Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - bus logic (NHI independent)
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2019, Intel Corporation
   7 */
   8
   9#include <linux/slab.h>
  10#include <linux/errno.h>
  11#include <linux/delay.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/platform_data/x86/apple.h>
  14
  15#include "tb.h"
  16#include "tb_regs.h"
  17#include "tunnel.h"
  18
  19#define TB_TIMEOUT		100	/* ms */
  20
  21/*
  22 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
  23 * direction. This is 40G - 10% guard band bandwidth.
  24 */
  25#define TB_ASYM_MIN		(40000 * 90 / 100)
  26
  27/*
  28 * Threshold bandwidth (in Mb/s) that is used to switch the links to
  29 * asymmetric and back. This is selected as 45G which means when the
  30 * request is higher than this, we switch the link to asymmetric, and
  31 * when it is less than this we switch it back. The 45G is selected so
  32 * that we still have 27G (of the total 72G) for bulk PCIe traffic when
  33 * switching back to symmetric.
  34 */
  35#define TB_ASYM_THRESHOLD	45000
  36
  37#define MAX_GROUPS		7	/* max Group_ID is 7 */
  38
  39static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
  40module_param_named(asym_threshold, asym_threshold, uint, 0444);
  41MODULE_PARM_DESC(asym_threshold,
  42		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
  43		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
  44
  45/**
  46 * struct tb_cm - Simple Thunderbolt connection manager
  47 * @tunnel_list: List of active tunnels
  48 * @dp_resources: List of available DP resources for DP tunneling
  49 * @hotplug_active: tb_handle_hotplug will stop progressing plug
  50 *		    events and exit if this is not set (it needs to
  51 *		    acquire the lock one more time). Used to drain wq
  52 *		    after cfg has been paused.
  53 * @remove_work: Work used to remove any unplugged routers after
  54 *		 runtime resume
  55 * @groups: Bandwidth groups used in this domain.
  56 */
  57struct tb_cm {
  58	struct list_head tunnel_list;
  59	struct list_head dp_resources;
  60	bool hotplug_active;
  61	struct delayed_work remove_work;
  62	struct tb_bandwidth_group groups[MAX_GROUPS];
  63};
  64
  65static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
  66{
  67	return ((void *)tcm - sizeof(struct tb));
  68}
  69
  70struct tb_hotplug_event {
  71	struct work_struct work;
  72	struct tb *tb;
  73	u64 route;
  74	u8 port;
  75	bool unplug;
  76};
  77
  78static void tb_init_bandwidth_groups(struct tb_cm *tcm)
  79{
  80	int i;
  81
  82	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
  83		struct tb_bandwidth_group *group = &tcm->groups[i];
  84
  85		group->tb = tcm_to_tb(tcm);
  86		group->index = i + 1;
  87		INIT_LIST_HEAD(&group->ports);
  88	}
  89}
  90
  91static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
  92					   struct tb_port *in)
  93{
  94	if (!group || WARN_ON(in->group))
  95		return;
  96
  97	in->group = group;
  98	list_add_tail(&in->group_list, &group->ports);
  99
 100	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
 101}
 102
 103static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
 104{
 105	int i;
 106
 107	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
 108		struct tb_bandwidth_group *group = &tcm->groups[i];
 109
 110		if (list_empty(&group->ports))
 111			return group;
 112	}
 113
 114	return NULL;
 115}
 116
 117static struct tb_bandwidth_group *
 118tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
 119			  struct tb_port *out)
 120{
 121	struct tb_bandwidth_group *group;
 122	struct tb_tunnel *tunnel;
 123
 124	/*
 125	 * Find all DP tunnels that go through all the same USB4 links
 126	 * as this one. Because we always setup tunnels the same way we
 127	 * can just check for the routers at both ends of the tunnels
 128	 * and if they are the same we have a match.
 129	 */
 130	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 131		if (!tb_tunnel_is_dp(tunnel))
 132			continue;
 133
 134		if (tunnel->src_port->sw == in->sw &&
 135		    tunnel->dst_port->sw == out->sw) {
 136			group = tunnel->src_port->group;
 137			if (group) {
 138				tb_bandwidth_group_attach_port(group, in);
 139				return group;
 140			}
 141		}
 142	}
 143
 144	/* Pick up next available group then */
 145	group = tb_find_free_bandwidth_group(tcm);
 146	if (group)
 147		tb_bandwidth_group_attach_port(group, in);
 148	else
 149		tb_port_warn(in, "no available bandwidth groups\n");
 150
 151	return group;
 152}
 153
 154static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
 155					struct tb_port *out)
 156{
 157	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
 158		int index, i;
 159
 160		index = usb4_dp_port_group_id(in);
 161		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
 162			if (tcm->groups[i].index == index) {
 163				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
 164				return;
 165			}
 166		}
 167	}
 168
 169	tb_attach_bandwidth_group(tcm, in, out);
 170}
 171
 172static void tb_detach_bandwidth_group(struct tb_port *in)
 173{
 174	struct tb_bandwidth_group *group = in->group;
 175
 176	if (group) {
 177		in->group = NULL;
 178		list_del_init(&in->group_list);
 179
 180		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
 181	}
 182}
 183
 184static void tb_handle_hotplug(struct work_struct *work);
 185
 186static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
 187{
 188	struct tb_hotplug_event *ev;
 189
 190	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
 191	if (!ev)
 192		return;
 193
 194	ev->tb = tb;
 195	ev->route = route;
 196	ev->port = port;
 197	ev->unplug = unplug;
 198	INIT_WORK(&ev->work, tb_handle_hotplug);
 199	queue_work(tb->wq, &ev->work);
 200}
 201
 202/* enumeration & hot plug handling */
 203
 204static void tb_add_dp_resources(struct tb_switch *sw)
 205{
 206	struct tb_cm *tcm = tb_priv(sw->tb);
 207	struct tb_port *port;
 208
 209	tb_switch_for_each_port(sw, port) {
 210		if (!tb_port_is_dpin(port))
 211			continue;
 212
 213		if (!tb_switch_query_dp_resource(sw, port))
 214			continue;
 215
 216		/*
 217		 * If DP IN on device router exist, position it at the
 218		 * beginning of the DP resources list, so that it is used
 219		 * before DP IN of the host router. This way external GPU(s)
 220		 * will be prioritized when pairing DP IN to a DP OUT.
 221		 */
 222		if (tb_route(sw))
 223			list_add(&port->list, &tcm->dp_resources);
 224		else
 225			list_add_tail(&port->list, &tcm->dp_resources);
 226
 227		tb_port_dbg(port, "DP IN resource available\n");
 228	}
 229}
 230
 231static void tb_remove_dp_resources(struct tb_switch *sw)
 232{
 233	struct tb_cm *tcm = tb_priv(sw->tb);
 234	struct tb_port *port, *tmp;
 235
 236	/* Clear children resources first */
 237	tb_switch_for_each_port(sw, port) {
 238		if (tb_port_has_remote(port))
 239			tb_remove_dp_resources(port->remote->sw);
 240	}
 241
 242	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
 243		if (port->sw == sw) {
 244			tb_port_dbg(port, "DP OUT resource unavailable\n");
 245			list_del_init(&port->list);
 246		}
 247	}
 248}
 249
 250static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
 251{
 252	struct tb_cm *tcm = tb_priv(tb);
 253	struct tb_port *p;
 254
 255	list_for_each_entry(p, &tcm->dp_resources, list) {
 256		if (p == port)
 257			return;
 258	}
 259
 260	tb_port_dbg(port, "DP %s resource available discovered\n",
 261		    tb_port_is_dpin(port) ? "IN" : "OUT");
 262	list_add_tail(&port->list, &tcm->dp_resources);
 263}
 264
 265static void tb_discover_dp_resources(struct tb *tb)
 266{
 267	struct tb_cm *tcm = tb_priv(tb);
 268	struct tb_tunnel *tunnel;
 269
 270	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 271		if (tb_tunnel_is_dp(tunnel))
 272			tb_discover_dp_resource(tb, tunnel->dst_port);
 273	}
 274}
 275
 276/* Enables CL states up to host router */
 277static int tb_enable_clx(struct tb_switch *sw)
 278{
 279	struct tb_cm *tcm = tb_priv(sw->tb);
 280	unsigned int clx = TB_CL0S | TB_CL1;
 281	const struct tb_tunnel *tunnel;
 282	int ret;
 283
 284	/*
 285	 * Currently only enable CLx for the first link. This is enough
 286	 * to allow the CPU to save energy at least on Intel hardware
 287	 * and makes it slightly simpler to implement. We may change
 288	 * this in the future to cover the whole topology if it turns
 289	 * out to be beneficial.
 290	 */
 291	while (sw && tb_switch_depth(sw) > 1)
 292		sw = tb_switch_parent(sw);
 293
 294	if (!sw)
 295		return 0;
 296
 297	if (tb_switch_depth(sw) != 1)
 298		return 0;
 299
 300	/*
 301	 * If we are re-enabling then check if there is an active DMA
 302	 * tunnel and in that case bail out.
 303	 */
 304	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 305		if (tb_tunnel_is_dma(tunnel)) {
 306			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
 307				return 0;
 308		}
 309	}
 310
 311	/*
 312	 * Initially try with CL2. If that's not supported by the
 313	 * topology try with CL0s and CL1 and then give up.
 314	 */
 315	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
 316	if (ret == -EOPNOTSUPP)
 317		ret = tb_switch_clx_enable(sw, clx);
 318	return ret == -EOPNOTSUPP ? 0 : ret;
 319}
 320
 321/**
 322 * tb_disable_clx() - Disable CL states up to host router
 323 * @sw: Router to start
 324 *
 325 * Disables CL states from @sw up to the host router. Returns true if
 326 * any CL state were disabled. This can be used to figure out whether
 327 * the link was setup by us or the boot firmware so we don't
 328 * accidentally enable them if they were not enabled during discovery.
 329 */
 330static bool tb_disable_clx(struct tb_switch *sw)
 331{
 332	bool disabled = false;
 333
 334	do {
 335		int ret;
 336
 337		ret = tb_switch_clx_disable(sw);
 338		if (ret > 0)
 339			disabled = true;
 340		else if (ret < 0)
 341			tb_sw_warn(sw, "failed to disable CL states\n");
 342
 343		sw = tb_switch_parent(sw);
 344	} while (sw);
 345
 346	return disabled;
 347}
 348
 349static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
 350{
 351	struct tb_switch *sw;
 352
 353	sw = tb_to_switch(dev);
 354	if (!sw)
 355		return 0;
 356
 357	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
 358		enum tb_switch_tmu_mode mode;
 359		int ret;
 360
 361		if (tb_switch_clx_is_enabled(sw, TB_CL1))
 362			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
 363		else
 364			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
 365
 366		ret = tb_switch_tmu_configure(sw, mode);
 367		if (ret)
 368			return ret;
 369
 370		return tb_switch_tmu_enable(sw);
 371	}
 372
 373	return 0;
 374}
 375
 376static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
 377{
 378	struct tb_switch *sw;
 379
 380	if (!tunnel)
 381		return;
 382
 383	/*
 384	 * Once first DP tunnel is established we change the TMU
 385	 * accuracy of first depth child routers (and the host router)
 386	 * to the highest. This is needed for the DP tunneling to work
 387	 * but also allows CL0s.
 388	 *
 389	 * If both routers are v2 then we don't need to do anything as
 390	 * they are using enhanced TMU mode that allows all CLx.
 391	 */
 392	sw = tunnel->tb->root_switch;
 393	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
 394}
 395
 396static int tb_enable_tmu(struct tb_switch *sw)
 397{
 398	int ret;
 399
 400	/*
 401	 * If both routers at the end of the link are v2 we simply
 402	 * enable the enhanched uni-directional mode. That covers all
 403	 * the CL states. For v1 and before we need to use the normal
 404	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
 405	 * running at the highest accuracy.
 406	 */
 407	ret = tb_switch_tmu_configure(sw,
 408			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
 409	if (ret == -EOPNOTSUPP) {
 410		if (tb_switch_clx_is_enabled(sw, TB_CL1))
 411			ret = tb_switch_tmu_configure(sw,
 412					TB_SWITCH_TMU_MODE_LOWRES);
 413		else
 414			ret = tb_switch_tmu_configure(sw,
 415					TB_SWITCH_TMU_MODE_HIFI_BI);
 416	}
 417	if (ret)
 418		return ret;
 419
 420	/* If it is already enabled in correct mode, don't touch it */
 421	if (tb_switch_tmu_is_enabled(sw))
 422		return 0;
 423
 424	ret = tb_switch_tmu_disable(sw);
 425	if (ret)
 426		return ret;
 427
 428	ret = tb_switch_tmu_post_time(sw);
 429	if (ret)
 430		return ret;
 431
 432	return tb_switch_tmu_enable(sw);
 433}
 434
 435static void tb_switch_discover_tunnels(struct tb_switch *sw,
 436				       struct list_head *list,
 437				       bool alloc_hopids)
 438{
 439	struct tb *tb = sw->tb;
 440	struct tb_port *port;
 441
 442	tb_switch_for_each_port(sw, port) {
 443		struct tb_tunnel *tunnel = NULL;
 444
 445		switch (port->config.type) {
 446		case TB_TYPE_DP_HDMI_IN:
 447			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
 448			tb_increase_tmu_accuracy(tunnel);
 449			break;
 450
 451		case TB_TYPE_PCIE_DOWN:
 452			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
 453			break;
 454
 455		case TB_TYPE_USB3_DOWN:
 456			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
 457			break;
 458
 459		default:
 460			break;
 461		}
 462
 463		if (tunnel)
 464			list_add_tail(&tunnel->list, list);
 465	}
 466
 467	tb_switch_for_each_port(sw, port) {
 468		if (tb_port_has_remote(port)) {
 469			tb_switch_discover_tunnels(port->remote->sw, list,
 470						   alloc_hopids);
 471		}
 472	}
 473}
 474
 475static void tb_discover_tunnels(struct tb *tb)
 476{
 477	struct tb_cm *tcm = tb_priv(tb);
 478	struct tb_tunnel *tunnel;
 479
 480	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
 481
 482	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 483		if (tb_tunnel_is_pci(tunnel)) {
 484			struct tb_switch *parent = tunnel->dst_port->sw;
 485
 486			while (parent != tunnel->src_port->sw) {
 487				parent->boot = true;
 488				parent = tb_switch_parent(parent);
 489			}
 490		} else if (tb_tunnel_is_dp(tunnel)) {
 491			struct tb_port *in = tunnel->src_port;
 492			struct tb_port *out = tunnel->dst_port;
 493
 494			/* Keep the domain from powering down */
 495			pm_runtime_get_sync(&in->sw->dev);
 496			pm_runtime_get_sync(&out->sw->dev);
 497
 498			tb_discover_bandwidth_group(tcm, in, out);
 499		}
 500	}
 501}
 502
 503static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
 504{
 505	if (tb_switch_is_usb4(port->sw))
 506		return usb4_port_configure_xdomain(port, xd);
 507	return tb_lc_configure_xdomain(port);
 508}
 509
 510static void tb_port_unconfigure_xdomain(struct tb_port *port)
 511{
 512	if (tb_switch_is_usb4(port->sw))
 513		usb4_port_unconfigure_xdomain(port);
 514	else
 515		tb_lc_unconfigure_xdomain(port);
 516}
 517
 518static void tb_scan_xdomain(struct tb_port *port)
 519{
 520	struct tb_switch *sw = port->sw;
 521	struct tb *tb = sw->tb;
 522	struct tb_xdomain *xd;
 523	u64 route;
 524
 525	if (!tb_is_xdomain_enabled())
 526		return;
 527
 528	route = tb_downstream_route(port);
 529	xd = tb_xdomain_find_by_route(tb, route);
 530	if (xd) {
 531		tb_xdomain_put(xd);
 532		return;
 533	}
 534
 535	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
 536			      NULL);
 537	if (xd) {
 538		tb_port_at(route, sw)->xdomain = xd;
 539		tb_port_configure_xdomain(port, xd);
 540		tb_xdomain_add(xd);
 541	}
 542}
 543
 544/**
 545 * tb_find_unused_port() - return the first inactive port on @sw
 546 * @sw: Switch to find the port on
 547 * @type: Port type to look for
 548 */
 549static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
 550					   enum tb_port_type type)
 551{
 552	struct tb_port *port;
 553
 554	tb_switch_for_each_port(sw, port) {
 555		if (tb_is_upstream_port(port))
 556			continue;
 557		if (port->config.type != type)
 558			continue;
 559		if (!port->cap_adap)
 560			continue;
 561		if (tb_port_is_enabled(port))
 562			continue;
 563		return port;
 564	}
 565	return NULL;
 566}
 567
 568static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
 569					 const struct tb_port *port)
 570{
 571	struct tb_port *down;
 572
 573	down = usb4_switch_map_usb3_down(sw, port);
 574	if (down && !tb_usb3_port_is_enabled(down))
 575		return down;
 576	return NULL;
 577}
 578
 579static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
 580					struct tb_port *src_port,
 581					struct tb_port *dst_port)
 582{
 583	struct tb_cm *tcm = tb_priv(tb);
 584	struct tb_tunnel *tunnel;
 585
 586	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 587		if (tunnel->type == type &&
 588		    ((src_port && src_port == tunnel->src_port) ||
 589		     (dst_port && dst_port == tunnel->dst_port))) {
 590			return tunnel;
 591		}
 592	}
 593
 594	return NULL;
 595}
 596
 597static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
 598						   struct tb_port *src_port,
 599						   struct tb_port *dst_port)
 600{
 601	struct tb_port *port, *usb3_down;
 602	struct tb_switch *sw;
 603
 604	/* Pick the router that is deepest in the topology */
 605	if (tb_port_path_direction_downstream(src_port, dst_port))
 606		sw = dst_port->sw;
 607	else
 608		sw = src_port->sw;
 609
 610	/* Can't be the host router */
 611	if (sw == tb->root_switch)
 612		return NULL;
 613
 614	/* Find the downstream USB4 port that leads to this router */
 615	port = tb_port_at(tb_route(sw), tb->root_switch);
 616	/* Find the corresponding host router USB3 downstream port */
 617	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
 618	if (!usb3_down)
 619		return NULL;
 620
 621	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
 622}
 623
 624/**
 625 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
 626 * @tb: Domain structure
 627 * @src_port: Source protocol adapter
 628 * @dst_port: Destination protocol adapter
 629 * @port: USB4 port the consumed bandwidth is calculated
 630 * @consumed_up: Consumed upsream bandwidth (Mb/s)
 631 * @consumed_down: Consumed downstream bandwidth (Mb/s)
 632 *
 633 * Calculates consumed USB3 and PCIe bandwidth at @port between path
 634 * from @src_port to @dst_port. Does not take tunnel starting from
 635 * @src_port and ending from @src_port into account.
 636 */
 637static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
 638					   struct tb_port *src_port,
 639					   struct tb_port *dst_port,
 640					   struct tb_port *port,
 641					   int *consumed_up,
 642					   int *consumed_down)
 643{
 644	int pci_consumed_up, pci_consumed_down;
 645	struct tb_tunnel *tunnel;
 646
 647	*consumed_up = *consumed_down = 0;
 648
 649	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 650	if (tunnel && tunnel->src_port != src_port &&
 651	    tunnel->dst_port != dst_port) {
 652		int ret;
 653
 654		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
 655						   consumed_down);
 656		if (ret)
 657			return ret;
 658	}
 659
 660	/*
 661	 * If there is anything reserved for PCIe bulk traffic take it
 662	 * into account here too.
 663	 */
 664	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
 665		*consumed_up += pci_consumed_up;
 666		*consumed_down += pci_consumed_down;
 667	}
 668
 669	return 0;
 670}
 671
 672/**
 673 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
 674 * @tb: Domain structure
 675 * @src_port: Source protocol adapter
 676 * @dst_port: Destination protocol adapter
 677 * @port: USB4 port the consumed bandwidth is calculated
 678 * @consumed_up: Consumed upsream bandwidth (Mb/s)
 679 * @consumed_down: Consumed downstream bandwidth (Mb/s)
 680 *
 681 * Calculates consumed DP bandwidth at @port between path from @src_port
 682 * to @dst_port. Does not take tunnel starting from @src_port and ending
 683 * from @src_port into account.
 684 */
 685static int tb_consumed_dp_bandwidth(struct tb *tb,
 686				    struct tb_port *src_port,
 687				    struct tb_port *dst_port,
 688				    struct tb_port *port,
 689				    int *consumed_up,
 690				    int *consumed_down)
 691{
 692	struct tb_cm *tcm = tb_priv(tb);
 693	struct tb_tunnel *tunnel;
 694	int ret;
 695
 696	*consumed_up = *consumed_down = 0;
 697
 698	/*
 699	 * Find all DP tunnels that cross the port and reduce
 700	 * their consumed bandwidth from the available.
 701	 */
 702	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 703		int dp_consumed_up, dp_consumed_down;
 704
 705		if (tb_tunnel_is_invalid(tunnel))
 706			continue;
 707
 708		if (!tb_tunnel_is_dp(tunnel))
 709			continue;
 710
 711		if (!tb_tunnel_port_on_path(tunnel, port))
 712			continue;
 713
 714		/*
 715		 * Ignore the DP tunnel between src_port and dst_port
 716		 * because it is the same tunnel and we may be
 717		 * re-calculating estimated bandwidth.
 718		 */
 719		if (tunnel->src_port == src_port &&
 720		    tunnel->dst_port == dst_port)
 721			continue;
 722
 723		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
 724						   &dp_consumed_down);
 725		if (ret)
 726			return ret;
 727
 728		*consumed_up += dp_consumed_up;
 729		*consumed_down += dp_consumed_down;
 730	}
 731
 732	return 0;
 733}
 734
 735static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
 736			      struct tb_port *port)
 737{
 738	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
 739	enum tb_link_width width;
 740
 741	if (tb_is_upstream_port(port))
 742		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
 743	else
 744		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
 745
 746	return tb_port_width_supported(port, width);
 747}
 748
 749/**
 750 * tb_maximum_bandwidth() - Maximum bandwidth over a single link
 751 * @tb: Domain structure
 752 * @src_port: Source protocol adapter
 753 * @dst_port: Destination protocol adapter
 754 * @port: USB4 port the total bandwidth is calculated
 755 * @max_up: Maximum upstream bandwidth (Mb/s)
 756 * @max_down: Maximum downstream bandwidth (Mb/s)
 757 * @include_asym: Include bandwidth if the link is switched from
 758 *		  symmetric to asymmetric
 759 *
 760 * Returns maximum possible bandwidth in @max_up and @max_down over a
 761 * single link at @port. If @include_asym is set then includes the
 762 * additional banwdith if the links are transitioned into asymmetric to
 763 * direction from @src_port to @dst_port.
 764 */
 765static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
 766				struct tb_port *dst_port, struct tb_port *port,
 767				int *max_up, int *max_down, bool include_asym)
 768{
 769	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
 770	int link_speed, link_width, up_bw, down_bw;
 771
 772	/*
 773	 * Can include asymmetric, only if it is actually supported by
 774	 * the lane adapter.
 775	 */
 776	if (!tb_asym_supported(src_port, dst_port, port))
 777		include_asym = false;
 778
 779	if (tb_is_upstream_port(port)) {
 780		link_speed = port->sw->link_speed;
 781		/*
 782		 * sw->link_width is from upstream perspective so we use
 783		 * the opposite for downstream of the host router.
 784		 */
 785		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
 786			up_bw = link_speed * 3 * 1000;
 787			down_bw = link_speed * 1 * 1000;
 788		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
 789			up_bw = link_speed * 1 * 1000;
 790			down_bw = link_speed * 3 * 1000;
 791		} else if (include_asym) {
 792			/*
 793			 * The link is symmetric at the moment but we
 794			 * can switch it to asymmetric as needed. Report
 795			 * this bandwidth as available (even though it
 796			 * is not yet enabled).
 797			 */
 798			if (downstream) {
 799				up_bw = link_speed * 1 * 1000;
 800				down_bw = link_speed * 3 * 1000;
 801			} else {
 802				up_bw = link_speed * 3 * 1000;
 803				down_bw = link_speed * 1 * 1000;
 804			}
 805		} else {
 806			up_bw = link_speed * port->sw->link_width * 1000;
 807			down_bw = up_bw;
 808		}
 809	} else {
 810		link_speed = tb_port_get_link_speed(port);
 811		if (link_speed < 0)
 812			return link_speed;
 813
 814		link_width = tb_port_get_link_width(port);
 815		if (link_width < 0)
 816			return link_width;
 817
 818		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
 819			up_bw = link_speed * 1 * 1000;
 820			down_bw = link_speed * 3 * 1000;
 821		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
 822			up_bw = link_speed * 3 * 1000;
 823			down_bw = link_speed * 1 * 1000;
 824		} else if (include_asym) {
 825			/*
 826			 * The link is symmetric at the moment but we
 827			 * can switch it to asymmetric as needed. Report
 828			 * this bandwidth as available (even though it
 829			 * is not yet enabled).
 830			 */
 831			if (downstream) {
 832				up_bw = link_speed * 1 * 1000;
 833				down_bw = link_speed * 3 * 1000;
 834			} else {
 835				up_bw = link_speed * 3 * 1000;
 836				down_bw = link_speed * 1 * 1000;
 837			}
 838		} else {
 839			up_bw = link_speed * link_width * 1000;
 840			down_bw = up_bw;
 841		}
 842	}
 843
 844	/* Leave 10% guard band */
 845	*max_up = up_bw - up_bw / 10;
 846	*max_down = down_bw - down_bw / 10;
 847
 848	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
 849	return 0;
 850}
 851
 852/**
 853 * tb_available_bandwidth() - Available bandwidth for tunneling
 854 * @tb: Domain structure
 855 * @src_port: Source protocol adapter
 856 * @dst_port: Destination protocol adapter
 857 * @available_up: Available bandwidth upstream (Mb/s)
 858 * @available_down: Available bandwidth downstream (Mb/s)
 859 * @include_asym: Include bandwidth if the link is switched from
 860 *		  symmetric to asymmetric
 861 *
 862 * Calculates maximum available bandwidth for protocol tunneling between
 863 * @src_port and @dst_port at the moment. This is minimum of maximum
 864 * link bandwidth across all links reduced by currently consumed
 865 * bandwidth on that link.
 866 *
 867 * If @include_asym is true then includes also bandwidth that can be
 868 * added when the links are transitioned into asymmetric (but does not
 869 * transition the links).
 870 */
 871static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
 872				 struct tb_port *dst_port, int *available_up,
 873				 int *available_down, bool include_asym)
 874{
 875	struct tb_port *port;
 876	int ret;
 877
 878	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
 879	*available_up = *available_down = 120000;
 880
 881	/* Find the minimum available bandwidth over all links */
 882	tb_for_each_port_on_path(src_port, dst_port, port) {
 883		int max_up, max_down, consumed_up, consumed_down;
 884
 885		if (!tb_port_is_null(port))
 886			continue;
 887
 888		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
 889					   &max_up, &max_down, include_asym);
 890		if (ret)
 891			return ret;
 892
 893		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
 894						      port, &consumed_up,
 895						      &consumed_down);
 896		if (ret)
 897			return ret;
 898		max_up -= consumed_up;
 899		max_down -= consumed_down;
 900
 901		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
 902					       &consumed_up, &consumed_down);
 903		if (ret)
 904			return ret;
 905		max_up -= consumed_up;
 906		max_down -= consumed_down;
 907
 908		if (max_up < *available_up)
 909			*available_up = max_up;
 910		if (max_down < *available_down)
 911			*available_down = max_down;
 912	}
 913
 914	if (*available_up < 0)
 915		*available_up = 0;
 916	if (*available_down < 0)
 917		*available_down = 0;
 918
 919	return 0;
 920}
 921
 922static int tb_release_unused_usb3_bandwidth(struct tb *tb,
 923					    struct tb_port *src_port,
 924					    struct tb_port *dst_port)
 925{
 926	struct tb_tunnel *tunnel;
 927
 928	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 929	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
 930}
 931
 932static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
 933				      struct tb_port *dst_port)
 934{
 935	int ret, available_up, available_down;
 936	struct tb_tunnel *tunnel;
 937
 938	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 939	if (!tunnel)
 940		return;
 941
 942	tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
 943
 944	/*
 945	 * Calculate available bandwidth for the first hop USB3 tunnel.
 946	 * That determines the whole USB3 bandwidth for this branch.
 947	 */
 948	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
 949				     &available_up, &available_down, false);
 950	if (ret) {
 951		tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
 952		return;
 953	}
 954
 955	tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
 956		      available_down);
 957
 958	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
 959}
 960
 961static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
 962{
 963	struct tb_switch *parent = tb_switch_parent(sw);
 964	int ret, available_up, available_down;
 965	struct tb_port *up, *down, *port;
 966	struct tb_cm *tcm = tb_priv(tb);
 967	struct tb_tunnel *tunnel;
 968
 969	if (!tb_acpi_may_tunnel_usb3()) {
 970		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
 971		return 0;
 972	}
 973
 974	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
 975	if (!up)
 976		return 0;
 977
 978	if (!sw->link_usb4)
 979		return 0;
 980
 981	/*
 982	 * Look up available down port. Since we are chaining it should
 983	 * be found right above this switch.
 984	 */
 985	port = tb_switch_downstream_port(sw);
 986	down = tb_find_usb3_down(parent, port);
 987	if (!down)
 988		return 0;
 989
 990	if (tb_route(parent)) {
 991		struct tb_port *parent_up;
 992		/*
 993		 * Check first that the parent switch has its upstream USB3
 994		 * port enabled. Otherwise the chain is not complete and
 995		 * there is no point setting up a new tunnel.
 996		 */
 997		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
 998		if (!parent_up || !tb_port_is_enabled(parent_up))
 999			return 0;
1000
1001		/* Make all unused bandwidth available for the new tunnel */
1002		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
1003		if (ret)
1004			return ret;
1005	}
1006
1007	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
1008				     false);
1009	if (ret)
1010		goto err_reclaim;
1011
1012	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
1013		    available_up, available_down);
1014
1015	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
1016				      available_down);
1017	if (!tunnel) {
1018		ret = -ENOMEM;
1019		goto err_reclaim;
1020	}
1021
1022	if (tb_tunnel_activate(tunnel)) {
1023		tb_port_info(up,
1024			     "USB3 tunnel activation failed, aborting\n");
1025		ret = -EIO;
1026		goto err_free;
1027	}
1028
1029	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1030	if (tb_route(parent))
1031		tb_reclaim_usb3_bandwidth(tb, down, up);
1032
1033	return 0;
1034
1035err_free:
1036	tb_tunnel_free(tunnel);
1037err_reclaim:
1038	if (tb_route(parent))
1039		tb_reclaim_usb3_bandwidth(tb, down, up);
1040
1041	return ret;
1042}
1043
1044static int tb_create_usb3_tunnels(struct tb_switch *sw)
1045{
1046	struct tb_port *port;
1047	int ret;
1048
1049	if (!tb_acpi_may_tunnel_usb3())
1050		return 0;
1051
1052	if (tb_route(sw)) {
1053		ret = tb_tunnel_usb3(sw->tb, sw);
1054		if (ret)
1055			return ret;
1056	}
1057
1058	tb_switch_for_each_port(sw, port) {
1059		if (!tb_port_has_remote(port))
1060			continue;
1061		ret = tb_create_usb3_tunnels(port->remote->sw);
1062		if (ret)
1063			return ret;
1064	}
1065
1066	return 0;
1067}
1068
1069/**
1070 * tb_configure_asym() - Transition links to asymmetric if needed
1071 * @tb: Domain structure
1072 * @src_port: Source adapter to start the transition
1073 * @dst_port: Destination adapter
1074 * @requested_up: Additional bandwidth (Mb/s) required upstream
1075 * @requested_down: Additional bandwidth (Mb/s) required downstream
1076 *
1077 * Transition links between @src_port and @dst_port into asymmetric, with
1078 * three lanes in the direction from @src_port towards @dst_port and one lane
1079 * in the opposite direction, if the bandwidth requirements
1080 * (requested + currently consumed) on that link exceed @asym_threshold.
1081 *
1082 * Must be called with available >= requested over all links.
1083 */
1084static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1085			     struct tb_port *dst_port, int requested_up,
1086			     int requested_down)
1087{
1088	bool clx = false, clx_disabled = false, downstream;
1089	struct tb_switch *sw;
1090	struct tb_port *up;
1091	int ret = 0;
1092
1093	if (!asym_threshold)
1094		return 0;
1095
1096	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1097	/* Pick up router deepest in the hierarchy */
1098	if (downstream)
1099		sw = dst_port->sw;
1100	else
1101		sw = src_port->sw;
1102
1103	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1104		struct tb_port *down = tb_switch_downstream_port(up->sw);
1105		enum tb_link_width width_up, width_down;
1106		int consumed_up, consumed_down;
1107
1108		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1109					       &consumed_up, &consumed_down);
1110		if (ret)
1111			break;
1112
1113		if (downstream) {
1114			/*
1115			 * Downstream so make sure upstream is within the 36G
1116			 * (40G - guard band 10%), and the requested is above
1117			 * what the threshold is.
1118			 */
1119			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1120				ret = -ENOBUFS;
1121				break;
1122			}
1123			/* Does consumed + requested exceed the threshold */
1124			if (consumed_down + requested_down < asym_threshold)
1125				continue;
1126
1127			width_up = TB_LINK_WIDTH_ASYM_RX;
1128			width_down = TB_LINK_WIDTH_ASYM_TX;
1129		} else {
1130			/* Upstream, the opposite of above */
1131			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1132				ret = -ENOBUFS;
1133				break;
1134			}
1135			if (consumed_up + requested_up < asym_threshold)
1136				continue;
1137
1138			width_up = TB_LINK_WIDTH_ASYM_TX;
1139			width_down = TB_LINK_WIDTH_ASYM_RX;
1140		}
1141
1142		if (up->sw->link_width == width_up)
1143			continue;
1144
1145		if (!tb_port_width_supported(up, width_up) ||
1146		    !tb_port_width_supported(down, width_down))
1147			continue;
1148
1149		/*
1150		 * Disable CL states before doing any transitions. We
1151		 * delayed it until now that we know there is a real
1152		 * transition taking place.
1153		 */
1154		if (!clx_disabled) {
1155			clx = tb_disable_clx(sw);
1156			clx_disabled = true;
1157		}
1158
1159		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1160
1161		/*
1162		 * Here requested + consumed > threshold so we need to
1163		 * transtion the link into asymmetric now.
1164		 */
1165		ret = tb_switch_set_link_width(up->sw, width_up);
1166		if (ret) {
1167			tb_sw_warn(up->sw, "failed to set link width\n");
1168			break;
1169		}
1170	}
1171
1172	/* Re-enable CL states if they were previosly enabled */
1173	if (clx)
1174		tb_enable_clx(sw);
1175
1176	return ret;
1177}
1178
1179/**
1180 * tb_configure_sym() - Transition links to symmetric if possible
1181 * @tb: Domain structure
1182 * @src_port: Source adapter to start the transition
1183 * @dst_port: Destination adapter
1184 * @requested_up: New lower bandwidth request upstream (Mb/s)
1185 * @requested_down: New lower bandwidth request downstream (Mb/s)
1186 * @keep_asym: Keep asymmetric link if preferred
1187 *
1188 * Goes over each link from @src_port to @dst_port and tries to
1189 * transition the link to symmetric if the currently consumed bandwidth
1190 * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1191 */
1192static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1193			    struct tb_port *dst_port, int requested_up,
1194			    int requested_down, bool keep_asym)
1195{
1196	bool clx = false, clx_disabled = false, downstream;
1197	struct tb_switch *sw;
1198	struct tb_port *up;
1199	int ret = 0;
1200
1201	if (!asym_threshold)
1202		return 0;
1203
1204	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1205	/* Pick up router deepest in the hierarchy */
1206	if (downstream)
1207		sw = dst_port->sw;
1208	else
1209		sw = src_port->sw;
1210
1211	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1212		int consumed_up, consumed_down;
1213
1214		/* Already symmetric */
1215		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1216			continue;
1217		/* Unplugged, no need to switch */
1218		if (up->sw->is_unplugged)
1219			continue;
1220
1221		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1222					       &consumed_up, &consumed_down);
1223		if (ret)
1224			break;
1225
1226		if (downstream) {
1227			/*
1228			 * Downstream so we want the consumed_down < threshold.
1229			 * Upstream traffic should be less than 36G (40G
1230			 * guard band 10%) as the link was configured asymmetric
1231			 * already.
1232			 */
1233			if (consumed_down + requested_down >= asym_threshold)
1234				continue;
1235		} else {
1236			if (consumed_up + requested_up >= asym_threshold)
1237				continue;
1238		}
1239
1240		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1241			continue;
1242
1243		/*
1244		 * Here consumed < threshold so we can transition the
1245		 * link to symmetric.
1246		 *
1247		 * However, if the router prefers asymmetric link we
1248		 * honor that (unless @keep_asym is %false).
1249		 */
1250		if (keep_asym &&
1251		    up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1252			tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1253			continue;
1254		}
1255
1256		/* Disable CL states before doing any transitions */
1257		if (!clx_disabled) {
1258			clx = tb_disable_clx(sw);
1259			clx_disabled = true;
1260		}
1261
1262		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1263
1264		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1265		if (ret) {
1266			tb_sw_warn(up->sw, "failed to set link width\n");
1267			break;
1268		}
1269	}
1270
1271	/* Re-enable CL states if they were previosly enabled */
1272	if (clx)
1273		tb_enable_clx(sw);
1274
1275	return ret;
1276}
1277
1278static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1279			      struct tb_switch *sw)
1280{
1281	struct tb *tb = sw->tb;
1282
1283	/* Link the routers using both links if available */
1284	down->remote = up;
1285	up->remote = down;
1286	if (down->dual_link_port && up->dual_link_port) {
1287		down->dual_link_port->remote = up->dual_link_port;
1288		up->dual_link_port->remote = down->dual_link_port;
1289	}
1290
1291	/*
1292	 * Enable lane bonding if the link is currently two single lane
1293	 * links.
1294	 */
1295	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1296		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1297
1298	/*
1299	 * Device router that comes up as symmetric link is
1300	 * connected deeper in the hierarchy, we transition the links
1301	 * above into symmetric if bandwidth allows.
1302	 */
1303	if (tb_switch_depth(sw) > 1 &&
1304	    tb_port_get_link_generation(up) >= 4 &&
1305	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1306		struct tb_port *host_port;
1307
1308		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1309		tb_configure_sym(tb, host_port, up, 0, 0, false);
1310	}
1311
1312	/* Set the link configured */
1313	tb_switch_configure_link(sw);
1314}
1315
1316static void tb_scan_port(struct tb_port *port);
1317
1318/*
1319 * tb_scan_switch() - scan for and initialize downstream switches
1320 */
1321static void tb_scan_switch(struct tb_switch *sw)
1322{
1323	struct tb_port *port;
1324
1325	pm_runtime_get_sync(&sw->dev);
1326
1327	tb_switch_for_each_port(sw, port)
1328		tb_scan_port(port);
1329
1330	pm_runtime_mark_last_busy(&sw->dev);
1331	pm_runtime_put_autosuspend(&sw->dev);
1332}
1333
1334/*
1335 * tb_scan_port() - check for and initialize switches below port
1336 */
1337static void tb_scan_port(struct tb_port *port)
1338{
1339	struct tb_cm *tcm = tb_priv(port->sw->tb);
1340	struct tb_port *upstream_port;
1341	bool discovery = false;
1342	struct tb_switch *sw;
1343
1344	if (tb_is_upstream_port(port))
1345		return;
1346
1347	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1348	    !tb_dp_port_is_enabled(port)) {
1349		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1350		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1351				 false);
1352		return;
1353	}
1354
1355	if (port->config.type != TB_TYPE_PORT)
1356		return;
1357	if (port->dual_link_port && port->link_nr)
1358		return; /*
1359			 * Downstream switch is reachable through two ports.
1360			 * Only scan on the primary port (link_nr == 0).
1361			 */
1362
1363	if (port->usb4)
1364		pm_runtime_get_sync(&port->usb4->dev);
1365
1366	if (tb_wait_for_port(port, false) <= 0)
1367		goto out_rpm_put;
1368	if (port->remote) {
1369		tb_port_dbg(port, "port already has a remote\n");
1370		goto out_rpm_put;
1371	}
1372
1373	tb_retimer_scan(port, true);
1374
1375	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1376			     tb_downstream_route(port));
1377	if (IS_ERR(sw)) {
1378		/*
1379		 * If there is an error accessing the connected switch
1380		 * it may be connected to another domain. Also we allow
1381		 * the other domain to be connected to a max depth switch.
1382		 */
1383		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1384			tb_scan_xdomain(port);
1385		goto out_rpm_put;
1386	}
1387
1388	if (tb_switch_configure(sw)) {
1389		tb_switch_put(sw);
1390		goto out_rpm_put;
1391	}
1392
1393	/*
1394	 * If there was previously another domain connected remove it
1395	 * first.
1396	 */
1397	if (port->xdomain) {
1398		tb_xdomain_remove(port->xdomain);
1399		tb_port_unconfigure_xdomain(port);
1400		port->xdomain = NULL;
1401	}
1402
1403	/*
1404	 * Do not send uevents until we have discovered all existing
1405	 * tunnels and know which switches were authorized already by
1406	 * the boot firmware.
1407	 */
1408	if (!tcm->hotplug_active) {
1409		dev_set_uevent_suppress(&sw->dev, true);
1410		discovery = true;
1411	}
1412
1413	/*
1414	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1415	 * can support runtime PM.
1416	 */
1417	sw->rpm = sw->generation > 1;
1418
1419	if (tb_switch_add(sw)) {
1420		tb_switch_put(sw);
1421		goto out_rpm_put;
1422	}
1423
1424	upstream_port = tb_upstream_port(sw);
1425	tb_configure_link(port, upstream_port, sw);
1426
1427	/*
1428	 * CL0s and CL1 are enabled and supported together.
1429	 * Silently ignore CLx enabling in case CLx is not supported.
1430	 */
1431	if (discovery)
1432		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1433	else if (tb_enable_clx(sw))
1434		tb_sw_warn(sw, "failed to enable CL states\n");
1435
1436	if (tb_enable_tmu(sw))
1437		tb_sw_warn(sw, "failed to enable TMU\n");
1438
1439	/*
1440	 * Configuration valid needs to be set after the TMU has been
1441	 * enabled for the upstream port of the router so we do it here.
1442	 */
1443	tb_switch_configuration_valid(sw);
1444
1445	/* Scan upstream retimers */
1446	tb_retimer_scan(upstream_port, true);
1447
1448	/*
1449	 * Create USB 3.x tunnels only when the switch is plugged to the
1450	 * domain. This is because we scan the domain also during discovery
1451	 * and want to discover existing USB 3.x tunnels before we create
1452	 * any new.
1453	 */
1454	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1455		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1456
1457	tb_add_dp_resources(sw);
1458	tb_scan_switch(sw);
1459
1460out_rpm_put:
1461	if (port->usb4) {
1462		pm_runtime_mark_last_busy(&port->usb4->dev);
1463		pm_runtime_put_autosuspend(&port->usb4->dev);
1464	}
1465}
1466
1467static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1468{
1469	struct tb_port *src_port, *dst_port;
1470	struct tb *tb;
1471
1472	if (!tunnel)
1473		return;
1474
1475	tb_tunnel_deactivate(tunnel);
1476	list_del(&tunnel->list);
1477
1478	tb = tunnel->tb;
1479	src_port = tunnel->src_port;
1480	dst_port = tunnel->dst_port;
1481
1482	switch (tunnel->type) {
1483	case TB_TUNNEL_DP:
1484		tb_detach_bandwidth_group(src_port);
1485		/*
1486		 * In case of DP tunnel make sure the DP IN resource is
1487		 * deallocated properly.
1488		 */
1489		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1490		/*
1491		 * If bandwidth on a link is < asym_threshold
1492		 * transition the link to symmetric.
1493		 */
1494		tb_configure_sym(tb, src_port, dst_port, 0, 0, true);
1495		/* Now we can allow the domain to runtime suspend again */
1496		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1497		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1498		pm_runtime_mark_last_busy(&src_port->sw->dev);
1499		pm_runtime_put_autosuspend(&src_port->sw->dev);
1500		fallthrough;
1501
1502	case TB_TUNNEL_USB3:
1503		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1504		break;
1505
1506	default:
1507		/*
1508		 * PCIe and DMA tunnels do not consume guaranteed
1509		 * bandwidth.
1510		 */
1511		break;
1512	}
1513
1514	tb_tunnel_free(tunnel);
1515}
1516
1517/*
1518 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1519 */
1520static void tb_free_invalid_tunnels(struct tb *tb)
1521{
1522	struct tb_cm *tcm = tb_priv(tb);
1523	struct tb_tunnel *tunnel;
1524	struct tb_tunnel *n;
1525
1526	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1527		if (tb_tunnel_is_invalid(tunnel))
1528			tb_deactivate_and_free_tunnel(tunnel);
1529	}
1530}
1531
1532/*
1533 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1534 */
1535static void tb_free_unplugged_children(struct tb_switch *sw)
1536{
1537	struct tb_port *port;
1538
1539	tb_switch_for_each_port(sw, port) {
1540		if (!tb_port_has_remote(port))
1541			continue;
1542
1543		if (port->remote->sw->is_unplugged) {
1544			tb_retimer_remove_all(port);
1545			tb_remove_dp_resources(port->remote->sw);
1546			tb_switch_unconfigure_link(port->remote->sw);
1547			tb_switch_set_link_width(port->remote->sw,
1548						 TB_LINK_WIDTH_SINGLE);
1549			tb_switch_remove(port->remote->sw);
1550			port->remote = NULL;
1551			if (port->dual_link_port)
1552				port->dual_link_port->remote = NULL;
1553		} else {
1554			tb_free_unplugged_children(port->remote->sw);
1555		}
1556	}
1557}
1558
1559static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1560					 const struct tb_port *port)
1561{
1562	struct tb_port *down = NULL;
1563
1564	/*
1565	 * To keep plugging devices consistently in the same PCIe
1566	 * hierarchy, do mapping here for switch downstream PCIe ports.
1567	 */
1568	if (tb_switch_is_usb4(sw)) {
1569		down = usb4_switch_map_pcie_down(sw, port);
1570	} else if (!tb_route(sw)) {
1571		int phy_port = tb_phy_port_from_link(port->port);
1572		int index;
1573
1574		/*
1575		 * Hard-coded Thunderbolt port to PCIe down port mapping
1576		 * per controller.
1577		 */
1578		if (tb_switch_is_cactus_ridge(sw) ||
1579		    tb_switch_is_alpine_ridge(sw))
1580			index = !phy_port ? 6 : 7;
1581		else if (tb_switch_is_falcon_ridge(sw))
1582			index = !phy_port ? 6 : 8;
1583		else if (tb_switch_is_titan_ridge(sw))
1584			index = !phy_port ? 8 : 9;
1585		else
1586			goto out;
1587
1588		/* Validate the hard-coding */
1589		if (WARN_ON(index > sw->config.max_port_number))
1590			goto out;
1591
1592		down = &sw->ports[index];
1593	}
1594
1595	if (down) {
1596		if (WARN_ON(!tb_port_is_pcie_down(down)))
1597			goto out;
1598		if (tb_pci_port_is_enabled(down))
1599			goto out;
1600
1601		return down;
1602	}
1603
1604out:
1605	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1606}
1607
1608static void
1609tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1610{
1611	struct tb_tunnel *first_tunnel;
1612	struct tb *tb = group->tb;
1613	struct tb_port *in;
1614	int ret;
1615
1616	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1617	       group->index);
1618
1619	first_tunnel = NULL;
1620	list_for_each_entry(in, &group->ports, group_list) {
1621		int estimated_bw, estimated_up, estimated_down;
1622		struct tb_tunnel *tunnel;
1623		struct tb_port *out;
1624
1625		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1626			continue;
1627
1628		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1629		if (WARN_ON(!tunnel))
1630			break;
1631
1632		if (!first_tunnel) {
1633			/*
1634			 * Since USB3 bandwidth is shared by all DP
1635			 * tunnels under the host router USB4 port, even
1636			 * if they do not begin from the host router, we
1637			 * can release USB3 bandwidth just once and not
1638			 * for each tunnel separately.
1639			 */
1640			first_tunnel = tunnel;
1641			ret = tb_release_unused_usb3_bandwidth(tb,
1642				first_tunnel->src_port, first_tunnel->dst_port);
1643			if (ret) {
1644				tb_tunnel_warn(tunnel,
1645					"failed to release unused bandwidth\n");
1646				break;
1647			}
1648		}
1649
1650		out = tunnel->dst_port;
1651		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1652					     &estimated_down, true);
1653		if (ret) {
1654			tb_tunnel_warn(tunnel,
1655				"failed to re-calculate estimated bandwidth\n");
1656			break;
1657		}
1658
1659		/*
1660		 * Estimated bandwidth includes:
1661		 *  - already allocated bandwidth for the DP tunnel
1662		 *  - available bandwidth along the path
1663		 *  - bandwidth allocated for USB 3.x but not used.
1664		 */
1665		tb_tunnel_dbg(tunnel,
1666			      "re-calculated estimated bandwidth %u/%u Mb/s\n",
1667			      estimated_up, estimated_down);
1668
1669		if (tb_port_path_direction_downstream(in, out))
1670			estimated_bw = estimated_down;
1671		else
1672			estimated_bw = estimated_up;
1673
1674		if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw))
1675			tb_tunnel_warn(tunnel,
1676				       "failed to update estimated bandwidth\n");
1677	}
1678
1679	if (first_tunnel)
1680		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1681					  first_tunnel->dst_port);
1682
1683	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1684}
1685
1686static void tb_recalc_estimated_bandwidth(struct tb *tb)
1687{
1688	struct tb_cm *tcm = tb_priv(tb);
1689	int i;
1690
1691	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1692
1693	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1694		struct tb_bandwidth_group *group = &tcm->groups[i];
1695
1696		if (!list_empty(&group->ports))
1697			tb_recalc_estimated_bandwidth_for_group(group);
1698	}
1699
1700	tb_dbg(tb, "bandwidth re-calculation done\n");
1701}
1702
1703static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1704{
1705	struct tb_port *host_port, *port;
1706	struct tb_cm *tcm = tb_priv(tb);
1707
1708	host_port = tb_route(in->sw) ?
1709		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1710
1711	list_for_each_entry(port, &tcm->dp_resources, list) {
1712		if (!tb_port_is_dpout(port))
1713			continue;
1714
1715		if (tb_port_is_enabled(port)) {
1716			tb_port_dbg(port, "DP OUT in use\n");
1717			continue;
1718		}
1719
1720		tb_port_dbg(port, "DP OUT available\n");
1721
1722		/*
1723		 * Keep the DP tunnel under the topology starting from
1724		 * the same host router downstream port.
1725		 */
1726		if (host_port && tb_route(port->sw)) {
1727			struct tb_port *p;
1728
1729			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1730			if (p != host_port)
1731				continue;
1732		}
1733
1734		return port;
1735	}
1736
1737	return NULL;
1738}
1739
1740static bool tb_tunnel_one_dp(struct tb *tb)
1741{
1742	int available_up, available_down, ret, link_nr;
1743	struct tb_cm *tcm = tb_priv(tb);
1744	struct tb_port *port, *in, *out;
1745	int consumed_up, consumed_down;
1746	struct tb_tunnel *tunnel;
1747
1748	/*
1749	 * Find pair of inactive DP IN and DP OUT adapters and then
1750	 * establish a DP tunnel between them.
1751	 */
1752	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1753
1754	in = NULL;
1755	out = NULL;
1756	list_for_each_entry(port, &tcm->dp_resources, list) {
1757		if (!tb_port_is_dpin(port))
1758			continue;
1759
1760		if (tb_port_is_enabled(port)) {
1761			tb_port_dbg(port, "DP IN in use\n");
1762			continue;
1763		}
1764
1765		in = port;
1766		tb_port_dbg(in, "DP IN available\n");
1767
1768		out = tb_find_dp_out(tb, port);
1769		if (out)
1770			break;
1771	}
1772
1773	if (!in) {
1774		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
1775		return false;
1776	}
1777	if (!out) {
1778		tb_dbg(tb, "no suitable DP OUT adapter available, not tunneling\n");
1779		return false;
1780	}
1781
1782	/*
1783	 * This is only applicable to links that are not bonded (so
1784	 * when Thunderbolt 1 hardware is involved somewhere in the
1785	 * topology). For these try to share the DP bandwidth between
1786	 * the two lanes.
1787	 */
1788	link_nr = 1;
1789	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1790		if (tb_tunnel_is_dp(tunnel)) {
1791			link_nr = 0;
1792			break;
1793		}
1794	}
1795
1796	/*
1797	 * DP stream needs the domain to be active so runtime resume
1798	 * both ends of the tunnel.
1799	 *
1800	 * This should bring the routers in the middle active as well
1801	 * and keeps the domain from runtime suspending while the DP
1802	 * tunnel is active.
1803	 */
1804	pm_runtime_get_sync(&in->sw->dev);
1805	pm_runtime_get_sync(&out->sw->dev);
1806
1807	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1808		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1809		goto err_rpm_put;
1810	}
1811
1812	if (!tb_attach_bandwidth_group(tcm, in, out))
1813		goto err_dealloc_dp;
1814
1815	/* Make all unused USB3 bandwidth available for the new DP tunnel */
1816	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1817	if (ret) {
1818		tb_warn(tb, "failed to release unused bandwidth\n");
1819		goto err_detach_group;
1820	}
1821
1822	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1823				     true);
1824	if (ret)
1825		goto err_reclaim_usb;
1826
1827	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1828	       available_up, available_down);
1829
1830	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1831				    available_down);
1832	if (!tunnel) {
1833		tb_port_dbg(out, "could not allocate DP tunnel\n");
1834		goto err_reclaim_usb;
1835	}
1836
1837	if (tb_tunnel_activate(tunnel)) {
1838		tb_port_info(out, "DP tunnel activation failed, aborting\n");
1839		goto err_free;
1840	}
1841
1842	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1843	tb_reclaim_usb3_bandwidth(tb, in, out);
1844
1845	/*
1846	 * Transition the links to asymmetric if the consumption exceeds
1847	 * the threshold.
1848	 */
1849	if (!tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down))
1850		tb_configure_asym(tb, in, out, consumed_up, consumed_down);
1851
1852	/* Update the domain with the new bandwidth estimation */
1853	tb_recalc_estimated_bandwidth(tb);
1854
1855	/*
1856	 * In case of DP tunnel exists, change host router's 1st children
1857	 * TMU mode to HiFi for CL0s to work.
1858	 */
1859	tb_increase_tmu_accuracy(tunnel);
1860	return true;
1861
1862err_free:
1863	tb_tunnel_free(tunnel);
1864err_reclaim_usb:
1865	tb_reclaim_usb3_bandwidth(tb, in, out);
1866err_detach_group:
1867	tb_detach_bandwidth_group(in);
1868err_dealloc_dp:
1869	tb_switch_dealloc_dp_resource(in->sw, in);
1870err_rpm_put:
1871	pm_runtime_mark_last_busy(&out->sw->dev);
1872	pm_runtime_put_autosuspend(&out->sw->dev);
1873	pm_runtime_mark_last_busy(&in->sw->dev);
1874	pm_runtime_put_autosuspend(&in->sw->dev);
1875
1876	return false;
1877}
1878
1879static void tb_tunnel_dp(struct tb *tb)
1880{
1881	if (!tb_acpi_may_tunnel_dp()) {
1882		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1883		return;
1884	}
1885
1886	while (tb_tunnel_one_dp(tb))
1887		;
1888}
1889
1890static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
1891{
1892	struct tb_port *in, *out;
1893	struct tb_tunnel *tunnel;
1894
1895	if (tb_port_is_dpin(port)) {
1896		tb_port_dbg(port, "DP IN resource unavailable\n");
1897		in = port;
1898		out = NULL;
1899	} else {
1900		tb_port_dbg(port, "DP OUT resource unavailable\n");
1901		in = NULL;
1902		out = port;
1903	}
1904
1905	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
1906	tb_deactivate_and_free_tunnel(tunnel);
1907	list_del_init(&port->list);
1908
1909	/*
1910	 * See if there is another DP OUT port that can be used for
1911	 * to create another tunnel.
1912	 */
1913	tb_recalc_estimated_bandwidth(tb);
1914	tb_tunnel_dp(tb);
1915}
1916
1917static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
1918{
1919	struct tb_cm *tcm = tb_priv(tb);
1920	struct tb_port *p;
1921
1922	if (tb_port_is_enabled(port))
1923		return;
1924
1925	list_for_each_entry(p, &tcm->dp_resources, list) {
1926		if (p == port)
1927			return;
1928	}
1929
1930	tb_port_dbg(port, "DP %s resource available after hotplug\n",
1931		    tb_port_is_dpin(port) ? "IN" : "OUT");
1932	list_add_tail(&port->list, &tcm->dp_resources);
1933
1934	/* Look for suitable DP IN <-> DP OUT pairs now */
1935	tb_tunnel_dp(tb);
1936}
1937
1938static void tb_disconnect_and_release_dp(struct tb *tb)
1939{
1940	struct tb_cm *tcm = tb_priv(tb);
1941	struct tb_tunnel *tunnel, *n;
1942
1943	/*
1944	 * Tear down all DP tunnels and release their resources. They
1945	 * will be re-established after resume based on plug events.
1946	 */
1947	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
1948		if (tb_tunnel_is_dp(tunnel))
1949			tb_deactivate_and_free_tunnel(tunnel);
1950	}
1951
1952	while (!list_empty(&tcm->dp_resources)) {
1953		struct tb_port *port;
1954
1955		port = list_first_entry(&tcm->dp_resources,
1956					struct tb_port, list);
1957		list_del_init(&port->list);
1958	}
1959}
1960
1961static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
1962{
1963	struct tb_tunnel *tunnel;
1964	struct tb_port *up;
1965
1966	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1967	if (WARN_ON(!up))
1968		return -ENODEV;
1969
1970	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
1971	if (WARN_ON(!tunnel))
1972		return -ENODEV;
1973
1974	tb_switch_xhci_disconnect(sw);
1975
1976	tb_tunnel_deactivate(tunnel);
1977	list_del(&tunnel->list);
1978	tb_tunnel_free(tunnel);
1979	return 0;
1980}
1981
1982static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
1983{
1984	struct tb_port *up, *down, *port;
1985	struct tb_cm *tcm = tb_priv(tb);
1986	struct tb_tunnel *tunnel;
1987
1988	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1989	if (!up)
1990		return 0;
1991
1992	/*
1993	 * Look up available down port. Since we are chaining it should
1994	 * be found right above this switch.
1995	 */
1996	port = tb_switch_downstream_port(sw);
1997	down = tb_find_pcie_down(tb_switch_parent(sw), port);
1998	if (!down)
1999		return 0;
2000
2001	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2002	if (!tunnel)
2003		return -ENOMEM;
2004
2005	if (tb_tunnel_activate(tunnel)) {
2006		tb_port_info(up,
2007			     "PCIe tunnel activation failed, aborting\n");
2008		tb_tunnel_free(tunnel);
2009		return -EIO;
2010	}
2011
2012	/*
2013	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2014	 * here.
2015	 */
2016	if (tb_switch_pcie_l1_enable(sw))
2017		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2018
2019	if (tb_switch_xhci_connect(sw))
2020		tb_sw_warn(sw, "failed to connect xHCI\n");
2021
2022	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2023	return 0;
2024}
2025
2026static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2027				    int transmit_path, int transmit_ring,
2028				    int receive_path, int receive_ring)
2029{
2030	struct tb_cm *tcm = tb_priv(tb);
2031	struct tb_port *nhi_port, *dst_port;
2032	struct tb_tunnel *tunnel;
2033	struct tb_switch *sw;
2034	int ret;
2035
2036	sw = tb_to_switch(xd->dev.parent);
2037	dst_port = tb_port_at(xd->route, sw);
2038	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2039
2040	mutex_lock(&tb->lock);
2041
2042	/*
2043	 * When tunneling DMA paths the link should not enter CL states
2044	 * so disable them now.
2045	 */
2046	tb_disable_clx(sw);
2047
2048	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2049				     transmit_ring, receive_path, receive_ring);
2050	if (!tunnel) {
2051		ret = -ENOMEM;
2052		goto err_clx;
2053	}
2054
2055	if (tb_tunnel_activate(tunnel)) {
2056		tb_port_info(nhi_port,
2057			     "DMA tunnel activation failed, aborting\n");
2058		ret = -EIO;
2059		goto err_free;
2060	}
2061
2062	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2063	mutex_unlock(&tb->lock);
2064	return 0;
2065
2066err_free:
2067	tb_tunnel_free(tunnel);
2068err_clx:
2069	tb_enable_clx(sw);
2070	mutex_unlock(&tb->lock);
2071
2072	return ret;
2073}
2074
2075static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2076					  int transmit_path, int transmit_ring,
2077					  int receive_path, int receive_ring)
2078{
2079	struct tb_cm *tcm = tb_priv(tb);
2080	struct tb_port *nhi_port, *dst_port;
2081	struct tb_tunnel *tunnel, *n;
2082	struct tb_switch *sw;
2083
2084	sw = tb_to_switch(xd->dev.parent);
2085	dst_port = tb_port_at(xd->route, sw);
2086	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2087
2088	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2089		if (!tb_tunnel_is_dma(tunnel))
2090			continue;
2091		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2092			continue;
2093
2094		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2095					receive_path, receive_ring))
2096			tb_deactivate_and_free_tunnel(tunnel);
2097	}
2098
2099	/*
2100	 * Try to re-enable CL states now, it is OK if this fails
2101	 * because we may still have another DMA tunnel active through
2102	 * the same host router USB4 downstream port.
2103	 */
2104	tb_enable_clx(sw);
2105}
2106
2107static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2108				       int transmit_path, int transmit_ring,
2109				       int receive_path, int receive_ring)
2110{
2111	if (!xd->is_unplugged) {
2112		mutex_lock(&tb->lock);
2113		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2114					      transmit_ring, receive_path,
2115					      receive_ring);
2116		mutex_unlock(&tb->lock);
2117	}
2118	return 0;
2119}
2120
2121/* hotplug handling */
2122
2123/*
2124 * tb_handle_hotplug() - handle hotplug event
2125 *
2126 * Executes on tb->wq.
2127 */
2128static void tb_handle_hotplug(struct work_struct *work)
2129{
2130	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2131	struct tb *tb = ev->tb;
2132	struct tb_cm *tcm = tb_priv(tb);
2133	struct tb_switch *sw;
2134	struct tb_port *port;
2135
2136	/* Bring the domain back from sleep if it was suspended */
2137	pm_runtime_get_sync(&tb->dev);
2138
2139	mutex_lock(&tb->lock);
2140	if (!tcm->hotplug_active)
2141		goto out; /* during init, suspend or shutdown */
2142
2143	sw = tb_switch_find_by_route(tb, ev->route);
2144	if (!sw) {
2145		tb_warn(tb,
2146			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2147			ev->route, ev->port, ev->unplug);
2148		goto out;
2149	}
2150	if (ev->port > sw->config.max_port_number) {
2151		tb_warn(tb,
2152			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2153			ev->route, ev->port, ev->unplug);
2154		goto put_sw;
2155	}
2156	port = &sw->ports[ev->port];
2157	if (tb_is_upstream_port(port)) {
2158		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2159		       ev->route, ev->port, ev->unplug);
2160		goto put_sw;
2161	}
2162
2163	pm_runtime_get_sync(&sw->dev);
2164
2165	if (ev->unplug) {
2166		tb_retimer_remove_all(port);
2167
2168		if (tb_port_has_remote(port)) {
2169			tb_port_dbg(port, "switch unplugged\n");
2170			tb_sw_set_unplugged(port->remote->sw);
2171			tb_free_invalid_tunnels(tb);
2172			tb_remove_dp_resources(port->remote->sw);
2173			tb_switch_tmu_disable(port->remote->sw);
2174			tb_switch_unconfigure_link(port->remote->sw);
2175			tb_switch_set_link_width(port->remote->sw,
2176						 TB_LINK_WIDTH_SINGLE);
2177			tb_switch_remove(port->remote->sw);
2178			port->remote = NULL;
2179			if (port->dual_link_port)
2180				port->dual_link_port->remote = NULL;
2181			/* Maybe we can create another DP tunnel */
2182			tb_recalc_estimated_bandwidth(tb);
2183			tb_tunnel_dp(tb);
2184		} else if (port->xdomain) {
2185			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2186
2187			tb_port_dbg(port, "xdomain unplugged\n");
2188			/*
2189			 * Service drivers are unbound during
2190			 * tb_xdomain_remove() so setting XDomain as
2191			 * unplugged here prevents deadlock if they call
2192			 * tb_xdomain_disable_paths(). We will tear down
2193			 * all the tunnels below.
2194			 */
2195			xd->is_unplugged = true;
2196			tb_xdomain_remove(xd);
2197			port->xdomain = NULL;
2198			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2199			tb_xdomain_put(xd);
2200			tb_port_unconfigure_xdomain(port);
2201		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2202			tb_dp_resource_unavailable(tb, port);
2203		} else if (!port->port) {
2204			tb_sw_dbg(sw, "xHCI disconnect request\n");
2205			tb_switch_xhci_disconnect(sw);
2206		} else {
2207			tb_port_dbg(port,
2208				   "got unplug event for disconnected port, ignoring\n");
2209		}
2210	} else if (port->remote) {
2211		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2212	} else if (!port->port && sw->authorized) {
2213		tb_sw_dbg(sw, "xHCI connect request\n");
2214		tb_switch_xhci_connect(sw);
2215	} else {
2216		if (tb_port_is_null(port)) {
2217			tb_port_dbg(port, "hotplug: scanning\n");
2218			tb_scan_port(port);
2219			if (!port->remote)
2220				tb_port_dbg(port, "hotplug: no switch found\n");
2221		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2222			tb_dp_resource_available(tb, port);
2223		}
2224	}
2225
2226	pm_runtime_mark_last_busy(&sw->dev);
2227	pm_runtime_put_autosuspend(&sw->dev);
2228
2229put_sw:
2230	tb_switch_put(sw);
2231out:
2232	mutex_unlock(&tb->lock);
2233
2234	pm_runtime_mark_last_busy(&tb->dev);
2235	pm_runtime_put_autosuspend(&tb->dev);
2236
2237	kfree(ev);
2238}
2239
2240static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2241				 int *requested_down)
2242{
2243	int allocated_up, allocated_down, available_up, available_down, ret;
2244	int requested_up_corrected, requested_down_corrected, granularity;
2245	int max_up, max_down, max_up_rounded, max_down_rounded;
2246	struct tb *tb = tunnel->tb;
2247	struct tb_port *in, *out;
2248
2249	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2250	if (ret)
2251		return ret;
2252
2253	in = tunnel->src_port;
2254	out = tunnel->dst_port;
2255
2256	tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2257		      allocated_up, allocated_down);
2258
2259	/*
2260	 * If we get rounded up request from graphics side, say HBR2 x 4
2261	 * that is 17500 instead of 17280 (this is because of the
2262	 * granularity), we allow it too. Here the graphics has already
2263	 * negotiated with the DPRX the maximum possible rates (which is
2264	 * 17280 in this case).
2265	 *
2266	 * Since the link cannot go higher than 17280 we use that in our
2267	 * calculations but the DP IN adapter Allocated BW write must be
2268	 * the same value (17500) otherwise the adapter will mark it as
2269	 * failed for graphics.
2270	 */
2271	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2272	if (ret)
2273		return ret;
2274
2275	ret = usb4_dp_port_granularity(in);
2276	if (ret < 0)
2277		return ret;
2278	granularity = ret;
2279
2280	max_up_rounded = roundup(max_up, granularity);
2281	max_down_rounded = roundup(max_down, granularity);
2282
2283	/*
2284	 * This will "fix" the request down to the maximum supported
2285	 * rate * lanes if it is at the maximum rounded up level.
2286	 */
2287	requested_up_corrected = *requested_up;
2288	if (requested_up_corrected == max_up_rounded)
2289		requested_up_corrected = max_up;
2290	else if (requested_up_corrected < 0)
2291		requested_up_corrected = 0;
2292	requested_down_corrected = *requested_down;
2293	if (requested_down_corrected == max_down_rounded)
2294		requested_down_corrected = max_down;
2295	else if (requested_down_corrected < 0)
2296		requested_down_corrected = 0;
2297
2298	tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2299		      requested_up_corrected, requested_down_corrected);
2300
2301	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2302	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2303		tb_tunnel_dbg(tunnel,
2304			      "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2305			      requested_up_corrected, requested_down_corrected,
2306			      max_up_rounded, max_down_rounded);
2307		return -ENOBUFS;
2308	}
2309
2310	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2311	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2312		/*
2313		 * If bandwidth on a link is < asym_threshold transition
2314		 * the link to symmetric.
2315		 */
2316		tb_configure_sym(tb, in, out, *requested_up, *requested_down, true);
2317		/*
2318		 * If requested bandwidth is less or equal than what is
2319		 * currently allocated to that tunnel we simply change
2320		 * the reservation of the tunnel. Since all the tunnels
2321		 * going out from the same USB4 port are in the same
2322		 * group the released bandwidth will be taken into
2323		 * account for the other tunnels automatically below.
2324		 */
2325		return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2326						 requested_down);
2327	}
2328
2329	/*
2330	 * More bandwidth is requested. Release all the potential
2331	 * bandwidth from USB3 first.
2332	 */
2333	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2334	if (ret)
2335		return ret;
2336
2337	/*
2338	 * Then go over all tunnels that cross the same USB4 ports (they
2339	 * are also in the same group but we use the same function here
2340	 * that we use with the normal bandwidth allocation).
2341	 */
2342	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2343				     true);
2344	if (ret)
2345		goto reclaim;
2346
2347	tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d Mb/s\n",
2348		      available_up, available_down);
2349
2350	if ((*requested_up >= 0 && available_up >= requested_up_corrected) ||
2351	    (*requested_down >= 0 && available_down >= requested_down_corrected)) {
2352		/*
2353		 * If bandwidth on a link is >= asym_threshold
2354		 * transition the link to asymmetric.
2355		 */
2356		ret = tb_configure_asym(tb, in, out, *requested_up,
2357					*requested_down);
2358		if (ret) {
2359			tb_configure_sym(tb, in, out, 0, 0, true);
2360			return ret;
2361		}
2362
2363		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2364						requested_down);
2365		if (ret) {
2366			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2367			tb_configure_sym(tb, in, out, 0, 0, true);
2368		}
2369	} else {
2370		ret = -ENOBUFS;
2371	}
2372
2373reclaim:
2374	tb_reclaim_usb3_bandwidth(tb, in, out);
2375	return ret;
2376}
2377
2378static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2379{
2380	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2381	int requested_bw, requested_up, requested_down, ret;
2382	struct tb_port *in, *out;
2383	struct tb_tunnel *tunnel;
2384	struct tb *tb = ev->tb;
2385	struct tb_cm *tcm = tb_priv(tb);
2386	struct tb_switch *sw;
2387
2388	pm_runtime_get_sync(&tb->dev);
2389
2390	mutex_lock(&tb->lock);
2391	if (!tcm->hotplug_active)
2392		goto unlock;
2393
2394	sw = tb_switch_find_by_route(tb, ev->route);
2395	if (!sw) {
2396		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2397			ev->route);
2398		goto unlock;
2399	}
2400
2401	in = &sw->ports[ev->port];
2402	if (!tb_port_is_dpin(in)) {
2403		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2404		goto put_sw;
2405	}
2406
2407	tb_port_dbg(in, "handling bandwidth allocation request\n");
2408
2409	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2410		tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2411		goto put_sw;
2412	}
2413
2414	ret = usb4_dp_port_requested_bandwidth(in);
2415	if (ret < 0) {
2416		if (ret == -ENODATA)
2417			tb_port_dbg(in, "no bandwidth request active\n");
2418		else
2419			tb_port_warn(in, "failed to read requested bandwidth\n");
2420		goto put_sw;
2421	}
2422	requested_bw = ret;
2423
2424	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2425
2426	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2427	if (!tunnel) {
2428		tb_port_warn(in, "failed to find tunnel\n");
2429		goto put_sw;
2430	}
2431
2432	out = tunnel->dst_port;
2433
2434	if (tb_port_path_direction_downstream(in, out)) {
2435		requested_up = -1;
2436		requested_down = requested_bw;
2437	} else {
2438		requested_up = requested_bw;
2439		requested_down = -1;
2440	}
2441
2442	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2443	if (ret) {
2444		if (ret == -ENOBUFS)
2445			tb_tunnel_warn(tunnel,
2446				       "not enough bandwidth available\n");
2447		else
2448			tb_tunnel_warn(tunnel,
2449				       "failed to change bandwidth allocation\n");
2450	} else {
2451		tb_tunnel_dbg(tunnel,
2452			      "bandwidth allocation changed to %d/%d Mb/s\n",
2453			      requested_up, requested_down);
2454
2455		/* Update other clients about the allocation change */
2456		tb_recalc_estimated_bandwidth(tb);
2457	}
2458
2459put_sw:
2460	tb_switch_put(sw);
2461unlock:
2462	mutex_unlock(&tb->lock);
2463
2464	pm_runtime_mark_last_busy(&tb->dev);
2465	pm_runtime_put_autosuspend(&tb->dev);
2466
2467	kfree(ev);
2468}
2469
2470static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2471{
2472	struct tb_hotplug_event *ev;
2473
2474	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2475	if (!ev)
2476		return;
2477
2478	ev->tb = tb;
2479	ev->route = route;
2480	ev->port = port;
2481	INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2482	queue_work(tb->wq, &ev->work);
2483}
2484
2485static void tb_handle_notification(struct tb *tb, u64 route,
2486				   const struct cfg_error_pkg *error)
2487{
2488
2489	switch (error->error) {
2490	case TB_CFG_ERROR_PCIE_WAKE:
2491	case TB_CFG_ERROR_DP_CON_CHANGE:
2492	case TB_CFG_ERROR_DPTX_DISCOVERY:
2493		if (tb_cfg_ack_notification(tb->ctl, route, error))
2494			tb_warn(tb, "could not ack notification on %llx\n",
2495				route);
2496		break;
2497
2498	case TB_CFG_ERROR_DP_BW:
2499		if (tb_cfg_ack_notification(tb->ctl, route, error))
2500			tb_warn(tb, "could not ack notification on %llx\n",
2501				route);
2502		tb_queue_dp_bandwidth_request(tb, route, error->port);
2503		break;
2504
2505	default:
2506		/* Ignore for now */
2507		break;
2508	}
2509}
2510
2511/*
2512 * tb_schedule_hotplug_handler() - callback function for the control channel
2513 *
2514 * Delegates to tb_handle_hotplug.
2515 */
2516static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2517			    const void *buf, size_t size)
2518{
2519	const struct cfg_event_pkg *pkg = buf;
2520	u64 route = tb_cfg_get_route(&pkg->header);
2521
2522	switch (type) {
2523	case TB_CFG_PKG_ERROR:
2524		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2525		return;
2526	case TB_CFG_PKG_EVENT:
2527		break;
2528	default:
2529		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2530		return;
2531	}
2532
2533	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2534		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2535			pkg->port);
2536	}
2537
2538	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2539}
2540
2541static void tb_stop(struct tb *tb)
2542{
2543	struct tb_cm *tcm = tb_priv(tb);
2544	struct tb_tunnel *tunnel;
2545	struct tb_tunnel *n;
2546
2547	cancel_delayed_work(&tcm->remove_work);
2548	/* tunnels are only present after everything has been initialized */
2549	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2550		/*
2551		 * DMA tunnels require the driver to be functional so we
2552		 * tear them down. Other protocol tunnels can be left
2553		 * intact.
2554		 */
2555		if (tb_tunnel_is_dma(tunnel))
2556			tb_tunnel_deactivate(tunnel);
2557		tb_tunnel_free(tunnel);
2558	}
2559	tb_switch_remove(tb->root_switch);
2560	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2561}
2562
2563static int tb_scan_finalize_switch(struct device *dev, void *data)
2564{
2565	if (tb_is_switch(dev)) {
2566		struct tb_switch *sw = tb_to_switch(dev);
2567
2568		/*
2569		 * If we found that the switch was already setup by the
2570		 * boot firmware, mark it as authorized now before we
2571		 * send uevent to userspace.
2572		 */
2573		if (sw->boot)
2574			sw->authorized = 1;
2575
2576		dev_set_uevent_suppress(dev, false);
2577		kobject_uevent(&dev->kobj, KOBJ_ADD);
2578		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2579	}
2580
2581	return 0;
2582}
2583
2584static int tb_start(struct tb *tb)
2585{
2586	struct tb_cm *tcm = tb_priv(tb);
2587	int ret;
2588
2589	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2590	if (IS_ERR(tb->root_switch))
2591		return PTR_ERR(tb->root_switch);
2592
2593	/*
2594	 * ICM firmware upgrade needs running firmware and in native
2595	 * mode that is not available so disable firmware upgrade of the
2596	 * root switch.
2597	 *
2598	 * However, USB4 routers support NVM firmware upgrade if they
2599	 * implement the necessary router operations.
2600	 */
2601	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2602	/* All USB4 routers support runtime PM */
2603	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2604
2605	ret = tb_switch_configure(tb->root_switch);
2606	if (ret) {
2607		tb_switch_put(tb->root_switch);
2608		return ret;
2609	}
2610
2611	/* Announce the switch to the world */
2612	ret = tb_switch_add(tb->root_switch);
2613	if (ret) {
2614		tb_switch_put(tb->root_switch);
2615		return ret;
2616	}
2617
2618	/*
2619	 * To support highest CLx state, we set host router's TMU to
2620	 * Normal mode.
2621	 */
2622	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2623	/* Enable TMU if it is off */
2624	tb_switch_tmu_enable(tb->root_switch);
2625	/* Full scan to discover devices added before the driver was loaded. */
2626	tb_scan_switch(tb->root_switch);
2627	/* Find out tunnels created by the boot firmware */
2628	tb_discover_tunnels(tb);
2629	/* Add DP resources from the DP tunnels created by the boot firmware */
2630	tb_discover_dp_resources(tb);
2631	/*
2632	 * If the boot firmware did not create USB 3.x tunnels create them
2633	 * now for the whole topology.
2634	 */
2635	tb_create_usb3_tunnels(tb->root_switch);
2636	/* Add DP IN resources for the root switch */
2637	tb_add_dp_resources(tb->root_switch);
2638	/* Make the discovered switches available to the userspace */
2639	device_for_each_child(&tb->root_switch->dev, NULL,
2640			      tb_scan_finalize_switch);
2641
2642	/* Allow tb_handle_hotplug to progress events */
2643	tcm->hotplug_active = true;
2644	return 0;
2645}
2646
2647static int tb_suspend_noirq(struct tb *tb)
2648{
2649	struct tb_cm *tcm = tb_priv(tb);
2650
2651	tb_dbg(tb, "suspending...\n");
2652	tb_disconnect_and_release_dp(tb);
2653	tb_switch_suspend(tb->root_switch, false);
2654	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2655	tb_dbg(tb, "suspend finished\n");
2656
2657	return 0;
2658}
2659
2660static void tb_restore_children(struct tb_switch *sw)
2661{
2662	struct tb_port *port;
2663
2664	/* No need to restore if the router is already unplugged */
2665	if (sw->is_unplugged)
2666		return;
2667
2668	if (tb_enable_clx(sw))
2669		tb_sw_warn(sw, "failed to re-enable CL states\n");
2670
2671	if (tb_enable_tmu(sw))
2672		tb_sw_warn(sw, "failed to restore TMU configuration\n");
2673
2674	tb_switch_configuration_valid(sw);
2675
2676	tb_switch_for_each_port(sw, port) {
2677		if (!tb_port_has_remote(port) && !port->xdomain)
2678			continue;
2679
2680		if (port->remote) {
2681			tb_switch_set_link_width(port->remote->sw,
2682						 port->remote->sw->link_width);
2683			tb_switch_configure_link(port->remote->sw);
2684
2685			tb_restore_children(port->remote->sw);
2686		} else if (port->xdomain) {
2687			tb_port_configure_xdomain(port, port->xdomain);
2688		}
2689	}
2690}
2691
2692static int tb_resume_noirq(struct tb *tb)
2693{
2694	struct tb_cm *tcm = tb_priv(tb);
2695	struct tb_tunnel *tunnel, *n;
2696	unsigned int usb3_delay = 0;
2697	LIST_HEAD(tunnels);
2698
2699	tb_dbg(tb, "resuming...\n");
2700
2701	/* remove any pci devices the firmware might have setup */
2702	tb_switch_reset(tb->root_switch);
2703
2704	tb_switch_resume(tb->root_switch);
2705	tb_free_invalid_tunnels(tb);
2706	tb_free_unplugged_children(tb->root_switch);
2707	tb_restore_children(tb->root_switch);
2708
2709	/*
2710	 * If we get here from suspend to disk the boot firmware or the
2711	 * restore kernel might have created tunnels of its own. Since
2712	 * we cannot be sure they are usable for us we find and tear
2713	 * them down.
2714	 */
2715	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
2716	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2717		if (tb_tunnel_is_usb3(tunnel))
2718			usb3_delay = 500;
2719		tb_tunnel_deactivate(tunnel);
2720		tb_tunnel_free(tunnel);
2721	}
2722
2723	/* Re-create our tunnels now */
2724	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2725		/* USB3 requires delay before it can be re-activated */
2726		if (tb_tunnel_is_usb3(tunnel)) {
2727			msleep(usb3_delay);
2728			/* Only need to do it once */
2729			usb3_delay = 0;
2730		}
2731		tb_tunnel_restart(tunnel);
2732	}
2733	if (!list_empty(&tcm->tunnel_list)) {
2734		/*
2735		 * the pcie links need some time to get going.
2736		 * 100ms works for me...
2737		 */
2738		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
2739		msleep(100);
2740	}
2741	 /* Allow tb_handle_hotplug to progress events */
2742	tcm->hotplug_active = true;
2743	tb_dbg(tb, "resume finished\n");
2744
2745	return 0;
2746}
2747
2748static int tb_free_unplugged_xdomains(struct tb_switch *sw)
2749{
2750	struct tb_port *port;
2751	int ret = 0;
2752
2753	tb_switch_for_each_port(sw, port) {
2754		if (tb_is_upstream_port(port))
2755			continue;
2756		if (port->xdomain && port->xdomain->is_unplugged) {
2757			tb_retimer_remove_all(port);
2758			tb_xdomain_remove(port->xdomain);
2759			tb_port_unconfigure_xdomain(port);
2760			port->xdomain = NULL;
2761			ret++;
2762		} else if (port->remote) {
2763			ret += tb_free_unplugged_xdomains(port->remote->sw);
2764		}
2765	}
2766
2767	return ret;
2768}
2769
2770static int tb_freeze_noirq(struct tb *tb)
2771{
2772	struct tb_cm *tcm = tb_priv(tb);
2773
2774	tcm->hotplug_active = false;
2775	return 0;
2776}
2777
2778static int tb_thaw_noirq(struct tb *tb)
2779{
2780	struct tb_cm *tcm = tb_priv(tb);
2781
2782	tcm->hotplug_active = true;
2783	return 0;
2784}
2785
2786static void tb_complete(struct tb *tb)
2787{
2788	/*
2789	 * Release any unplugged XDomains and if there is a case where
2790	 * another domain is swapped in place of unplugged XDomain we
2791	 * need to run another rescan.
2792	 */
2793	mutex_lock(&tb->lock);
2794	if (tb_free_unplugged_xdomains(tb->root_switch))
2795		tb_scan_switch(tb->root_switch);
2796	mutex_unlock(&tb->lock);
2797}
2798
2799static int tb_runtime_suspend(struct tb *tb)
2800{
2801	struct tb_cm *tcm = tb_priv(tb);
2802
2803	mutex_lock(&tb->lock);
2804	tb_switch_suspend(tb->root_switch, true);
2805	tcm->hotplug_active = false;
2806	mutex_unlock(&tb->lock);
2807
2808	return 0;
2809}
2810
2811static void tb_remove_work(struct work_struct *work)
2812{
2813	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
2814	struct tb *tb = tcm_to_tb(tcm);
2815
2816	mutex_lock(&tb->lock);
2817	if (tb->root_switch) {
2818		tb_free_unplugged_children(tb->root_switch);
2819		tb_free_unplugged_xdomains(tb->root_switch);
2820	}
2821	mutex_unlock(&tb->lock);
2822}
2823
2824static int tb_runtime_resume(struct tb *tb)
2825{
2826	struct tb_cm *tcm = tb_priv(tb);
2827	struct tb_tunnel *tunnel, *n;
2828
2829	mutex_lock(&tb->lock);
2830	tb_switch_resume(tb->root_switch);
2831	tb_free_invalid_tunnels(tb);
2832	tb_restore_children(tb->root_switch);
2833	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
2834		tb_tunnel_restart(tunnel);
2835	tcm->hotplug_active = true;
2836	mutex_unlock(&tb->lock);
2837
2838	/*
2839	 * Schedule cleanup of any unplugged devices. Run this in a
2840	 * separate thread to avoid possible deadlock if the device
2841	 * removal runtime resumes the unplugged device.
2842	 */
2843	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
2844	return 0;
2845}
2846
2847static const struct tb_cm_ops tb_cm_ops = {
2848	.start = tb_start,
2849	.stop = tb_stop,
2850	.suspend_noirq = tb_suspend_noirq,
2851	.resume_noirq = tb_resume_noirq,
2852	.freeze_noirq = tb_freeze_noirq,
2853	.thaw_noirq = tb_thaw_noirq,
2854	.complete = tb_complete,
2855	.runtime_suspend = tb_runtime_suspend,
2856	.runtime_resume = tb_runtime_resume,
2857	.handle_event = tb_handle_event,
2858	.disapprove_switch = tb_disconnect_pci,
2859	.approve_switch = tb_tunnel_pci,
2860	.approve_xdomain_paths = tb_approve_xdomain_paths,
2861	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
2862};
2863
2864/*
2865 * During suspend the Thunderbolt controller is reset and all PCIe
2866 * tunnels are lost. The NHI driver will try to reestablish all tunnels
2867 * during resume. This adds device links between the tunneled PCIe
2868 * downstream ports and the NHI so that the device core will make sure
2869 * NHI is resumed first before the rest.
2870 */
2871static bool tb_apple_add_links(struct tb_nhi *nhi)
2872{
2873	struct pci_dev *upstream, *pdev;
2874	bool ret;
2875
2876	if (!x86_apple_machine)
2877		return false;
2878
2879	switch (nhi->pdev->device) {
2880	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2881	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2882	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
2883	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
2884		break;
2885	default:
2886		return false;
2887	}
2888
2889	upstream = pci_upstream_bridge(nhi->pdev);
2890	while (upstream) {
2891		if (!pci_is_pcie(upstream))
2892			return false;
2893		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
2894			break;
2895		upstream = pci_upstream_bridge(upstream);
2896	}
2897
2898	if (!upstream)
2899		return false;
2900
2901	/*
2902	 * For each hotplug downstream port, create add device link
2903	 * back to NHI so that PCIe tunnels can be re-established after
2904	 * sleep.
2905	 */
2906	ret = false;
2907	for_each_pci_bridge(pdev, upstream->subordinate) {
2908		const struct device_link *link;
2909
2910		if (!pci_is_pcie(pdev))
2911			continue;
2912		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
2913		    !pdev->is_hotplug_bridge)
2914			continue;
2915
2916		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
2917				       DL_FLAG_AUTOREMOVE_SUPPLIER |
2918				       DL_FLAG_PM_RUNTIME);
2919		if (link) {
2920			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
2921				dev_name(&pdev->dev));
2922			ret = true;
2923		} else {
2924			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
2925				 dev_name(&pdev->dev));
2926		}
2927	}
2928
2929	return ret;
2930}
2931
2932struct tb *tb_probe(struct tb_nhi *nhi)
2933{
2934	struct tb_cm *tcm;
2935	struct tb *tb;
2936
2937	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
2938	if (!tb)
2939		return NULL;
2940
2941	if (tb_acpi_may_tunnel_pcie())
2942		tb->security_level = TB_SECURITY_USER;
2943	else
2944		tb->security_level = TB_SECURITY_NOPCIE;
2945
2946	tb->cm_ops = &tb_cm_ops;
2947
2948	tcm = tb_priv(tb);
2949	INIT_LIST_HEAD(&tcm->tunnel_list);
2950	INIT_LIST_HEAD(&tcm->dp_resources);
2951	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
2952	tb_init_bandwidth_groups(tcm);
2953
2954	tb_dbg(tb, "using software connection manager\n");
2955
2956	/*
2957	 * Device links are needed to make sure we establish tunnels
2958	 * before the PCIe/USB stack is resumed so complain here if we
2959	 * found them missing.
2960	 */
2961	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
2962		tb_warn(tb, "device links to tunneled native ports are missing!\n");
2963
2964	return tb;
2965}