Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
 
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
  21#include <linux/init.h>
  22#include <linux/kexec.h>
 
 
  23#include <linux/of_fdt.h>
  24#include <linux/root_dev.h>
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
  28#include <linux/fs.h>
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
 
  34
  35#include <asm/unified.h>
  36#include <asm/cp15.h>
  37#include <asm/cpu.h>
  38#include <asm/cputype.h>
 
  39#include <asm/elf.h>
 
 
  40#include <asm/procinfo.h>
 
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
 
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
 
 
  58
  59#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  60#include "compat.h"
  61#endif
  62#include "atags.h"
  63#include "tcm.h"
  64
  65#ifndef MEM_SIZE
  66#define MEM_SIZE	(16*1024*1024)
  67#endif
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void paging_init(struct machine_desc *desc);
  82extern void sanity_check_meminfo(void);
  83extern void reboot_setup(char *str);
  84extern void setup_dma_zone(struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
 
 
 
  98unsigned int system_serial_low;
  99EXPORT_SYMBOL(system_serial_low);
 100
 101unsigned int system_serial_high;
 102EXPORT_SYMBOL(system_serial_high);
 103
 104unsigned int elf_hwcap __read_mostly;
 105EXPORT_SYMBOL(elf_hwcap);
 106
 
 
 
 107
 108#ifdef MULTI_CPU
 109struct processor processor __read_mostly;
 
 
 
 
 
 110#endif
 111#ifdef MULTI_TLB
 112struct cpu_tlb_fns cpu_tlb __read_mostly;
 113#endif
 114#ifdef MULTI_USER
 115struct cpu_user_fns cpu_user __read_mostly;
 116#endif
 117#ifdef MULTI_CACHE
 118struct cpu_cache_fns cpu_cache __read_mostly;
 119#endif
 120#ifdef CONFIG_OUTER_CACHE
 121struct outer_cache_fns outer_cache __read_mostly;
 122EXPORT_SYMBOL(outer_cache);
 123#endif
 124
 125/*
 126 * Cached cpu_architecture() result for use by assembler code.
 127 * C code should use the cpu_architecture() function instead of accessing this
 128 * variable directly.
 129 */
 130int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 131
 132struct stack {
 133	u32 irq[3];
 134	u32 abt[3];
 135	u32 und[3];
 
 136} ____cacheline_aligned;
 137
 
 138static struct stack stacks[NR_CPUS];
 
 139
 140char elf_platform[ELF_PLATFORM_SIZE];
 141EXPORT_SYMBOL(elf_platform);
 142
 143static const char *cpu_name;
 144static const char *machine_name;
 145static char __initdata cmd_line[COMMAND_LINE_SIZE];
 146struct machine_desc *machine_desc __initdata;
 147
 148static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"?(11)",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 
 
 
 
 
 
 227static int __get_cpu_architecture(void)
 228{
 229	int cpu_arch;
 230
 231	if ((read_cpuid_id() & 0x0008f000) == 0) {
 232		cpu_arch = CPU_ARCH_UNKNOWN;
 233	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 234		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 235	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 236		cpu_arch = (read_cpuid_id() >> 16) & 7;
 237		if (cpu_arch)
 238			cpu_arch += CPU_ARCH_ARMv3;
 239	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 240		unsigned int mmfr0;
 241
 242		/* Revised CPUID format. Read the Memory Model Feature
 243		 * Register 0 and check for VMSAv7 or PMSAv7 */
 244		asm("mrc	p15, 0, %0, c0, c1, 4"
 245		    : "=r" (mmfr0));
 246		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 247		    (mmfr0 & 0x000000f0) >= 0x00000030)
 248			cpu_arch = CPU_ARCH_ARMv7;
 249		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 250			 (mmfr0 & 0x000000f0) == 0x00000020)
 251			cpu_arch = CPU_ARCH_ARMv6;
 252		else
 253			cpu_arch = CPU_ARCH_UNKNOWN;
 254	} else
 255		cpu_arch = CPU_ARCH_UNKNOWN;
 256
 257	return cpu_arch;
 258}
 
 259
 260int __pure cpu_architecture(void)
 261{
 262	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 263
 264	return __cpu_architecture;
 265}
 266
 267static int cpu_has_aliasing_icache(unsigned int arch)
 268{
 269	int aliasing_icache;
 270	unsigned int id_reg, num_sets, line_size;
 271
 272	/* PIPT caches never alias. */
 273	if (icache_is_pipt())
 274		return 0;
 275
 276	/* arch specifies the register format */
 277	switch (arch) {
 278	case CPU_ARCH_ARMv7:
 279		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 280		    : /* No output operands */
 281		    : "r" (1));
 282		isb();
 283		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 284		    : "=r" (id_reg));
 285		line_size = 4 << ((id_reg & 0x7) + 2);
 286		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 287		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 288		break;
 289	case CPU_ARCH_ARMv6:
 290		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 291		break;
 292	default:
 293		/* I-cache aliases will be handled by D-cache aliasing code */
 294		aliasing_icache = 0;
 295	}
 296
 297	return aliasing_icache;
 298}
 299
 300static void __init cacheid_init(void)
 301{
 302	unsigned int cachetype = read_cpuid_cachetype();
 303	unsigned int arch = cpu_architecture();
 304
 305	if (arch >= CPU_ARCH_ARMv6) {
 306		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 
 307			/* ARMv7 register format */
 308			arch = CPU_ARCH_ARMv7;
 309			cacheid = CACHEID_VIPT_NONALIASING;
 310			switch (cachetype & (3 << 14)) {
 311			case (1 << 14):
 312				cacheid |= CACHEID_ASID_TAGGED;
 313				break;
 314			case (3 << 14):
 315				cacheid |= CACHEID_PIPT;
 316				break;
 317			}
 318		} else {
 319			arch = CPU_ARCH_ARMv6;
 320			if (cachetype & (1 << 23))
 321				cacheid = CACHEID_VIPT_ALIASING;
 322			else
 323				cacheid = CACHEID_VIPT_NONALIASING;
 324		}
 325		if (cpu_has_aliasing_icache(arch))
 326			cacheid |= CACHEID_VIPT_I_ALIASING;
 327	} else {
 328		cacheid = CACHEID_VIVT;
 329	}
 330
 331	printk("CPU: %s data cache, %s instruction cache\n",
 332		cache_is_vivt() ? "VIVT" :
 333		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 334		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 335		cache_is_vivt() ? "VIVT" :
 336		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 337		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 338		icache_is_pipt() ? "PIPT" :
 339		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 340}
 341
 342/*
 343 * These functions re-use the assembly code in head.S, which
 344 * already provide the required functionality.
 345 */
 346extern struct proc_info_list *lookup_processor_type(unsigned int);
 347
 348void __init early_print(const char *str, ...)
 349{
 350	extern void printascii(const char *);
 351	char buf[256];
 352	va_list ap;
 353
 354	va_start(ap, str);
 355	vsnprintf(buf, sizeof(buf), str, ap);
 356	va_end(ap);
 357
 358#ifdef CONFIG_DEBUG_LL
 359	printascii(buf);
 360#endif
 361	printk("%s", buf);
 362}
 363
 364static void __init feat_v6_fixup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365{
 366	int id = read_cpuid_id();
 
 
 
 367
 368	if ((id & 0xff0f0000) != 0x41070000)
 
 369		return;
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371	/*
 372	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 373	 * see also kuser_get_tls_init.
 374	 */
 375	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 376		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379/*
 380 * cpu_init - initialise one CPU.
 381 *
 382 * cpu_init sets up the per-CPU stacks.
 383 */
 384void cpu_init(void)
 385{
 
 386	unsigned int cpu = smp_processor_id();
 387	struct stack *stk = &stacks[cpu];
 388
 389	if (cpu >= NR_CPUS) {
 390		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 391		BUG();
 392	}
 393
 
 
 
 
 
 
 394	cpu_proc_init();
 395
 396	/*
 397	 * Define the placement constraint for the inline asm directive below.
 398	 * In Thumb-2, msr with an immediate value is not allowed.
 399	 */
 400#ifdef CONFIG_THUMB2_KERNEL
 401#define PLC	"r"
 
 402#else
 403#define PLC	"I"
 
 404#endif
 405
 406	/*
 407	 * setup stacks for re-entrant exception handlers
 408	 */
 409	__asm__ (
 410	"msr	cpsr_c, %1\n\t"
 411	"add	r14, %0, %2\n\t"
 412	"mov	sp, r14\n\t"
 413	"msr	cpsr_c, %3\n\t"
 414	"add	r14, %0, %4\n\t"
 415	"mov	sp, r14\n\t"
 416	"msr	cpsr_c, %5\n\t"
 417	"add	r14, %0, %6\n\t"
 418	"mov	sp, r14\n\t"
 419	"msr	cpsr_c, %7"
 
 
 
 420	    :
 421	    : "r" (stk),
 422	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 423	      "I" (offsetof(struct stack, irq[0])),
 424	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 425	      "I" (offsetof(struct stack, abt[0])),
 426	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 427	      "I" (offsetof(struct stack, und[0])),
 428	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 
 
 429	    : "r14");
 
 430}
 431
 432int __cpu_logical_map[NR_CPUS];
 433
 434void __init smp_setup_processor_id(void)
 435{
 436	int i;
 437	u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
 
 438
 439	cpu_logical_map(0) = cpu;
 440	for (i = 1; i < NR_CPUS; ++i)
 441		cpu_logical_map(i) = i == cpu ? 0 : i;
 442
 443	printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
 
 
 
 
 
 
 
 444}
 445
 446static void __init setup_processor(void)
 
 
 
 
 
 
 
 
 447{
 448	struct proc_info_list *list;
 449
 
 
 
 
 
 
 
 450	/*
 451	 * locate processor in the list of supported processor
 452	 * types.  The linker builds this table for us from the
 453	 * entries in arch/arm/mm/proc-*.S
 454	 */
 455	list = lookup_processor_type(read_cpuid_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456	if (!list) {
 457		printk("CPU configuration botched (ID %08x), unable "
 458		       "to continue.\n", read_cpuid_id());
 459		while (1);
 
 460	}
 461
 
 
 
 
 
 
 
 
 462	cpu_name = list->cpu_name;
 463	__cpu_architecture = __get_cpu_architecture();
 464
 465#ifdef MULTI_CPU
 466	processor = *list->proc;
 467#endif
 468#ifdef MULTI_TLB
 469	cpu_tlb = *list->tlb;
 470#endif
 471#ifdef MULTI_USER
 472	cpu_user = *list->user;
 473#endif
 474#ifdef MULTI_CACHE
 475	cpu_cache = *list->cache;
 476#endif
 477
 478	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 479	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 480	       proc_arch[cpu_architecture()], cr_alignment);
 481
 482	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 483		 list->arch_name, ENDIANNESS);
 484	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 485		 list->elf_name, ENDIANNESS);
 486	elf_hwcap = list->elf_hwcap;
 
 
 
 
 487#ifndef CONFIG_ARM_THUMB
 488	elf_hwcap &= ~HWCAP_THUMB;
 
 
 
 489#endif
 
 490
 491	feat_v6_fixup();
 492
 493	cacheid_init();
 494	cpu_init();
 495}
 496
 497void __init dump_machine_table(void)
 498{
 499	struct machine_desc *p;
 500
 501	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 502	for_each_machine_desc(p)
 503		early_print("%08x\t%s\n", p->nr, p->name);
 504
 505	early_print("\nPlease check your kernel config and/or bootloader.\n");
 506
 507	while (true)
 508		/* can't use cpu_relax() here as it may require MMU setup */;
 509}
 510
 511int __init arm_add_memory(phys_addr_t start, unsigned long size)
 512{
 513	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 514
 515	if (meminfo.nr_banks >= NR_BANKS) {
 516		printk(KERN_CRIT "NR_BANKS too low, "
 517			"ignoring memory at 0x%08llx\n", (long long)start);
 518		return -EINVAL;
 519	}
 520
 521	/*
 522	 * Ensure that start/size are aligned to a page boundary.
 523	 * Size is appropriately rounded down, start is rounded up.
 524	 */
 525	size -= start & ~PAGE_MASK;
 526	bank->start = PAGE_ALIGN(start);
 
 
 
 
 
 
 
 
 
 
 527
 528#ifndef CONFIG_LPAE
 529	if (bank->start + size < bank->start) {
 530		printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
 531			"32-bit physical address space\n", (long long)start);
 532		/*
 533		 * To ensure bank->start + bank->size is representable in
 534		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 535		 * This means we lose a page after masking.
 536		 */
 537		size = ULONG_MAX - bank->start;
 538	}
 539#endif
 540
 541	bank->size = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543	/*
 544	 * Check whether this memory region has non-zero size or
 545	 * invalid node number.
 546	 */
 547	if (bank->size == 0)
 548		return -EINVAL;
 549
 550	meminfo.nr_banks++;
 551	return 0;
 552}
 553
 554/*
 555 * Pick out the memory size.  We look for mem=size@start,
 556 * where start and size are "size[KkMm]"
 557 */
 
 558static int __init early_mem(char *p)
 559{
 560	static int usermem __initdata = 0;
 561	unsigned long size;
 562	phys_addr_t start;
 563	char *endp;
 564
 565	/*
 566	 * If the user specifies memory size, we
 567	 * blow away any automatically generated
 568	 * size.
 569	 */
 570	if (usermem == 0) {
 571		usermem = 1;
 572		meminfo.nr_banks = 0;
 
 573	}
 574
 575	start = PHYS_OFFSET;
 576	size  = memparse(p, &endp);
 577	if (*endp == '@')
 578		start = memparse(endp + 1, NULL);
 579
 580	arm_add_memory(start, size);
 581
 582	return 0;
 583}
 584early_param("mem", early_mem);
 585
 586static void __init
 587setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 588{
 589#ifdef CONFIG_BLK_DEV_RAM
 590	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 591
 592	rd_image_start = image_start;
 593	rd_prompt = prompt;
 594	rd_doload = doload;
 595
 596	if (rd_sz)
 597		rd_size = rd_sz;
 598#endif
 599}
 600
 601static void __init request_standard_resources(struct machine_desc *mdesc)
 602{
 603	struct memblock_region *region;
 604	struct resource *res;
 
 605
 606	kernel_code.start   = virt_to_phys(_text);
 607	kernel_code.end     = virt_to_phys(_etext - 1);
 608	kernel_data.start   = virt_to_phys(_sdata);
 609	kernel_data.end     = virt_to_phys(_end - 1);
 610
 611	for_each_memblock(memory, region) {
 612		res = alloc_bootmem_low(sizeof(*res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613		res->name  = "System RAM";
 614		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 615		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 616		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 617
 618		request_resource(&iomem_resource, res);
 619
 620		if (kernel_code.start >= res->start &&
 621		    kernel_code.end <= res->end)
 622			request_resource(res, &kernel_code);
 623		if (kernel_data.start >= res->start &&
 624		    kernel_data.end <= res->end)
 625			request_resource(res, &kernel_data);
 626	}
 627
 628	if (mdesc->video_start) {
 629		video_ram.start = mdesc->video_start;
 630		video_ram.end   = mdesc->video_end;
 631		request_resource(&iomem_resource, &video_ram);
 632	}
 633
 634	/*
 635	 * Some machines don't have the possibility of ever
 636	 * possessing lp0, lp1 or lp2
 637	 */
 638	if (mdesc->reserve_lp0)
 639		request_resource(&ioport_resource, &lp0);
 640	if (mdesc->reserve_lp1)
 641		request_resource(&ioport_resource, &lp1);
 642	if (mdesc->reserve_lp2)
 643		request_resource(&ioport_resource, &lp2);
 644}
 645
 646/*
 647 *  Tag parsing.
 648 *
 649 * This is the new way of passing data to the kernel at boot time.  Rather
 650 * than passing a fixed inflexible structure to the kernel, we pass a list
 651 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 652 * tag for the list to be recognised (to distinguish the tagged list from
 653 * a param_struct).  The list is terminated with a zero-length tag (this tag
 654 * is not parsed in any way).
 655 */
 656static int __init parse_tag_core(const struct tag *tag)
 657{
 658	if (tag->hdr.size > 2) {
 659		if ((tag->u.core.flags & 1) == 0)
 660			root_mountflags &= ~MS_RDONLY;
 661		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 662	}
 663	return 0;
 664}
 665
 666__tagtable(ATAG_CORE, parse_tag_core);
 667
 668static int __init parse_tag_mem32(const struct tag *tag)
 669{
 670	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 671}
 672
 673__tagtable(ATAG_MEM, parse_tag_mem32);
 674
 675#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 676struct screen_info screen_info = {
 677 .orig_video_lines	= 30,
 678 .orig_video_cols	= 80,
 679 .orig_video_mode	= 0,
 680 .orig_video_ega_bx	= 0,
 681 .orig_video_isVGA	= 1,
 682 .orig_video_points	= 8
 683};
 684
 685static int __init parse_tag_videotext(const struct tag *tag)
 686{
 687	screen_info.orig_x            = tag->u.videotext.x;
 688	screen_info.orig_y            = tag->u.videotext.y;
 689	screen_info.orig_video_page   = tag->u.videotext.video_page;
 690	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 691	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 692	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 693	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 694	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 695	screen_info.orig_video_points = tag->u.videotext.video_points;
 696	return 0;
 697}
 698
 699__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 700#endif
 701
 702static int __init parse_tag_ramdisk(const struct tag *tag)
 703{
 704	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 705		      (tag->u.ramdisk.flags & 2) == 0,
 706		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 707	return 0;
 708}
 709
 710__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 711
 712static int __init parse_tag_serialnr(const struct tag *tag)
 713{
 714	system_serial_low = tag->u.serialnr.low;
 715	system_serial_high = tag->u.serialnr.high;
 716	return 0;
 717}
 718
 719__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 720
 721static int __init parse_tag_revision(const struct tag *tag)
 722{
 723	system_rev = tag->u.revision.rev;
 724	return 0;
 725}
 726
 727__tagtable(ATAG_REVISION, parse_tag_revision);
 728
 729static int __init parse_tag_cmdline(const struct tag *tag)
 730{
 731#if defined(CONFIG_CMDLINE_EXTEND)
 732	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 733	strlcat(default_command_line, tag->u.cmdline.cmdline,
 734		COMMAND_LINE_SIZE);
 735#elif defined(CONFIG_CMDLINE_FORCE)
 736	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 737#else
 738	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 739		COMMAND_LINE_SIZE);
 740#endif
 741	return 0;
 742}
 743
 744__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 745
 746/*
 747 * Scan the tag table for this tag, and call its parse function.
 748 * The tag table is built by the linker from all the __tagtable
 749 * declarations.
 750 */
 751static int __init parse_tag(const struct tag *tag)
 752{
 753	extern struct tagtable __tagtable_begin, __tagtable_end;
 754	struct tagtable *t;
 755
 756	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 757		if (tag->hdr.tag == t->tag) {
 758			t->parse(tag);
 759			break;
 760		}
 761
 762	return t < &__tagtable_end;
 763}
 764
 765/*
 766 * Parse all tags in the list, checking both the global and architecture
 767 * specific tag tables.
 768 */
 769static void __init parse_tags(const struct tag *t)
 770{
 771	for (; t->hdr.size; t = tag_next(t))
 772		if (!parse_tag(t))
 773			printk(KERN_WARNING
 774				"Ignoring unrecognised tag 0x%08x\n",
 775				t->hdr.tag);
 776}
 777
 778/*
 779 * This holds our defaults.
 780 */
 781static struct init_tags {
 782	struct tag_header hdr1;
 783	struct tag_core   core;
 784	struct tag_header hdr2;
 785	struct tag_mem32  mem;
 786	struct tag_header hdr3;
 787} init_tags __initdata = {
 788	{ tag_size(tag_core), ATAG_CORE },
 789	{ 1, PAGE_SIZE, 0xff },
 790	{ tag_size(tag_mem32), ATAG_MEM },
 791	{ MEM_SIZE },
 792	{ 0, ATAG_NONE }
 793};
 794
 795static int __init customize_machine(void)
 796{
 797	/* customizes platform devices, or adds new ones */
 
 
 
 
 
 798	if (machine_desc->init_machine)
 799		machine_desc->init_machine();
 
 800	return 0;
 801}
 802arch_initcall(customize_machine);
 803
 804static int __init init_machine_late(void)
 805{
 
 
 
 806	if (machine_desc->init_late)
 807		machine_desc->init_late();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808	return 0;
 809}
 810late_initcall(init_machine_late);
 811
 812#ifdef CONFIG_KEXEC
 
 
 
 
 
 
 813static inline unsigned long long get_total_mem(void)
 814{
 815	unsigned long total;
 816
 817	total = max_low_pfn - min_low_pfn;
 818	return total << PAGE_SHIFT;
 819}
 820
 821/**
 822 * reserve_crashkernel() - reserves memory are for crash kernel
 823 *
 824 * This function reserves memory area given in "crashkernel=" kernel command
 825 * line parameter. The memory reserved is used by a dump capture kernel when
 826 * primary kernel is crashing.
 827 */
 828static void __init reserve_crashkernel(void)
 829{
 830	unsigned long long crash_size, crash_base;
 831	unsigned long long total_mem;
 832	int ret;
 833
 834	total_mem = get_total_mem();
 835	ret = parse_crashkernel(boot_command_line, total_mem,
 836				&crash_size, &crash_base);
 837	if (ret)
 
 
 838		return;
 839
 840	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 841	if (ret < 0) {
 842		printk(KERN_WARNING "crashkernel reservation failed - "
 843		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 844		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845	}
 846
 847	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 848	       "for crashkernel (System RAM: %ldMB)\n",
 849	       (unsigned long)(crash_size >> 20),
 850	       (unsigned long)(crash_base >> 20),
 851	       (unsigned long)(total_mem >> 20));
 852
 
 853	crashk_res.start = crash_base;
 854	crashk_res.end = crash_base + crash_size - 1;
 855	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857#else
 858static inline void reserve_crashkernel(void) {}
 859#endif /* CONFIG_KEXEC */
 860
 861static void __init squash_mem_tags(struct tag *tag)
 862{
 863	for (; tag->hdr.size; tag = tag_next(tag))
 864		if (tag->hdr.tag == ATAG_MEM)
 865			tag->hdr.tag = ATAG_NONE;
 866}
 867
 868static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 869{
 870	struct tag *tags = (struct tag *)&init_tags;
 871	struct machine_desc *mdesc = NULL, *p;
 872	char *from = default_command_line;
 873
 874	init_tags.mem.start = PHYS_OFFSET;
 875
 876	/*
 877	 * locate machine in the list of supported machines.
 878	 */
 879	for_each_machine_desc(p)
 880		if (nr == p->nr) {
 881			printk("Machine: %s\n", p->name);
 882			mdesc = p;
 883			break;
 884		}
 885
 886	if (!mdesc) {
 887		early_print("\nError: unrecognized/unsupported machine ID"
 888			" (r1 = 0x%08x).\n\n", nr);
 889		dump_machine_table(); /* does not return */
 890	}
 891
 892	if (__atags_pointer)
 893		tags = phys_to_virt(__atags_pointer);
 894	else if (mdesc->atag_offset)
 895		tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);
 896
 897#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 898	/*
 899	 * If we have the old style parameters, convert them to
 900	 * a tag list.
 901	 */
 902	if (tags->hdr.tag != ATAG_CORE)
 903		convert_to_tag_list(tags);
 904#endif
 905
 906	if (tags->hdr.tag != ATAG_CORE) {
 907#if defined(CONFIG_OF)
 908		/*
 909		 * If CONFIG_OF is set, then assume this is a reasonably
 910		 * modern system that should pass boot parameters
 911		 */
 912		early_print("Warning: Neither atags nor dtb found\n");
 913#endif
 914		tags = (struct tag *)&init_tags;
 915	}
 916
 917	if (mdesc->fixup)
 918		mdesc->fixup(tags, &from, &meminfo);
 919
 920	if (tags->hdr.tag == ATAG_CORE) {
 921		if (meminfo.nr_banks != 0)
 922			squash_mem_tags(tags);
 923		save_atags(tags);
 924		parse_tags(tags);
 925	}
 926
 927	/* parse_early_param needs a boot_command_line */
 928	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 929
 930	return mdesc;
 931}
 932
 933static int __init meminfo_cmp(const void *_a, const void *_b)
 
 
 
 934{
 935	const struct membank *a = _a, *b = _b;
 936	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 937	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 938}
 939
 
 
 
 
 
 940void __init setup_arch(char **cmdline_p)
 941{
 942	struct machine_desc *mdesc;
 
 
 
 
 943
 944	setup_processor();
 945	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
 946	if (!mdesc)
 947		mdesc = setup_machine_tags(machine_arch_type);
 
 
 
 
 
 
 
 
 
 948	machine_desc = mdesc;
 949	machine_name = mdesc->name;
 
 950
 951	setup_dma_zone(mdesc);
 952
 953	if (mdesc->restart_mode)
 954		reboot_setup(&mdesc->restart_mode);
 955
 956	init_mm.start_code = (unsigned long) _text;
 957	init_mm.end_code   = (unsigned long) _etext;
 958	init_mm.end_data   = (unsigned long) _edata;
 959	init_mm.brk	   = (unsigned long) _end;
 960
 961	/* populate cmd_line too for later use, preserving boot_command_line */
 962	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 963	*cmdline_p = cmd_line;
 964
 
 
 
 965	parse_early_param();
 966
 967	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 968	sanity_check_meminfo();
 969	arm_memblock_init(&meminfo, mdesc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 970
 971	paging_init(mdesc);
 
 972	request_standard_resources(mdesc);
 973
 974	if (mdesc->restart)
 975		arm_pm_restart = mdesc->restart;
 
 
 976
 977	unflatten_device_tree();
 978
 
 
 979#ifdef CONFIG_SMP
 980	if (is_smp())
 
 
 
 
 
 
 981		smp_init_cpus();
 
 
 982#endif
 983	reserve_crashkernel();
 984
 985	tcm_init();
 
 986
 987#ifdef CONFIG_MULTI_IRQ_HANDLER
 988	handle_arch_irq = mdesc->handle_irq;
 989#endif
 990
 991#ifdef CONFIG_VT
 992#if defined(CONFIG_VGA_CONSOLE)
 993	conswitchp = &vga_con;
 994#elif defined(CONFIG_DUMMY_CONSOLE)
 995	conswitchp = &dummy_con;
 996#endif
 997#endif
 998
 999	if (mdesc->init_early)
1000		mdesc->init_early();
1001}
1002
1003
1004static int __init topology_init(void)
1005{
1006	int cpu;
1007
1008	for_each_possible_cpu(cpu) {
1009		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1010		cpuinfo->cpu.hotpluggable = 1;
1011		register_cpu(&cpuinfo->cpu, cpu);
1012	}
1013
1014	return 0;
1015}
1016subsys_initcall(topology_init);
1017
1018#ifdef CONFIG_HAVE_PROC_CPU
1019static int __init proc_cpu_init(void)
1020{
1021	struct proc_dir_entry *res;
1022
1023	res = proc_mkdir("cpu", NULL);
1024	if (!res)
1025		return -ENOMEM;
1026	return 0;
1027}
1028fs_initcall(proc_cpu_init);
1029#endif
1030
1031static const char *hwcap_str[] = {
1032	"swp",
1033	"half",
1034	"thumb",
1035	"26bit",
1036	"fastmult",
1037	"fpa",
1038	"vfp",
1039	"edsp",
1040	"java",
1041	"iwmmxt",
1042	"crunch",
1043	"thumbee",
1044	"neon",
1045	"vfpv3",
1046	"vfpv3d16",
1047	"tls",
1048	"vfpv4",
1049	"idiva",
1050	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051	NULL
1052};
1053
1054static int c_show(struct seq_file *m, void *v)
1055{
1056	int i;
 
1057
1058	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1059		   cpu_name, read_cpuid_id() & 15, elf_platform);
1060
1061#if defined(CONFIG_SMP)
1062	for_each_online_cpu(i) {
1063		/*
1064		 * glibc reads /proc/cpuinfo to determine the number of
1065		 * online processors, looking for lines beginning with
1066		 * "processor".  Give glibc what it expects.
1067		 */
1068		seq_printf(m, "processor\t: %d\n", i);
1069		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
 
 
 
 
 
1070			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1071			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1072	}
1073#else /* CONFIG_SMP */
1074	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1075		   loops_per_jiffy / (500000/HZ),
1076		   (loops_per_jiffy / (5000/HZ)) % 100);
1077#endif
1078
1079	/* dump out the processor features */
1080	seq_puts(m, "Features\t: ");
1081
1082	for (i = 0; hwcap_str[i]; i++)
1083		if (elf_hwcap & (1 << i))
1084			seq_printf(m, "%s ", hwcap_str[i]);
1085
1086	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1087	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1088
1089	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1090		/* pre-ARM7 */
1091		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1092	} else {
1093		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1094			/* ARM7 */
1095			seq_printf(m, "CPU variant\t: 0x%02x\n",
1096				   (read_cpuid_id() >> 16) & 127);
1097		} else {
1098			/* post-ARM7 */
1099			seq_printf(m, "CPU variant\t: 0x%x\n",
1100				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1101		}
1102		seq_printf(m, "CPU part\t: 0x%03x\n",
1103			   (read_cpuid_id() >> 4) & 0xfff);
1104	}
1105	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1106
1107	seq_puts(m, "\n");
1108
1109	seq_printf(m, "Hardware\t: %s\n", machine_name);
1110	seq_printf(m, "Revision\t: %04x\n", system_rev);
1111	seq_printf(m, "Serial\t\t: %08x%08x\n",
1112		   system_serial_high, system_serial_low);
1113
1114	return 0;
1115}
1116
1117static void *c_start(struct seq_file *m, loff_t *pos)
1118{
1119	return *pos < 1 ? (void *)1 : NULL;
1120}
1121
1122static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1123{
1124	++*pos;
1125	return NULL;
1126}
1127
1128static void c_stop(struct seq_file *m, void *v)
1129{
1130}
1131
1132const struct seq_operations cpuinfo_op = {
1133	.start	= c_start,
1134	.next	= c_next,
1135	.stop	= c_stop,
1136	.show	= c_show
1137};
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
 
 
 
 
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
 
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/init.h>
  19#include <linux/kexec.h>
  20#include <linux/libfdt.h>
  21#include <linux/of.h>
  22#include <linux/of_fdt.h>
 
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
 
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
 
 
 
  64#include "atags.h"
 
  65
 
 
 
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
 
 
 
 
 
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
  91const char *system_serial;
  92EXPORT_SYMBOL(system_serial);
  93
  94unsigned int system_serial_low;
  95EXPORT_SYMBOL(system_serial_low);
  96
  97unsigned int system_serial_high;
  98EXPORT_SYMBOL(system_serial_high);
  99
 100unsigned int elf_hwcap __read_mostly;
 101EXPORT_SYMBOL(elf_hwcap);
 102
 103unsigned int elf_hwcap2 __read_mostly;
 104EXPORT_SYMBOL(elf_hwcap2);
 105
 106
 107#ifdef MULTI_CPU
 108struct processor processor __ro_after_init;
 109#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 110struct processor *cpu_vtable[NR_CPUS] = {
 111	[0] = &processor,
 112};
 113#endif
 114#endif
 115#ifdef MULTI_TLB
 116struct cpu_tlb_fns cpu_tlb __ro_after_init;
 117#endif
 118#ifdef MULTI_USER
 119struct cpu_user_fns cpu_user __ro_after_init;
 120#endif
 121#ifdef MULTI_CACHE
 122struct cpu_cache_fns cpu_cache __ro_after_init;
 123#endif
 124#ifdef CONFIG_OUTER_CACHE
 125struct outer_cache_fns outer_cache __ro_after_init;
 126EXPORT_SYMBOL(outer_cache);
 127#endif
 128
 129/*
 130 * Cached cpu_architecture() result for use by assembler code.
 131 * C code should use the cpu_architecture() function instead of accessing this
 132 * variable directly.
 133 */
 134int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 135
 136struct stack {
 137	u32 irq[4];
 138	u32 abt[4];
 139	u32 und[4];
 140	u32 fiq[4];
 141} ____cacheline_aligned;
 142
 143#ifndef CONFIG_CPU_V7M
 144static struct stack stacks[NR_CPUS];
 145#endif
 146
 147char elf_platform[ELF_PLATFORM_SIZE];
 148EXPORT_SYMBOL(elf_platform);
 149
 150static const char *cpu_name;
 151static const char *machine_name;
 152static char __initdata cmd_line[COMMAND_LINE_SIZE];
 153const struct machine_desc *machine_desc __initdata;
 154
 
 155static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 156#define ENDIANNESS ((char)endian_test.l)
 157
 158DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 159
 160/*
 161 * Standard memory resources
 162 */
 163static struct resource mem_res[] = {
 164	{
 165		.name = "Video RAM",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel code",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_SYSTEM_RAM
 175	},
 176	{
 177		.name = "Kernel data",
 178		.start = 0,
 179		.end = 0,
 180		.flags = IORESOURCE_SYSTEM_RAM
 181	}
 182};
 183
 184#define video_ram   mem_res[0]
 185#define kernel_code mem_res[1]
 186#define kernel_data mem_res[2]
 187
 188static struct resource io_res[] = {
 189	{
 190		.name = "reserved",
 191		.start = 0x3bc,
 192		.end = 0x3be,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x378,
 198		.end = 0x37f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	},
 201	{
 202		.name = "reserved",
 203		.start = 0x278,
 204		.end = 0x27f,
 205		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 206	}
 207};
 208
 209#define lp0 io_res[0]
 210#define lp1 io_res[1]
 211#define lp2 io_res[2]
 212
 213static const char *proc_arch[] = {
 214	"undefined/unknown",
 215	"3",
 216	"4",
 217	"4T",
 218	"5",
 219	"5T",
 220	"5TE",
 221	"5TEJ",
 222	"6TEJ",
 223	"7",
 224	"7M",
 225	"?(12)",
 226	"?(13)",
 227	"?(14)",
 228	"?(15)",
 229	"?(16)",
 230	"?(17)",
 231};
 232
 233#ifdef CONFIG_CPU_V7M
 234static int __get_cpu_architecture(void)
 235{
 236	return CPU_ARCH_ARMv7M;
 237}
 238#else
 239static int __get_cpu_architecture(void)
 240{
 241	int cpu_arch;
 242
 243	if ((read_cpuid_id() & 0x0008f000) == 0) {
 244		cpu_arch = CPU_ARCH_UNKNOWN;
 245	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 246		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 247	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 248		cpu_arch = (read_cpuid_id() >> 16) & 7;
 249		if (cpu_arch)
 250			cpu_arch += CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 252		/* Revised CPUID format. Read the Memory Model Feature
 253		 * Register 0 and check for VMSAv7 or PMSAv7 */
 254		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 255		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 256		    (mmfr0 & 0x000000f0) >= 0x00000030)
 257			cpu_arch = CPU_ARCH_ARMv7;
 258		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 259			 (mmfr0 & 0x000000f0) == 0x00000020)
 260			cpu_arch = CPU_ARCH_ARMv6;
 261		else
 262			cpu_arch = CPU_ARCH_UNKNOWN;
 263	} else
 264		cpu_arch = CPU_ARCH_UNKNOWN;
 265
 266	return cpu_arch;
 267}
 268#endif
 269
 270int __pure cpu_architecture(void)
 271{
 272	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 273
 274	return __cpu_architecture;
 275}
 276
 277static int cpu_has_aliasing_icache(unsigned int arch)
 278{
 279	int aliasing_icache;
 280	unsigned int id_reg, num_sets, line_size;
 281
 282	/* PIPT caches never alias. */
 283	if (icache_is_pipt())
 284		return 0;
 285
 286	/* arch specifies the register format */
 287	switch (arch) {
 288	case CPU_ARCH_ARMv7:
 289		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 290		isb();
 291		id_reg = read_ccsidr();
 
 292		line_size = 4 << ((id_reg & 0x7) + 2);
 293		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 294		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 295		break;
 296	case CPU_ARCH_ARMv6:
 297		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 298		break;
 299	default:
 300		/* I-cache aliases will be handled by D-cache aliasing code */
 301		aliasing_icache = 0;
 302	}
 303
 304	return aliasing_icache;
 305}
 306
 307static void __init cacheid_init(void)
 308{
 
 309	unsigned int arch = cpu_architecture();
 310
 311	if (arch >= CPU_ARCH_ARMv6) {
 312		unsigned int cachetype = read_cpuid_cachetype();
 313
 314		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 315			cacheid = 0;
 316		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 317			/* ARMv7 register format */
 318			arch = CPU_ARCH_ARMv7;
 319			cacheid = CACHEID_VIPT_NONALIASING;
 320			switch (cachetype & (3 << 14)) {
 321			case (1 << 14):
 322				cacheid |= CACHEID_ASID_TAGGED;
 323				break;
 324			case (3 << 14):
 325				cacheid |= CACHEID_PIPT;
 326				break;
 327			}
 328		} else {
 329			arch = CPU_ARCH_ARMv6;
 330			if (cachetype & (1 << 23))
 331				cacheid = CACHEID_VIPT_ALIASING;
 332			else
 333				cacheid = CACHEID_VIPT_NONALIASING;
 334		}
 335		if (cpu_has_aliasing_icache(arch))
 336			cacheid |= CACHEID_VIPT_I_ALIASING;
 337	} else {
 338		cacheid = CACHEID_VIVT;
 339	}
 340
 341	pr_info("CPU: %s data cache, %s instruction cache\n",
 342		cache_is_vivt() ? "VIVT" :
 343		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 344		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 345		cache_is_vivt() ? "VIVT" :
 346		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 347		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		icache_is_pipt() ? "PIPT" :
 349		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 350}
 351
 352/*
 353 * These functions re-use the assembly code in head.S, which
 354 * already provide the required functionality.
 355 */
 356extern struct proc_info_list *lookup_processor_type(unsigned int);
 357
 358void __init early_print(const char *str, ...)
 359{
 360	extern void printascii(const char *);
 361	char buf[256];
 362	va_list ap;
 363
 364	va_start(ap, str);
 365	vsnprintf(buf, sizeof(buf), str, ap);
 366	va_end(ap);
 367
 368#ifdef CONFIG_DEBUG_LL
 369	printascii(buf);
 370#endif
 371	printk("%s", buf);
 372}
 373
 374#ifdef CONFIG_ARM_PATCH_IDIV
 375
 376static inline u32 __attribute_const__ sdiv_instruction(void)
 377{
 378	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 379		/* "sdiv r0, r0, r1" */
 380		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 381		return __opcode_to_mem_thumb32(insn);
 382	}
 383
 384	/* "sdiv r0, r0, r1" */
 385	return __opcode_to_mem_arm(0xe710f110);
 386}
 387
 388static inline u32 __attribute_const__ udiv_instruction(void)
 389{
 390	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 391		/* "udiv r0, r0, r1" */
 392		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 393		return __opcode_to_mem_thumb32(insn);
 394	}
 395
 396	/* "udiv r0, r0, r1" */
 397	return __opcode_to_mem_arm(0xe730f110);
 398}
 399
 400static inline u32 __attribute_const__ bx_lr_instruction(void)
 401{
 402	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 403		/* "bx lr; nop" */
 404		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 405		return __opcode_to_mem_thumb32(insn);
 406	}
 407
 408	/* "bx lr" */
 409	return __opcode_to_mem_arm(0xe12fff1e);
 410}
 411
 412static void __init patch_aeabi_idiv(void)
 413{
 414	extern void __aeabi_uidiv(void);
 415	extern void __aeabi_idiv(void);
 416	uintptr_t fn_addr;
 417	unsigned int mask;
 418
 419	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 420	if (!(elf_hwcap & mask))
 421		return;
 422
 423	pr_info("CPU: div instructions available: patching division code\n");
 424
 425	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 426	asm ("" : "+g" (fn_addr));
 427	((u32 *)fn_addr)[0] = udiv_instruction();
 428	((u32 *)fn_addr)[1] = bx_lr_instruction();
 429	flush_icache_range(fn_addr, fn_addr + 8);
 430
 431	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 432	asm ("" : "+g" (fn_addr));
 433	((u32 *)fn_addr)[0] = sdiv_instruction();
 434	((u32 *)fn_addr)[1] = bx_lr_instruction();
 435	flush_icache_range(fn_addr, fn_addr + 8);
 436}
 437
 438#else
 439static inline void patch_aeabi_idiv(void) { }
 440#endif
 441
 442static void __init cpuid_init_hwcaps(void)
 443{
 444	int block;
 445	u32 isar5;
 446	u32 isar6;
 447	u32 pfr2;
 448
 449	if (cpu_architecture() < CPU_ARCH_ARMv7)
 450		return;
 451
 452	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 453	if (block >= 2)
 454		elf_hwcap |= HWCAP_IDIVA;
 455	if (block >= 1)
 456		elf_hwcap |= HWCAP_IDIVT;
 457
 458	/* LPAE implies atomic ldrd/strd instructions */
 459	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 460	if (block >= 5)
 461		elf_hwcap |= HWCAP_LPAE;
 462
 463	/* check for supported v8 Crypto instructions */
 464	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 465
 466	block = cpuid_feature_extract_field(isar5, 4);
 467	if (block >= 2)
 468		elf_hwcap2 |= HWCAP2_PMULL;
 469	if (block >= 1)
 470		elf_hwcap2 |= HWCAP2_AES;
 471
 472	block = cpuid_feature_extract_field(isar5, 8);
 473	if (block >= 1)
 474		elf_hwcap2 |= HWCAP2_SHA1;
 475
 476	block = cpuid_feature_extract_field(isar5, 12);
 477	if (block >= 1)
 478		elf_hwcap2 |= HWCAP2_SHA2;
 479
 480	block = cpuid_feature_extract_field(isar5, 16);
 481	if (block >= 1)
 482		elf_hwcap2 |= HWCAP2_CRC32;
 483
 484	/* Check for Speculation barrier instruction */
 485	isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
 486	block = cpuid_feature_extract_field(isar6, 12);
 487	if (block >= 1)
 488		elf_hwcap2 |= HWCAP2_SB;
 489
 490	/* Check for Speculative Store Bypassing control */
 491	pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
 492	block = cpuid_feature_extract_field(pfr2, 4);
 493	if (block >= 1)
 494		elf_hwcap2 |= HWCAP2_SSBS;
 495}
 496
 497static void __init elf_hwcap_fixup(void)
 498{
 499	unsigned id = read_cpuid_id();
 500
 501	/*
 502	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 503	 * see also kuser_get_tls_init.
 504	 */
 505	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 506	    ((id >> 20) & 3) == 0) {
 507		elf_hwcap &= ~HWCAP_TLS;
 508		return;
 509	}
 510
 511	/* Verify if CPUID scheme is implemented */
 512	if ((id & 0x000f0000) != 0x000f0000)
 513		return;
 514
 515	/*
 516	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 517	 * avoid advertising SWP; it may not be atomic with
 518	 * multiprocessing cores.
 519	 */
 520	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 521	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 522	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 523		elf_hwcap &= ~HWCAP_SWP;
 524}
 525
 526/*
 527 * cpu_init - initialise one CPU.
 528 *
 529 * cpu_init sets up the per-CPU stacks.
 530 */
 531void notrace cpu_init(void)
 532{
 533#ifndef CONFIG_CPU_V7M
 534	unsigned int cpu = smp_processor_id();
 535	struct stack *stk = &stacks[cpu];
 536
 537	if (cpu >= NR_CPUS) {
 538		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 539		BUG();
 540	}
 541
 542	/*
 543	 * This only works on resume and secondary cores. For booting on the
 544	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 545	 */
 546	set_my_cpu_offset(per_cpu_offset(cpu));
 547
 548	cpu_proc_init();
 549
 550	/*
 551	 * Define the placement constraint for the inline asm directive below.
 552	 * In Thumb-2, msr with an immediate value is not allowed.
 553	 */
 554#ifdef CONFIG_THUMB2_KERNEL
 555#define PLC_l	"l"
 556#define PLC_r	"r"
 557#else
 558#define PLC_l	"I"
 559#define PLC_r	"I"
 560#endif
 561
 562	/*
 563	 * setup stacks for re-entrant exception handlers
 564	 */
 565	__asm__ (
 566	"msr	cpsr_c, %1\n\t"
 567	"add	r14, %0, %2\n\t"
 568	"mov	sp, r14\n\t"
 569	"msr	cpsr_c, %3\n\t"
 570	"add	r14, %0, %4\n\t"
 571	"mov	sp, r14\n\t"
 572	"msr	cpsr_c, %5\n\t"
 573	"add	r14, %0, %6\n\t"
 574	"mov	sp, r14\n\t"
 575	"msr	cpsr_c, %7\n\t"
 576	"add	r14, %0, %8\n\t"
 577	"mov	sp, r14\n\t"
 578	"msr	cpsr_c, %9"
 579	    :
 580	    : "r" (stk),
 581	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 582	      "I" (offsetof(struct stack, irq[0])),
 583	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 584	      "I" (offsetof(struct stack, abt[0])),
 585	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 586	      "I" (offsetof(struct stack, und[0])),
 587	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 588	      "I" (offsetof(struct stack, fiq[0])),
 589	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 590	    : "r14");
 591#endif
 592}
 593
 594u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 595
 596void __init smp_setup_processor_id(void)
 597{
 598	int i;
 599	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 600	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 601
 602	cpu_logical_map(0) = cpu;
 603	for (i = 1; i < nr_cpu_ids; ++i)
 604		cpu_logical_map(i) = i == cpu ? 0 : i;
 605
 606	/*
 607	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 608	 * using percpu variable early, for example, lockdep will
 609	 * access percpu variable inside lock_release
 610	 */
 611	set_my_cpu_offset(0);
 612
 613	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 614}
 615
 616struct mpidr_hash mpidr_hash;
 617#ifdef CONFIG_SMP
 618/**
 619 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 620 *			  level in order to build a linear index from an
 621 *			  MPIDR value. Resulting algorithm is a collision
 622 *			  free hash carried out through shifting and ORing
 623 */
 624static void __init smp_build_mpidr_hash(void)
 625{
 626	u32 i, affinity;
 627	u32 fs[3], bits[3], ls, mask = 0;
 628	/*
 629	 * Pre-scan the list of MPIDRS and filter out bits that do
 630	 * not contribute to affinity levels, ie they never toggle.
 631	 */
 632	for_each_possible_cpu(i)
 633		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 634	pr_debug("mask of set bits 0x%x\n", mask);
 635	/*
 636	 * Find and stash the last and first bit set at all affinity levels to
 637	 * check how many bits are required to represent them.
 
 638	 */
 639	for (i = 0; i < 3; i++) {
 640		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 641		/*
 642		 * Find the MSB bit and LSB bits position
 643		 * to determine how many bits are required
 644		 * to express the affinity level.
 645		 */
 646		ls = fls(affinity);
 647		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 648		bits[i] = ls - fs[i];
 649	}
 650	/*
 651	 * An index can be created from the MPIDR by isolating the
 652	 * significant bits at each affinity level and by shifting
 653	 * them in order to compress the 24 bits values space to a
 654	 * compressed set of values. This is equivalent to hashing
 655	 * the MPIDR through shifting and ORing. It is a collision free
 656	 * hash though not minimal since some levels might contain a number
 657	 * of CPUs that is not an exact power of 2 and their bit
 658	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 659	 */
 660	mpidr_hash.shift_aff[0] = fs[0];
 661	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 662	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 663						(bits[1] + bits[0]);
 664	mpidr_hash.mask = mask;
 665	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 666	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 667				mpidr_hash.shift_aff[0],
 668				mpidr_hash.shift_aff[1],
 669				mpidr_hash.shift_aff[2],
 670				mpidr_hash.mask,
 671				mpidr_hash.bits);
 672	/*
 673	 * 4x is an arbitrary value used to warn on a hash table much bigger
 674	 * than expected on most systems.
 675	 */
 676	if (mpidr_hash_size() > 4 * num_possible_cpus())
 677		pr_warn("Large number of MPIDR hash buckets detected\n");
 678	sync_cache_w(&mpidr_hash);
 679}
 680#endif
 681
 682/*
 683 * locate processor in the list of supported processor types.  The linker
 684 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 685 */
 686struct proc_info_list *lookup_processor(u32 midr)
 687{
 688	struct proc_info_list *list = lookup_processor_type(midr);
 689
 690	if (!list) {
 691		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 692		       smp_processor_id(), midr);
 693		while (1)
 694		/* can't use cpu_relax() here as it may require MMU setup */;
 695	}
 696
 697	return list;
 698}
 699
 700static void __init setup_processor(void)
 701{
 702	unsigned int midr = read_cpuid_id();
 703	struct proc_info_list *list = lookup_processor(midr);
 704
 705	cpu_name = list->cpu_name;
 706	__cpu_architecture = __get_cpu_architecture();
 707
 708	init_proc_vtable(list->proc);
 
 
 709#ifdef MULTI_TLB
 710	cpu_tlb = *list->tlb;
 711#endif
 712#ifdef MULTI_USER
 713	cpu_user = *list->user;
 714#endif
 715#ifdef MULTI_CACHE
 716	cpu_cache = *list->cache;
 717#endif
 718
 719	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 720		list->cpu_name, midr, midr & 15,
 721		proc_arch[cpu_architecture()], get_cr());
 722
 723	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 724		 list->arch_name, ENDIANNESS);
 725	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 726		 list->elf_name, ENDIANNESS);
 727	elf_hwcap = list->elf_hwcap;
 728
 729	cpuid_init_hwcaps();
 730	patch_aeabi_idiv();
 731
 732#ifndef CONFIG_ARM_THUMB
 733	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 734#endif
 735#ifdef CONFIG_MMU
 736	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 737#endif
 738	erratum_a15_798181_init();
 739
 740	elf_hwcap_fixup();
 741
 742	cacheid_init();
 743	cpu_init();
 744}
 745
 746void __init dump_machine_table(void)
 747{
 748	const struct machine_desc *p;
 749
 750	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 751	for_each_machine_desc(p)
 752		early_print("%08x\t%s\n", p->nr, p->name);
 753
 754	early_print("\nPlease check your kernel config and/or bootloader.\n");
 755
 756	while (true)
 757		/* can't use cpu_relax() here as it may require MMU setup */;
 758}
 759
 760int __init arm_add_memory(u64 start, u64 size)
 761{
 762	u64 aligned_start;
 
 
 
 
 
 
 763
 764	/*
 765	 * Ensure that start/size are aligned to a page boundary.
 766	 * Size is rounded down, start is rounded up.
 767	 */
 768	aligned_start = PAGE_ALIGN(start);
 769	if (aligned_start > start + size)
 770		size = 0;
 771	else
 772		size -= aligned_start - start;
 773
 774#ifndef CONFIG_PHYS_ADDR_T_64BIT
 775	if (aligned_start > ULONG_MAX) {
 776		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 777			start);
 778		return -EINVAL;
 779	}
 780
 781	if (aligned_start + size > ULONG_MAX) {
 782		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 783			(long long)start);
 
 784		/*
 785		 * To ensure bank->start + bank->size is representable in
 786		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 787		 * This means we lose a page after masking.
 788		 */
 789		size = ULONG_MAX - aligned_start;
 790	}
 791#endif
 792
 793	if (aligned_start < PHYS_OFFSET) {
 794		if (aligned_start + size <= PHYS_OFFSET) {
 795			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 796				aligned_start, aligned_start + size);
 797			return -EINVAL;
 798		}
 799
 800		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 801			aligned_start, (u64)PHYS_OFFSET);
 802
 803		size -= PHYS_OFFSET - aligned_start;
 804		aligned_start = PHYS_OFFSET;
 805	}
 806
 807	start = aligned_start;
 808	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 809
 810	/*
 811	 * Check whether this memory region has non-zero size or
 812	 * invalid node number.
 813	 */
 814	if (size == 0)
 815		return -EINVAL;
 816
 817	memblock_add(start, size);
 818	return 0;
 819}
 820
 821/*
 822 * Pick out the memory size.  We look for mem=size@start,
 823 * where start and size are "size[KkMm]"
 824 */
 825
 826static int __init early_mem(char *p)
 827{
 828	static int usermem __initdata = 0;
 829	u64 size;
 830	u64 start;
 831	char *endp;
 832
 833	/*
 834	 * If the user specifies memory size, we
 835	 * blow away any automatically generated
 836	 * size.
 837	 */
 838	if (usermem == 0) {
 839		usermem = 1;
 840		memblock_remove(memblock_start_of_DRAM(),
 841			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 842	}
 843
 844	start = PHYS_OFFSET;
 845	size  = memparse(p, &endp);
 846	if (*endp == '@')
 847		start = memparse(endp + 1, NULL);
 848
 849	arm_add_memory(start, size);
 850
 851	return 0;
 852}
 853early_param("mem", early_mem);
 854
 855static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 856{
 857	phys_addr_t start, end, res_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858	struct resource *res;
 859	u64 i;
 860
 861	kernel_code.start   = virt_to_phys(_text);
 862	kernel_code.end     = virt_to_phys(__init_begin - 1);
 863	kernel_data.start   = virt_to_phys(_sdata);
 864	kernel_data.end     = virt_to_phys(_end - 1);
 865
 866	for_each_mem_range(i, &start, &end) {
 867		unsigned long boot_alias_start;
 868
 869		/*
 870		 * In memblock, end points to the first byte after the
 871		 * range while in resourses, end points to the last byte in
 872		 * the range.
 873		 */
 874		res_end = end - 1;
 875
 876		/*
 877		 * Some systems have a special memory alias which is only
 878		 * used for booting.  We need to advertise this region to
 879		 * kexec-tools so they know where bootable RAM is located.
 880		 */
 881		boot_alias_start = phys_to_idmap(start);
 882		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 883			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 884			if (!res)
 885				panic("%s: Failed to allocate %zu bytes\n",
 886				      __func__, sizeof(*res));
 887			res->name = "System RAM (boot alias)";
 888			res->start = boot_alias_start;
 889			res->end = phys_to_idmap(res_end);
 890			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 891			request_resource(&iomem_resource, res);
 892		}
 893
 894		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 895		if (!res)
 896			panic("%s: Failed to allocate %zu bytes\n", __func__,
 897			      sizeof(*res));
 898		res->name  = "System RAM";
 899		res->start = start;
 900		res->end = res_end;
 901		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 902
 903		request_resource(&iomem_resource, res);
 904
 905		if (kernel_code.start >= res->start &&
 906		    kernel_code.end <= res->end)
 907			request_resource(res, &kernel_code);
 908		if (kernel_data.start >= res->start &&
 909		    kernel_data.end <= res->end)
 910			request_resource(res, &kernel_data);
 911	}
 912
 913	if (mdesc->video_start) {
 914		video_ram.start = mdesc->video_start;
 915		video_ram.end   = mdesc->video_end;
 916		request_resource(&iomem_resource, &video_ram);
 917	}
 918
 919	/*
 920	 * Some machines don't have the possibility of ever
 921	 * possessing lp0, lp1 or lp2
 922	 */
 923	if (mdesc->reserve_lp0)
 924		request_resource(&ioport_resource, &lp0);
 925	if (mdesc->reserve_lp1)
 926		request_resource(&ioport_resource, &lp1);
 927	if (mdesc->reserve_lp2)
 928		request_resource(&ioport_resource, &lp2);
 929}
 930
 931#if defined(CONFIG_VGA_CONSOLE)
 932struct screen_info vgacon_screen_info = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933 .orig_video_lines	= 30,
 934 .orig_video_cols	= 80,
 935 .orig_video_mode	= 0,
 936 .orig_video_ega_bx	= 0,
 937 .orig_video_isVGA	= 1,
 938 .orig_video_points	= 8
 939};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942static int __init customize_machine(void)
 943{
 944	/*
 945	 * customizes platform devices, or adds new ones
 946	 * On DT based machines, we fall back to populating the
 947	 * machine from the device tree, if no callback is provided,
 948	 * otherwise we would always need an init_machine callback.
 949	 */
 950	if (machine_desc->init_machine)
 951		machine_desc->init_machine();
 952
 953	return 0;
 954}
 955arch_initcall(customize_machine);
 956
 957static int __init init_machine_late(void)
 958{
 959	struct device_node *root;
 960	int ret;
 961
 962	if (machine_desc->init_late)
 963		machine_desc->init_late();
 964
 965	root = of_find_node_by_path("/");
 966	if (root) {
 967		ret = of_property_read_string(root, "serial-number",
 968					      &system_serial);
 969		if (ret)
 970			system_serial = NULL;
 971	}
 972
 973	if (!system_serial)
 974		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 975					  system_serial_high,
 976					  system_serial_low);
 977
 978	return 0;
 979}
 980late_initcall(init_machine_late);
 981
 982#ifdef CONFIG_KEXEC
 983/*
 984 * The crash region must be aligned to 128MB to avoid
 985 * zImage relocating below the reserved region.
 986 */
 987#define CRASH_ALIGN	(128 << 20)
 988
 989static inline unsigned long long get_total_mem(void)
 990{
 991	unsigned long total;
 992
 993	total = max_low_pfn - min_low_pfn;
 994	return total << PAGE_SHIFT;
 995}
 996
 997/**
 998 * reserve_crashkernel() - reserves memory are for crash kernel
 999 *
1000 * This function reserves memory area given in "crashkernel=" kernel command
1001 * line parameter. The memory reserved is used by a dump capture kernel when
1002 * primary kernel is crashing.
1003 */
1004static void __init reserve_crashkernel(void)
1005{
1006	unsigned long long crash_size, crash_base;
1007	unsigned long long total_mem;
1008	int ret;
1009
1010	total_mem = get_total_mem();
1011	ret = parse_crashkernel(boot_command_line, total_mem,
1012				&crash_size, &crash_base,
1013				NULL, NULL);
1014	/* invalid value specified or crashkernel=0 */
1015	if (ret || !crash_size)
1016		return;
1017
1018	if (crash_base <= 0) {
1019		unsigned long long crash_max = idmap_to_phys((u32)~0);
1020		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1021		if (crash_max > lowmem_max)
1022			crash_max = lowmem_max;
1023
1024		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1025						       CRASH_ALIGN, crash_max);
1026		if (!crash_base) {
1027			pr_err("crashkernel reservation failed - No suitable area found.\n");
1028			return;
1029		}
1030	} else {
1031		unsigned long long crash_max = crash_base + crash_size;
1032		unsigned long long start;
1033
1034		start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1035						  crash_base, crash_max);
1036		if (!start) {
1037			pr_err("crashkernel reservation failed - memory is in use.\n");
1038			return;
1039		}
1040	}
1041
1042	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1043		(unsigned long)(crash_size >> 20),
1044		(unsigned long)(crash_base >> 20),
1045		(unsigned long)(total_mem >> 20));
 
1046
1047	/* The crashk resource must always be located in normal mem */
1048	crashk_res.start = crash_base;
1049	crashk_res.end = crash_base + crash_size - 1;
1050	insert_resource(&iomem_resource, &crashk_res);
1051
1052	if (arm_has_idmap_alias()) {
1053		/*
1054		 * If we have a special RAM alias for use at boot, we
1055		 * need to advertise to kexec tools where the alias is.
1056		 */
1057		static struct resource crashk_boot_res = {
1058			.name = "Crash kernel (boot alias)",
1059			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1060		};
1061
1062		crashk_boot_res.start = phys_to_idmap(crash_base);
1063		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1064		insert_resource(&iomem_resource, &crashk_boot_res);
1065	}
1066}
1067#else
1068static inline void reserve_crashkernel(void) {}
1069#endif /* CONFIG_KEXEC */
1070
1071void __init hyp_mode_check(void)
1072{
1073#ifdef CONFIG_ARM_VIRT_EXT
1074	sync_boot_mode();
 
 
1075
1076	if (is_hyp_mode_available()) {
1077		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1078		pr_info("CPU: Virtualization extensions available.\n");
1079	} else if (is_hyp_mode_mismatched()) {
1080		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1081			__boot_cpu_mode & MODE_MASK);
1082		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1083	} else
1084		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086}
1087
1088static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1089
1090static int arm_restart(struct notifier_block *nb, unsigned long action,
1091		       void *data)
1092{
1093	__arm_pm_restart(action, data);
1094	return NOTIFY_DONE;
 
1095}
1096
1097static struct notifier_block arm_restart_nb = {
1098	.notifier_call = arm_restart,
1099	.priority = 128,
1100};
1101
1102void __init setup_arch(char **cmdline_p)
1103{
1104	const struct machine_desc *mdesc = NULL;
1105	void *atags_vaddr = NULL;
1106
1107	if (__atags_pointer)
1108		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1109
1110	setup_processor();
1111	if (atags_vaddr) {
1112		mdesc = setup_machine_fdt(atags_vaddr);
1113		if (mdesc)
1114			memblock_reserve(__atags_pointer,
1115					 fdt_totalsize(atags_vaddr));
1116	}
1117	if (!mdesc)
1118		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1119	if (!mdesc) {
1120		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1121		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1122			    __atags_pointer);
1123		if (__atags_pointer)
1124			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
1125		dump_machine_table();
1126	}
1127
1128	machine_desc = mdesc;
1129	machine_name = mdesc->name;
1130	dump_stack_set_arch_desc("%s", mdesc->name);
1131
1132	if (mdesc->reboot_mode != REBOOT_HARD)
1133		reboot_mode = mdesc->reboot_mode;
 
 
1134
1135	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1136
1137	/* populate cmd_line too for later use, preserving boot_command_line */
1138	strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1139	*cmdline_p = cmd_line;
1140
1141	early_fixmap_init();
1142	early_ioremap_init();
1143
1144	parse_early_param();
1145
1146#ifdef CONFIG_MMU
1147	early_mm_init(mdesc);
1148#endif
1149	setup_dma_zone(mdesc);
1150	xen_early_init();
1151	arm_efi_init();
1152	/*
1153	 * Make sure the calculation for lowmem/highmem is set appropriately
1154	 * before reserving/allocating any memory
1155	 */
1156	adjust_lowmem_bounds();
1157	arm_memblock_init(mdesc);
1158	/* Memory may have been removed so recalculate the bounds. */
1159	adjust_lowmem_bounds();
1160
1161	early_ioremap_reset();
1162
1163	paging_init(mdesc);
1164	kasan_init();
1165	request_standard_resources(mdesc);
1166
1167	if (mdesc->restart) {
1168		__arm_pm_restart = mdesc->restart;
1169		register_restart_handler(&arm_restart_nb);
1170	}
1171
1172	unflatten_device_tree();
1173
1174	arm_dt_init_cpu_maps();
1175	psci_dt_init();
1176#ifdef CONFIG_SMP
1177	if (is_smp()) {
1178		if (!mdesc->smp_init || !mdesc->smp_init()) {
1179			if (psci_smp_available())
1180				smp_set_ops(&psci_smp_ops);
1181			else if (mdesc->smp)
1182				smp_set_ops(mdesc->smp);
1183		}
1184		smp_init_cpus();
1185		smp_build_mpidr_hash();
1186	}
1187#endif
 
1188
1189	if (!is_smp())
1190		hyp_mode_check();
1191
1192	reserve_crashkernel();
 
 
1193
1194#ifdef CONFIG_VT
1195#if defined(CONFIG_VGA_CONSOLE)
1196	vgacon_register_screen(&vgacon_screen_info);
 
 
1197#endif
1198#endif
1199
1200	if (mdesc->init_early)
1201		mdesc->init_early();
1202}
1203
1204
1205static int __init topology_init(void)
1206{
1207	int cpu;
1208
1209	for_each_possible_cpu(cpu) {
1210		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1211		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1212		register_cpu(&cpuinfo->cpu, cpu);
1213	}
1214
1215	return 0;
1216}
1217subsys_initcall(topology_init);
1218
1219#ifdef CONFIG_HAVE_PROC_CPU
1220static int __init proc_cpu_init(void)
1221{
1222	struct proc_dir_entry *res;
1223
1224	res = proc_mkdir("cpu", NULL);
1225	if (!res)
1226		return -ENOMEM;
1227	return 0;
1228}
1229fs_initcall(proc_cpu_init);
1230#endif
1231
1232static const char *hwcap_str[] = {
1233	"swp",
1234	"half",
1235	"thumb",
1236	"26bit",
1237	"fastmult",
1238	"fpa",
1239	"vfp",
1240	"edsp",
1241	"java",
1242	"iwmmxt",
1243	"crunch",
1244	"thumbee",
1245	"neon",
1246	"vfpv3",
1247	"vfpv3d16",
1248	"tls",
1249	"vfpv4",
1250	"idiva",
1251	"idivt",
1252	"vfpd32",
1253	"lpae",
1254	"evtstrm",
1255	"fphp",
1256	"asimdhp",
1257	"asimddp",
1258	"asimdfhm",
1259	"asimdbf16",
1260	"i8mm",
1261	NULL
1262};
1263
1264static const char *hwcap2_str[] = {
1265	"aes",
1266	"pmull",
1267	"sha1",
1268	"sha2",
1269	"crc32",
1270	"sb",
1271	"ssbs",
1272	NULL
1273};
1274
1275static int c_show(struct seq_file *m, void *v)
1276{
1277	int i, j;
1278	u32 cpuid;
1279
 
 
 
 
1280	for_each_online_cpu(i) {
1281		/*
1282		 * glibc reads /proc/cpuinfo to determine the number of
1283		 * online processors, looking for lines beginning with
1284		 * "processor".  Give glibc what it expects.
1285		 */
1286		seq_printf(m, "processor\t: %d\n", i);
1287		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1288		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1289			   cpu_name, cpuid & 15, elf_platform);
1290
1291#if defined(CONFIG_SMP)
1292		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1293			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1294			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1295#else
1296		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1297			   loops_per_jiffy / (500000/HZ),
1298			   (loops_per_jiffy / (5000/HZ)) % 100);
1299#endif
1300		/* dump out the processor features */
1301		seq_puts(m, "Features\t: ");
1302
1303		for (j = 0; hwcap_str[j]; j++)
1304			if (elf_hwcap & (1 << j))
1305				seq_printf(m, "%s ", hwcap_str[j]);
1306
1307		for (j = 0; hwcap2_str[j]; j++)
1308			if (elf_hwcap2 & (1 << j))
1309				seq_printf(m, "%s ", hwcap2_str[j]);
1310
1311		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1312		seq_printf(m, "CPU architecture: %s\n",
1313			   proc_arch[cpu_architecture()]);
1314
1315		if ((cpuid & 0x0008f000) == 0x00000000) {
1316			/* pre-ARM7 */
1317			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
1318		} else {
1319			if ((cpuid & 0x0008f000) == 0x00007000) {
1320				/* ARM7 */
1321				seq_printf(m, "CPU variant\t: 0x%02x\n",
1322					   (cpuid >> 16) & 127);
1323			} else {
1324				/* post-ARM7 */
1325				seq_printf(m, "CPU variant\t: 0x%x\n",
1326					   (cpuid >> 20) & 15);
1327			}
1328			seq_printf(m, "CPU part\t: 0x%03x\n",
1329				   (cpuid >> 4) & 0xfff);
1330		}
1331		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1332	}
 
 
 
1333
1334	seq_printf(m, "Hardware\t: %s\n", machine_name);
1335	seq_printf(m, "Revision\t: %04x\n", system_rev);
1336	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1337
1338	return 0;
1339}
1340
1341static void *c_start(struct seq_file *m, loff_t *pos)
1342{
1343	return *pos < 1 ? (void *)1 : NULL;
1344}
1345
1346static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1347{
1348	++*pos;
1349	return NULL;
1350}
1351
1352static void c_stop(struct seq_file *m, void *v)
1353{
1354}
1355
1356const struct seq_operations cpuinfo_op = {
1357	.start	= c_start,
1358	.next	= c_next,
1359	.stop	= c_stop,
1360	.show	= c_show
1361};