Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
 
 
 
 
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49/* When there are this many requests queue to be written by
  50 * the raid1 thread, we become 'congested' to provide back-pressure
  51 * for writeback.
  52 */
  53static int max_queued_requests = 1024;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55static void allow_barrier(struct r1conf *conf);
  56static void lower_barrier(struct r1conf *conf);
 
 
 
 
 
 
  57
  58static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  59{
  60	struct pool_info *pi = data;
  61	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  62
  63	/* allocate a r1bio with room for raid_disks entries in the bios array */
  64	return kzalloc(size, gfp_flags);
  65}
  66
  67static void r1bio_pool_free(void *r1_bio, void *data)
  68{
  69	kfree(r1_bio);
  70}
  71
  72#define RESYNC_BLOCK_SIZE (64*1024)
  73//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  74#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  75#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  76#define RESYNC_WINDOW (2048*1024)
 
 
  77
  78static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  79{
  80	struct pool_info *pi = data;
  81	struct page *page;
  82	struct r1bio *r1_bio;
  83	struct bio *bio;
  84	int i, j;
 
 
  85
  86	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  87	if (!r1_bio)
  88		return NULL;
  89
 
 
 
 
 
  90	/*
  91	 * Allocate bios : 1 for reading, n-1 for writing
  92	 */
  93	for (j = pi->raid_disks ; j-- ; ) {
  94		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  95		if (!bio)
  96			goto out_free_bio;
 
  97		r1_bio->bios[j] = bio;
  98	}
  99	/*
 100	 * Allocate RESYNC_PAGES data pages and attach them to
 101	 * the first bio.
 102	 * If this is a user-requested check/repair, allocate
 103	 * RESYNC_PAGES for each bio.
 104	 */
 105	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 106		j = pi->raid_disks;
 107	else
 108		j = 1;
 109	while(j--) {
 
 
 110		bio = r1_bio->bios[j];
 111		for (i = 0; i < RESYNC_PAGES; i++) {
 112			page = alloc_page(gfp_flags);
 113			if (unlikely(!page))
 114				goto out_free_pages;
 115
 116			bio->bi_io_vec[i].bv_page = page;
 117			bio->bi_vcnt = i+1;
 
 
 
 
 118		}
 119	}
 120	/* If not user-requests, copy the page pointers to all bios */
 121	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 122		for (i=0; i<RESYNC_PAGES ; i++)
 123			for (j=1; j<pi->raid_disks; j++)
 124				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 125					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 126	}
 127
 128	r1_bio->master_bio = NULL;
 129
 130	return r1_bio;
 131
 132out_free_pages:
 133	for (j=0 ; j < pi->raid_disks; j++)
 134		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
 135			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 136	j = -1;
 137out_free_bio:
 138	while (++j < pi->raid_disks)
 139		bio_put(r1_bio->bios[j]);
 140	r1bio_pool_free(r1_bio, data);
 
 
 
 
 
 141	return NULL;
 142}
 143
 144static void r1buf_pool_free(void *__r1_bio, void *data)
 145{
 146	struct pool_info *pi = data;
 147	int i,j;
 148	struct r1bio *r1bio = __r1_bio;
 
 149
 150	for (i = 0; i < RESYNC_PAGES; i++)
 151		for (j = pi->raid_disks; j-- ;) {
 152			if (j == 0 ||
 153			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 154			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 155				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 156		}
 157	for (i=0 ; i < pi->raid_disks; i++)
 158		bio_put(r1bio->bios[i]);
 159
 160	r1bio_pool_free(r1bio, data);
 161}
 162
 163static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 164{
 165	int i;
 166
 167	for (i = 0; i < conf->raid_disks * 2; i++) {
 168		struct bio **bio = r1_bio->bios + i;
 169		if (!BIO_SPECIAL(*bio))
 170			bio_put(*bio);
 171		*bio = NULL;
 172	}
 173}
 174
 175static void free_r1bio(struct r1bio *r1_bio)
 176{
 177	struct r1conf *conf = r1_bio->mddev->private;
 178
 179	put_all_bios(conf, r1_bio);
 180	mempool_free(r1_bio, conf->r1bio_pool);
 181}
 182
 183static void put_buf(struct r1bio *r1_bio)
 184{
 185	struct r1conf *conf = r1_bio->mddev->private;
 
 186	int i;
 187
 188	for (i = 0; i < conf->raid_disks * 2; i++) {
 189		struct bio *bio = r1_bio->bios[i];
 190		if (bio->bi_end_io)
 191			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 192	}
 193
 194	mempool_free(r1_bio, conf->r1buf_pool);
 195
 196	lower_barrier(conf);
 197}
 198
 199static void reschedule_retry(struct r1bio *r1_bio)
 200{
 201	unsigned long flags;
 202	struct mddev *mddev = r1_bio->mddev;
 203	struct r1conf *conf = mddev->private;
 
 204
 
 205	spin_lock_irqsave(&conf->device_lock, flags);
 206	list_add(&r1_bio->retry_list, &conf->retry_list);
 207	conf->nr_queued ++;
 208	spin_unlock_irqrestore(&conf->device_lock, flags);
 209
 210	wake_up(&conf->wait_barrier);
 211	md_wakeup_thread(mddev->thread);
 212}
 213
 214/*
 215 * raid_end_bio_io() is called when we have finished servicing a mirrored
 216 * operation and are ready to return a success/failure code to the buffer
 217 * cache layer.
 218 */
 219static void call_bio_endio(struct r1bio *r1_bio)
 220{
 221	struct bio *bio = r1_bio->master_bio;
 222	int done;
 223	struct r1conf *conf = r1_bio->mddev->private;
 224
 225	if (bio->bi_phys_segments) {
 226		unsigned long flags;
 227		spin_lock_irqsave(&conf->device_lock, flags);
 228		bio->bi_phys_segments--;
 229		done = (bio->bi_phys_segments == 0);
 230		spin_unlock_irqrestore(&conf->device_lock, flags);
 231	} else
 232		done = 1;
 233
 234	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 235		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 236	if (done) {
 237		bio_endio(bio, 0);
 238		/*
 239		 * Wake up any possible resync thread that waits for the device
 240		 * to go idle.
 241		 */
 242		allow_barrier(conf);
 243	}
 244}
 245
 246static void raid_end_bio_io(struct r1bio *r1_bio)
 247{
 248	struct bio *bio = r1_bio->master_bio;
 
 
 249
 250	/* if nobody has done the final endio yet, do it now */
 251	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 252		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 253			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 254			 (unsigned long long) bio->bi_sector,
 255			 (unsigned long long) bio->bi_sector +
 256			 (bio->bi_size >> 9) - 1);
 257
 258		call_bio_endio(r1_bio);
 259	}
 
 260	free_r1bio(r1_bio);
 
 
 
 
 
 261}
 262
 263/*
 264 * Update disk head position estimator based on IRQ completion info.
 265 */
 266static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 267{
 268	struct r1conf *conf = r1_bio->mddev->private;
 269
 270	conf->mirrors[disk].head_position =
 271		r1_bio->sector + (r1_bio->sectors);
 272}
 273
 274/*
 275 * Find the disk number which triggered given bio
 276 */
 277static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 278{
 279	int mirror;
 280	struct r1conf *conf = r1_bio->mddev->private;
 281	int raid_disks = conf->raid_disks;
 282
 283	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 284		if (r1_bio->bios[mirror] == bio)
 285			break;
 286
 287	BUG_ON(mirror == raid_disks * 2);
 288	update_head_pos(mirror, r1_bio);
 289
 290	return mirror;
 291}
 292
 293static void raid1_end_read_request(struct bio *bio, int error)
 294{
 295	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 296	struct r1bio *r1_bio = bio->bi_private;
 297	int mirror;
 298	struct r1conf *conf = r1_bio->mddev->private;
 
 299
 300	mirror = r1_bio->read_disk;
 301	/*
 302	 * this branch is our 'one mirror IO has finished' event handler:
 303	 */
 304	update_head_pos(mirror, r1_bio);
 305
 306	if (uptodate)
 307		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 308	else {
 309		/* If all other devices have failed, we want to return
 310		 * the error upwards rather than fail the last device.
 311		 * Here we redefine "uptodate" to mean "Don't want to retry"
 312		 */
 313		unsigned long flags;
 314		spin_lock_irqsave(&conf->device_lock, flags);
 315		if (r1_bio->mddev->degraded == conf->raid_disks ||
 316		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 317		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 318			uptodate = 1;
 319		spin_unlock_irqrestore(&conf->device_lock, flags);
 320	}
 321
 322	if (uptodate)
 323		raid_end_bio_io(r1_bio);
 324	else {
 
 325		/*
 326		 * oops, read error:
 327		 */
 328		char b[BDEVNAME_SIZE];
 329		printk_ratelimited(
 330			KERN_ERR "md/raid1:%s: %s: "
 331			"rescheduling sector %llu\n",
 332			mdname(conf->mddev),
 333			bdevname(conf->mirrors[mirror].rdev->bdev,
 334				 b),
 335			(unsigned long long)r1_bio->sector);
 336		set_bit(R1BIO_ReadError, &r1_bio->state);
 337		reschedule_retry(r1_bio);
 
 338	}
 339
 340	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 341}
 342
 343static void close_write(struct r1bio *r1_bio)
 344{
 345	/* it really is the end of this request */
 346	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 347		/* free extra copy of the data pages */
 348		int i = r1_bio->behind_page_count;
 349		while (i--)
 350			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 351		kfree(r1_bio->behind_bvecs);
 352		r1_bio->behind_bvecs = NULL;
 353	}
 354	/* clear the bitmap if all writes complete successfully */
 355	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 356			r1_bio->sectors,
 357			!test_bit(R1BIO_Degraded, &r1_bio->state),
 358			test_bit(R1BIO_BehindIO, &r1_bio->state));
 359	md_write_end(r1_bio->mddev);
 360}
 361
 362static void r1_bio_write_done(struct r1bio *r1_bio)
 363{
 364	if (!atomic_dec_and_test(&r1_bio->remaining))
 365		return;
 366
 367	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 368		reschedule_retry(r1_bio);
 369	else {
 370		close_write(r1_bio);
 371		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 372			reschedule_retry(r1_bio);
 373		else
 374			raid_end_bio_io(r1_bio);
 375	}
 376}
 377
 378static void raid1_end_write_request(struct bio *bio, int error)
 379{
 380	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 381	struct r1bio *r1_bio = bio->bi_private;
 382	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 383	struct r1conf *conf = r1_bio->mddev->private;
 384	struct bio *to_put = NULL;
 
 
 
 
 
 385
 386	mirror = find_bio_disk(r1_bio, bio);
 387
 388	/*
 389	 * 'one mirror IO has finished' event handler:
 390	 */
 391	if (!uptodate) {
 392		set_bit(WriteErrorSeen,
 393			&conf->mirrors[mirror].rdev->flags);
 394		if (!test_and_set_bit(WantReplacement,
 395				      &conf->mirrors[mirror].rdev->flags))
 396			set_bit(MD_RECOVERY_NEEDED, &
 397				conf->mddev->recovery);
 398
 399		set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400	} else {
 401		/*
 402		 * Set R1BIO_Uptodate in our master bio, so that we
 403		 * will return a good error code for to the higher
 404		 * levels even if IO on some other mirrored buffer
 405		 * fails.
 406		 *
 407		 * The 'master' represents the composite IO operation
 408		 * to user-side. So if something waits for IO, then it
 409		 * will wait for the 'master' bio.
 410		 */
 411		sector_t first_bad;
 412		int bad_sectors;
 413
 414		r1_bio->bios[mirror] = NULL;
 415		to_put = bio;
 416		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 417
 418		/* Maybe we can clear some bad blocks. */
 419		if (is_badblock(conf->mirrors[mirror].rdev,
 420				r1_bio->sector, r1_bio->sectors,
 421				&first_bad, &bad_sectors)) {
 422			r1_bio->bios[mirror] = IO_MADE_GOOD;
 423			set_bit(R1BIO_MadeGood, &r1_bio->state);
 424		}
 425	}
 426
 427	if (behind) {
 428		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 
 
 429			atomic_dec(&r1_bio->behind_remaining);
 430
 431		/*
 432		 * In behind mode, we ACK the master bio once the I/O
 433		 * has safely reached all non-writemostly
 434		 * disks. Setting the Returned bit ensures that this
 435		 * gets done only once -- we don't ever want to return
 436		 * -EIO here, instead we'll wait
 437		 */
 438		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 439		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 440			/* Maybe we can return now */
 441			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 442				struct bio *mbio = r1_bio->master_bio;
 443				pr_debug("raid1: behind end write sectors"
 444					 " %llu-%llu\n",
 445					 (unsigned long long) mbio->bi_sector,
 446					 (unsigned long long) mbio->bi_sector +
 447					 (mbio->bi_size >> 9) - 1);
 448				call_bio_endio(r1_bio);
 449			}
 450		}
 451	}
 
 452	if (r1_bio->bios[mirror] == NULL)
 453		rdev_dec_pending(conf->mirrors[mirror].rdev,
 454				 conf->mddev);
 455
 456	/*
 457	 * Let's see if all mirrored write operations have finished
 458	 * already.
 459	 */
 460	r1_bio_write_done(r1_bio);
 461
 462	if (to_put)
 463		bio_put(to_put);
 464}
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466
 467/*
 468 * This routine returns the disk from which the requested read should
 469 * be done. There is a per-array 'next expected sequential IO' sector
 470 * number - if this matches on the next IO then we use the last disk.
 471 * There is also a per-disk 'last know head position' sector that is
 472 * maintained from IRQ contexts, both the normal and the resync IO
 473 * completion handlers update this position correctly. If there is no
 474 * perfect sequential match then we pick the disk whose head is closest.
 475 *
 476 * If there are 2 mirrors in the same 2 devices, performance degrades
 477 * because position is mirror, not device based.
 478 *
 479 * The rdev for the device selected will have nr_pending incremented.
 480 */
 481static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 482{
 483	const sector_t this_sector = r1_bio->sector;
 484	int sectors;
 485	int best_good_sectors;
 486	int start_disk;
 487	int best_disk;
 488	int i;
 489	sector_t best_dist;
 
 490	struct md_rdev *rdev;
 491	int choose_first;
 
 492
 493	rcu_read_lock();
 494	/*
 495	 * Check if we can balance. We can balance on the whole
 496	 * device if no resync is going on, or below the resync window.
 497	 * We take the first readable disk when above the resync window.
 498	 */
 499 retry:
 500	sectors = r1_bio->sectors;
 501	best_disk = -1;
 
 502	best_dist = MaxSector;
 
 
 503	best_good_sectors = 0;
 504
 505	if (conf->mddev->recovery_cp < MaxSector &&
 506	    (this_sector + sectors >= conf->next_resync)) {
 
 
 
 
 
 507		choose_first = 1;
 508		start_disk = 0;
 509	} else {
 510		choose_first = 0;
 511		start_disk = conf->last_used;
 512	}
 513
 514	for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
 515		sector_t dist;
 516		sector_t first_bad;
 517		int bad_sectors;
 
 
 518
 519		int disk = start_disk + i;
 520		if (disk >= conf->raid_disks * 2)
 521			disk -= conf->raid_disks * 2;
 522
 523		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 524		if (r1_bio->bios[disk] == IO_BLOCKED
 525		    || rdev == NULL
 526		    || test_bit(Unmerged, &rdev->flags)
 527		    || test_bit(Faulty, &rdev->flags))
 528			continue;
 529		if (!test_bit(In_sync, &rdev->flags) &&
 530		    rdev->recovery_offset < this_sector + sectors)
 531			continue;
 532		if (test_bit(WriteMostly, &rdev->flags)) {
 533			/* Don't balance among write-mostly, just
 534			 * use the first as a last resort */
 535			if (best_disk < 0) {
 536				if (is_badblock(rdev, this_sector, sectors,
 537						&first_bad, &bad_sectors)) {
 538					if (first_bad < this_sector)
 539						/* Cannot use this */
 540						continue;
 541					best_good_sectors = first_bad - this_sector;
 542				} else
 543					best_good_sectors = sectors;
 544				best_disk = disk;
 
 545			}
 546			continue;
 547		}
 548		/* This is a reasonable device to use.  It might
 549		 * even be best.
 550		 */
 551		if (is_badblock(rdev, this_sector, sectors,
 552				&first_bad, &bad_sectors)) {
 553			if (best_dist < MaxSector)
 554				/* already have a better device */
 555				continue;
 556			if (first_bad <= this_sector) {
 557				/* cannot read here. If this is the 'primary'
 558				 * device, then we must not read beyond
 559				 * bad_sectors from another device..
 560				 */
 561				bad_sectors -= (this_sector - first_bad);
 562				if (choose_first && sectors > bad_sectors)
 563					sectors = bad_sectors;
 564				if (best_good_sectors > sectors)
 565					best_good_sectors = sectors;
 566
 567			} else {
 568				sector_t good_sectors = first_bad - this_sector;
 569				if (good_sectors > best_good_sectors) {
 570					best_good_sectors = good_sectors;
 571					best_disk = disk;
 572				}
 573				if (choose_first)
 574					break;
 575			}
 576			continue;
 577		} else
 
 
 578			best_good_sectors = sectors;
 
 579
 
 
 
 
 
 
 
 580		dist = abs(this_sector - conf->mirrors[disk].head_position);
 581		if (choose_first
 582		    /* Don't change to another disk for sequential reads */
 583		    || conf->next_seq_sect == this_sector
 584		    || dist == 0
 585		    /* If device is idle, use it */
 586		    || atomic_read(&rdev->nr_pending) == 0) {
 
 
 
 
 587			best_disk = disk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588			break;
 589		}
 
 
 
 
 
 
 
 
 
 590		if (dist < best_dist) {
 591			best_dist = dist;
 592			best_disk = disk;
 593		}
 594	}
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 596	if (best_disk >= 0) {
 597		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 598		if (!rdev)
 599			goto retry;
 600		atomic_inc(&rdev->nr_pending);
 601		if (test_bit(Faulty, &rdev->flags)) {
 602			/* cannot risk returning a device that failed
 603			 * before we inc'ed nr_pending
 604			 */
 605			rdev_dec_pending(rdev, conf->mddev);
 606			goto retry;
 607		}
 608		sectors = best_good_sectors;
 609		conf->next_seq_sect = this_sector + sectors;
 610		conf->last_used = best_disk;
 
 
 
 611	}
 612	rcu_read_unlock();
 613	*max_sectors = sectors;
 614
 615	return best_disk;
 616}
 617
 618static int raid1_mergeable_bvec(struct request_queue *q,
 619				struct bvec_merge_data *bvm,
 620				struct bio_vec *biovec)
 621{
 622	struct mddev *mddev = q->queuedata;
 623	struct r1conf *conf = mddev->private;
 624	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 625	int max = biovec->bv_len;
 626
 627	if (mddev->merge_check_needed) {
 628		int disk;
 629		rcu_read_lock();
 630		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
 631			struct md_rdev *rdev = rcu_dereference(
 632				conf->mirrors[disk].rdev);
 633			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 634				struct request_queue *q =
 635					bdev_get_queue(rdev->bdev);
 636				if (q->merge_bvec_fn) {
 637					bvm->bi_sector = sector +
 638						rdev->data_offset;
 639					bvm->bi_bdev = rdev->bdev;
 640					max = min(max, q->merge_bvec_fn(
 641							  q, bvm, biovec));
 642				}
 643			}
 644		}
 645		rcu_read_unlock();
 646	}
 647	return max;
 648
 649}
 650
 651int md_raid1_congested(struct mddev *mddev, int bits)
 652{
 653	struct r1conf *conf = mddev->private;
 654	int i, ret = 0;
 
 655
 656	if ((bits & (1 << BDI_async_congested)) &&
 657	    conf->pending_count >= max_queued_requests)
 658		return 1;
 659
 660	rcu_read_lock();
 661	for (i = 0; i < conf->raid_disks * 2; i++) {
 662		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 663		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 664			struct request_queue *q = bdev_get_queue(rdev->bdev);
 665
 666			BUG_ON(!q);
 667
 668			/* Note the '|| 1' - when read_balance prefers
 669			 * non-congested targets, it can be removed
 670			 */
 671			if ((bits & (1<<BDI_async_congested)) || 1)
 672				ret |= bdi_congested(&q->backing_dev_info, bits);
 673			else
 674				ret &= bdi_congested(&q->backing_dev_info, bits);
 675		}
 676	}
 677	rcu_read_unlock();
 678	return ret;
 679}
 680EXPORT_SYMBOL_GPL(md_raid1_congested);
 681
 682static int raid1_congested(void *data, int bits)
 683{
 684	struct mddev *mddev = data;
 685
 686	return mddev_congested(mddev, bits) ||
 687		md_raid1_congested(mddev, bits);
 688}
 689
 690static void flush_pending_writes(struct r1conf *conf)
 691{
 692	/* Any writes that have been queued but are awaiting
 693	 * bitmap updates get flushed here.
 694	 */
 695	spin_lock_irq(&conf->device_lock);
 696
 697	if (conf->pending_bio_list.head) {
 
 698		struct bio *bio;
 
 699		bio = bio_list_get(&conf->pending_bio_list);
 700		conf->pending_count = 0;
 701		spin_unlock_irq(&conf->device_lock);
 702		/* flush any pending bitmap writes to
 703		 * disk before proceeding w/ I/O */
 704		bitmap_unplug(conf->mddev->bitmap);
 705		wake_up(&conf->wait_barrier);
 706
 707		while (bio) { /* submit pending writes */
 708			struct bio *next = bio->bi_next;
 709			bio->bi_next = NULL;
 710			generic_make_request(bio);
 711			bio = next;
 712		}
 
 
 
 
 
 
 
 713	} else
 714		spin_unlock_irq(&conf->device_lock);
 715}
 716
 717/* Barriers....
 718 * Sometimes we need to suspend IO while we do something else,
 719 * either some resync/recovery, or reconfigure the array.
 720 * To do this we raise a 'barrier'.
 721 * The 'barrier' is a counter that can be raised multiple times
 722 * to count how many activities are happening which preclude
 723 * normal IO.
 724 * We can only raise the barrier if there is no pending IO.
 725 * i.e. if nr_pending == 0.
 726 * We choose only to raise the barrier if no-one is waiting for the
 727 * barrier to go down.  This means that as soon as an IO request
 728 * is ready, no other operations which require a barrier will start
 729 * until the IO request has had a chance.
 730 *
 731 * So: regular IO calls 'wait_barrier'.  When that returns there
 732 *    is no backgroup IO happening,  It must arrange to call
 733 *    allow_barrier when it has finished its IO.
 734 * backgroup IO calls must call raise_barrier.  Once that returns
 735 *    there is no normal IO happeing.  It must arrange to call
 736 *    lower_barrier when the particular background IO completes.
 
 
 
 737 */
 738#define RESYNC_DEPTH 32
 739
 740static void raise_barrier(struct r1conf *conf)
 741{
 
 
 742	spin_lock_irq(&conf->resync_lock);
 743
 744	/* Wait until no block IO is waiting */
 745	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 746			    conf->resync_lock, );
 
 747
 748	/* block any new IO from starting */
 749	conf->barrier++;
 750
 751	/* Now wait for all pending IO to complete */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752	wait_event_lock_irq(conf->wait_barrier,
 753			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 754			    conf->resync_lock, );
 
 
 
 
 
 
 
 
 
 
 755
 
 756	spin_unlock_irq(&conf->resync_lock);
 
 
 757}
 758
 759static void lower_barrier(struct r1conf *conf)
 760{
 761	unsigned long flags;
 762	BUG_ON(conf->barrier <= 0);
 763	spin_lock_irqsave(&conf->resync_lock, flags);
 764	conf->barrier--;
 765	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 766	wake_up(&conf->wait_barrier);
 767}
 768
 769static void wait_barrier(struct r1conf *conf)
 770{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771	spin_lock_irq(&conf->resync_lock);
 772	if (conf->barrier) {
 773		conf->nr_waiting++;
 774		/* Wait for the barrier to drop.
 775		 * However if there are already pending
 776		 * requests (preventing the barrier from
 777		 * rising completely), and the
 778		 * pre-process bio queue isn't empty,
 779		 * then don't wait, as we need to empty
 780		 * that queue to get the nr_pending
 781		 * count down.
 782		 */
 
 
 783		wait_event_lock_irq(conf->wait_barrier,
 784				    !conf->barrier ||
 785				    (conf->nr_pending &&
 786				     current->bio_list &&
 787				     !bio_list_empty(current->bio_list)),
 788				    conf->resync_lock,
 789			);
 790		conf->nr_waiting--;
 791	}
 792	conf->nr_pending++;
 
 793	spin_unlock_irq(&conf->resync_lock);
 
 794}
 795
 796static void allow_barrier(struct r1conf *conf)
 797{
 798	unsigned long flags;
 799	spin_lock_irqsave(&conf->resync_lock, flags);
 800	conf->nr_pending--;
 801	spin_unlock_irqrestore(&conf->resync_lock, flags);
 802	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803}
 804
 805static void freeze_array(struct r1conf *conf)
 806{
 807	/* stop syncio and normal IO and wait for everything to
 808	 * go quite.
 809	 * We increment barrier and nr_waiting, and then
 810	 * wait until nr_pending match nr_queued+1
 811	 * This is called in the context of one normal IO request
 812	 * that has failed. Thus any sync request that might be pending
 813	 * will be blocked by nr_pending, and we need to wait for
 814	 * pending IO requests to complete or be queued for re-try.
 815	 * Thus the number queued (nr_queued) plus this request (1)
 816	 * must match the number of pending IOs (nr_pending) before
 817	 * we continue.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818	 */
 819	spin_lock_irq(&conf->resync_lock);
 820	conf->barrier++;
 821	conf->nr_waiting++;
 822	wait_event_lock_irq(conf->wait_barrier,
 823			    conf->nr_pending == conf->nr_queued+1,
 824			    conf->resync_lock,
 825			    flush_pending_writes(conf));
 
 826	spin_unlock_irq(&conf->resync_lock);
 827}
 828static void unfreeze_array(struct r1conf *conf)
 829{
 830	/* reverse the effect of the freeze */
 831	spin_lock_irq(&conf->resync_lock);
 832	conf->barrier--;
 833	conf->nr_waiting--;
 834	wake_up(&conf->wait_barrier);
 835	spin_unlock_irq(&conf->resync_lock);
 
 836}
 837
 838
 839/* duplicate the data pages for behind I/O 
 840 */
 841static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 842{
 843	int i;
 844	struct bio_vec *bvec;
 845	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 846					GFP_NOIO);
 847	if (unlikely(!bvecs))
 848		return;
 
 849
 850	bio_for_each_segment(bvec, bio, i) {
 851		bvecs[i] = *bvec;
 852		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 853		if (unlikely(!bvecs[i].bv_page))
 854			goto do_sync_io;
 855		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 856		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 857		kunmap(bvecs[i].bv_page);
 858		kunmap(bvec->bv_page);
 859	}
 860	r1_bio->behind_bvecs = bvecs;
 861	r1_bio->behind_page_count = bio->bi_vcnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	set_bit(R1BIO_BehindIO, &r1_bio->state);
 
 863	return;
 864
 865do_sync_io:
 866	for (i = 0; i < bio->bi_vcnt; i++)
 867		if (bvecs[i].bv_page)
 868			put_page(bvecs[i].bv_page);
 869	kfree(bvecs);
 870	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871}
 872
 873static void make_request(struct mddev *mddev, struct bio * bio)
 
 874{
 875	struct r1conf *conf = mddev->private;
 876	struct mirror_info *mirror;
 877	struct r1bio *r1_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 878	struct bio *read_bio;
 879	int i, disks;
 880	struct bitmap *bitmap;
 881	unsigned long flags;
 882	const int rw = bio_data_dir(bio);
 883	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 884	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
 885	struct md_rdev *blocked_rdev;
 886	int first_clone;
 887	int sectors_handled;
 888	int max_sectors;
 
 
 
 889
 890	/*
 891	 * Register the new request and wait if the reconstruction
 892	 * thread has put up a bar for new requests.
 893	 * Continue immediately if no resync is active currently.
 894	 */
 895
 896	md_write_start(mddev, bio); /* wait on superblock update early */
 
 
 
 897
 898	if (bio_data_dir(bio) == WRITE &&
 899	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
 900	    bio->bi_sector < mddev->suspend_hi) {
 901		/* As the suspend_* range is controlled by
 902		 * userspace, we want an interruptible
 903		 * wait.
 904		 */
 905		DEFINE_WAIT(w);
 906		for (;;) {
 907			flush_signals(current);
 908			prepare_to_wait(&conf->wait_barrier,
 909					&w, TASK_INTERRUPTIBLE);
 910			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
 911			    bio->bi_sector >= mddev->suspend_hi)
 912				break;
 913			schedule();
 914		}
 915		finish_wait(&conf->wait_barrier, &w);
 916	}
 917
 918	wait_barrier(conf);
 
 
 
 
 
 
 
 
 919
 920	bitmap = mddev->bitmap;
 
 
 
 
 921
 922	/*
 923	 * make_request() can abort the operation when READA is being
 924	 * used and no empty request is available.
 925	 *
 926	 */
 927	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 928
 929	r1_bio->master_bio = bio;
 930	r1_bio->sectors = bio->bi_size >> 9;
 931	r1_bio->state = 0;
 932	r1_bio->mddev = mddev;
 933	r1_bio->sector = bio->bi_sector;
 
 
 
 
 
 
 
 934
 935	/* We might need to issue multiple reads to different
 936	 * devices if there are bad blocks around, so we keep
 937	 * track of the number of reads in bio->bi_phys_segments.
 938	 * If this is 0, there is only one r1_bio and no locking
 939	 * will be needed when requests complete.  If it is
 940	 * non-zero, then it is the number of not-completed requests.
 941	 */
 942	bio->bi_phys_segments = 0;
 943	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 944
 945	if (rw == READ) {
 
 946		/*
 947		 * read balancing logic:
 
 948		 */
 949		int rdisk;
 
 
 
 950
 951read_again:
 952		rdisk = read_balance(conf, r1_bio, &max_sectors);
 
 
 
 
 
 
 
 953
 954		if (rdisk < 0) {
 955			/* couldn't find anywhere to read from */
 956			raid_end_bio_io(r1_bio);
 957			return;
 958		}
 959		mirror = conf->mirrors + rdisk;
 
 960
 961		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 962		    bitmap) {
 963			/* Reading from a write-mostly device must
 964			 * take care not to over-take any writes
 965			 * that are 'behind'
 966			 */
 967			wait_event(bitmap->behind_wait,
 968				   atomic_read(&bitmap->behind_writes) == 0);
 969		}
 970		r1_bio->read_disk = rdisk;
 971
 972		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 973		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
 974			    max_sectors);
 975
 976		r1_bio->bios[rdisk] = read_bio;
 977
 978		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 979		read_bio->bi_bdev = mirror->rdev->bdev;
 980		read_bio->bi_end_io = raid1_end_read_request;
 981		read_bio->bi_rw = READ | do_sync;
 982		read_bio->bi_private = r1_bio;
 983
 984		if (max_sectors < r1_bio->sectors) {
 985			/* could not read all from this device, so we will
 986			 * need another r1_bio.
 987			 */
 988
 989			sectors_handled = (r1_bio->sector + max_sectors
 990					   - bio->bi_sector);
 991			r1_bio->sectors = max_sectors;
 992			spin_lock_irq(&conf->device_lock);
 993			if (bio->bi_phys_segments == 0)
 994				bio->bi_phys_segments = 2;
 995			else
 996				bio->bi_phys_segments++;
 997			spin_unlock_irq(&conf->device_lock);
 998			/* Cannot call generic_make_request directly
 999			 * as that will be queued in __make_request
1000			 * and subsequent mempool_alloc might block waiting
1001			 * for it.  So hand bio over to raid1d.
1002			 */
1003			reschedule_retry(r1_bio);
1004
1005			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 
1006
1007			r1_bio->master_bio = bio;
1008			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1009			r1_bio->state = 0;
1010			r1_bio->mddev = mddev;
1011			r1_bio->sector = bio->bi_sector + sectors_handled;
1012			goto read_again;
1013		} else
1014			generic_make_request(read_bio);
1015		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016	}
1017
1018	/*
1019	 * WRITE:
 
 
1020	 */
1021	if (conf->pending_count >= max_queued_requests) {
1022		md_wakeup_thread(mddev->thread);
1023		wait_event(conf->wait_barrier,
1024			   conf->pending_count < max_queued_requests);
1025	}
 
 
 
 
 
1026	/* first select target devices under rcu_lock and
1027	 * inc refcount on their rdev.  Record them by setting
1028	 * bios[x] to bio
1029	 * If there are known/acknowledged bad blocks on any device on
1030	 * which we have seen a write error, we want to avoid writing those
1031	 * blocks.
1032	 * This potentially requires several writes to write around
1033	 * the bad blocks.  Each set of writes gets it's own r1bio
1034	 * with a set of bios attached.
1035	 */
1036
1037	disks = conf->raid_disks * 2;
1038 retry_write:
1039	blocked_rdev = NULL;
1040	rcu_read_lock();
1041	max_sectors = r1_bio->sectors;
1042	for (i = 0;  i < disks; i++) {
1043		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 
 
 
 
 
 
1044		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1045			atomic_inc(&rdev->nr_pending);
1046			blocked_rdev = rdev;
1047			break;
1048		}
1049		r1_bio->bios[i] = NULL;
1050		if (!rdev || test_bit(Faulty, &rdev->flags)
1051		    || test_bit(Unmerged, &rdev->flags)) {
1052			if (i < conf->raid_disks)
1053				set_bit(R1BIO_Degraded, &r1_bio->state);
1054			continue;
1055		}
1056
1057		atomic_inc(&rdev->nr_pending);
1058		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1059			sector_t first_bad;
1060			int bad_sectors;
1061			int is_bad;
1062
1063			is_bad = is_badblock(rdev, r1_bio->sector,
1064					     max_sectors,
1065					     &first_bad, &bad_sectors);
1066			if (is_bad < 0) {
1067				/* mustn't write here until the bad block is
1068				 * acknowledged*/
1069				set_bit(BlockedBadBlocks, &rdev->flags);
1070				blocked_rdev = rdev;
1071				break;
1072			}
1073			if (is_bad && first_bad <= r1_bio->sector) {
1074				/* Cannot write here at all */
1075				bad_sectors -= (r1_bio->sector - first_bad);
1076				if (bad_sectors < max_sectors)
1077					/* mustn't write more than bad_sectors
1078					 * to other devices yet
1079					 */
1080					max_sectors = bad_sectors;
1081				rdev_dec_pending(rdev, mddev);
1082				/* We don't set R1BIO_Degraded as that
1083				 * only applies if the disk is
1084				 * missing, so it might be re-added,
1085				 * and we want to know to recover this
1086				 * chunk.
1087				 * In this case the device is here,
1088				 * and the fact that this chunk is not
1089				 * in-sync is recorded in the bad
1090				 * block log
1091				 */
1092				continue;
1093			}
1094			if (is_bad) {
1095				int good_sectors = first_bad - r1_bio->sector;
1096				if (good_sectors < max_sectors)
1097					max_sectors = good_sectors;
1098			}
1099		}
1100		r1_bio->bios[i] = bio;
1101	}
1102	rcu_read_unlock();
1103
1104	if (unlikely(blocked_rdev)) {
1105		/* Wait for this device to become unblocked */
1106		int j;
1107
1108		for (j = 0; j < i; j++)
1109			if (r1_bio->bios[j])
1110				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1111		r1_bio->state = 0;
1112		allow_barrier(conf);
 
 
 
 
 
 
1113		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1114		wait_barrier(conf);
1115		goto retry_write;
1116	}
1117
1118	if (max_sectors < r1_bio->sectors) {
1119		/* We are splitting this write into multiple parts, so
1120		 * we need to prepare for allocating another r1_bio.
1121		 */
 
 
 
 
 
 
 
 
 
 
 
 
1122		r1_bio->sectors = max_sectors;
1123		spin_lock_irq(&conf->device_lock);
1124		if (bio->bi_phys_segments == 0)
1125			bio->bi_phys_segments = 2;
1126		else
1127			bio->bi_phys_segments++;
1128		spin_unlock_irq(&conf->device_lock);
1129	}
1130	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1131
 
 
1132	atomic_set(&r1_bio->remaining, 1);
1133	atomic_set(&r1_bio->behind_remaining, 0);
1134
1135	first_clone = 1;
 
1136	for (i = 0; i < disks; i++) {
1137		struct bio *mbio;
 
1138		if (!r1_bio->bios[i])
1139			continue;
1140
1141		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1142		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1143
1144		if (first_clone) {
1145			/* do behind I/O ?
1146			 * Not if there are too many, or cannot
1147			 * allocate memory, or a reader on WriteMostly
1148			 * is waiting for behind writes to flush */
1149			if (bitmap &&
1150			    (atomic_read(&bitmap->behind_writes)
1151			     < mddev->bitmap_info.max_write_behind) &&
1152			    !waitqueue_active(&bitmap->behind_wait))
1153				alloc_behind_pages(mbio, r1_bio);
 
1154
1155			bitmap_startwrite(bitmap, r1_bio->sector,
1156					  r1_bio->sectors,
1157					  test_bit(R1BIO_BehindIO,
1158						   &r1_bio->state));
1159			first_clone = 0;
1160		}
1161		if (r1_bio->behind_bvecs) {
1162			struct bio_vec *bvec;
1163			int j;
1164
1165			/* Yes, I really want the '__' version so that
1166			 * we clear any unused pointer in the io_vec, rather
1167			 * than leave them unchanged.  This is important
1168			 * because when we come to free the pages, we won't
1169			 * know the original bi_idx, so we just free
1170			 * them all
1171			 */
1172			__bio_for_each_segment(bvec, mbio, j, 0)
1173				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1174			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1175				atomic_inc(&r1_bio->behind_remaining);
 
 
 
 
 
 
1176		}
1177
1178		r1_bio->bios[i] = mbio;
1179
1180		mbio->bi_sector	= (r1_bio->sector +
1181				   conf->mirrors[i].rdev->data_offset);
1182		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1183		mbio->bi_end_io	= raid1_end_write_request;
1184		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
 
 
 
 
1185		mbio->bi_private = r1_bio;
1186
1187		atomic_inc(&r1_bio->remaining);
1188		spin_lock_irqsave(&conf->device_lock, flags);
1189		bio_list_add(&conf->pending_bio_list, mbio);
1190		conf->pending_count++;
1191		spin_unlock_irqrestore(&conf->device_lock, flags);
1192		if (!mddev_check_plugged(mddev))
 
 
 
 
 
1193			md_wakeup_thread(mddev->thread);
1194	}
1195	/* Mustn't call r1_bio_write_done before this next test,
1196	 * as it could result in the bio being freed.
1197	 */
1198	if (sectors_handled < (bio->bi_size >> 9)) {
1199		r1_bio_write_done(r1_bio);
1200		/* We need another r1_bio.  It has already been counted
1201		 * in bio->bi_phys_segments
1202		 */
1203		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204		r1_bio->master_bio = bio;
1205		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1206		r1_bio->state = 0;
1207		r1_bio->mddev = mddev;
1208		r1_bio->sector = bio->bi_sector + sectors_handled;
1209		goto retry_write;
1210	}
1211
1212	r1_bio_write_done(r1_bio);
1213
1214	/* In case raid1d snuck in to freeze_array */
1215	wake_up(&conf->wait_barrier);
1216}
1217
1218static void status(struct seq_file *seq, struct mddev *mddev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219{
1220	struct r1conf *conf = mddev->private;
1221	int i;
1222
 
 
1223	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1224		   conf->raid_disks - mddev->degraded);
1225	rcu_read_lock();
1226	for (i = 0; i < conf->raid_disks; i++) {
1227		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
1228		seq_printf(seq, "%s",
1229			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1230	}
1231	rcu_read_unlock();
1232	seq_printf(seq, "]");
1233}
1234
1235
1236static void error(struct mddev *mddev, struct md_rdev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237{
1238	char b[BDEVNAME_SIZE];
1239	struct r1conf *conf = mddev->private;
 
1240
1241	/*
1242	 * If it is not operational, then we have already marked it as dead
1243	 * else if it is the last working disks, ignore the error, let the
1244	 * next level up know.
1245	 * else mark the drive as failed
1246	 */
1247	if (test_bit(In_sync, &rdev->flags)
1248	    && (conf->raid_disks - mddev->degraded) == 1) {
1249		/*
1250		 * Don't fail the drive, act as though we were just a
1251		 * normal single drive.
1252		 * However don't try a recovery from this drive as
1253		 * it is very likely to fail.
1254		 */
1255		conf->recovery_disabled = mddev->recovery_disabled;
1256		return;
1257	}
1258	set_bit(Blocked, &rdev->flags);
1259	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1260		unsigned long flags;
1261		spin_lock_irqsave(&conf->device_lock, flags);
1262		mddev->degraded++;
1263		set_bit(Faulty, &rdev->flags);
1264		spin_unlock_irqrestore(&conf->device_lock, flags);
1265		/*
1266		 * if recovery is running, make sure it aborts.
1267		 */
1268		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1269	} else
1270		set_bit(Faulty, &rdev->flags);
1271	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1272	printk(KERN_ALERT
1273	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1274	       "md/raid1:%s: Operation continuing on %d devices.\n",
1275	       mdname(mddev), bdevname(rdev->bdev, b),
1276	       mdname(mddev), conf->raid_disks - mddev->degraded);
1277}
1278
1279static void print_conf(struct r1conf *conf)
1280{
1281	int i;
1282
1283	printk(KERN_DEBUG "RAID1 conf printout:\n");
1284	if (!conf) {
1285		printk(KERN_DEBUG "(!conf)\n");
1286		return;
1287	}
1288	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1289		conf->raid_disks);
1290
1291	rcu_read_lock();
1292	for (i = 0; i < conf->raid_disks; i++) {
1293		char b[BDEVNAME_SIZE];
1294		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1295		if (rdev)
1296			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1297			       i, !test_bit(In_sync, &rdev->flags),
1298			       !test_bit(Faulty, &rdev->flags),
1299			       bdevname(rdev->bdev,b));
1300	}
1301	rcu_read_unlock();
1302}
1303
1304static void close_sync(struct r1conf *conf)
1305{
1306	wait_barrier(conf);
1307	allow_barrier(conf);
 
 
 
 
1308
1309	mempool_destroy(conf->r1buf_pool);
1310	conf->r1buf_pool = NULL;
1311}
1312
1313static int raid1_spare_active(struct mddev *mddev)
1314{
1315	int i;
1316	struct r1conf *conf = mddev->private;
1317	int count = 0;
1318	unsigned long flags;
1319
1320	/*
1321	 * Find all failed disks within the RAID1 configuration 
1322	 * and mark them readable.
1323	 * Called under mddev lock, so rcu protection not needed.
 
 
1324	 */
 
1325	for (i = 0; i < conf->raid_disks; i++) {
1326		struct md_rdev *rdev = conf->mirrors[i].rdev;
1327		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1328		if (repl
 
1329		    && repl->recovery_offset == MaxSector
1330		    && !test_bit(Faulty, &repl->flags)
1331		    && !test_and_set_bit(In_sync, &repl->flags)) {
1332			/* replacement has just become active */
1333			if (!rdev ||
1334			    !test_and_clear_bit(In_sync, &rdev->flags))
1335				count++;
1336			if (rdev) {
1337				/* Replaced device not technically
1338				 * faulty, but we need to be sure
1339				 * it gets removed and never re-added
1340				 */
1341				set_bit(Faulty, &rdev->flags);
1342				sysfs_notify_dirent_safe(
1343					rdev->sysfs_state);
1344			}
1345		}
1346		if (rdev
 
1347		    && !test_bit(Faulty, &rdev->flags)
1348		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1349			count++;
1350			sysfs_notify_dirent_safe(rdev->sysfs_state);
1351		}
1352	}
1353	spin_lock_irqsave(&conf->device_lock, flags);
1354	mddev->degraded -= count;
1355	spin_unlock_irqrestore(&conf->device_lock, flags);
1356
1357	print_conf(conf);
1358	return count;
1359}
1360
1361
1362static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1363{
1364	struct r1conf *conf = mddev->private;
1365	int err = -EEXIST;
1366	int mirror = 0;
1367	struct mirror_info *p;
1368	int first = 0;
1369	int last = conf->raid_disks - 1;
1370	struct request_queue *q = bdev_get_queue(rdev->bdev);
1371
1372	if (mddev->recovery_disabled == conf->recovery_disabled)
1373		return -EBUSY;
1374
 
 
 
1375	if (rdev->raid_disk >= 0)
1376		first = last = rdev->raid_disk;
1377
1378	if (q->merge_bvec_fn) {
1379		set_bit(Unmerged, &rdev->flags);
1380		mddev->merge_check_needed = 1;
1381	}
 
 
 
 
 
1382
1383	for (mirror = first; mirror <= last; mirror++) {
1384		p = conf->mirrors+mirror;
1385		if (!p->rdev) {
1386
1387			disk_stack_limits(mddev->gendisk, rdev->bdev,
1388					  rdev->data_offset << 9);
1389
1390			p->head_position = 0;
1391			rdev->raid_disk = mirror;
1392			err = 0;
1393			/* As all devices are equivalent, we don't need a full recovery
1394			 * if this was recently any drive of the array
1395			 */
1396			if (rdev->saved_raid_disk < 0)
1397				conf->fullsync = 1;
1398			rcu_assign_pointer(p->rdev, rdev);
1399			break;
1400		}
1401		if (test_bit(WantReplacement, &p->rdev->flags) &&
1402		    p[conf->raid_disks].rdev == NULL) {
1403			/* Add this device as a replacement */
1404			clear_bit(In_sync, &rdev->flags);
1405			set_bit(Replacement, &rdev->flags);
1406			rdev->raid_disk = mirror;
1407			err = 0;
1408			conf->fullsync = 1;
1409			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1410			break;
1411		}
1412	}
1413	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1414		/* Some requests might not have seen this new
1415		 * merge_bvec_fn.  We must wait for them to complete
1416		 * before merging the device fully.
1417		 * First we make sure any code which has tested
1418		 * our function has submitted the request, then
1419		 * we wait for all outstanding requests to complete.
1420		 */
1421		synchronize_sched();
1422		raise_barrier(conf);
1423		lower_barrier(conf);
1424		clear_bit(Unmerged, &rdev->flags);
1425	}
1426	md_integrity_add_rdev(rdev, mddev);
1427	print_conf(conf);
1428	return err;
1429}
1430
1431static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1432{
1433	struct r1conf *conf = mddev->private;
1434	int err = 0;
1435	int number = rdev->raid_disk;
1436	struct mirror_info *p = conf->mirrors+ number;
 
 
 
1437
1438	if (rdev != p->rdev)
1439		p = conf->mirrors + conf->raid_disks + number;
1440
1441	print_conf(conf);
1442	if (rdev == p->rdev) {
1443		if (test_bit(In_sync, &rdev->flags) ||
1444		    atomic_read(&rdev->nr_pending)) {
1445			err = -EBUSY;
1446			goto abort;
1447		}
1448		/* Only remove non-faulty devices if recovery
1449		 * is not possible.
1450		 */
1451		if (!test_bit(Faulty, &rdev->flags) &&
1452		    mddev->recovery_disabled != conf->recovery_disabled &&
1453		    mddev->degraded < conf->raid_disks) {
1454			err = -EBUSY;
1455			goto abort;
1456		}
1457		p->rdev = NULL;
1458		synchronize_rcu();
1459		if (atomic_read(&rdev->nr_pending)) {
1460			/* lost the race, try later */
1461			err = -EBUSY;
1462			p->rdev = rdev;
1463			goto abort;
1464		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1465			/* We just removed a device that is being replaced.
1466			 * Move down the replacement.  We drain all IO before
1467			 * doing this to avoid confusion.
1468			 */
1469			struct md_rdev *repl =
1470				conf->mirrors[conf->raid_disks + number].rdev;
1471			raise_barrier(conf);
 
 
 
 
 
 
 
 
 
 
 
1472			clear_bit(Replacement, &repl->flags);
1473			p->rdev = repl;
1474			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1475			lower_barrier(conf);
1476			clear_bit(WantReplacement, &rdev->flags);
1477		} else
1478			clear_bit(WantReplacement, &rdev->flags);
1479		err = md_integrity_register(mddev);
1480	}
1481abort:
1482
1483	print_conf(conf);
1484	return err;
1485}
1486
1487
1488static void end_sync_read(struct bio *bio, int error)
1489{
1490	struct r1bio *r1_bio = bio->bi_private;
1491
1492	update_head_pos(r1_bio->read_disk, r1_bio);
1493
1494	/*
1495	 * we have read a block, now it needs to be re-written,
1496	 * or re-read if the read failed.
1497	 * We don't do much here, just schedule handling by raid1d
1498	 */
1499	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1500		set_bit(R1BIO_Uptodate, &r1_bio->state);
1501
1502	if (atomic_dec_and_test(&r1_bio->remaining))
1503		reschedule_retry(r1_bio);
1504}
1505
1506static void end_sync_write(struct bio *bio, int error)
1507{
1508	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1509	struct r1bio *r1_bio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510	struct mddev *mddev = r1_bio->mddev;
1511	struct r1conf *conf = mddev->private;
1512	int mirror=0;
1513	sector_t first_bad;
1514	int bad_sectors;
1515
1516	mirror = find_bio_disk(r1_bio, bio);
1517
1518	if (!uptodate) {
1519		sector_t sync_blocks = 0;
1520		sector_t s = r1_bio->sector;
1521		long sectors_to_go = r1_bio->sectors;
1522		/* make sure these bits doesn't get cleared. */
1523		do {
1524			bitmap_end_sync(mddev->bitmap, s,
1525					&sync_blocks, 1);
1526			s += sync_blocks;
1527			sectors_to_go -= sync_blocks;
1528		} while (sectors_to_go > 0);
1529		set_bit(WriteErrorSeen,
1530			&conf->mirrors[mirror].rdev->flags);
1531		if (!test_and_set_bit(WantReplacement,
1532				      &conf->mirrors[mirror].rdev->flags))
1533			set_bit(MD_RECOVERY_NEEDED, &
1534				mddev->recovery);
1535		set_bit(R1BIO_WriteError, &r1_bio->state);
1536	} else if (is_badblock(conf->mirrors[mirror].rdev,
1537			       r1_bio->sector,
1538			       r1_bio->sectors,
1539			       &first_bad, &bad_sectors) &&
1540		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1541				r1_bio->sector,
1542				r1_bio->sectors,
1543				&first_bad, &bad_sectors)
1544		)
1545		set_bit(R1BIO_MadeGood, &r1_bio->state);
1546
1547	if (atomic_dec_and_test(&r1_bio->remaining)) {
1548		int s = r1_bio->sectors;
1549		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1550		    test_bit(R1BIO_WriteError, &r1_bio->state))
1551			reschedule_retry(r1_bio);
1552		else {
1553			put_buf(r1_bio);
1554			md_done_sync(mddev, s, uptodate);
1555		}
1556	}
1557}
1558
1559static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1560			    int sectors, struct page *page, int rw)
1561{
1562	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1563		/* success */
1564		return 1;
1565	if (rw == WRITE) {
1566		set_bit(WriteErrorSeen, &rdev->flags);
1567		if (!test_and_set_bit(WantReplacement,
1568				      &rdev->flags))
1569			set_bit(MD_RECOVERY_NEEDED, &
1570				rdev->mddev->recovery);
1571	}
1572	/* need to record an error - either for the block or the device */
1573	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1574		md_error(rdev->mddev, rdev);
1575	return 0;
1576}
1577
1578static int fix_sync_read_error(struct r1bio *r1_bio)
1579{
1580	/* Try some synchronous reads of other devices to get
1581	 * good data, much like with normal read errors.  Only
1582	 * read into the pages we already have so we don't
1583	 * need to re-issue the read request.
1584	 * We don't need to freeze the array, because being in an
1585	 * active sync request, there is no normal IO, and
1586	 * no overlapping syncs.
1587	 * We don't need to check is_badblock() again as we
1588	 * made sure that anything with a bad block in range
1589	 * will have bi_end_io clear.
1590	 */
1591	struct mddev *mddev = r1_bio->mddev;
1592	struct r1conf *conf = mddev->private;
1593	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 
1594	sector_t sect = r1_bio->sector;
1595	int sectors = r1_bio->sectors;
1596	int idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1597
1598	while(sectors) {
1599		int s = sectors;
1600		int d = r1_bio->read_disk;
1601		int success = 0;
1602		struct md_rdev *rdev;
1603		int start;
1604
1605		if (s > (PAGE_SIZE>>9))
1606			s = PAGE_SIZE >> 9;
1607		do {
1608			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1609				/* No rcu protection needed here devices
1610				 * can only be removed when no resync is
1611				 * active, and resync is currently active
1612				 */
1613				rdev = conf->mirrors[d].rdev;
1614				if (sync_page_io(rdev, sect, s<<9,
1615						 bio->bi_io_vec[idx].bv_page,
1616						 READ, false)) {
1617					success = 1;
1618					break;
1619				}
1620			}
1621			d++;
1622			if (d == conf->raid_disks * 2)
1623				d = 0;
1624		} while (!success && d != r1_bio->read_disk);
1625
1626		if (!success) {
1627			char b[BDEVNAME_SIZE];
1628			int abort = 0;
1629			/* Cannot read from anywhere, this block is lost.
1630			 * Record a bad block on each device.  If that doesn't
1631			 * work just disable and interrupt the recovery.
1632			 * Don't fail devices as that won't really help.
1633			 */
1634			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1635			       " for block %llu\n",
1636			       mdname(mddev),
1637			       bdevname(bio->bi_bdev, b),
1638			       (unsigned long long)r1_bio->sector);
1639			for (d = 0; d < conf->raid_disks * 2; d++) {
1640				rdev = conf->mirrors[d].rdev;
1641				if (!rdev || test_bit(Faulty, &rdev->flags))
1642					continue;
1643				if (!rdev_set_badblocks(rdev, sect, s, 0))
1644					abort = 1;
1645			}
1646			if (abort) {
1647				conf->recovery_disabled =
1648					mddev->recovery_disabled;
1649				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1650				md_done_sync(mddev, r1_bio->sectors, 0);
1651				put_buf(r1_bio);
1652				return 0;
1653			}
1654			/* Try next page */
1655			sectors -= s;
1656			sect += s;
1657			idx++;
1658			continue;
1659		}
1660
1661		start = d;
1662		/* write it back and re-read */
1663		while (d != r1_bio->read_disk) {
1664			if (d == 0)
1665				d = conf->raid_disks * 2;
1666			d--;
1667			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1668				continue;
1669			rdev = conf->mirrors[d].rdev;
1670			if (r1_sync_page_io(rdev, sect, s,
1671					    bio->bi_io_vec[idx].bv_page,
1672					    WRITE) == 0) {
1673				r1_bio->bios[d]->bi_end_io = NULL;
1674				rdev_dec_pending(rdev, mddev);
1675			}
1676		}
1677		d = start;
1678		while (d != r1_bio->read_disk) {
1679			if (d == 0)
1680				d = conf->raid_disks * 2;
1681			d--;
1682			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1683				continue;
1684			rdev = conf->mirrors[d].rdev;
1685			if (r1_sync_page_io(rdev, sect, s,
1686					    bio->bi_io_vec[idx].bv_page,
1687					    READ) != 0)
1688				atomic_add(s, &rdev->corrected_errors);
1689		}
1690		sectors -= s;
1691		sect += s;
1692		idx ++;
1693	}
1694	set_bit(R1BIO_Uptodate, &r1_bio->state);
1695	set_bit(BIO_UPTODATE, &bio->bi_flags);
1696	return 1;
1697}
1698
1699static int process_checks(struct r1bio *r1_bio)
1700{
1701	/* We have read all readable devices.  If we haven't
1702	 * got the block, then there is no hope left.
1703	 * If we have, then we want to do a comparison
1704	 * and skip the write if everything is the same.
1705	 * If any blocks failed to read, then we need to
1706	 * attempt an over-write
1707	 */
1708	struct mddev *mddev = r1_bio->mddev;
1709	struct r1conf *conf = mddev->private;
1710	int primary;
1711	int i;
1712	int vcnt;
1713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1715		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1716		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1717			r1_bio->bios[primary]->bi_end_io = NULL;
1718			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1719			break;
1720		}
1721	r1_bio->read_disk = primary;
1722	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1723	for (i = 0; i < conf->raid_disks * 2; i++) {
1724		int j;
1725		struct bio *pbio = r1_bio->bios[primary];
1726		struct bio *sbio = r1_bio->bios[i];
1727		int size;
 
 
 
 
 
1728
1729		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1730			continue;
 
 
 
 
 
1731
1732		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1733			for (j = vcnt; j-- ; ) {
1734				struct page *p, *s;
1735				p = pbio->bi_io_vec[j].bv_page;
1736				s = sbio->bi_io_vec[j].bv_page;
1737				if (memcmp(page_address(p),
1738					   page_address(s),
1739					   sbio->bi_io_vec[j].bv_len))
1740					break;
1741			}
1742		} else
1743			j = 0;
1744		if (j >= 0)
1745			mddev->resync_mismatches += r1_bio->sectors;
1746		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1747			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1748			/* No need to write to this device. */
1749			sbio->bi_end_io = NULL;
1750			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1751			continue;
1752		}
1753		/* fixup the bio for reuse */
1754		sbio->bi_vcnt = vcnt;
1755		sbio->bi_size = r1_bio->sectors << 9;
1756		sbio->bi_idx = 0;
1757		sbio->bi_phys_segments = 0;
1758		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1759		sbio->bi_flags |= 1 << BIO_UPTODATE;
1760		sbio->bi_next = NULL;
1761		sbio->bi_sector = r1_bio->sector +
1762			conf->mirrors[i].rdev->data_offset;
1763		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1764		size = sbio->bi_size;
1765		for (j = 0; j < vcnt ; j++) {
1766			struct bio_vec *bi;
1767			bi = &sbio->bi_io_vec[j];
1768			bi->bv_offset = 0;
1769			if (size > PAGE_SIZE)
1770				bi->bv_len = PAGE_SIZE;
1771			else
1772				bi->bv_len = size;
1773			size -= PAGE_SIZE;
1774			memcpy(page_address(bi->bv_page),
1775			       page_address(pbio->bi_io_vec[j].bv_page),
1776			       PAGE_SIZE);
1777		}
1778	}
1779	return 0;
1780}
1781
1782static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1783{
1784	struct r1conf *conf = mddev->private;
1785	int i;
1786	int disks = conf->raid_disks * 2;
1787	struct bio *bio, *wbio;
1788
1789	bio = r1_bio->bios[r1_bio->read_disk];
1790
1791	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1792		/* ouch - failed to read all of that. */
1793		if (!fix_sync_read_error(r1_bio))
1794			return;
1795
1796	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1797		if (process_checks(r1_bio) < 0)
1798			return;
1799	/*
1800	 * schedule writes
1801	 */
1802	atomic_set(&r1_bio->remaining, 1);
1803	for (i = 0; i < disks ; i++) {
1804		wbio = r1_bio->bios[i];
1805		if (wbio->bi_end_io == NULL ||
1806		    (wbio->bi_end_io == end_sync_read &&
1807		     (i == r1_bio->read_disk ||
1808		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1809			continue;
 
 
 
 
 
 
 
 
1810
1811		wbio->bi_rw = WRITE;
1812		wbio->bi_end_io = end_sync_write;
1813		atomic_inc(&r1_bio->remaining);
1814		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1815
1816		generic_make_request(wbio);
1817	}
1818
1819	if (atomic_dec_and_test(&r1_bio->remaining)) {
1820		/* if we're here, all write(s) have completed, so clean up */
1821		int s = r1_bio->sectors;
1822		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1823		    test_bit(R1BIO_WriteError, &r1_bio->state))
1824			reschedule_retry(r1_bio);
1825		else {
1826			put_buf(r1_bio);
1827			md_done_sync(mddev, s, 1);
1828		}
1829	}
1830}
1831
1832/*
1833 * This is a kernel thread which:
1834 *
1835 *	1.	Retries failed read operations on working mirrors.
1836 *	2.	Updates the raid superblock when problems encounter.
1837 *	3.	Performs writes following reads for array synchronising.
1838 */
1839
1840static void fix_read_error(struct r1conf *conf, int read_disk,
1841			   sector_t sect, int sectors)
1842{
 
 
 
1843	struct mddev *mddev = conf->mddev;
 
 
 
 
 
 
 
1844	while(sectors) {
1845		int s = sectors;
1846		int d = read_disk;
1847		int success = 0;
1848		int start;
1849		struct md_rdev *rdev;
1850
1851		if (s > (PAGE_SIZE>>9))
1852			s = PAGE_SIZE >> 9;
1853
1854		do {
1855			/* Note: no rcu protection needed here
1856			 * as this is synchronous in the raid1d thread
1857			 * which is the thread that might remove
1858			 * a device.  If raid1d ever becomes multi-threaded....
1859			 */
1860			sector_t first_bad;
1861			int bad_sectors;
1862
1863			rdev = conf->mirrors[d].rdev;
1864			if (rdev &&
1865			    (test_bit(In_sync, &rdev->flags) ||
1866			     (!test_bit(Faulty, &rdev->flags) &&
1867			      rdev->recovery_offset >= sect + s)) &&
1868			    is_badblock(rdev, sect, s,
1869					&first_bad, &bad_sectors) == 0 &&
1870			    sync_page_io(rdev, sect, s<<9,
1871					 conf->tmppage, READ, false))
1872				success = 1;
1873			else {
1874				d++;
1875				if (d == conf->raid_disks * 2)
1876					d = 0;
1877			}
1878		} while (!success && d != read_disk);
 
 
 
 
1879
1880		if (!success) {
1881			/* Cannot read from anywhere - mark it bad */
1882			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1883			if (!rdev_set_badblocks(rdev, sect, s, 0))
1884				md_error(mddev, rdev);
1885			break;
1886		}
1887		/* write it back and re-read */
1888		start = d;
1889		while (d != read_disk) {
1890			if (d==0)
1891				d = conf->raid_disks * 2;
1892			d--;
1893			rdev = conf->mirrors[d].rdev;
1894			if (rdev &&
1895			    test_bit(In_sync, &rdev->flags))
 
1896				r1_sync_page_io(rdev, sect, s,
1897						conf->tmppage, WRITE);
 
 
1898		}
1899		d = start;
1900		while (d != read_disk) {
1901			char b[BDEVNAME_SIZE];
1902			if (d==0)
1903				d = conf->raid_disks * 2;
1904			d--;
1905			rdev = conf->mirrors[d].rdev;
1906			if (rdev &&
1907			    test_bit(In_sync, &rdev->flags)) {
 
1908				if (r1_sync_page_io(rdev, sect, s,
1909						    conf->tmppage, READ)) {
1910					atomic_add(s, &rdev->corrected_errors);
1911					printk(KERN_INFO
1912					       "md/raid1:%s: read error corrected "
1913					       "(%d sectors at %llu on %s)\n",
1914					       mdname(mddev), s,
1915					       (unsigned long long)(sect +
1916					           rdev->data_offset),
1917					       bdevname(rdev->bdev, b));
1918				}
 
1919			}
1920		}
1921		sectors -= s;
1922		sect += s;
1923	}
1924}
1925
1926static void bi_complete(struct bio *bio, int error)
1927{
1928	complete((struct completion *)bio->bi_private);
1929}
1930
1931static int submit_bio_wait(int rw, struct bio *bio)
1932{
1933	struct completion event;
1934	rw |= REQ_SYNC;
1935
1936	init_completion(&event);
1937	bio->bi_private = &event;
1938	bio->bi_end_io = bi_complete;
1939	submit_bio(rw, bio);
1940	wait_for_completion(&event);
1941
1942	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1943}
1944
1945static int narrow_write_error(struct r1bio *r1_bio, int i)
1946{
1947	struct mddev *mddev = r1_bio->mddev;
1948	struct r1conf *conf = mddev->private;
1949	struct md_rdev *rdev = conf->mirrors[i].rdev;
1950	int vcnt, idx;
1951	struct bio_vec *vec;
1952
1953	/* bio has the data to be written to device 'i' where
1954	 * we just recently had a write error.
1955	 * We repeatedly clone the bio and trim down to one block,
1956	 * then try the write.  Where the write fails we record
1957	 * a bad block.
1958	 * It is conceivable that the bio doesn't exactly align with
1959	 * blocks.  We must handle this somehow.
1960	 *
1961	 * We currently own a reference on the rdev.
1962	 */
1963
1964	int block_sectors;
1965	sector_t sector;
1966	int sectors;
1967	int sect_to_write = r1_bio->sectors;
1968	int ok = 1;
1969
1970	if (rdev->badblocks.shift < 0)
1971		return 0;
1972
1973	block_sectors = 1 << rdev->badblocks.shift;
 
1974	sector = r1_bio->sector;
1975	sectors = ((sector + block_sectors)
1976		   & ~(sector_t)(block_sectors - 1))
1977		- sector;
1978
1979	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1980		vcnt = r1_bio->behind_page_count;
1981		vec = r1_bio->behind_bvecs;
1982		idx = 0;
1983		while (vec[idx].bv_page == NULL)
1984			idx++;
1985	} else {
1986		vcnt = r1_bio->master_bio->bi_vcnt;
1987		vec = r1_bio->master_bio->bi_io_vec;
1988		idx = r1_bio->master_bio->bi_idx;
1989	}
1990	while (sect_to_write) {
1991		struct bio *wbio;
1992		if (sectors > sect_to_write)
1993			sectors = sect_to_write;
1994		/* Write at 'sector' for 'sectors'*/
1995
1996		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1997		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1998		wbio->bi_sector = r1_bio->sector;
1999		wbio->bi_rw = WRITE;
2000		wbio->bi_vcnt = vcnt;
2001		wbio->bi_size = r1_bio->sectors << 9;
2002		wbio->bi_idx = idx;
2003
2004		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2005		wbio->bi_sector += rdev->data_offset;
2006		wbio->bi_bdev = rdev->bdev;
2007		if (submit_bio_wait(WRITE, wbio) == 0)
 
 
 
 
 
2008			/* failure! */
2009			ok = rdev_set_badblocks(rdev, sector,
2010						sectors, 0)
2011				&& ok;
2012
2013		bio_put(wbio);
2014		sect_to_write -= sectors;
2015		sector += sectors;
2016		sectors = block_sectors;
2017	}
2018	return ok;
2019}
2020
2021static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2022{
2023	int m;
2024	int s = r1_bio->sectors;
2025	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2026		struct md_rdev *rdev = conf->mirrors[m].rdev;
2027		struct bio *bio = r1_bio->bios[m];
2028		if (bio->bi_end_io == NULL)
2029			continue;
2030		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2031		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2032			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2033		}
2034		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2035		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2036			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2037				md_error(conf->mddev, rdev);
2038		}
2039	}
2040	put_buf(r1_bio);
2041	md_done_sync(conf->mddev, s, 1);
2042}
2043
2044static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2045{
2046	int m;
 
 
2047	for (m = 0; m < conf->raid_disks * 2 ; m++)
2048		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2049			struct md_rdev *rdev = conf->mirrors[m].rdev;
2050			rdev_clear_badblocks(rdev,
2051					     r1_bio->sector,
2052					     r1_bio->sectors, 0);
2053			rdev_dec_pending(rdev, conf->mddev);
2054		} else if (r1_bio->bios[m] != NULL) {
2055			/* This drive got a write error.  We need to
2056			 * narrow down and record precise write
2057			 * errors.
2058			 */
 
2059			if (!narrow_write_error(r1_bio, m)) {
2060				md_error(conf->mddev,
2061					 conf->mirrors[m].rdev);
2062				/* an I/O failed, we can't clear the bitmap */
2063				set_bit(R1BIO_Degraded, &r1_bio->state);
2064			}
2065			rdev_dec_pending(conf->mirrors[m].rdev,
2066					 conf->mddev);
2067		}
2068	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2069		close_write(r1_bio);
2070	raid_end_bio_io(r1_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071}
2072
2073static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2074{
2075	int disk;
2076	int max_sectors;
2077	struct mddev *mddev = conf->mddev;
2078	struct bio *bio;
2079	char b[BDEVNAME_SIZE];
2080	struct md_rdev *rdev;
 
2081
2082	clear_bit(R1BIO_ReadError, &r1_bio->state);
2083	/* we got a read error. Maybe the drive is bad.  Maybe just
2084	 * the block and we can fix it.
2085	 * We freeze all other IO, and try reading the block from
2086	 * other devices.  When we find one, we re-write
2087	 * and check it that fixes the read error.
2088	 * This is all done synchronously while the array is
2089	 * frozen
2090	 */
2091	if (mddev->ro == 0) {
2092		freeze_array(conf);
2093		fix_read_error(conf, r1_bio->read_disk,
2094			       r1_bio->sector, r1_bio->sectors);
2095		unfreeze_array(conf);
2096	} else
2097		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2098
2099	bio = r1_bio->bios[r1_bio->read_disk];
2100	bdevname(bio->bi_bdev, b);
2101read_more:
2102	disk = read_balance(conf, r1_bio, &max_sectors);
2103	if (disk == -1) {
2104		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2105		       " read error for block %llu\n",
2106		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2107		raid_end_bio_io(r1_bio);
2108	} else {
2109		const unsigned long do_sync
2110			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2111		if (bio) {
2112			r1_bio->bios[r1_bio->read_disk] =
2113				mddev->ro ? IO_BLOCKED : NULL;
2114			bio_put(bio);
2115		}
2116		r1_bio->read_disk = disk;
2117		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2118		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2119		r1_bio->bios[r1_bio->read_disk] = bio;
2120		rdev = conf->mirrors[disk].rdev;
2121		printk_ratelimited(KERN_ERR
2122				   "md/raid1:%s: redirecting sector %llu"
2123				   " to other mirror: %s\n",
2124				   mdname(mddev),
2125				   (unsigned long long)r1_bio->sector,
2126				   bdevname(rdev->bdev, b));
2127		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2128		bio->bi_bdev = rdev->bdev;
2129		bio->bi_end_io = raid1_end_read_request;
2130		bio->bi_rw = READ | do_sync;
2131		bio->bi_private = r1_bio;
2132		if (max_sectors < r1_bio->sectors) {
2133			/* Drat - have to split this up more */
2134			struct bio *mbio = r1_bio->master_bio;
2135			int sectors_handled = (r1_bio->sector + max_sectors
2136					       - mbio->bi_sector);
2137			r1_bio->sectors = max_sectors;
2138			spin_lock_irq(&conf->device_lock);
2139			if (mbio->bi_phys_segments == 0)
2140				mbio->bi_phys_segments = 2;
2141			else
2142				mbio->bi_phys_segments++;
2143			spin_unlock_irq(&conf->device_lock);
2144			generic_make_request(bio);
2145			bio = NULL;
2146
2147			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2148
2149			r1_bio->master_bio = mbio;
2150			r1_bio->sectors = (mbio->bi_size >> 9)
2151					  - sectors_handled;
2152			r1_bio->state = 0;
2153			set_bit(R1BIO_ReadError, &r1_bio->state);
2154			r1_bio->mddev = mddev;
2155			r1_bio->sector = mbio->bi_sector + sectors_handled;
2156
2157			goto read_more;
2158		} else
2159			generic_make_request(bio);
 
 
 
 
 
 
 
2160	}
 
 
 
 
 
 
 
 
 
2161}
2162
2163static void raid1d(struct mddev *mddev)
2164{
 
2165	struct r1bio *r1_bio;
2166	unsigned long flags;
2167	struct r1conf *conf = mddev->private;
2168	struct list_head *head = &conf->retry_list;
2169	struct blk_plug plug;
 
2170
2171	md_check_recovery(mddev);
2172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173	blk_start_plug(&plug);
2174	for (;;) {
2175
2176		if (atomic_read(&mddev->plug_cnt) == 0)
2177			flush_pending_writes(conf);
2178
2179		spin_lock_irqsave(&conf->device_lock, flags);
2180		if (list_empty(head)) {
2181			spin_unlock_irqrestore(&conf->device_lock, flags);
2182			break;
2183		}
2184		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2185		list_del(head->prev);
2186		conf->nr_queued--;
 
2187		spin_unlock_irqrestore(&conf->device_lock, flags);
2188
2189		mddev = r1_bio->mddev;
2190		conf = mddev->private;
2191		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2192			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2193			    test_bit(R1BIO_WriteError, &r1_bio->state))
2194				handle_sync_write_finished(conf, r1_bio);
2195			else
2196				sync_request_write(mddev, r1_bio);
2197		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2198			   test_bit(R1BIO_WriteError, &r1_bio->state))
2199			handle_write_finished(conf, r1_bio);
2200		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2201			handle_read_error(conf, r1_bio);
2202		else
2203			/* just a partial read to be scheduled from separate
2204			 * context
2205			 */
2206			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2207
2208		cond_resched();
2209		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2210			md_check_recovery(mddev);
2211	}
2212	blk_finish_plug(&plug);
2213}
2214
2215
2216static int init_resync(struct r1conf *conf)
2217{
2218	int buffs;
2219
2220	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2221	BUG_ON(conf->r1buf_pool);
2222	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2223					  conf->poolinfo);
2224	if (!conf->r1buf_pool)
2225		return -ENOMEM;
2226	conf->next_resync = 0;
2227	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228}
2229
2230/*
2231 * perform a "sync" on one "block"
2232 *
2233 * We need to make sure that no normal I/O request - particularly write
2234 * requests - conflict with active sync requests.
2235 *
2236 * This is achieved by tracking pending requests and a 'barrier' concept
2237 * that can be installed to exclude normal IO requests.
2238 */
2239
2240static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
2241{
2242	struct r1conf *conf = mddev->private;
2243	struct r1bio *r1_bio;
2244	struct bio *bio;
2245	sector_t max_sector, nr_sectors;
2246	int disk = -1;
2247	int i;
2248	int wonly = -1;
2249	int write_targets = 0, read_targets = 0;
2250	sector_t sync_blocks;
2251	int still_degraded = 0;
2252	int good_sectors = RESYNC_SECTORS;
2253	int min_bad = 0; /* number of sectors that are bad in all devices */
 
 
2254
2255	if (!conf->r1buf_pool)
2256		if (init_resync(conf))
2257			return 0;
2258
2259	max_sector = mddev->dev_sectors;
2260	if (sector_nr >= max_sector) {
2261		/* If we aborted, we need to abort the
2262		 * sync on the 'current' bitmap chunk (there will
2263		 * only be one in raid1 resync.
2264		 * We can find the current addess in mddev->curr_resync
2265		 */
2266		if (mddev->curr_resync < max_sector) /* aborted */
2267			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2268						&sync_blocks, 1);
2269		else /* completed sync */
2270			conf->fullsync = 0;
2271
2272		bitmap_close_sync(mddev->bitmap);
2273		close_sync(conf);
 
 
 
 
 
2274		return 0;
2275	}
2276
2277	if (mddev->bitmap == NULL &&
2278	    mddev->recovery_cp == MaxSector &&
2279	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2280	    conf->fullsync == 0) {
2281		*skipped = 1;
2282		return max_sector - sector_nr;
2283	}
2284	/* before building a request, check if we can skip these blocks..
2285	 * This call the bitmap_start_sync doesn't actually record anything
2286	 */
2287	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2288	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2289		/* We can skip this block, and probably several more */
2290		*skipped = 1;
2291		return sync_blocks;
2292	}
 
2293	/*
2294	 * If there is non-resync activity waiting for a turn,
2295	 * and resync is going fast enough,
2296	 * then let it though before starting on this new sync request.
 
 
 
 
 
2297	 */
2298	if (!go_faster && conf->nr_waiting)
2299		msleep_interruptible(1000);
2300
2301	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2302	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2303	raise_barrier(conf);
 
 
 
2304
2305	conf->next_resync = sector_nr;
2306
2307	rcu_read_lock();
2308	/*
2309	 * If we get a correctably read error during resync or recovery,
2310	 * we might want to read from a different device.  So we
2311	 * flag all drives that could conceivably be read from for READ,
2312	 * and any others (which will be non-In_sync devices) for WRITE.
2313	 * If a read fails, we try reading from something else for which READ
2314	 * is OK.
2315	 */
2316
2317	r1_bio->mddev = mddev;
2318	r1_bio->sector = sector_nr;
2319	r1_bio->state = 0;
2320	set_bit(R1BIO_IsSync, &r1_bio->state);
 
 
2321
2322	for (i = 0; i < conf->raid_disks * 2; i++) {
2323		struct md_rdev *rdev;
2324		bio = r1_bio->bios[i];
2325
2326		/* take from bio_init */
2327		bio->bi_next = NULL;
2328		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2329		bio->bi_flags |= 1 << BIO_UPTODATE;
2330		bio->bi_rw = READ;
2331		bio->bi_vcnt = 0;
2332		bio->bi_idx = 0;
2333		bio->bi_phys_segments = 0;
2334		bio->bi_size = 0;
2335		bio->bi_end_io = NULL;
2336		bio->bi_private = NULL;
2337
2338		rdev = rcu_dereference(conf->mirrors[i].rdev);
2339		if (rdev == NULL ||
2340		    test_bit(Faulty, &rdev->flags)) {
2341			if (i < conf->raid_disks)
2342				still_degraded = 1;
2343		} else if (!test_bit(In_sync, &rdev->flags)) {
2344			bio->bi_rw = WRITE;
2345			bio->bi_end_io = end_sync_write;
2346			write_targets ++;
2347		} else {
2348			/* may need to read from here */
2349			sector_t first_bad = MaxSector;
2350			int bad_sectors;
2351
2352			if (is_badblock(rdev, sector_nr, good_sectors,
2353					&first_bad, &bad_sectors)) {
2354				if (first_bad > sector_nr)
2355					good_sectors = first_bad - sector_nr;
2356				else {
2357					bad_sectors -= (sector_nr - first_bad);
2358					if (min_bad == 0 ||
2359					    min_bad > bad_sectors)
2360						min_bad = bad_sectors;
2361				}
2362			}
2363			if (sector_nr < first_bad) {
2364				if (test_bit(WriteMostly, &rdev->flags)) {
2365					if (wonly < 0)
2366						wonly = i;
2367				} else {
2368					if (disk < 0)
2369						disk = i;
2370				}
2371				bio->bi_rw = READ;
2372				bio->bi_end_io = end_sync_read;
2373				read_targets++;
 
 
 
 
 
 
 
 
 
 
 
 
2374			}
2375		}
2376		if (bio->bi_end_io) {
2377			atomic_inc(&rdev->nr_pending);
2378			bio->bi_sector = sector_nr + rdev->data_offset;
2379			bio->bi_bdev = rdev->bdev;
2380			bio->bi_private = r1_bio;
 
2381		}
2382	}
2383	rcu_read_unlock();
2384	if (disk < 0)
2385		disk = wonly;
2386	r1_bio->read_disk = disk;
2387
2388	if (read_targets == 0 && min_bad > 0) {
2389		/* These sectors are bad on all InSync devices, so we
2390		 * need to mark them bad on all write targets
2391		 */
2392		int ok = 1;
2393		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2394			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2395				struct md_rdev *rdev = conf->mirrors[i].rdev;
2396				ok = rdev_set_badblocks(rdev, sector_nr,
2397							min_bad, 0
2398					) && ok;
2399			}
2400		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2401		*skipped = 1;
2402		put_buf(r1_bio);
2403
2404		if (!ok) {
2405			/* Cannot record the badblocks, so need to
2406			 * abort the resync.
2407			 * If there are multiple read targets, could just
2408			 * fail the really bad ones ???
2409			 */
2410			conf->recovery_disabled = mddev->recovery_disabled;
2411			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2412			return 0;
2413		} else
2414			return min_bad;
2415
2416	}
2417	if (min_bad > 0 && min_bad < good_sectors) {
2418		/* only resync enough to reach the next bad->good
2419		 * transition */
2420		good_sectors = min_bad;
2421	}
2422
2423	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2424		/* extra read targets are also write targets */
2425		write_targets += read_targets-1;
2426
2427	if (write_targets == 0 || read_targets == 0) {
2428		/* There is nowhere to write, so all non-sync
2429		 * drives must be failed - so we are finished
2430		 */
2431		sector_t rv;
2432		if (min_bad > 0)
2433			max_sector = sector_nr + min_bad;
2434		rv = max_sector - sector_nr;
2435		*skipped = 1;
2436		put_buf(r1_bio);
2437		return rv;
2438	}
2439
2440	if (max_sector > mddev->resync_max)
2441		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2442	if (max_sector > sector_nr + good_sectors)
2443		max_sector = sector_nr + good_sectors;
2444	nr_sectors = 0;
2445	sync_blocks = 0;
2446	do {
2447		struct page *page;
2448		int len = PAGE_SIZE;
2449		if (sector_nr + (len>>9) > max_sector)
2450			len = (max_sector - sector_nr) << 9;
2451		if (len == 0)
2452			break;
2453		if (sync_blocks == 0) {
2454			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2455					       &sync_blocks, still_degraded) &&
2456			    !conf->fullsync &&
2457			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2458				break;
2459			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2460			if ((len >> 9) > sync_blocks)
2461				len = sync_blocks<<9;
2462		}
2463
2464		for (i = 0 ; i < conf->raid_disks * 2; i++) {
 
 
2465			bio = r1_bio->bios[i];
 
2466			if (bio->bi_end_io) {
2467				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2468				if (bio_add_page(bio, page, len, 0) == 0) {
2469					/* stop here */
2470					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2471					while (i > 0) {
2472						i--;
2473						bio = r1_bio->bios[i];
2474						if (bio->bi_end_io==NULL)
2475							continue;
2476						/* remove last page from this bio */
2477						bio->bi_vcnt--;
2478						bio->bi_size -= len;
2479						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2480					}
2481					goto bio_full;
2482				}
2483			}
2484		}
2485		nr_sectors += len>>9;
2486		sector_nr += len>>9;
2487		sync_blocks -= (len>>9);
2488	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2489 bio_full:
2490	r1_bio->sectors = nr_sectors;
2491
 
 
 
 
 
 
 
 
 
 
2492	/* For a user-requested sync, we read all readable devices and do a
2493	 * compare
2494	 */
2495	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2496		atomic_set(&r1_bio->remaining, read_targets);
2497		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2498			bio = r1_bio->bios[i];
2499			if (bio->bi_end_io == end_sync_read) {
2500				read_targets--;
2501				md_sync_acct(bio->bi_bdev, nr_sectors);
2502				generic_make_request(bio);
 
 
2503			}
2504		}
2505	} else {
2506		atomic_set(&r1_bio->remaining, 1);
2507		bio = r1_bio->bios[r1_bio->read_disk];
2508		md_sync_acct(bio->bi_bdev, nr_sectors);
2509		generic_make_request(bio);
2510
 
2511	}
2512	return nr_sectors;
2513}
2514
2515static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2516{
2517	if (sectors)
2518		return sectors;
2519
2520	return mddev->dev_sectors;
2521}
2522
2523static struct r1conf *setup_conf(struct mddev *mddev)
2524{
2525	struct r1conf *conf;
2526	int i;
2527	struct mirror_info *disk;
2528	struct md_rdev *rdev;
2529	int err = -ENOMEM;
2530
2531	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2532	if (!conf)
2533		goto abort;
2534
2535	conf->mirrors = kzalloc(sizeof(struct mirror_info)
2536				* mddev->raid_disks * 2,
2537				 GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538	if (!conf->mirrors)
2539		goto abort;
2540
2541	conf->tmppage = alloc_page(GFP_KERNEL);
2542	if (!conf->tmppage)
2543		goto abort;
2544
2545	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2546	if (!conf->poolinfo)
2547		goto abort;
2548	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2549	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2550					  r1bio_pool_free,
2551					  conf->poolinfo);
2552	if (!conf->r1bio_pool)
 
 
 
2553		goto abort;
2554
2555	conf->poolinfo->mddev = mddev;
2556
2557	err = -EINVAL;
2558	spin_lock_init(&conf->device_lock);
2559	rdev_for_each(rdev, mddev) {
2560		struct request_queue *q;
2561		int disk_idx = rdev->raid_disk;
2562		if (disk_idx >= mddev->raid_disks
2563		    || disk_idx < 0)
2564			continue;
2565		if (test_bit(Replacement, &rdev->flags))
2566			disk = conf->mirrors + conf->raid_disks + disk_idx;
2567		else
2568			disk = conf->mirrors + disk_idx;
2569
2570		if (disk->rdev)
2571			goto abort;
2572		disk->rdev = rdev;
2573		q = bdev_get_queue(rdev->bdev);
2574		if (q->merge_bvec_fn)
2575			mddev->merge_check_needed = 1;
2576
2577		disk->head_position = 0;
 
2578	}
2579	conf->raid_disks = mddev->raid_disks;
2580	conf->mddev = mddev;
2581	INIT_LIST_HEAD(&conf->retry_list);
 
2582
2583	spin_lock_init(&conf->resync_lock);
2584	init_waitqueue_head(&conf->wait_barrier);
2585
2586	bio_list_init(&conf->pending_bio_list);
2587	conf->pending_count = 0;
2588	conf->recovery_disabled = mddev->recovery_disabled - 1;
2589
2590	err = -EIO;
2591	conf->last_used = -1;
2592	for (i = 0; i < conf->raid_disks * 2; i++) {
2593
2594		disk = conf->mirrors + i;
2595
2596		if (i < conf->raid_disks &&
2597		    disk[conf->raid_disks].rdev) {
2598			/* This slot has a replacement. */
2599			if (!disk->rdev) {
2600				/* No original, just make the replacement
2601				 * a recovering spare
2602				 */
2603				disk->rdev =
2604					disk[conf->raid_disks].rdev;
2605				disk[conf->raid_disks].rdev = NULL;
2606			} else if (!test_bit(In_sync, &disk->rdev->flags))
2607				/* Original is not in_sync - bad */
2608				goto abort;
2609		}
2610
2611		if (!disk->rdev ||
2612		    !test_bit(In_sync, &disk->rdev->flags)) {
2613			disk->head_position = 0;
2614			if (disk->rdev &&
2615			    (disk->rdev->saved_raid_disk < 0))
2616				conf->fullsync = 1;
2617		} else if (conf->last_used < 0)
2618			/*
2619			 * The first working device is used as a
2620			 * starting point to read balancing.
2621			 */
2622			conf->last_used = i;
2623	}
2624
2625	if (conf->last_used < 0) {
2626		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2627		       mdname(mddev));
2628		goto abort;
2629	}
2630	err = -ENOMEM;
2631	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2632	if (!conf->thread) {
2633		printk(KERN_ERR
2634		       "md/raid1:%s: couldn't allocate thread\n",
2635		       mdname(mddev));
2636		goto abort;
2637	}
2638
2639	return conf;
2640
2641 abort:
2642	if (conf) {
2643		if (conf->r1bio_pool)
2644			mempool_destroy(conf->r1bio_pool);
2645		kfree(conf->mirrors);
2646		safe_put_page(conf->tmppage);
2647		kfree(conf->poolinfo);
 
 
 
 
 
2648		kfree(conf);
2649	}
2650	return ERR_PTR(err);
2651}
2652
2653static int stop(struct mddev *mddev);
2654static int run(struct mddev *mddev)
2655{
2656	struct r1conf *conf;
2657	int i;
2658	struct md_rdev *rdev;
2659	int ret;
2660
2661	if (mddev->level != 1) {
2662		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2663		       mdname(mddev), mddev->level);
2664		return -EIO;
2665	}
2666	if (mddev->reshape_position != MaxSector) {
2667		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2668		       mdname(mddev));
2669		return -EIO;
2670	}
 
2671	/*
2672	 * copy the already verified devices into our private RAID1
2673	 * bookkeeping area. [whatever we allocate in run(),
2674	 * should be freed in stop()]
2675	 */
2676	if (mddev->private == NULL)
2677		conf = setup_conf(mddev);
2678	else
2679		conf = mddev->private;
2680
2681	if (IS_ERR(conf))
2682		return PTR_ERR(conf);
2683
 
 
 
2684	rdev_for_each(rdev, mddev) {
2685		if (!mddev->gendisk)
2686			continue;
2687		disk_stack_limits(mddev->gendisk, rdev->bdev,
2688				  rdev->data_offset << 9);
2689	}
2690
2691	mddev->degraded = 0;
2692	for (i=0; i < conf->raid_disks; i++)
2693		if (conf->mirrors[i].rdev == NULL ||
2694		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2695		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2696			mddev->degraded++;
 
 
 
 
 
 
 
 
2697
2698	if (conf->raid_disks - mddev->degraded == 1)
2699		mddev->recovery_cp = MaxSector;
2700
2701	if (mddev->recovery_cp != MaxSector)
2702		printk(KERN_NOTICE "md/raid1:%s: not clean"
2703		       " -- starting background reconstruction\n",
2704		       mdname(mddev));
2705	printk(KERN_INFO 
2706		"md/raid1:%s: active with %d out of %d mirrors\n",
2707		mdname(mddev), mddev->raid_disks - mddev->degraded, 
2708		mddev->raid_disks);
2709
2710	/*
2711	 * Ok, everything is just fine now
2712	 */
2713	mddev->thread = conf->thread;
2714	conf->thread = NULL;
2715	mddev->private = conf;
 
2716
2717	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2718
2719	if (mddev->queue) {
2720		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2721		mddev->queue->backing_dev_info.congested_data = mddev;
2722		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2723	}
 
2724
2725	ret =  md_integrity_register(mddev);
2726	if (ret)
2727		stop(mddev);
2728	return ret;
2729}
2730
2731static int stop(struct mddev *mddev)
2732{
2733	struct r1conf *conf = mddev->private;
2734	struct bitmap *bitmap = mddev->bitmap;
2735
2736	/* wait for behind writes to complete */
2737	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2738		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2739		       mdname(mddev));
2740		/* need to kick something here to make sure I/O goes? */
2741		wait_event(bitmap->behind_wait,
2742			   atomic_read(&bitmap->behind_writes) == 0);
2743	}
2744
2745	raise_barrier(conf);
2746	lower_barrier(conf);
2747
2748	md_unregister_thread(&mddev->thread);
2749	if (conf->r1bio_pool)
2750		mempool_destroy(conf->r1bio_pool);
2751	kfree(conf->mirrors);
 
2752	kfree(conf->poolinfo);
 
 
 
 
 
2753	kfree(conf);
2754	mddev->private = NULL;
2755	return 0;
2756}
2757
2758static int raid1_resize(struct mddev *mddev, sector_t sectors)
2759{
2760	/* no resync is happening, and there is enough space
2761	 * on all devices, so we can resize.
2762	 * We need to make sure resync covers any new space.
2763	 * If the array is shrinking we should possibly wait until
2764	 * any io in the removed space completes, but it hardly seems
2765	 * worth it.
2766	 */
2767	sector_t newsize = raid1_size(mddev, sectors, 0);
2768	if (mddev->external_size &&
2769	    mddev->array_sectors > newsize)
2770		return -EINVAL;
2771	if (mddev->bitmap) {
2772		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2773		if (ret)
2774			return ret;
2775	}
2776	md_set_array_sectors(mddev, newsize);
2777	set_capacity(mddev->gendisk, mddev->array_sectors);
2778	revalidate_disk(mddev->gendisk);
2779	if (sectors > mddev->dev_sectors &&
2780	    mddev->recovery_cp > mddev->dev_sectors) {
2781		mddev->recovery_cp = mddev->dev_sectors;
2782		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2783	}
2784	mddev->dev_sectors = sectors;
2785	mddev->resync_max_sectors = sectors;
2786	return 0;
2787}
2788
2789static int raid1_reshape(struct mddev *mddev)
2790{
2791	/* We need to:
2792	 * 1/ resize the r1bio_pool
2793	 * 2/ resize conf->mirrors
2794	 *
2795	 * We allocate a new r1bio_pool if we can.
2796	 * Then raise a device barrier and wait until all IO stops.
2797	 * Then resize conf->mirrors and swap in the new r1bio pool.
2798	 *
2799	 * At the same time, we "pack" the devices so that all the missing
2800	 * devices have the higher raid_disk numbers.
2801	 */
2802	mempool_t *newpool, *oldpool;
2803	struct pool_info *newpoolinfo;
2804	struct mirror_info *newmirrors;
2805	struct r1conf *conf = mddev->private;
2806	int cnt, raid_disks;
2807	unsigned long flags;
2808	int d, d2, err;
 
 
 
 
2809
2810	/* Cannot change chunk_size, layout, or level */
2811	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2812	    mddev->layout != mddev->new_layout ||
2813	    mddev->level != mddev->new_level) {
2814		mddev->new_chunk_sectors = mddev->chunk_sectors;
2815		mddev->new_layout = mddev->layout;
2816		mddev->new_level = mddev->level;
2817		return -EINVAL;
2818	}
2819
2820	err = md_allow_write(mddev);
2821	if (err)
2822		return err;
2823
2824	raid_disks = mddev->raid_disks + mddev->delta_disks;
2825
2826	if (raid_disks < conf->raid_disks) {
2827		cnt=0;
2828		for (d= 0; d < conf->raid_disks; d++)
2829			if (conf->mirrors[d].rdev)
2830				cnt++;
2831		if (cnt > raid_disks)
2832			return -EBUSY;
2833	}
2834
2835	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2836	if (!newpoolinfo)
2837		return -ENOMEM;
2838	newpoolinfo->mddev = mddev;
2839	newpoolinfo->raid_disks = raid_disks * 2;
2840
2841	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2842				 r1bio_pool_free, newpoolinfo);
2843	if (!newpool) {
2844		kfree(newpoolinfo);
2845		return -ENOMEM;
2846	}
2847	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
 
2848			     GFP_KERNEL);
2849	if (!newmirrors) {
2850		kfree(newpoolinfo);
2851		mempool_destroy(newpool);
2852		return -ENOMEM;
2853	}
2854
2855	raise_barrier(conf);
2856
2857	/* ok, everything is stopped */
2858	oldpool = conf->r1bio_pool;
2859	conf->r1bio_pool = newpool;
2860
2861	for (d = d2 = 0; d < conf->raid_disks; d++) {
2862		struct md_rdev *rdev = conf->mirrors[d].rdev;
2863		if (rdev && rdev->raid_disk != d2) {
2864			sysfs_unlink_rdev(mddev, rdev);
2865			rdev->raid_disk = d2;
2866			sysfs_unlink_rdev(mddev, rdev);
2867			if (sysfs_link_rdev(mddev, rdev))
2868				printk(KERN_WARNING
2869				       "md/raid1:%s: cannot register rd%d\n",
2870				       mdname(mddev), rdev->raid_disk);
2871		}
2872		if (rdev)
2873			newmirrors[d2++].rdev = rdev;
2874	}
2875	kfree(conf->mirrors);
2876	conf->mirrors = newmirrors;
2877	kfree(conf->poolinfo);
2878	conf->poolinfo = newpoolinfo;
2879
2880	spin_lock_irqsave(&conf->device_lock, flags);
2881	mddev->degraded += (raid_disks - conf->raid_disks);
2882	spin_unlock_irqrestore(&conf->device_lock, flags);
2883	conf->raid_disks = mddev->raid_disks = raid_disks;
2884	mddev->delta_disks = 0;
2885
2886	conf->last_used = 0; /* just make sure it is in-range */
2887	lower_barrier(conf);
2888
 
2889	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2890	md_wakeup_thread(mddev->thread);
2891
2892	mempool_destroy(oldpool);
2893	return 0;
2894}
2895
2896static void raid1_quiesce(struct mddev *mddev, int state)
2897{
2898	struct r1conf *conf = mddev->private;
2899
2900	switch(state) {
2901	case 2: /* wake for suspend */
2902		wake_up(&conf->wait_barrier);
2903		break;
2904	case 1:
2905		raise_barrier(conf);
2906		break;
2907	case 0:
2908		lower_barrier(conf);
2909		break;
2910	}
2911}
2912
2913static void *raid1_takeover(struct mddev *mddev)
2914{
2915	/* raid1 can take over:
2916	 *  raid5 with 2 devices, any layout or chunk size
2917	 */
2918	if (mddev->level == 5 && mddev->raid_disks == 2) {
2919		struct r1conf *conf;
2920		mddev->new_level = 1;
2921		mddev->new_layout = 0;
2922		mddev->new_chunk_sectors = 0;
2923		conf = setup_conf(mddev);
2924		if (!IS_ERR(conf))
2925			conf->barrier = 1;
 
 
 
 
2926		return conf;
2927	}
2928	return ERR_PTR(-EINVAL);
2929}
2930
2931static struct md_personality raid1_personality =
2932{
2933	.name		= "raid1",
2934	.level		= 1,
2935	.owner		= THIS_MODULE,
2936	.make_request	= make_request,
2937	.run		= run,
2938	.stop		= stop,
2939	.status		= status,
2940	.error_handler	= error,
2941	.hot_add_disk	= raid1_add_disk,
2942	.hot_remove_disk= raid1_remove_disk,
2943	.spare_active	= raid1_spare_active,
2944	.sync_request	= sync_request,
2945	.resize		= raid1_resize,
2946	.size		= raid1_size,
2947	.check_reshape	= raid1_reshape,
2948	.quiesce	= raid1_quiesce,
2949	.takeover	= raid1_takeover,
2950};
2951
2952static int __init raid_init(void)
2953{
2954	return register_md_personality(&raid1_personality);
2955}
2956
2957static void raid_exit(void)
2958{
2959	unregister_md_personality(&raid1_personality);
2960}
2961
2962module_init(raid_init);
2963module_exit(raid_exit);
2964MODULE_LICENSE("GPL");
2965MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2966MODULE_ALIAS("md-personality-3"); /* RAID1 */
2967MODULE_ALIAS("md-raid1");
2968MODULE_ALIAS("md-level-1");
2969
2970module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)				\
  50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#define RAID_1_10_NAME "raid1"
  53#include "raid1-10.c"
  54
  55#define START(node) ((node)->start)
  56#define LAST(node) ((node)->last)
  57INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  58		     START, LAST, static inline, raid1_rb);
  59
  60static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  61				struct serial_info *si, int idx)
  62{
  63	unsigned long flags;
  64	int ret = 0;
  65	sector_t lo = r1_bio->sector;
  66	sector_t hi = lo + r1_bio->sectors;
  67	struct serial_in_rdev *serial = &rdev->serial[idx];
  68
  69	spin_lock_irqsave(&serial->serial_lock, flags);
  70	/* collision happened */
  71	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  72		ret = -EBUSY;
  73	else {
  74		si->start = lo;
  75		si->last = hi;
  76		raid1_rb_insert(si, &serial->serial_rb);
  77	}
  78	spin_unlock_irqrestore(&serial->serial_lock, flags);
  79
  80	return ret;
  81}
  82
  83static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  84{
  85	struct mddev *mddev = rdev->mddev;
  86	struct serial_info *si;
  87	int idx = sector_to_idx(r1_bio->sector);
  88	struct serial_in_rdev *serial = &rdev->serial[idx];
  89
  90	if (WARN_ON(!mddev->serial_info_pool))
  91		return;
  92	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  93	wait_event(serial->serial_io_wait,
  94		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  95}
  96
  97static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  98{
  99	struct serial_info *si;
 100	unsigned long flags;
 101	int found = 0;
 102	struct mddev *mddev = rdev->mddev;
 103	int idx = sector_to_idx(lo);
 104	struct serial_in_rdev *serial = &rdev->serial[idx];
 105
 106	spin_lock_irqsave(&serial->serial_lock, flags);
 107	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 108	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 109		if (si->start == lo && si->last == hi) {
 110			raid1_rb_remove(si, &serial->serial_rb);
 111			mempool_free(si, mddev->serial_info_pool);
 112			found = 1;
 113			break;
 114		}
 115	}
 116	if (!found)
 117		WARN(1, "The write IO is not recorded for serialization\n");
 118	spin_unlock_irqrestore(&serial->serial_lock, flags);
 119	wake_up(&serial->serial_io_wait);
 120}
 121
 122/*
 123 * for resync bio, r1bio pointer can be retrieved from the per-bio
 124 * 'struct resync_pages'.
 125 */
 126static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 127{
 128	return get_resync_pages(bio)->raid_bio;
 129}
 130
 131static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 132{
 133	struct pool_info *pi = data;
 134	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 135
 136	/* allocate a r1bio with room for raid_disks entries in the bios array */
 137	return kzalloc(size, gfp_flags);
 138}
 139
 140#define RESYNC_DEPTH 32
 
 
 
 
 
 
 141#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 142#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 143#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 144#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 146
 147static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 148{
 149	struct pool_info *pi = data;
 
 150	struct r1bio *r1_bio;
 151	struct bio *bio;
 152	int need_pages;
 153	int j;
 154	struct resync_pages *rps;
 155
 156	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 157	if (!r1_bio)
 158		return NULL;
 159
 160	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 161			    gfp_flags);
 162	if (!rps)
 163		goto out_free_r1bio;
 164
 165	/*
 166	 * Allocate bios : 1 for reading, n-1 for writing
 167	 */
 168	for (j = pi->raid_disks ; j-- ; ) {
 169		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 170		if (!bio)
 171			goto out_free_bio;
 172		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 173		r1_bio->bios[j] = bio;
 174	}
 175	/*
 176	 * Allocate RESYNC_PAGES data pages and attach them to
 177	 * the first bio.
 178	 * If this is a user-requested check/repair, allocate
 179	 * RESYNC_PAGES for each bio.
 180	 */
 181	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 182		need_pages = pi->raid_disks;
 183	else
 184		need_pages = 1;
 185	for (j = 0; j < pi->raid_disks; j++) {
 186		struct resync_pages *rp = &rps[j];
 187
 188		bio = r1_bio->bios[j];
 
 
 
 
 189
 190		if (j < need_pages) {
 191			if (resync_alloc_pages(rp, gfp_flags))
 192				goto out_free_pages;
 193		} else {
 194			memcpy(rp, &rps[0], sizeof(*rp));
 195			resync_get_all_pages(rp);
 196		}
 197
 198		rp->raid_bio = r1_bio;
 199		bio->bi_private = rp;
 
 
 
 
 200	}
 201
 202	r1_bio->master_bio = NULL;
 203
 204	return r1_bio;
 205
 206out_free_pages:
 207	while (--j >= 0)
 208		resync_free_pages(&rps[j]);
 209
 
 210out_free_bio:
 211	while (++j < pi->raid_disks) {
 212		bio_uninit(r1_bio->bios[j]);
 213		kfree(r1_bio->bios[j]);
 214	}
 215	kfree(rps);
 216
 217out_free_r1bio:
 218	rbio_pool_free(r1_bio, data);
 219	return NULL;
 220}
 221
 222static void r1buf_pool_free(void *__r1_bio, void *data)
 223{
 224	struct pool_info *pi = data;
 225	int i;
 226	struct r1bio *r1bio = __r1_bio;
 227	struct resync_pages *rp = NULL;
 228
 229	for (i = pi->raid_disks; i--; ) {
 230		rp = get_resync_pages(r1bio->bios[i]);
 231		resync_free_pages(rp);
 232		bio_uninit(r1bio->bios[i]);
 233		kfree(r1bio->bios[i]);
 234	}
 235
 236	/* resync pages array stored in the 1st bio's .bi_private */
 237	kfree(rp);
 238
 239	rbio_pool_free(r1bio, data);
 240}
 241
 242static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 243{
 244	int i;
 245
 246	for (i = 0; i < conf->raid_disks * 2; i++) {
 247		struct bio **bio = r1_bio->bios + i;
 248		if (!BIO_SPECIAL(*bio))
 249			bio_put(*bio);
 250		*bio = NULL;
 251	}
 252}
 253
 254static void free_r1bio(struct r1bio *r1_bio)
 255{
 256	struct r1conf *conf = r1_bio->mddev->private;
 257
 258	put_all_bios(conf, r1_bio);
 259	mempool_free(r1_bio, &conf->r1bio_pool);
 260}
 261
 262static void put_buf(struct r1bio *r1_bio)
 263{
 264	struct r1conf *conf = r1_bio->mddev->private;
 265	sector_t sect = r1_bio->sector;
 266	int i;
 267
 268	for (i = 0; i < conf->raid_disks * 2; i++) {
 269		struct bio *bio = r1_bio->bios[i];
 270		if (bio->bi_end_io)
 271			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 272	}
 273
 274	mempool_free(r1_bio, &conf->r1buf_pool);
 275
 276	lower_barrier(conf, sect);
 277}
 278
 279static void reschedule_retry(struct r1bio *r1_bio)
 280{
 281	unsigned long flags;
 282	struct mddev *mddev = r1_bio->mddev;
 283	struct r1conf *conf = mddev->private;
 284	int idx;
 285
 286	idx = sector_to_idx(r1_bio->sector);
 287	spin_lock_irqsave(&conf->device_lock, flags);
 288	list_add(&r1_bio->retry_list, &conf->retry_list);
 289	atomic_inc(&conf->nr_queued[idx]);
 290	spin_unlock_irqrestore(&conf->device_lock, flags);
 291
 292	wake_up(&conf->wait_barrier);
 293	md_wakeup_thread(mddev->thread);
 294}
 295
 296/*
 297 * raid_end_bio_io() is called when we have finished servicing a mirrored
 298 * operation and are ready to return a success/failure code to the buffer
 299 * cache layer.
 300 */
 301static void call_bio_endio(struct r1bio *r1_bio)
 302{
 303	struct bio *bio = r1_bio->master_bio;
 
 
 
 
 
 
 
 
 
 
 
 304
 305	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 306		bio->bi_status = BLK_STS_IOERR;
 307
 308	bio_endio(bio);
 
 
 
 
 
 
 309}
 310
 311static void raid_end_bio_io(struct r1bio *r1_bio)
 312{
 313	struct bio *bio = r1_bio->master_bio;
 314	struct r1conf *conf = r1_bio->mddev->private;
 315	sector_t sector = r1_bio->sector;
 316
 317	/* if nobody has done the final endio yet, do it now */
 318	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 319		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 320			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 321			 (unsigned long long) bio->bi_iter.bi_sector,
 322			 (unsigned long long) bio_end_sector(bio) - 1);
 
 323
 324		call_bio_endio(r1_bio);
 325	}
 326
 327	free_r1bio(r1_bio);
 328	/*
 329	 * Wake up any possible resync thread that waits for the device
 330	 * to go idle.  All I/Os, even write-behind writes, are done.
 331	 */
 332	allow_barrier(conf, sector);
 333}
 334
 335/*
 336 * Update disk head position estimator based on IRQ completion info.
 337 */
 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 339{
 340	struct r1conf *conf = r1_bio->mddev->private;
 341
 342	conf->mirrors[disk].head_position =
 343		r1_bio->sector + (r1_bio->sectors);
 344}
 345
 346/*
 347 * Find the disk number which triggered given bio
 348 */
 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 350{
 351	int mirror;
 352	struct r1conf *conf = r1_bio->mddev->private;
 353	int raid_disks = conf->raid_disks;
 354
 355	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 356		if (r1_bio->bios[mirror] == bio)
 357			break;
 358
 359	BUG_ON(mirror == raid_disks * 2);
 360	update_head_pos(mirror, r1_bio);
 361
 362	return mirror;
 363}
 364
 365static void raid1_end_read_request(struct bio *bio)
 366{
 367	int uptodate = !bio->bi_status;
 368	struct r1bio *r1_bio = bio->bi_private;
 
 369	struct r1conf *conf = r1_bio->mddev->private;
 370	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 371
 
 372	/*
 373	 * this branch is our 'one mirror IO has finished' event handler:
 374	 */
 375	update_head_pos(r1_bio->read_disk, r1_bio);
 376
 377	if (uptodate)
 378		set_bit(R1BIO_Uptodate, &r1_bio->state);
 379	else if (test_bit(FailFast, &rdev->flags) &&
 380		 test_bit(R1BIO_FailFast, &r1_bio->state))
 381		/* This was a fail-fast read so we definitely
 382		 * want to retry */
 383		;
 384	else {
 385		/* If all other devices have failed, we want to return
 386		 * the error upwards rather than fail the last device.
 387		 * Here we redefine "uptodate" to mean "Don't want to retry"
 388		 */
 389		unsigned long flags;
 390		spin_lock_irqsave(&conf->device_lock, flags);
 391		if (r1_bio->mddev->degraded == conf->raid_disks ||
 392		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 393		     test_bit(In_sync, &rdev->flags)))
 394			uptodate = 1;
 395		spin_unlock_irqrestore(&conf->device_lock, flags);
 396	}
 397
 398	if (uptodate) {
 399		raid_end_bio_io(r1_bio);
 400		rdev_dec_pending(rdev, conf->mddev);
 401	} else {
 402		/*
 403		 * oops, read error:
 404		 */
 405		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 406				   mdname(conf->mddev),
 407				   rdev->bdev,
 408				   (unsigned long long)r1_bio->sector);
 
 
 
 
 409		set_bit(R1BIO_ReadError, &r1_bio->state);
 410		reschedule_retry(r1_bio);
 411		/* don't drop the reference on read_disk yet */
 412	}
 
 
 413}
 414
 415static void close_write(struct r1bio *r1_bio)
 416{
 417	/* it really is the end of this request */
 418	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 419		bio_free_pages(r1_bio->behind_master_bio);
 420		bio_put(r1_bio->behind_master_bio);
 421		r1_bio->behind_master_bio = NULL;
 
 
 
 422	}
 423	/* clear the bitmap if all writes complete successfully */
 424	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 425			   r1_bio->sectors,
 426			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 427			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 428	md_write_end(r1_bio->mddev);
 429}
 430
 431static void r1_bio_write_done(struct r1bio *r1_bio)
 432{
 433	if (!atomic_dec_and_test(&r1_bio->remaining))
 434		return;
 435
 436	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 437		reschedule_retry(r1_bio);
 438	else {
 439		close_write(r1_bio);
 440		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 441			reschedule_retry(r1_bio);
 442		else
 443			raid_end_bio_io(r1_bio);
 444	}
 445}
 446
 447static void raid1_end_write_request(struct bio *bio)
 448{
 
 449	struct r1bio *r1_bio = bio->bi_private;
 450	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 451	struct r1conf *conf = r1_bio->mddev->private;
 452	struct bio *to_put = NULL;
 453	int mirror = find_bio_disk(r1_bio, bio);
 454	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 455	bool discard_error;
 456	sector_t lo = r1_bio->sector;
 457	sector_t hi = r1_bio->sector + r1_bio->sectors;
 458
 459	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 460
 461	/*
 462	 * 'one mirror IO has finished' event handler:
 463	 */
 464	if (bio->bi_status && !discard_error) {
 465		set_bit(WriteErrorSeen,	&rdev->flags);
 466		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 467			set_bit(MD_RECOVERY_NEEDED, &
 468				conf->mddev->recovery);
 469
 470		if (test_bit(FailFast, &rdev->flags) &&
 471		    (bio->bi_opf & MD_FAILFAST) &&
 472		    /* We never try FailFast to WriteMostly devices */
 473		    !test_bit(WriteMostly, &rdev->flags)) {
 474			md_error(r1_bio->mddev, rdev);
 475		}
 476
 477		/*
 478		 * When the device is faulty, it is not necessary to
 479		 * handle write error.
 480		 */
 481		if (!test_bit(Faulty, &rdev->flags))
 482			set_bit(R1BIO_WriteError, &r1_bio->state);
 483		else {
 484			/* Fail the request */
 485			set_bit(R1BIO_Degraded, &r1_bio->state);
 486			/* Finished with this branch */
 487			r1_bio->bios[mirror] = NULL;
 488			to_put = bio;
 489		}
 490	} else {
 491		/*
 492		 * Set R1BIO_Uptodate in our master bio, so that we
 493		 * will return a good error code for to the higher
 494		 * levels even if IO on some other mirrored buffer
 495		 * fails.
 496		 *
 497		 * The 'master' represents the composite IO operation
 498		 * to user-side. So if something waits for IO, then it
 499		 * will wait for the 'master' bio.
 500		 */
 501		sector_t first_bad;
 502		int bad_sectors;
 503
 504		r1_bio->bios[mirror] = NULL;
 505		to_put = bio;
 506		/*
 507		 * Do not set R1BIO_Uptodate if the current device is
 508		 * rebuilding or Faulty. This is because we cannot use
 509		 * such device for properly reading the data back (we could
 510		 * potentially use it, if the current write would have felt
 511		 * before rdev->recovery_offset, but for simplicity we don't
 512		 * check this here.
 513		 */
 514		if (test_bit(In_sync, &rdev->flags) &&
 515		    !test_bit(Faulty, &rdev->flags))
 516			set_bit(R1BIO_Uptodate, &r1_bio->state);
 517
 518		/* Maybe we can clear some bad blocks. */
 519		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 520				&first_bad, &bad_sectors) && !discard_error) {
 
 521			r1_bio->bios[mirror] = IO_MADE_GOOD;
 522			set_bit(R1BIO_MadeGood, &r1_bio->state);
 523		}
 524	}
 525
 526	if (behind) {
 527		if (test_bit(CollisionCheck, &rdev->flags))
 528			remove_serial(rdev, lo, hi);
 529		if (test_bit(WriteMostly, &rdev->flags))
 530			atomic_dec(&r1_bio->behind_remaining);
 531
 532		/*
 533		 * In behind mode, we ACK the master bio once the I/O
 534		 * has safely reached all non-writemostly
 535		 * disks. Setting the Returned bit ensures that this
 536		 * gets done only once -- we don't ever want to return
 537		 * -EIO here, instead we'll wait
 538		 */
 539		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 540		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 541			/* Maybe we can return now */
 542			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 543				struct bio *mbio = r1_bio->master_bio;
 544				pr_debug("raid1: behind end write sectors"
 545					 " %llu-%llu\n",
 546					 (unsigned long long) mbio->bi_iter.bi_sector,
 547					 (unsigned long long) bio_end_sector(mbio) - 1);
 
 548				call_bio_endio(r1_bio);
 549			}
 550		}
 551	} else if (rdev->mddev->serialize_policy)
 552		remove_serial(rdev, lo, hi);
 553	if (r1_bio->bios[mirror] == NULL)
 554		rdev_dec_pending(rdev, conf->mddev);
 
 555
 556	/*
 557	 * Let's see if all mirrored write operations have finished
 558	 * already.
 559	 */
 560	r1_bio_write_done(r1_bio);
 561
 562	if (to_put)
 563		bio_put(to_put);
 564}
 565
 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
 567					  sector_t sectors)
 568{
 569	sector_t len;
 570
 571	WARN_ON(sectors == 0);
 572	/*
 573	 * len is the number of sectors from start_sector to end of the
 574	 * barrier unit which start_sector belongs to.
 575	 */
 576	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 577	      start_sector;
 578
 579	if (len > sectors)
 580		len = sectors;
 581
 582	return len;
 583}
 584
 585/*
 586 * This routine returns the disk from which the requested read should
 587 * be done. There is a per-array 'next expected sequential IO' sector
 588 * number - if this matches on the next IO then we use the last disk.
 589 * There is also a per-disk 'last know head position' sector that is
 590 * maintained from IRQ contexts, both the normal and the resync IO
 591 * completion handlers update this position correctly. If there is no
 592 * perfect sequential match then we pick the disk whose head is closest.
 593 *
 594 * If there are 2 mirrors in the same 2 devices, performance degrades
 595 * because position is mirror, not device based.
 596 *
 597 * The rdev for the device selected will have nr_pending incremented.
 598 */
 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 600{
 601	const sector_t this_sector = r1_bio->sector;
 602	int sectors;
 603	int best_good_sectors;
 604	int best_disk, best_dist_disk, best_pending_disk;
 605	int has_nonrot_disk;
 606	int disk;
 607	sector_t best_dist;
 608	unsigned int min_pending;
 609	struct md_rdev *rdev;
 610	int choose_first;
 611	int choose_next_idle;
 612
 
 613	/*
 614	 * Check if we can balance. We can balance on the whole
 615	 * device if no resync is going on, or below the resync window.
 616	 * We take the first readable disk when above the resync window.
 617	 */
 618 retry:
 619	sectors = r1_bio->sectors;
 620	best_disk = -1;
 621	best_dist_disk = -1;
 622	best_dist = MaxSector;
 623	best_pending_disk = -1;
 624	min_pending = UINT_MAX;
 625	best_good_sectors = 0;
 626	has_nonrot_disk = 0;
 627	choose_next_idle = 0;
 628	clear_bit(R1BIO_FailFast, &r1_bio->state);
 629
 630	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 631	    (mddev_is_clustered(conf->mddev) &&
 632	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 633		    this_sector + sectors)))
 634		choose_first = 1;
 635	else
 
 636		choose_first = 0;
 
 
 637
 638	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 639		sector_t dist;
 640		sector_t first_bad;
 641		int bad_sectors;
 642		unsigned int pending;
 643		bool nonrot;
 644
 645		rdev = conf->mirrors[disk].rdev;
 
 
 
 
 646		if (r1_bio->bios[disk] == IO_BLOCKED
 647		    || rdev == NULL
 
 648		    || test_bit(Faulty, &rdev->flags))
 649			continue;
 650		if (!test_bit(In_sync, &rdev->flags) &&
 651		    rdev->recovery_offset < this_sector + sectors)
 652			continue;
 653		if (test_bit(WriteMostly, &rdev->flags)) {
 654			/* Don't balance among write-mostly, just
 655			 * use the first as a last resort */
 656			if (best_dist_disk < 0) {
 657				if (is_badblock(rdev, this_sector, sectors,
 658						&first_bad, &bad_sectors)) {
 659					if (first_bad <= this_sector)
 660						/* Cannot use this */
 661						continue;
 662					best_good_sectors = first_bad - this_sector;
 663				} else
 664					best_good_sectors = sectors;
 665				best_dist_disk = disk;
 666				best_pending_disk = disk;
 667			}
 668			continue;
 669		}
 670		/* This is a reasonable device to use.  It might
 671		 * even be best.
 672		 */
 673		if (is_badblock(rdev, this_sector, sectors,
 674				&first_bad, &bad_sectors)) {
 675			if (best_dist < MaxSector)
 676				/* already have a better device */
 677				continue;
 678			if (first_bad <= this_sector) {
 679				/* cannot read here. If this is the 'primary'
 680				 * device, then we must not read beyond
 681				 * bad_sectors from another device..
 682				 */
 683				bad_sectors -= (this_sector - first_bad);
 684				if (choose_first && sectors > bad_sectors)
 685					sectors = bad_sectors;
 686				if (best_good_sectors > sectors)
 687					best_good_sectors = sectors;
 688
 689			} else {
 690				sector_t good_sectors = first_bad - this_sector;
 691				if (good_sectors > best_good_sectors) {
 692					best_good_sectors = good_sectors;
 693					best_disk = disk;
 694				}
 695				if (choose_first)
 696					break;
 697			}
 698			continue;
 699		} else {
 700			if ((sectors > best_good_sectors) && (best_disk >= 0))
 701				best_disk = -1;
 702			best_good_sectors = sectors;
 703		}
 704
 705		if (best_disk >= 0)
 706			/* At least two disks to choose from so failfast is OK */
 707			set_bit(R1BIO_FailFast, &r1_bio->state);
 708
 709		nonrot = bdev_nonrot(rdev->bdev);
 710		has_nonrot_disk |= nonrot;
 711		pending = atomic_read(&rdev->nr_pending);
 712		dist = abs(this_sector - conf->mirrors[disk].head_position);
 713		if (choose_first) {
 714			best_disk = disk;
 715			break;
 716		}
 717		/* Don't change to another disk for sequential reads */
 718		if (conf->mirrors[disk].next_seq_sect == this_sector
 719		    || dist == 0) {
 720			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 721			struct raid1_info *mirror = &conf->mirrors[disk];
 722
 723			best_disk = disk;
 724			/*
 725			 * If buffered sequential IO size exceeds optimal
 726			 * iosize, check if there is idle disk. If yes, choose
 727			 * the idle disk. read_balance could already choose an
 728			 * idle disk before noticing it's a sequential IO in
 729			 * this disk. This doesn't matter because this disk
 730			 * will idle, next time it will be utilized after the
 731			 * first disk has IO size exceeds optimal iosize. In
 732			 * this way, iosize of the first disk will be optimal
 733			 * iosize at least. iosize of the second disk might be
 734			 * small, but not a big deal since when the second disk
 735			 * starts IO, the first disk is likely still busy.
 736			 */
 737			if (nonrot && opt_iosize > 0 &&
 738			    mirror->seq_start != MaxSector &&
 739			    mirror->next_seq_sect > opt_iosize &&
 740			    mirror->next_seq_sect - opt_iosize >=
 741			    mirror->seq_start) {
 742				choose_next_idle = 1;
 743				continue;
 744			}
 745			break;
 746		}
 747
 748		if (choose_next_idle)
 749			continue;
 750
 751		if (min_pending > pending) {
 752			min_pending = pending;
 753			best_pending_disk = disk;
 754		}
 755
 756		if (dist < best_dist) {
 757			best_dist = dist;
 758			best_dist_disk = disk;
 759		}
 760	}
 761
 762	/*
 763	 * If all disks are rotational, choose the closest disk. If any disk is
 764	 * non-rotational, choose the disk with less pending request even the
 765	 * disk is rotational, which might/might not be optimal for raids with
 766	 * mixed ratation/non-rotational disks depending on workload.
 767	 */
 768	if (best_disk == -1) {
 769		if (has_nonrot_disk || min_pending == 0)
 770			best_disk = best_pending_disk;
 771		else
 772			best_disk = best_dist_disk;
 773	}
 774
 775	if (best_disk >= 0) {
 776		rdev = conf->mirrors[best_disk].rdev;
 777		if (!rdev)
 778			goto retry;
 779		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 780		sectors = best_good_sectors;
 781
 782		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 783			conf->mirrors[best_disk].seq_start = this_sector;
 784
 785		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 786	}
 
 787	*max_sectors = sectors;
 788
 789	return best_disk;
 790}
 791
 792static void wake_up_barrier(struct r1conf *conf)
 
 
 793{
 794	if (wq_has_sleeper(&conf->wait_barrier))
 795		wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796}
 797
 798static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 799{
 800	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 801	raid1_prepare_flush_writes(conf->mddev->bitmap);
 802	wake_up_barrier(conf);
 803
 804	while (bio) { /* submit pending writes */
 805		struct bio *next = bio->bi_next;
 
 806
 807		raid1_submit_write(bio);
 808		bio = next;
 809		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 810	}
 
 
 
 
 
 
 
 
 
 
 
 811}
 812
 813static void flush_pending_writes(struct r1conf *conf)
 814{
 815	/* Any writes that have been queued but are awaiting
 816	 * bitmap updates get flushed here.
 817	 */
 818	spin_lock_irq(&conf->device_lock);
 819
 820	if (conf->pending_bio_list.head) {
 821		struct blk_plug plug;
 822		struct bio *bio;
 823
 824		bio = bio_list_get(&conf->pending_bio_list);
 
 825		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 826
 827		/*
 828		 * As this is called in a wait_event() loop (see freeze_array),
 829		 * current->state might be TASK_UNINTERRUPTIBLE which will
 830		 * cause a warning when we prepare to wait again.  As it is
 831		 * rare that this path is taken, it is perfectly safe to force
 832		 * us to go around the wait_event() loop again, so the warning
 833		 * is a false-positive.  Silence the warning by resetting
 834		 * thread state
 835		 */
 836		__set_current_state(TASK_RUNNING);
 837		blk_start_plug(&plug);
 838		flush_bio_list(conf, bio);
 839		blk_finish_plug(&plug);
 840	} else
 841		spin_unlock_irq(&conf->device_lock);
 842}
 843
 844/* Barriers....
 845 * Sometimes we need to suspend IO while we do something else,
 846 * either some resync/recovery, or reconfigure the array.
 847 * To do this we raise a 'barrier'.
 848 * The 'barrier' is a counter that can be raised multiple times
 849 * to count how many activities are happening which preclude
 850 * normal IO.
 851 * We can only raise the barrier if there is no pending IO.
 852 * i.e. if nr_pending == 0.
 853 * We choose only to raise the barrier if no-one is waiting for the
 854 * barrier to go down.  This means that as soon as an IO request
 855 * is ready, no other operations which require a barrier will start
 856 * until the IO request has had a chance.
 857 *
 858 * So: regular IO calls 'wait_barrier'.  When that returns there
 859 *    is no backgroup IO happening,  It must arrange to call
 860 *    allow_barrier when it has finished its IO.
 861 * backgroup IO calls must call raise_barrier.  Once that returns
 862 *    there is no normal IO happeing.  It must arrange to call
 863 *    lower_barrier when the particular background IO completes.
 864 *
 865 * If resync/recovery is interrupted, returns -EINTR;
 866 * Otherwise, returns 0.
 867 */
 868static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 
 
 869{
 870	int idx = sector_to_idx(sector_nr);
 871
 872	spin_lock_irq(&conf->resync_lock);
 873
 874	/* Wait until no block IO is waiting */
 875	wait_event_lock_irq(conf->wait_barrier,
 876			    !atomic_read(&conf->nr_waiting[idx]),
 877			    conf->resync_lock);
 878
 879	/* block any new IO from starting */
 880	atomic_inc(&conf->barrier[idx]);
 881	/*
 882	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 883	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 884	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 885	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 886	 * be fetched before conf->barrier[idx] is increased. Otherwise
 887	 * there will be a race between raise_barrier() and _wait_barrier().
 888	 */
 889	smp_mb__after_atomic();
 890
 891	/* For these conditions we must wait:
 892	 * A: while the array is in frozen state
 893	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 894	 *    existing in corresponding I/O barrier bucket.
 895	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 896	 *    max resync count which allowed on current I/O barrier bucket.
 897	 */
 898	wait_event_lock_irq(conf->wait_barrier,
 899			    (!conf->array_frozen &&
 900			     !atomic_read(&conf->nr_pending[idx]) &&
 901			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 902				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 903			    conf->resync_lock);
 904
 905	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 906		atomic_dec(&conf->barrier[idx]);
 907		spin_unlock_irq(&conf->resync_lock);
 908		wake_up(&conf->wait_barrier);
 909		return -EINTR;
 910	}
 911
 912	atomic_inc(&conf->nr_sync_pending);
 913	spin_unlock_irq(&conf->resync_lock);
 914
 915	return 0;
 916}
 917
 918static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 919{
 920	int idx = sector_to_idx(sector_nr);
 921
 922	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 923
 924	atomic_dec(&conf->barrier[idx]);
 925	atomic_dec(&conf->nr_sync_pending);
 926	wake_up(&conf->wait_barrier);
 927}
 928
 929static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 930{
 931	bool ret = true;
 932
 933	/*
 934	 * We need to increase conf->nr_pending[idx] very early here,
 935	 * then raise_barrier() can be blocked when it waits for
 936	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 937	 * conf->resync_lock when there is no barrier raised in same
 938	 * barrier unit bucket. Also if the array is frozen, I/O
 939	 * should be blocked until array is unfrozen.
 940	 */
 941	atomic_inc(&conf->nr_pending[idx]);
 942	/*
 943	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 944	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 945	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 946	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 947	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 948	 * will be a race between _wait_barrier() and raise_barrier().
 949	 */
 950	smp_mb__after_atomic();
 951
 952	/*
 953	 * Don't worry about checking two atomic_t variables at same time
 954	 * here. If during we check conf->barrier[idx], the array is
 955	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 956	 * 0, it is safe to return and make the I/O continue. Because the
 957	 * array is frozen, all I/O returned here will eventually complete
 958	 * or be queued, no race will happen. See code comment in
 959	 * frozen_array().
 960	 */
 961	if (!READ_ONCE(conf->array_frozen) &&
 962	    !atomic_read(&conf->barrier[idx]))
 963		return ret;
 964
 965	/*
 966	 * After holding conf->resync_lock, conf->nr_pending[idx]
 967	 * should be decreased before waiting for barrier to drop.
 968	 * Otherwise, we may encounter a race condition because
 969	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 970	 * to be 0 at same time.
 971	 */
 972	spin_lock_irq(&conf->resync_lock);
 973	atomic_inc(&conf->nr_waiting[idx]);
 974	atomic_dec(&conf->nr_pending[idx]);
 975	/*
 976	 * In case freeze_array() is waiting for
 977	 * get_unqueued_pending() == extra
 978	 */
 979	wake_up_barrier(conf);
 980	/* Wait for the barrier in same barrier unit bucket to drop. */
 981
 982	/* Return false when nowait flag is set */
 983	if (nowait) {
 984		ret = false;
 985	} else {
 986		wait_event_lock_irq(conf->wait_barrier,
 987				!conf->array_frozen &&
 988				!atomic_read(&conf->barrier[idx]),
 989				conf->resync_lock);
 990		atomic_inc(&conf->nr_pending[idx]);
 
 
 
 991	}
 992
 993	atomic_dec(&conf->nr_waiting[idx]);
 994	spin_unlock_irq(&conf->resync_lock);
 995	return ret;
 996}
 997
 998static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 999{
1000	int idx = sector_to_idx(sector_nr);
1001	bool ret = true;
1002
1003	/*
1004	 * Very similar to _wait_barrier(). The difference is, for read
1005	 * I/O we don't need wait for sync I/O, but if the whole array
1006	 * is frozen, the read I/O still has to wait until the array is
1007	 * unfrozen. Since there is no ordering requirement with
1008	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1009	 */
1010	atomic_inc(&conf->nr_pending[idx]);
1011
1012	if (!READ_ONCE(conf->array_frozen))
1013		return ret;
1014
1015	spin_lock_irq(&conf->resync_lock);
1016	atomic_inc(&conf->nr_waiting[idx]);
1017	atomic_dec(&conf->nr_pending[idx]);
1018	/*
1019	 * In case freeze_array() is waiting for
1020	 * get_unqueued_pending() == extra
1021	 */
1022	wake_up_barrier(conf);
1023	/* Wait for array to be unfrozen */
1024
1025	/* Return false when nowait flag is set */
1026	if (nowait) {
1027		/* Return false when nowait flag is set */
1028		ret = false;
1029	} else {
1030		wait_event_lock_irq(conf->wait_barrier,
1031				!conf->array_frozen,
1032				conf->resync_lock);
1033		atomic_inc(&conf->nr_pending[idx]);
1034	}
1035
1036	atomic_dec(&conf->nr_waiting[idx]);
1037	spin_unlock_irq(&conf->resync_lock);
1038	return ret;
1039}
1040
1041static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1042{
1043	int idx = sector_to_idx(sector_nr);
1044
1045	return _wait_barrier(conf, idx, nowait);
1046}
1047
1048static void _allow_barrier(struct r1conf *conf, int idx)
1049{
1050	atomic_dec(&conf->nr_pending[idx]);
1051	wake_up_barrier(conf);
1052}
1053
1054static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1055{
1056	int idx = sector_to_idx(sector_nr);
1057
1058	_allow_barrier(conf, idx);
1059}
1060
1061/* conf->resync_lock should be held */
1062static int get_unqueued_pending(struct r1conf *conf)
1063{
1064	int idx, ret;
1065
1066	ret = atomic_read(&conf->nr_sync_pending);
1067	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1068		ret += atomic_read(&conf->nr_pending[idx]) -
1069			atomic_read(&conf->nr_queued[idx]);
1070
1071	return ret;
1072}
1073
1074static void freeze_array(struct r1conf *conf, int extra)
1075{
1076	/* Stop sync I/O and normal I/O and wait for everything to
1077	 * go quiet.
1078	 * This is called in two situations:
1079	 * 1) management command handlers (reshape, remove disk, quiesce).
1080	 * 2) one normal I/O request failed.
1081
1082	 * After array_frozen is set to 1, new sync IO will be blocked at
1083	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1084	 * or wait_read_barrier(). The flying I/Os will either complete or be
1085	 * queued. When everything goes quite, there are only queued I/Os left.
1086
1087	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1088	 * barrier bucket index which this I/O request hits. When all sync and
1089	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1090	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1091	 * in handle_read_error(), we may call freeze_array() before trying to
1092	 * fix the read error. In this case, the error read I/O is not queued,
1093	 * so get_unqueued_pending() == 1.
1094	 *
1095	 * Therefore before this function returns, we need to wait until
1096	 * get_unqueued_pendings(conf) gets equal to extra. For
1097	 * normal I/O context, extra is 1, in rested situations extra is 0.
1098	 */
1099	spin_lock_irq(&conf->resync_lock);
1100	conf->array_frozen = 1;
1101	raid1_log(conf->mddev, "wait freeze");
1102	wait_event_lock_irq_cmd(
1103		conf->wait_barrier,
1104		get_unqueued_pending(conf) == extra,
1105		conf->resync_lock,
1106		flush_pending_writes(conf));
1107	spin_unlock_irq(&conf->resync_lock);
1108}
1109static void unfreeze_array(struct r1conf *conf)
1110{
1111	/* reverse the effect of the freeze */
1112	spin_lock_irq(&conf->resync_lock);
1113	conf->array_frozen = 0;
 
 
1114	spin_unlock_irq(&conf->resync_lock);
1115	wake_up(&conf->wait_barrier);
1116}
1117
1118static void alloc_behind_master_bio(struct r1bio *r1_bio,
1119					   struct bio *bio)
 
 
1120{
1121	int size = bio->bi_iter.bi_size;
1122	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1123	int i = 0;
1124	struct bio *behind_bio = NULL;
1125
1126	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1127				      &r1_bio->mddev->bio_set);
1128
1129	/* discard op, we don't support writezero/writesame yet */
1130	if (!bio_has_data(bio)) {
1131		behind_bio->bi_iter.bi_size = size;
1132		goto skip_copy;
 
 
 
 
 
1133	}
1134
1135	while (i < vcnt && size) {
1136		struct page *page;
1137		int len = min_t(int, PAGE_SIZE, size);
1138
1139		page = alloc_page(GFP_NOIO);
1140		if (unlikely(!page))
1141			goto free_pages;
1142
1143		if (!bio_add_page(behind_bio, page, len, 0)) {
1144			put_page(page);
1145			goto free_pages;
1146		}
1147
1148		size -= len;
1149		i++;
1150	}
1151
1152	bio_copy_data(behind_bio, bio);
1153skip_copy:
1154	r1_bio->behind_master_bio = behind_bio;
1155	set_bit(R1BIO_BehindIO, &r1_bio->state);
1156
1157	return;
1158
1159free_pages:
1160	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1161		 bio->bi_iter.bi_size);
1162	bio_free_pages(behind_bio);
1163	bio_put(behind_bio);
1164}
1165
1166static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1167{
1168	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1169						  cb);
1170	struct mddev *mddev = plug->cb.data;
1171	struct r1conf *conf = mddev->private;
1172	struct bio *bio;
1173
1174	if (from_schedule) {
1175		spin_lock_irq(&conf->device_lock);
1176		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1177		spin_unlock_irq(&conf->device_lock);
1178		wake_up_barrier(conf);
1179		md_wakeup_thread(mddev->thread);
1180		kfree(plug);
1181		return;
1182	}
1183
1184	/* we aren't scheduling, so we can do the write-out directly. */
1185	bio = bio_list_get(&plug->pending);
1186	flush_bio_list(conf, bio);
1187	kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192	r1_bio->master_bio = bio;
1193	r1_bio->sectors = bio_sectors(bio);
1194	r1_bio->state = 0;
1195	r1_bio->mddev = mddev;
1196	r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202	struct r1conf *conf = mddev->private;
 
1203	struct r1bio *r1_bio;
1204
1205	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206	/* Ensure no bio records IO_BLOCKED */
1207	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208	init_r1bio(r1_bio, mddev, bio);
1209	return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213			       int max_read_sectors, struct r1bio *r1_bio)
1214{
1215	struct r1conf *conf = mddev->private;
1216	struct raid1_info *mirror;
1217	struct bio *read_bio;
1218	struct bitmap *bitmap = mddev->bitmap;
1219	const enum req_op op = bio_op(bio);
1220	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
 
 
 
 
 
 
1221	int max_sectors;
1222	int rdisk;
1223	bool r1bio_existed = !!r1_bio;
1224	char b[BDEVNAME_SIZE];
1225
1226	/*
1227	 * If r1_bio is set, we are blocking the raid1d thread
1228	 * so there is a tiny risk of deadlock.  So ask for
1229	 * emergency memory if needed.
1230	 */
1231	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233	if (r1bio_existed) {
1234		/* Need to get the block device name carefully */
1235		struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1236
1237		if (rdev)
1238			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1239		else
1240			strcpy(b, "???");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241	}
1242
1243	/*
1244	 * Still need barrier for READ in case that whole
1245	 * array is frozen.
1246	 */
1247	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1248				bio->bi_opf & REQ_NOWAIT)) {
1249		bio_wouldblock_error(bio);
1250		return;
1251	}
1252
1253	if (!r1_bio)
1254		r1_bio = alloc_r1bio(mddev, bio);
1255	else
1256		init_r1bio(r1_bio, mddev, bio);
1257	r1_bio->sectors = max_read_sectors;
1258
1259	/*
1260	 * make_request() can abort the operation when read-ahead is being
1261	 * used and no empty request is available.
 
1262	 */
1263	rdisk = read_balance(conf, r1_bio, &max_sectors);
1264
1265	if (rdisk < 0) {
1266		/* couldn't find anywhere to read from */
1267		if (r1bio_existed) {
1268			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1269					    mdname(mddev),
1270					    b,
1271					    (unsigned long long)r1_bio->sector);
1272		}
1273		raid_end_bio_io(r1_bio);
1274		return;
1275	}
1276	mirror = conf->mirrors + rdisk;
1277
1278	if (r1bio_existed)
1279		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1280				    mdname(mddev),
1281				    (unsigned long long)r1_bio->sector,
1282				    mirror->rdev->bdev);
 
 
 
 
1283
1284	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1285	    bitmap) {
1286		/*
1287		 * Reading from a write-mostly device must take care not to
1288		 * over-take any writes that are 'behind'
1289		 */
1290		raid1_log(mddev, "wait behind writes");
1291		wait_event(bitmap->behind_wait,
1292			   atomic_read(&bitmap->behind_writes) == 0);
1293	}
1294
1295	if (max_sectors < bio_sectors(bio)) {
1296		struct bio *split = bio_split(bio, max_sectors,
1297					      gfp, &conf->bio_split);
1298		bio_chain(split, bio);
1299		submit_bio_noacct(bio);
1300		bio = split;
1301		r1_bio->master_bio = bio;
1302		r1_bio->sectors = max_sectors;
1303	}
1304
1305	r1_bio->read_disk = rdisk;
1306	if (!r1bio_existed) {
1307		md_account_bio(mddev, &bio);
1308		r1_bio->master_bio = bio;
1309	}
1310	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1311				   &mddev->bio_set);
1312
1313	r1_bio->bios[rdisk] = read_bio;
 
 
 
 
 
 
 
 
 
1314
1315	read_bio->bi_iter.bi_sector = r1_bio->sector +
1316		mirror->rdev->data_offset;
1317	read_bio->bi_end_io = raid1_end_read_request;
1318	read_bio->bi_opf = op | do_sync;
1319	if (test_bit(FailFast, &mirror->rdev->flags) &&
1320	    test_bit(R1BIO_FailFast, &r1_bio->state))
1321	        read_bio->bi_opf |= MD_FAILFAST;
1322	read_bio->bi_private = r1_bio;
 
 
 
 
 
 
 
 
1323
1324	if (mddev->gendisk)
1325	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1326				      r1_bio->sector);
 
 
 
 
 
 
 
 
 
 
 
 
1327
1328	submit_bio_noacct(read_bio);
1329}
1330
1331static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1332				int max_write_sectors)
1333{
1334	struct r1conf *conf = mddev->private;
1335	struct r1bio *r1_bio;
1336	int i, disks;
1337	struct bitmap *bitmap = mddev->bitmap;
1338	unsigned long flags;
1339	struct md_rdev *blocked_rdev;
1340	int first_clone;
1341	int max_sectors;
1342	bool write_behind = false;
1343	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1344
1345	if (mddev_is_clustered(mddev) &&
1346	     md_cluster_ops->area_resyncing(mddev, WRITE,
1347		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1348
1349		DEFINE_WAIT(w);
1350		if (bio->bi_opf & REQ_NOWAIT) {
1351			bio_wouldblock_error(bio);
1352			return;
1353		}
1354		for (;;) {
1355			prepare_to_wait(&conf->wait_barrier,
1356					&w, TASK_IDLE);
1357			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1358							bio->bi_iter.bi_sector,
1359							bio_end_sector(bio)))
1360				break;
1361			schedule();
1362		}
1363		finish_wait(&conf->wait_barrier, &w);
1364	}
1365
1366	/*
1367	 * Register the new request and wait if the reconstruction
1368	 * thread has put up a bar for new requests.
1369	 * Continue immediately if no resync is active currently.
1370	 */
1371	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1372				bio->bi_opf & REQ_NOWAIT)) {
1373		bio_wouldblock_error(bio);
1374		return;
1375	}
1376
1377 retry_write:
1378	r1_bio = alloc_r1bio(mddev, bio);
1379	r1_bio->sectors = max_write_sectors;
1380
1381	/* first select target devices under rcu_lock and
1382	 * inc refcount on their rdev.  Record them by setting
1383	 * bios[x] to bio
1384	 * If there are known/acknowledged bad blocks on any device on
1385	 * which we have seen a write error, we want to avoid writing those
1386	 * blocks.
1387	 * This potentially requires several writes to write around
1388	 * the bad blocks.  Each set of writes gets it's own r1bio
1389	 * with a set of bios attached.
1390	 */
1391
1392	disks = conf->raid_disks * 2;
 
1393	blocked_rdev = NULL;
 
1394	max_sectors = r1_bio->sectors;
1395	for (i = 0;  i < disks; i++) {
1396		struct md_rdev *rdev = conf->mirrors[i].rdev;
1397
1398		/*
1399		 * The write-behind io is only attempted on drives marked as
1400		 * write-mostly, which means we could allocate write behind
1401		 * bio later.
1402		 */
1403		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1404			write_behind = true;
1405
1406		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407			atomic_inc(&rdev->nr_pending);
1408			blocked_rdev = rdev;
1409			break;
1410		}
1411		r1_bio->bios[i] = NULL;
1412		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
1413			if (i < conf->raid_disks)
1414				set_bit(R1BIO_Degraded, &r1_bio->state);
1415			continue;
1416		}
1417
1418		atomic_inc(&rdev->nr_pending);
1419		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1420			sector_t first_bad;
1421			int bad_sectors;
1422			int is_bad;
1423
1424			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 
1425					     &first_bad, &bad_sectors);
1426			if (is_bad < 0) {
1427				/* mustn't write here until the bad block is
1428				 * acknowledged*/
1429				set_bit(BlockedBadBlocks, &rdev->flags);
1430				blocked_rdev = rdev;
1431				break;
1432			}
1433			if (is_bad && first_bad <= r1_bio->sector) {
1434				/* Cannot write here at all */
1435				bad_sectors -= (r1_bio->sector - first_bad);
1436				if (bad_sectors < max_sectors)
1437					/* mustn't write more than bad_sectors
1438					 * to other devices yet
1439					 */
1440					max_sectors = bad_sectors;
1441				rdev_dec_pending(rdev, mddev);
1442				/* We don't set R1BIO_Degraded as that
1443				 * only applies if the disk is
1444				 * missing, so it might be re-added,
1445				 * and we want to know to recover this
1446				 * chunk.
1447				 * In this case the device is here,
1448				 * and the fact that this chunk is not
1449				 * in-sync is recorded in the bad
1450				 * block log
1451				 */
1452				continue;
1453			}
1454			if (is_bad) {
1455				int good_sectors = first_bad - r1_bio->sector;
1456				if (good_sectors < max_sectors)
1457					max_sectors = good_sectors;
1458			}
1459		}
1460		r1_bio->bios[i] = bio;
1461	}
 
1462
1463	if (unlikely(blocked_rdev)) {
1464		/* Wait for this device to become unblocked */
1465		int j;
1466
1467		for (j = 0; j < i; j++)
1468			if (r1_bio->bios[j])
1469				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1470		free_r1bio(r1_bio);
1471		allow_barrier(conf, bio->bi_iter.bi_sector);
1472
1473		if (bio->bi_opf & REQ_NOWAIT) {
1474			bio_wouldblock_error(bio);
1475			return;
1476		}
1477		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1480		goto retry_write;
1481	}
1482
1483	/*
1484	 * When using a bitmap, we may call alloc_behind_master_bio below.
1485	 * alloc_behind_master_bio allocates a copy of the data payload a page
1486	 * at a time and thus needs a new bio that can fit the whole payload
1487	 * this bio in page sized chunks.
1488	 */
1489	if (write_behind && bitmap)
1490		max_sectors = min_t(int, max_sectors,
1491				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1492	if (max_sectors < bio_sectors(bio)) {
1493		struct bio *split = bio_split(bio, max_sectors,
1494					      GFP_NOIO, &conf->bio_split);
1495		bio_chain(split, bio);
1496		submit_bio_noacct(bio);
1497		bio = split;
1498		r1_bio->master_bio = bio;
1499		r1_bio->sectors = max_sectors;
 
 
 
 
 
 
1500	}
 
1501
1502	md_account_bio(mddev, &bio);
1503	r1_bio->master_bio = bio;
1504	atomic_set(&r1_bio->remaining, 1);
1505	atomic_set(&r1_bio->behind_remaining, 0);
1506
1507	first_clone = 1;
1508
1509	for (i = 0; i < disks; i++) {
1510		struct bio *mbio = NULL;
1511		struct md_rdev *rdev = conf->mirrors[i].rdev;
1512		if (!r1_bio->bios[i])
1513			continue;
1514
 
 
 
1515		if (first_clone) {
1516			/* do behind I/O ?
1517			 * Not if there are too many, or cannot
1518			 * allocate memory, or a reader on WriteMostly
1519			 * is waiting for behind writes to flush */
1520			if (bitmap && write_behind &&
1521			    (atomic_read(&bitmap->behind_writes)
1522			     < mddev->bitmap_info.max_write_behind) &&
1523			    !waitqueue_active(&bitmap->behind_wait)) {
1524				alloc_behind_master_bio(r1_bio, bio);
1525			}
1526
1527			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1528					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 
 
1529			first_clone = 0;
1530		}
1531
1532		if (r1_bio->behind_master_bio) {
1533			mbio = bio_alloc_clone(rdev->bdev,
1534					       r1_bio->behind_master_bio,
1535					       GFP_NOIO, &mddev->bio_set);
1536			if (test_bit(CollisionCheck, &rdev->flags))
1537				wait_for_serialization(rdev, r1_bio);
1538			if (test_bit(WriteMostly, &rdev->flags))
 
 
 
 
 
 
1539				atomic_inc(&r1_bio->behind_remaining);
1540		} else {
1541			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1542					       &mddev->bio_set);
1543
1544			if (mddev->serialize_policy)
1545				wait_for_serialization(rdev, r1_bio);
1546		}
1547
1548		r1_bio->bios[i] = mbio;
1549
1550		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 
 
1551		mbio->bi_end_io	= raid1_end_write_request;
1552		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1553		if (test_bit(FailFast, &rdev->flags) &&
1554		    !test_bit(WriteMostly, &rdev->flags) &&
1555		    conf->raid_disks - mddev->degraded > 1)
1556			mbio->bi_opf |= MD_FAILFAST;
1557		mbio->bi_private = r1_bio;
1558
1559		atomic_inc(&r1_bio->remaining);
1560
1561		if (mddev->gendisk)
1562			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1563					      r1_bio->sector);
1564		/* flush_pending_writes() needs access to the rdev so...*/
1565		mbio->bi_bdev = (void *)rdev;
1566		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1567			spin_lock_irqsave(&conf->device_lock, flags);
1568			bio_list_add(&conf->pending_bio_list, mbio);
1569			spin_unlock_irqrestore(&conf->device_lock, flags);
1570			md_wakeup_thread(mddev->thread);
1571		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572	}
1573
1574	r1_bio_write_done(r1_bio);
1575
1576	/* In case raid1d snuck in to freeze_array */
1577	wake_up_barrier(conf);
1578}
1579
1580static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1581{
1582	sector_t sectors;
1583
1584	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1585	    && md_flush_request(mddev, bio))
1586		return true;
1587
1588	/*
1589	 * There is a limit to the maximum size, but
1590	 * the read/write handler might find a lower limit
1591	 * due to bad blocks.  To avoid multiple splits,
1592	 * we pass the maximum number of sectors down
1593	 * and let the lower level perform the split.
1594	 */
1595	sectors = align_to_barrier_unit_end(
1596		bio->bi_iter.bi_sector, bio_sectors(bio));
1597
1598	if (bio_data_dir(bio) == READ)
1599		raid1_read_request(mddev, bio, sectors, NULL);
1600	else {
1601		if (!md_write_start(mddev,bio))
1602			return false;
1603		raid1_write_request(mddev, bio, sectors);
1604	}
1605	return true;
1606}
1607
1608static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1609{
1610	struct r1conf *conf = mddev->private;
1611	int i;
1612
1613	lockdep_assert_held(&mddev->lock);
1614
1615	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1616		   conf->raid_disks - mddev->degraded);
 
1617	for (i = 0; i < conf->raid_disks; i++) {
1618		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1619
1620		seq_printf(seq, "%s",
1621			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1622	}
 
1623	seq_printf(seq, "]");
1624}
1625
1626/**
1627 * raid1_error() - RAID1 error handler.
1628 * @mddev: affected md device.
1629 * @rdev: member device to fail.
1630 *
1631 * The routine acknowledges &rdev failure and determines new @mddev state.
1632 * If it failed, then:
1633 *	- &MD_BROKEN flag is set in &mddev->flags.
1634 *	- recovery is disabled.
1635 * Otherwise, it must be degraded:
1636 *	- recovery is interrupted.
1637 *	- &mddev->degraded is bumped.
1638 *
1639 * @rdev is marked as &Faulty excluding case when array is failed and
1640 * &mddev->fail_last_dev is off.
1641 */
1642static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1643{
 
1644	struct r1conf *conf = mddev->private;
1645	unsigned long flags;
1646
1647	spin_lock_irqsave(&conf->device_lock, flags);
1648
1649	if (test_bit(In_sync, &rdev->flags) &&
1650	    (conf->raid_disks - mddev->degraded) == 1) {
1651		set_bit(MD_BROKEN, &mddev->flags);
1652
1653		if (!mddev->fail_last_dev) {
1654			conf->recovery_disabled = mddev->recovery_disabled;
1655			spin_unlock_irqrestore(&conf->device_lock, flags);
1656			return;
1657		}
 
 
 
 
 
1658	}
1659	set_bit(Blocked, &rdev->flags);
1660	if (test_and_clear_bit(In_sync, &rdev->flags))
 
 
1661		mddev->degraded++;
1662	set_bit(Faulty, &rdev->flags);
1663	spin_unlock_irqrestore(&conf->device_lock, flags);
1664	/*
1665	 * if recovery is running, make sure it aborts.
1666	 */
1667	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1668	set_mask_bits(&mddev->sb_flags, 0,
1669		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1670	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1671		"md/raid1:%s: Operation continuing on %d devices.\n",
1672		mdname(mddev), rdev->bdev,
1673		mdname(mddev), conf->raid_disks - mddev->degraded);
 
 
1674}
1675
1676static void print_conf(struct r1conf *conf)
1677{
1678	int i;
1679
1680	pr_debug("RAID1 conf printout:\n");
1681	if (!conf) {
1682		pr_debug("(!conf)\n");
1683		return;
1684	}
1685	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1686		 conf->raid_disks);
1687
1688	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1689	for (i = 0; i < conf->raid_disks; i++) {
1690		struct md_rdev *rdev = conf->mirrors[i].rdev;
 
1691		if (rdev)
1692			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1693				 i, !test_bit(In_sync, &rdev->flags),
1694				 !test_bit(Faulty, &rdev->flags),
1695				 rdev->bdev);
1696	}
 
1697}
1698
1699static void close_sync(struct r1conf *conf)
1700{
1701	int idx;
1702
1703	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1704		_wait_barrier(conf, idx, false);
1705		_allow_barrier(conf, idx);
1706	}
1707
1708	mempool_exit(&conf->r1buf_pool);
 
1709}
1710
1711static int raid1_spare_active(struct mddev *mddev)
1712{
1713	int i;
1714	struct r1conf *conf = mddev->private;
1715	int count = 0;
1716	unsigned long flags;
1717
1718	/*
1719	 * Find all failed disks within the RAID1 configuration
1720	 * and mark them readable.
1721	 * Called under mddev lock, so rcu protection not needed.
1722	 * device_lock used to avoid races with raid1_end_read_request
1723	 * which expects 'In_sync' flags and ->degraded to be consistent.
1724	 */
1725	spin_lock_irqsave(&conf->device_lock, flags);
1726	for (i = 0; i < conf->raid_disks; i++) {
1727		struct md_rdev *rdev = conf->mirrors[i].rdev;
1728		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1729		if (repl
1730		    && !test_bit(Candidate, &repl->flags)
1731		    && repl->recovery_offset == MaxSector
1732		    && !test_bit(Faulty, &repl->flags)
1733		    && !test_and_set_bit(In_sync, &repl->flags)) {
1734			/* replacement has just become active */
1735			if (!rdev ||
1736			    !test_and_clear_bit(In_sync, &rdev->flags))
1737				count++;
1738			if (rdev) {
1739				/* Replaced device not technically
1740				 * faulty, but we need to be sure
1741				 * it gets removed and never re-added
1742				 */
1743				set_bit(Faulty, &rdev->flags);
1744				sysfs_notify_dirent_safe(
1745					rdev->sysfs_state);
1746			}
1747		}
1748		if (rdev
1749		    && rdev->recovery_offset == MaxSector
1750		    && !test_bit(Faulty, &rdev->flags)
1751		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1752			count++;
1753			sysfs_notify_dirent_safe(rdev->sysfs_state);
1754		}
1755	}
 
1756	mddev->degraded -= count;
1757	spin_unlock_irqrestore(&conf->device_lock, flags);
1758
1759	print_conf(conf);
1760	return count;
1761}
1762
 
1763static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1764{
1765	struct r1conf *conf = mddev->private;
1766	int err = -EEXIST;
1767	int mirror = 0, repl_slot = -1;
1768	struct raid1_info *p;
1769	int first = 0;
1770	int last = conf->raid_disks - 1;
 
1771
1772	if (mddev->recovery_disabled == conf->recovery_disabled)
1773		return -EBUSY;
1774
1775	if (md_integrity_add_rdev(rdev, mddev))
1776		return -ENXIO;
1777
1778	if (rdev->raid_disk >= 0)
1779		first = last = rdev->raid_disk;
1780
1781	/*
1782	 * find the disk ... but prefer rdev->saved_raid_disk
1783	 * if possible.
1784	 */
1785	if (rdev->saved_raid_disk >= 0 &&
1786	    rdev->saved_raid_disk >= first &&
1787	    rdev->saved_raid_disk < conf->raid_disks &&
1788	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1789		first = last = rdev->saved_raid_disk;
1790
1791	for (mirror = first; mirror <= last; mirror++) {
1792		p = conf->mirrors + mirror;
1793		if (!p->rdev) {
1794			if (mddev->gendisk)
1795				disk_stack_limits(mddev->gendisk, rdev->bdev,
1796						  rdev->data_offset << 9);
1797
1798			p->head_position = 0;
1799			rdev->raid_disk = mirror;
1800			err = 0;
1801			/* As all devices are equivalent, we don't need a full recovery
1802			 * if this was recently any drive of the array
1803			 */
1804			if (rdev->saved_raid_disk < 0)
1805				conf->fullsync = 1;
1806			WRITE_ONCE(p->rdev, rdev);
1807			break;
1808		}
1809		if (test_bit(WantReplacement, &p->rdev->flags) &&
1810		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1811			repl_slot = mirror;
 
 
 
 
 
 
 
 
1812	}
1813
1814	if (err && repl_slot >= 0) {
1815		/* Add this device as a replacement */
1816		p = conf->mirrors + repl_slot;
1817		clear_bit(In_sync, &rdev->flags);
1818		set_bit(Replacement, &rdev->flags);
1819		rdev->raid_disk = repl_slot;
1820		err = 0;
1821		conf->fullsync = 1;
1822		WRITE_ONCE(p[conf->raid_disks].rdev, rdev);
 
 
1823	}
1824
1825	print_conf(conf);
1826	return err;
1827}
1828
1829static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1830{
1831	struct r1conf *conf = mddev->private;
1832	int err = 0;
1833	int number = rdev->raid_disk;
1834	struct raid1_info *p = conf->mirrors + number;
1835
1836	if (unlikely(number >= conf->raid_disks))
1837		goto abort;
1838
1839	if (rdev != p->rdev)
1840		p = conf->mirrors + conf->raid_disks + number;
1841
1842	print_conf(conf);
1843	if (rdev == p->rdev) {
1844		if (test_bit(In_sync, &rdev->flags) ||
1845		    atomic_read(&rdev->nr_pending)) {
1846			err = -EBUSY;
1847			goto abort;
1848		}
1849		/* Only remove non-faulty devices if recovery
1850		 * is not possible.
1851		 */
1852		if (!test_bit(Faulty, &rdev->flags) &&
1853		    mddev->recovery_disabled != conf->recovery_disabled &&
1854		    mddev->degraded < conf->raid_disks) {
1855			err = -EBUSY;
1856			goto abort;
1857		}
1858		WRITE_ONCE(p->rdev, NULL);
1859		if (conf->mirrors[conf->raid_disks + number].rdev) {
 
 
 
 
 
 
1860			/* We just removed a device that is being replaced.
1861			 * Move down the replacement.  We drain all IO before
1862			 * doing this to avoid confusion.
1863			 */
1864			struct md_rdev *repl =
1865				conf->mirrors[conf->raid_disks + number].rdev;
1866			freeze_array(conf, 0);
1867			if (atomic_read(&repl->nr_pending)) {
1868				/* It means that some queued IO of retry_list
1869				 * hold repl. Thus, we cannot set replacement
1870				 * as NULL, avoiding rdev NULL pointer
1871				 * dereference in sync_request_write and
1872				 * handle_write_finished.
1873				 */
1874				err = -EBUSY;
1875				unfreeze_array(conf);
1876				goto abort;
1877			}
1878			clear_bit(Replacement, &repl->flags);
1879			WRITE_ONCE(p->rdev, repl);
1880			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1881			unfreeze_array(conf);
1882		}
1883
1884		clear_bit(WantReplacement, &rdev->flags);
1885		err = md_integrity_register(mddev);
1886	}
1887abort:
1888
1889	print_conf(conf);
1890	return err;
1891}
1892
1893static void end_sync_read(struct bio *bio)
 
1894{
1895	struct r1bio *r1_bio = get_resync_r1bio(bio);
1896
1897	update_head_pos(r1_bio->read_disk, r1_bio);
1898
1899	/*
1900	 * we have read a block, now it needs to be re-written,
1901	 * or re-read if the read failed.
1902	 * We don't do much here, just schedule handling by raid1d
1903	 */
1904	if (!bio->bi_status)
1905		set_bit(R1BIO_Uptodate, &r1_bio->state);
1906
1907	if (atomic_dec_and_test(&r1_bio->remaining))
1908		reschedule_retry(r1_bio);
1909}
1910
1911static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1912{
1913	sector_t sync_blocks = 0;
1914	sector_t s = r1_bio->sector;
1915	long sectors_to_go = r1_bio->sectors;
1916
1917	/* make sure these bits don't get cleared. */
1918	do {
1919		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1920		s += sync_blocks;
1921		sectors_to_go -= sync_blocks;
1922	} while (sectors_to_go > 0);
1923}
1924
1925static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1926{
1927	if (atomic_dec_and_test(&r1_bio->remaining)) {
1928		struct mddev *mddev = r1_bio->mddev;
1929		int s = r1_bio->sectors;
1930
1931		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1932		    test_bit(R1BIO_WriteError, &r1_bio->state))
1933			reschedule_retry(r1_bio);
1934		else {
1935			put_buf(r1_bio);
1936			md_done_sync(mddev, s, uptodate);
1937		}
1938	}
1939}
1940
1941static void end_sync_write(struct bio *bio)
1942{
1943	int uptodate = !bio->bi_status;
1944	struct r1bio *r1_bio = get_resync_r1bio(bio);
1945	struct mddev *mddev = r1_bio->mddev;
1946	struct r1conf *conf = mddev->private;
 
1947	sector_t first_bad;
1948	int bad_sectors;
1949	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
 
1950
1951	if (!uptodate) {
1952		abort_sync_write(mddev, r1_bio);
1953		set_bit(WriteErrorSeen, &rdev->flags);
1954		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 
 
 
 
 
 
 
 
 
1955			set_bit(MD_RECOVERY_NEEDED, &
1956				mddev->recovery);
1957		set_bit(R1BIO_WriteError, &r1_bio->state);
1958	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 
 
1959			       &first_bad, &bad_sectors) &&
1960		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1961				r1_bio->sector,
1962				r1_bio->sectors,
1963				&first_bad, &bad_sectors)
1964		)
1965		set_bit(R1BIO_MadeGood, &r1_bio->state);
1966
1967	put_sync_write_buf(r1_bio, uptodate);
 
 
 
 
 
 
 
 
 
1968}
1969
1970static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1971			   int sectors, struct page *page, blk_opf_t rw)
1972{
1973	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1974		/* success */
1975		return 1;
1976	if (rw == REQ_OP_WRITE) {
1977		set_bit(WriteErrorSeen, &rdev->flags);
1978		if (!test_and_set_bit(WantReplacement,
1979				      &rdev->flags))
1980			set_bit(MD_RECOVERY_NEEDED, &
1981				rdev->mddev->recovery);
1982	}
1983	/* need to record an error - either for the block or the device */
1984	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1985		md_error(rdev->mddev, rdev);
1986	return 0;
1987}
1988
1989static int fix_sync_read_error(struct r1bio *r1_bio)
1990{
1991	/* Try some synchronous reads of other devices to get
1992	 * good data, much like with normal read errors.  Only
1993	 * read into the pages we already have so we don't
1994	 * need to re-issue the read request.
1995	 * We don't need to freeze the array, because being in an
1996	 * active sync request, there is no normal IO, and
1997	 * no overlapping syncs.
1998	 * We don't need to check is_badblock() again as we
1999	 * made sure that anything with a bad block in range
2000	 * will have bi_end_io clear.
2001	 */
2002	struct mddev *mddev = r1_bio->mddev;
2003	struct r1conf *conf = mddev->private;
2004	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2005	struct page **pages = get_resync_pages(bio)->pages;
2006	sector_t sect = r1_bio->sector;
2007	int sectors = r1_bio->sectors;
2008	int idx = 0;
2009	struct md_rdev *rdev;
2010
2011	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2012	if (test_bit(FailFast, &rdev->flags)) {
2013		/* Don't try recovering from here - just fail it
2014		 * ... unless it is the last working device of course */
2015		md_error(mddev, rdev);
2016		if (test_bit(Faulty, &rdev->flags))
2017			/* Don't try to read from here, but make sure
2018			 * put_buf does it's thing
2019			 */
2020			bio->bi_end_io = end_sync_write;
2021	}
2022
2023	while(sectors) {
2024		int s = sectors;
2025		int d = r1_bio->read_disk;
2026		int success = 0;
 
2027		int start;
2028
2029		if (s > (PAGE_SIZE>>9))
2030			s = PAGE_SIZE >> 9;
2031		do {
2032			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2033				/* No rcu protection needed here devices
2034				 * can only be removed when no resync is
2035				 * active, and resync is currently active
2036				 */
2037				rdev = conf->mirrors[d].rdev;
2038				if (sync_page_io(rdev, sect, s<<9,
2039						 pages[idx],
2040						 REQ_OP_READ, false)) {
2041					success = 1;
2042					break;
2043				}
2044			}
2045			d++;
2046			if (d == conf->raid_disks * 2)
2047				d = 0;
2048		} while (!success && d != r1_bio->read_disk);
2049
2050		if (!success) {
 
2051			int abort = 0;
2052			/* Cannot read from anywhere, this block is lost.
2053			 * Record a bad block on each device.  If that doesn't
2054			 * work just disable and interrupt the recovery.
2055			 * Don't fail devices as that won't really help.
2056			 */
2057			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2058					    mdname(mddev), bio->bi_bdev,
2059					    (unsigned long long)r1_bio->sector);
 
 
2060			for (d = 0; d < conf->raid_disks * 2; d++) {
2061				rdev = conf->mirrors[d].rdev;
2062				if (!rdev || test_bit(Faulty, &rdev->flags))
2063					continue;
2064				if (!rdev_set_badblocks(rdev, sect, s, 0))
2065					abort = 1;
2066			}
2067			if (abort) {
2068				conf->recovery_disabled =
2069					mddev->recovery_disabled;
2070				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2071				md_done_sync(mddev, r1_bio->sectors, 0);
2072				put_buf(r1_bio);
2073				return 0;
2074			}
2075			/* Try next page */
2076			sectors -= s;
2077			sect += s;
2078			idx++;
2079			continue;
2080		}
2081
2082		start = d;
2083		/* write it back and re-read */
2084		while (d != r1_bio->read_disk) {
2085			if (d == 0)
2086				d = conf->raid_disks * 2;
2087			d--;
2088			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089				continue;
2090			rdev = conf->mirrors[d].rdev;
2091			if (r1_sync_page_io(rdev, sect, s,
2092					    pages[idx],
2093					    REQ_OP_WRITE) == 0) {
2094				r1_bio->bios[d]->bi_end_io = NULL;
2095				rdev_dec_pending(rdev, mddev);
2096			}
2097		}
2098		d = start;
2099		while (d != r1_bio->read_disk) {
2100			if (d == 0)
2101				d = conf->raid_disks * 2;
2102			d--;
2103			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104				continue;
2105			rdev = conf->mirrors[d].rdev;
2106			if (r1_sync_page_io(rdev, sect, s,
2107					    pages[idx],
2108					    REQ_OP_READ) != 0)
2109				atomic_add(s, &rdev->corrected_errors);
2110		}
2111		sectors -= s;
2112		sect += s;
2113		idx ++;
2114	}
2115	set_bit(R1BIO_Uptodate, &r1_bio->state);
2116	bio->bi_status = 0;
2117	return 1;
2118}
2119
2120static void process_checks(struct r1bio *r1_bio)
2121{
2122	/* We have read all readable devices.  If we haven't
2123	 * got the block, then there is no hope left.
2124	 * If we have, then we want to do a comparison
2125	 * and skip the write if everything is the same.
2126	 * If any blocks failed to read, then we need to
2127	 * attempt an over-write
2128	 */
2129	struct mddev *mddev = r1_bio->mddev;
2130	struct r1conf *conf = mddev->private;
2131	int primary;
2132	int i;
2133	int vcnt;
2134
2135	/* Fix variable parts of all bios */
2136	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2137	for (i = 0; i < conf->raid_disks * 2; i++) {
2138		blk_status_t status;
2139		struct bio *b = r1_bio->bios[i];
2140		struct resync_pages *rp = get_resync_pages(b);
2141		if (b->bi_end_io != end_sync_read)
2142			continue;
2143		/* fixup the bio for reuse, but preserve errno */
2144		status = b->bi_status;
2145		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2146		b->bi_status = status;
2147		b->bi_iter.bi_sector = r1_bio->sector +
2148			conf->mirrors[i].rdev->data_offset;
2149		b->bi_end_io = end_sync_read;
2150		rp->raid_bio = r1_bio;
2151		b->bi_private = rp;
2152
2153		/* initialize bvec table again */
2154		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2155	}
2156	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2157		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2158		    !r1_bio->bios[primary]->bi_status) {
2159			r1_bio->bios[primary]->bi_end_io = NULL;
2160			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2161			break;
2162		}
2163	r1_bio->read_disk = primary;
 
2164	for (i = 0; i < conf->raid_disks * 2; i++) {
2165		int j = 0;
2166		struct bio *pbio = r1_bio->bios[primary];
2167		struct bio *sbio = r1_bio->bios[i];
2168		blk_status_t status = sbio->bi_status;
2169		struct page **ppages = get_resync_pages(pbio)->pages;
2170		struct page **spages = get_resync_pages(sbio)->pages;
2171		struct bio_vec *bi;
2172		int page_len[RESYNC_PAGES] = { 0 };
2173		struct bvec_iter_all iter_all;
2174
2175		if (sbio->bi_end_io != end_sync_read)
2176			continue;
2177		/* Now we can 'fixup' the error value */
2178		sbio->bi_status = 0;
2179
2180		bio_for_each_segment_all(bi, sbio, iter_all)
2181			page_len[j++] = bi->bv_len;
2182
2183		if (!status) {
2184			for (j = vcnt; j-- ; ) {
2185				if (memcmp(page_address(ppages[j]),
2186					   page_address(spages[j]),
2187					   page_len[j]))
 
 
 
2188					break;
2189			}
2190		} else
2191			j = 0;
2192		if (j >= 0)
2193			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2194		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2195			      && !status)) {
2196			/* No need to write to this device. */
2197			sbio->bi_end_io = NULL;
2198			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2199			continue;
2200		}
2201
2202		bio_copy_data(sbio, pbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
 
2204}
2205
2206static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2207{
2208	struct r1conf *conf = mddev->private;
2209	int i;
2210	int disks = conf->raid_disks * 2;
2211	struct bio *wbio;
 
 
2212
2213	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2214		/* ouch - failed to read all of that. */
2215		if (!fix_sync_read_error(r1_bio))
2216			return;
2217
2218	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2219		process_checks(r1_bio);
2220
2221	/*
2222	 * schedule writes
2223	 */
2224	atomic_set(&r1_bio->remaining, 1);
2225	for (i = 0; i < disks ; i++) {
2226		wbio = r1_bio->bios[i];
2227		if (wbio->bi_end_io == NULL ||
2228		    (wbio->bi_end_io == end_sync_read &&
2229		     (i == r1_bio->read_disk ||
2230		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2231			continue;
2232		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2233			abort_sync_write(mddev, r1_bio);
2234			continue;
2235		}
2236
2237		wbio->bi_opf = REQ_OP_WRITE;
2238		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2239			wbio->bi_opf |= MD_FAILFAST;
2240
 
2241		wbio->bi_end_io = end_sync_write;
2242		atomic_inc(&r1_bio->remaining);
2243		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2244
2245		submit_bio_noacct(wbio);
2246	}
2247
2248	put_sync_write_buf(r1_bio, 1);
 
 
 
 
 
 
 
 
 
 
2249}
2250
2251/*
2252 * This is a kernel thread which:
2253 *
2254 *	1.	Retries failed read operations on working mirrors.
2255 *	2.	Updates the raid superblock when problems encounter.
2256 *	3.	Performs writes following reads for array synchronising.
2257 */
2258
2259static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 
2260{
2261	sector_t sect = r1_bio->sector;
2262	int sectors = r1_bio->sectors;
2263	int read_disk = r1_bio->read_disk;
2264	struct mddev *mddev = conf->mddev;
2265	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2266
2267	if (exceed_read_errors(mddev, rdev)) {
2268		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2269		return;
2270	}
2271
2272	while(sectors) {
2273		int s = sectors;
2274		int d = read_disk;
2275		int success = 0;
2276		int start;
 
2277
2278		if (s > (PAGE_SIZE>>9))
2279			s = PAGE_SIZE >> 9;
2280
2281		do {
 
 
 
 
 
2282			sector_t first_bad;
2283			int bad_sectors;
2284
2285			rdev = conf->mirrors[d].rdev;
2286			if (rdev &&
2287			    (test_bit(In_sync, &rdev->flags) ||
2288			     (!test_bit(Faulty, &rdev->flags) &&
2289			      rdev->recovery_offset >= sect + s)) &&
2290			    is_badblock(rdev, sect, s,
2291					&first_bad, &bad_sectors) == 0) {
2292				atomic_inc(&rdev->nr_pending);
2293				if (sync_page_io(rdev, sect, s<<9,
2294					 conf->tmppage, REQ_OP_READ, false))
2295					success = 1;
2296				rdev_dec_pending(rdev, mddev);
2297				if (success)
2298					break;
2299			}
2300
2301			d++;
2302			if (d == conf->raid_disks * 2)
2303				d = 0;
2304		} while (d != read_disk);
2305
2306		if (!success) {
2307			/* Cannot read from anywhere - mark it bad */
2308			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2309			if (!rdev_set_badblocks(rdev, sect, s, 0))
2310				md_error(mddev, rdev);
2311			break;
2312		}
2313		/* write it back and re-read */
2314		start = d;
2315		while (d != read_disk) {
2316			if (d==0)
2317				d = conf->raid_disks * 2;
2318			d--;
2319			rdev = conf->mirrors[d].rdev;
2320			if (rdev &&
2321			    !test_bit(Faulty, &rdev->flags)) {
2322				atomic_inc(&rdev->nr_pending);
2323				r1_sync_page_io(rdev, sect, s,
2324						conf->tmppage, REQ_OP_WRITE);
2325				rdev_dec_pending(rdev, mddev);
2326			}
2327		}
2328		d = start;
2329		while (d != read_disk) {
 
2330			if (d==0)
2331				d = conf->raid_disks * 2;
2332			d--;
2333			rdev = conf->mirrors[d].rdev;
2334			if (rdev &&
2335			    !test_bit(Faulty, &rdev->flags)) {
2336				atomic_inc(&rdev->nr_pending);
2337				if (r1_sync_page_io(rdev, sect, s,
2338						conf->tmppage, REQ_OP_READ)) {
2339					atomic_add(s, &rdev->corrected_errors);
2340					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2341						mdname(mddev), s,
2342						(unsigned long long)(sect +
2343								     rdev->data_offset),
2344						rdev->bdev);
 
 
2345				}
2346				rdev_dec_pending(rdev, mddev);
2347			}
2348		}
2349		sectors -= s;
2350		sect += s;
2351	}
2352}
2353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354static int narrow_write_error(struct r1bio *r1_bio, int i)
2355{
2356	struct mddev *mddev = r1_bio->mddev;
2357	struct r1conf *conf = mddev->private;
2358	struct md_rdev *rdev = conf->mirrors[i].rdev;
 
 
2359
2360	/* bio has the data to be written to device 'i' where
2361	 * we just recently had a write error.
2362	 * We repeatedly clone the bio and trim down to one block,
2363	 * then try the write.  Where the write fails we record
2364	 * a bad block.
2365	 * It is conceivable that the bio doesn't exactly align with
2366	 * blocks.  We must handle this somehow.
2367	 *
2368	 * We currently own a reference on the rdev.
2369	 */
2370
2371	int block_sectors;
2372	sector_t sector;
2373	int sectors;
2374	int sect_to_write = r1_bio->sectors;
2375	int ok = 1;
2376
2377	if (rdev->badblocks.shift < 0)
2378		return 0;
2379
2380	block_sectors = roundup(1 << rdev->badblocks.shift,
2381				bdev_logical_block_size(rdev->bdev) >> 9);
2382	sector = r1_bio->sector;
2383	sectors = ((sector + block_sectors)
2384		   & ~(sector_t)(block_sectors - 1))
2385		- sector;
2386
 
 
 
 
 
 
 
 
 
 
 
2387	while (sect_to_write) {
2388		struct bio *wbio;
2389		if (sectors > sect_to_write)
2390			sectors = sect_to_write;
2391		/* Write at 'sector' for 'sectors'*/
2392
2393		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394			wbio = bio_alloc_clone(rdev->bdev,
2395					       r1_bio->behind_master_bio,
2396					       GFP_NOIO, &mddev->bio_set);
2397		} else {
2398			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2399					       GFP_NOIO, &mddev->bio_set);
2400		}
2401
2402		wbio->bi_opf = REQ_OP_WRITE;
2403		wbio->bi_iter.bi_sector = r1_bio->sector;
2404		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2405
2406		bio_trim(wbio, sector - r1_bio->sector, sectors);
2407		wbio->bi_iter.bi_sector += rdev->data_offset;
2408
2409		if (submit_bio_wait(wbio) < 0)
2410			/* failure! */
2411			ok = rdev_set_badblocks(rdev, sector,
2412						sectors, 0)
2413				&& ok;
2414
2415		bio_put(wbio);
2416		sect_to_write -= sectors;
2417		sector += sectors;
2418		sectors = block_sectors;
2419	}
2420	return ok;
2421}
2422
2423static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2424{
2425	int m;
2426	int s = r1_bio->sectors;
2427	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2428		struct md_rdev *rdev = conf->mirrors[m].rdev;
2429		struct bio *bio = r1_bio->bios[m];
2430		if (bio->bi_end_io == NULL)
2431			continue;
2432		if (!bio->bi_status &&
2433		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2434			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2435		}
2436		if (bio->bi_status &&
2437		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2438			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2439				md_error(conf->mddev, rdev);
2440		}
2441	}
2442	put_buf(r1_bio);
2443	md_done_sync(conf->mddev, s, 1);
2444}
2445
2446static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2447{
2448	int m, idx;
2449	bool fail = false;
2450
2451	for (m = 0; m < conf->raid_disks * 2 ; m++)
2452		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2453			struct md_rdev *rdev = conf->mirrors[m].rdev;
2454			rdev_clear_badblocks(rdev,
2455					     r1_bio->sector,
2456					     r1_bio->sectors, 0);
2457			rdev_dec_pending(rdev, conf->mddev);
2458		} else if (r1_bio->bios[m] != NULL) {
2459			/* This drive got a write error.  We need to
2460			 * narrow down and record precise write
2461			 * errors.
2462			 */
2463			fail = true;
2464			if (!narrow_write_error(r1_bio, m)) {
2465				md_error(conf->mddev,
2466					 conf->mirrors[m].rdev);
2467				/* an I/O failed, we can't clear the bitmap */
2468				set_bit(R1BIO_Degraded, &r1_bio->state);
2469			}
2470			rdev_dec_pending(conf->mirrors[m].rdev,
2471					 conf->mddev);
2472		}
2473	if (fail) {
2474		spin_lock_irq(&conf->device_lock);
2475		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2476		idx = sector_to_idx(r1_bio->sector);
2477		atomic_inc(&conf->nr_queued[idx]);
2478		spin_unlock_irq(&conf->device_lock);
2479		/*
2480		 * In case freeze_array() is waiting for condition
2481		 * get_unqueued_pending() == extra to be true.
2482		 */
2483		wake_up(&conf->wait_barrier);
2484		md_wakeup_thread(conf->mddev->thread);
2485	} else {
2486		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2487			close_write(r1_bio);
2488		raid_end_bio_io(r1_bio);
2489	}
2490}
2491
2492static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2493{
 
 
2494	struct mddev *mddev = conf->mddev;
2495	struct bio *bio;
 
2496	struct md_rdev *rdev;
2497	sector_t sector;
2498
2499	clear_bit(R1BIO_ReadError, &r1_bio->state);
2500	/* we got a read error. Maybe the drive is bad.  Maybe just
2501	 * the block and we can fix it.
2502	 * We freeze all other IO, and try reading the block from
2503	 * other devices.  When we find one, we re-write
2504	 * and check it that fixes the read error.
2505	 * This is all done synchronously while the array is
2506	 * frozen
2507	 */
 
 
 
 
 
 
 
2508
2509	bio = r1_bio->bios[r1_bio->read_disk];
2510	bio_put(bio);
2511	r1_bio->bios[r1_bio->read_disk] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512
2513	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2514	if (mddev->ro == 0
2515	    && !test_bit(FailFast, &rdev->flags)) {
2516		freeze_array(conf, 1);
2517		fix_read_error(conf, r1_bio);
2518		unfreeze_array(conf);
2519	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2520		md_error(mddev, rdev);
2521	} else {
2522		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2523	}
2524
2525	rdev_dec_pending(rdev, conf->mddev);
2526	sector = r1_bio->sector;
2527	bio = r1_bio->master_bio;
2528
2529	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2530	r1_bio->state = 0;
2531	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2532	allow_barrier(conf, sector);
2533}
2534
2535static void raid1d(struct md_thread *thread)
2536{
2537	struct mddev *mddev = thread->mddev;
2538	struct r1bio *r1_bio;
2539	unsigned long flags;
2540	struct r1conf *conf = mddev->private;
2541	struct list_head *head = &conf->retry_list;
2542	struct blk_plug plug;
2543	int idx;
2544
2545	md_check_recovery(mddev);
2546
2547	if (!list_empty_careful(&conf->bio_end_io_list) &&
2548	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2549		LIST_HEAD(tmp);
2550		spin_lock_irqsave(&conf->device_lock, flags);
2551		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2552			list_splice_init(&conf->bio_end_io_list, &tmp);
2553		spin_unlock_irqrestore(&conf->device_lock, flags);
2554		while (!list_empty(&tmp)) {
2555			r1_bio = list_first_entry(&tmp, struct r1bio,
2556						  retry_list);
2557			list_del(&r1_bio->retry_list);
2558			idx = sector_to_idx(r1_bio->sector);
2559			atomic_dec(&conf->nr_queued[idx]);
2560			if (mddev->degraded)
2561				set_bit(R1BIO_Degraded, &r1_bio->state);
2562			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2563				close_write(r1_bio);
2564			raid_end_bio_io(r1_bio);
2565		}
2566	}
2567
2568	blk_start_plug(&plug);
2569	for (;;) {
2570
2571		flush_pending_writes(conf);
 
2572
2573		spin_lock_irqsave(&conf->device_lock, flags);
2574		if (list_empty(head)) {
2575			spin_unlock_irqrestore(&conf->device_lock, flags);
2576			break;
2577		}
2578		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2579		list_del(head->prev);
2580		idx = sector_to_idx(r1_bio->sector);
2581		atomic_dec(&conf->nr_queued[idx]);
2582		spin_unlock_irqrestore(&conf->device_lock, flags);
2583
2584		mddev = r1_bio->mddev;
2585		conf = mddev->private;
2586		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2587			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2588			    test_bit(R1BIO_WriteError, &r1_bio->state))
2589				handle_sync_write_finished(conf, r1_bio);
2590			else
2591				sync_request_write(mddev, r1_bio);
2592		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2593			   test_bit(R1BIO_WriteError, &r1_bio->state))
2594			handle_write_finished(conf, r1_bio);
2595		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2596			handle_read_error(conf, r1_bio);
2597		else
2598			WARN_ON_ONCE(1);
 
 
 
2599
2600		cond_resched();
2601		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2602			md_check_recovery(mddev);
2603	}
2604	blk_finish_plug(&plug);
2605}
2606
 
2607static int init_resync(struct r1conf *conf)
2608{
2609	int buffs;
2610
2611	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2612	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2613
2614	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2615			    r1buf_pool_free, conf->poolinfo);
2616}
2617
2618static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2619{
2620	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2621	struct resync_pages *rps;
2622	struct bio *bio;
2623	int i;
2624
2625	for (i = conf->poolinfo->raid_disks; i--; ) {
2626		bio = r1bio->bios[i];
2627		rps = bio->bi_private;
2628		bio_reset(bio, NULL, 0);
2629		bio->bi_private = rps;
2630	}
2631	r1bio->master_bio = NULL;
2632	return r1bio;
2633}
2634
2635/*
2636 * perform a "sync" on one "block"
2637 *
2638 * We need to make sure that no normal I/O request - particularly write
2639 * requests - conflict with active sync requests.
2640 *
2641 * This is achieved by tracking pending requests and a 'barrier' concept
2642 * that can be installed to exclude normal IO requests.
2643 */
2644
2645static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2646				   int *skipped)
2647{
2648	struct r1conf *conf = mddev->private;
2649	struct r1bio *r1_bio;
2650	struct bio *bio;
2651	sector_t max_sector, nr_sectors;
2652	int disk = -1;
2653	int i;
2654	int wonly = -1;
2655	int write_targets = 0, read_targets = 0;
2656	sector_t sync_blocks;
2657	int still_degraded = 0;
2658	int good_sectors = RESYNC_SECTORS;
2659	int min_bad = 0; /* number of sectors that are bad in all devices */
2660	int idx = sector_to_idx(sector_nr);
2661	int page_idx = 0;
2662
2663	if (!mempool_initialized(&conf->r1buf_pool))
2664		if (init_resync(conf))
2665			return 0;
2666
2667	max_sector = mddev->dev_sectors;
2668	if (sector_nr >= max_sector) {
2669		/* If we aborted, we need to abort the
2670		 * sync on the 'current' bitmap chunk (there will
2671		 * only be one in raid1 resync.
2672		 * We can find the current addess in mddev->curr_resync
2673		 */
2674		if (mddev->curr_resync < max_sector) /* aborted */
2675			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2676					   &sync_blocks, 1);
2677		else /* completed sync */
2678			conf->fullsync = 0;
2679
2680		md_bitmap_close_sync(mddev->bitmap);
2681		close_sync(conf);
2682
2683		if (mddev_is_clustered(mddev)) {
2684			conf->cluster_sync_low = 0;
2685			conf->cluster_sync_high = 0;
2686		}
2687		return 0;
2688	}
2689
2690	if (mddev->bitmap == NULL &&
2691	    mddev->recovery_cp == MaxSector &&
2692	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2693	    conf->fullsync == 0) {
2694		*skipped = 1;
2695		return max_sector - sector_nr;
2696	}
2697	/* before building a request, check if we can skip these blocks..
2698	 * This call the bitmap_start_sync doesn't actually record anything
2699	 */
2700	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2701	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2702		/* We can skip this block, and probably several more */
2703		*skipped = 1;
2704		return sync_blocks;
2705	}
2706
2707	/*
2708	 * If there is non-resync activity waiting for a turn, then let it
2709	 * though before starting on this new sync request.
2710	 */
2711	if (atomic_read(&conf->nr_waiting[idx]))
2712		schedule_timeout_uninterruptible(1);
2713
2714	/* we are incrementing sector_nr below. To be safe, we check against
2715	 * sector_nr + two times RESYNC_SECTORS
2716	 */
 
 
2717
2718	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2719		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2720
2721
2722	if (raise_barrier(conf, sector_nr))
2723		return 0;
2724
2725	r1_bio = raid1_alloc_init_r1buf(conf);
2726
 
2727	/*
2728	 * If we get a correctably read error during resync or recovery,
2729	 * we might want to read from a different device.  So we
2730	 * flag all drives that could conceivably be read from for READ,
2731	 * and any others (which will be non-In_sync devices) for WRITE.
2732	 * If a read fails, we try reading from something else for which READ
2733	 * is OK.
2734	 */
2735
2736	r1_bio->mddev = mddev;
2737	r1_bio->sector = sector_nr;
2738	r1_bio->state = 0;
2739	set_bit(R1BIO_IsSync, &r1_bio->state);
2740	/* make sure good_sectors won't go across barrier unit boundary */
2741	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2742
2743	for (i = 0; i < conf->raid_disks * 2; i++) {
2744		struct md_rdev *rdev;
2745		bio = r1_bio->bios[i];
2746
2747		rdev = conf->mirrors[i].rdev;
 
 
 
 
 
 
 
 
 
 
 
 
2748		if (rdev == NULL ||
2749		    test_bit(Faulty, &rdev->flags)) {
2750			if (i < conf->raid_disks)
2751				still_degraded = 1;
2752		} else if (!test_bit(In_sync, &rdev->flags)) {
2753			bio->bi_opf = REQ_OP_WRITE;
2754			bio->bi_end_io = end_sync_write;
2755			write_targets ++;
2756		} else {
2757			/* may need to read from here */
2758			sector_t first_bad = MaxSector;
2759			int bad_sectors;
2760
2761			if (is_badblock(rdev, sector_nr, good_sectors,
2762					&first_bad, &bad_sectors)) {
2763				if (first_bad > sector_nr)
2764					good_sectors = first_bad - sector_nr;
2765				else {
2766					bad_sectors -= (sector_nr - first_bad);
2767					if (min_bad == 0 ||
2768					    min_bad > bad_sectors)
2769						min_bad = bad_sectors;
2770				}
2771			}
2772			if (sector_nr < first_bad) {
2773				if (test_bit(WriteMostly, &rdev->flags)) {
2774					if (wonly < 0)
2775						wonly = i;
2776				} else {
2777					if (disk < 0)
2778						disk = i;
2779				}
2780				bio->bi_opf = REQ_OP_READ;
2781				bio->bi_end_io = end_sync_read;
2782				read_targets++;
2783			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2784				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2785				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2786				/*
2787				 * The device is suitable for reading (InSync),
2788				 * but has bad block(s) here. Let's try to correct them,
2789				 * if we are doing resync or repair. Otherwise, leave
2790				 * this device alone for this sync request.
2791				 */
2792				bio->bi_opf = REQ_OP_WRITE;
2793				bio->bi_end_io = end_sync_write;
2794				write_targets++;
2795			}
2796		}
2797		if (rdev && bio->bi_end_io) {
2798			atomic_inc(&rdev->nr_pending);
2799			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2800			bio_set_dev(bio, rdev->bdev);
2801			if (test_bit(FailFast, &rdev->flags))
2802				bio->bi_opf |= MD_FAILFAST;
2803		}
2804	}
 
2805	if (disk < 0)
2806		disk = wonly;
2807	r1_bio->read_disk = disk;
2808
2809	if (read_targets == 0 && min_bad > 0) {
2810		/* These sectors are bad on all InSync devices, so we
2811		 * need to mark them bad on all write targets
2812		 */
2813		int ok = 1;
2814		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2815			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2816				struct md_rdev *rdev = conf->mirrors[i].rdev;
2817				ok = rdev_set_badblocks(rdev, sector_nr,
2818							min_bad, 0
2819					) && ok;
2820			}
2821		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2822		*skipped = 1;
2823		put_buf(r1_bio);
2824
2825		if (!ok) {
2826			/* Cannot record the badblocks, so need to
2827			 * abort the resync.
2828			 * If there are multiple read targets, could just
2829			 * fail the really bad ones ???
2830			 */
2831			conf->recovery_disabled = mddev->recovery_disabled;
2832			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2833			return 0;
2834		} else
2835			return min_bad;
2836
2837	}
2838	if (min_bad > 0 && min_bad < good_sectors) {
2839		/* only resync enough to reach the next bad->good
2840		 * transition */
2841		good_sectors = min_bad;
2842	}
2843
2844	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2845		/* extra read targets are also write targets */
2846		write_targets += read_targets-1;
2847
2848	if (write_targets == 0 || read_targets == 0) {
2849		/* There is nowhere to write, so all non-sync
2850		 * drives must be failed - so we are finished
2851		 */
2852		sector_t rv;
2853		if (min_bad > 0)
2854			max_sector = sector_nr + min_bad;
2855		rv = max_sector - sector_nr;
2856		*skipped = 1;
2857		put_buf(r1_bio);
2858		return rv;
2859	}
2860
2861	if (max_sector > mddev->resync_max)
2862		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863	if (max_sector > sector_nr + good_sectors)
2864		max_sector = sector_nr + good_sectors;
2865	nr_sectors = 0;
2866	sync_blocks = 0;
2867	do {
2868		struct page *page;
2869		int len = PAGE_SIZE;
2870		if (sector_nr + (len>>9) > max_sector)
2871			len = (max_sector - sector_nr) << 9;
2872		if (len == 0)
2873			break;
2874		if (sync_blocks == 0) {
2875			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2876						  &sync_blocks, still_degraded) &&
2877			    !conf->fullsync &&
2878			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2879				break;
 
2880			if ((len >> 9) > sync_blocks)
2881				len = sync_blocks<<9;
2882		}
2883
2884		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2885			struct resync_pages *rp;
2886
2887			bio = r1_bio->bios[i];
2888			rp = get_resync_pages(bio);
2889			if (bio->bi_end_io) {
2890				page = resync_fetch_page(rp, page_idx);
2891
2892				/*
2893				 * won't fail because the vec table is big
2894				 * enough to hold all these pages
2895				 */
2896				__bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
2897			}
2898		}
2899		nr_sectors += len>>9;
2900		sector_nr += len>>9;
2901		sync_blocks -= (len>>9);
2902	} while (++page_idx < RESYNC_PAGES);
2903
2904	r1_bio->sectors = nr_sectors;
2905
2906	if (mddev_is_clustered(mddev) &&
2907			conf->cluster_sync_high < sector_nr + nr_sectors) {
2908		conf->cluster_sync_low = mddev->curr_resync_completed;
2909		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2910		/* Send resync message */
2911		md_cluster_ops->resync_info_update(mddev,
2912				conf->cluster_sync_low,
2913				conf->cluster_sync_high);
2914	}
2915
2916	/* For a user-requested sync, we read all readable devices and do a
2917	 * compare
2918	 */
2919	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2920		atomic_set(&r1_bio->remaining, read_targets);
2921		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2922			bio = r1_bio->bios[i];
2923			if (bio->bi_end_io == end_sync_read) {
2924				read_targets--;
2925				md_sync_acct_bio(bio, nr_sectors);
2926				if (read_targets == 1)
2927					bio->bi_opf &= ~MD_FAILFAST;
2928				submit_bio_noacct(bio);
2929			}
2930		}
2931	} else {
2932		atomic_set(&r1_bio->remaining, 1);
2933		bio = r1_bio->bios[r1_bio->read_disk];
2934		md_sync_acct_bio(bio, nr_sectors);
2935		if (read_targets == 1)
2936			bio->bi_opf &= ~MD_FAILFAST;
2937		submit_bio_noacct(bio);
2938	}
2939	return nr_sectors;
2940}
2941
2942static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2943{
2944	if (sectors)
2945		return sectors;
2946
2947	return mddev->dev_sectors;
2948}
2949
2950static struct r1conf *setup_conf(struct mddev *mddev)
2951{
2952	struct r1conf *conf;
2953	int i;
2954	struct raid1_info *disk;
2955	struct md_rdev *rdev;
2956	int err = -ENOMEM;
2957
2958	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2959	if (!conf)
2960		goto abort;
2961
2962	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2963				   sizeof(atomic_t), GFP_KERNEL);
2964	if (!conf->nr_pending)
2965		goto abort;
2966
2967	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2968				   sizeof(atomic_t), GFP_KERNEL);
2969	if (!conf->nr_waiting)
2970		goto abort;
2971
2972	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2973				  sizeof(atomic_t), GFP_KERNEL);
2974	if (!conf->nr_queued)
2975		goto abort;
2976
2977	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2978				sizeof(atomic_t), GFP_KERNEL);
2979	if (!conf->barrier)
2980		goto abort;
2981
2982	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2983					    mddev->raid_disks, 2),
2984				GFP_KERNEL);
2985	if (!conf->mirrors)
2986		goto abort;
2987
2988	conf->tmppage = alloc_page(GFP_KERNEL);
2989	if (!conf->tmppage)
2990		goto abort;
2991
2992	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2993	if (!conf->poolinfo)
2994		goto abort;
2995	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2996	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2997			   rbio_pool_free, conf->poolinfo);
2998	if (err)
2999		goto abort;
3000
3001	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3002	if (err)
3003		goto abort;
3004
3005	conf->poolinfo->mddev = mddev;
3006
3007	err = -EINVAL;
3008	spin_lock_init(&conf->device_lock);
3009	rdev_for_each(rdev, mddev) {
 
3010		int disk_idx = rdev->raid_disk;
3011		if (disk_idx >= mddev->raid_disks
3012		    || disk_idx < 0)
3013			continue;
3014		if (test_bit(Replacement, &rdev->flags))
3015			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3016		else
3017			disk = conf->mirrors + disk_idx;
3018
3019		if (disk->rdev)
3020			goto abort;
3021		disk->rdev = rdev;
 
 
 
 
3022		disk->head_position = 0;
3023		disk->seq_start = MaxSector;
3024	}
3025	conf->raid_disks = mddev->raid_disks;
3026	conf->mddev = mddev;
3027	INIT_LIST_HEAD(&conf->retry_list);
3028	INIT_LIST_HEAD(&conf->bio_end_io_list);
3029
3030	spin_lock_init(&conf->resync_lock);
3031	init_waitqueue_head(&conf->wait_barrier);
3032
3033	bio_list_init(&conf->pending_bio_list);
 
3034	conf->recovery_disabled = mddev->recovery_disabled - 1;
3035
3036	err = -EIO;
 
3037	for (i = 0; i < conf->raid_disks * 2; i++) {
3038
3039		disk = conf->mirrors + i;
3040
3041		if (i < conf->raid_disks &&
3042		    disk[conf->raid_disks].rdev) {
3043			/* This slot has a replacement. */
3044			if (!disk->rdev) {
3045				/* No original, just make the replacement
3046				 * a recovering spare
3047				 */
3048				disk->rdev =
3049					disk[conf->raid_disks].rdev;
3050				disk[conf->raid_disks].rdev = NULL;
3051			} else if (!test_bit(In_sync, &disk->rdev->flags))
3052				/* Original is not in_sync - bad */
3053				goto abort;
3054		}
3055
3056		if (!disk->rdev ||
3057		    !test_bit(In_sync, &disk->rdev->flags)) {
3058			disk->head_position = 0;
3059			if (disk->rdev &&
3060			    (disk->rdev->saved_raid_disk < 0))
3061				conf->fullsync = 1;
3062		}
 
 
 
 
 
3063	}
3064
 
 
 
 
 
3065	err = -ENOMEM;
3066	rcu_assign_pointer(conf->thread,
3067			   md_register_thread(raid1d, mddev, "raid1"));
3068	if (!conf->thread)
 
 
3069		goto abort;
 
3070
3071	return conf;
3072
3073 abort:
3074	if (conf) {
3075		mempool_exit(&conf->r1bio_pool);
 
3076		kfree(conf->mirrors);
3077		safe_put_page(conf->tmppage);
3078		kfree(conf->poolinfo);
3079		kfree(conf->nr_pending);
3080		kfree(conf->nr_waiting);
3081		kfree(conf->nr_queued);
3082		kfree(conf->barrier);
3083		bioset_exit(&conf->bio_split);
3084		kfree(conf);
3085	}
3086	return ERR_PTR(err);
3087}
3088
3089static void raid1_free(struct mddev *mddev, void *priv);
3090static int raid1_run(struct mddev *mddev)
3091{
3092	struct r1conf *conf;
3093	int i;
3094	struct md_rdev *rdev;
3095	int ret;
3096
3097	if (mddev->level != 1) {
3098		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3099			mdname(mddev), mddev->level);
3100		return -EIO;
3101	}
3102	if (mddev->reshape_position != MaxSector) {
3103		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3104			mdname(mddev));
3105		return -EIO;
3106	}
3107
3108	/*
3109	 * copy the already verified devices into our private RAID1
3110	 * bookkeeping area. [whatever we allocate in run(),
3111	 * should be freed in raid1_free()]
3112	 */
3113	if (mddev->private == NULL)
3114		conf = setup_conf(mddev);
3115	else
3116		conf = mddev->private;
3117
3118	if (IS_ERR(conf))
3119		return PTR_ERR(conf);
3120
3121	if (mddev->queue)
3122		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3123
3124	rdev_for_each(rdev, mddev) {
3125		if (!mddev->gendisk)
3126			continue;
3127		disk_stack_limits(mddev->gendisk, rdev->bdev,
3128				  rdev->data_offset << 9);
3129	}
3130
3131	mddev->degraded = 0;
3132	for (i = 0; i < conf->raid_disks; i++)
3133		if (conf->mirrors[i].rdev == NULL ||
3134		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3135		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3136			mddev->degraded++;
3137	/*
3138	 * RAID1 needs at least one disk in active
3139	 */
3140	if (conf->raid_disks - mddev->degraded < 1) {
3141		md_unregister_thread(mddev, &conf->thread);
3142		ret = -EINVAL;
3143		goto abort;
3144	}
3145
3146	if (conf->raid_disks - mddev->degraded == 1)
3147		mddev->recovery_cp = MaxSector;
3148
3149	if (mddev->recovery_cp != MaxSector)
3150		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3151			mdname(mddev));
3152	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3153		mdname(mddev), mddev->raid_disks - mddev->degraded,
 
 
3154		mddev->raid_disks);
3155
3156	/*
3157	 * Ok, everything is just fine now
3158	 */
3159	rcu_assign_pointer(mddev->thread, conf->thread);
3160	rcu_assign_pointer(conf->thread, NULL);
3161	mddev->private = conf;
3162	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3163
3164	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3165
3166	ret = md_integrity_register(mddev);
3167	if (ret) {
3168		md_unregister_thread(mddev, &mddev->thread);
3169		goto abort;
3170	}
3171	return 0;
3172
3173abort:
3174	raid1_free(mddev, conf);
 
3175	return ret;
3176}
3177
3178static void raid1_free(struct mddev *mddev, void *priv)
3179{
3180	struct r1conf *conf = priv;
 
 
 
 
 
 
 
 
 
 
3181
3182	mempool_exit(&conf->r1bio_pool);
 
 
 
 
 
3183	kfree(conf->mirrors);
3184	safe_put_page(conf->tmppage);
3185	kfree(conf->poolinfo);
3186	kfree(conf->nr_pending);
3187	kfree(conf->nr_waiting);
3188	kfree(conf->nr_queued);
3189	kfree(conf->barrier);
3190	bioset_exit(&conf->bio_split);
3191	kfree(conf);
 
 
3192}
3193
3194static int raid1_resize(struct mddev *mddev, sector_t sectors)
3195{
3196	/* no resync is happening, and there is enough space
3197	 * on all devices, so we can resize.
3198	 * We need to make sure resync covers any new space.
3199	 * If the array is shrinking we should possibly wait until
3200	 * any io in the removed space completes, but it hardly seems
3201	 * worth it.
3202	 */
3203	sector_t newsize = raid1_size(mddev, sectors, 0);
3204	if (mddev->external_size &&
3205	    mddev->array_sectors > newsize)
3206		return -EINVAL;
3207	if (mddev->bitmap) {
3208		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3209		if (ret)
3210			return ret;
3211	}
3212	md_set_array_sectors(mddev, newsize);
 
 
3213	if (sectors > mddev->dev_sectors &&
3214	    mddev->recovery_cp > mddev->dev_sectors) {
3215		mddev->recovery_cp = mddev->dev_sectors;
3216		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3217	}
3218	mddev->dev_sectors = sectors;
3219	mddev->resync_max_sectors = sectors;
3220	return 0;
3221}
3222
3223static int raid1_reshape(struct mddev *mddev)
3224{
3225	/* We need to:
3226	 * 1/ resize the r1bio_pool
3227	 * 2/ resize conf->mirrors
3228	 *
3229	 * We allocate a new r1bio_pool if we can.
3230	 * Then raise a device barrier and wait until all IO stops.
3231	 * Then resize conf->mirrors and swap in the new r1bio pool.
3232	 *
3233	 * At the same time, we "pack" the devices so that all the missing
3234	 * devices have the higher raid_disk numbers.
3235	 */
3236	mempool_t newpool, oldpool;
3237	struct pool_info *newpoolinfo;
3238	struct raid1_info *newmirrors;
3239	struct r1conf *conf = mddev->private;
3240	int cnt, raid_disks;
3241	unsigned long flags;
3242	int d, d2;
3243	int ret;
3244
3245	memset(&newpool, 0, sizeof(newpool));
3246	memset(&oldpool, 0, sizeof(oldpool));
3247
3248	/* Cannot change chunk_size, layout, or level */
3249	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3250	    mddev->layout != mddev->new_layout ||
3251	    mddev->level != mddev->new_level) {
3252		mddev->new_chunk_sectors = mddev->chunk_sectors;
3253		mddev->new_layout = mddev->layout;
3254		mddev->new_level = mddev->level;
3255		return -EINVAL;
3256	}
3257
3258	if (!mddev_is_clustered(mddev))
3259		md_allow_write(mddev);
 
3260
3261	raid_disks = mddev->raid_disks + mddev->delta_disks;
3262
3263	if (raid_disks < conf->raid_disks) {
3264		cnt=0;
3265		for (d= 0; d < conf->raid_disks; d++)
3266			if (conf->mirrors[d].rdev)
3267				cnt++;
3268		if (cnt > raid_disks)
3269			return -EBUSY;
3270	}
3271
3272	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3273	if (!newpoolinfo)
3274		return -ENOMEM;
3275	newpoolinfo->mddev = mddev;
3276	newpoolinfo->raid_disks = raid_disks * 2;
3277
3278	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3279			   rbio_pool_free, newpoolinfo);
3280	if (ret) {
3281		kfree(newpoolinfo);
3282		return ret;
3283	}
3284	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3285					 raid_disks, 2),
3286			     GFP_KERNEL);
3287	if (!newmirrors) {
3288		kfree(newpoolinfo);
3289		mempool_exit(&newpool);
3290		return -ENOMEM;
3291	}
3292
3293	freeze_array(conf, 0);
3294
3295	/* ok, everything is stopped */
3296	oldpool = conf->r1bio_pool;
3297	conf->r1bio_pool = newpool;
3298
3299	for (d = d2 = 0; d < conf->raid_disks; d++) {
3300		struct md_rdev *rdev = conf->mirrors[d].rdev;
3301		if (rdev && rdev->raid_disk != d2) {
3302			sysfs_unlink_rdev(mddev, rdev);
3303			rdev->raid_disk = d2;
3304			sysfs_unlink_rdev(mddev, rdev);
3305			if (sysfs_link_rdev(mddev, rdev))
3306				pr_warn("md/raid1:%s: cannot register rd%d\n",
3307					mdname(mddev), rdev->raid_disk);
 
3308		}
3309		if (rdev)
3310			newmirrors[d2++].rdev = rdev;
3311	}
3312	kfree(conf->mirrors);
3313	conf->mirrors = newmirrors;
3314	kfree(conf->poolinfo);
3315	conf->poolinfo = newpoolinfo;
3316
3317	spin_lock_irqsave(&conf->device_lock, flags);
3318	mddev->degraded += (raid_disks - conf->raid_disks);
3319	spin_unlock_irqrestore(&conf->device_lock, flags);
3320	conf->raid_disks = mddev->raid_disks = raid_disks;
3321	mddev->delta_disks = 0;
3322
3323	unfreeze_array(conf);
 
3324
3325	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3326	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3327	md_wakeup_thread(mddev->thread);
3328
3329	mempool_exit(&oldpool);
3330	return 0;
3331}
3332
3333static void raid1_quiesce(struct mddev *mddev, int quiesce)
3334{
3335	struct r1conf *conf = mddev->private;
3336
3337	if (quiesce)
3338		freeze_array(conf, 0);
3339	else
3340		unfreeze_array(conf);
 
 
 
 
 
 
 
3341}
3342
3343static void *raid1_takeover(struct mddev *mddev)
3344{
3345	/* raid1 can take over:
3346	 *  raid5 with 2 devices, any layout or chunk size
3347	 */
3348	if (mddev->level == 5 && mddev->raid_disks == 2) {
3349		struct r1conf *conf;
3350		mddev->new_level = 1;
3351		mddev->new_layout = 0;
3352		mddev->new_chunk_sectors = 0;
3353		conf = setup_conf(mddev);
3354		if (!IS_ERR(conf)) {
3355			/* Array must appear to be quiesced */
3356			conf->array_frozen = 1;
3357			mddev_clear_unsupported_flags(mddev,
3358				UNSUPPORTED_MDDEV_FLAGS);
3359		}
3360		return conf;
3361	}
3362	return ERR_PTR(-EINVAL);
3363}
3364
3365static struct md_personality raid1_personality =
3366{
3367	.name		= "raid1",
3368	.level		= 1,
3369	.owner		= THIS_MODULE,
3370	.make_request	= raid1_make_request,
3371	.run		= raid1_run,
3372	.free		= raid1_free,
3373	.status		= raid1_status,
3374	.error_handler	= raid1_error,
3375	.hot_add_disk	= raid1_add_disk,
3376	.hot_remove_disk= raid1_remove_disk,
3377	.spare_active	= raid1_spare_active,
3378	.sync_request	= raid1_sync_request,
3379	.resize		= raid1_resize,
3380	.size		= raid1_size,
3381	.check_reshape	= raid1_reshape,
3382	.quiesce	= raid1_quiesce,
3383	.takeover	= raid1_takeover,
3384};
3385
3386static int __init raid_init(void)
3387{
3388	return register_md_personality(&raid1_personality);
3389}
3390
3391static void raid_exit(void)
3392{
3393	unregister_md_personality(&raid1_personality);
3394}
3395
3396module_init(raid_init);
3397module_exit(raid_exit);
3398MODULE_LICENSE("GPL");
3399MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3400MODULE_ALIAS("md-personality-3"); /* RAID1 */
3401MODULE_ALIAS("md-raid1");
3402MODULE_ALIAS("md-level-1");