Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/fs/ext4/super.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Big-endian to little-endian byte-swapping/bitmaps by
  16 *        David S. Miller (davem@caip.rutgers.edu), 1995
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/string.h>
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/vmalloc.h>
  24#include <linux/jbd2.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
 
  28#include <linux/parser.h>
  29#include <linux/buffer_head.h>
  30#include <linux/exportfs.h>
  31#include <linux/vfs.h>
  32#include <linux/random.h>
  33#include <linux/mount.h>
  34#include <linux/namei.h>
  35#include <linux/quotaops.h>
  36#include <linux/seq_file.h>
  37#include <linux/proc_fs.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/cleancache.h>
  42#include <asm/uaccess.h>
  43
 
 
  44#include <linux/kthread.h>
  45#include <linux/freezer.h>
 
 
 
  46
  47#include "ext4.h"
  48#include "ext4_extents.h"
  49#include "ext4_jbd2.h"
  50#include "xattr.h"
  51#include "acl.h"
  52#include "mballoc.h"
 
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/ext4.h>
  56
  57static struct proc_dir_entry *ext4_proc_root;
  58static struct kset *ext4_kset;
  59static struct ext4_lazy_init *ext4_li_info;
  60static struct mutex ext4_li_mtx;
  61static struct ext4_features *ext4_feat;
  62
  63static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  64			     unsigned long journal_devnum);
  65static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  66static int ext4_commit_super(struct super_block *sb, int sync);
  67static void ext4_mark_recovery_complete(struct super_block *sb,
 
  68					struct ext4_super_block *es);
  69static void ext4_clear_journal_err(struct super_block *sb,
  70				   struct ext4_super_block *es);
  71static int ext4_sync_fs(struct super_block *sb, int wait);
  72static const char *ext4_decode_error(struct super_block *sb, int errno,
  73				     char nbuf[16]);
  74static int ext4_remount(struct super_block *sb, int *flags, char *data);
  75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  76static int ext4_unfreeze(struct super_block *sb);
  77static void ext4_write_super(struct super_block *sb);
  78static int ext4_freeze(struct super_block *sb);
  79static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  80		       const char *dev_name, void *data);
  81static inline int ext2_feature_set_ok(struct super_block *sb);
  82static inline int ext3_feature_set_ok(struct super_block *sb);
  83static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  84static void ext4_destroy_lazyinit_thread(void);
  85static void ext4_unregister_li_request(struct super_block *sb);
  86static void ext4_clear_request_list(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87
  88#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
 
 
 
 
 
 
 
 
  89static struct file_system_type ext2_fs_type = {
  90	.owner		= THIS_MODULE,
  91	.name		= "ext2",
  92	.mount		= ext4_mount,
  93	.kill_sb	= kill_block_super,
  94	.fs_flags	= FS_REQUIRES_DEV,
 
  95};
  96#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 
 
  97#else
  98#define IS_EXT2_SB(sb) (0)
  99#endif
 100
 101
 102#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
 103static struct file_system_type ext3_fs_type = {
 104	.owner		= THIS_MODULE,
 105	.name		= "ext3",
 106	.mount		= ext4_mount,
 107	.kill_sb	= kill_block_super,
 108	.fs_flags	= FS_REQUIRES_DEV,
 
 109};
 110#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 111#else
 112#define IS_EXT3_SB(sb) (0)
 113#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115static int ext4_verify_csum_type(struct super_block *sb,
 116				 struct ext4_super_block *es)
 117{
 118	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
 119					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 120		return 1;
 121
 122	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 123}
 124
 125static __le32 ext4_superblock_csum(struct super_block *sb,
 126				   struct ext4_super_block *es)
 127{
 128	struct ext4_sb_info *sbi = EXT4_SB(sb);
 129	int offset = offsetof(struct ext4_super_block, s_checksum);
 130	__u32 csum;
 131
 132	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 133
 134	return cpu_to_le32(csum);
 135}
 136
 137int ext4_superblock_csum_verify(struct super_block *sb,
 138				struct ext4_super_block *es)
 139{
 140	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
 141				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 142		return 1;
 143
 144	return es->s_checksum == ext4_superblock_csum(sb, es);
 145}
 146
 147void ext4_superblock_csum_set(struct super_block *sb,
 148			      struct ext4_super_block *es)
 149{
 150	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
 151		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 
 152		return;
 153
 154	es->s_checksum = ext4_superblock_csum(sb, es);
 155}
 156
 157void *ext4_kvmalloc(size_t size, gfp_t flags)
 158{
 159	void *ret;
 160
 161	ret = kmalloc(size, flags);
 162	if (!ret)
 163		ret = __vmalloc(size, flags, PAGE_KERNEL);
 164	return ret;
 165}
 166
 167void *ext4_kvzalloc(size_t size, gfp_t flags)
 168{
 169	void *ret;
 170
 171	ret = kzalloc(size, flags);
 172	if (!ret)
 173		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
 174	return ret;
 175}
 176
 177void ext4_kvfree(void *ptr)
 178{
 179	if (is_vmalloc_addr(ptr))
 180		vfree(ptr);
 181	else
 182		kfree(ptr);
 183
 184}
 185
 186ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 187			       struct ext4_group_desc *bg)
 188{
 189	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 190		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 191		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 192}
 193
 194ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 195			       struct ext4_group_desc *bg)
 196{
 197	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 198		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 199		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 200}
 201
 202ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 203			      struct ext4_group_desc *bg)
 204{
 205	return le32_to_cpu(bg->bg_inode_table_lo) |
 206		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 207		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 208}
 209
 210__u32 ext4_free_group_clusters(struct super_block *sb,
 211			       struct ext4_group_desc *bg)
 212{
 213	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 214		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 215		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 216}
 217
 218__u32 ext4_free_inodes_count(struct super_block *sb,
 219			      struct ext4_group_desc *bg)
 220{
 221	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 222		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 223		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 224}
 225
 226__u32 ext4_used_dirs_count(struct super_block *sb,
 227			      struct ext4_group_desc *bg)
 228{
 229	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 230		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 231		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 232}
 233
 234__u32 ext4_itable_unused_count(struct super_block *sb,
 235			      struct ext4_group_desc *bg)
 236{
 237	return le16_to_cpu(bg->bg_itable_unused_lo) |
 238		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 239		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 240}
 241
 242void ext4_block_bitmap_set(struct super_block *sb,
 243			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 244{
 245	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 246	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 247		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 248}
 249
 250void ext4_inode_bitmap_set(struct super_block *sb,
 251			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 252{
 253	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 254	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 255		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 256}
 257
 258void ext4_inode_table_set(struct super_block *sb,
 259			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 260{
 261	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 262	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 263		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 264}
 265
 266void ext4_free_group_clusters_set(struct super_block *sb,
 267				  struct ext4_group_desc *bg, __u32 count)
 268{
 269	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 270	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 271		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 272}
 273
 274void ext4_free_inodes_set(struct super_block *sb,
 275			  struct ext4_group_desc *bg, __u32 count)
 276{
 277	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 278	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 279		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 280}
 281
 282void ext4_used_dirs_set(struct super_block *sb,
 283			  struct ext4_group_desc *bg, __u32 count)
 284{
 285	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 286	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 287		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 288}
 289
 290void ext4_itable_unused_set(struct super_block *sb,
 291			  struct ext4_group_desc *bg, __u32 count)
 292{
 293	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 294	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 295		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 296}
 297
 298
 299/* Just increment the non-pointer handle value */
 300static handle_t *ext4_get_nojournal(void)
 301{
 302	handle_t *handle = current->journal_info;
 303	unsigned long ref_cnt = (unsigned long)handle;
 304
 305	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
 306
 307	ref_cnt++;
 308	handle = (handle_t *)ref_cnt;
 309
 310	current->journal_info = handle;
 311	return handle;
 312}
 313
 314
 315/* Decrement the non-pointer handle value */
 316static void ext4_put_nojournal(handle_t *handle)
 317{
 318	unsigned long ref_cnt = (unsigned long)handle;
 319
 320	BUG_ON(ref_cnt == 0);
 321
 322	ref_cnt--;
 323	handle = (handle_t *)ref_cnt;
 324
 325	current->journal_info = handle;
 326}
 
 
 
 
 
 
 
 
 327
 328/*
 329 * Wrappers for jbd2_journal_start/end.
 
 330 *
 331 * The only special thing we need to do here is to make sure that all
 332 * journal_end calls result in the superblock being marked dirty, so
 333 * that sync() will call the filesystem's write_super callback if
 334 * appropriate.
 
 335 *
 336 * To avoid j_barrier hold in userspace when a user calls freeze(),
 337 * ext4 prevents a new handle from being started by s_frozen, which
 338 * is in an upper layer.
 339 */
 340handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
 341{
 342	journal_t *journal;
 343	handle_t  *handle;
 
 
 
 
 
 344
 345	trace_ext4_journal_start(sb, nblocks, _RET_IP_);
 346	if (sb->s_flags & MS_RDONLY)
 347		return ERR_PTR(-EROFS);
 348
 349	journal = EXT4_SB(sb)->s_journal;
 350	handle = ext4_journal_current_handle();
 351
 352	/*
 353	 * If a handle has been started, it should be allowed to
 354	 * finish, otherwise deadlock could happen between freeze
 355	 * and others(e.g. truncate) due to the restart of the
 356	 * journal handle if the filesystem is forzen and active
 357	 * handles are not stopped.
 358	 */
 359	if (!handle)
 360		vfs_check_frozen(sb, SB_FREEZE_TRANS);
 361
 362	if (!journal)
 363		return ext4_get_nojournal();
 364	/*
 365	 * Special case here: if the journal has aborted behind our
 366	 * backs (eg. EIO in the commit thread), then we still need to
 367	 * take the FS itself readonly cleanly.
 
 
 
 368	 */
 369	if (is_journal_aborted(journal)) {
 370		ext4_abort(sb, "Detected aborted journal");
 371		return ERR_PTR(-EROFS);
 372	}
 373	return jbd2_journal_start(journal, nblocks);
 374}
 375
 376/*
 377 * The only special thing we need to do here is to make sure that all
 378 * jbd2_journal_stop calls result in the superblock being marked dirty, so
 379 * that sync() will call the filesystem's write_super callback if
 380 * appropriate.
 381 */
 382int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
 383{
 384	struct super_block *sb;
 385	int err;
 386	int rc;
 
 387
 388	if (!ext4_handle_valid(handle)) {
 389		ext4_put_nojournal(handle);
 390		return 0;
 391	}
 392	sb = handle->h_transaction->t_journal->j_private;
 393	err = handle->h_err;
 394	rc = jbd2_journal_stop(handle);
 395
 396	if (!err)
 397		err = rc;
 398	if (err)
 399		__ext4_std_error(sb, where, line, err);
 400	return err;
 
 
 
 
 
 
 
 
 401}
 402
 403void ext4_journal_abort_handle(const char *caller, unsigned int line,
 404			       const char *err_fn, struct buffer_head *bh,
 405			       handle_t *handle, int err)
 406{
 407	char nbuf[16];
 408	const char *errstr = ext4_decode_error(NULL, err, nbuf);
 
 
 
 
 
 
 
 
 
 
 
 409
 410	BUG_ON(!ext4_handle_valid(handle));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412	if (bh)
 413		BUFFER_TRACE(bh, "abort");
 
 414
 415	if (!handle->h_err)
 416		handle->h_err = err;
 
 
 
 
 
 
 
 417
 418	if (is_handle_aborted(handle))
 419		return;
 
 
 420
 421	printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
 422	       caller, line, errstr, err_fn);
 
 423
 424	jbd2_journal_abort_handle(handle);
 
 
 
 
 425}
 426
 427static void __save_error_info(struct super_block *sb, const char *func,
 428			    unsigned int line)
 429{
 430	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 431
 432	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 433	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
 434	es->s_last_error_time = cpu_to_le32(get_seconds());
 435	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
 436	es->s_last_error_line = cpu_to_le32(line);
 437	if (!es->s_first_error_time) {
 438		es->s_first_error_time = es->s_last_error_time;
 439		strncpy(es->s_first_error_func, func,
 440			sizeof(es->s_first_error_func));
 441		es->s_first_error_line = cpu_to_le32(line);
 442		es->s_first_error_ino = es->s_last_error_ino;
 443		es->s_first_error_block = es->s_last_error_block;
 444	}
 445	/*
 446	 * Start the daily error reporting function if it hasn't been
 447	 * started already
 448	 */
 449	if (!es->s_error_count)
 450		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
 451	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
 452}
 453
 454static void save_error_info(struct super_block *sb, const char *func,
 455			    unsigned int line)
 456{
 457	__save_error_info(sb, func, line);
 458	ext4_commit_super(sb, 1);
 459}
 460
 461/*
 462 * The del_gendisk() function uninitializes the disk-specific data
 463 * structures, including the bdi structure, without telling anyone
 464 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 465 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 466 * This is a kludge to prevent these oops until we can put in a proper
 467 * hook in del_gendisk() to inform the VFS and file system layers.
 468 */
 469static int block_device_ejected(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470{
 471	struct inode *bd_inode = sb->s_bdev->bd_inode;
 472	struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
 473
 474	return bdi->dev == NULL;
 
 
 
 475}
 476
 477static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 
 
 478{
 479	struct super_block		*sb = journal->j_private;
 480	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 481	int				error = is_journal_aborted(journal);
 482	struct ext4_journal_cb_entry	*jce, *tmp;
 483
 484	spin_lock(&sbi->s_md_lock);
 485	list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
 486		list_del_init(&jce->jce_list);
 487		spin_unlock(&sbi->s_md_lock);
 488		jce->jce_func(sb, jce, error);
 489		spin_lock(&sbi->s_md_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	}
 491	spin_unlock(&sbi->s_md_lock);
 492}
 493
 494/* Deal with the reporting of failure conditions on a filesystem such as
 495 * inconsistencies detected or read IO failures.
 496 *
 497 * On ext2, we can store the error state of the filesystem in the
 498 * superblock.  That is not possible on ext4, because we may have other
 499 * write ordering constraints on the superblock which prevent us from
 500 * writing it out straight away; and given that the journal is about to
 501 * be aborted, we can't rely on the current, or future, transactions to
 502 * write out the superblock safely.
 503 *
 504 * We'll just use the jbd2_journal_abort() error code to record an error in
 505 * the journal instead.  On recovery, the journal will complain about
 506 * that error until we've noted it down and cleared it.
 
 
 
 
 
 
 507 */
 508
 509static void ext4_handle_error(struct super_block *sb)
 
 510{
 511	if (sb->s_flags & MS_RDONLY)
 512		return;
 513
 514	if (!test_opt(sb, ERRORS_CONT)) {
 515		journal_t *journal = EXT4_SB(sb)->s_journal;
 
 516
 517		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 
 518		if (journal)
 519			jbd2_journal_abort(journal, -EIO);
 520	}
 521	if (test_opt(sb, ERRORS_RO)) {
 522		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 523		sb->s_flags |= MS_RDONLY;
 
 
 
 
 
 
 
 
 
 
 524	}
 525	if (test_opt(sb, ERRORS_PANIC))
 
 
 
 
 
 
 526		panic("EXT4-fs (device %s): panic forced after error\n",
 527			sb->s_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528}
 529
 
 
 
 
 530void __ext4_error(struct super_block *sb, const char *function,
 531		  unsigned int line, const char *fmt, ...)
 
 532{
 533	struct va_format vaf;
 534	va_list args;
 535
 536	va_start(args, fmt);
 537	vaf.fmt = fmt;
 538	vaf.va = &args;
 539	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 540	       sb->s_id, function, line, current->comm, &vaf);
 541	va_end(args);
 542	save_error_info(sb, function, line);
 543
 544	ext4_handle_error(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 545}
 546
 547void ext4_error_inode(struct inode *inode, const char *function,
 548		      unsigned int line, ext4_fsblk_t block,
 549		      const char *fmt, ...)
 550{
 551	va_list args;
 552	struct va_format vaf;
 553	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 554
 555	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 556	es->s_last_error_block = cpu_to_le64(block);
 557	save_error_info(inode->i_sb, function, line);
 558	va_start(args, fmt);
 559	vaf.fmt = fmt;
 560	vaf.va = &args;
 561	if (block)
 562		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 563		       "inode #%lu: block %llu: comm %s: %pV\n",
 564		       inode->i_sb->s_id, function, line, inode->i_ino,
 565		       block, current->comm, &vaf);
 566	else
 567		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 568		       "inode #%lu: comm %s: %pV\n",
 569		       inode->i_sb->s_id, function, line, inode->i_ino,
 570		       current->comm, &vaf);
 571	va_end(args);
 572
 573	ext4_handle_error(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574}
 575
 576void ext4_error_file(struct file *file, const char *function,
 577		     unsigned int line, ext4_fsblk_t block,
 578		     const char *fmt, ...)
 579{
 580	va_list args;
 581	struct va_format vaf;
 582	struct ext4_super_block *es;
 583	struct inode *inode = file->f_dentry->d_inode;
 584	char pathname[80], *path;
 585
 586	es = EXT4_SB(inode->i_sb)->s_es;
 587	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 588	save_error_info(inode->i_sb, function, line);
 589	path = d_path(&(file->f_path), pathname, sizeof(pathname));
 590	if (IS_ERR(path))
 591		path = "(unknown)";
 592	va_start(args, fmt);
 593	vaf.fmt = fmt;
 594	vaf.va = &args;
 595	if (block)
 596		printk(KERN_CRIT
 597		       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 598		       "block %llu: comm %s: path %s: %pV\n",
 599		       inode->i_sb->s_id, function, line, inode->i_ino,
 600		       block, current->comm, path, &vaf);
 601	else
 602		printk(KERN_CRIT
 603		       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 604		       "comm %s: path %s: %pV\n",
 605		       inode->i_sb->s_id, function, line, inode->i_ino,
 606		       current->comm, path, &vaf);
 607	va_end(args);
 608
 609	ext4_handle_error(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610}
 611
 612static const char *ext4_decode_error(struct super_block *sb, int errno,
 613				     char nbuf[16])
 614{
 615	char *errstr = NULL;
 616
 617	switch (errno) {
 
 
 
 
 
 
 618	case -EIO:
 619		errstr = "IO failure";
 620		break;
 621	case -ENOMEM:
 622		errstr = "Out of memory";
 623		break;
 624	case -EROFS:
 625		if (!sb || (EXT4_SB(sb)->s_journal &&
 626			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 627			errstr = "Journal has aborted";
 628		else
 629			errstr = "Readonly filesystem";
 630		break;
 631	default:
 632		/* If the caller passed in an extra buffer for unknown
 633		 * errors, textualise them now.  Else we just return
 634		 * NULL. */
 635		if (nbuf) {
 636			/* Check for truncated error codes... */
 637			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 638				errstr = nbuf;
 639		}
 640		break;
 641	}
 642
 643	return errstr;
 644}
 645
 646/* __ext4_std_error decodes expected errors from journaling functions
 647 * automatically and invokes the appropriate error response.  */
 648
 649void __ext4_std_error(struct super_block *sb, const char *function,
 650		      unsigned int line, int errno)
 651{
 652	char nbuf[16];
 653	const char *errstr;
 654
 
 
 
 655	/* Special case: if the error is EROFS, and we're not already
 656	 * inside a transaction, then there's really no point in logging
 657	 * an error. */
 658	if (errno == -EROFS && journal_current_handle() == NULL &&
 659	    (sb->s_flags & MS_RDONLY))
 660		return;
 661
 662	errstr = ext4_decode_error(sb, errno, nbuf);
 663	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 664	       sb->s_id, function, line, errstr);
 665	save_error_info(sb, function, line);
 
 
 666
 667	ext4_handle_error(sb);
 668}
 669
 670/*
 671 * ext4_abort is a much stronger failure handler than ext4_error.  The
 672 * abort function may be used to deal with unrecoverable failures such
 673 * as journal IO errors or ENOMEM at a critical moment in log management.
 674 *
 675 * We unconditionally force the filesystem into an ABORT|READONLY state,
 676 * unless the error response on the fs has been set to panic in which
 677 * case we take the easy way out and panic immediately.
 678 */
 679
 680void __ext4_abort(struct super_block *sb, const char *function,
 681		unsigned int line, const char *fmt, ...)
 682{
 
 683	va_list args;
 684
 685	save_error_info(sb, function, line);
 
 
 
 
 
 
 686	va_start(args, fmt);
 687	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
 688	       function, line);
 689	vprintk(fmt, args);
 690	printk("\n");
 
 
 691	va_end(args);
 
 692
 693	if ((sb->s_flags & MS_RDONLY) == 0) {
 694		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 695		sb->s_flags |= MS_RDONLY;
 696		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 697		if (EXT4_SB(sb)->s_journal)
 698			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
 699		save_error_info(sb, function, line);
 700	}
 701	if (test_opt(sb, ERRORS_PANIC))
 702		panic("EXT4-fs panic from previous error\n");
 703}
 704
 705void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
 
 706{
 707	struct va_format vaf;
 708	va_list args;
 709
 
 
 
 710	va_start(args, fmt);
 711	vaf.fmt = fmt;
 712	vaf.va = &args;
 713	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 
 714	va_end(args);
 715}
 716
 717void __ext4_warning(struct super_block *sb, const char *function,
 718		    unsigned int line, const char *fmt, ...)
 719{
 720	struct va_format vaf;
 721	va_list args;
 722
 
 
 
 723	va_start(args, fmt);
 724	vaf.fmt = fmt;
 725	vaf.va = &args;
 726	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 727	       sb->s_id, function, line, &vaf);
 
 728	va_end(args);
 729}
 730
 731void __ext4_grp_locked_error(const char *function, unsigned int line,
 732			     struct super_block *sb, ext4_group_t grp,
 733			     unsigned long ino, ext4_fsblk_t block,
 734			     const char *fmt, ...)
 735__releases(bitlock)
 736__acquires(bitlock)
 737{
 738	struct va_format vaf;
 739	va_list args;
 740	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 741
 742	es->s_last_error_ino = cpu_to_le32(ino);
 743	es->s_last_error_block = cpu_to_le64(block);
 744	__save_error_info(sb, function, line);
 745
 746	va_start(args, fmt);
 
 747
 748	vaf.fmt = fmt;
 749	vaf.va = &args;
 750	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 751	       sb->s_id, function, line, grp);
 752	if (ino)
 753		printk(KERN_CONT "inode %lu: ", ino);
 754	if (block)
 755		printk(KERN_CONT "block %llu:", (unsigned long long) block);
 756	printk(KERN_CONT "%pV\n", &vaf);
 757	va_end(args);
 
 
 
 
 
 758
 759	if (test_opt(sb, ERRORS_CONT)) {
 760		ext4_commit_super(sb, 0);
 
 
 
 
 
 
 
 761		return;
 762	}
 763
 764	ext4_unlock_group(sb, grp);
 765	ext4_handle_error(sb);
 766	/*
 767	 * We only get here in the ERRORS_RO case; relocking the group
 768	 * may be dangerous, but nothing bad will happen since the
 769	 * filesystem will have already been marked read/only and the
 770	 * journal has been aborted.  We return 1 as a hint to callers
 771	 * who might what to use the return value from
 772	 * ext4_grp_locked_error() to distinguish between the
 773	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
 774	 * aggressively from the ext4 function in question, with a
 775	 * more appropriate error code.
 776	 */
 777	ext4_lock_group(sb, grp);
 778	return;
 779}
 780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781void ext4_update_dynamic_rev(struct super_block *sb)
 782{
 783	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 784
 785	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
 786		return;
 787
 788	ext4_warning(sb,
 789		     "updating to rev %d because of new feature flag, "
 790		     "running e2fsck is recommended",
 791		     EXT4_DYNAMIC_REV);
 792
 793	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
 794	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
 795	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
 796	/* leave es->s_feature_*compat flags alone */
 797	/* es->s_uuid will be set by e2fsck if empty */
 798
 799	/*
 800	 * The rest of the superblock fields should be zero, and if not it
 801	 * means they are likely already in use, so leave them alone.  We
 802	 * can leave it up to e2fsck to clean up any inconsistencies there.
 803	 */
 804}
 805
 806/*
 807 * Open the external journal device
 808 */
 809static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
 810{
 811	struct block_device *bdev;
 812	char b[BDEVNAME_SIZE];
 813
 814	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
 815	if (IS_ERR(bdev))
 816		goto fail;
 817	return bdev;
 818
 819fail:
 820	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
 821			__bdevname(dev, b), PTR_ERR(bdev));
 822	return NULL;
 823}
 824
 825/*
 826 * Release the journal device
 827 */
 828static int ext4_blkdev_put(struct block_device *bdev)
 829{
 830	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 831}
 832
 833static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
 834{
 835	struct block_device *bdev;
 836	int ret = -ENODEV;
 837
 838	bdev = sbi->journal_bdev;
 839	if (bdev) {
 840		ret = ext4_blkdev_put(bdev);
 841		sbi->journal_bdev = NULL;
 842	}
 843	return ret;
 844}
 845
 846static inline struct inode *orphan_list_entry(struct list_head *l)
 847{
 848	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
 849}
 850
 851static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
 852{
 853	struct list_head *l;
 854
 855	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
 856		 le32_to_cpu(sbi->s_es->s_last_orphan));
 857
 858	printk(KERN_ERR "sb_info orphan list:\n");
 859	list_for_each(l, &sbi->s_orphan) {
 860		struct inode *inode = orphan_list_entry(l);
 861		printk(KERN_ERR "  "
 862		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
 863		       inode->i_sb->s_id, inode->i_ino, inode,
 864		       inode->i_mode, inode->i_nlink,
 865		       NEXT_ORPHAN(inode));
 866	}
 867}
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static void ext4_put_super(struct super_block *sb)
 870{
 871	struct ext4_sb_info *sbi = EXT4_SB(sb);
 872	struct ext4_super_block *es = sbi->s_es;
 873	int i, err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 875	ext4_unregister_li_request(sb);
 876	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
 877
 878	flush_workqueue(sbi->dio_unwritten_wq);
 879	destroy_workqueue(sbi->dio_unwritten_wq);
 
 880
 881	lock_super(sb);
 882	if (sbi->s_journal) {
 
 883		err = jbd2_journal_destroy(sbi->s_journal);
 884		sbi->s_journal = NULL;
 885		if (err < 0)
 886			ext4_abort(sb, "Couldn't clean up the journal");
 
 887	}
 888
 889	del_timer(&sbi->s_err_report);
 
 890	ext4_release_system_zone(sb);
 891	ext4_mb_release(sb);
 892	ext4_ext_release(sb);
 893	ext4_xattr_put_super(sb);
 894
 895	if (!(sb->s_flags & MS_RDONLY)) {
 896		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
 
 897		es->s_state = cpu_to_le16(sbi->s_mount_state);
 898	}
 899	if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
 900		ext4_commit_super(sb, 1);
 901
 902	if (sbi->s_proc) {
 903		remove_proc_entry("options", sbi->s_proc);
 904		remove_proc_entry(sb->s_id, ext4_proc_root);
 905	}
 906	kobject_del(&sbi->s_kobj);
 907
 908	for (i = 0; i < sbi->s_gdb_count; i++)
 909		brelse(sbi->s_group_desc[i]);
 910	ext4_kvfree(sbi->s_group_desc);
 911	ext4_kvfree(sbi->s_flex_groups);
 912	percpu_counter_destroy(&sbi->s_freeclusters_counter);
 913	percpu_counter_destroy(&sbi->s_freeinodes_counter);
 914	percpu_counter_destroy(&sbi->s_dirs_counter);
 915	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 916	brelse(sbi->s_sbh);
 917#ifdef CONFIG_QUOTA
 918	for (i = 0; i < MAXQUOTAS; i++)
 919		kfree(sbi->s_qf_names[i]);
 920#endif
 921
 922	/* Debugging code just in case the in-memory inode orphan list
 923	 * isn't empty.  The on-disk one can be non-empty if we've
 924	 * detected an error and taken the fs readonly, but the
 925	 * in-memory list had better be clean by this point. */
 926	if (!list_empty(&sbi->s_orphan))
 927		dump_orphan_list(sb, sbi);
 928	J_ASSERT(list_empty(&sbi->s_orphan));
 929
 
 930	invalidate_bdev(sb->s_bdev);
 931	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
 932		/*
 933		 * Invalidate the journal device's buffers.  We don't want them
 934		 * floating about in memory - the physical journal device may
 935		 * hotswapped, and it breaks the `ro-after' testing code.
 936		 */
 937		sync_blockdev(sbi->journal_bdev);
 938		invalidate_bdev(sbi->journal_bdev);
 939		ext4_blkdev_remove(sbi);
 940	}
 941	if (sbi->s_mmp_tsk)
 942		kthread_stop(sbi->s_mmp_tsk);
 
 
 
 
 
 
 
 
 943	sb->s_fs_info = NULL;
 944	/*
 945	 * Now that we are completely done shutting down the
 946	 * superblock, we need to actually destroy the kobject.
 947	 */
 948	unlock_super(sb);
 949	kobject_put(&sbi->s_kobj);
 950	wait_for_completion(&sbi->s_kobj_unregister);
 951	if (sbi->s_chksum_driver)
 952		crypto_free_shash(sbi->s_chksum_driver);
 953	kfree(sbi->s_blockgroup_lock);
 
 
 
 
 
 954	kfree(sbi);
 955}
 956
 957static struct kmem_cache *ext4_inode_cachep;
 958
 959/*
 960 * Called inside transaction, so use GFP_NOFS
 961 */
 962static struct inode *ext4_alloc_inode(struct super_block *sb)
 963{
 964	struct ext4_inode_info *ei;
 965
 966	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
 967	if (!ei)
 968		return NULL;
 969
 970	ei->vfs_inode.i_version = 1;
 971	ei->vfs_inode.i_data.writeback_index = 0;
 972	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
 973	INIT_LIST_HEAD(&ei->i_prealloc_list);
 974	spin_lock_init(&ei->i_prealloc_lock);
 
 
 
 
 
 
 
 975	ei->i_reserved_data_blocks = 0;
 976	ei->i_reserved_meta_blocks = 0;
 977	ei->i_allocated_meta_blocks = 0;
 978	ei->i_da_metadata_calc_len = 0;
 979	ei->i_da_metadata_calc_last_lblock = 0;
 980	spin_lock_init(&(ei->i_block_reservation_lock));
 
 981#ifdef CONFIG_QUOTA
 982	ei->i_reserved_quota = 0;
 
 983#endif
 984	ei->jinode = NULL;
 985	INIT_LIST_HEAD(&ei->i_completed_io_list);
 986	spin_lock_init(&ei->i_completed_io_lock);
 987	ei->cur_aio_dio = NULL;
 988	ei->i_sync_tid = 0;
 989	ei->i_datasync_tid = 0;
 990	atomic_set(&ei->i_ioend_count, 0);
 991	atomic_set(&ei->i_aiodio_unwritten, 0);
 992
 
 993	return &ei->vfs_inode;
 994}
 995
 996static int ext4_drop_inode(struct inode *inode)
 997{
 998	int drop = generic_drop_inode(inode);
 999
 
 
 
1000	trace_ext4_drop_inode(inode, drop);
1001	return drop;
1002}
1003
1004static void ext4_i_callback(struct rcu_head *head)
1005{
1006	struct inode *inode = container_of(head, struct inode, i_rcu);
 
 
 
 
1007	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1008}
1009
1010static void ext4_destroy_inode(struct inode *inode)
1011{
1012	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1013		ext4_msg(inode->i_sb, KERN_ERR,
1014			 "Inode %lu (%p): orphan list check failed!",
1015			 inode->i_ino, EXT4_I(inode));
1016		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1017				EXT4_I(inode), sizeof(struct ext4_inode_info),
1018				true);
1019		dump_stack();
1020	}
1021	call_rcu(&inode->i_rcu, ext4_i_callback);
 
 
 
 
 
 
 
 
 
 
 
1022}
1023
1024static void init_once(void *foo)
1025{
1026	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1027
1028	INIT_LIST_HEAD(&ei->i_orphan);
1029#ifdef CONFIG_EXT4_FS_XATTR
1030	init_rwsem(&ei->xattr_sem);
1031#endif
1032	init_rwsem(&ei->i_data_sem);
1033	inode_init_once(&ei->vfs_inode);
 
1034}
1035
1036static int init_inodecache(void)
1037{
1038	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1039					     sizeof(struct ext4_inode_info),
1040					     0, (SLAB_RECLAIM_ACCOUNT|
1041						SLAB_MEM_SPREAD),
1042					     init_once);
 
1043	if (ext4_inode_cachep == NULL)
1044		return -ENOMEM;
1045	return 0;
1046}
1047
1048static void destroy_inodecache(void)
1049{
 
 
 
 
 
1050	kmem_cache_destroy(ext4_inode_cachep);
1051}
1052
1053void ext4_clear_inode(struct inode *inode)
1054{
 
1055	invalidate_inode_buffers(inode);
1056	clear_inode(inode);
1057	dquot_drop(inode);
1058	ext4_discard_preallocations(inode);
 
 
1059	if (EXT4_I(inode)->jinode) {
1060		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1061					       EXT4_I(inode)->jinode);
1062		jbd2_free_inode(EXT4_I(inode)->jinode);
1063		EXT4_I(inode)->jinode = NULL;
1064	}
 
 
1065}
1066
1067static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1068					u64 ino, u32 generation)
1069{
1070	struct inode *inode;
1071
1072	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1073		return ERR_PTR(-ESTALE);
1074	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1075		return ERR_PTR(-ESTALE);
1076
1077	/* iget isn't really right if the inode is currently unallocated!!
1078	 *
1079	 * ext4_read_inode will return a bad_inode if the inode had been
1080	 * deleted, so we should be safe.
1081	 *
1082	 * Currently we don't know the generation for parent directory, so
1083	 * a generation of 0 means "accept any"
1084	 */
1085	inode = ext4_iget(sb, ino);
1086	if (IS_ERR(inode))
1087		return ERR_CAST(inode);
1088	if (generation && inode->i_generation != generation) {
1089		iput(inode);
1090		return ERR_PTR(-ESTALE);
1091	}
1092
1093	return inode;
1094}
1095
1096static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1097					int fh_len, int fh_type)
1098{
1099	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1100				    ext4_nfs_get_inode);
1101}
1102
1103static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1104					int fh_len, int fh_type)
1105{
1106	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1107				    ext4_nfs_get_inode);
1108}
1109
1110/*
1111 * Try to release metadata pages (indirect blocks, directories) which are
1112 * mapped via the block device.  Since these pages could have journal heads
1113 * which would prevent try_to_free_buffers() from freeing them, we must use
1114 * jbd2 layer's try_to_free_buffers() function to release them.
1115 */
1116static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1117				 gfp_t wait)
1118{
1119	journal_t *journal = EXT4_SB(sb)->s_journal;
 
 
1120
1121	WARN_ON(PageChecked(page));
1122	if (!page_has_buffers(page))
1123		return 0;
1124	if (journal)
1125		return jbd2_journal_try_to_free_buffers(journal, page,
1126							wait & ~__GFP_WAIT);
1127	return try_to_free_buffers(page);
1128}
1129
1130#ifdef CONFIG_QUOTA
1131#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1132#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1133
1134static int ext4_write_dquot(struct dquot *dquot);
1135static int ext4_acquire_dquot(struct dquot *dquot);
1136static int ext4_release_dquot(struct dquot *dquot);
1137static int ext4_mark_dquot_dirty(struct dquot *dquot);
1138static int ext4_write_info(struct super_block *sb, int type);
1139static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1140			 struct path *path);
1141static int ext4_quota_off(struct super_block *sb, int type);
1142static int ext4_quota_on_mount(struct super_block *sb, int type);
1143static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1144			       size_t len, loff_t off);
1145static ssize_t ext4_quota_write(struct super_block *sb, int type,
1146				const char *data, size_t len, loff_t off);
 
 
 
 
 
 
 
1147
1148static const struct dquot_operations ext4_quota_operations = {
1149	.get_reserved_space = ext4_get_reserved_space,
1150	.write_dquot	= ext4_write_dquot,
1151	.acquire_dquot	= ext4_acquire_dquot,
1152	.release_dquot	= ext4_release_dquot,
1153	.mark_dirty	= ext4_mark_dquot_dirty,
1154	.write_info	= ext4_write_info,
1155	.alloc_dquot	= dquot_alloc,
1156	.destroy_dquot	= dquot_destroy,
 
 
 
1157};
1158
1159static const struct quotactl_ops ext4_qctl_operations = {
1160	.quota_on	= ext4_quota_on,
1161	.quota_off	= ext4_quota_off,
1162	.quota_sync	= dquot_quota_sync,
1163	.get_info	= dquot_get_dqinfo,
1164	.set_info	= dquot_set_dqinfo,
1165	.get_dqblk	= dquot_get_dqblk,
1166	.set_dqblk	= dquot_set_dqblk
 
1167};
1168#endif
1169
1170static const struct super_operations ext4_sops = {
1171	.alloc_inode	= ext4_alloc_inode,
 
1172	.destroy_inode	= ext4_destroy_inode,
1173	.write_inode	= ext4_write_inode,
1174	.dirty_inode	= ext4_dirty_inode,
1175	.drop_inode	= ext4_drop_inode,
1176	.evict_inode	= ext4_evict_inode,
1177	.put_super	= ext4_put_super,
1178	.sync_fs	= ext4_sync_fs,
1179	.freeze_fs	= ext4_freeze,
1180	.unfreeze_fs	= ext4_unfreeze,
1181	.statfs		= ext4_statfs,
1182	.remount_fs	= ext4_remount,
1183	.show_options	= ext4_show_options,
1184#ifdef CONFIG_QUOTA
1185	.quota_read	= ext4_quota_read,
1186	.quota_write	= ext4_quota_write,
1187#endif
1188	.bdev_try_to_free_page = bdev_try_to_free_page,
1189};
1190
1191static const struct super_operations ext4_nojournal_sops = {
1192	.alloc_inode	= ext4_alloc_inode,
1193	.destroy_inode	= ext4_destroy_inode,
1194	.write_inode	= ext4_write_inode,
1195	.dirty_inode	= ext4_dirty_inode,
1196	.drop_inode	= ext4_drop_inode,
1197	.evict_inode	= ext4_evict_inode,
1198	.write_super	= ext4_write_super,
1199	.put_super	= ext4_put_super,
1200	.statfs		= ext4_statfs,
1201	.remount_fs	= ext4_remount,
1202	.show_options	= ext4_show_options,
 
1203#ifdef CONFIG_QUOTA
1204	.quota_read	= ext4_quota_read,
1205	.quota_write	= ext4_quota_write,
 
1206#endif
1207	.bdev_try_to_free_page = bdev_try_to_free_page,
1208};
1209
1210static const struct export_operations ext4_export_ops = {
 
1211	.fh_to_dentry = ext4_fh_to_dentry,
1212	.fh_to_parent = ext4_fh_to_parent,
1213	.get_parent = ext4_get_parent,
 
1214};
1215
1216enum {
1217	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1218	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1219	Opt_nouid32, Opt_debug, Opt_removed,
1220	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1221	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1222	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1223	Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1224	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1225	Opt_data_err_abort, Opt_data_err_ignore,
1226	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1227	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1228	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1229	Opt_usrquota, Opt_grpquota, Opt_i_version,
1230	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
 
 
1231	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1232	Opt_inode_readahead_blks, Opt_journal_ioprio,
1233	Opt_dioread_nolock, Opt_dioread_lock,
1234	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
 
 
 
 
 
 
1235};
1236
1237static const match_table_t tokens = {
1238	{Opt_bsd_df, "bsddf"},
1239	{Opt_minix_df, "minixdf"},
1240	{Opt_grpid, "grpid"},
1241	{Opt_grpid, "bsdgroups"},
1242	{Opt_nogrpid, "nogrpid"},
1243	{Opt_nogrpid, "sysvgroups"},
1244	{Opt_resgid, "resgid=%u"},
1245	{Opt_resuid, "resuid=%u"},
1246	{Opt_sb, "sb=%u"},
1247	{Opt_err_cont, "errors=continue"},
1248	{Opt_err_panic, "errors=panic"},
1249	{Opt_err_ro, "errors=remount-ro"},
1250	{Opt_nouid32, "nouid32"},
1251	{Opt_debug, "debug"},
1252	{Opt_removed, "oldalloc"},
1253	{Opt_removed, "orlov"},
1254	{Opt_user_xattr, "user_xattr"},
1255	{Opt_nouser_xattr, "nouser_xattr"},
1256	{Opt_acl, "acl"},
1257	{Opt_noacl, "noacl"},
1258	{Opt_noload, "norecovery"},
1259	{Opt_noload, "noload"},
1260	{Opt_removed, "nobh"},
1261	{Opt_removed, "bh"},
1262	{Opt_commit, "commit=%u"},
1263	{Opt_min_batch_time, "min_batch_time=%u"},
1264	{Opt_max_batch_time, "max_batch_time=%u"},
1265	{Opt_journal_dev, "journal_dev=%u"},
1266	{Opt_journal_checksum, "journal_checksum"},
1267	{Opt_journal_async_commit, "journal_async_commit"},
1268	{Opt_abort, "abort"},
1269	{Opt_data_journal, "data=journal"},
1270	{Opt_data_ordered, "data=ordered"},
1271	{Opt_data_writeback, "data=writeback"},
1272	{Opt_data_err_abort, "data_err=abort"},
1273	{Opt_data_err_ignore, "data_err=ignore"},
1274	{Opt_offusrjquota, "usrjquota="},
1275	{Opt_usrjquota, "usrjquota=%s"},
1276	{Opt_offgrpjquota, "grpjquota="},
1277	{Opt_grpjquota, "grpjquota=%s"},
1278	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1279	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1280	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1281	{Opt_grpquota, "grpquota"},
1282	{Opt_noquota, "noquota"},
1283	{Opt_quota, "quota"},
1284	{Opt_usrquota, "usrquota"},
1285	{Opt_barrier, "barrier=%u"},
1286	{Opt_barrier, "barrier"},
1287	{Opt_nobarrier, "nobarrier"},
1288	{Opt_i_version, "i_version"},
1289	{Opt_stripe, "stripe=%u"},
1290	{Opt_delalloc, "delalloc"},
1291	{Opt_nodelalloc, "nodelalloc"},
1292	{Opt_mblk_io_submit, "mblk_io_submit"},
1293	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1294	{Opt_block_validity, "block_validity"},
1295	{Opt_noblock_validity, "noblock_validity"},
1296	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1297	{Opt_journal_ioprio, "journal_ioprio=%u"},
1298	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1299	{Opt_auto_da_alloc, "auto_da_alloc"},
1300	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1301	{Opt_dioread_nolock, "dioread_nolock"},
1302	{Opt_dioread_lock, "dioread_lock"},
1303	{Opt_discard, "discard"},
1304	{Opt_nodiscard, "nodiscard"},
1305	{Opt_init_itable, "init_itable=%u"},
1306	{Opt_init_itable, "init_itable"},
1307	{Opt_noinit_itable, "noinit_itable"},
1308	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1309	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1310	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1311	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1312	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1313	{Opt_err, NULL},
1314};
1315
1316static ext4_fsblk_t get_sb_block(void **data)
1317{
1318	ext4_fsblk_t	sb_block;
1319	char		*options = (char *) *data;
1320
1321	if (!options || strncmp(options, "sb=", 3) != 0)
1322		return 1;	/* Default location */
1323
1324	options += 3;
1325	/* TODO: use simple_strtoll with >32bit ext4 */
1326	sb_block = simple_strtoul(options, &options, 0);
1327	if (*options && *options != ',') {
1328		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1329		       (char *) *data);
1330		return 1;
1331	}
1332	if (*options == ',')
1333		options++;
1334	*data = (void *) options;
1335
1336	return sb_block;
1337}
1338
1339#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1340static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1341	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1342
1343#ifdef CONFIG_QUOTA
1344static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1345{
1346	struct ext4_sb_info *sbi = EXT4_SB(sb);
1347	char *qname;
1348
1349	if (sb_any_quota_loaded(sb) &&
1350		!sbi->s_qf_names[qtype]) {
1351		ext4_msg(sb, KERN_ERR,
1352			"Cannot change journaled "
1353			"quota options when quota turned on");
1354		return -1;
1355	}
1356	qname = match_strdup(args);
1357	if (!qname) {
1358		ext4_msg(sb, KERN_ERR,
1359			"Not enough memory for storing quotafile name");
1360		return -1;
1361	}
1362	if (sbi->s_qf_names[qtype] &&
1363		strcmp(sbi->s_qf_names[qtype], qname)) {
1364		ext4_msg(sb, KERN_ERR,
1365			"%s quota file already specified", QTYPE2NAME(qtype));
1366		kfree(qname);
1367		return -1;
1368	}
1369	sbi->s_qf_names[qtype] = qname;
1370	if (strchr(sbi->s_qf_names[qtype], '/')) {
1371		ext4_msg(sb, KERN_ERR,
1372			"quotafile must be on filesystem root");
1373		kfree(sbi->s_qf_names[qtype]);
1374		sbi->s_qf_names[qtype] = NULL;
1375		return -1;
1376	}
1377	set_opt(sb, QUOTA);
1378	return 1;
1379}
1380
1381static int clear_qf_name(struct super_block *sb, int qtype)
1382{
 
 
 
 
1383
1384	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
1385
1386	if (sb_any_quota_loaded(sb) &&
1387		sbi->s_qf_names[qtype]) {
1388		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1389			" when quota turned on");
1390		return -1;
1391	}
1392	/*
1393	 * The space will be released later when all options are confirmed
1394	 * to be correct
1395	 */
1396	sbi->s_qf_names[qtype] = NULL;
1397	return 1;
1398}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400
1401#define MOPT_SET	0x0001
1402#define MOPT_CLEAR	0x0002
1403#define MOPT_NOSUPPORT	0x0004
1404#define MOPT_EXPLICIT	0x0008
1405#define MOPT_CLEAR_ERR	0x0010
1406#define MOPT_GTE0	0x0020
1407#ifdef CONFIG_QUOTA
1408#define MOPT_Q		0
1409#define MOPT_QFMT	0x0040
1410#else
1411#define MOPT_Q		MOPT_NOSUPPORT
1412#define MOPT_QFMT	MOPT_NOSUPPORT
1413#endif
1414#define MOPT_DATAJ	0x0080
 
 
 
 
1415
1416static const struct mount_opts {
1417	int	token;
1418	int	mount_opt;
1419	int	flags;
1420} ext4_mount_opts[] = {
1421	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1422	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1423	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1424	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1425	{Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1426	{Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1427	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1428	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1429	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1430	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
 
 
1431	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1432	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1433	{Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1434	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1435	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
 
 
 
 
 
 
 
 
1436	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1437				    EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1438	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1439	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1440	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1441	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1442	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1443	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1444	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1445	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1446	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1447	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1448	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1449	{Opt_commit, 0, MOPT_GTE0},
1450	{Opt_max_batch_time, 0, MOPT_GTE0},
1451	{Opt_min_batch_time, 0, MOPT_GTE0},
1452	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1453	{Opt_init_itable, 0, MOPT_GTE0},
1454	{Opt_stripe, 0, MOPT_GTE0},
1455	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1456	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1457	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1458#ifdef CONFIG_EXT4_FS_XATTR
1459	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1460	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1461#else
1462	{Opt_user_xattr, 0, MOPT_NOSUPPORT},
1463	{Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1464#endif
1465#ifdef CONFIG_EXT4_FS_POSIX_ACL
1466	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1467	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1468#else
1469	{Opt_acl, 0, MOPT_NOSUPPORT},
1470	{Opt_noacl, 0, MOPT_NOSUPPORT},
1471#endif
1472	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1473	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1474	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1475	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1476							MOPT_SET | MOPT_Q},
1477	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1478							MOPT_SET | MOPT_Q},
 
 
1479	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1480		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
 
1481	{Opt_usrjquota, 0, MOPT_Q},
1482	{Opt_grpjquota, 0, MOPT_Q},
1483	{Opt_offusrjquota, 0, MOPT_Q},
1484	{Opt_offgrpjquota, 0, MOPT_Q},
1485	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1486	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1487	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
 
 
 
 
1488	{Opt_err, 0, 0}
1489};
1490
1491static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1492			    substring_t *args, unsigned long *journal_devnum,
1493			    unsigned int *journal_ioprio, int is_remount)
 
 
 
 
 
 
 
 
1494{
1495	struct ext4_sb_info *sbi = EXT4_SB(sb);
1496	const struct mount_opts *m;
1497	kuid_t uid;
1498	kgid_t gid;
1499	int arg = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500
1501#ifdef CONFIG_QUOTA
1502	if (token == Opt_usrjquota)
1503		return set_qf_name(sb, USRQUOTA, &args[0]);
1504	else if (token == Opt_grpjquota)
1505		return set_qf_name(sb, GRPQUOTA, &args[0]);
1506	else if (token == Opt_offusrjquota)
1507		return clear_qf_name(sb, USRQUOTA);
1508	else if (token == Opt_offgrpjquota)
1509		return clear_qf_name(sb, GRPQUOTA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510#endif
1511	if (args->from && match_int(args, &arg))
1512		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513	switch (token) {
1514	case Opt_noacl:
1515	case Opt_nouser_xattr:
1516		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1517		break;
 
 
 
 
 
 
 
 
1518	case Opt_sb:
1519		return 1;	/* handled by get_sb_block() */
 
 
 
 
 
 
 
1520	case Opt_removed:
1521		ext4_msg(sb, KERN_WARNING,
1522			 "Ignoring removed %s option", opt);
1523		return 1;
1524	case Opt_resuid:
1525		uid = make_kuid(current_user_ns(), arg);
1526		if (!uid_valid(uid)) {
1527			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1528			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529		}
1530		sbi->s_resuid = uid;
1531		return 1;
1532	case Opt_resgid:
1533		gid = make_kgid(current_user_ns(), arg);
1534		if (!gid_valid(gid)) {
1535			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1536			return -1;
 
1537		}
1538		sbi->s_resgid = gid;
1539		return 1;
1540	case Opt_abort:
1541		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1542		return 1;
1543	case Opt_i_version:
1544		sb->s_flags |= MS_I_VERSION;
1545		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546	case Opt_journal_dev:
1547		if (is_remount) {
1548			ext4_msg(sb, KERN_ERR,
1549				 "Cannot specify journal on remount");
1550			return -1;
1551		}
1552		*journal_devnum = arg;
1553		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	case Opt_journal_ioprio:
1555		if (arg < 0 || arg > 7)
1556			return -1;
1557		*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1558		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559	}
1560
1561	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1562		if (token != m->token)
1563			continue;
1564		if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1565			return -1;
1566		if (m->flags & MOPT_EXPLICIT)
1567			set_opt2(sb, EXPLICIT_DELALLOC);
1568		if (m->flags & MOPT_CLEAR_ERR)
1569			clear_opt(sb, ERRORS_MASK);
1570		if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1571			ext4_msg(sb, KERN_ERR, "Cannot change quota "
1572				 "options when quota turned on");
1573			return -1;
1574		}
1575
1576		if (m->flags & MOPT_NOSUPPORT) {
1577			ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1578		} else if (token == Opt_commit) {
1579			if (arg == 0)
1580				arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1581			sbi->s_commit_interval = HZ * arg;
1582		} else if (token == Opt_max_batch_time) {
1583			if (arg == 0)
1584				arg = EXT4_DEF_MAX_BATCH_TIME;
1585			sbi->s_max_batch_time = arg;
1586		} else if (token == Opt_min_batch_time) {
1587			sbi->s_min_batch_time = arg;
1588		} else if (token == Opt_inode_readahead_blks) {
1589			if (arg > (1 << 30))
1590				return -1;
1591			if (arg && !is_power_of_2(arg)) {
1592				ext4_msg(sb, KERN_ERR,
1593					 "EXT4-fs: inode_readahead_blks"
1594					 " must be a power of 2");
1595				return -1;
1596			}
1597			sbi->s_inode_readahead_blks = arg;
1598		} else if (token == Opt_init_itable) {
1599			set_opt(sb, INIT_INODE_TABLE);
1600			if (!args->from)
1601				arg = EXT4_DEF_LI_WAIT_MULT;
1602			sbi->s_li_wait_mult = arg;
1603		} else if (token == Opt_stripe) {
1604			sbi->s_stripe = arg;
1605		} else if (m->flags & MOPT_DATAJ) {
1606			if (is_remount) {
1607				if (!sbi->s_journal)
1608					ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1609				else if (test_opt(sb, DATA_FLAGS) !=
1610					 m->mount_opt) {
1611					ext4_msg(sb, KERN_ERR,
1612					 "Cannot change data mode on remount");
1613					return -1;
1614				}
1615			} else {
1616				clear_opt(sb, DATA_FLAGS);
1617				sbi->s_mount_opt |= m->mount_opt;
1618			}
1619#ifdef CONFIG_QUOTA
1620		} else if (m->flags & MOPT_QFMT) {
1621			if (sb_any_quota_loaded(sb) &&
1622			    sbi->s_jquota_fmt != m->mount_opt) {
1623				ext4_msg(sb, KERN_ERR, "Cannot "
1624					 "change journaled quota options "
1625					 "when quota turned on");
1626				return -1;
1627			}
1628			sbi->s_jquota_fmt = m->mount_opt;
1629#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1630		} else {
1631			if (!args->from)
1632				arg = 1;
1633			if (m->flags & MOPT_CLEAR)
1634				arg = !arg;
1635			else if (unlikely(!(m->flags & MOPT_SET))) {
1636				ext4_msg(sb, KERN_WARNING,
1637					 "buggy handling of option %s", opt);
1638				WARN_ON(1);
1639				return -1;
1640			}
1641			if (arg != 0)
1642				sbi->s_mount_opt |= m->mount_opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643			else
1644				sbi->s_mount_opt &= ~m->mount_opt;
 
 
 
 
 
1645		}
1646		return 1;
1647	}
1648	ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1649		 "or missing value", opt);
1650	return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651}
1652
1653static int parse_options(char *options, struct super_block *sb,
1654			 unsigned long *journal_devnum,
1655			 unsigned int *journal_ioprio,
1656			 int is_remount)
1657{
1658#ifdef CONFIG_QUOTA
 
 
1659	struct ext4_sb_info *sbi = EXT4_SB(sb);
1660#endif
1661	char *p;
1662	substring_t args[MAX_OPT_ARGS];
1663	int token;
1664
1665	if (!options)
1666		return 1;
1667
1668	while ((p = strsep(&options, ",")) != NULL) {
1669		if (!*p)
1670			continue;
1671		/*
1672		 * Initialize args struct so we know whether arg was
1673		 * found; some options take optional arguments.
1674		 */
1675		args[0].to = args[0].from = 0;
1676		token = match_token(p, tokens, args);
1677		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1678				     journal_ioprio, is_remount) < 0)
1679			return 0;
 
 
1680	}
 
 
 
 
 
 
 
 
 
 
 
 
1681#ifdef CONFIG_QUOTA
1682	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1683		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1684			clear_opt(sb, USRQUOTA);
1685
1686		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1687			clear_opt(sb, GRPQUOTA);
1688
1689		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1690			ext4_msg(sb, KERN_ERR, "old and new quota "
1691					"format mixing");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692			return 0;
1693		}
 
1694
1695		if (!sbi->s_jquota_fmt) {
1696			ext4_msg(sb, KERN_ERR, "journaled quota format "
1697					"not specified");
 
 
 
1698			return 0;
1699		}
1700	} else {
1701		if (sbi->s_jquota_fmt) {
1702			ext4_msg(sb, KERN_ERR, "journaled quota format "
1703					"specified with no journaling "
1704					"enabled");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706		}
1707	}
1708#endif
1709	return 1;
1710}
1711
1712static inline void ext4_show_quota_options(struct seq_file *seq,
1713					   struct super_block *sb)
1714{
1715#if defined(CONFIG_QUOTA)
1716	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
1717
1718	if (sbi->s_jquota_fmt) {
1719		char *fmtname = "";
1720
1721		switch (sbi->s_jquota_fmt) {
1722		case QFMT_VFS_OLD:
1723			fmtname = "vfsold";
1724			break;
1725		case QFMT_VFS_V0:
1726			fmtname = "vfsv0";
1727			break;
1728		case QFMT_VFS_V1:
1729			fmtname = "vfsv1";
1730			break;
1731		}
1732		seq_printf(seq, ",jqfmt=%s", fmtname);
1733	}
1734
1735	if (sbi->s_qf_names[USRQUOTA])
1736		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1737
1738	if (sbi->s_qf_names[GRPQUOTA])
1739		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1740
1741	if (test_opt(sb, USRQUOTA))
1742		seq_puts(seq, ",usrquota");
1743
1744	if (test_opt(sb, GRPQUOTA))
1745		seq_puts(seq, ",grpquota");
1746#endif
1747}
1748
1749static const char *token2str(int token)
1750{
1751	static const struct match_token *t;
1752
1753	for (t = tokens; t->token != Opt_err; t++)
1754		if (t->token == token && !strchr(t->pattern, '='))
1755			break;
1756	return t->pattern;
1757}
1758
1759/*
1760 * Show an option if
1761 *  - it's set to a non-default value OR
1762 *  - if the per-sb default is different from the global default
1763 */
1764static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1765			      int nodefs)
1766{
1767	struct ext4_sb_info *sbi = EXT4_SB(sb);
1768	struct ext4_super_block *es = sbi->s_es;
1769	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1770	const struct mount_opts *m;
1771	char sep = nodefs ? '\n' : ',';
1772
1773#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1774#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1775
1776	if (sbi->s_sb_block != 1)
1777		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1778
1779	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1780		int want_set = m->flags & MOPT_SET;
 
 
 
1781		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1782		    (m->flags & MOPT_CLEAR_ERR))
 
 
 
 
 
 
 
 
 
 
 
1783			continue;
1784		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1785			continue; /* skip if same as the default */
1786		if ((want_set &&
1787		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1788		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1789			continue; /* select Opt_noFoo vs Opt_Foo */
1790		SEQ_OPTS_PRINT("%s", token2str(m->token));
1791	}
1792
1793	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1794	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1795		SEQ_OPTS_PRINT("resuid=%u",
1796				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1797	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1798	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1799		SEQ_OPTS_PRINT("resgid=%u",
1800				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1801	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1802	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1803		SEQ_OPTS_PUTS("errors=remount-ro");
1804	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1805		SEQ_OPTS_PUTS("errors=continue");
1806	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1807		SEQ_OPTS_PUTS("errors=panic");
1808	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1809		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1810	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1811		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1812	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1813		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1814	if (sb->s_flags & MS_I_VERSION)
1815		SEQ_OPTS_PUTS("i_version");
1816	if (nodefs || sbi->s_stripe)
1817		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1818	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
 
1819		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1820			SEQ_OPTS_PUTS("data=journal");
1821		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1822			SEQ_OPTS_PUTS("data=ordered");
1823		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1824			SEQ_OPTS_PUTS("data=writeback");
1825	}
1826	if (nodefs ||
1827	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1828		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1829			       sbi->s_inode_readahead_blks);
1830
1831	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1832		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1833		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834
1835	ext4_show_quota_options(seq, sb);
1836	return 0;
1837}
1838
1839static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1840{
1841	return _ext4_show_options(seq, root->d_sb, 0);
1842}
1843
1844static int options_seq_show(struct seq_file *seq, void *offset)
1845{
1846	struct super_block *sb = seq->private;
1847	int rc;
1848
1849	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1850	rc = _ext4_show_options(seq, sb, 1);
1851	seq_puts(seq, "\n");
1852	return rc;
1853}
1854
1855static int options_open_fs(struct inode *inode, struct file *file)
1856{
1857	return single_open(file, options_seq_show, PDE(inode)->data);
1858}
1859
1860static const struct file_operations ext4_seq_options_fops = {
1861	.owner = THIS_MODULE,
1862	.open = options_open_fs,
1863	.read = seq_read,
1864	.llseek = seq_lseek,
1865	.release = single_release,
1866};
1867
1868static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1869			    int read_only)
1870{
1871	struct ext4_sb_info *sbi = EXT4_SB(sb);
1872	int res = 0;
1873
1874	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1875		ext4_msg(sb, KERN_ERR, "revision level too high, "
1876			 "forcing read-only mode");
1877		res = MS_RDONLY;
 
1878	}
1879	if (read_only)
1880		goto done;
1881	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1882		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1883			 "running e2fsck is recommended");
1884	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1885		ext4_msg(sb, KERN_WARNING,
1886			 "warning: mounting fs with errors, "
1887			 "running e2fsck is recommended");
1888	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1889		 le16_to_cpu(es->s_mnt_count) >=
1890		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1891		ext4_msg(sb, KERN_WARNING,
1892			 "warning: maximal mount count reached, "
1893			 "running e2fsck is recommended");
1894	else if (le32_to_cpu(es->s_checkinterval) &&
1895		(le32_to_cpu(es->s_lastcheck) +
1896			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1897		ext4_msg(sb, KERN_WARNING,
1898			 "warning: checktime reached, "
1899			 "running e2fsck is recommended");
1900	if (!sbi->s_journal)
1901		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1902	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1903		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1904	le16_add_cpu(&es->s_mnt_count, 1);
1905	es->s_mtime = cpu_to_le32(get_seconds());
1906	ext4_update_dynamic_rev(sb);
1907	if (sbi->s_journal)
1908		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
 
 
1909
1910	ext4_commit_super(sb, 1);
1911done:
1912	if (test_opt(sb, DEBUG))
1913		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1914				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1915			sb->s_blocksize,
1916			sbi->s_groups_count,
1917			EXT4_BLOCKS_PER_GROUP(sb),
1918			EXT4_INODES_PER_GROUP(sb),
1919			sbi->s_mount_opt, sbi->s_mount_opt2);
 
 
1920
1921	cleancache_init_fs(sb);
1922	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923}
1924
1925static int ext4_fill_flex_info(struct super_block *sb)
1926{
1927	struct ext4_sb_info *sbi = EXT4_SB(sb);
1928	struct ext4_group_desc *gdp = NULL;
1929	ext4_group_t flex_group_count;
1930	ext4_group_t flex_group;
1931	unsigned int groups_per_flex = 0;
1932	size_t size;
1933	int i;
1934
1935	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1936	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1937		sbi->s_log_groups_per_flex = 0;
1938		return 1;
1939	}
1940	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1941
1942	/* We allocate both existing and potentially added groups */
1943	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1944			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1945			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1946	size = flex_group_count * sizeof(struct flex_groups);
1947	sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1948	if (sbi->s_flex_groups == NULL) {
1949		ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1950			 flex_group_count);
1951		goto failed;
1952	}
1953
1954	for (i = 0; i < sbi->s_groups_count; i++) {
1955		gdp = ext4_get_group_desc(sb, i, NULL);
1956
1957		flex_group = ext4_flex_group(sbi, i);
1958		atomic_add(ext4_free_inodes_count(sb, gdp),
1959			   &sbi->s_flex_groups[flex_group].free_inodes);
1960		atomic_add(ext4_free_group_clusters(sb, gdp),
1961			   &sbi->s_flex_groups[flex_group].free_clusters);
1962		atomic_add(ext4_used_dirs_count(sb, gdp),
1963			   &sbi->s_flex_groups[flex_group].used_dirs);
1964	}
1965
1966	return 1;
1967failed:
1968	return 0;
1969}
1970
1971static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1972				   struct ext4_group_desc *gdp)
1973{
1974	int offset;
1975	__u16 crc = 0;
1976	__le32 le_group = cpu_to_le32(block_group);
 
1977
1978	if ((sbi->s_es->s_feature_ro_compat &
1979	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1980		/* Use new metadata_csum algorithm */
1981		__u16 old_csum;
1982		__u32 csum32;
 
1983
1984		old_csum = gdp->bg_checksum;
1985		gdp->bg_checksum = 0;
1986		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1987				     sizeof(le_group));
1988		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1989				     sbi->s_desc_size);
1990		gdp->bg_checksum = old_csum;
 
 
 
 
1991
1992		crc = csum32 & 0xFFFF;
1993		goto out;
1994	}
1995
1996	/* old crc16 code */
1997	offset = offsetof(struct ext4_group_desc, bg_checksum);
 
1998
1999	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2000	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2001	crc = crc16(crc, (__u8 *)gdp, offset);
2002	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2003	/* for checksum of struct ext4_group_desc do the rest...*/
2004	if ((sbi->s_es->s_feature_incompat &
2005	     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2006	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2007		crc = crc16(crc, (__u8 *)gdp + offset,
2008			    le16_to_cpu(sbi->s_es->s_desc_size) -
2009				offset);
2010
2011out:
2012	return cpu_to_le16(crc);
2013}
2014
2015int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2016				struct ext4_group_desc *gdp)
2017{
2018	if (ext4_has_group_desc_csum(sb) &&
2019	    (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2020						      block_group, gdp)))
2021		return 0;
2022
2023	return 1;
2024}
2025
2026void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2027			      struct ext4_group_desc *gdp)
2028{
2029	if (!ext4_has_group_desc_csum(sb))
2030		return;
2031	gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2032}
2033
2034/* Called at mount-time, super-block is locked */
2035static int ext4_check_descriptors(struct super_block *sb,
 
2036				  ext4_group_t *first_not_zeroed)
2037{
2038	struct ext4_sb_info *sbi = EXT4_SB(sb);
2039	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2040	ext4_fsblk_t last_block;
 
2041	ext4_fsblk_t block_bitmap;
2042	ext4_fsblk_t inode_bitmap;
2043	ext4_fsblk_t inode_table;
2044	int flexbg_flag = 0;
2045	ext4_group_t i, grp = sbi->s_groups_count;
2046
2047	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2048		flexbg_flag = 1;
2049
2050	ext4_debug("Checking group descriptors");
2051
2052	for (i = 0; i < sbi->s_groups_count; i++) {
2053		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2054
2055		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2056			last_block = ext4_blocks_count(sbi->s_es) - 1;
2057		else
2058			last_block = first_block +
2059				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2060
2061		if ((grp == sbi->s_groups_count) &&
2062		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2063			grp = i;
2064
2065		block_bitmap = ext4_block_bitmap(sb, gdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066		if (block_bitmap < first_block || block_bitmap > last_block) {
2067			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2068			       "Block bitmap for group %u not in group "
2069			       "(block %llu)!", i, block_bitmap);
2070			return 0;
2071		}
2072		inode_bitmap = ext4_inode_bitmap(sb, gdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2074			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2075			       "Inode bitmap for group %u not in group "
2076			       "(block %llu)!", i, inode_bitmap);
2077			return 0;
2078		}
2079		inode_table = ext4_inode_table(sb, gdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080		if (inode_table < first_block ||
2081		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2082			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2083			       "Inode table for group %u not in group "
2084			       "(block %llu)!", i, inode_table);
2085			return 0;
2086		}
2087		ext4_lock_group(sb, i);
2088		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2089			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2090				 "Checksum for group %u failed (%u!=%u)",
2091				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2092				     gdp)), le16_to_cpu(gdp->bg_checksum));
2093			if (!(sb->s_flags & MS_RDONLY)) {
2094				ext4_unlock_group(sb, i);
2095				return 0;
2096			}
2097		}
2098		ext4_unlock_group(sb, i);
2099		if (!flexbg_flag)
2100			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2101	}
2102	if (NULL != first_not_zeroed)
2103		*first_not_zeroed = grp;
2104
2105	ext4_free_blocks_count_set(sbi->s_es,
2106				   EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2107	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2108	return 1;
2109}
2110
2111/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2112 * the superblock) which were deleted from all directories, but held open by
2113 * a process at the time of a crash.  We walk the list and try to delete these
2114 * inodes at recovery time (only with a read-write filesystem).
2115 *
2116 * In order to keep the orphan inode chain consistent during traversal (in
2117 * case of crash during recovery), we link each inode into the superblock
2118 * orphan list_head and handle it the same way as an inode deletion during
2119 * normal operation (which journals the operations for us).
2120 *
2121 * We only do an iget() and an iput() on each inode, which is very safe if we
2122 * accidentally point at an in-use or already deleted inode.  The worst that
2123 * can happen in this case is that we get a "bit already cleared" message from
2124 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2125 * e2fsck was run on this filesystem, and it must have already done the orphan
2126 * inode cleanup for us, so we can safely abort without any further action.
2127 */
2128static void ext4_orphan_cleanup(struct super_block *sb,
2129				struct ext4_super_block *es)
2130{
2131	unsigned int s_flags = sb->s_flags;
2132	int nr_orphans = 0, nr_truncates = 0;
2133#ifdef CONFIG_QUOTA
2134	int i;
2135#endif
2136	if (!es->s_last_orphan) {
2137		jbd_debug(4, "no orphan inodes to clean up\n");
2138		return;
2139	}
2140
2141	if (bdev_read_only(sb->s_bdev)) {
2142		ext4_msg(sb, KERN_ERR, "write access "
2143			"unavailable, skipping orphan cleanup");
2144		return;
2145	}
2146
2147	/* Check if feature set would not allow a r/w mount */
2148	if (!ext4_feature_set_ok(sb, 0)) {
2149		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2150			 "unknown ROCOMPAT features");
2151		return;
2152	}
2153
2154	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2155		if (es->s_last_orphan)
2156			jbd_debug(1, "Errors on filesystem, "
2157				  "clearing orphan list.\n");
2158		es->s_last_orphan = 0;
2159		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2160		return;
2161	}
2162
2163	if (s_flags & MS_RDONLY) {
2164		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2165		sb->s_flags &= ~MS_RDONLY;
2166	}
2167#ifdef CONFIG_QUOTA
2168	/* Needed for iput() to work correctly and not trash data */
2169	sb->s_flags |= MS_ACTIVE;
2170	/* Turn on quotas so that they are updated correctly */
2171	for (i = 0; i < MAXQUOTAS; i++) {
2172		if (EXT4_SB(sb)->s_qf_names[i]) {
2173			int ret = ext4_quota_on_mount(sb, i);
2174			if (ret < 0)
2175				ext4_msg(sb, KERN_ERR,
2176					"Cannot turn on journaled "
2177					"quota: error %d", ret);
2178		}
2179	}
2180#endif
2181
2182	while (es->s_last_orphan) {
2183		struct inode *inode;
2184
2185		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2186		if (IS_ERR(inode)) {
2187			es->s_last_orphan = 0;
2188			break;
2189		}
2190
2191		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2192		dquot_initialize(inode);
2193		if (inode->i_nlink) {
2194			ext4_msg(sb, KERN_DEBUG,
2195				"%s: truncating inode %lu to %lld bytes",
2196				__func__, inode->i_ino, inode->i_size);
2197			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2198				  inode->i_ino, inode->i_size);
2199			ext4_truncate(inode);
2200			nr_truncates++;
2201		} else {
2202			ext4_msg(sb, KERN_DEBUG,
2203				"%s: deleting unreferenced inode %lu",
2204				__func__, inode->i_ino);
2205			jbd_debug(2, "deleting unreferenced inode %lu\n",
2206				  inode->i_ino);
2207			nr_orphans++;
2208		}
2209		iput(inode);  /* The delete magic happens here! */
2210	}
2211
2212#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2213
2214	if (nr_orphans)
2215		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2216		       PLURAL(nr_orphans));
2217	if (nr_truncates)
2218		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2219		       PLURAL(nr_truncates));
2220#ifdef CONFIG_QUOTA
2221	/* Turn quotas off */
2222	for (i = 0; i < MAXQUOTAS; i++) {
2223		if (sb_dqopt(sb)->files[i])
2224			dquot_quota_off(sb, i);
2225	}
2226#endif
2227	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2228}
2229
2230/*
2231 * Maximal extent format file size.
2232 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2233 * extent format containers, within a sector_t, and within i_blocks
2234 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2235 * so that won't be a limiting factor.
2236 *
2237 * However there is other limiting factor. We do store extents in the form
2238 * of starting block and length, hence the resulting length of the extent
2239 * covering maximum file size must fit into on-disk format containers as
2240 * well. Given that length is always by 1 unit bigger than max unit (because
2241 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2242 *
2243 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2244 */
2245static loff_t ext4_max_size(int blkbits, int has_huge_files)
2246{
2247	loff_t res;
2248	loff_t upper_limit = MAX_LFS_FILESIZE;
2249
2250	/* small i_blocks in vfs inode? */
2251	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2252		/*
2253		 * CONFIG_LBDAF is not enabled implies the inode
2254		 * i_block represent total blocks in 512 bytes
2255		 * 32 == size of vfs inode i_blocks * 8
2256		 */
2257		upper_limit = (1LL << 32) - 1;
2258
2259		/* total blocks in file system block size */
2260		upper_limit >>= (blkbits - 9);
2261		upper_limit <<= blkbits;
2262	}
2263
2264	/*
2265	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2266	 * by one fs block, so ee_len can cover the extent of maximum file
2267	 * size
2268	 */
2269	res = (1LL << 32) - 1;
2270	res <<= blkbits;
2271
2272	/* Sanity check against vm- & vfs- imposed limits */
2273	if (res > upper_limit)
2274		res = upper_limit;
2275
2276	return res;
2277}
2278
2279/*
2280 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2281 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2282 * We need to be 1 filesystem block less than the 2^48 sector limit.
2283 */
2284static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2285{
2286	loff_t res = EXT4_NDIR_BLOCKS;
2287	int meta_blocks;
2288	loff_t upper_limit;
2289	/* This is calculated to be the largest file size for a dense, block
 
 
2290	 * mapped file such that the file's total number of 512-byte sectors,
2291	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2292	 *
2293	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2294	 * number of 512-byte sectors of the file.
2295	 */
2296
2297	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2298		/*
2299		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2300		 * the inode i_block field represents total file blocks in
2301		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2302		 */
2303		upper_limit = (1LL << 32) - 1;
2304
2305		/* total blocks in file system block size */
2306		upper_limit >>= (bits - 9);
2307
2308	} else {
2309		/*
2310		 * We use 48 bit ext4_inode i_blocks
2311		 * With EXT4_HUGE_FILE_FL set the i_blocks
2312		 * represent total number of blocks in
2313		 * file system block size
2314		 */
2315		upper_limit = (1LL << 48) - 1;
2316
2317	}
2318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319	/* indirect blocks */
2320	meta_blocks = 1;
 
2321	/* double indirect blocks */
2322	meta_blocks += 1 + (1LL << (bits-2));
2323	/* tripple indirect blocks */
2324	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2325
2326	upper_limit -= meta_blocks;
2327	upper_limit <<= bits;
2328
2329	res += 1LL << (bits-2);
2330	res += 1LL << (2*(bits-2));
2331	res += 1LL << (3*(bits-2));
 
 
2332	res <<= bits;
2333	if (res > upper_limit)
2334		res = upper_limit;
2335
2336	if (res > MAX_LFS_FILESIZE)
2337		res = MAX_LFS_FILESIZE;
2338
2339	return res;
2340}
2341
2342static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2343				   ext4_fsblk_t logical_sb_block, int nr)
2344{
2345	struct ext4_sb_info *sbi = EXT4_SB(sb);
2346	ext4_group_t bg, first_meta_bg;
2347	int has_super = 0;
2348
2349	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2350
2351	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2352	    nr < first_meta_bg)
2353		return logical_sb_block + nr + 1;
2354	bg = sbi->s_desc_per_block * nr;
2355	if (ext4_bg_has_super(sb, bg))
2356		has_super = 1;
2357
 
 
 
 
 
 
 
 
 
 
2358	return (has_super + ext4_group_first_block_no(sb, bg));
2359}
2360
2361/**
2362 * ext4_get_stripe_size: Get the stripe size.
2363 * @sbi: In memory super block info
2364 *
2365 * If we have specified it via mount option, then
2366 * use the mount option value. If the value specified at mount time is
2367 * greater than the blocks per group use the super block value.
2368 * If the super block value is greater than blocks per group return 0.
2369 * Allocator needs it be less than blocks per group.
2370 *
2371 */
2372static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2373{
2374	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2375	unsigned long stripe_width =
2376			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2377	int ret;
2378
2379	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2380		ret = sbi->s_stripe;
2381	else if (stripe_width <= sbi->s_blocks_per_group)
2382		ret = stripe_width;
2383	else if (stride <= sbi->s_blocks_per_group)
2384		ret = stride;
2385	else
2386		ret = 0;
2387
2388	/*
2389	 * If the stripe width is 1, this makes no sense and
2390	 * we set it to 0 to turn off stripe handling code.
2391	 */
2392	if (ret <= 1)
2393		ret = 0;
2394
2395	return ret;
2396}
2397
2398/* sysfs supprt */
2399
2400struct ext4_attr {
2401	struct attribute attr;
2402	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2403	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2404			 const char *, size_t);
2405	int offset;
2406};
2407
2408static int parse_strtoul(const char *buf,
2409		unsigned long max, unsigned long *value)
2410{
2411	char *endp;
2412
2413	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2414	endp = skip_spaces(endp);
2415	if (*endp || *value > max)
2416		return -EINVAL;
2417
2418	return 0;
2419}
2420
2421static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2422					      struct ext4_sb_info *sbi,
2423					      char *buf)
2424{
2425	return snprintf(buf, PAGE_SIZE, "%llu\n",
2426		(s64) EXT4_C2B(sbi,
2427			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2428}
2429
2430static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2431					 struct ext4_sb_info *sbi, char *buf)
2432{
2433	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2434
2435	if (!sb->s_bdev->bd_part)
2436		return snprintf(buf, PAGE_SIZE, "0\n");
2437	return snprintf(buf, PAGE_SIZE, "%lu\n",
2438			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2439			 sbi->s_sectors_written_start) >> 1);
2440}
2441
2442static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2443					  struct ext4_sb_info *sbi, char *buf)
2444{
2445	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2446
2447	if (!sb->s_bdev->bd_part)
2448		return snprintf(buf, PAGE_SIZE, "0\n");
2449	return snprintf(buf, PAGE_SIZE, "%llu\n",
2450			(unsigned long long)(sbi->s_kbytes_written +
2451			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2452			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2453}
2454
2455static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2456					  struct ext4_sb_info *sbi,
2457					  const char *buf, size_t count)
2458{
2459	unsigned long t;
2460
2461	if (parse_strtoul(buf, 0x40000000, &t))
2462		return -EINVAL;
2463
2464	if (t && !is_power_of_2(t))
2465		return -EINVAL;
2466
2467	sbi->s_inode_readahead_blks = t;
2468	return count;
2469}
2470
2471static ssize_t sbi_ui_show(struct ext4_attr *a,
2472			   struct ext4_sb_info *sbi, char *buf)
2473{
2474	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2475
2476	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2477}
2478
2479static ssize_t sbi_ui_store(struct ext4_attr *a,
2480			    struct ext4_sb_info *sbi,
2481			    const char *buf, size_t count)
2482{
2483	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2484	unsigned long t;
2485
2486	if (parse_strtoul(buf, 0xffffffff, &t))
2487		return -EINVAL;
2488	*ui = t;
2489	return count;
2490}
2491
2492static ssize_t trigger_test_error(struct ext4_attr *a,
2493				  struct ext4_sb_info *sbi,
2494				  const char *buf, size_t count)
2495{
2496	int len = count;
2497
2498	if (!capable(CAP_SYS_ADMIN))
2499		return -EPERM;
2500
2501	if (len && buf[len-1] == '\n')
2502		len--;
2503
2504	if (len)
2505		ext4_error(sbi->s_sb, "%.*s", len, buf);
2506	return count;
2507}
2508
2509#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2510static struct ext4_attr ext4_attr_##_name = {			\
2511	.attr = {.name = __stringify(_name), .mode = _mode },	\
2512	.show	= _show,					\
2513	.store	= _store,					\
2514	.offset = offsetof(struct ext4_sb_info, _elname),	\
2515}
2516#define EXT4_ATTR(name, mode, show, store) \
2517static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2518
2519#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2520#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2521#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2522#define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2523	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2524#define ATTR_LIST(name) &ext4_attr_##name.attr
2525
2526EXT4_RO_ATTR(delayed_allocation_blocks);
2527EXT4_RO_ATTR(session_write_kbytes);
2528EXT4_RO_ATTR(lifetime_write_kbytes);
2529EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2530		 inode_readahead_blks_store, s_inode_readahead_blks);
2531EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2532EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2533EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2534EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2535EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2536EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2537EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2538EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2539EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2540
2541static struct attribute *ext4_attrs[] = {
2542	ATTR_LIST(delayed_allocation_blocks),
2543	ATTR_LIST(session_write_kbytes),
2544	ATTR_LIST(lifetime_write_kbytes),
2545	ATTR_LIST(inode_readahead_blks),
2546	ATTR_LIST(inode_goal),
2547	ATTR_LIST(mb_stats),
2548	ATTR_LIST(mb_max_to_scan),
2549	ATTR_LIST(mb_min_to_scan),
2550	ATTR_LIST(mb_order2_req),
2551	ATTR_LIST(mb_stream_req),
2552	ATTR_LIST(mb_group_prealloc),
2553	ATTR_LIST(max_writeback_mb_bump),
2554	ATTR_LIST(trigger_fs_error),
2555	NULL,
2556};
2557
2558/* Features this copy of ext4 supports */
2559EXT4_INFO_ATTR(lazy_itable_init);
2560EXT4_INFO_ATTR(batched_discard);
2561
2562static struct attribute *ext4_feat_attrs[] = {
2563	ATTR_LIST(lazy_itable_init),
2564	ATTR_LIST(batched_discard),
2565	NULL,
2566};
2567
2568static ssize_t ext4_attr_show(struct kobject *kobj,
2569			      struct attribute *attr, char *buf)
2570{
2571	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2572						s_kobj);
2573	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2574
2575	return a->show ? a->show(a, sbi, buf) : 0;
2576}
2577
2578static ssize_t ext4_attr_store(struct kobject *kobj,
2579			       struct attribute *attr,
2580			       const char *buf, size_t len)
2581{
2582	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2583						s_kobj);
2584	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2585
2586	return a->store ? a->store(a, sbi, buf, len) : 0;
2587}
2588
2589static void ext4_sb_release(struct kobject *kobj)
2590{
2591	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2592						s_kobj);
2593	complete(&sbi->s_kobj_unregister);
2594}
2595
2596static const struct sysfs_ops ext4_attr_ops = {
2597	.show	= ext4_attr_show,
2598	.store	= ext4_attr_store,
2599};
2600
2601static struct kobj_type ext4_ktype = {
2602	.default_attrs	= ext4_attrs,
2603	.sysfs_ops	= &ext4_attr_ops,
2604	.release	= ext4_sb_release,
2605};
2606
2607static void ext4_feat_release(struct kobject *kobj)
2608{
2609	complete(&ext4_feat->f_kobj_unregister);
2610}
2611
2612static struct kobj_type ext4_feat_ktype = {
2613	.default_attrs	= ext4_feat_attrs,
2614	.sysfs_ops	= &ext4_attr_ops,
2615	.release	= ext4_feat_release,
2616};
2617
2618/*
2619 * Check whether this filesystem can be mounted based on
2620 * the features present and the RDONLY/RDWR mount requested.
2621 * Returns 1 if this filesystem can be mounted as requested,
2622 * 0 if it cannot be.
2623 */
2624static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2625{
2626	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2627		ext4_msg(sb, KERN_ERR,
2628			"Couldn't mount because of "
2629			"unsupported optional features (%x)",
2630			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2631			~EXT4_FEATURE_INCOMPAT_SUPP));
2632		return 0;
2633	}
2634
 
 
 
 
 
 
 
2635	if (readonly)
2636		return 1;
2637
 
 
 
 
 
 
2638	/* Check that feature set is OK for a read-write mount */
2639	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2640		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2641			 "unsupported optional features (%x)",
2642			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2643				~EXT4_FEATURE_RO_COMPAT_SUPP));
2644		return 0;
2645	}
2646	/*
2647	 * Large file size enabled file system can only be mounted
2648	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2649	 */
2650	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2651		if (sizeof(blkcnt_t) < sizeof(u64)) {
2652			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2653				 "cannot be mounted RDWR without "
2654				 "CONFIG_LBDAF");
2655			return 0;
2656		}
2657	}
2658	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2659	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2660		ext4_msg(sb, KERN_ERR,
2661			 "Can't support bigalloc feature without "
2662			 "extents feature\n");
2663		return 0;
2664	}
 
 
 
 
 
 
 
 
 
2665	return 1;
2666}
2667
2668/*
2669 * This function is called once a day if we have errors logged
2670 * on the file system
2671 */
2672static void print_daily_error_info(unsigned long arg)
2673{
2674	struct super_block *sb = (struct super_block *) arg;
2675	struct ext4_sb_info *sbi;
2676	struct ext4_super_block *es;
2677
2678	sbi = EXT4_SB(sb);
2679	es = sbi->s_es;
2680
2681	if (es->s_error_count)
2682		ext4_msg(sb, KERN_NOTICE, "error count: %u",
 
2683			 le32_to_cpu(es->s_error_count));
2684	if (es->s_first_error_time) {
2685		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2686		       sb->s_id, le32_to_cpu(es->s_first_error_time),
 
2687		       (int) sizeof(es->s_first_error_func),
2688		       es->s_first_error_func,
2689		       le32_to_cpu(es->s_first_error_line));
2690		if (es->s_first_error_ino)
2691			printk(": inode %u",
2692			       le32_to_cpu(es->s_first_error_ino));
2693		if (es->s_first_error_block)
2694			printk(": block %llu", (unsigned long long)
2695			       le64_to_cpu(es->s_first_error_block));
2696		printk("\n");
2697	}
2698	if (es->s_last_error_time) {
2699		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2700		       sb->s_id, le32_to_cpu(es->s_last_error_time),
 
2701		       (int) sizeof(es->s_last_error_func),
2702		       es->s_last_error_func,
2703		       le32_to_cpu(es->s_last_error_line));
2704		if (es->s_last_error_ino)
2705			printk(": inode %u",
2706			       le32_to_cpu(es->s_last_error_ino));
2707		if (es->s_last_error_block)
2708			printk(": block %llu", (unsigned long long)
2709			       le64_to_cpu(es->s_last_error_block));
2710		printk("\n");
2711	}
2712	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2713}
2714
2715/* Find next suitable group and run ext4_init_inode_table */
2716static int ext4_run_li_request(struct ext4_li_request *elr)
2717{
2718	struct ext4_group_desc *gdp = NULL;
2719	ext4_group_t group, ngroups;
2720	struct super_block *sb;
2721	unsigned long timeout = 0;
 
2722	int ret = 0;
 
 
2723
2724	sb = elr->lr_super;
2725	ngroups = EXT4_SB(sb)->s_groups_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
2726
2727	for (group = elr->lr_next_group; group < ngroups; group++) {
2728		gdp = ext4_get_group_desc(sb, group, NULL);
2729		if (!gdp) {
2730			ret = 1;
2731			break;
2732		}
2733
2734		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2735			break;
2736	}
2737
2738	if (group == ngroups)
2739		ret = 1;
2740
2741	if (!ret) {
2742		timeout = jiffies;
2743		ret = ext4_init_inode_table(sb, group,
2744					    elr->lr_timeout ? 0 : 1);
 
2745		if (elr->lr_timeout == 0) {
2746			timeout = (jiffies - timeout) *
2747				  elr->lr_sbi->s_li_wait_mult;
2748			elr->lr_timeout = timeout;
2749		}
2750		elr->lr_next_sched = jiffies + elr->lr_timeout;
2751		elr->lr_next_group = group + 1;
2752	}
2753
2754	return ret;
2755}
2756
2757/*
2758 * Remove lr_request from the list_request and free the
2759 * request structure. Should be called with li_list_mtx held
2760 */
2761static void ext4_remove_li_request(struct ext4_li_request *elr)
2762{
2763	struct ext4_sb_info *sbi;
2764
2765	if (!elr)
2766		return;
2767
2768	sbi = elr->lr_sbi;
2769
2770	list_del(&elr->lr_request);
2771	sbi->s_li_request = NULL;
2772	kfree(elr);
2773}
2774
2775static void ext4_unregister_li_request(struct super_block *sb)
2776{
2777	mutex_lock(&ext4_li_mtx);
2778	if (!ext4_li_info) {
2779		mutex_unlock(&ext4_li_mtx);
2780		return;
2781	}
2782
2783	mutex_lock(&ext4_li_info->li_list_mtx);
2784	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2785	mutex_unlock(&ext4_li_info->li_list_mtx);
2786	mutex_unlock(&ext4_li_mtx);
2787}
2788
2789static struct task_struct *ext4_lazyinit_task;
2790
2791/*
2792 * This is the function where ext4lazyinit thread lives. It walks
2793 * through the request list searching for next scheduled filesystem.
2794 * When such a fs is found, run the lazy initialization request
2795 * (ext4_rn_li_request) and keep track of the time spend in this
2796 * function. Based on that time we compute next schedule time of
2797 * the request. When walking through the list is complete, compute
2798 * next waking time and put itself into sleep.
2799 */
2800static int ext4_lazyinit_thread(void *arg)
2801{
2802	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2803	struct list_head *pos, *n;
2804	struct ext4_li_request *elr;
2805	unsigned long next_wakeup, cur;
2806
2807	BUG_ON(NULL == eli);
 
2808
2809cont_thread:
2810	while (true) {
2811		next_wakeup = MAX_JIFFY_OFFSET;
2812
 
2813		mutex_lock(&eli->li_list_mtx);
2814		if (list_empty(&eli->li_request_list)) {
2815			mutex_unlock(&eli->li_list_mtx);
2816			goto exit_thread;
2817		}
2818
2819		list_for_each_safe(pos, n, &eli->li_request_list) {
 
 
2820			elr = list_entry(pos, struct ext4_li_request,
2821					 lr_request);
2822
2823			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2824				if (ext4_run_li_request(elr) != 0) {
2825					/* error, remove the lazy_init job */
2826					ext4_remove_li_request(elr);
2827					continue;
2828				}
 
2829			}
2830
2831			if (time_before(elr->lr_next_sched, next_wakeup))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832				next_wakeup = elr->lr_next_sched;
 
 
2833		}
2834		mutex_unlock(&eli->li_list_mtx);
2835
2836		try_to_freeze();
2837
2838		cur = jiffies;
2839		if ((time_after_eq(cur, next_wakeup)) ||
2840		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2841			cond_resched();
2842			continue;
2843		}
2844
2845		schedule_timeout_interruptible(next_wakeup - cur);
2846
2847		if (kthread_should_stop()) {
2848			ext4_clear_request_list();
2849			goto exit_thread;
2850		}
2851	}
2852
2853exit_thread:
2854	/*
2855	 * It looks like the request list is empty, but we need
2856	 * to check it under the li_list_mtx lock, to prevent any
2857	 * additions into it, and of course we should lock ext4_li_mtx
2858	 * to atomically free the list and ext4_li_info, because at
2859	 * this point another ext4 filesystem could be registering
2860	 * new one.
2861	 */
2862	mutex_lock(&ext4_li_mtx);
2863	mutex_lock(&eli->li_list_mtx);
2864	if (!list_empty(&eli->li_request_list)) {
2865		mutex_unlock(&eli->li_list_mtx);
2866		mutex_unlock(&ext4_li_mtx);
2867		goto cont_thread;
2868	}
2869	mutex_unlock(&eli->li_list_mtx);
2870	kfree(ext4_li_info);
2871	ext4_li_info = NULL;
2872	mutex_unlock(&ext4_li_mtx);
2873
2874	return 0;
2875}
2876
2877static void ext4_clear_request_list(void)
2878{
2879	struct list_head *pos, *n;
2880	struct ext4_li_request *elr;
2881
2882	mutex_lock(&ext4_li_info->li_list_mtx);
2883	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2884		elr = list_entry(pos, struct ext4_li_request,
2885				 lr_request);
2886		ext4_remove_li_request(elr);
2887	}
2888	mutex_unlock(&ext4_li_info->li_list_mtx);
2889}
2890
2891static int ext4_run_lazyinit_thread(void)
2892{
2893	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2894					 ext4_li_info, "ext4lazyinit");
2895	if (IS_ERR(ext4_lazyinit_task)) {
2896		int err = PTR_ERR(ext4_lazyinit_task);
2897		ext4_clear_request_list();
2898		kfree(ext4_li_info);
2899		ext4_li_info = NULL;
2900		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2901				 "initialization thread\n",
2902				 err);
2903		return err;
2904	}
2905	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2906	return 0;
2907}
2908
2909/*
2910 * Check whether it make sense to run itable init. thread or not.
2911 * If there is at least one uninitialized inode table, return
2912 * corresponding group number, else the loop goes through all
2913 * groups and return total number of groups.
2914 */
2915static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2916{
2917	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2918	struct ext4_group_desc *gdp = NULL;
2919
 
 
 
2920	for (group = 0; group < ngroups; group++) {
2921		gdp = ext4_get_group_desc(sb, group, NULL);
2922		if (!gdp)
2923			continue;
2924
2925		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2926			break;
2927	}
2928
2929	return group;
2930}
2931
2932static int ext4_li_info_new(void)
2933{
2934	struct ext4_lazy_init *eli = NULL;
2935
2936	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2937	if (!eli)
2938		return -ENOMEM;
2939
2940	INIT_LIST_HEAD(&eli->li_request_list);
2941	mutex_init(&eli->li_list_mtx);
2942
2943	eli->li_state |= EXT4_LAZYINIT_QUIT;
2944
2945	ext4_li_info = eli;
2946
2947	return 0;
2948}
2949
2950static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2951					    ext4_group_t start)
2952{
2953	struct ext4_sb_info *sbi = EXT4_SB(sb);
2954	struct ext4_li_request *elr;
2955	unsigned long rnd;
2956
2957	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2958	if (!elr)
2959		return NULL;
2960
2961	elr->lr_super = sb;
2962	elr->lr_sbi = sbi;
2963	elr->lr_next_group = start;
 
 
 
 
 
2964
2965	/*
2966	 * Randomize first schedule time of the request to
2967	 * spread the inode table initialization requests
2968	 * better.
2969	 */
2970	get_random_bytes(&rnd, sizeof(rnd));
2971	elr->lr_next_sched = jiffies + (unsigned long)rnd %
2972			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2973
2974	return elr;
2975}
2976
2977static int ext4_register_li_request(struct super_block *sb,
2978				    ext4_group_t first_not_zeroed)
2979{
2980	struct ext4_sb_info *sbi = EXT4_SB(sb);
2981	struct ext4_li_request *elr;
2982	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2983	int ret = 0;
2984
 
2985	if (sbi->s_li_request != NULL) {
2986		/*
2987		 * Reset timeout so it can be computed again, because
2988		 * s_li_wait_mult might have changed.
2989		 */
2990		sbi->s_li_request->lr_timeout = 0;
2991		return 0;
2992	}
2993
2994	if (first_not_zeroed == ngroups ||
2995	    (sb->s_flags & MS_RDONLY) ||
2996	    !test_opt(sb, INIT_INODE_TABLE))
2997		return 0;
2998
2999	elr = ext4_li_request_new(sb, first_not_zeroed);
3000	if (!elr)
3001		return -ENOMEM;
3002
3003	mutex_lock(&ext4_li_mtx);
3004
3005	if (NULL == ext4_li_info) {
3006		ret = ext4_li_info_new();
3007		if (ret)
3008			goto out;
3009	}
3010
3011	mutex_lock(&ext4_li_info->li_list_mtx);
3012	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3013	mutex_unlock(&ext4_li_info->li_list_mtx);
3014
3015	sbi->s_li_request = elr;
3016	/*
3017	 * set elr to NULL here since it has been inserted to
3018	 * the request_list and the removal and free of it is
3019	 * handled by ext4_clear_request_list from now on.
3020	 */
3021	elr = NULL;
3022
3023	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3024		ret = ext4_run_lazyinit_thread();
3025		if (ret)
3026			goto out;
3027	}
3028out:
3029	mutex_unlock(&ext4_li_mtx);
3030	if (ret)
3031		kfree(elr);
3032	return ret;
3033}
3034
3035/*
3036 * We do not need to lock anything since this is called on
3037 * module unload.
3038 */
3039static void ext4_destroy_lazyinit_thread(void)
3040{
3041	/*
3042	 * If thread exited earlier
3043	 * there's nothing to be done.
3044	 */
3045	if (!ext4_li_info || !ext4_lazyinit_task)
3046		return;
3047
3048	kthread_stop(ext4_lazyinit_task);
3049}
3050
3051static int set_journal_csum_feature_set(struct super_block *sb)
3052{
3053	int ret = 1;
3054	int compat, incompat;
3055	struct ext4_sb_info *sbi = EXT4_SB(sb);
3056
3057	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3058				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3059		/* journal checksum v2 */
3060		compat = 0;
3061		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3062	} else {
3063		/* journal checksum v1 */
3064		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3065		incompat = 0;
3066	}
3067
 
 
 
 
3068	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3069		ret = jbd2_journal_set_features(sbi->s_journal,
3070				compat, 0,
3071				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3072				incompat);
3073	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3074		ret = jbd2_journal_set_features(sbi->s_journal,
3075				compat, 0,
3076				incompat);
3077		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3078				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3079	} else {
3080		jbd2_journal_clear_features(sbi->s_journal,
3081				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3082				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3083				JBD2_FEATURE_INCOMPAT_CSUM_V2);
3084	}
3085
3086	return ret;
3087}
3088
3089/*
3090 * Note: calculating the overhead so we can be compatible with
3091 * historical BSD practice is quite difficult in the face of
3092 * clusters/bigalloc.  This is because multiple metadata blocks from
3093 * different block group can end up in the same allocation cluster.
3094 * Calculating the exact overhead in the face of clustered allocation
3095 * requires either O(all block bitmaps) in memory or O(number of block
3096 * groups**2) in time.  We will still calculate the superblock for
3097 * older file systems --- and if we come across with a bigalloc file
3098 * system with zero in s_overhead_clusters the estimate will be close to
3099 * correct especially for very large cluster sizes --- but for newer
3100 * file systems, it's better to calculate this figure once at mkfs
3101 * time, and store it in the superblock.  If the superblock value is
3102 * present (even for non-bigalloc file systems), we will use it.
3103 */
3104static int count_overhead(struct super_block *sb, ext4_group_t grp,
3105			  char *buf)
3106{
3107	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3108	struct ext4_group_desc	*gdp;
3109	ext4_fsblk_t		first_block, last_block, b;
3110	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3111	int			s, j, count = 0;
 
3112
3113	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3114		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
 
3115			sbi->s_itb_per_group + 2);
3116
3117	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3118		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3119	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3120	for (i = 0; i < ngroups; i++) {
3121		gdp = ext4_get_group_desc(sb, i, NULL);
3122		b = ext4_block_bitmap(sb, gdp);
3123		if (b >= first_block && b <= last_block) {
3124			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3125			count++;
3126		}
3127		b = ext4_inode_bitmap(sb, gdp);
3128		if (b >= first_block && b <= last_block) {
3129			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3130			count++;
3131		}
3132		b = ext4_inode_table(sb, gdp);
3133		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3134			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3135				int c = EXT4_B2C(sbi, b - first_block);
3136				ext4_set_bit(c, buf);
3137				count++;
3138			}
3139		if (i != grp)
3140			continue;
3141		s = 0;
3142		if (ext4_bg_has_super(sb, grp)) {
3143			ext4_set_bit(s++, buf);
3144			count++;
3145		}
3146		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3147			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3148			count++;
 
 
3149		}
 
 
 
3150	}
3151	if (!count)
3152		return 0;
3153	return EXT4_CLUSTERS_PER_GROUP(sb) -
3154		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3155}
3156
3157/*
3158 * Compute the overhead and stash it in sbi->s_overhead
3159 */
3160int ext4_calculate_overhead(struct super_block *sb)
3161{
3162	struct ext4_sb_info *sbi = EXT4_SB(sb);
3163	struct ext4_super_block *es = sbi->s_es;
 
 
3164	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3165	ext4_fsblk_t overhead = 0;
3166	char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3167
3168	memset(buf, 0, PAGE_SIZE);
3169	if (!buf)
3170		return -ENOMEM;
3171
3172	/*
3173	 * Compute the overhead (FS structures).  This is constant
3174	 * for a given filesystem unless the number of block groups
3175	 * changes so we cache the previous value until it does.
3176	 */
3177
3178	/*
3179	 * All of the blocks before first_data_block are overhead
3180	 */
3181	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3182
3183	/*
3184	 * Add the overhead found in each block group
3185	 */
3186	for (i = 0; i < ngroups; i++) {
3187		int blks;
3188
3189		blks = count_overhead(sb, i, buf);
3190		overhead += blks;
3191		if (blks)
3192			memset(buf, 0, PAGE_SIZE);
3193		cond_resched();
3194	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195	sbi->s_overhead = overhead;
3196	smp_wmb();
3197	free_page((unsigned long) buf);
3198	return 0;
3199}
3200
3201static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3202{
3203	char *orig_data = kstrdup(data, GFP_KERNEL);
3204	struct buffer_head *bh;
3205	struct ext4_super_block *es = NULL;
3206	struct ext4_sb_info *sbi;
3207	ext4_fsblk_t block;
3208	ext4_fsblk_t sb_block = get_sb_block(&data);
3209	ext4_fsblk_t logical_sb_block;
3210	unsigned long offset = 0;
3211	unsigned long journal_devnum = 0;
3212	unsigned long def_mount_opts;
3213	struct inode *root;
3214	char *cp;
3215	const char *descr;
3216	int ret = -ENOMEM;
3217	int blocksize, clustersize;
3218	unsigned int db_count;
3219	unsigned int i;
3220	int needs_recovery, has_huge_files, has_bigalloc;
3221	__u64 blocks_count;
3222	int err;
3223	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3224	ext4_group_t first_not_zeroed;
3225
3226	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3227	if (!sbi)
3228		goto out_free_orig;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229
3230	sbi->s_blockgroup_lock =
3231		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3232	if (!sbi->s_blockgroup_lock) {
3233		kfree(sbi);
3234		goto out_free_orig;
3235	}
3236	sb->s_fs_info = sbi;
3237	sbi->s_sb = sb;
3238	sbi->s_mount_opt = 0;
3239	sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3240	sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3241	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3242	sbi->s_sb_block = sb_block;
3243	if (sb->s_bdev->bd_part)
3244		sbi->s_sectors_written_start =
3245			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3246
3247	/* Cleanup superblock name */
3248	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3249		*cp = '!';
3250
3251	ret = -EINVAL;
3252	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3253	if (!blocksize) {
3254		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3255		goto out_fail;
3256	}
3257
3258	/*
3259	 * The ext4 superblock will not be buffer aligned for other than 1kB
3260	 * block sizes.  We need to calculate the offset from buffer start.
3261	 */
3262	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3263		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3264		offset = do_div(logical_sb_block, blocksize);
3265	} else {
3266		logical_sb_block = sb_block;
3267	}
3268
3269	if (!(bh = sb_bread(sb, logical_sb_block))) {
3270		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3271		goto out_fail;
3272	}
3273	/*
3274	 * Note: s_es must be initialized as soon as possible because
3275	 *       some ext4 macro-instructions depend on its value
3276	 */
3277	es = (struct ext4_super_block *) (bh->b_data + offset);
3278	sbi->s_es = es;
3279	sb->s_magic = le16_to_cpu(es->s_magic);
3280	if (sb->s_magic != EXT4_SUPER_MAGIC)
3281		goto cantfind_ext4;
3282	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3283
3284	/* Warn if metadata_csum and gdt_csum are both set. */
3285	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3286				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3287	    EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3288		ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3289			     "redundant flags; please run fsck.");
3290
3291	/* Check for a known checksum algorithm */
3292	if (!ext4_verify_csum_type(sb, es)) {
3293		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3294			 "unknown checksum algorithm.");
3295		silent = 1;
3296		goto cantfind_ext4;
3297	}
3298
3299	/* Load the checksum driver */
3300	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3301				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3302		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3303		if (IS_ERR(sbi->s_chksum_driver)) {
3304			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3305			ret = PTR_ERR(sbi->s_chksum_driver);
3306			sbi->s_chksum_driver = NULL;
3307			goto failed_mount;
3308		}
3309	}
3310
3311	/* Check superblock checksum */
3312	if (!ext4_superblock_csum_verify(sb, es)) {
3313		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3314			 "invalid superblock checksum.  Run e2fsck?");
3315		silent = 1;
3316		goto cantfind_ext4;
3317	}
3318
3319	/* Precompute checksum seed for all metadata */
3320	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3321			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3322		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3323					       sizeof(es->s_uuid));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3324
3325	/* Set defaults before we parse the mount options */
3326	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3327	set_opt(sb, INIT_INODE_TABLE);
3328	if (def_mount_opts & EXT4_DEFM_DEBUG)
3329		set_opt(sb, DEBUG);
3330	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3331		set_opt(sb, GRPID);
3332	if (def_mount_opts & EXT4_DEFM_UID16)
3333		set_opt(sb, NO_UID32);
3334	/* xattr user namespace & acls are now defaulted on */
3335#ifdef CONFIG_EXT4_FS_XATTR
3336	set_opt(sb, XATTR_USER);
3337#endif
3338#ifdef CONFIG_EXT4_FS_POSIX_ACL
3339	set_opt(sb, POSIX_ACL);
3340#endif
3341	set_opt(sb, MBLK_IO_SUBMIT);
 
 
 
 
 
3342	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3343		set_opt(sb, JOURNAL_DATA);
3344	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3345		set_opt(sb, ORDERED_DATA);
3346	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3347		set_opt(sb, WRITEBACK_DATA);
3348
3349	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3350		set_opt(sb, ERRORS_PANIC);
3351	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3352		set_opt(sb, ERRORS_CONT);
3353	else
3354		set_opt(sb, ERRORS_RO);
3355	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3356		set_opt(sb, BLOCK_VALIDITY);
3357	if (def_mount_opts & EXT4_DEFM_DISCARD)
3358		set_opt(sb, DISCARD);
3359
3360	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3361	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3362	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3363	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3364	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3365
3366	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3367		set_opt(sb, BARRIER);
3368
3369	/*
3370	 * enable delayed allocation by default
3371	 * Use -o nodelalloc to turn it off
3372	 */
3373	if (!IS_EXT3_SB(sb) &&
3374	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3375		set_opt(sb, DELALLOC);
3376
3377	/*
3378	 * set default s_li_wait_mult for lazyinit, for the case there is
3379	 * no mount option specified.
3380	 */
3381	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3382
3383	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3384			   &journal_devnum, &journal_ioprio, 0)) {
3385		ext4_msg(sb, KERN_WARNING,
3386			 "failed to parse options in superblock: %s",
3387			 sbi->s_es->s_mount_opts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388	}
3389	sbi->s_def_mount_opt = sbi->s_mount_opt;
3390	if (!parse_options((char *) data, sb, &journal_devnum,
3391			   &journal_ioprio, 0))
3392		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
3393
3394	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3395		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3396			    "with data=journal disables delayed "
3397			    "allocation and O_DIRECT support!\n");
3398		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3399			ext4_msg(sb, KERN_ERR, "can't mount with "
3400				 "both data=journal and delalloc");
3401			goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3402		}
3403		if (test_opt(sb, DIOREAD_NOLOCK)) {
3404			ext4_msg(sb, KERN_ERR, "can't mount with "
3405				 "both data=journal and delalloc");
3406			goto failed_mount;
 
 
 
 
3407		}
3408		if (test_opt(sb, DELALLOC))
3409			clear_opt(sb, DELALLOC);
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	}
3411
3412	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3413	if (test_opt(sb, DIOREAD_NOLOCK)) {
3414		if (blocksize < PAGE_SIZE) {
3415			ext4_msg(sb, KERN_ERR, "can't mount with "
3416				 "dioread_nolock if block size != PAGE_SIZE");
3417			goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418		}
3419	}
3420
3421	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3422		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3423
3424	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3425	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3426	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3427	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3428		ext4_msg(sb, KERN_WARNING,
3429		       "feature flags set on rev 0 fs, "
3430		       "running e2fsck is recommended");
3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3432	if (IS_EXT2_SB(sb)) {
3433		if (ext2_feature_set_ok(sb))
3434			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3435				 "using the ext4 subsystem");
3436		else {
 
 
 
 
 
 
3437			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3438				 "to feature incompatibilities");
3439			goto failed_mount;
3440		}
3441	}
3442
3443	if (IS_EXT3_SB(sb)) {
3444		if (ext3_feature_set_ok(sb))
3445			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3446				 "using the ext4 subsystem");
3447		else {
 
 
 
 
 
 
3448			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3449				 "to feature incompatibilities");
3450			goto failed_mount;
3451		}
3452	}
3453
3454	/*
3455	 * Check feature flags regardless of the revision level, since we
3456	 * previously didn't change the revision level when setting the flags,
3457	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3458	 */
3459	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3460		goto failed_mount;
3461
3462	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3463	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3464		ext4_msg(sb, KERN_ERR,
3465		       "Unsupported filesystem blocksize %d", blocksize);
3466		goto failed_mount;
3467	}
3468
3469	if (sb->s_blocksize != blocksize) {
3470		/* Validate the filesystem blocksize */
3471		if (!sb_set_blocksize(sb, blocksize)) {
3472			ext4_msg(sb, KERN_ERR, "bad block size %d",
3473					blocksize);
3474			goto failed_mount;
3475		}
3476
3477		brelse(bh);
3478		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3479		offset = do_div(logical_sb_block, blocksize);
3480		bh = sb_bread(sb, logical_sb_block);
3481		if (!bh) {
3482			ext4_msg(sb, KERN_ERR,
3483			       "Can't read superblock on 2nd try");
3484			goto failed_mount;
3485		}
3486		es = (struct ext4_super_block *)(bh->b_data + offset);
3487		sbi->s_es = es;
3488		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3489			ext4_msg(sb, KERN_ERR,
3490			       "Magic mismatch, very weird!");
3491			goto failed_mount;
3492		}
3493	}
3494
3495	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3496				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3497	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3498						      has_huge_files);
3499	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3500
3501	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3502		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3503		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3504	} else {
3505		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3506		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3507		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3508		    (!is_power_of_2(sbi->s_inode_size)) ||
3509		    (sbi->s_inode_size > blocksize)) {
3510			ext4_msg(sb, KERN_ERR,
3511			       "unsupported inode size: %d",
3512			       sbi->s_inode_size);
3513			goto failed_mount;
3514		}
3515		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3516			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3517	}
3518
3519	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3520	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3521		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3522		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3523		    !is_power_of_2(sbi->s_desc_size)) {
3524			ext4_msg(sb, KERN_ERR,
3525			       "unsupported descriptor size %lu",
3526			       sbi->s_desc_size);
3527			goto failed_mount;
3528		}
3529	} else
3530		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3531
3532	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3533	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3534	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3535		goto cantfind_ext4;
3536
3537	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3538	if (sbi->s_inodes_per_block == 0)
3539		goto cantfind_ext4;
3540	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3541					sbi->s_inodes_per_block;
3542	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3543	sbi->s_sbh = bh;
3544	sbi->s_mount_state = le16_to_cpu(es->s_state);
3545	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3546	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3547
3548	for (i = 0; i < 4; i++)
3549		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3550	sbi->s_def_hash_version = es->s_def_hash_version;
3551	i = le32_to_cpu(es->s_flags);
3552	if (i & EXT2_FLAGS_UNSIGNED_HASH)
3553		sbi->s_hash_unsigned = 3;
3554	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3555#ifdef __CHAR_UNSIGNED__
3556		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3557		sbi->s_hash_unsigned = 3;
3558#else
3559		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3560#endif
3561	}
3562
3563	/* Handle clustersize */
3564	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3565	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3566				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3567	if (has_bigalloc) {
3568		if (clustersize < blocksize) {
3569			ext4_msg(sb, KERN_ERR,
3570				 "cluster size (%d) smaller than "
3571				 "block size (%d)", clustersize, blocksize);
3572			goto failed_mount;
3573		}
3574		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3575			le32_to_cpu(es->s_log_block_size);
3576		sbi->s_clusters_per_group =
3577			le32_to_cpu(es->s_clusters_per_group);
3578		if (sbi->s_clusters_per_group > blocksize * 8) {
3579			ext4_msg(sb, KERN_ERR,
3580				 "#clusters per group too big: %lu",
3581				 sbi->s_clusters_per_group);
3582			goto failed_mount;
3583		}
3584		if (sbi->s_blocks_per_group !=
3585		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3586			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3587				 "clusters per group (%lu) inconsistent",
3588				 sbi->s_blocks_per_group,
3589				 sbi->s_clusters_per_group);
3590			goto failed_mount;
3591		}
3592	} else {
3593		if (clustersize != blocksize) {
3594			ext4_warning(sb, "fragment/cluster size (%d) != "
3595				     "block size (%d)", clustersize,
3596				     blocksize);
3597			clustersize = blocksize;
3598		}
3599		if (sbi->s_blocks_per_group > blocksize * 8) {
3600			ext4_msg(sb, KERN_ERR,
3601				 "#blocks per group too big: %lu",
3602				 sbi->s_blocks_per_group);
3603			goto failed_mount;
3604		}
3605		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3606		sbi->s_cluster_bits = 0;
3607	}
3608	sbi->s_cluster_ratio = clustersize / blocksize;
3609
3610	if (sbi->s_inodes_per_group > blocksize * 8) {
3611		ext4_msg(sb, KERN_ERR,
3612		       "#inodes per group too big: %lu",
3613		       sbi->s_inodes_per_group);
3614		goto failed_mount;
3615	}
3616
3617	/*
3618	 * Test whether we have more sectors than will fit in sector_t,
3619	 * and whether the max offset is addressable by the page cache.
3620	 */
3621	err = generic_check_addressable(sb->s_blocksize_bits,
3622					ext4_blocks_count(es));
3623	if (err) {
3624		ext4_msg(sb, KERN_ERR, "filesystem"
3625			 " too large to mount safely on this system");
3626		if (sizeof(sector_t) < 8)
3627			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3628		ret = err;
3629		goto failed_mount;
3630	}
3631
3632	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3633		goto cantfind_ext4;
3634
3635	/* check blocks count against device size */
3636	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3637	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3638		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3639		       "exceeds size of device (%llu blocks)",
3640		       ext4_blocks_count(es), blocks_count);
3641		goto failed_mount;
3642	}
3643
3644	/*
3645	 * It makes no sense for the first data block to be beyond the end
3646	 * of the filesystem.
3647	 */
3648	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3649		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3650			 "block %u is beyond end of filesystem (%llu)",
3651			 le32_to_cpu(es->s_first_data_block),
3652			 ext4_blocks_count(es));
3653		goto failed_mount;
 
 
 
 
 
 
3654	}
 
3655	blocks_count = (ext4_blocks_count(es) -
3656			le32_to_cpu(es->s_first_data_block) +
3657			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3658	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3659	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3660		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3661		       "(block count %llu, first data block %u, "
3662		       "blocks per group %lu)", sbi->s_groups_count,
3663		       ext4_blocks_count(es),
3664		       le32_to_cpu(es->s_first_data_block),
3665		       EXT4_BLOCKS_PER_GROUP(sb));
3666		goto failed_mount;
3667	}
3668	sbi->s_groups_count = blocks_count;
3669	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3670			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3672		   EXT4_DESC_PER_BLOCK(sb);
3673	sbi->s_group_desc = ext4_kvmalloc(db_count *
 
 
 
 
 
 
 
 
 
 
3674					  sizeof(struct buffer_head *),
3675					  GFP_KERNEL);
3676	if (sbi->s_group_desc == NULL) {
3677		ext4_msg(sb, KERN_ERR, "not enough memory");
3678		ret = -ENOMEM;
3679		goto failed_mount;
3680	}
3681
3682	if (ext4_proc_root)
3683		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3684
3685	if (sbi->s_proc)
3686		proc_create_data("options", S_IRUGO, sbi->s_proc,
3687				 &ext4_seq_options_fops, sb);
3688
3689	bgl_lock_init(sbi->s_blockgroup_lock);
3690
 
3691	for (i = 0; i < db_count; i++) {
3692		block = descriptor_loc(sb, logical_sb_block, i);
3693		sbi->s_group_desc[i] = sb_bread(sb, block);
3694		if (!sbi->s_group_desc[i]) {
 
 
 
 
 
 
 
3695			ext4_msg(sb, KERN_ERR,
3696			       "can't read group descriptor %d", i);
3697			db_count = i;
3698			goto failed_mount2;
3699		}
 
 
 
3700	}
3701	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
 
3702		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3703		goto failed_mount2;
3704	}
3705	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3706		if (!ext4_fill_flex_info(sb)) {
3707			ext4_msg(sb, KERN_ERR,
3708			       "unable to initialize "
3709			       "flex_bg meta info!");
3710			goto failed_mount2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711		}
 
3712
3713	sbi->s_gdb_count = db_count;
3714	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3715	spin_lock_init(&sbi->s_next_gen_lock);
 
 
 
 
 
 
 
 
 
3716
3717	init_timer(&sbi->s_err_report);
3718	sbi->s_err_report.function = print_daily_error_info;
3719	sbi->s_err_report.data = (unsigned long) sb;
 
 
 
3720
3721	err = percpu_counter_init(&sbi->s_freeclusters_counter,
3722			ext4_count_free_clusters(sb));
3723	if (!err) {
3724		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3725				ext4_count_free_inodes(sb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726	}
3727	if (!err) {
3728		err = percpu_counter_init(&sbi->s_dirs_counter,
3729				ext4_count_dirs(sb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730	}
3731	if (!err) {
3732		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
 
 
 
 
 
 
 
 
3733	}
3734	if (err) {
3735		ext4_msg(sb, KERN_ERR, "insufficient memory");
3736		ret = err;
3737		goto failed_mount3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3738	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739
3740	sbi->s_stripe = ext4_get_stripe_size(sbi);
3741	sbi->s_max_writeback_mb_bump = 128;
 
 
 
 
 
 
 
3742
3743	/*
3744	 * set up enough so that it can read an inode
3745	 */
3746	if (!test_opt(sb, NOLOAD) &&
3747	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3748		sb->s_op = &ext4_sops;
3749	else
3750		sb->s_op = &ext4_nojournal_sops;
3751	sb->s_export_op = &ext4_export_ops;
3752	sb->s_xattr = ext4_xattr_handlers;
 
 
 
 
 
 
3753#ifdef CONFIG_QUOTA
3754	sb->s_qcop = &ext4_qctl_operations;
3755	sb->dq_op = &ext4_quota_operations;
 
 
 
 
 
3756#endif
3757	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
 
3758
3759	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3760	mutex_init(&sbi->s_orphan_lock);
3761	sbi->s_resize_flags = 0;
 
 
 
 
3762
3763	sb->s_root = NULL;
3764
3765	needs_recovery = (es->s_last_orphan != 0 ||
3766			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3767				    EXT4_FEATURE_INCOMPAT_RECOVER));
3768
3769	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3770	    !(sb->s_flags & MS_RDONLY))
3771		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3772			goto failed_mount3;
 
3773
 
3774	/*
3775	 * The first inode we look at is the journal inode.  Don't try
3776	 * root first: it may be modified in the journal!
3777	 */
3778	if (!test_opt(sb, NOLOAD) &&
3779	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3780		if (ext4_load_journal(sb, es, journal_devnum))
3781			goto failed_mount3;
3782	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3783	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3784		ext4_msg(sb, KERN_ERR, "required journal recovery "
3785		       "suppressed and not mounted read-only");
3786		goto failed_mount_wq;
3787	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3788		clear_opt(sb, DATA_FLAGS);
 
3789		sbi->s_journal = NULL;
3790		needs_recovery = 0;
3791		goto no_journal;
3792	}
3793
3794	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3795	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3796				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3797		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3798		goto failed_mount_wq;
3799	}
3800
3801	if (!set_journal_csum_feature_set(sb)) {
3802		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3803			 "feature set");
3804		goto failed_mount_wq;
3805	}
3806
3807	/* We have now updated the journal if required, so we can
3808	 * validate the data journaling mode. */
3809	switch (test_opt(sb, DATA_FLAGS)) {
3810	case 0:
3811		/* No mode set, assume a default based on the journal
3812		 * capabilities: ORDERED_DATA if the journal can
3813		 * cope, else JOURNAL_DATA
3814		 */
3815		if (jbd2_journal_check_available_features
3816		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3817			set_opt(sb, ORDERED_DATA);
3818		else
3819			set_opt(sb, JOURNAL_DATA);
3820		break;
3821
3822	case EXT4_MOUNT_ORDERED_DATA:
3823	case EXT4_MOUNT_WRITEBACK_DATA:
3824		if (!jbd2_journal_check_available_features
3825		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3826			ext4_msg(sb, KERN_ERR, "Journal does not support "
3827			       "requested data journaling mode");
3828			goto failed_mount_wq;
3829		}
3830	default:
3831		break;
3832	}
3833	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3834
3835	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3836
3837	/*
3838	 * The journal may have updated the bg summary counts, so we
3839	 * need to update the global counters.
3840	 */
3841	percpu_counter_set(&sbi->s_freeclusters_counter,
3842			   ext4_count_free_clusters(sb));
3843	percpu_counter_set(&sbi->s_freeinodes_counter,
3844			   ext4_count_free_inodes(sb));
3845	percpu_counter_set(&sbi->s_dirs_counter,
3846			   ext4_count_dirs(sb));
3847	percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3848
3849no_journal:
3850	/*
3851	 * Get the # of file system overhead blocks from the
3852	 * superblock if present.
3853	 */
3854	if (es->s_overhead_clusters)
3855		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3856	else {
3857		ret = ext4_calculate_overhead(sb);
3858		if (ret)
 
 
 
 
 
 
 
 
 
3859			goto failed_mount_wq;
3860	}
3861
3862	/*
3863	 * The maximum number of concurrent works can be high and
3864	 * concurrency isn't really necessary.  Limit it to 1.
3865	 */
3866	EXT4_SB(sb)->dio_unwritten_wq =
3867		alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3868	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3869		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3870		goto failed_mount_wq;
 
3871	}
3872
3873	/*
3874	 * The jbd2_journal_load will have done any necessary log recovery,
3875	 * so we can safely mount the rest of the filesystem now.
3876	 */
3877
3878	root = ext4_iget(sb, EXT4_ROOT_INO);
3879	if (IS_ERR(root)) {
3880		ext4_msg(sb, KERN_ERR, "get root inode failed");
3881		ret = PTR_ERR(root);
3882		root = NULL;
3883		goto failed_mount4;
3884	}
3885	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3886		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3887		iput(root);
 
3888		goto failed_mount4;
3889	}
 
 
3890	sb->s_root = d_make_root(root);
3891	if (!sb->s_root) {
3892		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3893		ret = -ENOMEM;
3894		goto failed_mount4;
3895	}
3896
3897	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3898		sb->s_flags |= MS_RDONLY;
 
 
 
3899
3900	/* determine the minimum size of new large inodes, if present */
3901	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3902		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3903						     EXT4_GOOD_OLD_INODE_SIZE;
3904		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3905				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3906			if (sbi->s_want_extra_isize <
3907			    le16_to_cpu(es->s_want_extra_isize))
3908				sbi->s_want_extra_isize =
3909					le16_to_cpu(es->s_want_extra_isize);
3910			if (sbi->s_want_extra_isize <
3911			    le16_to_cpu(es->s_min_extra_isize))
3912				sbi->s_want_extra_isize =
3913					le16_to_cpu(es->s_min_extra_isize);
3914		}
3915	}
3916	/* Check if enough inode space is available */
3917	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3918							sbi->s_inode_size) {
3919		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3920						       EXT4_GOOD_OLD_INODE_SIZE;
3921		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3922			 "available");
3923	}
3924
3925	err = ext4_setup_system_zone(sb);
3926	if (err) {
3927		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3928			 "zone (%d)", err);
3929		goto failed_mount4a;
 
 
3930	}
 
3931
3932	ext4_ext_init(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
3933	err = ext4_mb_init(sb);
3934	if (err) {
3935		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3936			 err);
3937		goto failed_mount5;
3938	}
3939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3940	err = ext4_register_li_request(sb, first_not_zeroed);
3941	if (err)
3942		goto failed_mount6;
3943
3944	sbi->s_kobj.kset = ext4_kset;
3945	init_completion(&sbi->s_kobj_unregister);
3946	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3947				   "%s", sb->s_id);
3948	if (err)
3949		goto failed_mount7;
 
 
 
 
 
 
 
 
3950
 
 
 
 
 
 
3951	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3952	ext4_orphan_cleanup(sb, es);
3953	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
 
 
 
 
 
 
 
 
3954	if (needs_recovery) {
3955		ext4_msg(sb, KERN_INFO, "recovery complete");
3956		ext4_mark_recovery_complete(sb, es);
 
 
3957	}
3958	if (EXT4_SB(sb)->s_journal) {
3959		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3960			descr = " journalled data mode";
3961		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3962			descr = " ordered data mode";
3963		else
3964			descr = " writeback data mode";
3965	} else
3966		descr = "out journal";
3967
3968	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3969		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3970		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3971
3972	if (es->s_error_count)
3973		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3974
3975	kfree(orig_data);
3976	return 0;
 
 
 
 
3977
3978cantfind_ext4:
3979	if (!silent)
3980		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3981	goto failed_mount;
 
 
3982
 
 
 
 
3983failed_mount7:
3984	ext4_unregister_li_request(sb);
3985failed_mount6:
3986	ext4_mb_release(sb);
 
 
3987failed_mount5:
3988	ext4_ext_release(sb);
3989	ext4_release_system_zone(sb);
3990failed_mount4a:
3991	dput(sb->s_root);
3992	sb->s_root = NULL;
3993failed_mount4:
3994	ext4_msg(sb, KERN_ERR, "mount failed");
3995	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
 
3996failed_mount_wq:
 
 
 
 
 
 
3997	if (sbi->s_journal) {
 
 
3998		jbd2_journal_destroy(sbi->s_journal);
3999		sbi->s_journal = NULL;
4000	}
 
 
4001failed_mount3:
4002	del_timer(&sbi->s_err_report);
4003	if (sbi->s_flex_groups)
4004		ext4_kvfree(sbi->s_flex_groups);
4005	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4006	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4007	percpu_counter_destroy(&sbi->s_dirs_counter);
4008	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4009	if (sbi->s_mmp_tsk)
4010		kthread_stop(sbi->s_mmp_tsk);
4011failed_mount2:
4012	for (i = 0; i < db_count; i++)
4013		brelse(sbi->s_group_desc[i]);
4014	ext4_kvfree(sbi->s_group_desc);
4015failed_mount:
4016	if (sbi->s_chksum_driver)
4017		crypto_free_shash(sbi->s_chksum_driver);
4018	if (sbi->s_proc) {
4019		remove_proc_entry("options", sbi->s_proc);
4020		remove_proc_entry(sb->s_id, ext4_proc_root);
4021	}
 
4022#ifdef CONFIG_QUOTA
4023	for (i = 0; i < MAXQUOTAS; i++)
4024		kfree(sbi->s_qf_names[i]);
4025#endif
4026	ext4_blkdev_remove(sbi);
4027	brelse(bh);
 
 
 
 
4028out_fail:
 
4029	sb->s_fs_info = NULL;
4030	kfree(sbi->s_blockgroup_lock);
4031	kfree(sbi);
4032out_free_orig:
4033	kfree(orig_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4034	return ret;
4035}
4036
 
 
 
 
 
4037/*
4038 * Setup any per-fs journal parameters now.  We'll do this both on
4039 * initial mount, once the journal has been initialised but before we've
4040 * done any recovery; and again on any subsequent remount.
4041 */
4042static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4043{
4044	struct ext4_sb_info *sbi = EXT4_SB(sb);
4045
4046	journal->j_commit_interval = sbi->s_commit_interval;
4047	journal->j_min_batch_time = sbi->s_min_batch_time;
4048	journal->j_max_batch_time = sbi->s_max_batch_time;
 
4049
4050	write_lock(&journal->j_state_lock);
4051	if (test_opt(sb, BARRIER))
4052		journal->j_flags |= JBD2_BARRIER;
4053	else
4054		journal->j_flags &= ~JBD2_BARRIER;
4055	if (test_opt(sb, DATA_ERR_ABORT))
4056		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4057	else
4058		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
 
 
 
 
 
4059	write_unlock(&journal->j_state_lock);
4060}
4061
4062static journal_t *ext4_get_journal(struct super_block *sb,
4063				   unsigned int journal_inum)
4064{
4065	struct inode *journal_inode;
4066	journal_t *journal;
4067
4068	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4069
4070	/* First, test for the existence of a valid inode on disk.  Bad
4071	 * things happen if we iget() an unused inode, as the subsequent
4072	 * iput() will try to delete it. */
4073
4074	journal_inode = ext4_iget(sb, journal_inum);
 
 
 
 
 
4075	if (IS_ERR(journal_inode)) {
4076		ext4_msg(sb, KERN_ERR, "no journal found");
4077		return NULL;
4078	}
4079	if (!journal_inode->i_nlink) {
4080		make_bad_inode(journal_inode);
4081		iput(journal_inode);
4082		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4083		return NULL;
4084	}
4085
4086	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4087		  journal_inode, journal_inode->i_size);
4088	if (!S_ISREG(journal_inode->i_mode)) {
4089		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4090		iput(journal_inode);
4091		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4092	}
 
 
 
 
 
 
 
 
 
 
 
 
 
4093
4094	journal = jbd2_journal_init_inode(journal_inode);
4095	if (!journal) {
4096		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4097		iput(journal_inode);
4098		return NULL;
4099	}
4100	journal->j_private = sb;
 
4101	ext4_init_journal_params(sb, journal);
4102	return journal;
4103}
4104
4105static journal_t *ext4_get_dev_journal(struct super_block *sb,
4106				       dev_t j_dev)
 
4107{
4108	struct buffer_head *bh;
4109	journal_t *journal;
4110	ext4_fsblk_t start;
4111	ext4_fsblk_t len;
4112	int hblock, blocksize;
4113	ext4_fsblk_t sb_block;
4114	unsigned long offset;
4115	struct ext4_super_block *es;
4116	struct block_device *bdev;
4117
4118	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4119
4120	bdev = ext4_blkdev_get(j_dev, sb);
4121	if (bdev == NULL)
4122		return NULL;
 
 
 
 
 
 
4123
 
4124	blocksize = sb->s_blocksize;
4125	hblock = bdev_logical_block_size(bdev);
4126	if (blocksize < hblock) {
4127		ext4_msg(sb, KERN_ERR,
4128			"blocksize too small for journal device");
 
4129		goto out_bdev;
4130	}
4131
4132	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4133	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4134	set_blocksize(bdev, blocksize);
4135	if (!(bh = __bread(bdev, sb_block, blocksize))) {
 
4136		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4137		       "external journal");
 
4138		goto out_bdev;
4139	}
4140
4141	es = (struct ext4_super_block *) (bh->b_data + offset);
4142	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4143	    !(le32_to_cpu(es->s_feature_incompat) &
4144	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4145		ext4_msg(sb, KERN_ERR, "external journal has "
4146					"bad superblock");
4147		brelse(bh);
4148		goto out_bdev;
 
 
 
 
 
 
 
4149	}
4150
4151	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4152		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4153		brelse(bh);
4154		goto out_bdev;
4155	}
4156
4157	len = ext4_blocks_count(es);
4158	start = sb_block + 1;
4159	brelse(bh);	/* we're done with the superblock */
4160
4161	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4162					start, len, blocksize);
4163	if (!journal) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4164		ext4_msg(sb, KERN_ERR, "failed to create device journal");
 
4165		goto out_bdev;
4166	}
4167	journal->j_private = sb;
4168	ll_rw_block(READ, 1, &journal->j_sb_buffer);
4169	wait_on_buffer(journal->j_sb_buffer);
4170	if (!buffer_uptodate(journal->j_sb_buffer)) {
4171		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4172		goto out_journal;
4173	}
4174	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4175		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4176					"user (unsupported) - %d",
4177			be32_to_cpu(journal->j_superblock->s_nr_users));
 
4178		goto out_journal;
4179	}
4180	EXT4_SB(sb)->journal_bdev = bdev;
 
4181	ext4_init_journal_params(sb, journal);
4182	return journal;
4183
4184out_journal:
4185	jbd2_journal_destroy(journal);
4186out_bdev:
4187	ext4_blkdev_put(bdev);
4188	return NULL;
4189}
4190
4191static int ext4_load_journal(struct super_block *sb,
4192			     struct ext4_super_block *es,
4193			     unsigned long journal_devnum)
4194{
4195	journal_t *journal;
4196	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4197	dev_t journal_dev;
4198	int err = 0;
4199	int really_read_only;
 
4200
4201	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
 
4202
4203	if (journal_devnum &&
4204	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4205		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4206			"numbers have changed");
4207		journal_dev = new_decode_dev(journal_devnum);
4208	} else
4209		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4210
4211	really_read_only = bdev_read_only(sb->s_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4212
4213	/*
4214	 * Are we loading a blank journal or performing recovery after a
4215	 * crash?  For recovery, we need to check in advance whether we
4216	 * can get read-write access to the device.
4217	 */
4218	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4219		if (sb->s_flags & MS_RDONLY) {
4220			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4221					"required on readonly filesystem");
4222			if (really_read_only) {
4223				ext4_msg(sb, KERN_ERR, "write access "
4224					"unavailable, cannot proceed");
4225				return -EROFS;
 
 
4226			}
4227			ext4_msg(sb, KERN_INFO, "write access will "
4228			       "be enabled during recovery");
4229		}
4230	}
4231
4232	if (journal_inum && journal_dev) {
4233		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4234		       "and inode journals!");
4235		return -EINVAL;
4236	}
4237
4238	if (journal_inum) {
4239		if (!(journal = ext4_get_journal(sb, journal_inum)))
4240			return -EINVAL;
4241	} else {
4242		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4243			return -EINVAL;
4244	}
4245
4246	if (!(journal->j_flags & JBD2_BARRIER))
4247		ext4_msg(sb, KERN_INFO, "barriers disabled");
4248
4249	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4250		err = jbd2_journal_wipe(journal, !really_read_only);
4251	if (!err) {
4252		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
 
 
 
4253		if (save)
4254			memcpy(save, ((char *) es) +
4255			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4256		err = jbd2_journal_load(journal);
4257		if (save)
 
4258			memcpy(((char *) es) + EXT4_S_ERR_START,
4259			       save, EXT4_S_ERR_LEN);
 
 
4260		kfree(save);
 
 
 
 
 
 
 
 
 
 
 
4261	}
4262
4263	if (err) {
4264		ext4_msg(sb, KERN_ERR, "error loading journal");
4265		jbd2_journal_destroy(journal);
4266		return err;
4267	}
4268
4269	EXT4_SB(sb)->s_journal = journal;
4270	ext4_clear_journal_err(sb, es);
 
 
 
 
 
4271
4272	if (!really_read_only && journal_devnum &&
4273	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4274		es->s_journal_dev = cpu_to_le32(journal_devnum);
4275
4276		/* Make sure we flush the recovery flag to disk. */
4277		ext4_commit_super(sb, 1);
 
 
 
4278	}
4279
4280	return 0;
 
 
 
 
4281}
4282
4283static int ext4_commit_super(struct super_block *sb, int sync)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4284{
4285	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4286	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4287	int error = 0;
4288
4289	if (!sbh || block_device_ejected(sb))
4290		return error;
4291	if (buffer_write_io_error(sbh)) {
 
 
 
 
 
 
 
 
 
 
4292		/*
4293		 * Oh, dear.  A previous attempt to write the
4294		 * superblock failed.  This could happen because the
4295		 * USB device was yanked out.  Or it could happen to
4296		 * be a transient write error and maybe the block will
4297		 * be remapped.  Nothing we can do but to retry the
4298		 * write and hope for the best.
4299		 */
4300		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4301		       "superblock detected");
4302		clear_buffer_write_io_error(sbh);
4303		set_buffer_uptodate(sbh);
4304	}
4305	/*
4306	 * If the file system is mounted read-only, don't update the
4307	 * superblock write time.  This avoids updating the superblock
4308	 * write time when we are mounting the root file system
4309	 * read/only but we need to replay the journal; at that point,
4310	 * for people who are east of GMT and who make their clock
4311	 * tick in localtime for Windows bug-for-bug compatibility,
4312	 * the clock is set in the future, and this will cause e2fsck
4313	 * to complain and force a full file system check.
4314	 */
4315	if (!(sb->s_flags & MS_RDONLY))
4316		es->s_wtime = cpu_to_le32(get_seconds());
4317	if (sb->s_bdev->bd_part)
4318		es->s_kbytes_written =
4319			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4320			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4321			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4322	else
4323		es->s_kbytes_written =
4324			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4325	ext4_free_blocks_count_set(es,
4326			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4327				&EXT4_SB(sb)->s_freeclusters_counter)));
4328	es->s_free_inodes_count =
4329		cpu_to_le32(percpu_counter_sum_positive(
4330				&EXT4_SB(sb)->s_freeinodes_counter));
4331	sb->s_dirt = 0;
4332	BUFFER_TRACE(sbh, "marking dirty");
4333	ext4_superblock_csum_set(sb, es);
4334	mark_buffer_dirty(sbh);
4335	if (sync) {
4336		error = sync_dirty_buffer(sbh);
4337		if (error)
4338			return error;
4339
4340		error = buffer_write_io_error(sbh);
4341		if (error) {
4342			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4343			       "superblock");
4344			clear_buffer_write_io_error(sbh);
4345			set_buffer_uptodate(sbh);
4346		}
4347	}
4348	return error;
4349}
4350
4351/*
4352 * Have we just finished recovery?  If so, and if we are mounting (or
4353 * remounting) the filesystem readonly, then we will end up with a
4354 * consistent fs on disk.  Record that fact.
4355 */
4356static void ext4_mark_recovery_complete(struct super_block *sb,
4357					struct ext4_super_block *es)
4358{
 
4359	journal_t *journal = EXT4_SB(sb)->s_journal;
4360
4361	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4362		BUG_ON(journal != NULL);
4363		return;
 
 
 
 
4364	}
4365	jbd2_journal_lock_updates(journal);
4366	if (jbd2_journal_flush(journal) < 0)
 
4367		goto out;
4368
4369	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4370	    sb->s_flags & MS_RDONLY) {
4371		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4372		ext4_commit_super(sb, 1);
 
 
 
 
 
 
4373	}
4374
4375out:
4376	jbd2_journal_unlock_updates(journal);
 
4377}
4378
4379/*
4380 * If we are mounting (or read-write remounting) a filesystem whose journal
4381 * has recorded an error from a previous lifetime, move that error to the
4382 * main filesystem now.
4383 */
4384static void ext4_clear_journal_err(struct super_block *sb,
4385				   struct ext4_super_block *es)
4386{
4387	journal_t *journal;
4388	int j_errno;
4389	const char *errstr;
4390
4391	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
 
 
 
4392
4393	journal = EXT4_SB(sb)->s_journal;
4394
4395	/*
4396	 * Now check for any error status which may have been recorded in the
4397	 * journal by a prior ext4_error() or ext4_abort()
4398	 */
4399
4400	j_errno = jbd2_journal_errno(journal);
4401	if (j_errno) {
4402		char nbuf[16];
4403
4404		errstr = ext4_decode_error(sb, j_errno, nbuf);
4405		ext4_warning(sb, "Filesystem error recorded "
4406			     "from previous mount: %s", errstr);
4407		ext4_warning(sb, "Marking fs in need of filesystem check.");
4408
4409		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4410		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4411		ext4_commit_super(sb, 1);
 
 
 
4412
4413		jbd2_journal_clear_err(journal);
4414		jbd2_journal_update_sb_errno(journal);
4415	}
 
4416}
4417
4418/*
4419 * Force the running and committing transactions to commit,
4420 * and wait on the commit.
4421 */
4422int ext4_force_commit(struct super_block *sb)
4423{
4424	journal_t *journal;
4425	int ret = 0;
4426
4427	if (sb->s_flags & MS_RDONLY)
4428		return 0;
4429
4430	journal = EXT4_SB(sb)->s_journal;
4431	if (journal) {
4432		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4433		ret = ext4_journal_force_commit(journal);
4434	}
4435
4436	return ret;
4437}
4438
4439static void ext4_write_super(struct super_block *sb)
4440{
4441	lock_super(sb);
4442	ext4_commit_super(sb, 1);
4443	unlock_super(sb);
4444}
4445
4446static int ext4_sync_fs(struct super_block *sb, int wait)
4447{
4448	int ret = 0;
4449	tid_t target;
 
4450	struct ext4_sb_info *sbi = EXT4_SB(sb);
4451
 
 
 
4452	trace_ext4_sync_fs(sb, wait);
4453	flush_workqueue(sbi->dio_unwritten_wq);
4454	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4455		if (wait)
4456			jbd2_log_wait_commit(sbi->s_journal, target);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4457	}
 
4458	return ret;
4459}
4460
4461/*
4462 * LVM calls this function before a (read-only) snapshot is created.  This
4463 * gives us a chance to flush the journal completely and mark the fs clean.
4464 *
4465 * Note that only this function cannot bring a filesystem to be in a clean
4466 * state independently, because ext4 prevents a new handle from being started
4467 * by @sb->s_frozen, which stays in an upper layer.  It thus needs help from
4468 * the upper layer.
4469 */
4470static int ext4_freeze(struct super_block *sb)
4471{
4472	int error = 0;
4473	journal_t *journal;
4474
4475	if (sb->s_flags & MS_RDONLY)
4476		return 0;
4477
4478	journal = EXT4_SB(sb)->s_journal;
 
 
4479
4480	/* Now we set up the journal barrier. */
4481	jbd2_journal_lock_updates(journal);
 
 
 
 
 
4482
4483	/*
4484	 * Don't clear the needs_recovery flag if we failed to flush
4485	 * the journal.
4486	 */
4487	error = jbd2_journal_flush(journal);
4488	if (error < 0)
4489		goto out;
4490
4491	/* Journal blocked and flushed, clear needs_recovery flag. */
4492	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4493	error = ext4_commit_super(sb, 1);
4494out:
4495	/* we rely on s_frozen to stop further updates */
4496	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
 
4497	return error;
4498}
4499
4500/*
4501 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4502 * flag here, even though the filesystem is not technically dirty yet.
4503 */
4504static int ext4_unfreeze(struct super_block *sb)
4505{
4506	if (sb->s_flags & MS_RDONLY)
4507		return 0;
4508
4509	lock_super(sb);
4510	/* Reset the needs_recovery flag before the fs is unlocked. */
4511	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4512	ext4_commit_super(sb, 1);
4513	unlock_super(sb);
 
 
 
4514	return 0;
4515}
4516
4517/*
4518 * Structure to save mount options for ext4_remount's benefit
4519 */
4520struct ext4_mount_options {
4521	unsigned long s_mount_opt;
4522	unsigned long s_mount_opt2;
4523	kuid_t s_resuid;
4524	kgid_t s_resgid;
4525	unsigned long s_commit_interval;
4526	u32 s_min_batch_time, s_max_batch_time;
4527#ifdef CONFIG_QUOTA
4528	int s_jquota_fmt;
4529	char *s_qf_names[MAXQUOTAS];
4530#endif
4531};
4532
4533static int ext4_remount(struct super_block *sb, int *flags, char *data)
4534{
 
4535	struct ext4_super_block *es;
4536	struct ext4_sb_info *sbi = EXT4_SB(sb);
4537	unsigned long old_sb_flags;
4538	struct ext4_mount_options old_opts;
4539	int enable_quota = 0;
4540	ext4_group_t g;
4541	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4542	int err = 0;
 
4543#ifdef CONFIG_QUOTA
4544	int i;
 
 
4545#endif
4546	char *orig_data = kstrdup(data, GFP_KERNEL);
4547
4548	/* Store the original options */
4549	lock_super(sb);
4550	old_sb_flags = sb->s_flags;
4551	old_opts.s_mount_opt = sbi->s_mount_opt;
4552	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4553	old_opts.s_resuid = sbi->s_resuid;
4554	old_opts.s_resgid = sbi->s_resgid;
4555	old_opts.s_commit_interval = sbi->s_commit_interval;
4556	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4557	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4558#ifdef CONFIG_QUOTA
4559	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4560	for (i = 0; i < MAXQUOTAS; i++)
4561		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
 
 
 
 
 
 
 
 
 
 
4562#endif
4563	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4564		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4565
4566	/*
4567	 * Allow the "check" option to be passed as a remount option.
 
 
 
 
4568	 */
4569	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4570		err = -EINVAL;
4571		goto restore_opts;
4572	}
4573
4574	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4575		ext4_abort(sb, "Abort forced by user");
 
 
 
 
4576
4577	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4578		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4579
4580	es = sbi->s_es;
4581
4582	if (sbi->s_journal) {
4583		ext4_init_journal_params(sb, sbi->s_journal);
4584		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4585	}
4586
4587	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4588		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
 
 
 
4589			err = -EROFS;
4590			goto restore_opts;
4591		}
4592
4593		if (*flags & MS_RDONLY) {
 
 
 
4594			err = dquot_suspend(sb, -1);
4595			if (err < 0)
4596				goto restore_opts;
4597
4598			/*
4599			 * First of all, the unconditional stuff we have to do
4600			 * to disable replay of the journal when we next remount
4601			 */
4602			sb->s_flags |= MS_RDONLY;
4603
4604			/*
4605			 * OK, test if we are remounting a valid rw partition
4606			 * readonly, and if so set the rdonly flag and then
4607			 * mark the partition as valid again.
4608			 */
4609			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4610			    (sbi->s_mount_state & EXT4_VALID_FS))
4611				es->s_state = cpu_to_le16(sbi->s_mount_state);
4612
4613			if (sbi->s_journal)
 
 
 
 
4614				ext4_mark_recovery_complete(sb, es);
 
4615		} else {
4616			/* Make sure we can mount this feature set readwrite */
4617			if (!ext4_feature_set_ok(sb, 0)) {
 
4618				err = -EROFS;
4619				goto restore_opts;
4620			}
4621			/*
4622			 * Make sure the group descriptor checksums
4623			 * are sane.  If they aren't, refuse to remount r/w.
4624			 */
4625			for (g = 0; g < sbi->s_groups_count; g++) {
4626				struct ext4_group_desc *gdp =
4627					ext4_get_group_desc(sb, g, NULL);
4628
4629				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4630					ext4_msg(sb, KERN_ERR,
4631	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4632		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4633					       le16_to_cpu(gdp->bg_checksum));
4634					err = -EINVAL;
4635					goto restore_opts;
4636				}
4637			}
4638
4639			/*
4640			 * If we have an unprocessed orphan list hanging
4641			 * around from a previously readonly bdev mount,
4642			 * require a full umount/remount for now.
4643			 */
4644			if (es->s_last_orphan) {
4645				ext4_msg(sb, KERN_WARNING, "Couldn't "
4646				       "remount RDWR because of unprocessed "
4647				       "orphan inode list.  Please "
4648				       "umount/remount instead");
4649				err = -EINVAL;
4650				goto restore_opts;
4651			}
4652
4653			/*
4654			 * Mounting a RDONLY partition read-write, so reread
4655			 * and store the current valid flag.  (It may have
4656			 * been changed by e2fsck since we originally mounted
4657			 * the partition.)
4658			 */
4659			if (sbi->s_journal)
4660				ext4_clear_journal_err(sb, es);
4661			sbi->s_mount_state = le16_to_cpu(es->s_state);
4662			if (!ext4_setup_super(sb, es, 0))
4663				sb->s_flags &= ~MS_RDONLY;
4664			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4665						     EXT4_FEATURE_INCOMPAT_MMP))
4666				if (ext4_multi_mount_protect(sb,
4667						le64_to_cpu(es->s_mmp_block))) {
4668					err = -EROFS;
4669					goto restore_opts;
4670				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4671			enable_quota = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4672		}
4673	}
 
 
 
 
 
 
4674
4675	/*
4676	 * Reinitialize lazy itable initialization thread based on
4677	 * current settings
4678	 */
4679	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4680		ext4_unregister_li_request(sb);
4681	else {
4682		ext4_group_t first_not_zeroed;
4683		first_not_zeroed = ext4_has_uninit_itable(sb);
4684		ext4_register_li_request(sb, first_not_zeroed);
4685	}
4686
4687	ext4_setup_system_zone(sb);
4688	if (sbi->s_journal == NULL)
4689		ext4_commit_super(sb, 1);
4690
4691#ifdef CONFIG_QUOTA
4692	/* Release old quota file names */
4693	for (i = 0; i < MAXQUOTAS; i++)
4694		if (old_opts.s_qf_names[i] &&
4695		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4696			kfree(old_opts.s_qf_names[i]);
4697#endif
4698	unlock_super(sb);
4699	if (enable_quota)
4700		dquot_resume(sb, -1);
4701
4702	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4703	kfree(orig_data);
4704	return 0;
4705
4706restore_opts:
 
 
 
 
 
 
 
 
 
4707	sb->s_flags = old_sb_flags;
4708	sbi->s_mount_opt = old_opts.s_mount_opt;
4709	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4710	sbi->s_resuid = old_opts.s_resuid;
4711	sbi->s_resgid = old_opts.s_resgid;
4712	sbi->s_commit_interval = old_opts.s_commit_interval;
4713	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4714	sbi->s_max_batch_time = old_opts.s_max_batch_time;
 
 
 
 
4715#ifdef CONFIG_QUOTA
4716	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4717	for (i = 0; i < MAXQUOTAS; i++) {
4718		if (sbi->s_qf_names[i] &&
4719		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4720			kfree(sbi->s_qf_names[i]);
4721		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4722	}
 
4723#endif
4724	unlock_super(sb);
4725	kfree(orig_data);
4726	return err;
4727}
4728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4729static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4730{
4731	struct super_block *sb = dentry->d_sb;
4732	struct ext4_sb_info *sbi = EXT4_SB(sb);
4733	struct ext4_super_block *es = sbi->s_es;
4734	ext4_fsblk_t overhead = 0;
4735	u64 fsid;
4736	s64 bfree;
 
4737
4738	if (!test_opt(sb, MINIX_DF))
4739		overhead = sbi->s_overhead;
4740
4741	buf->f_type = EXT4_SUPER_MAGIC;
4742	buf->f_bsize = sb->s_blocksize;
4743	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4744	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4745		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4746	/* prevent underflow in case that few free space is available */
4747	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4748	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4749	if (buf->f_bfree < ext4_r_blocks_count(es))
 
4750		buf->f_bavail = 0;
4751	buf->f_files = le32_to_cpu(es->s_inodes_count);
4752	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4753	buf->f_namelen = EXT4_NAME_LEN;
4754	fsid = le64_to_cpup((void *)es->s_uuid) ^
4755	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4756	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4757	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4758
 
 
 
 
 
4759	return 0;
4760}
4761
4762/* Helper function for writing quotas on sync - we need to start transaction
4763 * before quota file is locked for write. Otherwise the are possible deadlocks:
4764 * Process 1                         Process 2
4765 * ext4_create()                     quota_sync()
4766 *   jbd2_journal_start()                  write_dquot()
4767 *   dquot_initialize()                         down(dqio_mutex)
4768 *     down(dqio_mutex)                    jbd2_journal_start()
4769 *
4770 */
4771
4772#ifdef CONFIG_QUOTA
4773
 
 
 
 
4774static inline struct inode *dquot_to_inode(struct dquot *dquot)
4775{
4776	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4777}
4778
4779static int ext4_write_dquot(struct dquot *dquot)
4780{
4781	int ret, err;
4782	handle_t *handle;
4783	struct inode *inode;
4784
4785	inode = dquot_to_inode(dquot);
4786	handle = ext4_journal_start(inode,
4787				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4788	if (IS_ERR(handle))
4789		return PTR_ERR(handle);
4790	ret = dquot_commit(dquot);
 
 
 
 
4791	err = ext4_journal_stop(handle);
4792	if (!ret)
4793		ret = err;
4794	return ret;
4795}
4796
4797static int ext4_acquire_dquot(struct dquot *dquot)
4798{
4799	int ret, err;
4800	handle_t *handle;
4801
4802	handle = ext4_journal_start(dquot_to_inode(dquot),
4803				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4804	if (IS_ERR(handle))
4805		return PTR_ERR(handle);
4806	ret = dquot_acquire(dquot);
 
 
 
 
4807	err = ext4_journal_stop(handle);
4808	if (!ret)
4809		ret = err;
4810	return ret;
4811}
4812
4813static int ext4_release_dquot(struct dquot *dquot)
4814{
4815	int ret, err;
4816	handle_t *handle;
4817
4818	handle = ext4_journal_start(dquot_to_inode(dquot),
4819				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4820	if (IS_ERR(handle)) {
4821		/* Release dquot anyway to avoid endless cycle in dqput() */
4822		dquot_release(dquot);
4823		return PTR_ERR(handle);
4824	}
4825	ret = dquot_release(dquot);
 
 
 
 
4826	err = ext4_journal_stop(handle);
4827	if (!ret)
4828		ret = err;
4829	return ret;
4830}
4831
4832static int ext4_mark_dquot_dirty(struct dquot *dquot)
4833{
4834	/* Are we journaling quotas? */
4835	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4836	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4837		dquot_mark_dquot_dirty(dquot);
4838		return ext4_write_dquot(dquot);
4839	} else {
4840		return dquot_mark_dquot_dirty(dquot);
4841	}
4842}
4843
4844static int ext4_write_info(struct super_block *sb, int type)
4845{
4846	int ret, err;
4847	handle_t *handle;
4848
4849	/* Data block + inode block */
4850	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4851	if (IS_ERR(handle))
4852		return PTR_ERR(handle);
4853	ret = dquot_commit_info(sb, type);
4854	err = ext4_journal_stop(handle);
4855	if (!ret)
4856		ret = err;
4857	return ret;
4858}
4859
4860/*
4861 * Turn on quotas during mount time - we need to find
4862 * the quota file and such...
4863 */
4864static int ext4_quota_on_mount(struct super_block *sb, int type)
4865{
4866	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4867					EXT4_SB(sb)->s_jquota_fmt, type);
 
 
 
 
 
 
 
 
4868}
4869
4870/*
4871 * Standard function to be called on quota_on
4872 */
4873static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4874			 struct path *path)
4875{
4876	int err;
4877
4878	if (!test_opt(sb, QUOTA))
4879		return -EINVAL;
4880
4881	/* Quotafile not on the same filesystem? */
4882	if (path->dentry->d_sb != sb)
4883		return -EXDEV;
 
 
 
 
 
4884	/* Journaling quota? */
4885	if (EXT4_SB(sb)->s_qf_names[type]) {
4886		/* Quotafile not in fs root? */
4887		if (path->dentry->d_parent != sb->s_root)
4888			ext4_msg(sb, KERN_WARNING,
4889				"Quota file not on filesystem root. "
4890				"Journaled quota will not work");
 
 
 
 
 
 
 
4891	}
4892
4893	/*
4894	 * When we journal data on quota file, we have to flush journal to see
4895	 * all updates to the file when we bypass pagecache...
4896	 */
4897	if (EXT4_SB(sb)->s_journal &&
4898	    ext4_should_journal_data(path->dentry->d_inode)) {
4899		/*
4900		 * We don't need to lock updates but journal_flush() could
4901		 * otherwise be livelocked...
 
4902		 */
4903		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4904		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4905		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
 
 
 
 
 
 
 
 
4906		if (err)
4907			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4908	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4909
4910	return dquot_quota_on(sb, type, format_id, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4911}
4912
4913static int ext4_quota_off(struct super_block *sb, int type)
4914{
4915	struct inode *inode = sb_dqopt(sb)->files[type];
4916	handle_t *handle;
 
4917
4918	/* Force all delayed allocation blocks to be allocated.
4919	 * Caller already holds s_umount sem */
4920	if (test_opt(sb, DELALLOC))
4921		sync_filesystem(sb);
4922
4923	if (!inode)
4924		goto out;
4925
4926	/* Update modification times of quota files when userspace can
4927	 * start looking at them */
4928	handle = ext4_journal_start(inode, 1);
4929	if (IS_ERR(handle))
4930		goto out;
4931	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4932	ext4_mark_inode_dirty(handle, inode);
4933	ext4_journal_stop(handle);
 
 
4934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4935out:
4936	return dquot_quota_off(sb, type);
4937}
4938
4939/* Read data from quotafile - avoid pagecache and such because we cannot afford
4940 * acquiring the locks... As quota files are never truncated and quota code
4941 * itself serializes the operations (and no one else should touch the files)
4942 * we don't have to be afraid of races */
4943static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4944			       size_t len, loff_t off)
4945{
4946	struct inode *inode = sb_dqopt(sb)->files[type];
4947	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4948	int err = 0;
4949	int offset = off & (sb->s_blocksize - 1);
4950	int tocopy;
4951	size_t toread;
4952	struct buffer_head *bh;
4953	loff_t i_size = i_size_read(inode);
4954
4955	if (off > i_size)
4956		return 0;
4957	if (off+len > i_size)
4958		len = i_size-off;
4959	toread = len;
4960	while (toread > 0) {
4961		tocopy = sb->s_blocksize - offset < toread ?
4962				sb->s_blocksize - offset : toread;
4963		bh = ext4_bread(NULL, inode, blk, 0, &err);
4964		if (err)
4965			return err;
4966		if (!bh)	/* A hole? */
4967			memset(data, 0, tocopy);
4968		else
4969			memcpy(data, bh->b_data+offset, tocopy);
4970		brelse(bh);
4971		offset = 0;
4972		toread -= tocopy;
4973		data += tocopy;
4974		blk++;
4975	}
4976	return len;
4977}
4978
4979/* Write to quotafile (we know the transaction is already started and has
4980 * enough credits) */
4981static ssize_t ext4_quota_write(struct super_block *sb, int type,
4982				const char *data, size_t len, loff_t off)
4983{
4984	struct inode *inode = sb_dqopt(sb)->files[type];
4985	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4986	int err = 0;
4987	int offset = off & (sb->s_blocksize - 1);
4988	struct buffer_head *bh;
4989	handle_t *handle = journal_current_handle();
4990
4991	if (EXT4_SB(sb)->s_journal && !handle) {
4992		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4993			" cancelled because transaction is not started",
4994			(unsigned long long)off, (unsigned long long)len);
4995		return -EIO;
4996	}
4997	/*
4998	 * Since we account only one data block in transaction credits,
4999	 * then it is impossible to cross a block boundary.
5000	 */
5001	if (sb->s_blocksize - offset < len) {
5002		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5003			" cancelled because not block aligned",
5004			(unsigned long long)off, (unsigned long long)len);
5005		return -EIO;
5006	}
5007
5008	bh = ext4_bread(handle, inode, blk, 1, &err);
 
 
 
 
 
 
 
5009	if (!bh)
5010		goto out;
5011	err = ext4_journal_get_write_access(handle, bh);
 
5012	if (err) {
5013		brelse(bh);
5014		goto out;
5015	}
5016	lock_buffer(bh);
5017	memcpy(bh->b_data+offset, data, len);
5018	flush_dcache_page(bh->b_page);
5019	unlock_buffer(bh);
5020	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5021	brelse(bh);
5022out:
5023	if (err)
5024		return err;
5025	if (inode->i_size < off + len) {
5026		i_size_write(inode, off + len);
5027		EXT4_I(inode)->i_disksize = inode->i_size;
5028		ext4_mark_inode_dirty(handle, inode);
 
 
5029	}
5030	return len;
5031}
5032
5033#endif
5034
5035static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5036		       const char *dev_name, void *data)
5037{
5038	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5039}
5040
5041#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5042static inline void register_as_ext2(void)
5043{
5044	int err = register_filesystem(&ext2_fs_type);
5045	if (err)
5046		printk(KERN_WARNING
5047		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5048}
5049
5050static inline void unregister_as_ext2(void)
5051{
5052	unregister_filesystem(&ext2_fs_type);
5053}
5054
5055static inline int ext2_feature_set_ok(struct super_block *sb)
5056{
5057	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5058		return 0;
5059	if (sb->s_flags & MS_RDONLY)
5060		return 1;
5061	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5062		return 0;
5063	return 1;
5064}
5065MODULE_ALIAS("ext2");
5066#else
5067static inline void register_as_ext2(void) { }
5068static inline void unregister_as_ext2(void) { }
5069static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5070#endif
5071
5072#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5073static inline void register_as_ext3(void)
5074{
5075	int err = register_filesystem(&ext3_fs_type);
5076	if (err)
5077		printk(KERN_WARNING
5078		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5079}
5080
5081static inline void unregister_as_ext3(void)
5082{
5083	unregister_filesystem(&ext3_fs_type);
5084}
5085
5086static inline int ext3_feature_set_ok(struct super_block *sb)
5087{
5088	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5089		return 0;
5090	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5091		return 0;
5092	if (sb->s_flags & MS_RDONLY)
5093		return 1;
5094	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5095		return 0;
5096	return 1;
5097}
5098MODULE_ALIAS("ext3");
5099#else
5100static inline void register_as_ext3(void) { }
5101static inline void unregister_as_ext3(void) { }
5102static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5103#endif
5104
5105static struct file_system_type ext4_fs_type = {
5106	.owner		= THIS_MODULE,
5107	.name		= "ext4",
5108	.mount		= ext4_mount,
5109	.kill_sb	= kill_block_super,
5110	.fs_flags	= FS_REQUIRES_DEV,
5111};
5112
5113static int __init ext4_init_feat_adverts(void)
5114{
5115	struct ext4_features *ef;
5116	int ret = -ENOMEM;
5117
5118	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5119	if (!ef)
5120		goto out;
5121
5122	ef->f_kobj.kset = ext4_kset;
5123	init_completion(&ef->f_kobj_unregister);
5124	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5125				   "features");
5126	if (ret) {
5127		kfree(ef);
5128		goto out;
5129	}
5130
5131	ext4_feat = ef;
5132	ret = 0;
5133out:
5134	return ret;
5135}
5136
5137static void ext4_exit_feat_adverts(void)
5138{
5139	kobject_put(&ext4_feat->f_kobj);
5140	wait_for_completion(&ext4_feat->f_kobj_unregister);
5141	kfree(ext4_feat);
5142}
 
 
 
5143
5144/* Shared across all ext4 file systems */
5145wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5146struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5147
5148static int __init ext4_init_fs(void)
5149{
5150	int i, err;
5151
 
5152	ext4_li_info = NULL;
5153	mutex_init(&ext4_li_mtx);
5154
 
5155	ext4_check_flag_values();
5156
5157	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5158		mutex_init(&ext4__aio_mutex[i]);
5159		init_waitqueue_head(&ext4__ioend_wq[i]);
5160	}
5161
5162	err = ext4_init_pageio();
5163	if (err)
5164		return err;
5165	err = ext4_init_system_zone();
 
 
 
 
 
5166	if (err)
5167		goto out6;
5168	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5169	if (!ext4_kset)
 
5170		goto out5;
5171	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5172
5173	err = ext4_init_feat_adverts();
5174	if (err)
5175		goto out4;
5176
5177	err = ext4_init_mballoc();
5178	if (err)
5179		goto out3;
5180
5181	err = ext4_init_xattr();
5182	if (err)
5183		goto out2;
5184	err = init_inodecache();
5185	if (err)
5186		goto out1;
 
 
 
 
 
5187	register_as_ext3();
5188	register_as_ext2();
5189	err = register_filesystem(&ext4_fs_type);
5190	if (err)
5191		goto out;
5192
5193	return 0;
5194out:
5195	unregister_as_ext2();
5196	unregister_as_ext3();
 
 
5197	destroy_inodecache();
5198out1:
5199	ext4_exit_xattr();
5200out2:
5201	ext4_exit_mballoc();
 
 
5202out3:
5203	ext4_exit_feat_adverts();
5204out4:
5205	if (ext4_proc_root)
5206		remove_proc_entry("fs/ext4", NULL);
5207	kset_unregister(ext4_kset);
5208out5:
5209	ext4_exit_system_zone();
5210out6:
5211	ext4_exit_pageio();
 
 
 
5212	return err;
5213}
5214
5215static void __exit ext4_exit_fs(void)
5216{
5217	ext4_destroy_lazyinit_thread();
5218	unregister_as_ext2();
5219	unregister_as_ext3();
5220	unregister_filesystem(&ext4_fs_type);
 
5221	destroy_inodecache();
5222	ext4_exit_xattr();
5223	ext4_exit_mballoc();
5224	ext4_exit_feat_adverts();
5225	remove_proc_entry("fs/ext4", NULL);
5226	kset_unregister(ext4_kset);
5227	ext4_exit_system_zone();
5228	ext4_exit_pageio();
 
 
 
5229}
5230
5231MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5232MODULE_DESCRIPTION("Fourth Extended Filesystem");
5233MODULE_LICENSE("GPL");
 
5234module_init(ext4_init_fs)
5235module_exit(ext4_exit_fs)
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
 
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
 
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/uaccess.h>
  43#include <linux/iversion.h>
  44#include <linux/unicode.h>
  45#include <linux/part_stat.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/fsnotify.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51
  52#include "ext4.h"
  53#include "ext4_extents.h"	/* Needed for trace points definition */
  54#include "ext4_jbd2.h"
  55#include "xattr.h"
  56#include "acl.h"
  57#include "mballoc.h"
  58#include "fsmap.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/ext4.h>
  62
 
 
  63static struct ext4_lazy_init *ext4_li_info;
  64static DEFINE_MUTEX(ext4_li_mtx);
  65static struct ratelimit_state ext4_mount_msg_ratelimit;
  66
  67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  68			     unsigned long journal_devnum);
  69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  70static void ext4_update_super(struct super_block *sb);
  71static int ext4_commit_super(struct super_block *sb);
  72static int ext4_mark_recovery_complete(struct super_block *sb,
  73					struct ext4_super_block *es);
  74static int ext4_clear_journal_err(struct super_block *sb,
  75				  struct ext4_super_block *es);
  76static int ext4_sync_fs(struct super_block *sb, int wait);
 
 
 
  77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  78static int ext4_unfreeze(struct super_block *sb);
 
  79static int ext4_freeze(struct super_block *sb);
 
 
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
 
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
  87static int ext4_validate_options(struct fs_context *fc);
  88static int ext4_check_opt_consistency(struct fs_context *fc,
  89				      struct super_block *sb);
  90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
  91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
  92static int ext4_get_tree(struct fs_context *fc);
  93static int ext4_reconfigure(struct fs_context *fc);
  94static void ext4_fc_free(struct fs_context *fc);
  95static int ext4_init_fs_context(struct fs_context *fc);
  96static void ext4_kill_sb(struct super_block *sb);
  97static const struct fs_parameter_spec ext4_param_specs[];
  98
  99/*
 100 * Lock ordering
 101 *
 102 * page fault path:
 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
 104 *   -> page lock -> i_data_sem (rw)
 105 *
 106 * buffered write path:
 107 * sb_start_write -> i_mutex -> mmap_lock
 108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 109 *   i_data_sem (rw)
 110 *
 111 * truncate:
 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
 113 *   page lock
 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
 115 *   i_data_sem (rw)
 116 *
 117 * direct IO:
 118 * sb_start_write -> i_mutex -> mmap_lock
 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 120 *
 121 * writepages:
 122 * transaction start -> page lock(s) -> i_data_sem (rw)
 123 */
 124
 125static const struct fs_context_operations ext4_context_ops = {
 126	.parse_param	= ext4_parse_param,
 127	.get_tree	= ext4_get_tree,
 128	.reconfigure	= ext4_reconfigure,
 129	.free		= ext4_fc_free,
 130};
 131
 132
 133#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 134static struct file_system_type ext2_fs_type = {
 135	.owner			= THIS_MODULE,
 136	.name			= "ext2",
 137	.init_fs_context	= ext4_init_fs_context,
 138	.parameters		= ext4_param_specs,
 139	.kill_sb		= ext4_kill_sb,
 140	.fs_flags		= FS_REQUIRES_DEV,
 141};
 142MODULE_ALIAS_FS("ext2");
 143MODULE_ALIAS("ext2");
 144#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
 145#else
 146#define IS_EXT2_SB(sb) (0)
 147#endif
 148
 149
 
 150static struct file_system_type ext3_fs_type = {
 151	.owner			= THIS_MODULE,
 152	.name			= "ext3",
 153	.init_fs_context	= ext4_init_fs_context,
 154	.parameters		= ext4_param_specs,
 155	.kill_sb		= ext4_kill_sb,
 156	.fs_flags		= FS_REQUIRES_DEV,
 157};
 158MODULE_ALIAS_FS("ext3");
 159MODULE_ALIAS("ext3");
 160#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
 161
 162
 163static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 164				  bh_end_io_t *end_io, bool simu_fail)
 165{
 166	if (simu_fail) {
 167		clear_buffer_uptodate(bh);
 168		unlock_buffer(bh);
 169		return;
 170	}
 171
 172	/*
 173	 * buffer's verified bit is no longer valid after reading from
 174	 * disk again due to write out error, clear it to make sure we
 175	 * recheck the buffer contents.
 176	 */
 177	clear_buffer_verified(bh);
 178
 179	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 180	get_bh(bh);
 181	submit_bh(REQ_OP_READ | op_flags, bh);
 182}
 183
 184void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
 185			 bh_end_io_t *end_io, bool simu_fail)
 186{
 187	BUG_ON(!buffer_locked(bh));
 188
 189	if (ext4_buffer_uptodate(bh)) {
 190		unlock_buffer(bh);
 191		return;
 192	}
 193	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
 194}
 195
 196int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 197		 bh_end_io_t *end_io, bool simu_fail)
 198{
 199	BUG_ON(!buffer_locked(bh));
 200
 201	if (ext4_buffer_uptodate(bh)) {
 202		unlock_buffer(bh);
 203		return 0;
 204	}
 205
 206	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
 207
 208	wait_on_buffer(bh);
 209	if (buffer_uptodate(bh))
 210		return 0;
 211	return -EIO;
 212}
 213
 214int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
 215{
 216	lock_buffer(bh);
 217	if (!wait) {
 218		ext4_read_bh_nowait(bh, op_flags, NULL, false);
 219		return 0;
 220	}
 221	return ext4_read_bh(bh, op_flags, NULL, false);
 222}
 223
 224/*
 225 * This works like __bread_gfp() except it uses ERR_PTR for error
 226 * returns.  Currently with sb_bread it's impossible to distinguish
 227 * between ENOMEM and EIO situations (since both result in a NULL
 228 * return.
 229 */
 230static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 231					       sector_t block,
 232					       blk_opf_t op_flags, gfp_t gfp)
 233{
 234	struct buffer_head *bh;
 235	int ret;
 236
 237	bh = sb_getblk_gfp(sb, block, gfp);
 238	if (bh == NULL)
 239		return ERR_PTR(-ENOMEM);
 240	if (ext4_buffer_uptodate(bh))
 241		return bh;
 242
 243	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 244	if (ret) {
 245		put_bh(bh);
 246		return ERR_PTR(ret);
 247	}
 248	return bh;
 249}
 250
 251struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 252				   blk_opf_t op_flags)
 253{
 254	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
 255			~__GFP_FS) | __GFP_MOVABLE;
 256
 257	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
 258}
 259
 260struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 261					    sector_t block)
 262{
 263	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
 264			~__GFP_FS);
 265
 266	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
 267}
 268
 269void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 270{
 271	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
 272			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
 273
 274	if (likely(bh)) {
 275		if (trylock_buffer(bh))
 276			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
 277		brelse(bh);
 278	}
 279}
 280
 281static int ext4_verify_csum_type(struct super_block *sb,
 282				 struct ext4_super_block *es)
 283{
 284	if (!ext4_has_feature_metadata_csum(sb))
 
 285		return 1;
 286
 287	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 288}
 289
 290__le32 ext4_superblock_csum(struct super_block *sb,
 291			    struct ext4_super_block *es)
 292{
 293	struct ext4_sb_info *sbi = EXT4_SB(sb);
 294	int offset = offsetof(struct ext4_super_block, s_checksum);
 295	__u32 csum;
 296
 297	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 298
 299	return cpu_to_le32(csum);
 300}
 301
 302static int ext4_superblock_csum_verify(struct super_block *sb,
 303				       struct ext4_super_block *es)
 304{
 305	if (!ext4_has_metadata_csum(sb))
 
 306		return 1;
 307
 308	return es->s_checksum == ext4_superblock_csum(sb, es);
 309}
 310
 311void ext4_superblock_csum_set(struct super_block *sb)
 
 312{
 313	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 314
 315	if (!ext4_has_metadata_csum(sb))
 316		return;
 317
 318	es->s_checksum = ext4_superblock_csum(sb, es);
 319}
 320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 322			       struct ext4_group_desc *bg)
 323{
 324	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 325		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 326		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 327}
 328
 329ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 330			       struct ext4_group_desc *bg)
 331{
 332	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 333		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 334		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 335}
 336
 337ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 338			      struct ext4_group_desc *bg)
 339{
 340	return le32_to_cpu(bg->bg_inode_table_lo) |
 341		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 342		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 343}
 344
 345__u32 ext4_free_group_clusters(struct super_block *sb,
 346			       struct ext4_group_desc *bg)
 347{
 348	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 349		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 350		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 351}
 352
 353__u32 ext4_free_inodes_count(struct super_block *sb,
 354			      struct ext4_group_desc *bg)
 355{
 356	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
 357		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 358		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
 359}
 360
 361__u32 ext4_used_dirs_count(struct super_block *sb,
 362			      struct ext4_group_desc *bg)
 363{
 364	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 365		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 366		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 367}
 368
 369__u32 ext4_itable_unused_count(struct super_block *sb,
 370			      struct ext4_group_desc *bg)
 371{
 372	return le16_to_cpu(bg->bg_itable_unused_lo) |
 373		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 374		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 375}
 376
 377void ext4_block_bitmap_set(struct super_block *sb,
 378			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 379{
 380	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 381	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 382		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 383}
 384
 385void ext4_inode_bitmap_set(struct super_block *sb,
 386			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 387{
 388	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 389	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 390		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 391}
 392
 393void ext4_inode_table_set(struct super_block *sb,
 394			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 395{
 396	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 397	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 398		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 399}
 400
 401void ext4_free_group_clusters_set(struct super_block *sb,
 402				  struct ext4_group_desc *bg, __u32 count)
 403{
 404	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 405	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 406		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 407}
 408
 409void ext4_free_inodes_set(struct super_block *sb,
 410			  struct ext4_group_desc *bg, __u32 count)
 411{
 412	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
 413	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 414		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
 415}
 416
 417void ext4_used_dirs_set(struct super_block *sb,
 418			  struct ext4_group_desc *bg, __u32 count)
 419{
 420	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 421	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 422		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 423}
 424
 425void ext4_itable_unused_set(struct super_block *sb,
 426			  struct ext4_group_desc *bg, __u32 count)
 427{
 428	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 429	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 430		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 431}
 432
 433static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 
 
 434{
 435	now = clamp_val(now, 0, (1ull << 40) - 1);
 
 
 
 
 
 
 436
 437	*lo = cpu_to_le32(lower_32_bits(now));
 438	*hi = upper_32_bits(now);
 439}
 440
 441static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 
 
 442{
 443	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 
 
 
 
 
 
 
 444}
 445#define ext4_update_tstamp(es, tstamp) \
 446	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 447			     ktime_get_real_seconds())
 448#define ext4_get_tstamp(es, tstamp) \
 449	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 450
 451#define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
 452#define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
 453
 454/*
 455 * The ext4_maybe_update_superblock() function checks and updates the
 456 * superblock if needed.
 457 *
 458 * This function is designed to update the on-disk superblock only under
 459 * certain conditions to prevent excessive disk writes and unnecessary
 460 * waking of the disk from sleep. The superblock will be updated if:
 461 * 1. More than an hour has passed since the last superblock update, and
 462 * 2. More than 16MB have been written since the last superblock update.
 463 *
 464 * @sb: The superblock
 
 
 465 */
 466static void ext4_maybe_update_superblock(struct super_block *sb)
 467{
 468	struct ext4_sb_info *sbi = EXT4_SB(sb);
 469	struct ext4_super_block *es = sbi->s_es;
 470	journal_t *journal = sbi->s_journal;
 471	time64_t now;
 472	__u64 last_update;
 473	__u64 lifetime_write_kbytes;
 474	__u64 diff_size;
 475
 476	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
 477	    !journal || (journal->j_flags & JBD2_UNMOUNT))
 478		return;
 479
 480	now = ktime_get_real_seconds();
 481	last_update = ext4_get_tstamp(es, s_wtime);
 482
 483	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
 484		return;
 
 
 
 
 
 
 
 485
 486	lifetime_write_kbytes = sbi->s_kbytes_written +
 487		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
 488		  sbi->s_sectors_written_start) >> 1);
 489
 490	/* Get the number of kilobytes not written to disk to account
 491	 * for statistics and compare with a multiple of 16 MB. This
 492	 * is used to determine when the next superblock commit should
 493	 * occur (i.e. not more often than once per 16MB if there was
 494	 * less written in an hour).
 495	 */
 496	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
 497
 498	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
 499		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 
 500}
 501
 502static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 
 
 
 
 
 
 503{
 504	struct super_block		*sb = journal->j_private;
 505	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 506	int				error = is_journal_aborted(journal);
 507	struct ext4_journal_cb_entry	*jce;
 508
 509	BUG_ON(txn->t_state == T_FINISHED);
 
 
 
 
 
 
 510
 511	ext4_process_freed_data(sb, txn->t_tid);
 512	ext4_maybe_update_superblock(sb);
 513
 514	spin_lock(&sbi->s_md_lock);
 515	while (!list_empty(&txn->t_private_list)) {
 516		jce = list_entry(txn->t_private_list.next,
 517				 struct ext4_journal_cb_entry, jce_list);
 518		list_del_init(&jce->jce_list);
 519		spin_unlock(&sbi->s_md_lock);
 520		jce->jce_func(sb, jce, error);
 521		spin_lock(&sbi->s_md_lock);
 522	}
 523	spin_unlock(&sbi->s_md_lock);
 524}
 525
 526/*
 527 * This writepage callback for write_cache_pages()
 528 * takes care of a few cases after page cleaning.
 529 *
 530 * write_cache_pages() already checks for dirty pages
 531 * and calls clear_page_dirty_for_io(), which we want,
 532 * to write protect the pages.
 533 *
 534 * However, we may have to redirty a page (see below.)
 535 */
 536static int ext4_journalled_writepage_callback(struct folio *folio,
 537					      struct writeback_control *wbc,
 538					      void *data)
 539{
 540	transaction_t *transaction = (transaction_t *) data;
 541	struct buffer_head *bh, *head;
 542	struct journal_head *jh;
 543
 544	bh = head = folio_buffers(folio);
 545	do {
 546		/*
 547		 * We have to redirty a page in these cases:
 548		 * 1) If buffer is dirty, it means the page was dirty because it
 549		 * contains a buffer that needs checkpointing. So the dirty bit
 550		 * needs to be preserved so that checkpointing writes the buffer
 551		 * properly.
 552		 * 2) If buffer is not part of the committing transaction
 553		 * (we may have just accidentally come across this buffer because
 554		 * inode range tracking is not exact) or if the currently running
 555		 * transaction already contains this buffer as well, dirty bit
 556		 * needs to be preserved so that the buffer gets writeprotected
 557		 * properly on running transaction's commit.
 558		 */
 559		jh = bh2jh(bh);
 560		if (buffer_dirty(bh) ||
 561		    (jh && (jh->b_transaction != transaction ||
 562			    jh->b_next_transaction))) {
 563			folio_redirty_for_writepage(wbc, folio);
 564			goto out;
 565		}
 566	} while ((bh = bh->b_this_page) != head);
 567
 568out:
 569	return AOP_WRITEPAGE_ACTIVATE;
 570}
 571
 572static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 573{
 574	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 575	struct writeback_control wbc = {
 576		.sync_mode =  WB_SYNC_ALL,
 577		.nr_to_write = LONG_MAX,
 578		.range_start = jinode->i_dirty_start,
 579		.range_end = jinode->i_dirty_end,
 580        };
 581
 582	return write_cache_pages(mapping, &wbc,
 583				 ext4_journalled_writepage_callback,
 584				 jinode->i_transaction);
 585}
 586
 587static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 588{
 589	int ret;
 590
 591	if (ext4_should_journal_data(jinode->i_vfs_inode))
 592		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 593	else
 594		ret = ext4_normal_submit_inode_data_buffers(jinode);
 595	return ret;
 596}
 597
 598static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 
 599{
 600	int ret = 0;
 601
 602	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 603		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 604
 605	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606}
 607
 608static bool system_going_down(void)
 
 609{
 610	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 611		|| system_state == SYSTEM_RESTART;
 612}
 613
 614struct ext4_err_translation {
 615	int code;
 616	int errno;
 617};
 618
 619#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 620
 621static struct ext4_err_translation err_translation[] = {
 622	EXT4_ERR_TRANSLATE(EIO),
 623	EXT4_ERR_TRANSLATE(ENOMEM),
 624	EXT4_ERR_TRANSLATE(EFSBADCRC),
 625	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 626	EXT4_ERR_TRANSLATE(ENOSPC),
 627	EXT4_ERR_TRANSLATE(ENOKEY),
 628	EXT4_ERR_TRANSLATE(EROFS),
 629	EXT4_ERR_TRANSLATE(EFBIG),
 630	EXT4_ERR_TRANSLATE(EEXIST),
 631	EXT4_ERR_TRANSLATE(ERANGE),
 632	EXT4_ERR_TRANSLATE(EOVERFLOW),
 633	EXT4_ERR_TRANSLATE(EBUSY),
 634	EXT4_ERR_TRANSLATE(ENOTDIR),
 635	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 636	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 637	EXT4_ERR_TRANSLATE(EFAULT),
 638};
 639
 640static int ext4_errno_to_code(int errno)
 641{
 642	int i;
 
 643
 644	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 645		if (err_translation[i].errno == errno)
 646			return err_translation[i].code;
 647	return EXT4_ERR_UNKNOWN;
 648}
 649
 650static void save_error_info(struct super_block *sb, int error,
 651			    __u32 ino, __u64 block,
 652			    const char *func, unsigned int line)
 653{
 654	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 655
 656	/* We default to EFSCORRUPTED error... */
 657	if (error == 0)
 658		error = EFSCORRUPTED;
 659
 660	spin_lock(&sbi->s_error_lock);
 661	sbi->s_add_error_count++;
 662	sbi->s_last_error_code = error;
 663	sbi->s_last_error_line = line;
 664	sbi->s_last_error_ino = ino;
 665	sbi->s_last_error_block = block;
 666	sbi->s_last_error_func = func;
 667	sbi->s_last_error_time = ktime_get_real_seconds();
 668	if (!sbi->s_first_error_time) {
 669		sbi->s_first_error_code = error;
 670		sbi->s_first_error_line = line;
 671		sbi->s_first_error_ino = ino;
 672		sbi->s_first_error_block = block;
 673		sbi->s_first_error_func = func;
 674		sbi->s_first_error_time = sbi->s_last_error_time;
 675	}
 676	spin_unlock(&sbi->s_error_lock);
 677}
 678
 679/* Deal with the reporting of failure conditions on a filesystem such as
 680 * inconsistencies detected or read IO failures.
 681 *
 682 * On ext2, we can store the error state of the filesystem in the
 683 * superblock.  That is not possible on ext4, because we may have other
 684 * write ordering constraints on the superblock which prevent us from
 685 * writing it out straight away; and given that the journal is about to
 686 * be aborted, we can't rely on the current, or future, transactions to
 687 * write out the superblock safely.
 688 *
 689 * We'll just use the jbd2_journal_abort() error code to record an error in
 690 * the journal instead.  On recovery, the journal will complain about
 691 * that error until we've noted it down and cleared it.
 692 *
 693 * If force_ro is set, we unconditionally force the filesystem into an
 694 * ABORT|READONLY state, unless the error response on the fs has been set to
 695 * panic in which case we take the easy way out and panic immediately. This is
 696 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 697 * at a critical moment in log management.
 698 */
 699static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 700			      __u32 ino, __u64 block,
 701			      const char *func, unsigned int line)
 702{
 703	journal_t *journal = EXT4_SB(sb)->s_journal;
 704	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 705
 706	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 707	if (test_opt(sb, WARN_ON_ERROR))
 708		WARN_ON_ONCE(1);
 709
 710	if (!continue_fs && !sb_rdonly(sb)) {
 711		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
 712		if (journal)
 713			jbd2_journal_abort(journal, -EIO);
 714	}
 715
 716	if (!bdev_read_only(sb->s_bdev)) {
 717		save_error_info(sb, error, ino, block, func, line);
 718		/*
 719		 * In case the fs should keep running, we need to writeout
 720		 * superblock through the journal. Due to lock ordering
 721		 * constraints, it may not be safe to do it right here so we
 722		 * defer superblock flushing to a workqueue.
 723		 */
 724		if (continue_fs && journal)
 725			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 726		else
 727			ext4_commit_super(sb);
 728	}
 729
 730	/*
 731	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 732	 * could panic during 'reboot -f' as the underlying device got already
 733	 * disabled.
 734	 */
 735	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 736		panic("EXT4-fs (device %s): panic forced after error\n",
 737			sb->s_id);
 738	}
 739
 740	if (sb_rdonly(sb) || continue_fs)
 741		return;
 742
 743	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 744	/*
 745	 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
 746	 * modifications. We don't set SB_RDONLY because that requires
 747	 * sb->s_umount semaphore and setting it without proper remount
 748	 * procedure is confusing code such as freeze_super() leading to
 749	 * deadlocks and other problems.
 750	 */
 751}
 752
 753static void update_super_work(struct work_struct *work)
 754{
 755	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 756						s_sb_upd_work);
 757	journal_t *journal = sbi->s_journal;
 758	handle_t *handle;
 759
 760	/*
 761	 * If the journal is still running, we have to write out superblock
 762	 * through the journal to avoid collisions of other journalled sb
 763	 * updates.
 764	 *
 765	 * We use directly jbd2 functions here to avoid recursing back into
 766	 * ext4 error handling code during handling of previous errors.
 767	 */
 768	if (!sb_rdonly(sbi->s_sb) && journal) {
 769		struct buffer_head *sbh = sbi->s_sbh;
 770		bool call_notify_err = false;
 771
 772		handle = jbd2_journal_start(journal, 1);
 773		if (IS_ERR(handle))
 774			goto write_directly;
 775		if (jbd2_journal_get_write_access(handle, sbh)) {
 776			jbd2_journal_stop(handle);
 777			goto write_directly;
 778		}
 779
 780		if (sbi->s_add_error_count > 0)
 781			call_notify_err = true;
 782
 783		ext4_update_super(sbi->s_sb);
 784		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 785			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 786				 "superblock detected");
 787			clear_buffer_write_io_error(sbh);
 788			set_buffer_uptodate(sbh);
 789		}
 790
 791		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 792			jbd2_journal_stop(handle);
 793			goto write_directly;
 794		}
 795		jbd2_journal_stop(handle);
 796
 797		if (call_notify_err)
 798			ext4_notify_error_sysfs(sbi);
 799
 800		return;
 801	}
 802write_directly:
 803	/*
 804	 * Write through journal failed. Write sb directly to get error info
 805	 * out and hope for the best.
 806	 */
 807	ext4_commit_super(sbi->s_sb);
 808	ext4_notify_error_sysfs(sbi);
 809}
 810
 811#define ext4_error_ratelimit(sb)					\
 812		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 813			     "EXT4-fs error")
 814
 815void __ext4_error(struct super_block *sb, const char *function,
 816		  unsigned int line, bool force_ro, int error, __u64 block,
 817		  const char *fmt, ...)
 818{
 819	struct va_format vaf;
 820	va_list args;
 821
 822	if (unlikely(ext4_forced_shutdown(sb)))
 823		return;
 
 
 
 
 
 824
 825	trace_ext4_error(sb, function, line);
 826	if (ext4_error_ratelimit(sb)) {
 827		va_start(args, fmt);
 828		vaf.fmt = fmt;
 829		vaf.va = &args;
 830		printk(KERN_CRIT
 831		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 832		       sb->s_id, function, line, current->comm, &vaf);
 833		va_end(args);
 834	}
 835	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
 836
 837	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 838}
 839
 840void __ext4_error_inode(struct inode *inode, const char *function,
 841			unsigned int line, ext4_fsblk_t block, int error,
 842			const char *fmt, ...)
 843{
 844	va_list args;
 845	struct va_format vaf;
 
 846
 847	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 848		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849
 850	trace_ext4_error(inode->i_sb, function, line);
 851	if (ext4_error_ratelimit(inode->i_sb)) {
 852		va_start(args, fmt);
 853		vaf.fmt = fmt;
 854		vaf.va = &args;
 855		if (block)
 856			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 857			       "inode #%lu: block %llu: comm %s: %pV\n",
 858			       inode->i_sb->s_id, function, line, inode->i_ino,
 859			       block, current->comm, &vaf);
 860		else
 861			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 862			       "inode #%lu: comm %s: %pV\n",
 863			       inode->i_sb->s_id, function, line, inode->i_ino,
 864			       current->comm, &vaf);
 865		va_end(args);
 866	}
 867	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
 868
 869	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 870			  function, line);
 871}
 872
 873void __ext4_error_file(struct file *file, const char *function,
 874		       unsigned int line, ext4_fsblk_t block,
 875		       const char *fmt, ...)
 876{
 877	va_list args;
 878	struct va_format vaf;
 879	struct inode *inode = file_inode(file);
 
 880	char pathname[80], *path;
 881
 882	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 883		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885	trace_ext4_error(inode->i_sb, function, line);
 886	if (ext4_error_ratelimit(inode->i_sb)) {
 887		path = file_path(file, pathname, sizeof(pathname));
 888		if (IS_ERR(path))
 889			path = "(unknown)";
 890		va_start(args, fmt);
 891		vaf.fmt = fmt;
 892		vaf.va = &args;
 893		if (block)
 894			printk(KERN_CRIT
 895			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 896			       "block %llu: comm %s: path %s: %pV\n",
 897			       inode->i_sb->s_id, function, line, inode->i_ino,
 898			       block, current->comm, path, &vaf);
 899		else
 900			printk(KERN_CRIT
 901			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 902			       "comm %s: path %s: %pV\n",
 903			       inode->i_sb->s_id, function, line, inode->i_ino,
 904			       current->comm, path, &vaf);
 905		va_end(args);
 906	}
 907	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
 908
 909	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 910			  function, line);
 911}
 912
 913const char *ext4_decode_error(struct super_block *sb, int errno,
 914			      char nbuf[16])
 915{
 916	char *errstr = NULL;
 917
 918	switch (errno) {
 919	case -EFSCORRUPTED:
 920		errstr = "Corrupt filesystem";
 921		break;
 922	case -EFSBADCRC:
 923		errstr = "Filesystem failed CRC";
 924		break;
 925	case -EIO:
 926		errstr = "IO failure";
 927		break;
 928	case -ENOMEM:
 929		errstr = "Out of memory";
 930		break;
 931	case -EROFS:
 932		if (!sb || (EXT4_SB(sb)->s_journal &&
 933			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 934			errstr = "Journal has aborted";
 935		else
 936			errstr = "Readonly filesystem";
 937		break;
 938	default:
 939		/* If the caller passed in an extra buffer for unknown
 940		 * errors, textualise them now.  Else we just return
 941		 * NULL. */
 942		if (nbuf) {
 943			/* Check for truncated error codes... */
 944			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 945				errstr = nbuf;
 946		}
 947		break;
 948	}
 949
 950	return errstr;
 951}
 952
 953/* __ext4_std_error decodes expected errors from journaling functions
 954 * automatically and invokes the appropriate error response.  */
 955
 956void __ext4_std_error(struct super_block *sb, const char *function,
 957		      unsigned int line, int errno)
 958{
 959	char nbuf[16];
 960	const char *errstr;
 961
 962	if (unlikely(ext4_forced_shutdown(sb)))
 963		return;
 964
 965	/* Special case: if the error is EROFS, and we're not already
 966	 * inside a transaction, then there's really no point in logging
 967	 * an error. */
 968	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 
 969		return;
 970
 971	if (ext4_error_ratelimit(sb)) {
 972		errstr = ext4_decode_error(sb, errno, nbuf);
 973		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 974		       sb->s_id, function, line, errstr);
 975	}
 976	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
 977
 978	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 979}
 980
 981void __ext4_msg(struct super_block *sb,
 982		const char *prefix, const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 983{
 984	struct va_format vaf;
 985	va_list args;
 986
 987	if (sb) {
 988		atomic_inc(&EXT4_SB(sb)->s_msg_count);
 989		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
 990				  "EXT4-fs"))
 991			return;
 992	}
 993
 994	va_start(args, fmt);
 995	vaf.fmt = fmt;
 996	vaf.va = &args;
 997	if (sb)
 998		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 999	else
1000		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1001	va_end(args);
1002}
1003
1004static int ext4_warning_ratelimit(struct super_block *sb)
1005{
1006	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1007	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1008			    "EXT4-fs warning");
 
 
 
 
 
1009}
1010
1011void __ext4_warning(struct super_block *sb, const char *function,
1012		    unsigned int line, const char *fmt, ...)
1013{
1014	struct va_format vaf;
1015	va_list args;
1016
1017	if (!ext4_warning_ratelimit(sb))
1018		return;
1019
1020	va_start(args, fmt);
1021	vaf.fmt = fmt;
1022	vaf.va = &args;
1023	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1024	       sb->s_id, function, line, &vaf);
1025	va_end(args);
1026}
1027
1028void __ext4_warning_inode(const struct inode *inode, const char *function,
1029			  unsigned int line, const char *fmt, ...)
1030{
1031	struct va_format vaf;
1032	va_list args;
1033
1034	if (!ext4_warning_ratelimit(inode->i_sb))
1035		return;
1036
1037	va_start(args, fmt);
1038	vaf.fmt = fmt;
1039	vaf.va = &args;
1040	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1041	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1042	       function, line, inode->i_ino, current->comm, &vaf);
1043	va_end(args);
1044}
1045
1046void __ext4_grp_locked_error(const char *function, unsigned int line,
1047			     struct super_block *sb, ext4_group_t grp,
1048			     unsigned long ino, ext4_fsblk_t block,
1049			     const char *fmt, ...)
1050__releases(bitlock)
1051__acquires(bitlock)
1052{
1053	struct va_format vaf;
1054	va_list args;
 
 
 
 
 
1055
1056	if (unlikely(ext4_forced_shutdown(sb)))
1057		return;
1058
1059	trace_ext4_error(sb, function, line);
1060	if (ext4_error_ratelimit(sb)) {
1061		va_start(args, fmt);
1062		vaf.fmt = fmt;
1063		vaf.va = &args;
1064		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1065		       sb->s_id, function, line, grp);
1066		if (ino)
1067			printk(KERN_CONT "inode %lu: ", ino);
1068		if (block)
1069			printk(KERN_CONT "block %llu:",
1070			       (unsigned long long) block);
1071		printk(KERN_CONT "%pV\n", &vaf);
1072		va_end(args);
1073	}
1074
1075	if (test_opt(sb, ERRORS_CONT)) {
1076		if (test_opt(sb, WARN_ON_ERROR))
1077			WARN_ON_ONCE(1);
1078		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1079		if (!bdev_read_only(sb->s_bdev)) {
1080			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1081					line);
1082			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1083		}
1084		return;
1085	}
 
1086	ext4_unlock_group(sb, grp);
1087	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1088	/*
1089	 * We only get here in the ERRORS_RO case; relocking the group
1090	 * may be dangerous, but nothing bad will happen since the
1091	 * filesystem will have already been marked read/only and the
1092	 * journal has been aborted.  We return 1 as a hint to callers
1093	 * who might what to use the return value from
1094	 * ext4_grp_locked_error() to distinguish between the
1095	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1096	 * aggressively from the ext4 function in question, with a
1097	 * more appropriate error code.
1098	 */
1099	ext4_lock_group(sb, grp);
1100	return;
1101}
1102
1103void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1104				     ext4_group_t group,
1105				     unsigned int flags)
1106{
1107	struct ext4_sb_info *sbi = EXT4_SB(sb);
1108	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1109	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1110	int ret;
1111
1112	if (!grp || !gdp)
1113		return;
1114	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1115		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1116					    &grp->bb_state);
1117		if (!ret)
1118			percpu_counter_sub(&sbi->s_freeclusters_counter,
1119					   grp->bb_free);
1120	}
1121
1122	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1123		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1124					    &grp->bb_state);
1125		if (!ret && gdp) {
1126			int count;
1127
1128			count = ext4_free_inodes_count(sb, gdp);
1129			percpu_counter_sub(&sbi->s_freeinodes_counter,
1130					   count);
1131		}
1132	}
1133}
1134
1135void ext4_update_dynamic_rev(struct super_block *sb)
1136{
1137	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1138
1139	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1140		return;
1141
1142	ext4_warning(sb,
1143		     "updating to rev %d because of new feature flag, "
1144		     "running e2fsck is recommended",
1145		     EXT4_DYNAMIC_REV);
1146
1147	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1148	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1149	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1150	/* leave es->s_feature_*compat flags alone */
1151	/* es->s_uuid will be set by e2fsck if empty */
1152
1153	/*
1154	 * The rest of the superblock fields should be zero, and if not it
1155	 * means they are likely already in use, so leave them alone.  We
1156	 * can leave it up to e2fsck to clean up any inconsistencies there.
1157	 */
1158}
1159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160static inline struct inode *orphan_list_entry(struct list_head *l)
1161{
1162	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1163}
1164
1165static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1166{
1167	struct list_head *l;
1168
1169	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1170		 le32_to_cpu(sbi->s_es->s_last_orphan));
1171
1172	printk(KERN_ERR "sb_info orphan list:\n");
1173	list_for_each(l, &sbi->s_orphan) {
1174		struct inode *inode = orphan_list_entry(l);
1175		printk(KERN_ERR "  "
1176		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1177		       inode->i_sb->s_id, inode->i_ino, inode,
1178		       inode->i_mode, inode->i_nlink,
1179		       NEXT_ORPHAN(inode));
1180	}
1181}
1182
1183#ifdef CONFIG_QUOTA
1184static int ext4_quota_off(struct super_block *sb, int type);
1185
1186static inline void ext4_quotas_off(struct super_block *sb, int type)
1187{
1188	BUG_ON(type > EXT4_MAXQUOTAS);
1189
1190	/* Use our quota_off function to clear inode flags etc. */
1191	for (type--; type >= 0; type--)
1192		ext4_quota_off(sb, type);
1193}
1194
1195/*
1196 * This is a helper function which is used in the mount/remount
1197 * codepaths (which holds s_umount) to fetch the quota file name.
1198 */
1199static inline char *get_qf_name(struct super_block *sb,
1200				struct ext4_sb_info *sbi,
1201				int type)
1202{
1203	return rcu_dereference_protected(sbi->s_qf_names[type],
1204					 lockdep_is_held(&sb->s_umount));
1205}
1206#else
1207static inline void ext4_quotas_off(struct super_block *sb, int type)
1208{
1209}
1210#endif
1211
1212static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1213{
1214	ext4_fsblk_t block;
1215	int err;
1216
1217	block = ext4_count_free_clusters(sbi->s_sb);
1218	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1219	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1220				  GFP_KERNEL);
1221	if (!err) {
1222		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1223		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1224		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1225					  GFP_KERNEL);
1226	}
1227	if (!err)
1228		err = percpu_counter_init(&sbi->s_dirs_counter,
1229					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1230	if (!err)
1231		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1232					  GFP_KERNEL);
1233	if (!err)
1234		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1235					  GFP_KERNEL);
1236	if (!err)
1237		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1238
1239	if (err)
1240		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1241
1242	return err;
1243}
1244
1245static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1246{
1247	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1248	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1249	percpu_counter_destroy(&sbi->s_dirs_counter);
1250	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1251	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1252	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1253}
1254
1255static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1256{
1257	struct buffer_head **group_desc;
1258	int i;
1259
1260	rcu_read_lock();
1261	group_desc = rcu_dereference(sbi->s_group_desc);
1262	for (i = 0; i < sbi->s_gdb_count; i++)
1263		brelse(group_desc[i]);
1264	kvfree(group_desc);
1265	rcu_read_unlock();
1266}
1267
1268static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1269{
1270	struct flex_groups **flex_groups;
1271	int i;
1272
1273	rcu_read_lock();
1274	flex_groups = rcu_dereference(sbi->s_flex_groups);
1275	if (flex_groups) {
1276		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1277			kvfree(flex_groups[i]);
1278		kvfree(flex_groups);
1279	}
1280	rcu_read_unlock();
1281}
1282
1283static void ext4_put_super(struct super_block *sb)
1284{
1285	struct ext4_sb_info *sbi = EXT4_SB(sb);
1286	struct ext4_super_block *es = sbi->s_es;
1287	int aborted = 0;
1288	int err;
1289
1290	/*
1291	 * Unregister sysfs before destroying jbd2 journal.
1292	 * Since we could still access attr_journal_task attribute via sysfs
1293	 * path which could have sbi->s_journal->j_task as NULL
1294	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1295	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1296	 * read metadata verify failed then will queue error work.
1297	 * update_super_work will call start_this_handle may trigger
1298	 * BUG_ON.
1299	 */
1300	ext4_unregister_sysfs(sb);
1301
1302	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1303		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1304			 &sb->s_uuid);
1305
1306	ext4_unregister_li_request(sb);
1307	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1308
1309	flush_work(&sbi->s_sb_upd_work);
1310	destroy_workqueue(sbi->rsv_conversion_wq);
1311	ext4_release_orphan_info(sb);
1312
 
1313	if (sbi->s_journal) {
1314		aborted = is_journal_aborted(sbi->s_journal);
1315		err = jbd2_journal_destroy(sbi->s_journal);
1316		sbi->s_journal = NULL;
1317		if ((err < 0) && !aborted) {
1318			ext4_abort(sb, -err, "Couldn't clean up the journal");
1319		}
1320	}
1321
1322	ext4_es_unregister_shrinker(sbi);
1323	timer_shutdown_sync(&sbi->s_err_report);
1324	ext4_release_system_zone(sb);
1325	ext4_mb_release(sb);
1326	ext4_ext_release(sb);
 
1327
1328	if (!sb_rdonly(sb) && !aborted) {
1329		ext4_clear_feature_journal_needs_recovery(sb);
1330		ext4_clear_feature_orphan_present(sb);
1331		es->s_state = cpu_to_le16(sbi->s_mount_state);
1332	}
1333	if (!sb_rdonly(sb))
1334		ext4_commit_super(sb);
1335
1336	ext4_group_desc_free(sbi);
1337	ext4_flex_groups_free(sbi);
 
 
 
1338
1339	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1340		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1341	ext4_percpu_param_destroy(sbi);
 
 
 
 
 
 
1342#ifdef CONFIG_QUOTA
1343	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1344		kfree(get_qf_name(sb, sbi, i));
1345#endif
1346
1347	/* Debugging code just in case the in-memory inode orphan list
1348	 * isn't empty.  The on-disk one can be non-empty if we've
1349	 * detected an error and taken the fs readonly, but the
1350	 * in-memory list had better be clean by this point. */
1351	if (!list_empty(&sbi->s_orphan))
1352		dump_orphan_list(sb, sbi);
1353	ASSERT(list_empty(&sbi->s_orphan));
1354
1355	sync_blockdev(sb->s_bdev);
1356	invalidate_bdev(sb->s_bdev);
1357	if (sbi->s_journal_bdev_file) {
1358		/*
1359		 * Invalidate the journal device's buffers.  We don't want them
1360		 * floating about in memory - the physical journal device may
1361		 * hotswapped, and it breaks the `ro-after' testing code.
1362		 */
1363		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1364		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
 
1365	}
1366
1367	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1368	sbi->s_ea_inode_cache = NULL;
1369
1370	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1371	sbi->s_ea_block_cache = NULL;
1372
1373	ext4_stop_mmpd(sbi);
1374
1375	brelse(sbi->s_sbh);
1376	sb->s_fs_info = NULL;
1377	/*
1378	 * Now that we are completely done shutting down the
1379	 * superblock, we need to actually destroy the kobject.
1380	 */
 
1381	kobject_put(&sbi->s_kobj);
1382	wait_for_completion(&sbi->s_kobj_unregister);
1383	if (sbi->s_chksum_driver)
1384		crypto_free_shash(sbi->s_chksum_driver);
1385	kfree(sbi->s_blockgroup_lock);
1386	fs_put_dax(sbi->s_daxdev, NULL);
1387	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1388#if IS_ENABLED(CONFIG_UNICODE)
1389	utf8_unload(sb->s_encoding);
1390#endif
1391	kfree(sbi);
1392}
1393
1394static struct kmem_cache *ext4_inode_cachep;
1395
1396/*
1397 * Called inside transaction, so use GFP_NOFS
1398 */
1399static struct inode *ext4_alloc_inode(struct super_block *sb)
1400{
1401	struct ext4_inode_info *ei;
1402
1403	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1404	if (!ei)
1405		return NULL;
1406
1407	inode_set_iversion(&ei->vfs_inode, 1);
1408	ei->i_flags = 0;
1409	spin_lock_init(&ei->i_raw_lock);
1410	ei->i_prealloc_node = RB_ROOT;
1411	atomic_set(&ei->i_prealloc_active, 0);
1412	rwlock_init(&ei->i_prealloc_lock);
1413	ext4_es_init_tree(&ei->i_es_tree);
1414	rwlock_init(&ei->i_es_lock);
1415	INIT_LIST_HEAD(&ei->i_es_list);
1416	ei->i_es_all_nr = 0;
1417	ei->i_es_shk_nr = 0;
1418	ei->i_es_shrink_lblk = 0;
1419	ei->i_reserved_data_blocks = 0;
 
 
 
 
1420	spin_lock_init(&(ei->i_block_reservation_lock));
1421	ext4_init_pending_tree(&ei->i_pending_tree);
1422#ifdef CONFIG_QUOTA
1423	ei->i_reserved_quota = 0;
1424	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1425#endif
1426	ei->jinode = NULL;
1427	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1428	spin_lock_init(&ei->i_completed_io_lock);
 
1429	ei->i_sync_tid = 0;
1430	ei->i_datasync_tid = 0;
1431	atomic_set(&ei->i_unwritten, 0);
1432	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1433	ext4_fc_init_inode(&ei->vfs_inode);
1434	mutex_init(&ei->i_fc_lock);
1435	return &ei->vfs_inode;
1436}
1437
1438static int ext4_drop_inode(struct inode *inode)
1439{
1440	int drop = generic_drop_inode(inode);
1441
1442	if (!drop)
1443		drop = fscrypt_drop_inode(inode);
1444
1445	trace_ext4_drop_inode(inode, drop);
1446	return drop;
1447}
1448
1449static void ext4_free_in_core_inode(struct inode *inode)
1450{
1451	fscrypt_free_inode(inode);
1452	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1453		pr_warn("%s: inode %ld still in fc list",
1454			__func__, inode->i_ino);
1455	}
1456	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1457}
1458
1459static void ext4_destroy_inode(struct inode *inode)
1460{
1461	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1462		ext4_msg(inode->i_sb, KERN_ERR,
1463			 "Inode %lu (%p): orphan list check failed!",
1464			 inode->i_ino, EXT4_I(inode));
1465		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1466				EXT4_I(inode), sizeof(struct ext4_inode_info),
1467				true);
1468		dump_stack();
1469	}
1470
1471	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1472	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1473		ext4_msg(inode->i_sb, KERN_ERR,
1474			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1475			 inode->i_ino, EXT4_I(inode),
1476			 EXT4_I(inode)->i_reserved_data_blocks);
1477}
1478
1479static void ext4_shutdown(struct super_block *sb)
1480{
1481       ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1482}
1483
1484static void init_once(void *foo)
1485{
1486	struct ext4_inode_info *ei = foo;
1487
1488	INIT_LIST_HEAD(&ei->i_orphan);
 
1489	init_rwsem(&ei->xattr_sem);
 
1490	init_rwsem(&ei->i_data_sem);
1491	inode_init_once(&ei->vfs_inode);
1492	ext4_fc_init_inode(&ei->vfs_inode);
1493}
1494
1495static int __init init_inodecache(void)
1496{
1497	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1498				sizeof(struct ext4_inode_info), 0,
1499				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1500				offsetof(struct ext4_inode_info, i_data),
1501				sizeof_field(struct ext4_inode_info, i_data),
1502				init_once);
1503	if (ext4_inode_cachep == NULL)
1504		return -ENOMEM;
1505	return 0;
1506}
1507
1508static void destroy_inodecache(void)
1509{
1510	/*
1511	 * Make sure all delayed rcu free inodes are flushed before we
1512	 * destroy cache.
1513	 */
1514	rcu_barrier();
1515	kmem_cache_destroy(ext4_inode_cachep);
1516}
1517
1518void ext4_clear_inode(struct inode *inode)
1519{
1520	ext4_fc_del(inode);
1521	invalidate_inode_buffers(inode);
1522	clear_inode(inode);
 
1523	ext4_discard_preallocations(inode);
1524	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1525	dquot_drop(inode);
1526	if (EXT4_I(inode)->jinode) {
1527		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1528					       EXT4_I(inode)->jinode);
1529		jbd2_free_inode(EXT4_I(inode)->jinode);
1530		EXT4_I(inode)->jinode = NULL;
1531	}
1532	fscrypt_put_encryption_info(inode);
1533	fsverity_cleanup_inode(inode);
1534}
1535
1536static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1537					u64 ino, u32 generation)
1538{
1539	struct inode *inode;
1540
1541	/*
 
 
 
 
 
 
 
 
 
1542	 * Currently we don't know the generation for parent directory, so
1543	 * a generation of 0 means "accept any"
1544	 */
1545	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1546	if (IS_ERR(inode))
1547		return ERR_CAST(inode);
1548	if (generation && inode->i_generation != generation) {
1549		iput(inode);
1550		return ERR_PTR(-ESTALE);
1551	}
1552
1553	return inode;
1554}
1555
1556static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557					int fh_len, int fh_type)
1558{
1559	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1560				    ext4_nfs_get_inode);
1561}
1562
1563static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1564					int fh_len, int fh_type)
1565{
1566	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1567				    ext4_nfs_get_inode);
1568}
1569
1570static int ext4_nfs_commit_metadata(struct inode *inode)
 
 
 
 
 
 
 
1571{
1572	struct writeback_control wbc = {
1573		.sync_mode = WB_SYNC_ALL
1574	};
1575
1576	trace_ext4_nfs_commit_metadata(inode);
1577	return ext4_write_inode(inode, &wbc);
 
 
 
 
 
1578}
1579
1580#ifdef CONFIG_QUOTA
1581static const char * const quotatypes[] = INITQFNAMES;
1582#define QTYPE2NAME(t) (quotatypes[t])
1583
1584static int ext4_write_dquot(struct dquot *dquot);
1585static int ext4_acquire_dquot(struct dquot *dquot);
1586static int ext4_release_dquot(struct dquot *dquot);
1587static int ext4_mark_dquot_dirty(struct dquot *dquot);
1588static int ext4_write_info(struct super_block *sb, int type);
1589static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1590			 const struct path *path);
 
 
1591static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1592			       size_t len, loff_t off);
1593static ssize_t ext4_quota_write(struct super_block *sb, int type,
1594				const char *data, size_t len, loff_t off);
1595static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1596			     unsigned int flags);
1597
1598static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1599{
1600	return EXT4_I(inode)->i_dquot;
1601}
1602
1603static const struct dquot_operations ext4_quota_operations = {
1604	.get_reserved_space	= ext4_get_reserved_space,
1605	.write_dquot		= ext4_write_dquot,
1606	.acquire_dquot		= ext4_acquire_dquot,
1607	.release_dquot		= ext4_release_dquot,
1608	.mark_dirty		= ext4_mark_dquot_dirty,
1609	.write_info		= ext4_write_info,
1610	.alloc_dquot		= dquot_alloc,
1611	.destroy_dquot		= dquot_destroy,
1612	.get_projid		= ext4_get_projid,
1613	.get_inode_usage	= ext4_get_inode_usage,
1614	.get_next_id		= dquot_get_next_id,
1615};
1616
1617static const struct quotactl_ops ext4_qctl_operations = {
1618	.quota_on	= ext4_quota_on,
1619	.quota_off	= ext4_quota_off,
1620	.quota_sync	= dquot_quota_sync,
1621	.get_state	= dquot_get_state,
1622	.set_info	= dquot_set_dqinfo,
1623	.get_dqblk	= dquot_get_dqblk,
1624	.set_dqblk	= dquot_set_dqblk,
1625	.get_nextdqblk	= dquot_get_next_dqblk,
1626};
1627#endif
1628
1629static const struct super_operations ext4_sops = {
1630	.alloc_inode	= ext4_alloc_inode,
1631	.free_inode	= ext4_free_in_core_inode,
1632	.destroy_inode	= ext4_destroy_inode,
1633	.write_inode	= ext4_write_inode,
1634	.dirty_inode	= ext4_dirty_inode,
1635	.drop_inode	= ext4_drop_inode,
1636	.evict_inode	= ext4_evict_inode,
1637	.put_super	= ext4_put_super,
1638	.sync_fs	= ext4_sync_fs,
1639	.freeze_fs	= ext4_freeze,
1640	.unfreeze_fs	= ext4_unfreeze,
1641	.statfs		= ext4_statfs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642	.show_options	= ext4_show_options,
1643	.shutdown	= ext4_shutdown,
1644#ifdef CONFIG_QUOTA
1645	.quota_read	= ext4_quota_read,
1646	.quota_write	= ext4_quota_write,
1647	.get_dquots	= ext4_get_dquots,
1648#endif
 
1649};
1650
1651static const struct export_operations ext4_export_ops = {
1652	.encode_fh = generic_encode_ino32_fh,
1653	.fh_to_dentry = ext4_fh_to_dentry,
1654	.fh_to_parent = ext4_fh_to_parent,
1655	.get_parent = ext4_get_parent,
1656	.commit_metadata = ext4_nfs_commit_metadata,
1657};
1658
1659enum {
1660	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1661	Opt_resgid, Opt_resuid, Opt_sb,
1662	Opt_nouid32, Opt_debug, Opt_removed,
1663	Opt_user_xattr, Opt_acl,
1664	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1665	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1666	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1667	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1668	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1669	Opt_inlinecrypt,
1670	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1671	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1672	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1673	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1674	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1675	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1676	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1677	Opt_inode_readahead_blks, Opt_journal_ioprio,
1678	Opt_dioread_nolock, Opt_dioread_lock,
1679	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1680	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1681	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1682	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1683#ifdef CONFIG_EXT4_DEBUG
1684	Opt_fc_debug_max_replay, Opt_fc_debug_force
1685#endif
1686};
1687
1688static const struct constant_table ext4_param_errors[] = {
1689	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1690	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1691	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1692	{}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693};
1694
1695static const struct constant_table ext4_param_data[] = {
1696	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1697	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1698	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1699	{}
1700};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701
1702static const struct constant_table ext4_param_data_err[] = {
1703	{"abort",	Opt_data_err_abort},
1704	{"ignore",	Opt_data_err_ignore},
1705	{}
1706};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707
1708static const struct constant_table ext4_param_jqfmt[] = {
1709	{"vfsold",	QFMT_VFS_OLD},
1710	{"vfsv0",	QFMT_VFS_V0},
1711	{"vfsv1",	QFMT_VFS_V1},
1712	{}
1713};
1714
1715static const struct constant_table ext4_param_dax[] = {
1716	{"always",	Opt_dax_always},
1717	{"inode",	Opt_dax_inode},
1718	{"never",	Opt_dax_never},
1719	{}
1720};
1721
1722/*
1723 * Mount option specification
1724 * We don't use fsparam_flag_no because of the way we set the
1725 * options and the way we show them in _ext4_show_options(). To
1726 * keep the changes to a minimum, let's keep the negative options
1727 * separate for now.
1728 */
1729static const struct fs_parameter_spec ext4_param_specs[] = {
1730	fsparam_flag	("bsddf",		Opt_bsd_df),
1731	fsparam_flag	("minixdf",		Opt_minix_df),
1732	fsparam_flag	("grpid",		Opt_grpid),
1733	fsparam_flag	("bsdgroups",		Opt_grpid),
1734	fsparam_flag	("nogrpid",		Opt_nogrpid),
1735	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1736	fsparam_gid	("resgid",		Opt_resgid),
1737	fsparam_uid	("resuid",		Opt_resuid),
1738	fsparam_u32	("sb",			Opt_sb),
1739	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1740	fsparam_flag	("nouid32",		Opt_nouid32),
1741	fsparam_flag	("debug",		Opt_debug),
1742	fsparam_flag	("oldalloc",		Opt_removed),
1743	fsparam_flag	("orlov",		Opt_removed),
1744	fsparam_flag	("user_xattr",		Opt_user_xattr),
1745	fsparam_flag	("acl",			Opt_acl),
1746	fsparam_flag	("norecovery",		Opt_noload),
1747	fsparam_flag	("noload",		Opt_noload),
1748	fsparam_flag	("bh",			Opt_removed),
1749	fsparam_flag	("nobh",		Opt_removed),
1750	fsparam_u32	("commit",		Opt_commit),
1751	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1752	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1753	fsparam_u32	("journal_dev",		Opt_journal_dev),
1754	fsparam_bdev	("journal_path",	Opt_journal_path),
1755	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1756	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1757	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1758	fsparam_flag	("abort",		Opt_abort),
1759	fsparam_enum	("data",		Opt_data, ext4_param_data),
1760	fsparam_enum	("data_err",		Opt_data_err,
1761						ext4_param_data_err),
1762	fsparam_string_empty
1763			("usrjquota",		Opt_usrjquota),
1764	fsparam_string_empty
1765			("grpjquota",		Opt_grpjquota),
1766	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1767	fsparam_flag	("grpquota",		Opt_grpquota),
1768	fsparam_flag	("quota",		Opt_quota),
1769	fsparam_flag	("noquota",		Opt_noquota),
1770	fsparam_flag	("usrquota",		Opt_usrquota),
1771	fsparam_flag	("prjquota",		Opt_prjquota),
1772	fsparam_flag	("barrier",		Opt_barrier),
1773	fsparam_u32	("barrier",		Opt_barrier),
1774	fsparam_flag	("nobarrier",		Opt_nobarrier),
1775	fsparam_flag	("i_version",		Opt_removed),
1776	fsparam_flag	("dax",			Opt_dax),
1777	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1778	fsparam_u32	("stripe",		Opt_stripe),
1779	fsparam_flag	("delalloc",		Opt_delalloc),
1780	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1781	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1782	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1783	fsparam_u32	("debug_want_extra_isize",
1784						Opt_debug_want_extra_isize),
1785	fsparam_flag	("mblk_io_submit",	Opt_removed),
1786	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1787	fsparam_flag	("block_validity",	Opt_block_validity),
1788	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1789	fsparam_u32	("inode_readahead_blks",
1790						Opt_inode_readahead_blks),
1791	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1792	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1793	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1794	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1795	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1796	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1797	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1798	fsparam_flag	("discard",		Opt_discard),
1799	fsparam_flag	("nodiscard",		Opt_nodiscard),
1800	fsparam_u32	("init_itable",		Opt_init_itable),
1801	fsparam_flag	("init_itable",		Opt_init_itable),
1802	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1803#ifdef CONFIG_EXT4_DEBUG
1804	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1805	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1806#endif
1807	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1808	fsparam_flag	("test_dummy_encryption",
1809						Opt_test_dummy_encryption),
1810	fsparam_string	("test_dummy_encryption",
1811						Opt_test_dummy_encryption),
1812	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1813	fsparam_flag	("nombcache",		Opt_nombcache),
1814	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1815	fsparam_flag	("prefetch_block_bitmaps",
1816						Opt_removed),
1817	fsparam_flag	("no_prefetch_block_bitmaps",
1818						Opt_no_prefetch_block_bitmaps),
1819	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1820	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1821	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1822	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1823	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1824	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1825	{}
1826};
1827
1828#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1829
1830#define MOPT_SET	0x0001
1831#define MOPT_CLEAR	0x0002
1832#define MOPT_NOSUPPORT	0x0004
1833#define MOPT_EXPLICIT	0x0008
 
 
1834#ifdef CONFIG_QUOTA
1835#define MOPT_Q		0
1836#define MOPT_QFMT	0x0010
1837#else
1838#define MOPT_Q		MOPT_NOSUPPORT
1839#define MOPT_QFMT	MOPT_NOSUPPORT
1840#endif
1841#define MOPT_NO_EXT2	0x0020
1842#define MOPT_NO_EXT3	0x0040
1843#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1844#define MOPT_SKIP	0x0080
1845#define	MOPT_2		0x0100
1846
1847static const struct mount_opts {
1848	int	token;
1849	int	mount_opt;
1850	int	flags;
1851} ext4_mount_opts[] = {
1852	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1853	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1854	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1855	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
 
 
1856	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1857	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1858	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1859	 MOPT_EXT4_ONLY | MOPT_SET},
1860	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1861	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1862	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1863	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1864	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1865	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1866	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1867	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1868	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1869	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1870	{Opt_commit, 0, MOPT_NO_EXT2},
1871	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1872	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1873	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1874	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1876				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1877	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1878	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1879	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
 
 
 
1880	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1881	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1882	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1883	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1884	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1885	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1886	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1887	{Opt_journal_path, 0, MOPT_NO_EXT2},
1888	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1889	{Opt_data, 0, MOPT_NO_EXT2},
 
 
 
 
 
1890	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
 
 
 
 
 
1891#ifdef CONFIG_EXT4_FS_POSIX_ACL
1892	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
 
1893#else
1894	{Opt_acl, 0, MOPT_NOSUPPORT},
 
1895#endif
1896	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1897	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1898	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1899	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1900							MOPT_SET | MOPT_Q},
1901	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1902							MOPT_SET | MOPT_Q},
1903	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1904							MOPT_SET | MOPT_Q},
1905	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1906		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1907							MOPT_CLEAR | MOPT_Q},
1908	{Opt_usrjquota, 0, MOPT_Q},
1909	{Opt_grpjquota, 0, MOPT_Q},
1910	{Opt_jqfmt, 0, MOPT_QFMT},
1911	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1912	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1913	 MOPT_SET},
1914#ifdef CONFIG_EXT4_DEBUG
1915	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1916	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1917#endif
1918	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1919	{Opt_err, 0, 0}
1920};
1921
1922#if IS_ENABLED(CONFIG_UNICODE)
1923static const struct ext4_sb_encodings {
1924	__u16 magic;
1925	char *name;
1926	unsigned int version;
1927} ext4_sb_encoding_map[] = {
1928	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1929};
1930
1931static const struct ext4_sb_encodings *
1932ext4_sb_read_encoding(const struct ext4_super_block *es)
1933{
1934	__u16 magic = le16_to_cpu(es->s_encoding);
1935	int i;
1936
1937	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1938		if (magic == ext4_sb_encoding_map[i].magic)
1939			return &ext4_sb_encoding_map[i];
1940
1941	return NULL;
1942}
1943#endif
1944
1945#define EXT4_SPEC_JQUOTA			(1 <<  0)
1946#define EXT4_SPEC_JQFMT				(1 <<  1)
1947#define EXT4_SPEC_DATAJ				(1 <<  2)
1948#define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1949#define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1950#define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1951#define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1952#define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1953#define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1954#define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1955#define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1956#define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1957#define EXT4_SPEC_s_stripe			(1 << 13)
1958#define EXT4_SPEC_s_resuid			(1 << 14)
1959#define EXT4_SPEC_s_resgid			(1 << 15)
1960#define EXT4_SPEC_s_commit_interval		(1 << 16)
1961#define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1962#define EXT4_SPEC_s_sb_block			(1 << 18)
1963#define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1964
1965struct ext4_fs_context {
1966	char		*s_qf_names[EXT4_MAXQUOTAS];
1967	struct fscrypt_dummy_policy dummy_enc_policy;
1968	int		s_jquota_fmt;	/* Format of quota to use */
1969#ifdef CONFIG_EXT4_DEBUG
1970	int s_fc_debug_max_replay;
1971#endif
1972	unsigned short	qname_spec;
1973	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1974	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1975	unsigned long	journal_devnum;
1976	unsigned long	s_commit_interval;
1977	unsigned long	s_stripe;
1978	unsigned int	s_inode_readahead_blks;
1979	unsigned int	s_want_extra_isize;
1980	unsigned int	s_li_wait_mult;
1981	unsigned int	s_max_dir_size_kb;
1982	unsigned int	journal_ioprio;
1983	unsigned int	vals_s_mount_opt;
1984	unsigned int	mask_s_mount_opt;
1985	unsigned int	vals_s_mount_opt2;
1986	unsigned int	mask_s_mount_opt2;
1987	unsigned int	opt_flags;	/* MOPT flags */
1988	unsigned int	spec;
1989	u32		s_max_batch_time;
1990	u32		s_min_batch_time;
1991	kuid_t		s_resuid;
1992	kgid_t		s_resgid;
1993	ext4_fsblk_t	s_sb_block;
1994};
1995
1996static void ext4_fc_free(struct fs_context *fc)
1997{
1998	struct ext4_fs_context *ctx = fc->fs_private;
1999	int i;
2000
2001	if (!ctx)
2002		return;
2003
2004	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2005		kfree(ctx->s_qf_names[i]);
2006
2007	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2008	kfree(ctx);
2009}
2010
2011int ext4_init_fs_context(struct fs_context *fc)
2012{
2013	struct ext4_fs_context *ctx;
2014
2015	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2016	if (!ctx)
2017		return -ENOMEM;
2018
2019	fc->fs_private = ctx;
2020	fc->ops = &ext4_context_ops;
2021
2022	return 0;
2023}
2024
2025#ifdef CONFIG_QUOTA
2026/*
2027 * Note the name of the specified quota file.
2028 */
2029static int note_qf_name(struct fs_context *fc, int qtype,
2030		       struct fs_parameter *param)
2031{
2032	struct ext4_fs_context *ctx = fc->fs_private;
2033	char *qname;
2034
2035	if (param->size < 1) {
2036		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2037		return -EINVAL;
2038	}
2039	if (strchr(param->string, '/')) {
2040		ext4_msg(NULL, KERN_ERR,
2041			 "quotafile must be on filesystem root");
2042		return -EINVAL;
2043	}
2044	if (ctx->s_qf_names[qtype]) {
2045		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2046			ext4_msg(NULL, KERN_ERR,
2047				 "%s quota file already specified",
2048				 QTYPE2NAME(qtype));
2049			return -EINVAL;
2050		}
2051		return 0;
2052	}
2053
2054	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2055	if (!qname) {
2056		ext4_msg(NULL, KERN_ERR,
2057			 "Not enough memory for storing quotafile name");
2058		return -ENOMEM;
2059	}
2060	ctx->s_qf_names[qtype] = qname;
2061	ctx->qname_spec |= 1 << qtype;
2062	ctx->spec |= EXT4_SPEC_JQUOTA;
2063	return 0;
2064}
2065
2066/*
2067 * Clear the name of the specified quota file.
2068 */
2069static int unnote_qf_name(struct fs_context *fc, int qtype)
2070{
2071	struct ext4_fs_context *ctx = fc->fs_private;
2072
2073	kfree(ctx->s_qf_names[qtype]);
2074
2075	ctx->s_qf_names[qtype] = NULL;
2076	ctx->qname_spec |= 1 << qtype;
2077	ctx->spec |= EXT4_SPEC_JQUOTA;
2078	return 0;
2079}
2080#endif
2081
2082static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2083					    struct ext4_fs_context *ctx)
2084{
2085	int err;
2086
2087	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2088		ext4_msg(NULL, KERN_WARNING,
2089			 "test_dummy_encryption option not supported");
2090		return -EINVAL;
2091	}
2092	err = fscrypt_parse_test_dummy_encryption(param,
2093						  &ctx->dummy_enc_policy);
2094	if (err == -EINVAL) {
2095		ext4_msg(NULL, KERN_WARNING,
2096			 "Value of option \"%s\" is unrecognized", param->key);
2097	} else if (err == -EEXIST) {
2098		ext4_msg(NULL, KERN_WARNING,
2099			 "Conflicting test_dummy_encryption options");
2100		return -EINVAL;
2101	}
2102	return err;
2103}
2104
2105#define EXT4_SET_CTX(name)						\
2106static inline __maybe_unused						\
2107void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2108{									\
2109	ctx->mask_s_##name |= flag;					\
2110	ctx->vals_s_##name |= flag;					\
2111}
2112
2113#define EXT4_CLEAR_CTX(name)						\
2114static inline __maybe_unused						\
2115void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2116{									\
2117	ctx->mask_s_##name |= flag;					\
2118	ctx->vals_s_##name &= ~flag;					\
2119}
2120
2121#define EXT4_TEST_CTX(name)						\
2122static inline unsigned long						\
2123ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2124{									\
2125	return (ctx->vals_s_##name & flag);				\
2126}
2127
2128EXT4_SET_CTX(flags); /* set only */
2129EXT4_SET_CTX(mount_opt);
2130EXT4_CLEAR_CTX(mount_opt);
2131EXT4_TEST_CTX(mount_opt);
2132EXT4_SET_CTX(mount_opt2);
2133EXT4_CLEAR_CTX(mount_opt2);
2134EXT4_TEST_CTX(mount_opt2);
2135
2136static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2137{
2138	struct ext4_fs_context *ctx = fc->fs_private;
2139	struct fs_parse_result result;
2140	const struct mount_opts *m;
2141	int is_remount;
2142	int token;
2143
2144	token = fs_parse(fc, ext4_param_specs, param, &result);
2145	if (token < 0)
2146		return token;
2147	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2148
2149	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2150		if (token == m->token)
2151			break;
2152
2153	ctx->opt_flags |= m->flags;
2154
2155	if (m->flags & MOPT_EXPLICIT) {
2156		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2157			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2158		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2159			ctx_set_mount_opt2(ctx,
2160				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2161		} else
2162			return -EINVAL;
2163	}
2164
2165	if (m->flags & MOPT_NOSUPPORT) {
2166		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2167			 param->key);
2168		return 0;
2169	}
2170
2171	switch (token) {
2172#ifdef CONFIG_QUOTA
2173	case Opt_usrjquota:
2174		if (!*param->string)
2175			return unnote_qf_name(fc, USRQUOTA);
2176		else
2177			return note_qf_name(fc, USRQUOTA, param);
2178	case Opt_grpjquota:
2179		if (!*param->string)
2180			return unnote_qf_name(fc, GRPQUOTA);
2181		else
2182			return note_qf_name(fc, GRPQUOTA, param);
2183#endif
2184	case Opt_sb:
2185		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2186			ext4_msg(NULL, KERN_WARNING,
2187				 "Ignoring %s option on remount", param->key);
2188		} else {
2189			ctx->s_sb_block = result.uint_32;
2190			ctx->spec |= EXT4_SPEC_s_sb_block;
2191		}
2192		return 0;
2193	case Opt_removed:
2194		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2195			 param->key);
2196		return 0;
2197	case Opt_inlinecrypt:
2198#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2199		ctx_set_flags(ctx, SB_INLINECRYPT);
2200#else
2201		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2202#endif
2203		return 0;
2204	case Opt_errors:
2205		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2206		ctx_set_mount_opt(ctx, result.uint_32);
2207		return 0;
2208#ifdef CONFIG_QUOTA
2209	case Opt_jqfmt:
2210		ctx->s_jquota_fmt = result.uint_32;
2211		ctx->spec |= EXT4_SPEC_JQFMT;
2212		return 0;
2213#endif
2214	case Opt_data:
2215		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2216		ctx_set_mount_opt(ctx, result.uint_32);
2217		ctx->spec |= EXT4_SPEC_DATAJ;
2218		return 0;
2219	case Opt_commit:
2220		if (result.uint_32 == 0)
2221			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2222		else if (result.uint_32 > INT_MAX / HZ) {
2223			ext4_msg(NULL, KERN_ERR,
2224				 "Invalid commit interval %d, "
2225				 "must be smaller than %d",
2226				 result.uint_32, INT_MAX / HZ);
2227			return -EINVAL;
2228		}
2229		ctx->s_commit_interval = HZ * result.uint_32;
2230		ctx->spec |= EXT4_SPEC_s_commit_interval;
2231		return 0;
2232	case Opt_debug_want_extra_isize:
2233		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2234			ext4_msg(NULL, KERN_ERR,
2235				 "Invalid want_extra_isize %d", result.uint_32);
2236			return -EINVAL;
2237		}
2238		ctx->s_want_extra_isize = result.uint_32;
2239		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2240		return 0;
2241	case Opt_max_batch_time:
2242		ctx->s_max_batch_time = result.uint_32;
2243		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2244		return 0;
2245	case Opt_min_batch_time:
2246		ctx->s_min_batch_time = result.uint_32;
2247		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2248		return 0;
2249	case Opt_inode_readahead_blks:
2250		if (result.uint_32 &&
2251		    (result.uint_32 > (1 << 30) ||
2252		     !is_power_of_2(result.uint_32))) {
2253			ext4_msg(NULL, KERN_ERR,
2254				 "EXT4-fs: inode_readahead_blks must be "
2255				 "0 or a power of 2 smaller than 2^31");
2256			return -EINVAL;
2257		}
2258		ctx->s_inode_readahead_blks = result.uint_32;
2259		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2260		return 0;
2261	case Opt_init_itable:
2262		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2263		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2264		if (param->type == fs_value_is_string)
2265			ctx->s_li_wait_mult = result.uint_32;
2266		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2267		return 0;
2268	case Opt_max_dir_size_kb:
2269		ctx->s_max_dir_size_kb = result.uint_32;
2270		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2271		return 0;
2272#ifdef CONFIG_EXT4_DEBUG
2273	case Opt_fc_debug_max_replay:
2274		ctx->s_fc_debug_max_replay = result.uint_32;
2275		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2276		return 0;
2277#endif
2278	case Opt_stripe:
2279		ctx->s_stripe = result.uint_32;
2280		ctx->spec |= EXT4_SPEC_s_stripe;
2281		return 0;
2282	case Opt_resuid:
2283		ctx->s_resuid = result.uid;
2284		ctx->spec |= EXT4_SPEC_s_resuid;
2285		return 0;
2286	case Opt_resgid:
2287		ctx->s_resgid = result.gid;
2288		ctx->spec |= EXT4_SPEC_s_resgid;
2289		return 0;
2290	case Opt_journal_dev:
2291		if (is_remount) {
2292			ext4_msg(NULL, KERN_ERR,
2293				 "Cannot specify journal on remount");
2294			return -EINVAL;
2295		}
2296		ctx->journal_devnum = result.uint_32;
2297		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2298		return 0;
2299	case Opt_journal_path:
2300	{
2301		struct inode *journal_inode;
2302		struct path path;
2303		int error;
2304
2305		if (is_remount) {
2306			ext4_msg(NULL, KERN_ERR,
2307				 "Cannot specify journal on remount");
2308			return -EINVAL;
2309		}
2310
2311		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2312		if (error) {
2313			ext4_msg(NULL, KERN_ERR, "error: could not find "
2314				 "journal device path");
2315			return -EINVAL;
2316		}
2317
2318		journal_inode = d_inode(path.dentry);
2319		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2320		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321		path_put(&path);
2322		return 0;
2323	}
2324	case Opt_journal_ioprio:
2325		if (result.uint_32 > 7) {
2326			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2327				 " (must be 0-7)");
2328			return -EINVAL;
2329		}
2330		ctx->journal_ioprio =
2331			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2332		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2333		return 0;
2334	case Opt_test_dummy_encryption:
2335		return ext4_parse_test_dummy_encryption(param, ctx);
2336	case Opt_dax:
2337	case Opt_dax_type:
2338#ifdef CONFIG_FS_DAX
2339	{
2340		int type = (token == Opt_dax) ?
2341			   Opt_dax : result.uint_32;
2342
2343		switch (type) {
2344		case Opt_dax:
2345		case Opt_dax_always:
2346			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2347			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2348			break;
2349		case Opt_dax_never:
2350			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2351			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2352			break;
2353		case Opt_dax_inode:
2354			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2355			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2356			/* Strictly for printing options */
2357			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2358			break;
2359		}
2360		return 0;
2361	}
2362#else
2363		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2364		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2365#endif
2366	case Opt_data_err:
2367		if (result.uint_32 == Opt_data_err_abort)
2368			ctx_set_mount_opt(ctx, m->mount_opt);
2369		else if (result.uint_32 == Opt_data_err_ignore)
2370			ctx_clear_mount_opt(ctx, m->mount_opt);
2371		return 0;
2372	case Opt_mb_optimize_scan:
2373		if (result.int_32 == 1) {
2374			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2375			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2376		} else if (result.int_32 == 0) {
2377			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2378			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2379		} else {
2380			ext4_msg(NULL, KERN_WARNING,
2381				 "mb_optimize_scan should be set to 0 or 1.");
2382			return -EINVAL;
2383		}
2384		return 0;
2385	}
2386
2387	/*
2388	 * At this point we should only be getting options requiring MOPT_SET,
2389	 * or MOPT_CLEAR. Anything else is a bug
2390	 */
2391	if (m->token == Opt_err) {
2392		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2393			 param->key);
2394		WARN_ON(1);
2395		return -EINVAL;
2396	}
2397
2398	else {
2399		unsigned int set = 0;
2400
2401		if ((param->type == fs_value_is_flag) ||
2402		    result.uint_32 > 0)
2403			set = 1;
2404
2405		if (m->flags & MOPT_CLEAR)
2406			set = !set;
2407		else if (unlikely(!(m->flags & MOPT_SET))) {
2408			ext4_msg(NULL, KERN_WARNING,
2409				 "buggy handling of option %s",
2410				 param->key);
2411			WARN_ON(1);
2412			return -EINVAL;
2413		}
2414		if (m->flags & MOPT_2) {
2415			if (set != 0)
2416				ctx_set_mount_opt2(ctx, m->mount_opt);
2417			else
2418				ctx_clear_mount_opt2(ctx, m->mount_opt);
2419		} else {
2420			if (set != 0)
2421				ctx_set_mount_opt(ctx, m->mount_opt);
2422			else
2423				ctx_clear_mount_opt(ctx, m->mount_opt);
2424		}
 
2425	}
2426
2427	return 0;
2428}
2429
2430static int parse_options(struct fs_context *fc, char *options)
2431{
2432	struct fs_parameter param;
2433	int ret;
2434	char *key;
2435
2436	if (!options)
2437		return 0;
2438
2439	while ((key = strsep(&options, ",")) != NULL) {
2440		if (*key) {
2441			size_t v_len = 0;
2442			char *value = strchr(key, '=');
2443
2444			param.type = fs_value_is_flag;
2445			param.string = NULL;
2446
2447			if (value) {
2448				if (value == key)
2449					continue;
2450
2451				*value++ = 0;
2452				v_len = strlen(value);
2453				param.string = kmemdup_nul(value, v_len,
2454							   GFP_KERNEL);
2455				if (!param.string)
2456					return -ENOMEM;
2457				param.type = fs_value_is_string;
2458			}
2459
2460			param.key = key;
2461			param.size = v_len;
2462
2463			ret = ext4_parse_param(fc, &param);
2464			kfree(param.string);
2465			if (ret < 0)
2466				return ret;
2467		}
2468	}
2469
2470	ret = ext4_validate_options(fc);
2471	if (ret < 0)
2472		return ret;
2473
2474	return 0;
2475}
2476
2477static int parse_apply_sb_mount_options(struct super_block *sb,
2478					struct ext4_fs_context *m_ctx)
2479{
2480	struct ext4_sb_info *sbi = EXT4_SB(sb);
2481	char *s_mount_opts = NULL;
2482	struct ext4_fs_context *s_ctx = NULL;
2483	struct fs_context *fc = NULL;
2484	int ret = -ENOMEM;
2485
2486	if (!sbi->s_es->s_mount_opts[0])
2487		return 0;
2488
2489	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2490				sizeof(sbi->s_es->s_mount_opts),
2491				GFP_KERNEL);
2492	if (!s_mount_opts)
2493		return ret;
2494
2495	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2496	if (!fc)
2497		goto out_free;
2498
2499	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2500	if (!s_ctx)
2501		goto out_free;
2502
2503	fc->fs_private = s_ctx;
2504	fc->s_fs_info = sbi;
2505
2506	ret = parse_options(fc, s_mount_opts);
2507	if (ret < 0)
2508		goto parse_failed;
2509
2510	ret = ext4_check_opt_consistency(fc, sb);
2511	if (ret < 0) {
2512parse_failed:
2513		ext4_msg(sb, KERN_WARNING,
2514			 "failed to parse options in superblock: %s",
2515			 s_mount_opts);
2516		ret = 0;
2517		goto out_free;
2518	}
2519
2520	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2521		m_ctx->journal_devnum = s_ctx->journal_devnum;
2522	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2523		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2524
2525	ext4_apply_options(fc, sb);
2526	ret = 0;
2527
2528out_free:
2529	if (fc) {
2530		ext4_fc_free(fc);
2531		kfree(fc);
2532	}
2533	kfree(s_mount_opts);
2534	return ret;
2535}
2536
2537static void ext4_apply_quota_options(struct fs_context *fc,
2538				     struct super_block *sb)
 
 
2539{
2540#ifdef CONFIG_QUOTA
2541	bool quota_feature = ext4_has_feature_quota(sb);
2542	struct ext4_fs_context *ctx = fc->fs_private;
2543	struct ext4_sb_info *sbi = EXT4_SB(sb);
2544	char *qname;
2545	int i;
 
 
2546
2547	if (quota_feature)
2548		return;
2549
2550	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2551		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2552			if (!(ctx->qname_spec & (1 << i)))
2553				continue;
2554
2555			qname = ctx->s_qf_names[i]; /* May be NULL */
2556			if (qname)
2557				set_opt(sb, QUOTA);
2558			ctx->s_qf_names[i] = NULL;
2559			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2560						lockdep_is_held(&sb->s_umount));
2561			if (qname)
2562				kfree_rcu_mightsleep(qname);
2563		}
2564	}
2565
2566	if (ctx->spec & EXT4_SPEC_JQFMT)
2567		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2568#endif
2569}
2570
2571/*
2572 * Check quota settings consistency.
2573 */
2574static int ext4_check_quota_consistency(struct fs_context *fc,
2575					struct super_block *sb)
2576{
2577#ifdef CONFIG_QUOTA
2578	struct ext4_fs_context *ctx = fc->fs_private;
2579	struct ext4_sb_info *sbi = EXT4_SB(sb);
2580	bool quota_feature = ext4_has_feature_quota(sb);
2581	bool quota_loaded = sb_any_quota_loaded(sb);
2582	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2583	int quota_flags, i;
2584
2585	/*
2586	 * We do the test below only for project quotas. 'usrquota' and
2587	 * 'grpquota' mount options are allowed even without quota feature
2588	 * to support legacy quotas in quota files.
2589	 */
2590	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2591	    !ext4_has_feature_project(sb)) {
2592		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2593			 "Cannot enable project quota enforcement.");
2594		return -EINVAL;
2595	}
2596
2597	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2598		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2599	if (quota_loaded &&
2600	    ctx->mask_s_mount_opt & quota_flags &&
2601	    !ctx_test_mount_opt(ctx, quota_flags))
2602		goto err_quota_change;
2603
2604	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2605
2606		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2607			if (!(ctx->qname_spec & (1 << i)))
2608				continue;
2609
2610			if (quota_loaded &&
2611			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2612				goto err_jquota_change;
2613
2614			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2615			    strcmp(get_qf_name(sb, sbi, i),
2616				   ctx->s_qf_names[i]) != 0)
2617				goto err_jquota_specified;
2618		}
2619
2620		if (quota_feature) {
2621			ext4_msg(NULL, KERN_INFO,
2622				 "Journaled quota options ignored when "
2623				 "QUOTA feature is enabled");
2624			return 0;
2625		}
2626	}
2627
2628	if (ctx->spec & EXT4_SPEC_JQFMT) {
2629		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2630			goto err_jquota_change;
2631		if (quota_feature) {
2632			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2633				 "ignored when QUOTA feature is enabled");
2634			return 0;
2635		}
2636	}
2637
2638	/* Make sure we don't mix old and new quota format */
2639	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2640		       ctx->s_qf_names[USRQUOTA]);
2641	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2642		       ctx->s_qf_names[GRPQUOTA]);
2643
2644	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2645		    test_opt(sb, USRQUOTA));
2646
2647	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2648		    test_opt(sb, GRPQUOTA));
2649
2650	if (usr_qf_name) {
2651		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2652		usrquota = false;
2653	}
2654	if (grp_qf_name) {
2655		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2656		grpquota = false;
2657	}
2658
2659	if (usr_qf_name || grp_qf_name) {
2660		if (usrquota || grpquota) {
2661			ext4_msg(NULL, KERN_ERR, "old and new quota "
2662				 "format mixing");
2663			return -EINVAL;
2664		}
2665
2666		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2667			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2668				 "not specified");
2669			return -EINVAL;
2670		}
2671	}
2672
2673	return 0;
2674
2675err_quota_change:
2676	ext4_msg(NULL, KERN_ERR,
2677		 "Cannot change quota options when quota turned on");
2678	return -EINVAL;
2679err_jquota_change:
2680	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2681		 "options when quota turned on");
2682	return -EINVAL;
2683err_jquota_specified:
2684	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2685		 QTYPE2NAME(i));
2686	return -EINVAL;
2687#else
2688	return 0;
2689#endif
2690}
2691
2692static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2693					    struct super_block *sb)
2694{
2695	const struct ext4_fs_context *ctx = fc->fs_private;
2696	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2697
2698	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2699		return 0;
2700
2701	if (!ext4_has_feature_encrypt(sb)) {
2702		ext4_msg(NULL, KERN_WARNING,
2703			 "test_dummy_encryption requires encrypt feature");
2704		return -EINVAL;
2705	}
2706	/*
2707	 * This mount option is just for testing, and it's not worthwhile to
2708	 * implement the extra complexity (e.g. RCU protection) that would be
2709	 * needed to allow it to be set or changed during remount.  We do allow
2710	 * it to be specified during remount, but only if there is no change.
2711	 */
2712	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2713		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2714						 &ctx->dummy_enc_policy))
2715			return 0;
2716		ext4_msg(NULL, KERN_WARNING,
2717			 "Can't set or change test_dummy_encryption on remount");
2718		return -EINVAL;
2719	}
2720	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2721	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2722		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2723						 &ctx->dummy_enc_policy))
2724			return 0;
2725		ext4_msg(NULL, KERN_WARNING,
2726			 "Conflicting test_dummy_encryption options");
2727		return -EINVAL;
2728	}
2729	return 0;
2730}
2731
2732static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2733					     struct super_block *sb)
2734{
2735	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2736	    /* if already set, it was already verified to be the same */
2737	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2738		return;
2739	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2740	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2741	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2742}
2743
2744static int ext4_check_opt_consistency(struct fs_context *fc,
2745				      struct super_block *sb)
2746{
2747	struct ext4_fs_context *ctx = fc->fs_private;
2748	struct ext4_sb_info *sbi = fc->s_fs_info;
2749	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2750	int err;
2751
2752	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2753		ext4_msg(NULL, KERN_ERR,
2754			 "Mount option(s) incompatible with ext2");
2755		return -EINVAL;
2756	}
2757	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2758		ext4_msg(NULL, KERN_ERR,
2759			 "Mount option(s) incompatible with ext3");
2760		return -EINVAL;
2761	}
2762
2763	if (ctx->s_want_extra_isize >
2764	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2765		ext4_msg(NULL, KERN_ERR,
2766			 "Invalid want_extra_isize %d",
2767			 ctx->s_want_extra_isize);
2768		return -EINVAL;
2769	}
2770
2771	err = ext4_check_test_dummy_encryption(fc, sb);
2772	if (err)
2773		return err;
2774
2775	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2776		if (!sbi->s_journal) {
2777			ext4_msg(NULL, KERN_WARNING,
2778				 "Remounting file system with no journal "
2779				 "so ignoring journalled data option");
2780			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2781		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2782			   test_opt(sb, DATA_FLAGS)) {
2783			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2784				 "on remount");
2785			return -EINVAL;
2786		}
2787	}
2788
2789	if (is_remount) {
2790		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2791		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2792			ext4_msg(NULL, KERN_ERR, "can't mount with "
2793				 "both data=journal and dax");
2794			return -EINVAL;
2795		}
2796
2797		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2798		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2799		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2800fail_dax_change_remount:
2801			ext4_msg(NULL, KERN_ERR, "can't change "
2802				 "dax mount option while remounting");
2803			return -EINVAL;
2804		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2805			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2806			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2807			goto fail_dax_change_remount;
2808		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2809			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2810			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2811			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2812			goto fail_dax_change_remount;
2813		}
2814	}
2815
2816	return ext4_check_quota_consistency(fc, sb);
2817}
2818
2819static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2820{
2821	struct ext4_fs_context *ctx = fc->fs_private;
2822	struct ext4_sb_info *sbi = fc->s_fs_info;
2823
2824	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2825	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2826	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2827	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2828	sb->s_flags &= ~ctx->mask_s_flags;
2829	sb->s_flags |= ctx->vals_s_flags;
2830
2831#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2832	APPLY(s_commit_interval);
2833	APPLY(s_stripe);
2834	APPLY(s_max_batch_time);
2835	APPLY(s_min_batch_time);
2836	APPLY(s_want_extra_isize);
2837	APPLY(s_inode_readahead_blks);
2838	APPLY(s_max_dir_size_kb);
2839	APPLY(s_li_wait_mult);
2840	APPLY(s_resgid);
2841	APPLY(s_resuid);
2842
2843#ifdef CONFIG_EXT4_DEBUG
2844	APPLY(s_fc_debug_max_replay);
2845#endif
2846
2847	ext4_apply_quota_options(fc, sb);
2848	ext4_apply_test_dummy_encryption(ctx, sb);
2849}
2850
2851
2852static int ext4_validate_options(struct fs_context *fc)
2853{
2854#ifdef CONFIG_QUOTA
2855	struct ext4_fs_context *ctx = fc->fs_private;
2856	char *usr_qf_name, *grp_qf_name;
2857
2858	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2859	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2860
2861	if (usr_qf_name || grp_qf_name) {
2862		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2863			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2864
2865		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2866			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2867
2868		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2869		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2870			ext4_msg(NULL, KERN_ERR, "old and new quota "
2871				 "format mixing");
2872			return -EINVAL;
2873		}
2874	}
2875#endif
2876	return 1;
2877}
2878
2879static inline void ext4_show_quota_options(struct seq_file *seq,
2880					   struct super_block *sb)
2881{
2882#if defined(CONFIG_QUOTA)
2883	struct ext4_sb_info *sbi = EXT4_SB(sb);
2884	char *usr_qf_name, *grp_qf_name;
2885
2886	if (sbi->s_jquota_fmt) {
2887		char *fmtname = "";
2888
2889		switch (sbi->s_jquota_fmt) {
2890		case QFMT_VFS_OLD:
2891			fmtname = "vfsold";
2892			break;
2893		case QFMT_VFS_V0:
2894			fmtname = "vfsv0";
2895			break;
2896		case QFMT_VFS_V1:
2897			fmtname = "vfsv1";
2898			break;
2899		}
2900		seq_printf(seq, ",jqfmt=%s", fmtname);
2901	}
2902
2903	rcu_read_lock();
2904	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2905	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2906	if (usr_qf_name)
2907		seq_show_option(seq, "usrjquota", usr_qf_name);
2908	if (grp_qf_name)
2909		seq_show_option(seq, "grpjquota", grp_qf_name);
2910	rcu_read_unlock();
 
 
 
2911#endif
2912}
2913
2914static const char *token2str(int token)
2915{
2916	const struct fs_parameter_spec *spec;
2917
2918	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2919		if (spec->opt == token && !spec->type)
2920			break;
2921	return spec->name;
2922}
2923
2924/*
2925 * Show an option if
2926 *  - it's set to a non-default value OR
2927 *  - if the per-sb default is different from the global default
2928 */
2929static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2930			      int nodefs)
2931{
2932	struct ext4_sb_info *sbi = EXT4_SB(sb);
2933	struct ext4_super_block *es = sbi->s_es;
2934	int def_errors;
2935	const struct mount_opts *m;
2936	char sep = nodefs ? '\n' : ',';
2937
2938#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2939#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2940
2941	if (sbi->s_sb_block != 1)
2942		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2943
2944	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2945		int want_set = m->flags & MOPT_SET;
2946		int opt_2 = m->flags & MOPT_2;
2947		unsigned int mount_opt, def_mount_opt;
2948
2949		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2950		    m->flags & MOPT_SKIP)
2951			continue;
2952
2953		if (opt_2) {
2954			mount_opt = sbi->s_mount_opt2;
2955			def_mount_opt = sbi->s_def_mount_opt2;
2956		} else {
2957			mount_opt = sbi->s_mount_opt;
2958			def_mount_opt = sbi->s_def_mount_opt;
2959		}
2960		/* skip if same as the default */
2961		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2962			continue;
2963		/* select Opt_noFoo vs Opt_Foo */
 
2964		if ((want_set &&
2965		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2966		    (!want_set && (mount_opt & m->mount_opt)))
2967			continue;
2968		SEQ_OPTS_PRINT("%s", token2str(m->token));
2969	}
2970
2971	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2972	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2973		SEQ_OPTS_PRINT("resuid=%u",
2974				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2975	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2976	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2977		SEQ_OPTS_PRINT("resgid=%u",
2978				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2979	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2980	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2981		SEQ_OPTS_PUTS("errors=remount-ro");
2982	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2983		SEQ_OPTS_PUTS("errors=continue");
2984	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2985		SEQ_OPTS_PUTS("errors=panic");
2986	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2987		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2988	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2989		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2990	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2991		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
 
 
2992	if (nodefs || sbi->s_stripe)
2993		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2994	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2995			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2996		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2997			SEQ_OPTS_PUTS("data=journal");
2998		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2999			SEQ_OPTS_PUTS("data=ordered");
3000		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3001			SEQ_OPTS_PUTS("data=writeback");
3002	}
3003	if (nodefs ||
3004	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3005		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3006			       sbi->s_inode_readahead_blks);
3007
3008	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3009		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3010		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3011	if (nodefs || sbi->s_max_dir_size_kb)
3012		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3013	if (test_opt(sb, DATA_ERR_ABORT))
3014		SEQ_OPTS_PUTS("data_err=abort");
3015
3016	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3017
3018	if (sb->s_flags & SB_INLINECRYPT)
3019		SEQ_OPTS_PUTS("inlinecrypt");
3020
3021	if (test_opt(sb, DAX_ALWAYS)) {
3022		if (IS_EXT2_SB(sb))
3023			SEQ_OPTS_PUTS("dax");
3024		else
3025			SEQ_OPTS_PUTS("dax=always");
3026	} else if (test_opt2(sb, DAX_NEVER)) {
3027		SEQ_OPTS_PUTS("dax=never");
3028	} else if (test_opt2(sb, DAX_INODE)) {
3029		SEQ_OPTS_PUTS("dax=inode");
3030	}
3031
3032	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3033			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3034		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3035	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3036			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3037		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3038	}
3039
3040	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3041		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3042
3043	ext4_show_quota_options(seq, sb);
3044	return 0;
3045}
3046
3047static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3048{
3049	return _ext4_show_options(seq, root->d_sb, 0);
3050}
3051
3052int ext4_seq_options_show(struct seq_file *seq, void *offset)
3053{
3054	struct super_block *sb = seq->private;
3055	int rc;
3056
3057	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3058	rc = _ext4_show_options(seq, sb, 1);
3059	seq_putc(seq, '\n');
3060	return rc;
3061}
3062
 
 
 
 
 
 
 
 
 
 
 
 
 
3063static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3064			    int read_only)
3065{
3066	struct ext4_sb_info *sbi = EXT4_SB(sb);
3067	int err = 0;
3068
3069	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3070		ext4_msg(sb, KERN_ERR, "revision level too high, "
3071			 "forcing read-only mode");
3072		err = -EROFS;
3073		goto done;
3074	}
3075	if (read_only)
3076		goto done;
3077	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3078		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3079			 "running e2fsck is recommended");
3080	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3081		ext4_msg(sb, KERN_WARNING,
3082			 "warning: mounting fs with errors, "
3083			 "running e2fsck is recommended");
3084	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3085		 le16_to_cpu(es->s_mnt_count) >=
3086		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3087		ext4_msg(sb, KERN_WARNING,
3088			 "warning: maximal mount count reached, "
3089			 "running e2fsck is recommended");
3090	else if (le32_to_cpu(es->s_checkinterval) &&
3091		 (ext4_get_tstamp(es, s_lastcheck) +
3092		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3093		ext4_msg(sb, KERN_WARNING,
3094			 "warning: checktime reached, "
3095			 "running e2fsck is recommended");
3096	if (!sbi->s_journal)
3097		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3098	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3099		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3100	le16_add_cpu(&es->s_mnt_count, 1);
3101	ext4_update_tstamp(es, s_mtime);
3102	if (sbi->s_journal) {
3103		ext4_set_feature_journal_needs_recovery(sb);
3104		if (ext4_has_feature_orphan_file(sb))
3105			ext4_set_feature_orphan_present(sb);
3106	}
3107
3108	err = ext4_commit_super(sb);
3109done:
3110	if (test_opt(sb, DEBUG))
3111		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3112				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3113			sb->s_blocksize,
3114			sbi->s_groups_count,
3115			EXT4_BLOCKS_PER_GROUP(sb),
3116			EXT4_INODES_PER_GROUP(sb),
3117			sbi->s_mount_opt, sbi->s_mount_opt2);
3118	return err;
3119}
3120
3121int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3122{
3123	struct ext4_sb_info *sbi = EXT4_SB(sb);
3124	struct flex_groups **old_groups, **new_groups;
3125	int size, i, j;
3126
3127	if (!sbi->s_log_groups_per_flex)
3128		return 0;
3129
3130	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3131	if (size <= sbi->s_flex_groups_allocated)
3132		return 0;
3133
3134	new_groups = kvzalloc(roundup_pow_of_two(size *
3135			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3136	if (!new_groups) {
3137		ext4_msg(sb, KERN_ERR,
3138			 "not enough memory for %d flex group pointers", size);
3139		return -ENOMEM;
3140	}
3141	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3142		new_groups[i] = kvzalloc(roundup_pow_of_two(
3143					 sizeof(struct flex_groups)),
3144					 GFP_KERNEL);
3145		if (!new_groups[i]) {
3146			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3147				kvfree(new_groups[j]);
3148			kvfree(new_groups);
3149			ext4_msg(sb, KERN_ERR,
3150				 "not enough memory for %d flex groups", size);
3151			return -ENOMEM;
3152		}
3153	}
3154	rcu_read_lock();
3155	old_groups = rcu_dereference(sbi->s_flex_groups);
3156	if (old_groups)
3157		memcpy(new_groups, old_groups,
3158		       (sbi->s_flex_groups_allocated *
3159			sizeof(struct flex_groups *)));
3160	rcu_read_unlock();
3161	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3162	sbi->s_flex_groups_allocated = size;
3163	if (old_groups)
3164		ext4_kvfree_array_rcu(old_groups);
3165	return 0;
3166}
3167
3168static int ext4_fill_flex_info(struct super_block *sb)
3169{
3170	struct ext4_sb_info *sbi = EXT4_SB(sb);
3171	struct ext4_group_desc *gdp = NULL;
3172	struct flex_groups *fg;
3173	ext4_group_t flex_group;
3174	int i, err;
 
 
3175
3176	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3177	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3178		sbi->s_log_groups_per_flex = 0;
3179		return 1;
3180	}
 
3181
3182	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3183	if (err)
 
 
 
 
 
 
 
3184		goto failed;
 
3185
3186	for (i = 0; i < sbi->s_groups_count; i++) {
3187		gdp = ext4_get_group_desc(sb, i, NULL);
3188
3189		flex_group = ext4_flex_group(sbi, i);
3190		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3191		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3192		atomic64_add(ext4_free_group_clusters(sb, gdp),
3193			     &fg->free_clusters);
3194		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
 
3195	}
3196
3197	return 1;
3198failed:
3199	return 0;
3200}
3201
3202static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3203				   struct ext4_group_desc *gdp)
3204{
3205	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3206	__u16 crc = 0;
3207	__le32 le_group = cpu_to_le32(block_group);
3208	struct ext4_sb_info *sbi = EXT4_SB(sb);
3209
3210	if (ext4_has_metadata_csum(sbi->s_sb)) {
 
3211		/* Use new metadata_csum algorithm */
 
3212		__u32 csum32;
3213		__u16 dummy_csum = 0;
3214
 
 
3215		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3216				     sizeof(le_group));
3217		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3218		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3219				     sizeof(dummy_csum));
3220		offset += sizeof(dummy_csum);
3221		if (offset < sbi->s_desc_size)
3222			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3223					     sbi->s_desc_size - offset);
3224
3225		crc = csum32 & 0xFFFF;
3226		goto out;
3227	}
3228
3229	/* old crc16 code */
3230	if (!ext4_has_feature_gdt_csum(sb))
3231		return 0;
3232
3233	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3234	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3235	crc = crc16(crc, (__u8 *)gdp, offset);
3236	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3237	/* for checksum of struct ext4_group_desc do the rest...*/
3238	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
 
 
3239		crc = crc16(crc, (__u8 *)gdp + offset,
3240			    sbi->s_desc_size - offset);
 
3241
3242out:
3243	return cpu_to_le16(crc);
3244}
3245
3246int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3247				struct ext4_group_desc *gdp)
3248{
3249	if (ext4_has_group_desc_csum(sb) &&
3250	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
 
3251		return 0;
3252
3253	return 1;
3254}
3255
3256void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3257			      struct ext4_group_desc *gdp)
3258{
3259	if (!ext4_has_group_desc_csum(sb))
3260		return;
3261	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3262}
3263
3264/* Called at mount-time, super-block is locked */
3265static int ext4_check_descriptors(struct super_block *sb,
3266				  ext4_fsblk_t sb_block,
3267				  ext4_group_t *first_not_zeroed)
3268{
3269	struct ext4_sb_info *sbi = EXT4_SB(sb);
3270	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3271	ext4_fsblk_t last_block;
3272	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3273	ext4_fsblk_t block_bitmap;
3274	ext4_fsblk_t inode_bitmap;
3275	ext4_fsblk_t inode_table;
3276	int flexbg_flag = 0;
3277	ext4_group_t i, grp = sbi->s_groups_count;
3278
3279	if (ext4_has_feature_flex_bg(sb))
3280		flexbg_flag = 1;
3281
3282	ext4_debug("Checking group descriptors");
3283
3284	for (i = 0; i < sbi->s_groups_count; i++) {
3285		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3286
3287		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3288			last_block = ext4_blocks_count(sbi->s_es) - 1;
3289		else
3290			last_block = first_block +
3291				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3292
3293		if ((grp == sbi->s_groups_count) &&
3294		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3295			grp = i;
3296
3297		block_bitmap = ext4_block_bitmap(sb, gdp);
3298		if (block_bitmap == sb_block) {
3299			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3300				 "Block bitmap for group %u overlaps "
3301				 "superblock", i);
3302			if (!sb_rdonly(sb))
3303				return 0;
3304		}
3305		if (block_bitmap >= sb_block + 1 &&
3306		    block_bitmap <= last_bg_block) {
3307			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3308				 "Block bitmap for group %u overlaps "
3309				 "block group descriptors", i);
3310			if (!sb_rdonly(sb))
3311				return 0;
3312		}
3313		if (block_bitmap < first_block || block_bitmap > last_block) {
3314			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3315			       "Block bitmap for group %u not in group "
3316			       "(block %llu)!", i, block_bitmap);
3317			return 0;
3318		}
3319		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3320		if (inode_bitmap == sb_block) {
3321			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3322				 "Inode bitmap for group %u overlaps "
3323				 "superblock", i);
3324			if (!sb_rdonly(sb))
3325				return 0;
3326		}
3327		if (inode_bitmap >= sb_block + 1 &&
3328		    inode_bitmap <= last_bg_block) {
3329			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330				 "Inode bitmap for group %u overlaps "
3331				 "block group descriptors", i);
3332			if (!sb_rdonly(sb))
3333				return 0;
3334		}
3335		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3336			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337			       "Inode bitmap for group %u not in group "
3338			       "(block %llu)!", i, inode_bitmap);
3339			return 0;
3340		}
3341		inode_table = ext4_inode_table(sb, gdp);
3342		if (inode_table == sb_block) {
3343			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344				 "Inode table for group %u overlaps "
3345				 "superblock", i);
3346			if (!sb_rdonly(sb))
3347				return 0;
3348		}
3349		if (inode_table >= sb_block + 1 &&
3350		    inode_table <= last_bg_block) {
3351			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352				 "Inode table for group %u overlaps "
3353				 "block group descriptors", i);
3354			if (!sb_rdonly(sb))
3355				return 0;
3356		}
3357		if (inode_table < first_block ||
3358		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3359			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360			       "Inode table for group %u not in group "
3361			       "(block %llu)!", i, inode_table);
3362			return 0;
3363		}
3364		ext4_lock_group(sb, i);
3365		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3366			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3367				 "Checksum for group %u failed (%u!=%u)",
3368				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3369				     gdp)), le16_to_cpu(gdp->bg_checksum));
3370			if (!sb_rdonly(sb)) {
3371				ext4_unlock_group(sb, i);
3372				return 0;
3373			}
3374		}
3375		ext4_unlock_group(sb, i);
3376		if (!flexbg_flag)
3377			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3378	}
3379	if (NULL != first_not_zeroed)
3380		*first_not_zeroed = grp;
 
 
 
 
3381	return 1;
3382}
3383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384/*
3385 * Maximal extent format file size.
3386 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3387 * extent format containers, within a sector_t, and within i_blocks
3388 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3389 * so that won't be a limiting factor.
3390 *
3391 * However there is other limiting factor. We do store extents in the form
3392 * of starting block and length, hence the resulting length of the extent
3393 * covering maximum file size must fit into on-disk format containers as
3394 * well. Given that length is always by 1 unit bigger than max unit (because
3395 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3396 *
3397 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3398 */
3399static loff_t ext4_max_size(int blkbits, int has_huge_files)
3400{
3401	loff_t res;
3402	loff_t upper_limit = MAX_LFS_FILESIZE;
3403
3404	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3405
3406	if (!has_huge_files) {
 
 
 
 
3407		upper_limit = (1LL << 32) - 1;
3408
3409		/* total blocks in file system block size */
3410		upper_limit >>= (blkbits - 9);
3411		upper_limit <<= blkbits;
3412	}
3413
3414	/*
3415	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3416	 * by one fs block, so ee_len can cover the extent of maximum file
3417	 * size
3418	 */
3419	res = (1LL << 32) - 1;
3420	res <<= blkbits;
3421
3422	/* Sanity check against vm- & vfs- imposed limits */
3423	if (res > upper_limit)
3424		res = upper_limit;
3425
3426	return res;
3427}
3428
3429/*
3430 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3431 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3432 * We need to be 1 filesystem block less than the 2^48 sector limit.
3433 */
3434static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3435{
3436	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3437	int meta_blocks;
3438	unsigned int ppb = 1 << (bits - 2);
3439
3440	/*
3441	 * This is calculated to be the largest file size for a dense, block
3442	 * mapped file such that the file's total number of 512-byte sectors,
3443	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3444	 *
3445	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3446	 * number of 512-byte sectors of the file.
3447	 */
3448	if (!has_huge_files) {
 
3449		/*
3450		 * !has_huge_files or implies that the inode i_block field
3451		 * represents total file blocks in 2^32 512-byte sectors ==
3452		 * size of vfs inode i_blocks * 8
3453		 */
3454		upper_limit = (1LL << 32) - 1;
3455
3456		/* total blocks in file system block size */
3457		upper_limit >>= (bits - 9);
3458
3459	} else {
3460		/*
3461		 * We use 48 bit ext4_inode i_blocks
3462		 * With EXT4_HUGE_FILE_FL set the i_blocks
3463		 * represent total number of blocks in
3464		 * file system block size
3465		 */
3466		upper_limit = (1LL << 48) - 1;
3467
3468	}
3469
3470	/* Compute how many blocks we can address by block tree */
3471	res += ppb;
3472	res += ppb * ppb;
3473	res += ((loff_t)ppb) * ppb * ppb;
3474	/* Compute how many metadata blocks are needed */
3475	meta_blocks = 1;
3476	meta_blocks += 1 + ppb;
3477	meta_blocks += 1 + ppb + ppb * ppb;
3478	/* Does block tree limit file size? */
3479	if (res + meta_blocks <= upper_limit)
3480		goto check_lfs;
3481
3482	res = upper_limit;
3483	/* How many metadata blocks are needed for addressing upper_limit? */
3484	upper_limit -= EXT4_NDIR_BLOCKS;
3485	/* indirect blocks */
3486	meta_blocks = 1;
3487	upper_limit -= ppb;
3488	/* double indirect blocks */
3489	if (upper_limit < ppb * ppb) {
3490		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3491		res -= meta_blocks;
3492		goto check_lfs;
3493	}
3494	meta_blocks += 1 + ppb;
3495	upper_limit -= ppb * ppb;
3496	/* tripple indirect blocks for the rest */
3497	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3498		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3499	res -= meta_blocks;
3500check_lfs:
3501	res <<= bits;
 
 
 
3502	if (res > MAX_LFS_FILESIZE)
3503		res = MAX_LFS_FILESIZE;
3504
3505	return res;
3506}
3507
3508static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3509				   ext4_fsblk_t logical_sb_block, int nr)
3510{
3511	struct ext4_sb_info *sbi = EXT4_SB(sb);
3512	ext4_group_t bg, first_meta_bg;
3513	int has_super = 0;
3514
3515	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3516
3517	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
 
3518		return logical_sb_block + nr + 1;
3519	bg = sbi->s_desc_per_block * nr;
3520	if (ext4_bg_has_super(sb, bg))
3521		has_super = 1;
3522
3523	/*
3524	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3525	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3526	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3527	 * compensate.
3528	 */
3529	if (sb->s_blocksize == 1024 && nr == 0 &&
3530	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3531		has_super++;
3532
3533	return (has_super + ext4_group_first_block_no(sb, bg));
3534}
3535
3536/**
3537 * ext4_get_stripe_size: Get the stripe size.
3538 * @sbi: In memory super block info
3539 *
3540 * If we have specified it via mount option, then
3541 * use the mount option value. If the value specified at mount time is
3542 * greater than the blocks per group use the super block value.
3543 * If the super block value is greater than blocks per group return 0.
3544 * Allocator needs it be less than blocks per group.
3545 *
3546 */
3547static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3548{
3549	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3550	unsigned long stripe_width =
3551			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3552	int ret;
3553
3554	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3555		ret = sbi->s_stripe;
3556	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3557		ret = stripe_width;
3558	else if (stride && stride <= sbi->s_blocks_per_group)
3559		ret = stride;
3560	else
3561		ret = 0;
3562
3563	/*
3564	 * If the stripe width is 1, this makes no sense and
3565	 * we set it to 0 to turn off stripe handling code.
3566	 */
3567	if (ret <= 1)
3568		ret = 0;
3569
3570	return ret;
3571}
3572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3573/*
3574 * Check whether this filesystem can be mounted based on
3575 * the features present and the RDONLY/RDWR mount requested.
3576 * Returns 1 if this filesystem can be mounted as requested,
3577 * 0 if it cannot be.
3578 */
3579int ext4_feature_set_ok(struct super_block *sb, int readonly)
3580{
3581	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3582		ext4_msg(sb, KERN_ERR,
3583			"Couldn't mount because of "
3584			"unsupported optional features (%x)",
3585			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3586			~EXT4_FEATURE_INCOMPAT_SUPP));
3587		return 0;
3588	}
3589
3590	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3591		ext4_msg(sb, KERN_ERR,
3592			 "Filesystem with casefold feature cannot be "
3593			 "mounted without CONFIG_UNICODE");
3594		return 0;
3595	}
3596
3597	if (readonly)
3598		return 1;
3599
3600	if (ext4_has_feature_readonly(sb)) {
3601		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3602		sb->s_flags |= SB_RDONLY;
3603		return 1;
3604	}
3605
3606	/* Check that feature set is OK for a read-write mount */
3607	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3608		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3609			 "unsupported optional features (%x)",
3610			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3611				~EXT4_FEATURE_RO_COMPAT_SUPP));
3612		return 0;
3613	}
3614	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3615		ext4_msg(sb, KERN_ERR,
3616			 "Can't support bigalloc feature without "
3617			 "extents feature\n");
3618		return 0;
3619	}
3620
3621#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3622	if (!readonly && (ext4_has_feature_quota(sb) ||
3623			  ext4_has_feature_project(sb))) {
3624		ext4_msg(sb, KERN_ERR,
3625			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3626		return 0;
3627	}
3628#endif  /* CONFIG_QUOTA */
3629	return 1;
3630}
3631
3632/*
3633 * This function is called once a day if we have errors logged
3634 * on the file system
3635 */
3636static void print_daily_error_info(struct timer_list *t)
3637{
3638	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3639	struct super_block *sb = sbi->s_sb;
3640	struct ext4_super_block *es = sbi->s_es;
 
 
 
3641
3642	if (es->s_error_count)
3643		/* fsck newer than v1.41.13 is needed to clean this condition. */
3644		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3645			 le32_to_cpu(es->s_error_count));
3646	if (es->s_first_error_time) {
3647		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3648		       sb->s_id,
3649		       ext4_get_tstamp(es, s_first_error_time),
3650		       (int) sizeof(es->s_first_error_func),
3651		       es->s_first_error_func,
3652		       le32_to_cpu(es->s_first_error_line));
3653		if (es->s_first_error_ino)
3654			printk(KERN_CONT ": inode %u",
3655			       le32_to_cpu(es->s_first_error_ino));
3656		if (es->s_first_error_block)
3657			printk(KERN_CONT ": block %llu", (unsigned long long)
3658			       le64_to_cpu(es->s_first_error_block));
3659		printk(KERN_CONT "\n");
3660	}
3661	if (es->s_last_error_time) {
3662		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3663		       sb->s_id,
3664		       ext4_get_tstamp(es, s_last_error_time),
3665		       (int) sizeof(es->s_last_error_func),
3666		       es->s_last_error_func,
3667		       le32_to_cpu(es->s_last_error_line));
3668		if (es->s_last_error_ino)
3669			printk(KERN_CONT ": inode %u",
3670			       le32_to_cpu(es->s_last_error_ino));
3671		if (es->s_last_error_block)
3672			printk(KERN_CONT ": block %llu", (unsigned long long)
3673			       le64_to_cpu(es->s_last_error_block));
3674		printk(KERN_CONT "\n");
3675	}
3676	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3677}
3678
3679/* Find next suitable group and run ext4_init_inode_table */
3680static int ext4_run_li_request(struct ext4_li_request *elr)
3681{
3682	struct ext4_group_desc *gdp = NULL;
3683	struct super_block *sb = elr->lr_super;
3684	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3685	ext4_group_t group = elr->lr_next_group;
3686	unsigned int prefetch_ios = 0;
3687	int ret = 0;
3688	int nr = EXT4_SB(sb)->s_mb_prefetch;
3689	u64 start_time;
3690
3691	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3692		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3693		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3694		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3695		if (group >= elr->lr_next_group) {
3696			ret = 1;
3697			if (elr->lr_first_not_zeroed != ngroups &&
3698			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3699				elr->lr_next_group = elr->lr_first_not_zeroed;
3700				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3701				ret = 0;
3702			}
3703		}
3704		return ret;
3705	}
3706
3707	for (; group < ngroups; group++) {
3708		gdp = ext4_get_group_desc(sb, group, NULL);
3709		if (!gdp) {
3710			ret = 1;
3711			break;
3712		}
3713
3714		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3715			break;
3716	}
3717
3718	if (group >= ngroups)
3719		ret = 1;
3720
3721	if (!ret) {
3722		start_time = ktime_get_ns();
3723		ret = ext4_init_inode_table(sb, group,
3724					    elr->lr_timeout ? 0 : 1);
3725		trace_ext4_lazy_itable_init(sb, group);
3726		if (elr->lr_timeout == 0) {
3727			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3728				EXT4_SB(elr->lr_super)->s_li_wait_mult);
 
3729		}
3730		elr->lr_next_sched = jiffies + elr->lr_timeout;
3731		elr->lr_next_group = group + 1;
3732	}
 
3733	return ret;
3734}
3735
3736/*
3737 * Remove lr_request from the list_request and free the
3738 * request structure. Should be called with li_list_mtx held
3739 */
3740static void ext4_remove_li_request(struct ext4_li_request *elr)
3741{
 
 
3742	if (!elr)
3743		return;
3744
 
 
3745	list_del(&elr->lr_request);
3746	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3747	kfree(elr);
3748}
3749
3750static void ext4_unregister_li_request(struct super_block *sb)
3751{
3752	mutex_lock(&ext4_li_mtx);
3753	if (!ext4_li_info) {
3754		mutex_unlock(&ext4_li_mtx);
3755		return;
3756	}
3757
3758	mutex_lock(&ext4_li_info->li_list_mtx);
3759	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3760	mutex_unlock(&ext4_li_info->li_list_mtx);
3761	mutex_unlock(&ext4_li_mtx);
3762}
3763
3764static struct task_struct *ext4_lazyinit_task;
3765
3766/*
3767 * This is the function where ext4lazyinit thread lives. It walks
3768 * through the request list searching for next scheduled filesystem.
3769 * When such a fs is found, run the lazy initialization request
3770 * (ext4_rn_li_request) and keep track of the time spend in this
3771 * function. Based on that time we compute next schedule time of
3772 * the request. When walking through the list is complete, compute
3773 * next waking time and put itself into sleep.
3774 */
3775static int ext4_lazyinit_thread(void *arg)
3776{
3777	struct ext4_lazy_init *eli = arg;
3778	struct list_head *pos, *n;
3779	struct ext4_li_request *elr;
3780	unsigned long next_wakeup, cur;
3781
3782	BUG_ON(NULL == eli);
3783	set_freezable();
3784
3785cont_thread:
3786	while (true) {
3787		bool next_wakeup_initialized = false;
3788
3789		next_wakeup = 0;
3790		mutex_lock(&eli->li_list_mtx);
3791		if (list_empty(&eli->li_request_list)) {
3792			mutex_unlock(&eli->li_list_mtx);
3793			goto exit_thread;
3794		}
 
3795		list_for_each_safe(pos, n, &eli->li_request_list) {
3796			int err = 0;
3797			int progress = 0;
3798			elr = list_entry(pos, struct ext4_li_request,
3799					 lr_request);
3800
3801			if (time_before(jiffies, elr->lr_next_sched)) {
3802				if (!next_wakeup_initialized ||
3803				    time_before(elr->lr_next_sched, next_wakeup)) {
3804					next_wakeup = elr->lr_next_sched;
3805					next_wakeup_initialized = true;
3806				}
3807				continue;
3808			}
3809			if (down_read_trylock(&elr->lr_super->s_umount)) {
3810				if (sb_start_write_trylock(elr->lr_super)) {
3811					progress = 1;
3812					/*
3813					 * We hold sb->s_umount, sb can not
3814					 * be removed from the list, it is
3815					 * now safe to drop li_list_mtx
3816					 */
3817					mutex_unlock(&eli->li_list_mtx);
3818					err = ext4_run_li_request(elr);
3819					sb_end_write(elr->lr_super);
3820					mutex_lock(&eli->li_list_mtx);
3821					n = pos->next;
3822				}
3823				up_read((&elr->lr_super->s_umount));
3824			}
3825			/* error, remove the lazy_init job */
3826			if (err) {
3827				ext4_remove_li_request(elr);
3828				continue;
3829			}
3830			if (!progress) {
3831				elr->lr_next_sched = jiffies +
3832					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3833			}
3834			if (!next_wakeup_initialized ||
3835			    time_before(elr->lr_next_sched, next_wakeup)) {
3836				next_wakeup = elr->lr_next_sched;
3837				next_wakeup_initialized = true;
3838			}
3839		}
3840		mutex_unlock(&eli->li_list_mtx);
3841
3842		try_to_freeze();
3843
3844		cur = jiffies;
3845		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
 
3846			cond_resched();
3847			continue;
3848		}
3849
3850		schedule_timeout_interruptible(next_wakeup - cur);
3851
3852		if (kthread_should_stop()) {
3853			ext4_clear_request_list();
3854			goto exit_thread;
3855		}
3856	}
3857
3858exit_thread:
3859	/*
3860	 * It looks like the request list is empty, but we need
3861	 * to check it under the li_list_mtx lock, to prevent any
3862	 * additions into it, and of course we should lock ext4_li_mtx
3863	 * to atomically free the list and ext4_li_info, because at
3864	 * this point another ext4 filesystem could be registering
3865	 * new one.
3866	 */
3867	mutex_lock(&ext4_li_mtx);
3868	mutex_lock(&eli->li_list_mtx);
3869	if (!list_empty(&eli->li_request_list)) {
3870		mutex_unlock(&eli->li_list_mtx);
3871		mutex_unlock(&ext4_li_mtx);
3872		goto cont_thread;
3873	}
3874	mutex_unlock(&eli->li_list_mtx);
3875	kfree(ext4_li_info);
3876	ext4_li_info = NULL;
3877	mutex_unlock(&ext4_li_mtx);
3878
3879	return 0;
3880}
3881
3882static void ext4_clear_request_list(void)
3883{
3884	struct list_head *pos, *n;
3885	struct ext4_li_request *elr;
3886
3887	mutex_lock(&ext4_li_info->li_list_mtx);
3888	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3889		elr = list_entry(pos, struct ext4_li_request,
3890				 lr_request);
3891		ext4_remove_li_request(elr);
3892	}
3893	mutex_unlock(&ext4_li_info->li_list_mtx);
3894}
3895
3896static int ext4_run_lazyinit_thread(void)
3897{
3898	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3899					 ext4_li_info, "ext4lazyinit");
3900	if (IS_ERR(ext4_lazyinit_task)) {
3901		int err = PTR_ERR(ext4_lazyinit_task);
3902		ext4_clear_request_list();
3903		kfree(ext4_li_info);
3904		ext4_li_info = NULL;
3905		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3906				 "initialization thread\n",
3907				 err);
3908		return err;
3909	}
3910	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3911	return 0;
3912}
3913
3914/*
3915 * Check whether it make sense to run itable init. thread or not.
3916 * If there is at least one uninitialized inode table, return
3917 * corresponding group number, else the loop goes through all
3918 * groups and return total number of groups.
3919 */
3920static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3921{
3922	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3923	struct ext4_group_desc *gdp = NULL;
3924
3925	if (!ext4_has_group_desc_csum(sb))
3926		return ngroups;
3927
3928	for (group = 0; group < ngroups; group++) {
3929		gdp = ext4_get_group_desc(sb, group, NULL);
3930		if (!gdp)
3931			continue;
3932
3933		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3934			break;
3935	}
3936
3937	return group;
3938}
3939
3940static int ext4_li_info_new(void)
3941{
3942	struct ext4_lazy_init *eli = NULL;
3943
3944	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3945	if (!eli)
3946		return -ENOMEM;
3947
3948	INIT_LIST_HEAD(&eli->li_request_list);
3949	mutex_init(&eli->li_list_mtx);
3950
3951	eli->li_state |= EXT4_LAZYINIT_QUIT;
3952
3953	ext4_li_info = eli;
3954
3955	return 0;
3956}
3957
3958static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3959					    ext4_group_t start)
3960{
 
3961	struct ext4_li_request *elr;
 
3962
3963	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3964	if (!elr)
3965		return NULL;
3966
3967	elr->lr_super = sb;
3968	elr->lr_first_not_zeroed = start;
3969	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3970		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3971		elr->lr_next_group = start;
3972	} else {
3973		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3974	}
3975
3976	/*
3977	 * Randomize first schedule time of the request to
3978	 * spread the inode table initialization requests
3979	 * better.
3980	 */
3981	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
 
 
3982	return elr;
3983}
3984
3985int ext4_register_li_request(struct super_block *sb,
3986			     ext4_group_t first_not_zeroed)
3987{
3988	struct ext4_sb_info *sbi = EXT4_SB(sb);
3989	struct ext4_li_request *elr = NULL;
3990	ext4_group_t ngroups = sbi->s_groups_count;
3991	int ret = 0;
3992
3993	mutex_lock(&ext4_li_mtx);
3994	if (sbi->s_li_request != NULL) {
3995		/*
3996		 * Reset timeout so it can be computed again, because
3997		 * s_li_wait_mult might have changed.
3998		 */
3999		sbi->s_li_request->lr_timeout = 0;
4000		goto out;
4001	}
4002
4003	if (sb_rdonly(sb) ||
4004	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4005	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4006		goto out;
4007
4008	elr = ext4_li_request_new(sb, first_not_zeroed);
4009	if (!elr) {
4010		ret = -ENOMEM;
4011		goto out;
4012	}
4013
4014	if (NULL == ext4_li_info) {
4015		ret = ext4_li_info_new();
4016		if (ret)
4017			goto out;
4018	}
4019
4020	mutex_lock(&ext4_li_info->li_list_mtx);
4021	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4022	mutex_unlock(&ext4_li_info->li_list_mtx);
4023
4024	sbi->s_li_request = elr;
4025	/*
4026	 * set elr to NULL here since it has been inserted to
4027	 * the request_list and the removal and free of it is
4028	 * handled by ext4_clear_request_list from now on.
4029	 */
4030	elr = NULL;
4031
4032	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4033		ret = ext4_run_lazyinit_thread();
4034		if (ret)
4035			goto out;
4036	}
4037out:
4038	mutex_unlock(&ext4_li_mtx);
4039	if (ret)
4040		kfree(elr);
4041	return ret;
4042}
4043
4044/*
4045 * We do not need to lock anything since this is called on
4046 * module unload.
4047 */
4048static void ext4_destroy_lazyinit_thread(void)
4049{
4050	/*
4051	 * If thread exited earlier
4052	 * there's nothing to be done.
4053	 */
4054	if (!ext4_li_info || !ext4_lazyinit_task)
4055		return;
4056
4057	kthread_stop(ext4_lazyinit_task);
4058}
4059
4060static int set_journal_csum_feature_set(struct super_block *sb)
4061{
4062	int ret = 1;
4063	int compat, incompat;
4064	struct ext4_sb_info *sbi = EXT4_SB(sb);
4065
4066	if (ext4_has_metadata_csum(sb)) {
4067		/* journal checksum v3 */
 
4068		compat = 0;
4069		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4070	} else {
4071		/* journal checksum v1 */
4072		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4073		incompat = 0;
4074	}
4075
4076	jbd2_journal_clear_features(sbi->s_journal,
4077			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4078			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4079			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4080	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4081		ret = jbd2_journal_set_features(sbi->s_journal,
4082				compat, 0,
4083				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4084				incompat);
4085	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4086		ret = jbd2_journal_set_features(sbi->s_journal,
4087				compat, 0,
4088				incompat);
4089		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4090				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4091	} else {
4092		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4093				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
 
 
4094	}
4095
4096	return ret;
4097}
4098
4099/*
4100 * Note: calculating the overhead so we can be compatible with
4101 * historical BSD practice is quite difficult in the face of
4102 * clusters/bigalloc.  This is because multiple metadata blocks from
4103 * different block group can end up in the same allocation cluster.
4104 * Calculating the exact overhead in the face of clustered allocation
4105 * requires either O(all block bitmaps) in memory or O(number of block
4106 * groups**2) in time.  We will still calculate the superblock for
4107 * older file systems --- and if we come across with a bigalloc file
4108 * system with zero in s_overhead_clusters the estimate will be close to
4109 * correct especially for very large cluster sizes --- but for newer
4110 * file systems, it's better to calculate this figure once at mkfs
4111 * time, and store it in the superblock.  If the superblock value is
4112 * present (even for non-bigalloc file systems), we will use it.
4113 */
4114static int count_overhead(struct super_block *sb, ext4_group_t grp,
4115			  char *buf)
4116{
4117	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4118	struct ext4_group_desc	*gdp;
4119	ext4_fsblk_t		first_block, last_block, b;
4120	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4121	int			s, j, count = 0;
4122	int			has_super = ext4_bg_has_super(sb, grp);
4123
4124	if (!ext4_has_feature_bigalloc(sb))
4125		return (has_super + ext4_bg_num_gdb(sb, grp) +
4126			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4127			sbi->s_itb_per_group + 2);
4128
4129	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4130		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4131	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4132	for (i = 0; i < ngroups; i++) {
4133		gdp = ext4_get_group_desc(sb, i, NULL);
4134		b = ext4_block_bitmap(sb, gdp);
4135		if (b >= first_block && b <= last_block) {
4136			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4137			count++;
4138		}
4139		b = ext4_inode_bitmap(sb, gdp);
4140		if (b >= first_block && b <= last_block) {
4141			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4142			count++;
4143		}
4144		b = ext4_inode_table(sb, gdp);
4145		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4146			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4147				int c = EXT4_B2C(sbi, b - first_block);
4148				ext4_set_bit(c, buf);
4149				count++;
4150			}
4151		if (i != grp)
4152			continue;
4153		s = 0;
4154		if (ext4_bg_has_super(sb, grp)) {
4155			ext4_set_bit(s++, buf);
4156			count++;
4157		}
4158		j = ext4_bg_num_gdb(sb, grp);
4159		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4160			ext4_error(sb, "Invalid number of block group "
4161				   "descriptor blocks: %d", j);
4162			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4163		}
4164		count += j;
4165		for (; j > 0; j--)
4166			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4167	}
4168	if (!count)
4169		return 0;
4170	return EXT4_CLUSTERS_PER_GROUP(sb) -
4171		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4172}
4173
4174/*
4175 * Compute the overhead and stash it in sbi->s_overhead
4176 */
4177int ext4_calculate_overhead(struct super_block *sb)
4178{
4179	struct ext4_sb_info *sbi = EXT4_SB(sb);
4180	struct ext4_super_block *es = sbi->s_es;
4181	struct inode *j_inode;
4182	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4183	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4184	ext4_fsblk_t overhead = 0;
4185	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4186
 
4187	if (!buf)
4188		return -ENOMEM;
4189
4190	/*
4191	 * Compute the overhead (FS structures).  This is constant
4192	 * for a given filesystem unless the number of block groups
4193	 * changes so we cache the previous value until it does.
4194	 */
4195
4196	/*
4197	 * All of the blocks before first_data_block are overhead
4198	 */
4199	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4200
4201	/*
4202	 * Add the overhead found in each block group
4203	 */
4204	for (i = 0; i < ngroups; i++) {
4205		int blks;
4206
4207		blks = count_overhead(sb, i, buf);
4208		overhead += blks;
4209		if (blks)
4210			memset(buf, 0, PAGE_SIZE);
4211		cond_resched();
4212	}
4213
4214	/*
4215	 * Add the internal journal blocks whether the journal has been
4216	 * loaded or not
4217	 */
4218	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4219		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4220	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4221		/* j_inum for internal journal is non-zero */
4222		j_inode = ext4_get_journal_inode(sb, j_inum);
4223		if (!IS_ERR(j_inode)) {
4224			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4225			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4226			iput(j_inode);
4227		} else {
4228			ext4_msg(sb, KERN_ERR, "can't get journal size");
4229		}
4230	}
4231	sbi->s_overhead = overhead;
4232	smp_wmb();
4233	free_page((unsigned long) buf);
4234	return 0;
4235}
4236
4237static void ext4_set_resv_clusters(struct super_block *sb)
4238{
4239	ext4_fsblk_t resv_clusters;
4240	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4241
4242	/*
4243	 * There's no need to reserve anything when we aren't using extents.
4244	 * The space estimates are exact, there are no unwritten extents,
4245	 * hole punching doesn't need new metadata... This is needed especially
4246	 * to keep ext2/3 backward compatibility.
4247	 */
4248	if (!ext4_has_feature_extents(sb))
4249		return;
4250	/*
4251	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4252	 * This should cover the situations where we can not afford to run
4253	 * out of space like for example punch hole, or converting
4254	 * unwritten extents in delalloc path. In most cases such
4255	 * allocation would require 1, or 2 blocks, higher numbers are
4256	 * very rare.
4257	 */
4258	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4259			 sbi->s_cluster_bits);
4260
4261	do_div(resv_clusters, 50);
4262	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4263
4264	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4265}
 
4266
4267static const char *ext4_quota_mode(struct super_block *sb)
4268{
4269#ifdef CONFIG_QUOTA
4270	if (!ext4_quota_capable(sb))
4271		return "none";
 
4272
4273	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4274		return "journalled";
4275	else
4276		return "writeback";
4277#else
4278	return "disabled";
4279#endif
4280}
 
 
4281
4282static void ext4_setup_csum_trigger(struct super_block *sb,
4283				    enum ext4_journal_trigger_type type,
4284				    void (*trigger)(
4285					struct jbd2_buffer_trigger_type *type,
4286					struct buffer_head *bh,
4287					void *mapped_data,
4288					size_t size))
4289{
4290	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
4291
4292	sbi->s_journal_triggers[type].sb = sb;
4293	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4294}
 
 
 
4295
4296static void ext4_free_sbi(struct ext4_sb_info *sbi)
4297{
4298	if (!sbi)
4299		return;
 
 
 
4300
4301	kfree(sbi->s_blockgroup_lock);
4302	fs_put_dax(sbi->s_daxdev, NULL);
4303	kfree(sbi);
4304}
 
 
 
 
 
 
 
4305
4306static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4307{
4308	struct ext4_sb_info *sbi;
 
 
 
 
4309
4310	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4311	if (!sbi)
4312		return NULL;
4313
4314	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4315					   NULL, NULL);
4316
4317	sbi->s_blockgroup_lock =
4318		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4319
4320	if (!sbi->s_blockgroup_lock)
4321		goto err_out;
4322
4323	sb->s_fs_info = sbi;
4324	sbi->s_sb = sb;
4325	return sbi;
4326err_out:
4327	fs_put_dax(sbi->s_daxdev, NULL);
4328	kfree(sbi);
4329	return NULL;
4330}
4331
4332static void ext4_set_def_opts(struct super_block *sb,
4333			      struct ext4_super_block *es)
4334{
4335	unsigned long def_mount_opts;
4336
4337	/* Set defaults before we parse the mount options */
4338	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4339	set_opt(sb, INIT_INODE_TABLE);
4340	if (def_mount_opts & EXT4_DEFM_DEBUG)
4341		set_opt(sb, DEBUG);
4342	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4343		set_opt(sb, GRPID);
4344	if (def_mount_opts & EXT4_DEFM_UID16)
4345		set_opt(sb, NO_UID32);
4346	/* xattr user namespace & acls are now defaulted on */
 
4347	set_opt(sb, XATTR_USER);
 
4348#ifdef CONFIG_EXT4_FS_POSIX_ACL
4349	set_opt(sb, POSIX_ACL);
4350#endif
4351	if (ext4_has_feature_fast_commit(sb))
4352		set_opt2(sb, JOURNAL_FAST_COMMIT);
4353	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4354	if (ext4_has_metadata_csum(sb))
4355		set_opt(sb, JOURNAL_CHECKSUM);
4356
4357	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4358		set_opt(sb, JOURNAL_DATA);
4359	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4360		set_opt(sb, ORDERED_DATA);
4361	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4362		set_opt(sb, WRITEBACK_DATA);
4363
4364	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4365		set_opt(sb, ERRORS_PANIC);
4366	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4367		set_opt(sb, ERRORS_CONT);
4368	else
4369		set_opt(sb, ERRORS_RO);
4370	/* block_validity enabled by default; disable with noblock_validity */
4371	set_opt(sb, BLOCK_VALIDITY);
4372	if (def_mount_opts & EXT4_DEFM_DISCARD)
4373		set_opt(sb, DISCARD);
4374
 
 
 
 
 
 
4375	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4376		set_opt(sb, BARRIER);
4377
4378	/*
4379	 * enable delayed allocation by default
4380	 * Use -o nodelalloc to turn it off
4381	 */
4382	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4383	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4384		set_opt(sb, DELALLOC);
4385
4386	if (sb->s_blocksize <= PAGE_SIZE)
4387		set_opt(sb, DIOREAD_NOLOCK);
4388}
 
 
4389
4390static int ext4_handle_clustersize(struct super_block *sb)
4391{
4392	struct ext4_sb_info *sbi = EXT4_SB(sb);
4393	struct ext4_super_block *es = sbi->s_es;
4394	int clustersize;
4395
4396	/* Handle clustersize */
4397	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4398	if (ext4_has_feature_bigalloc(sb)) {
4399		if (clustersize < sb->s_blocksize) {
4400			ext4_msg(sb, KERN_ERR,
4401				 "cluster size (%d) smaller than "
4402				 "block size (%lu)", clustersize, sb->s_blocksize);
4403			return -EINVAL;
4404		}
4405		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4406			le32_to_cpu(es->s_log_block_size);
4407	} else {
4408		if (clustersize != sb->s_blocksize) {
4409			ext4_msg(sb, KERN_ERR,
4410				 "fragment/cluster size (%d) != "
4411				 "block size (%lu)", clustersize, sb->s_blocksize);
4412			return -EINVAL;
4413		}
4414		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4415			ext4_msg(sb, KERN_ERR,
4416				 "#blocks per group too big: %lu",
4417				 sbi->s_blocks_per_group);
4418			return -EINVAL;
4419		}
4420		sbi->s_cluster_bits = 0;
4421	}
4422	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4423	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4424		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4425			 sbi->s_clusters_per_group);
4426		return -EINVAL;
4427	}
4428	if (sbi->s_blocks_per_group !=
4429	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4430		ext4_msg(sb, KERN_ERR,
4431			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4432			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4433		return -EINVAL;
4434	}
4435	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4436
4437	/* Do we have standard group size of clustersize * 8 blocks ? */
4438	if (sbi->s_blocks_per_group == clustersize << 3)
4439		set_opt2(sb, STD_GROUP_SIZE);
4440
4441	return 0;
4442}
4443
4444/*
4445 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4446 * @sb: super block
4447 * TODO: Later add support for bigalloc
4448 */
4449static void ext4_atomic_write_init(struct super_block *sb)
4450{
4451	struct ext4_sb_info *sbi = EXT4_SB(sb);
4452	struct block_device *bdev = sb->s_bdev;
4453
4454	if (!bdev_can_atomic_write(bdev))
4455		return;
4456
4457	if (!ext4_has_feature_extents(sb))
4458		return;
4459
4460	sbi->s_awu_min = max(sb->s_blocksize,
4461			      bdev_atomic_write_unit_min_bytes(bdev));
4462	sbi->s_awu_max = min(sb->s_blocksize,
4463			      bdev_atomic_write_unit_max_bytes(bdev));
4464	if (sbi->s_awu_min && sbi->s_awu_max &&
4465	    sbi->s_awu_min <= sbi->s_awu_max) {
4466		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4467			 sbi->s_awu_min, sbi->s_awu_max);
4468	} else {
4469		sbi->s_awu_min = 0;
4470		sbi->s_awu_max = 0;
4471	}
4472}
4473
4474static void ext4_fast_commit_init(struct super_block *sb)
4475{
4476	struct ext4_sb_info *sbi = EXT4_SB(sb);
4477
4478	/* Initialize fast commit stuff */
4479	atomic_set(&sbi->s_fc_subtid, 0);
4480	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4481	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4482	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4483	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4484	sbi->s_fc_bytes = 0;
4485	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4486	sbi->s_fc_ineligible_tid = 0;
4487	spin_lock_init(&sbi->s_fc_lock);
4488	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4489	sbi->s_fc_replay_state.fc_regions = NULL;
4490	sbi->s_fc_replay_state.fc_regions_size = 0;
4491	sbi->s_fc_replay_state.fc_regions_used = 0;
4492	sbi->s_fc_replay_state.fc_regions_valid = 0;
4493	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4494	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4495	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4496}
4497
4498static int ext4_inode_info_init(struct super_block *sb,
4499				struct ext4_super_block *es)
4500{
4501	struct ext4_sb_info *sbi = EXT4_SB(sb);
4502
4503	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4504		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4505		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4506	} else {
4507		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4508		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4509		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4510			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4511				 sbi->s_first_ino);
4512			return -EINVAL;
4513		}
4514		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4515		    (!is_power_of_2(sbi->s_inode_size)) ||
4516		    (sbi->s_inode_size > sb->s_blocksize)) {
4517			ext4_msg(sb, KERN_ERR,
4518			       "unsupported inode size: %d",
4519			       sbi->s_inode_size);
4520			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4521			return -EINVAL;
4522		}
4523		/*
4524		 * i_atime_extra is the last extra field available for
4525		 * [acm]times in struct ext4_inode. Checking for that
4526		 * field should suffice to ensure we have extra space
4527		 * for all three.
4528		 */
4529		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4530			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4531			sb->s_time_gran = 1;
4532			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4533		} else {
4534			sb->s_time_gran = NSEC_PER_SEC;
4535			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4536		}
4537		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4538	}
4539
4540	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4541		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4542			EXT4_GOOD_OLD_INODE_SIZE;
4543		if (ext4_has_feature_extra_isize(sb)) {
4544			unsigned v, max = (sbi->s_inode_size -
4545					   EXT4_GOOD_OLD_INODE_SIZE);
4546
4547			v = le16_to_cpu(es->s_want_extra_isize);
4548			if (v > max) {
4549				ext4_msg(sb, KERN_ERR,
4550					 "bad s_want_extra_isize: %d", v);
4551				return -EINVAL;
4552			}
4553			if (sbi->s_want_extra_isize < v)
4554				sbi->s_want_extra_isize = v;
4555
4556			v = le16_to_cpu(es->s_min_extra_isize);
4557			if (v > max) {
4558				ext4_msg(sb, KERN_ERR,
4559					 "bad s_min_extra_isize: %d", v);
4560				return -EINVAL;
4561			}
4562			if (sbi->s_want_extra_isize < v)
4563				sbi->s_want_extra_isize = v;
4564		}
4565	}
4566
4567	return 0;
4568}
4569
4570#if IS_ENABLED(CONFIG_UNICODE)
4571static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4572{
4573	const struct ext4_sb_encodings *encoding_info;
4574	struct unicode_map *encoding;
4575	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4576
4577	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4578		return 0;
4579
4580	encoding_info = ext4_sb_read_encoding(es);
4581	if (!encoding_info) {
4582		ext4_msg(sb, KERN_ERR,
4583			"Encoding requested by superblock is unknown");
4584		return -EINVAL;
4585	}
4586
4587	encoding = utf8_load(encoding_info->version);
4588	if (IS_ERR(encoding)) {
4589		ext4_msg(sb, KERN_ERR,
4590			"can't mount with superblock charset: %s-%u.%u.%u "
4591			"not supported by the kernel. flags: 0x%x.",
4592			encoding_info->name,
4593			unicode_major(encoding_info->version),
4594			unicode_minor(encoding_info->version),
4595			unicode_rev(encoding_info->version),
4596			encoding_flags);
4597		return -EINVAL;
4598	}
4599	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4600		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4601		unicode_major(encoding_info->version),
4602		unicode_minor(encoding_info->version),
4603		unicode_rev(encoding_info->version),
4604		encoding_flags);
4605
4606	sb->s_encoding = encoding;
4607	sb->s_encoding_flags = encoding_flags;
4608
4609	return 0;
4610}
4611#else
4612static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4613{
4614	return 0;
4615}
4616#endif
4617
4618static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4619{
4620	struct ext4_sb_info *sbi = EXT4_SB(sb);
4621
4622	/* Warn if metadata_csum and gdt_csum are both set. */
4623	if (ext4_has_feature_metadata_csum(sb) &&
4624	    ext4_has_feature_gdt_csum(sb))
4625		ext4_warning(sb, "metadata_csum and uninit_bg are "
4626			     "redundant flags; please run fsck.");
4627
4628	/* Check for a known checksum algorithm */
4629	if (!ext4_verify_csum_type(sb, es)) {
4630		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4631			 "unknown checksum algorithm.");
4632		return -EINVAL;
4633	}
4634	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4635				ext4_orphan_file_block_trigger);
4636
4637	/* Load the checksum driver */
4638	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4639	if (IS_ERR(sbi->s_chksum_driver)) {
4640		int ret = PTR_ERR(sbi->s_chksum_driver);
4641		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4642		sbi->s_chksum_driver = NULL;
4643		return ret;
4644	}
4645
4646	/* Check superblock checksum */
4647	if (!ext4_superblock_csum_verify(sb, es)) {
4648		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4649			 "invalid superblock checksum.  Run e2fsck?");
4650		return -EFSBADCRC;
4651	}
4652
4653	/* Precompute checksum seed for all metadata */
4654	if (ext4_has_feature_csum_seed(sb))
4655		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4656	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4657		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4658					       sizeof(es->s_uuid));
4659	return 0;
4660}
4661
4662static int ext4_check_feature_compatibility(struct super_block *sb,
4663					    struct ext4_super_block *es,
4664					    int silent)
4665{
4666	struct ext4_sb_info *sbi = EXT4_SB(sb);
4667
4668	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4669	    (ext4_has_compat_features(sb) ||
4670	     ext4_has_ro_compat_features(sb) ||
4671	     ext4_has_incompat_features(sb)))
4672		ext4_msg(sb, KERN_WARNING,
4673		       "feature flags set on rev 0 fs, "
4674		       "running e2fsck is recommended");
4675
4676	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4677		set_opt2(sb, HURD_COMPAT);
4678		if (ext4_has_feature_64bit(sb)) {
4679			ext4_msg(sb, KERN_ERR,
4680				 "The Hurd can't support 64-bit file systems");
4681			return -EINVAL;
4682		}
4683
4684		/*
4685		 * ea_inode feature uses l_i_version field which is not
4686		 * available in HURD_COMPAT mode.
4687		 */
4688		if (ext4_has_feature_ea_inode(sb)) {
4689			ext4_msg(sb, KERN_ERR,
4690				 "ea_inode feature is not supported for Hurd");
4691			return -EINVAL;
4692		}
4693	}
4694
4695	if (IS_EXT2_SB(sb)) {
4696		if (ext2_feature_set_ok(sb))
4697			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4698				 "using the ext4 subsystem");
4699		else {
4700			/*
4701			 * If we're probing be silent, if this looks like
4702			 * it's actually an ext[34] filesystem.
4703			 */
4704			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4705				return -EINVAL;
4706			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4707				 "to feature incompatibilities");
4708			return -EINVAL;
4709		}
4710	}
4711
4712	if (IS_EXT3_SB(sb)) {
4713		if (ext3_feature_set_ok(sb))
4714			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4715				 "using the ext4 subsystem");
4716		else {
4717			/*
4718			 * If we're probing be silent, if this looks like
4719			 * it's actually an ext4 filesystem.
4720			 */
4721			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4722				return -EINVAL;
4723			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4724				 "to feature incompatibilities");
4725			return -EINVAL;
4726		}
4727	}
4728
4729	/*
4730	 * Check feature flags regardless of the revision level, since we
4731	 * previously didn't change the revision level when setting the flags,
4732	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4733	 */
4734	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4735		return -EINVAL;
4736
4737	if (sbi->s_daxdev) {
4738		if (sb->s_blocksize == PAGE_SIZE)
4739			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4740		else
4741			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4742	}
4743
4744	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4745		if (ext4_has_feature_inline_data(sb)) {
4746			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4747					" that may contain inline data");
4748			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
4749		}
4750		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
 
 
4751			ext4_msg(sb, KERN_ERR,
4752				"DAX unsupported by block device.");
4753			return -EINVAL;
4754		}
4755	}
4756
4757	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4758		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4759			 es->s_encryption_level);
4760		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4761	}
4762
4763	return 0;
4764}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4765
4766static int ext4_check_geometry(struct super_block *sb,
4767			       struct ext4_super_block *es)
4768{
4769	struct ext4_sb_info *sbi = EXT4_SB(sb);
4770	__u64 blocks_count;
4771	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4772
4773	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4774		ext4_msg(sb, KERN_ERR,
4775			 "Number of reserved GDT blocks insanely large: %d",
4776			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4777		return -EINVAL;
4778	}
 
4779	/*
4780	 * Test whether we have more sectors than will fit in sector_t,
4781	 * and whether the max offset is addressable by the page cache.
4782	 */
4783	err = generic_check_addressable(sb->s_blocksize_bits,
4784					ext4_blocks_count(es));
4785	if (err) {
4786		ext4_msg(sb, KERN_ERR, "filesystem"
4787			 " too large to mount safely on this system");
4788		return err;
 
 
 
4789	}
4790
 
 
 
4791	/* check blocks count against device size */
4792	blocks_count = sb_bdev_nr_blocks(sb);
4793	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4794		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4795		       "exceeds size of device (%llu blocks)",
4796		       ext4_blocks_count(es), blocks_count);
4797		return -EINVAL;
4798	}
4799
4800	/*
4801	 * It makes no sense for the first data block to be beyond the end
4802	 * of the filesystem.
4803	 */
4804	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4805		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806			 "block %u is beyond end of filesystem (%llu)",
4807			 le32_to_cpu(es->s_first_data_block),
4808			 ext4_blocks_count(es));
4809		return -EINVAL;
4810	}
4811	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4812	    (sbi->s_cluster_ratio == 1)) {
4813		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4814			 "block is 0 with a 1k block and cluster size");
4815		return -EINVAL;
4816	}
4817
4818	blocks_count = (ext4_blocks_count(es) -
4819			le32_to_cpu(es->s_first_data_block) +
4820			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4821	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4822	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4823		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4824		       "(block count %llu, first data block %u, "
4825		       "blocks per group %lu)", blocks_count,
4826		       ext4_blocks_count(es),
4827		       le32_to_cpu(es->s_first_data_block),
4828		       EXT4_BLOCKS_PER_GROUP(sb));
4829		return -EINVAL;
4830	}
4831	sbi->s_groups_count = blocks_count;
4832	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4833			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4834	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4835	    le32_to_cpu(es->s_inodes_count)) {
4836		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4837			 le32_to_cpu(es->s_inodes_count),
4838			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4839		return -EINVAL;
4840	}
4841
4842	return 0;
4843}
4844
4845static int ext4_group_desc_init(struct super_block *sb,
4846				struct ext4_super_block *es,
4847				ext4_fsblk_t logical_sb_block,
4848				ext4_group_t *first_not_zeroed)
4849{
4850	struct ext4_sb_info *sbi = EXT4_SB(sb);
4851	unsigned int db_count;
4852	ext4_fsblk_t block;
4853	int i;
4854
4855	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4856		   EXT4_DESC_PER_BLOCK(sb);
4857	if (ext4_has_feature_meta_bg(sb)) {
4858		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4859			ext4_msg(sb, KERN_WARNING,
4860				 "first meta block group too large: %u "
4861				 "(group descriptor block count %u)",
4862				 le32_to_cpu(es->s_first_meta_bg), db_count);
4863			return -EINVAL;
4864		}
4865	}
4866	rcu_assign_pointer(sbi->s_group_desc,
4867			   kvmalloc_array(db_count,
4868					  sizeof(struct buffer_head *),
4869					  GFP_KERNEL));
4870	if (sbi->s_group_desc == NULL) {
4871		ext4_msg(sb, KERN_ERR, "not enough memory");
4872		return -ENOMEM;
 
4873	}
4874
 
 
 
 
 
 
 
4875	bgl_lock_init(sbi->s_blockgroup_lock);
4876
4877	/* Pre-read the descriptors into the buffer cache */
4878	for (i = 0; i < db_count; i++) {
4879		block = descriptor_loc(sb, logical_sb_block, i);
4880		ext4_sb_breadahead_unmovable(sb, block);
4881	}
4882
4883	for (i = 0; i < db_count; i++) {
4884		struct buffer_head *bh;
4885
4886		block = descriptor_loc(sb, logical_sb_block, i);
4887		bh = ext4_sb_bread_unmovable(sb, block);
4888		if (IS_ERR(bh)) {
4889			ext4_msg(sb, KERN_ERR,
4890			       "can't read group descriptor %d", i);
4891			sbi->s_gdb_count = i;
4892			return PTR_ERR(bh);
4893		}
4894		rcu_read_lock();
4895		rcu_dereference(sbi->s_group_desc)[i] = bh;
4896		rcu_read_unlock();
4897	}
4898	sbi->s_gdb_count = db_count;
4899	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4900		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4901		return -EFSCORRUPTED;
4902	}
4903
4904	return 0;
4905}
4906
4907static int ext4_load_and_init_journal(struct super_block *sb,
4908				      struct ext4_super_block *es,
4909				      struct ext4_fs_context *ctx)
4910{
4911	struct ext4_sb_info *sbi = EXT4_SB(sb);
4912	int err;
4913
4914	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4915	if (err)
4916		return err;
4917
4918	if (ext4_has_feature_64bit(sb) &&
4919	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4920				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4921		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4922		goto out;
4923	}
4924
4925	if (!set_journal_csum_feature_set(sb)) {
4926		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4927			 "feature set");
4928		goto out;
4929	}
4930
4931	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4932		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4933					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4934		ext4_msg(sb, KERN_ERR,
4935			"Failed to set fast commit journal feature");
4936		goto out;
4937	}
4938
4939	/* We have now updated the journal if required, so we can
4940	 * validate the data journaling mode. */
4941	switch (test_opt(sb, DATA_FLAGS)) {
4942	case 0:
4943		/* No mode set, assume a default based on the journal
4944		 * capabilities: ORDERED_DATA if the journal can
4945		 * cope, else JOURNAL_DATA
4946		 */
4947		if (jbd2_journal_check_available_features
4948		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4949			set_opt(sb, ORDERED_DATA);
4950			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4951		} else {
4952			set_opt(sb, JOURNAL_DATA);
4953			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4954		}
4955		break;
4956
4957	case EXT4_MOUNT_ORDERED_DATA:
4958	case EXT4_MOUNT_WRITEBACK_DATA:
4959		if (!jbd2_journal_check_available_features
4960		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4961			ext4_msg(sb, KERN_ERR, "Journal does not support "
4962			       "requested data journaling mode");
4963			goto out;
4964		}
4965		break;
4966	default:
4967		break;
4968	}
4969
4970	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4971	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4972		ext4_msg(sb, KERN_ERR, "can't mount with "
4973			"journal_async_commit in data=ordered mode");
4974		goto out;
4975	}
4976
4977	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4978
4979	sbi->s_journal->j_submit_inode_data_buffers =
4980		ext4_journal_submit_inode_data_buffers;
4981	sbi->s_journal->j_finish_inode_data_buffers =
4982		ext4_journal_finish_inode_data_buffers;
4983
4984	return 0;
4985
4986out:
4987	/* flush s_sb_upd_work before destroying the journal. */
4988	flush_work(&sbi->s_sb_upd_work);
4989	jbd2_journal_destroy(sbi->s_journal);
4990	sbi->s_journal = NULL;
4991	return -EINVAL;
4992}
4993
4994static int ext4_check_journal_data_mode(struct super_block *sb)
4995{
4996	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4997		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4998			    "data=journal disables delayed allocation, "
4999			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
5000		/* can't mount with both data=journal and dioread_nolock. */
5001		clear_opt(sb, DIOREAD_NOLOCK);
5002		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5003		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5004			ext4_msg(sb, KERN_ERR, "can't mount with "
5005				 "both data=journal and delalloc");
5006			return -EINVAL;
5007		}
5008		if (test_opt(sb, DAX_ALWAYS)) {
5009			ext4_msg(sb, KERN_ERR, "can't mount with "
5010				 "both data=journal and dax");
5011			return -EINVAL;
5012		}
5013		if (ext4_has_feature_encrypt(sb)) {
5014			ext4_msg(sb, KERN_WARNING,
5015				 "encrypted files will use data=ordered "
5016				 "instead of data journaling mode");
5017		}
5018		if (test_opt(sb, DELALLOC))
5019			clear_opt(sb, DELALLOC);
5020	} else {
5021		sb->s_iflags |= SB_I_CGROUPWB;
5022	}
5023
5024	return 0;
5025}
5026
5027static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5028			   int silent)
5029{
5030	struct ext4_sb_info *sbi = EXT4_SB(sb);
5031	struct ext4_super_block *es;
5032	ext4_fsblk_t logical_sb_block;
5033	unsigned long offset = 0;
5034	struct buffer_head *bh;
5035	int ret = -EINVAL;
5036	int blocksize;
5037
5038	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5039	if (!blocksize) {
5040		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5041		return -EINVAL;
5042	}
5043
5044	/*
5045	 * The ext4 superblock will not be buffer aligned for other than 1kB
5046	 * block sizes.  We need to calculate the offset from buffer start.
5047	 */
5048	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5049		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5050		offset = do_div(logical_sb_block, blocksize);
5051	} else {
5052		logical_sb_block = sbi->s_sb_block;
5053	}
5054
5055	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5056	if (IS_ERR(bh)) {
5057		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5058		return PTR_ERR(bh);
5059	}
5060	/*
5061	 * Note: s_es must be initialized as soon as possible because
5062	 *       some ext4 macro-instructions depend on its value
5063	 */
5064	es = (struct ext4_super_block *) (bh->b_data + offset);
5065	sbi->s_es = es;
5066	sb->s_magic = le16_to_cpu(es->s_magic);
5067	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5068		if (!silent)
5069			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5070		goto out;
5071	}
5072
5073	if (le32_to_cpu(es->s_log_block_size) >
5074	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5075		ext4_msg(sb, KERN_ERR,
5076			 "Invalid log block size: %u",
5077			 le32_to_cpu(es->s_log_block_size));
5078		goto out;
5079	}
5080	if (le32_to_cpu(es->s_log_cluster_size) >
5081	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5082		ext4_msg(sb, KERN_ERR,
5083			 "Invalid log cluster size: %u",
5084			 le32_to_cpu(es->s_log_cluster_size));
5085		goto out;
5086	}
5087
5088	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5089
5090	/*
5091	 * If the default block size is not the same as the real block size,
5092	 * we need to reload it.
5093	 */
5094	if (sb->s_blocksize == blocksize) {
5095		*lsb = logical_sb_block;
5096		sbi->s_sbh = bh;
5097		return 0;
5098	}
5099
5100	/*
5101	 * bh must be released before kill_bdev(), otherwise
5102	 * it won't be freed and its page also. kill_bdev()
5103	 * is called by sb_set_blocksize().
5104	 */
5105	brelse(bh);
5106	/* Validate the filesystem blocksize */
5107	if (!sb_set_blocksize(sb, blocksize)) {
5108		ext4_msg(sb, KERN_ERR, "bad block size %d",
5109				blocksize);
5110		bh = NULL;
5111		goto out;
5112	}
5113
5114	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5115	offset = do_div(logical_sb_block, blocksize);
5116	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5117	if (IS_ERR(bh)) {
5118		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5119		ret = PTR_ERR(bh);
5120		bh = NULL;
5121		goto out;
5122	}
5123	es = (struct ext4_super_block *)(bh->b_data + offset);
5124	sbi->s_es = es;
5125	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5126		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5127		goto out;
5128	}
5129	*lsb = logical_sb_block;
5130	sbi->s_sbh = bh;
5131	return 0;
5132out:
5133	brelse(bh);
5134	return ret;
5135}
5136
5137static int ext4_hash_info_init(struct super_block *sb)
5138{
5139	struct ext4_sb_info *sbi = EXT4_SB(sb);
5140	struct ext4_super_block *es = sbi->s_es;
5141	unsigned int i;
5142
5143	sbi->s_def_hash_version = es->s_def_hash_version;
5144
5145	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5146		ext4_msg(sb, KERN_ERR,
5147			 "Invalid default hash set in the superblock");
5148		return -EINVAL;
5149	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5150		ext4_msg(sb, KERN_ERR,
5151			 "SIPHASH is not a valid default hash value");
5152		return -EINVAL;
5153	}
5154
5155	for (i = 0; i < 4; i++)
5156		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5157
5158	if (ext4_has_feature_dir_index(sb)) {
5159		i = le32_to_cpu(es->s_flags);
5160		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5161			sbi->s_hash_unsigned = 3;
5162		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5163#ifdef __CHAR_UNSIGNED__
5164			if (!sb_rdonly(sb))
5165				es->s_flags |=
5166					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5167			sbi->s_hash_unsigned = 3;
5168#else
5169			if (!sb_rdonly(sb))
5170				es->s_flags |=
5171					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5172#endif
5173		}
5174	}
5175	return 0;
5176}
5177
5178static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5179{
5180	struct ext4_sb_info *sbi = EXT4_SB(sb);
5181	struct ext4_super_block *es = sbi->s_es;
5182	int has_huge_files;
5183
5184	has_huge_files = ext4_has_feature_huge_file(sb);
5185	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5186						      has_huge_files);
5187	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5188
5189	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5190	if (ext4_has_feature_64bit(sb)) {
5191		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5192		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5193		    !is_power_of_2(sbi->s_desc_size)) {
5194			ext4_msg(sb, KERN_ERR,
5195			       "unsupported descriptor size %lu",
5196			       sbi->s_desc_size);
5197			return -EINVAL;
5198		}
5199	} else
5200		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5201
5202	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5203	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5204
5205	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5206	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5207		if (!silent)
5208			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5209		return -EINVAL;
5210	}
5211	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5212	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5213		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5214			 sbi->s_inodes_per_group);
5215		return -EINVAL;
5216	}
5217	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5218					sbi->s_inodes_per_block;
5219	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5220	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5221	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5222	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5223
5224	return 0;
5225}
5226
5227/*
5228 * It's hard to get stripe aligned blocks if stripe is not aligned with
5229 * cluster, just disable stripe and alert user to simplify code and avoid
5230 * stripe aligned allocation which will rarely succeed.
5231 */
5232static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5233{
5234	struct ext4_sb_info *sbi = EXT4_SB(sb);
5235	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5236		stripe % sbi->s_cluster_ratio != 0);
5237}
5238
5239static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5240{
5241	struct ext4_super_block *es = NULL;
5242	struct ext4_sb_info *sbi = EXT4_SB(sb);
5243	ext4_fsblk_t logical_sb_block;
5244	struct inode *root;
5245	int needs_recovery;
5246	int err;
5247	ext4_group_t first_not_zeroed;
5248	struct ext4_fs_context *ctx = fc->fs_private;
5249	int silent = fc->sb_flags & SB_SILENT;
5250
5251	/* Set defaults for the variables that will be set during parsing */
5252	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5253		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5254
5255	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5256	sbi->s_sectors_written_start =
5257		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5258
5259	err = ext4_load_super(sb, &logical_sb_block, silent);
5260	if (err)
5261		goto out_fail;
5262
5263	es = sbi->s_es;
5264	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5265
5266	err = ext4_init_metadata_csum(sb, es);
5267	if (err)
5268		goto failed_mount;
5269
5270	ext4_set_def_opts(sb, es);
5271
5272	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5273	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5274	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5275	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5276	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5277
5278	/*
5279	 * set default s_li_wait_mult for lazyinit, for the case there is
5280	 * no mount option specified.
5281	 */
5282	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5283
5284	err = ext4_inode_info_init(sb, es);
5285	if (err)
5286		goto failed_mount;
5287
5288	err = parse_apply_sb_mount_options(sb, ctx);
5289	if (err < 0)
5290		goto failed_mount;
5291
5292	sbi->s_def_mount_opt = sbi->s_mount_opt;
5293	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5294
5295	err = ext4_check_opt_consistency(fc, sb);
5296	if (err < 0)
5297		goto failed_mount;
5298
5299	ext4_apply_options(fc, sb);
5300
5301	err = ext4_encoding_init(sb, es);
5302	if (err)
5303		goto failed_mount;
5304
5305	err = ext4_check_journal_data_mode(sb);
5306	if (err)
5307		goto failed_mount;
5308
5309	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5310		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5311
5312	/* i_version is always enabled now */
5313	sb->s_flags |= SB_I_VERSION;
5314
5315	err = ext4_check_feature_compatibility(sb, es, silent);
5316	if (err)
5317		goto failed_mount;
5318
5319	err = ext4_block_group_meta_init(sb, silent);
5320	if (err)
5321		goto failed_mount;
5322
5323	err = ext4_hash_info_init(sb);
5324	if (err)
5325		goto failed_mount;
5326
5327	err = ext4_handle_clustersize(sb);
5328	if (err)
5329		goto failed_mount;
5330
5331	err = ext4_check_geometry(sb, es);
5332	if (err)
5333		goto failed_mount;
5334
5335	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5336	spin_lock_init(&sbi->s_error_lock);
5337	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5338
5339	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5340	if (err)
5341		goto failed_mount3;
5342
5343	err = ext4_es_register_shrinker(sbi);
5344	if (err)
5345		goto failed_mount3;
5346
5347	sbi->s_stripe = ext4_get_stripe_size(sbi);
5348	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5349		ext4_msg(sb, KERN_WARNING,
5350			 "stripe (%lu) is not aligned with cluster size (%u), "
5351			 "stripe is disabled",
5352			 sbi->s_stripe, sbi->s_cluster_ratio);
5353		sbi->s_stripe = 0;
5354	}
5355	sbi->s_extent_max_zeroout_kb = 32;
5356
5357	/*
5358	 * set up enough so that it can read an inode
5359	 */
5360	sb->s_op = &ext4_sops;
 
 
 
 
5361	sb->s_export_op = &ext4_export_ops;
5362	sb->s_xattr = ext4_xattr_handlers;
5363#ifdef CONFIG_FS_ENCRYPTION
5364	sb->s_cop = &ext4_cryptops;
5365#endif
5366#ifdef CONFIG_FS_VERITY
5367	sb->s_vop = &ext4_verityops;
5368#endif
5369#ifdef CONFIG_QUOTA
 
5370	sb->dq_op = &ext4_quota_operations;
5371	if (ext4_has_feature_quota(sb))
5372		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5373	else
5374		sb->s_qcop = &ext4_qctl_operations;
5375	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5376#endif
5377	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5378	super_set_sysfs_name_bdev(sb);
5379
5380	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5381	mutex_init(&sbi->s_orphan_lock);
5382
5383	spin_lock_init(&sbi->s_bdev_wb_lock);
5384
5385	ext4_atomic_write_init(sb);
5386	ext4_fast_commit_init(sb);
5387
5388	sb->s_root = NULL;
5389
5390	needs_recovery = (es->s_last_orphan != 0 ||
5391			  ext4_has_feature_orphan_present(sb) ||
5392			  ext4_has_feature_journal_needs_recovery(sb));
5393
5394	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5395		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5396		if (err)
5397			goto failed_mount3a;
5398	}
5399
5400	err = -EINVAL;
5401	/*
5402	 * The first inode we look at is the journal inode.  Don't try
5403	 * root first: it may be modified in the journal!
5404	 */
5405	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5406		err = ext4_load_and_init_journal(sb, es, ctx);
5407		if (err)
5408			goto failed_mount3a;
5409	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5410		   ext4_has_feature_journal_needs_recovery(sb)) {
5411		ext4_msg(sb, KERN_ERR, "required journal recovery "
5412		       "suppressed and not mounted read-only");
5413		goto failed_mount3a;
5414	} else {
5415		/* Nojournal mode, all journal mount options are illegal */
5416		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5417			ext4_msg(sb, KERN_ERR, "can't mount with "
5418				 "journal_async_commit, fs mounted w/o journal");
5419			goto failed_mount3a;
5420		}
5421
5422		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5423			ext4_msg(sb, KERN_ERR, "can't mount with "
5424				 "journal_checksum, fs mounted w/o journal");
5425			goto failed_mount3a;
5426		}
5427		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5428			ext4_msg(sb, KERN_ERR, "can't mount with "
5429				 "commit=%lu, fs mounted w/o journal",
5430				 sbi->s_commit_interval / HZ);
5431			goto failed_mount3a;
5432		}
5433		if (EXT4_MOUNT_DATA_FLAGS &
5434		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5435			ext4_msg(sb, KERN_ERR, "can't mount with "
5436				 "data=, fs mounted w/o journal");
5437			goto failed_mount3a;
5438		}
5439		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5440		clear_opt(sb, JOURNAL_CHECKSUM);
5441		clear_opt(sb, DATA_FLAGS);
5442		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5443		sbi->s_journal = NULL;
5444		needs_recovery = 0;
 
5445	}
5446
5447	if (!test_opt(sb, NO_MBCACHE)) {
5448		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5449		if (!sbi->s_ea_block_cache) {
5450			ext4_msg(sb, KERN_ERR,
5451				 "Failed to create ea_block_cache");
5452			err = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5453			goto failed_mount_wq;
5454		}
 
 
 
 
 
 
5455
5456		if (ext4_has_feature_ea_inode(sb)) {
5457			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5458			if (!sbi->s_ea_inode_cache) {
5459				ext4_msg(sb, KERN_ERR,
5460					 "Failed to create ea_inode_cache");
5461				err = -EINVAL;
5462				goto failed_mount_wq;
5463			}
5464		}
5465	}
 
5466
 
5467	/*
5468	 * Get the # of file system overhead blocks from the
5469	 * superblock if present.
5470	 */
5471	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5472	/* ignore the precalculated value if it is ridiculous */
5473	if (sbi->s_overhead > ext4_blocks_count(es))
5474		sbi->s_overhead = 0;
5475	/*
5476	 * If the bigalloc feature is not enabled recalculating the
5477	 * overhead doesn't take long, so we might as well just redo
5478	 * it to make sure we are using the correct value.
5479	 */
5480	if (!ext4_has_feature_bigalloc(sb))
5481		sbi->s_overhead = 0;
5482	if (sbi->s_overhead == 0) {
5483		err = ext4_calculate_overhead(sb);
5484		if (err)
5485			goto failed_mount_wq;
5486	}
5487
5488	/*
5489	 * The maximum number of concurrent works can be high and
5490	 * concurrency isn't really necessary.  Limit it to 1.
5491	 */
5492	EXT4_SB(sb)->rsv_conversion_wq =
5493		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5494	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5495		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5496		err = -ENOMEM;
5497		goto failed_mount4;
5498	}
5499
5500	/*
5501	 * The jbd2_journal_load will have done any necessary log recovery,
5502	 * so we can safely mount the rest of the filesystem now.
5503	 */
5504
5505	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5506	if (IS_ERR(root)) {
5507		ext4_msg(sb, KERN_ERR, "get root inode failed");
5508		err = PTR_ERR(root);
5509		root = NULL;
5510		goto failed_mount4;
5511	}
5512	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5513		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5514		iput(root);
5515		err = -EFSCORRUPTED;
5516		goto failed_mount4;
5517	}
5518
5519	generic_set_sb_d_ops(sb);
5520	sb->s_root = d_make_root(root);
5521	if (!sb->s_root) {
5522		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5523		err = -ENOMEM;
5524		goto failed_mount4;
5525	}
5526
5527	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5528	if (err == -EROFS) {
5529		sb->s_flags |= SB_RDONLY;
5530	} else if (err)
5531		goto failed_mount4a;
5532
5533	ext4_set_resv_clusters(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5534
5535	if (test_opt(sb, BLOCK_VALIDITY)) {
5536		err = ext4_setup_system_zone(sb);
5537		if (err) {
5538			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5539				 "zone (%d)", err);
5540			goto failed_mount4a;
5541		}
5542	}
5543	ext4_fc_replay_cleanup(sb);
5544
5545	ext4_ext_init(sb);
5546
5547	/*
5548	 * Enable optimize_scan if number of groups is > threshold. This can be
5549	 * turned off by passing "mb_optimize_scan=0". This can also be
5550	 * turned on forcefully by passing "mb_optimize_scan=1".
5551	 */
5552	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5553		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5554			set_opt2(sb, MB_OPTIMIZE_SCAN);
5555		else
5556			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5557	}
5558
5559	err = ext4_mb_init(sb);
5560	if (err) {
5561		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5562			 err);
5563		goto failed_mount5;
5564	}
5565
5566	/*
5567	 * We can only set up the journal commit callback once
5568	 * mballoc is initialized
5569	 */
5570	if (sbi->s_journal)
5571		sbi->s_journal->j_commit_callback =
5572			ext4_journal_commit_callback;
5573
5574	err = ext4_percpu_param_init(sbi);
5575	if (err)
5576		goto failed_mount6;
5577
5578	if (ext4_has_feature_flex_bg(sb))
5579		if (!ext4_fill_flex_info(sb)) {
5580			ext4_msg(sb, KERN_ERR,
5581			       "unable to initialize "
5582			       "flex_bg meta info!");
5583			err = -ENOMEM;
5584			goto failed_mount6;
5585		}
5586
5587	err = ext4_register_li_request(sb, first_not_zeroed);
5588	if (err)
5589		goto failed_mount6;
5590
5591	err = ext4_init_orphan_info(sb);
 
 
 
5592	if (err)
5593		goto failed_mount7;
5594#ifdef CONFIG_QUOTA
5595	/* Enable quota usage during mount. */
5596	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5597		err = ext4_enable_quotas(sb);
5598		if (err)
5599			goto failed_mount8;
5600	}
5601#endif  /* CONFIG_QUOTA */
5602
5603	/*
5604	 * Save the original bdev mapping's wb_err value which could be
5605	 * used to detect the metadata async write error.
5606	 */
5607	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5608				 &sbi->s_bdev_wb_err);
5609	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5610	ext4_orphan_cleanup(sb, es);
5611	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5612	/*
5613	 * Update the checksum after updating free space/inode counters and
5614	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5615	 * checksum in the buffer cache until it is written out and
5616	 * e2fsprogs programs trying to open a file system immediately
5617	 * after it is mounted can fail.
5618	 */
5619	ext4_superblock_csum_set(sb);
5620	if (needs_recovery) {
5621		ext4_msg(sb, KERN_INFO, "recovery complete");
5622		err = ext4_mark_recovery_complete(sb, es);
5623		if (err)
5624			goto failed_mount9;
5625	}
 
 
 
 
 
 
 
 
 
5626
5627	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5628		ext4_msg(sb, KERN_WARNING,
5629			 "mounting with \"discard\" option, but the device does not support discard");
5630
5631	if (es->s_error_count)
5632		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5633
5634	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5635	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5636	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5637	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5638	atomic_set(&sbi->s_warning_count, 0);
5639	atomic_set(&sbi->s_msg_count, 0);
5640
5641	/* Register sysfs after all initializations are complete. */
5642	err = ext4_register_sysfs(sb);
5643	if (err)
5644		goto failed_mount9;
5645
5646	return 0;
5647
5648failed_mount9:
5649	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5650failed_mount8: __maybe_unused
5651	ext4_release_orphan_info(sb);
5652failed_mount7:
5653	ext4_unregister_li_request(sb);
5654failed_mount6:
5655	ext4_mb_release(sb);
5656	ext4_flex_groups_free(sbi);
5657	ext4_percpu_param_destroy(sbi);
5658failed_mount5:
5659	ext4_ext_release(sb);
5660	ext4_release_system_zone(sb);
5661failed_mount4a:
5662	dput(sb->s_root);
5663	sb->s_root = NULL;
5664failed_mount4:
5665	ext4_msg(sb, KERN_ERR, "mount failed");
5666	if (EXT4_SB(sb)->rsv_conversion_wq)
5667		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5668failed_mount_wq:
5669	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5670	sbi->s_ea_inode_cache = NULL;
5671
5672	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5673	sbi->s_ea_block_cache = NULL;
5674
5675	if (sbi->s_journal) {
5676		/* flush s_sb_upd_work before journal destroy. */
5677		flush_work(&sbi->s_sb_upd_work);
5678		jbd2_journal_destroy(sbi->s_journal);
5679		sbi->s_journal = NULL;
5680	}
5681failed_mount3a:
5682	ext4_es_unregister_shrinker(sbi);
5683failed_mount3:
5684	/* flush s_sb_upd_work before sbi destroy */
5685	flush_work(&sbi->s_sb_upd_work);
5686	ext4_stop_mmpd(sbi);
5687	del_timer_sync(&sbi->s_err_report);
5688	ext4_group_desc_free(sbi);
 
 
 
 
 
 
 
 
5689failed_mount:
5690	if (sbi->s_chksum_driver)
5691		crypto_free_shash(sbi->s_chksum_driver);
5692
5693#if IS_ENABLED(CONFIG_UNICODE)
5694	utf8_unload(sb->s_encoding);
5695#endif
5696
5697#ifdef CONFIG_QUOTA
5698	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5699		kfree(get_qf_name(sb, sbi, i));
5700#endif
5701	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5702	brelse(sbi->s_sbh);
5703	if (sbi->s_journal_bdev_file) {
5704		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5705		bdev_fput(sbi->s_journal_bdev_file);
5706	}
5707out_fail:
5708	invalidate_bdev(sb->s_bdev);
5709	sb->s_fs_info = NULL;
5710	return err;
5711}
5712
5713static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5714{
5715	struct ext4_fs_context *ctx = fc->fs_private;
5716	struct ext4_sb_info *sbi;
5717	const char *descr;
5718	int ret;
5719
5720	sbi = ext4_alloc_sbi(sb);
5721	if (!sbi)
5722		return -ENOMEM;
5723
5724	fc->s_fs_info = sbi;
5725
5726	/* Cleanup superblock name */
5727	strreplace(sb->s_id, '/', '!');
5728
5729	sbi->s_sb_block = 1;	/* Default super block location */
5730	if (ctx->spec & EXT4_SPEC_s_sb_block)
5731		sbi->s_sb_block = ctx->s_sb_block;
5732
5733	ret = __ext4_fill_super(fc, sb);
5734	if (ret < 0)
5735		goto free_sbi;
5736
5737	if (sbi->s_journal) {
5738		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5739			descr = " journalled data mode";
5740		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5741			descr = " ordered data mode";
5742		else
5743			descr = " writeback data mode";
5744	} else
5745		descr = "out journal";
5746
5747	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5748		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5749			 "Quota mode: %s.", &sb->s_uuid,
5750			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5751			 ext4_quota_mode(sb));
5752
5753	/* Update the s_overhead_clusters if necessary */
5754	ext4_update_overhead(sb, false);
5755	return 0;
5756
5757free_sbi:
5758	ext4_free_sbi(sbi);
5759	fc->s_fs_info = NULL;
5760	return ret;
5761}
5762
5763static int ext4_get_tree(struct fs_context *fc)
5764{
5765	return get_tree_bdev(fc, ext4_fill_super);
5766}
5767
5768/*
5769 * Setup any per-fs journal parameters now.  We'll do this both on
5770 * initial mount, once the journal has been initialised but before we've
5771 * done any recovery; and again on any subsequent remount.
5772 */
5773static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5774{
5775	struct ext4_sb_info *sbi = EXT4_SB(sb);
5776
5777	journal->j_commit_interval = sbi->s_commit_interval;
5778	journal->j_min_batch_time = sbi->s_min_batch_time;
5779	journal->j_max_batch_time = sbi->s_max_batch_time;
5780	ext4_fc_init(sb, journal);
5781
5782	write_lock(&journal->j_state_lock);
5783	if (test_opt(sb, BARRIER))
5784		journal->j_flags |= JBD2_BARRIER;
5785	else
5786		journal->j_flags &= ~JBD2_BARRIER;
5787	if (test_opt(sb, DATA_ERR_ABORT))
5788		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5789	else
5790		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5791	/*
5792	 * Always enable journal cycle record option, letting the journal
5793	 * records log transactions continuously between each mount.
5794	 */
5795	journal->j_flags |= JBD2_CYCLE_RECORD;
5796	write_unlock(&journal->j_state_lock);
5797}
5798
5799static struct inode *ext4_get_journal_inode(struct super_block *sb,
5800					     unsigned int journal_inum)
5801{
5802	struct inode *journal_inode;
 
 
 
 
 
 
 
5803
5804	/*
5805	 * Test for the existence of a valid inode on disk.  Bad things
5806	 * happen if we iget() an unused inode, as the subsequent iput()
5807	 * will try to delete it.
5808	 */
5809	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5810	if (IS_ERR(journal_inode)) {
5811		ext4_msg(sb, KERN_ERR, "no journal found");
5812		return ERR_CAST(journal_inode);
5813	}
5814	if (!journal_inode->i_nlink) {
5815		make_bad_inode(journal_inode);
5816		iput(journal_inode);
5817		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5818		return ERR_PTR(-EFSCORRUPTED);
5819	}
5820	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
 
 
 
5821		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5822		iput(journal_inode);
5823		return ERR_PTR(-EFSCORRUPTED);
5824	}
5825
5826	ext4_debug("Journal inode found at %p: %lld bytes\n",
5827		  journal_inode, journal_inode->i_size);
5828	return journal_inode;
5829}
5830
5831static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5832{
5833	struct ext4_map_blocks map;
5834	int ret;
5835
5836	if (journal->j_inode == NULL)
5837		return 0;
5838
5839	map.m_lblk = *block;
5840	map.m_len = 1;
5841	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5842	if (ret <= 0) {
5843		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5844			 "journal bmap failed: block %llu ret %d\n",
5845			 *block, ret);
5846		jbd2_journal_abort(journal, ret ? ret : -EIO);
5847		return ret;
5848	}
5849	*block = map.m_pblk;
5850	return 0;
5851}
5852
5853static journal_t *ext4_open_inode_journal(struct super_block *sb,
5854					  unsigned int journal_inum)
5855{
5856	struct inode *journal_inode;
5857	journal_t *journal;
5858
5859	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5860	if (IS_ERR(journal_inode))
5861		return ERR_CAST(journal_inode);
5862
5863	journal = jbd2_journal_init_inode(journal_inode);
5864	if (IS_ERR(journal)) {
5865		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5866		iput(journal_inode);
5867		return ERR_CAST(journal);
5868	}
5869	journal->j_private = sb;
5870	journal->j_bmap = ext4_journal_bmap;
5871	ext4_init_journal_params(sb, journal);
5872	return journal;
5873}
5874
5875static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5876					dev_t j_dev, ext4_fsblk_t *j_start,
5877					ext4_fsblk_t *j_len)
5878{
5879	struct buffer_head *bh;
5880	struct block_device *bdev;
5881	struct file *bdev_file;
 
5882	int hblock, blocksize;
5883	ext4_fsblk_t sb_block;
5884	unsigned long offset;
5885	struct ext4_super_block *es;
5886	int errno;
 
 
5887
5888	bdev_file = bdev_file_open_by_dev(j_dev,
5889		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5890		sb, &fs_holder_ops);
5891	if (IS_ERR(bdev_file)) {
5892		ext4_msg(sb, KERN_ERR,
5893			 "failed to open journal device unknown-block(%u,%u) %ld",
5894			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5895		return bdev_file;
5896	}
5897
5898	bdev = file_bdev(bdev_file);
5899	blocksize = sb->s_blocksize;
5900	hblock = bdev_logical_block_size(bdev);
5901	if (blocksize < hblock) {
5902		ext4_msg(sb, KERN_ERR,
5903			"blocksize too small for journal device");
5904		errno = -EINVAL;
5905		goto out_bdev;
5906	}
5907
5908	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5909	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5910	set_blocksize(bdev_file, blocksize);
5911	bh = __bread(bdev, sb_block, blocksize);
5912	if (!bh) {
5913		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5914		       "external journal");
5915		errno = -EINVAL;
5916		goto out_bdev;
5917	}
5918
5919	es = (struct ext4_super_block *) (bh->b_data + offset);
5920	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5921	    !(le32_to_cpu(es->s_feature_incompat) &
5922	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5923		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5924		errno = -EFSCORRUPTED;
5925		goto out_bh;
5926	}
5927
5928	if ((le32_to_cpu(es->s_feature_ro_compat) &
5929	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5930	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5931		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5932		errno = -EFSCORRUPTED;
5933		goto out_bh;
5934	}
5935
5936	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5937		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5938		errno = -EFSCORRUPTED;
5939		goto out_bh;
5940	}
5941
5942	*j_start = sb_block + 1;
5943	*j_len = ext4_blocks_count(es);
5944	brelse(bh);
5945	return bdev_file;
5946
5947out_bh:
5948	brelse(bh);
5949out_bdev:
5950	bdev_fput(bdev_file);
5951	return ERR_PTR(errno);
5952}
5953
5954static journal_t *ext4_open_dev_journal(struct super_block *sb,
5955					dev_t j_dev)
5956{
5957	journal_t *journal;
5958	ext4_fsblk_t j_start;
5959	ext4_fsblk_t j_len;
5960	struct file *bdev_file;
5961	int errno = 0;
5962
5963	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5964	if (IS_ERR(bdev_file))
5965		return ERR_CAST(bdev_file);
5966
5967	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5968					j_len, sb->s_blocksize);
5969	if (IS_ERR(journal)) {
5970		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5971		errno = PTR_ERR(journal);
5972		goto out_bdev;
5973	}
 
 
 
 
 
 
 
5974	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5975		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5976					"user (unsupported) - %d",
5977			be32_to_cpu(journal->j_superblock->s_nr_users));
5978		errno = -EINVAL;
5979		goto out_journal;
5980	}
5981	journal->j_private = sb;
5982	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5983	ext4_init_journal_params(sb, journal);
5984	return journal;
5985
5986out_journal:
5987	jbd2_journal_destroy(journal);
5988out_bdev:
5989	bdev_fput(bdev_file);
5990	return ERR_PTR(errno);
5991}
5992
5993static int ext4_load_journal(struct super_block *sb,
5994			     struct ext4_super_block *es,
5995			     unsigned long journal_devnum)
5996{
5997	journal_t *journal;
5998	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5999	dev_t journal_dev;
6000	int err = 0;
6001	int really_read_only;
6002	int journal_dev_ro;
6003
6004	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6005		return -EFSCORRUPTED;
6006
6007	if (journal_devnum &&
6008	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6009		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6010			"numbers have changed");
6011		journal_dev = new_decode_dev(journal_devnum);
6012	} else
6013		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6014
6015	if (journal_inum && journal_dev) {
6016		ext4_msg(sb, KERN_ERR,
6017			 "filesystem has both journal inode and journal device!");
6018		return -EINVAL;
6019	}
6020
6021	if (journal_inum) {
6022		journal = ext4_open_inode_journal(sb, journal_inum);
6023		if (IS_ERR(journal))
6024			return PTR_ERR(journal);
6025	} else {
6026		journal = ext4_open_dev_journal(sb, journal_dev);
6027		if (IS_ERR(journal))
6028			return PTR_ERR(journal);
6029	}
6030
6031	journal_dev_ro = bdev_read_only(journal->j_dev);
6032	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6033
6034	if (journal_dev_ro && !sb_rdonly(sb)) {
6035		ext4_msg(sb, KERN_ERR,
6036			 "journal device read-only, try mounting with '-o ro'");
6037		err = -EROFS;
6038		goto err_out;
6039	}
6040
6041	/*
6042	 * Are we loading a blank journal or performing recovery after a
6043	 * crash?  For recovery, we need to check in advance whether we
6044	 * can get read-write access to the device.
6045	 */
6046	if (ext4_has_feature_journal_needs_recovery(sb)) {
6047		if (sb_rdonly(sb)) {
6048			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6049					"required on readonly filesystem");
6050			if (really_read_only) {
6051				ext4_msg(sb, KERN_ERR, "write access "
6052					"unavailable, cannot proceed "
6053					"(try mounting with noload)");
6054				err = -EROFS;
6055				goto err_out;
6056			}
6057			ext4_msg(sb, KERN_INFO, "write access will "
6058			       "be enabled during recovery");
6059		}
6060	}
6061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6062	if (!(journal->j_flags & JBD2_BARRIER))
6063		ext4_msg(sb, KERN_INFO, "barriers disabled");
6064
6065	if (!ext4_has_feature_journal_needs_recovery(sb))
6066		err = jbd2_journal_wipe(journal, !really_read_only);
6067	if (!err) {
6068		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6069		__le16 orig_state;
6070		bool changed = false;
6071
6072		if (save)
6073			memcpy(save, ((char *) es) +
6074			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6075		err = jbd2_journal_load(journal);
6076		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6077				   save, EXT4_S_ERR_LEN)) {
6078			memcpy(((char *) es) + EXT4_S_ERR_START,
6079			       save, EXT4_S_ERR_LEN);
6080			changed = true;
6081		}
6082		kfree(save);
6083		orig_state = es->s_state;
6084		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6085					   EXT4_ERROR_FS);
6086		if (orig_state != es->s_state)
6087			changed = true;
6088		/* Write out restored error information to the superblock */
6089		if (changed && !really_read_only) {
6090			int err2;
6091			err2 = ext4_commit_super(sb);
6092			err = err ? : err2;
6093		}
6094	}
6095
6096	if (err) {
6097		ext4_msg(sb, KERN_ERR, "error loading journal");
6098		goto err_out;
 
6099	}
6100
6101	EXT4_SB(sb)->s_journal = journal;
6102	err = ext4_clear_journal_err(sb, es);
6103	if (err) {
6104		EXT4_SB(sb)->s_journal = NULL;
6105		jbd2_journal_destroy(journal);
6106		return err;
6107	}
6108
6109	if (!really_read_only && journal_devnum &&
6110	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6111		es->s_journal_dev = cpu_to_le32(journal_devnum);
6112		ext4_commit_super(sb);
6113	}
6114	if (!really_read_only && journal_inum &&
6115	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6116		es->s_journal_inum = cpu_to_le32(journal_inum);
6117		ext4_commit_super(sb);
6118	}
6119
6120	return 0;
6121
6122err_out:
6123	jbd2_journal_destroy(journal);
6124	return err;
6125}
6126
6127/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6128static void ext4_update_super(struct super_block *sb)
6129{
6130	struct ext4_sb_info *sbi = EXT4_SB(sb);
6131	struct ext4_super_block *es = sbi->s_es;
6132	struct buffer_head *sbh = sbi->s_sbh;
6133
6134	lock_buffer(sbh);
6135	/*
6136	 * If the file system is mounted read-only, don't update the
6137	 * superblock write time.  This avoids updating the superblock
6138	 * write time when we are mounting the root file system
6139	 * read/only but we need to replay the journal; at that point,
6140	 * for people who are east of GMT and who make their clock
6141	 * tick in localtime for Windows bug-for-bug compatibility,
6142	 * the clock is set in the future, and this will cause e2fsck
6143	 * to complain and force a full file system check.
6144	 */
6145	if (!sb_rdonly(sb))
6146		ext4_update_tstamp(es, s_wtime);
6147	es->s_kbytes_written =
6148		cpu_to_le64(sbi->s_kbytes_written +
6149		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6150		      sbi->s_sectors_written_start) >> 1));
6151	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6152		ext4_free_blocks_count_set(es,
6153			EXT4_C2B(sbi, percpu_counter_sum_positive(
6154				&sbi->s_freeclusters_counter)));
6155	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6156		es->s_free_inodes_count =
6157			cpu_to_le32(percpu_counter_sum_positive(
6158				&sbi->s_freeinodes_counter));
6159	/* Copy error information to the on-disk superblock */
6160	spin_lock(&sbi->s_error_lock);
6161	if (sbi->s_add_error_count > 0) {
6162		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6163		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6164			__ext4_update_tstamp(&es->s_first_error_time,
6165					     &es->s_first_error_time_hi,
6166					     sbi->s_first_error_time);
6167			strtomem_pad(es->s_first_error_func,
6168				     sbi->s_first_error_func, 0);
6169			es->s_first_error_line =
6170				cpu_to_le32(sbi->s_first_error_line);
6171			es->s_first_error_ino =
6172				cpu_to_le32(sbi->s_first_error_ino);
6173			es->s_first_error_block =
6174				cpu_to_le64(sbi->s_first_error_block);
6175			es->s_first_error_errcode =
6176				ext4_errno_to_code(sbi->s_first_error_code);
6177		}
6178		__ext4_update_tstamp(&es->s_last_error_time,
6179				     &es->s_last_error_time_hi,
6180				     sbi->s_last_error_time);
6181		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6182		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6183		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6184		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6185		es->s_last_error_errcode =
6186				ext4_errno_to_code(sbi->s_last_error_code);
6187		/*
6188		 * Start the daily error reporting function if it hasn't been
6189		 * started already
6190		 */
6191		if (!es->s_error_count)
6192			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6193		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6194		sbi->s_add_error_count = 0;
6195	}
6196	spin_unlock(&sbi->s_error_lock);
6197
6198	ext4_superblock_csum_set(sb);
6199	unlock_buffer(sbh);
6200}
6201
6202static int ext4_commit_super(struct super_block *sb)
6203{
 
6204	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
 
6205
6206	if (!sbh)
6207		return -EINVAL;
6208
6209	ext4_update_super(sb);
6210
6211	lock_buffer(sbh);
6212	/* Buffer got discarded which means block device got invalidated */
6213	if (!buffer_mapped(sbh)) {
6214		unlock_buffer(sbh);
6215		return -EIO;
6216	}
6217
6218	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6219		/*
6220		 * Oh, dear.  A previous attempt to write the
6221		 * superblock failed.  This could happen because the
6222		 * USB device was yanked out.  Or it could happen to
6223		 * be a transient write error and maybe the block will
6224		 * be remapped.  Nothing we can do but to retry the
6225		 * write and hope for the best.
6226		 */
6227		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6228		       "superblock detected");
6229		clear_buffer_write_io_error(sbh);
6230		set_buffer_uptodate(sbh);
6231	}
6232	get_bh(sbh);
6233	/* Clear potential dirty bit if it was journalled update */
6234	clear_buffer_dirty(sbh);
6235	sbh->b_end_io = end_buffer_write_sync;
6236	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6237		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6238	wait_on_buffer(sbh);
6239	if (buffer_write_io_error(sbh)) {
6240		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6241		       "superblock");
6242		clear_buffer_write_io_error(sbh);
6243		set_buffer_uptodate(sbh);
6244		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6245	}
6246	return 0;
6247}
6248
6249/*
6250 * Have we just finished recovery?  If so, and if we are mounting (or
6251 * remounting) the filesystem readonly, then we will end up with a
6252 * consistent fs on disk.  Record that fact.
6253 */
6254static int ext4_mark_recovery_complete(struct super_block *sb,
6255				       struct ext4_super_block *es)
6256{
6257	int err;
6258	journal_t *journal = EXT4_SB(sb)->s_journal;
6259
6260	if (!ext4_has_feature_journal(sb)) {
6261		if (journal != NULL) {
6262			ext4_error(sb, "Journal got removed while the fs was "
6263				   "mounted!");
6264			return -EFSCORRUPTED;
6265		}
6266		return 0;
6267	}
6268	jbd2_journal_lock_updates(journal);
6269	err = jbd2_journal_flush(journal, 0);
6270	if (err < 0)
6271		goto out;
6272
6273	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6274	    ext4_has_feature_orphan_present(sb))) {
6275		if (!ext4_orphan_file_empty(sb)) {
6276			ext4_error(sb, "Orphan file not empty on read-only fs.");
6277			err = -EFSCORRUPTED;
6278			goto out;
6279		}
6280		ext4_clear_feature_journal_needs_recovery(sb);
6281		ext4_clear_feature_orphan_present(sb);
6282		ext4_commit_super(sb);
6283	}
 
6284out:
6285	jbd2_journal_unlock_updates(journal);
6286	return err;
6287}
6288
6289/*
6290 * If we are mounting (or read-write remounting) a filesystem whose journal
6291 * has recorded an error from a previous lifetime, move that error to the
6292 * main filesystem now.
6293 */
6294static int ext4_clear_journal_err(struct super_block *sb,
6295				   struct ext4_super_block *es)
6296{
6297	journal_t *journal;
6298	int j_errno;
6299	const char *errstr;
6300
6301	if (!ext4_has_feature_journal(sb)) {
6302		ext4_error(sb, "Journal got removed while the fs was mounted!");
6303		return -EFSCORRUPTED;
6304	}
6305
6306	journal = EXT4_SB(sb)->s_journal;
6307
6308	/*
6309	 * Now check for any error status which may have been recorded in the
6310	 * journal by a prior ext4_error() or ext4_abort()
6311	 */
6312
6313	j_errno = jbd2_journal_errno(journal);
6314	if (j_errno) {
6315		char nbuf[16];
6316
6317		errstr = ext4_decode_error(sb, j_errno, nbuf);
6318		ext4_warning(sb, "Filesystem error recorded "
6319			     "from previous mount: %s", errstr);
 
6320
6321		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6322		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6323		j_errno = ext4_commit_super(sb);
6324		if (j_errno)
6325			return j_errno;
6326		ext4_warning(sb, "Marked fs in need of filesystem check.");
6327
6328		jbd2_journal_clear_err(journal);
6329		jbd2_journal_update_sb_errno(journal);
6330	}
6331	return 0;
6332}
6333
6334/*
6335 * Force the running and committing transactions to commit,
6336 * and wait on the commit.
6337 */
6338int ext4_force_commit(struct super_block *sb)
6339{
6340	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6341}
6342
6343static int ext4_sync_fs(struct super_block *sb, int wait)
6344{
6345	int ret = 0;
6346	tid_t target;
6347	bool needs_barrier = false;
6348	struct ext4_sb_info *sbi = EXT4_SB(sb);
6349
6350	if (unlikely(ext4_forced_shutdown(sb)))
6351		return -EIO;
6352
6353	trace_ext4_sync_fs(sb, wait);
6354	flush_workqueue(sbi->rsv_conversion_wq);
6355	/*
6356	 * Writeback quota in non-journalled quota case - journalled quota has
6357	 * no dirty dquots
6358	 */
6359	dquot_writeback_dquots(sb, -1);
6360	/*
6361	 * Data writeback is possible w/o journal transaction, so barrier must
6362	 * being sent at the end of the function. But we can skip it if
6363	 * transaction_commit will do it for us.
6364	 */
6365	if (sbi->s_journal) {
6366		target = jbd2_get_latest_transaction(sbi->s_journal);
6367		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6368		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6369			needs_barrier = true;
6370
6371		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6372			if (wait)
6373				ret = jbd2_log_wait_commit(sbi->s_journal,
6374							   target);
6375		}
6376	} else if (wait && test_opt(sb, BARRIER))
6377		needs_barrier = true;
6378	if (needs_barrier) {
6379		int err;
6380		err = blkdev_issue_flush(sb->s_bdev);
6381		if (!ret)
6382			ret = err;
6383	}
6384
6385	return ret;
6386}
6387
6388/*
6389 * LVM calls this function before a (read-only) snapshot is created.  This
6390 * gives us a chance to flush the journal completely and mark the fs clean.
6391 *
6392 * Note that only this function cannot bring a filesystem to be in a clean
6393 * state independently. It relies on upper layer to stop all data & metadata
6394 * modifications.
 
6395 */
6396static int ext4_freeze(struct super_block *sb)
6397{
6398	int error = 0;
6399	journal_t *journal = EXT4_SB(sb)->s_journal;
 
 
 
6400
6401	if (journal) {
6402		/* Now we set up the journal barrier. */
6403		jbd2_journal_lock_updates(journal);
6404
6405		/*
6406		 * Don't clear the needs_recovery flag if we failed to
6407		 * flush the journal.
6408		 */
6409		error = jbd2_journal_flush(journal, 0);
6410		if (error < 0)
6411			goto out;
6412
6413		/* Journal blocked and flushed, clear needs_recovery flag. */
6414		ext4_clear_feature_journal_needs_recovery(sb);
6415		if (ext4_orphan_file_empty(sb))
6416			ext4_clear_feature_orphan_present(sb);
6417	}
 
 
6418
6419	error = ext4_commit_super(sb);
 
 
6420out:
6421	if (journal)
6422		/* we rely on upper layer to stop further updates */
6423		jbd2_journal_unlock_updates(journal);
6424	return error;
6425}
6426
6427/*
6428 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6429 * flag here, even though the filesystem is not technically dirty yet.
6430 */
6431static int ext4_unfreeze(struct super_block *sb)
6432{
6433	if (ext4_forced_shutdown(sb))
6434		return 0;
6435
6436	if (EXT4_SB(sb)->s_journal) {
6437		/* Reset the needs_recovery flag before the fs is unlocked. */
6438		ext4_set_feature_journal_needs_recovery(sb);
6439		if (ext4_has_feature_orphan_file(sb))
6440			ext4_set_feature_orphan_present(sb);
6441	}
6442
6443	ext4_commit_super(sb);
6444	return 0;
6445}
6446
6447/*
6448 * Structure to save mount options for ext4_remount's benefit
6449 */
6450struct ext4_mount_options {
6451	unsigned long s_mount_opt;
6452	unsigned long s_mount_opt2;
6453	kuid_t s_resuid;
6454	kgid_t s_resgid;
6455	unsigned long s_commit_interval;
6456	u32 s_min_batch_time, s_max_batch_time;
6457#ifdef CONFIG_QUOTA
6458	int s_jquota_fmt;
6459	char *s_qf_names[EXT4_MAXQUOTAS];
6460#endif
6461};
6462
6463static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6464{
6465	struct ext4_fs_context *ctx = fc->fs_private;
6466	struct ext4_super_block *es;
6467	struct ext4_sb_info *sbi = EXT4_SB(sb);
6468	unsigned long old_sb_flags;
6469	struct ext4_mount_options old_opts;
 
6470	ext4_group_t g;
 
6471	int err = 0;
6472	int alloc_ctx;
6473#ifdef CONFIG_QUOTA
6474	int enable_quota = 0;
6475	int i, j;
6476	char *to_free[EXT4_MAXQUOTAS];
6477#endif
6478
6479
6480	/* Store the original options */
 
6481	old_sb_flags = sb->s_flags;
6482	old_opts.s_mount_opt = sbi->s_mount_opt;
6483	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6484	old_opts.s_resuid = sbi->s_resuid;
6485	old_opts.s_resgid = sbi->s_resgid;
6486	old_opts.s_commit_interval = sbi->s_commit_interval;
6487	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6488	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6489#ifdef CONFIG_QUOTA
6490	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6491	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6492		if (sbi->s_qf_names[i]) {
6493			char *qf_name = get_qf_name(sb, sbi, i);
6494
6495			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6496			if (!old_opts.s_qf_names[i]) {
6497				for (j = 0; j < i; j++)
6498					kfree(old_opts.s_qf_names[j]);
6499				return -ENOMEM;
6500			}
6501		} else
6502			old_opts.s_qf_names[i] = NULL;
6503#endif
6504	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6505		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6506			ctx->journal_ioprio =
6507				sbi->s_journal->j_task->io_context->ioprio;
6508		else
6509			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6510
6511	}
6512
6513	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6514	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6515		ext4_msg(sb, KERN_WARNING,
6516			 "stripe (%lu) is not aligned with cluster size (%u), "
6517			 "stripe is disabled",
6518			 ctx->s_stripe, sbi->s_cluster_ratio);
6519		ctx->s_stripe = 0;
6520	}
6521
6522	/*
6523	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6524	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6525	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6526	 * here s_writepages_rwsem to avoid race between writepages ops and
6527	 * remount.
6528	 */
6529	alloc_ctx = ext4_writepages_down_write(sb);
6530	ext4_apply_options(fc, sb);
6531	ext4_writepages_up_write(sb, alloc_ctx);
6532
6533	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6534	    test_opt(sb, JOURNAL_CHECKSUM)) {
6535		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6536			 "during remount not supported; ignoring");
6537		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6538	}
6539
6540	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6541		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6542			ext4_msg(sb, KERN_ERR, "can't mount with "
6543				 "both data=journal and delalloc");
6544			err = -EINVAL;
6545			goto restore_opts;
6546		}
6547		if (test_opt(sb, DIOREAD_NOLOCK)) {
6548			ext4_msg(sb, KERN_ERR, "can't mount with "
6549				 "both data=journal and dioread_nolock");
6550			err = -EINVAL;
6551			goto restore_opts;
6552		}
6553	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6554		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6555			ext4_msg(sb, KERN_ERR, "can't mount with "
6556				"journal_async_commit in data=ordered mode");
6557			err = -EINVAL;
6558			goto restore_opts;
6559		}
6560	}
6561
6562	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6563		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6564		err = -EINVAL;
6565		goto restore_opts;
6566	}
6567
6568	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6569	    !test_opt(sb, DELALLOC)) {
6570		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6571		err = -EINVAL;
6572		goto restore_opts;
6573	}
6574
6575	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6576		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6577
6578	es = sbi->s_es;
6579
6580	if (sbi->s_journal) {
6581		ext4_init_journal_params(sb, sbi->s_journal);
6582		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6583	}
6584
6585	/* Flush outstanding errors before changing fs state */
6586	flush_work(&sbi->s_sb_upd_work);
6587
6588	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6589		if (ext4_forced_shutdown(sb)) {
6590			err = -EROFS;
6591			goto restore_opts;
6592		}
6593
6594		if (fc->sb_flags & SB_RDONLY) {
6595			err = sync_filesystem(sb);
6596			if (err < 0)
6597				goto restore_opts;
6598			err = dquot_suspend(sb, -1);
6599			if (err < 0)
6600				goto restore_opts;
6601
6602			/*
6603			 * First of all, the unconditional stuff we have to do
6604			 * to disable replay of the journal when we next remount
6605			 */
6606			sb->s_flags |= SB_RDONLY;
6607
6608			/*
6609			 * OK, test if we are remounting a valid rw partition
6610			 * readonly, and if so set the rdonly flag and then
6611			 * mark the partition as valid again.
6612			 */
6613			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6614			    (sbi->s_mount_state & EXT4_VALID_FS))
6615				es->s_state = cpu_to_le16(sbi->s_mount_state);
6616
6617			if (sbi->s_journal) {
6618				/*
6619				 * We let remount-ro finish even if marking fs
6620				 * as clean failed...
6621				 */
6622				ext4_mark_recovery_complete(sb, es);
6623			}
6624		} else {
6625			/* Make sure we can mount this feature set readwrite */
6626			if (ext4_has_feature_readonly(sb) ||
6627			    !ext4_feature_set_ok(sb, 0)) {
6628				err = -EROFS;
6629				goto restore_opts;
6630			}
6631			/*
6632			 * Make sure the group descriptor checksums
6633			 * are sane.  If they aren't, refuse to remount r/w.
6634			 */
6635			for (g = 0; g < sbi->s_groups_count; g++) {
6636				struct ext4_group_desc *gdp =
6637					ext4_get_group_desc(sb, g, NULL);
6638
6639				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6640					ext4_msg(sb, KERN_ERR,
6641	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6642		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6643					       le16_to_cpu(gdp->bg_checksum));
6644					err = -EFSBADCRC;
6645					goto restore_opts;
6646				}
6647			}
6648
6649			/*
6650			 * If we have an unprocessed orphan list hanging
6651			 * around from a previously readonly bdev mount,
6652			 * require a full umount/remount for now.
6653			 */
6654			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6655				ext4_msg(sb, KERN_WARNING, "Couldn't "
6656				       "remount RDWR because of unprocessed "
6657				       "orphan inode list.  Please "
6658				       "umount/remount instead");
6659				err = -EINVAL;
6660				goto restore_opts;
6661			}
6662
6663			/*
6664			 * Mounting a RDONLY partition read-write, so reread
6665			 * and store the current valid flag.  (It may have
6666			 * been changed by e2fsck since we originally mounted
6667			 * the partition.)
6668			 */
6669			if (sbi->s_journal) {
6670				err = ext4_clear_journal_err(sb, es);
6671				if (err)
 
 
 
 
 
 
 
6672					goto restore_opts;
6673			}
6674			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6675					      ~EXT4_FC_REPLAY);
6676
6677			err = ext4_setup_super(sb, es, 0);
6678			if (err)
6679				goto restore_opts;
6680
6681			sb->s_flags &= ~SB_RDONLY;
6682			if (ext4_has_feature_mmp(sb)) {
6683				err = ext4_multi_mount_protect(sb,
6684						le64_to_cpu(es->s_mmp_block));
6685				if (err)
6686					goto restore_opts;
6687			}
6688#ifdef CONFIG_QUOTA
6689			enable_quota = 1;
6690#endif
6691		}
6692	}
6693
6694	/*
6695	 * Handle creation of system zone data early because it can fail.
6696	 * Releasing of existing data is done when we are sure remount will
6697	 * succeed.
6698	 */
6699	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6700		err = ext4_setup_system_zone(sb);
6701		if (err)
6702			goto restore_opts;
6703	}
6704
6705	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6706		err = ext4_commit_super(sb);
6707		if (err)
6708			goto restore_opts;
6709	}
6710
6711#ifdef CONFIG_QUOTA
6712	if (enable_quota) {
6713		if (sb_any_quota_suspended(sb))
6714			dquot_resume(sb, -1);
6715		else if (ext4_has_feature_quota(sb)) {
6716			err = ext4_enable_quotas(sb);
6717			if (err)
6718				goto restore_opts;
6719		}
6720	}
6721	/* Release old quota file names */
6722	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6723		kfree(old_opts.s_qf_names[i]);
6724#endif
6725	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6726		ext4_release_system_zone(sb);
6727
6728	/*
6729	 * Reinitialize lazy itable initialization thread based on
6730	 * current settings
6731	 */
6732	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6733		ext4_unregister_li_request(sb);
6734	else {
6735		ext4_group_t first_not_zeroed;
6736		first_not_zeroed = ext4_has_uninit_itable(sb);
6737		ext4_register_li_request(sb, first_not_zeroed);
6738	}
6739
6740	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6741		ext4_stop_mmpd(sbi);
 
6742
6743	/*
6744	 * Handle aborting the filesystem as the last thing during remount to
6745	 * avoid obsure errors during remount when some option changes fail to
6746	 * apply due to shutdown filesystem.
6747	 */
6748	if (test_opt2(sb, ABORT))
6749		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
 
 
 
6750
 
 
6751	return 0;
6752
6753restore_opts:
6754	/*
6755	 * If there was a failing r/w to ro transition, we may need to
6756	 * re-enable quota
6757	 */
6758	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6759	    sb_any_quota_suspended(sb))
6760		dquot_resume(sb, -1);
6761
6762	alloc_ctx = ext4_writepages_down_write(sb);
6763	sb->s_flags = old_sb_flags;
6764	sbi->s_mount_opt = old_opts.s_mount_opt;
6765	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6766	sbi->s_resuid = old_opts.s_resuid;
6767	sbi->s_resgid = old_opts.s_resgid;
6768	sbi->s_commit_interval = old_opts.s_commit_interval;
6769	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6770	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6771	ext4_writepages_up_write(sb, alloc_ctx);
6772
6773	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6774		ext4_release_system_zone(sb);
6775#ifdef CONFIG_QUOTA
6776	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6777	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6778		to_free[i] = get_qf_name(sb, sbi, i);
6779		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6780	}
6781	synchronize_rcu();
6782	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6783		kfree(to_free[i]);
6784#endif
6785	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6786		ext4_stop_mmpd(sbi);
6787	return err;
6788}
6789
6790static int ext4_reconfigure(struct fs_context *fc)
6791{
6792	struct super_block *sb = fc->root->d_sb;
6793	int ret;
6794
6795	fc->s_fs_info = EXT4_SB(sb);
6796
6797	ret = ext4_check_opt_consistency(fc, sb);
6798	if (ret < 0)
6799		return ret;
6800
6801	ret = __ext4_remount(fc, sb);
6802	if (ret < 0)
6803		return ret;
6804
6805	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6806		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6807		 ext4_quota_mode(sb));
6808
6809	return 0;
6810}
6811
6812#ifdef CONFIG_QUOTA
6813static int ext4_statfs_project(struct super_block *sb,
6814			       kprojid_t projid, struct kstatfs *buf)
6815{
6816	struct kqid qid;
6817	struct dquot *dquot;
6818	u64 limit;
6819	u64 curblock;
6820
6821	qid = make_kqid_projid(projid);
6822	dquot = dqget(sb, qid);
6823	if (IS_ERR(dquot))
6824		return PTR_ERR(dquot);
6825	spin_lock(&dquot->dq_dqb_lock);
6826
6827	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6828			     dquot->dq_dqb.dqb_bhardlimit);
6829	limit >>= sb->s_blocksize_bits;
6830
6831	if (limit && buf->f_blocks > limit) {
6832		curblock = (dquot->dq_dqb.dqb_curspace +
6833			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6834		buf->f_blocks = limit;
6835		buf->f_bfree = buf->f_bavail =
6836			(buf->f_blocks > curblock) ?
6837			 (buf->f_blocks - curblock) : 0;
6838	}
6839
6840	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6841			     dquot->dq_dqb.dqb_ihardlimit);
6842	if (limit && buf->f_files > limit) {
6843		buf->f_files = limit;
6844		buf->f_ffree =
6845			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6846			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6847	}
6848
6849	spin_unlock(&dquot->dq_dqb_lock);
6850	dqput(dquot);
6851	return 0;
6852}
6853#endif
6854
6855static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6856{
6857	struct super_block *sb = dentry->d_sb;
6858	struct ext4_sb_info *sbi = EXT4_SB(sb);
6859	struct ext4_super_block *es = sbi->s_es;
6860	ext4_fsblk_t overhead = 0, resv_blocks;
 
6861	s64 bfree;
6862	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6863
6864	if (!test_opt(sb, MINIX_DF))
6865		overhead = sbi->s_overhead;
6866
6867	buf->f_type = EXT4_SUPER_MAGIC;
6868	buf->f_bsize = sb->s_blocksize;
6869	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6870	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6871		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6872	/* prevent underflow in case that few free space is available */
6873	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6874	buf->f_bavail = buf->f_bfree -
6875			(ext4_r_blocks_count(es) + resv_blocks);
6876	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6877		buf->f_bavail = 0;
6878	buf->f_files = le32_to_cpu(es->s_inodes_count);
6879	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6880	buf->f_namelen = EXT4_NAME_LEN;
6881	buf->f_fsid = uuid_to_fsid(es->s_uuid);
 
 
 
6882
6883#ifdef CONFIG_QUOTA
6884	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6885	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6886		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6887#endif
6888	return 0;
6889}
6890
 
 
 
 
 
 
 
 
 
6891
6892#ifdef CONFIG_QUOTA
6893
6894/*
6895 * Helper functions so that transaction is started before we acquire dqio_sem
6896 * to keep correct lock ordering of transaction > dqio_sem
6897 */
6898static inline struct inode *dquot_to_inode(struct dquot *dquot)
6899{
6900	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6901}
6902
6903static int ext4_write_dquot(struct dquot *dquot)
6904{
6905	int ret, err;
6906	handle_t *handle;
6907	struct inode *inode;
6908
6909	inode = dquot_to_inode(dquot);
6910	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6911				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6912	if (IS_ERR(handle))
6913		return PTR_ERR(handle);
6914	ret = dquot_commit(dquot);
6915	if (ret < 0)
6916		ext4_error_err(dquot->dq_sb, -ret,
6917			       "Failed to commit dquot type %d",
6918			       dquot->dq_id.type);
6919	err = ext4_journal_stop(handle);
6920	if (!ret)
6921		ret = err;
6922	return ret;
6923}
6924
6925static int ext4_acquire_dquot(struct dquot *dquot)
6926{
6927	int ret, err;
6928	handle_t *handle;
6929
6930	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6931				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6932	if (IS_ERR(handle))
6933		return PTR_ERR(handle);
6934	ret = dquot_acquire(dquot);
6935	if (ret < 0)
6936		ext4_error_err(dquot->dq_sb, -ret,
6937			      "Failed to acquire dquot type %d",
6938			      dquot->dq_id.type);
6939	err = ext4_journal_stop(handle);
6940	if (!ret)
6941		ret = err;
6942	return ret;
6943}
6944
6945static int ext4_release_dquot(struct dquot *dquot)
6946{
6947	int ret, err;
6948	handle_t *handle;
6949
6950	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6951				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6952	if (IS_ERR(handle)) {
6953		/* Release dquot anyway to avoid endless cycle in dqput() */
6954		dquot_release(dquot);
6955		return PTR_ERR(handle);
6956	}
6957	ret = dquot_release(dquot);
6958	if (ret < 0)
6959		ext4_error_err(dquot->dq_sb, -ret,
6960			       "Failed to release dquot type %d",
6961			       dquot->dq_id.type);
6962	err = ext4_journal_stop(handle);
6963	if (!ret)
6964		ret = err;
6965	return ret;
6966}
6967
6968static int ext4_mark_dquot_dirty(struct dquot *dquot)
6969{
6970	struct super_block *sb = dquot->dq_sb;
6971
6972	if (ext4_is_quota_journalled(sb)) {
6973		dquot_mark_dquot_dirty(dquot);
6974		return ext4_write_dquot(dquot);
6975	} else {
6976		return dquot_mark_dquot_dirty(dquot);
6977	}
6978}
6979
6980static int ext4_write_info(struct super_block *sb, int type)
6981{
6982	int ret, err;
6983	handle_t *handle;
6984
6985	/* Data block + inode block */
6986	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6987	if (IS_ERR(handle))
6988		return PTR_ERR(handle);
6989	ret = dquot_commit_info(sb, type);
6990	err = ext4_journal_stop(handle);
6991	if (!ret)
6992		ret = err;
6993	return ret;
6994}
6995
6996static void lockdep_set_quota_inode(struct inode *inode, int subclass)
 
 
 
 
6997{
6998	struct ext4_inode_info *ei = EXT4_I(inode);
6999
7000	/* The first argument of lockdep_set_subclass has to be
7001	 * *exactly* the same as the argument to init_rwsem() --- in
7002	 * this case, in init_once() --- or lockdep gets unhappy
7003	 * because the name of the lock is set using the
7004	 * stringification of the argument to init_rwsem().
7005	 */
7006	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7007	lockdep_set_subclass(&ei->i_data_sem, subclass);
7008}
7009
7010/*
7011 * Standard function to be called on quota_on
7012 */
7013static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7014			 const struct path *path)
7015{
7016	int err;
7017
7018	if (!test_opt(sb, QUOTA))
7019		return -EINVAL;
7020
7021	/* Quotafile not on the same filesystem? */
7022	if (path->dentry->d_sb != sb)
7023		return -EXDEV;
7024
7025	/* Quota already enabled for this file? */
7026	if (IS_NOQUOTA(d_inode(path->dentry)))
7027		return -EBUSY;
7028
7029	/* Journaling quota? */
7030	if (EXT4_SB(sb)->s_qf_names[type]) {
7031		/* Quotafile not in fs root? */
7032		if (path->dentry->d_parent != sb->s_root)
7033			ext4_msg(sb, KERN_WARNING,
7034				"Quota file not on filesystem root. "
7035				"Journaled quota will not work");
7036		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7037	} else {
7038		/*
7039		 * Clear the flag just in case mount options changed since
7040		 * last time.
7041		 */
7042		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7043	}
7044
7045	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7046	err = dquot_quota_on(sb, type, format_id, path);
7047	if (!err) {
7048		struct inode *inode = d_inode(path->dentry);
7049		handle_t *handle;
7050
7051		/*
7052		 * Set inode flags to prevent userspace from messing with quota
7053		 * files. If this fails, we return success anyway since quotas
7054		 * are already enabled and this is not a hard failure.
7055		 */
7056		inode_lock(inode);
7057		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7058		if (IS_ERR(handle))
7059			goto unlock_inode;
7060		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7061		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7062				S_NOATIME | S_IMMUTABLE);
7063		err = ext4_mark_inode_dirty(handle, inode);
7064		ext4_journal_stop(handle);
7065	unlock_inode:
7066		inode_unlock(inode);
7067		if (err)
7068			dquot_quota_off(sb, type);
7069	}
7070	if (err)
7071		lockdep_set_quota_inode(path->dentry->d_inode,
7072					     I_DATA_SEM_NORMAL);
7073	return err;
7074}
7075
7076static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7077{
7078	switch (type) {
7079	case USRQUOTA:
7080		return qf_inum == EXT4_USR_QUOTA_INO;
7081	case GRPQUOTA:
7082		return qf_inum == EXT4_GRP_QUOTA_INO;
7083	case PRJQUOTA:
7084		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7085	default:
7086		BUG();
7087	}
7088}
7089
7090static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7091			     unsigned int flags)
7092{
7093	int err;
7094	struct inode *qf_inode;
7095	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7096		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7097		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7098		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7099	};
7100
7101	BUG_ON(!ext4_has_feature_quota(sb));
7102
7103	if (!qf_inums[type])
7104		return -EPERM;
7105
7106	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7107		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7108				qf_inums[type], type);
7109		return -EUCLEAN;
7110	}
7111
7112	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7113	if (IS_ERR(qf_inode)) {
7114		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7115				qf_inums[type], type);
7116		return PTR_ERR(qf_inode);
7117	}
7118
7119	/* Don't account quota for quota files to avoid recursion */
7120	qf_inode->i_flags |= S_NOQUOTA;
7121	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7122	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7123	if (err)
7124		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7125	iput(qf_inode);
7126
7127	return err;
7128}
7129
7130/* Enable usage tracking for all quota types. */
7131int ext4_enable_quotas(struct super_block *sb)
7132{
7133	int type, err = 0;
7134	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7135		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7136		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7137		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7138	};
7139	bool quota_mopt[EXT4_MAXQUOTAS] = {
7140		test_opt(sb, USRQUOTA),
7141		test_opt(sb, GRPQUOTA),
7142		test_opt(sb, PRJQUOTA),
7143	};
7144
7145	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7146	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7147		if (qf_inums[type]) {
7148			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7149				DQUOT_USAGE_ENABLED |
7150				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7151			if (err) {
7152				ext4_warning(sb,
7153					"Failed to enable quota tracking "
7154					"(type=%d, err=%d, ino=%lu). "
7155					"Please run e2fsck to fix.", type,
7156					err, qf_inums[type]);
7157
7158				ext4_quotas_off(sb, type);
7159				return err;
7160			}
7161		}
7162	}
7163	return 0;
7164}
7165
7166static int ext4_quota_off(struct super_block *sb, int type)
7167{
7168	struct inode *inode = sb_dqopt(sb)->files[type];
7169	handle_t *handle;
7170	int err;
7171
7172	/* Force all delayed allocation blocks to be allocated.
7173	 * Caller already holds s_umount sem */
7174	if (test_opt(sb, DELALLOC))
7175		sync_filesystem(sb);
7176
7177	if (!inode || !igrab(inode))
7178		goto out;
7179
7180	err = dquot_quota_off(sb, type);
7181	if (err || ext4_has_feature_quota(sb))
7182		goto out_put;
7183	/*
7184	 * When the filesystem was remounted read-only first, we cannot cleanup
7185	 * inode flags here. Bad luck but people should be using QUOTA feature
7186	 * these days anyway.
7187	 */
7188	if (sb_rdonly(sb))
7189		goto out_put;
7190
7191	inode_lock(inode);
7192	/*
7193	 * Update modification times of quota files when userspace can
7194	 * start looking at them. If we fail, we return success anyway since
7195	 * this is not a hard failure and quotas are already disabled.
7196	 */
7197	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7198	if (IS_ERR(handle)) {
7199		err = PTR_ERR(handle);
7200		goto out_unlock;
7201	}
7202	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7203	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7204	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7205	err = ext4_mark_inode_dirty(handle, inode);
7206	ext4_journal_stop(handle);
7207out_unlock:
7208	inode_unlock(inode);
7209out_put:
7210	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7211	iput(inode);
7212	return err;
7213out:
7214	return dquot_quota_off(sb, type);
7215}
7216
7217/* Read data from quotafile - avoid pagecache and such because we cannot afford
7218 * acquiring the locks... As quota files are never truncated and quota code
7219 * itself serializes the operations (and no one else should touch the files)
7220 * we don't have to be afraid of races */
7221static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7222			       size_t len, loff_t off)
7223{
7224	struct inode *inode = sb_dqopt(sb)->files[type];
7225	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
 
7226	int offset = off & (sb->s_blocksize - 1);
7227	int tocopy;
7228	size_t toread;
7229	struct buffer_head *bh;
7230	loff_t i_size = i_size_read(inode);
7231
7232	if (off > i_size)
7233		return 0;
7234	if (off+len > i_size)
7235		len = i_size-off;
7236	toread = len;
7237	while (toread > 0) {
7238		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7239		bh = ext4_bread(NULL, inode, blk, 0);
7240		if (IS_ERR(bh))
7241			return PTR_ERR(bh);
 
7242		if (!bh)	/* A hole? */
7243			memset(data, 0, tocopy);
7244		else
7245			memcpy(data, bh->b_data+offset, tocopy);
7246		brelse(bh);
7247		offset = 0;
7248		toread -= tocopy;
7249		data += tocopy;
7250		blk++;
7251	}
7252	return len;
7253}
7254
7255/* Write to quotafile (we know the transaction is already started and has
7256 * enough credits) */
7257static ssize_t ext4_quota_write(struct super_block *sb, int type,
7258				const char *data, size_t len, loff_t off)
7259{
7260	struct inode *inode = sb_dqopt(sb)->files[type];
7261	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7262	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7263	int retries = 0;
7264	struct buffer_head *bh;
7265	handle_t *handle = journal_current_handle();
7266
7267	if (!handle) {
7268		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7269			" cancelled because transaction is not started",
7270			(unsigned long long)off, (unsigned long long)len);
7271		return -EIO;
7272	}
7273	/*
7274	 * Since we account only one data block in transaction credits,
7275	 * then it is impossible to cross a block boundary.
7276	 */
7277	if (sb->s_blocksize - offset < len) {
7278		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7279			" cancelled because not block aligned",
7280			(unsigned long long)off, (unsigned long long)len);
7281		return -EIO;
7282	}
7283
7284	do {
7285		bh = ext4_bread(handle, inode, blk,
7286				EXT4_GET_BLOCKS_CREATE |
7287				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7288	} while (PTR_ERR(bh) == -ENOSPC &&
7289		 ext4_should_retry_alloc(inode->i_sb, &retries));
7290	if (IS_ERR(bh))
7291		return PTR_ERR(bh);
7292	if (!bh)
7293		goto out;
7294	BUFFER_TRACE(bh, "get write access");
7295	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7296	if (err) {
7297		brelse(bh);
7298		return err;
7299	}
7300	lock_buffer(bh);
7301	memcpy(bh->b_data+offset, data, len);
7302	flush_dcache_page(bh->b_page);
7303	unlock_buffer(bh);
7304	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7305	brelse(bh);
7306out:
 
 
7307	if (inode->i_size < off + len) {
7308		i_size_write(inode, off + len);
7309		EXT4_I(inode)->i_disksize = inode->i_size;
7310		err2 = ext4_mark_inode_dirty(handle, inode);
7311		if (unlikely(err2 && !err))
7312			err = err2;
7313	}
7314	return err ? err : len;
7315}
 
7316#endif
7317
7318#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 
 
 
 
 
 
7319static inline void register_as_ext2(void)
7320{
7321	int err = register_filesystem(&ext2_fs_type);
7322	if (err)
7323		printk(KERN_WARNING
7324		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7325}
7326
7327static inline void unregister_as_ext2(void)
7328{
7329	unregister_filesystem(&ext2_fs_type);
7330}
7331
7332static inline int ext2_feature_set_ok(struct super_block *sb)
7333{
7334	if (ext4_has_unknown_ext2_incompat_features(sb))
7335		return 0;
7336	if (sb_rdonly(sb))
7337		return 1;
7338	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7339		return 0;
7340	return 1;
7341}
 
7342#else
7343static inline void register_as_ext2(void) { }
7344static inline void unregister_as_ext2(void) { }
7345static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7346#endif
7347
 
7348static inline void register_as_ext3(void)
7349{
7350	int err = register_filesystem(&ext3_fs_type);
7351	if (err)
7352		printk(KERN_WARNING
7353		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7354}
7355
7356static inline void unregister_as_ext3(void)
7357{
7358	unregister_filesystem(&ext3_fs_type);
7359}
7360
7361static inline int ext3_feature_set_ok(struct super_block *sb)
7362{
7363	if (ext4_has_unknown_ext3_incompat_features(sb))
7364		return 0;
7365	if (!ext4_has_feature_journal(sb))
7366		return 0;
7367	if (sb_rdonly(sb))
7368		return 1;
7369	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7370		return 0;
7371	return 1;
7372}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7373
7374static void ext4_kill_sb(struct super_block *sb)
7375{
7376	struct ext4_sb_info *sbi = EXT4_SB(sb);
7377	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7378
7379	kill_block_super(sb);
 
 
7380
7381	if (bdev_file)
7382		bdev_fput(bdev_file);
 
 
 
 
 
 
 
 
 
 
 
7383}
7384
7385static struct file_system_type ext4_fs_type = {
7386	.owner			= THIS_MODULE,
7387	.name			= "ext4",
7388	.init_fs_context	= ext4_init_fs_context,
7389	.parameters		= ext4_param_specs,
7390	.kill_sb		= ext4_kill_sb,
7391	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7392};
7393MODULE_ALIAS_FS("ext4");
7394
7395/* Shared across all ext4 file systems */
7396wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
 
7397
7398static int __init ext4_init_fs(void)
7399{
7400	int i, err;
7401
7402	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7403	ext4_li_info = NULL;
 
7404
7405	/* Build-time check for flags consistency */
7406	ext4_check_flag_values();
7407
7408	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
 
7409		init_waitqueue_head(&ext4__ioend_wq[i]);
 
7410
7411	err = ext4_init_es();
7412	if (err)
7413		return err;
7414
7415	err = ext4_init_pending();
7416	if (err)
7417		goto out7;
7418
7419	err = ext4_init_post_read_processing();
7420	if (err)
7421		goto out6;
7422
7423	err = ext4_init_pageio();
7424	if (err)
7425		goto out5;
 
7426
7427	err = ext4_init_system_zone();
7428	if (err)
7429		goto out4;
7430
7431	err = ext4_init_sysfs();
7432	if (err)
7433		goto out3;
7434
7435	err = ext4_init_mballoc();
7436	if (err)
7437		goto out2;
7438	err = init_inodecache();
7439	if (err)
7440		goto out1;
7441
7442	err = ext4_fc_init_dentry_cache();
7443	if (err)
7444		goto out05;
7445
7446	register_as_ext3();
7447	register_as_ext2();
7448	err = register_filesystem(&ext4_fs_type);
7449	if (err)
7450		goto out;
7451
7452	return 0;
7453out:
7454	unregister_as_ext2();
7455	unregister_as_ext3();
7456	ext4_fc_destroy_dentry_cache();
7457out05:
7458	destroy_inodecache();
7459out1:
 
 
7460	ext4_exit_mballoc();
7461out2:
7462	ext4_exit_sysfs();
7463out3:
7464	ext4_exit_system_zone();
7465out4:
7466	ext4_exit_pageio();
 
 
7467out5:
7468	ext4_exit_post_read_processing();
7469out6:
7470	ext4_exit_pending();
7471out7:
7472	ext4_exit_es();
7473
7474	return err;
7475}
7476
7477static void __exit ext4_exit_fs(void)
7478{
7479	ext4_destroy_lazyinit_thread();
7480	unregister_as_ext2();
7481	unregister_as_ext3();
7482	unregister_filesystem(&ext4_fs_type);
7483	ext4_fc_destroy_dentry_cache();
7484	destroy_inodecache();
 
7485	ext4_exit_mballoc();
7486	ext4_exit_sysfs();
 
 
7487	ext4_exit_system_zone();
7488	ext4_exit_pageio();
7489	ext4_exit_post_read_processing();
7490	ext4_exit_es();
7491	ext4_exit_pending();
7492}
7493
7494MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7495MODULE_DESCRIPTION("Fourth Extended Filesystem");
7496MODULE_LICENSE("GPL");
7497MODULE_SOFTDEP("pre: crc32c");
7498module_init(ext4_init_fs)
7499module_exit(ext4_exit_fs)