Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20/*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24#include <linux/sched.h>
25#include <linux/mm.h>
26#include <linux/mmzone.h>
27#include <linux/screen_info.h>
28#include <linux/ioport.h>
29#include <linux/acpi.h>
30#include <linux/sfi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/module.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53
54#include <linux/errno.h>
55#include <linux/kernel.h>
56#include <linux/stddef.h>
57#include <linux/unistd.h>
58#include <linux/ptrace.h>
59#include <linux/user.h>
60#include <linux/delay.h>
61
62#include <linux/kallsyms.h>
63#include <linux/cpufreq.h>
64#include <linux/dma-mapping.h>
65#include <linux/ctype.h>
66#include <linux/uaccess.h>
67
68#include <linux/percpu.h>
69#include <linux/crash_dump.h>
70#include <linux/tboot.h>
71
72#include <video/edid.h>
73
74#include <asm/mtrr.h>
75#include <asm/apic.h>
76#include <asm/realmode.h>
77#include <asm/e820.h>
78#include <asm/mpspec.h>
79#include <asm/setup.h>
80#include <asm/efi.h>
81#include <asm/timer.h>
82#include <asm/i8259.h>
83#include <asm/sections.h>
84#include <asm/dmi.h>
85#include <asm/io_apic.h>
86#include <asm/ist.h>
87#include <asm/setup_arch.h>
88#include <asm/bios_ebda.h>
89#include <asm/cacheflush.h>
90#include <asm/processor.h>
91#include <asm/bugs.h>
92
93#include <asm/vsyscall.h>
94#include <asm/cpu.h>
95#include <asm/desc.h>
96#include <asm/dma.h>
97#include <asm/iommu.h>
98#include <asm/gart.h>
99#include <asm/mmu_context.h>
100#include <asm/proto.h>
101
102#include <asm/paravirt.h>
103#include <asm/hypervisor.h>
104#include <asm/olpc_ofw.h>
105
106#include <asm/percpu.h>
107#include <asm/topology.h>
108#include <asm/apicdef.h>
109#include <asm/amd_nb.h>
110#ifdef CONFIG_X86_64
111#include <asm/numa_64.h>
112#endif
113#include <asm/mce.h>
114#include <asm/alternative.h>
115#include <asm/prom.h>
116
117/*
118 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
119 * The direct mapping extends to max_pfn_mapped, so that we can directly access
120 * apertures, ACPI and other tables without having to play with fixmaps.
121 */
122unsigned long max_low_pfn_mapped;
123unsigned long max_pfn_mapped;
124
125#ifdef CONFIG_DMI
126RESERVE_BRK(dmi_alloc, 65536);
127#endif
128
129
130static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
131unsigned long _brk_end = (unsigned long)__brk_base;
132
133#ifdef CONFIG_X86_64
134int default_cpu_present_to_apicid(int mps_cpu)
135{
136 return __default_cpu_present_to_apicid(mps_cpu);
137}
138
139int default_check_phys_apicid_present(int phys_apicid)
140{
141 return __default_check_phys_apicid_present(phys_apicid);
142}
143#endif
144
145#ifndef CONFIG_DEBUG_BOOT_PARAMS
146struct boot_params __initdata boot_params;
147#else
148struct boot_params boot_params;
149#endif
150
151/*
152 * Machine setup..
153 */
154static struct resource data_resource = {
155 .name = "Kernel data",
156 .start = 0,
157 .end = 0,
158 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
159};
160
161static struct resource code_resource = {
162 .name = "Kernel code",
163 .start = 0,
164 .end = 0,
165 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
166};
167
168static struct resource bss_resource = {
169 .name = "Kernel bss",
170 .start = 0,
171 .end = 0,
172 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
173};
174
175
176#ifdef CONFIG_X86_32
177/* cpu data as detected by the assembly code in head.S */
178struct cpuinfo_x86 new_cpu_data __cpuinitdata = {0, 0, 0, 0, -1, 1, 0, 0, -1};
179/* common cpu data for all cpus */
180struct cpuinfo_x86 boot_cpu_data __read_mostly = {0, 0, 0, 0, -1, 1, 0, 0, -1};
181EXPORT_SYMBOL(boot_cpu_data);
182
183unsigned int def_to_bigsmp;
184
185/* for MCA, but anyone else can use it if they want */
186unsigned int machine_id;
187unsigned int machine_submodel_id;
188unsigned int BIOS_revision;
189
190struct apm_info apm_info;
191EXPORT_SYMBOL(apm_info);
192
193#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
194 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
195struct ist_info ist_info;
196EXPORT_SYMBOL(ist_info);
197#else
198struct ist_info ist_info;
199#endif
200
201#else
202struct cpuinfo_x86 boot_cpu_data __read_mostly = {
203 .x86_phys_bits = MAX_PHYSMEM_BITS,
204};
205EXPORT_SYMBOL(boot_cpu_data);
206#endif
207
208
209#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
210unsigned long mmu_cr4_features;
211#else
212unsigned long mmu_cr4_features = X86_CR4_PAE;
213#endif
214
215/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
216int bootloader_type, bootloader_version;
217
218/*
219 * Setup options
220 */
221struct screen_info screen_info;
222EXPORT_SYMBOL(screen_info);
223struct edid_info edid_info;
224EXPORT_SYMBOL_GPL(edid_info);
225
226extern int root_mountflags;
227
228unsigned long saved_video_mode;
229
230#define RAMDISK_IMAGE_START_MASK 0x07FF
231#define RAMDISK_PROMPT_FLAG 0x8000
232#define RAMDISK_LOAD_FLAG 0x4000
233
234static char __initdata command_line[COMMAND_LINE_SIZE];
235#ifdef CONFIG_CMDLINE_BOOL
236static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
237#endif
238
239#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
240struct edd edd;
241#ifdef CONFIG_EDD_MODULE
242EXPORT_SYMBOL(edd);
243#endif
244/**
245 * copy_edd() - Copy the BIOS EDD information
246 * from boot_params into a safe place.
247 *
248 */
249static inline void __init copy_edd(void)
250{
251 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
252 sizeof(edd.mbr_signature));
253 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
254 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
255 edd.edd_info_nr = boot_params.eddbuf_entries;
256}
257#else
258static inline void __init copy_edd(void)
259{
260}
261#endif
262
263void * __init extend_brk(size_t size, size_t align)
264{
265 size_t mask = align - 1;
266 void *ret;
267
268 BUG_ON(_brk_start == 0);
269 BUG_ON(align & mask);
270
271 _brk_end = (_brk_end + mask) & ~mask;
272 BUG_ON((char *)(_brk_end + size) > __brk_limit);
273
274 ret = (void *)_brk_end;
275 _brk_end += size;
276
277 memset(ret, 0, size);
278
279 return ret;
280}
281
282#ifdef CONFIG_X86_64
283static void __init init_gbpages(void)
284{
285 if (direct_gbpages && cpu_has_gbpages)
286 printk(KERN_INFO "Using GB pages for direct mapping\n");
287 else
288 direct_gbpages = 0;
289}
290#else
291static inline void init_gbpages(void)
292{
293}
294static void __init cleanup_highmap(void)
295{
296}
297#endif
298
299static void __init reserve_brk(void)
300{
301 if (_brk_end > _brk_start)
302 memblock_reserve(__pa(_brk_start),
303 __pa(_brk_end) - __pa(_brk_start));
304
305 /* Mark brk area as locked down and no longer taking any
306 new allocations */
307 _brk_start = 0;
308}
309
310#ifdef CONFIG_BLK_DEV_INITRD
311
312#define MAX_MAP_CHUNK (NR_FIX_BTMAPS << PAGE_SHIFT)
313static void __init relocate_initrd(void)
314{
315 /* Assume only end is not page aligned */
316 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
317 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
318 u64 area_size = PAGE_ALIGN(ramdisk_size);
319 u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
320 u64 ramdisk_here;
321 unsigned long slop, clen, mapaddr;
322 char *p, *q;
323
324 /* We need to move the initrd down into lowmem */
325 ramdisk_here = memblock_find_in_range(0, end_of_lowmem, area_size,
326 PAGE_SIZE);
327
328 if (!ramdisk_here)
329 panic("Cannot find place for new RAMDISK of size %lld\n",
330 ramdisk_size);
331
332 /* Note: this includes all the lowmem currently occupied by
333 the initrd, we rely on that fact to keep the data intact. */
334 memblock_reserve(ramdisk_here, area_size);
335 initrd_start = ramdisk_here + PAGE_OFFSET;
336 initrd_end = initrd_start + ramdisk_size;
337 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
338 ramdisk_here, ramdisk_here + ramdisk_size - 1);
339
340 q = (char *)initrd_start;
341
342 /* Copy any lowmem portion of the initrd */
343 if (ramdisk_image < end_of_lowmem) {
344 clen = end_of_lowmem - ramdisk_image;
345 p = (char *)__va(ramdisk_image);
346 memcpy(q, p, clen);
347 q += clen;
348 ramdisk_image += clen;
349 ramdisk_size -= clen;
350 }
351
352 /* Copy the highmem portion of the initrd */
353 while (ramdisk_size) {
354 slop = ramdisk_image & ~PAGE_MASK;
355 clen = ramdisk_size;
356 if (clen > MAX_MAP_CHUNK-slop)
357 clen = MAX_MAP_CHUNK-slop;
358 mapaddr = ramdisk_image & PAGE_MASK;
359 p = early_memremap(mapaddr, clen+slop);
360 memcpy(q, p+slop, clen);
361 early_iounmap(p, clen+slop);
362 q += clen;
363 ramdisk_image += clen;
364 ramdisk_size -= clen;
365 }
366 /* high pages is not converted by early_res_to_bootmem */
367 ramdisk_image = boot_params.hdr.ramdisk_image;
368 ramdisk_size = boot_params.hdr.ramdisk_size;
369 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
370 " [mem %#010llx-%#010llx]\n",
371 ramdisk_image, ramdisk_image + ramdisk_size - 1,
372 ramdisk_here, ramdisk_here + ramdisk_size - 1);
373}
374
375static void __init reserve_initrd(void)
376{
377 /* Assume only end is not page aligned */
378 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
379 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
380 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
381 u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
382
383 if (!boot_params.hdr.type_of_loader ||
384 !ramdisk_image || !ramdisk_size)
385 return; /* No initrd provided by bootloader */
386
387 initrd_start = 0;
388
389 if (ramdisk_size >= (end_of_lowmem>>1)) {
390 panic("initrd too large to handle, "
391 "disabling initrd (%lld needed, %lld available)\n",
392 ramdisk_size, end_of_lowmem>>1);
393 }
394
395 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
396 ramdisk_end - 1);
397
398
399 if (ramdisk_end <= end_of_lowmem) {
400 /* All in lowmem, easy case */
401 /*
402 * don't need to reserve again, already reserved early
403 * in i386_start_kernel
404 */
405 initrd_start = ramdisk_image + PAGE_OFFSET;
406 initrd_end = initrd_start + ramdisk_size;
407 return;
408 }
409
410 relocate_initrd();
411
412 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
413}
414#else
415static void __init reserve_initrd(void)
416{
417}
418#endif /* CONFIG_BLK_DEV_INITRD */
419
420static void __init parse_setup_data(void)
421{
422 struct setup_data *data;
423 u64 pa_data;
424
425 if (boot_params.hdr.version < 0x0209)
426 return;
427 pa_data = boot_params.hdr.setup_data;
428 while (pa_data) {
429 u32 data_len, map_len;
430
431 map_len = max(PAGE_SIZE - (pa_data & ~PAGE_MASK),
432 (u64)sizeof(struct setup_data));
433 data = early_memremap(pa_data, map_len);
434 data_len = data->len + sizeof(struct setup_data);
435 if (data_len > map_len) {
436 early_iounmap(data, map_len);
437 data = early_memremap(pa_data, data_len);
438 map_len = data_len;
439 }
440
441 switch (data->type) {
442 case SETUP_E820_EXT:
443 parse_e820_ext(data);
444 break;
445 case SETUP_DTB:
446 add_dtb(pa_data);
447 break;
448 default:
449 break;
450 }
451 pa_data = data->next;
452 early_iounmap(data, map_len);
453 }
454}
455
456static void __init e820_reserve_setup_data(void)
457{
458 struct setup_data *data;
459 u64 pa_data;
460 int found = 0;
461
462 if (boot_params.hdr.version < 0x0209)
463 return;
464 pa_data = boot_params.hdr.setup_data;
465 while (pa_data) {
466 data = early_memremap(pa_data, sizeof(*data));
467 e820_update_range(pa_data, sizeof(*data)+data->len,
468 E820_RAM, E820_RESERVED_KERN);
469 found = 1;
470 pa_data = data->next;
471 early_iounmap(data, sizeof(*data));
472 }
473 if (!found)
474 return;
475
476 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
477 memcpy(&e820_saved, &e820, sizeof(struct e820map));
478 printk(KERN_INFO "extended physical RAM map:\n");
479 e820_print_map("reserve setup_data");
480}
481
482static void __init memblock_x86_reserve_range_setup_data(void)
483{
484 struct setup_data *data;
485 u64 pa_data;
486
487 if (boot_params.hdr.version < 0x0209)
488 return;
489 pa_data = boot_params.hdr.setup_data;
490 while (pa_data) {
491 data = early_memremap(pa_data, sizeof(*data));
492 memblock_reserve(pa_data, sizeof(*data) + data->len);
493 pa_data = data->next;
494 early_iounmap(data, sizeof(*data));
495 }
496}
497
498/*
499 * --------- Crashkernel reservation ------------------------------
500 */
501
502#ifdef CONFIG_KEXEC
503
504/*
505 * Keep the crash kernel below this limit. On 32 bits earlier kernels
506 * would limit the kernel to the low 512 MiB due to mapping restrictions.
507 * On 64 bits, kexec-tools currently limits us to 896 MiB; increase this
508 * limit once kexec-tools are fixed.
509 */
510#ifdef CONFIG_X86_32
511# define CRASH_KERNEL_ADDR_MAX (512 << 20)
512#else
513# define CRASH_KERNEL_ADDR_MAX (896 << 20)
514#endif
515
516static void __init reserve_crashkernel(void)
517{
518 unsigned long long total_mem;
519 unsigned long long crash_size, crash_base;
520 int ret;
521
522 total_mem = memblock_phys_mem_size();
523
524 ret = parse_crashkernel(boot_command_line, total_mem,
525 &crash_size, &crash_base);
526 if (ret != 0 || crash_size <= 0)
527 return;
528
529 /* 0 means: find the address automatically */
530 if (crash_base <= 0) {
531 const unsigned long long alignment = 16<<20; /* 16M */
532
533 /*
534 * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
535 */
536 crash_base = memblock_find_in_range(alignment,
537 CRASH_KERNEL_ADDR_MAX, crash_size, alignment);
538
539 if (!crash_base) {
540 pr_info("crashkernel reservation failed - No suitable area found.\n");
541 return;
542 }
543 } else {
544 unsigned long long start;
545
546 start = memblock_find_in_range(crash_base,
547 crash_base + crash_size, crash_size, 1<<20);
548 if (start != crash_base) {
549 pr_info("crashkernel reservation failed - memory is in use.\n");
550 return;
551 }
552 }
553 memblock_reserve(crash_base, crash_size);
554
555 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
556 "for crashkernel (System RAM: %ldMB)\n",
557 (unsigned long)(crash_size >> 20),
558 (unsigned long)(crash_base >> 20),
559 (unsigned long)(total_mem >> 20));
560
561 crashk_res.start = crash_base;
562 crashk_res.end = crash_base + crash_size - 1;
563 insert_resource(&iomem_resource, &crashk_res);
564}
565#else
566static void __init reserve_crashkernel(void)
567{
568}
569#endif
570
571static struct resource standard_io_resources[] = {
572 { .name = "dma1", .start = 0x00, .end = 0x1f,
573 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
574 { .name = "pic1", .start = 0x20, .end = 0x21,
575 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
576 { .name = "timer0", .start = 0x40, .end = 0x43,
577 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
578 { .name = "timer1", .start = 0x50, .end = 0x53,
579 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
580 { .name = "keyboard", .start = 0x60, .end = 0x60,
581 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
582 { .name = "keyboard", .start = 0x64, .end = 0x64,
583 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
584 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
585 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
586 { .name = "pic2", .start = 0xa0, .end = 0xa1,
587 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
588 { .name = "dma2", .start = 0xc0, .end = 0xdf,
589 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
590 { .name = "fpu", .start = 0xf0, .end = 0xff,
591 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
592};
593
594void __init reserve_standard_io_resources(void)
595{
596 int i;
597
598 /* request I/O space for devices used on all i[345]86 PCs */
599 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
600 request_resource(&ioport_resource, &standard_io_resources[i]);
601
602}
603
604static __init void reserve_ibft_region(void)
605{
606 unsigned long addr, size = 0;
607
608 addr = find_ibft_region(&size);
609
610 if (size)
611 memblock_reserve(addr, size);
612}
613
614static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
615
616static void __init trim_bios_range(void)
617{
618 /*
619 * A special case is the first 4Kb of memory;
620 * This is a BIOS owned area, not kernel ram, but generally
621 * not listed as such in the E820 table.
622 *
623 * This typically reserves additional memory (64KiB by default)
624 * since some BIOSes are known to corrupt low memory. See the
625 * Kconfig help text for X86_RESERVE_LOW.
626 */
627 e820_update_range(0, ALIGN(reserve_low, PAGE_SIZE),
628 E820_RAM, E820_RESERVED);
629
630 /*
631 * special case: Some BIOSen report the PC BIOS
632 * area (640->1Mb) as ram even though it is not.
633 * take them out.
634 */
635 e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
636 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
637}
638
639static int __init parse_reservelow(char *p)
640{
641 unsigned long long size;
642
643 if (!p)
644 return -EINVAL;
645
646 size = memparse(p, &p);
647
648 if (size < 4096)
649 size = 4096;
650
651 if (size > 640*1024)
652 size = 640*1024;
653
654 reserve_low = size;
655
656 return 0;
657}
658
659early_param("reservelow", parse_reservelow);
660
661/*
662 * Determine if we were loaded by an EFI loader. If so, then we have also been
663 * passed the efi memmap, systab, etc., so we should use these data structures
664 * for initialization. Note, the efi init code path is determined by the
665 * global efi_enabled. This allows the same kernel image to be used on existing
666 * systems (with a traditional BIOS) as well as on EFI systems.
667 */
668/*
669 * setup_arch - architecture-specific boot-time initializations
670 *
671 * Note: On x86_64, fixmaps are ready for use even before this is called.
672 */
673
674void __init setup_arch(char **cmdline_p)
675{
676#ifdef CONFIG_X86_32
677 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
678 visws_early_detect();
679
680 /*
681 * copy kernel address range established so far and switch
682 * to the proper swapper page table
683 */
684 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
685 initial_page_table + KERNEL_PGD_BOUNDARY,
686 KERNEL_PGD_PTRS);
687
688 load_cr3(swapper_pg_dir);
689 __flush_tlb_all();
690#else
691 printk(KERN_INFO "Command line: %s\n", boot_command_line);
692#endif
693
694 /*
695 * If we have OLPC OFW, we might end up relocating the fixmap due to
696 * reserve_top(), so do this before touching the ioremap area.
697 */
698 olpc_ofw_detect();
699
700 early_trap_init();
701 early_cpu_init();
702 early_ioremap_init();
703
704 setup_olpc_ofw_pgd();
705
706 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
707 screen_info = boot_params.screen_info;
708 edid_info = boot_params.edid_info;
709#ifdef CONFIG_X86_32
710 apm_info.bios = boot_params.apm_bios_info;
711 ist_info = boot_params.ist_info;
712 if (boot_params.sys_desc_table.length != 0) {
713 machine_id = boot_params.sys_desc_table.table[0];
714 machine_submodel_id = boot_params.sys_desc_table.table[1];
715 BIOS_revision = boot_params.sys_desc_table.table[2];
716 }
717#endif
718 saved_video_mode = boot_params.hdr.vid_mode;
719 bootloader_type = boot_params.hdr.type_of_loader;
720 if ((bootloader_type >> 4) == 0xe) {
721 bootloader_type &= 0xf;
722 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
723 }
724 bootloader_version = bootloader_type & 0xf;
725 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
726
727#ifdef CONFIG_BLK_DEV_RAM
728 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
729 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
730 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
731#endif
732#ifdef CONFIG_EFI
733 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
734 "EL32", 4)) {
735 efi_enabled = 1;
736 efi_64bit = false;
737 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
738 "EL64", 4)) {
739 efi_enabled = 1;
740 efi_64bit = true;
741 }
742 if (efi_enabled && efi_memblock_x86_reserve_range())
743 efi_enabled = 0;
744#endif
745
746 x86_init.oem.arch_setup();
747
748 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
749 setup_memory_map();
750 parse_setup_data();
751 /* update the e820_saved too */
752 e820_reserve_setup_data();
753
754 copy_edd();
755
756 if (!boot_params.hdr.root_flags)
757 root_mountflags &= ~MS_RDONLY;
758 init_mm.start_code = (unsigned long) _text;
759 init_mm.end_code = (unsigned long) _etext;
760 init_mm.end_data = (unsigned long) _edata;
761 init_mm.brk = _brk_end;
762
763 code_resource.start = virt_to_phys(_text);
764 code_resource.end = virt_to_phys(_etext)-1;
765 data_resource.start = virt_to_phys(_etext);
766 data_resource.end = virt_to_phys(_edata)-1;
767 bss_resource.start = virt_to_phys(&__bss_start);
768 bss_resource.end = virt_to_phys(&__bss_stop)-1;
769
770#ifdef CONFIG_CMDLINE_BOOL
771#ifdef CONFIG_CMDLINE_OVERRIDE
772 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
773#else
774 if (builtin_cmdline[0]) {
775 /* append boot loader cmdline to builtin */
776 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
777 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
778 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
779 }
780#endif
781#endif
782
783 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
784 *cmdline_p = command_line;
785
786 /*
787 * x86_configure_nx() is called before parse_early_param() to detect
788 * whether hardware doesn't support NX (so that the early EHCI debug
789 * console setup can safely call set_fixmap()). It may then be called
790 * again from within noexec_setup() during parsing early parameters
791 * to honor the respective command line option.
792 */
793 x86_configure_nx();
794
795 parse_early_param();
796
797 x86_report_nx();
798
799 /* after early param, so could get panic from serial */
800 memblock_x86_reserve_range_setup_data();
801
802 if (acpi_mps_check()) {
803#ifdef CONFIG_X86_LOCAL_APIC
804 disable_apic = 1;
805#endif
806 setup_clear_cpu_cap(X86_FEATURE_APIC);
807 }
808
809#ifdef CONFIG_PCI
810 if (pci_early_dump_regs)
811 early_dump_pci_devices();
812#endif
813
814 finish_e820_parsing();
815
816 if (efi_enabled)
817 efi_init();
818
819 dmi_scan_machine();
820
821 /*
822 * VMware detection requires dmi to be available, so this
823 * needs to be done after dmi_scan_machine, for the BP.
824 */
825 init_hypervisor_platform();
826
827 x86_init.resources.probe_roms();
828
829 /* after parse_early_param, so could debug it */
830 insert_resource(&iomem_resource, &code_resource);
831 insert_resource(&iomem_resource, &data_resource);
832 insert_resource(&iomem_resource, &bss_resource);
833
834 trim_bios_range();
835#ifdef CONFIG_X86_32
836 if (ppro_with_ram_bug()) {
837 e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
838 E820_RESERVED);
839 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
840 printk(KERN_INFO "fixed physical RAM map:\n");
841 e820_print_map("bad_ppro");
842 }
843#else
844 early_gart_iommu_check();
845#endif
846
847 /*
848 * partially used pages are not usable - thus
849 * we are rounding upwards:
850 */
851 max_pfn = e820_end_of_ram_pfn();
852
853 /* update e820 for memory not covered by WB MTRRs */
854 mtrr_bp_init();
855 if (mtrr_trim_uncached_memory(max_pfn))
856 max_pfn = e820_end_of_ram_pfn();
857
858#ifdef CONFIG_X86_32
859 /* max_low_pfn get updated here */
860 find_low_pfn_range();
861#else
862 num_physpages = max_pfn;
863
864 check_x2apic();
865
866 /* How many end-of-memory variables you have, grandma! */
867 /* need this before calling reserve_initrd */
868 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
869 max_low_pfn = e820_end_of_low_ram_pfn();
870 else
871 max_low_pfn = max_pfn;
872
873 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
874#endif
875
876 /*
877 * Find and reserve possible boot-time SMP configuration:
878 */
879 find_smp_config();
880
881 reserve_ibft_region();
882
883 /*
884 * Need to conclude brk, before memblock_x86_fill()
885 * it could use memblock_find_in_range, could overlap with
886 * brk area.
887 */
888 reserve_brk();
889
890 cleanup_highmap();
891
892 memblock.current_limit = get_max_mapped();
893 memblock_x86_fill();
894
895 /*
896 * The EFI specification says that boot service code won't be called
897 * after ExitBootServices(). This is, in fact, a lie.
898 */
899 if (efi_enabled)
900 efi_reserve_boot_services();
901
902 /* preallocate 4k for mptable mpc */
903 early_reserve_e820_mpc_new();
904
905#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
906 setup_bios_corruption_check();
907#endif
908
909 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
910 (max_pfn_mapped<<PAGE_SHIFT) - 1);
911
912 setup_real_mode();
913
914 init_gbpages();
915
916 /* max_pfn_mapped is updated here */
917 max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT);
918 max_pfn_mapped = max_low_pfn_mapped;
919
920#ifdef CONFIG_X86_64
921 if (max_pfn > max_low_pfn) {
922 max_pfn_mapped = init_memory_mapping(1UL<<32,
923 max_pfn<<PAGE_SHIFT);
924 /* can we preseve max_low_pfn ?*/
925 max_low_pfn = max_pfn;
926 }
927#endif
928 memblock.current_limit = get_max_mapped();
929 dma_contiguous_reserve(0);
930
931 /*
932 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
933 */
934
935#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
936 if (init_ohci1394_dma_early)
937 init_ohci1394_dma_on_all_controllers();
938#endif
939 /* Allocate bigger log buffer */
940 setup_log_buf(1);
941
942 reserve_initrd();
943
944 reserve_crashkernel();
945
946 vsmp_init();
947
948 io_delay_init();
949
950 /*
951 * Parse the ACPI tables for possible boot-time SMP configuration.
952 */
953 acpi_boot_table_init();
954
955 early_acpi_boot_init();
956
957 initmem_init();
958 memblock_find_dma_reserve();
959
960#ifdef CONFIG_KVM_CLOCK
961 kvmclock_init();
962#endif
963
964 x86_init.paging.pagetable_setup_start(swapper_pg_dir);
965 paging_init();
966 x86_init.paging.pagetable_setup_done(swapper_pg_dir);
967
968 if (boot_cpu_data.cpuid_level >= 0) {
969 /* A CPU has %cr4 if and only if it has CPUID */
970 mmu_cr4_features = read_cr4();
971 if (trampoline_cr4_features)
972 *trampoline_cr4_features = mmu_cr4_features;
973 }
974
975#ifdef CONFIG_X86_32
976 /* sync back kernel address range */
977 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
978 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
979 KERNEL_PGD_PTRS);
980#endif
981
982 tboot_probe();
983
984#ifdef CONFIG_X86_64
985 map_vsyscall();
986#endif
987
988 generic_apic_probe();
989
990 early_quirks();
991
992 /*
993 * Read APIC and some other early information from ACPI tables.
994 */
995 acpi_boot_init();
996 sfi_init();
997 x86_dtb_init();
998
999 /*
1000 * get boot-time SMP configuration:
1001 */
1002 if (smp_found_config)
1003 get_smp_config();
1004
1005 prefill_possible_map();
1006
1007 init_cpu_to_node();
1008
1009 init_apic_mappings();
1010 if (x86_io_apic_ops.init)
1011 x86_io_apic_ops.init();
1012
1013 kvm_guest_init();
1014
1015 e820_reserve_resources();
1016 e820_mark_nosave_regions(max_low_pfn);
1017
1018 x86_init.resources.reserve_resources();
1019
1020 e820_setup_gap();
1021
1022#ifdef CONFIG_VT
1023#if defined(CONFIG_VGA_CONSOLE)
1024 if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1025 conswitchp = &vga_con;
1026#elif defined(CONFIG_DUMMY_CONSOLE)
1027 conswitchp = &dummy_con;
1028#endif
1029#endif
1030 x86_init.oem.banner();
1031
1032 x86_init.timers.wallclock_init();
1033
1034 x86_platform.wallclock_init();
1035
1036 mcheck_init();
1037
1038 arch_init_ideal_nops();
1039}
1040
1041#ifdef CONFIG_X86_32
1042
1043static struct resource video_ram_resource = {
1044 .name = "Video RAM area",
1045 .start = 0xa0000,
1046 .end = 0xbffff,
1047 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1048};
1049
1050void __init i386_reserve_resources(void)
1051{
1052 request_resource(&iomem_resource, &video_ram_resource);
1053 reserve_standard_io_resources();
1054}
1055
1056#endif /* CONFIG_X86_32 */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/acpi.h>
9#include <linux/console.h>
10#include <linux/crash_dump.h>
11#include <linux/dma-map-ops.h>
12#include <linux/dmi.h>
13#include <linux/efi.h>
14#include <linux/ima.h>
15#include <linux/init_ohci1394_dma.h>
16#include <linux/initrd.h>
17#include <linux/iscsi_ibft.h>
18#include <linux/memblock.h>
19#include <linux/panic_notifier.h>
20#include <linux/pci.h>
21#include <linux/root_dev.h>
22#include <linux/hugetlb.h>
23#include <linux/tboot.h>
24#include <linux/usb/xhci-dbgp.h>
25#include <linux/static_call.h>
26#include <linux/swiotlb.h>
27#include <linux/random.h>
28
29#include <uapi/linux/mount.h>
30
31#include <xen/xen.h>
32
33#include <asm/apic.h>
34#include <asm/efi.h>
35#include <asm/numa.h>
36#include <asm/bios_ebda.h>
37#include <asm/bugs.h>
38#include <asm/cacheinfo.h>
39#include <asm/cpu.h>
40#include <asm/efi.h>
41#include <asm/gart.h>
42#include <asm/hypervisor.h>
43#include <asm/io_apic.h>
44#include <asm/kasan.h>
45#include <asm/kaslr.h>
46#include <asm/mce.h>
47#include <asm/memtype.h>
48#include <asm/mtrr.h>
49#include <asm/realmode.h>
50#include <asm/olpc_ofw.h>
51#include <asm/pci-direct.h>
52#include <asm/prom.h>
53#include <asm/proto.h>
54#include <asm/thermal.h>
55#include <asm/unwind.h>
56#include <asm/vsyscall.h>
57#include <linux/vmalloc.h>
58
59/*
60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
61 * max_pfn_mapped: highest directly mapped pfn > 4 GB
62 *
63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
64 * represented by pfn_mapped[].
65 */
66unsigned long max_low_pfn_mapped;
67unsigned long max_pfn_mapped;
68
69#ifdef CONFIG_DMI
70RESERVE_BRK(dmi_alloc, 65536);
71#endif
72
73
74unsigned long _brk_start = (unsigned long)__brk_base;
75unsigned long _brk_end = (unsigned long)__brk_base;
76
77struct boot_params boot_params;
78
79/*
80 * These are the four main kernel memory regions, we put them into
81 * the resource tree so that kdump tools and other debugging tools
82 * recover it:
83 */
84
85static struct resource rodata_resource = {
86 .name = "Kernel rodata",
87 .start = 0,
88 .end = 0,
89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90};
91
92static struct resource data_resource = {
93 .name = "Kernel data",
94 .start = 0,
95 .end = 0,
96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97};
98
99static struct resource code_resource = {
100 .name = "Kernel code",
101 .start = 0,
102 .end = 0,
103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104};
105
106static struct resource bss_resource = {
107 .name = "Kernel bss",
108 .start = 0,
109 .end = 0,
110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
111};
112
113
114#ifdef CONFIG_X86_32
115/* CPU data as detected by the assembly code in head_32.S */
116struct cpuinfo_x86 new_cpu_data;
117
118struct apm_info apm_info;
119EXPORT_SYMBOL(apm_info);
120
121#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
122 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
123struct ist_info ist_info;
124EXPORT_SYMBOL(ist_info);
125#else
126struct ist_info ist_info;
127#endif
128
129#endif
130
131struct cpuinfo_x86 boot_cpu_data __read_mostly;
132EXPORT_SYMBOL(boot_cpu_data);
133
134#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
135__visible unsigned long mmu_cr4_features __ro_after_init;
136#else
137__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
138#endif
139
140#ifdef CONFIG_IMA
141static phys_addr_t ima_kexec_buffer_phys;
142static size_t ima_kexec_buffer_size;
143#endif
144
145/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
146int bootloader_type, bootloader_version;
147
148/*
149 * Setup options
150 */
151struct screen_info screen_info;
152EXPORT_SYMBOL(screen_info);
153struct edid_info edid_info;
154EXPORT_SYMBOL_GPL(edid_info);
155
156extern int root_mountflags;
157
158unsigned long saved_video_mode;
159
160#define RAMDISK_IMAGE_START_MASK 0x07FF
161#define RAMDISK_PROMPT_FLAG 0x8000
162#define RAMDISK_LOAD_FLAG 0x4000
163
164static char __initdata command_line[COMMAND_LINE_SIZE];
165#ifdef CONFIG_CMDLINE_BOOL
166static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
167#endif
168
169#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
170struct edd edd;
171#ifdef CONFIG_EDD_MODULE
172EXPORT_SYMBOL(edd);
173#endif
174/**
175 * copy_edd() - Copy the BIOS EDD information
176 * from boot_params into a safe place.
177 *
178 */
179static inline void __init copy_edd(void)
180{
181 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
182 sizeof(edd.mbr_signature));
183 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
184 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
185 edd.edd_info_nr = boot_params.eddbuf_entries;
186}
187#else
188static inline void __init copy_edd(void)
189{
190}
191#endif
192
193void * __init extend_brk(size_t size, size_t align)
194{
195 size_t mask = align - 1;
196 void *ret;
197
198 BUG_ON(_brk_start == 0);
199 BUG_ON(align & mask);
200
201 _brk_end = (_brk_end + mask) & ~mask;
202 BUG_ON((char *)(_brk_end + size) > __brk_limit);
203
204 ret = (void *)_brk_end;
205 _brk_end += size;
206
207 memset(ret, 0, size);
208
209 return ret;
210}
211
212#ifdef CONFIG_X86_32
213static void __init cleanup_highmap(void)
214{
215}
216#endif
217
218static void __init reserve_brk(void)
219{
220 if (_brk_end > _brk_start)
221 memblock_reserve(__pa_symbol(_brk_start),
222 _brk_end - _brk_start);
223
224 /* Mark brk area as locked down and no longer taking any
225 new allocations */
226 _brk_start = 0;
227}
228
229#ifdef CONFIG_BLK_DEV_INITRD
230
231static u64 __init get_ramdisk_image(void)
232{
233 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
234
235 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
236
237 if (ramdisk_image == 0)
238 ramdisk_image = phys_initrd_start;
239
240 return ramdisk_image;
241}
242static u64 __init get_ramdisk_size(void)
243{
244 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
245
246 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
247
248 if (ramdisk_size == 0)
249 ramdisk_size = phys_initrd_size;
250
251 return ramdisk_size;
252}
253
254static void __init relocate_initrd(void)
255{
256 /* Assume only end is not page aligned */
257 u64 ramdisk_image = get_ramdisk_image();
258 u64 ramdisk_size = get_ramdisk_size();
259 u64 area_size = PAGE_ALIGN(ramdisk_size);
260
261 /* We need to move the initrd down into directly mapped mem */
262 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
263 PFN_PHYS(max_pfn_mapped));
264 if (!relocated_ramdisk)
265 panic("Cannot find place for new RAMDISK of size %lld\n",
266 ramdisk_size);
267
268 initrd_start = relocated_ramdisk + PAGE_OFFSET;
269 initrd_end = initrd_start + ramdisk_size;
270 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
271 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
272
273 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
274
275 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
276 " [mem %#010llx-%#010llx]\n",
277 ramdisk_image, ramdisk_image + ramdisk_size - 1,
278 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
279}
280
281static void __init early_reserve_initrd(void)
282{
283 /* Assume only end is not page aligned */
284 u64 ramdisk_image = get_ramdisk_image();
285 u64 ramdisk_size = get_ramdisk_size();
286 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
287
288 if (!boot_params.hdr.type_of_loader ||
289 !ramdisk_image || !ramdisk_size)
290 return; /* No initrd provided by bootloader */
291
292 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
293}
294
295static void __init reserve_initrd(void)
296{
297 /* Assume only end is not page aligned */
298 u64 ramdisk_image = get_ramdisk_image();
299 u64 ramdisk_size = get_ramdisk_size();
300 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
301
302 if (!boot_params.hdr.type_of_loader ||
303 !ramdisk_image || !ramdisk_size)
304 return; /* No initrd provided by bootloader */
305
306 initrd_start = 0;
307
308 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
309 ramdisk_end - 1);
310
311 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
312 PFN_DOWN(ramdisk_end))) {
313 /* All are mapped, easy case */
314 initrd_start = ramdisk_image + PAGE_OFFSET;
315 initrd_end = initrd_start + ramdisk_size;
316 return;
317 }
318
319 relocate_initrd();
320
321 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
322}
323
324#else
325static void __init early_reserve_initrd(void)
326{
327}
328static void __init reserve_initrd(void)
329{
330}
331#endif /* CONFIG_BLK_DEV_INITRD */
332
333static void __init add_early_ima_buffer(u64 phys_addr)
334{
335#ifdef CONFIG_IMA
336 struct ima_setup_data *data;
337
338 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
339 if (!data) {
340 pr_warn("setup: failed to memremap ima_setup_data entry\n");
341 return;
342 }
343
344 if (data->size) {
345 memblock_reserve(data->addr, data->size);
346 ima_kexec_buffer_phys = data->addr;
347 ima_kexec_buffer_size = data->size;
348 }
349
350 early_memunmap(data, sizeof(*data));
351#else
352 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
353#endif
354}
355
356#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
357int __init ima_free_kexec_buffer(void)
358{
359 if (!ima_kexec_buffer_size)
360 return -ENOENT;
361
362 memblock_free_late(ima_kexec_buffer_phys,
363 ima_kexec_buffer_size);
364
365 ima_kexec_buffer_phys = 0;
366 ima_kexec_buffer_size = 0;
367
368 return 0;
369}
370
371int __init ima_get_kexec_buffer(void **addr, size_t *size)
372{
373 if (!ima_kexec_buffer_size)
374 return -ENOENT;
375
376 *addr = __va(ima_kexec_buffer_phys);
377 *size = ima_kexec_buffer_size;
378
379 return 0;
380}
381#endif
382
383static void __init parse_setup_data(void)
384{
385 struct setup_data *data;
386 u64 pa_data, pa_next;
387
388 pa_data = boot_params.hdr.setup_data;
389 while (pa_data) {
390 u32 data_len, data_type;
391
392 data = early_memremap(pa_data, sizeof(*data));
393 data_len = data->len + sizeof(struct setup_data);
394 data_type = data->type;
395 pa_next = data->next;
396 early_memunmap(data, sizeof(*data));
397
398 switch (data_type) {
399 case SETUP_E820_EXT:
400 e820__memory_setup_extended(pa_data, data_len);
401 break;
402 case SETUP_DTB:
403 add_dtb(pa_data);
404 break;
405 case SETUP_EFI:
406 parse_efi_setup(pa_data, data_len);
407 break;
408 case SETUP_IMA:
409 add_early_ima_buffer(pa_data);
410 break;
411 case SETUP_RNG_SEED:
412 data = early_memremap(pa_data, data_len);
413 add_bootloader_randomness(data->data, data->len);
414 /* Zero seed for forward secrecy. */
415 memzero_explicit(data->data, data->len);
416 /* Zero length in case we find ourselves back here by accident. */
417 memzero_explicit(&data->len, sizeof(data->len));
418 early_memunmap(data, data_len);
419 break;
420 default:
421 break;
422 }
423 pa_data = pa_next;
424 }
425}
426
427static void __init memblock_x86_reserve_range_setup_data(void)
428{
429 struct setup_indirect *indirect;
430 struct setup_data *data;
431 u64 pa_data, pa_next;
432 u32 len;
433
434 pa_data = boot_params.hdr.setup_data;
435 while (pa_data) {
436 data = early_memremap(pa_data, sizeof(*data));
437 if (!data) {
438 pr_warn("setup: failed to memremap setup_data entry\n");
439 return;
440 }
441
442 len = sizeof(*data);
443 pa_next = data->next;
444
445 memblock_reserve(pa_data, sizeof(*data) + data->len);
446
447 if (data->type == SETUP_INDIRECT) {
448 len += data->len;
449 early_memunmap(data, sizeof(*data));
450 data = early_memremap(pa_data, len);
451 if (!data) {
452 pr_warn("setup: failed to memremap indirect setup_data\n");
453 return;
454 }
455
456 indirect = (struct setup_indirect *)data->data;
457
458 if (indirect->type != SETUP_INDIRECT)
459 memblock_reserve(indirect->addr, indirect->len);
460 }
461
462 pa_data = pa_next;
463 early_memunmap(data, len);
464 }
465}
466
467static void __init arch_reserve_crashkernel(void)
468{
469 unsigned long long crash_base, crash_size, low_size = 0;
470 char *cmdline = boot_command_line;
471 bool high = false;
472 int ret;
473
474 if (!IS_ENABLED(CONFIG_KEXEC_CORE))
475 return;
476
477 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
478 &crash_size, &crash_base,
479 &low_size, &high);
480 if (ret)
481 return;
482
483 if (xen_pv_domain()) {
484 pr_info("Ignoring crashkernel for a Xen PV domain\n");
485 return;
486 }
487
488 reserve_crashkernel_generic(cmdline, crash_size, crash_base,
489 low_size, high);
490}
491
492static struct resource standard_io_resources[] = {
493 { .name = "dma1", .start = 0x00, .end = 0x1f,
494 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
495 { .name = "pic1", .start = 0x20, .end = 0x21,
496 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
497 { .name = "timer0", .start = 0x40, .end = 0x43,
498 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
499 { .name = "timer1", .start = 0x50, .end = 0x53,
500 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
501 { .name = "keyboard", .start = 0x60, .end = 0x60,
502 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
503 { .name = "keyboard", .start = 0x64, .end = 0x64,
504 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
505 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
506 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
507 { .name = "pic2", .start = 0xa0, .end = 0xa1,
508 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
509 { .name = "dma2", .start = 0xc0, .end = 0xdf,
510 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
511 { .name = "fpu", .start = 0xf0, .end = 0xff,
512 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
513};
514
515void __init reserve_standard_io_resources(void)
516{
517 int i;
518
519 /* request I/O space for devices used on all i[345]86 PCs */
520 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
521 request_resource(&ioport_resource, &standard_io_resources[i]);
522
523}
524
525static bool __init snb_gfx_workaround_needed(void)
526{
527#ifdef CONFIG_PCI
528 int i;
529 u16 vendor, devid;
530 static const __initconst u16 snb_ids[] = {
531 0x0102,
532 0x0112,
533 0x0122,
534 0x0106,
535 0x0116,
536 0x0126,
537 0x010a,
538 };
539
540 /* Assume no if something weird is going on with PCI */
541 if (!early_pci_allowed())
542 return false;
543
544 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
545 if (vendor != 0x8086)
546 return false;
547
548 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
549 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
550 if (devid == snb_ids[i])
551 return true;
552#endif
553
554 return false;
555}
556
557/*
558 * Sandy Bridge graphics has trouble with certain ranges, exclude
559 * them from allocation.
560 */
561static void __init trim_snb_memory(void)
562{
563 static const __initconst unsigned long bad_pages[] = {
564 0x20050000,
565 0x20110000,
566 0x20130000,
567 0x20138000,
568 0x40004000,
569 };
570 int i;
571
572 if (!snb_gfx_workaround_needed())
573 return;
574
575 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
576
577 /*
578 * SandyBridge integrated graphics devices have a bug that prevents
579 * them from accessing certain memory ranges, namely anything below
580 * 1M and in the pages listed in bad_pages[] above.
581 *
582 * To avoid these pages being ever accessed by SNB gfx devices reserve
583 * bad_pages that have not already been reserved at boot time.
584 * All memory below the 1 MB mark is anyway reserved later during
585 * setup_arch(), so there is no need to reserve it here.
586 */
587
588 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
589 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
590 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
591 bad_pages[i]);
592 }
593}
594
595static void __init trim_bios_range(void)
596{
597 /*
598 * A special case is the first 4Kb of memory;
599 * This is a BIOS owned area, not kernel ram, but generally
600 * not listed as such in the E820 table.
601 *
602 * This typically reserves additional memory (64KiB by default)
603 * since some BIOSes are known to corrupt low memory. See the
604 * Kconfig help text for X86_RESERVE_LOW.
605 */
606 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
607
608 /*
609 * special case: Some BIOSes report the PC BIOS
610 * area (640Kb -> 1Mb) as RAM even though it is not.
611 * take them out.
612 */
613 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
614
615 e820__update_table(e820_table);
616}
617
618/* called before trim_bios_range() to spare extra sanitize */
619static void __init e820_add_kernel_range(void)
620{
621 u64 start = __pa_symbol(_text);
622 u64 size = __pa_symbol(_end) - start;
623
624 /*
625 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
626 * attempt to fix it by adding the range. We may have a confused BIOS,
627 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
628 * exclude kernel range. If we really are running on top non-RAM,
629 * we will crash later anyways.
630 */
631 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
632 return;
633
634 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
635 e820__range_remove(start, size, E820_TYPE_RAM, 0);
636 e820__range_add(start, size, E820_TYPE_RAM);
637}
638
639static void __init early_reserve_memory(void)
640{
641 /*
642 * Reserve the memory occupied by the kernel between _text and
643 * __end_of_kernel_reserve symbols. Any kernel sections after the
644 * __end_of_kernel_reserve symbol must be explicitly reserved with a
645 * separate memblock_reserve() or they will be discarded.
646 */
647 memblock_reserve(__pa_symbol(_text),
648 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
649
650 /*
651 * The first 4Kb of memory is a BIOS owned area, but generally it is
652 * not listed as such in the E820 table.
653 *
654 * Reserve the first 64K of memory since some BIOSes are known to
655 * corrupt low memory. After the real mode trampoline is allocated the
656 * rest of the memory below 640k is reserved.
657 *
658 * In addition, make sure page 0 is always reserved because on
659 * systems with L1TF its contents can be leaked to user processes.
660 */
661 memblock_reserve(0, SZ_64K);
662
663 early_reserve_initrd();
664
665 memblock_x86_reserve_range_setup_data();
666
667 reserve_bios_regions();
668 trim_snb_memory();
669}
670
671/*
672 * Dump out kernel offset information on panic.
673 */
674static int
675dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
676{
677 if (kaslr_enabled()) {
678 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
679 kaslr_offset(),
680 __START_KERNEL,
681 __START_KERNEL_map,
682 MODULES_VADDR-1);
683 } else {
684 pr_emerg("Kernel Offset: disabled\n");
685 }
686
687 return 0;
688}
689
690void x86_configure_nx(void)
691{
692 if (boot_cpu_has(X86_FEATURE_NX))
693 __supported_pte_mask |= _PAGE_NX;
694 else
695 __supported_pte_mask &= ~_PAGE_NX;
696}
697
698static void __init x86_report_nx(void)
699{
700 if (!boot_cpu_has(X86_FEATURE_NX)) {
701 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
702 "missing in CPU!\n");
703 } else {
704#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
705 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
706#else
707 /* 32bit non-PAE kernel, NX cannot be used */
708 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
709 "cannot be enabled: non-PAE kernel!\n");
710#endif
711 }
712}
713
714/*
715 * Determine if we were loaded by an EFI loader. If so, then we have also been
716 * passed the efi memmap, systab, etc., so we should use these data structures
717 * for initialization. Note, the efi init code path is determined by the
718 * global efi_enabled. This allows the same kernel image to be used on existing
719 * systems (with a traditional BIOS) as well as on EFI systems.
720 */
721/*
722 * setup_arch - architecture-specific boot-time initializations
723 *
724 * Note: On x86_64, fixmaps are ready for use even before this is called.
725 */
726
727void __init setup_arch(char **cmdline_p)
728{
729#ifdef CONFIG_X86_32
730 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
731
732 /*
733 * copy kernel address range established so far and switch
734 * to the proper swapper page table
735 */
736 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
737 initial_page_table + KERNEL_PGD_BOUNDARY,
738 KERNEL_PGD_PTRS);
739
740 load_cr3(swapper_pg_dir);
741 /*
742 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
743 * a cr3 based tlb flush, so the following __flush_tlb_all()
744 * will not flush anything because the CPU quirk which clears
745 * X86_FEATURE_PGE has not been invoked yet. Though due to the
746 * load_cr3() above the TLB has been flushed already. The
747 * quirk is invoked before subsequent calls to __flush_tlb_all()
748 * so proper operation is guaranteed.
749 */
750 __flush_tlb_all();
751#else
752 printk(KERN_INFO "Command line: %s\n", boot_command_line);
753 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
754#endif
755
756 /*
757 * If we have OLPC OFW, we might end up relocating the fixmap due to
758 * reserve_top(), so do this before touching the ioremap area.
759 */
760 olpc_ofw_detect();
761
762 idt_setup_early_traps();
763 early_cpu_init();
764 jump_label_init();
765 static_call_init();
766 early_ioremap_init();
767
768 setup_olpc_ofw_pgd();
769
770 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
771 screen_info = boot_params.screen_info;
772 edid_info = boot_params.edid_info;
773#ifdef CONFIG_X86_32
774 apm_info.bios = boot_params.apm_bios_info;
775 ist_info = boot_params.ist_info;
776#endif
777 saved_video_mode = boot_params.hdr.vid_mode;
778 bootloader_type = boot_params.hdr.type_of_loader;
779 if ((bootloader_type >> 4) == 0xe) {
780 bootloader_type &= 0xf;
781 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
782 }
783 bootloader_version = bootloader_type & 0xf;
784 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
785
786#ifdef CONFIG_BLK_DEV_RAM
787 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
788#endif
789#ifdef CONFIG_EFI
790 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
791 EFI32_LOADER_SIGNATURE, 4)) {
792 set_bit(EFI_BOOT, &efi.flags);
793 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
794 EFI64_LOADER_SIGNATURE, 4)) {
795 set_bit(EFI_BOOT, &efi.flags);
796 set_bit(EFI_64BIT, &efi.flags);
797 }
798#endif
799
800 x86_init.oem.arch_setup();
801
802 /*
803 * Do some memory reservations *before* memory is added to memblock, so
804 * memblock allocations won't overwrite it.
805 *
806 * After this point, everything still needed from the boot loader or
807 * firmware or kernel text should be early reserved or marked not RAM in
808 * e820. All other memory is free game.
809 *
810 * This call needs to happen before e820__memory_setup() which calls the
811 * xen_memory_setup() on Xen dom0 which relies on the fact that those
812 * early reservations have happened already.
813 */
814 early_reserve_memory();
815
816 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
817 e820__memory_setup();
818 parse_setup_data();
819
820 copy_edd();
821
822 if (!boot_params.hdr.root_flags)
823 root_mountflags &= ~MS_RDONLY;
824 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
825
826 code_resource.start = __pa_symbol(_text);
827 code_resource.end = __pa_symbol(_etext)-1;
828 rodata_resource.start = __pa_symbol(__start_rodata);
829 rodata_resource.end = __pa_symbol(__end_rodata)-1;
830 data_resource.start = __pa_symbol(_sdata);
831 data_resource.end = __pa_symbol(_edata)-1;
832 bss_resource.start = __pa_symbol(__bss_start);
833 bss_resource.end = __pa_symbol(__bss_stop)-1;
834
835#ifdef CONFIG_CMDLINE_BOOL
836#ifdef CONFIG_CMDLINE_OVERRIDE
837 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
838#else
839 if (builtin_cmdline[0]) {
840 /* append boot loader cmdline to builtin */
841 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
842 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
843 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
844 }
845#endif
846#endif
847
848 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
849 *cmdline_p = command_line;
850
851 /*
852 * x86_configure_nx() is called before parse_early_param() to detect
853 * whether hardware doesn't support NX (so that the early EHCI debug
854 * console setup can safely call set_fixmap()).
855 */
856 x86_configure_nx();
857
858 parse_early_param();
859
860 if (efi_enabled(EFI_BOOT))
861 efi_memblock_x86_reserve_range();
862
863#ifdef CONFIG_MEMORY_HOTPLUG
864 /*
865 * Memory used by the kernel cannot be hot-removed because Linux
866 * cannot migrate the kernel pages. When memory hotplug is
867 * enabled, we should prevent memblock from allocating memory
868 * for the kernel.
869 *
870 * ACPI SRAT records all hotpluggable memory ranges. But before
871 * SRAT is parsed, we don't know about it.
872 *
873 * The kernel image is loaded into memory at very early time. We
874 * cannot prevent this anyway. So on NUMA system, we set any
875 * node the kernel resides in as un-hotpluggable.
876 *
877 * Since on modern servers, one node could have double-digit
878 * gigabytes memory, we can assume the memory around the kernel
879 * image is also un-hotpluggable. So before SRAT is parsed, just
880 * allocate memory near the kernel image to try the best to keep
881 * the kernel away from hotpluggable memory.
882 */
883 if (movable_node_is_enabled())
884 memblock_set_bottom_up(true);
885#endif
886
887 x86_report_nx();
888
889 apic_setup_apic_calls();
890
891 if (acpi_mps_check()) {
892#ifdef CONFIG_X86_LOCAL_APIC
893 apic_is_disabled = true;
894#endif
895 setup_clear_cpu_cap(X86_FEATURE_APIC);
896 }
897
898 e820__reserve_setup_data();
899 e820__finish_early_params();
900
901 if (efi_enabled(EFI_BOOT))
902 efi_init();
903
904 reserve_ibft_region();
905 dmi_setup();
906
907 /*
908 * VMware detection requires dmi to be available, so this
909 * needs to be done after dmi_setup(), for the boot CPU.
910 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
911 * called before cache_bp_init() for setting up MTRR state.
912 */
913 init_hypervisor_platform();
914
915 tsc_early_init();
916 x86_init.resources.probe_roms();
917
918 /* after parse_early_param, so could debug it */
919 insert_resource(&iomem_resource, &code_resource);
920 insert_resource(&iomem_resource, &rodata_resource);
921 insert_resource(&iomem_resource, &data_resource);
922 insert_resource(&iomem_resource, &bss_resource);
923
924 e820_add_kernel_range();
925 trim_bios_range();
926#ifdef CONFIG_X86_32
927 if (ppro_with_ram_bug()) {
928 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
929 E820_TYPE_RESERVED);
930 e820__update_table(e820_table);
931 printk(KERN_INFO "fixed physical RAM map:\n");
932 e820__print_table("bad_ppro");
933 }
934#else
935 early_gart_iommu_check();
936#endif
937
938 /*
939 * partially used pages are not usable - thus
940 * we are rounding upwards:
941 */
942 max_pfn = e820__end_of_ram_pfn();
943
944 /* update e820 for memory not covered by WB MTRRs */
945 cache_bp_init();
946 if (mtrr_trim_uncached_memory(max_pfn))
947 max_pfn = e820__end_of_ram_pfn();
948
949 max_possible_pfn = max_pfn;
950
951 /*
952 * Define random base addresses for memory sections after max_pfn is
953 * defined and before each memory section base is used.
954 */
955 kernel_randomize_memory();
956
957#ifdef CONFIG_X86_32
958 /* max_low_pfn get updated here */
959 find_low_pfn_range();
960#else
961 check_x2apic();
962
963 /* How many end-of-memory variables you have, grandma! */
964 /* need this before calling reserve_initrd */
965 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
966 max_low_pfn = e820__end_of_low_ram_pfn();
967 else
968 max_low_pfn = max_pfn;
969
970 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
971#endif
972
973 /*
974 * Find and reserve possible boot-time SMP configuration:
975 */
976 find_smp_config();
977
978 early_alloc_pgt_buf();
979
980 /*
981 * Need to conclude brk, before e820__memblock_setup()
982 * it could use memblock_find_in_range, could overlap with
983 * brk area.
984 */
985 reserve_brk();
986
987 cleanup_highmap();
988
989 memblock_set_current_limit(ISA_END_ADDRESS);
990 e820__memblock_setup();
991
992 /*
993 * Needs to run after memblock setup because it needs the physical
994 * memory size.
995 */
996 mem_encrypt_setup_arch();
997
998 efi_fake_memmap();
999 efi_find_mirror();
1000 efi_esrt_init();
1001 efi_mokvar_table_init();
1002
1003 /*
1004 * The EFI specification says that boot service code won't be
1005 * called after ExitBootServices(). This is, in fact, a lie.
1006 */
1007 efi_reserve_boot_services();
1008
1009 /* preallocate 4k for mptable mpc */
1010 e820__memblock_alloc_reserved_mpc_new();
1011
1012#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1013 setup_bios_corruption_check();
1014#endif
1015
1016#ifdef CONFIG_X86_32
1017 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1018 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1019#endif
1020
1021 /*
1022 * Find free memory for the real mode trampoline and place it there. If
1023 * there is not enough free memory under 1M, on EFI-enabled systems
1024 * there will be additional attempt to reclaim the memory for the real
1025 * mode trampoline at efi_free_boot_services().
1026 *
1027 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1028 * are known to corrupt low memory and several hundred kilobytes are not
1029 * worth complex detection what memory gets clobbered. Windows does the
1030 * same thing for very similar reasons.
1031 *
1032 * Moreover, on machines with SandyBridge graphics or in setups that use
1033 * crashkernel the entire 1M is reserved anyway.
1034 *
1035 * Note the host kernel TDX also requires the first 1MB being reserved.
1036 */
1037 x86_platform.realmode_reserve();
1038
1039 init_mem_mapping();
1040
1041 idt_setup_early_pf();
1042
1043 /*
1044 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1045 * with the current CR4 value. This may not be necessary, but
1046 * auditing all the early-boot CR4 manipulation would be needed to
1047 * rule it out.
1048 *
1049 * Mask off features that don't work outside long mode (just
1050 * PCIDE for now).
1051 */
1052 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1053
1054 memblock_set_current_limit(get_max_mapped());
1055
1056 /*
1057 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1058 */
1059
1060#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1061 if (init_ohci1394_dma_early)
1062 init_ohci1394_dma_on_all_controllers();
1063#endif
1064 /* Allocate bigger log buffer */
1065 setup_log_buf(1);
1066
1067 if (efi_enabled(EFI_BOOT)) {
1068 switch (boot_params.secure_boot) {
1069 case efi_secureboot_mode_disabled:
1070 pr_info("Secure boot disabled\n");
1071 break;
1072 case efi_secureboot_mode_enabled:
1073 pr_info("Secure boot enabled\n");
1074 break;
1075 default:
1076 pr_info("Secure boot could not be determined\n");
1077 break;
1078 }
1079 }
1080
1081 reserve_initrd();
1082
1083 acpi_table_upgrade();
1084 /* Look for ACPI tables and reserve memory occupied by them. */
1085 acpi_boot_table_init();
1086
1087 vsmp_init();
1088
1089 io_delay_init();
1090
1091 early_platform_quirks();
1092
1093 early_acpi_boot_init();
1094
1095 x86_flattree_get_config();
1096
1097 initmem_init();
1098 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1099
1100 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1101 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1102
1103 /*
1104 * Reserve memory for crash kernel after SRAT is parsed so that it
1105 * won't consume hotpluggable memory.
1106 */
1107 arch_reserve_crashkernel();
1108
1109 memblock_find_dma_reserve();
1110
1111 if (!early_xdbc_setup_hardware())
1112 early_xdbc_register_console();
1113
1114 x86_init.paging.pagetable_init();
1115
1116 kasan_init();
1117
1118 /*
1119 * Sync back kernel address range.
1120 *
1121 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1122 * this call?
1123 */
1124 sync_initial_page_table();
1125
1126 tboot_probe();
1127
1128 map_vsyscall();
1129
1130 x86_32_probe_apic();
1131
1132 early_quirks();
1133
1134 /*
1135 * Read APIC and some other early information from ACPI tables.
1136 */
1137 acpi_boot_init();
1138 x86_dtb_init();
1139
1140 /*
1141 * get boot-time SMP configuration:
1142 */
1143 get_smp_config();
1144
1145 /*
1146 * Systems w/o ACPI and mptables might not have it mapped the local
1147 * APIC yet, but prefill_possible_map() might need to access it.
1148 */
1149 init_apic_mappings();
1150
1151 prefill_possible_map();
1152
1153 init_cpu_to_node();
1154 init_gi_nodes();
1155
1156 io_apic_init_mappings();
1157
1158 x86_init.hyper.guest_late_init();
1159
1160 e820__reserve_resources();
1161 e820__register_nosave_regions(max_pfn);
1162
1163 x86_init.resources.reserve_resources();
1164
1165 e820__setup_pci_gap();
1166
1167#ifdef CONFIG_VT
1168#if defined(CONFIG_VGA_CONSOLE)
1169 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1170 vgacon_register_screen(&screen_info);
1171#endif
1172#endif
1173 x86_init.oem.banner();
1174
1175 x86_init.timers.wallclock_init();
1176
1177 /*
1178 * This needs to run before setup_local_APIC() which soft-disables the
1179 * local APIC temporarily and that masks the thermal LVT interrupt,
1180 * leading to softlockups on machines which have configured SMI
1181 * interrupt delivery.
1182 */
1183 therm_lvt_init();
1184
1185 mcheck_init();
1186
1187 register_refined_jiffies(CLOCK_TICK_RATE);
1188
1189#ifdef CONFIG_EFI
1190 if (efi_enabled(EFI_BOOT))
1191 efi_apply_memmap_quirks();
1192#endif
1193
1194 unwind_init();
1195}
1196
1197#ifdef CONFIG_X86_32
1198
1199static struct resource video_ram_resource = {
1200 .name = "Video RAM area",
1201 .start = 0xa0000,
1202 .end = 0xbffff,
1203 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1204};
1205
1206void __init i386_reserve_resources(void)
1207{
1208 request_resource(&iomem_resource, &video_ram_resource);
1209 reserve_standard_io_resources();
1210}
1211
1212#endif /* CONFIG_X86_32 */
1213
1214static struct notifier_block kernel_offset_notifier = {
1215 .notifier_call = dump_kernel_offset
1216};
1217
1218static int __init register_kernel_offset_dumper(void)
1219{
1220 atomic_notifier_chain_register(&panic_notifier_list,
1221 &kernel_offset_notifier);
1222 return 0;
1223}
1224__initcall(register_kernel_offset_dumper);