitmap(sb, gdp);
3123		if (b >= first_block && b <= last_block) {
3124			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3125			count++;
3126		}
3127		b = ext4_inode_bitmap(sb, gdp);
3128		if (b >= first_block && b <= last_block) {
3129			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3130			count++;
3131		}
3132		b = ext4_inode_table(sb, gdp);
3133		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3134			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3135				int c = EXT4_B2C(sbi, b - first_block);
3136				ext4_set_bit(c, buf);
3137				count++;
3138			}
3139		if (i != grp)
3140			continue;
3141		s = 0;
3142		if (ext4_bg_has_super(sb, grp)) {
3143			ext4_set_bit(s++, buf);
3144			count++;
3145		}
3146		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3147			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3148			count++;
 
 
3149		}
 
 
 
3150	}
3151	if (!count)
3152		return 0;
3153	return EXT4_CLUSTERS_PER_GROUP(sb) -
3154		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3155}
3156
3157/*
3158 * Compute the overhead and stash it in sbi->s_overhead
3159 */
3160int ext4_calculate_overhead(struct super_block *sb)
3161{
3162	struct ext4_sb_info *sbi = EXT4_SB(sb);
3163	struct ext4_super_block *es = sbi->s_es;
 
 
3164	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3165	ext4_fsblk_t overhead = 0;
3166	char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3167
3168	memset(buf, 0, PAGE_SIZE);
3169	if (!buf)
3170		return -ENOMEM;
3171
3172	/*
3173	 * Compute the overhead (FS structures).  This is constant
3174	 * for a given filesystem unless the number of block groups
3175	 * changes so we cache the previous value until it does.
3176	 */
3177
3178	/*
3179	 * All of the blocks before first_data_block are overhead
3180	 */
3181	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3182
3183	/*
3184	 * Add the overhead found in each block group
3185	 */
3186	for (i = 0; i < ngroups; i++) {
3187		int blks;
3188
3189		blks = count_overhead(sb, i, buf);
3190		overhead += blks;
3191		if (blks)
3192			memset(buf, 0, PAGE_SIZE);
3193		cond_resched();
3194	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195	sbi->s_overhead = overhead;
3196	smp_wmb();
3197	free_page((unsigned long) buf);
3198	return 0;
3199}
3200
3201static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3202{
3203	char *orig_data = kstrdup(data, GFP_KERNEL);
3204	struct buffer_head *bh;
3205	struct ext4_super_block *es = NULL;
3206	struct ext4_sb_info *sbi;
3207	ext4_fsblk_t block;
3208	ext4_fsblk_t sb_block = get_sb_block(&data);
3209	ext4_fsblk_t logical_sb_block;
3210	unsigned long offset = 0;
3211	unsigned long journal_devnum = 0;
3212	unsigned long def_mount_opts;
3213	struct inode *root;
3214	char *cp;
3215	const char *descr;
3216	int ret = -ENOMEM;
3217	int blocksize, clustersize;
3218	unsigned int db_count;
3219	unsigned int i;
3220	int needs_recovery, has_huge_files, has_bigalloc;
3221	__u64 blocks_count;
3222	int err;
3223	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3224	ext4_group_t first_not_zeroed;
3225
3226	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3227	if (!sbi)
3228		goto out_free_orig;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229
3230	sbi->s_blockgroup_lock =
3231		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3232	if (!sbi->s_blockgroup_lock) {
3233		kfree(sbi);
3234		goto out_free_orig;
3235	}
3236	sb->s_fs_info = sbi;
3237	sbi->s_sb = sb;
3238	sbi->s_mount_opt = 0;
3239	sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3240	sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3241	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3242	sbi->s_sb_block = sb_block;
3243	if (sb->s_bdev->bd_part)
3244		sbi->s_sectors_written_start =
3245			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3246
3247	/* Cleanup superblock name */
3248	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3249		*cp = '!';
3250
3251	ret = -EINVAL;
3252	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3253	if (!blocksize) {
3254		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3255		goto out_fail;
3256	}
3257
3258	/*
3259	 * The ext4 superblock will not be buffer aligned for other than 1kB
3260	 * block sizes.  We need to calculate the offset from buffer start.
3261	 */
3262	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3263		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3264		offset = do_div(logical_sb_block, blocksize);
3265	} else {
3266		logical_sb_block = sb_block;
3267	}
3268
3269	if (!(bh = sb_bread(sb, logical_sb_block))) {
3270		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3271		goto out_fail;
3272	}
3273	/*
3274	 * Note: s_es must be initialized as soon as possible because
3275	 *       some ext4 macro-instructions depend on its value
3276	 */
3277	es = (struct ext4_super_block *) (bh->b_data + offset);
3278	sbi->s_es = es;
3279	sb->s_magic = le16_to_cpu(es->s_magic);
3280	if (sb->s_magic != EXT4_SUPER_MAGIC)
3281		goto cantfind_ext4;
3282	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3283
3284	/* Warn if metadata_csum and gdt_csum are both set. */
3285	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3286				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3287	    EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3288		ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3289			     "redundant flags; please run fsck.");
3290
3291	/* Check for a known checksum algorithm */
3292	if (!ext4_verify_csum_type(sb, es)) {
3293		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3294			 "unknown checksum algorithm.");
3295		silent = 1;
3296		goto cantfind_ext4;
3297	}
3298
3299	/* Load the checksum driver */
3300	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3301				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3302		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3303		if (IS_ERR(sbi->s_chksum_driver)) {
3304			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3305			ret = PTR_ERR(sbi->s_chksum_driver);
3306			sbi->s_chksum_driver = NULL;
3307			goto failed_mount;
3308		}
3309	}
3310
3311	/* Check superblock checksum */
3312	if (!ext4_superblock_csum_verify(sb, es)) {
3313		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3314			 "invalid superblock checksum.  Run e2fsck?");
3315		silent = 1;
3316		goto cantfind_ext4;
3317	}
3318
3319	/* Precompute checksum seed for all metadata */
3320	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3321			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3322		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3323					       sizeof(es->s_uuid));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3324
3325	/* Set defaults before we parse the mount options */
3326	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3327	set_opt(sb, INIT_INODE_TABLE);
3328	if (def_mount_opts & EXT4_DEFM_DEBUG)
3329		set_opt(sb, DEBUG);
3330	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3331		set_opt(sb, GRPID);
3332	if (def_mount_opts & EXT4_DEFM_UID16)
3333		set_opt(sb, NO_UID32);
3334	/* xattr user namespace & acls are now defaulted on */
3335#ifdef CONFIG_EXT4_FS_XATTR
3336	set_opt(sb, XATTR_USER);
3337#endif
3338#ifdef CONFIG_EXT4_FS_POSIX_ACL
3339	set_opt(sb, POSIX_ACL);
3340#endif
3341	set_opt(sb, MBLK_IO_SUBMIT);
 
 
 
 
 
3342	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3343		set_opt(sb, JOURNAL_DATA);
3344	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3345		set_opt(sb, ORDERED_DATA);
3346	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3347		set_opt(sb, WRITEBACK_DATA);
3348
3349	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3350		set_opt(sb, ERRORS_PANIC);
3351	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3352		set_opt(sb, ERRORS_CONT);
3353	else
3354		set_opt(sb, ERRORS_RO);
3355	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3356		set_opt(sb, BLOCK_VALIDITY);
3357	if (def_mount_opts & EXT4_DEFM_DISCARD)
3358		set_opt(sb, DISCARD);
3359
3360	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3361	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3362	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3363	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3364	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3365
3366	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3367		set_opt(sb, BARRIER);
3368
3369	/*
3370	 * enable delayed allocation by default
3371	 * Use -o nodelalloc to turn it off
3372	 */
3373	if (!IS_EXT3_SB(sb) &&
3374	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3375		set_opt(sb, DELALLOC);
3376
3377	/*
3378	 * set default s_li_wait_mult for lazyinit, for the case there is
3379	 * no mount option specified.
3380	 */
3381	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3382
3383	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3384			   &journal_devnum, &journal_ioprio, 0)) {
3385		ext4_msg(sb, KERN_WARNING,
3386			 "failed to parse options in superblock: %s",
3387			 sbi->s_es->s_mount_opts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388	}
3389	sbi->s_def_mount_opt = sbi->s_mount_opt;
3390	if (!parse_options((char *) data, sb, &journal_devnum,
3391			   &journal_ioprio, 0))
3392		goto failed_mount;
3393
3394	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3395		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3396			    "with data=journal disables delayed "
3397			    "allocation and O_DIRECT support!\n");
3398		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3399			ext4_msg(sb, KERN_ERR, "can't mount with "
3400				 "both data=journal and delalloc");
3401			goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3402		}
3403		if (test_opt(sb, DIOREAD_NOLOCK)) {
3404			ext4_msg(sb, KERN_ERR, "can't mount with "
3405				 "both data=journal and delalloc");
3406			goto failed_mount;
 
 
 
 
3407		}
3408		if (test_opt(sb, DELALLOC))
3409			clear_opt(sb, DELALLOC);
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	}
3411
3412	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3413	if (test_opt(sb, DIOREAD_NOLOCK)) {
3414		if (blocksize < PAGE_SIZE) {
3415			ext4_msg(sb, KERN_ERR, "can't mount with "
3416				 "dioread_nolock if block size != PAGE_SIZE");
3417			goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418		}
3419	}
3420
3421	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3422		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3423
3424	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3425	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3426	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3427	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3428		ext4_msg(sb, KERN_WARNING,
3429		       "feature flags set on rev 0 fs, "
3430		       "running e2fsck is recommended");
3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3432	if (IS_EXT2_SB(sb)) {
3433		if (ext2_feature_set_ok(sb))
3434			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3435				 "using the ext4 subsystem");
3436		else {
 
 
 
 
 
 
3437			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3438				 "to feature incompatibilities");
3439			goto failed_mount;
3440		}
3441	}
3442
3443	if (IS_EXT3_SB(sb)) {
3444		if (ext3_feature_set_ok(sb))
3445			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3446				 "using the ext4 subsystem");
3447		else {
 
 
 
 
 
 
3448			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3449				 "to feature incompatibilities");
3450			goto failed_mount;
3451		}
3452	}
3453
3454	/*
3455	 * Check feature flags regardless of the revision level, since we
3456	 * previously didn't change the revision level when setting the flags,
3457	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3458	 */
3459	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3460		goto failed_mount;
3461
3462	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3463	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3464		ext4_msg(sb, KERN_ERR,
3465		       "Unsupported filesystem blocksize %d", blocksize);
3466		goto failed_mount;
3467	}
3468
3469	if (sb->s_blocksize != blocksize) {
3470		/* Validate the filesystem blocksize */
3471		if (!sb_set_blocksize(sb, blocksize)) {
3472			ext4_msg(sb, KERN_ERR, "bad block size %d",
3473					blocksize);
3474			goto failed_mount;
3475		}
3476
3477		brelse(bh);
3478		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3479		offset = do_div(logical_sb_block, blocksize);
3480		bh = sb_bread(sb, logical_sb_block);
3481		if (!bh) {
3482			ext4_msg(sb, KERN_ERR,
3483			       "Can't read superblock on 2nd try");
3484			goto failed_mount;
3485		}
3486		es = (struct ext4_super_block *)(bh->b_data + offset);
3487		sbi->s_es = es;
3488		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3489			ext4_msg(sb, KERN_ERR,
3490			       "Magic mismatch, very weird!");
3491			goto failed_mount;
3492		}
3493	}
3494
3495	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3496				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3497	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3498						      has_huge_files);
3499	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3500
3501	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3502		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3503		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3504	} else {
3505		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3506		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3507		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3508		    (!is_power_of_2(sbi->s_inode_size)) ||
3509		    (sbi->s_inode_size > blocksize)) {
3510			ext4_msg(sb, KERN_ERR,
3511			       "unsupported inode size: %d",
3512			       sbi->s_inode_size);
3513			goto failed_mount;
3514		}
3515		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3516			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3517	}
3518
3519	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3520	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3521		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3522		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3523		    !is_power_of_2(sbi->s_desc_size)) {
3524			ext4_msg(sb, KERN_ERR,
3525			       "unsupported descriptor size %lu",
3526			       sbi->s_desc_size);
3527			goto failed_mount;
3528		}
3529	} else
3530		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3531
3532	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3533	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3534	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3535		goto cantfind_ext4;
3536
3537	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3538	if (sbi->s_inodes_per_block == 0)
3539		goto cantfind_ext4;
3540	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3541					sbi->s_inodes_per_block;
3542	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3543	sbi->s_sbh = bh;
3544	sbi->s_mount_state = le16_to_cpu(es->s_state);
3545	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3546	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3547
3548	for (i = 0; i < 4; i++)
3549		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3550	sbi->s_def_hash_version = es->s_def_hash_version;
3551	i = le32_to_cpu(es->s_flags);
3552	if (i & EXT2_FLAGS_UNSIGNED_HASH)
3553		sbi->s_hash_unsigned = 3;
3554	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3555#ifdef __CHAR_UNSIGNED__
3556		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3557		sbi->s_hash_unsigned = 3;
3558#else
3559		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3560#endif
3561	}
3562
3563	/* Handle clustersize */
3564	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3565	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3566				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3567	if (has_bigalloc) {
3568		if (clustersize < blocksize) {
3569			ext4_msg(sb, KERN_ERR,
3570				 "cluster size (%d) smaller than "
3571				 "block size (%d)", clustersize, blocksize);
3572			goto failed_mount;
3573		}
3574		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3575			le32_to_cpu(es->s_log_block_size);
3576		sbi->s_clusters_per_group =
3577			le32_to_cpu(es->s_clusters_per_group);
3578		if (sbi->s_clusters_per_group > blocksize * 8) {
3579			ext4_msg(sb, KERN_ERR,
3580				 "#clusters per group too big: %lu",
3581				 sbi->s_clusters_per_group);
3582			goto failed_mount;
3583		}
3584		if (sbi->s_blocks_per_group !=
3585		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3586			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3587				 "clusters per group (%lu) inconsistent",
3588				 sbi->s_blocks_per_group,
3589				 sbi->s_clusters_per_group);
3590			goto failed_mount;
3591		}
3592	} else {
3593		if (clustersize != blocksize) {
3594			ext4_warning(sb, "fragment/cluster size (%d) != "
3595				     "block size (%d)", clustersize,
3596				     blocksize);
3597			clustersize = blocksize;
3598		}
3599		if (sbi->s_blocks_per_group > blocksize * 8) {
3600			ext4_msg(sb, KERN_ERR,
3601				 "#blocks per group too big: %lu",
3602				 sbi->s_blocks_per_group);
3603			goto failed_mount;
3604		}
3605		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3606		sbi->s_cluster_bits = 0;
3607	}
3608	sbi->s_cluster_ratio = clustersize / blocksize;
3609
3610	if (sbi->s_inodes_per_group > blocksize * 8) {
3611		ext4_msg(sb, KERN_ERR,
3612		       "#inodes per group too big: %lu",
3613		       sbi->s_inodes_per_group);
3614		goto failed_mount;
3615	}
3616
3617	/*
3618	 * Test whether we have more sectors than will fit in sector_t,
3619	 * and whether the max offset is addressable by the page cache.
3620	 */
3621	err = generic_check_addressable(sb->s_blocksize_bits,
3622					ext4_blocks_count(es));
3623	if (err) {
3624		ext4_msg(sb, KERN_ERR, "filesystem"
3625			 " too large to mount safely on this system");
3626		if (sizeof(sector_t) < 8)
3627			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3628		ret = err;
3629		goto failed_mount;
3630	}
3631
3632	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3633		goto cantfind_ext4;
3634
3635	/* check blocks count against device size */
3636	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3637	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3638		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3639		       "exceeds size of device (%llu blocks)",
3640		       ext4_blocks_count(es), blocks_count);
3641		goto failed_mount;
3642	}
3643
3644	/*
3645	 * It makes no sense for the first data block to be beyond the end
3646	 * of the filesystem.
3647	 */
3648	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3649		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3650			 "block %u is beyond end of filesystem (%llu)",
3651			 le32_to_cpu(es->s_first_data_block),
3652			 ext4_blocks_count(es));
3653		goto failed_mount;
 
 
 
 
 
 
3654	}
 
3655	blocks_count = (ext4_blocks_count(es) -
3656			le32_to_cpu(es->s_first_data_block) +
3657			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3658	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3659	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3660		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3661		       "(block count %llu, first data block %u, "
3662		       "blocks per group %lu)", sbi->s_groups_count,
3663		       ext4_blocks_count(es),
3664		       le32_to_cpu(es->s_first_data_block),
3665		       EXT4_BLOCKS_PER_GROUP(sb));
3666		goto failed_mount;
3667	}
3668	sbi->s_groups_count = blocks_count;
3669	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3670			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3672		   EXT4_DESC_PER_BLOCK(sb);
3673	sbi->s_group_desc = ext4_kvmalloc(db_count *
 
 
 
 
 
 
 
 
 
 
3674					  sizeof(struct buffer_head *),
3675					  GFP_KERNEL);
3676	if (sbi->s_group_desc == NULL) {
3677		ext4_msg(sb, KERN_ERR, "not enough memory");
3678		ret = -ENOMEM;
3679		goto failed_mount;
3680	}
3681
3682	if (ext4_proc_root)
3683		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3684
3685	if (sbi->s_proc)
3686		proc_create_data("options", S_IRUGO, sbi->s_proc,
3687				 &ext4_seq_options_fops, sb);
3688
3689	bgl_lock_init(sbi->s_blockgroup_lock);
3690
 
3691	for (i = 0; i < db_count; i++) {
3692		block = descriptor_loc(sb, logical_sb_block, i);
3693		sbi->s_group_desc[i] = sb_bread(sb, block);
3694		if (!sbi->s_group_desc[i]) {
 
 
 
 
 
 
 
3695			ext4_msg(sb, KERN_ERR,
3696			       "can't read group descriptor %d", i);
3697			db_count = i;
3698			goto failed_mount2;
3699		}
 
 
 
3700	}
3701	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
 
3702		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3703		goto failed_mount2;
3704	}
3705	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3706		if (!ext4_fill_flex_info(sb)) {
3707			ext4_msg(sb, KERN_ERR,
3708			       "unable to initialize "
3709			       "flex_bg meta info!");
3710			goto failed_mount2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711		}
 
3712
3713	sbi->s_gdb_count = db_count;
3714	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3715	spin_lock_init(&sbi->s_next_gen_lock);
 
 
 
 
 
 
 
 
 
3716
3717	init_timer(&sbi->s_err_report);
3718	sbi->s_err_report.function = print_daily_error_info;
3719	sbi->s_err_report.data = (unsigned long) sb;
 
 
 
3720
3721	err = percpu_counter_init(&sbi->s_freeclusters_counter,
3722			ext4_count_free_clusters(sb));
3723	if (!err) {
3724		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3725				ext4_count_free_inodes(sb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726	}
3727	if (!err) {
3728		err = percpu_counter_init(&sbi->s_dirs_counter,
3729				ext4_count_dirs(sb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730	}
3731	if (!err) {
3732		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
 
 
 
 
 
 
 
 
3733	}
3734	if (err) {
3735		ext4_msg(sb, KERN_ERR, "insufficient memory");
3736		ret = err;
3737		goto failed_mount3;
 
3738	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739
3740	sbi->s_stripe = ext4_get_stripe_size(sbi);
3741	sbi->s_max_writeback_mb_bump = 128;
 
 
 
 
 
 
 
 
 
 
 
 
 
3742
3743	/*
3744	 * set up enough so that it can read an inode
3745	 */
3746	if (!test_opt(sb, NOLOAD) &&
3747	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3748		sb->s_op = &ext4_sops;
3749	else
3750		sb->s_op = &ext4_nojournal_sops;
3751	sb->s_export_op = &ext4_export_ops;
3752	sb->s_xattr = ext4_xattr_handlers;
 
 
 
 
 
 
3753#ifdef CONFIG_QUOTA
3754	sb->s_qcop = &ext4_qctl_operations;
3755	sb->dq_op = &ext4_quota_operations;
 
 
 
 
 
3756#endif
3757	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3758
3759	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3760	mutex_init(&sbi->s_orphan_lock);
3761	sbi->s_resize_flags = 0;
 
3762
3763	sb->s_root = NULL;
3764
3765	needs_recovery = (es->s_last_orphan != 0 ||
3766			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3767				    EXT4_FEATURE_INCOMPAT_RECOVER));
3768
3769	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3770	    !(sb->s_flags & MS_RDONLY))
3771		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3772			goto failed_mount3;
 
3773
 
3774	/*
3775	 * The first inode we look at is the journal inode.  Don't try
3776	 * root first: it may be modified in the journal!
3777	 */
3778	if (!test_opt(sb, NOLOAD) &&
3779	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3780		if (ext4_load_journal(sb, es, journal_devnum))
3781			goto failed_mount3;
3782	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3783	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3784		ext4_msg(sb, KERN_ERR, "required journal recovery "
3785		       "suppressed and not mounted read-only");
3786		goto failed_mount_wq;
3787	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3788		clear_opt(sb, DATA_FLAGS);
 
3789		sbi->s_journal = NULL;
3790		needs_recovery = 0;
3791		goto no_journal;
3792	}
3793
3794	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3795	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3796				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3797		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3798		goto failed_mount_wq;
3799	}
3800
3801	if (!set_journal_csum_feature_set(sb)) {
3802		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3803			 "feature set");
3804		goto failed_mount_wq;
3805	}
3806
3807	/* We have now updated the journal if required, so we can
3808	 * validate the data journaling mode. */
3809	switch (test_opt(sb, DATA_FLAGS)) {
3810	case 0:
3811		/* No mode set, assume a default based on the journal
3812		 * capabilities: ORDERED_DATA if the journal can
3813		 * cope, else JOURNAL_DATA
3814		 */
3815		if (jbd2_journal_check_available_features
3816		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3817			set_opt(sb, ORDERED_DATA);
3818		else
3819			set_opt(sb, JOURNAL_DATA);
3820		break;
3821
3822	case EXT4_MOUNT_ORDERED_DATA:
3823	case EXT4_MOUNT_WRITEBACK_DATA:
3824		if (!jbd2_journal_check_available_features
3825		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3826			ext4_msg(sb, KERN_ERR, "Journal does not support "
3827			       "requested data journaling mode");
3828			goto failed_mount_wq;
3829		}
3830	default:
3831		break;
3832	}
3833	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3834
3835	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3836
3837	/*
3838	 * The journal may have updated the bg summary counts, so we
3839	 * need to update the global counters.
3840	 */
3841	percpu_counter_set(&sbi->s_freeclusters_counter,
3842			   ext4_count_free_clusters(sb));
3843	percpu_counter_set(&sbi->s_freeinodes_counter,
3844			   ext4_count_free_inodes(sb));
3845	percpu_counter_set(&sbi->s_dirs_counter,
3846			   ext4_count_dirs(sb));
3847	percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3848
3849no_journal:
3850	/*
3851	 * Get the # of file system overhead blocks from the
3852	 * superblock if present.
3853	 */
3854	if (es->s_overhead_clusters)
3855		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3856	else {
3857		ret = ext4_calculate_overhead(sb);
3858		if (ret)
 
 
 
 
 
 
 
 
 
3859			goto failed_mount_wq;
3860	}
3861
3862	/*
3863	 * The maximum number of concurrent works can be high and
3864	 * concurrency isn't really necessary.  Limit it to 1.
3865	 */
3866	EXT4_SB(sb)->dio_unwritten_wq =
3867		alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3868	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3869		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3870		goto failed_mount_wq;
 
3871	}
3872
3873	/*
3874	 * The jbd2_journal_load will have done any necessary log recovery,
3875	 * so we can safely mount the rest of the filesystem now.
3876	 */
3877
3878	root = ext4_iget(sb, EXT4_ROOT_INO);
3879	if (IS_ERR(root)) {
3880		ext4_msg(sb, KERN_ERR, "get root inode failed");
3881		ret = PTR_ERR(root);
3882		root = NULL;
3883		goto failed_mount4;
3884	}
3885	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3886		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3887		iput(root);
 
3888		goto failed_mount4;
3889	}
 
3890	sb->s_root = d_make_root(root);
3891	if (!sb->s_root) {
3892		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3893		ret = -ENOMEM;
3894		goto failed_mount4;
3895	}
3896
3897	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3898		sb->s_flags |= MS_RDONLY;
 
 
 
3899
3900	/* determine the minimum size of new large inodes, if present */
3901	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3902		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3903						     EXT4_GOOD_OLD_INODE_SIZE;
3904		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3905				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3906			if (sbi->s_want_extra_isize <
3907			    le16_to_cpu(es->s_want_extra_isize))
3908				sbi->s_want_extra_isize =
3909					le16_to_cpu(es->s_want_extra_isize);
3910			if (sbi->s_want_extra_isize <
3911			    le16_to_cpu(es->s_min_extra_isize))
3912				sbi->s_want_extra_isize =
3913					le16_to_cpu(es->s_min_extra_isize);
3914		}
3915	}
3916	/* Check if enough inode space is available */
3917	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3918							sbi->s_inode_size) {
3919		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3920						       EXT4_GOOD_OLD_INODE_SIZE;
3921		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3922			 "available");
3923	}
3924
3925	err = ext4_setup_system_zone(sb);
3926	if (err) {
3927		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3928			 "zone (%d)", err);
3929		goto failed_mount4a;
 
 
3930	}
 
3931
3932	ext4_ext_init(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
3933	err = ext4_mb_init(sb);
3934	if (err) {
3935		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3936			 err);
3937		goto failed_mount5;
3938	}
3939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3940	err = ext4_register_li_request(sb, first_not_zeroed);
3941	if (err)
3942		goto failed_mount6;
3943
3944	sbi->s_kobj.kset = ext4_kset;
3945	init_completion(&sbi->s_kobj_unregister);
3946	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3947				   "%s", sb->s_id);
3948	if (err)
3949		goto failed_mount7;
3950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3951	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3952	ext4_orphan_cleanup(sb, es);
3953	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
 
 
 
 
 
 
 
 
3954	if (needs_recovery) {
3955		ext4_msg(sb, KERN_INFO, "recovery complete");
3956		ext4_mark_recovery_complete(sb, es);
 
 
3957	}
3958	if (EXT4_SB(sb)->s_journal) {
3959		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3960			descr = " journalled data mode";
3961		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3962			descr = " ordered data mode";
3963		else
3964			descr = " writeback data mode";
3965	} else
3966		descr = "out journal";
3967
3968	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3969		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3970		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3971
3972	if (es->s_error_count)
3973		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3974
3975	kfree(orig_data);
3976	return 0;
 
 
 
 
3977
3978cantfind_ext4:
3979	if (!silent)
3980		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3981	goto failed_mount;
3982
 
 
 
 
 
 
 
3983failed_mount7:
3984	ext4_unregister_li_request(sb);
3985failed_mount6:
3986	ext4_mb_release(sb);
 
 
3987failed_mount5:
3988	ext4_ext_release(sb);
3989	ext4_release_system_zone(sb);
3990failed_mount4a:
3991	dput(sb->s_root);
3992	sb->s_root = NULL;
3993failed_mount4:
3994	ext4_msg(sb, KERN_ERR, "mount failed");
3995	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
 
3996failed_mount_wq:
 
 
 
 
 
 
3997	if (sbi->s_journal) {
 
 
3998		jbd2_journal_destroy(sbi->s_journal);
3999		sbi->s_journal = NULL;
4000	}
 
 
4001failed_mount3:
4002	del_timer(&sbi->s_err_report);
4003	if (sbi->s_flex_groups)
4004		ext4_kvfree(sbi->s_flex_groups);
4005	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4006	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4007	percpu_counter_destroy(&sbi->s_dirs_counter);
4008	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4009	if (sbi->s_mmp_tsk)
4010		kthread_stop(sbi->s_mmp_tsk);
4011failed_mount2:
4012	for (i = 0; i < db_count; i++)
4013		brelse(sbi->s_group_desc[i]);
4014	ext4_kvfree(sbi->s_group_desc);
4015failed_mount:
4016	if (sbi->s_chksum_driver)
4017		crypto_free_shash(sbi->s_chksum_driver);
4018	if (sbi->s_proc) {
4019		remove_proc_entry("options", sbi->s_proc);
4020		remove_proc_entry(sb->s_id, ext4_proc_root);
4021	}
 
4022#ifdef CONFIG_QUOTA
4023	for (i = 0; i < MAXQUOTAS; i++)
4024		kfree(sbi->s_qf_names[i]);
4025#endif
4026	ext4_blkdev_remove(sbi);
4027	brelse(bh);
 
 
 
 
4028out_fail:
 
4029	sb->s_fs_info = NULL;
4030	kfree(sbi->s_blockgroup_lock);
4031	kfree(sbi);
4032out_free_orig:
4033	kfree(orig_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4034	return ret;
4035}
4036
 
 
 
 
 
4037/*
4038 * Setup any per-fs journal parameters now.  We'll do this both on
4039 * initial mount, once the journal has been initialised but before we've
4040 * done any recovery; and again on any subsequent remount.
4041 */
4042static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4043{
4044	struct ext4_sb_info *sbi = EXT4_SB(sb);
4045
4046	journal->j_commit_interval = sbi->s_commit_interval;
4047	journal->j_min_batch_time = sbi->s_min_batch_time;
4048	journal->j_max_batch_time = sbi->s_max_batch_time;
 
4049
4050	write_lock(&journal->j_state_lock);
4051	if (test_opt(sb, BARRIER))
4052		journal->j_flags |= JBD2_BARRIER;
4053	else
4054		journal->j_flags &= ~JBD2_BARRIER;
4055	if (test_opt(sb, DATA_ERR_ABORT))
4056		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4057	else
4058		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
 
 
 
 
 
4059	write_unlock(&journal->j_state_lock);
4060}
4061
4062static journal_t *ext4_get_journal(struct super_block *sb,
4063				   unsigned int journal_inum)
4064{
4065	struct inode *journal_inode;
4066	journal_t *journal;
4067
4068	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4069
4070	/* First, test for the existence of a valid inode on disk.  Bad
4071	 * things happen if we iget() an unused inode, as the subsequent
4072	 * iput() will try to delete it. */
4073
4074	journal_inode = ext4_iget(sb, journal_inum);
 
 
 
 
 
4075	if (IS_ERR(journal_inode)) {
4076		ext4_msg(sb, KERN_ERR, "no journal found");
4077		return NULL;
4078	}
4079	if (!journal_inode->i_nlink) {
4080		make_bad_inode(journal_inode);
4081		iput(journal_inode);
4082		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4083		return NULL;
4084	}
4085
4086	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4087		  journal_inode, journal_inode->i_size);
4088	if (!S_ISREG(journal_inode->i_mode)) {
4089		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4090		iput(journal_inode);
4091		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4092	}
 
 
 
 
 
 
 
 
 
 
 
 
 
4093
4094	journal = jbd2_journal_init_inode(journal_inode);
4095	if (!journal) {
4096		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4097		iput(journal_inode);
4098		return NULL;
4099	}
4100	journal->j_private = sb;
 
4101	ext4_init_journal_params(sb, journal);
4102	return journal;
4103}
4104
4105static journal_t *ext4_get_dev_journal(struct super_block *sb,
4106				       dev_t j_dev)
 
4107{
4108	struct buffer_head *bh;
4109	journal_t *journal;
4110	ext4_fsblk_t start;
4111	ext4_fsblk_t len;
4112	int hblock, blocksize;
4113	ext4_fsblk_t sb_block;
4114	unsigned long offset;
4115	struct ext4_super_block *es;
4116	struct block_device *bdev;
4117
4118	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4119
4120	bdev = ext4_blkdev_get(j_dev, sb);
4121	if (bdev == NULL)
4122		return NULL;
 
 
 
 
 
 
4123
 
4124	blocksize = sb->s_blocksize;
4125	hblock = bdev_logical_block_size(bdev);
4126	if (blocksize < hblock) {
4127		ext4_msg(sb, KERN_ERR,
4128			"blocksize too small for journal device");
 
4129		goto out_bdev;
4130	}
4131
4132	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4133	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4134	set_blocksize(bdev, blocksize);
4135	if (!(bh = __bread(bdev, sb_block, blocksize))) {
 
4136		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4137		       "external journal");
 
4138		goto out_bdev;
4139	}
4140
4141	es = (struct ext4_super_block *) (bh->b_data + offset);
4142	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4143	    !(le32_to_cpu(es->s_feature_incompat) &
4144	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4145		ext4_msg(sb, KERN_ERR, "external journal has "
4146					"bad superblock");
4147		brelse(bh);
4148		goto out_bdev;
 
 
 
 
 
 
 
4149	}
4150
4151	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4152		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4153		brelse(bh);
4154		goto out_bdev;
4155	}
4156
4157	len = ext4_blocks_count(es);
4158	start = sb_block + 1;
4159	brelse(bh);	/* we're done with the superblock */
4160
4161	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4162					start, len, blocksize);
4163	if (!journal) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4164		ext4_msg(sb, KERN_ERR, "failed to create device journal");
 
4165		goto out_bdev;
4166	}
4167	journal->j_private = sb;
4168	ll_rw_block(READ, 1, &journal->j_sb_buffer);
4169	wait_on_buffer(journal->j_sb_buffer);
4170	if (!buffer_uptodate(journal->j_sb_buffer)) {
4171		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4172		goto out_journal;
4173	}
4174	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4175		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4176					"user (unsupported) - %d",
4177			be32_to_cpu(journal->j_superblock->s_nr_users));
 
4178		goto out_journal;
4179	}
4180	EXT4_SB(sb)->journal_bdev = bdev;
 
4181	ext4_init_journal_params(sb, journal);
4182	return journal;
4183
4184out_journal:
4185	jbd2_journal_destroy(journal);
4186out_bdev:
4187	ext4_blkdev_put(bdev);
4188	return NULL;
4189}
4190
4191static int ext4_load_journal(struct super_block *sb,
4192			     struct ext4_super_block *es,
4193			     unsigned long journal_devnum)
4194{
4195	journal_t *journal;
4196	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4197	dev_t journal_dev;
4198	int err = 0;
4199	int really_read_only;
 
4200
4201	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
 
4202
4203	if (journal_devnum &&
4204	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4205		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4206			"numbers have changed");
4207		journal_dev = new_decode_dev(journal_devnum);
4208	} else
4209		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4210
4211	really_read_only = bdev_read_only(sb->s_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4212
4213	/*
4214	 * Are we loading a blank journal or performing recovery after a
4215	 * crash?  For recovery, we need to check in advance whether we
4216	 * can get read-write access to the device.
4217	 */
4218	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4219		if (sb->s_flags & MS_RDONLY) {
4220			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4221					"required on readonly filesystem");
4222			if (really_read_only) {
4223				ext4_msg(sb, KERN_ERR, "write access "
4224					"unavailable, cannot proceed");
4225				return -EROFS;
 
 
4226			}
4227			ext4_msg(sb, KERN_INFO, "write access will "
4228			       "be enabled during recovery");
4229		}
4230	}
4231
4232	if (journal_inum && journal_dev) {
4233		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4234		       "and inode journals!");
4235		return -EINVAL;
4236	}
4237
4238	if (journal_inum) {
4239		if (!(journal = ext4_get_journal(sb, journal_inum)))
4240			return -EINVAL;
4241	} else {
4242		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4243			return -EINVAL;
4244	}
4245
4246	if (!(journal->j_flags & JBD2_BARRIER))
4247		ext4_msg(sb, KERN_INFO, "barriers disabled");
4248
4249	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4250		err = jbd2_journal_wipe(journal, !really_read_only);
4251	if (!err) {
4252		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
 
 
 
4253		if (save)
4254			memcpy(save, ((char *) es) +
4255			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4256		err = jbd2_journal_load(journal);
4257		if (save)
 
4258			memcpy(((char *) es) + EXT4_S_ERR_START,
4259			       save, EXT4_S_ERR_LEN);
 
 
4260		kfree(save);
 
 
 
 
 
 
 
 
 
 
 
4261	}
4262
4263	if (err) {
4264		ext4_msg(sb, KERN_ERR, "error loading journal");
4265		jbd2_journal_destroy(journal);
4266		return err;
4267	}
4268
4269	EXT4_SB(sb)->s_journal = journal;
4270	ext4_clear_journal_err(sb, es);
 
 
 
 
 
4271
4272	if (!really_read_only && journal_devnum &&
4273	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4274		es->s_journal_dev = cpu_to_le32(journal_devnum);
4275
4276		/* Make sure we flush the recovery flag to disk. */
4277		ext4_commit_super(sb, 1);
 
 
 
4278	}
4279
4280	return 0;
 
 
 
 
4281}
4282
4283static int ext4_commit_super(struct super_block *sb, int sync)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4284{
4285	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4286	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4287	int error = 0;
4288
4289	if (!sbh || block_device_ejected(sb))
4290		return error;
4291	if (buffer_write_io_error(sbh)) {
 
 
 
 
 
 
 
 
 
 
 
 
4292		/*
4293		 * Oh, dear.  A previous attempt to write the
4294		 * superblock failed.  This could happen because the
4295		 * USB device was yanked out.  Or it could happen to
4296		 * be a transient write error and maybe the block will
4297		 * be remapped.  Nothing we can do but to retry the
4298		 * write and hope for the best.
4299		 */
4300		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4301		       "superblock detected");
4302		clear_buffer_write_io_error(sbh);
4303		set_buffer_uptodate(sbh);
4304	}
4305	/*
4306	 * If the file system is mounted read-only, don't update the
4307	 * superblock write time.  This avoids updating the superblock
4308	 * write time when we are mounting the root file system
4309	 * read/only but we need to replay the journal; at that point,
4310	 * for people who are east of GMT and who make their clock
4311	 * tick in localtime for Windows bug-for-bug compatibility,
4312	 * the clock is set in the future, and this will cause e2fsck
4313	 * to complain and force a full file system check.
4314	 */
4315	if (!(sb->s_flags & MS_RDONLY))
4316		es->s_wtime = cpu_to_le32(get_seconds());
4317	if (sb->s_bdev->bd_part)
4318		es->s_kbytes_written =
4319			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4320			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4321			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4322	else
4323		es->s_kbytes_written =
4324			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4325	ext4_free_blocks_count_set(es,
4326			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4327				&EXT4_SB(sb)->s_freeclusters_counter)));
4328	es->s_free_inodes_count =
4329		cpu_to_le32(percpu_counter_sum_positive(
4330				&EXT4_SB(sb)->s_freeinodes_counter));
4331	sb->s_dirt = 0;
4332	BUFFER_TRACE(sbh, "marking dirty");
4333	ext4_superblock_csum_set(sb, es);
4334	mark_buffer_dirty(sbh);
4335	if (sync) {
4336		error = sync_dirty_buffer(sbh);
4337		if (error)
4338			return error;
4339
4340		error = buffer_write_io_error(sbh);
4341		if (error) {
4342			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4343			       "superblock");
4344			clear_buffer_write_io_error(sbh);
4345			set_buffer_uptodate(sbh);
4346		}
4347	}
4348	return error;
4349}
4350
4351/*
4352 * Have we just finished recovery?  If so, and if we are mounting (or
4353 * remounting) the filesystem readonly, then we will end up with a
4354 * consistent fs on disk.  Record that fact.
4355 */
4356static void ext4_mark_recovery_complete(struct super_block *sb,
4357					struct ext4_super_block *es)
4358{
 
4359	journal_t *journal = EXT4_SB(sb)->s_journal;
4360
4361	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4362		BUG_ON(journal != NULL);
4363		return;
 
 
 
 
4364	}
4365	jbd2_journal_lock_updates(journal);
4366	if (jbd2_journal_flush(journal) < 0)
 
4367		goto out;
4368
4369	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4370	    sb->s_flags & MS_RDONLY) {
4371		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4372		ext4_commit_super(sb, 1);
 
 
 
 
 
 
4373	}
4374
4375out:
4376	jbd2_journal_unlock_updates(journal);
 
4377}
4378
4379/*
4380 * If we are mounting (or read-write remounting) a filesystem whose journal
4381 * has recorded an error from a previous lifetime, move that error to the
4382 * main filesystem now.
4383 */
4384static void ext4_clear_journal_err(struct super_block *sb,
4385				   struct ext4_super_block *es)
4386{
4387	journal_t *journal;
4388	int j_errno;
4389	const char *errstr;
4390
4391	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
 
 
 
4392
4393	journal = EXT4_SB(sb)->s_journal;
4394
4395	/*
4396	 * Now check for any error status which may have been recorded in the
4397	 * journal by a prior ext4_error() or ext4_abort()
4398	 */
4399
4400	j_errno = jbd2_journal_errno(journal);
4401	if (j_errno) {
4402		char nbuf[16];
4403
4404		errstr = ext4_decode_error(sb, j_errno, nbuf);
4405		ext4_warning(sb, "Filesystem error recorded "
4406			     "from previous mount: %s", errstr);
4407		ext4_warning(sb, "Marking fs in need of filesystem check.");
4408
4409		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4410		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4411		ext4_commit_super(sb, 1);
 
 
 
4412
4413		jbd2_journal_clear_err(journal);
4414		jbd2_journal_update_sb_errno(journal);
4415	}
 
4416}
4417
4418/*
4419 * Force the running and committing transactions to commit,
4420 * and wait on the commit.
4421 */
4422int ext4_force_commit(struct super_block *sb)
4423{
4424	journal_t *journal;
4425	int ret = 0;
4426
4427	if (sb->s_flags & MS_RDONLY)
4428		return 0;
4429
4430	journal = EXT4_SB(sb)->s_journal;
4431	if (journal) {
4432		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4433		ret = ext4_journal_force_commit(journal);
4434	}
4435
4436	return ret;
4437}
4438
4439static void ext4_write_super(struct super_block *sb)
4440{
4441	lock_super(sb);
4442	ext4_commit_super(sb, 1);
4443	unlock_super(sb);
4444}
4445
4446static int ext4_sync_fs(struct super_block *sb, int wait)
4447{
4448	int ret = 0;
4449	tid_t target;
 
4450	struct ext4_sb_info *sbi = EXT4_SB(sb);
4451
 
 
 
4452	trace_ext4_sync_fs(sb, wait);
4453	flush_workqueue(sbi->dio_unwritten_wq);
4454	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4455		if (wait)
4456			jbd2_log_wait_commit(sbi->s_journal, target);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4457	}
 
4458	return ret;
4459}
4460
4461/*
4462 * LVM calls this function before a (read-only) snapshot is created.  This
4463 * gives us a chance to flush the journal completely and mark the fs clean.
4464 *
4465 * Note that only this function cannot bring a filesystem to be in a clean
4466 * state independently, because ext4 prevents a new handle from being started
4467 * by @sb->s_frozen, which stays in an upper layer.  It thus needs help from
4468 * the upper layer.
4469 */
4470static int ext4_freeze(struct super_block *sb)
4471{
4472	int error = 0;
4473	journal_t *journal;
4474
4475	if (sb->s_flags & MS_RDONLY)
4476		return 0;
4477
4478	journal = EXT4_SB(sb)->s_journal;
 
 
4479
4480	/* Now we set up the journal barrier. */
4481	jbd2_journal_lock_updates(journal);
 
 
 
 
 
4482
4483	/*
4484	 * Don't clear the needs_recovery flag if we failed to flush
4485	 * the journal.
4486	 */
4487	error = jbd2_journal_flush(journal);
4488	if (error < 0)
4489		goto out;
4490
4491	/* Journal blocked and flushed, clear needs_recovery flag. */
4492	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4493	error = ext4_commit_super(sb, 1);
4494out:
4495	/* we rely on s_frozen to stop further updates */
4496	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
 
4497	return error;
4498}
4499
4500/*
4501 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4502 * flag here, even though the filesystem is not technically dirty yet.
4503 */
4504static int ext4_unfreeze(struct super_block *sb)
4505{
4506	if (sb->s_flags & MS_RDONLY)
4507		return 0;
4508
4509	lock_super(sb);
4510	/* Reset the needs_recovery flag before the fs is unlocked. */
4511	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4512	ext4_commit_super(sb, 1);
4513	unlock_super(sb);
 
 
 
4514	return 0;
4515}
4516
4517/*
4518 * Structure to save mount options for ext4_remount's benefit
4519 */
4520struct ext4_mount_options {
4521	unsigned long s_mount_opt;
4522	unsigned long s_mount_opt2;
4523	kuid_t s_resuid;
4524	kgid_t s_resgid;
4525	unsigned long s_commit_interval;
4526	u32 s_min_batch_time, s_max_batch_time;
4527#ifdef CONFIG_QUOTA
4528	int s_jquota_fmt;
4529	char *s_qf_names[MAXQUOTAS];
4530#endif
4531};
4532
4533static int ext4_remount(struct super_block *sb, int *flags, char *data)
4534{
 
4535	struct ext4_super_block *es;
4536	struct ext4_sb_info *sbi = EXT4_SB(sb);
4537	unsigned long old_sb_flags;
4538	struct ext4_mount_options old_opts;
4539	int enable_quota = 0;
4540	ext4_group_t g;
4541	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4542	int err = 0;
 
4543#ifdef CONFIG_QUOTA
4544	int i;
 
 
4545#endif
4546	char *orig_data = kstrdup(data, GFP_KERNEL);
4547
4548	/* Store the original options */
4549	lock_super(sb);
4550	old_sb_flags = sb->s_flags;
4551	old_opts.s_mount_opt = sbi->s_mount_opt;
4552	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4553	old_opts.s_resuid = sbi->s_resuid;
4554	old_opts.s_resgid = sbi->s_resgid;
4555	old_opts.s_commit_interval = sbi->s_commit_interval;
4556	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4557	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4558#ifdef CONFIG_QUOTA
4559	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4560	for (i = 0; i < MAXQUOTAS; i++)
4561		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
 
 
 
 
 
 
 
 
 
 
4562#endif
4563	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4564		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
 
 
 
 
 
 
4565
4566	/*
4567	 * Allow the "check" option to be passed as a remount option.
 
 
 
 
4568	 */
4569	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4570		err = -EINVAL;
4571		goto restore_opts;
4572	}
4573
4574	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4575		ext4_abort(sb, "Abort forced by user");
4576
4577	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4578		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4579
4580	es = sbi->s_es;
4581
4582	if (sbi->s_journal) {
4583		ext4_init_journal_params(sb, sbi->s_journal);
4584		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4585	}
4586
4587	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4588		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
 
 
 
4589			err = -EROFS;
4590			goto restore_opts;
4591		}
4592
4593		if (*flags & MS_RDONLY) {
 
 
 
4594			err = dquot_suspend(sb, -1);
4595			if (err < 0)
4596				goto restore_opts;
4597
4598			/*
4599			 * First of all, the unconditional stuff we have to do
4600			 * to disable replay of the journal when we next remount
4601			 */
4602			sb->s_flags |= MS_RDONLY;
4603
4604			/*
4605			 * OK, test if we are remounting a valid rw partition
4606			 * readonly, and if so set the rdonly flag and then
4607			 * mark the partition as valid again.
4608			 */
4609			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4610			    (sbi->s_mount_state & EXT4_VALID_FS))
4611				es->s_state = cpu_to_le16(sbi->s_mount_state);
4612
4613			if (sbi->s_journal)
 
 
 
 
4614				ext4_mark_recovery_complete(sb, es);
 
4615		} else {
4616			/* Make sure we can mount this feature set readwrite */
4617			if (!ext4_feature_set_ok(sb, 0)) {
 
4618				err = -EROFS;
4619				goto restore_opts;
4620			}
4621			/*
4622			 * Make sure the group descriptor checksums
4623			 * are sane.  If they aren't, refuse to remount r/w.
4624			 */
4625			for (g = 0; g < sbi->s_groups_count; g++) {
4626				struct ext4_group_desc *gdp =
4627					ext4_get_group_desc(sb, g, NULL);
4628
4629				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4630					ext4_msg(sb, KERN_ERR,
4631	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4632		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4633					       le16_to_cpu(gdp->bg_checksum));
4634					err = -EINVAL;
4635					goto restore_opts;
4636				}
4637			}
4638
4639			/*
4640			 * If we have an unprocessed orphan list hanging
4641			 * around from a previously readonly bdev mount,
4642			 * require a full umount/remount for now.
4643			 */
4644			if (es->s_last_orphan) {
4645				ext4_msg(sb, KERN_WARNING, "Couldn't "
4646				       "remount RDWR because of unprocessed "
4647				       "orphan inode list.  Please "
4648				       "umount/remount instead");
4649				err = -EINVAL;
4650				goto restore_opts;
4651			}
4652
4653			/*
4654			 * Mounting a RDONLY partition read-write, so reread
4655			 * and store the current valid flag.  (It may have
4656			 * been changed by e2fsck since we originally mounted
4657			 * the partition.)
4658			 */
4659			if (sbi->s_journal)
4660				ext4_clear_journal_err(sb, es);
4661			sbi->s_mount_state = le16_to_cpu(es->s_state);
4662			if (!ext4_setup_super(sb, es, 0))
4663				sb->s_flags &= ~MS_RDONLY;
4664			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4665						     EXT4_FEATURE_INCOMPAT_MMP))
4666				if (ext4_multi_mount_protect(sb,
4667						le64_to_cpu(es->s_mmp_block))) {
4668					err = -EROFS;
4669					goto restore_opts;
4670				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4671			enable_quota = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4672		}
4673	}
 
 
 
 
 
 
4674
4675	/*
4676	 * Reinitialize lazy itable initialization thread based on
4677	 * current settings
4678	 */
4679	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4680		ext4_unregister_li_request(sb);
4681	else {
4682		ext4_group_t first_not_zeroed;
4683		first_not_zeroed = ext4_has_uninit_itable(sb);
4684		ext4_register_li_request(sb, first_not_zeroed);
4685	}
4686
4687	ext4_setup_system_zone(sb);
4688	if (sbi->s_journal == NULL)
4689		ext4_commit_super(sb, 1);
4690
4691#ifdef CONFIG_QUOTA
4692	/* Release old quota file names */
4693	for (i = 0; i < MAXQUOTAS; i++)
4694		if (old_opts.s_qf_names[i] &&
4695		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4696			kfree(old_opts.s_qf_names[i]);
4697#endif
4698	unlock_super(sb);
4699	if (enable_quota)
4700		dquot_resume(sb, -1);
4701
4702	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4703	kfree(orig_data);
4704	return 0;
4705
4706restore_opts:
 
 
 
 
 
 
 
 
 
4707	sb->s_flags = old_sb_flags;
4708	sbi->s_mount_opt = old_opts.s_mount_opt;
4709	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4710	sbi->s_resuid = old_opts.s_resuid;
4711	sbi->s_resgid = old_opts.s_resgid;
4712	sbi->s_commit_interval = old_opts.s_commit_interval;
4713	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4714	sbi->s_max_batch_time = old_opts.s_max_batch_time;
 
 
 
 
4715#ifdef CONFIG_QUOTA
4716	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4717	for (i = 0; i < MAXQUOTAS; i++) {
4718		if (sbi->s_qf_names[i] &&
4719		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4720			kfree(sbi->s_qf_names[i]);
4721		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4722	}
 
4723#endif
4724	unlock_super(sb);
4725	kfree(orig_data);
4726	return err;
4727}
4728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4729static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4730{
4731	struct super_block *sb = dentry->d_sb;
4732	struct ext4_sb_info *sbi = EXT4_SB(sb);
4733	struct ext4_super_block *es = sbi->s_es;
4734	ext4_fsblk_t overhead = 0;
4735	u64 fsid;
4736	s64 bfree;
 
4737
4738	if (!test_opt(sb, MINIX_DF))
4739		overhead = sbi->s_overhead;
4740
4741	buf->f_type = EXT4_SUPER_MAGIC;
4742	buf->f_bsize = sb->s_blocksize;
4743	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4744	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4745		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4746	/* prevent underflow in case that few free space is available */
4747	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4748	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4749	if (buf->f_bfree < ext4_r_blocks_count(es))
 
4750		buf->f_bavail = 0;
4751	buf->f_files = le32_to_cpu(es->s_inodes_count);
4752	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4753	buf->f_namelen = EXT4_NAME_LEN;
4754	fsid = le64_to_cpup((void *)es->s_uuid) ^
4755	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4756	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4757	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4758
 
 
 
 
 
4759	return 0;
4760}
4761
4762/* Helper function for writing quotas on sync - we need to start transaction
4763 * before quota file is locked for write. Otherwise the are possible deadlocks:
4764 * Process 1                         Process 2
4765 * ext4_create()                     quota_sync()
4766 *   jbd2_journal_start()                  write_dquot()
4767 *   dquot_initialize()                         down(dqio_mutex)
4768 *     down(dqio_mutex)                    jbd2_journal_start()
4769 *
4770 */
4771
4772#ifdef CONFIG_QUOTA
4773
 
 
 
 
4774static inline struct inode *dquot_to_inode(struct dquot *dquot)
4775{
4776	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4777}
4778
4779static int ext4_write_dquot(struct dquot *dquot)
4780{
4781	int ret, err;
4782	handle_t *handle;
4783	struct inode *inode;
4784
4785	inode = dquot_to_inode(dquot);
4786	handle = ext4_journal_start(inode,
4787				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4788	if (IS_ERR(handle))
4789		return PTR_ERR(handle);
4790	ret = dquot_commit(dquot);
4791	err = ext4_journal_stop(handle);
4792	if (!ret)
4793		ret = err;
4794	return ret;
4795}
4796
4797static int ext4_acquire_dquot(struct dquot *dquot)
4798{
4799	int ret, err;
4800	handle_t *handle;
4801
4802	handle = ext4_journal_start(dquot_to_inode(dquot),
4803				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4804	if (IS_ERR(handle))
4805		return PTR_ERR(handle);
4806	ret = dquot_acquire(dquot);
4807	err = ext4_journal_stop(handle);
4808	if (!ret)
4809		ret = err;
4810	return ret;
4811}
4812
4813static int ext4_release_dquot(struct dquot *dquot)
4814{
4815	int ret, err;
4816	handle_t *handle;
4817
4818	handle = ext4_journal_start(dquot_to_inode(dquot),
4819				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4820	if (IS_ERR(handle)) {
4821		/* Release dquot anyway to avoid endless cycle in dqput() */
4822		dquot_release(dquot);
4823		return PTR_ERR(handle);
4824	}
4825	ret = dquot_release(dquot);
4826	err = ext4_journal_stop(handle);
4827	if (!ret)
4828		ret = err;
4829	return ret;
4830}
4831
4832static int ext4_mark_dquot_dirty(struct dquot *dquot)
4833{
4834	/* Are we journaling quotas? */
4835	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4836	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4837		dquot_mark_dquot_dirty(dquot);
4838		return ext4_write_dquot(dquot);
4839	} else {
4840		return dquot_mark_dquot_dirty(dquot);
4841	}
4842}
4843
4844static int ext4_write_info(struct super_block *sb, int type)
4845{
4846	int ret, err;
4847	handle_t *handle;
4848
4849	/* Data block + inode block */
4850	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4851	if (IS_ERR(handle))
4852		return PTR_ERR(handle);
4853	ret = dquot_commit_info(sb, type);
4854	err = ext4_journal_stop(handle);
4855	if (!ret)
4856		ret = err;
4857	return ret;
4858}
4859
4860/*
4861 * Turn on quotas during mount time - we need to find
4862 * the quota file and such...
4863 */
4864static int ext4_quota_on_mount(struct super_block *sb, int type)
4865{
4866	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4867					EXT4_SB(sb)->s_jquota_fmt, type);
 
 
 
 
 
 
 
 
4868}
4869
4870/*
4871 * Standard function to be called on quota_on
4872 */
4873static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4874			 struct path *path)
4875{
4876	int err;
4877
4878	if (!test_opt(sb, QUOTA))
4879		return -EINVAL;
4880
4881	/* Quotafile not on the same filesystem? */
4882	if (path->dentry->d_sb != sb)
4883		return -EXDEV;
 
 
 
 
 
4884	/* Journaling quota? */
4885	if (EXT4_SB(sb)->s_qf_names[type]) {
4886		/* Quotafile not in fs root? */
4887		if (path->dentry->d_parent != sb->s_root)
4888			ext4_msg(sb, KERN_WARNING,
4889				"Quota file not on filesystem root. "
4890				"Journaled quota will not work");
 
 
 
 
 
 
 
4891	}
4892
4893	/*
4894	 * When we journal data on quota file, we have to flush journal to see
4895	 * all updates to the file when we bypass pagecache...
4896	 */
4897	if (EXT4_SB(sb)->s_journal &&
4898	    ext4_should_journal_data(path->dentry->d_inode)) {
4899		/*
4900		 * We don't need to lock updates but journal_flush() could
4901		 * otherwise be livelocked...
 
4902		 */
4903		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4904		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4905		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
 
 
 
 
 
 
 
 
4906		if (err)
4907			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4908	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4909
4910	return dquot_quota_on(sb, type, format_id, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4911}
4912
4913static int ext4_quota_off(struct super_block *sb, int type)
4914{
4915	struct inode *inode = sb_dqopt(sb)->files[type];
4916	handle_t *handle;
 
4917
4918	/* Force all delayed allocation blocks to be allocated.
4919	 * Caller already holds s_umount sem */
4920	if (test_opt(sb, DELALLOC))
4921		sync_filesystem(sb);
4922
4923	if (!inode)
4924		goto out;
4925
4926	/* Update modification times of quota files when userspace can
4927	 * start looking at them */
4928	handle = ext4_journal_start(inode, 1);
4929	if (IS_ERR(handle))
4930		goto out;
4931	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4932	ext4_mark_inode_dirty(handle, inode);
4933	ext4_journal_stop(handle);
 
 
4934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4935out:
4936	return dquot_quota_off(sb, type);
4937}
4938
4939/* Read data from quotafile - avoid pagecache and such because we cannot afford
4940 * acquiring the locks... As quota files are never truncated and quota code
4941 * itself serializes the operations (and no one else should touch the files)
4942 * we don't have to be afraid of races */
4943static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4944			       size_t len, loff_t off)
4945{
4946	struct inode *inode = sb_dqopt(sb)->files[type];
4947	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4948	int err = 0;
4949	int offset = off & (sb->s_blocksize - 1);
4950	int tocopy;
4951	size_t toread;
4952	struct buffer_head *bh;
4953	loff_t i_size = i_size_read(inode);
4954
4955	if (off > i_size)
4956		return 0;
4957	if (off+len > i_size)
4958		len = i_size-off;
4959	toread = len;
4960	while (toread > 0) {
4961		tocopy = sb->s_blocksize - offset < toread ?
4962				sb->s_blocksize - offset : toread;
4963		bh = ext4_bread(NULL, inode, blk, 0, &err);
4964		if (err)
4965			return err;
4966		if (!bh)	/* A hole? */
4967			memset(data, 0, tocopy);
4968		else
4969			memcpy(data, bh->b_data+offset, tocopy);
4970		brelse(bh);
4971		offset = 0;
4972		toread -= tocopy;
4973		data += tocopy;
4974		blk++;
4975	}
4976	return len;
4977}
4978
4979/* Write to quotafile (we know the transaction is already started and has
4980 * enough credits) */
4981static ssize_t ext4_quota_write(struct super_block *sb, int type,
4982				const char *data, size_t len, loff_t off)
4983{
4984	struct inode *inode = sb_dqopt(sb)->files[type];
4985	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4986	int err = 0;
4987	int offset = off & (sb->s_blocksize - 1);
4988	struct buffer_head *bh;
4989	handle_t *handle = journal_current_handle();
4990
4991	if (EXT4_SB(sb)->s_journal && !handle) {
4992		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4993			" cancelled because transaction is not started",
4994			(unsigned long long)off, (unsigned long long)len);
4995		return -EIO;
4996	}
4997	/*
4998	 * Since we account only one data block in transaction credits,
4999	 * then it is impossible to cross a block boundary.
5000	 */
5001	if (sb->s_blocksize - offset < len) {
5002		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5003			" cancelled because not block aligned",
5004			(unsigned long long)off, (unsigned long long)len);
5005		return -EIO;
5006	}
5007
5008	bh = ext4_bread(handle, inode, blk, 1, &err);
 
 
 
 
 
 
 
5009	if (!bh)
5010		goto out;
5011	err = ext4_journal_get_write_access(handle, bh);
 
5012	if (err) {
5013		brelse(bh);
5014		goto out;
5015	}
5016	lock_buffer(bh);
5017	memcpy(bh->b_data+offset, data, len);
5018	flush_dcache_page(bh->b_page);
5019	unlock_buffer(bh);
5020	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5021	brelse(bh);
5022out:
5023	if (err)
5024		return err;
5025	if (inode->i_size < off + len) {
5026		i_size_write(inode, off + len);
5027		EXT4_I(inode)->i_disksize = inode->i_size;
5028		ext4_mark_inode_dirty(handle, inode);
 
 
5029	}
5030	return len;
5031}
5032
5033#endif
5034
5035static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5036		       const char *dev_name, void *data)
5037{
5038	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5039}
5040
5041#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5042static inline void register_as_ext2(void)
5043{
5044	int err = register_filesystem(&ext2_fs_type);
5045	if (err)
5046		printk(KERN_WARNING
5047		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5048}
5049
5050static inline void unregister_as_ext2(void)
5051{
5052	unregister_filesystem(&ext2_fs_type);
5053}
5054
5055static inline int ext2_feature_set_ok(struct super_block *sb)
5056{
5057	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5058		return 0;
5059	if (sb->s_flags & MS_RDONLY)
5060		return 1;
5061	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5062		return 0;
5063	return 1;
5064}
5065MODULE_ALIAS("ext2");
5066#else
5067static inline void register_as_ext2(void) { }
5068static inline void unregister_as_ext2(void) { }
5069static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5070#endif
5071
5072#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5073static inline void register_as_ext3(void)
5074{
5075	int err = register_filesystem(&ext3_fs_type);
5076	if (err)
5077		printk(KERN_WARNING
5078		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5079}
5080
5081static inline void unregister_as_ext3(void)
5082{
5083	unregister_filesystem(&ext3_fs_type);
5084}
5085
5086static inline int ext3_feature_set_ok(struct super_block *sb)
5087{
5088	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5089		return 0;
5090	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5091		return 0;
5092	if (sb->s_flags & MS_RDONLY)
5093		return 1;
5094	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5095		return 0;
5096	return 1;
5097}
5098MODULE_ALIAS("ext3");
5099#else
5100static inline void register_as_ext3(void) { }
5101static inline void unregister_as_ext3(void) { }
5102static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5103#endif
5104
5105static struct file_system_type ext4_fs_type = {
5106	.owner		= THIS_MODULE,
5107	.name		= "ext4",
5108	.mount		= ext4_mount,
5109	.kill_sb	= kill_block_super,
5110	.fs_flags	= FS_REQUIRES_DEV,
5111};
5112
5113static int __init ext4_init_feat_adverts(void)
5114{
5115	struct ext4_features *ef;
5116	int ret = -ENOMEM;
5117
5118	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5119	if (!ef)
5120		goto out;
5121
5122	ef->f_kobj.kset = ext4_kset;
5123	init_completion(&ef->f_kobj_unregister);
5124	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5125				   "features");
5126	if (ret) {
5127		kfree(ef);
5128		goto out;
5129	}
5130
5131	ext4_feat = ef;
5132	ret = 0;
5133out:
5134	return ret;
5135}
5136
5137static void ext4_exit_feat_adverts(void)
5138{
5139	kobject_put(&ext4_feat->f_kobj);
5140	wait_for_completion(&ext4_feat->f_kobj_unregister);
5141	kfree(ext4_feat);
5142}
 
 
 
5143
5144/* Shared across all ext4 file systems */
5145wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5146struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5147
5148static int __init ext4_init_fs(void)
5149{
5150	int i, err;
5151
 
5152	ext4_li_info = NULL;
5153	mutex_init(&ext4_li_mtx);
5154
 
5155	ext4_check_flag_values();
5156
5157	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5158		mutex_init(&ext4__aio_mutex[i]);
5159		init_waitqueue_head(&ext4__ioend_wq[i]);
5160	}
5161
5162	err = ext4_init_pageio();
5163	if (err)
5164		return err;
5165	err = ext4_init_system_zone();
 
 
 
 
 
5166	if (err)
5167		goto out6;
5168	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5169	if (!ext4_kset)
 
5170		goto out5;
5171	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5172
5173	err = ext4_init_feat_adverts();
5174	if (err)
5175		goto out4;
5176
5177	err = ext4_init_mballoc();
5178	if (err)
5179		goto out3;
5180
5181	err = ext4_init_xattr();
5182	if (err)
5183		goto out2;
5184	err = init_inodecache();
5185	if (err)
5186		goto out1;
 
 
 
 
 
5187	register_as_ext3();
5188	register_as_ext2();
5189	err = register_filesystem(&ext4_fs_type);
5190	if (err)
5191		goto out;
5192
5193	return 0;
5194out:
5195	unregister_as_ext2();
5196	unregister_as_ext3();
 
 
5197	destroy_inodecache();
5198out1:
5199	ext4_exit_xattr();
5200out2:
5201	ext4_exit_mballoc();
 
 
5202out3:
5203	ext4_exit_feat_adverts();
5204out4:
5205	if (ext4_proc_root)
5206		remove_proc_entry("fs/ext4", NULL);
5207	kset_unregister(ext4_kset);
5208out5:
5209	ext4_exit_system_zone();
5210out6:
5211	ext4_exit_pageio();
 
 
 
5212	return err;
5213}
5214
5215static void __exit ext4_exit_fs(void)
5216{
5217	ext4_destroy_lazyinit_thread();
5218	unregister_as_ext2();
5219	unregister_as_ext3();
5220	unregister_filesystem(&ext4_fs_type);
 
5221	destroy_inodecache();
5222	ext4_exit_xattr();
5223	ext4_exit_mballoc();
5224	ext4_exit_feat_adverts();
5225	remove_proc_entry("fs/ext4", NULL);
5226	kset_unregister(ext4_kset);
5227	ext4_exit_system_zone();
5228	ext4_exit_pageio();
 
 
 
5229}
5230
5231MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5232MODULE_DESCRIPTION("Fourth Extended Filesystem");
5233MODULE_LICENSE("GPL");
 
5234module_init(ext4_init_fs)
5235module_exit(ext4_exit_fs)
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
 
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
 
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/uaccess.h>
  43#include <linux/iversion.h>
  44#include <linux/unicode.h>
  45#include <linux/part_stat.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/fsnotify.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51
  52#include "ext4.h"
  53#include "ext4_extents.h"	/* Needed for trace points definition */
  54#include "ext4_jbd2.h"
  55#include "xattr.h"
  56#include "acl.h"
  57#include "mballoc.h"
  58#include "fsmap.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/ext4.h>
  62
 
 
  63static struct ext4_lazy_init *ext4_li_info;
  64static DEFINE_MUTEX(ext4_li_mtx);
  65static struct ratelimit_state ext4_mount_msg_ratelimit;
  66
  67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  68			     unsigned long journal_devnum);
  69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  70static void ext4_update_super(struct super_block *sb);
  71static int ext4_commit_super(struct super_block *sb);
  72static int ext4_mark_recovery_complete(struct super_block *sb,
  73					struct ext4_super_block *es);
  74static int ext4_clear_journal_err(struct super_block *sb,
  75				  struct ext4_super_block *es);
  76static int ext4_sync_fs(struct super_block *sb, int wait);
 
 
 
  77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  78static int ext4_unfreeze(struct super_block *sb);
 
  79static int ext4_freeze(struct super_block *sb);
 
 
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
 
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
  87static int ext4_validate_options(struct fs_context *fc);
  88static int ext4_check_opt_consistency(struct fs_context *fc,
  89				      struct super_block *sb);
  90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
  91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
  92static int ext4_get_tree(struct fs_context *fc);
  93static int ext4_reconfigure(struct fs_context *fc);
  94static void ext4_fc_free(struct fs_context *fc);
  95static int ext4_init_fs_context(struct fs_context *fc);
  96static void ext4_kill_sb(struct super_block *sb);
  97static const struct fs_parameter_spec ext4_param_specs[];
  98
  99/*
 100 * Lock ordering
 101 *
 102 * page fault path:
 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
 104 *   -> page lock -> i_data_sem (rw)
 105 *
 106 * buffered write path:
 107 * sb_start_write -> i_mutex -> mmap_lock
 108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 109 *   i_data_sem (rw)
 110 *
 111 * truncate:
 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
 113 *   page lock
 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
 115 *   i_data_sem (rw)
 116 *
 117 * direct IO:
 118 * sb_start_write -> i_mutex -> mmap_lock
 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 120 *
 121 * writepages:
 122 * transaction start -> page lock(s) -> i_data_sem (rw)
 123 */
 124
 125static const struct fs_context_operations ext4_context_ops = {
 126	.parse_param	= ext4_parse_param,
 127	.get_tree	= ext4_get_tree,
 128	.reconfigure	= ext4_reconfigure,
 129	.free		= ext4_fc_free,
 130};
 131
 132
 133#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 134static struct file_system_type ext2_fs_type = {
 135	.owner			= THIS_MODULE,
 136	.name			= "ext2",
 137	.init_fs_context	= ext4_init_fs_context,
 138	.parameters		= ext4_param_specs,
 139	.kill_sb		= ext4_kill_sb,
 140	.fs_flags		= FS_REQUIRES_DEV,
 141};
 142MODULE_ALIAS_FS("ext2");
 143MODULE_ALIAS("ext2");
 144#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
 145#else
 146#define IS_EXT2_SB(sb) (0)
 147#endif
 148
 149
 
 150static struct file_system_type ext3_fs_type = {
 151	.owner			= THIS_MODULE,
 152	.name			= "ext3",
 153	.init_fs_context	= ext4_init_fs_context,
 154	.parameters		= ext4_param_specs,
 155	.kill_sb		= ext4_kill_sb,
 156	.fs_flags		= FS_REQUIRES_DEV,
 157};
 158MODULE_ALIAS_FS("ext3");
 159MODULE_ALIAS("ext3");
 160#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
 161
 162
 163static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 164				  bh_end_io_t *end_io)
 165{
 166	/*
 167	 * buffer's verified bit is no longer valid after reading from
 168	 * disk again due to write out error, clear it to make sure we
 169	 * recheck the buffer contents.
 170	 */
 171	clear_buffer_verified(bh);
 172
 173	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 174	get_bh(bh);
 175	submit_bh(REQ_OP_READ | op_flags, bh);
 176}
 177
 178void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
 179			 bh_end_io_t *end_io)
 180{
 181	BUG_ON(!buffer_locked(bh));
 182
 183	if (ext4_buffer_uptodate(bh)) {
 184		unlock_buffer(bh);
 185		return;
 186	}
 187	__ext4_read_bh(bh, op_flags, end_io);
 188}
 189
 190int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
 191{
 192	BUG_ON(!buffer_locked(bh));
 193
 194	if (ext4_buffer_uptodate(bh)) {
 195		unlock_buffer(bh);
 196		return 0;
 197	}
 198
 199	__ext4_read_bh(bh, op_flags, end_io);
 200
 201	wait_on_buffer(bh);
 202	if (buffer_uptodate(bh))
 203		return 0;
 204	return -EIO;
 205}
 206
 207int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
 208{
 209	lock_buffer(bh);
 210	if (!wait) {
 211		ext4_read_bh_nowait(bh, op_flags, NULL);
 212		return 0;
 213	}
 214	return ext4_read_bh(bh, op_flags, NULL);
 215}
 216
 217/*
 218 * This works like __bread_gfp() except it uses ERR_PTR for error
 219 * returns.  Currently with sb_bread it's impossible to distinguish
 220 * between ENOMEM and EIO situations (since both result in a NULL
 221 * return.
 222 */
 223static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 224					       sector_t block,
 225					       blk_opf_t op_flags, gfp_t gfp)
 226{
 227	struct buffer_head *bh;
 228	int ret;
 229
 230	bh = sb_getblk_gfp(sb, block, gfp);
 231	if (bh == NULL)
 232		return ERR_PTR(-ENOMEM);
 233	if (ext4_buffer_uptodate(bh))
 234		return bh;
 235
 236	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 237	if (ret) {
 238		put_bh(bh);
 239		return ERR_PTR(ret);
 240	}
 241	return bh;
 242}
 243
 244struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 245				   blk_opf_t op_flags)
 246{
 247	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 248			~__GFP_FS) | __GFP_MOVABLE;
 249
 250	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
 251}
 252
 253struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 254					    sector_t block)
 255{
 256	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 257			~__GFP_FS);
 258
 259	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
 260}
 261
 262void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 263{
 264	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
 265			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
 266
 267	if (likely(bh)) {
 268		if (trylock_buffer(bh))
 269			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
 270		brelse(bh);
 271	}
 272}
 273
 274static int ext4_verify_csum_type(struct super_block *sb,
 275				 struct ext4_super_block *es)
 276{
 277	if (!ext4_has_feature_metadata_csum(sb))
 
 278		return 1;
 279
 280	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 281}
 282
 283__le32 ext4_superblock_csum(struct super_block *sb,
 284			    struct ext4_super_block *es)
 285{
 286	struct ext4_sb_info *sbi = EXT4_SB(sb);
 287	int offset = offsetof(struct ext4_super_block, s_checksum);
 288	__u32 csum;
 289
 290	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 291
 292	return cpu_to_le32(csum);
 293}
 294
 295static int ext4_superblock_csum_verify(struct super_block *sb,
 296				       struct ext4_super_block *es)
 297{
 298	if (!ext4_has_metadata_csum(sb))
 
 299		return 1;
 300
 301	return es->s_checksum == ext4_superblock_csum(sb, es);
 302}
 303
 304void ext4_superblock_csum_set(struct super_block *sb)
 
 305{
 306	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 307
 308	if (!ext4_has_metadata_csum(sb))
 309		return;
 310
 311	es->s_checksum = ext4_superblock_csum(sb, es);
 312}
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 315			       struct ext4_group_desc *bg)
 316{
 317	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 318		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 319		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 320}
 321
 322ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 323			       struct ext4_group_desc *bg)
 324{
 325	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 326		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 327		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 328}
 329
 330ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 331			      struct ext4_group_desc *bg)
 332{
 333	return le32_to_cpu(bg->bg_inode_table_lo) |
 334		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 335		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 336}
 337
 338__u32 ext4_free_group_clusters(struct super_block *sb,
 339			       struct ext4_group_desc *bg)
 340{
 341	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 342		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 343		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 344}
 345
 346__u32 ext4_free_inodes_count(struct super_block *sb,
 347			      struct ext4_group_desc *bg)
 348{
 349	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 350		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 351		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 352}
 353
 354__u32 ext4_used_dirs_count(struct super_block *sb,
 355			      struct ext4_group_desc *bg)
 356{
 357	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 358		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 359		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 360}
 361
 362__u32 ext4_itable_unused_count(struct super_block *sb,
 363			      struct ext4_group_desc *bg)
 364{
 365	return le16_to_cpu(bg->bg_itable_unused_lo) |
 366		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 367		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 368}
 369
 370void ext4_block_bitmap_set(struct super_block *sb,
 371			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 372{
 373	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 374	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 375		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 376}
 377
 378void ext4_inode_bitmap_set(struct super_block *sb,
 379			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 380{
 381	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 382	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 383		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 384}
 385
 386void ext4_inode_table_set(struct super_block *sb,
 387			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 388{
 389	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 390	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 391		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 392}
 393
 394void ext4_free_group_clusters_set(struct super_block *sb,
 395				  struct ext4_group_desc *bg, __u32 count)
 396{
 397	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 398	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 399		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 400}
 401
 402void ext4_free_inodes_set(struct super_block *sb,
 403			  struct ext4_group_desc *bg, __u32 count)
 404{
 405	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 406	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 407		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 408}
 409
 410void ext4_used_dirs_set(struct super_block *sb,
 411			  struct ext4_group_desc *bg, __u32 count)
 412{
 413	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 414	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 415		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 416}
 417
 418void ext4_itable_unused_set(struct super_block *sb,
 419			  struct ext4_group_desc *bg, __u32 count)
 420{
 421	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 422	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 423		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 424}
 425
 426static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 
 
 427{
 428	now = clamp_val(now, 0, (1ull << 40) - 1);
 
 429
 430	*lo = cpu_to_le32(lower_32_bits(now));
 431	*hi = upper_32_bits(now);
 
 
 
 
 
 432}
 433
 434static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 
 
 435{
 436	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 
 
 
 
 
 
 
 437}
 438#define ext4_update_tstamp(es, tstamp) \
 439	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 440			     ktime_get_real_seconds())
 441#define ext4_get_tstamp(es, tstamp) \
 442	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 443
 444#define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
 445#define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
 446
 447/*
 448 * The ext4_maybe_update_superblock() function checks and updates the
 449 * superblock if needed.
 450 *
 451 * This function is designed to update the on-disk superblock only under
 452 * certain conditions to prevent excessive disk writes and unnecessary
 453 * waking of the disk from sleep. The superblock will be updated if:
 454 * 1. More than an hour has passed since the last superblock update, and
 455 * 2. More than 16MB have been written since the last superblock update.
 456 *
 457 * @sb: The superblock
 
 
 458 */
 459static void ext4_maybe_update_superblock(struct super_block *sb)
 460{
 461	struct ext4_sb_info *sbi = EXT4_SB(sb);
 462	struct ext4_super_block *es = sbi->s_es;
 463	journal_t *journal = sbi->s_journal;
 464	time64_t now;
 465	__u64 last_update;
 466	__u64 lifetime_write_kbytes;
 467	__u64 diff_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468
 469	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
 470	    !journal || (journal->j_flags & JBD2_UNMOUNT))
 471		return;
 472
 473	now = ktime_get_real_seconds();
 474	last_update = ext4_get_tstamp(es, s_wtime);
 475
 476	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
 477		return;
 
 
 
 
 
 478
 479	lifetime_write_kbytes = sbi->s_kbytes_written +
 480		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
 481		  sbi->s_sectors_written_start) >> 1);
 482
 483	/* Get the number of kilobytes not written to disk to account
 484	 * for statistics and compare with a multiple of 16 MB. This
 485	 * is used to determine when the next superblock commit should
 486	 * occur (i.e. not more often than once per 16MB if there was
 487	 * less written in an hour).
 488	 */
 489	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
 
 
 
 
 
 
 
 
 
 
 490
 491	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
 492		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 
 
 
 493}
 494
 495/*
 496 * The del_gendisk() function uninitializes the disk-specific data
 497 * structures, including the bdi structure, without telling anyone
 498 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 500 * This is a kludge to prevent these oops until we can put in a proper
 501 * hook in del_gendisk() to inform the VFS and file system layers.
 502 */
 503static int block_device_ejected(struct super_block *sb)
 504{
 505	struct inode *bd_inode = sb->s_bdev->bd_inode;
 506	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 507
 508	return bdi->dev == NULL;
 509}
 510
 511static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 512{
 513	struct super_block		*sb = journal->j_private;
 514	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 515	int				error = is_journal_aborted(journal);
 516	struct ext4_journal_cb_entry	*jce;
 517
 518	BUG_ON(txn->t_state == T_FINISHED);
 519
 520	ext4_process_freed_data(sb, txn->t_tid);
 521	ext4_maybe_update_superblock(sb);
 522
 523	spin_lock(&sbi->s_md_lock);
 524	while (!list_empty(&txn->t_private_list)) {
 525		jce = list_entry(txn->t_private_list.next,
 526				 struct ext4_journal_cb_entry, jce_list);
 527		list_del_init(&jce->jce_list);
 528		spin_unlock(&sbi->s_md_lock);
 529		jce->jce_func(sb, jce, error);
 530		spin_lock(&sbi->s_md_lock);
 531	}
 532	spin_unlock(&sbi->s_md_lock);
 533}
 534
 535/*
 536 * This writepage callback for write_cache_pages()
 537 * takes care of a few cases after page cleaning.
 538 *
 539 * write_cache_pages() already checks for dirty pages
 540 * and calls clear_page_dirty_for_io(), which we want,
 541 * to write protect the pages.
 542 *
 543 * However, we may have to redirty a page (see below.)
 544 */
 545static int ext4_journalled_writepage_callback(struct folio *folio,
 546					      struct writeback_control *wbc,
 547					      void *data)
 548{
 549	transaction_t *transaction = (transaction_t *) data;
 550	struct buffer_head *bh, *head;
 551	struct journal_head *jh;
 552
 553	bh = head = folio_buffers(folio);
 554	do {
 555		/*
 556		 * We have to redirty a page in these cases:
 557		 * 1) If buffer is dirty, it means the page was dirty because it
 558		 * contains a buffer that needs checkpointing. So the dirty bit
 559		 * needs to be preserved so that checkpointing writes the buffer
 560		 * properly.
 561		 * 2) If buffer is not part of the committing transaction
 562		 * (we may have just accidentally come across this buffer because
 563		 * inode range tracking is not exact) or if the currently running
 564		 * transaction already contains this buffer as well, dirty bit
 565		 * needs to be preserved so that the buffer gets writeprotected
 566		 * properly on running transaction's commit.
 567		 */
 568		jh = bh2jh(bh);
 569		if (buffer_dirty(bh) ||
 570		    (jh && (jh->b_transaction != transaction ||
 571			    jh->b_next_transaction))) {
 572			folio_redirty_for_writepage(wbc, folio);
 573			goto out;
 574		}
 575	} while ((bh = bh->b_this_page) != head);
 576
 577out:
 578	return AOP_WRITEPAGE_ACTIVATE;
 579}
 580
 581static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 582{
 583	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 584	struct writeback_control wbc = {
 585		.sync_mode =  WB_SYNC_ALL,
 586		.nr_to_write = LONG_MAX,
 587		.range_start = jinode->i_dirty_start,
 588		.range_end = jinode->i_dirty_end,
 589        };
 590
 591	return write_cache_pages(mapping, &wbc,
 592				 ext4_journalled_writepage_callback,
 593				 jinode->i_transaction);
 594}
 595
 596static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 597{
 598	int ret;
 599
 600	if (ext4_should_journal_data(jinode->i_vfs_inode))
 601		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 602	else
 603		ret = ext4_normal_submit_inode_data_buffers(jinode);
 604	return ret;
 605}
 606
 607static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 608{
 609	int ret = 0;
 610
 611	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 612		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 613
 614	return ret;
 615}
 616
 617static bool system_going_down(void)
 618{
 619	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 620		|| system_state == SYSTEM_RESTART;
 621}
 622
 623struct ext4_err_translation {
 624	int code;
 625	int errno;
 626};
 627
 628#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 629
 630static struct ext4_err_translation err_translation[] = {
 631	EXT4_ERR_TRANSLATE(EIO),
 632	EXT4_ERR_TRANSLATE(ENOMEM),
 633	EXT4_ERR_TRANSLATE(EFSBADCRC),
 634	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 635	EXT4_ERR_TRANSLATE(ENOSPC),
 636	EXT4_ERR_TRANSLATE(ENOKEY),
 637	EXT4_ERR_TRANSLATE(EROFS),
 638	EXT4_ERR_TRANSLATE(EFBIG),
 639	EXT4_ERR_TRANSLATE(EEXIST),
 640	EXT4_ERR_TRANSLATE(ERANGE),
 641	EXT4_ERR_TRANSLATE(EOVERFLOW),
 642	EXT4_ERR_TRANSLATE(EBUSY),
 643	EXT4_ERR_TRANSLATE(ENOTDIR),
 644	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 645	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 646	EXT4_ERR_TRANSLATE(EFAULT),
 647};
 648
 649static int ext4_errno_to_code(int errno)
 650{
 651	int i;
 652
 653	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 654		if (err_translation[i].errno == errno)
 655			return err_translation[i].code;
 656	return EXT4_ERR_UNKNOWN;
 657}
 658
 659static void save_error_info(struct super_block *sb, int error,
 660			    __u32 ino, __u64 block,
 661			    const char *func, unsigned int line)
 662{
 663	struct ext4_sb_info *sbi = EXT4_SB(sb);
 664
 665	/* We default to EFSCORRUPTED error... */
 666	if (error == 0)
 667		error = EFSCORRUPTED;
 668
 669	spin_lock(&sbi->s_error_lock);
 670	sbi->s_add_error_count++;
 671	sbi->s_last_error_code = error;
 672	sbi->s_last_error_line = line;
 673	sbi->s_last_error_ino = ino;
 674	sbi->s_last_error_block = block;
 675	sbi->s_last_error_func = func;
 676	sbi->s_last_error_time = ktime_get_real_seconds();
 677	if (!sbi->s_first_error_time) {
 678		sbi->s_first_error_code = error;
 679		sbi->s_first_error_line = line;
 680		sbi->s_first_error_ino = ino;
 681		sbi->s_first_error_block = block;
 682		sbi->s_first_error_func = func;
 683		sbi->s_first_error_time = sbi->s_last_error_time;
 684	}
 685	spin_unlock(&sbi->s_error_lock);
 686}
 687
 688/* Deal with the reporting of failure conditions on a filesystem such as
 689 * inconsistencies detected or read IO failures.
 690 *
 691 * On ext2, we can store the error state of the filesystem in the
 692 * superblock.  That is not possible on ext4, because we may have other
 693 * write ordering constraints on the superblock which prevent us from
 694 * writing it out straight away; and given that the journal is about to
 695 * be aborted, we can't rely on the current, or future, transactions to
 696 * write out the superblock safely.
 697 *
 698 * We'll just use the jbd2_journal_abort() error code to record an error in
 699 * the journal instead.  On recovery, the journal will complain about
 700 * that error until we've noted it down and cleared it.
 701 *
 702 * If force_ro is set, we unconditionally force the filesystem into an
 703 * ABORT|READONLY state, unless the error response on the fs has been set to
 704 * panic in which case we take the easy way out and panic immediately. This is
 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 706 * at a critical moment in log management.
 707 */
 708static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 709			      __u32 ino, __u64 block,
 710			      const char *func, unsigned int line)
 711{
 712	journal_t *journal = EXT4_SB(sb)->s_journal;
 713	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 714
 715	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 716	if (test_opt(sb, WARN_ON_ERROR))
 717		WARN_ON_ONCE(1);
 718
 719	if (!continue_fs && !sb_rdonly(sb)) {
 720		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
 721		if (journal)
 722			jbd2_journal_abort(journal, -EIO);
 723	}
 724
 725	if (!bdev_read_only(sb->s_bdev)) {
 726		save_error_info(sb, error, ino, block, func, line);
 727		/*
 728		 * In case the fs should keep running, we need to writeout
 729		 * superblock through the journal. Due to lock ordering
 730		 * constraints, it may not be safe to do it right here so we
 731		 * defer superblock flushing to a workqueue.
 732		 */
 733		if (continue_fs && journal)
 734			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 735		else
 736			ext4_commit_super(sb);
 737	}
 738
 739	/*
 740	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 741	 * could panic during 'reboot -f' as the underlying device got already
 742	 * disabled.
 743	 */
 744	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 745		panic("EXT4-fs (device %s): panic forced after error\n",
 746			sb->s_id);
 747	}
 748
 749	if (sb_rdonly(sb) || continue_fs)
 750		return;
 751
 752	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 753	/*
 754	 * Make sure updated value of ->s_mount_flags will be visible before
 755	 * ->s_flags update
 756	 */
 757	smp_wmb();
 758	sb->s_flags |= SB_RDONLY;
 759}
 760
 761static void update_super_work(struct work_struct *work)
 762{
 763	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 764						s_sb_upd_work);
 765	journal_t *journal = sbi->s_journal;
 766	handle_t *handle;
 767
 768	/*
 769	 * If the journal is still running, we have to write out superblock
 770	 * through the journal to avoid collisions of other journalled sb
 771	 * updates.
 772	 *
 773	 * We use directly jbd2 functions here to avoid recursing back into
 774	 * ext4 error handling code during handling of previous errors.
 775	 */
 776	if (!sb_rdonly(sbi->s_sb) && journal) {
 777		struct buffer_head *sbh = sbi->s_sbh;
 778		bool call_notify_err = false;
 779
 780		handle = jbd2_journal_start(journal, 1);
 781		if (IS_ERR(handle))
 782			goto write_directly;
 783		if (jbd2_journal_get_write_access(handle, sbh)) {
 784			jbd2_journal_stop(handle);
 785			goto write_directly;
 786		}
 787
 788		if (sbi->s_add_error_count > 0)
 789			call_notify_err = true;
 790
 791		ext4_update_super(sbi->s_sb);
 792		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 793			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 794				 "superblock detected");
 795			clear_buffer_write_io_error(sbh);
 796			set_buffer_uptodate(sbh);
 797		}
 798
 799		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 800			jbd2_journal_stop(handle);
 801			goto write_directly;
 802		}
 803		jbd2_journal_stop(handle);
 804
 805		if (call_notify_err)
 806			ext4_notify_error_sysfs(sbi);
 807
 808		return;
 809	}
 810write_directly:
 811	/*
 812	 * Write through journal failed. Write sb directly to get error info
 813	 * out and hope for the best.
 814	 */
 815	ext4_commit_super(sbi->s_sb);
 816	ext4_notify_error_sysfs(sbi);
 817}
 818
 819#define ext4_error_ratelimit(sb)					\
 820		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 821			     "EXT4-fs error")
 822
 823void __ext4_error(struct super_block *sb, const char *function,
 824		  unsigned int line, bool force_ro, int error, __u64 block,
 825		  const char *fmt, ...)
 826{
 827	struct va_format vaf;
 828	va_list args;
 829
 830	if (unlikely(ext4_forced_shutdown(sb)))
 831		return;
 
 
 
 
 
 832
 833	trace_ext4_error(sb, function, line);
 834	if (ext4_error_ratelimit(sb)) {
 835		va_start(args, fmt);
 836		vaf.fmt = fmt;
 837		vaf.va = &args;
 838		printk(KERN_CRIT
 839		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 840		       sb->s_id, function, line, current->comm, &vaf);
 841		va_end(args);
 842	}
 843	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
 844
 845	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 846}
 847
 848void __ext4_error_inode(struct inode *inode, const char *function,
 849			unsigned int line, ext4_fsblk_t block, int error,
 850			const char *fmt, ...)
 851{
 852	va_list args;
 853	struct va_format vaf;
 
 854
 855	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 856		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858	trace_ext4_error(inode->i_sb, function, line);
 859	if (ext4_error_ratelimit(inode->i_sb)) {
 860		va_start(args, fmt);
 861		vaf.fmt = fmt;
 862		vaf.va = &args;
 863		if (block)
 864			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 865			       "inode #%lu: block %llu: comm %s: %pV\n",
 866			       inode->i_sb->s_id, function, line, inode->i_ino,
 867			       block, current->comm, &vaf);
 868		else
 869			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 870			       "inode #%lu: comm %s: %pV\n",
 871			       inode->i_sb->s_id, function, line, inode->i_ino,
 872			       current->comm, &vaf);
 873		va_end(args);
 874	}
 875	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
 876
 877	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 878			  function, line);
 879}
 880
 881void __ext4_error_file(struct file *file, const char *function,
 882		       unsigned int line, ext4_fsblk_t block,
 883		       const char *fmt, ...)
 884{
 885	va_list args;
 886	struct va_format vaf;
 887	struct inode *inode = file_inode(file);
 
 888	char pathname[80], *path;
 889
 890	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 891		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892
 893	trace_ext4_error(inode->i_sb, function, line);
 894	if (ext4_error_ratelimit(inode->i_sb)) {
 895		path = file_path(file, pathname, sizeof(pathname));
 896		if (IS_ERR(path))
 897			path = "(unknown)";
 898		va_start(args, fmt);
 899		vaf.fmt = fmt;
 900		vaf.va = &args;
 901		if (block)
 902			printk(KERN_CRIT
 903			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 904			       "block %llu: comm %s: path %s: %pV\n",
 905			       inode->i_sb->s_id, function, line, inode->i_ino,
 906			       block, current->comm, path, &vaf);
 907		else
 908			printk(KERN_CRIT
 909			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 910			       "comm %s: path %s: %pV\n",
 911			       inode->i_sb->s_id, function, line, inode->i_ino,
 912			       current->comm, path, &vaf);
 913		va_end(args);
 914	}
 915	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
 916
 917	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 918			  function, line);
 919}
 920
 921const char *ext4_decode_error(struct super_block *sb, int errno,
 922			      char nbuf[16])
 923{
 924	char *errstr = NULL;
 925
 926	switch (errno) {
 927	case -EFSCORRUPTED:
 928		errstr = "Corrupt filesystem";
 929		break;
 930	case -EFSBADCRC:
 931		errstr = "Filesystem failed CRC";
 932		break;
 933	case -EIO:
 934		errstr = "IO failure";
 935		break;
 936	case -ENOMEM:
 937		errstr = "Out of memory";
 938		break;
 939	case -EROFS:
 940		if (!sb || (EXT4_SB(sb)->s_journal &&
 941			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 942			errstr = "Journal has aborted";
 943		else
 944			errstr = "Readonly filesystem";
 945		break;
 946	default:
 947		/* If the caller passed in an extra buffer for unknown
 948		 * errors, textualise them now.  Else we just return
 949		 * NULL. */
 950		if (nbuf) {
 951			/* Check for truncated error codes... */
 952			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 953				errstr = nbuf;
 954		}
 955		break;
 956	}
 957
 958	return errstr;
 959}
 960
 961/* __ext4_std_error decodes expected errors from journaling functions
 962 * automatically and invokes the appropriate error response.  */
 963
 964void __ext4_std_error(struct super_block *sb, const char *function,
 965		      unsigned int line, int errno)
 966{
 967	char nbuf[16];
 968	const char *errstr;
 969
 970	if (unlikely(ext4_forced_shutdown(sb)))
 971		return;
 972
 973	/* Special case: if the error is EROFS, and we're not already
 974	 * inside a transaction, then there's really no point in logging
 975	 * an error. */
 976	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 
 977		return;
 978
 979	if (ext4_error_ratelimit(sb)) {
 980		errstr = ext4_decode_error(sb, errno, nbuf);
 981		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 982		       sb->s_id, function, line, errstr);
 983	}
 984	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
 985
 986	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 987}
 988
 989void __ext4_msg(struct super_block *sb,
 990		const char *prefix, const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 991{
 992	struct va_format vaf;
 993	va_list args;
 994
 995	if (sb) {
 996		atomic_inc(&EXT4_SB(sb)->s_msg_count);
 997		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
 998				  "EXT4-fs"))
 999			return;
1000	}
1001
1002	va_start(args, fmt);
1003	vaf.fmt = fmt;
1004	vaf.va = &args;
1005	if (sb)
1006		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007	else
1008		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009	va_end(args);
1010}
1011
1012static int ext4_warning_ratelimit(struct super_block *sb)
1013{
1014	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016			    "EXT4-fs warning");
 
 
 
 
 
1017}
1018
1019void __ext4_warning(struct super_block *sb, const char *function,
1020		    unsigned int line, const char *fmt, ...)
1021{
1022	struct va_format vaf;
1023	va_list args;
1024
1025	if (!ext4_warning_ratelimit(sb))
1026		return;
1027
1028	va_start(args, fmt);
1029	vaf.fmt = fmt;
1030	vaf.va = &args;
1031	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032	       sb->s_id, function, line, &vaf);
1033	va_end(args);
1034}
1035
1036void __ext4_warning_inode(const struct inode *inode, const char *function,
1037			  unsigned int line, const char *fmt, ...)
1038{
1039	struct va_format vaf;
1040	va_list args;
1041
1042	if (!ext4_warning_ratelimit(inode->i_sb))
1043		return;
1044
1045	va_start(args, fmt);
1046	vaf.fmt = fmt;
1047	vaf.va = &args;
1048	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050	       function, line, inode->i_ino, current->comm, &vaf);
1051	va_end(args);
1052}
1053
1054void __ext4_grp_locked_error(const char *function, unsigned int line,
1055			     struct super_block *sb, ext4_group_t grp,
1056			     unsigned long ino, ext4_fsblk_t block,
1057			     const char *fmt, ...)
1058__releases(bitlock)
1059__acquires(bitlock)
1060{
1061	struct va_format vaf;
1062	va_list args;
 
 
 
 
 
1063
1064	if (unlikely(ext4_forced_shutdown(sb)))
1065		return;
1066
1067	trace_ext4_error(sb, function, line);
1068	if (ext4_error_ratelimit(sb)) {
1069		va_start(args, fmt);
1070		vaf.fmt = fmt;
1071		vaf.va = &args;
1072		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073		       sb->s_id, function, line, grp);
1074		if (ino)
1075			printk(KERN_CONT "inode %lu: ", ino);
1076		if (block)
1077			printk(KERN_CONT "block %llu:",
1078			       (unsigned long long) block);
1079		printk(KERN_CONT "%pV\n", &vaf);
1080		va_end(args);
1081	}
1082
1083	if (test_opt(sb, ERRORS_CONT)) {
1084		if (test_opt(sb, WARN_ON_ERROR))
1085			WARN_ON_ONCE(1);
1086		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087		if (!bdev_read_only(sb->s_bdev)) {
1088			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089					line);
1090			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091		}
1092		return;
1093	}
 
1094	ext4_unlock_group(sb, grp);
1095	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096	/*
1097	 * We only get here in the ERRORS_RO case; relocking the group
1098	 * may be dangerous, but nothing bad will happen since the
1099	 * filesystem will have already been marked read/only and the
1100	 * journal has been aborted.  We return 1 as a hint to callers
1101	 * who might what to use the return value from
1102	 * ext4_grp_locked_error() to distinguish between the
1103	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104	 * aggressively from the ext4 function in question, with a
1105	 * more appropriate error code.
1106	 */
1107	ext4_lock_group(sb, grp);
1108	return;
1109}
1110
1111void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112				     ext4_group_t group,
1113				     unsigned int flags)
1114{
1115	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118	int ret;
1119
1120	if (!grp || !gdp)
1121		return;
1122	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124					    &grp->bb_state);
1125		if (!ret)
1126			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127					   grp->bb_free);
1128	}
1129
1130	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132					    &grp->bb_state);
1133		if (!ret && gdp) {
1134			int count;
1135
1136			count = ext4_free_inodes_count(sb, gdp);
1137			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138					   count);
1139		}
1140	}
1141}
1142
1143void ext4_update_dynamic_rev(struct super_block *sb)
1144{
1145	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146
1147	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148		return;
1149
1150	ext4_warning(sb,
1151		     "updating to rev %d because of new feature flag, "
1152		     "running e2fsck is recommended",
1153		     EXT4_DYNAMIC_REV);
1154
1155	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158	/* leave es->s_feature_*compat flags alone */
1159	/* es->s_uuid will be set by e2fsck if empty */
1160
1161	/*
1162	 * The rest of the superblock fields should be zero, and if not it
1163	 * means they are likely already in use, so leave them alone.  We
1164	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165	 */
1166}
1167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168static inline struct inode *orphan_list_entry(struct list_head *l)
1169{
1170	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171}
1172
1173static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174{
1175	struct list_head *l;
1176
1177	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179
1180	printk(KERN_ERR "sb_info orphan list:\n");
1181	list_for_each(l, &sbi->s_orphan) {
1182		struct inode *inode = orphan_list_entry(l);
1183		printk(KERN_ERR "  "
1184		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185		       inode->i_sb->s_id, inode->i_ino, inode,
1186		       inode->i_mode, inode->i_nlink,
1187		       NEXT_ORPHAN(inode));
1188	}
1189}
1190
1191#ifdef CONFIG_QUOTA
1192static int ext4_quota_off(struct super_block *sb, int type);
1193
1194static inline void ext4_quotas_off(struct super_block *sb, int type)
1195{
1196	BUG_ON(type > EXT4_MAXQUOTAS);
1197
1198	/* Use our quota_off function to clear inode flags etc. */
1199	for (type--; type >= 0; type--)
1200		ext4_quota_off(sb, type);
1201}
1202
1203/*
1204 * This is a helper function which is used in the mount/remount
1205 * codepaths (which holds s_umount) to fetch the quota file name.
1206 */
1207static inline char *get_qf_name(struct super_block *sb,
1208				struct ext4_sb_info *sbi,
1209				int type)
1210{
1211	return rcu_dereference_protected(sbi->s_qf_names[type],
1212					 lockdep_is_held(&sb->s_umount));
1213}
1214#else
1215static inline void ext4_quotas_off(struct super_block *sb, int type)
1216{
1217}
1218#endif
1219
1220static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221{
1222	ext4_fsblk_t block;
1223	int err;
1224
1225	block = ext4_count_free_clusters(sbi->s_sb);
1226	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228				  GFP_KERNEL);
1229	if (!err) {
1230		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233					  GFP_KERNEL);
1234	}
1235	if (!err)
1236		err = percpu_counter_init(&sbi->s_dirs_counter,
1237					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238	if (!err)
1239		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240					  GFP_KERNEL);
1241	if (!err)
1242		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243					  GFP_KERNEL);
1244	if (!err)
1245		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246
1247	if (err)
1248		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249
1250	return err;
1251}
1252
1253static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254{
1255	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257	percpu_counter_destroy(&sbi->s_dirs_counter);
1258	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261}
1262
1263static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264{
1265	struct buffer_head **group_desc;
1266	int i;
1267
1268	rcu_read_lock();
1269	group_desc = rcu_dereference(sbi->s_group_desc);
1270	for (i = 0; i < sbi->s_gdb_count; i++)
1271		brelse(group_desc[i]);
1272	kvfree(group_desc);
1273	rcu_read_unlock();
1274}
1275
1276static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277{
1278	struct flex_groups **flex_groups;
1279	int i;
1280
1281	rcu_read_lock();
1282	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283	if (flex_groups) {
1284		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285			kvfree(flex_groups[i]);
1286		kvfree(flex_groups);
1287	}
1288	rcu_read_unlock();
1289}
1290
1291static void ext4_put_super(struct super_block *sb)
1292{
1293	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294	struct ext4_super_block *es = sbi->s_es;
1295	int aborted = 0;
1296	int err;
1297
1298	/*
1299	 * Unregister sysfs before destroying jbd2 journal.
1300	 * Since we could still access attr_journal_task attribute via sysfs
1301	 * path which could have sbi->s_journal->j_task as NULL
1302	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304	 * read metadata verify failed then will queue error work.
1305	 * update_super_work will call start_this_handle may trigger
1306	 * BUG_ON.
1307	 */
1308	ext4_unregister_sysfs(sb);
1309
1310	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312			 &sb->s_uuid);
1313
1314	ext4_unregister_li_request(sb);
1315	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316
1317	flush_work(&sbi->s_sb_upd_work);
1318	destroy_workqueue(sbi->rsv_conversion_wq);
1319	ext4_release_orphan_info(sb);
1320
 
1321	if (sbi->s_journal) {
1322		aborted = is_journal_aborted(sbi->s_journal);
1323		err = jbd2_journal_destroy(sbi->s_journal);
1324		sbi->s_journal = NULL;
1325		if ((err < 0) && !aborted) {
1326			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327		}
1328	}
1329
1330	ext4_es_unregister_shrinker(sbi);
1331	timer_shutdown_sync(&sbi->s_err_report);
1332	ext4_release_system_zone(sb);
1333	ext4_mb_release(sb);
1334	ext4_ext_release(sb);
 
1335
1336	if (!sb_rdonly(sb) && !aborted) {
1337		ext4_clear_feature_journal_needs_recovery(sb);
1338		ext4_clear_feature_orphan_present(sb);
1339		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340	}
1341	if (!sb_rdonly(sb))
1342		ext4_commit_super(sb);
1343
1344	ext4_group_desc_free(sbi);
1345	ext4_flex_groups_free(sbi);
1346	ext4_percpu_param_destroy(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
1347#ifdef CONFIG_QUOTA
1348	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349		kfree(get_qf_name(sb, sbi, i));
1350#endif
1351
1352	/* Debugging code just in case the in-memory inode orphan list
1353	 * isn't empty.  The on-disk one can be non-empty if we've
1354	 * detected an error and taken the fs readonly, but the
1355	 * in-memory list had better be clean by this point. */
1356	if (!list_empty(&sbi->s_orphan))
1357		dump_orphan_list(sb, sbi);
1358	ASSERT(list_empty(&sbi->s_orphan));
1359
1360	sync_blockdev(sb->s_bdev);
1361	invalidate_bdev(sb->s_bdev);
1362	if (sbi->s_journal_bdev_handle) {
1363		/*
1364		 * Invalidate the journal device's buffers.  We don't want them
1365		 * floating about in memory - the physical journal device may
1366		 * hotswapped, and it breaks the `ro-after' testing code.
1367		 */
1368		sync_blockdev(sbi->s_journal_bdev_handle->bdev);
1369		invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
 
1370	}
1371
1372	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373	sbi->s_ea_inode_cache = NULL;
1374
1375	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376	sbi->s_ea_block_cache = NULL;
1377
1378	ext4_stop_mmpd(sbi);
1379
1380	brelse(sbi->s_sbh);
1381	sb->s_fs_info = NULL;
1382	/*
1383	 * Now that we are completely done shutting down the
1384	 * superblock, we need to actually destroy the kobject.
1385	 */
 
1386	kobject_put(&sbi->s_kobj);
1387	wait_for_completion(&sbi->s_kobj_unregister);
1388	if (sbi->s_chksum_driver)
1389		crypto_free_shash(sbi->s_chksum_driver);
1390	kfree(sbi->s_blockgroup_lock);
1391	fs_put_dax(sbi->s_daxdev, NULL);
1392	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393#if IS_ENABLED(CONFIG_UNICODE)
1394	utf8_unload(sb->s_encoding);
1395#endif
1396	kfree(sbi);
1397}
1398
1399static struct kmem_cache *ext4_inode_cachep;
1400
1401/*
1402 * Called inside transaction, so use GFP_NOFS
1403 */
1404static struct inode *ext4_alloc_inode(struct super_block *sb)
1405{
1406	struct ext4_inode_info *ei;
1407
1408	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409	if (!ei)
1410		return NULL;
1411
1412	inode_set_iversion(&ei->vfs_inode, 1);
1413	ei->i_flags = 0;
1414	spin_lock_init(&ei->i_raw_lock);
1415	ei->i_prealloc_node = RB_ROOT;
1416	atomic_set(&ei->i_prealloc_active, 0);
1417	rwlock_init(&ei->i_prealloc_lock);
1418	ext4_es_init_tree(&ei->i_es_tree);
1419	rwlock_init(&ei->i_es_lock);
1420	INIT_LIST_HEAD(&ei->i_es_list);
1421	ei->i_es_all_nr = 0;
1422	ei->i_es_shk_nr = 0;
1423	ei->i_es_shrink_lblk = 0;
1424	ei->i_reserved_data_blocks = 0;
 
 
 
 
1425	spin_lock_init(&(ei->i_block_reservation_lock));
1426	ext4_init_pending_tree(&ei->i_pending_tree);
1427#ifdef CONFIG_QUOTA
1428	ei->i_reserved_quota = 0;
1429	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430#endif
1431	ei->jinode = NULL;
1432	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433	spin_lock_init(&ei->i_completed_io_lock);
 
1434	ei->i_sync_tid = 0;
1435	ei->i_datasync_tid = 0;
1436	atomic_set(&ei->i_unwritten, 0);
1437	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438	ext4_fc_init_inode(&ei->vfs_inode);
1439	mutex_init(&ei->i_fc_lock);
1440	return &ei->vfs_inode;
1441}
1442
1443static int ext4_drop_inode(struct inode *inode)
1444{
1445	int drop = generic_drop_inode(inode);
1446
1447	if (!drop)
1448		drop = fscrypt_drop_inode(inode);
1449
1450	trace_ext4_drop_inode(inode, drop);
1451	return drop;
1452}
1453
1454static void ext4_free_in_core_inode(struct inode *inode)
1455{
1456	fscrypt_free_inode(inode);
1457	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458		pr_warn("%s: inode %ld still in fc list",
1459			__func__, inode->i_ino);
1460	}
1461	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462}
1463
1464static void ext4_destroy_inode(struct inode *inode)
1465{
1466	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467		ext4_msg(inode->i_sb, KERN_ERR,
1468			 "Inode %lu (%p): orphan list check failed!",
1469			 inode->i_ino, EXT4_I(inode));
1470		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472				true);
1473		dump_stack();
1474	}
1475
1476	if (EXT4_I(inode)->i_reserved_data_blocks)
1477		ext4_msg(inode->i_sb, KERN_ERR,
1478			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479			 inode->i_ino, EXT4_I(inode),
1480			 EXT4_I(inode)->i_reserved_data_blocks);
1481}
1482
1483static void ext4_shutdown(struct super_block *sb)
1484{
1485       ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486}
1487
1488static void init_once(void *foo)
1489{
1490	struct ext4_inode_info *ei = foo;
1491
1492	INIT_LIST_HEAD(&ei->i_orphan);
 
1493	init_rwsem(&ei->xattr_sem);
 
1494	init_rwsem(&ei->i_data_sem);
1495	inode_init_once(&ei->vfs_inode);
1496	ext4_fc_init_inode(&ei->vfs_inode);
1497}
1498
1499static int __init init_inodecache(void)
1500{
1501	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502				sizeof(struct ext4_inode_info), 0,
1503				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1504					SLAB_ACCOUNT),
1505				offsetof(struct ext4_inode_info, i_data),
1506				sizeof_field(struct ext4_inode_info, i_data),
1507				init_once);
1508	if (ext4_inode_cachep == NULL)
1509		return -ENOMEM;
1510	return 0;
1511}
1512
1513static void destroy_inodecache(void)
1514{
1515	/*
1516	 * Make sure all delayed rcu free inodes are flushed before we
1517	 * destroy cache.
1518	 */
1519	rcu_barrier();
1520	kmem_cache_destroy(ext4_inode_cachep);
1521}
1522
1523void ext4_clear_inode(struct inode *inode)
1524{
1525	ext4_fc_del(inode);
1526	invalidate_inode_buffers(inode);
1527	clear_inode(inode);
 
1528	ext4_discard_preallocations(inode);
1529	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1530	dquot_drop(inode);
1531	if (EXT4_I(inode)->jinode) {
1532		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1533					       EXT4_I(inode)->jinode);
1534		jbd2_free_inode(EXT4_I(inode)->jinode);
1535		EXT4_I(inode)->jinode = NULL;
1536	}
1537	fscrypt_put_encryption_info(inode);
1538	fsverity_cleanup_inode(inode);
1539}
1540
1541static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1542					u64 ino, u32 generation)
1543{
1544	struct inode *inode;
1545
1546	/*
 
 
 
 
 
 
 
 
 
1547	 * Currently we don't know the generation for parent directory, so
1548	 * a generation of 0 means "accept any"
1549	 */
1550	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1551	if (IS_ERR(inode))
1552		return ERR_CAST(inode);
1553	if (generation && inode->i_generation != generation) {
1554		iput(inode);
1555		return ERR_PTR(-ESTALE);
1556	}
1557
1558	return inode;
1559}
1560
1561static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1562					int fh_len, int fh_type)
1563{
1564	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1565				    ext4_nfs_get_inode);
1566}
1567
1568static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1569					int fh_len, int fh_type)
1570{
1571	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1572				    ext4_nfs_get_inode);
1573}
1574
1575static int ext4_nfs_commit_metadata(struct inode *inode)
 
 
 
 
 
 
 
1576{
1577	struct writeback_control wbc = {
1578		.sync_mode = WB_SYNC_ALL
1579	};
1580
1581	trace_ext4_nfs_commit_metadata(inode);
1582	return ext4_write_inode(inode, &wbc);
 
 
 
 
 
1583}
1584
1585#ifdef CONFIG_QUOTA
1586static const char * const quotatypes[] = INITQFNAMES;
1587#define QTYPE2NAME(t) (quotatypes[t])
1588
1589static int ext4_write_dquot(struct dquot *dquot);
1590static int ext4_acquire_dquot(struct dquot *dquot);
1591static int ext4_release_dquot(struct dquot *dquot);
1592static int ext4_mark_dquot_dirty(struct dquot *dquot);
1593static int ext4_write_info(struct super_block *sb, int type);
1594static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1595			 const struct path *path);
 
 
1596static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1597			       size_t len, loff_t off);
1598static ssize_t ext4_quota_write(struct super_block *sb, int type,
1599				const char *data, size_t len, loff_t off);
1600static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1601			     unsigned int flags);
1602
1603static struct dquot **ext4_get_dquots(struct inode *inode)
1604{
1605	return EXT4_I(inode)->i_dquot;
1606}
1607
1608static const struct dquot_operations ext4_quota_operations = {
1609	.get_reserved_space	= ext4_get_reserved_space,
1610	.write_dquot		= ext4_write_dquot,
1611	.acquire_dquot		= ext4_acquire_dquot,
1612	.release_dquot		= ext4_release_dquot,
1613	.mark_dirty		= ext4_mark_dquot_dirty,
1614	.write_info		= ext4_write_info,
1615	.alloc_dquot		= dquot_alloc,
1616	.destroy_dquot		= dquot_destroy,
1617	.get_projid		= ext4_get_projid,
1618	.get_inode_usage	= ext4_get_inode_usage,
1619	.get_next_id		= dquot_get_next_id,
1620};
1621
1622static const struct quotactl_ops ext4_qctl_operations = {
1623	.quota_on	= ext4_quota_on,
1624	.quota_off	= ext4_quota_off,
1625	.quota_sync	= dquot_quota_sync,
1626	.get_state	= dquot_get_state,
1627	.set_info	= dquot_set_dqinfo,
1628	.get_dqblk	= dquot_get_dqblk,
1629	.set_dqblk	= dquot_set_dqblk,
1630	.get_nextdqblk	= dquot_get_next_dqblk,
1631};
1632#endif
1633
1634static const struct super_operations ext4_sops = {
1635	.alloc_inode	= ext4_alloc_inode,
1636	.free_inode	= ext4_free_in_core_inode,
1637	.destroy_inode	= ext4_destroy_inode,
1638	.write_inode	= ext4_write_inode,
1639	.dirty_inode	= ext4_dirty_inode,
1640	.drop_inode	= ext4_drop_inode,
1641	.evict_inode	= ext4_evict_inode,
1642	.put_super	= ext4_put_super,
1643	.sync_fs	= ext4_sync_fs,
1644	.freeze_fs	= ext4_freeze,
1645	.unfreeze_fs	= ext4_unfreeze,
1646	.statfs		= ext4_statfs,
 
1647	.show_options	= ext4_show_options,
1648	.shutdown	= ext4_shutdown,
1649#ifdef CONFIG_QUOTA
1650	.quota_read	= ext4_quota_read,
1651	.quota_write	= ext4_quota_write,
1652	.get_dquots	= ext4_get_dquots,
1653#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654};
1655
1656static const struct export_operations ext4_export_ops = {
1657	.encode_fh = generic_encode_ino32_fh,
1658	.fh_to_dentry = ext4_fh_to_dentry,
1659	.fh_to_parent = ext4_fh_to_parent,
1660	.get_parent = ext4_get_parent,
1661	.commit_metadata = ext4_nfs_commit_metadata,
1662};
1663
1664enum {
1665	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1666	Opt_resgid, Opt_resuid, Opt_sb,
1667	Opt_nouid32, Opt_debug, Opt_removed,
1668	Opt_user_xattr, Opt_acl,
1669	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1670	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1671	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1672	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1673	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1674	Opt_inlinecrypt,
1675	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1676	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1677	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1678	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1679	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1680	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1681	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1682	Opt_inode_readahead_blks, Opt_journal_ioprio,
1683	Opt_dioread_nolock, Opt_dioread_lock,
1684	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1685	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1686	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1687	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1688#ifdef CONFIG_EXT4_DEBUG
1689	Opt_fc_debug_max_replay, Opt_fc_debug_force
1690#endif
1691};
1692
1693static const struct constant_table ext4_param_errors[] = {
1694	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1695	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1696	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1697	{}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698};
1699
1700static const struct constant_table ext4_param_data[] = {
1701	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1702	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1703	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1704	{}
1705};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706
1707static const struct constant_table ext4_param_data_err[] = {
1708	{"abort",	Opt_data_err_abort},
1709	{"ignore",	Opt_data_err_ignore},
1710	{}
1711};
1712
1713static const struct constant_table ext4_param_jqfmt[] = {
1714	{"vfsold",	QFMT_VFS_OLD},
1715	{"vfsv0",	QFMT_VFS_V0},
1716	{"vfsv1",	QFMT_VFS_V1},
1717	{}
1718};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719
1720static const struct constant_table ext4_param_dax[] = {
1721	{"always",	Opt_dax_always},
1722	{"inode",	Opt_dax_inode},
1723	{"never",	Opt_dax_never},
1724	{}
1725};
1726
1727/* String parameter that allows empty argument */
1728#define fsparam_string_empty(NAME, OPT) \
1729	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1730
1731/*
1732 * Mount option specification
1733 * We don't use fsparam_flag_no because of the way we set the
1734 * options and the way we show them in _ext4_show_options(). To
1735 * keep the changes to a minimum, let's keep the negative options
1736 * separate for now.
1737 */
1738static const struct fs_parameter_spec ext4_param_specs[] = {
1739	fsparam_flag	("bsddf",		Opt_bsd_df),
1740	fsparam_flag	("minixdf",		Opt_minix_df),
1741	fsparam_flag	("grpid",		Opt_grpid),
1742	fsparam_flag	("bsdgroups",		Opt_grpid),
1743	fsparam_flag	("nogrpid",		Opt_nogrpid),
1744	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1745	fsparam_u32	("resgid",		Opt_resgid),
1746	fsparam_u32	("resuid",		Opt_resuid),
1747	fsparam_u32	("sb",			Opt_sb),
1748	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1749	fsparam_flag	("nouid32",		Opt_nouid32),
1750	fsparam_flag	("debug",		Opt_debug),
1751	fsparam_flag	("oldalloc",		Opt_removed),
1752	fsparam_flag	("orlov",		Opt_removed),
1753	fsparam_flag	("user_xattr",		Opt_user_xattr),
1754	fsparam_flag	("acl",			Opt_acl),
1755	fsparam_flag	("norecovery",		Opt_noload),
1756	fsparam_flag	("noload",		Opt_noload),
1757	fsparam_flag	("bh",			Opt_removed),
1758	fsparam_flag	("nobh",		Opt_removed),
1759	fsparam_u32	("commit",		Opt_commit),
1760	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1761	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1762	fsparam_u32	("journal_dev",		Opt_journal_dev),
1763	fsparam_bdev	("journal_path",	Opt_journal_path),
1764	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1765	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1766	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1767	fsparam_flag	("abort",		Opt_abort),
1768	fsparam_enum	("data",		Opt_data, ext4_param_data),
1769	fsparam_enum	("data_err",		Opt_data_err,
1770						ext4_param_data_err),
1771	fsparam_string_empty
1772			("usrjquota",		Opt_usrjquota),
1773	fsparam_string_empty
1774			("grpjquota",		Opt_grpjquota),
1775	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1776	fsparam_flag	("grpquota",		Opt_grpquota),
1777	fsparam_flag	("quota",		Opt_quota),
1778	fsparam_flag	("noquota",		Opt_noquota),
1779	fsparam_flag	("usrquota",		Opt_usrquota),
1780	fsparam_flag	("prjquota",		Opt_prjquota),
1781	fsparam_flag	("barrier",		Opt_barrier),
1782	fsparam_u32	("barrier",		Opt_barrier),
1783	fsparam_flag	("nobarrier",		Opt_nobarrier),
1784	fsparam_flag	("i_version",		Opt_removed),
1785	fsparam_flag	("dax",			Opt_dax),
1786	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1787	fsparam_u32	("stripe",		Opt_stripe),
1788	fsparam_flag	("delalloc",		Opt_delalloc),
1789	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1790	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1791	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1792	fsparam_u32	("debug_want_extra_isize",
1793						Opt_debug_want_extra_isize),
1794	fsparam_flag	("mblk_io_submit",	Opt_removed),
1795	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1796	fsparam_flag	("block_validity",	Opt_block_validity),
1797	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1798	fsparam_u32	("inode_readahead_blks",
1799						Opt_inode_readahead_blks),
1800	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1801	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1802	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1803	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1804	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1805	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1806	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1807	fsparam_flag	("discard",		Opt_discard),
1808	fsparam_flag	("nodiscard",		Opt_nodiscard),
1809	fsparam_u32	("init_itable",		Opt_init_itable),
1810	fsparam_flag	("init_itable",		Opt_init_itable),
1811	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1812#ifdef CONFIG_EXT4_DEBUG
1813	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1814	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1815#endif
1816	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1817	fsparam_flag	("test_dummy_encryption",
1818						Opt_test_dummy_encryption),
1819	fsparam_string	("test_dummy_encryption",
1820						Opt_test_dummy_encryption),
1821	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1822	fsparam_flag	("nombcache",		Opt_nombcache),
1823	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1824	fsparam_flag	("prefetch_block_bitmaps",
1825						Opt_removed),
1826	fsparam_flag	("no_prefetch_block_bitmaps",
1827						Opt_no_prefetch_block_bitmaps),
1828	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1829	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1830	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1831	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1832	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1833	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1834	{}
1835};
1836
1837#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1838
1839#define MOPT_SET	0x0001
1840#define MOPT_CLEAR	0x0002
1841#define MOPT_NOSUPPORT	0x0004
1842#define MOPT_EXPLICIT	0x0008
 
 
1843#ifdef CONFIG_QUOTA
1844#define MOPT_Q		0
1845#define MOPT_QFMT	0x0010
1846#else
1847#define MOPT_Q		MOPT_NOSUPPORT
1848#define MOPT_QFMT	MOPT_NOSUPPORT
1849#endif
1850#define MOPT_NO_EXT2	0x0020
1851#define MOPT_NO_EXT3	0x0040
1852#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1853#define MOPT_SKIP	0x0080
1854#define	MOPT_2		0x0100
1855
1856static const struct mount_opts {
1857	int	token;
1858	int	mount_opt;
1859	int	flags;
1860} ext4_mount_opts[] = {
1861	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1862	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1863	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1864	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
 
 
1865	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1866	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1867	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1868	 MOPT_EXT4_ONLY | MOPT_SET},
1869	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1870	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1871	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1872	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1873	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1874	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1876	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1877	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1878	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1879	{Opt_commit, 0, MOPT_NO_EXT2},
1880	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1881	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1882	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1883	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1884	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1885				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1886	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1887	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1888	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
 
 
 
1889	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1890	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1891	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1892	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1893	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1894	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1895	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1896	{Opt_journal_path, 0, MOPT_NO_EXT2},
1897	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1898	{Opt_data, 0, MOPT_NO_EXT2},
 
 
 
 
 
1899	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
 
 
 
 
 
1900#ifdef CONFIG_EXT4_FS_POSIX_ACL
1901	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
 
1902#else
1903	{Opt_acl, 0, MOPT_NOSUPPORT},
 
1904#endif
1905	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1906	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1907	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1908	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1909							MOPT_SET | MOPT_Q},
1910	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1911							MOPT_SET | MOPT_Q},
1912	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1913							MOPT_SET | MOPT_Q},
1914	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1915		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1916							MOPT_CLEAR | MOPT_Q},
1917	{Opt_usrjquota, 0, MOPT_Q},
1918	{Opt_grpjquota, 0, MOPT_Q},
1919	{Opt_jqfmt, 0, MOPT_QFMT},
1920	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1921	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1922	 MOPT_SET},
1923#ifdef CONFIG_EXT4_DEBUG
1924	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1925	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1926#endif
1927	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1928	{Opt_err, 0, 0}
1929};
1930
1931#if IS_ENABLED(CONFIG_UNICODE)
1932static const struct ext4_sb_encodings {
1933	__u16 magic;
1934	char *name;
1935	unsigned int version;
1936} ext4_sb_encoding_map[] = {
1937	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1938};
1939
1940static const struct ext4_sb_encodings *
1941ext4_sb_read_encoding(const struct ext4_super_block *es)
1942{
1943	__u16 magic = le16_to_cpu(es->s_encoding);
1944	int i;
1945
1946	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1947		if (magic == ext4_sb_encoding_map[i].magic)
1948			return &ext4_sb_encoding_map[i];
1949
1950	return NULL;
1951}
1952#endif
1953
1954#define EXT4_SPEC_JQUOTA			(1 <<  0)
1955#define EXT4_SPEC_JQFMT				(1 <<  1)
1956#define EXT4_SPEC_DATAJ				(1 <<  2)
1957#define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1958#define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1959#define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1960#define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1961#define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1962#define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1963#define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1964#define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1965#define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1966#define EXT4_SPEC_s_stripe			(1 << 13)
1967#define EXT4_SPEC_s_resuid			(1 << 14)
1968#define EXT4_SPEC_s_resgid			(1 << 15)
1969#define EXT4_SPEC_s_commit_interval		(1 << 16)
1970#define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1971#define EXT4_SPEC_s_sb_block			(1 << 18)
1972#define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1973
1974struct ext4_fs_context {
1975	char		*s_qf_names[EXT4_MAXQUOTAS];
1976	struct fscrypt_dummy_policy dummy_enc_policy;
1977	int		s_jquota_fmt;	/* Format of quota to use */
1978#ifdef CONFIG_EXT4_DEBUG
1979	int s_fc_debug_max_replay;
1980#endif
1981	unsigned short	qname_spec;
1982	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1983	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1984	unsigned long	journal_devnum;
1985	unsigned long	s_commit_interval;
1986	unsigned long	s_stripe;
1987	unsigned int	s_inode_readahead_blks;
1988	unsigned int	s_want_extra_isize;
1989	unsigned int	s_li_wait_mult;
1990	unsigned int	s_max_dir_size_kb;
1991	unsigned int	journal_ioprio;
1992	unsigned int	vals_s_mount_opt;
1993	unsigned int	mask_s_mount_opt;
1994	unsigned int	vals_s_mount_opt2;
1995	unsigned int	mask_s_mount_opt2;
1996	unsigned int	opt_flags;	/* MOPT flags */
1997	unsigned int	spec;
1998	u32		s_max_batch_time;
1999	u32		s_min_batch_time;
2000	kuid_t		s_resuid;
2001	kgid_t		s_resgid;
2002	ext4_fsblk_t	s_sb_block;
2003};
2004
2005static void ext4_fc_free(struct fs_context *fc)
2006{
2007	struct ext4_fs_context *ctx = fc->fs_private;
2008	int i;
2009
2010	if (!ctx)
2011		return;
2012
2013	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2014		kfree(ctx->s_qf_names[i]);
2015
2016	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2017	kfree(ctx);
2018}
2019
2020int ext4_init_fs_context(struct fs_context *fc)
2021{
2022	struct ext4_fs_context *ctx;
2023
2024	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2025	if (!ctx)
2026		return -ENOMEM;
2027
2028	fc->fs_private = ctx;
2029	fc->ops = &ext4_context_ops;
2030
2031	return 0;
2032}
2033
2034#ifdef CONFIG_QUOTA
2035/*
2036 * Note the name of the specified quota file.
2037 */
2038static int note_qf_name(struct fs_context *fc, int qtype,
2039		       struct fs_parameter *param)
2040{
2041	struct ext4_fs_context *ctx = fc->fs_private;
2042	char *qname;
2043
2044	if (param->size < 1) {
2045		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2046		return -EINVAL;
2047	}
2048	if (strchr(param->string, '/')) {
2049		ext4_msg(NULL, KERN_ERR,
2050			 "quotafile must be on filesystem root");
2051		return -EINVAL;
2052	}
2053	if (ctx->s_qf_names[qtype]) {
2054		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2055			ext4_msg(NULL, KERN_ERR,
2056				 "%s quota file already specified",
2057				 QTYPE2NAME(qtype));
2058			return -EINVAL;
2059		}
2060		return 0;
2061	}
2062
2063	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2064	if (!qname) {
2065		ext4_msg(NULL, KERN_ERR,
2066			 "Not enough memory for storing quotafile name");
2067		return -ENOMEM;
2068	}
2069	ctx->s_qf_names[qtype] = qname;
2070	ctx->qname_spec |= 1 << qtype;
2071	ctx->spec |= EXT4_SPEC_JQUOTA;
2072	return 0;
2073}
2074
2075/*
2076 * Clear the name of the specified quota file.
2077 */
2078static int unnote_qf_name(struct fs_context *fc, int qtype)
2079{
2080	struct ext4_fs_context *ctx = fc->fs_private;
2081
2082	if (ctx->s_qf_names[qtype])
2083		kfree(ctx->s_qf_names[qtype]);
2084
2085	ctx->s_qf_names[qtype] = NULL;
2086	ctx->qname_spec |= 1 << qtype;
2087	ctx->spec |= EXT4_SPEC_JQUOTA;
2088	return 0;
2089}
2090#endif
2091
2092static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2093					    struct ext4_fs_context *ctx)
2094{
2095	int err;
2096
2097	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2098		ext4_msg(NULL, KERN_WARNING,
2099			 "test_dummy_encryption option not supported");
2100		return -EINVAL;
2101	}
2102	err = fscrypt_parse_test_dummy_encryption(param,
2103						  &ctx->dummy_enc_policy);
2104	if (err == -EINVAL) {
2105		ext4_msg(NULL, KERN_WARNING,
2106			 "Value of option \"%s\" is unrecognized", param->key);
2107	} else if (err == -EEXIST) {
2108		ext4_msg(NULL, KERN_WARNING,
2109			 "Conflicting test_dummy_encryption options");
2110		return -EINVAL;
2111	}
2112	return err;
2113}
2114
2115#define EXT4_SET_CTX(name)						\
2116static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2117				  unsigned long flag)			\
2118{									\
2119	ctx->mask_s_##name |= flag;					\
2120	ctx->vals_s_##name |= flag;					\
2121}
2122
2123#define EXT4_CLEAR_CTX(name)						\
2124static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2125				    unsigned long flag)			\
2126{									\
2127	ctx->mask_s_##name |= flag;					\
2128	ctx->vals_s_##name &= ~flag;					\
2129}
2130
2131#define EXT4_TEST_CTX(name)						\
2132static inline unsigned long						\
2133ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2134{									\
2135	return (ctx->vals_s_##name & flag);				\
2136}
2137
2138EXT4_SET_CTX(flags); /* set only */
2139EXT4_SET_CTX(mount_opt);
2140EXT4_CLEAR_CTX(mount_opt);
2141EXT4_TEST_CTX(mount_opt);
2142EXT4_SET_CTX(mount_opt2);
2143EXT4_CLEAR_CTX(mount_opt2);
2144EXT4_TEST_CTX(mount_opt2);
2145
2146static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2147{
2148	struct ext4_fs_context *ctx = fc->fs_private;
2149	struct fs_parse_result result;
2150	const struct mount_opts *m;
2151	int is_remount;
2152	kuid_t uid;
2153	kgid_t gid;
2154	int token;
2155
2156	token = fs_parse(fc, ext4_param_specs, param, &result);
2157	if (token < 0)
2158		return token;
2159	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2160
2161	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2162		if (token == m->token)
2163			break;
2164
2165	ctx->opt_flags |= m->flags;
2166
2167	if (m->flags & MOPT_EXPLICIT) {
2168		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2169			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2170		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2171			ctx_set_mount_opt2(ctx,
2172				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2173		} else
2174			return -EINVAL;
2175	}
2176
2177	if (m->flags & MOPT_NOSUPPORT) {
2178		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2179			 param->key);
2180		return 0;
2181	}
2182
2183	switch (token) {
2184#ifdef CONFIG_QUOTA
2185	case Opt_usrjquota:
2186		if (!*param->string)
2187			return unnote_qf_name(fc, USRQUOTA);
2188		else
2189			return note_qf_name(fc, USRQUOTA, param);
2190	case Opt_grpjquota:
2191		if (!*param->string)
2192			return unnote_qf_name(fc, GRPQUOTA);
2193		else
2194			return note_qf_name(fc, GRPQUOTA, param);
2195#endif
 
 
 
 
 
 
 
2196	case Opt_sb:
2197		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2198			ext4_msg(NULL, KERN_WARNING,
2199				 "Ignoring %s option on remount", param->key);
2200		} else {
2201			ctx->s_sb_block = result.uint_32;
2202			ctx->spec |= EXT4_SPEC_s_sb_block;
2203		}
2204		return 0;
2205	case Opt_removed:
2206		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2207			 param->key);
2208		return 0;
2209	case Opt_inlinecrypt:
2210#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2211		ctx_set_flags(ctx, SB_INLINECRYPT);
2212#else
2213		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2214#endif
2215		return 0;
2216	case Opt_errors:
2217		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2218		ctx_set_mount_opt(ctx, result.uint_32);
2219		return 0;
2220#ifdef CONFIG_QUOTA
2221	case Opt_jqfmt:
2222		ctx->s_jquota_fmt = result.uint_32;
2223		ctx->spec |= EXT4_SPEC_JQFMT;
2224		return 0;
2225#endif
2226	case Opt_data:
2227		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2228		ctx_set_mount_opt(ctx, result.uint_32);
2229		ctx->spec |= EXT4_SPEC_DATAJ;
2230		return 0;
2231	case Opt_commit:
2232		if (result.uint_32 == 0)
2233			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2234		else if (result.uint_32 > INT_MAX / HZ) {
2235			ext4_msg(NULL, KERN_ERR,
2236				 "Invalid commit interval %d, "
2237				 "must be smaller than %d",
2238				 result.uint_32, INT_MAX / HZ);
2239			return -EINVAL;
2240		}
2241		ctx->s_commit_interval = HZ * result.uint_32;
2242		ctx->spec |= EXT4_SPEC_s_commit_interval;
2243		return 0;
2244	case Opt_debug_want_extra_isize:
2245		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2246			ext4_msg(NULL, KERN_ERR,
2247				 "Invalid want_extra_isize %d", result.uint_32);
2248			return -EINVAL;
2249		}
2250		ctx->s_want_extra_isize = result.uint_32;
2251		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2252		return 0;
2253	case Opt_max_batch_time:
2254		ctx->s_max_batch_time = result.uint_32;
2255		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2256		return 0;
2257	case Opt_min_batch_time:
2258		ctx->s_min_batch_time = result.uint_32;
2259		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2260		return 0;
2261	case Opt_inode_readahead_blks:
2262		if (result.uint_32 &&
2263		    (result.uint_32 > (1 << 30) ||
2264		     !is_power_of_2(result.uint_32))) {
2265			ext4_msg(NULL, KERN_ERR,
2266				 "EXT4-fs: inode_readahead_blks must be "
2267				 "0 or a power of 2 smaller than 2^31");
2268			return -EINVAL;
2269		}
2270		ctx->s_inode_readahead_blks = result.uint_32;
2271		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2272		return 0;
2273	case Opt_init_itable:
2274		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2275		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2276		if (param->type == fs_value_is_string)
2277			ctx->s_li_wait_mult = result.uint_32;
2278		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2279		return 0;
2280	case Opt_max_dir_size_kb:
2281		ctx->s_max_dir_size_kb = result.uint_32;
2282		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2283		return 0;
2284#ifdef CONFIG_EXT4_DEBUG
2285	case Opt_fc_debug_max_replay:
2286		ctx->s_fc_debug_max_replay = result.uint_32;
2287		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2288		return 0;
2289#endif
2290	case Opt_stripe:
2291		ctx->s_stripe = result.uint_32;
2292		ctx->spec |= EXT4_SPEC_s_stripe;
2293		return 0;
2294	case Opt_resuid:
2295		uid = make_kuid(current_user_ns(), result.uint_32);
2296		if (!uid_valid(uid)) {
2297			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2298				 result.uint_32);
2299			return -EINVAL;
2300		}
2301		ctx->s_resuid = uid;
2302		ctx->spec |= EXT4_SPEC_s_resuid;
2303		return 0;
2304	case Opt_resgid:
2305		gid = make_kgid(current_user_ns(), result.uint_32);
2306		if (!gid_valid(gid)) {
2307			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2308				 result.uint_32);
2309			return -EINVAL;
2310		}
2311		ctx->s_resgid = gid;
2312		ctx->spec |= EXT4_SPEC_s_resgid;
2313		return 0;
 
 
 
 
 
2314	case Opt_journal_dev:
2315		if (is_remount) {
2316			ext4_msg(NULL, KERN_ERR,
2317				 "Cannot specify journal on remount");
2318			return -EINVAL;
2319		}
2320		ctx->journal_devnum = result.uint_32;
2321		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2322		return 0;
2323	case Opt_journal_path:
2324	{
2325		struct inode *journal_inode;
2326		struct path path;
2327		int error;
2328
2329		if (is_remount) {
2330			ext4_msg(NULL, KERN_ERR,
2331				 "Cannot specify journal on remount");
2332			return -EINVAL;
2333		}
2334
2335		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2336		if (error) {
2337			ext4_msg(NULL, KERN_ERR, "error: could not find "
2338				 "journal device path");
2339			return -EINVAL;
2340		}
2341
2342		journal_inode = d_inode(path.dentry);
2343		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2344		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2345		path_put(&path);
2346		return 0;
2347	}
2348	case Opt_journal_ioprio:
2349		if (result.uint_32 > 7) {
2350			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2351				 " (must be 0-7)");
2352			return -EINVAL;
2353		}
2354		ctx->journal_ioprio =
2355			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2356		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2357		return 0;
2358	case Opt_test_dummy_encryption:
2359		return ext4_parse_test_dummy_encryption(param, ctx);
2360	case Opt_dax:
2361	case Opt_dax_type:
2362#ifdef CONFIG_FS_DAX
2363	{
2364		int type = (token == Opt_dax) ?
2365			   Opt_dax : result.uint_32;
2366
2367		switch (type) {
2368		case Opt_dax:
2369		case Opt_dax_always:
2370			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2371			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2372			break;
2373		case Opt_dax_never:
2374			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2375			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2376			break;
2377		case Opt_dax_inode:
2378			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2379			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2380			/* Strictly for printing options */
2381			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2382			break;
2383		}
2384		return 0;
2385	}
2386#else
2387		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2388		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389#endif
2390	case Opt_data_err:
2391		if (result.uint_32 == Opt_data_err_abort)
2392			ctx_set_mount_opt(ctx, m->mount_opt);
2393		else if (result.uint_32 == Opt_data_err_ignore)
2394			ctx_clear_mount_opt(ctx, m->mount_opt);
2395		return 0;
2396	case Opt_mb_optimize_scan:
2397		if (result.int_32 == 1) {
2398			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2399			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2400		} else if (result.int_32 == 0) {
2401			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2402			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2403		} else {
2404			ext4_msg(NULL, KERN_WARNING,
2405				 "mb_optimize_scan should be set to 0 or 1.");
2406			return -EINVAL;
2407		}
2408		return 0;
2409	}
2410
2411	/*
2412	 * At this point we should only be getting options requiring MOPT_SET,
2413	 * or MOPT_CLEAR. Anything else is a bug
2414	 */
2415	if (m->token == Opt_err) {
2416		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2417			 param->key);
2418		WARN_ON(1);
2419		return -EINVAL;
2420	}
2421
2422	else {
2423		unsigned int set = 0;
2424
2425		if ((param->type == fs_value_is_flag) ||
2426		    result.uint_32 > 0)
2427			set = 1;
2428
2429		if (m->flags & MOPT_CLEAR)
2430			set = !set;
2431		else if (unlikely(!(m->flags & MOPT_SET))) {
2432			ext4_msg(NULL, KERN_WARNING,
2433				 "buggy handling of option %s",
2434				 param->key);
2435			WARN_ON(1);
2436			return -EINVAL;
2437		}
2438		if (m->flags & MOPT_2) {
2439			if (set != 0)
2440				ctx_set_mount_opt2(ctx, m->mount_opt);
2441			else
2442				ctx_clear_mount_opt2(ctx, m->mount_opt);
2443		} else {
2444			if (set != 0)
2445				ctx_set_mount_opt(ctx, m->mount_opt);
2446			else
2447				ctx_clear_mount_opt(ctx, m->mount_opt);
2448		}
 
2449	}
2450
2451	return 0;
 
2452}
2453
2454static int parse_options(struct fs_context *fc, char *options)
2455{
2456	struct fs_parameter param;
2457	int ret;
2458	char *key;
2459
2460	if (!options)
2461		return 0;
2462
2463	while ((key = strsep(&options, ",")) != NULL) {
2464		if (*key) {
2465			size_t v_len = 0;
2466			char *value = strchr(key, '=');
2467
2468			param.type = fs_value_is_flag;
2469			param.string = NULL;
2470
2471			if (value) {
2472				if (value == key)
2473					continue;
2474
2475				*value++ = 0;
2476				v_len = strlen(value);
2477				param.string = kmemdup_nul(value, v_len,
2478							   GFP_KERNEL);
2479				if (!param.string)
2480					return -ENOMEM;
2481				param.type = fs_value_is_string;
2482			}
2483
2484			param.key = key;
2485			param.size = v_len;
2486
2487			ret = ext4_parse_param(fc, &param);
2488			if (param.string)
2489				kfree(param.string);
2490			if (ret < 0)
2491				return ret;
2492		}
2493	}
2494
2495	ret = ext4_validate_options(fc);
2496	if (ret < 0)
2497		return ret;
2498
2499	return 0;
2500}
2501
2502static int parse_apply_sb_mount_options(struct super_block *sb,
2503					struct ext4_fs_context *m_ctx)
2504{
2505	struct ext4_sb_info *sbi = EXT4_SB(sb);
2506	char *s_mount_opts = NULL;
2507	struct ext4_fs_context *s_ctx = NULL;
2508	struct fs_context *fc = NULL;
2509	int ret = -ENOMEM;
2510
2511	if (!sbi->s_es->s_mount_opts[0])
2512		return 0;
2513
2514	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2515				sizeof(sbi->s_es->s_mount_opts),
2516				GFP_KERNEL);
2517	if (!s_mount_opts)
2518		return ret;
2519
2520	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2521	if (!fc)
2522		goto out_free;
2523
2524	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2525	if (!s_ctx)
2526		goto out_free;
2527
2528	fc->fs_private = s_ctx;
2529	fc->s_fs_info = sbi;
2530
2531	ret = parse_options(fc, s_mount_opts);
2532	if (ret < 0)
2533		goto parse_failed;
2534
2535	ret = ext4_check_opt_consistency(fc, sb);
2536	if (ret < 0) {
2537parse_failed:
2538		ext4_msg(sb, KERN_WARNING,
2539			 "failed to parse options in superblock: %s",
2540			 s_mount_opts);
2541		ret = 0;
2542		goto out_free;
2543	}
2544
2545	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2546		m_ctx->journal_devnum = s_ctx->journal_devnum;
2547	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2548		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2549
2550	ext4_apply_options(fc, sb);
2551	ret = 0;
2552
2553out_free:
2554	if (fc) {
2555		ext4_fc_free(fc);
2556		kfree(fc);
2557	}
2558	kfree(s_mount_opts);
2559	return ret;
2560}
2561
2562static void ext4_apply_quota_options(struct fs_context *fc,
2563				     struct super_block *sb)
2564{
2565#ifdef CONFIG_QUOTA
2566	bool quota_feature = ext4_has_feature_quota(sb);
2567	struct ext4_fs_context *ctx = fc->fs_private;
2568	struct ext4_sb_info *sbi = EXT4_SB(sb);
2569	char *qname;
2570	int i;
 
 
2571
2572	if (quota_feature)
2573		return;
2574
2575	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2576		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2577			if (!(ctx->qname_spec & (1 << i)))
2578				continue;
2579
2580			qname = ctx->s_qf_names[i]; /* May be NULL */
2581			if (qname)
2582				set_opt(sb, QUOTA);
2583			ctx->s_qf_names[i] = NULL;
2584			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2585						lockdep_is_held(&sb->s_umount));
2586			if (qname)
2587				kfree_rcu_mightsleep(qname);
2588		}
2589	}
2590
2591	if (ctx->spec & EXT4_SPEC_JQFMT)
2592		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2593#endif
2594}
2595
2596/*
2597 * Check quota settings consistency.
2598 */
2599static int ext4_check_quota_consistency(struct fs_context *fc,
2600					struct super_block *sb)
2601{
2602#ifdef CONFIG_QUOTA
2603	struct ext4_fs_context *ctx = fc->fs_private;
2604	struct ext4_sb_info *sbi = EXT4_SB(sb);
2605	bool quota_feature = ext4_has_feature_quota(sb);
2606	bool quota_loaded = sb_any_quota_loaded(sb);
2607	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2608	int quota_flags, i;
2609
2610	/*
2611	 * We do the test below only for project quotas. 'usrquota' and
2612	 * 'grpquota' mount options are allowed even without quota feature
2613	 * to support legacy quotas in quota files.
2614	 */
2615	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2616	    !ext4_has_feature_project(sb)) {
2617		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2618			 "Cannot enable project quota enforcement.");
2619		return -EINVAL;
2620	}
2621
2622	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2623		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2624	if (quota_loaded &&
2625	    ctx->mask_s_mount_opt & quota_flags &&
2626	    !ctx_test_mount_opt(ctx, quota_flags))
2627		goto err_quota_change;
2628
2629	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2630
2631		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2632			if (!(ctx->qname_spec & (1 << i)))
2633				continue;
2634
2635			if (quota_loaded &&
2636			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2637				goto err_jquota_change;
2638
2639			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2640			    strcmp(get_qf_name(sb, sbi, i),
2641				   ctx->s_qf_names[i]) != 0)
2642				goto err_jquota_specified;
2643		}
2644
2645		if (quota_feature) {
2646			ext4_msg(NULL, KERN_INFO,
2647				 "Journaled quota options ignored when "
2648				 "QUOTA feature is enabled");
2649			return 0;
2650		}
2651	}
2652
2653	if (ctx->spec & EXT4_SPEC_JQFMT) {
2654		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2655			goto err_jquota_change;
2656		if (quota_feature) {
2657			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2658				 "ignored when QUOTA feature is enabled");
2659			return 0;
2660		}
2661	}
2662
2663	/* Make sure we don't mix old and new quota format */
2664	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2665		       ctx->s_qf_names[USRQUOTA]);
2666	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2667		       ctx->s_qf_names[GRPQUOTA]);
2668
2669	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2670		    test_opt(sb, USRQUOTA));
2671
2672	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2673		    test_opt(sb, GRPQUOTA));
2674
2675	if (usr_qf_name) {
2676		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2677		usrquota = false;
2678	}
2679	if (grp_qf_name) {
2680		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2681		grpquota = false;
2682	}
2683
2684	if (usr_qf_name || grp_qf_name) {
2685		if (usrquota || grpquota) {
2686			ext4_msg(NULL, KERN_ERR, "old and new quota "
2687				 "format mixing");
2688			return -EINVAL;
2689		}
2690
2691		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2692			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2693				 "not specified");
2694			return -EINVAL;
2695		}
2696	}
2697
2698	return 0;
2699
2700err_quota_change:
2701	ext4_msg(NULL, KERN_ERR,
2702		 "Cannot change quota options when quota turned on");
2703	return -EINVAL;
2704err_jquota_change:
2705	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2706		 "options when quota turned on");
2707	return -EINVAL;
2708err_jquota_specified:
2709	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2710		 QTYPE2NAME(i));
2711	return -EINVAL;
2712#else
2713	return 0;
2714#endif
2715}
2716
2717static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2718					    struct super_block *sb)
2719{
2720	const struct ext4_fs_context *ctx = fc->fs_private;
2721	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2722
2723	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2724		return 0;
2725
2726	if (!ext4_has_feature_encrypt(sb)) {
2727		ext4_msg(NULL, KERN_WARNING,
2728			 "test_dummy_encryption requires encrypt feature");
2729		return -EINVAL;
2730	}
2731	/*
2732	 * This mount option is just for testing, and it's not worthwhile to
2733	 * implement the extra complexity (e.g. RCU protection) that would be
2734	 * needed to allow it to be set or changed during remount.  We do allow
2735	 * it to be specified during remount, but only if there is no change.
2736	 */
2737	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2738		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2739						 &ctx->dummy_enc_policy))
2740			return 0;
2741		ext4_msg(NULL, KERN_WARNING,
2742			 "Can't set or change test_dummy_encryption on remount");
2743		return -EINVAL;
2744	}
2745	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2746	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2747		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2748						 &ctx->dummy_enc_policy))
2749			return 0;
2750		ext4_msg(NULL, KERN_WARNING,
2751			 "Conflicting test_dummy_encryption options");
2752		return -EINVAL;
2753	}
2754	return 0;
2755}
2756
2757static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2758					     struct super_block *sb)
2759{
2760	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2761	    /* if already set, it was already verified to be the same */
2762	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2763		return;
2764	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2765	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2766	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2767}
2768
2769static int ext4_check_opt_consistency(struct fs_context *fc,
2770				      struct super_block *sb)
2771{
2772	struct ext4_fs_context *ctx = fc->fs_private;
2773	struct ext4_sb_info *sbi = fc->s_fs_info;
2774	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2775	int err;
2776
2777	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2778		ext4_msg(NULL, KERN_ERR,
2779			 "Mount option(s) incompatible with ext2");
2780		return -EINVAL;
2781	}
2782	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2783		ext4_msg(NULL, KERN_ERR,
2784			 "Mount option(s) incompatible with ext3");
2785		return -EINVAL;
2786	}
2787
2788	if (ctx->s_want_extra_isize >
2789	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2790		ext4_msg(NULL, KERN_ERR,
2791			 "Invalid want_extra_isize %d",
2792			 ctx->s_want_extra_isize);
2793		return -EINVAL;
2794	}
2795
2796	err = ext4_check_test_dummy_encryption(fc, sb);
2797	if (err)
2798		return err;
2799
2800	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2801		if (!sbi->s_journal) {
2802			ext4_msg(NULL, KERN_WARNING,
2803				 "Remounting file system with no journal "
2804				 "so ignoring journalled data option");
2805			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2806		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2807			   test_opt(sb, DATA_FLAGS)) {
2808			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2809				 "on remount");
2810			return -EINVAL;
2811		}
2812	}
2813
2814	if (is_remount) {
2815		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2816		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2817			ext4_msg(NULL, KERN_ERR, "can't mount with "
2818				 "both data=journal and dax");
2819			return -EINVAL;
2820		}
2821
2822		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2823		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2824		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2825fail_dax_change_remount:
2826			ext4_msg(NULL, KERN_ERR, "can't change "
2827				 "dax mount option while remounting");
2828			return -EINVAL;
2829		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2830			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2831			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2832			goto fail_dax_change_remount;
2833		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2834			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2835			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2836			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2837			goto fail_dax_change_remount;
2838		}
2839	}
2840
2841	return ext4_check_quota_consistency(fc, sb);
2842}
2843
2844static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2845{
2846	struct ext4_fs_context *ctx = fc->fs_private;
2847	struct ext4_sb_info *sbi = fc->s_fs_info;
2848
2849	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2850	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2851	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2852	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2853	sb->s_flags &= ~ctx->mask_s_flags;
2854	sb->s_flags |= ctx->vals_s_flags;
2855
2856#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2857	APPLY(s_commit_interval);
2858	APPLY(s_stripe);
2859	APPLY(s_max_batch_time);
2860	APPLY(s_min_batch_time);
2861	APPLY(s_want_extra_isize);
2862	APPLY(s_inode_readahead_blks);
2863	APPLY(s_max_dir_size_kb);
2864	APPLY(s_li_wait_mult);
2865	APPLY(s_resgid);
2866	APPLY(s_resuid);
2867
2868#ifdef CONFIG_EXT4_DEBUG
2869	APPLY(s_fc_debug_max_replay);
2870#endif
2871
2872	ext4_apply_quota_options(fc, sb);
2873	ext4_apply_test_dummy_encryption(ctx, sb);
2874}
2875
2876
2877static int ext4_validate_options(struct fs_context *fc)
2878{
2879#ifdef CONFIG_QUOTA
2880	struct ext4_fs_context *ctx = fc->fs_private;
2881	char *usr_qf_name, *grp_qf_name;
2882
2883	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2884	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2885
2886	if (usr_qf_name || grp_qf_name) {
2887		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2888			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2889
2890		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2891			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2892
2893		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2894		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2895			ext4_msg(NULL, KERN_ERR, "old and new quota "
2896				 "format mixing");
2897			return -EINVAL;
2898		}
2899	}
2900#endif
2901	return 1;
2902}
2903
2904static inline void ext4_show_quota_options(struct seq_file *seq,
2905					   struct super_block *sb)
2906{
2907#if defined(CONFIG_QUOTA)
2908	struct ext4_sb_info *sbi = EXT4_SB(sb);
2909	char *usr_qf_name, *grp_qf_name;
2910
2911	if (sbi->s_jquota_fmt) {
2912		char *fmtname = "";
2913
2914		switch (sbi->s_jquota_fmt) {
2915		case QFMT_VFS_OLD:
2916			fmtname = "vfsold";
2917			break;
2918		case QFMT_VFS_V0:
2919			fmtname = "vfsv0";
2920			break;
2921		case QFMT_VFS_V1:
2922			fmtname = "vfsv1";
2923			break;
2924		}
2925		seq_printf(seq, ",jqfmt=%s", fmtname);
2926	}
2927
2928	rcu_read_lock();
2929	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2930	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2931	if (usr_qf_name)
2932		seq_show_option(seq, "usrjquota", usr_qf_name);
2933	if (grp_qf_name)
2934		seq_show_option(seq, "grpjquota", grp_qf_name);
2935	rcu_read_unlock();
 
 
 
2936#endif
2937}
2938
2939static const char *token2str(int token)
2940{
2941	const struct fs_parameter_spec *spec;
2942
2943	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2944		if (spec->opt == token && !spec->type)
2945			break;
2946	return spec->name;
2947}
2948
2949/*
2950 * Show an option if
2951 *  - it's set to a non-default value OR
2952 *  - if the per-sb default is different from the global default
2953 */
2954static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2955			      int nodefs)
2956{
2957	struct ext4_sb_info *sbi = EXT4_SB(sb);
2958	struct ext4_super_block *es = sbi->s_es;
2959	int def_errors;
2960	const struct mount_opts *m;
2961	char sep = nodefs ? '\n' : ',';
2962
2963#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2964#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2965
2966	if (sbi->s_sb_block != 1)
2967		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2968
2969	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2970		int want_set = m->flags & MOPT_SET;
2971		int opt_2 = m->flags & MOPT_2;
2972		unsigned int mount_opt, def_mount_opt;
2973
2974		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2975		    m->flags & MOPT_SKIP)
2976			continue;
2977
2978		if (opt_2) {
2979			mount_opt = sbi->s_mount_opt2;
2980			def_mount_opt = sbi->s_def_mount_opt2;
2981		} else {
2982			mount_opt = sbi->s_mount_opt;
2983			def_mount_opt = sbi->s_def_mount_opt;
2984		}
2985		/* skip if same as the default */
2986		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2987			continue;
2988		/* select Opt_noFoo vs Opt_Foo */
2989		if ((want_set &&
2990		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2991		    (!want_set && (mount_opt & m->mount_opt)))
2992			continue;
2993		SEQ_OPTS_PRINT("%s", token2str(m->token));
2994	}
2995
2996	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2997	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2998		SEQ_OPTS_PRINT("resuid=%u",
2999				from_kuid_munged(&init_user_ns, sbi->s_resuid));
3000	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3001	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3002		SEQ_OPTS_PRINT("resgid=%u",
3003				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3004	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3005	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3006		SEQ_OPTS_PUTS("errors=remount-ro");
3007	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3008		SEQ_OPTS_PUTS("errors=continue");
3009	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3010		SEQ_OPTS_PUTS("errors=panic");
3011	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3012		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3013	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3014		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3015	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3016		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
 
 
3017	if (nodefs || sbi->s_stripe)
3018		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3019	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3020			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3021		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3022			SEQ_OPTS_PUTS("data=journal");
3023		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3024			SEQ_OPTS_PUTS("data=ordered");
3025		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3026			SEQ_OPTS_PUTS("data=writeback");
3027	}
3028	if (nodefs ||
3029	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3030		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3031			       sbi->s_inode_readahead_blks);
3032
3033	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3034		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3035		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3036	if (nodefs || sbi->s_max_dir_size_kb)
3037		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3038	if (test_opt(sb, DATA_ERR_ABORT))
3039		SEQ_OPTS_PUTS("data_err=abort");
3040
3041	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3042
3043	if (sb->s_flags & SB_INLINECRYPT)
3044		SEQ_OPTS_PUTS("inlinecrypt");
3045
3046	if (test_opt(sb, DAX_ALWAYS)) {
3047		if (IS_EXT2_SB(sb))
3048			SEQ_OPTS_PUTS("dax");
3049		else
3050			SEQ_OPTS_PUTS("dax=always");
3051	} else if (test_opt2(sb, DAX_NEVER)) {
3052		SEQ_OPTS_PUTS("dax=never");
3053	} else if (test_opt2(sb, DAX_INODE)) {
3054		SEQ_OPTS_PUTS("dax=inode");
3055	}
3056
3057	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3058			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3059		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3060	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3061			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3062		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3063	}
3064
3065	ext4_show_quota_options(seq, sb);
3066	return 0;
3067}
3068
3069static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3070{
3071	return _ext4_show_options(seq, root->d_sb, 0);
3072}
3073
3074int ext4_seq_options_show(struct seq_file *seq, void *offset)
3075{
3076	struct super_block *sb = seq->private;
3077	int rc;
3078
3079	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3080	rc = _ext4_show_options(seq, sb, 1);
3081	seq_puts(seq, "\n");
3082	return rc;
3083}
3084
 
 
 
 
 
 
 
 
 
 
 
 
 
3085static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3086			    int read_only)
3087{
3088	struct ext4_sb_info *sbi = EXT4_SB(sb);
3089	int err = 0;
3090
3091	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3092		ext4_msg(sb, KERN_ERR, "revision level too high, "
3093			 "forcing read-only mode");
3094		err = -EROFS;
3095		goto done;
3096	}
3097	if (read_only)
3098		goto done;
3099	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3100		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3101			 "running e2fsck is recommended");
3102	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3103		ext4_msg(sb, KERN_WARNING,
3104			 "warning: mounting fs with errors, "
3105			 "running e2fsck is recommended");
3106	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3107		 le16_to_cpu(es->s_mnt_count) >=
3108		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3109		ext4_msg(sb, KERN_WARNING,
3110			 "warning: maximal mount count reached, "
3111			 "running e2fsck is recommended");
3112	else if (le32_to_cpu(es->s_checkinterval) &&
3113		 (ext4_get_tstamp(es, s_lastcheck) +
3114		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3115		ext4_msg(sb, KERN_WARNING,
3116			 "warning: checktime reached, "
3117			 "running e2fsck is recommended");
3118	if (!sbi->s_journal)
3119		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3120	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3121		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3122	le16_add_cpu(&es->s_mnt_count, 1);
3123	ext4_update_tstamp(es, s_mtime);
3124	if (sbi->s_journal) {
3125		ext4_set_feature_journal_needs_recovery(sb);
3126		if (ext4_has_feature_orphan_file(sb))
3127			ext4_set_feature_orphan_present(sb);
3128	}
3129
3130	err = ext4_commit_super(sb);
3131done:
3132	if (test_opt(sb, DEBUG))
3133		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3134				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3135			sb->s_blocksize,
3136			sbi->s_groups_count,
3137			EXT4_BLOCKS_PER_GROUP(sb),
3138			EXT4_INODES_PER_GROUP(sb),
3139			sbi->s_mount_opt, sbi->s_mount_opt2);
3140	return err;
3141}
3142
3143int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3144{
3145	struct ext4_sb_info *sbi = EXT4_SB(sb);
3146	struct flex_groups **old_groups, **new_groups;
3147	int size, i, j;
3148
3149	if (!sbi->s_log_groups_per_flex)
3150		return 0;
3151
3152	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3153	if (size <= sbi->s_flex_groups_allocated)
3154		return 0;
3155
3156	new_groups = kvzalloc(roundup_pow_of_two(size *
3157			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3158	if (!new_groups) {
3159		ext4_msg(sb, KERN_ERR,
3160			 "not enough memory for %d flex group pointers", size);
3161		return -ENOMEM;
3162	}
3163	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3164		new_groups[i] = kvzalloc(roundup_pow_of_two(
3165					 sizeof(struct flex_groups)),
3166					 GFP_KERNEL);
3167		if (!new_groups[i]) {
3168			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3169				kvfree(new_groups[j]);
3170			kvfree(new_groups);
3171			ext4_msg(sb, KERN_ERR,
3172				 "not enough memory for %d flex groups", size);
3173			return -ENOMEM;
3174		}
3175	}
3176	rcu_read_lock();
3177	old_groups = rcu_dereference(sbi->s_flex_groups);
3178	if (old_groups)
3179		memcpy(new_groups, old_groups,
3180		       (sbi->s_flex_groups_allocated *
3181			sizeof(struct flex_groups *)));
3182	rcu_read_unlock();
3183	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3184	sbi->s_flex_groups_allocated = size;
3185	if (old_groups)
3186		ext4_kvfree_array_rcu(old_groups);
3187	return 0;
3188}
3189
3190static int ext4_fill_flex_info(struct super_block *sb)
3191{
3192	struct ext4_sb_info *sbi = EXT4_SB(sb);
3193	struct ext4_group_desc *gdp = NULL;
3194	struct flex_groups *fg;
3195	ext4_group_t flex_group;
3196	int i, err;
 
 
3197
3198	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3199	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3200		sbi->s_log_groups_per_flex = 0;
3201		return 1;
3202	}
 
3203
3204	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3205	if (err)
 
 
 
 
 
 
 
3206		goto failed;
 
3207
3208	for (i = 0; i < sbi->s_groups_count; i++) {
3209		gdp = ext4_get_group_desc(sb, i, NULL);
3210
3211		flex_group = ext4_flex_group(sbi, i);
3212		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3213		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3214		atomic64_add(ext4_free_group_clusters(sb, gdp),
3215			     &fg->free_clusters);
3216		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
 
3217	}
3218
3219	return 1;
3220failed:
3221	return 0;
3222}
3223
3224static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3225				   struct ext4_group_desc *gdp)
3226{
3227	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3228	__u16 crc = 0;
3229	__le32 le_group = cpu_to_le32(block_group);
3230	struct ext4_sb_info *sbi = EXT4_SB(sb);
3231
3232	if (ext4_has_metadata_csum(sbi->s_sb)) {
 
3233		/* Use new metadata_csum algorithm */
 
3234		__u32 csum32;
3235		__u16 dummy_csum = 0;
3236
 
 
3237		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3238				     sizeof(le_group));
3239		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3240		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3241				     sizeof(dummy_csum));
3242		offset += sizeof(dummy_csum);
3243		if (offset < sbi->s_desc_size)
3244			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3245					     sbi->s_desc_size - offset);
3246
3247		crc = csum32 & 0xFFFF;
3248		goto out;
3249	}
3250
3251	/* old crc16 code */
3252	if (!ext4_has_feature_gdt_csum(sb))
3253		return 0;
3254
3255	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3256	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3257	crc = crc16(crc, (__u8 *)gdp, offset);
3258	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3259	/* for checksum of struct ext4_group_desc do the rest...*/
3260	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
 
 
3261		crc = crc16(crc, (__u8 *)gdp + offset,
3262			    sbi->s_desc_size - offset);
 
3263
3264out:
3265	return cpu_to_le16(crc);
3266}
3267
3268int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3269				struct ext4_group_desc *gdp)
3270{
3271	if (ext4_has_group_desc_csum(sb) &&
3272	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
 
3273		return 0;
3274
3275	return 1;
3276}
3277
3278void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3279			      struct ext4_group_desc *gdp)
3280{
3281	if (!ext4_has_group_desc_csum(sb))
3282		return;
3283	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3284}
3285
3286/* Called at mount-time, super-block is locked */
3287static int ext4_check_descriptors(struct super_block *sb,
3288				  ext4_fsblk_t sb_block,
3289				  ext4_group_t *first_not_zeroed)
3290{
3291	struct ext4_sb_info *sbi = EXT4_SB(sb);
3292	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3293	ext4_fsblk_t last_block;
3294	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3295	ext4_fsblk_t block_bitmap;
3296	ext4_fsblk_t inode_bitmap;
3297	ext4_fsblk_t inode_table;
3298	int flexbg_flag = 0;
3299	ext4_group_t i, grp = sbi->s_groups_count;
3300
3301	if (ext4_has_feature_flex_bg(sb))
3302		flexbg_flag = 1;
3303
3304	ext4_debug("Checking group descriptors");
3305
3306	for (i = 0; i < sbi->s_groups_count; i++) {
3307		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3308
3309		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3310			last_block = ext4_blocks_count(sbi->s_es) - 1;
3311		else
3312			last_block = first_block +
3313				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3314
3315		if ((grp == sbi->s_groups_count) &&
3316		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3317			grp = i;
3318
3319		block_bitmap = ext4_block_bitmap(sb, gdp);
3320		if (block_bitmap == sb_block) {
3321			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3322				 "Block bitmap for group %u overlaps "
3323				 "superblock", i);
3324			if (!sb_rdonly(sb))
3325				return 0;
3326		}
3327		if (block_bitmap >= sb_block + 1 &&
3328		    block_bitmap <= last_bg_block) {
3329			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330				 "Block bitmap for group %u overlaps "
3331				 "block group descriptors", i);
3332			if (!sb_rdonly(sb))
3333				return 0;
3334		}
3335		if (block_bitmap < first_block || block_bitmap > last_block) {
3336			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337			       "Block bitmap for group %u not in group "
3338			       "(block %llu)!", i, block_bitmap);
3339			return 0;
3340		}
3341		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3342		if (inode_bitmap == sb_block) {
3343			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344				 "Inode bitmap for group %u overlaps "
3345				 "superblock", i);
3346			if (!sb_rdonly(sb))
3347				return 0;
3348		}
3349		if (inode_bitmap >= sb_block + 1 &&
3350		    inode_bitmap <= last_bg_block) {
3351			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352				 "Inode bitmap for group %u overlaps "
3353				 "block group descriptors", i);
3354			if (!sb_rdonly(sb))
3355				return 0;
3356		}
3357		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3358			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3359			       "Inode bitmap for group %u not in group "
3360			       "(block %llu)!", i, inode_bitmap);
3361			return 0;
3362		}
3363		inode_table = ext4_inode_table(sb, gdp);
3364		if (inode_table == sb_block) {
3365			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3366				 "Inode table for group %u overlaps "
3367				 "superblock", i);
3368			if (!sb_rdonly(sb))
3369				return 0;
3370		}
3371		if (inode_table >= sb_block + 1 &&
3372		    inode_table <= last_bg_block) {
3373			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3374				 "Inode table for group %u overlaps "
3375				 "block group descriptors", i);
3376			if (!sb_rdonly(sb))
3377				return 0;
3378		}
3379		if (inode_table < first_block ||
3380		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3381			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3382			       "Inode table for group %u not in group "
3383			       "(block %llu)!", i, inode_table);
3384			return 0;
3385		}
3386		ext4_lock_group(sb, i);
3387		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3388			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3389				 "Checksum for group %u failed (%u!=%u)",
3390				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3391				     gdp)), le16_to_cpu(gdp->bg_checksum));
3392			if (!sb_rdonly(sb)) {
3393				ext4_unlock_group(sb, i);
3394				return 0;
3395			}
3396		}
3397		ext4_unlock_group(sb, i);
3398		if (!flexbg_flag)
3399			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3400	}
3401	if (NULL != first_not_zeroed)
3402		*first_not_zeroed = grp;
 
 
 
 
3403	return 1;
3404}
3405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406/*
3407 * Maximal extent format file size.
3408 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3409 * extent format containers, within a sector_t, and within i_blocks
3410 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3411 * so that won't be a limiting factor.
3412 *
3413 * However there is other limiting factor. We do store extents in the form
3414 * of starting block and length, hence the resulting length of the extent
3415 * covering maximum file size must fit into on-disk format containers as
3416 * well. Given that length is always by 1 unit bigger than max unit (because
3417 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3418 *
3419 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3420 */
3421static loff_t ext4_max_size(int blkbits, int has_huge_files)
3422{
3423	loff_t res;
3424	loff_t upper_limit = MAX_LFS_FILESIZE;
3425
3426	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3427
3428	if (!has_huge_files) {
 
 
 
 
3429		upper_limit = (1LL << 32) - 1;
3430
3431		/* total blocks in file system block size */
3432		upper_limit >>= (blkbits - 9);
3433		upper_limit <<= blkbits;
3434	}
3435
3436	/*
3437	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3438	 * by one fs block, so ee_len can cover the extent of maximum file
3439	 * size
3440	 */
3441	res = (1LL << 32) - 1;
3442	res <<= blkbits;
3443
3444	/* Sanity check against vm- & vfs- imposed limits */
3445	if (res > upper_limit)
3446		res = upper_limit;
3447
3448	return res;
3449}
3450
3451/*
3452 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3453 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3454 * We need to be 1 filesystem block less than the 2^48 sector limit.
3455 */
3456static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3457{
3458	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3459	int meta_blocks;
3460	unsigned int ppb = 1 << (bits - 2);
3461
3462	/*
3463	 * This is calculated to be the largest file size for a dense, block
3464	 * mapped file such that the file's total number of 512-byte sectors,
3465	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3466	 *
3467	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3468	 * number of 512-byte sectors of the file.
3469	 */
3470	if (!has_huge_files) {
 
3471		/*
3472		 * !has_huge_files or implies that the inode i_block field
3473		 * represents total file blocks in 2^32 512-byte sectors ==
3474		 * size of vfs inode i_blocks * 8
3475		 */
3476		upper_limit = (1LL << 32) - 1;
3477
3478		/* total blocks in file system block size */
3479		upper_limit >>= (bits - 9);
3480
3481	} else {
3482		/*
3483		 * We use 48 bit ext4_inode i_blocks
3484		 * With EXT4_HUGE_FILE_FL set the i_blocks
3485		 * represent total number of blocks in
3486		 * file system block size
3487		 */
3488		upper_limit = (1LL << 48) - 1;
3489
3490	}
3491
3492	/* Compute how many blocks we can address by block tree */
3493	res += ppb;
3494	res += ppb * ppb;
3495	res += ((loff_t)ppb) * ppb * ppb;
3496	/* Compute how many metadata blocks are needed */
3497	meta_blocks = 1;
3498	meta_blocks += 1 + ppb;
3499	meta_blocks += 1 + ppb + ppb * ppb;
3500	/* Does block tree limit file size? */
3501	if (res + meta_blocks <= upper_limit)
3502		goto check_lfs;
3503
3504	res = upper_limit;
3505	/* How many metadata blocks are needed for addressing upper_limit? */
3506	upper_limit -= EXT4_NDIR_BLOCKS;
3507	/* indirect blocks */
3508	meta_blocks = 1;
3509	upper_limit -= ppb;
3510	/* double indirect blocks */
3511	if (upper_limit < ppb * ppb) {
3512		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3513		res -= meta_blocks;
3514		goto check_lfs;
3515	}
3516	meta_blocks += 1 + ppb;
3517	upper_limit -= ppb * ppb;
3518	/* tripple indirect blocks for the rest */
3519	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3520		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3521	res -= meta_blocks;
3522check_lfs:
3523	res <<= bits;
 
 
 
3524	if (res > MAX_LFS_FILESIZE)
3525		res = MAX_LFS_FILESIZE;
3526
3527	return res;
3528}
3529
3530static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3531				   ext4_fsblk_t logical_sb_block, int nr)
3532{
3533	struct ext4_sb_info *sbi = EXT4_SB(sb);
3534	ext4_group_t bg, first_meta_bg;
3535	int has_super = 0;
3536
3537	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3538
3539	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
 
3540		return logical_sb_block + nr + 1;
3541	bg = sbi->s_desc_per_block * nr;
3542	if (ext4_bg_has_super(sb, bg))
3543		has_super = 1;
3544
3545	/*
3546	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3547	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3548	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3549	 * compensate.
3550	 */
3551	if (sb->s_blocksize == 1024 && nr == 0 &&
3552	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3553		has_super++;
3554
3555	return (has_super + ext4_group_first_block_no(sb, bg));
3556}
3557
3558/**
3559 * ext4_get_stripe_size: Get the stripe size.
3560 * @sbi: In memory super block info
3561 *
3562 * If we have specified it via mount option, then
3563 * use the mount option value. If the value specified at mount time is
3564 * greater than the blocks per group use the super block value.
3565 * If the super block value is greater than blocks per group return 0.
3566 * Allocator needs it be less than blocks per group.
3567 *
3568 */
3569static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3570{
3571	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3572	unsigned long stripe_width =
3573			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3574	int ret;
3575
3576	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3577		ret = sbi->s_stripe;
3578	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3579		ret = stripe_width;
3580	else if (stride && stride <= sbi->s_blocks_per_group)
3581		ret = stride;
3582	else
3583		ret = 0;
3584
3585	/*
3586	 * If the stripe width is 1, this makes no sense and
3587	 * we set it to 0 to turn off stripe handling code.
3588	 */
3589	if (ret <= 1)
3590		ret = 0;
3591
3592	return ret;
3593}
3594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3595/*
3596 * Check whether this filesystem can be mounted based on
3597 * the features present and the RDONLY/RDWR mount requested.
3598 * Returns 1 if this filesystem can be mounted as requested,
3599 * 0 if it cannot be.
3600 */
3601int ext4_feature_set_ok(struct super_block *sb, int readonly)
3602{
3603	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3604		ext4_msg(sb, KERN_ERR,
3605			"Couldn't mount because of "
3606			"unsupported optional features (%x)",
3607			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3608			~EXT4_FEATURE_INCOMPAT_SUPP));
3609		return 0;
3610	}
3611
3612#if !IS_ENABLED(CONFIG_UNICODE)
3613	if (ext4_has_feature_casefold(sb)) {
3614		ext4_msg(sb, KERN_ERR,
3615			 "Filesystem with casefold feature cannot be "
3616			 "mounted without CONFIG_UNICODE");
3617		return 0;
3618	}
3619#endif
3620
3621	if (readonly)
3622		return 1;
3623
3624	if (ext4_has_feature_readonly(sb)) {
3625		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3626		sb->s_flags |= SB_RDONLY;
3627		return 1;
3628	}
3629
3630	/* Check that feature set is OK for a read-write mount */
3631	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3632		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3633			 "unsupported optional features (%x)",
3634			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3635				~EXT4_FEATURE_RO_COMPAT_SUPP));
3636		return 0;
3637	}
3638	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3639		ext4_msg(sb, KERN_ERR,
3640			 "Can't support bigalloc feature without "
3641			 "extents feature\n");
3642		return 0;
3643	}
3644
3645#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3646	if (!readonly && (ext4_has_feature_quota(sb) ||
3647			  ext4_has_feature_project(sb))) {
3648		ext4_msg(sb, KERN_ERR,
3649			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3650		return 0;
3651	}
3652#endif  /* CONFIG_QUOTA */
3653	return 1;
3654}
3655
3656/*
3657 * This function is called once a day if we have errors logged
3658 * on the file system
3659 */
3660static void print_daily_error_info(struct timer_list *t)
3661{
3662	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3663	struct super_block *sb = sbi->s_sb;
3664	struct ext4_super_block *es = sbi->s_es;
 
 
 
3665
3666	if (es->s_error_count)
3667		/* fsck newer than v1.41.13 is needed to clean this condition. */
3668		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3669			 le32_to_cpu(es->s_error_count));
3670	if (es->s_first_error_time) {
3671		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3672		       sb->s_id,
3673		       ext4_get_tstamp(es, s_first_error_time),
3674		       (int) sizeof(es->s_first_error_func),
3675		       es->s_first_error_func,
3676		       le32_to_cpu(es->s_first_error_line));
3677		if (es->s_first_error_ino)
3678			printk(KERN_CONT ": inode %u",
3679			       le32_to_cpu(es->s_first_error_ino));
3680		if (es->s_first_error_block)
3681			printk(KERN_CONT ": block %llu", (unsigned long long)
3682			       le64_to_cpu(es->s_first_error_block));
3683		printk(KERN_CONT "\n");
3684	}
3685	if (es->s_last_error_time) {
3686		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3687		       sb->s_id,
3688		       ext4_get_tstamp(es, s_last_error_time),
3689		       (int) sizeof(es->s_last_error_func),
3690		       es->s_last_error_func,
3691		       le32_to_cpu(es->s_last_error_line));
3692		if (es->s_last_error_ino)
3693			printk(KERN_CONT ": inode %u",
3694			       le32_to_cpu(es->s_last_error_ino));
3695		if (es->s_last_error_block)
3696			printk(KERN_CONT ": block %llu", (unsigned long long)
3697			       le64_to_cpu(es->s_last_error_block));
3698		printk(KERN_CONT "\n");
3699	}
3700	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3701}
3702
3703/* Find next suitable group and run ext4_init_inode_table */
3704static int ext4_run_li_request(struct ext4_li_request *elr)
3705{
3706	struct ext4_group_desc *gdp = NULL;
3707	struct super_block *sb = elr->lr_super;
3708	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3709	ext4_group_t group = elr->lr_next_group;
3710	unsigned int prefetch_ios = 0;
3711	int ret = 0;
3712	int nr = EXT4_SB(sb)->s_mb_prefetch;
3713	u64 start_time;
3714
3715	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3716		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3717		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3718		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3719		if (group >= elr->lr_next_group) {
3720			ret = 1;
3721			if (elr->lr_first_not_zeroed != ngroups &&
3722			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3723				elr->lr_next_group = elr->lr_first_not_zeroed;
3724				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3725				ret = 0;
3726			}
3727		}
3728		return ret;
3729	}
3730
3731	for (; group < ngroups; group++) {
3732		gdp = ext4_get_group_desc(sb, group, NULL);
3733		if (!gdp) {
3734			ret = 1;
3735			break;
3736		}
3737
3738		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3739			break;
3740	}
3741
3742	if (group >= ngroups)
3743		ret = 1;
3744
3745	if (!ret) {
3746		start_time = ktime_get_real_ns();
3747		ret = ext4_init_inode_table(sb, group,
3748					    elr->lr_timeout ? 0 : 1);
3749		trace_ext4_lazy_itable_init(sb, group);
3750		if (elr->lr_timeout == 0) {
3751			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3752				EXT4_SB(elr->lr_super)->s_li_wait_mult);
 
3753		}
3754		elr->lr_next_sched = jiffies + elr->lr_timeout;
3755		elr->lr_next_group = group + 1;
3756	}
 
3757	return ret;
3758}
3759
3760/*
3761 * Remove lr_request from the list_request and free the
3762 * request structure. Should be called with li_list_mtx held
3763 */
3764static void ext4_remove_li_request(struct ext4_li_request *elr)
3765{
 
 
3766	if (!elr)
3767		return;
3768
 
 
3769	list_del(&elr->lr_request);
3770	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3771	kfree(elr);
3772}
3773
3774static void ext4_unregister_li_request(struct super_block *sb)
3775{
3776	mutex_lock(&ext4_li_mtx);
3777	if (!ext4_li_info) {
3778		mutex_unlock(&ext4_li_mtx);
3779		return;
3780	}
3781
3782	mutex_lock(&ext4_li_info->li_list_mtx);
3783	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3784	mutex_unlock(&ext4_li_info->li_list_mtx);
3785	mutex_unlock(&ext4_li_mtx);
3786}
3787
3788static struct task_struct *ext4_lazyinit_task;
3789
3790/*
3791 * This is the function where ext4lazyinit thread lives. It walks
3792 * through the request list searching for next scheduled filesystem.
3793 * When such a fs is found, run the lazy initialization request
3794 * (ext4_rn_li_request) and keep track of the time spend in this
3795 * function. Based on that time we compute next schedule time of
3796 * the request. When walking through the list is complete, compute
3797 * next waking time and put itself into sleep.
3798 */
3799static int ext4_lazyinit_thread(void *arg)
3800{
3801	struct ext4_lazy_init *eli = arg;
3802	struct list_head *pos, *n;
3803	struct ext4_li_request *elr;
3804	unsigned long next_wakeup, cur;
3805
3806	BUG_ON(NULL == eli);
3807	set_freezable();
3808
3809cont_thread:
3810	while (true) {
3811		next_wakeup = MAX_JIFFY_OFFSET;
3812
3813		mutex_lock(&eli->li_list_mtx);
3814		if (list_empty(&eli->li_request_list)) {
3815			mutex_unlock(&eli->li_list_mtx);
3816			goto exit_thread;
3817		}
 
3818		list_for_each_safe(pos, n, &eli->li_request_list) {
3819			int err = 0;
3820			int progress = 0;
3821			elr = list_entry(pos, struct ext4_li_request,
3822					 lr_request);
3823
3824			if (time_before(jiffies, elr->lr_next_sched)) {
3825				if (time_before(elr->lr_next_sched, next_wakeup))
3826					next_wakeup = elr->lr_next_sched;
3827				continue;
3828			}
3829			if (down_read_trylock(&elr->lr_super->s_umount)) {
3830				if (sb_start_write_trylock(elr->lr_super)) {
3831					progress = 1;
3832					/*
3833					 * We hold sb->s_umount, sb can not
3834					 * be removed from the list, it is
3835					 * now safe to drop li_list_mtx
3836					 */
3837					mutex_unlock(&eli->li_list_mtx);
3838					err = ext4_run_li_request(elr);
3839					sb_end_write(elr->lr_super);
3840					mutex_lock(&eli->li_list_mtx);
3841					n = pos->next;
3842				}
3843				up_read((&elr->lr_super->s_umount));
3844			}
3845			/* error, remove the lazy_init job */
3846			if (err) {
3847				ext4_remove_li_request(elr);
3848				continue;
3849			}
3850			if (!progress) {
3851				elr->lr_next_sched = jiffies +
3852					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3853			}
 
3854			if (time_before(elr->lr_next_sched, next_wakeup))
3855				next_wakeup = elr->lr_next_sched;
3856		}
3857		mutex_unlock(&eli->li_list_mtx);
3858
3859		try_to_freeze();
3860
3861		cur = jiffies;
3862		if ((time_after_eq(cur, next_wakeup)) ||
3863		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3864			cond_resched();
3865			continue;
3866		}
3867
3868		schedule_timeout_interruptible(next_wakeup - cur);
3869
3870		if (kthread_should_stop()) {
3871			ext4_clear_request_list();
3872			goto exit_thread;
3873		}
3874	}
3875
3876exit_thread:
3877	/*
3878	 * It looks like the request list is empty, but we need
3879	 * to check it under the li_list_mtx lock, to prevent any
3880	 * additions into it, and of course we should lock ext4_li_mtx
3881	 * to atomically free the list and ext4_li_info, because at
3882	 * this point another ext4 filesystem could be registering
3883	 * new one.
3884	 */
3885	mutex_lock(&ext4_li_mtx);
3886	mutex_lock(&eli->li_list_mtx);
3887	if (!list_empty(&eli->li_request_list)) {
3888		mutex_unlock(&eli->li_list_mtx);
3889		mutex_unlock(&ext4_li_mtx);
3890		goto cont_thread;
3891	}
3892	mutex_unlock(&eli->li_list_mtx);
3893	kfree(ext4_li_info);
3894	ext4_li_info = NULL;
3895	mutex_unlock(&ext4_li_mtx);
3896
3897	return 0;
3898}
3899
3900static void ext4_clear_request_list(void)
3901{
3902	struct list_head *pos, *n;
3903	struct ext4_li_request *elr;
3904
3905	mutex_lock(&ext4_li_info->li_list_mtx);
3906	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3907		elr = list_entry(pos, struct ext4_li_request,
3908				 lr_request);
3909		ext4_remove_li_request(elr);
3910	}
3911	mutex_unlock(&ext4_li_info->li_list_mtx);
3912}
3913
3914static int ext4_run_lazyinit_thread(void)
3915{
3916	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3917					 ext4_li_info, "ext4lazyinit");
3918	if (IS_ERR(ext4_lazyinit_task)) {
3919		int err = PTR_ERR(ext4_lazyinit_task);
3920		ext4_clear_request_list();
3921		kfree(ext4_li_info);
3922		ext4_li_info = NULL;
3923		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3924				 "initialization thread\n",
3925				 err);
3926		return err;
3927	}
3928	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3929	return 0;
3930}
3931
3932/*
3933 * Check whether it make sense to run itable init. thread or not.
3934 * If there is at least one uninitialized inode table, return
3935 * corresponding group number, else the loop goes through all
3936 * groups and return total number of groups.
3937 */
3938static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3939{
3940	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3941	struct ext4_group_desc *gdp = NULL;
3942
3943	if (!ext4_has_group_desc_csum(sb))
3944		return ngroups;
3945
3946	for (group = 0; group < ngroups; group++) {
3947		gdp = ext4_get_group_desc(sb, group, NULL);
3948		if (!gdp)
3949			continue;
3950
3951		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3952			break;
3953	}
3954
3955	return group;
3956}
3957
3958static int ext4_li_info_new(void)
3959{
3960	struct ext4_lazy_init *eli = NULL;
3961
3962	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3963	if (!eli)
3964		return -ENOMEM;
3965
3966	INIT_LIST_HEAD(&eli->li_request_list);
3967	mutex_init(&eli->li_list_mtx);
3968
3969	eli->li_state |= EXT4_LAZYINIT_QUIT;
3970
3971	ext4_li_info = eli;
3972
3973	return 0;
3974}
3975
3976static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3977					    ext4_group_t start)
3978{
 
3979	struct ext4_li_request *elr;
 
3980
3981	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3982	if (!elr)
3983		return NULL;
3984
3985	elr->lr_super = sb;
3986	elr->lr_first_not_zeroed = start;
3987	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3988		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3989		elr->lr_next_group = start;
3990	} else {
3991		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3992	}
3993
3994	/*
3995	 * Randomize first schedule time of the request to
3996	 * spread the inode table initialization requests
3997	 * better.
3998	 */
3999	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
 
 
4000	return elr;
4001}
4002
4003int ext4_register_li_request(struct super_block *sb,
4004			     ext4_group_t first_not_zeroed)
4005{
4006	struct ext4_sb_info *sbi = EXT4_SB(sb);
4007	struct ext4_li_request *elr = NULL;
4008	ext4_group_t ngroups = sbi->s_groups_count;
4009	int ret = 0;
4010
4011	mutex_lock(&ext4_li_mtx);
4012	if (sbi->s_li_request != NULL) {
4013		/*
4014		 * Reset timeout so it can be computed again, because
4015		 * s_li_wait_mult might have changed.
4016		 */
4017		sbi->s_li_request->lr_timeout = 0;
4018		goto out;
4019	}
4020
4021	if (sb_rdonly(sb) ||
4022	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4023	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4024		goto out;
4025
4026	elr = ext4_li_request_new(sb, first_not_zeroed);
4027	if (!elr) {
4028		ret = -ENOMEM;
4029		goto out;
4030	}
4031
4032	if (NULL == ext4_li_info) {
4033		ret = ext4_li_info_new();
4034		if (ret)
4035			goto out;
4036	}
4037
4038	mutex_lock(&ext4_li_info->li_list_mtx);
4039	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4040	mutex_unlock(&ext4_li_info->li_list_mtx);
4041
4042	sbi->s_li_request = elr;
4043	/*
4044	 * set elr to NULL here since it has been inserted to
4045	 * the request_list and the removal and free of it is
4046	 * handled by ext4_clear_request_list from now on.
4047	 */
4048	elr = NULL;
4049
4050	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4051		ret = ext4_run_lazyinit_thread();
4052		if (ret)
4053			goto out;
4054	}
4055out:
4056	mutex_unlock(&ext4_li_mtx);
4057	if (ret)
4058		kfree(elr);
4059	return ret;
4060}
4061
4062/*
4063 * We do not need to lock anything since this is called on
4064 * module unload.
4065 */
4066static void ext4_destroy_lazyinit_thread(void)
4067{
4068	/*
4069	 * If thread exited earlier
4070	 * there's nothing to be done.
4071	 */
4072	if (!ext4_li_info || !ext4_lazyinit_task)
4073		return;
4074
4075	kthread_stop(ext4_lazyinit_task);
4076}
4077
4078static int set_journal_csum_feature_set(struct super_block *sb)
4079{
4080	int ret = 1;
4081	int compat, incompat;
4082	struct ext4_sb_info *sbi = EXT4_SB(sb);
4083
4084	if (ext4_has_metadata_csum(sb)) {
4085		/* journal checksum v3 */
 
4086		compat = 0;
4087		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4088	} else {
4089		/* journal checksum v1 */
4090		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4091		incompat = 0;
4092	}
4093
4094	jbd2_journal_clear_features(sbi->s_journal,
4095			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4096			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4097			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4098	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4099		ret = jbd2_journal_set_features(sbi->s_journal,
4100				compat, 0,
4101				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4102				incompat);
4103	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4104		ret = jbd2_journal_set_features(sbi->s_journal,
4105				compat, 0,
4106				incompat);
4107		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4108				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4109	} else {
4110		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4111				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
 
 
4112	}
4113
4114	return ret;
4115}
4116
4117/*
4118 * Note: calculating the overhead so we can be compatible with
4119 * historical BSD practice is quite difficult in the face of
4120 * clusters/bigalloc.  This is because multiple metadata blocks from
4121 * different block group can end up in the same allocation cluster.
4122 * Calculating the exact overhead in the face of clustered allocation
4123 * requires either O(all block bitmaps) in memory or O(number of block
4124 * groups**2) in time.  We will still calculate the superblock for
4125 * older file systems --- and if we come across with a bigalloc file
4126 * system with zero in s_overhead_clusters the estimate will be close to
4127 * correct especially for very large cluster sizes --- but for newer
4128 * file systems, it's better to calculate this figure once at mkfs
4129 * time, and store it in the superblock.  If the superblock value is
4130 * present (even for non-bigalloc file systems), we will use it.
4131 */
4132static int count_overhead(struct super_block *sb, ext4_group_t grp,
4133			  char *buf)
4134{
4135	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4136	struct ext4_group_desc	*gdp;
4137	ext4_fsblk_t		first_block, last_block, b;
4138	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4139	int			s, j, count = 0;
4140	int			has_super = ext4_bg_has_super(sb, grp);
4141
4142	if (!ext4_has_feature_bigalloc(sb))
4143		return (has_super + ext4_bg_num_gdb(sb, grp) +
4144			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4145			sbi->s_itb_per_group + 2);
4146
4147	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4148		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4149	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4150	for (i = 0; i < ngroups; i++) {
4151		gdp = ext4_get_group_desc(sb, i, NULL);
4152		b = ext4_block_bitmap(sb, gdp);
4153		if (b >= first_block && b <= last_block) {
4154			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4155			count++;
4156		}
4157		b = ext4_inode_bitmap(sb, gdp);
4158		if (b >= first_block && b <= last_block) {
4159			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4160			count++;
4161		}
4162		b = ext4_inode_table(sb, gdp);
4163		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4164			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4165				int c = EXT4_B2C(sbi, b - first_block);
4166				ext4_set_bit(c, buf);
4167				count++;
4168			}
4169		if (i != grp)
4170			continue;
4171		s = 0;
4172		if (ext4_bg_has_super(sb, grp)) {
4173			ext4_set_bit(s++, buf);
4174			count++;
4175		}
4176		j = ext4_bg_num_gdb(sb, grp);
4177		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4178			ext4_error(sb, "Invalid number of block group "
4179				   "descriptor blocks: %d", j);
4180			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4181		}
4182		count += j;
4183		for (; j > 0; j--)
4184			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4185	}
4186	if (!count)
4187		return 0;
4188	return EXT4_CLUSTERS_PER_GROUP(sb) -
4189		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4190}
4191
4192/*
4193 * Compute the overhead and stash it in sbi->s_overhead
4194 */
4195int ext4_calculate_overhead(struct super_block *sb)
4196{
4197	struct ext4_sb_info *sbi = EXT4_SB(sb);
4198	struct ext4_super_block *es = sbi->s_es;
4199	struct inode *j_inode;
4200	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4201	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4202	ext4_fsblk_t overhead = 0;
4203	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4204
 
4205	if (!buf)
4206		return -ENOMEM;
4207
4208	/*
4209	 * Compute the overhead (FS structures).  This is constant
4210	 * for a given filesystem unless the number of block groups
4211	 * changes so we cache the previous value until it does.
4212	 */
4213
4214	/*
4215	 * All of the blocks before first_data_block are overhead
4216	 */
4217	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4218
4219	/*
4220	 * Add the overhead found in each block group
4221	 */
4222	for (i = 0; i < ngroups; i++) {
4223		int blks;
4224
4225		blks = count_overhead(sb, i, buf);
4226		overhead += blks;
4227		if (blks)
4228			memset(buf, 0, PAGE_SIZE);
4229		cond_resched();
4230	}
4231
4232	/*
4233	 * Add the internal journal blocks whether the journal has been
4234	 * loaded or not
4235	 */
4236	if (sbi->s_journal && !sbi->s_journal_bdev_handle)
4237		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4238	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4239		/* j_inum for internal journal is non-zero */
4240		j_inode = ext4_get_journal_inode(sb, j_inum);
4241		if (!IS_ERR(j_inode)) {
4242			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4243			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4244			iput(j_inode);
4245		} else {
4246			ext4_msg(sb, KERN_ERR, "can't get journal size");
4247		}
4248	}
4249	sbi->s_overhead = overhead;
4250	smp_wmb();
4251	free_page((unsigned long) buf);
4252	return 0;
4253}
4254
4255static void ext4_set_resv_clusters(struct super_block *sb)
4256{
4257	ext4_fsblk_t resv_clusters;
4258	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4259
4260	/*
4261	 * There's no need to reserve anything when we aren't using extents.
4262	 * The space estimates are exact, there are no unwritten extents,
4263	 * hole punching doesn't need new metadata... This is needed especially
4264	 * to keep ext2/3 backward compatibility.
4265	 */
4266	if (!ext4_has_feature_extents(sb))
4267		return;
4268	/*
4269	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4270	 * This should cover the situations where we can not afford to run
4271	 * out of space like for example punch hole, or converting
4272	 * unwritten extents in delalloc path. In most cases such
4273	 * allocation would require 1, or 2 blocks, higher numbers are
4274	 * very rare.
4275	 */
4276	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4277			 sbi->s_cluster_bits);
4278
4279	do_div(resv_clusters, 50);
4280	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4281
4282	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4283}
 
4284
4285static const char *ext4_quota_mode(struct super_block *sb)
4286{
4287#ifdef CONFIG_QUOTA
4288	if (!ext4_quota_capable(sb))
4289		return "none";
 
4290
4291	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4292		return "journalled";
4293	else
4294		return "writeback";
4295#else
4296	return "disabled";
4297#endif
4298}
 
 
4299
4300static void ext4_setup_csum_trigger(struct super_block *sb,
4301				    enum ext4_journal_trigger_type type,
4302				    void (*trigger)(
4303					struct jbd2_buffer_trigger_type *type,
4304					struct buffer_head *bh,
4305					void *mapped_data,
4306					size_t size))
4307{
4308	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
4309
4310	sbi->s_journal_triggers[type].sb = sb;
4311	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4312}
 
 
 
4313
4314static void ext4_free_sbi(struct ext4_sb_info *sbi)
4315{
4316	if (!sbi)
4317		return;
 
 
 
4318
4319	kfree(sbi->s_blockgroup_lock);
4320	fs_put_dax(sbi->s_daxdev, NULL);
4321	kfree(sbi);
4322}
 
 
 
 
 
 
 
4323
4324static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4325{
4326	struct ext4_sb_info *sbi;
 
 
 
 
4327
4328	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4329	if (!sbi)
4330		return NULL;
4331
4332	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4333					   NULL, NULL);
4334
4335	sbi->s_blockgroup_lock =
4336		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4337
4338	if (!sbi->s_blockgroup_lock)
4339		goto err_out;
4340
4341	sb->s_fs_info = sbi;
4342	sbi->s_sb = sb;
4343	return sbi;
4344err_out:
4345	fs_put_dax(sbi->s_daxdev, NULL);
4346	kfree(sbi);
4347	return NULL;
4348}
4349
4350static void ext4_set_def_opts(struct super_block *sb,
4351			      struct ext4_super_block *es)
4352{
4353	unsigned long def_mount_opts;
4354
4355	/* Set defaults before we parse the mount options */
4356	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4357	set_opt(sb, INIT_INODE_TABLE);
4358	if (def_mount_opts & EXT4_DEFM_DEBUG)
4359		set_opt(sb, DEBUG);
4360	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4361		set_opt(sb, GRPID);
4362	if (def_mount_opts & EXT4_DEFM_UID16)
4363		set_opt(sb, NO_UID32);
4364	/* xattr user namespace & acls are now defaulted on */
 
4365	set_opt(sb, XATTR_USER);
 
4366#ifdef CONFIG_EXT4_FS_POSIX_ACL
4367	set_opt(sb, POSIX_ACL);
4368#endif
4369	if (ext4_has_feature_fast_commit(sb))
4370		set_opt2(sb, JOURNAL_FAST_COMMIT);
4371	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4372	if (ext4_has_metadata_csum(sb))
4373		set_opt(sb, JOURNAL_CHECKSUM);
4374
4375	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4376		set_opt(sb, JOURNAL_DATA);
4377	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4378		set_opt(sb, ORDERED_DATA);
4379	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4380		set_opt(sb, WRITEBACK_DATA);
4381
4382	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4383		set_opt(sb, ERRORS_PANIC);
4384	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4385		set_opt(sb, ERRORS_CONT);
4386	else
4387		set_opt(sb, ERRORS_RO);
4388	/* block_validity enabled by default; disable with noblock_validity */
4389	set_opt(sb, BLOCK_VALIDITY);
4390	if (def_mount_opts & EXT4_DEFM_DISCARD)
4391		set_opt(sb, DISCARD);
4392
 
 
 
 
 
 
4393	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4394		set_opt(sb, BARRIER);
4395
4396	/*
4397	 * enable delayed allocation by default
4398	 * Use -o nodelalloc to turn it off
4399	 */
4400	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4401	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4402		set_opt(sb, DELALLOC);
4403
4404	if (sb->s_blocksize <= PAGE_SIZE)
4405		set_opt(sb, DIOREAD_NOLOCK);
4406}
 
 
4407
4408static int ext4_handle_clustersize(struct super_block *sb)
4409{
4410	struct ext4_sb_info *sbi = EXT4_SB(sb);
4411	struct ext4_super_block *es = sbi->s_es;
4412	int clustersize;
4413
4414	/* Handle clustersize */
4415	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4416	if (ext4_has_feature_bigalloc(sb)) {
4417		if (clustersize < sb->s_blocksize) {
4418			ext4_msg(sb, KERN_ERR,
4419				 "cluster size (%d) smaller than "
4420				 "block size (%lu)", clustersize, sb->s_blocksize);
4421			return -EINVAL;
4422		}
4423		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4424			le32_to_cpu(es->s_log_block_size);
4425		sbi->s_clusters_per_group =
4426			le32_to_cpu(es->s_clusters_per_group);
4427		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4428			ext4_msg(sb, KERN_ERR,
4429				 "#clusters per group too big: %lu",
4430				 sbi->s_clusters_per_group);
4431			return -EINVAL;
4432		}
4433		if (sbi->s_blocks_per_group !=
4434		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4435			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4436				 "clusters per group (%lu) inconsistent",
4437				 sbi->s_blocks_per_group,
4438				 sbi->s_clusters_per_group);
4439			return -EINVAL;
4440		}
4441	} else {
4442		if (clustersize != sb->s_blocksize) {
4443			ext4_msg(sb, KERN_ERR,
4444				 "fragment/cluster size (%d) != "
4445				 "block size (%lu)", clustersize, sb->s_blocksize);
4446			return -EINVAL;
4447		}
4448		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4449			ext4_msg(sb, KERN_ERR,
4450				 "#blocks per group too big: %lu",
4451				 sbi->s_blocks_per_group);
4452			return -EINVAL;
4453		}
4454		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4455		sbi->s_cluster_bits = 0;
4456	}
4457	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
 
 
 
4458
4459	/* Do we have standard group size of clustersize * 8 blocks ? */
4460	if (sbi->s_blocks_per_group == clustersize << 3)
4461		set_opt2(sb, STD_GROUP_SIZE);
4462
4463	return 0;
4464}
4465
4466static void ext4_fast_commit_init(struct super_block *sb)
4467{
4468	struct ext4_sb_info *sbi = EXT4_SB(sb);
4469
4470	/* Initialize fast commit stuff */
4471	atomic_set(&sbi->s_fc_subtid, 0);
4472	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4473	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4474	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4475	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4476	sbi->s_fc_bytes = 0;
4477	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4478	sbi->s_fc_ineligible_tid = 0;
4479	spin_lock_init(&sbi->s_fc_lock);
4480	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4481	sbi->s_fc_replay_state.fc_regions = NULL;
4482	sbi->s_fc_replay_state.fc_regions_size = 0;
4483	sbi->s_fc_replay_state.fc_regions_used = 0;
4484	sbi->s_fc_replay_state.fc_regions_valid = 0;
4485	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4486	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4487	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4488}
4489
4490static int ext4_inode_info_init(struct super_block *sb,
4491				struct ext4_super_block *es)
4492{
4493	struct ext4_sb_info *sbi = EXT4_SB(sb);
4494
4495	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4496		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4497		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4498	} else {
4499		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4500		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4501		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4502			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4503				 sbi->s_first_ino);
4504			return -EINVAL;
4505		}
4506		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4507		    (!is_power_of_2(sbi->s_inode_size)) ||
4508		    (sbi->s_inode_size > sb->s_blocksize)) {
4509			ext4_msg(sb, KERN_ERR,
4510			       "unsupported inode size: %d",
4511			       sbi->s_inode_size);
4512			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4513			return -EINVAL;
4514		}
4515		/*
4516		 * i_atime_extra is the last extra field available for
4517		 * [acm]times in struct ext4_inode. Checking for that
4518		 * field should suffice to ensure we have extra space
4519		 * for all three.
4520		 */
4521		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4522			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4523			sb->s_time_gran = 1;
4524			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4525		} else {
4526			sb->s_time_gran = NSEC_PER_SEC;
4527			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4528		}
4529		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4530	}
4531
4532	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4533		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4534			EXT4_GOOD_OLD_INODE_SIZE;
4535		if (ext4_has_feature_extra_isize(sb)) {
4536			unsigned v, max = (sbi->s_inode_size -
4537					   EXT4_GOOD_OLD_INODE_SIZE);
4538
4539			v = le16_to_cpu(es->s_want_extra_isize);
4540			if (v > max) {
4541				ext4_msg(sb, KERN_ERR,
4542					 "bad s_want_extra_isize: %d", v);
4543				return -EINVAL;
4544			}
4545			if (sbi->s_want_extra_isize < v)
4546				sbi->s_want_extra_isize = v;
4547
4548			v = le16_to_cpu(es->s_min_extra_isize);
4549			if (v > max) {
4550				ext4_msg(sb, KERN_ERR,
4551					 "bad s_min_extra_isize: %d", v);
4552				return -EINVAL;
4553			}
4554			if (sbi->s_want_extra_isize < v)
4555				sbi->s_want_extra_isize = v;
4556		}
4557	}
4558
4559	return 0;
4560}
4561
4562#if IS_ENABLED(CONFIG_UNICODE)
4563static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4564{
4565	const struct ext4_sb_encodings *encoding_info;
4566	struct unicode_map *encoding;
4567	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4568
4569	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4570		return 0;
4571
4572	encoding_info = ext4_sb_read_encoding(es);
4573	if (!encoding_info) {
4574		ext4_msg(sb, KERN_ERR,
4575			"Encoding requested by superblock is unknown");
4576		return -EINVAL;
4577	}
4578
4579	encoding = utf8_load(encoding_info->version);
4580	if (IS_ERR(encoding)) {
4581		ext4_msg(sb, KERN_ERR,
4582			"can't mount with superblock charset: %s-%u.%u.%u "
4583			"not supported by the kernel. flags: 0x%x.",
4584			encoding_info->name,
4585			unicode_major(encoding_info->version),
4586			unicode_minor(encoding_info->version),
4587			unicode_rev(encoding_info->version),
4588			encoding_flags);
4589		return -EINVAL;
4590	}
4591	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4592		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4593		unicode_major(encoding_info->version),
4594		unicode_minor(encoding_info->version),
4595		unicode_rev(encoding_info->version),
4596		encoding_flags);
4597
4598	sb->s_encoding = encoding;
4599	sb->s_encoding_flags = encoding_flags;
4600
4601	return 0;
4602}
4603#else
4604static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4605{
4606	return 0;
4607}
4608#endif
4609
4610static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4611{
4612	struct ext4_sb_info *sbi = EXT4_SB(sb);
4613
4614	/* Warn if metadata_csum and gdt_csum are both set. */
4615	if (ext4_has_feature_metadata_csum(sb) &&
4616	    ext4_has_feature_gdt_csum(sb))
4617		ext4_warning(sb, "metadata_csum and uninit_bg are "
4618			     "redundant flags; please run fsck.");
4619
4620	/* Check for a known checksum algorithm */
4621	if (!ext4_verify_csum_type(sb, es)) {
4622		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4623			 "unknown checksum algorithm.");
4624		return -EINVAL;
4625	}
4626	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4627				ext4_orphan_file_block_trigger);
4628
4629	/* Load the checksum driver */
4630	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4631	if (IS_ERR(sbi->s_chksum_driver)) {
4632		int ret = PTR_ERR(sbi->s_chksum_driver);
4633		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4634		sbi->s_chksum_driver = NULL;
4635		return ret;
4636	}
4637
4638	/* Check superblock checksum */
4639	if (!ext4_superblock_csum_verify(sb, es)) {
4640		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4641			 "invalid superblock checksum.  Run e2fsck?");
4642		return -EFSBADCRC;
4643	}
4644
4645	/* Precompute checksum seed for all metadata */
4646	if (ext4_has_feature_csum_seed(sb))
4647		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4648	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4649		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4650					       sizeof(es->s_uuid));
4651	return 0;
4652}
4653
4654static int ext4_check_feature_compatibility(struct super_block *sb,
4655					    struct ext4_super_block *es,
4656					    int silent)
4657{
4658	struct ext4_sb_info *sbi = EXT4_SB(sb);
4659
4660	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4661	    (ext4_has_compat_features(sb) ||
4662	     ext4_has_ro_compat_features(sb) ||
4663	     ext4_has_incompat_features(sb)))
4664		ext4_msg(sb, KERN_WARNING,
4665		       "feature flags set on rev 0 fs, "
4666		       "running e2fsck is recommended");
4667
4668	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4669		set_opt2(sb, HURD_COMPAT);
4670		if (ext4_has_feature_64bit(sb)) {
4671			ext4_msg(sb, KERN_ERR,
4672				 "The Hurd can't support 64-bit file systems");
4673			return -EINVAL;
4674		}
4675
4676		/*
4677		 * ea_inode feature uses l_i_version field which is not
4678		 * available in HURD_COMPAT mode.
4679		 */
4680		if (ext4_has_feature_ea_inode(sb)) {
4681			ext4_msg(sb, KERN_ERR,
4682				 "ea_inode feature is not supported for Hurd");
4683			return -EINVAL;
4684		}
4685	}
4686
4687	if (IS_EXT2_SB(sb)) {
4688		if (ext2_feature_set_ok(sb))
4689			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4690				 "using the ext4 subsystem");
4691		else {
4692			/*
4693			 * If we're probing be silent, if this looks like
4694			 * it's actually an ext[34] filesystem.
4695			 */
4696			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4697				return -EINVAL;
4698			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4699				 "to feature incompatibilities");
4700			return -EINVAL;
4701		}
4702	}
4703
4704	if (IS_EXT3_SB(sb)) {
4705		if (ext3_feature_set_ok(sb))
4706			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4707				 "using the ext4 subsystem");
4708		else {
4709			/*
4710			 * If we're probing be silent, if this looks like
4711			 * it's actually an ext4 filesystem.
4712			 */
4713			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4714				return -EINVAL;
4715			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4716				 "to feature incompatibilities");
4717			return -EINVAL;
4718		}
4719	}
4720
4721	/*
4722	 * Check feature flags regardless of the revision level, since we
4723	 * previously didn't change the revision level when setting the flags,
4724	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4725	 */
4726	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4727		return -EINVAL;
4728
4729	if (sbi->s_daxdev) {
4730		if (sb->s_blocksize == PAGE_SIZE)
4731			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4732		else
4733			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4734	}
4735
4736	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4737		if (ext4_has_feature_inline_data(sb)) {
4738			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4739					" that may contain inline data");
4740			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
4741		}
4742		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
 
 
4743			ext4_msg(sb, KERN_ERR,
4744				"DAX unsupported by block device.");
4745			return -EINVAL;
4746		}
4747	}
4748
4749	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4750		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4751			 es->s_encryption_level);
4752		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4753	}
4754
4755	return 0;
4756}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4757
4758static int ext4_check_geometry(struct super_block *sb,
4759			       struct ext4_super_block *es)
4760{
4761	struct ext4_sb_info *sbi = EXT4_SB(sb);
4762	__u64 blocks_count;
4763	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4764
4765	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4766		ext4_msg(sb, KERN_ERR,
4767			 "Number of reserved GDT blocks insanely large: %d",
4768			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4769		return -EINVAL;
4770	}
 
4771	/*
4772	 * Test whether we have more sectors than will fit in sector_t,
4773	 * and whether the max offset is addressable by the page cache.
4774	 */
4775	err = generic_check_addressable(sb->s_blocksize_bits,
4776					ext4_blocks_count(es));
4777	if (err) {
4778		ext4_msg(sb, KERN_ERR, "filesystem"
4779			 " too large to mount safely on this system");
4780		return err;
 
 
 
4781	}
4782
 
 
 
4783	/* check blocks count against device size */
4784	blocks_count = sb_bdev_nr_blocks(sb);
4785	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4786		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4787		       "exceeds size of device (%llu blocks)",
4788		       ext4_blocks_count(es), blocks_count);
4789		return -EINVAL;
4790	}
4791
4792	/*
4793	 * It makes no sense for the first data block to be beyond the end
4794	 * of the filesystem.
4795	 */
4796	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4797		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4798			 "block %u is beyond end of filesystem (%llu)",
4799			 le32_to_cpu(es->s_first_data_block),
4800			 ext4_blocks_count(es));
4801		return -EINVAL;
4802	}
4803	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4804	    (sbi->s_cluster_ratio == 1)) {
4805		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806			 "block is 0 with a 1k block and cluster size");
4807		return -EINVAL;
4808	}
4809
4810	blocks_count = (ext4_blocks_count(es) -
4811			le32_to_cpu(es->s_first_data_block) +
4812			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4813	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4814	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4815		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4816		       "(block count %llu, first data block %u, "
4817		       "blocks per group %lu)", blocks_count,
4818		       ext4_blocks_count(es),
4819		       le32_to_cpu(es->s_first_data_block),
4820		       EXT4_BLOCKS_PER_GROUP(sb));
4821		return -EINVAL;
4822	}
4823	sbi->s_groups_count = blocks_count;
4824	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4825			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4826	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4827	    le32_to_cpu(es->s_inodes_count)) {
4828		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4829			 le32_to_cpu(es->s_inodes_count),
4830			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4831		return -EINVAL;
4832	}
4833
4834	return 0;
4835}
4836
4837static int ext4_group_desc_init(struct super_block *sb,
4838				struct ext4_super_block *es,
4839				ext4_fsblk_t logical_sb_block,
4840				ext4_group_t *first_not_zeroed)
4841{
4842	struct ext4_sb_info *sbi = EXT4_SB(sb);
4843	unsigned int db_count;
4844	ext4_fsblk_t block;
4845	int i;
4846
4847	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4848		   EXT4_DESC_PER_BLOCK(sb);
4849	if (ext4_has_feature_meta_bg(sb)) {
4850		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4851			ext4_msg(sb, KERN_WARNING,
4852				 "first meta block group too large: %u "
4853				 "(group descriptor block count %u)",
4854				 le32_to_cpu(es->s_first_meta_bg), db_count);
4855			return -EINVAL;
4856		}
4857	}
4858	rcu_assign_pointer(sbi->s_group_desc,
4859			   kvmalloc_array(db_count,
4860					  sizeof(struct buffer_head *),
4861					  GFP_KERNEL));
4862	if (sbi->s_group_desc == NULL) {
4863		ext4_msg(sb, KERN_ERR, "not enough memory");
4864		return -ENOMEM;
 
4865	}
4866
 
 
 
 
 
 
 
4867	bgl_lock_init(sbi->s_blockgroup_lock);
4868
4869	/* Pre-read the descriptors into the buffer cache */
4870	for (i = 0; i < db_count; i++) {
4871		block = descriptor_loc(sb, logical_sb_block, i);
4872		ext4_sb_breadahead_unmovable(sb, block);
4873	}
4874
4875	for (i = 0; i < db_count; i++) {
4876		struct buffer_head *bh;
4877
4878		block = descriptor_loc(sb, logical_sb_block, i);
4879		bh = ext4_sb_bread_unmovable(sb, block);
4880		if (IS_ERR(bh)) {
4881			ext4_msg(sb, KERN_ERR,
4882			       "can't read group descriptor %d", i);
4883			sbi->s_gdb_count = i;
4884			return PTR_ERR(bh);
4885		}
4886		rcu_read_lock();
4887		rcu_dereference(sbi->s_group_desc)[i] = bh;
4888		rcu_read_unlock();
4889	}
4890	sbi->s_gdb_count = db_count;
4891	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4892		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4893		return -EFSCORRUPTED;
4894	}
4895
4896	return 0;
4897}
4898
4899static int ext4_load_and_init_journal(struct super_block *sb,
4900				      struct ext4_super_block *es,
4901				      struct ext4_fs_context *ctx)
4902{
4903	struct ext4_sb_info *sbi = EXT4_SB(sb);
4904	int err;
4905
4906	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4907	if (err)
4908		return err;
4909
4910	if (ext4_has_feature_64bit(sb) &&
4911	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4912				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4913		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4914		goto out;
4915	}
4916
4917	if (!set_journal_csum_feature_set(sb)) {
4918		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4919			 "feature set");
4920		goto out;
4921	}
4922
4923	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4924		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4925					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4926		ext4_msg(sb, KERN_ERR,
4927			"Failed to set fast commit journal feature");
4928		goto out;
4929	}
4930
4931	/* We have now updated the journal if required, so we can
4932	 * validate the data journaling mode. */
4933	switch (test_opt(sb, DATA_FLAGS)) {
4934	case 0:
4935		/* No mode set, assume a default based on the journal
4936		 * capabilities: ORDERED_DATA if the journal can
4937		 * cope, else JOURNAL_DATA
4938		 */
4939		if (jbd2_journal_check_available_features
4940		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4941			set_opt(sb, ORDERED_DATA);
4942			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4943		} else {
4944			set_opt(sb, JOURNAL_DATA);
4945			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4946		}
4947		break;
4948
4949	case EXT4_MOUNT_ORDERED_DATA:
4950	case EXT4_MOUNT_WRITEBACK_DATA:
4951		if (!jbd2_journal_check_available_features
4952		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4953			ext4_msg(sb, KERN_ERR, "Journal does not support "
4954			       "requested data journaling mode");
4955			goto out;
4956		}
4957		break;
4958	default:
4959		break;
4960	}
4961
4962	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4963	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4964		ext4_msg(sb, KERN_ERR, "can't mount with "
4965			"journal_async_commit in data=ordered mode");
4966		goto out;
4967	}
4968
4969	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4970
4971	sbi->s_journal->j_submit_inode_data_buffers =
4972		ext4_journal_submit_inode_data_buffers;
4973	sbi->s_journal->j_finish_inode_data_buffers =
4974		ext4_journal_finish_inode_data_buffers;
4975
4976	return 0;
4977
4978out:
4979	/* flush s_sb_upd_work before destroying the journal. */
4980	flush_work(&sbi->s_sb_upd_work);
4981	jbd2_journal_destroy(sbi->s_journal);
4982	sbi->s_journal = NULL;
4983	return -EINVAL;
4984}
4985
4986static int ext4_check_journal_data_mode(struct super_block *sb)
4987{
4988	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4989		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4990			    "data=journal disables delayed allocation, "
4991			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4992		/* can't mount with both data=journal and dioread_nolock. */
4993		clear_opt(sb, DIOREAD_NOLOCK);
4994		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4995		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4996			ext4_msg(sb, KERN_ERR, "can't mount with "
4997				 "both data=journal and delalloc");
4998			return -EINVAL;
4999		}
5000		if (test_opt(sb, DAX_ALWAYS)) {
5001			ext4_msg(sb, KERN_ERR, "can't mount with "
5002				 "both data=journal and dax");
5003			return -EINVAL;
5004		}
5005		if (ext4_has_feature_encrypt(sb)) {
5006			ext4_msg(sb, KERN_WARNING,
5007				 "encrypted files will use data=ordered "
5008				 "instead of data journaling mode");
5009		}
5010		if (test_opt(sb, DELALLOC))
5011			clear_opt(sb, DELALLOC);
5012	} else {
5013		sb->s_iflags |= SB_I_CGROUPWB;
5014	}
5015
5016	return 0;
5017}
5018
5019static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5020			   int silent)
5021{
5022	struct ext4_sb_info *sbi = EXT4_SB(sb);
5023	struct ext4_super_block *es;
5024	ext4_fsblk_t logical_sb_block;
5025	unsigned long offset = 0;
5026	struct buffer_head *bh;
5027	int ret = -EINVAL;
5028	int blocksize;
5029
5030	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5031	if (!blocksize) {
5032		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5033		return -EINVAL;
5034	}
5035
5036	/*
5037	 * The ext4 superblock will not be buffer aligned for other than 1kB
5038	 * block sizes.  We need to calculate the offset from buffer start.
5039	 */
5040	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5041		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5042		offset = do_div(logical_sb_block, blocksize);
5043	} else {
5044		logical_sb_block = sbi->s_sb_block;
5045	}
5046
5047	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5048	if (IS_ERR(bh)) {
5049		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5050		return PTR_ERR(bh);
5051	}
5052	/*
5053	 * Note: s_es must be initialized as soon as possible because
5054	 *       some ext4 macro-instructions depend on its value
5055	 */
5056	es = (struct ext4_super_block *) (bh->b_data + offset);
5057	sbi->s_es = es;
5058	sb->s_magic = le16_to_cpu(es->s_magic);
5059	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5060		if (!silent)
5061			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5062		goto out;
5063	}
5064
5065	if (le32_to_cpu(es->s_log_block_size) >
5066	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5067		ext4_msg(sb, KERN_ERR,
5068			 "Invalid log block size: %u",
5069			 le32_to_cpu(es->s_log_block_size));
5070		goto out;
5071	}
5072	if (le32_to_cpu(es->s_log_cluster_size) >
5073	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5074		ext4_msg(sb, KERN_ERR,
5075			 "Invalid log cluster size: %u",
5076			 le32_to_cpu(es->s_log_cluster_size));
5077		goto out;
5078	}
5079
5080	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5081
5082	/*
5083	 * If the default block size is not the same as the real block size,
5084	 * we need to reload it.
5085	 */
5086	if (sb->s_blocksize == blocksize) {
5087		*lsb = logical_sb_block;
5088		sbi->s_sbh = bh;
5089		return 0;
5090	}
5091
5092	/*
5093	 * bh must be released before kill_bdev(), otherwise
5094	 * it won't be freed and its page also. kill_bdev()
5095	 * is called by sb_set_blocksize().
5096	 */
5097	brelse(bh);
5098	/* Validate the filesystem blocksize */
5099	if (!sb_set_blocksize(sb, blocksize)) {
5100		ext4_msg(sb, KERN_ERR, "bad block size %d",
5101				blocksize);
5102		bh = NULL;
5103		goto out;
5104	}
5105
5106	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5107	offset = do_div(logical_sb_block, blocksize);
5108	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5109	if (IS_ERR(bh)) {
5110		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5111		ret = PTR_ERR(bh);
5112		bh = NULL;
5113		goto out;
5114	}
5115	es = (struct ext4_super_block *)(bh->b_data + offset);
5116	sbi->s_es = es;
5117	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5118		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5119		goto out;
5120	}
5121	*lsb = logical_sb_block;
5122	sbi->s_sbh = bh;
5123	return 0;
5124out:
5125	brelse(bh);
5126	return ret;
5127}
5128
5129static void ext4_hash_info_init(struct super_block *sb)
5130{
5131	struct ext4_sb_info *sbi = EXT4_SB(sb);
5132	struct ext4_super_block *es = sbi->s_es;
5133	unsigned int i;
5134
5135	for (i = 0; i < 4; i++)
5136		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5137
5138	sbi->s_def_hash_version = es->s_def_hash_version;
5139	if (ext4_has_feature_dir_index(sb)) {
5140		i = le32_to_cpu(es->s_flags);
5141		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5142			sbi->s_hash_unsigned = 3;
5143		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5144#ifdef __CHAR_UNSIGNED__
5145			if (!sb_rdonly(sb))
5146				es->s_flags |=
5147					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5148			sbi->s_hash_unsigned = 3;
5149#else
5150			if (!sb_rdonly(sb))
5151				es->s_flags |=
5152					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5153#endif
5154		}
5155	}
5156}
5157
5158static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5159{
5160	struct ext4_sb_info *sbi = EXT4_SB(sb);
5161	struct ext4_super_block *es = sbi->s_es;
5162	int has_huge_files;
5163
5164	has_huge_files = ext4_has_feature_huge_file(sb);
5165	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5166						      has_huge_files);
5167	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5168
5169	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5170	if (ext4_has_feature_64bit(sb)) {
5171		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5172		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5173		    !is_power_of_2(sbi->s_desc_size)) {
5174			ext4_msg(sb, KERN_ERR,
5175			       "unsupported descriptor size %lu",
5176			       sbi->s_desc_size);
5177			return -EINVAL;
5178		}
5179	} else
5180		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5181
5182	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5183	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5184
5185	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5186	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5187		if (!silent)
5188			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5189		return -EINVAL;
5190	}
5191	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5192	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5193		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5194			 sbi->s_inodes_per_group);
5195		return -EINVAL;
5196	}
5197	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5198					sbi->s_inodes_per_block;
5199	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5200	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5201	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5202	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5203
5204	return 0;
5205}
5206
5207static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5208{
5209	struct ext4_super_block *es = NULL;
5210	struct ext4_sb_info *sbi = EXT4_SB(sb);
5211	ext4_fsblk_t logical_sb_block;
5212	struct inode *root;
5213	int needs_recovery;
5214	int err;
5215	ext4_group_t first_not_zeroed;
5216	struct ext4_fs_context *ctx = fc->fs_private;
5217	int silent = fc->sb_flags & SB_SILENT;
5218
5219	/* Set defaults for the variables that will be set during parsing */
5220	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5221		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5222
5223	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5224	sbi->s_sectors_written_start =
5225		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5226
5227	err = ext4_load_super(sb, &logical_sb_block, silent);
5228	if (err)
5229		goto out_fail;
5230
5231	es = sbi->s_es;
5232	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5233
5234	err = ext4_init_metadata_csum(sb, es);
5235	if (err)
5236		goto failed_mount;
5237
5238	ext4_set_def_opts(sb, es);
5239
5240	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5241	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5242	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5243	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5244	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5245
5246	/*
5247	 * set default s_li_wait_mult for lazyinit, for the case there is
5248	 * no mount option specified.
5249	 */
5250	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5251
5252	err = ext4_inode_info_init(sb, es);
5253	if (err)
5254		goto failed_mount;
5255
5256	err = parse_apply_sb_mount_options(sb, ctx);
5257	if (err < 0)
5258		goto failed_mount;
5259
5260	sbi->s_def_mount_opt = sbi->s_mount_opt;
5261	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5262
5263	err = ext4_check_opt_consistency(fc, sb);
5264	if (err < 0)
5265		goto failed_mount;
5266
5267	ext4_apply_options(fc, sb);
5268
5269	err = ext4_encoding_init(sb, es);
5270	if (err)
5271		goto failed_mount;
5272
5273	err = ext4_check_journal_data_mode(sb);
5274	if (err)
5275		goto failed_mount;
5276
5277	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5278		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5279
5280	/* i_version is always enabled now */
5281	sb->s_flags |= SB_I_VERSION;
5282
5283	err = ext4_check_feature_compatibility(sb, es, silent);
5284	if (err)
5285		goto failed_mount;
5286
5287	err = ext4_block_group_meta_init(sb, silent);
5288	if (err)
5289		goto failed_mount;
5290
5291	ext4_hash_info_init(sb);
5292
5293	err = ext4_handle_clustersize(sb);
5294	if (err)
5295		goto failed_mount;
5296
5297	err = ext4_check_geometry(sb, es);
5298	if (err)
5299		goto failed_mount;
5300
5301	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5302	spin_lock_init(&sbi->s_error_lock);
5303	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5304
5305	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5306	if (err)
5307		goto failed_mount3;
5308
5309	err = ext4_es_register_shrinker(sbi);
5310	if (err)
5311		goto failed_mount3;
5312
5313	sbi->s_stripe = ext4_get_stripe_size(sbi);
5314	/*
5315	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5316	 * cluster, just disable stripe and alert user to simpfy code and avoid
5317	 * stripe aligned allocation which will rarely successes.
5318	 */
5319	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5320	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5321		ext4_msg(sb, KERN_WARNING,
5322			 "stripe (%lu) is not aligned with cluster size (%u), "
5323			 "stripe is disabled",
5324			 sbi->s_stripe, sbi->s_cluster_ratio);
5325		sbi->s_stripe = 0;
5326	}
5327	sbi->s_extent_max_zeroout_kb = 32;
5328
5329	/*
5330	 * set up enough so that it can read an inode
5331	 */
5332	sb->s_op = &ext4_sops;
 
 
 
 
5333	sb->s_export_op = &ext4_export_ops;
5334	sb->s_xattr = ext4_xattr_handlers;
5335#ifdef CONFIG_FS_ENCRYPTION
5336	sb->s_cop = &ext4_cryptops;
5337#endif
5338#ifdef CONFIG_FS_VERITY
5339	sb->s_vop = &ext4_verityops;
5340#endif
5341#ifdef CONFIG_QUOTA
 
5342	sb->dq_op = &ext4_quota_operations;
5343	if (ext4_has_feature_quota(sb))
5344		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5345	else
5346		sb->s_qcop = &ext4_qctl_operations;
5347	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5348#endif
5349	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5350
5351	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5352	mutex_init(&sbi->s_orphan_lock);
5353
5354	ext4_fast_commit_init(sb);
5355
5356	sb->s_root = NULL;
5357
5358	needs_recovery = (es->s_last_orphan != 0 ||
5359			  ext4_has_feature_orphan_present(sb) ||
5360			  ext4_has_feature_journal_needs_recovery(sb));
5361
5362	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5363		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5364		if (err)
5365			goto failed_mount3a;
5366	}
5367
5368	err = -EINVAL;
5369	/*
5370	 * The first inode we look at is the journal inode.  Don't try
5371	 * root first: it may be modified in the journal!
5372	 */
5373	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5374		err = ext4_load_and_init_journal(sb, es, ctx);
5375		if (err)
5376			goto failed_mount3a;
5377	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5378		   ext4_has_feature_journal_needs_recovery(sb)) {
5379		ext4_msg(sb, KERN_ERR, "required journal recovery "
5380		       "suppressed and not mounted read-only");
5381		goto failed_mount3a;
5382	} else {
5383		/* Nojournal mode, all journal mount options are illegal */
5384		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5385			ext4_msg(sb, KERN_ERR, "can't mount with "
5386				 "journal_async_commit, fs mounted w/o journal");
5387			goto failed_mount3a;
5388		}
5389
5390		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5391			ext4_msg(sb, KERN_ERR, "can't mount with "
5392				 "journal_checksum, fs mounted w/o journal");
5393			goto failed_mount3a;
5394		}
5395		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5396			ext4_msg(sb, KERN_ERR, "can't mount with "
5397				 "commit=%lu, fs mounted w/o journal",
5398				 sbi->s_commit_interval / HZ);
5399			goto failed_mount3a;
5400		}
5401		if (EXT4_MOUNT_DATA_FLAGS &
5402		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5403			ext4_msg(sb, KERN_ERR, "can't mount with "
5404				 "data=, fs mounted w/o journal");
5405			goto failed_mount3a;
5406		}
5407		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5408		clear_opt(sb, JOURNAL_CHECKSUM);
5409		clear_opt(sb, DATA_FLAGS);
5410		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5411		sbi->s_journal = NULL;
5412		needs_recovery = 0;
 
 
 
 
 
 
 
 
5413	}
5414
5415	if (!test_opt(sb, NO_MBCACHE)) {
5416		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5417		if (!sbi->s_ea_block_cache) {
5418			ext4_msg(sb, KERN_ERR,
5419				 "Failed to create ea_block_cache");
5420			err = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5421			goto failed_mount_wq;
5422		}
 
 
 
 
 
 
5423
5424		if (ext4_has_feature_ea_inode(sb)) {
5425			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5426			if (!sbi->s_ea_inode_cache) {
5427				ext4_msg(sb, KERN_ERR,
5428					 "Failed to create ea_inode_cache");
5429				err = -EINVAL;
5430				goto failed_mount_wq;
5431			}
5432		}
5433	}
 
5434
 
5435	/*
5436	 * Get the # of file system overhead blocks from the
5437	 * superblock if present.
5438	 */
5439	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5440	/* ignore the precalculated value if it is ridiculous */
5441	if (sbi->s_overhead > ext4_blocks_count(es))
5442		sbi->s_overhead = 0;
5443	/*
5444	 * If the bigalloc feature is not enabled recalculating the
5445	 * overhead doesn't take long, so we might as well just redo
5446	 * it to make sure we are using the correct value.
5447	 */
5448	if (!ext4_has_feature_bigalloc(sb))
5449		sbi->s_overhead = 0;
5450	if (sbi->s_overhead == 0) {
5451		err = ext4_calculate_overhead(sb);
5452		if (err)
5453			goto failed_mount_wq;
5454	}
5455
5456	/*
5457	 * The maximum number of concurrent works can be high and
5458	 * concurrency isn't really necessary.  Limit it to 1.
5459	 */
5460	EXT4_SB(sb)->rsv_conversion_wq =
5461		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5462	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5463		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5464		err = -ENOMEM;
5465		goto failed_mount4;
5466	}
5467
5468	/*
5469	 * The jbd2_journal_load will have done any necessary log recovery,
5470	 * so we can safely mount the rest of the filesystem now.
5471	 */
5472
5473	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5474	if (IS_ERR(root)) {
5475		ext4_msg(sb, KERN_ERR, "get root inode failed");
5476		err = PTR_ERR(root);
5477		root = NULL;
5478		goto failed_mount4;
5479	}
5480	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5481		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5482		iput(root);
5483		err = -EFSCORRUPTED;
5484		goto failed_mount4;
5485	}
5486
5487	sb->s_root = d_make_root(root);
5488	if (!sb->s_root) {
5489		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5490		err = -ENOMEM;
5491		goto failed_mount4;
5492	}
5493
5494	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5495	if (err == -EROFS) {
5496		sb->s_flags |= SB_RDONLY;
5497	} else if (err)
5498		goto failed_mount4a;
5499
5500	ext4_set_resv_clusters(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5501
5502	if (test_opt(sb, BLOCK_VALIDITY)) {
5503		err = ext4_setup_system_zone(sb);
5504		if (err) {
5505			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5506				 "zone (%d)", err);
5507			goto failed_mount4a;
5508		}
5509	}
5510	ext4_fc_replay_cleanup(sb);
5511
5512	ext4_ext_init(sb);
5513
5514	/*
5515	 * Enable optimize_scan if number of groups is > threshold. This can be
5516	 * turned off by passing "mb_optimize_scan=0". This can also be
5517	 * turned on forcefully by passing "mb_optimize_scan=1".
5518	 */
5519	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5520		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5521			set_opt2(sb, MB_OPTIMIZE_SCAN);
5522		else
5523			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5524	}
5525
5526	err = ext4_mb_init(sb);
5527	if (err) {
5528		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5529			 err);
5530		goto failed_mount5;
5531	}
5532
5533	/*
5534	 * We can only set up the journal commit callback once
5535	 * mballoc is initialized
5536	 */
5537	if (sbi->s_journal)
5538		sbi->s_journal->j_commit_callback =
5539			ext4_journal_commit_callback;
5540
5541	err = ext4_percpu_param_init(sbi);
5542	if (err)
5543		goto failed_mount6;
5544
5545	if (ext4_has_feature_flex_bg(sb))
5546		if (!ext4_fill_flex_info(sb)) {
5547			ext4_msg(sb, KERN_ERR,
5548			       "unable to initialize "
5549			       "flex_bg meta info!");
5550			err = -ENOMEM;
5551			goto failed_mount6;
5552		}
5553
5554	err = ext4_register_li_request(sb, first_not_zeroed);
5555	if (err)
5556		goto failed_mount6;
5557
5558	err = ext4_register_sysfs(sb);
 
 
 
5559	if (err)
5560		goto failed_mount7;
5561
5562	err = ext4_init_orphan_info(sb);
5563	if (err)
5564		goto failed_mount8;
5565#ifdef CONFIG_QUOTA
5566	/* Enable quota usage during mount. */
5567	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5568		err = ext4_enable_quotas(sb);
5569		if (err)
5570			goto failed_mount9;
5571	}
5572#endif  /* CONFIG_QUOTA */
5573
5574	/*
5575	 * Save the original bdev mapping's wb_err value which could be
5576	 * used to detect the metadata async write error.
5577	 */
5578	spin_lock_init(&sbi->s_bdev_wb_lock);
5579	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5580				 &sbi->s_bdev_wb_err);
5581	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5582	ext4_orphan_cleanup(sb, es);
5583	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5584	/*
5585	 * Update the checksum after updating free space/inode counters and
5586	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5587	 * checksum in the buffer cache until it is written out and
5588	 * e2fsprogs programs trying to open a file system immediately
5589	 * after it is mounted can fail.
5590	 */
5591	ext4_superblock_csum_set(sb);
5592	if (needs_recovery) {
5593		ext4_msg(sb, KERN_INFO, "recovery complete");
5594		err = ext4_mark_recovery_complete(sb, es);
5595		if (err)
5596			goto failed_mount10;
5597	}
 
 
 
 
 
 
 
 
 
5598
5599	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5600		ext4_msg(sb, KERN_WARNING,
5601			 "mounting with \"discard\" option, but the device does not support discard");
5602
5603	if (es->s_error_count)
5604		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5605
5606	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5607	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5608	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5609	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5610	atomic_set(&sbi->s_warning_count, 0);
5611	atomic_set(&sbi->s_msg_count, 0);
5612
5613	return 0;
 
 
 
5614
5615failed_mount10:
5616	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5617failed_mount9: __maybe_unused
5618	ext4_release_orphan_info(sb);
5619failed_mount8:
5620	ext4_unregister_sysfs(sb);
5621	kobject_put(&sbi->s_kobj);
5622failed_mount7:
5623	ext4_unregister_li_request(sb);
5624failed_mount6:
5625	ext4_mb_release(sb);
5626	ext4_flex_groups_free(sbi);
5627	ext4_percpu_param_destroy(sbi);
5628failed_mount5:
5629	ext4_ext_release(sb);
5630	ext4_release_system_zone(sb);
5631failed_mount4a:
5632	dput(sb->s_root);
5633	sb->s_root = NULL;
5634failed_mount4:
5635	ext4_msg(sb, KERN_ERR, "mount failed");
5636	if (EXT4_SB(sb)->rsv_conversion_wq)
5637		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5638failed_mount_wq:
5639	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5640	sbi->s_ea_inode_cache = NULL;
5641
5642	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5643	sbi->s_ea_block_cache = NULL;
5644
5645	if (sbi->s_journal) {
5646		/* flush s_sb_upd_work before journal destroy. */
5647		flush_work(&sbi->s_sb_upd_work);
5648		jbd2_journal_destroy(sbi->s_journal);
5649		sbi->s_journal = NULL;
5650	}
5651failed_mount3a:
5652	ext4_es_unregister_shrinker(sbi);
5653failed_mount3:
5654	/* flush s_sb_upd_work before sbi destroy */
5655	flush_work(&sbi->s_sb_upd_work);
5656	del_timer_sync(&sbi->s_err_report);
5657	ext4_stop_mmpd(sbi);
5658	ext4_group_desc_free(sbi);
 
 
 
 
 
 
 
 
5659failed_mount:
5660	if (sbi->s_chksum_driver)
5661		crypto_free_shash(sbi->s_chksum_driver);
5662
5663#if IS_ENABLED(CONFIG_UNICODE)
5664	utf8_unload(sb->s_encoding);
5665#endif
5666
5667#ifdef CONFIG_QUOTA
5668	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5669		kfree(get_qf_name(sb, sbi, i));
5670#endif
5671	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5672	brelse(sbi->s_sbh);
5673	if (sbi->s_journal_bdev_handle) {
5674		invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
5675		bdev_release(sbi->s_journal_bdev_handle);
5676	}
5677out_fail:
5678	invalidate_bdev(sb->s_bdev);
5679	sb->s_fs_info = NULL;
5680	return err;
5681}
5682
5683static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5684{
5685	struct ext4_fs_context *ctx = fc->fs_private;
5686	struct ext4_sb_info *sbi;
5687	const char *descr;
5688	int ret;
5689
5690	sbi = ext4_alloc_sbi(sb);
5691	if (!sbi)
5692		return -ENOMEM;
5693
5694	fc->s_fs_info = sbi;
5695
5696	/* Cleanup superblock name */
5697	strreplace(sb->s_id, '/', '!');
5698
5699	sbi->s_sb_block = 1;	/* Default super block location */
5700	if (ctx->spec & EXT4_SPEC_s_sb_block)
5701		sbi->s_sb_block = ctx->s_sb_block;
5702
5703	ret = __ext4_fill_super(fc, sb);
5704	if (ret < 0)
5705		goto free_sbi;
5706
5707	if (sbi->s_journal) {
5708		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5709			descr = " journalled data mode";
5710		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5711			descr = " ordered data mode";
5712		else
5713			descr = " writeback data mode";
5714	} else
5715		descr = "out journal";
5716
5717	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5718		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5719			 "Quota mode: %s.", &sb->s_uuid,
5720			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5721			 ext4_quota_mode(sb));
5722
5723	/* Update the s_overhead_clusters if necessary */
5724	ext4_update_overhead(sb, false);
5725	return 0;
5726
5727free_sbi:
5728	ext4_free_sbi(sbi);
5729	fc->s_fs_info = NULL;
5730	return ret;
5731}
5732
5733static int ext4_get_tree(struct fs_context *fc)
5734{
5735	return get_tree_bdev(fc, ext4_fill_super);
5736}
5737
5738/*
5739 * Setup any per-fs journal parameters now.  We'll do this both on
5740 * initial mount, once the journal has been initialised but before we've
5741 * done any recovery; and again on any subsequent remount.
5742 */
5743static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5744{
5745	struct ext4_sb_info *sbi = EXT4_SB(sb);
5746
5747	journal->j_commit_interval = sbi->s_commit_interval;
5748	journal->j_min_batch_time = sbi->s_min_batch_time;
5749	journal->j_max_batch_time = sbi->s_max_batch_time;
5750	ext4_fc_init(sb, journal);
5751
5752	write_lock(&journal->j_state_lock);
5753	if (test_opt(sb, BARRIER))
5754		journal->j_flags |= JBD2_BARRIER;
5755	else
5756		journal->j_flags &= ~JBD2_BARRIER;
5757	if (test_opt(sb, DATA_ERR_ABORT))
5758		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5759	else
5760		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5761	/*
5762	 * Always enable journal cycle record option, letting the journal
5763	 * records log transactions continuously between each mount.
5764	 */
5765	journal->j_flags |= JBD2_CYCLE_RECORD;
5766	write_unlock(&journal->j_state_lock);
5767}
5768
5769static struct inode *ext4_get_journal_inode(struct super_block *sb,
5770					     unsigned int journal_inum)
5771{
5772	struct inode *journal_inode;
 
 
 
 
 
 
 
5773
5774	/*
5775	 * Test for the existence of a valid inode on disk.  Bad things
5776	 * happen if we iget() an unused inode, as the subsequent iput()
5777	 * will try to delete it.
5778	 */
5779	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5780	if (IS_ERR(journal_inode)) {
5781		ext4_msg(sb, KERN_ERR, "no journal found");
5782		return ERR_CAST(journal_inode);
5783	}
5784	if (!journal_inode->i_nlink) {
5785		make_bad_inode(journal_inode);
5786		iput(journal_inode);
5787		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5788		return ERR_PTR(-EFSCORRUPTED);
5789	}
5790	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
 
 
 
5791		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5792		iput(journal_inode);
5793		return ERR_PTR(-EFSCORRUPTED);
5794	}
5795
5796	ext4_debug("Journal inode found at %p: %lld bytes\n",
5797		  journal_inode, journal_inode->i_size);
5798	return journal_inode;
5799}
5800
5801static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5802{
5803	struct ext4_map_blocks map;
5804	int ret;
5805
5806	if (journal->j_inode == NULL)
5807		return 0;
5808
5809	map.m_lblk = *block;
5810	map.m_len = 1;
5811	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5812	if (ret <= 0) {
5813		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5814			 "journal bmap failed: block %llu ret %d\n",
5815			 *block, ret);
5816		jbd2_journal_abort(journal, ret ? ret : -EIO);
5817		return ret;
5818	}
5819	*block = map.m_pblk;
5820	return 0;
5821}
5822
5823static journal_t *ext4_open_inode_journal(struct super_block *sb,
5824					  unsigned int journal_inum)
5825{
5826	struct inode *journal_inode;
5827	journal_t *journal;
5828
5829	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5830	if (IS_ERR(journal_inode))
5831		return ERR_CAST(journal_inode);
5832
5833	journal = jbd2_journal_init_inode(journal_inode);
5834	if (IS_ERR(journal)) {
5835		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5836		iput(journal_inode);
5837		return ERR_CAST(journal);
5838	}
5839	journal->j_private = sb;
5840	journal->j_bmap = ext4_journal_bmap;
5841	ext4_init_journal_params(sb, journal);
5842	return journal;
5843}
5844
5845static struct bdev_handle *ext4_get_journal_blkdev(struct super_block *sb,
5846					dev_t j_dev, ext4_fsblk_t *j_start,
5847					ext4_fsblk_t *j_len)
5848{
5849	struct buffer_head *bh;
5850	struct block_device *bdev;
5851	struct bdev_handle *bdev_handle;
 
5852	int hblock, blocksize;
5853	ext4_fsblk_t sb_block;
5854	unsigned long offset;
5855	struct ext4_super_block *es;
5856	int errno;
 
 
5857
5858	bdev_handle = bdev_open_by_dev(j_dev,
5859		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5860		sb, &fs_holder_ops);
5861	if (IS_ERR(bdev_handle)) {
5862		ext4_msg(sb, KERN_ERR,
5863			 "failed to open journal device unknown-block(%u,%u) %ld",
5864			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_handle));
5865		return bdev_handle;
5866	}
5867
5868	bdev = bdev_handle->bdev;
5869	blocksize = sb->s_blocksize;
5870	hblock = bdev_logical_block_size(bdev);
5871	if (blocksize < hblock) {
5872		ext4_msg(sb, KERN_ERR,
5873			"blocksize too small for journal device");
5874		errno = -EINVAL;
5875		goto out_bdev;
5876	}
5877
5878	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5879	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5880	set_blocksize(bdev, blocksize);
5881	bh = __bread(bdev, sb_block, blocksize);
5882	if (!bh) {
5883		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5884		       "external journal");
5885		errno = -EINVAL;
5886		goto out_bdev;
5887	}
5888
5889	es = (struct ext4_super_block *) (bh->b_data + offset);
5890	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5891	    !(le32_to_cpu(es->s_feature_incompat) &
5892	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5893		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5894		errno = -EFSCORRUPTED;
5895		goto out_bh;
5896	}
5897
5898	if ((le32_to_cpu(es->s_feature_ro_compat) &
5899	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5900	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5901		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5902		errno = -EFSCORRUPTED;
5903		goto out_bh;
5904	}
5905
5906	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5907		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5908		errno = -EFSCORRUPTED;
5909		goto out_bh;
5910	}
5911
5912	*j_start = sb_block + 1;
5913	*j_len = ext4_blocks_count(es);
5914	brelse(bh);
5915	return bdev_handle;
5916
5917out_bh:
5918	brelse(bh);
5919out_bdev:
5920	bdev_release(bdev_handle);
5921	return ERR_PTR(errno);
5922}
5923
5924static journal_t *ext4_open_dev_journal(struct super_block *sb,
5925					dev_t j_dev)
5926{
5927	journal_t *journal;
5928	ext4_fsblk_t j_start;
5929	ext4_fsblk_t j_len;
5930	struct bdev_handle *bdev_handle;
5931	int errno = 0;
5932
5933	bdev_handle = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5934	if (IS_ERR(bdev_handle))
5935		return ERR_CAST(bdev_handle);
5936
5937	journal = jbd2_journal_init_dev(bdev_handle->bdev, sb->s_bdev, j_start,
5938					j_len, sb->s_blocksize);
5939	if (IS_ERR(journal)) {
5940		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5941		errno = PTR_ERR(journal);
5942		goto out_bdev;
5943	}
 
 
 
 
 
 
 
5944	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5945		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5946					"user (unsupported) - %d",
5947			be32_to_cpu(journal->j_superblock->s_nr_users));
5948		errno = -EINVAL;
5949		goto out_journal;
5950	}
5951	journal->j_private = sb;
5952	EXT4_SB(sb)->s_journal_bdev_handle = bdev_handle;
5953	ext4_init_journal_params(sb, journal);
5954	return journal;
5955
5956out_journal:
5957	jbd2_journal_destroy(journal);
5958out_bdev:
5959	bdev_release(bdev_handle);
5960	return ERR_PTR(errno);
5961}
5962
5963static int ext4_load_journal(struct super_block *sb,
5964			     struct ext4_super_block *es,
5965			     unsigned long journal_devnum)
5966{
5967	journal_t *journal;
5968	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5969	dev_t journal_dev;
5970	int err = 0;
5971	int really_read_only;
5972	int journal_dev_ro;
5973
5974	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5975		return -EFSCORRUPTED;
5976
5977	if (journal_devnum &&
5978	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5979		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5980			"numbers have changed");
5981		journal_dev = new_decode_dev(journal_devnum);
5982	} else
5983		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5984
5985	if (journal_inum && journal_dev) {
5986		ext4_msg(sb, KERN_ERR,
5987			 "filesystem has both journal inode and journal device!");
5988		return -EINVAL;
5989	}
5990
5991	if (journal_inum) {
5992		journal = ext4_open_inode_journal(sb, journal_inum);
5993		if (IS_ERR(journal))
5994			return PTR_ERR(journal);
5995	} else {
5996		journal = ext4_open_dev_journal(sb, journal_dev);
5997		if (IS_ERR(journal))
5998			return PTR_ERR(journal);
5999	}
6000
6001	journal_dev_ro = bdev_read_only(journal->j_dev);
6002	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6003
6004	if (journal_dev_ro && !sb_rdonly(sb)) {
6005		ext4_msg(sb, KERN_ERR,
6006			 "journal device read-only, try mounting with '-o ro'");
6007		err = -EROFS;
6008		goto err_out;
6009	}
6010
6011	/*
6012	 * Are we loading a blank journal or performing recovery after a
6013	 * crash?  For recovery, we need to check in advance whether we
6014	 * can get read-write access to the device.
6015	 */
6016	if (ext4_has_feature_journal_needs_recovery(sb)) {
6017		if (sb_rdonly(sb)) {
6018			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6019					"required on readonly filesystem");
6020			if (really_read_only) {
6021				ext4_msg(sb, KERN_ERR, "write access "
6022					"unavailable, cannot proceed "
6023					"(try mounting with noload)");
6024				err = -EROFS;
6025				goto err_out;
6026			}
6027			ext4_msg(sb, KERN_INFO, "write access will "
6028			       "be enabled during recovery");
6029		}
6030	}
6031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6032	if (!(journal->j_flags & JBD2_BARRIER))
6033		ext4_msg(sb, KERN_INFO, "barriers disabled");
6034
6035	if (!ext4_has_feature_journal_needs_recovery(sb))
6036		err = jbd2_journal_wipe(journal, !really_read_only);
6037	if (!err) {
6038		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6039		__le16 orig_state;
6040		bool changed = false;
6041
6042		if (save)
6043			memcpy(save, ((char *) es) +
6044			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6045		err = jbd2_journal_load(journal);
6046		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6047				   save, EXT4_S_ERR_LEN)) {
6048			memcpy(((char *) es) + EXT4_S_ERR_START,
6049			       save, EXT4_S_ERR_LEN);
6050			changed = true;
6051		}
6052		kfree(save);
6053		orig_state = es->s_state;
6054		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6055					   EXT4_ERROR_FS);
6056		if (orig_state != es->s_state)
6057			changed = true;
6058		/* Write out restored error information to the superblock */
6059		if (changed && !really_read_only) {
6060			int err2;
6061			err2 = ext4_commit_super(sb);
6062			err = err ? : err2;
6063		}
6064	}
6065
6066	if (err) {
6067		ext4_msg(sb, KERN_ERR, "error loading journal");
6068		goto err_out;
 
6069	}
6070
6071	EXT4_SB(sb)->s_journal = journal;
6072	err = ext4_clear_journal_err(sb, es);
6073	if (err) {
6074		EXT4_SB(sb)->s_journal = NULL;
6075		jbd2_journal_destroy(journal);
6076		return err;
6077	}
6078
6079	if (!really_read_only && journal_devnum &&
6080	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6081		es->s_journal_dev = cpu_to_le32(journal_devnum);
6082		ext4_commit_super(sb);
6083	}
6084	if (!really_read_only && journal_inum &&
6085	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6086		es->s_journal_inum = cpu_to_le32(journal_inum);
6087		ext4_commit_super(sb);
6088	}
6089
6090	return 0;
6091
6092err_out:
6093	jbd2_journal_destroy(journal);
6094	return err;
6095}
6096
6097/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6098static void ext4_update_super(struct super_block *sb)
6099{
6100	struct ext4_sb_info *sbi = EXT4_SB(sb);
6101	struct ext4_super_block *es = sbi->s_es;
6102	struct buffer_head *sbh = sbi->s_sbh;
6103
6104	lock_buffer(sbh);
6105	/*
6106	 * If the file system is mounted read-only, don't update the
6107	 * superblock write time.  This avoids updating the superblock
6108	 * write time when we are mounting the root file system
6109	 * read/only but we need to replay the journal; at that point,
6110	 * for people who are east of GMT and who make their clock
6111	 * tick in localtime for Windows bug-for-bug compatibility,
6112	 * the clock is set in the future, and this will cause e2fsck
6113	 * to complain and force a full file system check.
6114	 */
6115	if (!sb_rdonly(sb))
6116		ext4_update_tstamp(es, s_wtime);
6117	es->s_kbytes_written =
6118		cpu_to_le64(sbi->s_kbytes_written +
6119		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6120		      sbi->s_sectors_written_start) >> 1));
6121	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6122		ext4_free_blocks_count_set(es,
6123			EXT4_C2B(sbi, percpu_counter_sum_positive(
6124				&sbi->s_freeclusters_counter)));
6125	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6126		es->s_free_inodes_count =
6127			cpu_to_le32(percpu_counter_sum_positive(
6128				&sbi->s_freeinodes_counter));
6129	/* Copy error information to the on-disk superblock */
6130	spin_lock(&sbi->s_error_lock);
6131	if (sbi->s_add_error_count > 0) {
6132		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6133		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6134			__ext4_update_tstamp(&es->s_first_error_time,
6135					     &es->s_first_error_time_hi,
6136					     sbi->s_first_error_time);
6137			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6138				sizeof(es->s_first_error_func));
6139			es->s_first_error_line =
6140				cpu_to_le32(sbi->s_first_error_line);
6141			es->s_first_error_ino =
6142				cpu_to_le32(sbi->s_first_error_ino);
6143			es->s_first_error_block =
6144				cpu_to_le64(sbi->s_first_error_block);
6145			es->s_first_error_errcode =
6146				ext4_errno_to_code(sbi->s_first_error_code);
6147		}
6148		__ext4_update_tstamp(&es->s_last_error_time,
6149				     &es->s_last_error_time_hi,
6150				     sbi->s_last_error_time);
6151		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6152			sizeof(es->s_last_error_func));
6153		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6154		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6155		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6156		es->s_last_error_errcode =
6157				ext4_errno_to_code(sbi->s_last_error_code);
6158		/*
6159		 * Start the daily error reporting function if it hasn't been
6160		 * started already
6161		 */
6162		if (!es->s_error_count)
6163			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6164		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6165		sbi->s_add_error_count = 0;
6166	}
6167	spin_unlock(&sbi->s_error_lock);
6168
6169	ext4_superblock_csum_set(sb);
6170	unlock_buffer(sbh);
6171}
6172
6173static int ext4_commit_super(struct super_block *sb)
6174{
 
6175	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
 
6176
6177	if (!sbh)
6178		return -EINVAL;
6179	if (block_device_ejected(sb))
6180		return -ENODEV;
6181
6182	ext4_update_super(sb);
6183
6184	lock_buffer(sbh);
6185	/* Buffer got discarded which means block device got invalidated */
6186	if (!buffer_mapped(sbh)) {
6187		unlock_buffer(sbh);
6188		return -EIO;
6189	}
6190
6191	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6192		/*
6193		 * Oh, dear.  A previous attempt to write the
6194		 * superblock failed.  This could happen because the
6195		 * USB device was yanked out.  Or it could happen to
6196		 * be a transient write error and maybe the block will
6197		 * be remapped.  Nothing we can do but to retry the
6198		 * write and hope for the best.
6199		 */
6200		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6201		       "superblock detected");
6202		clear_buffer_write_io_error(sbh);
6203		set_buffer_uptodate(sbh);
6204	}
6205	get_bh(sbh);
6206	/* Clear potential dirty bit if it was journalled update */
6207	clear_buffer_dirty(sbh);
6208	sbh->b_end_io = end_buffer_write_sync;
6209	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6210		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6211	wait_on_buffer(sbh);
6212	if (buffer_write_io_error(sbh)) {
6213		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6214		       "superblock");
6215		clear_buffer_write_io_error(sbh);
6216		set_buffer_uptodate(sbh);
6217		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6218	}
6219	return 0;
6220}
6221
6222/*
6223 * Have we just finished recovery?  If so, and if we are mounting (or
6224 * remounting) the filesystem readonly, then we will end up with a
6225 * consistent fs on disk.  Record that fact.
6226 */
6227static int ext4_mark_recovery_complete(struct super_block *sb,
6228				       struct ext4_super_block *es)
6229{
6230	int err;
6231	journal_t *journal = EXT4_SB(sb)->s_journal;
6232
6233	if (!ext4_has_feature_journal(sb)) {
6234		if (journal != NULL) {
6235			ext4_error(sb, "Journal got removed while the fs was "
6236				   "mounted!");
6237			return -EFSCORRUPTED;
6238		}
6239		return 0;
6240	}
6241	jbd2_journal_lock_updates(journal);
6242	err = jbd2_journal_flush(journal, 0);
6243	if (err < 0)
6244		goto out;
6245
6246	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6247	    ext4_has_feature_orphan_present(sb))) {
6248		if (!ext4_orphan_file_empty(sb)) {
6249			ext4_error(sb, "Orphan file not empty on read-only fs.");
6250			err = -EFSCORRUPTED;
6251			goto out;
6252		}
6253		ext4_clear_feature_journal_needs_recovery(sb);
6254		ext4_clear_feature_orphan_present(sb);
6255		ext4_commit_super(sb);
6256	}
 
6257out:
6258	jbd2_journal_unlock_updates(journal);
6259	return err;
6260}
6261
6262/*
6263 * If we are mounting (or read-write remounting) a filesystem whose journal
6264 * has recorded an error from a previous lifetime, move that error to the
6265 * main filesystem now.
6266 */
6267static int ext4_clear_journal_err(struct super_block *sb,
6268				   struct ext4_super_block *es)
6269{
6270	journal_t *journal;
6271	int j_errno;
6272	const char *errstr;
6273
6274	if (!ext4_has_feature_journal(sb)) {
6275		ext4_error(sb, "Journal got removed while the fs was mounted!");
6276		return -EFSCORRUPTED;
6277	}
6278
6279	journal = EXT4_SB(sb)->s_journal;
6280
6281	/*
6282	 * Now check for any error status which may have been recorded in the
6283	 * journal by a prior ext4_error() or ext4_abort()
6284	 */
6285
6286	j_errno = jbd2_journal_errno(journal);
6287	if (j_errno) {
6288		char nbuf[16];
6289
6290		errstr = ext4_decode_error(sb, j_errno, nbuf);
6291		ext4_warning(sb, "Filesystem error recorded "
6292			     "from previous mount: %s", errstr);
 
6293
6294		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6295		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6296		j_errno = ext4_commit_super(sb);
6297		if (j_errno)
6298			return j_errno;
6299		ext4_warning(sb, "Marked fs in need of filesystem check.");
6300
6301		jbd2_journal_clear_err(journal);
6302		jbd2_journal_update_sb_errno(journal);
6303	}
6304	return 0;
6305}
6306
6307/*
6308 * Force the running and committing transactions to commit,
6309 * and wait on the commit.
6310 */
6311int ext4_force_commit(struct super_block *sb)
6312{
6313	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6314}
6315
6316static int ext4_sync_fs(struct super_block *sb, int wait)
6317{
6318	int ret = 0;
6319	tid_t target;
6320	bool needs_barrier = false;
6321	struct ext4_sb_info *sbi = EXT4_SB(sb);
6322
6323	if (unlikely(ext4_forced_shutdown(sb)))
6324		return 0;
6325
6326	trace_ext4_sync_fs(sb, wait);
6327	flush_workqueue(sbi->rsv_conversion_wq);
6328	/*
6329	 * Writeback quota in non-journalled quota case - journalled quota has
6330	 * no dirty dquots
6331	 */
6332	dquot_writeback_dquots(sb, -1);
6333	/*
6334	 * Data writeback is possible w/o journal transaction, so barrier must
6335	 * being sent at the end of the function. But we can skip it if
6336	 * transaction_commit will do it for us.
6337	 */
6338	if (sbi->s_journal) {
6339		target = jbd2_get_latest_transaction(sbi->s_journal);
6340		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6341		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6342			needs_barrier = true;
6343
6344		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6345			if (wait)
6346				ret = jbd2_log_wait_commit(sbi->s_journal,
6347							   target);
6348		}
6349	} else if (wait && test_opt(sb, BARRIER))
6350		needs_barrier = true;
6351	if (needs_barrier) {
6352		int err;
6353		err = blkdev_issue_flush(sb->s_bdev);
6354		if (!ret)
6355			ret = err;
6356	}
6357
6358	return ret;
6359}
6360
6361/*
6362 * LVM calls this function before a (read-only) snapshot is created.  This
6363 * gives us a chance to flush the journal completely and mark the fs clean.
6364 *
6365 * Note that only this function cannot bring a filesystem to be in a clean
6366 * state independently. It relies on upper layer to stop all data & metadata
6367 * modifications.
 
6368 */
6369static int ext4_freeze(struct super_block *sb)
6370{
6371	int error = 0;
6372	journal_t *journal = EXT4_SB(sb)->s_journal;
 
 
 
6373
6374	if (journal) {
6375		/* Now we set up the journal barrier. */
6376		jbd2_journal_lock_updates(journal);
6377
6378		/*
6379		 * Don't clear the needs_recovery flag if we failed to
6380		 * flush the journal.
6381		 */
6382		error = jbd2_journal_flush(journal, 0);
6383		if (error < 0)
6384			goto out;
6385
6386		/* Journal blocked and flushed, clear needs_recovery flag. */
6387		ext4_clear_feature_journal_needs_recovery(sb);
6388		if (ext4_orphan_file_empty(sb))
6389			ext4_clear_feature_orphan_present(sb);
6390	}
 
 
6391
6392	error = ext4_commit_super(sb);
 
 
6393out:
6394	if (journal)
6395		/* we rely on upper layer to stop further updates */
6396		jbd2_journal_unlock_updates(journal);
6397	return error;
6398}
6399
6400/*
6401 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6402 * flag here, even though the filesystem is not technically dirty yet.
6403 */
6404static int ext4_unfreeze(struct super_block *sb)
6405{
6406	if (ext4_forced_shutdown(sb))
6407		return 0;
6408
6409	if (EXT4_SB(sb)->s_journal) {
6410		/* Reset the needs_recovery flag before the fs is unlocked. */
6411		ext4_set_feature_journal_needs_recovery(sb);
6412		if (ext4_has_feature_orphan_file(sb))
6413			ext4_set_feature_orphan_present(sb);
6414	}
6415
6416	ext4_commit_super(sb);
6417	return 0;
6418}
6419
6420/*
6421 * Structure to save mount options for ext4_remount's benefit
6422 */
6423struct ext4_mount_options {
6424	unsigned long s_mount_opt;
6425	unsigned long s_mount_opt2;
6426	kuid_t s_resuid;
6427	kgid_t s_resgid;
6428	unsigned long s_commit_interval;
6429	u32 s_min_batch_time, s_max_batch_time;
6430#ifdef CONFIG_QUOTA
6431	int s_jquota_fmt;
6432	char *s_qf_names[EXT4_MAXQUOTAS];
6433#endif
6434};
6435
6436static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6437{
6438	struct ext4_fs_context *ctx = fc->fs_private;
6439	struct ext4_super_block *es;
6440	struct ext4_sb_info *sbi = EXT4_SB(sb);
6441	unsigned long old_sb_flags;
6442	struct ext4_mount_options old_opts;
 
6443	ext4_group_t g;
 
6444	int err = 0;
6445	int alloc_ctx;
6446#ifdef CONFIG_QUOTA
6447	int enable_quota = 0;
6448	int i, j;
6449	char *to_free[EXT4_MAXQUOTAS];
6450#endif
6451
6452
6453	/* Store the original options */
 
6454	old_sb_flags = sb->s_flags;
6455	old_opts.s_mount_opt = sbi->s_mount_opt;
6456	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6457	old_opts.s_resuid = sbi->s_resuid;
6458	old_opts.s_resgid = sbi->s_resgid;
6459	old_opts.s_commit_interval = sbi->s_commit_interval;
6460	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6461	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6462#ifdef CONFIG_QUOTA
6463	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6464	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6465		if (sbi->s_qf_names[i]) {
6466			char *qf_name = get_qf_name(sb, sbi, i);
6467
6468			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6469			if (!old_opts.s_qf_names[i]) {
6470				for (j = 0; j < i; j++)
6471					kfree(old_opts.s_qf_names[j]);
6472				return -ENOMEM;
6473			}
6474		} else
6475			old_opts.s_qf_names[i] = NULL;
6476#endif
6477	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6478		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6479			ctx->journal_ioprio =
6480				sbi->s_journal->j_task->io_context->ioprio;
6481		else
6482			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6483
6484	}
6485
6486	/*
6487	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6488	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6489	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6490	 * here s_writepages_rwsem to avoid race between writepages ops and
6491	 * remount.
6492	 */
6493	alloc_ctx = ext4_writepages_down_write(sb);
6494	ext4_apply_options(fc, sb);
6495	ext4_writepages_up_write(sb, alloc_ctx);
6496
6497	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6498	    test_opt(sb, JOURNAL_CHECKSUM)) {
6499		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6500			 "during remount not supported; ignoring");
6501		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6502	}
6503
6504	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6505		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6506			ext4_msg(sb, KERN_ERR, "can't mount with "
6507				 "both data=journal and delalloc");
6508			err = -EINVAL;
6509			goto restore_opts;
6510		}
6511		if (test_opt(sb, DIOREAD_NOLOCK)) {
6512			ext4_msg(sb, KERN_ERR, "can't mount with "
6513				 "both data=journal and dioread_nolock");
6514			err = -EINVAL;
6515			goto restore_opts;
6516		}
6517	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6518		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6519			ext4_msg(sb, KERN_ERR, "can't mount with "
6520				"journal_async_commit in data=ordered mode");
6521			err = -EINVAL;
6522			goto restore_opts;
6523		}
6524	}
6525
6526	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6527		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6528		err = -EINVAL;
6529		goto restore_opts;
6530	}
6531
6532	if (test_opt2(sb, ABORT))
6533		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6534
6535	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6536		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6537
6538	es = sbi->s_es;
6539
6540	if (sbi->s_journal) {
6541		ext4_init_journal_params(sb, sbi->s_journal);
6542		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6543	}
6544
6545	/* Flush outstanding errors before changing fs state */
6546	flush_work(&sbi->s_sb_upd_work);
6547
6548	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6549		if (ext4_forced_shutdown(sb)) {
6550			err = -EROFS;
6551			goto restore_opts;
6552		}
6553
6554		if (fc->sb_flags & SB_RDONLY) {
6555			err = sync_filesystem(sb);
6556			if (err < 0)
6557				goto restore_opts;
6558			err = dquot_suspend(sb, -1);
6559			if (err < 0)
6560				goto restore_opts;
6561
6562			/*
6563			 * First of all, the unconditional stuff we have to do
6564			 * to disable replay of the journal when we next remount
6565			 */
6566			sb->s_flags |= SB_RDONLY;
6567
6568			/*
6569			 * OK, test if we are remounting a valid rw partition
6570			 * readonly, and if so set the rdonly flag and then
6571			 * mark the partition as valid again.
6572			 */
6573			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6574			    (sbi->s_mount_state & EXT4_VALID_FS))
6575				es->s_state = cpu_to_le16(sbi->s_mount_state);
6576
6577			if (sbi->s_journal) {
6578				/*
6579				 * We let remount-ro finish even if marking fs
6580				 * as clean failed...
6581				 */
6582				ext4_mark_recovery_complete(sb, es);
6583			}
6584		} else {
6585			/* Make sure we can mount this feature set readwrite */
6586			if (ext4_has_feature_readonly(sb) ||
6587			    !ext4_feature_set_ok(sb, 0)) {
6588				err = -EROFS;
6589				goto restore_opts;
6590			}
6591			/*
6592			 * Make sure the group descriptor checksums
6593			 * are sane.  If they aren't, refuse to remount r/w.
6594			 */
6595			for (g = 0; g < sbi->s_groups_count; g++) {
6596				struct ext4_group_desc *gdp =
6597					ext4_get_group_desc(sb, g, NULL);
6598
6599				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6600					ext4_msg(sb, KERN_ERR,
6601	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6602		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6603					       le16_to_cpu(gdp->bg_checksum));
6604					err = -EFSBADCRC;
6605					goto restore_opts;
6606				}
6607			}
6608
6609			/*
6610			 * If we have an unprocessed orphan list hanging
6611			 * around from a previously readonly bdev mount,
6612			 * require a full umount/remount for now.
6613			 */
6614			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6615				ext4_msg(sb, KERN_WARNING, "Couldn't "
6616				       "remount RDWR because of unprocessed "
6617				       "orphan inode list.  Please "
6618				       "umount/remount instead");
6619				err = -EINVAL;
6620				goto restore_opts;
6621			}
6622
6623			/*
6624			 * Mounting a RDONLY partition read-write, so reread
6625			 * and store the current valid flag.  (It may have
6626			 * been changed by e2fsck since we originally mounted
6627			 * the partition.)
6628			 */
6629			if (sbi->s_journal) {
6630				err = ext4_clear_journal_err(sb, es);
6631				if (err)
 
 
 
 
 
 
 
6632					goto restore_opts;
6633			}
6634			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6635					      ~EXT4_FC_REPLAY);
6636
6637			err = ext4_setup_super(sb, es, 0);
6638			if (err)
6639				goto restore_opts;
6640
6641			sb->s_flags &= ~SB_RDONLY;
6642			if (ext4_has_feature_mmp(sb)) {
6643				err = ext4_multi_mount_protect(sb,
6644						le64_to_cpu(es->s_mmp_block));
6645				if (err)
6646					goto restore_opts;
6647			}
6648#ifdef CONFIG_QUOTA
6649			enable_quota = 1;
6650#endif
6651		}
6652	}
6653
6654	/*
6655	 * Handle creation of system zone data early because it can fail.
6656	 * Releasing of existing data is done when we are sure remount will
6657	 * succeed.
6658	 */
6659	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6660		err = ext4_setup_system_zone(sb);
6661		if (err)
6662			goto restore_opts;
6663	}
6664
6665	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6666		err = ext4_commit_super(sb);
6667		if (err)
6668			goto restore_opts;
6669	}
6670
6671#ifdef CONFIG_QUOTA
6672	if (enable_quota) {
6673		if (sb_any_quota_suspended(sb))
6674			dquot_resume(sb, -1);
6675		else if (ext4_has_feature_quota(sb)) {
6676			err = ext4_enable_quotas(sb);
6677			if (err)
6678				goto restore_opts;
6679		}
6680	}
6681	/* Release old quota file names */
6682	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6683		kfree(old_opts.s_qf_names[i]);
6684#endif
6685	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6686		ext4_release_system_zone(sb);
6687
6688	/*
6689	 * Reinitialize lazy itable initialization thread based on
6690	 * current settings
6691	 */
6692	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6693		ext4_unregister_li_request(sb);
6694	else {
6695		ext4_group_t first_not_zeroed;
6696		first_not_zeroed = ext4_has_uninit_itable(sb);
6697		ext4_register_li_request(sb, first_not_zeroed);
6698	}
6699
6700	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6701		ext4_stop_mmpd(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
6702
 
 
6703	return 0;
6704
6705restore_opts:
6706	/*
6707	 * If there was a failing r/w to ro transition, we may need to
6708	 * re-enable quota
6709	 */
6710	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6711	    sb_any_quota_suspended(sb))
6712		dquot_resume(sb, -1);
6713
6714	alloc_ctx = ext4_writepages_down_write(sb);
6715	sb->s_flags = old_sb_flags;
6716	sbi->s_mount_opt = old_opts.s_mount_opt;
6717	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6718	sbi->s_resuid = old_opts.s_resuid;
6719	sbi->s_resgid = old_opts.s_resgid;
6720	sbi->s_commit_interval = old_opts.s_commit_interval;
6721	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6722	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6723	ext4_writepages_up_write(sb, alloc_ctx);
6724
6725	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6726		ext4_release_system_zone(sb);
6727#ifdef CONFIG_QUOTA
6728	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6729	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6730		to_free[i] = get_qf_name(sb, sbi, i);
6731		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6732	}
6733	synchronize_rcu();
6734	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6735		kfree(to_free[i]);
6736#endif
6737	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6738		ext4_stop_mmpd(sbi);
6739	return err;
6740}
6741
6742static int ext4_reconfigure(struct fs_context *fc)
6743{
6744	struct super_block *sb = fc->root->d_sb;
6745	int ret;
6746
6747	fc->s_fs_info = EXT4_SB(sb);
6748
6749	ret = ext4_check_opt_consistency(fc, sb);
6750	if (ret < 0)
6751		return ret;
6752
6753	ret = __ext4_remount(fc, sb);
6754	if (ret < 0)
6755		return ret;
6756
6757	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6758		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6759		 ext4_quota_mode(sb));
6760
6761	return 0;
6762}
6763
6764#ifdef CONFIG_QUOTA
6765static int ext4_statfs_project(struct super_block *sb,
6766			       kprojid_t projid, struct kstatfs *buf)
6767{
6768	struct kqid qid;
6769	struct dquot *dquot;
6770	u64 limit;
6771	u64 curblock;
6772
6773	qid = make_kqid_projid(projid);
6774	dquot = dqget(sb, qid);
6775	if (IS_ERR(dquot))
6776		return PTR_ERR(dquot);
6777	spin_lock(&dquot->dq_dqb_lock);
6778
6779	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6780			     dquot->dq_dqb.dqb_bhardlimit);
6781	limit >>= sb->s_blocksize_bits;
6782
6783	if (limit && buf->f_blocks > limit) {
6784		curblock = (dquot->dq_dqb.dqb_curspace +
6785			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6786		buf->f_blocks = limit;
6787		buf->f_bfree = buf->f_bavail =
6788			(buf->f_blocks > curblock) ?
6789			 (buf->f_blocks - curblock) : 0;
6790	}
6791
6792	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6793			     dquot->dq_dqb.dqb_ihardlimit);
6794	if (limit && buf->f_files > limit) {
6795		buf->f_files = limit;
6796		buf->f_ffree =
6797			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6798			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6799	}
6800
6801	spin_unlock(&dquot->dq_dqb_lock);
6802	dqput(dquot);
6803	return 0;
6804}
6805#endif
6806
6807static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6808{
6809	struct super_block *sb = dentry->d_sb;
6810	struct ext4_sb_info *sbi = EXT4_SB(sb);
6811	struct ext4_super_block *es = sbi->s_es;
6812	ext4_fsblk_t overhead = 0, resv_blocks;
 
6813	s64 bfree;
6814	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6815
6816	if (!test_opt(sb, MINIX_DF))
6817		overhead = sbi->s_overhead;
6818
6819	buf->f_type = EXT4_SUPER_MAGIC;
6820	buf->f_bsize = sb->s_blocksize;
6821	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6822	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6823		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6824	/* prevent underflow in case that few free space is available */
6825	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6826	buf->f_bavail = buf->f_bfree -
6827			(ext4_r_blocks_count(es) + resv_blocks);
6828	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6829		buf->f_bavail = 0;
6830	buf->f_files = le32_to_cpu(es->s_inodes_count);
6831	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6832	buf->f_namelen = EXT4_NAME_LEN;
6833	buf->f_fsid = uuid_to_fsid(es->s_uuid);
 
 
 
6834
6835#ifdef CONFIG_QUOTA
6836	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6837	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6838		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6839#endif
6840	return 0;
6841}
6842
 
 
 
 
 
 
 
 
 
6843
6844#ifdef CONFIG_QUOTA
6845
6846/*
6847 * Helper functions so that transaction is started before we acquire dqio_sem
6848 * to keep correct lock ordering of transaction > dqio_sem
6849 */
6850static inline struct inode *dquot_to_inode(struct dquot *dquot)
6851{
6852	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6853}
6854
6855static int ext4_write_dquot(struct dquot *dquot)
6856{
6857	int ret, err;
6858	handle_t *handle;
6859	struct inode *inode;
6860
6861	inode = dquot_to_inode(dquot);
6862	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6863				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6864	if (IS_ERR(handle))
6865		return PTR_ERR(handle);
6866	ret = dquot_commit(dquot);
6867	err = ext4_journal_stop(handle);
6868	if (!ret)
6869		ret = err;
6870	return ret;
6871}
6872
6873static int ext4_acquire_dquot(struct dquot *dquot)
6874{
6875	int ret, err;
6876	handle_t *handle;
6877
6878	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6879				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6880	if (IS_ERR(handle))
6881		return PTR_ERR(handle);
6882	ret = dquot_acquire(dquot);
6883	err = ext4_journal_stop(handle);
6884	if (!ret)
6885		ret = err;
6886	return ret;
6887}
6888
6889static int ext4_release_dquot(struct dquot *dquot)
6890{
6891	int ret, err;
6892	handle_t *handle;
6893
6894	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6895				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6896	if (IS_ERR(handle)) {
6897		/* Release dquot anyway to avoid endless cycle in dqput() */
6898		dquot_release(dquot);
6899		return PTR_ERR(handle);
6900	}
6901	ret = dquot_release(dquot);
6902	err = ext4_journal_stop(handle);
6903	if (!ret)
6904		ret = err;
6905	return ret;
6906}
6907
6908static int ext4_mark_dquot_dirty(struct dquot *dquot)
6909{
6910	struct super_block *sb = dquot->dq_sb;
6911
6912	if (ext4_is_quota_journalled(sb)) {
6913		dquot_mark_dquot_dirty(dquot);
6914		return ext4_write_dquot(dquot);
6915	} else {
6916		return dquot_mark_dquot_dirty(dquot);
6917	}
6918}
6919
6920static int ext4_write_info(struct super_block *sb, int type)
6921{
6922	int ret, err;
6923	handle_t *handle;
6924
6925	/* Data block + inode block */
6926	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6927	if (IS_ERR(handle))
6928		return PTR_ERR(handle);
6929	ret = dquot_commit_info(sb, type);
6930	err = ext4_journal_stop(handle);
6931	if (!ret)
6932		ret = err;
6933	return ret;
6934}
6935
6936static void lockdep_set_quota_inode(struct inode *inode, int subclass)
 
 
 
 
6937{
6938	struct ext4_inode_info *ei = EXT4_I(inode);
6939
6940	/* The first argument of lockdep_set_subclass has to be
6941	 * *exactly* the same as the argument to init_rwsem() --- in
6942	 * this case, in init_once() --- or lockdep gets unhappy
6943	 * because the name of the lock is set using the
6944	 * stringification of the argument to init_rwsem().
6945	 */
6946	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6947	lockdep_set_subclass(&ei->i_data_sem, subclass);
6948}
6949
6950/*
6951 * Standard function to be called on quota_on
6952 */
6953static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6954			 const struct path *path)
6955{
6956	int err;
6957
6958	if (!test_opt(sb, QUOTA))
6959		return -EINVAL;
6960
6961	/* Quotafile not on the same filesystem? */
6962	if (path->dentry->d_sb != sb)
6963		return -EXDEV;
6964
6965	/* Quota already enabled for this file? */
6966	if (IS_NOQUOTA(d_inode(path->dentry)))
6967		return -EBUSY;
6968
6969	/* Journaling quota? */
6970	if (EXT4_SB(sb)->s_qf_names[type]) {
6971		/* Quotafile not in fs root? */
6972		if (path->dentry->d_parent != sb->s_root)
6973			ext4_msg(sb, KERN_WARNING,
6974				"Quota file not on filesystem root. "
6975				"Journaled quota will not work");
6976		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6977	} else {
6978		/*
6979		 * Clear the flag just in case mount options changed since
6980		 * last time.
6981		 */
6982		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6983	}
6984
6985	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6986	err = dquot_quota_on(sb, type, format_id, path);
6987	if (!err) {
6988		struct inode *inode = d_inode(path->dentry);
6989		handle_t *handle;
6990
6991		/*
6992		 * Set inode flags to prevent userspace from messing with quota
6993		 * files. If this fails, we return success anyway since quotas
6994		 * are already enabled and this is not a hard failure.
6995		 */
6996		inode_lock(inode);
6997		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6998		if (IS_ERR(handle))
6999			goto unlock_inode;
7000		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7001		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7002				S_NOATIME | S_IMMUTABLE);
7003		err = ext4_mark_inode_dirty(handle, inode);
7004		ext4_journal_stop(handle);
7005	unlock_inode:
7006		inode_unlock(inode);
7007		if (err)
7008			dquot_quota_off(sb, type);
7009	}
7010	if (err)
7011		lockdep_set_quota_inode(path->dentry->d_inode,
7012					     I_DATA_SEM_NORMAL);
7013	return err;
7014}
7015
7016static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7017{
7018	switch (type) {
7019	case USRQUOTA:
7020		return qf_inum == EXT4_USR_QUOTA_INO;
7021	case GRPQUOTA:
7022		return qf_inum == EXT4_GRP_QUOTA_INO;
7023	case PRJQUOTA:
7024		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7025	default:
7026		BUG();
7027	}
7028}
7029
7030static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7031			     unsigned int flags)
7032{
7033	int err;
7034	struct inode *qf_inode;
7035	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7036		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7037		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7038		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7039	};
7040
7041	BUG_ON(!ext4_has_feature_quota(sb));
7042
7043	if (!qf_inums[type])
7044		return -EPERM;
7045
7046	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7047		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7048				qf_inums[type], type);
7049		return -EUCLEAN;
7050	}
7051
7052	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7053	if (IS_ERR(qf_inode)) {
7054		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7055				qf_inums[type], type);
7056		return PTR_ERR(qf_inode);
7057	}
7058
7059	/* Don't account quota for quota files to avoid recursion */
7060	qf_inode->i_flags |= S_NOQUOTA;
7061	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7062	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7063	if (err)
7064		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7065	iput(qf_inode);
7066
7067	return err;
7068}
7069
7070/* Enable usage tracking for all quota types. */
7071int ext4_enable_quotas(struct super_block *sb)
7072{
7073	int type, err = 0;
7074	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7075		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7076		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7077		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7078	};
7079	bool quota_mopt[EXT4_MAXQUOTAS] = {
7080		test_opt(sb, USRQUOTA),
7081		test_opt(sb, GRPQUOTA),
7082		test_opt(sb, PRJQUOTA),
7083	};
7084
7085	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7086	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7087		if (qf_inums[type]) {
7088			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7089				DQUOT_USAGE_ENABLED |
7090				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7091			if (err) {
7092				ext4_warning(sb,
7093					"Failed to enable quota tracking "
7094					"(type=%d, err=%d, ino=%lu). "
7095					"Please run e2fsck to fix.", type,
7096					err, qf_inums[type]);
7097
7098				ext4_quotas_off(sb, type);
7099				return err;
7100			}
7101		}
7102	}
7103	return 0;
7104}
7105
7106static int ext4_quota_off(struct super_block *sb, int type)
7107{
7108	struct inode *inode = sb_dqopt(sb)->files[type];
7109	handle_t *handle;
7110	int err;
7111
7112	/* Force all delayed allocation blocks to be allocated.
7113	 * Caller already holds s_umount sem */
7114	if (test_opt(sb, DELALLOC))
7115		sync_filesystem(sb);
7116
7117	if (!inode || !igrab(inode))
7118		goto out;
7119
7120	err = dquot_quota_off(sb, type);
7121	if (err || ext4_has_feature_quota(sb))
7122		goto out_put;
7123	/*
7124	 * When the filesystem was remounted read-only first, we cannot cleanup
7125	 * inode flags here. Bad luck but people should be using QUOTA feature
7126	 * these days anyway.
7127	 */
7128	if (sb_rdonly(sb))
7129		goto out_put;
7130
7131	inode_lock(inode);
7132	/*
7133	 * Update modification times of quota files when userspace can
7134	 * start looking at them. If we fail, we return success anyway since
7135	 * this is not a hard failure and quotas are already disabled.
7136	 */
7137	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7138	if (IS_ERR(handle)) {
7139		err = PTR_ERR(handle);
7140		goto out_unlock;
7141	}
7142	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7143	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7144	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7145	err = ext4_mark_inode_dirty(handle, inode);
7146	ext4_journal_stop(handle);
7147out_unlock:
7148	inode_unlock(inode);
7149out_put:
7150	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7151	iput(inode);
7152	return err;
7153out:
7154	return dquot_quota_off(sb, type);
7155}
7156
7157/* Read data from quotafile - avoid pagecache and such because we cannot afford
7158 * acquiring the locks... As quota files are never truncated and quota code
7159 * itself serializes the operations (and no one else should touch the files)
7160 * we don't have to be afraid of races */
7161static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7162			       size_t len, loff_t off)
7163{
7164	struct inode *inode = sb_dqopt(sb)->files[type];
7165	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
 
7166	int offset = off & (sb->s_blocksize - 1);
7167	int tocopy;
7168	size_t toread;
7169	struct buffer_head *bh;
7170	loff_t i_size = i_size_read(inode);
7171
7172	if (off > i_size)
7173		return 0;
7174	if (off+len > i_size)
7175		len = i_size-off;
7176	toread = len;
7177	while (toread > 0) {
7178		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7179		bh = ext4_bread(NULL, inode, blk, 0);
7180		if (IS_ERR(bh))
7181			return PTR_ERR(bh);
 
7182		if (!bh)	/* A hole? */
7183			memset(data, 0, tocopy);
7184		else
7185			memcpy(data, bh->b_data+offset, tocopy);
7186		brelse(bh);
7187		offset = 0;
7188		toread -= tocopy;
7189		data += tocopy;
7190		blk++;
7191	}
7192	return len;
7193}
7194
7195/* Write to quotafile (we know the transaction is already started and has
7196 * enough credits) */
7197static ssize_t ext4_quota_write(struct super_block *sb, int type,
7198				const char *data, size_t len, loff_t off)
7199{
7200	struct inode *inode = sb_dqopt(sb)->files[type];
7201	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7202	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7203	int retries = 0;
7204	struct buffer_head *bh;
7205	handle_t *handle = journal_current_handle();
7206
7207	if (!handle) {
7208		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7209			" cancelled because transaction is not started",
7210			(unsigned long long)off, (unsigned long long)len);
7211		return -EIO;
7212	}
7213	/*
7214	 * Since we account only one data block in transaction credits,
7215	 * then it is impossible to cross a block boundary.
7216	 */
7217	if (sb->s_blocksize - offset < len) {
7218		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7219			" cancelled because not block aligned",
7220			(unsigned long long)off, (unsigned long long)len);
7221		return -EIO;
7222	}
7223
7224	do {
7225		bh = ext4_bread(handle, inode, blk,
7226				EXT4_GET_BLOCKS_CREATE |
7227				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7228	} while (PTR_ERR(bh) == -ENOSPC &&
7229		 ext4_should_retry_alloc(inode->i_sb, &retries));
7230	if (IS_ERR(bh))
7231		return PTR_ERR(bh);
7232	if (!bh)
7233		goto out;
7234	BUFFER_TRACE(bh, "get write access");
7235	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7236	if (err) {
7237		brelse(bh);
7238		return err;
7239	}
7240	lock_buffer(bh);
7241	memcpy(bh->b_data+offset, data, len);
7242	flush_dcache_page(bh->b_page);
7243	unlock_buffer(bh);
7244	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7245	brelse(bh);
7246out:
 
 
7247	if (inode->i_size < off + len) {
7248		i_size_write(inode, off + len);
7249		EXT4_I(inode)->i_disksize = inode->i_size;
7250		err2 = ext4_mark_inode_dirty(handle, inode);
7251		if (unlikely(err2 && !err))
7252			err = err2;
7253	}
7254	return err ? err : len;
7255}
 
7256#endif
7257
7258#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 
 
 
 
 
 
7259static inline void register_as_ext2(void)
7260{
7261	int err = register_filesystem(&ext2_fs_type);
7262	if (err)
7263		printk(KERN_WARNING
7264		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7265}
7266
7267static inline void unregister_as_ext2(void)
7268{
7269	unregister_filesystem(&ext2_fs_type);
7270}
7271
7272static inline int ext2_feature_set_ok(struct super_block *sb)
7273{
7274	if (ext4_has_unknown_ext2_incompat_features(sb))
7275		return 0;
7276	if (sb_rdonly(sb))
7277		return 1;
7278	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7279		return 0;
7280	return 1;
7281}
 
7282#else
7283static inline void register_as_ext2(void) { }
7284static inline void unregister_as_ext2(void) { }
7285static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7286#endif
7287
 
7288static inline void register_as_ext3(void)
7289{
7290	int err = register_filesystem(&ext3_fs_type);
7291	if (err)
7292		printk(KERN_WARNING
7293		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7294}
7295
7296static inline void unregister_as_ext3(void)
7297{
7298	unregister_filesystem(&ext3_fs_type);
7299}
7300
7301static inline int ext3_feature_set_ok(struct super_block *sb)
7302{
7303	if (ext4_has_unknown_ext3_incompat_features(sb))
7304		return 0;
7305	if (!ext4_has_feature_journal(sb))
7306		return 0;
7307	if (sb_rdonly(sb))
7308		return 1;
7309	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7310		return 0;
7311	return 1;
7312}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7313
7314static void ext4_kill_sb(struct super_block *sb)
7315{
7316	struct ext4_sb_info *sbi = EXT4_SB(sb);
7317	struct bdev_handle *handle = sbi ? sbi->s_journal_bdev_handle : NULL;
7318
7319	kill_block_super(sb);
 
 
7320
7321	if (handle)
7322		bdev_release(handle);
 
 
 
 
 
 
 
 
 
 
 
7323}
7324
7325static struct file_system_type ext4_fs_type = {
7326	.owner			= THIS_MODULE,
7327	.name			= "ext4",
7328	.init_fs_context	= ext4_init_fs_context,
7329	.parameters		= ext4_param_specs,
7330	.kill_sb		= ext4_kill_sb,
7331	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7332};
7333MODULE_ALIAS_FS("ext4");
7334
7335/* Shared across all ext4 file systems */
7336wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
 
7337
7338static int __init ext4_init_fs(void)
7339{
7340	int i, err;
7341
7342	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7343	ext4_li_info = NULL;
 
7344
7345	/* Build-time check for flags consistency */
7346	ext4_check_flag_values();
7347
7348	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
 
7349		init_waitqueue_head(&ext4__ioend_wq[i]);
 
7350
7351	err = ext4_init_es();
7352	if (err)
7353		return err;
7354
7355	err = ext4_init_pending();
7356	if (err)
7357		goto out7;
7358
7359	err = ext4_init_post_read_processing();
7360	if (err)
7361		goto out6;
7362
7363	err = ext4_init_pageio();
7364	if (err)
7365		goto out5;
 
7366
7367	err = ext4_init_system_zone();
7368	if (err)
7369		goto out4;
7370
7371	err = ext4_init_sysfs();
7372	if (err)
7373		goto out3;
7374
7375	err = ext4_init_mballoc();
7376	if (err)
7377		goto out2;
7378	err = init_inodecache();
7379	if (err)
7380		goto out1;
7381
7382	err = ext4_fc_init_dentry_cache();
7383	if (err)
7384		goto out05;
7385
7386	register_as_ext3();
7387	register_as_ext2();
7388	err = register_filesystem(&ext4_fs_type);
7389	if (err)
7390		goto out;
7391
7392	return 0;
7393out:
7394	unregister_as_ext2();
7395	unregister_as_ext3();
7396	ext4_fc_destroy_dentry_cache();
7397out05:
7398	destroy_inodecache();
7399out1:
 
 
7400	ext4_exit_mballoc();
7401out2:
7402	ext4_exit_sysfs();
7403out3:
7404	ext4_exit_system_zone();
7405out4:
7406	ext4_exit_pageio();
 
 
7407out5:
7408	ext4_exit_post_read_processing();
7409out6:
7410	ext4_exit_pending();
7411out7:
7412	ext4_exit_es();
7413
7414	return err;
7415}
7416
7417static void __exit ext4_exit_fs(void)
7418{
7419	ext4_destroy_lazyinit_thread();
7420	unregister_as_ext2();
7421	unregister_as_ext3();
7422	unregister_filesystem(&ext4_fs_type);
7423	ext4_fc_destroy_dentry_cache();
7424	destroy_inodecache();
 
7425	ext4_exit_mballoc();
7426	ext4_exit_sysfs();
 
 
7427	ext4_exit_system_zone();
7428	ext4_exit_pageio();
7429	ext4_exit_post_read_processing();
7430	ext4_exit_es();
7431	ext4_exit_pending();
7432}
7433
7434MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7435MODULE_DESCRIPTION("Fourth Extended Filesystem");
7436MODULE_LICENSE("GPL");
7437MODULE_SOFTDEP("pre: crc32c");
7438module_init(ext4_init_fs)
7439module_exit(ext4_exit_fs)