Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * User-space Probes (UProbes) for x86
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2008-2011
 19 * Authors:
 20 *	Srikar Dronamraju
 21 *	Jim Keniston
 22 */
 23#include <linux/kernel.h>
 24#include <linux/sched.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/uaccess.h>
 28
 29#include <linux/kdebug.h>
 30#include <asm/processor.h>
 31#include <asm/insn.h>
 
 32
 33/* Post-execution fixups. */
 34
 35/* No fixup needed */
 36#define UPROBE_FIX_NONE		0x0
 37
 38/* Adjust IP back to vicinity of actual insn */
 39#define UPROBE_FIX_IP		0x1
 40
 41/* Adjust the return address of a call insn */
 42#define UPROBE_FIX_CALL	0x2
 
 
 
 43
 44#define UPROBE_FIX_RIP_AX	0x8000
 45#define UPROBE_FIX_RIP_CX	0x4000
 
 
 
 46
 47#define	UPROBE_TRAP_NR		UINT_MAX
 48
 49/* Adaptations for mhiramat x86 decoder v14. */
 50#define OPCODE1(insn)		((insn)->opcode.bytes[0])
 51#define OPCODE2(insn)		((insn)->opcode.bytes[1])
 52#define OPCODE3(insn)		((insn)->opcode.bytes[2])
 53#define MODRM_REG(insn)		X86_MODRM_REG(insn->modrm.value)
 54
 55#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
 56	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 57	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 58	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 59	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 60	 << (row % 32))
 61
 62/*
 63 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 64 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 65 * some versions of gcc to think only *(unsigned long*) is used.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 66 */
 
 67static volatile u32 good_insns_32[256 / 32] = {
 68	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 69	/*      ----------------------------------------------         */
 70	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
 71	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
 72	W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
 73	W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
 74	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 75	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 76	W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 77	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 78	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 79	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 80	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 81	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 82	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 83	W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 84	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 85	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 86	/*      ----------------------------------------------         */
 87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 88};
 
 
 
 89
 90/* Using this for both 64-bit and 32-bit apps */
 91static volatile u32 good_2byte_insns[256 / 32] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 93	/*      ----------------------------------------------         */
 94	W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
 95	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 96	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 97	W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
 98	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 99	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
100	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
101	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
102	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
103	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
104	W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
105	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
106	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
107	W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
108	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
109	W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
110	/*      ----------------------------------------------         */
111	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
112};
 
 
 
113
114#ifdef CONFIG_X86_64
115/* Good-instruction tables for 64-bit apps */
116static volatile u32 good_insns_64[256 / 32] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
118	/*      ----------------------------------------------         */
119	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
120	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
121	W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
122	W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
123	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
124	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
125	W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
126	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
127	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
128	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
129	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
130	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
131	W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
132	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
133	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
134	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
135	/*      ----------------------------------------------         */
136	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
137};
138#endif
139#undef W
140
141/*
142 * opcodes we'll probably never support:
143 *
144 *  6c-6d, e4-e5, ec-ed - in
145 *  6e-6f, e6-e7, ee-ef - out
146 *  cc, cd - int3, int
147 *  cf - iret
148 *  d6 - illegal instruction
149 *  f1 - int1/icebp
150 *  f4 - hlt
151 *  fa, fb - cli, sti
152 *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
153 *
154 * invalid opcodes in 64-bit mode:
155 *
156 *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
157 *  63 - we support this opcode in x86_64 but not in i386.
158 *
159 * opcodes we may need to refine support for:
160 *
161 *  0f - 2-byte instructions: For many of these instructions, the validity
162 *  depends on the prefix and/or the reg field.  On such instructions, we
163 *  just consider the opcode combination valid if it corresponds to any
164 *  valid instruction.
165 *
166 *  8f - Group 1 - only reg = 0 is OK
167 *  c6-c7 - Group 11 - only reg = 0 is OK
168 *  d9-df - fpu insns with some illegal encodings
169 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
170 *  certain floating-point instructions, such as addsd.
171 *
172 *  fe - Group 4 - only reg = 0 or 1 is OK
173 *  ff - Group 5 - only reg = 0-6 is OK
174 *
175 * others -- Do we need to support these?
176 *
177 *  0f - (floating-point?) prefetch instructions
178 *  07, 17, 1f - pop es, pop ss, pop ds
179 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
180 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
181 *  67 - addr16 prefix
182 *  ce - into
183 *  f0 - lock prefix
184 */
185
186/*
187 * TODO:
188 * - Where necessary, examine the modrm byte and allow only valid instructions
189 * in the different Groups and fpu instructions.
190 */
191
192static bool is_prefix_bad(struct insn *insn)
193{
 
194	int i;
195
196	for (i = 0; i < insn->prefixes.nbytes; i++) {
197		switch (insn->prefixes.bytes[i]) {
198		case 0x26:	/* INAT_PFX_ES   */
199		case 0x2E:	/* INAT_PFX_CS   */
200		case 0x36:	/* INAT_PFX_DS   */
201		case 0x3E:	/* INAT_PFX_SS   */
202		case 0xF0:	/* INAT_PFX_LOCK */
 
 
 
203			return true;
204		}
205	}
206	return false;
207}
208
209static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
210{
211	insn_init(insn, auprobe->insn, false);
 
 
 
 
 
 
212
213	/* Skip good instruction prefixes; reject "bad" ones. */
214	insn_get_opcode(insn);
215	if (is_prefix_bad(insn))
216		return -ENOTSUPP;
217
218	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
 
 
 
 
 
 
 
 
 
219		return 0;
220
221	if (insn->opcode.nbytes == 2) {
222		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
223			return 0;
224	}
225
226	return -ENOTSUPP;
227}
228
229/*
230 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
231 * annotate arch_uprobe->fixups accordingly.  To start with,
232 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
233 */
234static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
235{
236	bool fix_ip = true, fix_call = false;	/* defaults */
237	int reg;
238
239	insn_get_opcode(insn);	/* should be a nop */
240
241	switch (OPCODE1(insn)) {
242	case 0xc3:		/* ret/lret */
243	case 0xcb:
244	case 0xc2:
245	case 0xca:
246		/* ip is correct */
247		fix_ip = false;
248		break;
249	case 0xe8:		/* call relative - Fix return addr */
250		fix_call = true;
251		break;
252	case 0x9a:		/* call absolute - Fix return addr, not ip */
253		fix_call = true;
254		fix_ip = false;
255		break;
256	case 0xff:
257		insn_get_modrm(insn);
258		reg = MODRM_REG(insn);
259		if (reg == 2 || reg == 3) {
260			/* call or lcall, indirect */
261			/* Fix return addr; ip is correct. */
262			fix_call = true;
263			fix_ip = false;
264		} else if (reg == 4 || reg == 5) {
265			/* jmp or ljmp, indirect */
266			/* ip is correct. */
267			fix_ip = false;
268		}
269		break;
270	case 0xea:		/* jmp absolute -- ip is correct */
271		fix_ip = false;
272		break;
273	default:
274		break;
275	}
276	if (fix_ip)
277		auprobe->fixups |= UPROBE_FIX_IP;
278	if (fix_call)
279		auprobe->fixups |= UPROBE_FIX_CALL;
280}
281
282#ifdef CONFIG_X86_64
283/*
284 * If arch_uprobe->insn doesn't use rip-relative addressing, return
285 * immediately.  Otherwise, rewrite the instruction so that it accesses
286 * its memory operand indirectly through a scratch register.  Set
287 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
288 * accordingly.  (The contents of the scratch register will be saved
289 * before we single-step the modified instruction, and restored
290 * afterward.)
291 *
292 * We do this because a rip-relative instruction can access only a
293 * relatively small area (+/- 2 GB from the instruction), and the XOL
294 * area typically lies beyond that area.  At least for instructions
295 * that store to memory, we can't execute the original instruction
296 * and "fix things up" later, because the misdirected store could be
297 * disastrous.
298 *
299 * Some useful facts about rip-relative instructions:
300 *
301 *  - There's always a modrm byte.
302 *  - There's never a SIB byte.
303 *  - The displacement is always 4 bytes.
 
 
 
304 */
305static void
306handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
307{
308	u8 *cursor;
309	u8 reg;
 
310
311	if (mm->context.ia32_compat)
312		return;
313
314	auprobe->rip_rela_target_address = 0x0;
315	if (!insn_rip_relative(insn))
316		return;
317
318	/*
319	 * insn_rip_relative() would have decoded rex_prefix, modrm.
320	 * Clear REX.b bit (extension of MODRM.rm field):
321	 * we want to encode rax/rcx, not r8/r9.
322	 */
323	if (insn->rex_prefix.nbytes) {
324		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
325		*cursor &= 0xfe;	/* Clearing REX.B bit */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326	}
327
328	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329	 * Point cursor at the modrm byte.  The next 4 bytes are the
330	 * displacement.  Beyond the displacement, for some instructions,
331	 * is the immediate operand.
332	 */
333	cursor = auprobe->insn + insn_offset_modrm(insn);
334	insn_get_length(insn);
335
336	/*
337	 * Convert from rip-relative addressing to indirect addressing
338	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
339	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
340	 */
341	reg = MODRM_REG(insn);
342	if (reg == 0) {
343		/*
344		 * The register operand (if any) is either the A register
345		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
346		 * REX prefix) %r8.  In any case, we know the C register
347		 * is NOT the register operand, so we use %rcx (register
348		 * #1) for the scratch register.
349		 */
350		auprobe->fixups = UPROBE_FIX_RIP_CX;
351		/* Change modrm from 00 000 101 to 00 000 001. */
352		*cursor = 0x1;
353	} else {
354		/* Use %rax (register #0) for the scratch register. */
355		auprobe->fixups = UPROBE_FIX_RIP_AX;
356		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
357		*cursor = (reg << 3);
358	}
359
360	/* Target address = address of next instruction + (signed) offset */
361	auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
362
363	/* Displacement field is gone; slide immediate field (if any) over. */
364	if (insn->immediate.nbytes) {
365		cursor++;
366		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
367	}
368	return;
369}
370
371static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
 
372{
373	insn_init(insn, auprobe->insn, true);
374
375	/* Skip good instruction prefixes; reject "bad" ones. */
376	insn_get_opcode(insn);
377	if (is_prefix_bad(insn))
378		return -ENOTSUPP;
379
380	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
381		return 0;
 
 
 
 
 
 
 
382
383	if (insn->opcode.nbytes == 2) {
384		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
385			return 0;
386	}
387	return -ENOTSUPP;
388}
389
390static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
391{
392	if (mm->context.ia32_compat)
393		return validate_insn_32bits(auprobe, insn);
394	return validate_insn_64bits(auprobe, insn);
 
 
 
395}
396#else /* 32-bit: */
397static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
 
 
 
398{
399	/* No RIP-relative addressing on 32-bit */
400}
401
402static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm,  struct insn *insn)
 
 
403{
404	return validate_insn_32bits(auprobe, insn);
405}
406#endif /* CONFIG_X86_64 */
407
408/**
409 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
410 * @mm: the probed address space.
411 * @arch_uprobe: the probepoint information.
412 * Return 0 on success or a -ve number on error.
413 */
414int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm)
 
415{
416	int ret;
417	struct insn insn;
 
 
 
418
419	auprobe->fixups = 0;
420	ret = validate_insn_bits(auprobe, mm, &insn);
421	if (ret != 0)
422		return ret;
 
 
 
 
 
423
424	handle_riprel_insn(auprobe, mm, &insn);
425	prepare_fixups(auprobe, &insn);
426
 
427	return 0;
428}
429
430#ifdef CONFIG_X86_64
431/*
432 * If we're emulating a rip-relative instruction, save the contents
433 * of the scratch register and store the target address in that register.
 
 
 
 
 
 
 
 
 
 
 
 
 
434 */
435static void
436pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
437				struct arch_uprobe_task *autask)
438{
439	if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
440		autask->saved_scratch_register = regs->ax;
441		regs->ax = current->utask->vaddr;
442		regs->ax += auprobe->rip_rela_target_address;
443	} else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
444		autask->saved_scratch_register = regs->cx;
445		regs->cx = current->utask->vaddr;
446		regs->cx += auprobe->rip_rela_target_address;
447	}
 
 
 
 
 
448}
449#else
450static void
451pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
452				struct arch_uprobe_task *autask)
453{
454	/* No RIP-relative addressing on 32-bit */
455}
456#endif
457
458/*
459 * arch_uprobe_pre_xol - prepare to execute out of line.
460 * @auprobe: the probepoint information.
461 * @regs: reflects the saved user state of current task.
462 */
463int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 
464{
465	struct arch_uprobe_task *autask;
 
466
467	autask = &current->utask->autask;
468	autask->saved_trap_nr = current->thread.trap_nr;
469	current->thread.trap_nr = UPROBE_TRAP_NR;
470	regs->ip = current->utask->xol_vaddr;
471	pre_xol_rip_insn(auprobe, regs, autask);
 
 
 
 
 
 
 
 
472
473	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
474}
475
476/*
477 * This function is called by arch_uprobe_post_xol() to adjust the return
478 * address pushed by a call instruction executed out of line.
479 */
480static int adjust_ret_addr(unsigned long sp, long correction)
481{
482	int rasize, ncopied;
483	long ra = 0;
484
485	if (is_ia32_task())
486		rasize = 4;
487	else
488		rasize = 8;
 
489
490	ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
491	if (unlikely(ncopied))
492		return -EFAULT;
 
493
494	ra += correction;
495	ncopied = copy_to_user((void __user *)sp, &ra, rasize);
496	if (unlikely(ncopied))
497		return -EFAULT;
498
499	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500}
501
502#ifdef CONFIG_X86_64
503static bool is_riprel_insn(struct arch_uprobe *auprobe)
 
 
 
 
 
 
 
 
 
504{
505	return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
 
 
 
 
 
 
 
 
506}
507
508static void
509handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510{
511	if (is_riprel_insn(auprobe)) {
512		struct arch_uprobe_task *autask;
 
 
 
 
 
 
 
 
513
514		autask = &current->utask->autask;
515		if (auprobe->fixups & UPROBE_FIX_RIP_AX)
516			regs->ax = autask->saved_scratch_register;
517		else
518			regs->cx = autask->saved_scratch_register;
519
 
 
 
520		/*
521		 * The original instruction includes a displacement, and so
522		 * is 4 bytes longer than what we've just single-stepped.
523		 * Fall through to handle stuff like "jmpq *...(%rip)" and
524		 * "callq *...(%rip)".
525		 */
526		if (correction)
527			*correction += 4;
 
 
 
528	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530#else
531static void
532handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533{
534	/* No RIP-relative addressing on 32-bit */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535}
536#endif
537
538/*
539 * If xol insn itself traps and generates a signal(Say,
540 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
541 * instruction jumps back to its own address. It is assumed that anything
542 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
543 *
544 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
545 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
546 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
547 */
548bool arch_uprobe_xol_was_trapped(struct task_struct *t)
549{
550	if (t->thread.trap_nr != UPROBE_TRAP_NR)
551		return true;
552
553	return false;
554}
555
556/*
557 * Called after single-stepping. To avoid the SMP problems that can
558 * occur when we temporarily put back the original opcode to
559 * single-step, we single-stepped a copy of the instruction.
560 *
561 * This function prepares to resume execution after the single-step.
562 * We have to fix things up as follows:
563 *
564 * Typically, the new ip is relative to the copied instruction.  We need
565 * to make it relative to the original instruction (FIX_IP).  Exceptions
566 * are return instructions and absolute or indirect jump or call instructions.
567 *
568 * If the single-stepped instruction was a call, the return address that
569 * is atop the stack is the address following the copied instruction.  We
570 * need to make it the address following the original instruction (FIX_CALL).
571 *
572 * If the original instruction was a rip-relative instruction such as
573 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
574 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
575 * We need to restore the contents of the scratch register and adjust
576 * the ip, keeping in mind that the instruction we executed is 4 bytes
577 * shorter than the original instruction (since we squeezed out the offset
578 * field).  (FIX_RIP_AX or FIX_RIP_CX)
579 */
580int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
581{
582	struct uprobe_task *utask;
583	long correction;
584	int result = 0;
585
586	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
587
588	utask = current->utask;
589	current->thread.trap_nr = utask->autask.saved_trap_nr;
590	correction = (long)(utask->vaddr - utask->xol_vaddr);
591	handle_riprel_post_xol(auprobe, regs, &correction);
592	if (auprobe->fixups & UPROBE_FIX_IP)
593		regs->ip += correction;
594
595	if (auprobe->fixups & UPROBE_FIX_CALL)
596		result = adjust_ret_addr(regs->sp, correction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597
598	return result;
599}
600
601/* callback routine for handling exceptions. */
602int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
603{
604	struct die_args *args = data;
605	struct pt_regs *regs = args->regs;
606	int ret = NOTIFY_DONE;
607
608	/* We are only interested in userspace traps */
609	if (regs && !user_mode_vm(regs))
610		return NOTIFY_DONE;
611
612	switch (val) {
613	case DIE_INT3:
614		if (uprobe_pre_sstep_notifier(regs))
615			ret = NOTIFY_STOP;
616
617		break;
618
619	case DIE_DEBUG:
620		if (uprobe_post_sstep_notifier(regs))
621			ret = NOTIFY_STOP;
622
 
 
623	default:
624		break;
625	}
626
627	return ret;
628}
629
630/*
631 * This function gets called when XOL instruction either gets trapped or
632 * the thread has a fatal signal, so reset the instruction pointer to its
633 * probed address.
634 */
635void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
636{
637	struct uprobe_task *utask = current->utask;
638
 
 
 
639	current->thread.trap_nr = utask->autask.saved_trap_nr;
640	handle_riprel_post_xol(auprobe, regs, NULL);
641	instruction_pointer_set(regs, utask->vaddr);
 
 
 
 
 
 
 
 
 
642}
643
644/*
645 * Skip these instructions as per the currently known x86 ISA.
646 * 0x66* { 0x90 | 0x0f 0x1f | 0x0f 0x19 | 0x87 0xc0 }
647 */
648bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
649{
650	int i;
 
 
 
 
651
652	for (i = 0; i < MAX_UINSN_BYTES; i++) {
653		if ((auprobe->insn[i] == 0x66))
654			continue;
 
 
655
656		if (auprobe->insn[i] == 0x90)
657			return true;
658
659		if (i == (MAX_UINSN_BYTES - 1))
660			break;
 
661
662		if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x1f))
663			return true;
 
664
665		if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x19))
666			return true;
667
668		if ((auprobe->insn[i] == 0x87) && (auprobe->insn[i+1] == 0xc0))
669			return true;
670
671		break;
672	}
673	return false;
 
 
 
 
 
 
 
 
 
 
674}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
 
 
 
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP		0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL		0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF		0x04
  31
  32#define UPROBE_FIX_RIP_SI	0x08
  33#define UPROBE_FIX_RIP_DI	0x10
  34#define UPROBE_FIX_RIP_BX	0x20
  35#define UPROBE_FIX_RIP_MASK	\
  36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define	UPROBE_TRAP_NR		UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51	 << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *	(why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *	Normally not used in userspace, but would execute if used.
  73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *	We hesitate to run them under single step since kernel's handling
  75 *	of userspace single-stepping (TF flag) is fragile.
  76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *	on the same grounds that they are never used.
  78 * cd - int N.
  79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *	Not supported since kernel's handling of userspace single-stepping
  82 *	(TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88	/*      ----------------------------------------------         */
  89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105	/*      ----------------------------------------------         */
 106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32	NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *	Not supported since kernel's handling of userspace single-stepping
 144 *	(TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150	/*      ----------------------------------------------         */
 151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167	/*      ----------------------------------------------         */
 168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64	NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *	Also encodes tons of other system insns if mod=11.
 179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *	Note: with prefixes, these two opcodes are
 193 *	extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *	Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200	/*      ----------------------------------------------         */
 201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217	/*      ----------------------------------------------         */
 218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 
 220#undef W
 221
 222/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258	insn_byte_t p;
 259	int i;
 260
 261	for_each_insn_prefix(insn, i, p) {
 262		insn_attr_t attr;
 263
 264		attr = inat_get_opcode_attribute(p);
 265		switch (attr) {
 266		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 267		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 268		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 270		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 271			return true;
 272		}
 273	}
 274	return false;
 275}
 276
 277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 278{
 279	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 280	u32 volatile *good_insns;
 281	int ret;
 282
 283	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 284	if (ret < 0)
 285		return -ENOEXEC;
 286
 
 
 287	if (is_prefix_bad(insn))
 288		return -ENOTSUPP;
 289
 290	/* We should not singlestep on the exception masking instructions */
 291	if (insn_masking_exception(insn))
 292		return -ENOTSUPP;
 293
 294	if (x86_64)
 295		good_insns = good_insns_64;
 296	else
 297		good_insns = good_insns_32;
 298
 299	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 300		return 0;
 301
 302	if (insn->opcode.nbytes == 2) {
 303		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 304			return 0;
 305	}
 306
 307	return -ENOTSUPP;
 308}
 309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310#ifdef CONFIG_X86_64
 311/*
 312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 313 * immediately.  Otherwise, rewrite the instruction so that it accesses
 314 * its memory operand indirectly through a scratch register.  Set
 315 * defparam->fixups accordingly. (The contents of the scratch register
 316 * will be saved before we single-step the modified instruction,
 317 * and restored afterward).
 
 318 *
 319 * We do this because a rip-relative instruction can access only a
 320 * relatively small area (+/- 2 GB from the instruction), and the XOL
 321 * area typically lies beyond that area.  At least for instructions
 322 * that store to memory, we can't execute the original instruction
 323 * and "fix things up" later, because the misdirected store could be
 324 * disastrous.
 325 *
 326 * Some useful facts about rip-relative instructions:
 327 *
 328 *  - There's always a modrm byte with bit layout "00 reg 101".
 329 *  - There's never a SIB byte.
 330 *  - The displacement is always 4 bytes.
 331 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 332 *    has no effect on rip-relative mode. It doesn't make modrm byte
 333 *    with r/m=101 refer to register 1101 = R13.
 334 */
 335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 
 336{
 337	u8 *cursor;
 338	u8 reg;
 339	u8 reg2;
 340
 
 
 
 
 341	if (!insn_rip_relative(insn))
 342		return;
 343
 344	/*
 345	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 346	 * Clear REX.b bit (extension of MODRM.rm field):
 347	 * we want to encode low numbered reg, not r8+.
 348	 */
 349	if (insn->rex_prefix.nbytes) {
 350		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 351		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 352		*cursor &= 0xfe;
 353	}
 354	/*
 355	 * Similar treatment for VEX3/EVEX prefix.
 356	 * TODO: add XOP treatment when insn decoder supports them
 357	 */
 358	if (insn->vex_prefix.nbytes >= 3) {
 359		/*
 360		 * vex2:     c5    rvvvvLpp   (has no b bit)
 361		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 362		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 363		 * Setting VEX3.b (setting because it has inverted meaning).
 364		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 365		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 366		 * For VEX3-encoded insns, VEX3.x value has no effect in
 367		 * non-SIB encoding, the change is superfluous but harmless.
 368		 */
 369		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 370		*cursor |= 0x60;
 371	}
 372
 373	/*
 374	 * Convert from rip-relative addressing to register-relative addressing
 375	 * via a scratch register.
 376	 *
 377	 * This is tricky since there are insns with modrm byte
 378	 * which also use registers not encoded in modrm byte:
 379	 * [i]div/[i]mul: implicitly use dx:ax
 380	 * shift ops: implicitly use cx
 381	 * cmpxchg: implicitly uses ax
 382	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 383	 *   Encoding: 0f c7/1 modrm
 384	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 385	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 386	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 387	 *   Example where none of bx,cx,dx can be used as scratch reg:
 388	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 389	 * [v]pcmpistri: implicitly uses cx, xmm0
 390	 * [v]pcmpistrm: implicitly uses xmm0
 391	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 392	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 393	 *   Evil SSE4.2 string comparison ops from hell.
 394	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 395	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 396	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 397	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 398	 *   and that it can have only register operands, not mem
 399	 *   (its modrm byte must have mode=11).
 400	 *   If these restrictions will ever be lifted,
 401	 *   we'll need code to prevent selection of di as scratch reg!
 402	 *
 403	 * Summary: I don't know any insns with modrm byte which
 404	 * use SI register implicitly. DI register is used only
 405	 * by one insn (maskmovq) and BX register is used
 406	 * only by one too (cmpxchg8b).
 407	 * BP is stack-segment based (may be a problem?).
 408	 * AX, DX, CX are off-limits (many implicit users).
 409	 * SP is unusable (it's stack pointer - think about "pop mem";
 410	 * also, rsp+disp32 needs sib encoding -> insn length change).
 411	 */
 412
 413	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 414	reg2 = 0xff;		/* Fetch vex.vvvv */
 415	if (insn->vex_prefix.nbytes)
 416		reg2 = insn->vex_prefix.bytes[2];
 417	/*
 418	 * TODO: add XOP vvvv reading.
 419	 *
 420	 * vex.vvvv field is in bits 6-3, bits are inverted.
 421	 * But in 32-bit mode, high-order bit may be ignored.
 422	 * Therefore, let's consider only 3 low-order bits.
 423	 */
 424	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 425	/*
 426	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 427	 *
 428	 * Choose scratch reg. Order is important: must not select bx
 429	 * if we can use si (cmpxchg8b case!)
 430	 */
 431	if (reg != 6 && reg2 != 6) {
 432		reg2 = 6;
 433		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 434	} else if (reg != 7 && reg2 != 7) {
 435		reg2 = 7;
 436		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 437		/* TODO (paranoia): force maskmovq to not use di */
 438	} else {
 439		reg2 = 3;
 440		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 441	}
 442	/*
 443	 * Point cursor at the modrm byte.  The next 4 bytes are the
 444	 * displacement.  Beyond the displacement, for some instructions,
 445	 * is the immediate operand.
 446	 */
 447	cursor = auprobe->insn + insn_offset_modrm(insn);
 
 
 448	/*
 449	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 450	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 451	 * 89 86 disp32  mov %eax,disp32(%rsi)
 452	 */
 453	*cursor = 0x80 | (reg << 3) | reg2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454}
 455
 456static inline unsigned long *
 457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 458{
 459	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 460		return &regs->si;
 461	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 462		return &regs->di;
 463	return &regs->bx;
 464}
 465
 466/*
 467 * If we're emulating a rip-relative instruction, save the contents
 468 * of the scratch register and store the target address in that register.
 469 */
 470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 471{
 472	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 473		struct uprobe_task *utask = current->utask;
 474		unsigned long *sr = scratch_reg(auprobe, regs);
 475
 476		utask->autask.saved_scratch_register = *sr;
 477		*sr = utask->vaddr + auprobe->defparam.ilen;
 
 478	}
 
 479}
 480
 481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 482{
 483	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 484		struct uprobe_task *utask = current->utask;
 485		unsigned long *sr = scratch_reg(auprobe, regs);
 486
 487		*sr = utask->autask.saved_scratch_register;
 488	}
 489}
 490#else /* 32-bit: */
 491/*
 492 * No RIP-relative addressing on 32-bit
 493 */
 494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 495{
 
 496}
 497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 498{
 499}
 500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 501{
 
 502}
 503#endif /* CONFIG_X86_64 */
 504
 505struct uprobe_xol_ops {
 506	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 507	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 508	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 509	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 510};
 511
 512static inline int sizeof_long(struct pt_regs *regs)
 513{
 514	/*
 515	 * Check registers for mode as in_xxx_syscall() does not apply here.
 516	 */
 517	return user_64bit_mode(regs) ? 8 : 4;
 518}
 519
 520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 521{
 522	riprel_pre_xol(auprobe, regs);
 523	return 0;
 524}
 525
 526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 527{
 528	unsigned long new_sp = regs->sp - sizeof_long(regs);
 529
 530	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 531		return -EFAULT;
 532
 533	regs->sp = new_sp;
 534	return 0;
 535}
 536
 
 537/*
 538 * We have to fix things up as follows:
 539 *
 540 * Typically, the new ip is relative to the copied instruction.  We need
 541 * to make it relative to the original instruction (FIX_IP).  Exceptions
 542 * are return instructions and absolute or indirect jump or call instructions.
 543 *
 544 * If the single-stepped instruction was a call, the return address that
 545 * is atop the stack is the address following the copied instruction.  We
 546 * need to make it the address following the original instruction (FIX_CALL).
 547 *
 548 * If the original instruction was a rip-relative instruction such as
 549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 551 * We need to restore the contents of the scratch register
 552 * (FIX_RIP_reg).
 553 */
 554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 555{
 556	struct uprobe_task *utask = current->utask;
 557
 558	riprel_post_xol(auprobe, regs);
 559	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 560		long correction = utask->vaddr - utask->xol_vaddr;
 561		regs->ip += correction;
 562	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 563		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 564		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 565			return -ERESTART;
 566	}
 567	/* popf; tell the caller to not touch TF */
 568	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 569		utask->autask.saved_tf = true;
 570
 571	return 0;
 572}
 573
 574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 
 
 575{
 576	riprel_post_xol(auprobe, regs);
 577}
 
 578
 579static const struct uprobe_xol_ops default_xol_ops = {
 580	.pre_xol  = default_pre_xol_op,
 581	.post_xol = default_post_xol_op,
 582	.abort	  = default_abort_op,
 583};
 584
 585static bool branch_is_call(struct arch_uprobe *auprobe)
 586{
 587	return auprobe->branch.opc1 == 0xe8;
 588}
 589
 590#define CASE_COND					\
 591	COND(70, 71, XF(OF))				\
 592	COND(72, 73, XF(CF))				\
 593	COND(74, 75, XF(ZF))				\
 594	COND(78, 79, XF(SF))				\
 595	COND(7a, 7b, XF(PF))				\
 596	COND(76, 77, XF(CF) || XF(ZF))			\
 597	COND(7c, 7d, XF(SF) != XF(OF))			\
 598	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 599
 600#define COND(op_y, op_n, expr)				\
 601	case 0x ## op_y: DO((expr) != 0)		\
 602	case 0x ## op_n: DO((expr) == 0)
 603
 604#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 605
 606static bool is_cond_jmp_opcode(u8 opcode)
 607{
 608	switch (opcode) {
 609	#define DO(expr)	\
 610		return true;
 611	CASE_COND
 612	#undef	DO
 613
 614	default:
 615		return false;
 616	}
 617}
 618
 619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 
 
 
 
 620{
 621	unsigned long flags = regs->flags;
 
 622
 623	switch (auprobe->branch.opc1) {
 624	#define DO(expr)	\
 625		return expr;
 626	CASE_COND
 627	#undef	DO
 628
 629	default:	/* not a conditional jmp */
 630		return true;
 631	}
 632}
 633
 634#undef	XF
 635#undef	COND
 636#undef	CASE_COND
 
 637
 638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 639{
 640	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 641	unsigned long offs = (long)auprobe->branch.offs;
 642
 643	if (branch_is_call(auprobe)) {
 644		/*
 645		 * If it fails we execute this (mangled, see the comment in
 646		 * branch_clear_offset) insn out-of-line. In the likely case
 647		 * this should trigger the trap, and the probed application
 648		 * should die or restart the same insn after it handles the
 649		 * signal, arch_uprobe_post_xol() won't be even called.
 650		 *
 651		 * But there is corner case, see the comment in ->post_xol().
 652		 */
 653		if (emulate_push_stack(regs, new_ip))
 654			return false;
 655	} else if (!check_jmp_cond(auprobe, regs)) {
 656		offs = 0;
 657	}
 658
 659	regs->ip = new_ip + offs;
 660	return true;
 661}
 662
 663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 664{
 665	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 666
 667	if (emulate_push_stack(regs, *src_ptr))
 668		return false;
 669	regs->ip += auprobe->push.ilen;
 670	return true;
 671}
 672
 673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 674{
 675	BUG_ON(!branch_is_call(auprobe));
 676	/*
 677	 * We can only get here if branch_emulate_op() failed to push the ret
 678	 * address _and_ another thread expanded our stack before the (mangled)
 679	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 680	 * We could also restore ->ip and try to call branch_emulate_op() again.
 681	 */
 682	regs->sp += sizeof_long(regs);
 683	return -ERESTART;
 684}
 685
 686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 687{
 688	/*
 689	 * Turn this insn into "call 1f; 1:", this is what we will execute
 690	 * out-of-line if ->emulate() fails. We only need this to generate
 691	 * a trap, so that the probed task receives the correct signal with
 692	 * the properly filled siginfo.
 693	 *
 694	 * But see the comment in ->post_xol(), in the unlikely case it can
 695	 * succeed. So we need to ensure that the new ->ip can not fall into
 696	 * the non-canonical area and trigger #GP.
 697	 *
 698	 * We could turn it into (say) "pushf", but then we would need to
 699	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 700	 * of ->insn[] for set_orig_insn().
 701	 */
 702	memset(auprobe->insn + insn_offset_immediate(insn),
 703		0, insn->immediate.nbytes);
 704}
 705
 706static const struct uprobe_xol_ops branch_xol_ops = {
 707	.emulate  = branch_emulate_op,
 708	.post_xol = branch_post_xol_op,
 709};
 710
 711static const struct uprobe_xol_ops push_xol_ops = {
 712	.emulate  = push_emulate_op,
 713};
 714
 715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 717{
 718	u8 opc1 = OPCODE1(insn);
 719	insn_byte_t p;
 720	int i;
 721
 722	switch (opc1) {
 723	case 0xeb:	/* jmp 8 */
 724	case 0xe9:	/* jmp 32 */
 725		break;
 726	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 727		goto setup;
 728
 729	case 0xe8:	/* call relative */
 730		branch_clear_offset(auprobe, insn);
 731		break;
 
 
 732
 733	case 0x0f:
 734		if (insn->opcode.nbytes != 2)
 735			return -ENOSYS;
 736		/*
 737		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 738		 * OPCODE1() of the "short" jmp which checks the same condition.
 
 
 739		 */
 740		opc1 = OPCODE2(insn) - 0x10;
 741		fallthrough;
 742	default:
 743		if (!is_cond_jmp_opcode(opc1))
 744			return -ENOSYS;
 745	}
 746
 747	/*
 748	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 749	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 750	 * No one uses these insns, reject any branch insns with such prefix.
 751	 */
 752	for_each_insn_prefix(insn, i, p) {
 753		if (p == 0x66)
 754			return -ENOTSUPP;
 755	}
 756
 757setup:
 758	auprobe->branch.opc1 = opc1;
 759	auprobe->branch.ilen = insn->length;
 760	auprobe->branch.offs = insn->immediate.value;
 761
 762	auprobe->ops = &branch_xol_ops;
 763	return 0;
 764}
 765
 766/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 767static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 768{
 769	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 770
 771	if (opc1 < 0x50 || opc1 > 0x57)
 772		return -ENOSYS;
 773
 774	if (insn->length > 2)
 775		return -ENOSYS;
 776	if (insn->length == 2) {
 777		/* only support rex_prefix 0x41 (x64 only) */
 778#ifdef CONFIG_X86_64
 779		if (insn->rex_prefix.nbytes != 1 ||
 780		    insn->rex_prefix.bytes[0] != 0x41)
 781			return -ENOSYS;
 782
 783		switch (opc1) {
 784		case 0x50:
 785			reg_offset = offsetof(struct pt_regs, r8);
 786			break;
 787		case 0x51:
 788			reg_offset = offsetof(struct pt_regs, r9);
 789			break;
 790		case 0x52:
 791			reg_offset = offsetof(struct pt_regs, r10);
 792			break;
 793		case 0x53:
 794			reg_offset = offsetof(struct pt_regs, r11);
 795			break;
 796		case 0x54:
 797			reg_offset = offsetof(struct pt_regs, r12);
 798			break;
 799		case 0x55:
 800			reg_offset = offsetof(struct pt_regs, r13);
 801			break;
 802		case 0x56:
 803			reg_offset = offsetof(struct pt_regs, r14);
 804			break;
 805		case 0x57:
 806			reg_offset = offsetof(struct pt_regs, r15);
 807			break;
 808		}
 809#else
 810		return -ENOSYS;
 811#endif
 812	} else {
 813		switch (opc1) {
 814		case 0x50:
 815			reg_offset = offsetof(struct pt_regs, ax);
 816			break;
 817		case 0x51:
 818			reg_offset = offsetof(struct pt_regs, cx);
 819			break;
 820		case 0x52:
 821			reg_offset = offsetof(struct pt_regs, dx);
 822			break;
 823		case 0x53:
 824			reg_offset = offsetof(struct pt_regs, bx);
 825			break;
 826		case 0x54:
 827			reg_offset = offsetof(struct pt_regs, sp);
 828			break;
 829		case 0x55:
 830			reg_offset = offsetof(struct pt_regs, bp);
 831			break;
 832		case 0x56:
 833			reg_offset = offsetof(struct pt_regs, si);
 834			break;
 835		case 0x57:
 836			reg_offset = offsetof(struct pt_regs, di);
 837			break;
 838		}
 839	}
 840
 841	auprobe->push.reg_offset = reg_offset;
 842	auprobe->push.ilen = insn->length;
 843	auprobe->ops = &push_xol_ops;
 844	return 0;
 845}
 846
 847/**
 848 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 849 * @auprobe: the probepoint information.
 850 * @mm: the probed address space.
 851 * @addr: virtual address at which to install the probepoint
 852 * Return 0 on success or a -ve number on error.
 853 */
 854int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 855{
 856	struct insn insn;
 857	u8 fix_ip_or_call = UPROBE_FIX_IP;
 858	int ret;
 859
 860	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 861	if (ret)
 862		return ret;
 863
 864	ret = branch_setup_xol_ops(auprobe, &insn);
 865	if (ret != -ENOSYS)
 866		return ret;
 867
 868	ret = push_setup_xol_ops(auprobe, &insn);
 869	if (ret != -ENOSYS)
 870		return ret;
 871
 872	/*
 873	 * Figure out which fixups default_post_xol_op() will need to perform,
 874	 * and annotate defparam->fixups accordingly.
 875	 */
 876	switch (OPCODE1(&insn)) {
 877	case 0x9d:		/* popf */
 878		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 879		break;
 880	case 0xc3:		/* ret or lret -- ip is correct */
 881	case 0xcb:
 882	case 0xc2:
 883	case 0xca:
 884	case 0xea:		/* jmp absolute -- ip is correct */
 885		fix_ip_or_call = 0;
 886		break;
 887	case 0x9a:		/* call absolute - Fix return addr, not ip */
 888		fix_ip_or_call = UPROBE_FIX_CALL;
 889		break;
 890	case 0xff:
 891		switch (MODRM_REG(&insn)) {
 892		case 2: case 3:			/* call or lcall, indirect */
 893			fix_ip_or_call = UPROBE_FIX_CALL;
 894			break;
 895		case 4: case 5:			/* jmp or ljmp, indirect */
 896			fix_ip_or_call = 0;
 897			break;
 898		}
 899		fallthrough;
 900	default:
 901		riprel_analyze(auprobe, &insn);
 902	}
 903
 904	auprobe->defparam.ilen = insn.length;
 905	auprobe->defparam.fixups |= fix_ip_or_call;
 906
 907	auprobe->ops = &default_xol_ops;
 908	return 0;
 909}
 910
 911/*
 912 * arch_uprobe_pre_xol - prepare to execute out of line.
 913 * @auprobe: the probepoint information.
 914 * @regs: reflects the saved user state of current task.
 915 */
 916int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 917{
 918	struct uprobe_task *utask = current->utask;
 919
 920	if (auprobe->ops->pre_xol) {
 921		int err = auprobe->ops->pre_xol(auprobe, regs);
 922		if (err)
 923			return err;
 924	}
 925
 926	regs->ip = utask->xol_vaddr;
 927	utask->autask.saved_trap_nr = current->thread.trap_nr;
 928	current->thread.trap_nr = UPROBE_TRAP_NR;
 929
 930	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 931	regs->flags |= X86_EFLAGS_TF;
 932	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 933		set_task_blockstep(current, false);
 934
 935	return 0;
 936}
 
 937
 938/*
 939 * If xol insn itself traps and generates a signal(Say,
 940 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 941 * instruction jumps back to its own address. It is assumed that anything
 942 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 943 *
 944 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 945 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 946 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 947 */
 948bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 949{
 950	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 951		return true;
 952
 953	return false;
 954}
 955
 956/*
 957 * Called after single-stepping. To avoid the SMP problems that can
 958 * occur when we temporarily put back the original opcode to
 959 * single-step, we single-stepped a copy of the instruction.
 960 *
 961 * This function prepares to resume execution after the single-step.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962 */
 963int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 964{
 965	struct uprobe_task *utask = current->utask;
 966	bool send_sigtrap = utask->autask.saved_tf;
 967	int err = 0;
 968
 969	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 
 
 970	current->thread.trap_nr = utask->autask.saved_trap_nr;
 
 
 
 
 971
 972	if (auprobe->ops->post_xol) {
 973		err = auprobe->ops->post_xol(auprobe, regs);
 974		if (err) {
 975			/*
 976			 * Restore ->ip for restart or post mortem analysis.
 977			 * ->post_xol() must not return -ERESTART unless this
 978			 * is really possible.
 979			 */
 980			regs->ip = utask->vaddr;
 981			if (err == -ERESTART)
 982				err = 0;
 983			send_sigtrap = false;
 984		}
 985	}
 986	/*
 987	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 988	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 989	 * to examine the opcode to make it right.
 990	 */
 991	if (send_sigtrap)
 992		send_sig(SIGTRAP, current, 0);
 993
 994	if (!utask->autask.saved_tf)
 995		regs->flags &= ~X86_EFLAGS_TF;
 996
 997	return err;
 998}
 999
1000/* callback routine for handling exceptions. */
1001int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1002{
1003	struct die_args *args = data;
1004	struct pt_regs *regs = args->regs;
1005	int ret = NOTIFY_DONE;
1006
1007	/* We are only interested in userspace traps */
1008	if (regs && !user_mode(regs))
1009		return NOTIFY_DONE;
1010
1011	switch (val) {
1012	case DIE_INT3:
1013		if (uprobe_pre_sstep_notifier(regs))
1014			ret = NOTIFY_STOP;
1015
1016		break;
1017
1018	case DIE_DEBUG:
1019		if (uprobe_post_sstep_notifier(regs))
1020			ret = NOTIFY_STOP;
1021
1022		break;
1023
1024	default:
1025		break;
1026	}
1027
1028	return ret;
1029}
1030
1031/*
1032 * This function gets called when XOL instruction either gets trapped or
1033 * the thread has a fatal signal. Reset the instruction pointer to its
1034 * probed address for the potential restart or for post mortem analysis.
1035 */
1036void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1037{
1038	struct uprobe_task *utask = current->utask;
1039
1040	if (auprobe->ops->abort)
1041		auprobe->ops->abort(auprobe, regs);
1042
1043	current->thread.trap_nr = utask->autask.saved_trap_nr;
1044	regs->ip = utask->vaddr;
1045	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1046	if (!utask->autask.saved_tf)
1047		regs->flags &= ~X86_EFLAGS_TF;
1048}
1049
1050static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1051{
1052	if (auprobe->ops->emulate)
1053		return auprobe->ops->emulate(auprobe, regs);
1054	return false;
1055}
1056
 
 
 
 
1057bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1058{
1059	bool ret = __skip_sstep(auprobe, regs);
1060	if (ret && (regs->flags & X86_EFLAGS_TF))
1061		send_sig(SIGTRAP, current, 0);
1062	return ret;
1063}
1064
1065unsigned long
1066arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1067{
1068	int rasize = sizeof_long(regs), nleft;
1069	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1070
1071	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1072		return -1;
1073
1074	/* check whether address has been already hijacked */
1075	if (orig_ret_vaddr == trampoline_vaddr)
1076		return orig_ret_vaddr;
1077
1078	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1079	if (likely(!nleft))
1080		return orig_ret_vaddr;
1081
1082	if (nleft != rasize) {
1083		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1084		       current->pid, regs->sp, regs->ip);
 
 
1085
1086		force_sig(SIGSEGV);
1087	}
1088
1089	return -1;
1090}
1091
1092bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1093				struct pt_regs *regs)
1094{
1095	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1096		return regs->sp < ret->stack;
1097	else
1098		return regs->sp <= ret->stack;
1099}