Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/* irq.c: UltraSparc IRQ handling/init/registry.
  2 *
  3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
  5 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
  6 */
  7
  8#include <linux/sched.h>
  9#include <linux/linkage.h>
 10#include <linux/ptrace.h>
 11#include <linux/errno.h>
 12#include <linux/kernel_stat.h>
 13#include <linux/signal.h>
 14#include <linux/mm.h>
 15#include <linux/interrupt.h>
 16#include <linux/slab.h>
 17#include <linux/random.h>
 18#include <linux/init.h>
 19#include <linux/delay.h>
 20#include <linux/proc_fs.h>
 21#include <linux/seq_file.h>
 22#include <linux/ftrace.h>
 23#include <linux/irq.h>
 24#include <linux/kmemleak.h>
 25
 26#include <asm/ptrace.h>
 27#include <asm/processor.h>
 28#include <linux/atomic.h>
 29#include <asm/irq.h>
 30#include <asm/io.h>
 31#include <asm/iommu.h>
 32#include <asm/upa.h>
 33#include <asm/oplib.h>
 34#include <asm/prom.h>
 35#include <asm/timer.h>
 36#include <asm/smp.h>
 37#include <asm/starfire.h>
 38#include <asm/uaccess.h>
 39#include <asm/cache.h>
 40#include <asm/cpudata.h>
 41#include <asm/auxio.h>
 42#include <asm/head.h>
 43#include <asm/hypervisor.h>
 44#include <asm/cacheflush.h>
 
 45
 46#include "entry.h"
 47#include "cpumap.h"
 48#include "kstack.h"
 49
 50#define NUM_IVECS	(IMAP_INR + 1)
 51
 52struct ino_bucket *ivector_table;
 53unsigned long ivector_table_pa;
 54
 55/* On several sun4u processors, it is illegal to mix bypass and
 56 * non-bypass accesses.  Therefore we access all INO buckets
 57 * using bypass accesses only.
 58 */
 59static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
 60{
 61	unsigned long ret;
 62
 63	__asm__ __volatile__("ldxa	[%1] %2, %0"
 64			     : "=&r" (ret)
 65			     : "r" (bucket_pa +
 66				    offsetof(struct ino_bucket,
 67					     __irq_chain_pa)),
 68			       "i" (ASI_PHYS_USE_EC));
 69
 70	return ret;
 71}
 72
 73static void bucket_clear_chain_pa(unsigned long bucket_pa)
 74{
 75	__asm__ __volatile__("stxa	%%g0, [%0] %1"
 76			     : /* no outputs */
 77			     : "r" (bucket_pa +
 78				    offsetof(struct ino_bucket,
 79					     __irq_chain_pa)),
 80			       "i" (ASI_PHYS_USE_EC));
 81}
 82
 83static unsigned int bucket_get_irq(unsigned long bucket_pa)
 84{
 85	unsigned int ret;
 86
 87	__asm__ __volatile__("lduwa	[%1] %2, %0"
 88			     : "=&r" (ret)
 89			     : "r" (bucket_pa +
 90				    offsetof(struct ino_bucket,
 91					     __irq)),
 92			       "i" (ASI_PHYS_USE_EC));
 93
 94	return ret;
 95}
 96
 97static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
 98{
 99	__asm__ __volatile__("stwa	%0, [%1] %2"
100			     : /* no outputs */
101			     : "r" (irq),
102			       "r" (bucket_pa +
103				    offsetof(struct ino_bucket,
104					     __irq)),
105			       "i" (ASI_PHYS_USE_EC));
106}
107
108#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
109
110static struct {
111	unsigned int dev_handle;
112	unsigned int dev_ino;
113	unsigned int in_use;
114} irq_table[NR_IRQS];
115static DEFINE_SPINLOCK(irq_alloc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
118{
119	unsigned long flags;
120	unsigned char ent;
121
122	BUILD_BUG_ON(NR_IRQS >= 256);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
124	spin_lock_irqsave(&irq_alloc_lock, flags);
 
 
125
126	for (ent = 1; ent < NR_IRQS; ent++) {
127		if (!irq_table[ent].in_use)
 
 
 
 
 
128			break;
 
129	}
130	if (ent >= NR_IRQS) {
131		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
132		ent = 0;
133	} else {
134		irq_table[ent].dev_handle = dev_handle;
135		irq_table[ent].dev_ino = dev_ino;
136		irq_table[ent].in_use = 1;
137	}
138
139	spin_unlock_irqrestore(&irq_alloc_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
141	return ent;
 
 
 
 
 
 
 
 
 
 
 
142}
143
144#ifdef CONFIG_PCI_MSI
145void irq_free(unsigned int irq)
146{
147	unsigned long flags;
148
149	if (irq >= NR_IRQS)
150		return;
 
 
151
152	spin_lock_irqsave(&irq_alloc_lock, flags);
 
 
153
154	irq_table[irq].in_use = 0;
 
 
155
156	spin_unlock_irqrestore(&irq_alloc_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157}
158#endif
159
160/*
161 * /proc/interrupts printing:
162 */
163int arch_show_interrupts(struct seq_file *p, int prec)
164{
165	int j;
166
167	seq_printf(p, "NMI: ");
168	for_each_online_cpu(j)
169		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
170	seq_printf(p, "     Non-maskable interrupts\n");
171	return 0;
172}
173
174static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
175{
176	unsigned int tid;
177
178	if (this_is_starfire) {
179		tid = starfire_translate(imap, cpuid);
180		tid <<= IMAP_TID_SHIFT;
181		tid &= IMAP_TID_UPA;
182	} else {
183		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
184			unsigned long ver;
185
186			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
187			if ((ver >> 32UL) == __JALAPENO_ID ||
188			    (ver >> 32UL) == __SERRANO_ID) {
189				tid = cpuid << IMAP_TID_SHIFT;
190				tid &= IMAP_TID_JBUS;
191			} else {
192				unsigned int a = cpuid & 0x1f;
193				unsigned int n = (cpuid >> 5) & 0x1f;
194
195				tid = ((a << IMAP_AID_SHIFT) |
196				       (n << IMAP_NID_SHIFT));
197				tid &= (IMAP_AID_SAFARI |
198					IMAP_NID_SAFARI);
199			}
200		} else {
201			tid = cpuid << IMAP_TID_SHIFT;
202			tid &= IMAP_TID_UPA;
203		}
204	}
205
206	return tid;
207}
208
209struct irq_handler_data {
210	unsigned long	iclr;
211	unsigned long	imap;
212
213	void		(*pre_handler)(unsigned int, void *, void *);
214	void		*arg1;
215	void		*arg2;
216};
217
218#ifdef CONFIG_SMP
219static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
220{
221	cpumask_t mask;
222	int cpuid;
223
224	cpumask_copy(&mask, affinity);
225	if (cpumask_equal(&mask, cpu_online_mask)) {
226		cpuid = map_to_cpu(irq);
227	} else {
228		cpumask_t tmp;
229
230		cpumask_and(&tmp, cpu_online_mask, &mask);
231		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
232	}
233
234	return cpuid;
235}
236#else
237#define irq_choose_cpu(irq, affinity)	\
238	real_hard_smp_processor_id()
239#endif
240
241static void sun4u_irq_enable(struct irq_data *data)
242{
243	struct irq_handler_data *handler_data = data->handler_data;
244
 
245	if (likely(handler_data)) {
246		unsigned long cpuid, imap, val;
247		unsigned int tid;
248
249		cpuid = irq_choose_cpu(data->irq, data->affinity);
 
250		imap = handler_data->imap;
251
252		tid = sun4u_compute_tid(imap, cpuid);
253
254		val = upa_readq(imap);
255		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
256			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
257		val |= tid | IMAP_VALID;
258		upa_writeq(val, imap);
259		upa_writeq(ICLR_IDLE, handler_data->iclr);
260	}
261}
262
263static int sun4u_set_affinity(struct irq_data *data,
264			       const struct cpumask *mask, bool force)
265{
266	struct irq_handler_data *handler_data = data->handler_data;
267
 
268	if (likely(handler_data)) {
269		unsigned long cpuid, imap, val;
270		unsigned int tid;
271
272		cpuid = irq_choose_cpu(data->irq, mask);
273		imap = handler_data->imap;
274
275		tid = sun4u_compute_tid(imap, cpuid);
276
277		val = upa_readq(imap);
278		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
279			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
280		val |= tid | IMAP_VALID;
281		upa_writeq(val, imap);
282		upa_writeq(ICLR_IDLE, handler_data->iclr);
283	}
284
285	return 0;
286}
287
288/* Don't do anything.  The desc->status check for IRQ_DISABLED in
289 * handler_irq() will skip the handler call and that will leave the
290 * interrupt in the sent state.  The next ->enable() call will hit the
291 * ICLR register to reset the state machine.
292 *
293 * This scheme is necessary, instead of clearing the Valid bit in the
294 * IMAP register, to handle the case of IMAP registers being shared by
295 * multiple INOs (and thus ICLR registers).  Since we use a different
296 * virtual IRQ for each shared IMAP instance, the generic code thinks
297 * there is only one user so it prematurely calls ->disable() on
298 * free_irq().
299 *
300 * We have to provide an explicit ->disable() method instead of using
301 * NULL to get the default.  The reason is that if the generic code
302 * sees that, it also hooks up a default ->shutdown method which
303 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
304 */
305static void sun4u_irq_disable(struct irq_data *data)
306{
307}
308
309static void sun4u_irq_eoi(struct irq_data *data)
310{
311	struct irq_handler_data *handler_data = data->handler_data;
312
 
313	if (likely(handler_data))
314		upa_writeq(ICLR_IDLE, handler_data->iclr);
315}
316
317static void sun4v_irq_enable(struct irq_data *data)
318{
319	unsigned int ino = irq_table[data->irq].dev_ino;
320	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
 
321	int err;
322
323	err = sun4v_intr_settarget(ino, cpuid);
324	if (err != HV_EOK)
325		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
326		       "err(%d)\n", ino, cpuid, err);
327	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
328	if (err != HV_EOK)
329		printk(KERN_ERR "sun4v_intr_setstate(%x): "
330		       "err(%d)\n", ino, err);
331	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
332	if (err != HV_EOK)
333		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
334		       ino, err);
335}
336
337static int sun4v_set_affinity(struct irq_data *data,
338			       const struct cpumask *mask, bool force)
339{
340	unsigned int ino = irq_table[data->irq].dev_ino;
341	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
 
342	int err;
343
344	err = sun4v_intr_settarget(ino, cpuid);
345	if (err != HV_EOK)
346		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
347		       "err(%d)\n", ino, cpuid, err);
348
349	return 0;
350}
351
352static void sun4v_irq_disable(struct irq_data *data)
353{
354	unsigned int ino = irq_table[data->irq].dev_ino;
355	int err;
356
357	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
358	if (err != HV_EOK)
359		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
360		       "err(%d)\n", ino, err);
361}
362
363static void sun4v_irq_eoi(struct irq_data *data)
364{
365	unsigned int ino = irq_table[data->irq].dev_ino;
366	int err;
367
368	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
369	if (err != HV_EOK)
370		printk(KERN_ERR "sun4v_intr_setstate(%x): "
371		       "err(%d)\n", ino, err);
372}
373
374static void sun4v_virq_enable(struct irq_data *data)
375{
376	unsigned long cpuid, dev_handle, dev_ino;
 
 
377	int err;
378
379	cpuid = irq_choose_cpu(data->irq, data->affinity);
380
381	dev_handle = irq_table[data->irq].dev_handle;
382	dev_ino = irq_table[data->irq].dev_ino;
383
384	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
385	if (err != HV_EOK)
386		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
387		       "err(%d)\n",
388		       dev_handle, dev_ino, cpuid, err);
389	err = sun4v_vintr_set_state(dev_handle, dev_ino,
390				    HV_INTR_STATE_IDLE);
391	if (err != HV_EOK)
392		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
393		       "HV_INTR_STATE_IDLE): err(%d)\n",
394		       dev_handle, dev_ino, err);
395	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
396				    HV_INTR_ENABLED);
397	if (err != HV_EOK)
398		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
399		       "HV_INTR_ENABLED): err(%d)\n",
400		       dev_handle, dev_ino, err);
401}
402
403static int sun4v_virt_set_affinity(struct irq_data *data,
404				    const struct cpumask *mask, bool force)
405{
406	unsigned long cpuid, dev_handle, dev_ino;
 
 
407	int err;
408
409	cpuid = irq_choose_cpu(data->irq, mask);
410
411	dev_handle = irq_table[data->irq].dev_handle;
412	dev_ino = irq_table[data->irq].dev_ino;
413
414	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
415	if (err != HV_EOK)
416		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
417		       "err(%d)\n",
418		       dev_handle, dev_ino, cpuid, err);
419
420	return 0;
421}
422
423static void sun4v_virq_disable(struct irq_data *data)
424{
425	unsigned long dev_handle, dev_ino;
 
426	int err;
427
428	dev_handle = irq_table[data->irq].dev_handle;
429	dev_ino = irq_table[data->irq].dev_ino;
430
431	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
432				    HV_INTR_DISABLED);
433	if (err != HV_EOK)
434		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
435		       "HV_INTR_DISABLED): err(%d)\n",
436		       dev_handle, dev_ino, err);
437}
438
439static void sun4v_virq_eoi(struct irq_data *data)
440{
441	unsigned long dev_handle, dev_ino;
 
442	int err;
443
444	dev_handle = irq_table[data->irq].dev_handle;
445	dev_ino = irq_table[data->irq].dev_ino;
446
447	err = sun4v_vintr_set_state(dev_handle, dev_ino,
448				    HV_INTR_STATE_IDLE);
449	if (err != HV_EOK)
450		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
451		       "HV_INTR_STATE_IDLE): err(%d)\n",
452		       dev_handle, dev_ino, err);
453}
454
455static struct irq_chip sun4u_irq = {
456	.name			= "sun4u",
457	.irq_enable		= sun4u_irq_enable,
458	.irq_disable		= sun4u_irq_disable,
459	.irq_eoi		= sun4u_irq_eoi,
460	.irq_set_affinity	= sun4u_set_affinity,
461	.flags			= IRQCHIP_EOI_IF_HANDLED,
462};
463
464static struct irq_chip sun4v_irq = {
465	.name			= "sun4v",
466	.irq_enable		= sun4v_irq_enable,
467	.irq_disable		= sun4v_irq_disable,
468	.irq_eoi		= sun4v_irq_eoi,
469	.irq_set_affinity	= sun4v_set_affinity,
470	.flags			= IRQCHIP_EOI_IF_HANDLED,
471};
472
473static struct irq_chip sun4v_virq = {
474	.name			= "vsun4v",
475	.irq_enable		= sun4v_virq_enable,
476	.irq_disable		= sun4v_virq_disable,
477	.irq_eoi		= sun4v_virq_eoi,
478	.irq_set_affinity	= sun4v_virt_set_affinity,
479	.flags			= IRQCHIP_EOI_IF_HANDLED,
480};
481
482static void pre_flow_handler(struct irq_data *d)
483{
484	struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
485	unsigned int ino = irq_table[d->irq].dev_ino;
486
487	handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
488}
489
490void irq_install_pre_handler(int irq,
491			     void (*func)(unsigned int, void *, void *),
492			     void *arg1, void *arg2)
493{
494	struct irq_handler_data *handler_data = irq_get_handler_data(irq);
495
496	handler_data->pre_handler = func;
497	handler_data->arg1 = arg1;
498	handler_data->arg2 = arg2;
499
500	__irq_set_preflow_handler(irq, pre_flow_handler);
501}
502
503unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
504{
505	struct ino_bucket *bucket;
506	struct irq_handler_data *handler_data;
 
507	unsigned int irq;
508	int ino;
509
510	BUG_ON(tlb_type == hypervisor);
511
512	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
513	bucket = &ivector_table[ino];
514	irq = bucket_get_irq(__pa(bucket));
515	if (!irq) {
516		irq = irq_alloc(0, ino);
517		bucket_set_irq(__pa(bucket), irq);
518		irq_set_chip_and_handler_name(irq, &sun4u_irq,
519					      handle_fasteoi_irq, "IVEC");
520	}
521
522	handler_data = irq_get_handler_data(irq);
523	if (unlikely(handler_data))
524		goto out;
525
526	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
527	if (unlikely(!handler_data)) {
528		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
529		prom_halt();
530	}
531	irq_set_handler_data(irq, handler_data);
532
533	handler_data->imap  = imap;
534	handler_data->iclr  = iclr;
535
536out:
537	return irq;
538}
539
540static unsigned int sun4v_build_common(unsigned long sysino,
541				       struct irq_chip *chip)
 
 
542{
543	struct ino_bucket *bucket;
544	struct irq_handler_data *handler_data;
545	unsigned int irq;
546
547	BUG_ON(tlb_type != hypervisor);
 
 
548
549	bucket = &ivector_table[sysino];
550	irq = bucket_get_irq(__pa(bucket));
551	if (!irq) {
552		irq = irq_alloc(0, sysino);
553		bucket_set_irq(__pa(bucket), irq);
554		irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
555					      "IVEC");
556	}
557
558	handler_data = irq_get_handler_data(irq);
559	if (unlikely(handler_data))
560		goto out;
 
 
 
 
 
561
562	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
563	if (unlikely(!handler_data)) {
564		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
565		prom_halt();
566	}
567	irq_set_handler_data(irq, handler_data);
568
569	/* Catch accidental accesses to these things.  IMAP/ICLR handling
570	 * is done by hypervisor calls on sun4v platforms, not by direct
571	 * register accesses.
572	 */
573	handler_data->imap = ~0UL;
574	handler_data->iclr = ~0UL;
575
576out:
577	return irq;
 
 
 
578}
579
580unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
 
581{
582	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
 
 
583
584	return sun4v_build_common(sysino, &sun4v_irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585}
586
587unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
588{
589	struct irq_handler_data *handler_data;
590	unsigned long hv_err, cookie;
591	struct ino_bucket *bucket;
592	unsigned int irq;
593
594	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
595	if (unlikely(!bucket))
596		return 0;
597
598	/* The only reference we store to the IRQ bucket is
599	 * by physical address which kmemleak can't see, tell
600	 * it that this object explicitly is not a leak and
601	 * should be scanned.
602	 */
603	kmemleak_not_leak(bucket);
604
605	__flush_dcache_range((unsigned long) bucket,
606			     ((unsigned long) bucket +
607			      sizeof(struct ino_bucket)));
608
609	irq = irq_alloc(devhandle, devino);
 
 
 
 
 
 
 
 
 
 
 
 
610	bucket_set_irq(__pa(bucket), irq);
 
611
612	irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
613				      "IVEC");
 
 
614
615	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
616	if (unlikely(!handler_data))
617		return 0;
618
619	/* In order to make the LDC channel startup sequence easier,
620	 * especially wrt. locking, we do not let request_irq() enable
621	 * the interrupt.
622	 */
623	irq_set_status_flags(irq, IRQ_NOAUTOEN);
624	irq_set_handler_data(irq, handler_data);
625
626	/* Catch accidental accesses to these things.  IMAP/ICLR handling
627	 * is done by hypervisor calls on sun4v platforms, not by direct
628	 * register accesses.
629	 */
630	handler_data->imap = ~0UL;
631	handler_data->iclr = ~0UL;
632
633	cookie = ~__pa(bucket);
634	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
635	if (hv_err) {
636		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
637			    "err=%lu\n", devhandle, devino, hv_err);
638		prom_halt();
639	}
640
 
 
 
 
 
 
 
 
 
 
641	return irq;
642}
643
644void ack_bad_irq(unsigned int irq)
645{
646	unsigned int ino = irq_table[irq].dev_ino;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647
648	if (!ino)
649		ino = 0xdeadbeef;
 
650
651	printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
652	       ino, irq);
653}
654
655void *hardirq_stack[NR_CPUS];
656void *softirq_stack[NR_CPUS];
657
658void __irq_entry handler_irq(int pil, struct pt_regs *regs)
659{
660	unsigned long pstate, bucket_pa;
661	struct pt_regs *old_regs;
662	void *orig_sp;
663
664	clear_softint(1 << pil);
665
666	old_regs = set_irq_regs(regs);
667	irq_enter();
668
669	/* Grab an atomic snapshot of the pending IVECs.  */
670	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
671			     "wrpr	%0, %3, %%pstate\n\t"
672			     "ldx	[%2], %1\n\t"
673			     "stx	%%g0, [%2]\n\t"
674			     "wrpr	%0, 0x0, %%pstate\n\t"
675			     : "=&r" (pstate), "=&r" (bucket_pa)
676			     : "r" (irq_work_pa(smp_processor_id())),
677			       "i" (PSTATE_IE)
678			     : "memory");
679
680	orig_sp = set_hardirq_stack();
681
682	while (bucket_pa) {
683		unsigned long next_pa;
684		unsigned int irq;
685
686		next_pa = bucket_get_chain_pa(bucket_pa);
687		irq = bucket_get_irq(bucket_pa);
688		bucket_clear_chain_pa(bucket_pa);
689
690		generic_handle_irq(irq);
691
692		bucket_pa = next_pa;
693	}
694
695	restore_hardirq_stack(orig_sp);
696
697	irq_exit();
698	set_irq_regs(old_regs);
699}
700
701void do_softirq(void)
 
702{
703	unsigned long flags;
704
705	if (in_interrupt())
706		return;
707
708	local_irq_save(flags);
709
710	if (local_softirq_pending()) {
711		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
712
713		sp += THREAD_SIZE - 192 - STACK_BIAS;
714
715		__asm__ __volatile__("mov %%sp, %0\n\t"
716				     "mov %1, %%sp"
717				     : "=&r" (orig_sp)
718				     : "r" (sp));
719		__do_softirq();
720		__asm__ __volatile__("mov %0, %%sp"
721				     : : "r" (orig_sp));
722	}
723
724	local_irq_restore(flags);
725}
 
726
727#ifdef CONFIG_HOTPLUG_CPU
728void fixup_irqs(void)
729{
730	unsigned int irq;
731
732	for (irq = 0; irq < NR_IRQS; irq++) {
733		struct irq_desc *desc = irq_to_desc(irq);
734		struct irq_data *data = irq_desc_get_irq_data(desc);
735		unsigned long flags;
736
 
 
 
737		raw_spin_lock_irqsave(&desc->lock, flags);
738		if (desc->action && !irqd_is_per_cpu(data)) {
739			if (data->chip->irq_set_affinity)
740				data->chip->irq_set_affinity(data,
741							     data->affinity,
742							     false);
743		}
744		raw_spin_unlock_irqrestore(&desc->lock, flags);
745	}
746
747	tick_ops->disable_irq();
748}
749#endif
750
751struct sun5_timer {
752	u64	count0;
753	u64	limit0;
754	u64	count1;
755	u64	limit1;
756};
757
758static struct sun5_timer *prom_timers;
759static u64 prom_limit0, prom_limit1;
760
761static void map_prom_timers(void)
762{
763	struct device_node *dp;
764	const unsigned int *addr;
765
766	/* PROM timer node hangs out in the top level of device siblings... */
767	dp = of_find_node_by_path("/");
768	dp = dp->child;
769	while (dp) {
770		if (!strcmp(dp->name, "counter-timer"))
771			break;
772		dp = dp->sibling;
773	}
774
775	/* Assume if node is not present, PROM uses different tick mechanism
776	 * which we should not care about.
777	 */
778	if (!dp) {
779		prom_timers = (struct sun5_timer *) 0;
780		return;
781	}
782
783	/* If PROM is really using this, it must be mapped by him. */
784	addr = of_get_property(dp, "address", NULL);
785	if (!addr) {
786		prom_printf("PROM does not have timer mapped, trying to continue.\n");
787		prom_timers = (struct sun5_timer *) 0;
788		return;
789	}
790	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
791}
792
793static void kill_prom_timer(void)
794{
795	if (!prom_timers)
796		return;
797
798	/* Save them away for later. */
799	prom_limit0 = prom_timers->limit0;
800	prom_limit1 = prom_timers->limit1;
801
802	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
803	 * We turn both off here just to be paranoid.
804	 */
805	prom_timers->limit0 = 0;
806	prom_timers->limit1 = 0;
807
808	/* Wheee, eat the interrupt packet too... */
809	__asm__ __volatile__(
810"	mov	0x40, %%g2\n"
811"	ldxa	[%%g0] %0, %%g1\n"
812"	ldxa	[%%g2] %1, %%g1\n"
813"	stxa	%%g0, [%%g0] %0\n"
814"	membar	#Sync\n"
815	: /* no outputs */
816	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
817	: "g1", "g2");
818}
819
820void notrace init_irqwork_curcpu(void)
821{
822	int cpu = hard_smp_processor_id();
823
824	trap_block[cpu].irq_worklist_pa = 0UL;
825}
826
827/* Please be very careful with register_one_mondo() and
828 * sun4v_register_mondo_queues().
829 *
830 * On SMP this gets invoked from the CPU trampoline before
831 * the cpu has fully taken over the trap table from OBP,
832 * and it's kernel stack + %g6 thread register state is
833 * not fully cooked yet.
834 *
835 * Therefore you cannot make any OBP calls, not even prom_printf,
836 * from these two routines.
837 */
838static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
 
839{
840	unsigned long num_entries = (qmask + 1) / 64;
841	unsigned long status;
842
843	status = sun4v_cpu_qconf(type, paddr, num_entries);
844	if (status != HV_EOK) {
845		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
846			    "err %lu\n", type, paddr, num_entries, status);
847		prom_halt();
848	}
849}
850
851void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
852{
853	struct trap_per_cpu *tb = &trap_block[this_cpu];
854
855	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
856			   tb->cpu_mondo_qmask);
857	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
858			   tb->dev_mondo_qmask);
859	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
860			   tb->resum_qmask);
861	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
862			   tb->nonresum_qmask);
863}
864
865/* Each queue region must be a power of 2 multiple of 64 bytes in
866 * size.  The base real address must be aligned to the size of the
867 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
868 */
869static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
870{
871	unsigned long size = PAGE_ALIGN(qmask + 1);
872	unsigned long order = get_order(size);
873	unsigned long p;
874
875	p = __get_free_pages(GFP_KERNEL, order);
876	if (!p) {
877		prom_printf("SUN4V: Error, cannot allocate queue.\n");
878		prom_halt();
879	}
880
881	*pa_ptr = __pa(p);
882}
883
884static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
885{
886#ifdef CONFIG_SMP
887	unsigned long page;
 
888
889	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
 
 
 
 
 
 
 
 
 
890
891	page = get_zeroed_page(GFP_KERNEL);
892	if (!page) {
893		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
894		prom_halt();
895	}
896
897	tb->cpu_mondo_block_pa = __pa(page);
898	tb->cpu_list_pa = __pa(page + 64);
899#endif
900}
901
902/* Allocate mondo and error queues for all possible cpus.  */
903static void __init sun4v_init_mondo_queues(void)
904{
905	int cpu;
906
907	for_each_possible_cpu(cpu) {
908		struct trap_per_cpu *tb = &trap_block[cpu];
909
910		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
911		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
912		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
913		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
914		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
915		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
916				tb->nonresum_qmask);
917	}
918}
919
920static void __init init_send_mondo_info(void)
921{
922	int cpu;
923
924	for_each_possible_cpu(cpu) {
925		struct trap_per_cpu *tb = &trap_block[cpu];
926
927		init_cpu_send_mondo_info(tb);
928	}
929}
930
931static struct irqaction timer_irq_action = {
932	.name = "timer",
933};
934
935/* Only invoked on boot processor. */
936void __init init_IRQ(void)
937{
938	unsigned long size;
 
939
940	map_prom_timers();
941	kill_prom_timer();
 
 
 
942
943	size = sizeof(struct ino_bucket) * NUM_IVECS;
944	ivector_table = kzalloc(size, GFP_KERNEL);
 
 
 
945	if (!ivector_table) {
946		prom_printf("Fatal error, cannot allocate ivector_table\n");
947		prom_halt();
948	}
949	__flush_dcache_range((unsigned long) ivector_table,
950			     ((unsigned long) ivector_table) + size);
951
952	ivector_table_pa = __pa(ivector_table);
 
 
 
 
 
 
 
 
 
953
954	if (tlb_type == hypervisor)
955		sun4v_init_mondo_queues();
956
957	init_send_mondo_info();
958
959	if (tlb_type == hypervisor) {
960		/* Load up the boot cpu's entries.  */
961		sun4v_register_mondo_queues(hard_smp_processor_id());
962	}
963
964	/* We need to clear any IRQ's pending in the soft interrupt
965	 * registers, a spurious one could be left around from the
966	 * PROM timer which we just disabled.
967	 */
968	clear_softint(get_softint());
969
970	/* Now that ivector table is initialized, it is safe
971	 * to receive IRQ vector traps.  We will normally take
972	 * one or two right now, in case some device PROM used
973	 * to boot us wants to speak to us.  We just ignore them.
974	 */
975	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
976			     "or	%%g1, %0, %%g1\n\t"
977			     "wrpr	%%g1, 0x0, %%pstate"
978			     : /* No outputs */
979			     : "i" (PSTATE_IE)
980			     : "g1");
981
982	irq_to_desc(0)->action = &timer_irq_action;
983}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* irq.c: UltraSparc IRQ handling/init/registry.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
   6 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
   7 */
   8
   9#include <linux/sched.h>
  10#include <linux/linkage.h>
  11#include <linux/ptrace.h>
  12#include <linux/errno.h>
  13#include <linux/kernel_stat.h>
  14#include <linux/signal.h>
  15#include <linux/mm.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/random.h>
  19#include <linux/init.h>
  20#include <linux/delay.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/ftrace.h>
  24#include <linux/irq.h>
 
  25
  26#include <asm/ptrace.h>
  27#include <asm/processor.h>
  28#include <linux/atomic.h>
  29#include <asm/irq.h>
  30#include <asm/io.h>
  31#include <asm/iommu.h>
  32#include <asm/upa.h>
  33#include <asm/oplib.h>
  34#include <asm/prom.h>
  35#include <asm/timer.h>
  36#include <asm/smp.h>
  37#include <asm/starfire.h>
  38#include <linux/uaccess.h>
  39#include <asm/cache.h>
  40#include <asm/cpudata.h>
  41#include <asm/auxio.h>
  42#include <asm/head.h>
  43#include <asm/hypervisor.h>
  44#include <asm/cacheflush.h>
  45#include <asm/softirq_stack.h>
  46
  47#include "entry.h"
  48#include "cpumap.h"
  49#include "kstack.h"
  50
 
 
  51struct ino_bucket *ivector_table;
  52unsigned long ivector_table_pa;
  53
  54/* On several sun4u processors, it is illegal to mix bypass and
  55 * non-bypass accesses.  Therefore we access all INO buckets
  56 * using bypass accesses only.
  57 */
  58static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  59{
  60	unsigned long ret;
  61
  62	__asm__ __volatile__("ldxa	[%1] %2, %0"
  63			     : "=&r" (ret)
  64			     : "r" (bucket_pa +
  65				    offsetof(struct ino_bucket,
  66					     __irq_chain_pa)),
  67			       "i" (ASI_PHYS_USE_EC));
  68
  69	return ret;
  70}
  71
  72static void bucket_clear_chain_pa(unsigned long bucket_pa)
  73{
  74	__asm__ __volatile__("stxa	%%g0, [%0] %1"
  75			     : /* no outputs */
  76			     : "r" (bucket_pa +
  77				    offsetof(struct ino_bucket,
  78					     __irq_chain_pa)),
  79			       "i" (ASI_PHYS_USE_EC));
  80}
  81
  82static unsigned int bucket_get_irq(unsigned long bucket_pa)
  83{
  84	unsigned int ret;
  85
  86	__asm__ __volatile__("lduwa	[%1] %2, %0"
  87			     : "=&r" (ret)
  88			     : "r" (bucket_pa +
  89				    offsetof(struct ino_bucket,
  90					     __irq)),
  91			       "i" (ASI_PHYS_USE_EC));
  92
  93	return ret;
  94}
  95
  96static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
  97{
  98	__asm__ __volatile__("stwa	%0, [%1] %2"
  99			     : /* no outputs */
 100			     : "r" (irq),
 101			       "r" (bucket_pa +
 102				    offsetof(struct ino_bucket,
 103					     __irq)),
 104			       "i" (ASI_PHYS_USE_EC));
 105}
 106
 107#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
 108
 109static unsigned long hvirq_major __initdata;
 110static int __init early_hvirq_major(char *p)
 111{
 112	int rc = kstrtoul(p, 10, &hvirq_major);
 113
 114	return rc;
 115}
 116early_param("hvirq", early_hvirq_major);
 117
 118static int hv_irq_version;
 119
 120/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
 121 * based interfaces, but:
 122 *
 123 * 1) Several OSs, Solaris and Linux included, use them even when only
 124 *    negotiating version 1.0 (or failing to negotiate at all).  So the
 125 *    hypervisor has a workaround that provides the VIRQ interfaces even
 126 *    when only verion 1.0 of the API is in use.
 127 *
 128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
 129 *    interfaces only were actually hooked up for LDC interrupts, even
 130 *    though the Hypervisor specification clearly stated:
 131 *
 132 *	The new interrupt API functions will be available to a guest
 133 *	when it negotiates version 2.0 in the interrupt API group 0x2. When
 134 *	a guest negotiates version 2.0, all interrupt sources will only
 135 *	support using the cookie interface, and any attempt to use the
 136 *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
 137 *	ENOTSUPPORTED error being returned.
 138 *
 139 *   with an emphasis on "all interrupt sources".
 140 *
 141 * To correct this, major version 3.0 was created which does actually
 142 * support VIRQs for all interrupt sources (not just LDC devices).  So
 143 * if we want to move completely over the cookie based VIRQs we must
 144 * negotiate major version 3.0 or later of HV_GRP_INTR.
 145 */
 146static bool sun4v_cookie_only_virqs(void)
 147{
 148	if (hv_irq_version >= 3)
 149		return true;
 150	return false;
 151}
 152
 153static void __init irq_init_hv(void)
 154{
 155	unsigned long hv_error, major, minor = 0;
 
 156
 157	if (tlb_type != hypervisor)
 158		return;
 159
 160	if (hvirq_major)
 161		major = hvirq_major;
 162	else
 163		major = 3;
 164
 165	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
 166	if (!hv_error)
 167		hv_irq_version = major;
 168	else
 169		hv_irq_version = 1;
 170
 171	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
 172		hv_irq_version,
 173		sun4v_cookie_only_virqs() ? "enabled" : "disabled");
 174}
 175
 176/* This function is for the timer interrupt.*/
 177int __init arch_probe_nr_irqs(void)
 178{
 179	return 1;
 180}
 181
 182#define DEFAULT_NUM_IVECS	(0xfffU)
 183static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
 184#define NUM_IVECS (nr_ivec)
 185
 186static unsigned int __init size_nr_ivec(void)
 187{
 188	if (tlb_type == hypervisor) {
 189		switch (sun4v_chip_type) {
 190		/* Athena's devhandle|devino is large.*/
 191		case SUN4V_CHIP_SPARC64X:
 192			nr_ivec = 0xffff;
 193			break;
 194		}
 195	}
 196	return nr_ivec;
 197}
 
 
 
 
 
 
 198
 199struct irq_handler_data {
 200	union {
 201		struct {
 202			unsigned int dev_handle;
 203			unsigned int dev_ino;
 204		};
 205		unsigned long sysino;
 206	};
 207	struct ino_bucket bucket;
 208	unsigned long	iclr;
 209	unsigned long	imap;
 210};
 211
 212static inline unsigned int irq_data_to_handle(struct irq_data *data)
 213{
 214	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 215
 216	return ihd->dev_handle;
 217}
 218
 219static inline unsigned int irq_data_to_ino(struct irq_data *data)
 220{
 221	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 222
 223	return ihd->dev_ino;
 224}
 225
 226static inline unsigned long irq_data_to_sysino(struct irq_data *data)
 227{
 228	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
 229
 230	return ihd->sysino;
 231}
 232
 
 233void irq_free(unsigned int irq)
 234{
 235	void *data = irq_get_handler_data(irq);
 236
 237	kfree(data);
 238	irq_set_handler_data(irq, NULL);
 239	irq_free_descs(irq, 1);
 240}
 241
 242unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
 243{
 244	int irq;
 245
 246	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
 247	if (irq <= 0)
 248		goto out;
 249
 250	return irq;
 251out:
 252	return 0;
 253}
 254
 255static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
 256{
 257	unsigned long hv_err, cookie;
 258	struct ino_bucket *bucket;
 259	unsigned int irq = 0U;
 260
 261	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
 262	if (hv_err) {
 263		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
 264		goto out;
 265	}
 266
 267	if (cookie & ((1UL << 63UL))) {
 268		cookie = ~cookie;
 269		bucket = (struct ino_bucket *) __va(cookie);
 270		irq = bucket->__irq;
 271	}
 272out:
 273	return irq;
 274}
 275
 276static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
 277{
 278	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
 279	struct ino_bucket *bucket;
 280	unsigned int irq;
 281
 282	bucket = &ivector_table[sysino];
 283	irq = bucket_get_irq(__pa(bucket));
 284
 285	return irq;
 286}
 287
 288void ack_bad_irq(unsigned int irq)
 289{
 290	pr_crit("BAD IRQ ack %d\n", irq);
 291}
 292
 293void irq_install_pre_handler(int irq,
 294			     void (*func)(unsigned int, void *, void *),
 295			     void *arg1, void *arg2)
 296{
 297	pr_warn("IRQ pre handler NOT supported.\n");
 298}
 
 299
 300/*
 301 * /proc/interrupts printing:
 302 */
 303int arch_show_interrupts(struct seq_file *p, int prec)
 304{
 305	int j;
 306
 307	seq_printf(p, "NMI: ");
 308	for_each_online_cpu(j)
 309		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
 310	seq_printf(p, "     Non-maskable interrupts\n");
 311	return 0;
 312}
 313
 314static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
 315{
 316	unsigned int tid;
 317
 318	if (this_is_starfire) {
 319		tid = starfire_translate(imap, cpuid);
 320		tid <<= IMAP_TID_SHIFT;
 321		tid &= IMAP_TID_UPA;
 322	} else {
 323		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 324			unsigned long ver;
 325
 326			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 327			if ((ver >> 32UL) == __JALAPENO_ID ||
 328			    (ver >> 32UL) == __SERRANO_ID) {
 329				tid = cpuid << IMAP_TID_SHIFT;
 330				tid &= IMAP_TID_JBUS;
 331			} else {
 332				unsigned int a = cpuid & 0x1f;
 333				unsigned int n = (cpuid >> 5) & 0x1f;
 334
 335				tid = ((a << IMAP_AID_SHIFT) |
 336				       (n << IMAP_NID_SHIFT));
 337				tid &= (IMAP_AID_SAFARI |
 338					IMAP_NID_SAFARI);
 339			}
 340		} else {
 341			tid = cpuid << IMAP_TID_SHIFT;
 342			tid &= IMAP_TID_UPA;
 343		}
 344	}
 345
 346	return tid;
 347}
 348
 
 
 
 
 
 
 
 
 
 349#ifdef CONFIG_SMP
 350static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
 351{
 352	cpumask_t mask;
 353	int cpuid;
 354
 355	cpumask_copy(&mask, affinity);
 356	if (cpumask_equal(&mask, cpu_online_mask)) {
 357		cpuid = map_to_cpu(irq);
 358	} else {
 359		cpumask_t tmp;
 360
 361		cpumask_and(&tmp, cpu_online_mask, &mask);
 362		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
 363	}
 364
 365	return cpuid;
 366}
 367#else
 368#define irq_choose_cpu(irq, affinity)	\
 369	real_hard_smp_processor_id()
 370#endif
 371
 372static void sun4u_irq_enable(struct irq_data *data)
 373{
 374	struct irq_handler_data *handler_data;
 375
 376	handler_data = irq_data_get_irq_handler_data(data);
 377	if (likely(handler_data)) {
 378		unsigned long cpuid, imap, val;
 379		unsigned int tid;
 380
 381		cpuid = irq_choose_cpu(data->irq,
 382				       irq_data_get_affinity_mask(data));
 383		imap = handler_data->imap;
 384
 385		tid = sun4u_compute_tid(imap, cpuid);
 386
 387		val = upa_readq(imap);
 388		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
 389			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
 390		val |= tid | IMAP_VALID;
 391		upa_writeq(val, imap);
 392		upa_writeq(ICLR_IDLE, handler_data->iclr);
 393	}
 394}
 395
 396static int sun4u_set_affinity(struct irq_data *data,
 397			       const struct cpumask *mask, bool force)
 398{
 399	struct irq_handler_data *handler_data;
 400
 401	handler_data = irq_data_get_irq_handler_data(data);
 402	if (likely(handler_data)) {
 403		unsigned long cpuid, imap, val;
 404		unsigned int tid;
 405
 406		cpuid = irq_choose_cpu(data->irq, mask);
 407		imap = handler_data->imap;
 408
 409		tid = sun4u_compute_tid(imap, cpuid);
 410
 411		val = upa_readq(imap);
 412		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
 413			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
 414		val |= tid | IMAP_VALID;
 415		upa_writeq(val, imap);
 416		upa_writeq(ICLR_IDLE, handler_data->iclr);
 417	}
 418
 419	return 0;
 420}
 421
 422/* Don't do anything.  The desc->status check for IRQ_DISABLED in
 423 * handler_irq() will skip the handler call and that will leave the
 424 * interrupt in the sent state.  The next ->enable() call will hit the
 425 * ICLR register to reset the state machine.
 426 *
 427 * This scheme is necessary, instead of clearing the Valid bit in the
 428 * IMAP register, to handle the case of IMAP registers being shared by
 429 * multiple INOs (and thus ICLR registers).  Since we use a different
 430 * virtual IRQ for each shared IMAP instance, the generic code thinks
 431 * there is only one user so it prematurely calls ->disable() on
 432 * free_irq().
 433 *
 434 * We have to provide an explicit ->disable() method instead of using
 435 * NULL to get the default.  The reason is that if the generic code
 436 * sees that, it also hooks up a default ->shutdown method which
 437 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
 438 */
 439static void sun4u_irq_disable(struct irq_data *data)
 440{
 441}
 442
 443static void sun4u_irq_eoi(struct irq_data *data)
 444{
 445	struct irq_handler_data *handler_data;
 446
 447	handler_data = irq_data_get_irq_handler_data(data);
 448	if (likely(handler_data))
 449		upa_writeq(ICLR_IDLE, handler_data->iclr);
 450}
 451
 452static void sun4v_irq_enable(struct irq_data *data)
 453{
 454	unsigned long cpuid = irq_choose_cpu(data->irq,
 455					     irq_data_get_affinity_mask(data));
 456	unsigned int ino = irq_data_to_sysino(data);
 457	int err;
 458
 459	err = sun4v_intr_settarget(ino, cpuid);
 460	if (err != HV_EOK)
 461		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
 462		       "err(%d)\n", ino, cpuid, err);
 463	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
 464	if (err != HV_EOK)
 465		printk(KERN_ERR "sun4v_intr_setstate(%x): "
 466		       "err(%d)\n", ino, err);
 467	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
 468	if (err != HV_EOK)
 469		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
 470		       ino, err);
 471}
 472
 473static int sun4v_set_affinity(struct irq_data *data,
 474			       const struct cpumask *mask, bool force)
 475{
 
 476	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
 477	unsigned int ino = irq_data_to_sysino(data);
 478	int err;
 479
 480	err = sun4v_intr_settarget(ino, cpuid);
 481	if (err != HV_EOK)
 482		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
 483		       "err(%d)\n", ino, cpuid, err);
 484
 485	return 0;
 486}
 487
 488static void sun4v_irq_disable(struct irq_data *data)
 489{
 490	unsigned int ino = irq_data_to_sysino(data);
 491	int err;
 492
 493	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
 494	if (err != HV_EOK)
 495		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
 496		       "err(%d)\n", ino, err);
 497}
 498
 499static void sun4v_irq_eoi(struct irq_data *data)
 500{
 501	unsigned int ino = irq_data_to_sysino(data);
 502	int err;
 503
 504	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
 505	if (err != HV_EOK)
 506		printk(KERN_ERR "sun4v_intr_setstate(%x): "
 507		       "err(%d)\n", ino, err);
 508}
 509
 510static void sun4v_virq_enable(struct irq_data *data)
 511{
 512	unsigned long dev_handle = irq_data_to_handle(data);
 513	unsigned long dev_ino = irq_data_to_ino(data);
 514	unsigned long cpuid;
 515	int err;
 516
 517	cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
 
 
 
 518
 519	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
 520	if (err != HV_EOK)
 521		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
 522		       "err(%d)\n",
 523		       dev_handle, dev_ino, cpuid, err);
 524	err = sun4v_vintr_set_state(dev_handle, dev_ino,
 525				    HV_INTR_STATE_IDLE);
 526	if (err != HV_EOK)
 527		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 528		       "HV_INTR_STATE_IDLE): err(%d)\n",
 529		       dev_handle, dev_ino, err);
 530	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
 531				    HV_INTR_ENABLED);
 532	if (err != HV_EOK)
 533		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 534		       "HV_INTR_ENABLED): err(%d)\n",
 535		       dev_handle, dev_ino, err);
 536}
 537
 538static int sun4v_virt_set_affinity(struct irq_data *data,
 539				    const struct cpumask *mask, bool force)
 540{
 541	unsigned long dev_handle = irq_data_to_handle(data);
 542	unsigned long dev_ino = irq_data_to_ino(data);
 543	unsigned long cpuid;
 544	int err;
 545
 546	cpuid = irq_choose_cpu(data->irq, mask);
 547
 
 
 
 548	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
 549	if (err != HV_EOK)
 550		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
 551		       "err(%d)\n",
 552		       dev_handle, dev_ino, cpuid, err);
 553
 554	return 0;
 555}
 556
 557static void sun4v_virq_disable(struct irq_data *data)
 558{
 559	unsigned long dev_handle = irq_data_to_handle(data);
 560	unsigned long dev_ino = irq_data_to_ino(data);
 561	int err;
 562
 
 
 563
 564	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
 565				    HV_INTR_DISABLED);
 566	if (err != HV_EOK)
 567		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 568		       "HV_INTR_DISABLED): err(%d)\n",
 569		       dev_handle, dev_ino, err);
 570}
 571
 572static void sun4v_virq_eoi(struct irq_data *data)
 573{
 574	unsigned long dev_handle = irq_data_to_handle(data);
 575	unsigned long dev_ino = irq_data_to_ino(data);
 576	int err;
 577
 
 
 
 578	err = sun4v_vintr_set_state(dev_handle, dev_ino,
 579				    HV_INTR_STATE_IDLE);
 580	if (err != HV_EOK)
 581		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
 582		       "HV_INTR_STATE_IDLE): err(%d)\n",
 583		       dev_handle, dev_ino, err);
 584}
 585
 586static struct irq_chip sun4u_irq = {
 587	.name			= "sun4u",
 588	.irq_enable		= sun4u_irq_enable,
 589	.irq_disable		= sun4u_irq_disable,
 590	.irq_eoi		= sun4u_irq_eoi,
 591	.irq_set_affinity	= sun4u_set_affinity,
 592	.flags			= IRQCHIP_EOI_IF_HANDLED,
 593};
 594
 595static struct irq_chip sun4v_irq = {
 596	.name			= "sun4v",
 597	.irq_enable		= sun4v_irq_enable,
 598	.irq_disable		= sun4v_irq_disable,
 599	.irq_eoi		= sun4v_irq_eoi,
 600	.irq_set_affinity	= sun4v_set_affinity,
 601	.flags			= IRQCHIP_EOI_IF_HANDLED,
 602};
 603
 604static struct irq_chip sun4v_virq = {
 605	.name			= "vsun4v",
 606	.irq_enable		= sun4v_virq_enable,
 607	.irq_disable		= sun4v_virq_disable,
 608	.irq_eoi		= sun4v_virq_eoi,
 609	.irq_set_affinity	= sun4v_virt_set_affinity,
 610	.flags			= IRQCHIP_EOI_IF_HANDLED,
 611};
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
 614{
 
 615	struct irq_handler_data *handler_data;
 616	struct ino_bucket *bucket;
 617	unsigned int irq;
 618	int ino;
 619
 620	BUG_ON(tlb_type == hypervisor);
 621
 622	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
 623	bucket = &ivector_table[ino];
 624	irq = bucket_get_irq(__pa(bucket));
 625	if (!irq) {
 626		irq = irq_alloc(0, ino);
 627		bucket_set_irq(__pa(bucket), irq);
 628		irq_set_chip_and_handler_name(irq, &sun4u_irq,
 629					      handle_fasteoi_irq, "IVEC");
 630	}
 631
 632	handler_data = irq_get_handler_data(irq);
 633	if (unlikely(handler_data))
 634		goto out;
 635
 636	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
 637	if (unlikely(!handler_data)) {
 638		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
 639		prom_halt();
 640	}
 641	irq_set_handler_data(irq, handler_data);
 642
 643	handler_data->imap  = imap;
 644	handler_data->iclr  = iclr;
 645
 646out:
 647	return irq;
 648}
 649
 650static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
 651		void (*handler_data_init)(struct irq_handler_data *data,
 652		u32 devhandle, unsigned int devino),
 653		struct irq_chip *chip)
 654{
 655	struct irq_handler_data *data;
 
 656	unsigned int irq;
 657
 658	irq = irq_alloc(devhandle, devino);
 659	if (!irq)
 660		goto out;
 661
 662	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
 663	if (unlikely(!data)) {
 664		pr_err("IRQ handler data allocation failed.\n");
 665		irq_free(irq);
 666		irq = 0;
 667		goto out;
 
 668	}
 669
 670	irq_set_handler_data(irq, data);
 671	handler_data_init(data, devhandle, devino);
 672	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
 673	data->imap = ~0UL;
 674	data->iclr = ~0UL;
 675out:
 676	return irq;
 677}
 678
 679static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
 680		unsigned int devino)
 681{
 682	struct irq_handler_data *ihd = irq_get_handler_data(irq);
 683	unsigned long hv_error, cookie;
 
 684
 685	/* handler_irq needs to find the irq. cookie is seen signed in
 686	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
 
 687	 */
 688	ihd->bucket.__irq = irq;
 689	cookie = ~__pa(&ihd->bucket);
 690
 691	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
 692	if (hv_error)
 693		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
 694
 695	return hv_error;
 696}
 697
 698static void cookie_handler_data(struct irq_handler_data *data,
 699				u32 devhandle, unsigned int devino)
 700{
 701	data->dev_handle = devhandle;
 702	data->dev_ino = devino;
 703}
 704
 705static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
 706				     struct irq_chip *chip)
 707{
 708	unsigned long hv_error;
 709	unsigned int irq;
 710
 711	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
 712
 713	hv_error = cookie_assign(irq, devhandle, devino);
 714	if (hv_error) {
 715		irq_free(irq);
 716		irq = 0;
 717	}
 718
 719	return irq;
 720}
 721
 722static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
 723{
 
 
 
 724	unsigned int irq;
 725
 726	irq = cookie_exists(devhandle, devino);
 727	if (irq)
 728		goto out;
 
 
 
 
 
 
 
 729
 730	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
 
 
 731
 732out:
 733	return irq;
 734}
 735
 736static void sysino_set_bucket(unsigned int irq)
 737{
 738	struct irq_handler_data *ihd = irq_get_handler_data(irq);
 739	struct ino_bucket *bucket;
 740	unsigned long sysino;
 741
 742	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
 743	BUG_ON(sysino >= nr_ivec);
 744	bucket = &ivector_table[sysino];
 745	bucket_set_irq(__pa(bucket), irq);
 746}
 747
 748static void sysino_handler_data(struct irq_handler_data *data,
 749				u32 devhandle, unsigned int devino)
 750{
 751	unsigned long sysino;
 752
 753	sysino = sun4v_devino_to_sysino(devhandle, devino);
 754	data->sysino = sysino;
 755}
 756
 757static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
 758				     struct irq_chip *chip)
 759{
 760	unsigned int irq;
 
 
 761
 762	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
 763	if (!irq)
 764		goto out;
 
 
 
 765
 766	sysino_set_bucket(irq);
 767out:
 768	return irq;
 769}
 
 
 
 770
 771static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
 772{
 773	int irq;
 774
 775	irq = sysino_exists(devhandle, devino);
 776	if (irq)
 777		goto out;
 778
 779	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
 780out:
 781	return irq;
 782}
 783
 784unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
 785{
 786	unsigned int irq;
 787
 788	if (sun4v_cookie_only_virqs())
 789		irq = sun4v_build_cookie(devhandle, devino);
 790	else
 791		irq = sun4v_build_sysino(devhandle, devino);
 792
 793	return irq;
 794}
 795
 796unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
 797{
 798	int irq;
 799
 800	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
 801	if (!irq)
 802		goto out;
 803
 804	/* This is borrowed from the original function.
 805	 */
 806	irq_set_status_flags(irq, IRQ_NOAUTOEN);
 807
 808out:
 809	return irq;
 810}
 811
 812void *hardirq_stack[NR_CPUS];
 813void *softirq_stack[NR_CPUS];
 814
 815void __irq_entry handler_irq(int pil, struct pt_regs *regs)
 816{
 817	unsigned long pstate, bucket_pa;
 818	struct pt_regs *old_regs;
 819	void *orig_sp;
 820
 821	clear_softint(1 << pil);
 822
 823	old_regs = set_irq_regs(regs);
 824	irq_enter();
 825
 826	/* Grab an atomic snapshot of the pending IVECs.  */
 827	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
 828			     "wrpr	%0, %3, %%pstate\n\t"
 829			     "ldx	[%2], %1\n\t"
 830			     "stx	%%g0, [%2]\n\t"
 831			     "wrpr	%0, 0x0, %%pstate\n\t"
 832			     : "=&r" (pstate), "=&r" (bucket_pa)
 833			     : "r" (irq_work_pa(smp_processor_id())),
 834			       "i" (PSTATE_IE)
 835			     : "memory");
 836
 837	orig_sp = set_hardirq_stack();
 838
 839	while (bucket_pa) {
 840		unsigned long next_pa;
 841		unsigned int irq;
 842
 843		next_pa = bucket_get_chain_pa(bucket_pa);
 844		irq = bucket_get_irq(bucket_pa);
 845		bucket_clear_chain_pa(bucket_pa);
 846
 847		generic_handle_irq(irq);
 848
 849		bucket_pa = next_pa;
 850	}
 851
 852	restore_hardirq_stack(orig_sp);
 853
 854	irq_exit();
 855	set_irq_regs(old_regs);
 856}
 857
 858#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
 859void do_softirq_own_stack(void)
 860{
 861	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
 
 
 
 862
 863	sp += THREAD_SIZE - 192 - STACK_BIAS;
 864
 865	__asm__ __volatile__("mov %%sp, %0\n\t"
 866			     "mov %1, %%sp"
 867			     : "=&r" (orig_sp)
 868			     : "r" (sp));
 869	__do_softirq();
 870	__asm__ __volatile__("mov %0, %%sp"
 871			     : : "r" (orig_sp));
 
 
 
 
 
 
 
 
 872}
 873#endif
 874
 875#ifdef CONFIG_HOTPLUG_CPU
 876void fixup_irqs(void)
 877{
 878	unsigned int irq;
 879
 880	for (irq = 0; irq < NR_IRQS; irq++) {
 881		struct irq_desc *desc = irq_to_desc(irq);
 882		struct irq_data *data;
 883		unsigned long flags;
 884
 885		if (!desc)
 886			continue;
 887		data = irq_desc_get_irq_data(desc);
 888		raw_spin_lock_irqsave(&desc->lock, flags);
 889		if (desc->action && !irqd_is_per_cpu(data)) {
 890			if (data->chip->irq_set_affinity)
 891				data->chip->irq_set_affinity(data,
 892					irq_data_get_affinity_mask(data),
 893					false);
 894		}
 895		raw_spin_unlock_irqrestore(&desc->lock, flags);
 896	}
 897
 898	tick_ops->disable_irq();
 899}
 900#endif
 901
 902struct sun5_timer {
 903	u64	count0;
 904	u64	limit0;
 905	u64	count1;
 906	u64	limit1;
 907};
 908
 909static struct sun5_timer *prom_timers;
 910static u64 prom_limit0, prom_limit1;
 911
 912static void map_prom_timers(void)
 913{
 914	struct device_node *dp;
 915	const unsigned int *addr;
 916
 917	/* PROM timer node hangs out in the top level of device siblings... */
 918	dp = of_find_node_by_path("/");
 919	dp = dp->child;
 920	while (dp) {
 921		if (of_node_name_eq(dp, "counter-timer"))
 922			break;
 923		dp = dp->sibling;
 924	}
 925
 926	/* Assume if node is not present, PROM uses different tick mechanism
 927	 * which we should not care about.
 928	 */
 929	if (!dp) {
 930		prom_timers = (struct sun5_timer *) 0;
 931		return;
 932	}
 933
 934	/* If PROM is really using this, it must be mapped by him. */
 935	addr = of_get_property(dp, "address", NULL);
 936	if (!addr) {
 937		prom_printf("PROM does not have timer mapped, trying to continue.\n");
 938		prom_timers = (struct sun5_timer *) 0;
 939		return;
 940	}
 941	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
 942}
 943
 944static void kill_prom_timer(void)
 945{
 946	if (!prom_timers)
 947		return;
 948
 949	/* Save them away for later. */
 950	prom_limit0 = prom_timers->limit0;
 951	prom_limit1 = prom_timers->limit1;
 952
 953	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
 954	 * We turn both off here just to be paranoid.
 955	 */
 956	prom_timers->limit0 = 0;
 957	prom_timers->limit1 = 0;
 958
 959	/* Wheee, eat the interrupt packet too... */
 960	__asm__ __volatile__(
 961"	mov	0x40, %%g2\n"
 962"	ldxa	[%%g0] %0, %%g1\n"
 963"	ldxa	[%%g2] %1, %%g1\n"
 964"	stxa	%%g0, [%%g0] %0\n"
 965"	membar	#Sync\n"
 966	: /* no outputs */
 967	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
 968	: "g1", "g2");
 969}
 970
 971void notrace init_irqwork_curcpu(void)
 972{
 973	int cpu = hard_smp_processor_id();
 974
 975	trap_block[cpu].irq_worklist_pa = 0UL;
 976}
 977
 978/* Please be very careful with register_one_mondo() and
 979 * sun4v_register_mondo_queues().
 980 *
 981 * On SMP this gets invoked from the CPU trampoline before
 982 * the cpu has fully taken over the trap table from OBP,
 983 * and it's kernel stack + %g6 thread register state is
 984 * not fully cooked yet.
 985 *
 986 * Therefore you cannot make any OBP calls, not even prom_printf,
 987 * from these two routines.
 988 */
 989static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
 990				       unsigned long qmask)
 991{
 992	unsigned long num_entries = (qmask + 1) / 64;
 993	unsigned long status;
 994
 995	status = sun4v_cpu_qconf(type, paddr, num_entries);
 996	if (status != HV_EOK) {
 997		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
 998			    "err %lu\n", type, paddr, num_entries, status);
 999		prom_halt();
1000	}
1001}
1002
1003void notrace sun4v_register_mondo_queues(int this_cpu)
1004{
1005	struct trap_per_cpu *tb = &trap_block[this_cpu];
1006
1007	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1008			   tb->cpu_mondo_qmask);
1009	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1010			   tb->dev_mondo_qmask);
1011	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1012			   tb->resum_qmask);
1013	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1014			   tb->nonresum_qmask);
1015}
1016
1017/* Each queue region must be a power of 2 multiple of 64 bytes in
1018 * size.  The base real address must be aligned to the size of the
1019 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1020 */
1021static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1022{
1023	unsigned long size = PAGE_ALIGN(qmask + 1);
1024	unsigned long order = get_order(size);
1025	unsigned long p;
1026
1027	p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1028	if (!p) {
1029		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1030		prom_halt();
1031	}
1032
1033	*pa_ptr = __pa(p);
1034}
1035
1036static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1037{
1038#ifdef CONFIG_SMP
1039	unsigned long page;
1040	void *mondo, *p;
1041
1042	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1043
1044	/* Make sure mondo block is 64byte aligned */
1045	p = kzalloc(127, GFP_KERNEL);
1046	if (!p) {
1047		prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1048		prom_halt();
1049	}
1050	mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1051	tb->cpu_mondo_block_pa = __pa(mondo);
1052
1053	page = get_zeroed_page(GFP_KERNEL);
1054	if (!page) {
1055		prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1056		prom_halt();
1057	}
1058
1059	tb->cpu_list_pa = __pa(page);
 
1060#endif
1061}
1062
1063/* Allocate mondo and error queues for all possible cpus.  */
1064static void __init sun4v_init_mondo_queues(void)
1065{
1066	int cpu;
1067
1068	for_each_possible_cpu(cpu) {
1069		struct trap_per_cpu *tb = &trap_block[cpu];
1070
1071		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1072		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1073		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1074		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1075		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1076		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1077				tb->nonresum_qmask);
1078	}
1079}
1080
1081static void __init init_send_mondo_info(void)
1082{
1083	int cpu;
1084
1085	for_each_possible_cpu(cpu) {
1086		struct trap_per_cpu *tb = &trap_block[cpu];
1087
1088		init_cpu_send_mondo_info(tb);
1089	}
1090}
1091
1092static struct irqaction timer_irq_action = {
1093	.name = "timer",
1094};
1095
1096static void __init irq_ivector_init(void)
 
1097{
1098	unsigned long size, order;
1099	unsigned int ivecs;
1100
1101	/* If we are doing cookie only VIRQs then we do not need the ivector
1102	 * table to process interrupts.
1103	 */
1104	if (sun4v_cookie_only_virqs())
1105		return;
1106
1107	ivecs = size_nr_ivec();
1108	size = sizeof(struct ino_bucket) * ivecs;
1109	order = get_order(size);
1110	ivector_table = (struct ino_bucket *)
1111		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1112	if (!ivector_table) {
1113		prom_printf("Fatal error, cannot allocate ivector_table\n");
1114		prom_halt();
1115	}
1116	__flush_dcache_range((unsigned long) ivector_table,
1117			     ((unsigned long) ivector_table) + size);
1118
1119	ivector_table_pa = __pa(ivector_table);
1120}
1121
1122/* Only invoked on boot processor.*/
1123void __init init_IRQ(void)
1124{
1125	irq_init_hv();
1126	irq_ivector_init();
1127	map_prom_timers();
1128	kill_prom_timer();
1129
1130	if (tlb_type == hypervisor)
1131		sun4v_init_mondo_queues();
1132
1133	init_send_mondo_info();
1134
1135	if (tlb_type == hypervisor) {
1136		/* Load up the boot cpu's entries.  */
1137		sun4v_register_mondo_queues(hard_smp_processor_id());
1138	}
1139
1140	/* We need to clear any IRQ's pending in the soft interrupt
1141	 * registers, a spurious one could be left around from the
1142	 * PROM timer which we just disabled.
1143	 */
1144	clear_softint(get_softint());
1145
1146	/* Now that ivector table is initialized, it is safe
1147	 * to receive IRQ vector traps.  We will normally take
1148	 * one or two right now, in case some device PROM used
1149	 * to boot us wants to speak to us.  We just ignore them.
1150	 */
1151	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1152			     "or	%%g1, %0, %%g1\n\t"
1153			     "wrpr	%%g1, 0x0, %%pstate"
1154			     : /* No outputs */
1155			     : "i" (PSTATE_IE)
1156			     : "g1");
1157
1158	irq_to_desc(0)->action = &timer_irq_action;
1159}